Sample records for single breath diffusion

  1. Single-shot turbo spin echo acquisition for in vivo cardiac diffusion MRI.

    PubMed

    Edalati, Masoud; Lee, Gregory R; Hui Wang; Taylor, Michael D; Li, Yu Y

    2016-08-01

    Diffusion MRI offers the ability to noninvasively characterize the microstructure of myocardium tissue and detect disease related pathology in cardiovascular examination. This study investigates the feasibility of in vivo cardiac diffusion MRI under free-breathing condition. A high-speed imaging technique, correlation imaging, is used to enable single-shot turbo spin echo for free-breathing cardiac data acquisition. The obtained in vivo cardiac diffusion-weighted images illustrate robust image quality and minor geometry distortions. The resultant diffusion scalar maps show reliable quantitative values consistent with those previously published in the literature. It is demonstrated that this technique has the potential for in vivo free-breathing cardiac diffusion MRI.

  2. The rise in carboxyhemoglobin from repeated pulmonary diffusing capacity tests.

    PubMed

    Zavorsky, Gerald S

    2013-03-01

    The purpose of this study determined the rise in carboxyhemoglobin percentage (COHb) from repeated pulmonary diffusing capacity tests using 5 or 10s single breath-hold maneuvers. Five male and four female non-smokers [baseline COHb=1.2 (SD 0.5%)] performed repeated pulmonary diffusing capacity testing on two separate days. The days were randomized to either repeated 10s (0.28% CO), or 5s (0.28% CO, 55ppm NO) breath-hold maneuvers. Twenty-two 5s breath-hold maneuvers, each separated by 4min rest, raised COHb to 11.1 (1.4)% and minimally raised the methemoglobin percentage (METHb) by 0.3 (0.2)% to a value of 0.8 (0.2)%. After the 22nd test, pulmonary diffusing capacity for carbon monoxide (DLCO) was reduced by about 4mL/min/mmHg, equating to a 0.44% increase in COHb per 5s breath-hold maneuver and a concomitant 0.35mL/min/mmHg decrease in DLCO. Pulmonary diffusing capacity for nitric oxide (DLNO) was not altered after 22 tests. On another day, the 10s single breath-hold maneuver increased COHb by 0.64% per test, and reduced DLCO by 0.44mL/min/mmHg per test. In conclusion, 5s breath-hold maneuvers do not appreciably raise METHb or DLNO, and DLCO is only significantly reduced when COHb is at least 6%. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Spirometry, Static Lung Volumes, and Diffusing Capacity.

    PubMed

    Vaz Fragoso, Carlos A; Cain, Hilary C; Casaburi, Richard; Lee, Patty J; Iannone, Lynne; Leo-Summers, Linda S; Van Ness, Peter H

    2017-09-01

    Spirometric Z-scores from the Global Lung Initiative (GLI) rigorously account for age-related changes in lung function and are thus age-appropriate when establishing spirometric impairments, including a restrictive pattern and air-flow obstruction. However, GLI-defined spirometric impairments have not yet been evaluated regarding associations with static lung volumes (total lung capacity [TLC], functional residual capacity [FRC], and residual volume [RV]) and gas exchange (diffusing capacity). We performed a retrospective review of pulmonary function tests in subjects ≥40 y old (mean age 64.6 y), including pre-bronchodilator measures for: spirometry ( n = 2,586), static lung volumes by helium dilution with inspiratory capacity maneuver ( n = 2,586), and hemoglobin-adjusted single-breath diffusing capacity ( n = 2,508). Using multivariable linear regression, adjusted least-squares means (adj LS Means) were calculated for TLC, FRC, RV, and hemoglobin-adjusted single-breath diffusing capacity. The adj LS Means were expressed with and without height-cubed standardization and stratified by GLI-defined spirometry, including normal ( n = 1,251), restrictive pattern ( n = 663), and air-flow obstruction (mild, [ n = 128]; moderate, [ n = 150]; and severe, [ n = 394]). Relative to normal spirometry, restrictive-pattern had lower adj LS Means for TLC, FRC, RV, and hemoglobin-adjusted single-breath diffusing capacity ( P ≤ .001). Conversely, relative to normal spirometry, mild, moderate, and severe air-flow obstruction had higher adj LS Means for FRC and RV ( P < .001). However, only mild and moderate air-flow obstruction had higher adj LS Means for TLC ( P < .001), while only moderate and severe air-flow obstruction had higher adj LS Means for RV/TLC ( P < .001) and lower adj LS Means for hemoglobin-adjusted single-breath diffusing capacity ( P < .001). Notably, TLC (calculated as FRC + inspiratory capacity) was not increased in severe air-flow obstruction ( P ≥ .11) because inspiratory capacity decreased with increasing air-flow obstruction ( P < .001), thus opposing the increased FRC ( P < .001). Finally, P values were similar whether adj LS Means were height-cubed standardized. A GLI-defined spirometric restrictive pattern is strongly associated with a restrictive ventilatory defect (decreased TLC, FRC, and RV), while GLI-defined spirometric air-flow obstruction is strongly associated with hyperinflation (increased FRC) and air trapping (increased RV and RV/TLC). Both spirometric impairments were strongly associated with impaired gas exchange (decreased hemoglobin-adjusted single-breath diffusing capacity). Copyright © 2017 by Daedalus Enterprises.

  4. Pulmonary function of nonsmoking female asbestos workers without radiographic signs of asbestosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, X.R.; Yano, E.; Nonaka, Koichi

    Researchers disagree about whether exposure to asbestos causes significant respiratory impairments and airway obstruction in the absence of radiographic asbestosis and smoking. To obtain confirmatory information, the authors examined pulmonary function of 208 nonsmoking female asbestos workers who did not have asbestosis and 136 controls. The authors observed an overall lower single-breath carbon monoxide diffusing capacity in the asbestos workers than in controls. In addition, significant decreases in percentage vital capacity, percentage forced vital capacity, and percentage mean forced expiratory flow during the middle half of the forced vital capacity were evident in the older workers. Logistic regression analysis revealedmore » that asbestos exposure was associated with abnormal single-breath carbon monoxide diffusing capacity, vital capacity, and mean forced expiratory flow during the middle half of the forced vital capacity among the older workers. The age-related decline in vital capacity, forced vital capacity, and mean forced expiratory flow during the middle half of the forced vital capacity was significantly greater in the asbestos workers than the controls. The findings imply that asbestos-exposure per se contributes predominantly to restricted lung volume and reduced single-breath carbon monoxide diffusing capacity. Asbestos may also cause slight airway obstruction, especially in workers who are heavily exposed.« less

  5. Time-delayed feedback control of breathing localized structures in a three-component reaction-diffusion system.

    PubMed

    Gurevich, Svetlana V

    2014-10-28

    The dynamics of a single breathing localized structure in a three-component reaction-diffusion system subjected to time-delayed feedback is investigated. It is shown that variation of the delay time and the feedback strength can lead either to stabilization of the breathing or to delay-induced periodic or quasi-periodic oscillations of the localized structure. A bifurcation analysis of the system in question is provided and an order parameter equation is derived that describes the dynamics of the localized structure in the vicinity of the Andronov-Hopf bifurcation. With the aid of this equation, the boundaries of the stabilization domains as well as the dependence of the oscillation radius on delay parameters can be explicitly derived, providing a robust mechanism to control the behaviour of the breathing localized structure in a straightforward manner. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  6. Reference values for pulmonary diffusing capacity for adult native Finns.

    PubMed

    Kainu, Annette; Toikka, Jyri; Vanninen, Esko; Timonen, Kirsi L

    2017-04-01

    Measurement standards for pulmonary diffusing capacity were updated in 2005 by the ATS/ERS Task Force. However, in Finland reference values published in 1982 by Viljanen et al. have been used to date. The main aim of this study was to produce updated reference models for single-breath diffusing capacity for carbon monoxide for Finnish adults. Single-breath diffusing capacity for carbon monoxide was measured in 631 healthy non-smoking volunteers (41.5% male). Reference values for diffusing capacity (DLCO), alveolar volume (VA), diffusing capacity per unit of lung volume (DLCO/VA), and lung volumes were calculated using a linear regression model. Previously used Finnish reference values were found to produce too low predicted values, with mean predicted DLCO 111.0 and 104.4%, and DLCO/VA of 103.5 and 102.7% in males and females, respectively. With the European Coalition for Steel and Coal (ECSC) reference values there was a significant sex difference in DLCO/VA with mean predicted 105.4% in males and 92.8% in females (p < .001). New reference values for DLCO, DLCO/VA, VA, vital capacity (VC), inspiratory vital capacity (IVC), and inspiratory capacity (IC) are suggested for clinical use to replace technically outdated reference values for clinical applications.

  7. Standardisation and application of the single-breath determination of nitric oxide uptake in the lung.

    PubMed

    Zavorsky, Gerald S; Hsia, Connie C W; Hughes, J Michael B; Borland, Colin D R; Guénard, Hervé; van der Lee, Ivo; Steenbruggen, Irene; Naeije, Robert; Cao, Jiguo; Dinh-Xuan, Anh Tuan

    2017-02-01

    Diffusing capacity of the lung for nitric oxide ( D LNO ), otherwise known as the transfer factor, was first measured in 1983. This document standardises the technique and application of single-breath D LNO This panel agrees that 1) pulmonary function systems should allow for mixing and measurement of both nitric oxide (NO) and carbon monoxide (CO) gases directly from an inspiratory reservoir just before use, with expired concentrations measured from an alveolar "collection" or continuously sampled via rapid gas analysers; 2) breath-hold time should be 10 s with chemiluminescence NO analysers, or 4-6 s to accommodate the smaller detection range of the NO electrochemical cell; 3) inspired NO and oxygen concentrations should be 40-60 ppm and close to 21%, respectively; 4) the alveolar oxygen tension ( P AO 2 ) should be measured by sampling the expired gas; 5) a finite specific conductance in the blood for NO (θNO) should be assumed as 4.5 mL·min -1 ·mmHg -1 ·mL -1 of blood; 6) the equation for 1/θCO should be (0.0062· P AO 2 +1.16)·(ideal haemoglobin/measured haemoglobin) based on breath-holding P AO 2 and adjusted to an average haemoglobin concentration (male 14.6 g·dL -1 , female 13.4 g·dL -1 ); 7) a membrane diffusing capacity ratio ( D MNO / D MCO ) should be 1.97, based on tissue diffusivity. Copyright ©ERS 2017.

  8. Longitudinal distribution of ozone and chlorine in the human respiratory tract: simulation of nasal and oral breathing with the single-path diffusion model.

    PubMed

    Bush, M L; Zhang, W; Ben-Jebria, A; Ultman, J S

    2001-06-15

    In the single-path model of the respiratory system, gas transport occurs within a conduit of progressively increasing cross-sectional and surface areas by a combination of flow, longitudinal dispersion, and lateral absorption. The purpose of this study was to use bolus inhalation data previously obtained for chlorine (Cl(2)) and for ozone (O(3)) to test the predictive capability of the single-path model and to adjust input parameters for applying the model to other exposure conditions. The data, consisting of uptake fraction as a function of bolus penetration volume, were recorded on 10 healthy nonsmokers breathing orally as well as nasally at alternative air flows of 150, 250, and 1000 ml/s. By employing published data for airway anatomy, gas-phase dispersion coefficients, and gas-phase mass transfer coefficients while neglecting diffusion limitations in the mucus phase, the single-path model was capable of predicting the uptake distribution for O(3) but not the steeper distribution that was observed for Cl(2). To simultaneously explain the data for these two gases, it was necessary to increase gas-phase mass transfer coefficients and to include a finite diffusion resistance of O(3) within the mucous layer. The O(3) reaction rate constants that accounted for this diffusion resistance, 2 x 10(6) s(-1) in the mouth and 8 x 10(6) s(-1) in the nose and lower airways, were much greater than previously reported reactivities of individual substrates found in mucus. Copyright 2001 Academic Press.

  9. Apparent diffusion coefficient of hyperpolarized (3)He with minimal influence of the residual gas in small animals.

    PubMed

    Carrero-González, L; Kaulisch, T; Ruiz-Cabello, J; Pérez-Sánchez, J M; Peces-Barba, G; Stiller, D; Rodríguez, I

    2012-09-01

    The apparent diffusion coefficient (ADC) of hyperpolarized (HP) gases is a parameter that reflects changes in lung microstructure. However, ADC is dependent on many physiological and experimental variables that need to be controlled or specified in order to ensure the reliability and reproducibility of this parameter. A single breath-hold experiment is desirable in order to reduce the amount of consumed HP gas. The application of a positive end-expiratory pressure (PEEP) causes an increase in the residual gas volume. Depending on the applied PEEP, the ratio between the incoming and residual gas volumes will change and the ADC will vary, as long as both gases do not have the same diffusion coefficient. The most standard method for human applications uses air for breathing and a bolus of pure HP (3)He for MRI data acquisition. By applying this method in rats, we have demonstrated that ADC values are strongly dependent on the applied PEEP, and therefore on the residual gas volume in the lung. This outcome will play an important role in studies concerning certain diseases, such as emphysema, which is characterized by an increase in the residual volume. Ventilation with an oxygen-helium mixture (VOHeM) is a proposed single breath-hold method that uses two different gas mixtures (O(2)-(4)He for ventilation and HP (3)He-N(2) for imaging). The concentration of each gas in its respective mixture was calculated in order to obtain the same diffusion coefficient in both mixtures. ADCs obtained from VOHeM are independent of PEEP, thus minimizing the effect of the different residual volumes. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Optimizing the Calculation of DM,CO and VC via the Single Breath Single Oxygen Tension DLCO/NO Method

    PubMed Central

    Coffman, Kirsten E.; Taylor, Bryan J.; Carlson, Alex R.; Wentz, Robert J.; Johnson, Bruce D.

    2015-01-01

    Alveolar-capillary membrane conductance (DM,CO) and pulmonary-capillary blood volume (VC) are calculated via lung diffusing capacity for carbon monoxide (DLCO) and nitric oxide (DLNO) using the single breath, single oxygen tension (single-FiO2) method. However, two calculation parameters, the reaction rate of carbon monoxide with blood (θCO) and the DM,NO/DM,CO ratio (α-ratio), are controversial. This study systematically determined optimal θCO and α-ratio values to be used in the single-FiO2 method that yielded the most similar DM,CO and VC values compared to the ‘gold-standard’ multiple-FiO2 method. Eleven healthy subjects performed single breath DLCO/DLNO maneuvers at rest and during exercise. DM,CO and VC were calculated via the single-FiO2 and multiple-FiO2 methods by implementing seven θCO equations and a range of previously reported α-ratios. The RP θCO equation (Reeves and Park, Respiration physiology 88:1–21, 1992.) and an α-ratio of 4.0–4.4 yielded DM,CO and VC values that were most similar between methods. The RP θCO equation and an experimental α-ratio should be used in future studies. PMID:26521031

  11. The respiratory system under weightlessness

    NASA Technical Reports Server (NTRS)

    Paiva, M.; Engel, L. A.; Hughes, J. M. B.; Guy, H. J.; Prisk, G. K.; West, J. B.

    1987-01-01

    Studies of pulmonary functions at rest to be studied on Spacelab mission D-2 are introduced. Gravity dependence of the distribution of ventilation (single breath washout, multibreath washout-washin); chest wall shape and motion; and the vascular compartment (lung blood flow, capillary volume, liquid content, diffusive capacity) are discussed.

  12. Nonuniformity of diffusing capacity from small alveolar gas samples is increased in smokers.

    PubMed

    Cotton, D J; Mink, J T; Graham, B L

    1998-01-01

    Although centrilobular emphysema, and small airway, interstitial and alveoli inflammation can be detected pathologically in the lungs of smokers with relatively well preserved lung function, these changes are difficult to assess using available physiological tests. Because submaximal single breath washout (SBWSM) manoeuvres improve the detection of abnormalities in ventilation inhomogeneity in the lung periphery in smokers compared with traditional vital capacity manoeuvres, SBWSM manoeuvres were used in this study to measure temporal differences in diffusing capacity using a rapid response carbon monoxide analyzer. To determine whether abnormalities in the lung periphery can be detected in smokers with normal forced expired volumes in 1 s using the three-equation diffusing capacity (DLcoSB-3EQ) among small alveolar gas samples and whether the abnormalities correlate with increases in peripheral ventilation inhomogeneity. Cross-sectional study in 21 smokers and 21 nonsmokers all with normal forced exhaled flow rates. Both smokers and nonsmokers performed SBWSM manoeuvres consisting of slow inhalation of test gas from functional residual capacity to one-half inspiratory capacity with either 0 or 10 s of breath holding and slow exhalation to residual volume (RV). They also performed conventional vital capacity single breath (SBWVC) manoeuvres consisting of slow inhalation of test gas from RV to total lung capacity and, without breath holding, slow exhalation to RV. DLcoSB-3EQ was calculated from the total alveolar gas sample. DLcoSB-3EQ was also calculated from four equal sequential, simulated aliquots of the total alveolar gas sample. DLcoSB-3EQ values from the four alveolar samples were normalized by expressing each as a percentge of DLcoSB-3EQ from the entire alveolar gas sample. An index of variation (DI) among the small-sample DLcoSB-3EQ values was correlated with the normalized phase III helium slope (Sn) and the mixing efficiency (Emix). For SBWSM, DI was increased in smokers at 0 s of breath holding compared with nonsmokers, and correlated with age, smoking pack-years and Sn. The decrease in DI with breath holding was greater in smokers and correlated with the change in Sn with breath holding. For SBWVC manoeuvres, there were no differences due to smoking in Sn or Emix, but DI was increased in smokers and correlated with age and smoking pack-years, but not with Sn. For SBWSM manoeuvres the increase in DI in smokers correlated with breath hold time-dependent increases in Sn, suggesting that the changes in DI reflected the same structural alterations that caused increases in peripheral ventilation inhomogeneity. For SBWVC manoeuvres, the increase in DI in smokers was not associated with changes in ventilation inhomogeneity, suggesting that the effect of smoking on DI during this manoeuvre was due to smoke-related changes in alveolar capillary diffusion, rather than due solely to alterations in the distribution of ventilation.

  13. Optimizing the calculation of DM,CO and VC via the single breath single oxygen tension DLCO/NO method.

    PubMed

    Coffman, Kirsten E; Taylor, Bryan J; Carlson, Alex R; Wentz, Robert J; Johnson, Bruce D

    2016-01-15

    Alveolar-capillary membrane conductance (D(M,CO)) and pulmonary-capillary blood volume (V(C)) are calculated via lung diffusing capacity for carbon monoxide (DL(CO)) and nitric oxide (DL(NO)) using the single breath, single oxygen tension (single-FiO2) method. However, two calculation parameters, the reaction rate of carbon monoxide with blood (θ(CO)) and the D(M,NO)/D(M,CO) ratio (α-ratio), are controversial. This study systematically determined optimal θ(CO) and α-ratio values to be used in the single-FiO2 method that yielded the most similar D(M,CO) and V(C) values compared to the 'gold-standard' multiple-FiO2 method. Eleven healthy subjects performed single breath DL(CO)/DL(NO) maneuvers at rest and during exercise. D(M,CO) and V(C) were calculated via the single-FiO2 and multiple-FiO2 methods by implementing seven θ(CO) equations and a range of previously reported α-ratios. The RP θ(CO) equation (Reeves, R.B., Park, H.K., 1992. Respiration Physiology 88 1-21) and an α-ratio of 4.0-4.4 yielded DM,CO and VC values that were most similar between methods. The RP θ(CO) equation and an experimental α-ratio should be used in future studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. High-resolution diffusion tensor imaging of the human kidneys using a free-breathing, multi-slice, targeted field of view approach

    PubMed Central

    Chan, Rachel W; Von Deuster, Constantin; Stoeck, Christian T; Harmer, Jack; Punwani, Shonit; Ramachandran, Navin; Kozerke, Sebastian; Atkinson, David

    2014-01-01

    Fractional anisotropy (FA) obtained by diffusion tensor imaging (DTI) can be used to image the kidneys without any contrast media. FA of the medulla has been shown to correlate with kidney function. It is expected that higher spatial resolution would improve the depiction of small structures within the kidney. However, the achievement of high spatial resolution in renal DTI remains challenging as a result of respiratory motion and susceptibility to diffusion imaging artefacts. In this study, a targeted field of view (TFOV) method was used to obtain high-resolution FA maps and colour-coded diffusion tensor orientations, together with measures of the medullary and cortical FA, in 12 healthy subjects. Subjects were scanned with two implementations (dual and single kidney) of a TFOV DTI method. DTI scans were performed during free breathing with a navigator-triggered sequence. Results showed high consistency in the greyscale FA, colour-coded FA and diffusion tensors across subjects and between dual- and single-kidney scans, which have in-plane voxel sizes of 2 × 2 mm2 and 1.2 × 1.2 mm2, respectively. The ability to acquire multiple contiguous slices allowed the medulla and cortical FA to be quantified over the entire kidney volume. The mean medulla and cortical FA values were 0.38 ± 0.017 and 0.21 ± 0.019, respectively, for the dual-kidney scan, and 0.35 ± 0.032 and 0.20 ± 0.014, respectively, for the single-kidney scan. The mean FA between the medulla and cortex was significantly different (p < 0.001) for both dual- and single-kidney implementations. High-spatial-resolution DTI shows promise for improving the characterization and non-invasive assessment of kidney function. © 2014 The Authors. NMR in Biomedicine published by John Wiley & Sons, Ltd. PMID:25219683

  15. High-resolution diffusion tensor imaging of the human kidneys using a free-breathing, multi-slice, targeted field of view approach.

    PubMed

    Chan, Rachel W; Von Deuster, Constantin; Stoeck, Christian T; Harmer, Jack; Punwani, Shonit; Ramachandran, Navin; Kozerke, Sebastian; Atkinson, David

    2014-11-01

    Fractional anisotropy (FA) obtained by diffusion tensor imaging (DTI) can be used to image the kidneys without any contrast media. FA of the medulla has been shown to correlate with kidney function. It is expected that higher spatial resolution would improve the depiction of small structures within the kidney. However, the achievement of high spatial resolution in renal DTI remains challenging as a result of respiratory motion and susceptibility to diffusion imaging artefacts. In this study, a targeted field of view (TFOV) method was used to obtain high-resolution FA maps and colour-coded diffusion tensor orientations, together with measures of the medullary and cortical FA, in 12 healthy subjects. Subjects were scanned with two implementations (dual and single kidney) of a TFOV DTI method. DTI scans were performed during free breathing with a navigator-triggered sequence. Results showed high consistency in the greyscale FA, colour-coded FA and diffusion tensors across subjects and between dual- and single-kidney scans, which have in-plane voxel sizes of 2 × 2 mm(2) and 1.2 × 1.2 mm(2) , respectively. The ability to acquire multiple contiguous slices allowed the medulla and cortical FA to be quantified over the entire kidney volume. The mean medulla and cortical FA values were 0.38 ± 0.017 and 0.21 ± 0.019, respectively, for the dual-kidney scan, and 0.35 ± 0.032 and 0.20 ± 0.014, respectively, for the single-kidney scan. The mean FA between the medulla and cortex was significantly different (p < 0.001) for both dual- and single-kidney implementations. High-spatial-resolution DTI shows promise for improving the characterization and non-invasive assessment of kidney function. © 2014 The Authors. NMR in Biomedicine published by John Wiley & Sons, Ltd.

  16. Lung morphometry using hyperpolarized 129 Xe multi-b diffusion MRI with compressed sensing in healthy subjects and patients with COPD.

    PubMed

    Zhang, Huiting; Xie, Junshuai; Xiao, Sa; Zhao, Xiuchao; Zhang, Ming; Shi, Lei; Wang, Ke; Wu, Guangyao; Sun, Xianping; Ye, Chaohui; Zhou, Xin

    2018-05-04

    To demonstrate the feasibility of compressed sensing (CS) to accelerate the acquisition of hyperpolarized (HP) 129 Xe multi-b diffusion MRI for quantitative assessments of lung microstructural morphometry. Six healthy subjects and six chronic obstructive pulmonary disease (COPD) subjects underwent HP 129 Xe multi-b diffusion MRI (b = 0, 10, 20, 30, and 40 s/cm 2 ). First, a fully sampled (FS) acquisition of HP 129 Xe multi-b diffusion MRI was conducted in one healthy subject. The acquired FS dataset was retrospectively undersampled in the phase encoding direction, and an optimal twofold undersampled pattern was then obtained by minimizing mean absolute error (MAE) between retrospective CS (rCS) and FS MR images. Next, the FS and CS acquisitions during separate breath holds were performed on five healthy subjects (including the above one). Additionally, the FS and CS synchronous acquisitions during a single breath hold were performed on the sixth healthy subject and one COPD subject. However, only CS acquisitions were conducted in the rest of the five COPD subjects. Finally, all the acquired FS, rCS and CS MR images were used to obtain morphometric parameters, including acinar duct radius (R), acinar lumen radius (r), alveolar sleeve depth (h), mean linear intercept (L m ), and surface-to-volume ratio (SVR). The Wilcoxon signed-rank test and the Bland-Altman plot were employed to assess the fidelity of the CS reconstruction. Moreover, the t-test was used to demonstrate the effectiveness of the multi-b diffusion MRI with CS in clinical applications. The retrospective results demonstrated that there was no statistically significant difference between rCS and FS measurements using the Wilcoxon signed-rank test (P > 0.05). Good agreement between measurements obtained with the CS and FS acquisitions during separate breath holds was demonstrated in Bland-Altman plots of slice differences. Specifically, the mean biases of the R, r, h, L m , and SVR between the CS and FS acquisitions were 1.0%, 2.6%, -0.03%, 1.5%, and -5.5%, respectively. Good agreement between measurements with the CS and FS acquisitions was also observed during the single breath-hold experiments. Furthermore, there were significant differences between the morphometric parameters for the healthy and COPD subjects (P < 0.05). Our study has shown that HP 129 Xe multi-b diffusion MRI with CS could be beneficial in lung microstructural assessments by acquiring less data while maintaining the consistent results with the FS acquisitions. © 2018 American Association of Physicists in Medicine.

  17. Inter- and intraobserver agreement of ADC measurements of lung cancer in free breathing, breath-hold and respiratory triggered diffusion-weighted MRI.

    PubMed

    Cui, Lei; Yin, Jian-Bing; Hu, Chun-Hong; Gong, Shen-Chu; Xu, Jun-Feng; Yang, Ju-Shun

    2016-01-01

    To prospectively evaluate the inter- and intraobserver agreement of apparent diffusion coefficient (ADC) measurements in free breathing, breath-hold, and respiratory triggered diffusion-weighted imaging (DWI) of lung cancer. Twenty-two patients with lung cancer (tumor size >2cm) underwent DWIs (3.0T) in three imaging methods. Lesion ADCs were measured twice by both of the two independent observers and compared. No statistical significance was found among methods, though respiratory-triggered DWI tended to have higher ADCs than breath-hold DWI. Great inter- and intraobserver agreement was shown. ADCs had good inter- and intraobserver agreement in all three DWI methods. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Breathing spiral waves in the chlorine dioxide-iodine-malonic acid reaction-diffusion system.

    PubMed

    Berenstein, Igal; Muñuzuri, Alberto P; Yang, Lingfa; Dolnik, Milos; Zhabotinsky, Anatol M; Epstein, Irving R

    2008-08-01

    Breathing spiral waves are observed in the oscillatory chlorine dioxide-iodine-malonic acid reaction-diffusion system. The breathing develops within established patterns of multiple spiral waves after the concentration of polyvinyl alcohol in the feeding chamber of a continuously fed, unstirred reactor is increased. The breathing period is determined by the period of bulk oscillations in the feeding chamber. Similar behavior is obtained in the Lengyel-Epstein model of this system, where small amplitude parametric forcing of spiral waves near the spiral wave frequency leads to the formation of breathing spiral waves in which the period of breathing is equal to the period of forcing.

  19. In vivo free-breathing DTI and IVIM of the whole human heart using a real-time slice-followed SE-EPI navigator-based sequence: A reproducibility study in healthy volunteers.

    PubMed

    Moulin, Kevin; Croisille, Pierre; Feiweier, Thorsten; Delattre, Benedicte M A; Wei, Hongjiang; Robert, Benjamin; Beuf, Olivier; Viallon, Magalie

    2016-07-01

    In this study, we proposed an efficient free-breathing strategy for rapid and improved cardiac diffusion-weighted imaging (DWI) acquisition using a single-shot spin-echo echo planar imaging (SE-EPI) sequence. A real-time slice-following technique during free-breathing was combined with a sliding acquisition-window strategy prior Principal Component Analysis temporal Maximum Intensity Projection (PCAtMIP) postprocessing of in-plane co-registered diffusion-weighted images. This methodology was applied to 10 volunteers to quantify the performance of the motion correction technique and the reproducibility of diffusion parameters. The slice-following technique offers a powerful head-foot respiratory motion management solution for SE-EPI cDWI with the advantage of a 100% duty cycle scanning efficiency. The level of co-registration was further improved using nonrigid motion corrections and was evaluated with a co-registration index. Vascular fraction f and the diffusion coefficients D and D* were determined to be 0.122 ± 0.013, 1.41 ± 0.09 × 10(-3) mm(2) /s and 43.6 ± 9.2 × 10(-3) mm(2) /s, respectively. From the multidirectional dataset, the measured mean diffusivity was 1.72 ± 0.09 × 10(-3) mm(2) /s and the fractional anisotropy was 0.36 ± 0.02. The slice-following DWI SE-EPI sequence is a promising solution for clinical implementation, offering a robust improved workflow for further evaluation of DWI in cardiology. Magn Reson Med 76:70-82, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  20. Measurement of xenon diffusing capacity in the rat lung by hyperpolarized 129Xe MRI and dynamic spectroscopy in a single breath-hold.

    PubMed

    Abdeen, Nishard; Cross, Albert; Cron, Gregory; White, Steven; Rand, Thomas; Miller, David; Santyr, Giles

    2006-08-01

    We used the dual capability of hyperpolarized 129Xe for spectroscopy and imaging to develop new measures of xenon diffusing capacity in the rat lung that (analogously to the diffusing capacity of carbon monoxide or DLCO) are calculated as a product of total lung volume and gas transfer rate constants divided by the pressure gradient. Under conditions of known constant pressure breath-hold, the volume is measured by hyperpolarized 129Xe MRI, and the transfer rate is measured by dynamic spectroscopy. The new quantities (xenon diffusing capacity in lung parenchyma (DLXeLP)), xenon diffusing capacity in RBCs (DLXeRBC), and total lung xenon diffusing capacity (DLXe)) were measured in six normal rats and six rats with lung inflammation induced by instillation of fungal spores of Stachybotrys chartarum. DLXeLP, DLXeRBC, and DLXe were 56 +/- 10 ml/min/mmHg, 64 +/- 35 ml/min/mmHg, and 29 +/- 9 ml/min/mmHg, respectively, for normal rats, and 27 +/- 9 ml/min/mmHg, 42 +/- 27 ml/min/mmHg, and 16 +/- 7 ml/min/mmHg, respectively, for diseased rats. Lung volumes and gas transfer times for LP (TtrLP) were 16 +/- 2 ml and 22 +/- 3 ms, respectively, for normal rats and 12 +/- 2 ml and 35 +/- 8 ms, respectively, for diseased rats. Xenon diffusing capacities may be useful for measuring changes in gas exchange associated with inflammation and other lung diseases. Copyright 2006 Wiley-Liss, Inc.

  1. Liver imaging at 3.0 T: diffusion-induced black-blood echo-planar imaging with large anatomic volumetric coverage as an alternative for specific absorption rate-intensive echo-train spin-echo sequences: feasibility study.

    PubMed

    van den Bos, Indra C; Hussain, Shahid M; Krestin, Gabriel P; Wielopolski, Piotr A

    2008-07-01

    Institutional Review Board approval and signed informed consent were obtained by all participants for an ongoing sequence optimization project at 3.0 T. The purpose of this study was to evaluate breath-hold diffusion-induced black-blood echo-planar imaging (BBEPI) as a potential alternative for specific absorption rate (SAR)-intensive spin-echo sequences, in particular, the fast spin-echo (FSE) sequences, at 3.0 T. Fourteen healthy volunteers (seven men, seven women; mean age +/- standard deviation, 32.7 years +/- 6.8) were imaged for this purpose. Liver coverage (20 cm, z-axis) was always performed in one 25-second breath hold. Imaging parameters were varied interactively with regard to echo time, diffusion b value, and voxel size. Images were evaluated and compared with fat-suppressed T2-weighted FSE images for image quality, liver delineation, geometric distortions, fat suppression, suppression of the blood signal, contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR). An optimized short- (25 msec) and long-echo (80 msec) BBEPI provided full anatomic, single breath-hold liver coverage (100 and 50 sections, respectively), with resulting voxel sizes of 3.3 x 2.7 x 2.0 mm and 3.3 x 2.7 x 4.0 mm, respectively. Repetition time was 6300 msec, matrix size was 160 x 192, and an acceleration factor of 2.00 was used. b Values of more than 20 sec/mm(2) showed better suppression of the blood signal but b values of 10 sec/mm(2) provided improved volume coverage and signal consistency. Compared with fat-suppressed T2-weighted FSE, the optimized BBEPI sequence provided (a) comparable image quality and liver delineation, (b) acceptable geometric distortions, (c) improved suppression of fat and blood signals, and (d) high CNR and SNR. BBEPI is feasible for fast, low-SAR, thin-section morphologic imaging of the entire liver in a single breath hold at 3.0 T. (c) RSNA, 2008.

  2. The relationship between alveolar oxygen tension and the single-breath carbon monoxide diffusing capacity.

    PubMed

    Kanner, R E; Crapo, R O

    1986-04-01

    The effects of alveolar oxygen tension (PAO2) on the single-breath carbon monoxide diffusing capacity (DLCO) were quantified and a factor was derived to accommodate for differences in PAO2 over commonly encountered altitudes and/or varying concentrations of oxygen in the test gas mixture (FIO2) We performed duplicate measurements of DLCO in 7 normal subjects with 6 different oxygen fractions (0.176, 0.196, 0.211, 0.22, 0.25, and 0.27). The PAO2 for each test was measured as the PO2 in the alveolar gas sample bag. DLCO varied inversely with PAO2 and changed by 0.35% for each mmHg change in PAO2 (r = -0.62, p less than 0.001). At an FIO2 of 0.25, PAO2 varied between subjects and was highly correlated with each subject's residual volume to total lung capacity ratio (r = -0.84, p less than 0.001). We suggest that laboratories can adjust the measured DLCO when PAO2 is not congruent to 120 mmHg by the following formula: DLCO (corrected = DLCO (measured) x [1.0 + 0.0035 (PAO2 - 120)].

  3. A new method for measuring lung deposition efficiency of airborne nanoparticles in a single breath

    NASA Astrophysics Data System (ADS)

    Jakobsson, Jonas K. F.; Hedlund, Johan; Kumlin, John; Wollmer, Per; Löndahl, Jakob

    2016-11-01

    Assessment of respiratory tract deposition of nanoparticles is a key link to understanding their health impacts. An instrument was developed to measure respiratory tract deposition of nanoparticles in a single breath. Monodisperse nanoparticles are generated, inhaled and sampled from a determined volumetric lung depth after a controlled residence time in the lung. The instrument was characterized for sensitivity to inter-subject variability, particle size (22, 50, 75 and 100 nm) and breath-holding time (3-20 s) in a group of seven healthy subjects. The measured particle recovery had an inter-subject variability 26-50 times larger than the measurement uncertainty and the results for various particle sizes and breath-holding times were in accordance with the theory for Brownian diffusion and values calculated from the Multiple-Path Particle Dosimetry model. The recovery was found to be determined by residence time and particle size, while respiratory flow-rate had minor importance in the studied range 1-10 L/s. The instrument will be used to investigate deposition of nanoparticles in patients with respiratory disease. The fast and precise measurement allows for both diagnostic applications, where the disease may be identified based on particle recovery, and for studies with controlled delivery of aerosol-based nanomedicine to specific regions of the lungs.

  4. Optimising diffusion-weighted MR imaging for demonstrating pancreatic cancer: a comparison of respiratory-triggered, free-breathing and breath-hold techniques.

    PubMed

    Kartalis, Nikolaos; Loizou, Louiza; Edsborg, Nick; Segersvärd, Ralf; Albiin, Nils

    2012-10-01

    To compare respiratory-triggered, free-breathing, and breath-hold DWI techniques regarding (1) image quality, and (2) signal intensity (SI) and ADC measurements in pancreatic ductal adenocarcinoma (PDAC). Fifteen patients with histopathologically proven PDAC underwent DWI prospectively at 1.5 T (b = 0, 50, 300, 600 and 1,000 s/mm(2)) with the three techniques. Two radiologists, independently and blindly, assigned total image quality scores [sum of rating diffusion images (lesion detection, anatomy, presence of artefacts) and ADC maps (lesion characterisation, overall image quality)] per technique and ranked them. The lesion SI, signal-to-noise ratio, mean ADC and coefficient of variation (CV) were compared. Total image quality scores for respiratory-triggered, free-breathing and breath-hold techniques were 17.9, 16.5 and 17.1 respectively (respiratory-triggered was significantly higher than free-breathing but not breath-hold). The respiratory-triggered technique had a significantly higher ranking. Lesion SI on all b-values and signal-to-noise ratio on b300 and b600 were significantly higher for the respiratory-triggered technique. For respiratory-triggered, free-breathing and breath-hold techniques the mean ADCs were 1.201, 1.132 and 1.253 × 10(-3) mm(2)/s, and mean CVs were 8.9, 10.8 and 14.1 % respectively (respiratory-triggered and free-breathing techniques had a significantly lower mean CV than the breath-hold technique). In both analyses, respiratory-triggered DWI showed superiority and seems the optimal DWI technique for demonstrating PDAC. • Diffusion-weighted magnetic resonance imaging is increasingly used to detect pancreatic cancer • Images are acquired using various breathing techniques and multiple b-values • Breathing techniques used: respiratory-triggering, free-breathing and breath-hold • Respiratory-triggering seems the optimal breathing technique for demonstrating pancreatic cancer.

  5. The change of longitudinal relaxation rate in oxygen enhanced pulmonary MRI depends on age and BMI but not diffusing capacity of carbon monoxide in healthy never-smokers.

    PubMed

    Kindvall, Simon Sven Ivan; Diaz, Sandra; Svensson, Jonas; Wollmer, Per; Olsson, Lars E

    2017-01-01

    Oxygen enhanced pulmonary MRI is a promising modality for functional lung studies and has been applied to a wide range of pulmonary conditions. The purpose of this study was to characterize the oxygen enhancement effect in the lungs of healthy, never-smokers, in light of a previously established relationship between oxygen enhancement and diffusing capacity of carbon monoxide in the lung (DL,CO) in patients with lung disease. In 30 healthy never-smoking volunteers, an inversion recovery with gradient echo read-out (Snapshot-FLASH) was used to quantify the difference in longitudinal relaxation rate, while breathing air and 100% oxygen, ΔR1, at 1.5 Tesla. Measurements were performed under multiple tidal inspiration breath-holds. In single parameter linear models, ΔR1 exhibit a significant correlation with age (p = 0.003) and BMI (p = 0.0004), but not DL,CO (p = 0.33). Stepwise linear regression of ΔR1 yields an optimized model including an age-BMI interaction term. In this healthy, never-smoking cohort, age and BMI are both predictors of the change in MRI longitudinal relaxation rate when breathing oxygen. However, DL,CO does not show a significant correlation with the oxygen enhancement. This is possibly because oxygen transfer in the lung is not diffusion limited at rest in healthy individuals. This work stresses the importance of using a physiological model to understand results from oxygen enhanced MRI.

  6. Diffusion-weighted magnetic resonance imaging for assessment of lung lesions: repeatability of the apparent diffusion coefficient measurement.

    PubMed

    Bernardin, L; Douglas, N H M; Collins, D J; Giles, S L; O'Flynn, E A M; Orton, M; deSouza, N M

    2014-02-01

    To establish repeatability of apparent diffusion coefficients (ADCs) acquired from free-breathing diffusion-weighted magnetic resonance imaging (DW-MRI) in malignant lung lesions and investigate effects of lesion size, location and respiratory motion. Thirty-six malignant lung lesions (eight patients) were examined twice (1- to 5-h interval) using T1-weighted, T2-weighted and axial single-shot echo-planar DW-MRI (b = 100, 500, 800 s/mm(2)) during free-breathing. Regions of interest around target lesions on computed b = 800 s/mm(2) images by two independent observers yielded ADC values from maps (pixel-by-pixel fitting using all b values and a mono-exponential decay model). Intra- and inter-observer repeatability was assessed per lesion, per patient and by lesion size (> or <2 cm) or location. ADCs were similar between observers (mean ± SD, 1.15 ± 0.28 × 10(-3) mm(2)/s, observer 1; 1.15 ± 0.29 × 10(-3) mm(2)/s, observer 2). Intra-observer coefficients of variation of the mean [median] ADC per lesion and per patient were 11% [11.4%], 5.7% [5.7%] for observer 1 and 9.2% [9.5%], 3.9% [4.7%] for observer 2 respectively; inter-observer values were 8.9% [9.3%] (per lesion) and 3.0% [3.7%] (per patient). Inter-observer coefficient of variation (CoV) was greater for lesions <2 cm (n = 20) compared with >2 cm (n = 16) (10.8% vs 6.5% ADCmean, 11.3% vs 6.7% ADCmedian) and for mid (n = 14) vs apical (n = 9) or lower zone (n = 13) lesions (13.9%, 2.7%, 3.8% respectively ADCmean; 14.2%, 2.8%, 4.7% respectively ADCmedian). Free-breathing DW-MRI of whole lung achieves good intra- and inter-observer repeatability of ADC measurements in malignant lung tumours. • Diffusion-weighted MRI of the lung can be satisfactorily acquired during free-breathing • DW-MRI demonstrates high contrast between primary and metastatic lesions and normal lung • Apparent diffusion coefficient (ADC) measurements in lung tumours are repeatable and reliable • ADC offers potential in assessing response in lung metastases in clinical trials.

  7. Decompression sickness in breath-hold diving, and its probable connection to the growth and dissolution of small arterial gas emboli.

    PubMed

    Goldman, Saul; Solano-Altamirano, J M

    2015-04-01

    We solved the Laplace equation for the radius of an arterial gas embolism (AGE), during and after breath-hold diving. We used a simple three-region diffusion model for the AGE, and applied our results to two types of breath-hold dives: single, very deep competitive-level dives and repetitive shallower breath-hold dives similar to those carried out by indigenous commercial pearl divers in the South Pacific. Because of the effect of surface tension, AGEs tend to dissolve in arterial blood when arteries remote from supersaturated tissue. However if, before fully dissolving, they reach the capillary beds that perfuse the brain and the inner ear, they may become inflated with inert gas that is transferred into them from these contiguous temporarily supersaturated tissues. By using simple kinetic models of cerebral and inner ear tissue, the nitrogen tissue partial pressures during and after the dive(s) were determined. These were used to theoretically calculate AGE growth and dissolution curves for AGEs lodged in capillaries of the brain and inner ear. From these curves it was found that both cerebral and inner ear decompression sickness are expected to occur occasionally in single competitive-level dives. It was also determined from these curves that for the commercial repetitive dives considered, the duration of the surface interval (the time interval separating individual repetitive dives from one another) was a key determinant, as to whether inner ear and/or cerebral decompression sickness arose. Our predictions both for single competitive-level and repetitive commercial breath-hold diving were consistent with what is known about the incidence of cerebral and inner ear decompression sickness in these forms of diving. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Noninvasive determination of respiratory ozone absorption: development of a fast-responding ozone analyzer.

    PubMed

    Ultman, J S; Ben-Jebria, A

    1991-03-01

    We developed a chemiluminescent ozone analyzer and constructed an ozone bolus generator with the eventual goal of using a bolus-response method to measure noninvasively the longitudinal distribution of ozone absorption in human lungs. Because the analyzer will be used to sample gases within a single breath, it must have a sufficiently rapid response to monitor changes in ozone concentration during a four-second breathing period, yet its sampling flow must be small enough that it does not interfere with quiet respiratory flows of 300 mL/sec. Our analyzer, which is based on the chemiluminescent reaction between 2-methyl-2-butene and ozone, has favorable performance characteristics: a 90 percent step-response time of 110 msec; a linear calibration from 0.03 to 10 parts per million (ppm)2 with a sensitivity of 2.3 nA/ppm; a signal-to-noise ratio of 30 evaluated at 0.5 ppm; and a minimum detection limit of 0.017 ppm. At an airflow corresponding to quiet breathing, the ozone generator is capable of producing single boluses with a peak ozone fraction as high as 4 ppm, but containing only 0.35 micrograms of ozone dispersed over a small volume of 19 mL. To test the combination of ozone analyzer and bolus generator, we performed bolus-response experiments at steady airflows of 50 to 200 mL/sec in excised pig and sheep tracheas. In spite of the small surface area available for radial diffusion, we found that 25 to 50 percent of the ozone introduced into the trachea was absorbed. By comparing the mathematical moments of the bolus input and the response curves to the predictions of a diffusion theory, we computed an absorption coefficient (K). The values of K increased with increasing airflow, implying that ozone absorption is limited by diffusion processes in the airway lumen as well as in the surrounding tissue.

  9. Simultaneous Multislice Accelerated Free-Breathing Diffusion-Weighted Imaging of the Liver at 3T.

    PubMed

    Obele, Chika C; Glielmi, Christopher; Ream, Justin; Doshi, Ankur; Campbell, Naomi; Zhang, Hoi Cheung; Babb, James; Bhat, Himanshu; Chandarana, Hersh

    2015-10-01

    To perform image quality comparison between accelerated multiband diffusion acquisition (mb2-DWI) and conventional diffusion acquisition (c-DWI) in patients undergoing clinically indicated liver MRI. In this prospective study 22 consecutive patients undergoing clinically indicated liver MRI on a 3-T scanner equipped to perform multiband diffusion-weighed imaging (mb-DWI) were included. DWI was performed with single-shot spin-echo echo-planar technique with fat-suppression in free breathing with matching parameters when possible using c-DWI, mb-DWI, and multiband DWI with a twofold acceleration (mb2-DWI). These diffusion sequences were compared with respect to various parameters of image quality, lesion detectability, and liver ADC measurements. Accelerated mb2-DWI was 40.9% faster than c-DWI (88 vs. 149 s). Various image quality parameter scores were similar or higher on mb2-DWI when compared to c-DWI. The overall image quality score (averaged over the three readers) was significantly higher for mb-2 compared to c-DWI for b = 0 s/mm(2) (3.48 ± 0.52 vs. 3.21 ± 0.54; p = 0.001) and for b = 800 s/mm(2) (3.24 ± 0.76 vs. 3.06 ± 0.86; p = 0.010). Total of 25 hepatic lesions were visible on mb2-DWI and c-DWI, with identical lesion detectability. There was no significant difference in liver ADC between mb2-DWI and c-DWI (p = 0.12). Bland-Altman plot demonstrates lower mean liver ADC with mb2-DWI compared to c-DWI (by 0.043 × 10(-3) mm(2)/s or 3.7% of the average ADC). Multiband technique can be used to increase acquisition speed nearly twofold for free-breathing DWI of the liver with similar or improved overall image quality and similar lesion detectability compared to conventional DWI.

  10. What is the most efficient respiratory organ for the loricariid air-breathing fish Pterygoplichthys anisitsi, gills or stomach? A quantitative morphological study.

    PubMed

    da Cruz, André Luis; Fernandes, Marisa Narciso

    2016-12-01

    The purpose of the present study was to evaluate the morphometric respiratory potential of gills compared to the stomach in obtaining oxygen for aerobic metabolism in Pterygoplichthys anisitsi, a facultative air-breathing fish. The measurements were done using stereological methods. The gills showed greater total volume, volume-to-body mass ratio, potential surface area, and surface-to-volume ratio than the stomach. The water-blood diffusion barrier of the gills is thicker than the air-blood diffusion barrier of the stomach. Taken together, the surface area, the surface-to-volume ratio and the diffusion distance for O 2 transfer from the respiratory medium to blood yield a greater diffusing capacity for gills than for the stomach, suggesting greater importance of aquatic respiration in this species. On the other hand, water breathing is energetically more expensive than breathing air. Under severe hypoxic conditions, O 2 uptake by the stomach is more efficient than by the gills, although the stomach has a much lower diffusing capacity. Thus, P. anisitsi uses gills under normoxic conditions but the stomach may also support aerobic metabolism depending on environmental conditions. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. A new method for measuring lung deposition efficiency of airborne nanoparticles in a single breath

    PubMed Central

    Jakobsson, Jonas K. F.; Hedlund, Johan; Kumlin, John; Wollmer, Per; Löndahl, Jakob

    2016-01-01

    Assessment of respiratory tract deposition of nanoparticles is a key link to understanding their health impacts. An instrument was developed to measure respiratory tract deposition of nanoparticles in a single breath. Monodisperse nanoparticles are generated, inhaled and sampled from a determined volumetric lung depth after a controlled residence time in the lung. The instrument was characterized for sensitivity to inter-subject variability, particle size (22, 50, 75 and 100 nm) and breath-holding time (3–20 s) in a group of seven healthy subjects. The measured particle recovery had an inter-subject variability 26–50 times larger than the measurement uncertainty and the results for various particle sizes and breath-holding times were in accordance with the theory for Brownian diffusion and values calculated from the Multiple-Path Particle Dosimetry model. The recovery was found to be determined by residence time and particle size, while respiratory flow-rate had minor importance in the studied range 1–10 L/s. The instrument will be used to investigate deposition of nanoparticles in patients with respiratory disease. The fast and precise measurement allows for both diagnostic applications, where the disease may be identified based on particle recovery, and for studies with controlled delivery of aerosol-based nanomedicine to specific regions of the lungs. PMID:27819335

  12. Evaluation of Free Breathing Versus Breath Hold Diffusion Weighted Imaging in Terms Apparent Diffusion Coefficient (ADC) and Signal-to-Noise Ratio (SNR) Values for Solid Abdominal Organs.

    PubMed

    Herek, Duygu; Karabulut, Nevzat; Kocyıgıt, Ali; Yagcı, Ahmet Baki

    2016-01-01

    Our aim was to compare the apparent diffusion coefficient (ADC) values of normal abdominal parenchymal organs and signal-to-noise ratio (SNR) measurements in the same patients with breath hold (BH) and free breathing (FB) diffusion weighted imaging (DWI). Forty-eight patients underwent both BH and FB DWI. Spherical region of interest (ROI) was placed on the right hepatic lobe, spleen, pancreas, and renal cortices. ADC values were calculated for each organ on each sequence using an automated software. Image noise, defined as the standard deviation (SD) of the signal intensities in the most artifact-free area of the image background was measured by placing the largest possible ROI on either the left or the right side of the body outside the object in the recorded field of view. SNR was calculated using the formula: SNR=signal intensity (SI) (organ) /standard deviation (SD) (noise) . There were no statistically significant differences in ADC values of the abdominal organs between BH and FB DWI sequences ( p >0.05). There were statistically significant differences between SNR values of organs on BH and FB DWIs. SNRs were found to be better on FB DWI than BH DWI ( p <0.001). Free breathing DWI technique reduces image noise and increases SNR for abdominal examinations. Free breathing technique is therefore preferable to BH DWI in the evaluation of abdominal organs by DWI.

  13. Comparison and reproducibility of ADC measurements in breathhold, respiratory triggered, and free-breathing diffusion-weighted MR imaging of the liver.

    PubMed

    Kwee, Thomas C; Takahara, Taro; Koh, Dow-Mu; Nievelstein, Rutger A J; Luijten, Peter R

    2008-11-01

    To compare and determine the reproducibility of apparent diffusion coefficient (ADC) measurements of the normal liver parenchyma in breathhold, respiratory triggered, and free-breathing diffusion-weighted magnetic resonance imaging (DWI). Eleven healthy volunteers underwent three series of DWI. Each DWI series consisted of one breathhold, one respiratory triggered, and two free-breathing (thick and thin slice acquisition) scans of the liver, at b-values of 0 and 500 s/mm2. ADCs of the liver parenchyma were compared by using nonparametric tests. Reproducibility was assessed by the Bland-Altman method. Mean ADCs (in 10(-3) mm2/sec) in respiratory triggered DWI (2.07-2.27) were significantly higher than mean ADCs in breathhold DWI (1.57-1.62), thick slice free-breathing DWI (1.62-1.65), and thin slice free-breathing DWI (1.57-1.66) (P<0.005). Ranges of mean difference in ADC measurement+/-limits of agreement between two scans were -0.02-0.05+/-0.16-0.24 in breathhold DWI, -0.14-0.20+/-0.59-0.60 in respiratory triggered DWI, -0.03-0.03+/-0.20-0.29 in thick slice free-breathing DWI, and -0.01-0.09+/-0.21-0.29 in thin slice free-breathing DWI. ADC measurements of the normal liver parenchyma in respiratory triggered DWI are significantly higher and less reproducible than in breathhold and free-breathing DWI. Copyright (c) 2008 Wiley-Liss, Inc.

  14. Amplitude equations for breathing spiral waves in a forced reaction-diffusion system

    NASA Astrophysics Data System (ADS)

    Ghosh, Pushpita; Ray, Deb Shankar

    2011-09-01

    Based on a multiple scale analysis of a forced reaction-diffusion system leading to amplitude equations, we explain the existence of spiral wave and its photo-induced spatiotemporal behavior in chlorine dioxide-iodine-malonic acid system. When the photo-illumination intensity is modulated, breathing of spiral is observed in which the period of breathing is identical to the period of forcing. We have also derived the condition for breakup and suppression of spiral wave by periodic illumination. The numerical simulations agree well with our analytical treatment.

  15. Assessment of tumor response to oxygen challenge using quantitative diffusion MRI in an animal model.

    PubMed

    Zhang, Zhongwei; Yuan, Qing; Zhou, Heling; Zhao, Dawen; Li, Li; Gerberich, Jenifer L; Mason, Ralph P

    2015-11-01

    To assess tumor response to oxygen challenge using quantitative diffusion magnetic resonance imaging (MRI). A well-characterized Dunning R3327-AT1 rat prostate cancer line was implanted subcutaneously in the right thigh of male Copenhagen rats (n = 8). Diffusion-weighted images (DWI) with multiple b values (0, 25, 50, 100, 150, 200, 300, 500, 1000, 1500 s/mm(2) ) in three orthogonal directions were obtained using a multishot FSE-based Stejskal-Tanner DWI sequence (FSE-DWI) at 4.7T, while rats breathed medical air (21% oxygen) and with 100% oxygen challenge. Stretched-exponential and intravoxel incoherent motion (IVIM) models were used to calculate and compare quantitative diffusion parameters: diffusion heterogeneity index (α), intravoxel distribution of diffusion coefficients (DDC), tissue diffusivity (Dt), pseudo-diffusivity (Dp), and perfusion fraction (f) on a voxel-by-voxel basis. A significant increase of α (73.9 ± 4.7% in air vs. 78.1 ± 4.5% in oxygen, P = 0.0198) and a significant decrease of f (13.4 ± 3.7% in air vs. 10.4 ± 2.7% in oxygen, P = 0.0201) were observed to accompany oxygen challenge. Correlations between f and α during both air and oxygen breathing were found; the correlation coefficients (r) were -0.90 and -0.96, respectively. Positive correlations between Dt and DDC with oxygen breathing (r = 0.95, P = 0.0003), f and DDC with air breathing were also observed (r = 0.95, P = 0.0004). Quantitative diffusion MRI demonstrated changes in tumor perfusion in response to oxygen challenge. © 2015 Wiley Periodicals, Inc.

  16. Tidal volume single breath washout of two tracer gases--a practical and promising lung function test.

    PubMed

    Singer, Florian; Stern, Georgette; Thamrin, Cindy; Fuchs, Oliver; Riedel, Thomas; Gustafsson, Per; Frey, Urs; Latzin, Philipp

    2011-03-10

    Small airway disease frequently occurs in chronic lung diseases and may cause ventilation inhomogeneity (VI), which can be assessed by washout tests of inert tracer gas. Using two tracer gases with unequal molar mass (MM) and diffusivity increases specificity for VI in different lung zones. Currently washout tests are underutilised due to the time and effort required for measurements. The aim of this study was to develop and validate a simple technique for a new tidal single breath washout test (SBW) of sulfur hexafluoride (SF(6)) and helium (He) using an ultrasonic flowmeter (USFM). The tracer gas mixture contained 5% SF(6) and 26.3% He, had similar total MM as air, and was applied for a single tidal breath in 13 healthy adults. The USFM measured MM, which was then plotted against expired volume. USFM and mass spectrometer signals were compared in six subjects performing three SBW. Repeatability and reproducibility of SBW, i.e., area under the MM curve (AUC), were determined in seven subjects performing three SBW 24 hours apart. USFM reliably measured MM during all SBW tests (n = 60). MM from USFM reflected SF(6) and He washout patterns measured by mass spectrometer. USFM signals were highly associated with mass spectrometer signals, e.g., for MM, linear regression r-squared was 0.98. Intra-subject coefficient of variation of AUC was 6.8%, and coefficient of repeatability was 11.8%. The USFM accurately measured relative changes in SF(6) and He washout. SBW tests were repeatable and reproducible in healthy adults. We have developed a fast, reliable, and straightforward USFM based SBW method, which provides valid information on SF(6) and He washout patterns during tidal breathing.

  17. Tidal Volume Single Breath Washout of Two Tracer Gases - A Practical and Promising Lung Function Test

    PubMed Central

    Singer, Florian; Stern, Georgette; Thamrin, Cindy; Fuchs, Oliver; Riedel, Thomas; Gustafsson, Per; Frey, Urs; Latzin, Philipp

    2011-01-01

    Background Small airway disease frequently occurs in chronic lung diseases and may cause ventilation inhomogeneity (VI), which can be assessed by washout tests of inert tracer gas. Using two tracer gases with unequal molar mass (MM) and diffusivity increases specificity for VI in different lung zones. Currently washout tests are underutilised due to the time and effort required for measurements. The aim of this study was to develop and validate a simple technique for a new tidal single breath washout test (SBW) of sulfur hexafluoride (SF6) and helium (He) using an ultrasonic flowmeter (USFM). Methods The tracer gas mixture contained 5% SF6 and 26.3% He, had similar total MM as air, and was applied for a single tidal breath in 13 healthy adults. The USFM measured MM, which was then plotted against expired volume. USFM and mass spectrometer signals were compared in six subjects performing three SBW. Repeatability and reproducibility of SBW, i.e., area under the MM curve (AUC), were determined in seven subjects performing three SBW 24 hours apart. Results USFM reliably measured MM during all SBW tests (n = 60). MM from USFM reflected SF6 and He washout patterns measured by mass spectrometer. USFM signals were highly associated with mass spectrometer signals, e.g., for MM, linear regression r-squared was 0.98. Intra-subject coefficient of variation of AUC was 6.8%, and coefficient of repeatability was 11.8%. Conclusion The USFM accurately measured relative changes in SF6 and He washout. SBW tests were repeatable and reproducible in healthy adults. We have developed a fast, reliable, and straightforward USFM based SBW method, which provides valid information on SF6 and He washout patterns during tidal breathing. PMID:21423739

  18. Amplitude equations for breathing spiral waves in a forced reaction-diffusion system.

    PubMed

    Ghosh, Pushpita; Ray, Deb Shankar

    2011-09-14

    Based on a multiple scale analysis of a forced reaction-diffusion system leading to amplitude equations, we explain the existence of spiral wave and its photo-induced spatiotemporal behavior in chlorine dioxide-iodine-malonic acid system. When the photo-illumination intensity is modulated, breathing of spiral is observed in which the period of breathing is identical to the period of forcing. We have also derived the condition for breakup and suppression of spiral wave by periodic illumination. The numerical simulations agree well with our analytical treatment. © 2011 American Institute of Physics

  19. Tidal volume single-breath washin of SF6 and CH4 in transient microgravity

    NASA Technical Reports Server (NTRS)

    Dutrieue, Brigitte; Paiva, Manuel; Verbanck, Sylvia; Le Gouic, Marine; Darquenne, Chantal; Prisk, G. Kim

    2003-01-01

    We performed tidal volume single-breath washins (SBW) by using tracers of different diffusivity and varied the time spent in microgravity (microG) before the start of the tests to look for time-dependent effects. SF(6) and CH(4) phase III slopes decreased by 35 and 26%, respectively, in microG compared with 1 G (P < 0.05), and the slope difference between gases disappeared. There was no effect of time in microG, suggesting that neither the hypergravity period preceding microG nor the time spent in microG affected gas mixing at volumes near functional residual capacity. In previous studies using SF(6) and He (Lauzon A-M, Prisk GK, Elliott AR, Verbanck S, Paiva M, and West JB. J Appl Physiol 82: 859-865, 1997), the vital capacity SBW showed an increase in slope difference between gases in transient microG, the opposite of the decrease in sustained microG. In contrast, tidal volume SBW showed a decrease in slope difference in both microG conditions. Because it is only the behavior of the more diffusive gas that differed between maneuvers and microG conditions, we speculate that, in the previous vital capacity SBW, the hypergravity period preceding the test in transient microG provoked conformational changes at low lung volumes near the acinar entrance.

  20. Diffusion Tractography of the Entire Left Ventricle by Using Free-breathing Accelerated Simultaneous Multisection Imaging

    PubMed Central

    Reese, Timothy G.; Jackowski, Marcel P.; Cauley, Stephen F.; Setsompop, Kawin; Bhat, Himanshu; Sosnovik, David E.

    2017-01-01

    Purpose To develop a clinically feasible whole-heart free-breathing diffusion-tensor (DT) magnetic resonance (MR) imaging approach with an imaging time of approximately 15 minutes to enable three-dimensional (3D) tractography. Materials and Methods The study was compliant with HIPAA and the institutional review board and required written consent from the participants. DT imaging was performed in seven healthy volunteers and three patients with pulmonary hypertension by using a stimulated echo sequence. Twelve contiguous short-axis sections and six four-chamber sections that covered the entire left ventricle were acquired by using simultaneous multisection (SMS) excitation with a blipped-controlled aliasing in parallel imaging readout. Rate 2 and rate 3 SMS excitation was defined as two and three times accelerated in the section axis, respectively. Breath-hold and free-breathing images with and without SMS acceleration were acquired. Diffusion-encoding directions were acquired sequentially, spatiotemporally registered, and retrospectively selected by using an entropy-based approach. Myofiber helix angle, mean diffusivity, fractional anisotropy, and 3D tractograms were analyzed by using paired t tests and analysis of variance. Results No significant differences (P > .63) were seen between breath-hold rate 3 SMS and free-breathing rate 2 SMS excitation in transmural myofiber helix angle, mean diffusivity (mean ± standard deviation, [0.89 ± 0.09] × 10−3 mm2/sec vs [0.9 ± 0.09] × 10−3 mm2/sec), or fractional anisotropy (0.43 ± 0.05 vs 0.42 ± 0.06). Three-dimensional tractograms of the left ventricle with no SMS and rate 2 and rate 3 SMS excitation were qualitatively similar. Conclusion Free-breathing DT imaging of the entire human heart can be performed in approximately 15 minutes without section gaps by using SMS excitation with a blipped-controlled aliasing in parallel imaging readout, followed by spatiotemporal registration and entropy-based retrospective image selection. This method may lead to clinical translation of whole-heart DT imaging, enabling broad application in patients with cardiac disease. © RSNA, 2016 Online supplemental material is available for this article. PMID:27681278

  1. Diffusion Tractography of the Entire Left Ventricle by Using Free-breathing Accelerated Simultaneous Multisection Imaging.

    PubMed

    Mekkaoui, Choukri; Reese, Timothy G; Jackowski, Marcel P; Cauley, Stephen F; Setsompop, Kawin; Bhat, Himanshu; Sosnovik, David E

    2017-03-01

    Purpose To develop a clinically feasible whole-heart free-breathing diffusion-tensor (DT) magnetic resonance (MR) imaging approach with an imaging time of approximately 15 minutes to enable three-dimensional (3D) tractography. Materials and Methods The study was compliant with HIPAA and the institutional review board and required written consent from the participants. DT imaging was performed in seven healthy volunteers and three patients with pulmonary hypertension by using a stimulated echo sequence. Twelve contiguous short-axis sections and six four-chamber sections that covered the entire left ventricle were acquired by using simultaneous multisection (SMS) excitation with a blipped-controlled aliasing in parallel imaging readout. Rate 2 and rate 3 SMS excitation was defined as two and three times accelerated in the section axis, respectively. Breath-hold and free-breathing images with and without SMS acceleration were acquired. Diffusion-encoding directions were acquired sequentially, spatiotemporally registered, and retrospectively selected by using an entropy-based approach. Myofiber helix angle, mean diffusivity, fractional anisotropy, and 3D tractograms were analyzed by using paired t tests and analysis of variance. Results No significant differences (P > .63) were seen between breath-hold rate 3 SMS and free-breathing rate 2 SMS excitation in transmural myofiber helix angle, mean diffusivity (mean ± standard deviation, [0.89 ± 0.09] × 10 -3 mm 2 /sec vs [0.9 ± 0.09] × 10 -3 mm 2 /sec), or fractional anisotropy (0.43 ± 0.05 vs 0.42 ± 0.06). Three-dimensional tractograms of the left ventricle with no SMS and rate 2 and rate 3 SMS excitation were qualitatively similar. Conclusion Free-breathing DT imaging of the entire human heart can be performed in approximately 15 minutes without section gaps by using SMS excitation with a blipped-controlled aliasing in parallel imaging readout, followed by spatiotemporal registration and entropy-based retrospective image selection. This method may lead to clinical translation of whole-heart DT imaging, enabling broad application in patients with cardiac disease. © RSNA, 2016 Online supplemental material is available for this article.

  2. Molecular simulation of gas adsorption and diffusion in a breathing MOF using a rigid force field.

    PubMed

    García-Pérez, E; Serra-Crespo, P; Hamad, S; Kapteijn, F; Gascon, J

    2014-08-14

    Simulation of gas adsorption in flexible porous materials is still limited by the slow progress in the development of flexible force fields. Moreover, the high computational cost of such flexible force fields may be a drawback even when they are fully developed. In this work, molecular simulations of gas adsorption and diffusion of carbon dioxide and methane in NH2-MIL-53(Al) are carried out using a linear combination of two crystallographic structures with rigid force fields. Once the interactions of carbon dioxide molecules and the bridging hydroxyls groups of the framework are optimized, an excellent match is found for simulations and experimental data for the adsorption of methane and carbon dioxide, including the stepwise uptake due to the breathing effect. In addition, diffusivities of pure components are calculated. The pore expansion by the breathing effect influences the self-diffusion mechanism and much higher diffusivities are observed at relatively high adsorbate loadings. This work demonstrates that using a rigid force field combined with a minimum number of experiments, reproduces adsorption and simulates diffusion of carbon dioxide and methane in the flexible metal-organic framework NH2-MIL-53(Al).

  3. Diagnosis of hepatic metastasis: comparison of respiration-triggered diffusion-weighted echo-planar MRI and five t2-weighted turbo spin-echo sequences.

    PubMed

    Bruegel, Melanie; Gaa, Jochen; Waldt, Simone; Woertler, Klaus; Holzapfel, Konstantin; Kiefer, Berthold; Rummeny, Ernst J

    2008-11-01

    The purpose of this study was to compare the value of respiration-triggered diffusion-weighted (DW) single-shot echo-planar MRI (EPI) and five variants of T2-weighted turbo spin-echo (TSE) sequences in the diagnosis of hepatic metastasis. Fifty-two patients with extrahepatic primary malignant tumors underwent 1.5-T MRI that included DW EPI and the following variants of T2-weighted TSE techniques: breath-hold fat-suppressed HASTE, breath-hold fat-supressed TSE, respiration-triggered fat-suppressed TSE, breath-hold STIR, and respiration-triggered STIR. Images were reviewed independently by two blinded observers who used a 5-point confidence scale to identify lesions. Results were correlated with surgical and histopathologic findings and follow-up imaging findings. The accuracy of each technique was measured with free-response receiver operating characteristic analysis. A total of 118 hepatic metastatic lesions (mean diameter, 12.8 mm; range, 3-84 mm) were evaluated. Accuracy values were higher (p < 0.001) with DW EPI (0.91-0.92) than with the T2-weighted TSE techniques (0.47-0.67). Imaging with the HASTE sequence (0.47-0.52) was less accurate (p < 0.05) than imaging with the breath-hold TSE, breath-hold STIR, respiration-triggered TSE, and respiration-triggered STIR sequences (0.59-0.67). Sensitivity was higher (p < 0.001) with DW EPI (0.88-0.91) than with T2-weighted TSE techniques (0.45-0.62). For small (< or = 10 mm) metastatic lesions only, the differences in sensitivity between DW EPI (0.85) and T2-weighted TSE techniques (0.26-0.44) were even more pronounced. DW EPI was more sensitive and more accurate than imaging with T2-weighted TSE techniques. Because of the black-blood effect on vessels and low susceptibility to motion artifacts, DW EPI was particularly useful for the detection of small (< or = 10 mm) metastatic lesions.

  4. Ultrafast Spectral Diffusion of the First Subband Exciton in Single-Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Schilling, Daniel; Hertel, Tobias

    2013-03-01

    The width of optical transitions in semiconductors is determined by homogeneous and inhomogeneous contributions. Here, we report on the determination of homogeneous linewidths for the first exciton subband transition and the dynamics of spectral diffusion in single-wall carbon nanotubes (SWNTs) using one- and two-dimensional time resolved spectral hole burning spectroscopy. Our investigation of highly purified semiconducting (6,5)-SWNTs suggests that room temperature homogeneous linewidths are on the order of 4 meV and are rapidly broadened by an ultrafast sub-ps spectral diffusion process. These findings are supported by our off-resonant excitation experiments where we observe sub-ps population transfer reflecting the thermal distribution of energy levels around the first subband exciton transition. The results of temperature-dependent spectral hole burning experiments between 17 K and 293 K suggest that homogeneous linewidths are due to exciton interaction with low energy optical phonons, most likely of the radial breathing mode type. In contrast, we find that inhomogeneous broadening is determined by an electronic degree of freedom such as ultrafast intra-tube exciton diffusion which is characteristic and unique for excitons in these one-dimensional semiconductors.

  5. Comparison of free-breathing with navigator-controlled acquisition regimes in abdominal diffusion-weighted magnetic resonance images: Effect on ADC and IVIM statistics.

    PubMed

    Jerome, Neil P; Orton, Matthew R; d'Arcy, James A; Collins, David J; Koh, Dow-Mu; Leach, Martin O

    2014-01-01

    To evaluate the effect on diffusion-weighted image-derived parameters in the apparent diffusion coefficient (ADC) and intra-voxel incoherent motion (IVIM) models from choice of either free-breathing or navigator-controlled acquisition. Imaging was performed with consent from healthy volunteers (n = 10) on a 1.5T Siemens Avanto scanner. Parameter-matched free-breathing and navigator-controlled diffusion-weighted images were acquired, without averaging in the console, for a total scan time of ∼10 minutes. Regions of interest were drawn for renal cortex, renal pyramid, whole kidney, liver, spleen, and paraspinal muscle. An ADC diffusion model for these regions was fitted for b-values ≥ 250 s/mm(2) , using a Levenberg-Marquardt algorithm, and an IVIM model was fitted for all images using a Bayesian method. ADC and IVIM parameters from the two acquisition regimes show no significant differences for the cohort; individual cases show occasional discrepancies, with outliers in parameter estimates arising more commonly from navigator-controlled scans. The navigator-controlled acquisitions showed, on average, a smaller range of movement for the kidneys (6.0 ± 1.4 vs. 10.0 ± 1.7 mm, P = 0.03), but also a smaller number of averages collected (3.9 ± 0.1 vs. 5.5 ± 0.2, P < 0.01) in the allocated time. Navigator triggering offers no advantage in fitted diffusion parameters, whereas free-breathing appears to offer greater confidence in fitted diffusion parameters, with fewer outliers, for matched acquisition periods. Copyright © 2013 Wiley Periodicals, Inc.

  6. Low b-value diffusion-weighted cardiac magnetic resonance imaging: initial results in humans using an optimal time-window imaging approach.

    PubMed

    Rapacchi, Stanislas; Wen, Han; Viallon, Magalie; Grenier, Denis; Kellman, Peter; Croisille, Pierre; Pai, Vinay M

    2011-12-01

    Diffusion-weighted imaging (DWI) using low b-values permits imaging of intravoxel incoherent motion in tissues. However, low b-value DWI of the human heart has been considered too challenging because of additional signal loss due to physiological motion, which reduces both signal intensity and the signal-to-noise ratio (SNR). We address these signal loss concerns by analyzing cardiac motion during a heartbeat to determine the time-window during which cardiac bulk motion is minimal. Using this information to optimize the acquisition of DWI data and combining it with a dedicated image processing approach has enabled us to develop a novel low b-value diffusion-weighted cardiac magnetic resonance imaging approach, which significantly reduces intravoxel incoherent motion measurement bias introduced by motion. Simulations from displacement encoded motion data sets permitted the delineation of an optimal time-window with minimal cardiac motion. A number of single-shot repetitions of low b-value DWI cardiac magnetic resonance imaging data were acquired during this time-window under free-breathing conditions with bulk physiological motion corrected for by using nonrigid registration. Principal component analysis (PCA) was performed on the registered images to improve the SNR, and temporal maximum intensity projection (TMIP) was applied to recover signal intensity from time-fluctuant motion-induced signal loss. This PCATMIP method was validated with experimental data, and its benefits were evaluated in volunteers before being applied to patients. Optimal time-window cardiac DWI in combination with PCATMIP postprocessing yielded significant benefits for signal recovery, contrast-to-noise ratio, and SNR in the presence of bulk motion for both numerical simulations and human volunteer studies. Analysis of mean apparent diffusion coefficient (ADC) maps showed homogeneous values among volunteers and good reproducibility between free-breathing and breath-hold acquisitions. The PCATMIP DWI approach also indicated its potential utility by detecting ADC variations in acute myocardial infarction patients. Studying cardiac motion may provide an appropriate strategy for minimizing the impact of bulk motion on cardiac DWI. Applying PCATMIP image processing improves low b-value DWI and enables reliable analysis of ADC in the myocardium. The use of a limited number of repetitions in a free-breathing mode also enables easier application in clinical conditions.

  7. Effects of Slow Deep Breathing at High Altitude on Oxygen Saturation, Pulmonary and Systemic Hemodynamics

    PubMed Central

    Bilo, Grzegorz; Revera, Miriam; Bussotti, Maurizio; Bonacina, Daniele; Styczkiewicz, Katarzyna; Caldara, Gianluca; Giglio, Alessia; Faini, Andrea; Giuliano, Andrea; Lombardi, Carolina; Kawecka-Jaszcz, Kalina; Mancia, Giuseppe; Agostoni, Piergiuseppe; Parati, Gianfranco

    2012-01-01

    Slow deep breathing improves blood oxygenation (SpO2) and affects hemodynamics in hypoxic patients. We investigated the ventilatory and hemodynamic effects of slow deep breathing in normal subjects at high altitude. We collected data in healthy lowlanders staying either at 4559 m for 2–3 days (Study A; N = 39) or at 5400 m for 12–16 days (Study B; N = 28). Study variables, including SpO2 and systemic and pulmonary arterial pressure, were assessed before, during and after 15 minutes of breathing at 6 breaths/min. At the end of slow breathing, an increase in SpO2 (Study A: from 80.2±7.7% to 89.5±8.2%; Study B: from 81.0±4.2% to 88.6±4.5; both p<0.001) and significant reductions in systemic and pulmonary arterial pressure occurred. This was associated with increased tidal volume and no changes in minute ventilation or pulmonary CO diffusion. Slow deep breathing improves ventilation efficiency for oxygen as shown by blood oxygenation increase, and it reduces systemic and pulmonary blood pressure at high altitude but does not change pulmonary gas diffusion. PMID:23152851

  8. Effects of slow deep breathing at high altitude on oxygen saturation, pulmonary and systemic hemodynamics.

    PubMed

    Bilo, Grzegorz; Revera, Miriam; Bussotti, Maurizio; Bonacina, Daniele; Styczkiewicz, Katarzyna; Caldara, Gianluca; Giglio, Alessia; Faini, Andrea; Giuliano, Andrea; Lombardi, Carolina; Kawecka-Jaszcz, Kalina; Mancia, Giuseppe; Agostoni, Piergiuseppe; Parati, Gianfranco

    2012-01-01

    Slow deep breathing improves blood oxygenation (Sp(O2)) and affects hemodynamics in hypoxic patients. We investigated the ventilatory and hemodynamic effects of slow deep breathing in normal subjects at high altitude. We collected data in healthy lowlanders staying either at 4559 m for 2-3 days (Study A; N = 39) or at 5400 m for 12-16 days (Study B; N = 28). Study variables, including Sp(O2) and systemic and pulmonary arterial pressure, were assessed before, during and after 15 minutes of breathing at 6 breaths/min. At the end of slow breathing, an increase in Sp(O2) (Study A: from 80.2±7.7% to 89.5±8.2%; Study B: from 81.0±4.2% to 88.6±4.5; both p<0.001) and significant reductions in systemic and pulmonary arterial pressure occurred. This was associated with increased tidal volume and no changes in minute ventilation or pulmonary CO diffusion. Slow deep breathing improves ventilation efficiency for oxygen as shown by blood oxygenation increase, and it reduces systemic and pulmonary blood pressure at high altitude but does not change pulmonary gas diffusion.

  9. Unsteady Oxygen Transfer in Space-Filling Models of the Pulmonary Acinus

    NASA Astrophysics Data System (ADS)

    Hofemeier, Philipp; Shachar-Berman, Lihi; Filoche, Marcel; Sznitman, Josue

    2014-11-01

    Diffusional screening in the pulmonary acinus is a well-known physical phenomenon that results from the depletion of fresh oxygen in proximal acinar generations diffusing through the alveolar wall membranes and effectively creating a gradient in the oxygen partial pressure along the acinar airways. Until present, most studies have focused on steady-state oxygen diffusion in generic sub-acinar structures and discarded convective oxygen transport due to low Peclet numbers in this region. Such studies, however, fall typically short in capturing the complex morphology of acinar airways as well as the oscillatory nature of convecive acinar breathing. Here, we revisit this problem and solve the convective-diffusive transport equations in breathing 3D acinar structures, underlining the significance of convective flows in proximal acinar generations as well as recirculating alveolar flow patterns. In particular, to assess diffusional screening, we monitor time-dependent efficiencies of the acinus under cyclic breathing motion. Our study emphasizes the necessity of capturing both a dynamically breathing and anatomically-realistic model of the sub-acinus to characterize unsteady oxygen transport across the acinar walls.

  10. Diagnosis of focal liver lesions suspected of metastases by diffusion-weighted imaging (DWI): systematic comparison favors free-breathing technique.

    PubMed

    Baltzer, Pascal A T; Schelhorn, Juliane; Benndorf, Matthias; Dietzel, Matthias; Kaiser, Werner A

    2013-01-01

    Two echo planar imaging diffusion-weighted imaging (DWI) techniques [one breath hold (DWI(bh)), repetition time/echo time (TR/TE) 2100/62 ms; one at free breathing (DWI(fb)), TR/TE 2000/65 ms] were compared regarding diagnosis of focal liver lesions (FLLs) in 45 patients with suspected liver metastasis without prior treatment. Apparent diffusion coefficient values of 46 benign and 67 malignant FLLs were analyzed by receiver operating characteristics (ROC) analysis. DWI(fb) detected more malignant lesions than DWI(bh) (P=.002). Lesion size ≤10 mm was associated with FLLs missed by DWI(bh) (P=.018). Area under the ROC curve of DWI(fb) (0.801) was higher compared to that of DWI(bh) (0.669, P<.0113), demonstrating the diagnostic superiority of DWI(fb). Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Small Airway Dysfunction and Abnormal Exercise Responses

    PubMed Central

    Petsonk, Edward L.; Stansbury, Robert C.; Beeckman-Wagner, Lu-Ann; Long, Joshua L.; Wang, Mei Lin

    2016-01-01

    Rationale Coal mine dust exposure can cause symptoms and loss of lung function from multiple mechanisms, but the roles of each disease process are not fully understood. Objectives We investigated the implications of small airway dysfunction for exercise physiology among a group of workers exposed to coal mine dust. Methods Twenty coal miners performed spirometry, first breathing air and then helium-oxygen, single-breath diffusing capacity, and computerized chest tomography, and then completed cardiopulmonary exercise testing. Measurements and Main Results Six participants meeting criteria for small airway dysfunction were compared with 14 coal miners who did not. At submaximal workload, miners with small airway dysfunction used a higher proportion of their maximum voluntary ventilation and had higher ventilatory equivalents for both O2 and CO2. Regression modeling indicated that inefficient ventilation was significantly related to small airway dysfunction but not to FEV1 or diffusing capacity. At the end of exercise, miners with small airway dysfunction had 27% lower O2 consumption. Conclusions Small airway abnormalities may be associated with important inefficiency of exercise ventilation. In dust-exposed individuals with only mild abnormalities on resting lung function tests or chest radiographs, cardiopulmonary exercise testing may be important in defining causes of exercise intolerance. PMID:27073987

  12. Helium-3 MR q-space imaging with radial acquisition and iterative highly constrained back-projection.

    PubMed

    O'Halloran, Rafael L; Holmes, James H; Wu, Yu-Chien; Alexander, Andrew; Fain, Sean B

    2010-01-01

    An undersampled diffusion-weighted stack-of-stars acquisition is combined with iterative highly constrained back-projection to perform hyperpolarized helium-3 MR q-space imaging with combined regional correction of radiofrequency- and T1-related signal loss in a single breath-held scan. The technique is tested in computer simulations and phantom experiments and demonstrated in a healthy human volunteer with whole-lung coverage in a 13-sec breath-hold. Measures of lung microstructure at three different lung volumes are evaluated using inhaled gas volumes of 500 mL, 1000 mL, and 1500 mL to demonstrate feasibility. Phantom results demonstrate that the proposed technique is in agreement with theoretical values, as well as with a fully sampled two-dimensional Cartesian acquisition. Results from the volunteer study demonstrate that the root mean squared diffusion distance increased significantly from the 500-mL volume to the 1000-mL volume. This technique represents the first demonstration of a spatially resolved hyperpolarized helium-3 q-space imaging technique and shows promise for microstructural evaluation of lung disease in three dimensions. Copyright (c) 2009 Wiley-Liss, Inc.

  13. Progress of air-breathing cathode in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Zejie; Mahadevan, Gurumurthy Dummi; Wu, Yicheng; Zhao, Feng

    2017-07-01

    Microbial fuel cell (MFC) is an emerging technology to produce green energy and vanquish the effects of environmental contaminants. Cathodic reactions are vital for high electrical power density generated from MFCs. Recently tremendous attentions were paid towards developing high performance air-breathing cathodes. A typical air-breathing cathode comprises of electrode substrate, catalyst layer, and air-diffusion layer. Prior researches demonstrated that each component influenced the performance of air-breathing cathode MFCs. This review summarized the progress in development of the individual component and elaborated main factors to the performance of air-breathing cathode.

  14. Effects of side lying on lung function in older individuals.

    PubMed

    Manning, F; Dean, E; Ross, J; Abboud, R T

    1999-05-01

    Body positioning exerts a strong effect on pulmonary function, but its effect on other components of the oxygen transport pathway are less well understood, especially the effects of side-lying positions. This study investigated the interrelationships between side-lying positions and indexes of lung function such as spirometry, alveolar diffusing capacity, and inhomogeneity of ventilation in older individuals. Nineteen nonsmoking subjects (mean age=62.8 years, SD=6.8, range=50-74) with no history of cardiac or pulmonary disease were tested over 2 sessions. The test positions were sitting and left side lying in one session and sitting and right side lying in the other session. In each of the positions, forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), single-breath pulmonary diffusing capacity (DLCO/VA), and the slope of phase III (DN2%/L) of the single-breath nitrogen washout test to determine inhomogeneity of ventilation were measured. Compared with measurements obtained in the sitting position, FVC and FEV1 were decreased equally in the side-lying positions, but no change was observed in DLCO/VA or DN2%/L. Side-lying positions resulted in decreases in FVC and FEV1, which is consistent with the well-documented effects of the supine position. These findings further support the need for prescriptive rather than routine body positioning of patients with risks of cardiopulmonary compromise and the need to use upright positions in which lung volumes and capacities are maximized.

  15. Image quality stability of whole-body diffusion weighted imaging.

    PubMed

    Chen, Yun-bin; Hu, Chun-miao; Zhong, Jing; Sun, Fei

    2009-06-01

    To assess the reproducibility of whole-body diffusion weighted imaging (WB-DWI) technique in healthy volunteers under normal breathing with background body signal suppression. WB-DWI was performed on 32 healthy volunteers twice within two-week period using short TI inversion-recovery diffusion-weighted echo-planar imaging sequence and built-in body coil. The volunteers were scanned across six stations continuously covering the entire body from the head to the feet under normal breathing. The bone apparent diffusion coefficient (ADC) and exponential ADC (eADC) of regions of interest (ROIs) were measured. We analyzed correlation of the results using paired-t-test to assess the reproducibility of the WB-DWI technique. We were successful in collecting and analyzing data of 64 WB-DWI images. There was no significant difference in bone ADC and eADC of 824 ROIs between the paired observers and paired scans (P>0.05). Most of the images from all stations were of diagnostic quality. The measurements of bone ADC and eADC have good reproducibility. WB-DWI technique under normal breathing with background body signal suppression is adequate.

  16. Comparison of breathhold, navigator-triggered, and free-breathing diffusion-weighted MRI for focal hepatic lesions.

    PubMed

    Choi, Ji Soo; Kim, Myeong-Jin; Chung, Yong Eun; Kim, Kyung Ah; Choi, Jin-Young; Lim, Joon Seok; Park, Mi-Suk; Kim, Ki Whang

    2013-07-01

    To compare the breathhold, navigator-triggered, and free-breathing techniques in diffusion-weighted magnetic resonance imaging (MRI) for the evaluation of focal liver lesions on a 3.0T system. Fifty-two patients (36 men, 16 women; mean age, 56.4 years) with focal liver lesions underwent breathhold, navigator-triggered, and free-breathing diffusion-weighted imaging (DWI) of the liver on a 3.0 Tesla (T) system. All sequences were performed with b values of 50 and 800 s/mm(2) and identical parameters except for signal averages (two for navigator-triggered, one for breathhold, and four for free-breathing) and repetition time (3389 ms for navigator-triggered, 1500 ms for breathhold, and 4400 ms for free-breathing). A total of 74 lesions (50 malignant, 24 benign) were evaluated. The signal-to-noise ratios (SNR) of the liver and lesions, contrast-to-noise ratios (CNR) of each lesion, and ADC values of the liver and lesions were compared for each DWI sequence. The detection sensitivity and characterization accuracy were also compared. The SNRs of the liver and lesions were significantly lower for breathhold DWI than for non-breathhold DWI (navigator-triggered and free-breathing DWI) for all b values. The CNRs of the lesions were also significantly lower for breathhold DWI than for non-breathhold DWI. The ADC values of the liver and focal lesions measured using the three DWI techniques were not significantly different and showed good correlation. For lesion detection and characterization, there were no significant differences between breathhold and non-breathhold DWI. Both breathhold and non-breathhold DWI are comparable for the detection or characterization of focal liver lesions at 3.0T; however, non-breathhold DWI provides higher SNR and CNR than breathhold DWI. In addition, although free-breathing and navigator-triggered DWI sequences show similar performance for 3.0T liver imaging, free-breathing DWI is more time efficient than navigator-triggered DWI. Copyright © 2013 Wiley Periodicals, Inc.

  17. Effects of ion channel noise on neural circuits: an application to the respiratory pattern generator to investigate breathing variability.

    PubMed

    Yu, Haitao; Dhingra, Rishi R; Dick, Thomas E; Galán, Roberto F

    2017-01-01

    Neural activity generally displays irregular firing patterns even in circuits with apparently regular outputs, such as motor pattern generators, in which the output frequency fluctuates randomly around a mean value. This "circuit noise" is inherited from the random firing of single neurons, which emerges from stochastic ion channel gating (channel noise), spontaneous neurotransmitter release, and its diffusion and binding to synaptic receptors. Here we demonstrate how to expand conductance-based network models that are originally deterministic to include realistic, physiological noise, focusing on stochastic ion channel gating. We illustrate this procedure with a well-established conductance-based model of the respiratory pattern generator, which allows us to investigate how channel noise affects neural dynamics at the circuit level and, in particular, to understand the relationship between the respiratory pattern and its breath-to-breath variability. We show that as the channel number increases, the duration of inspiration and expiration varies, and so does the coefficient of variation of the breath-to-breath interval, which attains a minimum when the mean duration of expiration slightly exceeds that of inspiration. For small channel numbers, the variability of the expiratory phase dominates over that of the inspiratory phase, and vice versa for large channel numbers. Among the four different cell types in the respiratory pattern generator, pacemaker cells exhibit the highest sensitivity to channel noise. The model shows that suppressing input from the pons leads to longer inspiratory phases, a reduction in breathing frequency, and larger breath-to-breath variability, whereas enhanced input from the raphe nucleus increases breathing frequency without changing its pattern. A major source of noise in neuronal circuits is the "flickering" of ion currents passing through the neurons' membranes (channel noise), which cannot be suppressed experimentally. Computational simulations are therefore the best way to investigate the effects of this physiological noise by manipulating its level at will. We investigate the role of noise in the respiratory pattern generator and show that endogenous, breath-to-breath variability is tightly linked to the respiratory pattern. Copyright © 2017 the American Physiological Society.

  18. Effects of Fresh and Aged Vehicular Exhaust Emissions on Breathing Pattern and Cellular Responses – Pilot Single Vehicle Study

    PubMed Central

    Diaz, Edgar A.; Chung, Yeonseung; Papapostolou, Vasileios; Lawrence, Joy; Long, Mark S.; Hatakeyama, Vivian; Gomes, Brenno; Calil, Yasser; Sato, Rodrigo; Koutrakis, Petros; Godleski, John J.

    2013-01-01

    The study presented here is a laboratory pilot study using diluted car exhaust from a single vehicle to assess differences in toxicological response between primary emissions and secondary products resulting from atmospheric photochemical reactions of gas phase compounds with O3, OH and other radicals. Sprague-Dawley rats were exposed for five hours to either filtered room air (Sham) or one of two different atmospheres: 1. Diluted Car Exhaust (P) + Mt. Saint Helens Ash (MSHA); 2. P+MSHA+SOA (Secondary Organic Aerosol, formed during simulated photochemical aging of diluted exhaust). Primary and secondary gases were removed using a non-selective diffusion denuder. Continuous respiratory data was collected during the exposure, and broncho-alveolar lavage (BAL) and complete blood counts (CBC) were performed 24 hours after exposure. ANOVA models were used to assess the exposure effect and to compare those effects across different exposure types. Total average exposures were 363±66 μg/m3 P+MSHA and 212±95 μg/m3 P+MSHA+SOA. For both exposures, we observed decreases in breathing rate, tidal and minute volumes (TV, MV) and peak and median flows (PIF, PEF and EF50) along with increases in breathing cycle times (Ti, Te) compared to sham. These results indicate that the animals are changing their breathing pattern with these test atmospheres. Exposure to P+MSHA+SOA produced significant increases in Total Cells, Macrophages and Neutrophils in the BAL and in-vivo chemiluminescence of the lung. There were no significant differences in CBC parameters. Our data suggest that simulated atmospheric photochemistry, producing SOA in the P+MSHA+SOA exposures, enhanced the toxicity of vehicular emissions. PMID:22486346

  19. Effects of fresh and aged vehicular exhaust emissions on breathing pattern and cellular responses--pilot single vehicle study.

    PubMed

    Diaz, Edgar A; Chung, Yeonseung; Papapostolou, Vasileios; Lawrence, Joy; Long, Mark S; Hatakeyama, Vivian; Gomes, Brenno; Calil, Yasser; Sato, Rodrigo; Koutrakis, Petros; Godleski, John J

    2012-04-01

    The study presented here is a laboratory pilot study using diluted car exhaust from a single vehicle to assess differences in toxicological response between primary emissions and secondary products resulting from atmospheric photochemical reactions of gas phase compounds with O₃, OH and other radicals. Sprague Dawley rats were exposed for 5 h to either filtered room air (sham) or one of two different atmospheres: (i) diluted car exhaust (P)+Mt. Saint Helens Ash (MSHA); (ii) P+MSHA+secondary organic aerosol (SOA, formed during simulated photochemical aging of diluted exhaust). Primary and secondary gases were removed using a nonselective diffusion denuder. Continuous respiratory data was collected during the exposure, and bronchoalveolar lavage (BAL) and complete blood counts (CBC) were performed 24 h after exposure. ANOVA models were used to assess the exposure effect and to compare those effects across different exposure types. Total average exposures were 363 ± 66 μg/m³ P+MSHA and 212 ± 95 µg/m³ P+MSHA+SOA. For both exposures, we observed decreases in breathing rate, tidal and minute volumes (TV, MV) and peak and median flows (PIF, PEF and EF50) along with increases in breathing cycle times (Ti, Te) compared to sham. These results indicate that the animals are changing their breathing pattern with these test atmospheres. Exposure to P+MSHA+SOA produced significant increases in total cells, macrophages and neutrophils in the BAL and in vivo chemiluminescence of the lung. There were no significant differences in CBC parameters. Our data suggest that simulated atmospheric photochemistry, producing SOA in the P+MSHA+SOA exposures, enhanced the toxicity of vehicular emissions.

  20. Pulmonary gas exchange efficiency during exercise breathing normoxic and hypoxic gas in adults born very preterm with low diffusion capacity.

    PubMed

    Duke, Joseph W; Elliott, Jonathan E; Laurie, Steven S; Beasley, Kara M; Mangum, Tyler S; Hawn, Jerold A; Gladstone, Igor M; Lovering, Andrew T

    2014-09-01

    Adults with a history of very preterm birth (<32 wk gestational age; PRET) have reduced lung function and significantly lower lung diffusion capacity for carbon monoxide (DLCO) relative to individuals born at term (CONT). Low DLCO may predispose PRET to diffusion limitation during exercise, particularly while breathing hypoxic gas because of a reduced O2 driving gradient and pulmonary capillary transit time. We hypothesized that PRET would have significantly worse pulmonary gas exchange efficiency [i.e., increased alveolar-to-arterial Po2 difference (AaDO2)] during exercise breathing room air or hypoxic gas (FiO2 = 0.12) compared with CONT. To test this hypothesis, we compared the AaDO2 in PRET (n = 13) with a clinically mild reduction in DLCO (72 ± 7% of predicted) and CONT (n = 14) with normal DLCO (105 ± 10% of predicted) pre- and during exercise breathing room air and hypoxic gas. Measurements of temperature-corrected arterial blood gases, and direct measure of O2 saturation (SaO2), were made prior to and during exercise at 25, 50, and 75% of peak oxygen consumption (V̇o2peak) while breathing room air and hypoxic gas. In addition to DLCO, pulmonary function and exercise capacity were significantly less in PRET. Despite PRET having low DLCO, no differences were observed in the AaDO2 or SaO2 pre- or during exercise breathing room air or hypoxic gas compared with CONT. Although our findings were unexpected, we conclude that reduced pulmonary function and low DLCO resulting from very preterm birth does not cause a measureable reduction in pulmonary gas exchange efficiency. Copyright © 2014 the American Physiological Society.

  1. 3D Late Gadolinium Enhancement in a Single Prolonged Breath-hold using Supplemental Oxygenation and Hyperventilation

    PubMed Central

    Roujol, Sébastien; Basha, Tamer A.; Akçakaya, Mehmet; Foppa, Murilo; Chan, Raymond H.; Kissinger, Kraig V.; Goddu, Beth; Berg, Sophie; Manning, Warren J.; Nezafat, Reza

    2013-01-01

    Purpose: To evaluate the feasibility of 3D single breath-hold late gadolinium enhancement (LGE) of the left ventricle (LV) using supplemental oxygen and hyperventilation and compressed-sensing acceleration. Methods: Breath-hold metrics (breath-hold duration, diaphragmatic/LV position drift, and maximum variation of RR interval) without and with supplemental oxygen and hyperventilation were assessed in healthy adult subjects using a real time single shot acquisition. Ten healthy subjects and 13 patients then underwent assessment of the proposed 3D breath-hold LGE acquisition (FOV=320×320×100 mm3, resolution=1.6×1.6×5.0 mm3, acceleration rate of 4) and a free breathing acquisition with right hemidiaphragm navigator (NAV) respiratory gating. Semi-quantitative grading of overall image quality, motion artifact, myocardial nulling, and diagnostic value was performed by consensus of two blinded observers. Results: Supplemental oxygenation and hyperventilation increased the breath-hold duration (35±11 s to 58±21 s, p<0.0125) without significant impact on diaphragmatic/LV position drift or maximum variation of RR interval (both p>0.01). LGE images were of similar quality when compared to free breathing acquisitions but with reduced total scan time (85±22 s to 35±6 s, p<0.001). Conclusions: Supplemental oxygenation and hyperventilation allow for prolonged breath-holding and enable single breath-hold 3D accelerated LGE with similar image quality as free breathing with NAV. PMID:24186772

  2. Dynamics of localized structures in reaction-diffusion systems induced by delayed feedback

    NASA Astrophysics Data System (ADS)

    Gurevich, Svetlana V.

    2013-05-01

    We are interested in stability properties of a single localized structure in a three-component reaction-diffusion system subjected to the time-delayed feedback. We shall show that variation in the product of the delay time and the feedback strength leads to complex dynamical behavior of the system, including formation of target patterns, spontaneous motion, and spontaneous breathing as well as various complex structures, arising from combination of different oscillatory instabilities. In the case of spontaneous motion, we provide a bifurcation analysis of the delayed system and derive an order parameter equation for the position of the localized structure, explicitly describing its temporal evolution in the vicinity of the bifurcation point. This equation is a subject to a nonlinear delay differential equation, which can be transformed to the normal form of the pitchfork drift bifurcation.

  3. Pulmonary function in infectious mononucleosis.

    PubMed

    Morgan, E J; Altmeyer, R; Khakoo, R; Lapp, N L

    1982-06-01

    Infectious mononucleosis (IM) is common among students. These patients often complain of fatigue and dyspnea. To determine whether IM alters respiratory function, we performed spirometric, single-breath diffusing capacity, and maximal static respiratory pressure tests on seven patients with symptoms of IM. These studies were repeated two weeks later and the respiratory pressures were repeated five months later. Each patient served as his own control. Pulmonary function was normal except for respiratory pressures, which were initially low. These pressures, still low after two weeks, improved significantly after five months. We concluded that IM is associated with transient respiratory muscle weakness.

  4. 3D late gadolinium enhancement in a single prolonged breath-hold using supplemental oxygenation and hyperventilation.

    PubMed

    Roujol, Sébastien; Basha, Tamer A; Akçakaya, Mehmet; Foppa, Murilo; Chan, Raymond H; Kissinger, Kraig V; Goddu, Beth; Berg, Sophie; Manning, Warren J; Nezafat, Reza

    2014-09-01

    To evaluate the feasibility of three-dimensional (3D) single breath-hold late gadolinium enhancement (LGE) of the left ventricle (LV) using supplemental oxygen and hyperventilation and compressed-sensing acceleration. Breath-hold metrics [breath-hold duration, diaphragmatic/LV position drift, and maximum variation of R wave to R wave (RR) interval] without and with supplemental oxygen and hyperventilation were assessed in healthy adult subjects using a real-time single shot acquisition. Ten healthy subjects and 13 patients then underwent assessment of the proposed 3D breath-hold LGE acquisition (field of view = 320 × 320 × 100 mm(3) , resolution = 1.6 × 1.6 × 5.0 mm(3) , acceleration rate of 4) and a free-breathing acquisition with right hemidiaphragm navigator (NAV) respiratory gating. Semiquantitative grading of overall image quality, motion artifact, myocardial nulling, and diagnostic value was performed by consensus of two blinded observers. Supplemental oxygenation and hyperventilation increased the breath-hold duration (35 ± 11 s to 58 ± 21 s; P < 0.0125) without significant impact on diaphragmatic/LV position drift or maximum variation of RR interval (both P > 0.01). LGE images were of similar quality when compared with free-breathing acquisitions, but with reduced total scan time (85 ± 22 s to 35 ± 6 s; P < 0.001). Supplemental oxygenation and hyperventilation allow for prolonged breath-holding and enable single breath-hold 3D accelerated LGE with similar image quality as free breathing with NAV. Copyright © 2013 Wiley Periodicals, Inc.

  5. Comparison of diffusion-weighted MRI acquisition techniques for normal pancreas at 3.0 Tesla.

    PubMed

    Yao, Xiu-Zhong; Kuang, Tiantao; Wu, Li; Feng, Hao; Liu, Hao; Cheng, Wei-Zhong; Rao, Sheng-Xiang; Wang, He; Zeng, Meng-Su

    2014-01-01

    We aimed to optimize diffusion-weighted imaging (DWI) acquisitions for normal pancreas at 3.0 Tesla. Thirty healthy volunteers were examined using four DWI acquisition techniques with b values of 0 and 600 s/mm2 at 3.0 Tesla, including breath-hold DWI, respiratory-triggered DWI, respiratory-triggered DWI with inversion recovery (IR), and free-breathing DWI with IR. Artifacts, signal-to-noise ratio (SNR) and apparent diffusion coefficient (ADC) of normal pancreas were statistically evaluated among different DWI acquisitions. Statistical differences were noticed in artifacts, SNR, and ADC values of normal pancreas among different DWI acquisitions by ANOVA (P <0.001). Normal pancreas imaging had the lowest artifact in respiratory-triggered DWI with IR, the highest SNR in respiratory-triggered DWI, and the highest ADC value in free-breathing DWI with IR. The head, body, and tail of normal pancreas had statistically different ADC values on each DWI acquisition by ANOVA (P < 0.05). The highest image quality for normal pancreas was obtained using respiratory-triggered DWI with IR. Normal pancreas displayed inhomogeneous ADC values along the head, body, and tail structures.

  6. Direct measurement for organic solvents diffusion using ultra-sensitive optical resonator

    NASA Astrophysics Data System (ADS)

    Ali, Amir R.; Elias, Catherine M.

    2017-06-01

    In this paper, novel techniques using ultra-sensitive chemical optical sensor based on whispering gallery modes (WGM) are proposed through two different configurations. The first one will use a composite micro-sphere, when the solvent interacts with the polymeric optical sensors through diffusion the sphere start to swallow that solvent. In turn, that leads to change the morphology and mechanical properties of the polymeric spheres. Also, these changes could be measured by tracking the WGM shifts. Several experiments were carried out to study the solvent induced WGM shift using microsphere immersed in a solvent atmosphere. It can be potentially used for sensing the trace organic solvents like ethanol and methanol. The second configuration will use a composite beam nitrocellulose composite (NC) structure that acts as a sensing element. In this configuration, a beam is anchored to a substrate in one end, and the other end is compressing the polymeric sphere causing a shift in its WGM. When a chemical molecule is attached to the beam, the resonant frequency of the cantilever will be changed for a certain amount. By sensing this certain resonant frequency change, the existence of a single chemical molecule can be detected. A preliminary experimental model is developed to describe the vibration of the beam structure. The resonant frequency change of the cantilever due to attached mass is examined imperially using acetone as an example. Breath diagnosis can use this configuration in diabetic's diagnosis. Since, solvent like acetone concentration in human breath leads to a quick, convenient, accurate and painless breath diagnosis of diabetics. These micro-optical sensors have been examined using preliminary experiments to fully investigate its response. The proposed chemical sensor can achieve extremely high sensitivity in molecular level.

  7. Optimization of single shot 3D breath-hold non-enhanced MR angiography of the renal arteries.

    PubMed

    Tan, Huan; Koktzoglou, Ioannis; Glielmi, Christopher; Galizia, Mauricio; Edelman, Robert R

    2012-05-19

    Cardiac and navigator-gated, inversion-prepared non-enhanced magnetic resonance angiography techniques can accurately depict the renal arteries without the need for contrast administration. However, the scan time and effectiveness of navigator-gated techniques depend on the subject respiratory pattern, which at times results in excessively prolonged scan times or suboptimal image quality. A single-shot 3D magnetization-prepared steady-state free precession technique was implemented to allow the full extent of the renal arteries to be depicted within a single breath-hold. Technical optimization of the breath-hold technique was performed with fourteen healthy volunteers. An alternative magnetization preparation scheme was tested to maximize inflow signal. Quantitative and qualitative comparisons were made between the breath-hold technique and the clinically accepted navigator-gated technique in both volunteers and patients on a 1.5 T scanner. The breath-hold technique provided an average of seven fold reduction in imaging time, without significant loss of image quality. Comparable single-to-noise and contrast-to-noise ratios of intra- and extra-renal arteries were found between the breath-hold and the navigator-gated techniques in volunteers. Furthermore, the breath-hold technique demonstrated good image quality for diagnostic purposes in a small number of patients in a pilot study. The single-shot, breath-hold technique offers an alternative to navigator-gated methods for non-enhanced renal magnetic resonance angiography. The initial results suggest a potential supplementary clinical role for the breath-hold technique in the evaluation of suspected renal artery diseases.

  8. Breathing pulses in singularly perturbed reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Veerman, Frits

    2015-07-01

    The weakly nonlinear stability of pulses in general singularly perturbed reaction-diffusion systems near a Hopf bifurcation is determined using a centre manifold expansion. A general framework to obtain leading order expressions for the (Hopf) centre manifold expansion for scale separated, localised structures is presented. Using the scale separated structure of the underlying pulse, directly calculable expressions for the Hopf normal form coefficients are obtained in terms of solutions to classical Sturm-Liouville problems. The developed theory is used to establish the existence of breathing pulses in a slowly nonlinear Gierer-Meinhardt system, and is confirmed by direct numerical simulation.

  9. Development of a miniaturized diffusive sampler for true breathing-zone sampling and thermal desorption gas chromatographic analysis.

    PubMed

    Lindahl, Roger; Levin, Jan-Olof; Sundgren, Margit

    2009-07-01

    Exposure measurements should be performed as close as possible to the nose and mouth for a more correct assessment of exposure. User-friendly sampling equipment, with a minimum of handling before, during and after measurement, should not affect ordinary work. In diffusive (passive) sampling, no extra equipment as sampling pumps is needed, making the measurements more acceptable to the user. The diffusive samplers are normally attached on a shoulder, on a breast-pocket or on the lapel. There are, however, difficulties if true breathing-zone sampling is to be performed, since available diffusive samplers normally cannot be arranged close to the nose/mouth. The purpose of this work was to study the performance of a miniaturized tube type diffusive sampler attached to a headset for true breathing-zone sampling. The basis for this miniaturization was the Perkin Elmer ATD tube. Both the size of the tube and the amount of adsorbent was decreased for the miniaturized sampler. A special tube holder to be used with a headset was designed for the mini tube. The mini tube is thermally desorbed inside a standard PE tube. The new sampler was evaluated for the determination of styrene, both in laboratory experiments and in field measurements. As reference method, diffusive sampling with standard Perkin Elmer tubes, thermal desorption and gas chromatographic (GC) analysis was used. The sampling rate was determined to 0.356 mL min(-1) (CV 9.6%) and was not significantly affected by concentration, sampling time or relative humidity.

  10. Evaluation of light scattering and absorption properties ofin vivorat liver using a single-reflectance fiber probe during preischemia, ischemia-reperfusion, and postmortem

    NASA Astrophysics Data System (ADS)

    Akter, Sharmin; Maejima, Satoshi; Kawauchi, Satoko; Sato, Shunichi; Hinoki, Akinari; Aosasa, Suefumi; Yamamoto, Junji; Nishidate, Izumi

    2015-07-01

    Diffuse reflectance spectroscopy (DRS) has been extensively used for characterization of biological tissues as a noninvasive optical technique to evaluate the optical properties of tissue. We investigated a method for evaluating the reduced scattering coefficient , the absorption coefficient μa, the tissue oxygen saturation StO2, and the reduction of heme aa3 in cytochrome c oxidase CcO of in vivo liver tissue using a single-reflectance fiber probe with two source-collector geometries. We performed in vivo recordings of diffuse reflectance spectra for exposed rat liver during the ischemia-reperfusion induced by the hepatic portal (hepatic artery, portal vein, and bile duct) occlusion. The time courses of μa at 500, 530, 570, and 584 nm indicated the hemodynamic change in liver tissue as well as StO2. Significant increase in μa(605)/μa(620) during ischemia and after euthanasia induced by nitrogen breathing was observed, which indicates the reduction of heme aa3, representing a sign of mitochondrial energy failure. The time courses of at 500, 530, 570, and 584 nm were well correlated with those of μa, which also reflect the scattering by red blood cells. On the other hand, at 700 and 800 nm, a temporary increase in and an irreversible decrease in were observed during ischemia-reperfusion and after euthanasia induced by nitrogen breathing, respectively. The change in in the near-infrared wavelength region during ischemia is indicative of the morphological changes in the cellular and subcellular structures induced by the ischemia, whereas that after euthanasia implies the hepatocyte vacuolation. The results of the present study indicate the potential application of the current DRS system for evaluating the pathophysiological conditions of in vivo liver tissue.

  11. Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display.

    PubMed

    Takahara, Taro; Imai, Yutaka; Yamashita, Tomohiro; Yasuda, Seiei; Nasu, Seiji; Van Cauteren, Marc

    2004-01-01

    To examine a new way of body diffusion weighted imaging (DWI) using the short TI inversion recovery-echo planar imaging (STIR-EPI) sequence and free breathing scanning (diffusion weighted whole body imaging with background body signal suppression; DWIBS) to obtain three-dimensional displays. 1) Apparent contrast-to-noise ratios (AppCNR) between lymph nodes and surrounding fat tissue were compared in three types of DWI with and without breath-holding, with variable lengths of scan time and slice thickness. 2) The STIR-EPI sequence and spin echo-echo planar imaging (SE-EPI) sequence with chemical shift selective (CHESS) pulse were compared in terms of their degree of fat suppression. 3) Eleven patients with neck, chest, and abdominal malignancy were scanned with DWIBS for evaluation of feasibility. Whole body imaging was done in a later stage of the study using the peripheral vascular coil. The AppCNR of 8 mm slice thickness images reconstructed from 4 mm slice thickness source images obtained in a free breathing scan of 430 sec were much better than 9 mm slice thickness breath-hold scans obtained in 25 sec. High resolution multi-planar reformat (MPR) and maximum intensity projection (MIP) images could be made from the data set of 4 mm slice thickness images. Fat suppression was much better in the STIR-EPI sequence than SE-EPI with CHESS pulse. The feasibility of DWIBS was showed in clinical scans of 11 patients. Whole body images were successfully obtained with adequate fat suppression. Three-dimensional DWIBS can be obtained with this technique, which may allow us to screen for malignancies in the whole body.

  12. Effects of aerial hypoxia and temperature on pulmonary breathing pattern and gas exchange in the South American lungfish, Lepidosiren paradoxa.

    PubMed

    da Silva, Glauber S F; Ventura, Daniela A D N; Zena, Lucas A; Giusti, Humberto; Glass, Mogens L; Klein, Wilfried

    2017-05-01

    The South American lungfish Lepidosiren paradoxa is an obligatory air-breathing fish possessing well-developed bilateral lungs, and undergoing seasonal changes in its habitat, including temperature changes. In the present study we aimed to evaluate gas exchange and pulmonary breathing pattern in L. paradoxa at different temperatures (25 and 30°C) and different inspired O 2 levels (21, 12, 10, and 7%). Normoxic breathing pattern consisted of isolated ventilatory cycles composed of an expiration followed by 2.4±0.2 buccal inspirations. Both expiratory and inspiratory tidal volumes reached a maximum of about 35mlkg -1 , indicating that L. paradoxa is able to exchange nearly all of its lung air in a single ventilatory cycle. At both temperatures, hypoxia caused a significant increase in pulmonary ventilation (V̇ E ), mainly due to an increase in respiratory frequency. Durations of the ventilatory cycle and expiratory and inspiratory tidal volumes were not significantly affected by hypoxia. Expiratory time (but not inspiratory) was significantly shorter at 30°C and at all O 2 levels. While a small change in oxygen consumption (V̇O 2 ) could be noticed, the carbon dioxide release (V̇CO 2 , P=0.0003) and air convection requirement (V̇ E /V̇O 2 , P=0.0001) were significantly affected by hypoxia (7% O 2 ) at both temperatures, when compared to normoxia, and pulmonary diffusion capacity increased about four-fold due to hypoxic exposure. These data highlight important features of the respiratory system of L. paradoxa, capable of matching O 2 demand and supply under different environmental change, as well as help to understand the evolution of air breathing in lungfish. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Pattern formation in diffusive excitable systems under magnetic flow effects

    NASA Astrophysics Data System (ADS)

    Mvogo, Alain; Takembo, Clovis N.; Ekobena Fouda, H. P.; Kofané, Timoléon C.

    2017-07-01

    We study the spatiotemporal formation of patterns in a diffusive FitzHugh-Nagumo network where the effect of electromagnetic induction has been introduced in the standard mathematical model by using magnetic flux, and the modulation of magnetic flux on membrane potential is realized by using memristor coupling. We use the multi-scale expansion to show that the system equations can be reduced to a single differential-difference nonlinear equation. The linear stability analysis is performed and discussed with emphasis on the impact of magnetic flux. It is observed that the effect of memristor coupling importantly modifies the features of modulational instability. Our analytical results are supported by the numerical experiments, which reveal that the improved model can lead to nonlinear quasi-periodic spatiotemporal patterns with some features of synchronization. It is observed also the generation of pulses and rhythmics behaviors like breathing or swimming which are important in brain researches.

  14. Cubic PdNP-based air-breathing cathodes integrated in glucose hybrid biofuel cells

    NASA Astrophysics Data System (ADS)

    Faggion Junior, D.; Haddad, R.; Giroud, F.; Holzinger, M.; Maduro de Campos, C. E.; Acuña, J. J. S.; Domingos, J. B.; Cosnier, S.

    2016-05-01

    Cubic Pd nanoparticles (PdNPs) were synthesized using ascorbic acid as a reducing agent and were evaluated for the catalytic oxygen reduction reaction. PdNPs were confined with multiwalled carbon nanotube (MWCNT) dispersions to form black suspensions and these inks were dropcast onto glassy carbon electrodes. Different nanoparticle sizes were synthesized and investigated upon oxygen reduction capacities (onset potential and electrocatalytic current densities) under O2 saturated conditions at varying pH values. Strong evidence of O2 diffusion limitation was demonstrated. In order to overcome oxygen concentration and diffusion limitations in solution, we used a gas diffusion layer to create a PdNP-based air-breathing cathode, which delivered -1.5 mA cm-2 at 0.0 V with an onset potential of 0.4 V. This air-breathing cathode was combined with a specially designed phenanthrolinequinone/glucose dehydrogenase-based anode to form a complete glucose/O2 hybrid bio-fuel cell providing an open circuit voltage of 0.554 V and delivering a maximal power output of 184 +/- 21 μW cm-2 at 0.19 V and pH 7.0.Cubic Pd nanoparticles (PdNPs) were synthesized using ascorbic acid as a reducing agent and were evaluated for the catalytic oxygen reduction reaction. PdNPs were confined with multiwalled carbon nanotube (MWCNT) dispersions to form black suspensions and these inks were dropcast onto glassy carbon electrodes. Different nanoparticle sizes were synthesized and investigated upon oxygen reduction capacities (onset potential and electrocatalytic current densities) under O2 saturated conditions at varying pH values. Strong evidence of O2 diffusion limitation was demonstrated. In order to overcome oxygen concentration and diffusion limitations in solution, we used a gas diffusion layer to create a PdNP-based air-breathing cathode, which delivered -1.5 mA cm-2 at 0.0 V with an onset potential of 0.4 V. This air-breathing cathode was combined with a specially designed phenanthrolinequinone/glucose dehydrogenase-based anode to form a complete glucose/O2 hybrid bio-fuel cell providing an open circuit voltage of 0.554 V and delivering a maximal power output of 184 +/- 21 μW cm-2 at 0.19 V and pH 7.0. Electronic supplementary information (ESI) available: Physical characterization, Fig. S1-S4 electrochemical experiments Fig. S5-S11. See DOI: 10.1039/c6nr01245k

  15. Dual gas-diffusion membrane- and mediatorless dihydrogen/air-breathing biofuel cell operating at room temperature

    NASA Astrophysics Data System (ADS)

    Xia, Hong-qi; So, Keisei; Kitazumi, Yuki; Shirai, Osamu; Nishikawa, Koji; Higuchi, Yoshiki; Kano, Kenji

    2016-12-01

    A membraneless direct electron transfer (DET)-type dihydrogen (H2)/air-breathing biofuel cell without any mediator was constructed wherein bilirubin oxidase from Myrothecium verrucaria (BOD) and membrane-bound [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F (MBH) were used as biocatalysts for the cathode and the anode, respectively, and Ketjen black-modified water proof carbon paper (KB/WPCC) was used as an electrode material. The KB/WPCC surface was modified with 2-aminobenzoic acid and p-phenylenediamine, respectively, to face the positively charged electron-accepting site of BOD and the negatively charged electron-donating site of MBH to the electrode surface. A gas-diffusion system was employed for the electrodes to realize high-speed substrate supply. As result, great improvement in the current density of O2 reduction with BOD and H2 reduction with MBH were realized at negatively and postively charged surfaces, respectively. Gas diffusion system also suppressed the oxidative inactivation of MBH at high electrode potentials. Finally, based on the improved bioanode and biocathode, a dual gas-diffusion membrane- and mediatorless H2/air-breathing biofuel cell was constructed. The maximum power density reached 6.1 mW cm-2 (at 0.72 V), and the open circuit voltage was 1.12 V using 1 atm of H2 gas as a fuel at room temperature and under passive and quiescent conditions.

  16. Free-breathing diffusion-weighted imaging for the assessment of inflammatory activity in Crohn's disease.

    PubMed

    Kiryu, Shigeru; Dodanuki, Keiichi; Takao, Hidemasa; Watanabe, Makoto; Inoue, Yusuke; Takazoe, Masakazu; Sahara, Rikisaburo; Unuma, Kiyohito; Ohtomo, Kuni

    2009-04-01

    To investigate the application of free-breathing diffusion-weighted MR imaging (DWI) to the assessment of disease activity in Crohn's disease. Thirty-one patients with Crohn's disease were investigated using free-breathing DWI without special patient preparation or IV or intraluminal contrast agent. The bowel was divided into seven segments, and disease activity was assessed visually on DWI. For quantitative analysis, the apparent diffusion coefficient (ADC) was measured in each segment. The findings of a conventional barium study or surgery were regarded as the gold standard for evaluating the diagnostic ability of DWI to assess disease activity. Upon visual assessment, the sensitivity, specificity, and accuracy for the detection of disease-active segments were 86.0, 81.4, and 82.4%, respectively. In the quantitative assessment, the ADC value in the disease-active area was lower than that in disease-inactive area in small and large bowels (1.61 +/- 0.44 x 10(-3) mm(2)/s versus 2.56 +/- 0.51 x 10(-3) mm(2)/s in small bowel and 1.52 +/- 0.43 x 10(-3) mm(2)/s versus 2.31 +/- 0.59 x 10(-3) mm(2)/s in large bowel, respectively, P<0.001). Free-breathing DWI is useful in the assessment of Crohn's disease. The accuracy of DWI is high in evaluating disease activity, especially in the small bowel, and the ADC may facilitate quantitative analysis of disease activity.

  17. Syllable-Related Breathing in Infants in the Second Year of Life

    ERIC Educational Resources Information Center

    Parham, Douglas F.; Buder, Eugene H.; Oller, D. Kimbrough; Boliek, Carol A.

    2011-01-01

    Purpose: This study explored whether breathing behaviors of infants within the 2nd year of life differ between tidal breathing and breathing supporting single unarticulated syllables and canonical/articulated syllables. Method: Vocalizations and breathing kinematics of 9 infants between 53 and 90 weeks of age were recorded. A strict selection…

  18. Liver diffusivity in healthy volunteers and patients with chronic liver disease: Comparison of breath-hold and free-breathing techniques

    PubMed Central

    Eatesam, Mamak; Noworolski, Susan M; Tien, Phyllis C; Nystrom, Michelle; Dodge, Jennifer L.; Merriman, Raphael B.; Qayyum, Aliya

    2011-01-01

    Purpose To compare liver ADC obtained with breath-hold and free-breathing diffusion weighted imaging (DWI) in healthy volunteers and patients with liver disease. Materials and Methods Twenty-eight subjects, 12 healthy volunteers and 16 patients (9 NAFLD, 7 chronic active HCV), underwent breath-hold (BH) and free-breathing (FB) DWI MRI at 1.5T. Pearson’s correlation coefficient was used to determine correlation while paired t-tests assessed differences between BH and FB ADC. Estimated bias was calculated using the Bland-Altman method. Results Liver ADC (×10−3 mm2/sec) was lower on BH for all groups (mean difference 0.36±0.20; p<0.01). ADC was higher in healthy volunteers (BH 1.80±0.18; FB 2.24±0.20) compared to NAFLD patients (BH 1.43±0.27; FB 1.78±0.28) (p<0.001) and HCV patients (BH 1.63±0.191; FB 1.88±0.12). Overall correlation between BH and FB ADC was (r =0.75), greatest in NAFLD (r =0.90) compared to the correlation in HCV (r =0.24) and healthy subjects (r =0.34). Bland-Altman plots did not show agreement in mean absolute difference and estimated bias between subjects. Conclusion Correlation between BH and FB liver ADC is moderate indicating that BH and FB should not be used interchangeably. Additionally, the lower ADC values in BH versus FB should be accounted for when comparing different liver DWI studies. PMID:22034200

  19. Dynamical cage behaviour and hydrogen migration in hydrogen and hydrogen-tetrahydrofuran clathrate hydrates

    NASA Astrophysics Data System (ADS)

    Gorman, Paul D.; English, Niall J.; MacElroy, J. M. D.

    2012-01-01

    Classical equilibrium molecular dynamics simulations have been performed to investigate dynamical properties of cage radial breathing modes and intra- and inter-cage hydrogen migration in both pure hydrogen and mixed hydrogen-tetrahydrofuran sII hydrates at 0.05 kbar and up to 250 K. For the mixed H2-THF system in which there is single H2 occupation of the small cage (labelled "1SC 1LC"), we find that no H2 migration occurs, and this is also the case for pure H2 hydrate with single small-cavity occupation and quadruple occupancy for large cages (dubbed "1SC 4LC"). However, for the more densely filled H2-THF and pure-H2 systems, in which there is double H2 occupation in the small cage (dubbed "2SC 1LC" and "2SC 4LC," respectively), there is an onset of inter-cage H2 migration events from the small cages to neighbouring cavities at around 200 K, with an approximate Arrhenius temperature-dependence for the migration rate from 200 to 250 K. It was found that these "cage hopping" events are facilitated by temporary openings of pentagonal small-cage faces with the relaxation and reformation of key stabilising hydrogen bonds during and following passage. The cages remain essentially intact up to 250 K, save for transient hydrogen bond weakening and reformation during and after inter-cage hydrogen diffusion events in the 200-250 K range. The "breathing modes," or underlying frequencies governing the variation in the cavities' radii, exhibit a certain overlap with THF rattling motion in the case of large cavities, while there is some overlap of small cages' radial breathing modes with lattice acoustic modes.

  20. Probing the regional distribution of pulmonary gas exchange through single-breath gas- and dissolved-phase 129Xe MR imaging.

    PubMed

    Kaushik, S Sivaram; Freeman, Matthew S; Cleveland, Zackary I; Davies, John; Stiles, Jane; Virgincar, Rohan S; Robertson, Scott H; He, Mu; Kelly, Kevin T; Foster, W Michael; McAdams, H Page; Driehuys, Bastiaan

    2013-09-01

    Although some central aspects of pulmonary function (ventilation and perfusion) are known to be heterogeneous, the distribution of diffusive gas exchange remains poorly characterized. A solution is offered by hyperpolarized 129Xe magnetic resonance (MR) imaging, because this gas can be separately detected in the lung's air spaces and dissolved in its tissues. Early dissolved-phase 129Xe images exhibited intensity gradients that favored the dependent lung. To quantitatively corroborate this finding, we developed an interleaved, three-dimensional radial sequence to image the gaseous and dissolved 129Xe distributions in the same breath. These images were normalized and divided to calculate "129Xe gas-transfer" maps. We hypothesized that, for healthy volunteers, 129Xe gas-transfer maps would retain the previously observed posture-dependent gradients. This was tested in nine subjects: when the subjects were supine, 129Xe gas transfer exhibited a posterior-anterior gradient of -2.00 ± 0.74%/cm; when the subjects were prone, the gradient reversed to 1.94 ± 1.14%/cm (P < 0.001). The 129Xe gas-transfer maps also exhibited significant heterogeneity, as measured by the coefficient of variation, that correlated with subject total lung capacity (r = 0.77, P = 0.015). Gas-transfer intensity varied nonmonotonically with slice position and increased in slices proximal to the main pulmonary arteries. Despite substantial heterogeneity, the mean gas transfer for all subjects was 1.00 ± 0.01 while supine and 1.01 ± 0.01 while prone (P = 0.25), indicating good "matching" between gas- and dissolved-phase distributions. This study demonstrates that single-breath gas- and dissolved-phase 129Xe MR imaging yields 129Xe gas-transfer maps that are sensitive to altered gas exchange caused by differences in lung inflation and posture.

  1. Use of the single-breath method of estimating cardiac output during exercise-stress testing.

    NASA Technical Reports Server (NTRS)

    Buderer, M. C.; Rummel, J. A.; Sawin, C. F.; Mauldin, D. G.

    1973-01-01

    The single-breath cardiac output measurement technique of Kim et al. (1966) has been modified for use in obtaining cardiac output measurements during exercise-stress tests on Apollo astronauts. The modifications involve the use of a respiratory mass spectrometer for data acquisition and a digital computer program for data analysis. The variation of the modified method for triplicate steady-state cardiac output measurements was plus or minus 1 liter/min. The combined physiological and methodological variation seen during a set of three exercise tests on a series of subjects was 1 to 2.5 liter/min. Comparison of the modified method with the direct Fick technique showed that although the single-breath values were consistently low, the scatter of data was small and the correlation between the two methods was high. Possible reasons for the low single-breath cardiac output values are discussed.

  2. Nonenhanced MR angiography of the pulmonary arteries using single-shot radial quiescent-interval slice-selective (QISS): a technical feasibility study.

    PubMed

    Edelman, Robert R; Silvers, Robert I; Thakrar, Kiran H; Metzl, Mark D; Nazari, Jose; Giri, Shivraman; Koktzoglou, Ioannis

    2017-06-30

    For evaluation of the pulmonary arteries in patients suspected of pulmonary embolism, CT angiography (CTA) is the first-line imaging test with contrast-enhanced MR angiography (CEMRA) a potential alternative. Disadvantages of CTA include exposure to ionizing radiation and an iodinated contrast agent, while CEMRA is sensitive to respiratory motion and requires a gadolinium-based contrast agent. The primary goal of our technical feasibility study was to evaluate pulmonary arterial conspicuity using breath-hold and free-breathing implementations of a recently-developed nonenhanced approach, single-shot radial quiescent-interval slice-selective (QISS) MRA. Breath-hold and free-breathing, navigator-gated versions of radial QISS MRA were evaluated at 1.5 Tesla in three healthy subjects and 11 patients without pulmonary embolism or arterial occlusion by CTA. Images were scored by three readers for conspicuity of the pulmonary arteries through the level of the segmental branches. In addition, one patient with pulmonary embolism was imaged. Scan time for a 54-slice acquisition spanning the pulmonary arteries was less than 2 minutes for breath-hold QISS, and less than 3.4 min using free-breathing QISS. Pulmonary artery branches through the segmental level were conspicuous with either approach. Free-breathing scans showed only mild blurring compared with breath-hold scans. For both readers, less than 1% of pulmonary arterial segments were rated as "not seen" for breath-hold and navigator-gated QISS, respectively. In subjects with atrial fibrillation, single-shot radial QISS consistently depicted the pulmonary artery branches, whereas navigator-gated 3D balanced steady-state free precession showed motion artifacts. In one patient with pulmonary embolism, radial QISS demonstrated central pulmonary emboli comparably to CEMRA and CTA. The thrombi were highly conspicuous on radial QISS images, but appeared subtle and were not prospectively identified on scout images acquired using a single-shot bSSFP acquisition. In this technical feasibility study, both breath-hold and free-breathing single-shot radial QISS MRA enabled rapid, consistent demonstration of the pulmonary arteries through the level of the segmental branches, with only minimal artifacts from respiratory motion and cardiac arrhythmias. Based on these promising initial results, further evaluation in patients with suspected pulmonary embolism appears warranted.

  3. A probability-based multi-cycle sorting method for 4D-MRI: A simulation study.

    PubMed

    Liang, Xiao; Yin, Fang-Fang; Liu, Yilin; Cai, Jing

    2016-12-01

    To develop a novel probability-based sorting method capable of generating multiple breathing cycles of 4D-MRI images and to evaluate performance of this new method by comparing with conventional phase-based methods in terms of image quality and tumor motion measurement. Based on previous findings that breathing motion probability density function (PDF) of a single breathing cycle is dramatically different from true stabilized PDF that resulted from many breathing cycles, it is expected that a probability-based sorting method capable of generating multiple breathing cycles of 4D images may capture breathing variation information missing from conventional single-cycle sorting methods. The overall idea is to identify a few main breathing cycles (and their corresponding weightings) that can best represent the main breathing patterns of the patient and then reconstruct a set of 4D images for each of the identified main breathing cycles. This method is implemented in three steps: (1) The breathing signal is decomposed into individual breathing cycles, characterized by amplitude, and period; (2) individual breathing cycles are grouped based on amplitude and period to determine the main breathing cycles. If a group contains more than 10% of all breathing cycles in a breathing signal, it is determined as a main breathing pattern group and is represented by the average of individual breathing cycles in the group; (3) for each main breathing cycle, a set of 4D images is reconstructed using a result-driven sorting method adapted from our previous study. The probability-based sorting method was first tested on 26 patients' breathing signals to evaluate its feasibility of improving target motion PDF. The new method was subsequently tested for a sequential image acquisition scheme on the 4D digital extended cardiac torso (XCAT) phantom. Performance of the probability-based and conventional sorting methods was evaluated in terms of target volume precision and accuracy as measured by the 4D images, and also the accuracy of average intensity projection (AIP) of 4D images. Probability-based sorting showed improved similarity of breathing motion PDF from 4D images to reference PDF compared to single cycle sorting, indicated by the significant increase in Dice similarity coefficient (DSC) (probability-based sorting, DSC = 0.89 ± 0.03, and single cycle sorting, DSC = 0.83 ± 0.05, p-value <0.001). Based on the simulation study on XCAT, the probability-based method outperforms the conventional phase-based methods in qualitative evaluation on motion artifacts and quantitative evaluation on tumor volume precision and accuracy and accuracy of AIP of the 4D images. In this paper the authors demonstrated the feasibility of a novel probability-based multicycle 4D image sorting method. The authors' preliminary results showed that the new method can improve the accuracy of tumor motion PDF and the AIP of 4D images, presenting potential advantages over the conventional phase-based sorting method for radiation therapy motion management.

  4. Performance of U-net based pyramidal lucas-kanade registration on free-breathing multi-b-value diffusion MRI of the kidney.

    PubMed

    Lv, Jun; Huang, Wenjian; Zhang, Jue; Wang, Xiaoying

    2018-06-01

    In free-breathing multi-b-value diffusion-weighted imaging (DWI), a series of images typically requires several minutes to collect. During respiration the kidney is routinely displaced and may also undergo deformation. These respiratory motion effects generate artifacts and these are the main sources of error in the quantification of intravoxel incoherent motion (IVIM) derived parameters. This work proposes a fully automated framework that combines a kidney segmentation to improve the registration accuracy. 10 healthy subjects were recruited to participate in this experiment. For the segmentation, U-net was adopted to acquire the kidney's contour. The segmented kidney then served as a region of interest (ROI) for the registration method, known as pyramidal Lucas-Kanade. Our proposed framework confines the kidney's solution range, thus increasing the pyramidal Lucas-Kanade's accuracy. To demonstrate the feasibility of our presented framework, eight regions of interest were selected in the cortex and medulla, and data stability was estimated by comparing the normalized root-mean-square error (NRMSE) values of the fitted data from the bi-exponential intravoxel incoherent motion model pre- and post- registration. The results show that the NRMSE was significantly lower after registration both in the cortex (p < 0.05) and medulla (p < 0.01) during free-breathing measurements. In addition, expert visual scoring of the derived apparent diffusion coefficient (ADC), f, D and D* maps indicated there were significant improvements in the alignment of the kidney in the post-registered image. The proposed framework can effectively reduce the motion artifacts of misaligned multi-b-value DWIs and the inaccuracies of the ADC, f, D and D* estimations. Advances in knowledge: This study demonstrates the feasibility of our proposed fully automated framework combining U-net based segmentation and pyramidal Lucas-Kanade registration method for improving the alignment of multi-b-value diffusion-weighted MRIs and reducing the inaccuracy of parameter estimation during free-breathing.

  5. Free-breathing diffusion tensor imaging and tractography of the human heart in healthy volunteers using wavelet-based image fusion.

    PubMed

    Wei, Hongjiang; Viallon, Magalie; Delattre, Benedicte M A; Moulin, Kevin; Yang, Feng; Croisille, Pierre; Zhu, Yuemin

    2015-01-01

    Free-breathing cardiac diffusion tensor imaging (DTI) is a promising but challenging technique for the study of fiber structures of the human heart in vivo. This work proposes a clinically compatible and robust technique to provide three-dimensional (3-D) fiber architecture properties of the human heart. To this end, 10 short-axis slices were acquired across the entire heart using a multiple shifted trigger delay (TD) strategy under free breathing conditions. Interscan motion was first corrected automatically using a nonrigid registration method. Then, two post-processing schemes were optimized and compared: an algorithm based on principal component analysis (PCA) filtering and temporal maximum intensity projection (TMIP), and an algorithm that uses the wavelet-based image fusion (WIF) method. The two methods were applied to the registered diffusion-weighted (DW) images to cope with intrascan motion-induced signal loss. The tensor fields were finally calculated, from which fractional anisotropy (FA), mean diffusivity (MD), and 3-D fiber tracts were derived and compared. The results show that the comparison of the FA values (FA(PCATMIP) = 0.45 ±0.10, FA(WIF) = 0.42 ±0.05, P=0.06) showed no significant difference, while the MD values ( MD(PCATMIP)=0.83 ±0.12×10(-3) mm (2)/s, MD(WIF)=0.74±0.05×10(-3) mm (2)/s, P=0.028) were significantly different. Improved helix angle variations through the myocardium wall reflecting the rotation characteristic of cardiac fibers were observed with WIF. This study demonstrates that the combination of multiple shifted TD acquisitions and dedicated post-processing makes it feasible to retrieve in vivo cardiac tractographies from free-breathing DTI acquisitions. The substantial improvements were observed using the WIF method instead of the previously published PCATMIP technique.

  6. Fermi acceleration in time-dependent billiards: theory of the velocity diffusion in conformally breathing fully chaotic billiards

    NASA Astrophysics Data System (ADS)

    Batistić, Benjamin; Robnik, Marko

    2011-09-01

    We study aspects of the Fermi acceleration (the unbounded growth of the energy) in a certain class of time-dependent 2D billiards. Specifically, we look at the conformally breathing billiards (periodic oscillation of the boundary which preserves the shape of the billiard at all times), which are fully chaotic as static (frozen) billiards, and we show that for large velocities around v0 and for not too long times, we observe just normal diffusion of the velocity as a function of the physical (continuous) time, around v0. However, the diffusion is not homogeneous, as the diffusion constant D depends on v0 as a power law D∝1/v30. Taking this into account, we show that to the leading order the average velocity v(n) as a function of the number of collisions n obeys a power law v∝n1/6 thus, the Fermi acceleration exponent is β = 1/6, which is in excellent agreement with the numerical calculations of the fully chaotic oval billiard, the Sinai billiard and the cardioid billiard. The error of the velocity estimates is of the order 1/v2. Thus, the higher the velocity, the better our analytic approximation. Moreover, we derive the underlying universal equation of the velocity dynamics of the time-dependent conformally breathing billiards, correct up to and including the order 1/v in the regime of the large velocity of the particle v. This universal equation does not depend on the dynamical properties of the system (integrability, ergodicity, chaoticity). We present the results of the numerical simulations for three billiards in complete agreement with the theory. We believe that this is a first step towards theoretical understanding of the power law growth and the Fermi acceleration exponents in 2D billiards, although our theory is so far specialized to the conformally breathing fully chaotic billiards.

  7. Simultaneous multislice diffusion-weighted MRI of the liver: Analysis of different breathing schemes in comparison to standard sequences.

    PubMed

    Taron, Jana; Martirosian, Petros; Erb, Michael; Kuestner, Thomas; Schwenzer, Nina F; Schmidt, Holger; Honndorf, Valerie S; Weiβ, Jakob; Notohamiprodjo, Mike; Nikolaou, Konstantin; Schraml, Christina

    2016-10-01

    To systematically evaluate image characteristics of simultaneous-multislice (SMS)-accelerated diffusion-weighted imaging (DWI) of the liver using different breathing schemes in comparison to standard sequences. DWI of the liver was performed in 10 healthy volunteers and 12 patients at 1.5T using an SMS-accelerated echo planar imaging sequence performed with respiratory-triggering and free breathing (SMS-RT, SMS-FB). Standard DWI sequences served as reference (STD-RT, STD-FB). Reduction of scan time by SMS-acceleration was measured. Image characteristics of SMS-DWI and STD-DWI with both breathing schemes were analyzed quantitatively (apparent diffusion coefficient [ADC], signal-to-noise ratio [SNR]) and qualitatively (5-point Likert scale, 5 = excellent). Qualitative and quantitative parameters were compared using Friedman test and Dunn-Bonferroni post-hoc method with P-values < 0.05 considered statistically significant. SMS-DWI provided diagnostic image quality in volunteers and patients both with RT and FB with a reduction of scan time of 70% (0:56 vs. 3:20 min in FB). Overall image quality did not significantly differ between FB and RT acquisition in both STD and SMS sequences (median STD-RT 5.0, STD-FB 4.5, SMS-RT: 4.75; SMS-FB: 4.5; P = 0.294). SNR in the right hepatic lobe was comparable between the four tested sequences. ADC values were significantly lower in SMS-DWI compared to STD-DWI irrespective of the breathing scheme (1.2 ± 0.2 × 10(-3) mm(2) /s vs. 1.0 ± 0.2 × 10(-3) mm(2) /s; P < 0.001). SMS-acceleration provides considerable scan time reduction for hepatic DWI with equivalent image quality compared to the STD technique both using RT and FB. Discrepancies in ADC between STD-DWI and SMS-DWI need to be considered when transferring the SMS technique to clinical routine reading. J. MAGN. RESON. IMAGING 2016;44:865-879. © 2016 International Society for Magnetic Resonance in Medicine.

  8. Selective mode excitation in finite size plasma crystals by diffusely reflected laser light

    NASA Astrophysics Data System (ADS)

    Schablinski, Jan; Block, Dietmar

    2015-02-01

    The possibility to use diffuse reflections of a laser beam to exert a force on levitating dust particles is studied experimentally. Measurements and theoretical predictions are found to be in good agreement. Further, the method is applied to test the selective excitation of breathing-like modes in finite dust clusters.

  9. Clinical photoacoustic computed tomography of the human breast in vivo within a single breath hold

    NASA Astrophysics Data System (ADS)

    Lin, Li; Hu, Peng; Shi, Junhui; Appleton, Catherine M.; Maslov, Konstantin; Wang, Lihong V.

    2018-03-01

    We have developed a single-breath-hold photoacoustic computed tomography (SBH-PACT) system to detect tumors and reveal detailed angiographic information about human breasts. SBH-PACT provides high spatial and temporal resolutions with a deep in vivo penetration depth of over 4 cm. A volumetric breast image can be acquired by scanning the breast within a single breath hold ( 15 sec). We imaged a healthy female volunteer and seven breast cancer patients. SBH-PACT clearly identified all tumors by revealing higher blood vessel densities and lower compliance associated with the tumors

  10. Diffusion-weighted MR imaging of the liver at 3.0 Tesla using TRacking Only Navigator echo (TRON): a feasibility study.

    PubMed

    Ivancevic, Marko K; Kwee, Thomas C; Takahara, Taro; Ogino, Tetsuo; Hussain, Hero K; Liu, Peter S; Chenevert, Thomas L

    2009-11-01

    To assess the feasibility of TRacking Only Navigator echo (TRON) for diffusion-weighted magnetic resonance imaging (DWI) of the liver at 3.0T. Ten volunteers underwent TRON, respiratory triggered, and free breathing DWI of the liver at 3.0 Tesla (T). Scan times were measured. Image sharpness, degree of stair-step and stripe artifacts for the three methods were assessed by two observers. Mean scan times of TRON and respiratory triggered DWI relative to free breathing DWI were 34% and 145% longer respectively. In four of eight comparisons (two observers, two b-values, two slice orientations), TRON DWI image sharpness was significantly better than free breathing DWI, but inferior to respiratory triggered DWI. In two of four comparisons (two observers, two b-values), degree of stair-step artifacts in TRON DWI was significantly lower than in respiratory triggered DWI. Degree of stripe artifacts between the three methods was not significantly different. DWI of the liver at 3.0T using TRON is feasible. Image sharpness in TRON DWI is superior to that in free breathing DWI. Although image sharpness of respiratory triggered DWI is still better, TRON DWI requires less scan time and reduces stair-step artifacts.

  11. Short-Term Intra-Subject Variation in Exhaled Volatile Organic Compounds (VOCs) in COPD Patients and Healthy Controls and Its Effect on Disease Classification

    PubMed Central

    Phillips, Christopher; Mac Parthaláin, Neil; Syed, Yasir; Deganello, Davide; Claypole, Timothy; Lewis, Keir

    2014-01-01

    Exhaled volatile organic compounds (VOCs) are of interest for their potential to diagnose disease non-invasively. However, most breath VOC studies have analyzed single breath samples from an individual and assumed them to be wholly consistent representative of the person. This provided the motivation for an investigation of the variability of breath profiles when three breath samples are taken over a short time period (two minute intervals between samples) for 118 stable patients with Chronic Obstructive Pulmonary Disease (COPD) and 63 healthy controls and analyzed by gas chromatography and mass spectroscopy (GC/MS). The extent of the variation in VOC levels differed between COPD and healthy subjects and the patterns of variation differed for isoprene versus the bulk of other VOCs. In addition, machine learning approaches were applied to the breath data to establish whether these samples differed in their ability to discriminate COPD from healthy states and whether aggregation of multiple samples, into single data sets, could offer improved discrimination. The three breath samples gave similar classification accuracy to one another when evaluated separately (66.5% to 68.3% subjects classified correctly depending on the breath repetition used). Combining multiple breath samples into single data sets gave better discrimination (73.4% subjects classified correctly). Although accuracy is not sufficient for COPD diagnosis in a clinical setting, enhanced sampling and analysis may improve accuracy further. Variability in samples, and short-term effects of practice or exertion, need to be considered in any breath testing program to improve reliability and optimize discrimination. PMID:24957028

  12. Short-Term Intra-Subject Variation in Exhaled Volatile Organic Compounds (VOCs) in COPD Patients and Healthy Controls and Its Effect on Disease Classification.

    PubMed

    Phillips, Christopher; Mac Parthaláin, Neil; Syed, Yasir; Deganello, Davide; Claypole, Timothy; Lewis, Keir

    2014-05-09

    Exhaled volatile organic compounds (VOCs) are of interest for their potential to diagnose disease non-invasively. However, most breath VOC studies have analyzed single breath samples from an individual and assumed them to be wholly consistent representative of the person. This provided the motivation for an investigation of the variability of breath profiles when three breath samples are taken over a short time period (two minute intervals between samples) for 118 stable patients with Chronic Obstructive Pulmonary Disease (COPD) and 63 healthy controls and analyzed by gas chromatography and mass spectroscopy (GC/MS). The extent of the variation in VOC levels differed between COPD and healthy subjects and the patterns of variation differed for isoprene versus the bulk of other VOCs. In addition, machine learning approaches were applied to the breath data to establish whether these samples differed in their ability to discriminate COPD from healthy states and whether aggregation of multiple samples, into single data sets, could offer improved discrimination. The three breath samples gave similar classification accuracy to one another when evaluated separately (66.5% to 68.3% subjects classified correctly depending on the breath repetition used). Combining multiple breath samples into single data sets gave better discrimination (73.4% subjects classified correctly). Although accuracy is not sufficient for COPD diagnosis in a clinical setting, enhanced sampling and analysis may improve accuracy further. Variability in samples, and short-term effects of practice or exertion, need to be considered in any breath testing program to improve reliability and optimize discrimination.

  13. From breathing to respiration.

    PubMed

    Fitting, Jean-William

    2015-01-01

    The purpose of breathing remained an enigma for a long time. The Hippocratic school described breathing patterns but did not associate breathing with the lungs. Empedocles and Plato postulated that breathing was linked to the passage of air through pores of the skin. This was refuted by Aristotle who believed that the role of breathing was to cool the heart. In Alexandria, breakthroughs were accomplished in the anatomy and physiology of the respiratory system. Later, Galen proposed an accurate description of the respiratory muscles and the mechanics of breathing. However, his heart-lung model was hampered by the traditional view of two non-communicating vascular systems - veins and arteries. After a period of stagnation in the Middle Ages, knowledge progressed with the discovery of pulmonary circulation. The comprehension of the purpose of breathing progressed by steps thanks to Boyle and Mayow among others, and culminated with the contribution of Priestley and the discovery of oxygen by Lavoisier. Only then was breathing recognized as fulfilling the purpose of respiration, or gas exchange. A century later, a controversy emerged concerning the active or passive transfer of oxygen from alveoli to the blood. August and Marie Krogh settled the dispute, showing that passive diffusion was sufficient to meet the oxygen needs. © 2014 S. Karger AG, Basel.

  14. A probability-based multi-cycle sorting method for 4D-MRI: A simulation study

    PubMed Central

    Liang, Xiao; Yin, Fang-Fang; Liu, Yilin; Cai, Jing

    2016-01-01

    Purpose: To develop a novel probability-based sorting method capable of generating multiple breathing cycles of 4D-MRI images and to evaluate performance of this new method by comparing with conventional phase-based methods in terms of image quality and tumor motion measurement. Methods: Based on previous findings that breathing motion probability density function (PDF) of a single breathing cycle is dramatically different from true stabilized PDF that resulted from many breathing cycles, it is expected that a probability-based sorting method capable of generating multiple breathing cycles of 4D images may capture breathing variation information missing from conventional single-cycle sorting methods. The overall idea is to identify a few main breathing cycles (and their corresponding weightings) that can best represent the main breathing patterns of the patient and then reconstruct a set of 4D images for each of the identified main breathing cycles. This method is implemented in three steps: (1) The breathing signal is decomposed into individual breathing cycles, characterized by amplitude, and period; (2) individual breathing cycles are grouped based on amplitude and period to determine the main breathing cycles. If a group contains more than 10% of all breathing cycles in a breathing signal, it is determined as a main breathing pattern group and is represented by the average of individual breathing cycles in the group; (3) for each main breathing cycle, a set of 4D images is reconstructed using a result-driven sorting method adapted from our previous study. The probability-based sorting method was first tested on 26 patients’ breathing signals to evaluate its feasibility of improving target motion PDF. The new method was subsequently tested for a sequential image acquisition scheme on the 4D digital extended cardiac torso (XCAT) phantom. Performance of the probability-based and conventional sorting methods was evaluated in terms of target volume precision and accuracy as measured by the 4D images, and also the accuracy of average intensity projection (AIP) of 4D images. Results: Probability-based sorting showed improved similarity of breathing motion PDF from 4D images to reference PDF compared to single cycle sorting, indicated by the significant increase in Dice similarity coefficient (DSC) (probability-based sorting, DSC = 0.89 ± 0.03, and single cycle sorting, DSC = 0.83 ± 0.05, p-value <0.001). Based on the simulation study on XCAT, the probability-based method outperforms the conventional phase-based methods in qualitative evaluation on motion artifacts and quantitative evaluation on tumor volume precision and accuracy and accuracy of AIP of the 4D images. Conclusions: In this paper the authors demonstrated the feasibility of a novel probability-based multicycle 4D image sorting method. The authors’ preliminary results showed that the new method can improve the accuracy of tumor motion PDF and the AIP of 4D images, presenting potential advantages over the conventional phase-based sorting method for radiation therapy motion management. PMID:27908178

  15. DNA damage may drive nucleosomal reorganization to facilitate damage detection

    NASA Astrophysics Data System (ADS)

    LeGresley, Sarah E.; Wilt, Jamie; Antonik, Matthew

    2014-03-01

    One issue in genome maintenance is how DNA repair proteins find lesions at rates that seem to exceed diffusion-limited search rates. We propose a phenomenon where DNA damage induces nucleosomal rearrangements which move lesions to potential rendezvous points in the chromatin structure. These rendezvous points are the dyad and the linker DNA between histones, positions in the chromatin which are more likely to be accessible by repair proteins engaged in a random search. The feasibility of this mechanism is tested by considering the statistical mechanics of DNA containing a single lesion wrapped onto the nucleosome. We consider lesions which make the DNA either more flexible or more rigid by modeling the lesion as either a decrease or an increase in the bending energy. We include this energy in a partition function model of nucleosome breathing. Our results indicate that the steady state for a breathing nucleosome will most likely position the lesion at the dyad or in the linker, depending on the energy of the lesion. A role for DNA binding proteins and chromatin remodelers is suggested based on their ability to alter the mechanical properties of the DNA and DNA-histone binding, respectively. We speculate that these positions around the nucleosome potentially serve as rendezvous points where DNA lesions may be encountered by repair proteins which may be sterically hindered from searching the rest of the nucleosomal DNA. The strength of the repositioning is strongly dependent on the structural details of the DNA lesion and the wrapping and breathing of the nucleosome. A more sophisticated evaluation of this proposed mechanism will require detailed information about breathing dynamics, the structure of partially wrapped nucleosomes, and the structural properties of damaged DNA.

  16. Probing the impact of axial diffusion on nitric oxide exchange dynamics with heliox.

    PubMed

    Shin, Hye-Won; Condorelli, Peter; Rose-Gottron, Christine M; Cooper, Dan M; George, Steven C

    2004-09-01

    Exhaled nitric oxide (NO) is a potential noninvasive index of lung inflammation and is thought to arise from the alveolar and airway regions of the lungs. A two-compartment model has been used to describe NO exchange; however, the model neglects axial diffusion of NO in the gas phase, and recent theoretical studies suggest that this may introduce significant error. We used heliox (80% helium, 20% oxygen) as the insufflating gas to probe the impact of axial diffusion (molecular diffusivity of NO is increased 2.3-fold relative to air) in healthy adults (21-38 yr old, n = 9). Heliox decreased the plateau concentration of exhaled NO by 45% (exhalation flow rate of 50 ml/s). In addition, the total mass of NO exhaled in phase I and II after a 20-s breath hold was reduced by 36%. A single-path trumpet model that considers axial diffusion predicts a 50% increase in the maximum airway flux of NO and a near-zero alveolar concentration (Ca(NO)) and source. Furthermore, when NO elimination is plotted vs. constant exhalation flow rate (range 50-500 ml/s), the slope has been previously interpreted as a nonzero Ca(NO) (range 1-5 ppb); however, the trumpet model predicts a positive slope of 0.4-2.1 ppb despite a zero Ca(NO) because of a diminishing impact of axial diffusion as flow rate increases. We conclude that axial diffusion leads to a significant backdiffusion of NO from the airways to the alveolar region that significantly impacts the partitioning of airway and alveolar contributions to exhaled NO.

  17. The impact of dual-source parallel radiofrequency transmission with patient-adaptive shimming on the cardiac magnetic resonance in children at 3.0 T.

    PubMed

    Wang, Haipeng; Qiu, Liyun; Wang, Guangbin; Gao, Fei; Jia, Haipeng; Zhao, Junyu; Chen, Weibo; Wang, Cuiyan; Zhao, Bin

    2017-06-01

    The cardiac magnetic resonance (CMR) of children at 3.0 T presents a unique set of technical challenges because of their small cardiac anatomical structures, fast heart rates, and the limited ability to keep motionless and hold breathe, which could cause problems associated with field inhomogeneity and degrade the image quality. The aim of our study was to evaluate the effect of dual-source parallel radiofrequency (RF) transmission on the B1 homogeneity and image quality in children with CMR at 3.0 T. The study was approved by the institutional ethics committee and written informed consent was obtained. A total of 30 free-breathing children and 30 breath-hold children performed CMR examinations with dual-source and single-source RF transmission. The B1 homogeneity, contrast ratio (CR) of cine images, and off-resonance artifacts in cine images between dual-source and single-source RF transmission were assessed in free-breathing and breath-hold groups, respectively. In both free-breathing and breath-hold groups, higher mean percentage of flip angle (free-breathing group: 104.2 ± 4.6 vs 95.5 ± 6.3, P < .001; breath-hold group: 101.5 ± 5.1 vs 92.5 ± 6.3, P < .001) and lower coefficient of variation (free-breathing group: 0.06 ± 0.02 vs 0.09 ± 0.03, P < .001; breath-hold group: 0.07 ± 0.03 vs 0.10 ± 0.04, P = .005) were found with dual-source than with single-source RF transmission. Both the CRs in the horizontal long axis (HLA) and short axis of cine images with dual-source RF transmission was improved (P < .05 for all). The scores of off-resonance artifacts in the HLA with dual-source RF transmission were higher in both free-breathing and breath-hold groups (P < .05 for all), with substantial interreader agreement (kappa values from 0.68 to 0.74). Compared with conventional single-source, dual-source parallel RF transmission could significantly improve the B1 homogeneity and image quality for CMR in children at 3.0 T. This technology could be taken into account in CMR for children with cardiac diseases.

  18. Multibreath alveolar oxygen tension imaging.

    PubMed

    Clapp, Justin; Hamedani, Hooman; Kadlecek, Stephen; Xin, Yi; Shaghaghi, Hoora; Siddiqui, Sarmad; Rossman, Milton D; Rizi, Rahim R

    2016-10-01

    This study tested the ability of a multibreath hyperpolarized HP (3) He MRI protocol to increase the accuracy of regional alveolar oxygen tension (PA O2 ) measurements by lessening the influence of gas-flow artifacts. Conventional single-breath PA O2 measurement has been susceptible to error induced by intervoxel gas flow, particularly when used to study subjects with moderate-to-severe chronic obstructive pulmonary disease (COPD). Both single-breath and multibreath PA O2 imaging schemes were implemented in seven human subjects (one healthy, three asymptomatic smokers, and three COPD). The number and location of voxels with nonphysiologic PA O2 values generated by intervoxel gas flow were compared between the two protocols. The multibreath scheme resulted in a significantly lower total percentage of nonphysiologic PA O2 values (6.0%) than the single-breath scheme (13.7%) (P = 0.006). PA O2 maps showed several patterns of gas-flow artifacts that were present in the single-breath protocol but mitigated by the multibreath approach. Multibreath imaging also allowed for the analysis of slow-filling areas that presented no signal after a single breath. A multibreath approach enhances the accuracy and completeness of noninvasive PA O2 measurement by significantly lessening the proportion of nonphysiologic values generated by intervoxel gas flow. Magn Reson Med 76:1092-1101, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  19. Free-breathing diffusion-weighted single-shot echo-planar MR imaging using parallel imaging (GRAPPA 2) and high b value for the detection of primary rectal adenocarcinoma.

    PubMed

    Soyer, Philippe; Lagadec, Matthieu; Sirol, Marc; Dray, Xavier; Duchat, Florent; Vignaud, Alexandre; Fargeaudou, Yann; Placé, Vinciane; Gault, Valérie; Hamzi, Lounis; Pocard, Marc; Boudiaf, Mourad

    2010-02-11

    Our objective was to determine the diagnostic accuracy of a free-breathing diffusion-weighted single-shot echo-planar magnetic resonance imaging (FBDW-SSEPI) technique with parallel imaging and high diffusion factor value (b = 1000 s/mm2) in the detection of primary rectal adenocarcinomas. Thirty-one patients (14M and 17F; mean age 67 years) with histopathologically proven primary rectal adenocarcinomas and 31 patients without rectal malignancies (14M and 17F; mean age 63.6 years) were examined with FBDW-SSEPI (repetition time (TR/echo time (TE) 3900/91 ms, gradient strength 45 mT/m, acquisition time 2 min) at 1.5 T using generalized autocalibrating partially parallel acquisitions (GRAPPA, acceleration factor 2) and a b value of 1000 s/mm2. Apparent diffusion coefficients (ADCs) of rectal adenocarcinomas and normal rectal wall were measured. FBDW-SSEPI images were evaluated for tumour detection by 2 readers. Sensitivity, specificity, accuracy and Youden score for rectal adenocarcinoma detection were calculated with their 95% confidence intervals (CI) for ADC value measurement and visual image analysis. Rectal adenocarcinomas had significantly lower ADCs (mean 1.036 x 10(-3)+/- 0.107 x 10(-3) mm2/s; median 1.015 x 10(-3) mm2/s; range (0.827-1.239) x 10(-3) mm2/s) compared with the rectal wall of control subjects (mean 1.387 x 10(-3)+/- 0.106 x 10(-3) mm2/s; median 1.385 x 10(-3) mm2/s; range (1.176-1.612) x 10(-3) mm2/s) (p < 0.0001). Using a threshold value < or = 1.240 x 10(-3) mm2/s, all rectal adenocarcinomas were correctly categorized and 100% sensitivity (31/31; 95% CI 95-100%), 94% specificity (31/33; 95% CI 88-100%), 97% accuracy (60/62; 95% CI 92-100%) and Youden index 0.94 were obtained for the diagnosis of rectal adenocarcinoma. FBDW-SSEPI image analysis allowed depiction of all rectal adenocarcinomas but resulted in 2 false-positive findings, yielding 100% sensitivity (31/31; 95% CI 95-100%), 94% specificity (31/33; 95% CI 88-100%), 97% accuracy (60/62; 95% CI 92-100%) and Youden index 0.94 for the diagnosis of primary rectal adenocarcinoma. We can conclude that FBDW-SSEPI using parallel imaging and high b value may be helpful in the detection of primary rectal adenocarcinomas.

  20. Piezoresistive Membrane Surface Stress Sensors for Characterization of Breath Samples of Head and Neck Cancer Patients

    PubMed Central

    Lang, Hans Peter; Loizeau, Frédéric; Hiou-Feige, Agnès; Rivals, Jean-Paul; Romero, Pedro; Akiyama, Terunobu; Gerber, Christoph; Meyer, Ernst

    2016-01-01

    For many diseases, where a particular organ is affected, chemical by-products can be found in the patient’s exhaled breath. Breath analysis is often done using gas chromatography and mass spectrometry, but interpretation of results is difficult and time-consuming. We performed characterization of patients’ exhaled breath samples by an electronic nose technique based on an array of nanomechanical membrane sensors. Each membrane is coated with a different thin polymer layer. By pumping the exhaled breath into a measurement chamber, volatile organic compounds present in patients’ breath diffuse into the polymer layers and deform the membranes by changes in surface stress. The bending of the membranes is measured piezoresistively and the signals are converted into voltages. The sensor deflection pattern allows one to characterize the condition of the patient. In a clinical pilot study, we investigated breath samples from head and neck cancer patients and healthy control persons. Evaluation using principal component analysis (PCA) allowed a clear distinction between the two groups. As head and neck cancer can be completely removed by surgery, the breath of cured patients was investigated after surgery again and the results were similar to those of the healthy control group, indicating that surgery was successful. PMID:27455276

  1. Monitoring of hemodynamic changes induced in the healthy breast through inspired gas stimuli with MR-guided diffuse optical imaging

    PubMed Central

    Carpenter, C. M.; Rakow-Penner, R.; Jiang, S.; Pogue, B. W.; Glover, G. H.; Paulsen, K. D.

    2010-01-01

    Purpose: The modulation of tissue hemodynamics has important clinical value in medicine for both tumor diagnosis and therapy. As an oncological tool, increasing tissue oxygenation via modulation of inspired gas has been proposed as a method to improve cancer therapy and determine radiation sensitivity. As a radiological tool, inducing changes in tissue total hemoglobin may provide a means to detect and characterize malignant tumors by providing information about tissue vascular function. The ability to change and measure tissue hemoglobin and oxygenation concentrations in the healthy breast during administration of three different types of modulated gas stimuli (oxygen∕carbogen, air∕carbogen, and air∕oxygen) was investigated. Methods: Subjects breathed combinations of gases which were modulated in time. MR-guided diffuse optical tomography measured total hemoglobin and oxygen saturation in the breast every 30 s during the 16 min breathing stimulus. Metrics of maximum correlation and phase lag were calculated by cross correlating the measured hemodynamics with the stimulus. These results were compared to an air∕air control to determine the hemodynamic changes compared to the baseline physiology. Results: This study demonstrated that a gas stimulus consisting of alternating oxygen∕carbogen induced the largest and most robust hemodynamic response in healthy breast parenchyma relative to the changes that occurred during the breathing of room air. This stimulus caused increases in total hemoglobin and oxygen saturation during the carbogen phase of gas inhalation, and decreases during the oxygen phase. These findings are consistent with the theory that oxygen acts as a vasoconstrictor, while carbogen acts as a vasodilator. However, difficulties in inducing a consistent change in tissue hemoglobin and oxygenation were observed because of variability in intersubject physiology, especially during the air∕oxygen or air∕carbogen modulated breathing protocols. Conclusions: MR-guided diffuse optical imaging is a unique tool that can measure tissue hemodynamics in the breast during modulated breathing. This technique may have utility in determining the therapeutic potential of pretreatment tissue oxygenation or in investigating vascular function. Future gas modulation studies in the breast should use a combination of oxygen and carbogen as the functional stimulus. Additionally, control measures of subject physiology during air breathing are critical for robust measurements. PMID:20443485

  2. Single-Breath-Hold Whole-heart Unenhanced Coronary MRA Using Multi-shot Gradient Echo EPI at 3T: Comparison with Free-breathing Turbo-field-echo Coronary MRA on Healthy Volunteers.

    PubMed

    Iyama, Yuji; Nakaura, Takeshi; Nagayama, Yasunori; Oda, Seitaro; Utsunomiya, Daisuke; Kidoh, Masafumi; Yuki, Hideaki; Hirata, Kenichiro; Namimoto, Tomohiro; Kitajima, Mika; Morita, Kosuke; Funama, Yoshinori; Takemura, Atsushi; Okuaki, Tomoyuki; Yamashita, Yasuyuki

    2018-04-10

    We investigated the feasibility of single breath hold unenhanced coronary MRA using multi-shot gradient echo planar imaging (MSG-EPI) on a 3T-scanner. Fourteen volunteers underwent single breath hold coronary MRA with a MSG-EPI and free-breathing turbo field echo (TFE) coronary MRA at 3T. The acquisition time, signal to noise ratio (SNR), and the contrast of the sequences were compared with the paired t-test. Readers evaluated the image contrast, noise, sharpness, artifacts, and the overall image quality. The acquisition time was 88.1% shorter for MSG-EPI than TFE (24.7 ± 2.5 vs 206.4 ± 23.1 sec, P < 0.01). The SNR was significantly higher on MSG-EPI than TFE scans (P < 0.01). There was no significant difference in the contrast on MSG-EPI and TFE scans (1.8 ± 0.3 vs 1.9 ± 0.3, P = 0.24). There was no significant difference in image contrast, image sharpness, and overall image quality between two scan techniques. The score of image noise and artifact were significantly higher on MSG-EPI than TFE scans (P < 0.05). The single breath hold MSG-EPI sequence is a promising technique for shortening the scan time and for preserving the image quality of unenhanced whole heart coronary MRA on a 3T scanner.

  3. Propagation failures, breathing pulses, and backfiring in an excitable reaction-diffusion system.

    PubMed

    Manz, Niklas; Steinbock, Oliver

    2006-09-01

    We report results from experiments with a pseudo-one-dimensional Belousov-Zhabotinsky reaction that employs 1,4-cyclohexanedione as its organic substrate. This excitable system shows traveling oxidation pulses and pulse trains that can undergo complex sequences of propagation failures. Moreover, we present examples for (i) breathing pulses that undergo periodic changes in speed and size and (ii) backfiring pulses that near their back repeatedly generate new pulses propagating in opposite direction.

  4. Science Notes.

    ERIC Educational Resources Information Center

    Thurman, Shirley; And Others

    1988-01-01

    Describes 36 science activities. Topics include: osmosis, fermentation, anhydrobiotic organisms, breathing monitors, trypsin, weeds, amyloplasts, electrolysis, polarimeters, ethene ripening of fruit, colorimetry, diffusion, redox reactions, equilibria, acid-base relationships, electricity, power, resonance, measurement, parallax, amplifiers,…

  5. COLLECTION OF A SINGLE ALVEOLAR EXHALED BREATH FOR VOLATILE ORGANIC COMPOUNDS ANALYSIS

    EPA Science Inventory

    Measurement of specific organic compounds in exhaled breath has been used as an indicator of recent exposure to pollutants or as an indicator of the health of an individual. Typical application involves the collection of multiple breaths onto a sorbent cartridge or into an evacua...

  6. A REVIEW OF THE US EPA'S SINGLE BREATH CANISTER (SBC) METHOD FOR EXHALED VOLATILE ORGANIC BIOMARKERS

    EPA Science Inventory

    Exhaled alveolar breath can provide a great deal of information about an individual?s health and previous exposure to potentially harmful xenobiotic materials. Because breath can be obtained noninvasively and its constituents directly reflect concentrations in the blood, its us...

  7. Effects of Diaphragmatic Breathing Patterns on Balance: A Preliminary Clinical Trial.

    PubMed

    Stephens, Rylee J; Haas, Mitchell; Moore, William L; Emmil, Jordan R; Sipress, Jayson A; Williams, Alex

    The purpose of this study was to determine the feasibility of performing a larger study to determine if training in diaphragmatic breathing influences static and dynamic balance. A group of 13 healthy persons (8 men, 5 women), who were staff, faculty, or students at the University of Western States participated in an 8-week breathing and balance study using an uncontrolled clinical trial design. Participants were given a series of breathing exercises to perform weekly in the clinic and at home. Balance and breathing were assessed at the weekly clinic sessions. Breathing was evaluated with Liebenson's breathing assessment, static balance with the Modified Balance Error Scoring System, and dynamic balance with OptoGait's March in Place protocol. Improvement was noted in mean diaphragmatic breathing scores (1.3 to 2.6, P < .001), number of single-leg stance balance errors (7.1 to 3.8, P = .001), and tandem stance balance errors (3.2 to 0.9, P = .039). A decreasing error rate in single-leg stance was associated with improvement in breathing score within participants over the 8 weeks of the study (-1.4 errors/unit breathing score change, P < .001). Tandem stance performance did not reach statistical significance (-0.5 error/unit change, P = .118). Dynamic balance was insensitive to balance change, being error free for all participants throughout the study. This proof-of-concept study indicated that promotion of a costal-diaphragmatic breathing pattern may be associated with improvement in balance and suggests that a study of this phenomenon using an experimental design is feasible. Copyright © 2017. Published by Elsevier Inc.

  8. Diffusion-weighted imaging of the liver with multiple b values: effect of diffusion gradient polarity and breathing acquisition on image quality and intravoxel incoherent motion parameters--a pilot study.

    PubMed

    Dyvorne, Hadrien A; Galea, Nicola; Nevers, Thomas; Fiel, M Isabel; Carpenter, David; Wong, Edmund; Orton, Matthew; de Oliveira, Andre; Feiweier, Thorsten; Vachon, Marie-Louise; Babb, James S; Taouli, Bachir

    2013-03-01

    To optimize intravoxel incoherent motion (IVIM) diffusion-weighted (DW) imaging by estimating the effects of diffusion gradient polarity and breathing acquisition scheme on image quality, signal-to-noise ratio (SNR), IVIM parameters, and parameter reproducibility, as well as to investigate the potential of IVIM in the detection of hepatic fibrosis. In this institutional review board-approved prospective study, 20 subjects (seven healthy volunteers, 13 patients with hepatitis C virus infection; 14 men, six women; mean age, 46 years) underwent IVIM DW imaging with four sequences: (a) respiratory-triggered (RT) bipolar (BP) sequence, (b) RT monopolar (MP) sequence, (c) free-breathing (FB) BP sequence, and (d) FB MP sequence. Image quality scores were assessed for all sequences. A biexponential analysis with the Bayesian method yielded true diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction (PF) in liver parenchyma. Mixed-model analysis of variance was used to compare image quality, SNR, IVIM parameters, and interexamination variability between the four sequences, as well as the ability to differentiate areas of liver fibrosis from normal liver tissue. Image quality with RT sequences was superior to that with FB acquisitions (P = .02) and was not affected by gradient polarity. SNR did not vary significantly between sequences. IVIM parameter reproducibility was moderate to excellent for PF and D, while it was less reproducible for D*. PF and D were both significantly lower in patients with hepatitis C virus than in healthy volunteers with the RT BP sequence (PF = 13.5% ± 5.3 [standard deviation] vs 9.2% ± 2.5, P = .038; D = [1.16 ± 0.07] × 10(-3) mm(2)/sec vs [1.03 ± 0.1] × 10(-3) mm(2)/sec, P = .006). The RT BP DW imaging sequence had the best results in terms of image quality, reproducibility, and ability to discriminate between healthy and fibrotic liver with biexponential fitting.

  9. [Measurement of CO diffusion capacity (II): Standardization and quality criteria].

    PubMed

    Salcedo Posadas, A; Villa Asensi, J R; de Mir Messa, I; Sardón Prado, O; Larramona, H

    2015-08-01

    The diffusion capacity is the technique that measures the ability of the respiratory system for gas exchange, thus allowing a diagnosis of the malfunction of the alveolar-capillary unit. The most important parameter to assess is the CO diffusion capacity (DLCO). New methods are currently being used to measure the diffusion using nitric oxide (NO). There are other methods for measuring diffusion, although in this article the single breath technique is mainly referred to, as it is the most widely used and best standardized. Its complexity, its reference equations, differences in equipment, inter-patient variability and conditions in which the DLCO is performed, lead to a wide inter-laboratory variability, although its standardization makes this a more reliable and reproductive method. The practical aspects of the technique are analyzed, by specifying the recommendations to carry out a suitable procedure, the calibration routine, calculations and adjustments. Clinical applications are also discussed. An increase in the transfer of CO occurs in diseases in which there is an increased volume of blood in the pulmonary capillaries, such as in the polycythemia and pulmonary hemorrhage. There is a decrease in DLCO in patients with alveolar volume reduction or diffusion defects, either by altered alveolar-capillary membrane (interstitial diseases) or decreased volume of blood in the pulmonary capillaries (pulmonary embolism or primary pulmonary hypertension). Other causes of decreased or increased DLCO are also highlighted. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier España, S.L.U. All rights reserved.

  10. Dynamic measurements of CO diffusing capacity using discrete samples of alveolar gas.

    PubMed

    Graham, B L; Mink, J T; Cotton, D J

    1983-01-01

    It has been shown that measurements of the diffusing capacity of the lung for CO made during a slow exhalation [DLCO(exhaled)] yield information about the distribution of the diffusing capacity in the lung that is not available from the commonly measured single-breath diffusing capacity [DLCO(SB)]. Current techniques of measuring DLCO(exhaled) require the use of a rapid-responding (less than 240 ms, 10-90%) CO meter to measure the CO concentration in the exhaled gas continuously during exhalation. DLCO(exhaled) is then calculated using two sample points in the CO signal. Because DLCO(exhaled) calculations are highly affected by small amounts of noise in the CO signal, filtering techniques have been used to reduce noise. However, these techniques reduce the response time of the system and may introduce other errors into the signal. We have developed an alternate technique in which DLCO(exhaled) can be calculated using the concentration of CO in large discrete samples of the exhaled gas, thus eliminating the requirement of a rapid response time in the CO analyzer. We show theoretically that this method is as accurate as other DLCO(exhaled) methods but is less affected by noise. These findings are verified in comparisons of the discrete-sample method of calculating DLCO(exhaled) to point-sample methods in normal subjects, patients with emphysema, and patients with asthma.

  11. Utilizing Diffusion Theory to predict carbon dioxide concentration in an indoor environment

    NASA Astrophysics Data System (ADS)

    Kramer, Andrew R.

    This research details a new method of relating sources of carbon dioxide to carbon dioxide concentration in a room operating in a reduced ventilation mode by utilizing Diffusion Theory. The theoretical basis of this research involved solving Fick's Second Law of Diffusion in spherical coordinates for a source of carbon dioxide flowing at a constant rate and located in the center of an impermeable spherical boundary. The solution was developed using a Laplace Transformation. A spherical diffusion test chamber was constructed and used to validate and benchmark the developed theory. The method was benchmarked by using Dispersion Coefficients for large carbon dioxide flow rates due to diffusion induced convection. The theoretical model was adapted to model a room operating with restricted ventilation in the presence of a known, constant source of carbon dioxide. The room was modeled as a sphere of volume equal to the room and utilized a Dispersion Coefficient that is consistent with published values. The developed Diffusion Model successfully predicted the spatial concentration of carbon dioxide in a room operating in a reduced ventilation mode in the presence of a source of carbon dioxide. The flow rates of carbon dioxide that were used in the room are comparable to the average flow rate of carbon dioxide from a person during quiet breathing, also known as the Tidal Breathing. This indicates the Diffusion Model developed from this research has the potential to correlate carbon dioxide concentration with static occupancy levels which can lead to energy savings through a reduction in air exchange rates when low occupancy is detected.

  12. Gestation increases the energetic cost of breathing in the lizard Tiliqua rugosa.

    PubMed

    Munns, Suzanne L

    2013-01-15

    High gestational loads result in fetuses that occupy a large proportion of the body cavity and may compress maternal organs. Compression of the lungs results in alterations in breathing patterns during gestation, which may affect the energetic cost of breathing. In this study, the energetic cost of breathing during gestation was determined in the viviparous skink Tiliqua rugosa. Radiographic imaging showed progressive lung compression during gestation and a 30% reduction in the lung inflation index (rib number at which the caudal margin of the lung was imaged divided by total rib number). Pneumotachography and open flow respirometry were used to measure breathing patterns and metabolic rates. Gestation induced a twofold increase in minute ventilation via increases in breathing frequency, but no change in inspired tidal volume. The rates of O(2) consumption and CO(2) production did not change significantly during gestation. Together, these results suggest that a relative hyperventilation occurs during gestation in T. rugosa, which in turn suggests that diffusion and/or perfusion limitations may exist at the lung during gestation. The energetic cost of breathing was estimated as a percentage of resting metabolic rate using hypercapnia to stimulate ventilation at different stages of pregnancy. The energetic cost of breathing in non-pregnant lizards was 19.96±3.85% of resting metabolic rate and increased threefold to 62.80±10.11% during late gestation. This significant increase in the energetic cost of breathing may have significant consequences for energy budgets during gestation.

  13. From Chicken Breath to the Killers Lake of Cameroon: Uniting Seven Interesting Phenomena with a Single Chemical Underpinning

    NASA Astrophysics Data System (ADS)

    Delorenzo, Ron

    2001-02-01

    By using a single equation prototype, seven interesting mysteries and phenomena can be seen as sharing a common chemical underpinning. The applications discussed are the Killer Lakes of Cameroon, chicken breath, the Permian Ocean, the snow line, boiler scale, the Fizz Keeper, and stalactites and stalagmites.

  14. A simple method to reconstruct the molar mass signal of respiratory gas to assess small airways with a double-tracer gas single-breath washout.

    PubMed

    Port, Johannes; Tao, Ziran; Junger, Annika; Joppek, Christoph; Tempel, Philipp; Husemann, Kim; Singer, Florian; Latzin, Philipp; Yammine, Sophie; Nagel, Joachim H; Kohlhäufl, Martin

    2017-11-01

    For the assessment of small airway diseases, a noninvasive double-tracer gas single-breath washout (DTG-SBW) with sulfur hexafluoride (SF 6 ) and helium (He) as tracer components has been proposed. It is assumed that small airway diseases may produce typical ventilation inhomogeneities which can be detected within one single tidal breath, when using two tracer components. Characteristic parameters calculated from a relative molar mass (MM) signal of the airflow during the washout expiration phase are analyzed. The DTG-SBW signal is acquired by subtracting a reconstructed MM signal without tracer gas from the signal measured with an ultrasonic sensor during in- and exhalation of the double-tracer gas for one tidal breath. In this paper, a simple method to determine the reconstructed MM signal is presented. Measurements on subjects with and without obstructive lung diseases including the small airways have shown high reliability and reproducibility of this method.

  15. Can multi-slice or navigator-gated R2* MRI replace single-slice breath-hold acquisition for hepatic iron quantification?

    PubMed

    Loeffler, Ralf B; McCarville, M Beth; Wagstaff, Anne W; Smeltzer, Matthew P; Krafft, Axel J; Song, Ruitian; Hankins, Jane S; Hillenbrand, Claudia M

    2017-01-01

    Liver R2* values calculated from multi-gradient echo (mGRE) magnetic resonance images (MRI) are strongly correlated with hepatic iron concentration (HIC) as shown in several independently derived biopsy calibration studies. These calibrations were established for axial single-slice breath-hold imaging at the location of the portal vein. Scanning in multi-slice mode makes the exam more efficient, since whole-liver coverage can be achieved with two breath-holds and the optimal slice can be selected afterward. Navigator echoes remove the need for breath-holds and allow use in sedated patients. To evaluate if the existing biopsy calibrations can be applied to multi-slice and navigator-controlled mGRE imaging in children with hepatic iron overload, by testing if there is a bias-free correlation between single-slice R2* and multi-slice or multi-slice navigator controlled R2*. This study included MRI data from 71 patients with transfusional iron overload, who received an MRI exam to estimate HIC using gradient echo sequences. Patient scans contained 2 or 3 of the following imaging methods used for analysis: single-slice images (n = 71), multi-slice images (n = 69) and navigator-controlled images (n = 17). Small and large blood corrected region of interests were selected on axial images of the liver to obtain R2* values for all data sets. Bland-Altman and linear regression analysis were used to compare R2* values from single-slice images to those of multi-slice images and navigator-controlled images. Bland-Altman analysis showed that all imaging method comparisons were strongly associated with each other and had high correlation coefficients (0.98 ≤ r ≤ 1.00) with P-values ≤0.0001. Linear regression yielded slopes that were close to 1. We found that navigator-gated or breath-held multi-slice R2* MRI for HIC determination measures R2* values comparable to the biopsy-validated single-slice, single breath-hold scan. We conclude that these three R2* methods can be interchangeably used in existing R2*-HIC calibrations.

  16. Syllable-related breathing in infants in the second year of life.

    PubMed

    Parham, Douglas F; Buder, Eugene H; Oller, D Kimbrough; Boliek, Carol A

    2011-08-01

    This study explored whether breathing behaviors of infants within the 2nd year of life differ between tidal breathing and breathing supporting single unarticulated syllables and canonical/articulated syllables. Vocalizations and breathing kinematics of 9 infants between 53 and 90 weeks of age were recorded. A strict selection protocol was used to identify analyzable breath cycles. Syllables were categorized on the basis of consensus coding. Inspiratory and expiratory durations, excursions, and slopes were calculated for the 3 breath cycle types and were normalized using mean tidal breath measures. Tidal breathing cycles were significantly different from syllable-related cycles on all breathing measures. There were no significant differences between unarticulated syllable cycles and canonical syllable cycles, even after controlling for utterance duration and sound pressure level. Infants in the 2nd year of life exhibit clear differences between tidal breathing and speech-related breathing, but categorically distinct breath support for syllable types with varying articulatory demands was not evident in the present findings. Speech development introduces increasingly complex utterances, so older infants may produce detectable articulation-related adaptations of breathing kinematics. For younger infants, breath support may vary systematically among utterance types, due more to phonatory variations than to articulatory demands.

  17. Syllable-Related Breathing in Infants in the Second Year of Life

    PubMed Central

    Parham, Douglas F.; Buder, Eugene H.; Oller, D. Kimbrough; Boliek, Carol A.

    2010-01-01

    Purpose This study explored whether breathing behaviors of infants within the second year of life differ between tidal breathing and breathing supporting single unarticulated syllables and canonical/articulated syllables. Method Vocalizations and breathing kinematics of nine infants between 53 and 90 weeks of age were recorded. A strict selection protocol was used to identify analyzable breath cycles. Syllables were categorized based on consensus coding. Inspiratory and expiratory durations, excursions, and slopes were calculated for the three breath cycle types and normalized using mean tidal breath measures. Results Tidal breathing cycles were significantly different from syllable-related cycles on all breathing measures. There were no significant differences between unarticulated syllable cycles and canonical syllable cycles, even after controlling for utterance duration and sound pressure level. Conclusions Infants in the second year of life exhibit clear differences between tidal breathing and speech-related breathing, but categorically distinct breath support for syllable types with varying articulatory demands was not evident in the current findings. Speech development introduces increasingly complex utterances, so older infants may produce detectable articulation-related adaptations of breathing kinematics. For younger infants, breath support may vary systematically among utterance types, due more to phonatory variations than to articulatory demands. PMID:21173390

  18. Trajectory optimization and guidance for an aerospace plane

    NASA Technical Reports Server (NTRS)

    Mease, Kenneth D.; Vanburen, Mark A.

    1989-01-01

    The first step in the approach to developing guidance laws for a horizontal take-off, air breathing single-stage-to-orbit vehicle is to characterize the minimum-fuel ascent trajectories. The capability to generate constrained, minimum fuel ascent trajectories for a single-stage-to-orbit vehicle was developed. A key component of this capability is the general purpose trajectory optimization program OTIS. The pre-production version, OTIS 0.96 was installed and run on a Convex C-1. A propulsion model was developed covering the entire flight envelope of a single-stage-to-orbit vehicle. Three separate propulsion modes, corresponding to an after burning turbojet, a ramjet and a scramjet, are used in the air breathing propulsion phase. The Generic Hypersonic Aerodynamic Model Example aerodynamic model of a hypersonic air breathing single-stage-to-orbit vehicle was obtained and implemented. Preliminary results pertaining to the effects of variations in acceleration constraints, available thrust level and fuel specific impulse on the shape of the minimum-fuel ascent trajectories were obtained. The results show that, if the air breathing engines are sized for acceleration to orbital velocity, it is the acceleration constraint rather than the dynamic pressure constraint that is active during ascent.

  19. Effect of breathing-hole size on the electrochemical species in a free-breathing cathode of a DMFC

    NASA Astrophysics Data System (ADS)

    Hwang, J. J.; Wu, S. D.; Lai, L. K.; Chen, C. K.; Lai, D. Y.

    A three-dimensional numerical model is developed to study the electrochemical species characteristics in a free-breathing cathode of a direct methanol fuel cell (DMFC). A perforated current collector is attached to the porous cathode that breathes the fresh air through an array of orifices. The radius of the orifice is varied to examine its effect on the electrochemical performance. Gas flow in the porous cathode is governed by the Darcy equation with constant porosity and permeability. The multi-species diffusive transports in the porous cathode are described using the Stefan-Maxwell equation. Electrochemical reaction on the surfaces of the porous matrices is depicted via the Butler-Volmer equation. The charge transports in the porous matrices are dealt with by Ohm's law. The coupled equations are solved by a finite-element-based CFD technique. Detailed distributions of electrochemical species characteristics such as flow velocities, species mass fractions, species fluxes, and current densities are presented. The optimal breathing-hole radius is derived from the current drawn out of the porous cathode under a fixed overpotential.

  20. Breast tumor hemodynamic response during a breath-hold as a biomarker to predict chemotherapeutic efficacy: preclinical study

    NASA Astrophysics Data System (ADS)

    Lee, Songhyun; Kim, Jae Gwan

    2018-04-01

    Continuous wave diffuse optical tomographic/spectroscopic system does not provide absolute concentrations of chromophores in tissue and monitor only the changes of chromophore concentration. Therefore, it requires a perturbation of physiological signals, such as blood flow and oxygenation. In that sense, a few groups reported that monitoring a relative hemodynamic change during a breast tissue compression or a breath-hold to a patient can provide good contrast between tumor and nontumor. However, no longitudinal study reports the utilization of a breath-hold to predict tumor response during chemotherapy. A continuous wave near-infrared spectroscopy was employed to monitor hemodynamics in rat breast tumor during a hyperoxic to normoxic inhalational gas intervention to mimic a breath-hold during tumor growth and chemotherapy. The reduced oxyhemoglobin concentration during inhalational gas intervention correlated well with tumor growth, and it responded one day earlier than the change of tumor volume after chemotherapy. In conclusion, monitoring tumor hemodynamics during a breath-hold may serve as a biomarker to predict chemotherapeutic efficacy of tumor.

  1. Trapped one-dimensional ideal Fermi gas with a single impurity

    NASA Astrophysics Data System (ADS)

    Astrakharchik, G. E.; Brouzos, I.

    2013-08-01

    Ground-state properties of a single impurity in a one-dimensional Fermi gas are investigated in uniform and trapped geometries. The energy of a trapped system is obtained (i) by generalizing the McGuire expression from a uniform to trapped system (ii) within the local density approximation (iii) using the perturbative approach in the case of a weakly interacting impurity and (iv) diffusion Monte Carlo method. We demonstrate that there is a closed formula based on the exact solution of the homogeneous case which provides a precise estimation for the energy of a trapped system even for a small number of fermions and arbitrary coupling constant of the impurity. Using this expression, we analyze energy contributions from kinetic, interaction, and potential components, as well as spatial properties such as the system size and the pair-correlation function. Finally, we calculate the frequency of the breathing mode. Our analysis is directly connected and applicable to the recent experiments in microtraps.

  2. Influence of image registration on apparent diffusion coefficient images computed from free-breathing diffusion MR images of the abdomen.

    PubMed

    Guyader, Jean-Marie; Bernardin, Livia; Douglas, Naomi H M; Poot, Dirk H J; Niessen, Wiro J; Klein, Stefan

    2015-08-01

    To evaluate the influence of image registration on apparent diffusion coefficient (ADC) images obtained from abdominal free-breathing diffusion-weighted MR images (DW-MRIs). A comprehensive pipeline based on automatic three-dimensional nonrigid image registrations is developed to compensate for misalignments in DW-MRI datasets obtained from five healthy subjects scanned twice. Motion is corrected both within each image and between images in a time series. ADC distributions are compared with and without registration in two abdominal volumes of interest (VOIs). The effects of interpolations and Gaussian blurring as alternative strategies to reduce motion artifacts are also investigated. Among the four considered scenarios (no processing, interpolation, blurring and registration), registration yields the best alignment scores. Median ADCs vary according to the chosen scenario: for the considered datasets, ADCs obtained without processing are 30% higher than with registration. Registration improves voxelwise reproducibility at least by a factor of 2 and decreases uncertainty (Fréchet-Cramér-Rao lower bound). Registration provides similar improvements in reproducibility and uncertainty as acquiring four times more data. Patient motion during image acquisition leads to misaligned DW-MRIs and inaccurate ADCs, which can be addressed using automatic registration. © 2014 Wiley Periodicals, Inc.

  3. Evaluation of pulmonary function using single-breath-hold dual-energy computed tomography with xenon

    PubMed Central

    Kyoyama, Hiroyuki; Hirata, Yusuke; Kikuchi, Satoshi; Sakai, Kosuke; Saito, Yuriko; Mikami, Shintaro; Moriyama, Gaku; Yanagita, Hisami; Watanabe, Wataru; Otani, Katharina; Honda, Norinari; Uematsu, Kazutsugu

    2017-01-01

    Abstract Xenon-enhanced dual-energy computed tomography (xenon-enhanced CT) can provide lung ventilation maps that may be useful for assessing structural and functional abnormalities of the lung. Xenon-enhanced CT has been performed using a multiple-breath-hold technique during xenon washout. We recently developed xenon-enhanced CT using a single-breath-hold technique to assess ventilation. We sought to evaluate whether xenon-enhanced CT using a single-breath-hold technique correlates with pulmonary function testing (PFT) results. Twenty-six patients, including 11 chronic obstructive pulmonary disease (COPD) patients, underwent xenon-enhanced CT and PFT. Three of the COPD patients underwent xenon-enhanced CT before and after bronchodilator treatment. Images from xenon-CT were obtained by dual-source CT during a breath-hold after a single vital-capacity inspiration of a xenon–oxygen gas mixture. Image postprocessing by 3-material decomposition generated conventional CT and xenon-enhanced images. Low-attenuation areas on xenon images matched low-attenuation areas on conventional CT in 21 cases but matched normal-attenuation areas in 5 cases. Volumes of Hounsfield unit (HU) histograms of xenon images correlated moderately and highly with vital capacity (VC) and total lung capacity (TLC), respectively (r = 0.68 and 0.85). Means and modes of histograms weakly correlated with VC (r = 0.39 and 0.38), moderately with forced expiratory volume in 1 second (FEV1) (r = 0.59 and 0.56), weakly with the ratio of FEV1 to FVC (r = 0.46 and 0.42), and moderately with the ratio of FEV1 to its predicted value (r = 0.64 and 0.60). Mode and volume of histograms increased in 2 COPD patients after the improvement of FEV1 with bronchodilators. Inhalation of xenon gas caused no adverse effects. Xenon-enhanced CT using a single-breath-hold technique depicted functional abnormalities not detectable on thin-slice CT. Mode, mean, and volume of HU histograms of xenon images reflected pulmonary function. Xenon images obtained with xenon-enhanced CT using a single-breath-hold technique can qualitatively depict pulmonary ventilation. A larger study comprising only COPD patients should be conducted, as xenon-enhanced CT is expected to be a promising technique for the management of COPD. PMID:28099359

  4. Evaluation of pulmonary function using single-breath-hold dual-energy computed tomography with xenon: Results of a preliminary study.

    PubMed

    Kyoyama, Hiroyuki; Hirata, Yusuke; Kikuchi, Satoshi; Sakai, Kosuke; Saito, Yuriko; Mikami, Shintaro; Moriyama, Gaku; Yanagita, Hisami; Watanabe, Wataru; Otani, Katharina; Honda, Norinari; Uematsu, Kazutsugu

    2017-01-01

    Xenon-enhanced dual-energy computed tomography (xenon-enhanced CT) can provide lung ventilation maps that may be useful for assessing structural and functional abnormalities of the lung. Xenon-enhanced CT has been performed using a multiple-breath-hold technique during xenon washout. We recently developed xenon-enhanced CT using a single-breath-hold technique to assess ventilation. We sought to evaluate whether xenon-enhanced CT using a single-breath-hold technique correlates with pulmonary function testing (PFT) results.Twenty-six patients, including 11 chronic obstructive pulmonary disease (COPD) patients, underwent xenon-enhanced CT and PFT. Three of the COPD patients underwent xenon-enhanced CT before and after bronchodilator treatment. Images from xenon-CT were obtained by dual-source CT during a breath-hold after a single vital-capacity inspiration of a xenon-oxygen gas mixture. Image postprocessing by 3-material decomposition generated conventional CT and xenon-enhanced images.Low-attenuation areas on xenon images matched low-attenuation areas on conventional CT in 21 cases but matched normal-attenuation areas in 5 cases. Volumes of Hounsfield unit (HU) histograms of xenon images correlated moderately and highly with vital capacity (VC) and total lung capacity (TLC), respectively (r = 0.68 and 0.85). Means and modes of histograms weakly correlated with VC (r = 0.39 and 0.38), moderately with forced expiratory volume in 1 second (FEV1) (r = 0.59 and 0.56), weakly with the ratio of FEV1 to FVC (r = 0.46 and 0.42), and moderately with the ratio of FEV1 to its predicted value (r = 0.64 and 0.60). Mode and volume of histograms increased in 2 COPD patients after the improvement of FEV1 with bronchodilators. Inhalation of xenon gas caused no adverse effects.Xenon-enhanced CT using a single-breath-hold technique depicted functional abnormalities not detectable on thin-slice CT. Mode, mean, and volume of HU histograms of xenon images reflected pulmonary function. Xenon images obtained with xenon-enhanced CT using a single-breath-hold technique can qualitatively depict pulmonary ventilation. A larger study comprising only COPD patients should be conducted, as xenon-enhanced CT is expected to be a promising technique for the management of COPD.

  5. TR-BREATH: Time-Reversal Breathing Rate Estimation and Detection.

    PubMed

    Chen, Chen; Han, Yi; Chen, Yan; Lai, Hung-Quoc; Zhang, Feng; Wang, Beibei; Liu, K J Ray

    2018-03-01

    In this paper, we introduce TR-BREATH, a time-reversal (TR)-based contact-free breathing monitoring system. It is capable of breathing detection and multiperson breathing rate estimation within a short period of time using off-the-shelf WiFi devices. The proposed system exploits the channel state information (CSI) to capture the miniature variations in the environment caused by breathing. To magnify the CSI variations, TR-BREATH projects CSIs into the TR resonating strength (TRRS) feature space and analyzes the TRRS by the Root-MUSIC and affinity propagation algorithms. Extensive experiment results indoor demonstrate a perfect detection rate of breathing. With only 10 s of measurement, a mean accuracy of can be obtained for single-person breathing rate estimation under the non-line-of-sight (NLOS) scenario. Furthermore, it achieves a mean accuracy of in breathing rate estimation for a dozen people under the line-of-sight scenario and a mean accuracy of in breathing rate estimation of nine people under the NLOS scenario, both with 63 s of measurement. Moreover, TR-BREATH can estimate the number of people with an error around 1. We also demonstrate that TR-BREATH is robust against packet loss and motions. With the prevailing of WiFi, TR-BREATH can be applied for in-home and real-time breathing monitoring.

  6. Monitoring pulmonary function with superimposed pulmonary gas exchange curves from standard analyzers.

    PubMed

    Zar, Harvey A; Noe, Frances E; Szalados, James E; Goodrich, Michael D; Busby, Michael G

    2002-01-01

    A repetitive graphic display of the single breath pulmonary function can indicate changes in cardiac and pulmonary physiology brought on by clinical events. Parallel advances in computer technology and monitoring make real-time, single breath pulmonary function clinically practicable. We describe a system built from a commercially available airway gas monitor and off the shelf computer and data-acquisition hardware. Analog data for gas flow rate, O2, and CO2 concentrations are introduced into a computer through an analog-to-digital conversion board. Oxygen uptake (VO2) and carbon dioxide output (VCO2) are calculated for each breath. Inspired minus expired concentrations for O2 and CO2 are displayed simultaneously with the expired gas flow rate curve for each breath. Dead-space and alveolar ventilation are calculated for each breath and readily appreciated from the display. Graphs illustrating the function of the system are presented for the following clinical scenarios; upper airway obstruction, bronchospasm, bronchopleural fistula, pulmonary perfusion changes and inadequate oxygen delivery. This paper describes a real-time, single breath pulmonary monitoring system that displays three parameters graphed against time: expired flow rate, oxygen uptake and carbon dioxide production. This system allows for early and rapid recognition of treatable conditions that may lead to adverse events without any additional patient measurements or invasive procedures. Monitoring systems similar to the one described in this paper may lead to a higher level of patient safety without any additional patient risk.

  7. Affective brain areas and sleep disordered breathing

    PubMed Central

    Harper, Ronald M.; Kumar, Rajesh; Macey, Paul M.; Woo, Mary A.; Ogren, Jennifer A.

    2014-01-01

    The neural damage accompanying the hypoxia, reduced perfusion, and other consequences of sleep-disordered breathing found in obstructive sleep apnea, heart failure (HF), and congenital central hypoventilation syndrome (CCHS), appears in areas that serve multiple functions, including emotional drives to breathe, and involve systems that serve affective, cardiovascular, and breathing roles. The damage, assessed with structural magnetic resonance imaging (MRI) procedures, shows tissue loss or water content and diffusion changes indicative of injury, and impaired axonal integrity between structures; damage is preferentially unilateral. Functional MRI responses in affected areas also are time- or amplitude- distorted to ventilatory or autonomic challenges. Among the structures injured are the insular, cingulate, and ventral medial prefrontal cortices, as well as cerebellar deep nuclei and cortex, anterior hypothalamus, raphé, ventrolateral medulla, basal ganglia and, in CCHS, the locus coeruleus. Raphé and locus coeruleus injury may modify serotonergic and adrenergic modulation of upper airway and arousal characteristics. Since both axons and gray matter show injury, the consequences to function, especially to autonomic, cognitive, and mood regulation, are major. Several affected rostral sites, including the insular and cingulate cortices and hippocampus, mediate aspects of dyspnea, especially in CCHS, while others, including the anterior cingulate and thalamus, participate in initiation of inspiration after central breathing pauses, and the medullary injury can impair baroreflex and breathing control. The ancillary injury associated with sleep-disordered breathing to central structures can elicit multiple other distortions in cardiovascular, cognitive, and emotional functions in addition to effects on breathing regulation. PMID:24746053

  8. Volatile organic compounds as breath biomarkers for active and passive smoking.

    PubMed

    Gordon, Sydney M; Wallace, Lance A; Brinkman, Marielle C; Callahan, Patrick J; Kenny, Donald V

    2002-07-01

    We used real-time breath measurement technology to investigate the suitability of some volatile organic compounds (VOCs) as breath biomarkers for active and passive smoking and to measure actual exposures and resulting breath concentrations for persons exposed to tobacco smoke. Experiments were conducted with five smoker/nonsmoker pairs. The target VOCs included benzene, 1,3-butadiene, and the cigarette smoke biomarker 2,5-dimethylfuran. This study includes what we believe to be the first measurements of 1,3-butadiene in smokers' and nonsmokers' breath. The 1,3-butadiene and 2,5-dimethylfuran peak levels in the smokers' breath were similar (360 and 376 microg/m(3), respectively); the average benzene peak level was 522 microg/m(3). We found higher peak values of the target chemicals and shorter residence times in the body than previously reported, probably because of the improved time resolution made possible by the continuous breath measurement method. The real-time breath analyzer also showed the presence of the chemicals after exposure in the breath of the nonsmokers, but at greatly reduced levels. Single breath samples collected in evacuated canisters and analyzed independently with gas chromatography/mass spectrometry confirmed the presence of the target compounds in the postexposure breath of the nonsmokers but indicated that there was some contamination of the breath analyzer measurements. This was likely caused by desorption of organics from condensed tar in the analyzer tubing and on the quartz fiber filter used to remove particles. We used the decay data from the smokers to estimate residence times for the target chemicals. A two-compartment exponential model generally gave a better fit to the experimental decay data from the smokers than a single-compartment model. Residence times for benzene, 1,3-butadiene, and 2,5-dimethylfuran ranged from 0.5 (1,3-butadiene) to 0.9 min (benzene) for tau1 and were essentially constant (14 min) for tau2. These findings will be useful in models of environmental tobacco smoke exposure and risk.

  9. Hepatocellular carcinoma: short-term reproducibility of apparent diffusion coefficient and intravoxel incoherent motion parameters at 3.0T.

    PubMed

    Kakite, Suguru; Dyvorne, Hadrien; Besa, Cecilia; Cooper, Nancy; Facciuto, Marcelo; Donnerhack, Claudia; Taouli, Bachir

    2015-01-01

    To evaluate short-term test-retest and interobserver reproducibility of IVIM (intravoxel incoherent motion) diffusion parameters and ADC (apparent diffusion coefficient) of hepatocellular carcinoma (HCC) and liver parenchyma at 3.0T. In this prospective Institutional Review Board (IRB)-approved study, 11 patients were scanned twice using a free-breathing single-shot echo-planar-imaging, diffusion-weighted imaging (DWI) sequence using 4 b values (b = 0, 50, 500, 1000 s/mm(2)) and IVIM DWI using 16 b values (0-800 s/mm(2)) at 3.0T. IVIM parameters (D: true diffusion coefficient, D*: pseudodiffusion coefficient, PF: perfusion fraction) and ADC (using 4 b and 16 b) were calculated. Short-term test-retest and interobserver reproducibility of IVIM parameters and ADC were assessed by measuring correlation coefficient, coefficient of variation (CV), and Bland-Altman limits of agreements (BA-LA). Fifteen HCCs were assessed in 10 patients. Reproducibility of IVIM metrics in HCC was poor for D* and PF (mean CV 60.6% and 37.3%, BA-LA: -161.6% to 135.3% and -66.2% to 101.0%, for D* and PF, respectively), good for D and ADC (CV 19.7% and <16%, BA-LA -57.4% to 36.3% and -38.2 to 34.1%, for D and ADC, respectively). Interobserver reproducibility was on the same order of test-retest reproducibility except for PF in HCC. Reproducibility of diffusion parameters was better in liver parenchyma compared to HCC. Poor reproducibility of D*/PF and good reproducibility for D/ADC were observed in HCC and liver parenchyma. These findings may have implications for trials using DWI in HCC. © 2014 Wiley Periodicals, Inc.

  10. Crackle pitch and rate do not vary significantly during a single automated-auscultation session in patients with pneumonia, congestive heart failure, or interstitial pulmonary fibrosis.

    PubMed

    Vyshedskiy, Andrey; Ishikawa, Sadamu; Murphy, Raymond L H

    2011-06-01

    To determine the variability of crackle pitch and crackle rate during a single automated-auscultation session with a computerized 16-channel lung-sound analyzer. Forty-nine patients with pneumonia, 52 with congestive heart failure (CHF), and 18 with interstitial pulmonary fibrosis (IPF) performed breathing maneuvers in the following sequence: normal breathing, deep breathing, cough several times; deep breathing, vital-capacity maneuver, and deep breathing. From the auscultation recordings we measured the crackle pitch and crackle rate. Crackle pitch variability, expressed as a percentage of the average crackle pitch, was small in all patients and in all maneuvers: pneumonia 11%, CHF 11%, pulmonary fibrosis 7%. Crackle rate variability was also small: pneumonia 31%, CHF 32%, IPF 24%. Compared to the first deep-breathing maneuver (100%), the average crackle pitch did not significantly change following coughing (pneumonia 100%, CHF 103%, IPF 100%), the vital-capacity maneuver (pneumonia 100%, CHF 92%, IPF 104%), or during quiet breathing (pneumonia 97%, CHF 100%, IPF 104%). Similarly, the average crackle rate did not change significantly following coughing (pneumonia 105%, CHF 110%, IPF 90%) or the vital-capacity maneuver (pneumonia 102%, CHF 101%, IPF 99%). However, during normal breathing the crackle rate was significantly lower in the patients with pneumonia (74%, P < .001) and significantly higher in the patients with IPF (147%, P < .05) than it was during deep breathing. In patients with CHF the average crackle rate during normal breathing was not significantly different from that during the first deep-breathing maneuver (108%). Crackle pitch and rate were surprisingly stable in all 3 conditions. Neither crackle pitch nor crackle rate changed significantly from breath to breath or from one deep-breathing maneuver to another, even when the maneuvers were separated by cough or the vital-capacity maneuver. The observation that crackle rate is a reproducible measurement during one automated-auscultation session suggests that crackle rate can be used to follow the course of cardiopulmonary illnesses such as pneumonia, IPF, and CHF.

  11. Malignant anterior uveal melanoma with diffuse metastasis in a dog.

    PubMed

    Minami, T; Patnaik, A K

    1992-12-15

    Enucleation was performed in 10-year-old sexually intact female mixed-breed German Shepherd Dog. Histologic examination revealed that the dog had an uveal amelanotic melanoma of the eye. The tumor consisted of anaplastic cells with a high mitotic index, indicating malignancy. On examination 3 months after enucleation, the dog had difficulty breathing and nasal discharge. Radiography revealed pulmonary metastasis. The dog was euthanatized. Necropsy revealed diffuse metastasis involving various organs.

  12. First MRI application of an active breathing coordinator

    NASA Astrophysics Data System (ADS)

    Kaza, E.; Symonds-Tayler, R.; Collins, D. J.; McDonald, F.; McNair, H. A.; Scurr, E.; Koh, D.-M.; Leach, M. O.

    2015-02-01

    A commercial active breathing coordinator (ABC) device, employed to hold respiration at a specific level for a predefined duration, was successfully adapted for magnetic resonance imaging (MRI) use for the first time. Potential effects of the necessary modifications were assessed and taken into account. Automatic MR acquisition during ABC breath holding was achieved. The feasibility of MR-ABC thoracic and abdominal examinations together with the advantages of imaging in repeated ABC-controlled breath holds were demonstrated on healthy volunteers. Five lung cancer patients were imaged under MR-ABC, visually confirming the very good intra-session reproducibility of organ position in images acquired with the same patient positioning as used for computed tomography (CT). Using identical ABC settings, good MR-CT inter-modality registration was achieved. This demonstrates the value of ABC, since application of T1, T2 and diffusion weighted MR sequences provides a wider range of contrast mechanisms and additional diagnostic information compared to CT, thus improving radiotherapy treatment planning and assessment.

  13. First MRI application of an active breathing coordinator.

    PubMed

    Kaza, E; Symonds-Tayler, R; Collins, D J; McDonald, F; McNair, H A; Scurr, E; Koh, D-M; Leach, M O

    2015-02-21

    A commercial active breathing coordinator (ABC) device, employed to hold respiration at a specific level for a predefined duration, was successfully adapted for magnetic resonance imaging (MRI) use for the first time. Potential effects of the necessary modifications were assessed and taken into account. Automatic MR acquisition during ABC breath holding was achieved. The feasibility of MR-ABC thoracic and abdominal examinations together with the advantages of imaging in repeated ABC-controlled breath holds were demonstrated on healthy volunteers. Five lung cancer patients were imaged under MR-ABC, visually confirming the very good intra-session reproducibility of organ position in images acquired with the same patient positioning as used for computed tomography (CT). Using identical ABC settings, good MR-CT inter-modality registration was achieved. This demonstrates the value of ABC, since application of T1, T2 and diffusion weighted MR sequences provides a wider range of contrast mechanisms and additional diagnostic information compared to CT, thus improving radiotherapy treatment planning and assessment.

  14. First MRI application of an active breathing coordinator

    PubMed Central

    Kaza, E; Symonds-Tayler, R; Collins, D J; McDonald, F; McNair, H A; Scurr, E; Koh, D-M; Leach, M O

    2015-01-01

    Abstract A commercial active breathing coordinator (ABC) device, employed to hold respiration at a specific level for a predefined duration, was successfully adapted for magnetic resonance imaging (MRI) use for the first time. Potential effects of the necessary modifications were assessed and taken into account. Automatic MR acquisition during ABC breath holding was achieved. The feasibility of MR-ABC thoracic and abdominal examinations together with the advantages of imaging in repeated ABC-controlled breath holds were demonstrated on healthy volunteers. Five lung cancer patients were imaged under MR-ABC, visually confirming the very good intra-session reproducibility of organ position in images acquired with the same patient positioning as used for computed tomography (CT). Using identical ABC settings, good MR-CT inter-modality registration was achieved. This demonstrates the value of ABC, since application of T1, T2 and diffusion weighted MR sequences provides a wider range of contrast mechanisms and additional diagnostic information compared to CT, thus improving radiotherapy treatment planning and assessment. PMID:25633183

  15. Diffusion-weighted Imaging of the Liver with Multiple b Values: Effect of Diffusion Gradient Polarity and Breathing Acquisition on Image Quality and Intravoxel Incoherent Motion Parameters—A Pilot Study

    PubMed Central

    Dyvorne, Hadrien A.; Galea, Nicola; Nevers, Thomas; Fiel, M. Isabel; Carpenter, David; Wong, Edmund; Orton, Matthew; de Oliveira, Andre; Feiweier, Thorsten; Vachon, Marie-Louise; Babb, James S.

    2013-01-01

    Purpose: To optimize intravoxel incoherent motion (IVIM) diffusion-weighted (DW) imaging by estimating the effects of diffusion gradient polarity and breathing acquisition scheme on image quality, signal-to-noise ratio (SNR), IVIM parameters, and parameter reproducibility, as well as to investigate the potential of IVIM in the detection of hepatic fibrosis. Materials and Methods: In this institutional review board–approved prospective study, 20 subjects (seven healthy volunteers, 13 patients with hepatitis C virus infection; 14 men, six women; mean age, 46 years) underwent IVIM DW imaging with four sequences: (a) respiratory-triggered (RT) bipolar (BP) sequence, (b) RT monopolar (MP) sequence, (c) free-breathing (FB) BP sequence, and (d) FB MP sequence. Image quality scores were assessed for all sequences. A biexponential analysis with the Bayesian method yielded true diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction (PF) in liver parenchyma. Mixed-model analysis of variance was used to compare image quality, SNR, IVIM parameters, and interexamination variability between the four sequences, as well as the ability to differentiate areas of liver fibrosis from normal liver tissue. Results: Image quality with RT sequences was superior to that with FB acquisitions (P = .02) and was not affected by gradient polarity. SNR did not vary significantly between sequences. IVIM parameter reproducibility was moderate to excellent for PF and D, while it was less reproducible for D*. PF and D were both significantly lower in patients with hepatitis C virus than in healthy volunteers with the RT BP sequence (PF = 13.5% ± 5.3 [standard deviation] vs 9.2% ± 2.5, P = .038; D = [1.16 ± 0.07] × 10−3 mm2/sec vs [1.03 ± 0.1] × 10−3 mm2/sec, P = .006). Conclusion: The RT BP DW imaging sequence had the best results in terms of image quality, reproducibility, and ability to discriminate between healthy and fibrotic liver with biexponential fitting. © RSNA, 2012 PMID:23220895

  16. Spinning-disk generation and drying of monodisperse solid aerosols with output concentrations sufficient for single-breath inhalation studies.

    PubMed

    Byron, P R; Hickey, A J

    1987-01-01

    The air-driven spinning-disk aerosol generator was modified to allow the production of monodisperse dry spherical aerosols of disodium fluorescein (as model solute) in high output concentrations. Output concentrations were determined by filtration. Optical and aerodynamic size distributions were determined microscopically (after electrostatic precipitation) and by cascade impaction. The generator housing allowed the entrainment of 25-microns primary aqueous solution droplets in a 10-L X min-1 downward flow of dry, filtered air. Internal equipment surfaces were machined flush and polished to minimize aerosol losses. Primary droplets were dried within a stainless steel pipe encased in a tube furnace. Water vapor was removed by diffusion drying. Disk-driven air, satellite droplets, and additional dilution air were vented to waste without using a vacuum. Generator yields were increased by reducing the size of the satellite droplet extraction gap. Aerosols were generated reproducibly by delivering aqueous solutions at a rate of 0.2 mL X min-1 to the center of the disk and spinning at 1000 rps. Dry aerosols, with mass median aerodynamic diameters of 2, 4.9, and 9 microns, were produced in concentrations of 0.89, 5.48, and 54.6 micrograms X L-1 from aqueous solutions containing 0.0374, 0.584, and 3.4% solute by weight. Geometric standard deviations were less than 1.2 in all cases. Concentrations are several times higher than others in the literature and are suitable for single-breath inhalation studies of therapeutic aerosol deposition and effect.

  17. Demonstration of the reproducibility of free-breathing diffusion-weighted MRI and dynamic contrast enhanced MRI in children with solid tumours: a pilot study.

    PubMed

    Miyazaki, Keiko; Jerome, Neil P; Collins, David J; Orton, Matthew R; d'Arcy, James A; Wallace, Toni; Moreno, Lucas; Pearson, Andrew D J; Marshall, Lynley V; Carceller, Fernando; Leach, Martin O; Zacharoulis, Stergios; Koh, Dow-Mu

    2015-09-01

    The objectives are to examine the reproducibility of functional MR imaging in children with solid tumours using quantitative parameters derived from diffusion-weighted (DW-) and dynamic contrast enhanced (DCE-) MRI. Patients under 16-years-of age with confirmed diagnosis of solid tumours (n = 17) underwent free-breathing DW-MRI and DCE-MRI on a 1.5 T system, repeated 24 hours later. DW-MRI (6 b-values, 0-1000 sec/mm(2)) enabled monoexponential apparent diffusion coefficient estimation using all (ADC0-1000) and only ≥100 sec/mm(2) (ADC100-1000) b-values. DCE-MRI was used to derive the transfer constant (K(trans)), the efflux constant (kep), the extracellular extravascular volume (ve), and the plasma fraction (vp), using a study cohort arterial input function (AIF) and the extended Tofts model. Initial area under the gadolinium enhancement curve and pre-contrast T1 were also calculated. Percentage coefficients of variation (CV) of all parameters were calculated. The most reproducible cohort parameters were ADC100-1000 (CV = 3.26%), pre-contrast T1 (CV = 6.21%), and K(trans) (CV = 15.23%). The ADC100-1000 was more reproducible than ADC0-1000, especially extracranially (CV = 2.40% vs. 2.78%). The AIF (n = 9) derived from this paediatric population exhibited sharper and earlier first-pass and recirculation peaks compared with the literature's adult population average. Free-breathing functional imaging protocols including DW-MRI and DCE-MRI are well-tolerated in children aged 6 - 15 with good to moderate measurement reproducibility. • Diffusion MRI protocol is feasible and well-tolerated in a paediatric oncology population. • DCE-MRI for pharmacokinetic evaluation is feasible and well tolerated in a paediatric oncology population. • Paediatric arterial input function (AIF) shows systematic differences from the adult population-average AIF. • Variation of quantitative parameters from paired functional MRI measurements were within 20%.

  18. Nitrogen-doped carbonaceous catalysts for gas-diffusion cathodes for alkaline aluminum-air batteries

    NASA Astrophysics Data System (ADS)

    Davydova, E. S.; Atamanyuk, I. N.; Ilyukhin, A. S.; Shkolnikov, E. I.; Zhuk, A. Z.

    2016-02-01

    Cobalt tetramethoxyphenyl porphyrin and polyacrylonitrile - based catalysts for oxygen reduction reaction were synthesized and characterized by means of SEM, TEM, XPS, BET, limited evaporation method, rotating disc and rotating ring-disc electrode methods. Half-cell and Al-air cell tests were carried out to determine the characteristics of gas-diffusion cathodes. Effect of active layer thickness and its composition on the characteristics of the gas-diffusion cathodes was investigated. Power density of 300 mW cm-2 was achieved for alkaline Al-air cell with an air-breathing polyacrylonitrile-based cathode.

  19. A novel method for effective diffusion coefficient measurement in gas diffusion media of polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Yang, Linlin; Sun, Hai; Fu, Xudong; Wang, Suli; Jiang, Luhua; Sun, Gongquan

    2014-07-01

    A novel method for measuring effective diffusion coefficient of porous materials is developed. The oxygen concentration gradient is established by an air-breathing proton exchange membrane fuel cell (PEMFC). The porous sample is set in a sample holder located in the cathode plate of the PEMFC. At a given oxygen flux, the effective diffusion coefficients are related to the difference of oxygen concentration across the samples, which can be correlated with the differences of the output voltage of the PEMFC with and without inserting the sample in the cathode plate. Compared to the conventional electrical conductivity method, this method is more reliable for measuring non-wetting samples.

  20. Membrane humidity control investigation

    NASA Technical Reports Server (NTRS)

    Elam, J.; Ruder, J.; Strumpf, H.

    1974-01-01

    The basic performance data on a hollow fiber membrane unit that removes water from a breathing gas loop by diffusion is presented. Using available permeability data for cellulose acetate, a preliminary design was made of a dehumidifier unit that would meet the problem statement.

  1. Breathing pattern and breathlessness in idiopathic pulmonary fibrosis: An observational study.

    PubMed

    Olukogbon, Kasope L; Thomas, Paul; Colasanti, Ricardo; Hope-Gill, Ben; Williams, Edgar Mark

    2016-02-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by progressive decline in lung function and increasing dyspnoea. The aim of this study was to investigate the relationship among IPF, pulmonary function, resting tidal breathing patterns and level of breathlessness. Thirty-one participants with IPF and 17 matched healthy controls underwent lung function testing, followed by a 2-min period of resting tidal breathing. The IPF cohort was stratified according to disease severity, based on their forced vital capacity and diffusion capacity for carbon monoxide. In comparison to the healthy controls, the IPF cohort showed a higher tidal volume, VT , of 0.22 L (P = 0.026) and a raised minute ventilation in the severest IPF group, while no differences in the timing of inspiration or expiration were observed. In the IPF cohort, the ratio of VT to forced vital capacity was around 15% higher. These changes corresponded with an increase in the self-reported sensation of breathlessness. Those with IPF increased their depth of breathing with worsening disease severity, with IPF-induced changes in pulmonary function and breathlessness associated with an altered tidal breathing pattern. © 2015 Asian Pacific Society of Respirology.

  2. Cutaneous sarcoidosis evaluated by FDG PET.

    PubMed

    Li, Yuxin; Berenji, Gholam R

    2011-07-01

    A 50-year-old man presented with initial complaints of diffuse skin pain and pruritus. Physical examination revealed scattered skin plaques and subcutaneous nodules with mild tenderness throughout the body. Skin biopsy demonstrated noncaseating epithelioid granulomas. Patient soon developed cough, fever with hot flashes, and shortness of breath on exertion. FDG PET/CT demonstrated diffuse cutaneous involvement throughout the body. Follow-up FDG PET/CT after treatment revealed a decrease in FDG uptake suggesting a good response to therapy.

  3. Diffusion-weighted imaging in pediatric body MR imaging: principles, technique, and emerging applications.

    PubMed

    Chavhan, Govind B; Alsabban, Zehour; Babyn, Paul S

    2014-01-01

    Diffusion-weighted (DW) imaging is an emerging technique in body imaging that provides indirect information about the microenvironment of tissues and lesions and helps detect, characterize, and follow up abnormalities. Two main challenges in the application of DW imaging to body imaging are the decreased signal-to-noise ratio of body tissues compared with neuronal tissues due to their shorter T2 relaxation time, and image degradation related to physiologic motion (eg, respiratory motion). Use of smaller b values and newer motion compensation techniques allow the evaluation of anatomic structures with DW imaging. DW imaging can be performed as a breath-hold sequence or a free-breathing sequence with or without respiratory triggering. Depending on the mobility of water molecules in their microenvironment, different normal tissues have different signals at DW imaging. Some normal tissues (eg, lymph nodes, spleen, ovarian and testicular parenchyma) are diffusion restricted, whereas others (eg, gallbladder, corpora cavernosa, endometrium, cartilage) show T2 shine-through. Epiphyses that contain fatty marrow and bone cortex appear dark on both DW images and apparent diffusion coefficient maps. Current and emerging applications of DW imaging in pediatric body imaging include tumor detection and characterization, assessment of therapy response and monitoring of tumors, noninvasive detection and grading of liver fibrosis and cirrhosis, detection of abscesses, and evaluation of inflammatory bowel disease. RSNA, 2014

  4. Simultaneous Measurement of T2 and Apparent Diffusion Coefficient (T2+ADC) in the Heart With Motion-Compensated Spin Echo Diffusion-Weighted Imaging

    PubMed Central

    Aliotta, Eric; Moulin, Kévin; Zhang, Zhaohuan; Ennis, Daniel B.

    2018-01-01

    Purpose To evaluate a technique for simultaneous quantitative T2 and apparent diffusion coefficient (ADC) mapping in the heart (T2+ADC) using spin echo (SE) diffusion-weighted imaging (DWI). Theory and Methods T2 maps from T2+ADC were compared with single-echo SE in phantoms and with T2-prepared (T2-prep) balanced steady-state free precession (bSSFP) in healthy volunteers. ADC maps from T2+ADC were compared with conventional DWI in phantoms and in vivo. T2+ADC was also demonstrated in a patient with acute myocardial infarction (MI). Results Phantom T2 values from T2+ADC were closer to a single-echo SE reference than T2-prep bSSFP (−2.3 ± 6.0% vs 22.2 ± 16.3%; P < 0.01), and ADC values were in excellent agreement with DWI (0.28 ± 0.4%). In volunteers, myocardial T2 values from T2+ADC were significantly shorter than T2-prep bSSFP (35.8 ± 3.1 vs 46.8 ± 3.8 ms; P < 0.01); myocardial ADC was not significantly (N.S.) different between T2+ADC and conventional motion-compensated DWI (1.39 ± 0.18 vs 1.38 ± 0.18 mm2/ms; P = N.S.). In the patient, T2 and ADC were both significantly elevated in the infarct compared with remote myocardium (T2: 40.4 ± 7.6 vs 56.8 ± 22.0; P < 0.01; ADC: 1.47 ± 0.59 vs 1.65 ± 0.65 mm2/ms; P < 0.01). Conclusion T2+ADC generated coregistered, free-breathing T2 and ADC maps in healthy volunteers and a patient with acute MI with no cost in accuracy, precision, or scan time compared with DWI. PMID:28516485

  5. Comparison of breath gases, including acetone, with blood glucose and blood ketones in children and adolescents with type 1 diabetes.

    PubMed

    Blaikie, Tom P J; Edge, Julie A; Hancock, Gus; Lunn, Daniel; Megson, Clare; Peverall, Rob; Richmond, Graham; Ritchie, Grant A D; Taylor, David

    2014-11-25

    Previous studies have suggested that breath gases may be related to simultaneous blood glucose and blood ketone levels in adults with type 2 and type 1 diabetes. The aims of this study were to investigate these relationships in children and young people with type 1 diabetes in order to assess the efficacy of a simple breath test as a non-invasive means of diabetes management. Gases were collected in breath bags and measurements were compared with capillary blood glucose and ketone levels taken at the same time on a single visit to a routine hospital clinic in 113 subjects (59 male, age 7 years 11 months-18 years 3 months) with type 1 diabetes. The patients were well-controlled with relatively low concentrations of the blood ketone measured (β hydroxybutyrate, 0-0.4 mmol l(-1)). Breath acetone levels were found to increase with blood β hydroxybutyrate levels and a significant relationship was found between the two (Spearman's rank correlation ρ = 0.364, p < 10(-4)). A weak positive relationship was found between blood glucose and breath acetone (ρ = 0.16, p = 0.1), but led to the conclusion that single breath measurements of acetone do not provide a good measure of blood glucose levels in this cohort. This result suggests a potential to develop breath gas analysis to provide an alternative to blood testing for ketone measurement, for example to assist with the management of type 1 diabetes.

  6. Design options for advanced manned launch systems

    NASA Astrophysics Data System (ADS)

    Freeman, Delma C.; Talay, Theodore A.; Stanley, Douglas O.; Lepsch, Roger A.; Wilhite, Alan W.

    1995-03-01

    Various concepts for advanced manned launch systems are examined for delivery missions to space station and polar orbit. Included are single-and two-stage winged systems with rocket and/or air-breathing propulsion systems. For near-term technologies, two-stage reusable rocket systems are favored over single-stage rocket or two-stage air-breathing/rocket systems. Advanced technologies enable viable single-stage-to-orbit (SSTO) concepts. Although two-stage rocket systems continue to be lighter in dry weight than SSTO vehicles, advantages in simpler operations may make SSTO vehicles more cost-effective over the life cycle. Generally, rocket systems maintain a dry-weight advantage over air-breathing systems at the advanced technology levels, but to a lesser degree than when near-term technologies are used. More detailed understanding of vehicle systems and associated ground and flight operations requirements and procedures is essential in determining quantitative discrimination between these latter concepts.

  7. An analysis of estimation of pulmonary blood flow by the single-breath method

    NASA Technical Reports Server (NTRS)

    Srinivasan, R.

    1986-01-01

    The single-breath method represents a simple noninvasive technique for the assessment of capillary blood flow across the lung. However, this method has not gained widespread acceptance, because its accuracy is still being questioned. A rigorous procedure is described for estimating pulmonary blood flow (PBF) using data obtained with the aid of the single-breath method. Attention is given to the minimization of data-processing errors in the presence of measurement errors and to questions regarding a correction for possible loss of CO2 in the lung tissue. It is pointed out that the estimations are based on the exact solution of the underlying differential equations which describe the dynamics of gas exchange in the lung. The reported study demonstrates the feasibility of obtaining highly reliable estimates of PBF from expiratory data in the presence of random measurement errors.

  8. Carbon Nanotubes Growth on Graphite Fibers

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, Ching-Hua; Lehoczky, S. L.; Muntele, I.; Ila, D.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Carbon nanotubes (CNT) were synthesized on graphite fibers by thermal Chemical Vapor Deposition (CVD). On the fiber surface, iron nanoparticles are coated and act as catalysts for CNT growth. The growth temperature ranges from 550 to 1000 C at an ambient pressure. Methane and hydrogen gases with methane contents of 10% to 100% are used for the CNT synthesis. At high growth temperatures (greater than 800 C), the rapid inter-diffusion of the transition metal iron on the graphite surface results in a rough fiber surface with no CNT grown on the surface. When the growth temperature is relatively low (650 - 800 C), CNT are fabricated on the graphite surface with catalytic particles on the nanotube top ends. Using micro Raman spectroscopy in the breath mode region, single-walled or multi-walled CNT can be determined, depending on methane concentrations.

  9. Research Technology

    NASA Image and Video Library

    2004-04-15

    Pictured is a component of the Rocket Based Combined Cycle (RBCC) engine. This engine was designed to ultimately serve as the near term basis for Two Stage to Orbit (TSTO) air breathing propulsion systems and ultimately a Single Stage to Orbit (SSTO) air breathing propulsion system.

  10. [Russian oxygen generation system "Elektron-VM": hydrogen content in electrolytically produced oxygen for breathing by International Space Station crews].

    PubMed

    Proshkin, V Yu; Kurmazenko, E A

    2014-01-01

    The article presents the particulars of hydrogen content in electrolysis oxygen produced aboard the ISS Russian segment by oxygen generator "Elektron-VM" (SGK) for crew breathing. Hydrogen content was estimated as in the course of SGK operation in the ISS RS, so during the ground life tests. According to the investigation of hydrogen sources, the primary path of H2 appearance in oxygen is its diffusion through the porous diaphragm separating the electrolytic-cell cathode and anode chambers. Effectiveness of hydrogen oxidation in the SGK reheating unit was evaluated.

  11. A cross-sectional study of breath acetone based on diabetic metabolic disorders.

    PubMed

    Li, Wenwen; Liu, Yong; Lu, Xiaoyong; Huang, Yanping; Liu, Yu; Cheng, Shouquan; Duan, Yixiang

    2015-02-26

    Breath acetone is a known biomarker for diabetes mellitus in breath analysis. In this work, a cross-sectional study of breath acetone based on clinical metabolic disorders of type 2 diabetes mellitus (T2DM) was carried out. Breath acetone concentrations of 113 T2DM patients and 56 apparently healthy individuals were measured at a single time point. Concentrations varied from 0.22 to 9.41 ppmv (mean 1.75 ppmv) for T2DM, which were significantly higher than those for normal controls (ranged from 0.32 to 1.96 ppmv, mean 0.72 ppmv, p = 0.008). Observations in our work revealed that breath acetone concentrations elevated to different degrees, along with the abnormality of blood glucose, glycated hemoglobin (HbA1c), triglyceride and cholesterol. Breath acetone showed obviously positive correlations with blood ketone and urine ketone. Possible metabolic relations between breath acetone and diabetic disorders were also discussed. This work aimed at giving an overall assessment of breath acetone from the perspective of clinical parameters for type 2 diabetes.

  12. Emptying patterns of the lung studied by multiple-breath N2 washout

    NASA Technical Reports Server (NTRS)

    Lewis, S. M.

    1978-01-01

    Changes in the nitrogen concentration seen during the single-breath nitrogen washout reflect changes in relative flow (ventilation) from units with differing ventilation/volume ratios. The multiple-breath washout provides sufficient data on ventilation for units with varying ventilation/volume ratios to be plotted as a function of the volume expired. Flow from the dead space may also be determined. In young normals the emptying patterns are narrow and unimodal throughout the alveolar plateau with little or no flow from the dead space at the end of the breath. Older normals show more flow from the dead space, particularly toward the end of the breath, and some show a high ventilation/volume ratio mode early in the breath. Patients with obstructive lung disease have a high flow from the dead space which is present throughout the breath. A well ventilated mode at the end of the breath is seen in some obstructed subjects. Patients with cystic fibrosis showed a poorly ventilated mode appearing at the end of the breath as well as a very high dead space.

  13. Longitudinal decline in pulmonary diffusing capacity among nitrate fertilizer workers.

    PubMed

    Hovland, K H; Skogstad, M; Bakke, B; Skare, Ø; Skyberg, K

    2014-04-01

    This study is part of a 3-year follow-up of lung function among nitrate fertilizer production workers. To study the possible adverse effects of occupational exposure to aerosols and gases on pulmonary diffusing capacity. A longitudinal study of a cohort of fertilizer workers who performed single-breath carbon monoxide diffusing capacity (DLco) tests and spirometry in 2007 and 2010. The workers completed a questionnaire on respiratory symptoms and smoking habits. Exposure to mineral dust, acid aerosols and inorganic gases was measured. The overall median inhalable and thoracic aerosol mass concentrations were 1.1mg/m(3) (min-max: <0.93-45) and 0.21mg/m(3) (min-max: <0.085-11), respectively. There were 308 participants in 2007 with 168 returning subjects in 2010. Overall, we found a statistically significant decline in the DLco of 0.068 mmol/min/kPa/year, adjusted for gender, age, height, weight, smoking status and doctor-diagnosed asthma during the 3-year follow-up (P < 0.01). The change in DLco did not vary significantly between the various job groups. Subjects with respiratory symptoms did not show a larger decline in DLco than those without symptoms. This study indicates a larger than expected decline in the DLco of fertilizer workers during a 3-year follow-up. However, the decline was not related to specific exposures at work, or to possible covariates of exposure.

  14. Micropreconcentrator in LTCC Technology with Mass Spectrometry for the Detection of Acetone in Healthy and Type-1 Diabetes Mellitus Patient Breath

    PubMed Central

    Rydosz, Artur

    2014-01-01

    Breath analysis has long been recognized as a potentially attractive method for the diagnosis of several diseases. The main advantage over other diagnostic methods such as blood or urine analysis is that breath analysis is fully non-invasive, comfortable for patients and breath samples can be easily obtained. One possible future application of breath analysis may be the diagnosing and monitoring of diabetes. It is, therefore, essential, to firstly determine a relationship between exhaled biomarker concentration and glucose in blood as well as to compare the results with the results obtained from non-diabetic subjects. Concentrations of molecules which are biomarkers of diseases’ states, or early indicators of disease should be well documented, i.e., the variations of abnormal concentrations of breath biomarkers with age, gender and ethnic issues need to be verified. Furthermore, based on performed measurements it is rather obvious that analysis of exhaled acetone as a single biomarker of diabetes is unrealistic. In this paper, the author presents results of his research conducted on samples of breath gas from eleven healthy volunteers (HV) and fourteen type-1 diabetic patients (T1DM) which were collected in 1-l SKC breath bags. The exhaled acetone concentration was measured using mass spectrometry (HPR-20 QIC, Hiden Analytical, Warrington, UK) coupled with a micropreconcentrator in LTCC (Low Temperature Cofired Ceramic). However, as according to recent studies the level of acetone varies to a significant extent for each blood glucose concentration of single individuals, a direct and absolute relationship between blood glucose and acetone has not been proved. Nevertheless, basing on the research results acetone in diabetic breath was found to be higher than 1.11 ppmv, while its average concentration in normal breath was lower than 0.83 ppmv. PMID:25310087

  15. Air-Breathing Launch Vehicle Technology Being Developed

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J.

    2003-01-01

    Of the technical factors that would contribute to lowering the cost of space access, reusability has high potential. The primary objective of the GTX program is to determine whether or not air-breathing propulsion can enable reusable single-stage-to-orbit (SSTO) operations. The approach is based on maturation of a reference vehicle design with focus on the integration and flight-weight construction of its air-breathing rocket-based combined-cycle (RBCC) propulsion system.

  16. Influence of image registration on ADC images computed from free-breathing diffusion MRIs of the abdomen

    NASA Astrophysics Data System (ADS)

    Guyader, Jean-Marie; Bernardin, Livia; Douglas, Naomi H. M.; Poot, Dirk H. J.; Niessen, Wiro J.; Klein, Stefan

    2014-03-01

    The apparent diffusion coefficient (ADC) is an imaging biomarker providing quantitative information on the diffusion of water in biological tissues. This measurement could be of relevance in oncology drug development, but it suffers from a lack of reliability. ADC images are computed by applying a voxelwise exponential fitting to multiple diffusion-weighted MR images (DW-MRIs) acquired with different diffusion gradients. In the abdomen, respiratory motion induces misalignments in the datasets, creating visible artefacts and inducing errors in the ADC maps. We propose a multistep post-acquisition motion compensation pipeline based on 3D non-rigid registrations. It corrects for motion within each image and brings all DW-MRIs to a common image space. The method is evaluated on 10 datasets of free-breathing abdominal DW-MRIs acquired from healthy volunteers. Regions of interest (ROIs) are segmented in the right part of the abdomen and measurements are compared in the three following cases: no image processing, Gaussian blurring of the raw DW-MRIs and registration. Results show that both blurring and registration improve the visual quality of ADC images, but compared to blurring, registration yields visually sharper images. Measurement uncertainty is reduced both by registration and blurring. For homogeneous ROIs, blurring and registration result in similar median ADCs, which are lower than without processing. In a ROI at the interface between liver and kidney, registration and blurring yield different median ADCs, suggesting that uncorrected motion introduces a bias. Our work indicates that averaging procedures on the scanner should be avoided, as they remove the opportunity to perform motion correction.

  17. Ontogeny and morphometrics of the gills and swim bladder of air-breathing striped catfish Pangasianodon hypophthalmus.

    PubMed

    Phuong, Le My; Huong, Do Thi Thanh; Malte, Hans; Nyengaard, Jens Randel; Bayley, Mark

    2018-02-01

    The air-breathing fish Pangasianodon hypophthalmus has been shown to have highly plastic branchial surfaces whose area (SA) increases with temperature and aquatic hypoxia. This modulation occurs through development of inter-lamellar cell mass (ILCM). Paradoxically, in conditions where this fish has been shown capable of covering its entire aerobic scope from the water phase, it has been shown to have a very small branchial SA. To address this paradox, we measured the SA, harmonic mean diffusion distance (τ h ) and calculated the anatomic diffusion factor (ADF) of the branchial and swim bladder surfaces in fish ranging from 3 to 1900 g at 27°C in normoxia. Since the lamellae were distinguishable from the ILCM, we measured the actual SA as well as the potential SA if ILCM were lost. As a result of low τ h , P. hypophthalmus has a high capacity for branchial oxygen uptake with or without ILCM. Actual and potential gill ADF were 361 and 1002 cm 2  µm -1  kg -1 , respectively, for a 100 g fish and the ADF of the swim bladder was found to be 308 cm 2  µm -1  kg -1 By swimming fish to exhaustion at different temperatures, we show that modulation of this SA is rapid, indicating that the apparent paradox between previous studies is eliminated. Regression analysis of log-log plots of respiratory SA in relation to body mass shows that the gill scales with mass similarly to the SA in active water-breathing fish, whereas the swim bladder scales with mass more like the mammalian lung does. This fish presents a combination of respiratory surfaces not previously seen in air-breathing fish. © 2018. Published by The Company of Biologists Ltd.

  18. Rocket Based Combined Cycle (RBCC) engine inlet

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Pictured is a component of the Rocket Based Combined Cycle (RBCC) engine. This engine was designed to ultimately serve as the near term basis for Two Stage to Orbit (TSTO) air breathing propulsion systems and ultimately a Single Stage to Orbit (SSTO) air breathing propulsion system.

  19. Use of an acoustic helium analyzer for measuring lung volumes.

    PubMed

    Krumpe, P E; MacDannald, H J; Finley, T N; Schear, H E; Hall, J; Cribbs, D

    1981-01-01

    We have evaluated the use of an acoustic gas analyzer (AGA) for the measurement of total lung capacity (TLC) by single-breath helium dilution. The AGA has a rapid response time (0-90% response = 160 ms for 10% He), is linear for helium concentration of 0.1-10%, is stable over a wide range of ambient temperatures, and is small and portable. We plotted the output of the AGA vs. expired lung volume after a vital capacity breath of 10% He. However, since the AGA is sensitive to changes in speed of sound relative to air, the AGA output signal also reports an artifact due to alveolar gases. We corrected for this artifact by replotting a single-breath expiration after a vital capacity breath of room air. Mean alveolar helium concentration (HeA) was then measured by planimetry, using this alveolar gas curve as the base line. TLC was calculated using the HeA from the corrected AGA output and compared with TLC calculated from HeA simultaneously measured using a mass spectrometer (MS). In 12 normal subjects and 9 patients with chronic obstructive pulmonary disease (COPD) TLC-AGA and TLC-MS were compared by linear regression analysis; correlation coefficient (r) was 0.973 for normals and 0.968 for COPD patients (P less than 0.001). This single-breath; estimation of TLC using the corrected signal of the AGA vs. Expired volume seems ideally suited for the measurement of subdivisions of lung volume in field studies.

  20. All APAPs Are Not Equivalent for the Treatment of Sleep Disordered Breathing: A Bench Evaluation of Eleven Commercially Available Devices

    PubMed Central

    Zhu, Kaixian; Roisman, Gabriel; Aouf, Sami; Escourrou, Pierre

    2015-01-01

    Study Objectives: This study challenged on a bench-test the efficacy of auto-titrating positive airway pressure (APAP) devices for obstructive sleep disordered breathing treatment and evaluated the accuracy of the device reports. Methods: Our bench consisted of an active lung simulator and a Starling resistor. Eleven commercially available APAP devices were evaluated on their reactions to single-type SDB sequences (obstructive apnea and hypopnea, central apnea, and snoring), and to a long general breathing scenario (5.75 h) simulating various SDB during four sleep cycles and to a short scenario (95 min) simulating one sleep cycle. Results: In the single-type sequence of 30-minute repetitive obstructive apneas, only 5 devices normalized the airflow (> 70% of baseline breathing amplitude). Similarly, normalized breathing was recorded with 8 devices only for a 20-min obstructive hypopnea sequence. Five devices increased the pressure in response to snoring. Only 4 devices maintained a constant minimum pressure when subjected to repeated central apneas with an open upper airway. In the long general breathing scenario, the pressure responses and the treatment efficacy differed among devices: only 5 devices obtained a residual obstructive AHI < 5/h. During the short general breathing scenario, only 2 devices reached the same treatment efficacy (p < 0.001), and 3 devices underestimated the AHI by > 10% (p < 0.001). The long scenario led to more consistent device reports. Conclusion: Large differences between APAP devices in the treatment efficacy and the accuracy of report were evidenced in the current study. Citation: Zhu K, Roisman G, Aouf S, Escourrou P. All APAPs are not equivalent for the treatment of sleep disordered breathing: a bench evaluation of eleven commercially available devices. J Clin Sleep Med 2015;11(7):725–734. PMID:25766708

  1. Single-breath CO2 analysis as a predictor of lung volume in a healthy animal model during controlled ventilation.

    PubMed

    Stenz, R I; Grenier, B; Thompson, J E; Arnold, J H

    1998-08-01

    To examine the utility of single-breath CO2 analysis as a measure of lung volume. A prospective, animal cohort study comparing 21 parameters derived from single-breath CO2 analysis with lung volume measurements determined by nitrogen washout in animals during controlled ventilation. An animal laboratory in a university-affiliated medical center. Seven healthy lambs. The single-breath CO2 analysis station consists of a mainstream capnometer, a variable orifice pneumotachometer, a signal processor and computer software with capability for both on- and off-line data analysis. Twenty-one derived components of the CO2 expirogram were evaluated as predictors of lung volume. Lung volume was manipulated by 3 cm H2O incremental increases in positive end-expiratory pressure from 0 to 21 cm H2O, and ranged between 147 and 942 mL. Fifty-five measurements of lung volume were available for comparison with derived variables from the CO2 expirogam. Stepwise linear regression identified four variables that were most predictive of lung volume: a) dynamic lung compliance; b) the slope of phase 3; c) the slope of phase 2 divided by the mixed expired CO2 tension; and d) airway deadspace. The multivariate equation was highly statistically significant and explained 94% of the variance (adjusted r2 =.94, p < .0001). The bias and precision of the calculated lung volume was .00 and 51, respectively. The mean percent difference for the lung volume estimate derived from the single-breath CO2 analysis station was 0.79%. Our data indicate that analysis of the CO2 expirogram can yield accurate information about lung volume. Specifically, four variables derived from a plot of expired CO2 concentration vs. expired volume predict changes in lung volume in healthy lambs with an adjusted coefficient of determination of .94. Prospective application of this technology in the setting of lung injury and rapidly changing physiology is essential in determining the clinical usefulness of the technique.

  2. Relation of retinal blood flow and retinal oxygen extraction during stimulation with diffuse luminance flicker

    PubMed Central

    Palkovits, Stefan; Lasta, Michael; Told, Reinhard; Schmidl, Doreen; Werkmeister, René; Cherecheanu, Alina Popa; Garhöfer, Gerhard; Schmetterer, Leopold

    2015-01-01

    Cerebral and retinal blood flow are dependent on local neuronal activity. Several studies quantified the increase in cerebral blood flow and oxygen consumption during activity. In the present study we investigated the relation between changes in retinal blood flow and oxygen extraction during stimulation with diffuse luminance flicker and the influence of breathing gas mixtures with different fractions of O2 (FiO2; 100% 15% and 12%). Twenty-four healthy subjects were included. Retinal blood flow was studied by combining measurement of vessel diameters using the Dynamic Vessel Analyser with measurements of blood velocity using laser Doppler velocimetry. Oxygen saturation was measured using spectroscopic reflectometry and oxygen extraction was calculated. Flicker stimulation increased retinal blood flow (57.7 ± 17.8%) and oxygen extraction (34.6 ± 24.1%; p < 0.001 each). During 100% oxygen breathing the response of retinal blood flow and oxygen extraction was increased (p < 0.01 each). By contrast, breathing gas mixtures with 12% and 15% FiO2 did not alter flicker–induced retinal haemodynamic changes. The present study indicates that at a comparable increase in blood flow the increase in oxygen extraction in the retina is larger than in the brain. During systemic hyperoxia the blood flow and oxygen extraction responses to neural stimulation are augmented. The underlying mechanism is unknown. PMID:26672758

  3. Lung diffusion capacity in children with respiratory symptoms and untreated GERD.

    PubMed

    Mirić, Mirjana; Turkalj, Mirjana; Nogalo, Boro; Erceg, Damir; Perica, Marija; Plavec, Davor

    2014-05-12

    Gastroesophageal reflux disease (GERD) is associated with many respiratory disorders, among which, chronic cough, laryngitis, and asthma are among the most common. We investigated lung function, including gas diffusion capacity, in children with poor asthma control or chronic laryngitis with untreated GERD. A total of 71 children, aged 6-17 years, with chronic respiratory and other symptoms suggestive for GERD, were enrolled and divided into 2 groups: chronic laryngitis and asthma. Participants underwent 24-hour pH monitoring and lung function assessment, measurement of single-breath diffusing capacity of the lung for carbon monoxide (DLCO), and fraction of exhaled nitric oxide (FENO) measurement. 24-hour pH monitoring was positive for GERD in 92.1% of preselected children with asthma and 90.1% of children with chronic recurrent laryngitis. All flows (PEF, MEF75, MEF50, and MEF25) were significantly lower in the asthma group, while FENO and DLCO were significantly lower in the laryngitis group. A significant inverse relationship was found between DLCO and all reflux indexes in the laryngitis group. Each unit change of Johnson-DeMeester score and Boix-Ochoa score increased the odds for significantly lower DLCO in laryngitis patients by 3.9% and 5.5%, respectively. In children with uncontrolled asthma and chronic laryngitis, the regurgitation of gastric contents due to GERD contributes to poor asthma control and aggravation of chronic laryngitis. Despite having normal lung function, the gas diffusion capacity should be controlled in patients with GERD and chronic laryngitis, and it might be the very first abnormality in distal airways.

  4. Free-breathing 3D diffusion MRI for high-resolution hepatic metastasis characterization in small animals.

    PubMed

    Ribot, Emeline J; Trotier, Aurélien J; Castets, Charles R; Dallaudière, Benjamin; Thiaudière, Eric; Franconi, Jean-Michel; Miraux, Sylvain

    2016-02-01

    The goal of this study was to develop a 3D diffusion weighted sequence for free breathing liver imaging in small animals at high magnetic field. Hepatic metastases were detected and the apparent diffusion coefficients (ADC) were measured. A 3D SE-EPI sequence was developed by (i) inserting a water-selective excitation radiofrequency pulse to suppress adipose tissue signal and (ii) bipolar diffusion gradients to decrease the sensitivity to respiration motion. Mice with hepatic metastases were imaged at 7T by applying b values from 200 to 1100 s/mm(2). 3D images with high spatial resolution (182 × 156 × 125 µm) were obtained in only 8 min 32 s. The modified DW-SE-EPI sequence allowed to obtain 3D abdominal images of healthy mice with fat SNR 2.5 times lower than without any fat suppression method and sharpness 2.8 times higher than on respiration-triggered images. Due to the high spatial resolution, the core and the periphery of disseminated hepatic metastases were differentiated at high b-values only, demonstrating the presence of edema and proliferating cells (with ADC of 2.65 × 10(-3) and 1.55 × 10(-3) mm(2)/s, respectively). Furthermore, these metastases were accurately distinguished from proliferating ones within the same animal at high b-values (mean ADC of 0.38 × 10(-3) mm(2)/s). Metastases of less than 1.7 mm(3) diameter were detected. The new 3D SE-EPI sequence enabled to obtain diffusion information within liver metastases. In addition of intra-metastasis heterogeneity, differences in diffusion were measured between metastases within an animal. This sequence could be used to obtain diffusion information at high magnetic field.

  5. An acetone breath analyzer using cavity ringdown spectroscopy: an initial test with human subjects under various situations

    NASA Astrophysics Data System (ADS)

    Wang, Chuji; Surampudi, Anand B.

    2008-10-01

    We have developed a portable breath acetone analyzer using cavity ringdown spectroscopy (CRDS). The instrument was initially tested by measuring the absorbance of breath gases at a single wavelength (266 nm) from 32 human subjects under various conditions. A background subtraction method, implemented to obtain absorbance differences, from which an upper limit of breath acetone concentration was obtained, is described. The upper limits of breath acetone concentration in the four Type 1 diabetes (T1D) subjects, tested after a 14 h overnight fast, range from 0.80 to 3.97 parts per million by volume (ppmv), higher than the mean acetone concentration (0.49 ppmv) in non-diabetic healthy breath reported in the literature. The preliminary results show that the instrument can tell distinctive differences between the breath from individuals who are healthy and those with T1D. On-line monitoring of breath gases in healthy people post-exercise, post-meals and post-alcohol-consumption was also conducted. This exploratory study demonstrates the first CRDS-based acetone breath analyzer and its potential application for point-of-care, non-invasive, diabetic monitoring.

  6. Pulmonary NO and C18O2 uptake during pressure-induced lung expansion in rabbits.

    PubMed

    Heller, Hartmut; Schuster, Klaus-Dieter

    2007-01-01

    In artificially ventilated animals we investigated the dependence of the pulmonary diffusing capacities of nitric oxide (NO) and doubly 18O-labeled carbon dioxide (DLNO, DLC18O2) on lung expansion with respect to ventilator-driven increases in intrapulmonary pressure. For this purpose we applied computerized single-breath experiments to 11 anesthetized paralyzed rabbits (weight 2.8-3.8 kg) at various alveolar volumes (45-72 ml) by studying the almost entire inspiratory limb of the respective pressure/volume curves (intrapulmonary pressure: 6-27 cmH2O). The animals were ventilated with room air, employing a computerized ventilatory servo-system that we designed to maintain mechanical ventilation and to execute the particular lung function tests automatically. Each single-breath maneuver was started from residual volume (13.5+/-2 ml, mean+/-SD) by inflating the rabbit lungs with 35-55 ml indicator gas mixture containing 0.05% NO in N2 or 0.9% C18O2 in N2. Alveolar partial pressures of NO and C18O2 were measured by respiratory mass spectrometry. Values of DLNO and DLC18O2 ranged between 1.55 and 2.49 ml/(mmHg min) and 11.7 and 16.6 ml/(mmHg min), respectively. Linear regression analyses yielded a significant increase in DLNO with simultaneous increase in alveolar volume (P<0.005) and intrapulmonary pressure (P<0.023) whereas DLC18O2 was not improved. Our results suggest that the ventilator-driven lung expansion impaired the C18O2 blood uptake conductance, finally compensating for the beneficial effect of the increase in alveolar volume on DLC18O2 values.

  7. Comparative evaluation of diffusion hypoxia and psychomotor skills with or without postsedation oxygenation following administration of nitrous oxide in children undergoing dental procedures: A clinical study.

    PubMed

    Khinda, Vineet Inder Singh; Bhuria, Parvesh; Khinda, Paramjit; Kallar, Shiminder; Brar, Gurlal Singh

    2016-01-01

    Diffusion hypoxia is the most serious potential complication associated with nitrous oxide. It occurs during the recovery period. Hence, administration of 100% oxygen is mandatory as suggested by many authors. The aim of this study is to evaluate the occurrence/nonoccurrence of diffusion hypoxia in two groups of patients undergoing routine dental treatment under nitrous oxide sedation when one group is subjected to 7 min of postsedation oxygenation and the second group of the patients is made to breathe room air for the similar period. A total of sixty patients within the age group of 7-10 years requiring invasive dental procedures were randomly divided into two groups of 30 each using chit method. In the control group, patients were administered 100% oxygen postsedation, whereas, in the study group, patients were made to breathe room air postsedation. Various parameters (pulse rate, respiratory rate, blood pressure, and oxygen saturation [SpO2]) were recorded pre- and post-operatively. Data were collected and then sent for statistical analysis. The mean postoperative SpO2 at measurement times 1, 3, 5, and 7 min in both the groups was higher than the mean preoperative SpO2. This increase was statistically significant. No significant difference was found between the Trieger test scores. This study proves that clinical occurrence of diffusion hypoxia is not possible while following the routine procedure of nitrous oxide sedation.

  8. Optimization and Clinical Feasibility of Free-breathing Diffusion-weighted Imaging of the Liver: Comparison with Respiratory-Triggered Diffusion-weighted Imaging.

    PubMed

    Takayama, Yukihisa; Nishie, Akihiro; Asayama, Yoshiki; Ishigami, Kousei; Kakihara, Daisuke; Ushijima, Yasuhiro; Fujita, Nobuhiro; Yoshiura, Takashi; Takemura, Atsushi; Obara, Makoto; Takahara, Taro; Honda, Hiroshi

    2015-01-01

    We compared the image quality of free-breathing diffusion-weighted imaging (FB-DWI) to that of respiratory-triggered DWI (RT-DWI) after proper optimization. Three healthy subjects were scanned to optimize magnetic resonance (MR) parameters of FB-DWI to improve image quality, including spatial resolution, image noise, and chemical shift artifacts. After this optimization, we scanned 32 patients with liver disease to assess the clinical feasibility of the optimized FB-DWI. Of the 32 patients, 14 had a total of 28 hepatocellular carcinomas (HCCs), four had a total of 15 metastatic liver tumors, and the other 14 had no tumor. Qualitatively, we compared the image quality scores of FB-DWI with those of RT-DWI with the Wilcoxon signed-rank test. Quantitatively, we compared the signal-to-noise ratios (SNRs) of the liver parenchyma, lesion-to-nonlesion contrast-to-noise ratios (CNRs) and apparent diffusion coefficient (ADC) values of the liver parenchyma and liver tumor by the paired t-test. The average scores of image quality for sharpness of liver contour, image noise, and chemical shift artifacts were significantly higher for FB-DWI than RT-DWI (P < 0.05). SNRs, CNRs, and ADC values of the liver parenchyma and tumors did not differ significantly between the 2 DWI methods. Compared with RT-DWI, the optimized FB-DWI provided better spatial resolution, fewer artifacts, and comparable SNRs, lesion-to-nonlesion CNRs, and ADC values.

  9. Incorporation of Prior Knowledge of Signal Behavior Into the Reconstruction to Accelerate the Acquisition of Diffusion MRI Data.

    PubMed

    Abascal, Juan F P J; Desco, Manuel; Parra-Robles, Juan

    2018-02-01

    Diffusion MRI data are generally acquired using hyperpolarized gases during patient breath-hold, which yields a compromise between achievable image resolution, lung coverage, and number of -values. In this paper, we propose a novel method that accelerates the acquisition of diffusion MRI data by undersampling in both the spatial and -value dimensions and incorporating knowledge about signal decay into the reconstruction (SIDER). SIDER is compared with total variation (TV) reconstruction by assessing its effect on both the recovery of ventilation images and the estimated mean alveolar dimensions (MADs). Both methods are assessed by retrospectively undersampling diffusion data sets ( =8) of healthy volunteers and patients with Chronic Obstructive Pulmonary Disease (COPD) for acceleration factors between x2 and x10. TV led to large errors and artifacts for acceleration factors equal to or larger than x5. SIDER improved TV, with a lower solution error and MAD histograms closer to those obtained from fully sampled data for acceleration factors up to x10. SIDER preserved image quality at all acceleration factors, although images were slightly smoothed and some details were lost at x10. In conclusion, we developed and validated a novel compressed sensing method for lung MRI imaging and achieved high acceleration factors, which can be used to increase the amount of data acquired during breath-hold. This methodology is expected to improve the accuracy of estimated lung microstructure dimensions and provide more options in the study of lung diseases with MRI.

  10. All APAPs Are Not Equivalent for the Treatment of Sleep Disordered Breathing: A Bench Evaluation of Eleven Commercially Available Devices.

    PubMed

    Zhu, Kaixian; Roisman, Gabriel; Aouf, Sami; Escourrou, Pierre

    2015-07-15

    This study challenged on a bench-test the efficacy of auto-titrating positive airway pressure (APAP) devices for obstructive sleep disordered breathing treatment and evaluated the accuracy of the device reports. Our bench consisted of an active lung simulator and a Starling resistor. Eleven commercially available APAP devices were evaluated on their reactions to single-type SDB sequences (obstructive apnea and hypopnea, central apnea, and snoring), and to a long general breathing scenario (5.75 h) simulating various SDB during four sleep cycles and to a short scenario (95 min) simulating one sleep cycle. In the single-type sequence of 30-minute repetitive obstructive apneas, only 5 devices normalized the airflow (> 70% of baseline breathing amplitude). Similarly, normalized breathing was recorded with 8 devices only for a 20-min obstructive hypopnea sequence. Five devices increased the pressure in response to snoring. Only 4 devices maintained a constant minimum pressure when subjected to repeated central apneas with an open upper airway. In the long general breathing scenario, the pressure responses and the treatment efficacy differed among devices: only 5 devices obtained a residual obstructive AHI < 5/h. During the short general breathing scenario, only 2 devices reached the same treatment efficacy (p < 0.001), and 3 devices underestimated the AHI by > 10% (p < 0.001). The long scenario led to more consistent device reports. Large differences between APAP devices in the treatment efficacy and the accuracy of report were evidenced in the current study. © 2015 American Academy of Sleep Medicine.

  11. A randomised controlled trial of three or one breathing technique training sessions for breathlessness in people with malignant lung disease.

    PubMed

    Johnson, Miriam J; Kanaan, Mona; Richardson, Gerry; Nabb, Samantha; Torgerson, David; English, Anne; Barton, Rachael; Booth, Sara

    2015-09-07

    About 90 % of patients with intra-thoracic malignancy experience breathlessness. Breathing training is helpful, but it is unknown whether repeated sessions are needed. The present study aims to test whether three sessions are better than one for breathlessness in this population. This is a multi-centre randomised controlled non-blinded parallel arm trial. Participants were allocated to three sessions or single (1:2 ratio) using central computer-generated block randomisation by an independent Trials Unit and stratified for centre. The setting was respiratory, oncology or palliative care clinics at eight UK centres. Inclusion criteria were people with intrathoracic cancer and refractory breathlessness, expected prognosis ≥3 months, and no prior experience of breathing training. The trial intervention was a complex breathlessness intervention (breathing training, anxiety management, relaxation, pacing, and prioritisation) delivered over three hour-long sessions at weekly intervals, or during a single hour-long session. The main primary outcome was worst breathlessness over the previous 24 hours ('worst'), by numerical rating scale (0 = none; 10 = worst imaginable). Our primary analysis was area under the curve (AUC) 'worst' from baseline to 4 weeks. All analyses were by intention to treat. Between April 2011 and October 2013, 156 consenting participants were randomised (52 three; 104 single). Overall, the 'worst' score reduced from 6.81 (SD, 1.89) to 5.84 (2.39). Primary analysis [n = 124 (79 %)], showed no between-arm difference in the AUC: three sessions 22.86 (7.12) vs single session 22.58 (7.10); P value = 0.83); mean difference 0.2, 95 % CIs (-2.31 to 2.97). Complete case analysis showed a non-significant reduction in QALYs with three sessions (mean difference -0.006, 95 % CIs -0.018 to 0.006). Sensitivity analyses found similar results. The probability of the single session being cost-effective (threshold value of £20,000 per QALY) was over 80 %. There was no evidence that three sessions conferred additional benefits, including cost-effectiveness, over one. A single session of breathing training seems appropriate and minimises patient burden. Registry: ISRCTN; ISRCTN49387307; http://www.isrctn.com/ISRCTN49387307 ; registration date: 25/01/2011.

  12. A dual mode breath sampler for the collection of the end-tidal and dead space fractions.

    PubMed

    Salvo, P; Ferrari, C; Persia, R; Ghimenti, S; Lomonaco, T; Bellagambi, F; Di Francesco, F

    2015-06-01

    This work presents a breath sampler prototype automatically collecting end-tidal (single and multiple breaths) or dead space air fractions (multiple breaths). This result is achieved by real time measurements of the CO2 partial pressure and airflow during the expiratory and inspiratory phases. Suitable algorithms, used to control a solenoid valve, guarantee that a Nalophan(®) bag is filled with the selected breath fraction even if the subject under test hyperventilates. The breath sampler has low pressure drop (<0.5 kPa) and uses inert or disposable components to avoid bacteriological risk for the patients and contamination of the breath samples. A fully customisable software interface allows a real time control of the hardware and software status. The performances of the breath sampler were evaluated by comparing (a) the CO2 partial pressure calculated during the sampling with the CO2 pressure measured off-line within the Nalophan(®) bag; (b) the concentrations of four selected volatile organic compounds in dead space, end-tidal and mixed breath fractions. Results showed negligible deviations between calculated and off-line CO2 pressure values and the distributions of the selected compounds into dead space, end-tidal and mixed breath fractions were in agreement with their chemical-physical properties. Copyright © 2015. Published by Elsevier Ltd.

  13. Validation and application of single breath cardiac output determinations in man

    NASA Technical Reports Server (NTRS)

    Loeppky, J. A.; Fletcher, E. R.; Myhre, L. G.; Luft, U. C.

    1986-01-01

    The results of a procedure for estimating cardiac output by a single-breath technique (Qsb), obtained in healthy males during supine rest and during exercise on a bicycle ergometer, were compared with the results on cardiac output obtained by the direct Fick method (QF). The single breath maneuver consisted of a slow exhalation to near residual volume following an inspiration somewhat deeper than normal. The Qsb calculations incorporated an equation of the CO2 dissociation curve and a 'moving spline' sequential curve-fitting technique to calculate the instantaneous R from points on the original expirogram. The resulting linear regression equation indicated a 24-percent underestimation of QF by the Qsb technique. After applying a correction, the Qsb-QF relationship was improved. A subsequent study during upright rest and exercise to 80 percent of VO2(max) in 6 subjects indicated a close linear relationship between Qsb and VO2 for all 95 values obtained, with slope and intercept close to those in published studies in which invasive cardiac output measurements were used.

  14. Attempts at estimating mixed venous carbon dioxide tension by the single-breath method.

    PubMed

    Ohta, H; Takatani, O; Matsuoka, T

    1989-01-01

    The single-breath method was originally proposed by Kim et al. [1] for estimating the blood carbon dioxide tension and cardiac output. Its reliability has not been proven. The present study was undertaken, using dogs, to compare the mixed venous carbon dioxide tension (PVCO2) calculated by the single-breath method with the PVCO2 measured in mixed venous blood, and to evaluate the influence of variations in the exhalation duration and the volume of expired air usually discarded from computations as the deadspace. Among the exhalation durations of 15, 30 and 45 s tested, the 15 s duration was found to be too short to obtain an analyzable O2-CO2 curve, but at either 30 or 45 s, the calculated values of PVCO2 were comparable to the measured PVCO2. A significant agreement between calculated and measured PVCO2 was obtained when the expired gas with PCO2 less than 22 Torr was considered as deadspace gas.

  15. The Use of Steady and Unsteady Detonation Waves for Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Adelman, Henry G.; Menees, Gene P.; Cambier, Jean-Luc; Bowles, Jeffrey V.; Cavolowsky, John A. (Technical Monitor)

    1995-01-01

    Detonation wave enhanced supersonic combustors such as the Oblique Detonation Wave Engine (ODWE) are attractive propulsion concepts for hypersonic flight. These engines utilize detonation waves to enhance fuel-air mixing and combustion. The benefits of wave combustion systems include shorter and lighter engines which require less cooling and generate lower internal drag. These features allow air-breathing operation at higher Mach numbers than the diffusive burning scramjet delaying the need for rocket engine augmentation. A comprehensive vehicle synthesis code has predicted the aerodynamic characteristics and structural size and weight of a typical single-stage-to-orbit vehicle using an ODWE. Other studies have focused on the use of unsteady or pulsed detonation waves. For low speed applications, pulsed detonation engines (PDE) have advantages in low weight and higher efficiency than turbojets. At hypersonic speeds, the pulsed detonations can be used in conjunction with a scramjet type engine to enhance mixing and provide thrust augmentation.

  16. Load Carriage Induced Alterations of Pulmonary Function

    DTIC Science & Technology

    1989-01-01

    pulmonar , function reductions are directh’ related to the backpack load carried due to the mechanical constraint it imposes on the thoracic cage.2 To...and Fish- man. A.P.. 1965. The regulation of venttlation in diffuse Agostor. E.. D’Angelc, E. and Piolini, M., 1978. Breathing pulmonary fibrosis . J

  17. Abdominal organ motion during inhalation and exhalation breath-holds: pancreatic motion at different lung volumes compared.

    PubMed

    Lens, Eelco; Gurney-Champion, Oliver J; Tekelenburg, Daniël R; van Kesteren, Zdenko; Parkes, Michael J; van Tienhoven, Geertjan; Nederveen, Aart J; van der Horst, Astrid; Bel, Arjan

    2016-11-01

    Contrary to what is commonly assumed, organs continue to move during breath-holding. We investigated the influence of lung volume on motion magnitude during breath-holding and changes in velocity over the duration of breath-holding. Sixteen healthy subjects performed 60-second inhalation breath-holds in room-air, with lung volumes of ∼100% and ∼70% of the inspiratory capacity, and exhalation breath-holds, with lung volumes of ∼30% and ∼0% of the inspiratory capacity. During breath-holding, we obtained dynamic single-slice magnetic-resonance images with a time-resolution of 0.6s. We used 2-dimensional image correlation to obtain the diaphragmatic and pancreatic velocity and displacement during breath-holding. Organ velocity was largest in the inferior-superior direction and was greatest during the first 10s of breath-holding, with diaphragm velocities of 0.41mm/s, 0.29mm/s, 0.16mm/s and 0.15mm/s during BH 100% , BH 70% , BH 30% and BH 0% , respectively. Organ motion magnitudes were larger during inhalation breath-holds (diaphragm moved 9.8 and 9.0mm during BH 100% and BH 70% , respectively) than during exhalation breath-holds (5.6 and 4.3mm during BH 30% and BH 0% , respectively). Using exhalation breath-holds rather than inhalation breath-holds and delaying irradiation until after the first 10s of breath-holding may be advantageous for irradiation of abdominal tumors. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Quantitative analysis of hepatic fat fraction by single-breath-holding MR spectroscopy with T₂ correction: phantom and clinical study with histologic assessment.

    PubMed

    Hayashi, Norio; Miyati, Tosiaki; Minami, Takashi; Takeshita, Yumie; Ryu, Yasuji; Matsuda, Tsuyoshi; Ohno, Naoki; Hamaguchi, Takashi; Kato, Kenichiro; Takamura, Toshinari; Matsui, Osamu

    2013-01-01

    The focus of this study was on the investigation of the accuracy of the fat fraction of the liver by use of single-breath-holding magnetic resonance spectroscopy (MRS) with T (2) correction. Single-voxel proton MRS was performed with several TE values, and the fat fraction was determined with and without T (2) correction. MRS was also performed with use of the point-resolved spectroscopy sequence in single breath holding. The T (2) values of both water and fat were determined separately at the same time, and the effect of T (2) on the fat fraction was corrected. In addition, MRS-based fat fractions were compared with the degree of hepatic steatosis (HS) by liver biopsy in human subjects. With T (2) correction, the MRI-derived fat fractions were in good agreement with the fat fractions in all phantoms, but the fat fractions were overestimated without T (2) correction. R (2) values were in good agreement with the preset iron concentrations in the phantoms. The MRI-derived fat fraction was well correlated with the degree of HS. Iron deposited in the liver affects the signal strength when proton MRS is used for detection of the fat signal in the liver. However, the fat signal can be evaluated more accurately when the T (2) correction is applied. Breath-holding MRS minimizes the respiratory motion, and it can be more accurate in the quantification of the hepatic fat fraction.

  19. Free-breathing quantification of hepatic fat in healthy children and children with nonalcoholic fatty liver disease using a multi-echo 3-D stack-of-radial MRI technique.

    PubMed

    Armstrong, Tess; Ly, Karrie V; Murthy, Smruthi; Ghahremani, Shahnaz; Kim, Grace Hyun J; Calkins, Kara L; Wu, Holden H

    2018-05-04

    In adults, noninvasive chemical shift encoded Cartesian magnetic resonance imaging (MRI) and single-voxel magnetic resonance (MR) spectroscopy (SVS) accurately quantify hepatic steatosis but require breath-holding. In children, especially young and sick children, breath-holding is often limited or not feasible. Sedation can facilitate breath-holding but is highly undesirable. For these reasons, there is a need to develop free-breathing MRI technology that accurately quantifies steatosis in all children. This study aimed to compare non-sedated free-breathing multi-echo 3-D stack-of-radial (radial) MRI versus standard breath-holding MRI and SVS techniques in a group of children for fat quantification with respect to image quality, accuracy and repeatability. Healthy children (n=10, median age [±interquartile range]: 10.9 [±3.3] years) and overweight children with nonalcoholic fatty liver disease (NAFLD) (n=9, median age: 15.2 [±3.2] years) were imaged at 3 Tesla using free-breathing radial MRI, breath-holding Cartesian MRI and breath-holding SVS. Acquisitions were performed twice to assess repeatability (within-subject mean difference, MD within ). Images and hepatic proton-density fat fraction (PDFF) maps were scored for image quality. Free-breathing and breath-holding PDFF were compared using linear regression (correlation coefficient, r and concordance correlation coefficient, ρ c ) and Bland-Altman analysis (mean difference). P<0.05 was considered significant. In patients with NAFLD, free-breathing radial MRI demonstrated significantly less motion artifacts compared to breath-holding Cartesian (P<0.05). Free-breathing radial PDFF demonstrated a linear relationship (P<0.001) versus breath-holding SVS PDFF and breath-holding Cartesian PDFF with r=0.996 and ρ c =0.994, and r=0.997 and ρ c =0.995, respectively. The mean difference in PDFF between free-breathing radial MRI, breath-holding Cartesian MRI and breath-holding SVS was <0.7%. Repeated free-breathing radial MRI had MD within =0.25% for PDFF. In this pediatric study, non-sedated free-breathing radial MRI provided accurate and repeatable hepatic PDFF measurements and improved image quality, compared to standard breath-holding MR techniques.

  20. Diffusion Weighted Magnetic Resonance Imaging Assessment of Blood Flow in the Microvasculature of Abdominal Organs

    NASA Astrophysics Data System (ADS)

    Truica, Loredana Sorina

    In this thesis, water diffusion in human liver and placenta is studied using diffusion weighted magnetic resonance imaging. For short, randomly oriented vascular segments, intravascular water motion is diffusion-like. For tissues with large vascular compartments the diffusion decay is bi-exponential with one component corresponding to diffusing water and the other to water in the microvasculature. This model, known as the intravoxel incoherent motion (IVIM) model, is seldom used with abdominal organs because of motion artifacts. This limitation was overcome for the experiments reported here by introducing: 1) parallel imaging, 2) navigator echo respiratory triggering (NRT), 3) a double echo diffusion sequence that inherently compensates for eddy current effects, 4) SPAIR fat suppression and 5) a superior approach to image analysis. In particular, the use of NRT allowed us to use a free breathing protocol instead of the previously required breath hold protocol. The resulting DWI images were of high quality and motion artifact free. Diffusion decays were measured over a larger portion of the decay than had previously been reported and the results are considerably better than those previously reported. For both studies, reliable measurements of the diffusion coefficient (D), pseudo-diffusion coefficient (D) and perfusion fraction (f), were obtained using a region of interest analysis as well as a pixel-by-pixel approach. To within experimental error, all patients had the same values of D (1.10 mum 2/ms +/- 0.16 mum2/ms), D* (46 mum2/ms +/- 17 mum2/ms) and f (44.0% +/- 6.9%) in liver and D (1.8 mum 2/ms +/- 0.2 mum2/ms), D* (30 mum 2/ms +/- 12 mmu2/ms), and f (40% +/- 6%) in the placenta. No dependence on gestational age was found for the placental study. Parametric maps of f and D* were consistent with blood flow patterns in both systems. The model worked well for both investigated organs even though their anatomical structures are quite different. A method for removing rectified noise bias from low intensity magnitude MR images measured with phased array coils is also presented. This algorithm has significance for diffusion decay measurements since it permits the use of low intensity data points which could, for example, allow the acquisition of high resolution parametric maps.

  1. Matter over mind: a randomised-controlled trial of single-session biofeedback training on performance anxiety and heart rate variability in musicians.

    PubMed

    Wells, Ruth; Outhred, Tim; Heathers, James A J; Quintana, Daniel S; Kemp, Andrew H

    2012-01-01

    Musical performance is a skilled activity performed under intense pressure, thus is often a profound source of anxiety. In other contexts, anxiety and its concomitant symptoms of sympathetic nervous system arousal have been successfully ameliorated with HRV biofeedback (HRV BF), a technique involving slow breathing which augments autonomic and emotional regulatory capacity. This randomised-controlled study explored the impact of a single 30-minute session of HRV BF on anxiety in response to a highly stressful music performance. A total of 46 trained musicians participated in this study and were randomly allocated to a slow breathing with or without biofeedback or no-treatment control group. A 3 Group×2 Time mixed experimental design was employed to compare the effect of group before and after intervention on performance anxiety (STAI-S) and frequency domain measures of HRV. Slow breathing groups (n=30) showed significantly greater improvements in high frequency (HF) and LF/HF ratio measures of HRV relative to control (n=15) during 5 minute recordings of performance anticipation following the intervention (effect size: η(2) =0.122 and η(2) =0.116, respectively). The addition of biofeedback to a slow breathing protocol did not produce differential results. While intervention groups did not exhibit an overall reduction in self-reported anxiety, participants with high baseline anxiety who received the intervention (n=15) displayed greater reductions in self-reported state anxiety relative to those in the control condition (n=7) (r=0.379). These findings indicate that a single session of slow breathing, regardless of biofeedback, is sufficient for controlling physiological arousal in anticipation of psychosocial stress associated with music performance and that slow breathing is particularly helpful for musicians with high levels of anxiety. Future research is needed to further examine the effects of HRV BF as a low-cost, non-pharmacological treatment for music performance anxiety.

  2. Deposition in the distal parts of the bovine respiratory tract: assessment of equipment suitable for drug inhalation.

    PubMed

    Genicot, B; Votion, D; Munsters, K; Close, R; Lindsey, J K; Lekeux, P

    1996-03-30

    The efficiency of equipment suitable for the inhalation of drugs by calves was assessed in six animals which inhaled radioisotopically labelled particles while suffering from reversible diffuse bronchoconstriction induced experimentally with 5-hydroxytryptamine and while they were breathing normally. Respiratory rates and data from pulmonary function tests and scintiscans were recorded during both investigations. After the first investigation, a mean (se) wash-out period of 9.8 (3.2) days was allowed. Under diffuse bronchoconstriction, the respiratory rate, the oscillatory resistance and the compliance of the respiratory system reached 282.1 (22.0), 161.1 (10.8) and 68.8 (2.7) per cent of their respective baseline values. When the calves were breathing normally these parameters did not change over time. The ratios (Cp/Ct) of the counts of gamma-disintegrations in the peripheral part (Cp) of the lungs and in the total lung area (Ct) were not significantly different when comparing the results from the two investigations. The ratios of Cp/Ct in the left lungs did not differ significantly from those in the right lungs.

  3. Preliminary observations on the effect of hypoxic and hyperbaric stress on pulmonary gas exchange in breath-hold divers.

    PubMed

    Garbella, Erika; Piarulli, Andrea; Fornai, Edo; Pingitore, Alessandro; Prediletto, Renato

    2011-06-01

    To evaluate pulmonary alveolar-capillary membrane integrity and ventilation/perfusion mismatch after breath-hold diving. Pulmonary diffusing capacity to carbon monoxide (DLCO) and nitric oxide (DLNO), haemoglobin (Hb) and haematocrit (Hct) were measured in six elite divers before and at 2, 10 and 25 minutes after a maximal breath-hold dive to a depth of 10 metres' sea water. Compared to pre-dive, DLCO showed a slight increase at 2 minutes in five subjects and a tendency to decrease at 25 minutes (P < 0.001) in all subjects. DLNO showed an increase at 10 minutes in three divers and a slight decrease at 25 minutes in five subjects. There was a small but significant (P < 0.001) increase in Hb and Hct at 2 minutes, possibly affecting the DLCO measurements. An early but transient increase in DLCO in five divers may reflect the central shift in blood volume during a breath-hold dive. The late parallel decrease in DLCO and DLNO likely reflects alveolar-capillary distress (interstitial oedema). The DLNO increase in three subjects at 10 minutes may suggest ventilation/perfusion mismatch.

  4. Raman spectroscopy: Watching a molecule breathe

    NASA Astrophysics Data System (ADS)

    Piatkowski, Lukasz; Hugall, James T.; van Hulst, Niek F.

    2014-08-01

    Marrying the single-molecule detection ability of surface-enhanced Raman scattering with the extreme time resolution of ultrafast coherent spectroscopy enables the vibrations of a single molecule to be observed.

  5. Diffusion tensor imaging demonstrates brainstem and cerebellar abnormalities in congenital central hypoventilation syndrome.

    PubMed

    Kumar, Rajesh; Macey, Paul M; Woo, Mary A; Alger, Jeffry R; Harper, Ronald M

    2008-09-01

    Congenital central hypoventilation syndrome (CCHS) patients show reduced breathing drive during sleep, decreased hypoxic and hypercapnic ventilatory responses, and autonomic and affective deficits, suggesting both brainstem and forebrain injuries. Forebrain damage was previously described in CCHS, but methodological limitations precluded detection of brainstem injury, a concern because genetic mutations in CCHS target brainstem autonomic nuclei. To assess brainstem and cerebellar areas, we used diffusion tensor imaging-based measures, namely axial diffusivity, reflecting water diffusion parallel to fibers, and sensitive to axonal injury, and radial diffusivity, measuring diffusion perpendicular to fibers, and indicative of myelin injury. Diffusion tensor imaging was performed in 12 CCHS and 26 controls, and axial and radial diffusivity maps were compared between groups using analysis of covariance (covariates; age and gender). Increased axial diffusivity in CCHS appeared within the lateral medulla and clusters with injury extended from the dorsal midbrain through the periaqueductal gray, raphé, and superior cerebellar decussation, ventrally to the basal-pons. Cerebellar cortex and deep nuclei, and the superior and inferior cerebellar peduncles showed increased radial diffusivity. Midbrain, pontine, and lateral medullary structures, and the cerebellum and its fiber systems are injured in CCHS, likely contributing to the characteristics found in the syndrome.

  6. Single-breath analysis using a novel simple sampler and capillary electrophoresis with contactless conductometric detection.

    PubMed

    Greguš, Michal; Foret, František; Kubáň, Petr

    2015-02-01

    The analysis of ionic content of exhaled breath condensate (EBC) from one single breath by CE with C(4) D is demonstrated for the first time. A miniature sampler made from a 2-mL syringe and an aluminum cooling cylinder for collection of EBC was developed. Various parameters of the sampler that influence its collection efficiency, repeatability, and effect of respiratory patterns were studied in detail. Efficient procedures for the cleanup of the miniature sampler were also developed and resulted in significant improvement of sampling repeatability. Analysis of EBC was performed by CE-C(4) D in a 60 mM MES/l-histidine BGE with 30 μM CTAB and 2 mM 18-crown-6 at pH 6 and excellent repeatability of migration times (RSD < 1.3% (n = 7)) and peak areas (RSD < 7% (n = 7)) of 12 inorganic anions, cations, and organic acids was obtained. It has been shown that the breathing pattern has a significant impact on the concentration of the analytes in the collected EBC. As the ventilatory pattern can be easily controlled during single exhalation, the developed collection system and method provides a highly reproducible and fast way of collecting EBC with applicability in point-of-care diagnostics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Two dimensional microcirculation mapping with real time spatial frequency domain imaging

    NASA Astrophysics Data System (ADS)

    Zheng, Yang; Chen, Xinlin; Lin, Weihao; Cao, Zili; Zhu, Xiuwei; Zeng, Bixin; Xu, M.

    2018-02-01

    We present a spatial frequency domain imaging (SFDI) study of local hemodynamics in the human finger cuticle of healthy volunteers performing paced breathing and the forearm of healthy young adults performing normal breathing with our recently developed Real Time Single Snapshot Multiple Frequency Demodulation - Spatial Frequency Domain Imaging (SSMD-SFDI) system. A two-layer model was used to map the concentrations of deoxy-, oxy-hemoglobin, melanin, epidermal thickness and scattering properties at the subsurface of the forearm and the finger cuticle. The oscillations of the concentrations of deoxy- and oxy-hemoglobin at the subsurface of the finger cuticle and forearm induced by paced breathing and normal breathing, respectively, were found to be close to out-of-phase, attributed to the dominance of the blood flow modulation by paced breathing or heartbeat. Our results suggest that the real time SFDI platform may serve as one effective imaging modality for microcirculation monitoring.

  8. [Analysis of the distribution of VOCs concentration field with oil static breathing loss in internal floating roof tank].

    PubMed

    Wu, Hong-Zhang; Huang, Wei-Qiu; Yang, Guang; Zhao, Chen-Lu; Wang, Ying-Xia; Cai, Dao-Fei

    2013-12-01

    Internal floating roof tank has the advantages of external floating roof tank and fixed roof tank and has its own evaporation loss properties. The influences of volatile organic compounds (VOCs) distribution gradient, molecular diffusion, thermal diffusion and forced convection on the evaporation loss of oil were studied in the space of the homemade platform of an internal floating roof tank. The results showed that thermal diffusion with temperature change was the main cause for the static loss in the internal floating roof tank. On this basis, there were some measures for reduction of the evaporation loss and formulas to calculate the evaporation loss of the internal floating roof tank in this research.

  9. Cross-cultural comparison of the sleep-disordered breathing prevalence among Americans and Japanese

    PubMed Central

    Yamagishi, Kazumasa; Ohira, Tetsuya; Nakano, Hiroshi; Bielinski, Suzette J.; Sakurai, Susumu; Imano, Hironori; Kiyama, Masahiko; Kitamura, Akihiko; Sato, Shinichi; Konishi, Masamitsu; Shahar, Eyal; Folsom, Aaron R.; Iso, Hiroyasu; Tanigawa, Takeshi

    2010-01-01

    To compare the sleep-disordered breathing prevalence among Hispanic and white Americans and Japanese, we performed a one-night sleep study with a single channel airflow monitor on 211 Hispanics and 246 whites from the Minnesota Field Center of the Multi-Ethnic Study of Atherosclerosis (MESA), and 978 Japanese from three community-based cohorts of the Circulatory Risk in Communities Study (CIRCS) in Japan. The respiratory disturbance index and sleep-disordered breathing, defined as respiratory disturbance index ≥ 15 disturbances/hr, were estimated. The sleep-disordered breathing prevalence was higher in men (34.2%) than women (14.8%), and higher among Hispanics (36.5%) and whites (33.3%) than among Japanese (18.4%), corresponding to differences in body mass index. Within body mass index strata, the race difference in sleep-disordered breathing was attenuated. This was also true when we adjusted for body mass index instead of stratification. The strong association between body mass index and sleep-disordered breathing was similar in Japanese and Americans. The sleep-disordered breathing prevalence was lower among Japanese than the Americans. However, the association of body mass index with sleep-disordered breathing was strong, and similar among the race/ethnic groups studied. The majority of the race/ethnic difference in sleep-disordered breathing prevalence was explained by a difference in body mass index distribution. PMID:20110399

  10. Evaluation of Bio-VOC Sampler for Analysis of Volatile Organic Compounds in Exhaled Breath

    PubMed Central

    Kwak, Jae; Fan, Maomian; Harshman, Sean W.; Garrison, Catherine E.; Dershem, Victoria L.; Phillips, Jeffrey B.; Grigsby, Claude C.; Ott, Darrin K.

    2014-01-01

    Monitoring volatile organic compounds (VOCs) from exhaled breath has been used to determine exposures of humans to chemicals. Prior to analysis of VOCs, breath samples are often collected with canisters or bags and concentrated. The Bio-VOC breath sampler, a commercial sampling device, has been recently introduced to the market with growing use. The main advantage for this sampler is to collect the last portion of exhaled breath, which is more likely to represent the air deep in the lungs. However, information about the Bio-VOC sampler is somewhat limited. Therefore, we have thoroughly evaluated the sampler here. We determined the volume of the breath air collected in the sampler was approximately 88 mL. When sampling was repeated multiple times, with the succeeding exhalations applied to a single sorbent tube, we observed linear relationships between the normalized peak intensity and the number of repeated collections with the sampler in many of the breath VOCs detected. No moisture effect was observed on the Tenax sorbent tubes used. However, due to the limitation in the collection volume, the use of the Bio-VOC sampler is recommended only for detection of VOCs present at high concentrations unless repeated collections of breath samples on the sampler are conducted. PMID:25532709

  11. Air breathing and aquatic gas exchange during hypoxia in armoured catfish.

    PubMed

    Scott, Graham R; Matey, Victoria; Mendoza, Julie-Anne; Gilmour, Kathleen M; Perry, Steve F; Almeida-Val, Vera M F; Val, Adalberto L

    2017-01-01

    Air breathing in fish is commonly believed to have arisen as an adaptation to aquatic hypoxia. The effectiveness of air breathing for tissue O 2 supply depends on the ability to avoid O 2 loss as oxygenated blood from the air-breathing organ passes through the gills. Here, we evaluated whether the armoured catfish (Hypostomus aff. pyreneusi)-a facultative air breather-can avoid branchial O 2 loss while air breathing in aquatic hypoxia, and we measured various other respiratory and metabolic traits important for O 2 supply and utilization. Fish were instrumented with opercular catheters to measure the O 2 tension (PO 2 ) of expired water, and air breathing and aquatic respiration were measured during progressive stepwise hypoxia in the water. Armoured catfish exhibited relatively low rates of O 2 consumption and gill ventilation, and gill ventilation increased in hypoxia due primarily to increases in ventilatory stroke volume. Armoured catfish began air breathing at a water PO 2 of 2.5 kPa, and both air-breathing frequency and hypoxia tolerance (as reflected by PO 2 at loss of equilibrium, LOE) was greater in individuals with a larger body mass. Branchial O 2 loss, as reflected by higher PO 2 in expired than in inspired water, was observed in a minority (4/11) of individuals as water PO 2 approached that at LOE. Armoured catfish also exhibited a gill morphology characterized by short filaments bearing short fused lamellae, large interlamellar cell masses, low surface area, and a thick epithelium that increased water-to-blood diffusion distance. Armoured catfish had a relatively low blood-O 2 binding affinity when sampled in normoxia (P 50 of 3.1 kPa at pH 7.4), but were able to rapidly increase binding affinity during progressive hypoxia exposure (to a P 50 of 1.8 kPa). Armoured catfish also had low activities of several metabolic enzymes in white muscle, liver, and brain. Therefore, low rates of metabolism and gill ventilation, and a reduction in branchial gas-exchange capacity, may help minimize branchial O 2 loss in armoured catfish while air breathing in aquatic hypoxia.

  12. Diffusion Lung Imaging with Hyperpolarized Gas MRI

    PubMed Central

    Yablonskiy, Dmitriy A; Sukstanskii, Alexander L; Quirk, James D

    2015-01-01

    Lung imaging using conventional 1H MRI presents great challenges due to low density of lung tissue, lung motion and very fast lung tissue transverse relaxation (typical T2* is about 1-2 ms). MRI with hyperpolarized gases (3He and 129Xe) provides a valuable alternative due to a very strong signal originated from inhaled gas residing in the lung airspaces and relatively slow gas T2* relaxation (typical T2* is about 20-30 ms). Though in vivo human experiments should be done very fast – usually during a single breath-hold. In this review we describe the recent developments in diffusion lung MRI with hyperpolarized gases. We show that a combination of modeling results of gas diffusion in lung airspaces and diffusion measurements with variable diffusion-sensitizing gradients allows extracting quantitative information on the lung microstructure at the alveolar level. This approach, called in vivo lung morphometry, allows from a less than 15-second MRI scan, providing quantitative values and spatial distributions of the same physiological parameters as are measured by means of the “standard” invasive stereology (mean linear intercept, surface-to-volume ratio, density of alveoli, etc.). Besides, the approach makes it possible to evaluate some advanced Weibel parameters characterizing lung microstructure - average radii of alveolar sacs and ducts, as well as the depth of their alveolar sleeves. Such measurements, providing in vivo information on the integrity of pulmonary acinar airways and their changes in different diseases, are of great importance and interest to a broad range of physiologists and clinicians. We also discuss a new type of experiments that are based on the in vivo lung morphometry technique combined with quantitative CT measurements as well as with the Gradient Echo MRI measurements of hyperpolarized gas transverse relaxation in the lung airspaces. Such experiments provide additional information on the blood vessel volume fraction, specific gas volume, the length of acinar airways, and allows evaluation of lung parenchymal and non-parenchymal tissue. PMID:26676342

  13. Effect of deuteration on hydrogen bonding: A comparative concentration dependent Raman and DFT study of pyridine in CH3OH and CD3OD and pyrimidine in H2O and D2O

    NASA Astrophysics Data System (ADS)

    Singh, Anurag; Gangopadhyay, Debraj; Popp, Jürgen; Singh, Ranjan K.

    2012-12-01

    The relative effect of hydrogen bonding of pyrimidine (Pyr) in H2O/D2O and pyridine (Py) in CH3OH/CD3OD has been analyzed using Raman Difference Spectroscopic (RDS) technique and DFT calculations. This study is focused on analyzing the concentration dependent variation of linewidth, peak position and intensity of ring breathing mode of Py and Pyr. The ring breathing mode of Pyr in H2O and D2O has three components; due to free Pyr, lighter complexes of mPyr + nH2O/D2O and heavier complexes of mPyr + nH2O/D2O. The pyridine molecules, however, show only two components in CH3OH and CD3OD. Of these two components, one corresponds to free Py and the other inhomogeneously broadened profile corresponds to all mPy + nCH3OH/CD3OD complexes. The variation of peak position and linewidth establishes the role of dipole moment of complexes and the diffusion in the mixture. In case of CD3OD solution splitting was observed in ˜1030 cm-1 band of Py, where an additional band at ˜1034 cm-1 appears at x(Py) ⩽ 0.4. However, this band remains single at all concentrations in case of CH3OH solvent.

  14. Estimating BrAC from transdermal alcohol concentration data using the BrAC estimator software program.

    PubMed

    Luczak, Susan E; Rosen, I Gary

    2014-08-01

    Transdermal alcohol sensor (TAS) devices have the potential to allow researchers and clinicians to unobtrusively collect naturalistic drinking data for weeks at a time, but the transdermal alcohol concentration (TAC) data these devices produce do not consistently correspond with breath alcohol concentration (BrAC) data. We present and test the BrAC Estimator software, a program designed to produce individualized estimates of BrAC from TAC data by fitting mathematical models to a specific person wearing a specific TAS device. Two TAS devices were worn simultaneously by 1 participant for 18 days. The trial began with a laboratory alcohol session to calibrate the model and was followed by a field trial with 10 drinking episodes. Model parameter estimates and fit indices were compared across drinking episodes to examine the calibration phase of the software. Software-generated estimates of peak BrAC, time of peak BrAC, and area under the BrAC curve were compared with breath analyzer data to examine the estimation phase of the software. In this single-subject design with breath analyzer peak BrAC scores ranging from 0.013 to 0.057, the software created consistent models for the 2 TAS devices, despite differences in raw TAC data, and was able to compensate for the attenuation of peak BrAC and latency of the time of peak BrAC that are typically observed in TAC data. This software program represents an important initial step for making it possible for non mathematician researchers and clinicians to obtain estimates of BrAC from TAC data in naturalistic drinking environments. Future research with more participants and greater variation in alcohol consumption levels and patterns, as well as examination of gain scheduling calibration procedures and nonlinear models of diffusion, will help to determine how precise these software models can become. Copyright © 2014 by the Research Society on Alcoholism.

  15. Single Breath-Hold Non-Contrast Thoracic MRA Using Highly-Accelerated Parallel Imaging With a 32-element Coil Array

    PubMed Central

    Xu, Jian; Mcgorty, Kelly Anne; Lim, Ruth. P.; Bruno, Mary; Babb, James S.; Srichai, Monvadi B.; Kim, Daniel; Sodickson, Daniel K.

    2011-01-01

    OBJECTIVE To evaluate the feasibility of performing single breath-hold 3D thoracic non-contrast magnetic resonance angiography (NC-MRA) using highly-accelerated parallel imaging. MATERIALS AND METHODS We developed a single breath-hold NC MRA pulse sequence using balanced steady state free precession (SSFP) readout and highly-accelerated parallel imaging. In 17 subjects, highly-accelerated non-contrast MRA was compared against electrocardiogram (ECG)-triggered contrast-enhanced MRA. Anonymized images were randomized for blinded review by two independent readers for image quality, artifact severity in 8 defined vessel segments and aortic dimensions in 6 standard sites. NC-MRA and CE-MRA were compared in terms of these measures using paired sample t and Wilcoxon tests. RESULTS The overall image quality (3.21±0.68 for NC-MRA vs. 3.12±0.71 for CE-MRA) and artifact (2.87±1.01 for NC-MRA vs. 2.92±0.87 for CE-MRA) scores were not significantly different, but there were significant differences for the great vessel and coronary artery origins. NC-MRA demonstrated significantly lower aortic diameter measurements compared to CE-MRA; however, this difference was not considered clinically relevant (>3 mm difference) for less than 12% of segments, most commonly at the sinotubular junction. Mean total scan time was significantly lower for NC-MRA compared to CE-MRA (18.2 ± 6.0s vs. 28.1 ± 5.4s, respectively; p < 0.05). CONCLUSION Single breath-hold NC-MRA is feasible and can be a useful alternative for evaluation and follow-up of thoracic aortic diseases. PMID:22147589

  16. Water management in a planar air-breathing fuel cell array using operando neutron imaging

    NASA Astrophysics Data System (ADS)

    Coz, E.; Théry, J.; Boillat, P.; Faucheux, V.; Alincant, D.; Capron, P.; Gébel, G.

    2016-11-01

    Operando Neutron imaging is used for the investigation of a planar air-breathing array comprising multiple cells in series. The fuel cell demonstrates a stable power density level of 150 mW/cm2. Water distribution and quantification is carried out at different operating points. Drying at high current density is observed and correlated to self-heating and natural convection. Working in dead-end mode, water accumulation at lower current density is largely observed on the anode side. However, flooding mechanisms are found to begin with water condensation on the cathode side, leading to back-diffusion and anodic flooding. Specific in-plane and through-plane water distribution is observed and linked to the planar array design.

  17. Liver diffusivity in healthy volunteers and patients with chronic liver disease: comparison of breathhold and free-breathing techniques.

    PubMed

    Eatesam, Mamak; Noworolski, Susan M; Tien, Phyllis C; Nystrom, Michelle; Dodge, Jennifer L; Merriman, Raphael B; Qayyum, Aliya

    2012-01-01

    To compare liver ADC obtained with breathhold and free-breathing diffusion weighted imaging (DWI) in healthy volunteers and patients with liver disease. Twenty-eight subjects, 12 healthy volunteers and 16 patients (9 NAFLD, 7 chronic active HCV), underwent breathhold (BH) and free-breathing (FB) DWI MRI at 1.5 Tesla. Pearson's correlation coefficient was used to determine correlation while paired t-tests assessed differences between BH and FB ADC. Estimated bias was calculated using the Bland-Altman method. Liver ADC (×10(-3) mm(2) /s) was lower on BH for all groups (mean difference 0.36 ± 0.20; P < 0.01). ADC was higher in healthy volunteers (BH 1.80 ± 0.18; FB 2.24 ± 0.20) compared with NAFLD patients (BH 1.43 ± 0.27; FB 1.78 ± 0.28) (P < 0.001) and HCV patients (BH 1.63 ± 0.191; FB 1.88 ± 0.12). Overall correlation between BH and FB ADC was (r = 0.75), greatest in NAFLD (r = 0.90) compared with the correlation in HCV (r = 0.24) and healthy subjects (r = 0.34). Bland-Altman plots did not show agreement in mean absolute difference and estimated bias between subjects. Correlation between BH and FB liver ADC is moderate indicating that BH and FB should not be used interchangeably. Additionally, the lower ADC values in BH versus FB should be accounted for when comparing different liver DWI studies. Copyright © 2011 Wiley-Liss, Inc.

  18. Exhaled human breath measurement method for assessing exposure to halogenated volatile organic compounds.

    PubMed

    Pleil, J D; Lindstrom, A B

    1997-05-01

    The organic constituents of exhaled human breath are representative of blood-borne concentrations through gas exchange in the blood/breath interface in the lungs. The presence of specific compounds can be an indicator of recent exposure or represent a biological response of the subject. For volatile organic compounds (VOCs), sampling and analysis of breath is preferred to direct measurement from blood samples because breath collection is noninvasive, potentially infectious waste is avoided, and the measurement of gas-phase analytes is much simpler in a gas matrix rather than in a complex biological tissue such as blood. To exploit these advantages, we have developed the "single breath canister" (SBC) technique, a simple direct collection method for individual alveolar breath samples, and adapted conventional gas chromatography-mass spectrometry analytical methods for trace-concentration VOC analysis. The focus of this paper is to describe briefly the techniques for making VOC measurements in breath, to present some specific applications for which these methods are relevant, and to demonstrate how to estimate exposure to example VOCs on the basis of breath elimination. We present data from three different exposure scenarios: (a) vinyl chloride and cis-1,2-dichloroethene from showering with contaminated water from a private well, (b) chloroform and bromodichloromethane from high-intensity swimming in chlorinated pool water, and (c) trichloroethene from a controlled exposure chamber experiment. In all cases, for all subjects, the experiment is the same: preexposure breath measurement, exposure to halogenated VOC, and a postexposure time-dependent series of breath measurements. Data are presented only to demonstrate the use of the method and how to interpret the analytical results.

  19. The diving paradox: new insights into the role of the dive response in air-breathing vertebrates.

    PubMed

    Davis, Randall W; Polasek, Lori; Watson, Rebecca; Fuson, Amanda; Williams, Terrie M; Kanatous, Shane B

    2004-07-01

    When aquatic reptiles, birds and mammals submerge, they typically exhibit a dive response in which breathing ceases, heart rate slows, and blood flow to peripheral tissues is reduced. The profound dive response that occurs during forced submergence sequesters blood oxygen for the brain and heart while allowing peripheral tissues to become anaerobic, thus protecting the animal from immediate asphyxiation. However, the decrease in peripheral blood flow is in direct conflict with the exercise response necessary for supporting muscle metabolism during submerged swimming. In free diving animals, a dive response still occurs, but it is less intense than during forced submergence, and whole-body metabolism remains aerobic. If blood oxygen is not sequestered for brain and heart metabolism during normal diving, then what is the purpose of the dive response? Here, we show that its primary role may be to regulate the degree of hypoxia in skeletal muscle so that blood and muscle oxygen stores can be efficiently used. Paradoxically, the muscles of diving vertebrates must become hypoxic to maximize aerobic dive duration. At the same time, morphological and enzymatic adaptations enhance intracellular oxygen diffusion at low partial pressures of oxygen. Optimizing the use of blood and muscle oxygen stores allows aquatic, air-breathing vertebrates to exercise for prolonged periods while holding their breath.

  20. From Chicken Breath to the Killer Lakes of Cameroon: Uniting Seven Interesting Phenomena with a Single Chemical Underpinning.

    ERIC Educational Resources Information Center

    DeLorenzo, Ron

    2001-01-01

    Recommends integrating different applications to serve the need for students to know the relevancy of the course of their future. Uses different and unrelated phenomena to teach equilibria. Introduces six phenomena; (1) Killer Lakes of Cameroon, (2) Chicken Breath, (3) The Permian Ocean, (4) Snow Line, (5) Hard-Water Boiler Scale, and (6)…

  1. Matter Over Mind: A Randomised-Controlled Trial of Single-Session Biofeedback Training on Performance Anxiety and Heart Rate Variability in Musicians

    PubMed Central

    Wells, Ruth; Outhred, Tim; Heathers, James A. J.; Quintana, Daniel S.; Kemp, Andrew H.

    2012-01-01

    Background Musical performance is a skilled activity performed under intense pressure, thus is often a profound source of anxiety. In other contexts, anxiety and its concomitant symptoms of sympathetic nervous system arousal have been successfully ameliorated with HRV biofeedback (HRV BF), a technique involving slow breathing which augments autonomic and emotional regulatory capacity. Objective: This randomised-controlled study explored the impact of a single 30-minute session of HRV BF on anxiety in response to a highly stressful music performance. Methods A total of 46 trained musicians participated in this study and were randomly allocated to a slow breathing with or without biofeedback or no-treatment control group. A 3 Group×2 Time mixed experimental design was employed to compare the effect of group before and after intervention on performance anxiety (STAI-S) and frequency domain measures of HRV. Results Slow breathing groups (n = 30) showed significantly greater improvements in high frequency (HF) and LF/HF ratio measures of HRV relative to control (n = 15) during 5 minute recordings of performance anticipation following the intervention (effect size: η2 = 0.122 and η2 = 0.116, respectively). The addition of biofeedback to a slow breathing protocol did not produce differential results. While intervention groups did not exhibit an overall reduction in self-reported anxiety, participants with high baseline anxiety who received the intervention (n = 15) displayed greater reductions in self-reported state anxiety relative to those in the control condition (n = 7) (r = 0.379). Conclusions These findings indicate that a single session of slow breathing, regardless of biofeedback, is sufficient for controlling physiological arousal in anticipation of psychosocial stress associated with music performance and that slow breathing is particularly helpful for musicians with high levels of anxiety. Future research is needed to further examine the effects of HRV BF as a low-cost, non-pharmacological treatment for music performance anxiety. PMID:23056361

  2. Breath volatile organic compounds for the gut-fatty liver axis: Promise, peril, and path forward

    PubMed Central

    Solga, Steven Francis

    2014-01-01

    The worldwide interest in the gut microbiome and its impact on the upstream liver highlight a critical upside to breath research: it can uniquely measure otherwise unmeasurable biology. Bacteria make gases [volatile organic compounds (VOCs)] that are directly relevant to pathophysiology of the fatty liver and associated conditions, including obesity. Measurement of these VOCs and their metabolites in the exhaled breath, therefore, present an opportunity to safely and easily evaluate, on both a personal and a population level, some of our most pressing public health threats. This is an opportunity that must be pursued. To date, however, breath analysis remains a slowly evolving field which only occasionally impacts clinical research or patient care. One major obstacle to progress is that breath analysis is inherently and emphatically mutli-disciplinary: it connects engineering, chemistry, breath mechanics, biology and medicine. Unbalanced or incomplete teams may produce inconsistent and often unsatisfactory results. A second impediment is the lack of a well-known stepwise structure for the development of non-invasive diagnostics. As a result, the breath research landscape is replete with orphaned single-center pilot studies. Often, important hypotheses and key observations have not been pursued to maturation. This paper reviews the rationale and requirements for breath VOC research applied to the gut-fatty liver axis and offers some suggestions for future development. PMID:25083075

  3. Parametric spatiotemporal oscillation in reaction-diffusion systems.

    PubMed

    Ghosh, Shyamolina; Ray, Deb Shankar

    2016-03-01

    We consider a reaction-diffusion system in a homogeneous stable steady state. On perturbation by a time-dependent sinusoidal forcing of a suitable scaling parameter the system exhibits parametric spatiotemporal instability beyond a critical threshold frequency. We have formulated a general scheme to calculate the threshold condition for oscillation and the range of unstable spatial modes lying within a V-shaped region reminiscent of Arnold's tongue. Full numerical simulations show that depending on the specificity of nonlinearity of the models, the instability may result in time-periodic stationary patterns in the form of standing clusters or spatially localized breathing patterns with characteristic wavelengths. Our theoretical analysis of the parametric oscillation in reaction-diffusion system is corroborated by full numerical simulation of two well-known chemical dynamical models: chlorite-iodine-malonic acid and Briggs-Rauscher reactions.

  4. Parametric spatiotemporal oscillation in reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Ghosh, Shyamolina; Ray, Deb Shankar

    2016-03-01

    We consider a reaction-diffusion system in a homogeneous stable steady state. On perturbation by a time-dependent sinusoidal forcing of a suitable scaling parameter the system exhibits parametric spatiotemporal instability beyond a critical threshold frequency. We have formulated a general scheme to calculate the threshold condition for oscillation and the range of unstable spatial modes lying within a V-shaped region reminiscent of Arnold's tongue. Full numerical simulations show that depending on the specificity of nonlinearity of the models, the instability may result in time-periodic stationary patterns in the form of standing clusters or spatially localized breathing patterns with characteristic wavelengths. Our theoretical analysis of the parametric oscillation in reaction-diffusion system is corroborated by full numerical simulation of two well-known chemical dynamical models: chlorite-iodine-malonic acid and Briggs-Rauscher reactions.

  5. Comparison of Free-Breathing With Navigator-Triggered Technique in Diffusion Weighted Imaging for Evaluation of Small Hepatocellular Carcinoma: Effect on Image Quality and Intravoxel Incoherent Motion Parameters.

    PubMed

    Shan, Yan; Zeng, Meng-su; Liu, Kai; Miao, Xi-Yin; Lin, Jiang; Fu, Cai xia; Xu, Peng-ju

    2015-01-01

    To evaluate the effect on image quality and intravoxel incoherent motion (IVIM) parameters of small hepatocellular carcinoma (HCC) from choice of either free-breathing (FB) or navigator-triggered (NT) diffusion-weighted (DW) imaging. Thirty patients with 37 small HCCs underwent IVIM DW imaging using 12 b values (0-800 s/mm) with 2 sequences: NT, FB. A biexponential analysis with the Bayesian method yielded true diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction (f) in small HCCs and liver parenchyma. Apparent diffusion coefficient (ADC) was also calculated. The acquisition time and image quality scores were assessed for 2 sequences. Independent sample t test was used to compare image quality, signal intensity ratio, IVIM parameters, and ADC values between the 2 sequences; reproducibility of IVIM parameters, and ADC values between 2 sequences was assessed with the Bland-Altman method (BA-LA). Image quality with NT sequence was superior to that with FB acquisition (P = 0.02). The mean acquisition time for FB scheme was shorter than that of NT sequence (6 minutes 14 seconds vs 10 minutes 21 seconds ± 10 seconds P < 0.01). The signal intensity ratio of small HCCs did not vary significantly between the 2 sequences. The ADC and IVIM parameters from the 2 sequences show no significant difference. Reproducibility of D*and f parameters in small HCC was poor (BA-LA: 95% confidence interval, -180.8% to 189.2% for D* and -133.8% to 174.9% for f). A moderate reproducibility of D and ADC parameters was observed (BA-LA: 95% confidence interval, -83.5% to 76.8% for D and -74.4% to 88.2% for ADC) between the 2 sequences. The NT DW imaging technique offers no advantage in IVIM parameters measurements of small HCC except better image quality, whereas FB technique offers greater confidence in fitted diffusion parameters for matched acquisition periods.

  6. Reaction time following yoga bellows-type breathing and breath awareness.

    PubMed

    Telles, Shirley; Yadav, Arti; Gupta, Ram Kumar; Balkrishna, Acharya

    2013-08-01

    The reaction time (RT) was assessed in two groups of healthy males, yoga group (M age = 29.0 yr.) and non-yoga or control group (M age = 29.0 yr.), with 35 participants each. The yoga group had an average experience of 6 months, while the control group was yoga-naïve. The yoga group was assessed in two sessions, (i) bhastrika pranayama or bellows breathing and (ii) breath awareness, while the control group had a single control session. The two experimental sessions, one with each type of breathing, and the control session consisted of pre- (5 min.), during (18 min.), and post-session epochs (5 min.). Assessments were made in the pre- and post-session epochs using a Multi-Operational Apparatus for Reaction Time. Following 18 min. of bhastrika pranayama there was a statistically significant reduction in number of anticipatory responses compared to before the practice. This suggests that the immediate effect of bhastrika pranayama is to inhibit unnecessary responding to stimuli.

  7. SU-F-303-13: Initial Evaluation of Four Dimensional Diffusion- Weighted MRI (4D-DWI) and Its Effect On Apparent Diffusion Coefficient (ADC) Measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y; Yin, F; Czito, B

    2015-06-15

    Purpose: Diffusion-weighted imaging(DWI) has been shown to have superior tumor-to-tissue contrast for cancer detection.This study aims at developing and evaluating a four dimensional DWI(4D-DWI) technique using retrospective sorting method for imaging respiratory motion for radiotherapy planning,and evaluate its effect on Apparent Diffusion Coefficient(ADC) measurement. Materials/Methods: Image acquisition was performed by repeatedly imaging a volume of interest using a multi-slice single-shot 2D-DWI sequence in the axial planes and cine MRI(served as reference) using FIESTA sequence.Each 2D-DWI image were acquired in xyz-diffusion-directions with a high b-value(b=500s/mm2).The respiratory motion was simultaneously recorded using bellows.Retrospective sorting was applied in each direction to reconstruct 4D-DWI.Themore » technique was evaluated using a computer simulated 4D-digital human phantom(XCAT),a motion phantom and a healthy volunteer under an IRB-approved study.Motion trajectories of regions-of-interests(ROI) were extracted from 4D-DWI and compared with reference.The mean motion trajectory amplitude differences(D) between the two was calculated.To quantitatively analyze the motion artifacts,XCAT were controlled to simulate regular motion and the motions of 10 liver cancer patients.4D-DWI,free-breathing DWI(FB- DWI) were reconstructed.Tumor volume difference(VD) of each phase of 4D-DWI and FB-DWI from the input static tumor were calculated.Furthermore, ADC was measured for each phase of 4D-DWI and FB-DWI data,and mean tumor ADC values(M-ADC) were calculated.Mean M-ADC over all 4D-DWI phases was compared with M-ADC calculated from FB-DWI. Results: 4D-DWI of XCAT,the motion phantom and the healthy volunteer demonstrated the respiratory motion clearly.ROI D values were 1.9mm,1.7mm and 2.0mm,respectively.For motion artifacts analysis,XCAT 4D-DWI images show much less motion artifacts compare to FB-DWI.Mean VD for 4D-WDI and FB-DWI were 8.5±1.4% and 108±15%,respectively.Mean M-ADC for ADC measured from 4D-DWI and M-ADC measured from FB-DWI were (2.29±0.04)*0.001*mm2/s and (3.80±0.01)*0.001*mm2/s,respectively.ADC value ground-truth is 2.24*0.001*mm2/s from the input of the simulation. Conclusion: A respiratory correlated 4D-DWI technique has been initially evaluated in phantoms and a human subject.Comparing to free breathing DWI,4D-DWI can lead to more accurate measurement of ADC.« less

  8. Acquiring 4D Thoracic CT Scans Using Ciné CT Acquisition

    NASA Astrophysics Data System (ADS)

    Low, Daniel

    One method for acquiring 4D thoracic CT scans is to use ciné acquisition. Ciné acquisition is conducted by rotating the gantry and acquiring x-ray projections while keeping the couch stationary. After a complete rotation, a single set of CT slices, the number corresponding to the number of CT detector rows, is produced. The rotation period is typically sub second so each image set corresponds to a single point in time. The ciné image acquisition is repeated for at least one breathing cycle to acquire images throughout the breathing cycle. Once the images are acquired at a single couch position, the couch is moved to the abutting position and the acquisition is repeated. Post-processing of the images sets typically resorts the sets into breathing phases, stacking images from a specific phase to produce a thoracic CT scan at that phase. Benefits of the ciné acquisition protocol include, the ability to precisely identify the phase with respect to the acquired image, the ability to resort images after reconstruction, and the ability to acquire images over arbitrarily long times and for arbitrarily many images (within dose constraints).

  9. Classical Spin Nematic Transition in LiGa0.95In0.05Cr4O8

    NASA Astrophysics Data System (ADS)

    Wawrzyńczak, R.; Tanaka, Y.; Yoshida, M.; Okamoto, Y.; Manuel, P.; Casati, N.; Hiroi, Z.; Takigawa, M.; Nilsen, G. J.

    2017-08-01

    We present the results of a combined 7Li -NMR and diffraction study on LiGa0.95In0.05Cr4O8, a member of the LiGa1 -xInxCr4O8 "breathing" pyrochlore family. Via specific heat and NMR measurements, we find that the complex sequence of first-order transitions observed for LiGaCr4O8 is replaced by a single second-order transition at Tf=11 K . Neutron and x-ray diffraction rule out both structural symmetry lowering and magnetic long-range order as the origin of this transition. Instead, reverse Monte Carlo fitting of the magnetic diffuse scattering indicates that the low-temperature phase may be described as a collinear spin nematic state, characterized by a quadrupolar order parameter. This state also shows signs of short-range order between collinear spin arrangements on tetrahedra, revealed by mapping the reverse Monte Carlo spin configurations onto a three-state color model.

  10. The Philadelphia epidemic of Legionnaire's disease: clinical, pulmonary, and serologic findings two years later.

    PubMed

    Lattimer, G L; Rhodes, L V; Salventi, J S; Galgon, J P; Stonebraker, V; Boley, S; Haas, G

    1979-04-01

    Clinical, pulmonary, and serologic findings in Legionnaires who attended the 1976 American Legion Convention in Philadelphia were studied 2 years after the Legionnaires' disease epidemic there. All 31 survivors of Legionnaires' disease studied became ill within 2 weeks after the convention, and 18 had not fully recovered 2 years after the epidemic. Twenty-five (28%) of 90 additional Legionnaires exposed at the convention but not diagnosed as having Legionnaires' disease became ill during the same time interval; five of these had symptoms during the next 2 years. Survivors had decreased diffusion capacities measured by the carbon monoxide single-breath method. These differences could not be accounted for by ventilation abnormalities or concurrent illness. Significant levels of IgG or IgM antibodies persisted in 94% of survivors of Legionnaires' disease and in 53% of Legionnaires exposed at the convention, which suggests a high prevalence of subclinical infection. Persistence of IgM antibody raises the question of latency or subclinical infection as part of the natural history of Legionnaires' disease.

  11. Adhesion of volatile propofol to breathing circuit tubing.

    PubMed

    Lorenz, Dominik; Maurer, Felix; Trautner, Katharina; Fink, Tobias; Hüppe, Tobias; Sessler, Daniel I; Baumbach, Jörg Ingo; Volk, Thomas; Kreuer, Sascha

    2017-08-21

    Propofol in exhaled breath can be measured and may provide a real-time estimate of plasma concentration. However, propofol is absorbed in plastic tubing, thus estimates may fail to reflect lung/blood concentration if expired gas is not extracted directly from the endotracheal tube. We evaluated exhaled propofol in five ventilated ICU patients who were sedated with propofol. Exhaled propofol was measured once per minute using ion mobility spectrometry. Exhaled air was sampled directly from the endotracheal tube and at the ventilator end of the expiratory side of the anesthetic circuit. The circuit was disconnected from the patient and propofol was washed out with a separate clean ventilator. Propofol molecules, which discharged from the expiratory portion of the breathing circuit, were measured for up to 60 h. We also determined whether propofol passes through the plastic of breathing circuits. A total of 984 data pairs (presented as median values, with 95% confidence interval), consisting of both concentrations were collected. The concentration of propofol sampled near the patient was always substantially higher, at 10.4 [10.25-10.55] versus 5.73 [5.66-5.88] ppb (p < 0.001). The reduction in concentration over the breathing circuit tubing was 4.58 [4.48-4.68] ppb, 3.46 [3.21-3.73] in the first hour, 4.05 [3.77-4.34] in the second hour, and 4.01 [3.36-4.40] in the third hour. Out-gassing propofol from the breathing circuit remained at 2.8 ppb after 60 h of washing out. Diffusion through the plastic was not observed. Volatile propofol binds or adsorbs to the plastic of a breathing circuit with saturation kinetics. The bond is reversible so propofol can be washed out from the plastic. Our data confirm earlier findings that accurate measurements of volatile propofol require exhaled air to be sampled as close as possible to the patient.

  12. Measurement of flow and dispersion in an in-vitro model of a single human alveolus

    NASA Astrophysics Data System (ADS)

    Chhabra, Sudhaker; Prasad, Ajay

    2006-11-01

    The acinar region of the lung consists of alveoli and respiratory bronchioles. Alveoli are the smallest units which participate in gas exchange with the blood. Alveoli can also be exploited as a delivery site for inhaled therapeutic aerosols. While gas transport is governed primarily by diffusion due to the small length scales associated with the acinar region (of the order of 500 microns), the transport and deposition of inhaled aerosol particles is influenced by convective airflow patterns. The current work focuses on measuring the airflow patterns in the acinar region using an in-vitro model of a single alveolus located on a bronchiole. The model consists of a single transparent 5/6^th hemispherical oscillating alveolus attached to a rigid circular tube. The alveolus, fabricated from an elastic latex film, is capable of expanding and contracting in phase with the oscillatory flow through the rigid tube. Realistic breathing conditions were achieved by matching Reynolds and Womersley numbers. Particle image velocimetry was used to measure the resulting flow patterns. Data will be presented to show the effect of oscillatory flow in the bronchiole and alveolar wall motion on the flow and dispersion within the alveolus. In particular, measurement of the recirculating flow within the alveolus, and the fluid exchange between the bronchiole and the alveolus provide insights for the transport, mixing and deposition of inhaled aerosols.

  13. How Dark Are Radial Breathing Modes in Plasmonic Nanodisks?

    PubMed

    Schmidt, Franz-Philipp; Losquin, Arthur; Hofer, Ferdinand; Hohenau, Andreas; Krenn, Joachim R; Kociak, Mathieu

    2018-03-21

    Due to a vanishing dipole moment, radial breathing modes in small flat plasmonic nanoparticles do not couple to light and have to be probed with a near-field source, as in electron energy loss spectroscopy (EELS). With increasing particle size, retardation gives rise to light coupling, enabling probing breathing modes optically or by cathodoluminescence (CL). Here, we investigate single silver nanodisks with diameters of 150-500 nm by EELS and CL in an electron microscope and quantify the EELS/CL ratio, which corresponds to the ratio of full to radiative damping of the breathing mode. For the investigated diameter range, we find the CL signal to increase by about 1 order of magnitude, in agreement with numerical simulations. Due to reciprocity, our findings corroborate former optical experiments and enable a quantitative understanding of the light coupling of dark plasmonic modes.

  14. Status of selected ion flow tube MS: accomplishments and challenges in breath analysis and other areas.

    PubMed

    Smith, David; Španěl, Patrik

    2016-06-01

    This article reflects our observations of recent accomplishments made using selected ion flow tube MS (SIFT-MS). Only brief descriptions are given of SIFT-MS as an analytical method and of the recent extensions to the underpinning analytical ion chemistry required to realize more robust analyses. The challenge of breath analysis is given special attention because, when achieved, it renders analysis of other air media relatively straightforward. Brief overviews are given of recent SIFT-MS breath analyses by leading research groups, noting the desirability of detection and quantification of single volatile biomarkers rather than reliance on statistical analyses, if breath analysis is to be accepted into clinical practice. A 'strengths, weaknesses, opportunities and threats' analysis of SIFT-MS is made, which should help to increase its utility for trace gas analysis.

  15. Wave reflection in a reaction-diffusion system: breathing patterns and attenuation of the echo.

    PubMed

    Tsyganov, M A; Ivanitsky, G R; Zemskov, E P

    2014-05-01

    Formation and interaction of the one-dimensional excitation waves in a reaction-diffusion system with the piecewise linear reaction functions of the Tonnelier-Gerstner type are studied. We show that there exists a parameter region where the established regime of wave propagation depends on initial conditions. Wave phenomena with a complex behavior are found: (i) the reflection of waves at a growing distance (the remote reflection) upon their collision with each other or with no-flux boundaries and (ii) the periodic transformation of waves with the jumping from one regime of wave propagation to another (the periodic trigger wave).

  16. Wave reflection in a reaction-diffusion system: Breathing patterns and attenuation of the echo

    NASA Astrophysics Data System (ADS)

    Tsyganov, M. A.; Ivanitsky, G. R.; Zemskov, E. P.

    2014-05-01

    Formation and interaction of the one-dimensional excitation waves in a reaction-diffusion system with the piecewise linear reaction functions of the Tonnelier-Gerstner type are studied. We show that there exists a parameter region where the established regime of wave propagation depends on initial conditions. Wave phenomena with a complex behavior are found: (i) the reflection of waves at a growing distance (the remote reflection) upon their collision with each other or with no-flux boundaries and (ii) the periodic transformation of waves with the jumping from one regime of wave propagation to another (the periodic trigger wave).

  17. Investigation at Mach Numbers 2.98 and 2.18 of Axially Symmetric Free-jet Diffusion with a Ram-jet Engine

    NASA Technical Reports Server (NTRS)

    Hunczak, Henry R

    1952-01-01

    An investigation was conducted to determine the effectiveness of a free-jet diffuser in reducing the over-all pressure ratios required to operate a free jet with a large air-breathing engine as a test vehicle. Efficient operation of the free jet was determined with and without the considerations required for producing suitable engine-inlet flow conditions. A minimum operating pressure ration of 5.5 was attained with a ratio of nozzle-exit to engine-inlet area of 1.85. Operation of the free jet with unstable engine-inlet flow (buzz) is also included.

  18. Chemical pneumonitis and subsequent reactive airways dysfunction syndrome after a single exposure to a household product: a case report.

    PubMed

    Khalid, Imran; Godfrey, Amanda M; Ouellette, Daniel R

    2009-11-09

    Household products are usually safe to use. Adverse events arising from their use are mostly reported in patients with pre-existing atopy or pulmonary problems and usually only after a prolonged exposure to such products. We report the case of a patient with no prior problems who developed significant side effects from a single exposure to a domestic product. A 43-year-old Caucasian American man, previously in good health, used a domestic aerosol product called 'Stand N' Seal "Spray-On" Grout Sealer' in an enclosed room in his house. The product contained n-butyl acetate (<5%), propane (10%), isobutane (<5%), C8-C9 petroleum hydrocarbon solvent (80%), a fluoropolymer resin and a solvent. Within a few hours of exposure to the sealant, he developed rapidly progressive shortness of breath and a severe non-productive cough. By the time he reached the emergency room he was severely hypoxic. A diagnosis of chemical pneumonitis was made based on the clinical scenario and the diffuse infiltrates on the computer tomography scan. With supportive therapy, his condition improved and he was discharged from the hospital. However, he continued to have symptoms of intermittent cough and shortness of breath in response to strong odours, fumes, cold air and exertion even after his chest radiograph had normalized. Three months later, bronchial hyper-responsiveness was documented by a methacholine inhalation test and a diagnosis of reactive airways dysfunction syndrome was made. The patient was started on high-dose inhaled steroids and his symptoms improved. The mechanism of toxicity and determination of the exact agent responsible is still under investigation. A household product may still prove unsafe to use even after it has gone through vigorous testing and approval processes. Even healthy individuals are susceptible to adverse outcomes after a brief exposure. Extra precautions should be taken when using any chemical product at home.

  19. An automated system for pulmonary function testing

    NASA Technical Reports Server (NTRS)

    Mauldin, D. G.

    1974-01-01

    An experiment to quantitate pulmonary function was accepted for the space shuttle concept verification test. The single breath maneuver and the nitrogen washout are combined to reduce the test time. Parameters are defined from the forced vital capacity maneuvers. A spirometer measures the breath volume and a magnetic section mass spectrometer provides definition of gas composition. Mass spectrometer and spirometer data are analyzed by a PDP-81 digital computer.

  20. Research Technology

    NASA Image and Video Library

    2004-04-15

    Pictured is an artist's concept of the Rocket Based Combined Cycle (RBCC) launch. The RBCC's overall objective is to provide a technology test bed to investigate critical technologies associated with opperational usage of these engines. The program will focus on near term technologies that can be leveraged to ultimately serve as the near term basis for Two Stage to Orbit (TSTO) air breathing propulsions systems and ultimately a Single Stage To Orbit (SSTO) air breathing propulsion system.

  1. Human expiration content diagnostics by tunable diode lasers in middle infrared

    NASA Astrophysics Data System (ADS)

    Kouznetsov, Andrian I.; Moskalenko, Konstantin L.; Nadezhdinskii, Alexander I.; Stepanov, Eugene V.

    1992-04-01

    Results on the application of tunable diode laser gas analysis to determining the trace components of human breath are presented. Schemes of the analyzers specially developed for measurement of both carbon oxides in expiration are described. A few results illuminating possible applications of TDL in high sensitive medical diagnostics have been obtained. For nonsmokers, the expired concentration of CO is slightly higher than inhaled air. Specific surplus value depends on the person's age. The surplus CO content increased significantly just after intensive physical exercises like jogging. For smokers, the farmacokinetical curve of abundant CO removal from the organism could be investigated. The smoking status of tested individuals becomes easy available. Breath-hold simultaneous measurements of CO and CO2 have shown the difference in the dependencies of their concentrations on breath-holding time. The possibility to investigate phenomena like molecular pulmonary diffusion of the alveolar-capillary membrane and an organism's compensation reactions to oxygen shortage seems to become real. Perspective leads for development and the application of diode laser spectroscopy methods to the analysis of gaseous microimpurities in medicine are also discussed.

  2. Ammonia as a respiratory gas in water and air-breathing fishes.

    PubMed

    Randall, David J; Ip, Yuen K

    2006-11-01

    Ammonia is produced in the liver and excreted as NH(3) by diffusion across the gills. Elevated ammonia results in an increase in gill ventilation, perhaps via stimulation of gill oxygen chemo-receptors. Acidification of the water around the fish by carbon dioxide and acid excretion enhances ammonia excretion and constitutes "environmental ammonia detoxification". Fish have difficulties in excreting ammonia in alkaline water or high concentrations of environmental ammonia, or when out of water. The mudskipper, Periphthalmodon schlosseri, is capable of active NH(4)(+) transport, maintaining low internal levels of ammonia. To prevent a back flux of NH(3), these air-breathing fish can increase gill acid excretion and reduce the membrane NH(3) permeability by modifying the phospholipid and cholesterol compositions of their skin. Several air-breathing fish species can excrete ammonia into air through NH(3) volatilization. Some fish detoxify ammonia to glutamine or urea. The brains of some fish can tolerate much higher levels of ammonia than other animals. Studies of these fish may offer insights into the nature of ammonia toxicity in general.

  3. Risk of Neurological Insult in Competitive Deep Breath-Hold Diving.

    PubMed

    Tetzlaff, Kay; Schöppenthau, Holger; Schipke, Jochen D

    2017-02-01

    It has been widely believed that tissue nitrogen uptake from the lungs during breath-hold diving would be insufficient to cause decompression stress in humans. With competitive free diving, however, diving depths have been ever increasing over the past decades. A case is presented of a competitive free-diving athlete who suffered stroke-like symptoms after surfacing from his last dive of a series of 3 deep breath-hold dives. A literature and Web search was performed to screen for similar cases of subjects with serious neurological symptoms after deep breath-hold dives. A previously healthy 31-y-old athlete experienced right-sided motor weakness and difficulty speaking immediately after surfacing from a breathhold dive to a depth of 100 m. He had performed 2 preceding breath-hold dives to that depth with surface intervals of only 15 min. The presentation of symptoms and neuroimaging findings supported a clinical diagnosis of stroke. Three more cases of neurological insults were retrieved by literature and Web search; in all cases the athletes presented with stroke-like symptoms after single breath-hold dives of depths exceeding 100 m. Two of these cases only had a short delay to recompression treatment and completely recovered from the insult. This report highlights the possibility of neurological insult, eg, stroke, due to cerebral arterial gas embolism as a consequence of decompression stress after deep breath-hold dives. Thus, stroke as a clinical presentation of cerebral arterial gas embolism should be considered another risk of extreme breath-hold diving.

  4. Designing breathalyser technology for the developing world: how a single breath can fight the double disease burden.

    PubMed

    Krisher, Sarah; Riley, Alison; Mehta, Khanjan

    2014-04-01

    The meteoric rise in the prevalence of non-communicable diseases, alongside already high rates of infectious diseases, is exacerbating the 'double disease burden' in the developing world. There is a desperate need for affordable, accessible and ruggedized diagnostic tools that detect diseases early and direct patients to the correct channels. Breath analysis, the science of utilizing biomarkers in the breath for diagnostic measures, is growing rapidly, especially for use in clinical diagnostic settings. Breathalyser technologies are improving scientifically, but are not yet ready for productization and dissemination to address healthcare challenges. How does one ensure that these new biomedical devices will be suitable for use in developing communities? This article presents a comprehensive review of breath analysis technologies followed by a discussion on how such devices can be designed to conform with WHO's ASSURED criteria so as to reach and sustain in developing countries where they are needed the most.

  5. How Dark Are Radial Breathing Modes in Plasmonic Nanodisks?

    PubMed Central

    2017-01-01

    Due to a vanishing dipole moment, radial breathing modes in small flat plasmonic nanoparticles do not couple to light and have to be probed with a near-field source, as in electron energy loss spectroscopy (EELS). With increasing particle size, retardation gives rise to light coupling, enabling probing breathing modes optically or by cathodoluminescence (CL). Here, we investigate single silver nanodisks with diameters of 150–500 nm by EELS and CL in an electron microscope and quantify the EELS/CL ratio, which corresponds to the ratio of full to radiative damping of the breathing mode. For the investigated diameter range, we find the CL signal to increase by about 1 order of magnitude, in agreement with numerical simulations. Due to reciprocity, our findings corroborate former optical experiments and enable a quantitative understanding of the light coupling of dark plasmonic modes. PMID:29607350

  6. Rocket Based Combined Cycle (RBCC) Engine

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Pictured is an artist's concept of the Rocket Based Combined Cycle (RBCC) launch. The RBCC's overall objective is to provide a technology test bed to investigate critical technologies associated with opperational usage of these engines. The program will focus on near term technologies that can be leveraged to ultimately serve as the near term basis for Two Stage to Orbit (TSTO) air breathing propulsions systems and ultimately a Single Stage To Orbit (SSTO) air breathing propulsion system.

  7. A selective nanosensor device for exhaled breath analysis.

    PubMed

    Gouma, P; Prasad, A; Stanacevic, S

    2011-09-01

    This paper describes a novel concept of a three-nanosensor array microsystem that may potentially serve as a coarse diagnostic tool handheld breath analyzer to provide a first detection device. The specification and performance of a simple metal oxide nanosensor operating between three distinct temperatures are discussed, focusing on the need for a noninvasive blood cholesterol monitor. Interfacing the sensor array to an integrated circuit for electrical readout and temperature control provides a complete microsystem capable of capturing a single exhaled breath and analyzing it with respect to the relative content of isoprene, carbon dioxide and ammonia gas. This inexpensive sensor technology may be used as a personalized medical diagnostics tool in the near future.

  8. Flow in the human upper airway: work of breathing and the compliant soft palate and tongue

    NASA Astrophysics Data System (ADS)

    Jermy, Mark; Adams, Cletus; Aplin, Jonathan; Buchajczyk, Marcin; van Hove, Sibylle; Kabaliuk, Natalia; Geoghegan, Patrick; Cater, John

    2016-11-01

    The human upper airway (nasal cavity, pharynx and trachea) filters, heats and humidifies inspired air. Its pressure drop affects the work of breathing (WOB, energy expended to inspire and expire) to a degree which varies from person to person, and which is altered by breathing therapy devices. We report experimental studies using 3D printed models of the upper airway based on CT scans of single individuals (adult and paediatric), and average geometries based on PCA analysis of 150 individuals. Particle Image Velocimetry (PIV), gas concentration and pressure measurements, coupled with CFD simulation. These reveal the details of the washout of CO2 rich exhaled gas, the direction-dependent time-varying pressure drop, and the effect of high-flow nasal therapy (HFNT) on these phenomena. A 1D multi-compartment model is used to estimate the work of breathing. For the first time, soft (compliant) elements have been included in the model airways and show that the assumption of rigid tissue is acceptable for unassisted breathing, but unrealistic for therapy-assisted flows.

  9. [Comparative study on clinical and pathological changes of liver fibrosis with diffusion-weighted imaging].

    PubMed

    Zhou, Mei-Ling; Yan, Fu-Hua; Xu, Peng-Ju; Chen, Cai-Zhong; Shen, Ji-Zhang; Li, Ren-Chen; Ji, Yuan; Shi, Jian-Ying

    2009-07-07

    To evaluate the clinical practical value of apparent diffusion coefficient (ADC) measurements based on diffusion-weighted MR imaging (DWI) for quantification of liver fibrosis and inflammation for hepatitis viral infection. Diffusion-weighted MRI with parallel imaging was prospectively performed on 85 patients with chronic hepatitis and on 22 healthy volunteers within a single breath-hold using a single-shot spin-echo echo-planar sequence at b values of 100, 300, 500, 800 and 1000 s/mm2 respectively. ADC values of liver were measured with five different b values. The inflammation grades and fibrosis stages were evaluated histologically by biopsy. One-way analysis of variance and Spearman' s rank correlation test were used for statistical analysis. Receiver operating characteristics analysis was used to assess the performance of ADC in predicting the presence of stage > or = 2 and stage > or = 3 hepatic fibrosis, and grade > or = 1 hepatic inflammation. There was moderate negative correlation between hepatic ADC values and fibrosis stage. And the best correlation was obtained for a b value of 800 s/mm2 (r = -0.697, P = 0. 000). At all b values there was a significant decrease in hepatic ADC in patients with stage < or = 1 versus stage > or = 2 fibrosis and stage < or = 2 versus stage > or = 3 fibrosis (P < 0.05). Hepatic ADC was a significant predictor of stage > or = 2 and > or = 3 fibrosis. The areas under the curve were 0.909 vs 0.917, sensitivity 76.6% vs 80.0% and specificity 88.3% vs 91.5% (ADC with a b value of 800 s/mm2, 1.26 x 10(-3) mm2/s or less and 1.19 x 10(-3) mm2/s or less). There was weak to moderate negative correlation between ADCs and inflammation grade. Hepatic ADC was a significant predictor of grade > 1 inflammation with an area under the curve of 0.781, sensitivity of 60.0% and specificity of 86.4% (ADC with a b value of 500 s/mm2, 1.54 x 10(-3) mm2/s or less). The DWI measurement of hepatic ADC can be used to quantify liver fibrosis and inflammation. It will be a new approach for early diagnosis and therapeutic follow-up of hepatic fibrosis.

  10. Decompression sickness in breath-hold divers: a review.

    PubMed

    Lemaitre, Frederic; Fahlman, Andreas; Gardette, Bernard; Kohshi, Kiyotaka

    2009-12-01

    Although it has been generally assumed that the risk of decompression sickness is virtually zero during a single breath-hold dive in humans, repeated dives may result in a cumulative increase in the tissue and blood nitrogen tension. Many species of marine mammals perform extensive foraging bouts with deep and long dives interspersed by a short surface interval, and some human divers regularly perform repeated dives to 30-40 m or a single dive to more than 200 m, all of which may result in nitrogen concentrations that elicit symptoms of decompression sickness. Neurological problems have been reported in humans after single or repeated dives and recent necropsy reports in stranded marine mammals were suggestive of decompression sickness-like symptoms. Modelling attempts have suggested that marine mammals may live permanently with elevated nitrogen concentrations and may be at risk when altering their dive behaviour. In humans, non-pathogenic bubbles have been recorded and symptoms of decompression sickness have been reported after repeated dives to modest depths. The mechanisms implicated in these accidents indicate that repeated breath-hold dives with short surface intervals are factors that predispose to decompression sickness. During deep diving, the effect of pulmonary shunts and/or lung collapse may play a major role in reducing the incidence of decompression sickness in humans and marine mammals.

  11. Gated CT imaging using a free-breathing respiration signal from flow-volume spirometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Souza, Warren D.; Kwok, Young; Deyoung, Chad

    2005-12-15

    Respiration-induced tumor motion is known to cause artifacts on free-breathing spiral CT images used in treatment planning. This leads to inaccurate delineation of target volumes on planning CT images. Flow-volume spirometry has been used previously for breath-holds during CT scans and radiation treatments using the active breathing control (ABC) system. We have developed a prototype by extending the flow-volume spirometer device to obtain gated CT scans using a PQ 5000 single-slice CT scanner. To test our prototype, we designed motion phantoms to compare image quality obtained with and without gated CT scan acquisition. Spiral and axial (nongated and gated) CTmore » scans were obtained of phantoms with motion periods of 3-5 s and amplitudes of 0.5-2 cm. Errors observed in the volume estimate of these structures were as much as 30% with moving phantoms during CT simulation. Application of motion-gated CT with active breathing control reduced these errors to within 5%. Motion-gated CT was then implemented in patients and the results are presented for two clinical cases: lung and abdomen. In each case, gated scans were acquired at end-inhalation, end-exhalation in addition to a conventional free-breathing (nongated) scan. The gated CT scans revealed reduced artifacts compared with the conventional free-breathing scan. Differences of up to 20% in the volume of the structures were observed between gated and free-breathing scans. A comparison of the overlap of structures between the gated and free-breathing scans revealed misalignment of the structures. These results demonstrate the ability of flow-volume spirometry to reduce errors in target volumes via gating during CT imaging.« less

  12. Patient training in respiratory-gated radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kini, Vijay R.; Vedam, Subrahmanya S.; Keall, Paul J.

    2003-03-31

    Respiratory gating is used to counter the effects of organ motion during radiotherapy for chest tumors. The effects of variations in patient breathing patterns during a single treatment and from day to day are unknown. We evaluated the feasibility of using patient training tools and their effect on the breathing cycle regularity and reproducibility during respiratory-gated radiotherapy. To monitor respiratory patterns, we used a component of a commercially available respiratory-gated radiotherapy system (Real Time Position Management (RPM) System, Varian Oncology Systems, Palo Alto, CA 94304). This passive marker video tracking system consists of reflective markers placed on the patient's chestmore » or abdomen, which are detected by a wall-mounted video camera. Software installed on a PC interfaced to this camera detects the marker motion digitally and records it. The marker position as a function of time serves as the motion signal that may be used to trigger imaging or treatment. The training tools used were audio prompting and visual feedback, with free breathing as a control. The audio prompting method used instructions to 'breathe in' or 'breathe out' at periodic intervals deduced from patients' own breathing patterns. In the visual feedback method, patients were shown a real-time trace of their abdominal wall motion due to breathing. Using this, they were asked to maintain a constant amplitude of motion. Motion traces of the abdominal wall were recorded for each patient for various maneuvers. Free breathing showed a variable amplitude and frequency. Audio prompting resulted in a reproducible frequency; however, the variability and the magnitude of amplitude increased. Visual feedback gave a better control over the amplitude but showed minor variations in frequency. We concluded that training improves the reproducibility of amplitude and frequency of patient breathing cycles. This may increase the accuracy of respiratory-gated radiation therapy.« less

  13. Photoplethysmography as a single source for analysis of sleep-disordered breathing in patients with severe cardiovascular disease.

    PubMed

    Amir, Offer; Barak-Shinar, Deganit; Henry, Antonietta; Smart, Frank W

    2012-02-01

    Sleep-disordered breathing and Cheyne-Stokes breathing are often not diagnosed, especially in cardiovascular patients. An automated system based on photoplethysmographic signals might provide a convenient screening and diagnostic solution for patient evaluation at home or in an ambulatory setting. We compared event detection and classification obtained by full polysomnography (the 'gold standard') and by an automated new algorithm system in 74 subjects. Each subject underwent overnight polysomnography, 60 in a hospital cardiology department and 14 while being tested for suspected sleep-disordered breathing in a sleep laboratory. The sleep-disordered breathing and Cheyne-Stokes breathing parameters measured by a new automated algorithm system correlated very well with the corresponding results obtained by full polysomnography. The sensitivity of the Cheyne-Stokes breathing detected from the system compared to full polysomnography was 92% [95% confidence interval (CI): 78.6-98.3%] and specificity 94% (95% CI: 81.3-99.3%). Comparison of the Apnea Hyponea Index with a cutoff level of 15 shows a sensitivity of 98% (95% CI: 87.1-99.6%) and specificity of 96% (95% CI: 79.8-99.3%). The detection of respiratory events showed agreement of approximately 80%. Regression and Bland-Altman plots revealed good agreement between the two methods. Relative to gold-standard polysomnography, the simply used automated system in this study yielded an acceptable analysis of sleep- and/or cardiac-related breathing disorders. Accordingly, and given the convenience and simplicity of its application, this system can be considered as a suitable platform for home and ambulatory screening and diagnosis of sleep-disordered breathing in patients with cardiovascular disease. © 2011 European Sleep Research Society.

  14. Quantitative liver ADC measurements using diffusion-weighted MRI at 3 Tesla: evaluation of reproducibility and perfusion dependence using different techniques for respiratory compensation.

    PubMed

    Larsen, Nis Elbrønd; Haack, Søren; Larsen, Lars Peter Skovgaard; Pedersen, Erik Morre

    2013-10-01

    Diffusion weighted imaging (DWI) of the liver suffers from low signal to noise making 3 Tesla (3 T) an attractive option, but 3 T data is scarce. It was the aim to study the influence of different b values and respiratory compensation methods (RCM) on the apparent diffusion coefficient (ADC) level and on ADC reproducibility at 3 T. Ten healthy volunteers and 12 patients with malignant liver lesions underwent repeated (2-22 days) breathhold, free-breathing and respiratory triggered DWI at 3 T using b values between 0 and 1,000 s/mm(2). The ADCs changed up to 150% in healthy livers and up to 48% in malignant lesions depending on b value combinations. Best ADC reproducibility in healthy livers were obtained with respiratory triggering (95% limits of agreement: ±0.12) and free-breathing (±0.14). In malignant lesions equivalent reproducibility was obtained with less RCM dependence. The use of a lower maximum b value (b = 500) decreased reproducibility (±0.14 to ±0.32) in both normal liver and malignant lesions. Large differences in absolute ADC values and reproducibility caused by varying combinations of clinically realistic b values were demonstrated. Different RCMs caused smaller differences. Lowering maximum b value to 500 increased limits of agreement up to a factor of two. Serial ADC changes larger than approximately 15% can be detected confidently on an individual basis in both malignant lesions and normal liver parenchyma at 3 T using appropriate b values and respiratory compensation.

  15. 'Breath figure' PLGA films as implant coatings for controlled drug release

    NASA Astrophysics Data System (ADS)

    Ponnusamy, Thiruselvam

    The breath figure method is a versatile and facile approach of generating ordered micro and nanoporous structures in polymeric materials. When a polymer solution (dissolved in a high vapor pressure organic solvent) is evaporated out in the presence of a moist air stream, the evaporative cooling effect causes the condensation and nucleation of water droplets onto the polymer solution surface. This leads to the formation of an imprinted porous structure upon removal of the residual solvent and water. The facile removal of the water droplet template leaving its structural imprint is a specifically appealing aspect of the breath figure film technology. The first part of the dissertation work involves the fabrication of drug loaded breath figure thin films and its utilization as a controlled drug release carrier and biomaterial scaffold. In a single fabrication step, single layer/multilayer porous thin films were designed and developed by combining the breath figure process and a modified spin or dip coating technique. Using biodegradable polymers such as poly (lactic-co-glycolic acid) (PLGA) and poly (ethylene glycol) (PEG), drug loaded films were fabricated onto FDA approved medical devices (the Glaucoma drainage device and the Surgical hernia mesh). The porosity of the films is in the range of 2-4 microm as characterized by scanning electron microscope. The drug coated medical implants were characterized for their surface and bulk morphology, the degradation rate of the film, drug release rate and cell cytotoxicity. The results suggest that the use of breath figure morphologies in biodegradable polymer films adds an additional level of control to drug release. In comparison to non-porous films, the breath figure films showed an increased degradation and enhanced drug release. Furthermore, the porous nature of the film was investigated as a biomaterial scaffold to construct three dimensional in vitro tissue model systems. The breath figure film with interconnected pores facilitates cell infiltration and tissue remodelling in vitro, suggesting its high potential in regenerative medicine and tissue engineering applications. In the second part of the dissertation, the versatility of breath figure polymers was explored as a reverse template to create micropatterned soft materials. Unlike traditional lithographic masters, the breath figure assembly is a simple and cost-effective approach to create micro/nano sized "bead" like uniform patterns on the surface of hydrogels and biopolymers. By incorporating iron nanoparticles into the pores, this technique was extended to form hydrogels decorated with nanoparticles specifically in the pattern. The morphology features and the functional characteristics were demonstrated through scanning electron microscopy. The potential applications of these micro-fabricated materials in biosensors and cell culture substrates are outlined.

  16. Reduction in membrane component of diffusing capacity is associated with the extent of acute pulmonary embolism

    PubMed Central

    Piirilä, Päivi; Laiho, Mia; Mustonen, Pirjo; Graner, Marit; Piilonen, Anneli; Raade, Merja; Sarna, Seppo; Harjola, Veli-Pekka; Sovijärvi, Anssi

    2011-01-01

    Acute pulmonary embolism (PE) often decreases pulmonary diffusing capacity for carbon monoxide (DL,CO), but data on the mechanisms involved are inconsistent. We wanted to investigate whether reduction in diffusing capacity of alveolo-capillary membrane (DM) and pulmonary capillary blood volume (Vc) is associated with the extent of PE or the presence and severity of right ventricular dysfunction (RVD) induced by PE and how the possible changes are corrected after 7-month follow-up. Forty-seven patients with acute non-massive PE in spiral computed tomography (CT) were included. The extent of PE was assessed by scoring mass of embolism. DL,CO, Vc, DM and alveolar volume (VA) were measured by using a single breath method with carbon monoxide and oxygen both at the acute phase and 7 months later. RVD was evaluated with transthoracic echocardiography and electrocardiogram. Fifteen healthy subjects were included as controls. DL,CO, DL, CO/VA, DM, vital capacity (VC) and VA were significantly lower in the patients with acute PE than in healthy controls (P<0·001). DM/Vc relation was significantly lower in patients with RVD than in healthy controls (P = 0·004). DM correlated inversely with central mass of embolism (r = −0·312; P = 0·047) whereas Vc did not. DM, DL,CO, VC and VA improved significantly within 7 months. In all patients (P = 0·001, P = 0·001) and persistent RVD (P = 0·020, P = 0·012), DM and DL,CO remained significantly lower than in healthy controls in the follow-up. DM was inversely related to central mass of embolism. Reduction in DM mainly explains the sustained decrease in DL,CO in PE after 7 months despite modern treatment of PE. PMID:21143754

  17. A long-term stable power supply μDMFC stack for wireless sensor node applications

    NASA Astrophysics Data System (ADS)

    Wu, Z. L.; Wang, X. H.; Teng, F.; Li, X. Z.; Wu, X. M.; Liu, L. T.

    2013-12-01

    A passive, air-breathing 4-cell micro direct methanol fuel cell (μDMFC) stack is presented featured by a fuel delivery structure for a long-term & stable power supply. The fuel is reserved in a T shape tank and diffuses through the porous diffusion layer to the catalyst at anode. The stack has a maximum power output of 110mW with 3M methanol at room temperature and output a stable power even thought 5% fuel is the remained in reservoir. Its performance decreases less than 3% for 100 hours continuous work. As such, it is believed to be more applicable for powering the wireless sensor nodes.

  18. Research Technology (ASTP) Rocket Based Combined Cycle (RBCC) Engine

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Pictured is an artist's concept of the Rocket Based Combined Cycle (RBCC) launch. The RBCC's overall objective is to provide a technology test bed to investigate critical technologies associated with opperational usage of these engines. The program will focus on near term technologies that can be leveraged to ultimately serve as the near term basis for Two Stage to Orbit (TSTO) air breathing propulsions systems and ultimately a Single Stage To Orbit (SSTO) air breathing propulsion system.

  19. Oxygen Breathing Accelerates Decompression from Saturation at 40 msw in 70-kg Swine

    DTIC Science & Technology

    2010-07-01

    2010 0 2 AFfER A DEEP SATURATION DIVE-PETERSEN ET AL. REFERENCES 1. Bain SA, Tmg J, Simeonovic CJ, Wilson JO. Technique of venous catheterization ...was catheterized with a 16-gauge by 20.3-cm single lumen catheter (Braun Certofix; B. Braun Medical Inc., Bethlehem, PA) via the modified Seldinger...respiratory distress, as evidenced by open-mouthed, labored breathing, central cyanosis, or the production of frothy white sputum. The onset of se- vere

  20. Biological Effects of Short, High-Level Exposure to Gases: Sulfur Dioxide.

    DTIC Science & Technology

    1980-05-01

    irritation and moist rales, bilaterally and anteriorly over the large bronchi. One-half of the subjects exposed to sulfur dioxide at concentrations of... burns . The pharyngeal mucosa was hyperemic but without ulceration . These men had decreased breath sounds, diffuse rales and rhonchi, with essentially...workplace have limited appli- cation in the military setting; the basis for their selection is the protection of chronically exposed workers against

  1. Free-breathing Sparse Sampling Cine MR Imaging with Iterative Reconstruction for the Assessment of Left Ventricular Function and Mass at 3.0 T.

    PubMed

    Sudarski, Sonja; Henzler, Thomas; Haubenreisser, Holger; Dösch, Christina; Zenge, Michael O; Schmidt, Michaela; Nadar, Mariappan S; Borggrefe, Martin; Schoenberg, Stefan O; Papavassiliu, Theano

    2017-01-01

    Purpose To prospectively evaluate the accuracy of left ventricle (LV) analysis with a two-dimensional real-time cine true fast imaging with steady-state precession (trueFISP) magnetic resonance (MR) imaging sequence featuring sparse data sampling with iterative reconstruction (SSIR) performed with and without breath-hold (BH) commands at 3.0 T. Materials and Methods Ten control subjects (mean age, 35 years; range, 25-56 years) and 60 patients scheduled to undergo a routine cardiac examination that included LV analysis (mean age, 58 years; range, 20-86 years) underwent a fully sampled segmented multiple BH cine sequence (standard of reference) and a prototype undersampled SSIR sequence performed during a single BH and during free breathing (non-BH imaging). Quantitative analysis of LV function and mass was performed. Linear regression, Bland-Altman analysis, and paired t testing were performed. Results Similar to the results in control subjects, analysis of the 60 patients showed excellent correlation with the standard of reference for single-BH SSIR (r = 0.93-0.99) and non-BH SSIR (r = 0.92-0.98) for LV ejection fraction (EF), volume, and mass (P < .0001 for all). Irrespective of breath holding, LV end-diastolic mass was overestimated with SSIR (standard of reference: 163.9 g ± 58.9, single-BH SSIR: 178.5 g ± 62.0 [P < .0001], non-BH SSIR: 175.3 g ± 63.7 [P < .0001]); the other parameters were not significantly different (EF: 49.3% ± 11.9 with standard of reference, 48.8% ± 11.8 with single-BH SSIR, 48.8% ± 11 with non-BH SSIR; P = .03 and P = .12, respectively). Bland-Altman analysis showed similar measurement errors for single-BH SSIR and non-BH SSIR when compared with standard of reference measurements for EF, volume, and mass. Conclusion Assessment of LV function with SSIR at 3.0 T is noninferior to the standard of reference irrespective of BH commands. LV mass, however, is overestimated with SSIR. © RSNA, 2016 Online supplemental material is available for this article.

  2. Computerized tomography and pulmonary diffusing capacity in highly trained athletes after performing a triathlon.

    PubMed

    Caillaud, C; Serre-Cousiné, O; Anselme, F; Capdevilla, X; Préfaut, C

    1995-10-01

    We investigated the computerized tomographies (CTs) of the thorax and the pulmonary diffusing capacity for CO (DLCO) in eight male athletes before and after a triathlon. DLCO and alveolar volume (VA) were simultaneously measured during 9 s of breath holding. The transfer coefficient (KCO = DLCO/VA) was then calculated. CT scanning was performed during breath holding with the subjects in the supine position. Scanner analysis was done by 1) counting the linear and polygonal opacities (index of interstitial fluid accumulation) and 2) calculating the physical mean lung density and the mean slice mass. Results showed a significant reduction in DLCO (44.9 +/- 2.3 vs. 42.9 +/- 1.7 ml.min-1.mmHg-1; P < 0.05) and KCO (6.0 +/- 0.3 vs. 5.6 +/- 0.3 ml.min-1.mmHg-1.l of VA-1; P < 0.05) after the triathlon and an increase in mean lung density (0.21 +/- 0.009 vs. 0.25 +/- 0.01 g/cm3; P < 0.0001). The number of polygonal and linear opacities increased after the race (P < 0.001). This study confirmed that DLCO and KCO decrease in elite athletes after a long-distance race and showed a concomitant increase in CT lung density and in the number of opacities.

  3. Mica dust and pneumoconiosis: example of a pure occupational exposure in a muscovite milling unit.

    PubMed

    Hulo, Sébastien; Cherot-kornobis, Nathalie; Edme, Jean-Louis; de Broucker, Virginie; Falgayrac, Guillaume; Penel, Guillaume; Legrand-Cattan, Karinne; Remy, Jacques; Sobaszek, Annie

    2013-12-01

    We present pulmonary disorders of four employees who were exposed to high concentration of pure mica dust in a muscovite milling unit. All cases underwent traditional examinations with a dual-energy chest computed tomographic scan. An analysis of exhaled breath condensate by Raman microspectrometry and of mineralogical content of a lung biopsy was performed for one case. All cases showed bilateral micronodular ground glass opacities and mediastinal and hilar hyperdense lymph nodes consistent with the nodal sequestration of mineral particles. Histological analysis showed giant cell granulomas without typical silicotic nodule with high concentration of birefringent particles consistent with mica. Mica particles found in the exhaled breath condensate were identical to particles in ambient air at the company. Occupational exposure to mica dust is responsible for diffuse infiltrative lung disease by overload processes.

  4. Engine Systems Ownership Cost Reduction - Aircraft Propulsion Subsystems Integration (APSI)

    DTIC Science & Technology

    1975-08-01

    compreusor fabrication costs. Hybrid Radial Compresscr Diffuser - Combining both the radial and axial sections of a standard diffuser into a single cascade...compressor diffuser by using a single mixed-flow diffuser instead of the separate radial and axial diffuser stator rows. The proposed mixed-flow diffuser...to an axial diffuser. A cost analyses of the hybrid radial diffuser was made and compared to baseline configuration ( radial and axial diffusers). The

  5. Breathing exercises for dysfunctional breathing/hyperventilation syndrome in adults.

    PubMed

    Jones, Mandy; Harvey, Alex; Marston, Louise; O'Connell, Neil E

    2013-05-31

    Dysfunctional breathing/hyperventilation syndrome (DB/HVS) is a respiratory disorder, psychologically or physiologically based, involving breathing too deeply and/or too rapidly (hyperventilation) or erratic breathing interspersed with breath-holding or sighing (DB). DB/HVS can result in significant patient morbidity and an array of symptoms including breathlessness, chest tightness, dizziness, tremor and paraesthesia. DB/HVS has an estimated prevalence of 9.5% in the general adult population, however, there is little consensus regarding the most effective management of this patient group. (1) To determine whether breathing exercises in patients with DB/HVS have beneficial effects as measured by quality of life indices (2) To determine whether there are any adverse effects of breathing exercises in patients with DB/HVS SEARCH METHODS: We identified trials for consideration using both electronic and manual search strategies. We searched CENTRAL, MEDLINE, EMBASE, and four other databases. The latest search was in February 2013. We planned to include randomised, quasi-randomised or cluster randomised controlled trials (RCTs) in which breathing exercises, or a combined intervention including breathing exercises as a key component, were compared with either no treatment or another therapy that did not include breathing exercises in patients with DB/HVS. Observational studies, case studies and studies utilising a cross-over design were not eligible for inclusion.We considered any type of breathing exercise for inclusion in this review, such as breathing control, diaphragmatic breathing, yoga breathing, Buteyko breathing, biofeedback-guided breathing modification, yawn/sigh suppression. Programs where exercises were either supervised or unsupervised were eligible as were relaxation techniques and acute-episode management, as long as it was clear that breathing exercises were a key component of the intervention.We excluded any intervention without breathing exercises or where breathing exercises were not key to the intervention. Two review authors independently checked search results for eligible studies, assessed all studies that appeared to meet the selection criteria and extracted data. We used standard procedures recommended by The Cochrane Collaboration. We included a single RCT assessed at unclear risk of bias, which compared relaxation therapy (n = 15) versus relaxation therapy and breathing exercises (n = 15) and a no therapy control group (n = 15).Quality of life was not an outcome measure in this RCT, and no numerical data or statistical analysis were presented in this paper. A significant reduction in the frequency and severity of hyperventilation attacks in the breathing exercise group compared with the control group was reported. In addition, a significant difference in frequency and severity of hyperventilation attacks between the breathing and relaxation group was reported. However, no information could be extracted from the paper regarding the size of the treatment effects. The results of this systematic review are unable to inform clinical practice, based on the inclusion of only one small, poorly reported RCT. There is no credible evidence regarding the effectiveness of breathing exercises for the clinical symptoms of DB/HVS. It is currently unknown whether these interventions offer any added value in this patient group or whether specific types of breathing exercise demonstrate superiority over others. Given that breathing exercises are frequently used to treat DB/HVS, there is an urgent need for further well designed clinical trials in this area. Future trials should conform to the CONSORT statement for standards of reporting and use appropriate, validated outcome measures. Trial reports should also ensure full disclosure of data for all important clinical outcomes.

  6. A Computational Experiment on Single-Walled Carbon Nanotubes

    ERIC Educational Resources Information Center

    Simpson, Scott; Lonie, David C.; Chen, Jiechen; Zurek, Eva

    2013-01-01

    A computational experiment that investigates single-walled carbon nanotubes (SWNTs) has been developed and employed in an upper-level undergraduate physical chemistry laboratory course. Computations were carried out to determine the electronic structure, radial breathing modes, and the influence of the nanotube's diameter on the…

  7. Effect of oxygen breathing on micro oxygen bubbles in nitrogen-depleted rat adipose tissue at sea level and 25 kPa altitude exposures.

    PubMed

    Randsoe, Thomas; Hyldegaard, Ole

    2012-08-01

    The standard treatment of altitude decompression sickness (aDCS) caused by nitrogen bubble formation is oxygen breathing and recompression. However, micro air bubbles (containing 79% nitrogen), injected into adipose tissue, grow and stabilize at 25 kPa regardless of continued oxygen breathing and the tissue nitrogen pressure. To quantify the contribution of oxygen to bubble growth at altitude, micro oxygen bubbles (containing 0% nitrogen) were injected into the adipose tissue of rats depleted from nitrogen by means of preoxygenation (fraction of inspired oxygen = 1.0; 100%) and the bubbles studied at 101.3 kPa (sea level) or at 25 kPa altitude exposures during continued oxygen breathing. In keeping with previous observations and bubble kinetic models, we hypothesize that oxygen breathing may contribute to oxygen bubble growth at altitude. Anesthetized rats were exposed to 3 h of oxygen prebreathing at 101.3 kPa (sea level). Micro oxygen bubbles of 500-800 nl were then injected into the exposed abdominal adipose tissue. The oxygen bubbles were studied for up to 3.5 h during continued oxygen breathing at either 101.3 or 25 kPa ambient pressures. At 101.3 kPa, all bubbles shrank consistently until they disappeared from view at a net disappearance rate (0.02 mm(2) × min(-1)) significantly faster than for similar bubbles at 25 kPa altitude (0.01 mm(2) × min(-1)). At 25 kPa, most bubbles initially grew for 2-40 min, after which they shrank and disappeared. Four bubbles did not disappear while at 25 kPa. The results support bubble kinetic models based on Fick's first law of diffusion, Boyles law, and the oxygen window effect, predicting that oxygen contributes more to bubble volume and growth during hypobaric conditions. As the effect of oxygen increases, the lower the ambient pressure. The results indicate that recompression is instrumental in the treatment of aDCS.

  8. Exploratory breath analyses for assessing toxic dermal exposures of firefighters during suppression of structural burns.

    PubMed

    Pleil, Joachim D; Stiegel, Matthew A; Fent, Kenneth W

    2014-09-01

    Firefighters wear fireproof clothing and self-contained breathing apparatus (SCBA) during rescue and fire suppression activities to protect against acute effects from heat and toxic chemicals. Fire services are also concerned about long-term health outcomes from chemical exposures over a working lifetime, in particular about low-level exposures that might serve as initiating events for adverse outcome pathways (AOP) leading to cancer. As part of a larger US National Institute for Occupational Safety and Health (NIOSH) study of dermal exposure protection from safety gear used by the City of Chicago firefighters, we collected pre- and post-fire fighting breath samples and analyzed for single-ring and polycyclic aromatic hydrocarbons as bioindicators of occupational exposure to gas-phase toxicants. Under the assumption that SCBA protects completely against inhalation exposures, any changes in the exhaled profile of combustion products were attributed to dermal exposures from gas and particle penetration through the protective clothing. Two separate rounds of firefighting activity were performed each with 15 firefighters per round. Exhaled breath samples were collected onto adsorbent tubes and analyzed with gas-chromatography-mass spectrometry (GC-MS) with a targeted approach using selective ion monitoring. We found that single ring aromatics and some PAHs were statistically elevated in post-firefighting samples of some individuals, suggesting that fire protective gear may allow for dermal exposures to airborne contaminants. However, in comparison to a previous occupational study of Air Force maintenance personnel where similar compounds were measured, these exposures are much lower suggesting that firefighters' gear is very effective. This study suggests that exhaled breath sampling and analysis for specific targeted compounds is a suitable method for assessing systemic dermal exposure in a simple and non-invasive manner.

  9. Therapeutic hypertension system based on a microbreathing pressure sensor system.

    PubMed

    Diao, Ziji; Liu, Hongying; Zhu, Lan; Gao, Xiaoqiang; Zhao, Suwen; Pi, Xitian; Zheng, Xiaolin

    2011-01-01

    A novel therapeutic system for the treatment of hypertension was developed on the basis of a slow-breath training mechanism, using a microbreathing pressure sensor device for the detection of human respiratory signals attached to the abdomen. The system utilizes a single-chip AT89C51 microcomputer as a core processor, programmed by Microsoft Visual C++6.0 to communicate with a PC via a full-speed PDIUSBD12 interface chip. The programming is based on a slow-breath guided algorithm in which the respiratory signal serves as a physiological feedback parameter. Inhalation and exhalation by the subject is guided by music signals. Our study indicates that this microbreathing sensor system may assist in slow-breath training and may help to decrease blood pressure.

  10. Four-dimensional diffusion-weighted MR imaging (4D-DWI): a feasibility study.

    PubMed

    Liu, Yilin; Zhong, Xiaodong; Czito, Brian G; Palta, Manisha; Bashir, Mustafa R; Dale, Brian M; Yin, Fang-Fang; Cai, Jing

    2017-02-01

    Diffusion-weighted Magnetic Resonance Imaging (DWI) has been shown to be a powerful tool for cancer detection with high tumor-to-tissue contrast. This study aims to investigate the feasibility of developing a four-dimensional DWI technique (4D-DWI) for imaging respiratory motion for radiation therapy applications. Image acquisition was performed by repeatedly imaging a volume of interest (VOI) using an interleaved multislice single-shot echo-planar imaging (EPI) 2D-DWI sequence in the axial plane. Each 2D-DWI image was acquired with an intermediately low b-value (b = 500 s/mm 2 ) and with diffusion-encoding gradients in x, y, and z diffusion directions. Respiratory motion was simultaneously recorded using a respiratory bellow, and the synchronized respiratory signal was used to retrospectively sort the 2D images to generate 4D-DWI. Cine MRI using steady-state free precession was also acquired as a motion reference. As a preliminary feasibility study, this technique was implemented on a 4D digital human phantom (XCAT) with a simulated pancreas tumor. The respiratory motion of the phantom was controlled by regular sinusoidal motion profile. 4D-DWI tumor motion trajectories were extracted and compared with the input breathing curve. The mean absolute amplitude differences (D) were calculated in superior-inferior (SI) direction and anterior-posterior (AP) direction. The technique was then evaluated on two healthy volunteers. Finally, the effects of 4D-DWI on apparent diffusion coefficient (ADC) measurements were investigated for hypothetical heterogeneous tumors via simulations. Tumor trajectories extracted from XCAT 4D-DWI were consistent with the input signal: the average D value was 1.9 mm (SI) and 0.4 mm (AP). The average D value was 2.6 mm (SI) and 1.7 mm (AP) for the two healthy volunteers. A 4D-DWI technique has been developed and evaluated on digital phantom and human subjects. 4D-DWI can lead to more accurate respiratory motion measurement. This has a great potential to improve the visualization and delineation of cancer tumors for radiotherapy. © 2016 American Association of Physicists in Medicine.

  11. [Renal arterial spin labeling magnetic resonance imaging in normal adults: a study with a 3.0 T scanner].

    PubMed

    Zhang, Fan; Zhang, Xuelin; Yang, Li; Shen, Jie; Gao, Wei

    2013-10-01

    To analyze the renal relative blood flow value (rBFV) and image quality in normal adults using single-shot fast spin echo, flow sensitive invention recovery (SSFSE-FAIR) magnetic resonance (MR) sequence and echo planar imaging, and flow sensitive invention recovery (EPI-FAIR) MR sequence, and assess its value for clinical application in routine renal examination. Forty volunteers (25 male and 15 female adults, aged 30 to 62 years) with normal renal function were included in this prospective study. All the subjects underwent 3.0 Tesla MR scanning using 3 MR scan modes, namely breath-holding EPI-FAIR, breath-holding SSFSE-FAIR and free breathing SSFSE-FAIR. SSFSE-FAIR without breath-holding was capable of differentiating the renal cortex and medulla with the corresponding rBFVs of 111.48∓9.23 and 94.98∓3.38, respectively. Breath-holding SSFSE-FAIR and EPI-FAIR failed to distinguish the borders of the renal cortex and medulla. The EPI-FAIR rBFV of mixed cortex and medulla value was 178.50∓17.17 (95%CI: 167.59, 189.41). Breath-holding SSFSE-FAIR and EPI-FAIR can not distinguish the renal cortex and medulla due to a poor spatial resolution but can be used for rough evaluation of renal blood perfusion. Free breathing SSFSE-FAIR with an improved spatial resolution allows evaluation of the status of renal perfusion of the cortex and medulla.

  12. Locomotion, respiratory physiology, and energetics of amphibious and terrestrial crabs.

    PubMed

    Adamczewska, A M; Morris, S

    2000-01-01

    The transition from breathing air to breathing water requires physiological and morphological adaptations. The study of crustaceans in transitional habitats provides important information as to the nature of these adaptations. This article addresses the physiology of air breathing in amphibious and terrestrial crabs and their relative locomotor abilities. Potamonautes warreni is an apparently amphibious freshwater crab from southern Africa, Cardisoma hirtipes is an air-breathing gecarcinid crab with some dependency on freshwater, and Gecarcoidea natalis is an obligate air-breathing gecarcinid endemic to Christmas Island in the Indian Ocean. All three species have well-developed lungs but retain gills and show seasonally different activity patterns that, in the gercarcinids, especially G. natalis, include long-distance breeding migrations. The three species were better at breathing air than water, but P. warreni was the best at breathing water. Cardisoma hirtipes is essentially an obligate air breather and appears to experience facultative hypometabolism during immersion. Cardisoma hirtipes has a haemocyanin with a high affinity for O(2) that facilitates loading from air but makes 30% of the Hc bound O(2) inaccessible. The gecarcinids but not P. warreni show increased diffusion limitation for O(2) over the lung during exercise. Gecarcoidea natalis outperforms C. hirtipes by virtue of a unique haemolymph shunt from the lung into the gills. Paradoxically, it is modifications of the gills for aerial O(2) uptake in G. natalis that allow for relatively greater haemolymph oxygenation. Despite showing decreased arterial-venous DeltaPo(2), P. warreni increased the arterial-venous Delta[O(2)] with no recourse to anaerobiosis during 5 min exercise. In the short term, P. warreni is more adept at walking than C. hirtipes. The breeding migrations of C. hirtipes and G. natalis were completely aerobic, but G. natalis walk farther and probably faster. Seasonal changes in underlying metabolism of G. natalis are strongly implied, including variations in hyperglycaemic hormone, variable basal metabolic rates, and a diel alkalosis present only in migrating crabs. The persistent dependence on water for reproduction is a determining factor in the biology of air-breathing crabs. The annual migrations include costs other than locomotion, for example, burrow construction and intermale competition. Estimates of costs that consider walking alone will underestimate the metabolic and stored fuel requirements for successful reproduction.

  13. Liver diffusion-weighted MR imaging: reproducibility comparison of ADC measurements obtained with multiple breath-hold, free-breathing, respiratory-triggered, and navigator-triggered techniques.

    PubMed

    Chen, Xin; Qin, Lei; Pan, Dan; Huang, Yanqi; Yan, Lifen; Wang, Guangyi; Liu, Yubao; Liang, Changhong; Liu, Zaiyi

    2014-04-01

    To prospectively compare the reproducibility of normal liver apparent diffusion coefficient (ADC) measurements by using different respiratory motion compensation techniques with multiple breath-hold (MBH), free-breathing (FB), respiratory-triggered (RT), and navigator-triggered (NT) diffusion-weighted (DW) imaging and to compare the ADCs at different liver anatomic locations. The study protocol was approved by the institutional review board, and written informed consent was obtained from each participant. Thirty-nine volunteers underwent liver DW imaging twice. Imaging was performed with a 1.5-T MR imager with MBH, FB, RT, and NT techniques (b = 0, 100, and 500 sec/mm(2)). Three representative sections--superior, central, and inferior--were selected on left and right liver lobes, respectively. On each selected section, three regions of interest were drawn, and ADCs were measured. Analysis of variance was used to assess ADCs among the four techniques and various anatomic locations. Reproducibility of ADCs was assessed with the Bland-Altman method. ADCs obtained with MBH (range: right lobe, [1.641-1.662] × 10(-3)mm(2)/sec; left lobe, [2.034-2.054] ×10(-3)mm(2)/sec) were higher than those obtained with FB (right, [1.349-1.391] ×10(-3)mm(2)/sec; left, [1.630-1.700] ×10(-3)mm(2)/sec), RT (right, [1.439-1.455] ×10(-3)mm(2)/sec; left, [1.720-1.755] ×10(-3)mm(2)/sec), or NT (right, [1.387-1.400] ×10(-3)mm(2)/sec; left, [1.661-1.736] ×10(-3)mm(2)/sec) techniques (P < .001); however, no significant difference was observed between ADCs obtained with FB, RT, and NT techniques (P = .130 to P >.99). ADCs showed a trend to decrease moving from left to right. Reproducibility in the left liver lobe was inferior to that in the right, and the central middle segment in the right lobe had the most reproducible ADC. Statistical differences in ADCs were observed in the left-right direction in the right lobe (P < .001), but they were not observed in the superior-inferior direction (P = .144-.450). However, in the left liver lobe, statistical differences existed in both directions (P = .001 to P = .016 in the left-right direction, P < .001 in the superior-inferior direction). Both anatomic location and DW imaging technique influence liver ADC measurements and their reproducibility. FB DW imaging is recommended for liver DW imaging because of its good reproducibility and shorter acquisition time compared with that of MBH, RT, and NT techniques. RSNA, 2014

  14. Breath-hold black-blood T1rho mapping improves liver T1rho quantification in healthy volunteers.

    PubMed

    Wáng, Yì Xiáng J; Deng, Min; Lo, Gladys G; Liang, Dong; Yuan, Jing; Chen, Weitian

    2018-03-01

    Background Recent researches suggest that T1rho may be a non-invasive and quantitative technique for detecting and grading liver fibrosis. Purpose To compare a multi-breath-hold bright-blood fast gradient echo (GRE) imaging and a single breath-hold single-shot fast spin echo (FSE) imaging with black-blood effect for liver parenchyma T1rho measurement and to study liver physiological T1rho value in healthy volunteers. Material and Methods The institutional Ethics Committee approved this study. 28 healthy participants (18 men, 10 women; age = 29.6 ± 5.1 years) underwent GRE liver T1rho imaging, and 20 healthy participants (10 men, 10 women; age = 36.9 ± 10.3 years) underwent novel black-blood FSE liver T1rho imaging, both at 3T with spin-lock frequency of 500 Hz. The FSE technique allows simultaneous acquisition of four spin lock times (TSLs; 1 ms, 10 ms, 30 ms, 50msec) in 10 s. Results For FSE technique the intra-scan repeatability intraclass correlation coefficient (ICC) was 0.98; while the inter-scan reproducibility ICC was 0.82 which is better than GRE technique's 0.76. Liver T1rho value in women tended to have a higher value than T1rho values in men (FSE: 42.28 ± 4.06 ms for women and 39.13 ± 2.12 ms for men; GRE: 44.44 ± 1.62 ms for women and 42.36 ± 2.00 ms for men) and FSE technique showed liver T1rho value decreased slightly as age increased. Conclusion Single breath-hold black-blood FSE sequence has better scan-rescan reproducibility than multi-breath-hold bright-blood GRE sequence. Gender and age dependence of liver T1rho in healthy participants is observed, with young women tending to have a higher T1rho measurement.

  15. Improved workflow for quantification of left ventricular volumes and mass using free-breathing motion corrected cine imaging.

    PubMed

    Cross, Russell; Olivieri, Laura; O'Brien, Kendall; Kellman, Peter; Xue, Hui; Hansen, Michael

    2016-02-25

    Traditional cine imaging for cardiac functional assessment requires breath-holding, which can be problematic in some situations. Free-breathing techniques have relied on multiple averages or real-time imaging, producing images that can be spatially and/or temporally blurred. To overcome this, methods have been developed to acquire real-time images over multiple cardiac cycles, which are subsequently motion corrected and reformatted to yield a single image series displaying one cardiac cycle with high temporal and spatial resolution. Application of these algorithms has required significant additional reconstruction time. The use of distributed computing was recently proposed as a way to improve clinical workflow with such algorithms. In this study, we have deployed a distributed computing version of motion corrected re-binning reconstruction for free-breathing evaluation of cardiac function. Twenty five patients and 25 volunteers underwent cardiovascular magnetic resonance (CMR) for evaluation of left ventricular end-systolic volume (ESV), end-diastolic volume (EDV), and end-diastolic mass. Measurements using motion corrected re-binning were compared to those using breath-held SSFP and to free-breathing SSFP with multiple averages, and were performed by two independent observers. Pearson correlation coefficients and Bland-Altman plots tested agreement across techniques. Concordance correlation coefficient and Bland-Altman analysis tested inter-observer variability. Total scan plus reconstruction times were tested for significant differences using paired t-test. Measured volumes and mass obtained by motion corrected re-binning and by averaged free-breathing SSFP compared favorably to those obtained by breath-held SSFP (r = 0.9863/0.9813 for EDV, 0.9550/0.9685 for ESV, 0.9952/0.9771 for mass). Inter-observer variability was good with concordance correlation coefficients between observers across all acquisition types suggesting substantial agreement. Both motion corrected re-binning and averaged free-breathing SSFP acquisition and reconstruction times were shorter than breath-held SSFP techniques (p < 0.0001). On average, motion corrected re-binning required 3 min less than breath-held SSFP imaging, a 37% reduction in acquisition and reconstruction time. The motion corrected re-binning image reconstruction technique provides robust cardiac imaging that can be used for quantification that compares favorably to breath-held SSFP as well as multiple average free-breathing SSFP, but can be obtained in a fraction of the time when using cloud-based distributed computing reconstruction.

  16. Preliminary investigation of single-file diffusion in complex plasma rings

    NASA Astrophysics Data System (ADS)

    Theisen, W. L.; Sheridan, T. E.

    2010-04-01

    Particles in one-dimensional (1D) systems cannot pass each other. However, it is still possible to define a diffusion process where the mean-squared displacement (msd) of an ensemble of particles in a 1D chain increases with time t. This process is called single-file diffusion. In contrast to diffusive processes that follow Fick's law, msdt, single-file diffusion is sub-Fickean and the msd is predicted to increase as t^1/2. We have recently created 1D dusty (complex) plasma rings in the DONUT (Dusty ONU experimenT) apparatus. Particle position data from these rings will be analyzed to determine the scaling of the msd with time and results will be compared with predictions of single-file diffusion theory.

  17. Communication: Coordinate-dependent diffusivity from single molecule trajectories

    NASA Astrophysics Data System (ADS)

    Berezhkovskii, Alexander M.; Makarov, Dmitrii E.

    2017-11-01

    Single-molecule observations of biomolecular folding are commonly interpreted using the model of one-dimensional diffusion along a reaction coordinate, with a coordinate-independent diffusion coefficient. Recent analysis, however, suggests that more general models are required to account for single-molecule measurements performed with high temporal resolution. Here, we consider one such generalization: a model where the diffusion coefficient can be an arbitrary function of the reaction coordinate. Assuming Brownian dynamics along this coordinate, we derive an exact expression for the coordinate-dependent diffusivity in terms of the splitting probability within an arbitrarily chosen interval and the mean transition path time between the interval boundaries. This formula can be used to estimate the effective diffusion coefficient along a reaction coordinate directly from single-molecule trajectories.

  18. Photoacoustic sensor for medical diagnostics

    NASA Astrophysics Data System (ADS)

    Wolff, Marcus; Groninga, Hinrich G.; Harde, Hermann

    2004-03-01

    The development of new optical sensor technologies has a major impact on the progress of diagnostic methods. Of the permanently increasing number of non-invasive breath tests, the 13C-Urea Breath Test (UBT) for the detection of Helicobacter pylori is the most prominent. However, many recent developments, like the detection of cancer by breath test, go beyond gastroenterological applications. We present a new detection scheme for breath analysis that employs an especially compact and simple set-up. Photoacoustic Spectroscopy (PAS) represents an offset-free technique that allows for short absorption paths and small sample cells. Using a single-frequency diode laser and taking advantage of acoustical resonances of the sample cell, we performed extremely sensitive and selective measurements. The smart data processing method contributes to the extraordinary sensitivity and selectivity as well. Also, the reasonable acquisition cost and low operational cost make this detection scheme attractive for many biomedical applications. The experimental set-up and data processing method, together with exemplary isotope-selective measurements on carbon dioxide, are presented.

  19. Towards Breath Gas Analysis Based on Millimeter-Wave Molecular Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rothbart, Nick; Hübers, Heinz-Wilhelm; Schmalz, Klaus; Borngräber, Johannes; Kissinger, Dietmar

    2018-03-01

    Breath gas analysis is a promising non-invasive tool for medical diagnosis as there are thousands of Volatile Organic Compounds (VOCs) in human breath that can be used as health monitoring markers. Millimeter-wave/terahertz molecular spectroscopy is highly suitable for breath gas analysis due to unique fingerprint spectra of many VOCs in that frequency range. We present our recent work on sensor systems for gas spectroscopy based on integrated transmitters (TX) and receivers (RX) fabricated in IHP's 0.13 μm SiGe BiCMOS technology. For a single-band system, spectroscopic measurements and beam profiles are presented. The frequency is tuned by direct voltage-frequency tuning and by a fractional-n PLL, respectively. The spectroscopic system includes a folded gas absorption cell with gas pre-concentration abilities demonstrating the detection of a 50 ppm mixture of ethanol in ambient air corresponding to a minimum detectable concentration of 260 ppb. Finally, the design of a 3-band system covering frequencies from 225 to 273 GHz is introduced.

  20. Pore Breathing of Metal-Organic Frameworks by Environmental Transmission Electron Microscopy.

    PubMed

    Parent, Lucas R; Pham, C Huy; Patterson, Joseph P; Denny, Michael S; Cohen, Seth M; Gianneschi, Nathan C; Paesani, Francesco

    2017-10-11

    Metal-organic frameworks (MOFs) have emerged as a versatile platform for the rational design of multifunctional materials, combining large specific surface areas with flexible, periodic frameworks that can undergo reversible structural transitions, or "breathing", upon temperature and pressure changes, and through gas adsorption/desorption processes. Although MOF breathing can be inferred from the analysis of adsorption isotherms, direct observation of the structural transitions has been lacking, and the underlying processes of framework reorganization in individual MOF nanocrystals is largely unknown. In this study, we describe the characterization and elucidation of these processes through the combination of in situ environmental transmission electron microscopy (ETEM) and computer simulations. This combined approach enables the direct monitoring of the breathing behavior of individual MIL-53(Cr) nanocrystals upon reversible water adsorption and temperature changes. The ability to characterize structural changes in single nanocrystals and extract lattice level information through in silico correlation provides fundamental insights into the relationship between pore size/shape and host-guest interactions.

  1. Characterization of single-file diffusion in one-dimensional dusty plasma

    NASA Astrophysics Data System (ADS)

    Theisen, W. L.; Sheridan, T. E.

    2010-11-01

    Single-file diffusion occurs in one-dimensional systems when particles cannot pass each other and the mean-squared displacement (msd) of these particles increases with time t. Diffusive processes that follow Ficks law predict that the msd increases as t, however, single-file diffusion is sub-Fickean meaning that the msd is predicted to increase as t^1/2. One-dimensional dusty plasma rings have been created under strongly coupled, over-damped conditions. Particle position data from these rings will be analyzed to determine the scaling of the msd with time. Results will be compared with predictions of single-file diffusion theory.

  2. Breath-hold imaging of the coronary arteries using Quiescent-Interval Slice-Selective (QISS) magnetic resonance angiography: pilot study at 1.5 Tesla and 3 Tesla.

    PubMed

    Edelman, Robert R; Giri, S; Pursnani, A; Botelho, M P F; Li, W; Koktzoglou, I

    2015-11-23

    Coronary magnetic resonance angiography (MRA) is usually obtained with a free-breathing navigator-gated 3D acquisition. Our aim was to develop an alternative breath-hold approach that would allow the coronary arteries to be evaluated in a much shorter time and without risk of degradation by respiratory motion artifacts. For this purpose, we implemented a breath-hold, non-contrast-enhanced, quiescent-interval slice-selective (QISS) 2D technique. Sequence performance was compared at 1.5 and 3 Tesla using both radial and Cartesian k-space trajectories. The left coronary circulation was imaged in six healthy subjects and two patients with coronary artery disease. Breath-hold QISS was compared with T2-prepared 2D balanced steady-state free-precession (bSSFP) and free-breathing, navigator-gated 3D bSSFP. Approximately 10 2.1-mm thick slices were acquired in a single ~20-s breath-hold using two-shot QISS. QISS contrast-to-noise ratio (CNR) was 1.5-fold higher at 3 Tesla than at 1.5 Tesla. Cartesian QISS provided the best coronary-to-myocardium CNR, whereas radial QISS provided the sharpest coronary images. QISS image quality exceeded that of free-breathing 3D coronary MRA with few artifacts at either field strength. Compared with T2-prepared 2D bSSFP, multi-slice capability was not restricted by the specific absorption rate at 3 Tesla and pericardial fluid signal was better suppressed. In addition to depicting the coronary arteries, QISS could image intra-cardiac structures, pericardium, and the aortic root in arbitrary slice orientations. Breath-hold QISS is a simple, versatile, and time-efficient method for coronary MRA that provides excellent image quality at both 1.5 and 3 Tesla. Image quality exceeded that of free-breathing, navigator-gated 3D MRA in a much shorter scan time. QISS also allowed rapid multi-slice bright-blood, diastolic phase imaging of the heart, which may have complementary value to multi-phase cine imaging. We conclude that, with further clinical validation, QISS might provide an efficient alternative to commonly used free-breathing coronary MRA techniques.

  3. The matching of ventilation and perfusion in the lung of the Tegu lizard, Tupinambis nigropunctatus.

    PubMed

    Hlastala, M P; Standaert, T A; Pierson, D J; Luchtel, D L

    1985-06-01

    Ventilation-perfusion (VA/Q) distribution was evaluated in the Tegu lizard, Tupinambis nigropunctatus, using the multiple inert gas elimination technique (MIGET) in order to define the limitations to gas exchange in the large chambered unicameral lung. The lizards (0.52-1.1 kg) were anesthetized with halothane and ventilated. Body temperature was maintained at 35 degrees C. Arterial and sinus venosus PO2 averaged 79.4 +/- 5.9 and 47.3 +/- 6.4 torr while breathing air and 232.1 +/- 31 and 64.8 +/- 11.5 torr while breathing oxygen. VA/Q distributions were broad and right-to-left shunt averaged 21% while breathing air and 27% while breathing oxygen. Gas exchange was significantly impaired due to the presence of both shunt and VA/Q heterogeneity. The walls of the lung enclose a large axial air chamber. Microscopic examination revealed approximately three generations of septa which subdivided the wall into tubular-shaped gas-exchange chambers. Wall thickness averages 2.8 mm at the anterior end of the lung, 2.1 mm in the middle portion of the lung and 1.4 mm at the posterior end. The thickness of the blood-air barrier (epithelial-basal lamina-endothelial cell layer) ranged from 0.35 to 0.90 micron. Although this barrier is slightly thicker than in the mammalian lung (0.1-0.5 micron), it is unlikely to be a source of diffusion limitation in gas exchange at rest.

  4. A Comparison between Temperature-Controlled Laminar Airflow Device and a Room Air-Cleaner in Reducing Exposure to Particles While Asleep

    PubMed Central

    Spilak, Michal P.; Sigsgaard, Torben; Takai, Hisamitsu; Zhang, Guoqiang

    2016-01-01

    People spend approximately one third of their life sleeping. Exposure to pollutants in the sleep environment often leads to a variety of adverse health effects, such as development and exacerbation of asthma. Avoiding exposure to these pollutants by providing a sufficient air quality in the sleep environment might be a feasible method to alleviate these health symptoms. We performed full-scale laboratory measurements using a thermal manikin positioned on an experimental bed. Three ventilation settings were tested: with no filtration system operated, use of portable air cleaner and use of a temperature-controlled laminar airflow (TLA) device. The first part of the experiment investigated the air-flow characteristics in the breathing zone. In the second part, particle removal efficiency was estimated. Measured in the breathing zone, the room air cleaner demonstrated high turbulence intensity, high velocity and turbulence diffusivity level, with a particle reduction rate of 52% compared to baseline after 30 minutes. The TLA device delivered a laminar airflow to the breathing zone with a reduction rate of 99.5%. During a periodical duvet lifting mimicking a subject’s movement in bed, the particle concentration was significantly lower with the TLA device compared to the room air cleaner. The TLA device provided a barrier which significantly reduced the introduction of airborne particles into the breathing zone. Further studies should be conducted for the understanding of the transport of resuspended particles between the duvet and the laying body. PMID:27898693

  5. A Comparison between Temperature-Controlled Laminar Airflow Device and a Room Air-Cleaner in Reducing Exposure to Particles While Asleep.

    PubMed

    Spilak, Michal P; Sigsgaard, Torben; Takai, Hisamitsu; Zhang, Guoqiang

    2016-01-01

    People spend approximately one third of their life sleeping. Exposure to pollutants in the sleep environment often leads to a variety of adverse health effects, such as development and exacerbation of asthma. Avoiding exposure to these pollutants by providing a sufficient air quality in the sleep environment might be a feasible method to alleviate these health symptoms. We performed full-scale laboratory measurements using a thermal manikin positioned on an experimental bed. Three ventilation settings were tested: with no filtration system operated, use of portable air cleaner and use of a temperature-controlled laminar airflow (TLA) device. The first part of the experiment investigated the air-flow characteristics in the breathing zone. In the second part, particle removal efficiency was estimated. Measured in the breathing zone, the room air cleaner demonstrated high turbulence intensity, high velocity and turbulence diffusivity level, with a particle reduction rate of 52% compared to baseline after 30 minutes. The TLA device delivered a laminar airflow to the breathing zone with a reduction rate of 99.5%. During a periodical duvet lifting mimicking a subject's movement in bed, the particle concentration was significantly lower with the TLA device compared to the room air cleaner. The TLA device provided a barrier which significantly reduced the introduction of airborne particles into the breathing zone. Further studies should be conducted for the understanding of the transport of resuspended particles between the duvet and the laying body.

  6. Real-time continuous visual biofeedback in the treatment of speech breathing disorders following childhood traumatic brain injury: report of one case.

    PubMed

    Murdoch, B E; Pitt, G; Theodoros, D G; Ward, E C

    1999-01-01

    The efficacy of traditional and physiological biofeedback methods for modifying abnormal speech breathing patterns was investigated in a child with persistent dysarthria following severe traumatic brain injury (TBI). An A-B-A-B single-subject experimental research design was utilized to provide the subject with two exclusive periods of therapy for speech breathing, based on traditional therapy techniques and physiological biofeedback methods, respectively. Traditional therapy techniques included establishing optimal posture for speech breathing, explanation of the movement of the respiratory muscles, and a hierarchy of non-speech and speech tasks focusing on establishing an appropriate level of sub-glottal air pressure, and improving the subject's control of inhalation and exhalation. The biofeedback phase of therapy utilized variable inductance plethysmography (or Respitrace) to provide real-time, continuous visual biofeedback of ribcage circumference during breathing. As in traditional therapy, a hierarchy of non-speech and speech tasks were devised to improve the subject's control of his respiratory pattern. Throughout the project, the subject's respiratory support for speech was assessed both instrumentally and perceptually. Instrumental assessment included kinematic and spirometric measures, and perceptual assessment included the Frenchay Dysarthria Assessment, Assessment of Intelligibility of Dysarthric Speech, and analysis of a speech sample. The results of the study demonstrated that real-time continuous visual biofeedback techniques for modifying speech breathing patterns were not only effective, but superior to the traditional therapy techniques for modifying abnormal speech breathing patterns in a child with persistent dysarthria following severe TBI. These results show that physiological biofeedback techniques are potentially useful clinical tools for the remediation of speech breathing impairment in the paediatric dysarthric population.

  7. Deep breathing exercises performed 2 months following cardiac surgery: a randomized controlled trial.

    PubMed

    Westerdahl, Elisabeth; Urell, Charlotte; Jonsson, Marcus; Bryngelsson, Ing-Liss; Hedenström, Hans; Emtner, Margareta

    2014-01-01

    Postoperative breathing exercises are recommended to cardiac surgery patients. Instructions concerning how long patients should continue exercises after discharge vary, and the significance of treatment needs to be determined. Our aim was to assess the effects of home-based deep breathing exercises performed with a positive expiratory pressure device for 2 months following cardiac surgery. The study design was a prospective, single-blinded, parallel-group, randomized trial. Patients performing breathing exercises 2 months after cardiac surgery (n = 159) were compared with a control group (n = 154) performing no breathing exercises after discharge. The intervention consisted of 30 slow deep breaths performed with a positive expiratory pressure device (10-15 cm H2O), 5 times a day, during the first 2 months after surgery. The outcomes were lung function measurements, oxygen saturation, thoracic excursion mobility, subjective perception of breathing and pain, patient-perceived quality of recovery (40-Item Quality of Recovery score), health-related quality of life (36-Item Short Form Health Survey), and self-reported respiratory tract infection/pneumonia and antibiotic treatment. Two months postoperatively, the patients had significantly reduced lung function, with a mean decrease in forced expiratory volume in 1 second to 93 ± 12% (P< .001) of preoperative values. Oxygenation had returned to preoperative values, and 5 of 8 aspects in the 36-Item Short Form Health Survey were improved compared with preoperative values (P< .01). There were no significant differences between the groups in any of the measured outcomes. No significant differences in lung function, subjective perceptions, or quality of life were found between patients performing home-based deep breathing exercises and control patients 2 months after cardiac surgery.

  8. Validation of a new mixing chamber system for breath-by-breath indirect calorimetry.

    PubMed

    Kim, Do-Yeon; Robergs, Robert Andrew

    2012-02-01

    Limited validation research exists for applications of breath-by-breath systems of expired gas analysis indirect calorimetry (EGAIC) during exercise. We developed improved hardware and software for breath-by-breath indirect calorimetry (NEW) and validated this system as well as a commercial system (COM) against 2 methods: (i) mechanical ventilation with known calibration gas, and (ii) human subjects testing for 5 min each at rest and cycle ergometer exercise at 100 and 175 W. Mechanical calibration consisted of medical grade and certified calibration gas ((4.95% CO(2), 12.01% O(2), balance N(2)), room air (20.95% O(2), 0.03% CO(2), balance N(2)), and 100% nitrogen), and an air flow turbine calibrated with a 3-L calibration syringe. Ventilation was mimicked manually using complete 3-L calibration syringe manouvers at a rate of 10·min(-1) from a Douglas bag reservoir of calibration gas. The testing of human subjects was completed in a counterbalanced sequence based on 5 repeated tests of all conditions for a single subject. Rest periods of 5 and 10 min followed the 100 and 175 W conditions, respectively. COM and NEW had similar accuracy when tested with known ventilation and gas fractions. However, during human subjects testing COM significantly under-measured carbon dioxide gas fractions, over-measured oxygen gas fractions and minute ventilation, and resulted in errors to each of oxygen uptake, carbon dioxide output, and respiratory exchange ratio. These discrepant findings reveal that controlled ventilation and gas fractions are insufficient to validate breath-by-breath, and perhaps even time-averaged, systems of EGAIC. The errors of the COM system reveal the need for concern over the validity of commercial systems of EGAIC.

  9. Heat Pulse Propagation in Carbon Nanotube Peapods

    NASA Astrophysics Data System (ADS)

    Osman, Mohamed

    2013-03-01

    Earlier studies of heat pulse propagation in single and double wall nanotubes at very low temperatures have shown that the heat pulse generated wave packets that moved at the speed of sound corresponding to LA and TW phonon modes, second sound waves and diffusive components. The energy content of LA mode wave packets in SWNT was significantly smaller than the TW mode. The energy of the leading LA mode wavepacket in DWNT had a significant increase in the energy content compared to SWNT LA mode. Additionally, an increase simple strain within the LA mode was higher in DWNT compared to SWNT was also reported in. This has motivated us to examine heat pulse propagation in carbon nanopeapods and the coupling between the (10,10) SWNT nanotube and the C60 fullerenes enclosed. The major coupling frequency between the C60 and the (10,10) occurs at 4.88 THz which correspond to the radial breathing mode frequency. We will discuss these results and report on the major phonon modes involved in heat pulse propagation in the (10,10) SWNT-C60 nanopeapod.

  10. A Portable Real-Time Ringdown Breath Acetone Analyzer: Toward Potential Diabetic Screening and Management

    PubMed Central

    Jiang, Chenyu; Sun, Meixiu; Wang, Zhennan; Chen, Zhuying; Zhao, Xiaomeng; Yuan, Yuan; Li, Yingxin; Wang, Chuji

    2016-01-01

    Breath analysis has been considered a suitable tool to evaluate diseases of the respiratory system and those that involve metabolic changes, such as diabetes. Breath acetone has long been known as a biomarker for diabetes. However, the results from published data by far have been inconclusive regarding whether breath acetone is a reliable index of diabetic screening. Large variations exist among the results of different studies because there has been no “best-practice method” for breath-acetone measurements as a result of technical problems of sampling and analysis. In this mini-review, we update the current status of our development of a laser-based breath acetone analyzer toward real-time, one-line diabetic screening and a point-of-care instrument for diabetic management. An integrated standalone breath acetone analyzer based on the cavity ringdown spectroscopy technique has been developed. The instrument was validated by using the certificated gas chromatography-mass spectrometry. The linear fittings suggest that the obtained acetone concentrations via both methods are consistent. Breath samples from each individual subject under various conditions in total, 1257 breath samples were taken from 22 Type 1 diabetic (T1D) patients, 312 Type 2 diabetic (T2D) patients, which is one of the largest numbers of T2D subjects ever used in a single study, and 52 non-diabetic healthy subjects. Simultaneous blood glucose (BG) levels were also tested using a standard diabetic management BG meter. The mean breath acetone concentrations were determined to be 4.9 ± 16 ppm (22 T1D), and 1.5 ± 1.3 ppm (312 T2D), which are about 4.5 and 1.4 times of the one in the 42 non-diabetic healthy subjects, 1.1 ± 0.5 ppm, respectively. A preliminary quantitative correlation (R = 0.56, p < 0.05) between the mean individual breath acetone concentration and the mean individual BG levels does exist in 20 T1D subjects with no ketoacidosis. No direct correlation is observed in T1D subjects, T2D subjects, and healthy subjects. The results from a relatively large number of subjects tested indicate that an elevated mean breath acetone concentration exists in diabetic patients in general. Although many physiological parameters affect breath acetone, under a specifically controlled condition fast (<1 min) and portable breath acetone measurement can be used for screening abnormal metabolic status including diabetes, for point-of-care monitoring status of ketone bodies which have the signature smell of breath acetone, and for breath acetone related clinical studies requiring a large number of tests. PMID:27483281

  11. A Portable Real-Time Ringdown Breath Acetone Analyzer: Toward Potential Diabetic Screening and Management.

    PubMed

    Jiang, Chenyu; Sun, Meixiu; Wang, Zhennan; Chen, Zhuying; Zhao, Xiaomeng; Yuan, Yuan; Li, Yingxin; Wang, Chuji

    2016-07-30

    Breath analysis has been considered a suitable tool to evaluate diseases of the respiratory system and those that involve metabolic changes, such as diabetes. Breath acetone has long been known as a biomarker for diabetes. However, the results from published data by far have been inconclusive regarding whether breath acetone is a reliable index of diabetic screening. Large variations exist among the results of different studies because there has been no "best-practice method" for breath-acetone measurements as a result of technical problems of sampling and analysis. In this mini-review, we update the current status of our development of a laser-based breath acetone analyzer toward real-time, one-line diabetic screening and a point-of-care instrument for diabetic management. An integrated standalone breath acetone analyzer based on the cavity ringdown spectroscopy technique has been developed. The instrument was validated by using the certificated gas chromatography-mass spectrometry. The linear fittings suggest that the obtained acetone concentrations via both methods are consistent. Breath samples from each individual subject under various conditions in total, 1257 breath samples were taken from 22 Type 1 diabetic (T1D) patients, 312 Type 2 diabetic (T2D) patients, which is one of the largest numbers of T2D subjects ever used in a single study, and 52 non-diabetic healthy subjects. Simultaneous blood glucose (BG) levels were also tested using a standard diabetic management BG meter. The mean breath acetone concentrations were determined to be 4.9 ± 16 ppm (22 T1D), and 1.5 ± 1.3 ppm (312 T2D), which are about 4.5 and 1.4 times of the one in the 42 non-diabetic healthy subjects, 1.1 ± 0.5 ppm, respectively. A preliminary quantitative correlation (R = 0.56, p < 0.05) between the mean individual breath acetone concentration and the mean individual BG levels does exist in 20 T1D subjects with no ketoacidosis. No direct correlation is observed in T1D subjects, T2D subjects, and healthy subjects. The results from a relatively large number of subjects tested indicate that an elevated mean breath acetone concentration exists in diabetic patients in general. Although many physiological parameters affect breath acetone, under a specifically controlled condition fast (<1 min) and portable breath acetone measurement can be used for screening abnormal metabolic status including diabetes, for point-of-care monitoring status of ketone bodies which have the signature smell of breath acetone, and for breath acetone related clinical studies requiring a large number of tests.

  12. On the role of adhesion in single-file dynamics

    NASA Astrophysics Data System (ADS)

    Fouad, Ahmed M.; Noel, John A.

    2017-08-01

    For a one-dimensional interacting system of Brownian particles with hard-core interactions (a single-file model), we study the effect of adhesion on both the collective diffusion (diffusion of the entire system with respect to its center of mass) and the tracer diffusion (diffusion of the individual tagged particles). For the case with no adhesion, all properties of these particle systems that are independent of particle labeling (symmetric in all particle coordinates and velocities) are identical to those of non-interacting particles (Lebowitz and Percus, 1967). We clarify this last fact twice. First, we derive our analytical predictions that show that the probability-density functions of single-file (ρsf) and ordinary (ρord) diffusion are identical, ρsf =ρord, predicting a nonanomalous (ordinary) behavior for the collective single-file diffusion, where the average second moment with respect to the center of mass, < x(t) 2 > , is calculated from ρ for both diffusion processes. Second, for single-file diffusion, we show, both analytically and through large-scale simulations, that < x(t) 2 > grows linearly with time, confirming the nonanomalous behavior. This nonanomalous collective behavior comes in contrast to the well-known anomalous sub-diffusion behavior of the individual tagged particles (Harris, 1965). We introduce adhesion to single-file dynamics as a second inter-particle interaction rule and, interestingly, we show that adding adhesion does reduce the magnitudes of both < x(t) 2 > and the mean square displacement per particle Δx2; but the diffusion behavior remains intact independent of adhesion in both cases. Moreover, we study the dependence of both the collective diffusion constant D and the tracer diffusion constant DT on the adhesion coefficient α.

  13. Kiln emissions and potters' exposures.

    PubMed

    Hirtle, B; Teschke, K; van Netten, C; Brauer, M

    1998-10-01

    Some ten thousand British Columbia potters work in small private studios, cooperative facilities, educational institutions, or recreation centers. There has been considerable concern that this diffuse, largely unregulated activity may involve exposures to unacceptable levels of kiln emissions. Pottery kiln emissions were measured at 50 sites--10 from each of 5 categories: professional studios, recreation centers, elementary schools, secondary schools, and colleges. Area monitoring was done 76 cm from firing kilns and 1.6 m above the floor to assess breathing zone concentrations of nitrogen dioxide, carbon monoxide, sulfur dioxide, fluorides, aldehydes, aluminum, antimony, arsenic, barium, beryllium, boron, cadmium, chromium, cobalt, copper, gold, iron, lead, lithium, magnesium, manganese, mercury, nickel, selenium, silver, vanadium, and zinc. Personal exposures to the same metals were measured at 24 sites. Almost all measured values were well below permissible concentrations for British Columbia work sites and American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit values (TLVs) with the following two exceptions. A single firing duration (495 minute) acrolein measurement adjacent to an electric kiln (0.109 ppm) exceeded these guidelines. One 15-minute sulfur dioxide measurement collected adjacent to a gas kiln (5.7 ppm) exceeded the ACGIH short-term exposure limit. The fact that concentrations in small, ventilated kiln rooms ranked among the highest measured gives rise to concern that unacceptable levels of contamination may exist where small kiln rooms remain unventilated. Custom designed exhaust hoods and industrial heating, ventilating, and air-conditioning systems were the most effective ventilation strategies. Passive diffusion and wall/window fans were least effective.

  14. CO diffusing capacity in a general population sample: relationships with cigarette smoking and airflow obstruction.

    PubMed

    Viegi, G; Paoletti, P; Carrozzi, L; Baldacci, S; Modena, P; Pedreschi, M; Di Pede, F; Mammini, U; Giuntini, C

    1993-01-01

    The single-breath carbon monoxide diffusing capacity (DLCOsb) was measured together with ventilatory lung function tests as part of a survey of a general population sample living in Northern Italy (n = 2,481). Based on answers to an interviewer-administered questionnaire, subjects free of respiratory symptoms or diseases were identified. Data from subjects who had never regularly smoked cigarettes were used to derive reference equations for the test indexes, and data from the remaining subjects who had smoked were used to derive regression equations incorporating a term expressing cigarette consumption (cube root of pack-years) and a term indicating current smoking decrement, in order to obtain expected DLCOsb percent predicted. Neither number of cigarettes smoked daily or duration of smoking, in smokers, nor duration of smoking or years since quitting smoking, in ex-smokers, entered significantly the multiple-regression model. The mean values of DLCOsb were only slightly affected by the increasing degree of airway obstruction. When subjects with confirmed asthma were analyzed, after stratifying for different levels of FEV1/FVC ratio, increased mean value of DLCOsb (over 100%) was found in those with an FEV1/FVC ratio between 75 and 65%. This cross-sectional analysis suggests that there is a decrease in DLCOsb with cumulative cigarette consumption even in healthy subjects. Further, it confirms the clinical observations of high DLCOsb values in asthmatic patients, at least in those with an initial degree of chronic airflow obstruction.

  15. Low level CO2 effects on pulmonary function in humans

    NASA Technical Reports Server (NTRS)

    Sexton, J.; Mueller, K.; Elliott, A.; Gerzer, D.; Strohl, K. P.; West, J. B. (Principal Investigator)

    1998-01-01

    The purpose of the study was to determine whether chamber exposure to low levels of CO2 results in functional alterations in gas mixing and closing volume in humans. Four healthy volunteer subjects were exposed to 0.7% CO2 and to 1.2% CO2. Spirometry, lung volumes, single breath nitrogen washout, diffusing capacity for carbon monoxide (DLCO) by two methods, and cardiac output were measured in triplicate. Values were obtained over two non-consecutive days during the training period (control) and on days 2 or 3, 4, 6, 10, 13, and 23 of exposure to each CO2 level. Measurements were made during the same time of day. There was one day of testing after exposure, while still in the chamber but off carbon dioxide. The order of testing, up until measurements of DLCO and cardiac output, were randomized to avoid presentation effects. The consistent findings were a reduction in diffusing capacity for carbon monoxide and a fall in cardiac output, occurring to a similar degree with both exposures. For the group as a whole, there was no indication of major effects on spirometry, lung volumes, gas mixing or dead space. We conclude that small changes may occur in the function of distal gas exchanging units; however, these effects were not associated with any adverse health effects. The likelihood of pathophysiologic changes in lung function or structure with 0.7 or 1.2% CO2 exposure for this period of time, is therefore, low.

  16. Aerosols in the study of convective acinar mixing.

    PubMed

    Darquenne, Chantal; Prisk, G Kim

    2005-08-25

    Convective mixing (CM) refers to the different transport mechanisms except Brownian diffusion that irreversibly transfer inspired air into resident air and can be studied using aerosol bolus inhalations. This paper provides a review of the present understanding of how each of these mechanisms contributes to CM. Original data of the combined effect of stretch and fold and gravitational sedimentation on CM are also presented. Boli of 0.5 microm-diameter particles were inhaled at penetration volumes (V(p)) of 300 and 1200 ml in eight subjects. Inspiration was followed by a 10-s breath hold, during which small flow reversals (FR) were imposed, and expiration. There was no physiologically significant dependence in dispersion and deposition with increasing FR. The results were qualitatively similar to those obtained in a previous study in microgravity in which it was speculated that the phenomenon of stretch and fold occurred during the first breathing cycle without the need of any subsequent FR.

  17. Steady state macroscopic model of the influence of water on the performances of a micro air-breathing fuel cell

    NASA Astrophysics Data System (ADS)

    Zeidan, M.; Turpin, Ch.; Cantin, F.; Astier, S.

    2011-05-01

    Water management is one of the most crucial issues to drive PEM fuel cells. The challenge is enhanced in the case of micro air-breathing proton exchange membrane fuel cells (μABFC): their thinness and their reduced surface indeed make their hydration state fast changing and very sensitive to the experimental conditions (temperature and relative humidity (RH)). It can lead to strong flooding or drying out issues. Firstly, this study highlights this sensitivity by various measurements. Then a steady state macroscopic model for the μABFC is proposed, focusing on the cathode, using a rather original approach for diffusion in porous media. Finally, a literal steady state formula for the water content is provided, and its influences on the performances of the μABFC are explicitly proposed. The model is parameterized and compared to measures in several atmospheric conditions.

  18. Aerosols in the study of convective acinar mixing

    NASA Technical Reports Server (NTRS)

    Darquenne, Chantal; Prisk, G. Kim

    2005-01-01

    Convective mixing (CM) refers to the different transport mechanisms except Brownian diffusion that irreversibly transfer inspired air into resident air and can be studied using aerosol bolus inhalations. This paper provides a review of the present understanding of how each of these mechanisms contributes to CM. Original data of the combined effect of stretch and fold and gravitational sedimentation on CM are also presented. Boli of 0.5 microm-diameter particles were inhaled at penetration volumes (V(p)) of 300 and 1200 ml in eight subjects. Inspiration was followed by a 10-s breath hold, during which small flow reversals (FR) were imposed, and expiration. There was no physiologically significant dependence in dispersion and deposition with increasing FR. The results were qualitatively similar to those obtained in a previous study in microgravity in which it was speculated that the phenomenon of stretch and fold occurred during the first breathing cycle without the need of any subsequent FR.

  19. Experimental investigation of particle deposition mechanisms in the lung acinus using microfluidic models.

    NASA Astrophysics Data System (ADS)

    Fishler, Rami; Mulligan, Molly; Dubowski, Yael; Sznitman, Josue; Sznitman Lab-department of Biomedical Engineering Team; Dubowski Lab-faculty of Civil; Environmental Engineering Team

    2014-11-01

    In order to experimentally investigate particle deposition mechanisms in the deep alveolated regions of the lungs, we have developed a novel microfluidic device mimicking breathing acinar flow conditions directly at the physiological scale. The model features an anatomically-inspired acinar geometry with five dichotomously branching airway generations lined with periodically expanding and contracting alveoli. Deposition patterns of airborne polystyrene microspheres (spanning 0.1 μm to 2 μm in diameter) inside the airway tree network compare well with CFD simulations and reveal the roles of gravity and Brownian motion on particle deposition sites. Furthermore, measured trajectories of incense particles (0.1-1 μm) inside the breathing device show a critical role for Brownian diffusion in determining the fate of inhaled sub-micron particles by enabling particles to cross from the acinar ducts into alveolar cavities, especially during the short time lag between inhalation and exhalation phases.

  20. Single-image diffusion coefficient measurements of proteins in free solution.

    PubMed

    Zareh, Shannon Kian; DeSantis, Michael C; Kessler, Jonathan M; Li, Je-Luen; Wang, Y M

    2012-04-04

    Diffusion coefficient measurements are important for many biological and material investigations, such as studies of particle dynamics and kinetics, and size determinations. Among current measurement methods, single particle tracking (SPT) offers the unique ability to simultaneously obtain location and diffusion information about a molecule while using only femtomoles of sample. However, the temporal resolution of SPT is limited to seconds for single-color-labeled samples. By directly imaging three-dimensional diffusing fluorescent proteins and studying the widths of their intensity profiles, we were able to determine the proteins' diffusion coefficients using single protein images of submillisecond exposure times. This simple method improves the temporal resolution of diffusion coefficient measurements to submilliseconds, and can be readily applied to a range of particle sizes in SPT investigations and applications in which diffusion coefficient measurements are needed, such as reaction kinetics and particle size determinations. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. Characterizing focal hepatic lesions by free-breathing intravoxel incoherent motion MRI at 3.0 T.

    PubMed

    Watanabe, Haruo; Kanematsu, Masayuki; Goshima, Satoshi; Kajita, Kimihiro; Kawada, Hiroshi; Noda, Yoshifumi; Tatahashi, Yukichi; Kawai, Nobuyuki; Kondo, Hiroshi; Moriyama, Noriyuki

    2014-12-01

    Diffusion-weighted (DW) imaging is commonly used to distinguish between benign and malignant liver lesions. To prospectively evaluate the true molecular-diffusion coefficient (D), perfusion-related diffusion coefficient (D*), perfusion fraction (f), and ADC of focal hepatic lesions using a free-breathing intravoxel incoherent motion (IVIM) DW sequence, and to determine if these parameters are useful for characterizing focal hepatic lesions. One hundred and twenty hepatic lesions (34 metastases, 32 hepatocellular carcinoma [HCC], 33 hemangiomas, and 21 liver cysts) in 74 patients were examined. Mean D, D*, f, and ADC values of hepatic lesions were compared among pathologies. ROC curve analyses were performed to assess the performances of D, D*, f, and ADC values for the characterization of liver lesions as benign or malignant. The mean D and ADC values of benign lesions were greater than those of malignant lesions (P < 0.001). Although the mean D and ADC values of liver cysts were greater than those of hemangiomas (P < 0.001), and these values were not significantly different between metastases and HCCs (P = 0.99). Area under the ROC curve for ADC values (0.98) was significantly greater (P = 0.048) than that for D values (0.96) for the differentiation of benign and malignant lesions. Sensitivity and specificity for the detection of malignant lesion were 89% and 98%, respectively, when an ADC cut-off value of 1.40 was applied. D and ADC values have more potential for characterizing focal hepatic lesions than D* or f values, and for the differentiation of malignancy and benignity. © The Foundation Acta Radiologica 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  2. Variability in delivered dose and respirable delivered dose from nebulizers: are current regulatory testing guidelines sufficient to produce meaningful information?

    PubMed

    Hatley, Ross Hm; Byrne, Sarah M

    2017-01-01

    To improve convenience to patients, there have been advances in the operation of nebulizers, resulting in fast treatment times and less drug lost to the environment. However, limited attention has been paid to the effects of these developments on the delivered dose (DD) and respirable delivered dose (RDD). Published pharmacopoeia and ISO testing guidelines for adult-use testing utilize a single breathing pattern, which may not be sufficient to enable effective comparisons between the devices. The DD of 5 mg of salbutamol sulfate into adult breathing patterns with inhalation:exhalation (I:E) ratios between 1:1 and 1:4 was determined. Droplet size was determined by laser diffraction and RDD calculated. Nine different nebulizer brands with different modes of operation (conventional, venturi, breath-enhanced, mesh, and breath-activated) were tested. Between the non-breath-activated nebulizers, a 2.5-fold difference in DD (~750-1,900 µg salbutamol) was found; with RDD, there was a more than fourfold difference (~210-980 µg). With increasing time spent on exhalation, there were progressive reductions in DD and RDD, with the RDD at an I:E ratio of 1:4 being as little as 40% of the dose with the 1:1 I:E ratio. The DD and RDD from the breath-activated mesh nebulizer were independent of the I:E ratio, and for the breath-activated jet nebulizer, there was less than 20% change in RDD between the I:E ratios of 1:1 and 1:4. Comparing nebulizers using the I:E ratio recommended in the guidelines does not predict relative performance between the devices at other ratios. There was significant variance in DD or RDD between different brands of non-breath-activated nebulizer. In future, consideration should be given to revision of the test protocols included in the guidelines, to reflect more accurately the potential therapeutic dose that is delivered to a realistic spectrum of breathing patterns.

  3. Single-shot diffusion measurement in laser-polarized Gas

    NASA Technical Reports Server (NTRS)

    Peled, S.; Tseng, C. H.; Sodickson, A. A.; Mair, R. W.; Walsworth, R. L.; Cory, D. G.

    1999-01-01

    A single-shot pulsed gradient stimulated echo sequence is introduced to address the challenges of diffusion measurements of laser polarized 3He and 129Xe gas. Laser polarization enhances the NMR sensitivity of these noble gases by >10(3), but creates an unstable, nonthermal polarization that is not readily renewable. A new method is presented which permits parallel acquisition of the several measurements required to determine a diffusive attenuation curve. The NMR characterization of a sample's diffusion behavior can be accomplished in a single measurement, using only a single polarization step. As a demonstration, the diffusion coefficient of a sample of laser-polarized 129Xe gas is measured via this method. Copyright 1999 Academic Press.

  4. The Role of Collateral Paths in Long-Range Diffusion of 3He in Lungs

    PubMed Central

    Conradi, Mark S.; Yablonskiy, Dmitriy A.; Woods, Jason C.; Gierada, David S.; Bartel, Seth-Emil T.; Haywood, Susan E.; Menard, Christopher

    2008-01-01

    Rationale and Objectives The hyperpolarized 3He long-range diffusion coefficient (LRDC) in lungs is sensitive to changes in lung structure due to emphysema, reflecting the increase in collateral paths resulting from tissue destruction. However, no clear understanding of LRDC in healthy lungs has emerged. Here we compare LRDC measured in healthy lungs with computer simulations of diffusion along the airway tree with no collateral connections. Materials and Methods Computer simulations of diffusion of spatially modulated spin magnetization were performed in computer generated, symmetric-branching models of lungs and compared with existing LRDC measurements in canine and human lungs. Results The simulations predict LRDC values of order 0.001 cm2/s, approximately 20 times smaller than the measured LRDC. We consider and rule out possible mechanisms for LRDC not included in the simulations: incomplete breath hold, cardiac motion, and passage of dissolved 3He through airway walls. However, a very low density of small (micron) holes in the airways is shown to account for the observed LRDC. Conclusion It is proposed that LRDC in healthy lungs is determined by small collateral pathways. PMID:18486004

  5. Diminutive Porcelain Ascending Aorta With Supravalvular Aortic Stenosis.

    PubMed

    Houmsse, Mustafa; McDavid, Asia; Kilic, Ahmet

    2018-05-01

    This report describes the case of a 49-year-old man with a medical history significant for congenital aortic stenosis. The patient presented with progressive shortness of breath and decreased stamina and was found to have a concentric, diminutive porcelain ascending aorta with diffuse supravalvular aortic stenosis. We describe treatment with an aortic root augmentation and Bentall procedure using hypothermic circulatory arrest. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  6. In-vivo measurement of lithium in the brain and other organs

    DOEpatents

    Vartsky, D.; Wielopolski, L.; LoMonte, A.F.; Ellis, K.J.; Cohn, S.H.

    1983-08-26

    An in-vivo method of measurement of the amount of lithium present in tissue and organs of breathing animals is described. The basis for the technique is the lithium-1 neutron interaction - /sup 6/Li(n,..cap alpha..)T. The lithium is irradiated with thermal neutrons to produce tritium atoms. The tritium diffuses into the tissues and is exhaled. By measuring the amount of tritium exhaled, the lithium concentration in the irradiated zone is determined.

  7. Inferring diffusion in single live cells at the single-molecule level

    PubMed Central

    Robson, Alex; Burrage, Kevin; Leake, Mark C.

    2013-01-01

    The movement of molecules inside living cells is a fundamental feature of biological processes. The ability to both observe and analyse the details of molecular diffusion in vivo at the single-molecule and single-cell level can add significant insight into understanding molecular architectures of diffusing molecules and the nanoscale environment in which the molecules diffuse. The tool of choice for monitoring dynamic molecular localization in live cells is fluorescence microscopy, especially so combining total internal reflection fluorescence with the use of fluorescent protein (FP) reporters in offering exceptional imaging contrast for dynamic processes in the cell membrane under relatively physiological conditions compared with competing single-molecule techniques. There exist several different complex modes of diffusion, and discriminating these from each other is challenging at the molecular level owing to underlying stochastic behaviour. Analysis is traditionally performed using mean square displacements of tracked particles; however, this generally requires more data points than is typical for single FP tracks owing to photophysical instability. Presented here is a novel approach allowing robust Bayesian ranking of diffusion processes to discriminate multiple complex modes probabilistically. It is a computational approach that biologists can use to understand single-molecule features in live cells. PMID:23267182

  8. Marital status and sleep-disordered breathing in a sample of middle-aged French men.

    PubMed

    Teculescu, D; Hannhart, B; Virion, J M; Montaut-Verient, B; Michaely, J P

    2004-01-01

    The aim of the present study was to test the hypothesis that unmarried (single) men have more sleep-disordered breathing symptoms due to a higher prevalence of obesity and a less healthy lifestyle than men living with a partner. Men (499) aged 23-66 years completed a structured questionnaire, had standard anthropometric measurements and a simple, noninvasive nose-throat examination. Of the 499,496 subjects answered the question concerning their marital status; 86% of them were married or lived with a partner (reference group) and the other 14% had never been married, divorced, or widowed ("single" group, considered at risk). Single subjects were younger, included slightly more smokers (30 vs. 23%) and more subjects with a history of chronic bronchitis, and less frequently had a large soft palate. The prevalence of sleep-disordered symptoms was not significantly different between the two groups. However, a study involving a larger number of subjects with information regarding alcoholic consumption may be needed to further evaluate this question.

  9. The QED engine spectrum - Fusion-electric propulsion for air-breathing to interstellar flight

    NASA Technical Reports Server (NTRS)

    Bussard, Robert W.; Jameson, Lorin W.

    1993-01-01

    A new inertial-electrostatic-fusion direct electric power source can be used to drive a relativistic e-beam to heat propellant. The resulting system is shown to yield specific impulse and thrust/mass ratio 2-3 orders of magnitude larger than from other advanced propulsion concepts. This QED system can be applied to aerospace vehicles from air-breathing to near-interstellar flight. Examples are given for Earth/Mars flight missions, that show transit times of 40 d with 20 percent payload in single-stage vehicles.

  10. Body mass scaling of passive oxygen diffusion in endotherms and ectotherms

    PubMed Central

    Gillooly, James F.; Gomez, Juan Pablo; Mavrodiev, Evgeny V.; Rong, Yue; McLamore, Eric S.

    2016-01-01

    The area and thickness of respiratory surfaces, and the constraints they impose on passive oxygen diffusion, have been linked to differences in oxygen consumption rates and/or aerobic activity levels in vertebrates. However, it remains unclear how respiratory surfaces and associated diffusion rates vary with body mass across vertebrates, particularly in relation to the body mass scaling of oxygen consumption rates. Here we address these issues by first quantifying the body mass dependence of respiratory surface area and respiratory barrier thickness for a diversity of endotherms (birds and mammals) and ectotherms (fishes, amphibians, and reptiles). Based on these findings, we then use Fick’s law to predict the body mass scaling of oxygen diffusion for each group. Finally, we compare the predicted body mass dependence of oxygen diffusion to that of oxygen consumption in endotherms and ectotherms. We find that the slopes and intercepts of the relationships describing the body mass dependence of passive oxygen diffusion in these two groups are statistically indistinguishable from those describing the body mass dependence of oxygen consumption. Thus, the area and thickness of respiratory surfaces combine to match oxygen diffusion capacity to oxygen consumption rates in both air- and water-breathing vertebrates. In particular, the substantially lower oxygen consumption rates of ectotherms of a given body mass relative to those of endotherms correspond to differences in oxygen diffusion capacity. These results provide insights into the long-standing effort to understand the structural attributes of organisms that underlie the body mass scaling of oxygen consumption. PMID:27118837

  11. Body mass scaling of passive oxygen diffusion in endotherms and ectotherms.

    PubMed

    Gillooly, James F; Gomez, Juan Pablo; Mavrodiev, Evgeny V; Rong, Yue; McLamore, Eric S

    2016-05-10

    The area and thickness of respiratory surfaces, and the constraints they impose on passive oxygen diffusion, have been linked to differences in oxygen consumption rates and/or aerobic activity levels in vertebrates. However, it remains unclear how respiratory surfaces and associated diffusion rates vary with body mass across vertebrates, particularly in relation to the body mass scaling of oxygen consumption rates. Here we address these issues by first quantifying the body mass dependence of respiratory surface area and respiratory barrier thickness for a diversity of endotherms (birds and mammals) and ectotherms (fishes, amphibians, and reptiles). Based on these findings, we then use Fick's law to predict the body mass scaling of oxygen diffusion for each group. Finally, we compare the predicted body mass dependence of oxygen diffusion to that of oxygen consumption in endotherms and ectotherms. We find that the slopes and intercepts of the relationships describing the body mass dependence of passive oxygen diffusion in these two groups are statistically indistinguishable from those describing the body mass dependence of oxygen consumption. Thus, the area and thickness of respiratory surfaces combine to match oxygen diffusion capacity to oxygen consumption rates in both air- and water-breathing vertebrates. In particular, the substantially lower oxygen consumption rates of ectotherms of a given body mass relative to those of endotherms correspond to differences in oxygen diffusion capacity. These results provide insights into the long-standing effort to understand the structural attributes of organisms that underlie the body mass scaling of oxygen consumption.

  12. Visualizing repetitive diffusion activity of double-strand RNA binding proteins by single molecule fluorescence assays.

    PubMed

    Koh, Hye Ran; Wang, Xinlei; Myong, Sua

    2016-08-01

    TRBP, one of double strand RNA binding proteins (dsRBPs), is an essential cofactor of Dicer in the RNA interference pathway. Previously we reported that TRBP exhibits repetitive diffusion activity on double strand (ds)RNA in an ATP independent manner. In the TRBP-Dicer complex, the diffusion mobility of TRBP facilitates Dicer-mediated RNA cleavage. Such repetitive diffusion of dsRBPs on a nucleic acid at the nanometer scale can be appropriately captured by several single molecule detection techniques. Here, we provide a step-by-step guide to four different single molecule fluorescence assays by which the diffusion activity of dsRBPs on dsRNA can be detected. One color assay, termed protein induced fluorescence enhancement enables detection of unlabeled protein binding and diffusion on a singly labeled RNA. Two-color Fluorescence Resonance Energy Transfer (FRET) in which labeled dsRBPs is applied to labeled RNA, allows for probing the motion of protein along the RNA axis. Three color FRET reports on the diffusion movement of dsRBPs from one to the other end of RNA. The single molecule pull down assay provides an opportunity to collect dsRBPs from mammalian cells and examine the protein-RNA interaction at single molecule platform. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Online recording of ethane traces in human breath via infrared laser spectroscopy.

    PubMed

    von Basum, Golo; Dahnke, Hannes; Halmer, Daniel; Hering, Peter; Mürtz, Manfred

    2003-12-01

    A method is described for rapidly measuring the ethane concentration in exhaled human breath. Ethane is considered a volatile marker for lipid peroxidation. The breath samples are analyzed in real time during single exhalations by means of infrared cavity leak-out spectroscopy. This is an ultrasensitive laser-based method for the analysis of trace gases on the sub-parts per billion level. We demonstrate that this technique is capable of online quantifying of ethane traces in exhaled human breath down to 500 parts per trillion with a time resolution of better than 800 ms. This study includes what we believe to be the first measured expirograms for trace fractions of ethane. The expirograms were recorded after a controlled inhalation exposure to 1 part per million of ethane. The normalized slope of the alveolar plateau was determined, which shows a linear increase over the first breathing cycles and ends in a mean value between 0.21 and 0.39 liter-1. The washout process was observed for a time period of 30 min and was modelled by a threefold exponential decay function, with decay times ranging from 12 to 24, 341 to 481, and 370 to 1770 s. Our analyzer provides a promising noninvasive tool for online monitoring of the oxidative stress status.

  14. Use of a single ventilator to support 4 patients: laboratory evaluation of a limited concept.

    PubMed

    Branson, Richard D; Blakeman, Thomas C; Robinson, Bryce Rh; Johannigman, Jay A

    2012-03-01

    A mass-casualty respiratory failure event where patients exceed available ventilators has spurred several proposed solutions. One proposal is use of a single ventilator to support 4 patients. A ventilator was modified to allow attachment of 4 circuits. Each circuit was connected to one chamber of 2 dual-chambered, test lungs. The ventilator was set at a tidal volume (V(T)) of 2.0 L, respiratory frequency of 10 breaths/min, and PEEP of 5 cm H(2)O. Tests were repeated with pressure targeted breaths at 15 cm H(2)O. Airway pressure, volume, and flow were measured at each chamber. The test lungs were set to simulate 4 patients using combinations of resistance (R) and compliance (C). These included equivalent C and R, constant R and variable C, constant C and variable R, and variable C and variable R. When R and C were equivalent the V(T) distributed to each chamber of the test lung was similar during both volume (range 428-442 mL) and pressure (range 528-544 mL) breaths. Changing C while R was constant resulted in large variations in delivered V(T) (volume range 257-621 mL, pressure range 320-762 mL). Changing R while C was constant resulted in a smaller variation in V(T) (volume range 418-460 mL, pressure range 502-554 mL) compared to only C changes. When R and C were both varied, the range of delivered V(T) in both volume (336-517 mL) and pressure (417-676 mL) breaths was greater, compared to only R changes. Using a single ventilator to support 4 patients is an attractive concept; however, the V(T) cannot be controlled for each subject and V(T) disparity is proportional to the variability in compliance. Along with other practical limitations, these findings cannot support the use of this concept for mass-casualty respiratory failure.

  15. Oxygen Uptake Efficiency Plateau Best Predicts Early Death in Heart Failure

    PubMed Central

    Hansen, James E.; Stringer, William W.

    2012-01-01

    Background: The responses of oxygen uptake efficiency (ie, oxygen uptake/ventilation = V˙o2/V˙e) and its highest plateau (OUEP) during incremental cardiopulmonary exercise testing (CPET) in patients with chronic left heart failure (HF) have not been previously reported. We planned to test the hypothesis that OUEP during CPET is the best single predictor of early death in HF. Methods: We evaluated OUEP, slope of V˙o2 to log(V˙e) (oxygen uptake efficiency slope), oscillatory breathing, and all usual resting and CPET measurements in 508 patients with low-ejection-fraction (< 35%) HF. Each had further evaluations at other sites, including cardiac catheterization. Outcomes were 6-month all-reason mortality and morbidity (death or > 24 h cardiac hospitalization). Statistical analyses included area under curve of receiver operating characteristics, ORs, univariate and multivariate Cox regression, and Kaplan-Meier plots. Results: OUEP, which requires only moderate exercise, was often reduced in patients with HF. A low % predicted OUEP was the single best predictor of mortality (P < .0001), with an OR of 13.0 (P < .001). When combined with oscillatory breathing, the OR increased to 56.3, superior to all other resting or exercise parameters or combinations of parameters. Other statistical analyses and morbidity analysis confirmed those findings. Conclusions: OUEP is often reduced in patients with HF. Low % predicted OUEP (< 65% predicted) is the single best predictor of early death, better than any other CPET or other cardiovascular measurement. Paired with oscillatory breathing, it is even more powerful. PMID:22030802

  16. Combined sensing platform for advanced diagnostics in exhaled mouse breath

    NASA Astrophysics Data System (ADS)

    Fortes, Paula R.; Wilk, Andreas; Seichter, Felicia; Cajlakovic, Merima; Koestler, Stefan; Ribitsch, Volker; Wachter, Ulrich; Vogt, Josef; Radermacher, Peter; Carter, Chance; Raimundo, Ivo M.; Mizaikoff, Boris

    2013-03-01

    Breath analysis is an attractive non-invasive strategy for early disease recognition or diagnosis, and for therapeutic progression monitoring, as quantitative compositional analysis of breath can be related to biomarker panels provided by a specific physiological condition invoked by e.g., pulmonary diseases, lung cancer, breast cancer, and others. As exhaled breath contains comprehensive information on e.g., the metabolic state, and since in particular volatile organic constituents (VOCs) in exhaled breath may be indicative of certain disease states, analytical techniques for advanced breath diagnostics should be capable of sufficient molecular discrimination and quantification of constituents at ppm-ppb - or even lower - concentration levels. While individual analytical techniques such as e.g., mid-infrared spectroscopy may provide access to a range of relevant molecules, some IR-inactive constituents require the combination of IR sensing schemes with orthogonal analytical tools for extended molecular coverage. Combining mid-infrared hollow waveguides (HWGs) with luminescence sensors (LS) appears particularly attractive, as these complementary analytical techniques allow to simultaneously analyze total CO2 (via luminescence), the 12CO2/13CO2 tracer-to-tracee (TTR) ratio (via IR), selected VOCs (via IR) and O2 (via luminescence) in exhaled breath, yet, establishing a single diagnostic platform as both sensors simultaneously interact with the same breath sample volume. In the present study, we take advantage of a particularly compact (shoebox-size) FTIR spectrometer combined with novel substrate-integrated hollow waveguide (iHWG) recently developed by our research team, and miniaturized fiberoptic luminescence sensors for establishing a multi-constituent breath analysis tool that is ideally compatible with mouse intensive care stations (MICU). Given the low tidal volume and flow of exhaled mouse breath, the TTR is usually determined after sample collection via gas chromatography coupled to mass spectrometric detection. Here, we aim at potentially continuously analyzing the TTR via iHWGs and LS flow-through sensors requiring only minute (< 1 mL) sample volumes. Furthermore, this study explores non-linearities observed for the calibration functions of 12CO2 and 13CO2 potentially resulting from effects related to optical collision diameters e.g., in presence of molecular oxygen. It is anticipated that the simultaneous continuous analysis of oxygen via LS will facilitate the correction of these effects after inclusion within appropriate multivariate calibration models, thus providing more reliable and robust calibration schemes for continuously monitoring relevant breath constituents.

  17. Deposition of naphthalene and tetradecane vapors in models of the human respiratory system.

    PubMed

    Zhang, Zhe; Kleinstreuer, Clement

    2011-01-01

    Jet-propulsion fuel (particularly JP-8) is currently being used worldwide, exposing especially Air Force personnel and people living near airfields to JP-8 vapors and aerosols during aircraft fueling, maintenance operations, and/or cold starts. JP-8 is a complex mixture containing >200, mostly toxic, aliphatic and aromatic hydrocarbon compounds of which tetradecane and naphthalene were chosen as two representative chemical markers for computer simulations. Thus, transport and deposition of naphthalene and tetradecane vapors have been simulated in models of the human respiratory system. The inspiratory deposition data were analyzed in terms of regional deposition fractions (DFs) and deposition enhancement factors (DEF). The vapor depositions are affected by vapor properties (e.g. diffusivity), airway geometric features, breathing patterns, inspiratory flow rates, as well as airway-wall absorption parameter. Specifically, the respiratory uptake of vapors is greatly influenced by the degree of airway-wall absorption. For example, being an almost insoluble species in the mucus layer, the deposition of tetradecane vapor is nearly zero in the extrathoracic and tracheobronchial (TB) airways, that is, the DF is <1%. The remaining vapors may penetrate further and deposit in the alveolar airways. The DF of tetradecane vapors during inhalation in the alveolar region can range from 7% to 24%, depending on breathing waveform, inhalation rate, and thickness of the mucus layer. In contrast, naphthalene vapor almost completely deposits in the extrathoracic and TB airways and hardly moves downstream and deposits in the respiratory zone. The DFs of naphthalene vapor in the extrathoracic airways from nasal/oral to trachea under normal breathing conditions (Q = 15-60 L/min) are about 12-34%, although they are about 66-87% in the TB airways. In addition, the variation of breathing routes (say, from nasal breathing to oral breathing) may influence the vapor deposition in the regions of nasal and oral cavities, nasopharynx and oropharynx, but hardly affects the deposition at and beyond the larynx. The different deposition patterns of naphthalene and tetradecane vapors in the human respiratory system may indicate different toxic and hence health effects of these toxic jet-fuel components.

  18. CAD/CAM-designed 3D-printed electroanalytical cell for the evaluation of nanostructured gas-diffusion electrodes

    NASA Astrophysics Data System (ADS)

    Chervin, Christopher N.; Parker, Joseph F.; Nelson, Eric S.; Rolison, Debra R.; Long, Jeffrey W.

    2016-04-01

    The ability to effectively screen and validate gas-diffusion electrodes is critical to the development of next-generation metal-air batteries and regenerative fuel cells. The limiting electrode in a classic two-terminal device such as a battery or fuel cell is difficult to discern without an internal reference electrode, but the flooded electrolyte characteristic of three-electrode electroanalytical cells negates the prime function of an air electrode—a void volume freely accessible to gases. The nanostructured catalysts that drive the energy-conversion reactions (e.g., oxygen reduction and evolution in the air electrode of metal-air batteries) are best evaluated in the electrode structure as-used in the practical device. We have designed, 3D-printed, and characterized an air-breathing, thermodynamically referenced electroanalytical cell that allows us to mimic the Janus arrangement of the gas-diffusion electrode in a metal-air cell: one face freely exposed to gases, the other wetted by electrolyte.

  19. CAD/CAM-designed 3D-printed electroanalytical cell for the evaluation of nanostructured gas-diffusion electrodes.

    PubMed

    Chervin, Christopher N; Parker, Joseph F; Nelson, Eric S; Rolison, Debra R; Long, Jeffrey W

    2016-04-29

    The ability to effectively screen and validate gas-diffusion electrodes is critical to the development of next-generation metal-air batteries and regenerative fuel cells. The limiting electrode in a classic two-terminal device such as a battery or fuel cell is difficult to discern without an internal reference electrode, but the flooded electrolyte characteristic of three-electrode electroanalytical cells negates the prime function of an air electrode-a void volume freely accessible to gases. The nanostructured catalysts that drive the energy-conversion reactions (e.g., oxygen reduction and evolution in the air electrode of metal-air batteries) are best evaluated in the electrode structure as-used in the practical device. We have designed, 3D-printed, and characterized an air-breathing, thermodynamically referenced electroanalytical cell that allows us to mimic the Janus arrangement of the gas-diffusion electrode in a metal-air cell: one face freely exposed to gases, the other wetted by electrolyte.

  20. Use of polyurethane foam and 3-hydroxy-7,8-benzo-1,2,3,4-tetrahydroquinoline for determination of nitrite by diffuse reflectance spectroscopy and colorimetry.

    PubMed

    Apyari, V V; Dmitrienko, S G; Ostrovskaya, V M; Anaev, E K; Zolotov, Y A

    2008-07-01

    Polyurethane foam (PUF) has been suggested as a solid polymeric reagent for determination of nitrite. The determination is based on the diazotization of end toluidine groups of PUF with nitrite in acidic medium followed by coupling of polymeric diazonium cation with 3-hydroxy-7,8-benzo-1,2,3,4-tetrahydroquinoline. The intensely colored polymeric azodye formed in this reaction can be used as a convenient analytic form for the determination of nitrite by diffuse reflectance spectroscopy (c (min) = 0.7 ng mL(-1)). The possibility of using a desktop scanner, digital camera, and computer data processing for the numerical evaluation of the color intensity of the polymeric azodye has been investigated. A scanner and digital camera can be used for determination of nitrite with the same sensitivity and reproducibility as with diffuse reflectance spectroscopy. The approach developed was applied for determination of nitrite in river water and human exhaled breath condensate.

  1. Joint groupwise registration and ADC estimation in the liver using a B-value weighted metric.

    PubMed

    Sanz-Estébanez, Santiago; Rabanillo-Viloria, Iñaki; Royuela-Del-Val, Javier; Aja-Fernández, Santiago; Alberola-López, Carlos

    2018-02-01

    The purpose of this work is to develop a groupwise elastic multimodal registration algorithm for robust ADC estimation in the liver on multiple breath hold diffusion weighted images. We introduce a joint formulation to simultaneously solve both the registration and the estimation problems. In order to avoid non-reliable transformations and undesirable noise amplification, we have included appropriate smoothness constraints for both problems. Our metric incorporates the ADC estimation residuals, which are inversely weighted according to the signal content in each diffusion weighted image. Results show that the joint formulation provides a statistically significant improvement in the accuracy of the ADC estimates. Reproducibility has also been measured on real data in terms of the distribution of ADC differences obtained from different b-values subsets. The proposed algorithm is able to effectively deal with both the presence of motion and the geometric distortions, increasing accuracy and reproducibility in diffusion parameters estimation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. The influence of dilution on the offline measurement of exhaled nitric oxide.

    PubMed

    MacBean, Victoria; Pooranampillai, Dharmika; Howard, Catherine; Lunt, Alan; Greenough, Anne

    2018-02-26

    Measurement of fractional exhaled nitric oxide (FeNO) is used to determine the presence and severity of eosinophilic airway inflammation in asthma and other wheezing illnesses. The gold standard of online measurement during a single prolonged exhalation is not suitable for use in young children. The international guidelines for offline measurements recommend collection of exhaled gas in an appropriate reservoir for later analysis in young children. The apparatus required for gas collection, however, creates dead space within the system, which may result in sample dilution and hence inaccuracy. Our objective was to investigate the effect such dilution might have on the accuracy of offline FeNO by comparing the results to online results. Thirty-five adult subjects without respiratory disease underwent online measurement of FeNO and, thereafter, undertook offline FeNO measurements via exhalation into a collection reservoir using one, five or ten inhalation-exhalation cycles. Fifteen of the subjects also exhaled using the five-breath technique via apparatus with additional dead space. An equation incorporating dead space volume and the number of breaths was used to predict the degree of dilution; the predicted results were compared to the measured results. The median (IQR) FeNO from a one-breath technique (22 (15-28) ppb was not significantly different to online values (19 (12-27) ppb, p  =  1.00), but the results from the five-breath technique (11 (4-19) ppb, p  <  0.0001), the ten-breath technique (6 (4-15) ppb, p  <  0.0001) and the additional dead space experiment (6 (3-8) ppb, p  =  0.0006) were significantly lower than online FeNO. Measured values were consistently significantly different to those predicted by the dilution equation, even when incorporating the exact exhaled volume of gas. Offline FeNO results may be inaccurate when subjects are unable to fill the collection reservoir with a single exhalation, thus the technique may not be suitable for preschool children.

  3. Phase diagram and breathing dynamics of a single red blood cell and a biconcave capsule in dilute shear flow.

    PubMed

    Yazdani, Alireza Z K; Bagchi, Prosenjit

    2011-08-01

    We present phase diagrams of the single red blood cell and biconcave capsule dynamics in dilute suspension using three-dimensional numerical simulations. The computational geometry replicates an in vitro linear shear flow apparatus. Our model includes all essential properties of the cell membrane, namely, the resistance against shear deformation, area dilatation, and bending, as well as the viscosity difference between the cell interior and suspending fluids. By considering a wide range of shear rate and interior-to-exterior fluid viscosity ratio, it is shown that the cell dynamics is often more complex than the well-known tank-treading, tumbling, and swinging motion and is characterized by an extreme variation of the cell shape. As a result, it is often difficult to clearly establish whether the cell is swinging or tumbling. Identifying such complex shape dynamics, termed here as "breathing" dynamics, is the focus of this article. During the breathing motion at moderate bending rigidity, the cell either completely aligns with the flow direction and the membrane folds inward, forming two cusps, or it undergoes large swinging motion while deep, craterlike dimples periodically emerge and disappear. At lower bending rigidity, the breathing motion occurs over a wider range of shear rates, and is often characterized by the emergence of a quad-concave shape. The effect of the breathing dynamics on the tank-treading-to-tumbling transition is illustrated by detailed phase diagrams which appear to be more complex and richer than those of vesicles. In a remarkable departure from the vesicle dynamics, and from the classical theory of nondeformable cells, we find that there exists a critical viscosity ratio below which the transition is independent of the viscosity ratio, and dependent on shear rate only. Further, unlike the reduced-order models, the present simulations do not predict any intermittent dynamics of the red blood cells.

  4. Effect of tracheostomy tube on work of breathing: Comparison of pre- and post-decannulation.

    PubMed

    Villalba, Darío; Feld, Viviana; Leiva, Valeria; Scrigna, Mariana; Distéfano, Eduardo; Pratto, Romina; Rodriguez, Matías; Collins, Jesica; Rocco, Ana; Matesa, Amelia; Rossi, Damián; Areas, Laura; Virgilio, Sacha; Golfarini, Nicolás; Gil-Rosetti, Gregorio; Diaz-Ballve, Pablo; Planells, Fernando

    2016-01-01

    To describe and compare the work of breathing (WOB) during spontaneous breathing under four conditions: (1) breathing through a tracheostomy tube with an inflated cuff, (2) breathing through the upper airway (UA) with a deflated cuff and occluded tube, (3) breathing through the UA with an occluded cuffless tube, and (4) postdecannulation. Patients who tolerated an occluded cuffless tube were included. Ventilatory variables and esophageal pressure were recorded. The pressure-time product (PTP), PTP/min, and PTP/min/tidal volume (PTP/min/VT) were measured. Each condition was measured for 5 min with a 15 min time interval between evaluations. Quantitative data are expressed as mean ± standard deviation. Single-factor analysis of variance was used, and the Games-Howell test was used for post hoc analysis of comparisons between group means ( P ≤ 0.05). Eight patients were studied under each of the four conditions described above. Statistically significant differences were found for PTP, PTP/min, and PTP/min/VT. In the post hoc analysis for PTP, significant differences among all conditions were found. For PTP/min, there was no significant difference between Conditions 2 and 4 ( P = 0.138), and for PTP/min/VT, there was no significant difference between Conditions 1 and 2 ( P = 0.072) or between Conditions 2 and 3 ( P = 0.106). A trend toward a higher PTP, PTP/min, and PTP/min/VT was observed when breathing through a cuffless tracheostomy tube. The four conditions differed with respect to WOB. Cuff inflation could result in a reduced WOB because there is less dead space. Cuffless tracheostomy tubes generate increased WOB, perhaps due to the material deformity caused by body temperature.

  5. Exposure to potentially toxic hydrocarbons and halocarbons released from the dialyzer and tubing set during hemodialysis.

    PubMed

    Lee, Hyun Ji Julie; Meinardi, Simone; Pahl, Madeleine V; Vaziri, Nostratola D; Blake, Donald R

    2012-10-01

    Although much is known about the effect of chronic kidney failure and dialysis on the composition of solutes in plasma, little is known about their impact on the composition of gaseous compounds in exhaled breath. This study was designed to explore the effect of uremia and the hemodialysis (HD) procedure on the composition of exhaled breath. Breath samples were collected from 10 dialysis patients immediately before, during, and after a dialysis session. To determine the potential introduction of gaseous compounds from dialysis components, gasses emitted from dialyzers, tubing set, dialysate, and water supplies were collected. Prospective cohort study. 10 HD patients and 10 age-matched healthy individuals. Predictors include the dialyzers, tubing set, dialysate, and water supplies before, during, and after dialysis. Changes in the composition of exhaled breath. A 5-column/detector gas chromatography system was used to measure hydrocarbon, halocarbon, oxygenate, and alkyl nitrate compounds. Concentrations of 14 hydrocarbons and halocarbons in patients' breath rapidly increased after the onset of the HD treatment. All 14 compounds and 5 others not found in patients' breath were emitted from the dialyzers and tubing sets. Contrary to earlier reports, exhaled breath ethane concentrations in our dialysis patients were virtually unchanged during the HD treatment. Single-center study with a small sample size may limit the generalizability of the findings. The study documented the release of several potentially toxic hydrocarbons and halocarbons to patients from the dialyzer and tubing sets during the HD procedure. Because long-term exposure to these compounds may contribute to the morbidity and mortality in dialysis population, this issue should be considered in the manufacturing of the new generation of dialyzers and dialysis tubing sets. Copyright © 2012 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  6. Breath condensate levels of 8-isoprostane and leukotriene B4 after ozone inhalation are greater in sensitive versus nonsensitive subjects.

    PubMed

    Alfaro, Mario F; Walby, William F; Adams, William C; Schelegle, Edward S

    2007-01-01

    Ozone (O3) inhalation induces pulmonary function decrements and inflammation. The present study was designed to determine if a relationship exists between O3 induced pulmonary function changes and the presence of inflammatory markers as measured in exhaled breath condensates (EBCs) obtained from O3-sensitive and nonsensitive human subjects. Eight healthy adult volunteers (4 males/4 females, age 18 to 30 years) were studied, characterized as to their ozone sensitivity and placed into 2 groups (sensitive and nonsensitive) with each group having 2 males and 2 females. Subjects completed a 20-minute EBC collection and pulmonary function test (PFT) prior to a single 60-minute bout of cycle ergometer exercise (V(E) = 50-55 L/min) while breathing filtered air (FA) or 0.35 ppm O3. Subjective symptom scores (SSSs) were collected at 6, 20, 40, and 60 minutes during exposure. An immediate postexposure PFT was performed followed by an EBC collection. Subjective symptom scores, EBCs, and PFTs were collected at 1, 4 and 8 hours post exposure. EBCs were analyzed for prostaglandin E2 (PGE2), leukotriene B4 (LTB4), 8-isoprostane, and total nitric oxide (NO) metabolites (nitrate + nitrite content). Sensitive subjects, breathing O3, had significantly greater functional decrements in PFTs, increased SSSs, and increased rapid shallow breathing as well as elevated levels of 8-isoprostane and LTB4 in EBCs compared to those breathing FA. In addition, there were significant increases in nitrate + nitrite content in both sensitive and nonsensitive subjects breathing O3 compared to FA. These results indicate that sensitive subjects have elevated arachidonic acid metabolites in EBCs compared to nonsensitive subjects after O3 inhalation.

  7. Diffuse fluorescence fiber probe for in vivo detection of circulating cells

    NASA Astrophysics Data System (ADS)

    Pera, Vivian; Tan, Xuefei; Runnels, Judith; Sardesai, Neha; Lin, Charles P.; Niedre, Mark

    2017-03-01

    There has been significant recent interest in the development of technologies for enumeration of rare circulating cells directly in the bloodstream in many areas of research, for example, in small animal models of circulating tumor cell dissemination during cancer metastasis. We describe a fiber-based optical probe that allows fluorescence detection of labeled circulating cells in vivo in a diffuse reflectance configuration. We validated this probe in a tissue-mimicking flow phantom model in vitro and in nude mice injected with fluorescently labeled multiple myeloma cells in vivo. Compared to our previous work, this design yields an improvement in detection signal-to-noise ratio of 10 dB, virtually eliminates problematic motion artifacts due to mouse breathing, and potentially allows operation in larger animals and limbs.

  8. U-2 Pilot Post-Mission Fatigue Questionnaire

    DTIC Science & Technology

    2014-10-01

    conduct missions in a single- seat aircraft at altitudes above 70,000 feet, requiring the pilot to wear a full pressure suit and breathe 100% oxygen...2014 1.0 SUMMARY U-2 pilots routinely conduct missions in a single- seat aircraft at altitudes above 70,000 feet, requiring the pilot to wear a...pilots, the physical discomfort resulting from prolonged immobility in a single- seat aircraft may contribute to subjective pain and fatigue. Prolonged

  9. Review of problems in application of supersonic combustion

    NASA Technical Reports Server (NTRS)

    Ferri, A.

    1977-01-01

    The problem of air-breathing engines capable of flying at very high Mach numbers is described briefly. Possible performance of supersonic combustion ramjets is outlined briefly and the supersonic combustion process is described. Two mechanisms of combustion are outlined: one is supersonic combustion controlled by convection process, and the second is controlled by diffusion. The parameters related to the combustion process are discussed in detail. Data and analyses of reaction rates and mixing phenomena are represented; the flame mechanism is discussed, and experimental results are presented.

  10. Magnetization dissipation in the ferromagnetic semiconductor (Ga,Mn)As

    NASA Astrophysics Data System (ADS)

    Hals, Kjetil M. D.; Brataas, Arne

    2011-09-01

    We compute the Gilbert damping in (Ga,Mn)As based on the scattering theory of magnetization relaxation. The disorder scattering is included nonperturbatively. In the clean limit, spin pumping from the localized d electrons to the itinerant holes dominates the relaxation processes. In the diffusive regime, the breathing Fermi-surface effect is balanced by the effects of interband scattering, which cause the Gilbert damping constant to saturate at around 0.005. In small samples, the system shape induces a large anisotropy in the Gilbert damping.

  11. Medical Surveillance Monthly Report (MSMR). Volume 8, Number 3, May 2002

    DTIC Science & Technology

    2002-05-01

    trainees per week 2SASI ( Strep ARD surveillance index) = (ARD rate)x(rate of Group A beta-hemolytic strep ) 3ARD rate >=1.5 or SASI >=25.0 for 2...sore throat . On the following day, her illness progressed to fever and diffuse arthralgias; and on the next day, she had a syncopal episode associated... throat , left neck pain, and rapid breathing. The child was treated for acute pharyngitis with IM penicillin and a seven-day course of oral

  12. Effect of zone size on the convergence of exact solutions for diffusion in single phase systems with planar, cylindrical or spherical geometry

    NASA Technical Reports Server (NTRS)

    Unnam, J.; Tenney, D. R.

    1981-01-01

    Exact solutions for diffusion in single phase binary alloy systems with constant diffusion coefficient and zero-flux boundary condition have been evaluated to establish the optimum zone size of applicability. Planar, cylindrical and spherical interface geometry, and finite, singly infinite, and doubly infinite systems are treated. Two solutions are presented for each geometry, one well suited to short diffusion times, and one to long times. The effect of zone-size on the convergence of these solutions is discussed. A generalized form of the diffusion solution for doubly infinite systems is proposed.

  13. A spin echo sequence with a single-sided bipolar diffusion gradient pulse to obtain snapshot diffusion weighted images in moving media

    NASA Astrophysics Data System (ADS)

    Freidlin, R. Z.; Kakareka, J. W.; Pohida, T. J.; Komlosh, M. E.; Basser, P. J.

    2012-08-01

    In vivo MRI data can be corrupted by motion. Motion artifacts are particularly troublesome in Diffusion Weighted MRI (DWI), since the MR signal attenuation due to Brownian motion can be much less than the signal loss due to dephasing from other types of complex tissue motion, which can significantly degrade the estimation of self-diffusion coefficients, diffusion tensors, etc. This paper describes a snapshot DWI sequence, which utilizes a novel single-sided bipolar diffusion sensitizing gradient pulse within a spin echo sequence. The proposed method shortens the diffusion time by applying a single refocused bipolar diffusion gradient on one side of a refocusing RF pulse, instead of a set of diffusion sensitizing gradients, separated by a refocusing RF pulse, while reducing the impact of magnetic field inhomogeneity by using a spin echo sequence. A novel MRI phantom that can exhibit a range of complex motions was designed to demonstrate the robustness of the proposed DWI sequence.

  14. A compartment model of alveolar-capillary oxygen diffusion with ventilation-perfusion gradient and dynamics of air transport through the respiratory tract.

    PubMed

    Jaworski, Jacek; Redlarski, Grzegorz

    2014-08-01

    This paper presents a model of alveolar-capillary oxygen diffusion with dynamics of air transport through the respiratory tract. For this purpose electrical model representing the respiratory tract mechanics and differential equations representing oxygen membrane diffusion are combined. Relevant thermodynamic relations describing the mass of oxygen transported into the human body are proposed as the connection between these models, as well as the influence of ventilation-perfusion mismatch on the oxygen diffusion. The model is verified based on simulation results of varying exercise intensities and statistical calculations of the results obtained during various clinical trials. The benefit of the approach proposed is its application in simulation-based research aimed to generate quantitative data of normal and pathological conditions. Based on the model presented, taking into account many essential physiological processes and air transport dynamics, comprehensive and combined studies of the respiratory efficiency can be performed. The impact of physical exercise, precise changes in respiratory tract mechanics and alterations in breathing pattern can be analyzed together with the impact of various changes in alveolar-capillary oxygen diffusion. This may be useful in simulation of effects of many severe medical conditions and increased activity level. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Single-molecule diffusion and conformational dynamics by spatial integration of temporal fluctuations

    PubMed Central

    Serag, Maged F.; Abadi, Maram; Habuchi, Satoshi

    2014-01-01

    Single-molecule localization and tracking has been used to translate spatiotemporal information of individual molecules to map their diffusion behaviours. However, accurate analysis of diffusion behaviours and including other parameters, such as the conformation and size of molecules, remain as limitations to the method. Here, we report a method that addresses the limitations of existing single-molecular localization methods. The method is based on temporal tracking of the cumulative area occupied by molecules. These temporal fluctuations are tied to molecular size, rates of diffusion and conformational changes. By analysing fluorescent nanospheres and double-stranded DNA molecules of different lengths and topological forms, we demonstrate that our cumulative-area method surpasses the conventional single-molecule localization method in terms of the accuracy of determined diffusion coefficients. Furthermore, the cumulative-area method provides conformational relaxation times of structurally flexible chains along with diffusion coefficients, which together are relevant to work in a wide spectrum of scientific fields. PMID:25283876

  16. Anomalous diffusion of single metal atoms on a graphene oxide support

    DOE PAGES

    Furnival, Tom; Leary, Rowan K.; Tyo, Eric C.; ...

    2017-04-21

    Recent studies of single-atom catalysts open up the prospect of designing exceptionally active and environmentally efficient chemical processes. The stability and durability of such catalysts is governed by the strength with which the atoms are bound to their support and their diffusive behaviour. Here we use aberration-corrected STEM to image the diffusion of single copper adatoms on graphene oxide. As a result, we discover that individual atoms exhibit anomalous diffusion as a result of spatial and energetic disorder inherent in the support, and interpret the origins of this behaviour to develop a physical picture for the surface diffusion of singlemore » metal atoms.« less

  17. Gravitational independence of single-breath washout tests in recumbent dogs

    NASA Technical Reports Server (NTRS)

    Tomioka, Shinichi; Kubo, Susumu; Guy, Harold J. B.; Prisk, G. K.

    1988-01-01

    The effect of gravitational orientation in the mechanism of lung filling and emptying in dogs was examined by conducting simultaneously Ar-bolus and N2 single-breath washout tests (SBWTs) in 10 anesthetized dogs (prone and supine), with three of the dogs subjected to body rotation. Transpulmonary pressure was measured simultaneously, allowing identification of the lung volume above residual volume at which there was an inflection point in the pressure-volume curve. Combined resident gas and bolus SBWTs in recumbent dogs were found to be different from such tests in humans; in dogs, the regional distribution of ventilation was not primarily determined by gravity. The measurements did not make it possible to discern exact mechanisms of filling and emptying, but both processes appear to be related to lung, thorax, and mediastinum interactions and/or differences in regional mechanical properties of the lungs.

  18. Morphometric partitioning of the respiratory surface area and diffusion capacity of the gills and swim bladder in juvenile Amazonian air-breathing fish, Arapaima gigas.

    PubMed

    Fernandes, Marisa Narciso; da Cruz, André Luis; da Costa, Oscar Tadeu Ferreira; Perry, Steven Franklin

    2012-09-01

    The gills and the respiratory swim bladders of juvenile specimens (mean body mass 100g) of the basal teleost Arapaima gigas (Cuvier 1829) were evaluated using stereological methods in vertical sections. The surface areas, harmonic mean barrier thicknesses and morphometric diffusing capacities for oxygen and carbon dioxide were estimated. The average respiratory surface area of the swim bladder (2173 cm² kg⁻¹) exceeded that of the gills (780 cm² kg⁻¹) by a factor of 2.79. Due to the extremely thin air-blood barrier in the swim bladder (harmonic mean 0.22 μm) and the much thicker water-blood barrier of the gills (9.61 μm), the morphometric diffusing capacity for oxygen and carbon dioxide was 88 times greater in the swim bladder than in the gills. These data clearly indicate the importance of the swim bladder, even in juvenile A. gigas that still engage in aquatic respiration. Because of the much greater diffusion constant of CO₂ than O₂ in water, the gills also remain important for CO₂ release. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Influence of the viscoelastic properties of the respiratory system on the energetically optimum breathing frequency.

    PubMed

    Bates, J H; Milic-Emili, J

    1993-01-01

    We hypothesized that the viscoelastic properties of the respiratory system should have significant implications for the energetically optimal frequency of breathing, in view of the fact that these properties cause marked dependencies of overall system resistance and elastance on frequency. To test our hypothesis we simulated two models of canine and human respiratory system mechanics during sinusoidal breathing and calculated the inspiratory work (WI) and pressure-time integral (PTI) per minute under both resting and exercise conditions. The two models were a two-compartment viscoelastic model and a single-compartment model. Requiring minute alveolar ventilation to be fixed, we found that both models predicted almost identical optimum breathing frequencies. The calculated PTI was very insensitive to increases in breathing frequency above the optimal frequencies, while WI was found to increase slowly with frequency above its optimum. In contrast, both WI and PTI increased sharply as frequency decreased below their respective optima. A sensitivity analysis showed that the model predictions were very insensitive to the elastance and resistance values chosen to characterize tissue viscoelasticity. We conclude that the WI criterion for choosing the frequency of breathing is compatible with observations in nature, whereas the optimal frequency predictions of the PTI are rather too high. Both criteria allow for a fairly wide margin of choice in frequency above the optimum values without incurring excessive additional energy expenditure. Furthermore, contrary to our expectations, the viscoelastic properties of the respiratory system tissues do not pose a noticeable problem to the respiratory controller in terms of energy expenditure.

  20. Breath-Hold Diving.

    PubMed

    Fitz-Clarke, John R

    2018-03-25

    Breath-hold diving is practiced by recreational divers, seafood divers, military divers, and competitive athletes. It involves highly integrated physiology and extreme responses. This article reviews human breath-hold diving physiology beginning with an historical overview followed by a summary of foundational research and a survey of some contemporary issues. Immersion and cardiovascular adjustments promote a blood shift into the heart and chest vasculature. Autonomic responses include diving bradycardia, peripheral vasoconstriction, and splenic contraction, which help conserve oxygen. Competitive divers use a technique of lung hyperinflation that raises initial volume and airway pressure to facilitate longer apnea times and greater depths. Gas compression at depth leads to sequential alveolar collapse. Airway pressure decreases with depth and becomes negative relative to ambient due to limited chest compliance at low lung volumes, raising the risk of pulmonary injury called "squeeze," characterized by postdive coughing, wheezing, and hemoptysis. Hypoxia and hypercapnia influence the terminal breakpoint beyond which voluntary apnea cannot be sustained. Ascent blackout due to hypoxia is a danger during long breath-holds, and has become common amongst high-level competitors who can suppress their urge to breathe. Decompression sickness due to nitrogen accumulation causing bubble formation can occur after multiple repetitive dives, or after single deep dives during depth record attempts. Humans experience responses similar to those seen in diving mammals, but to a lesser degree. The deepest sled-assisted breath-hold dive was to 214 m. Factors that might determine ultimate human depth capabilities are discussed. © 2018 American Physiological Society. Compr Physiol 8:585-630, 2018. Copyright © 2018 American Physiological Society. All rights reserved.

  1. Measurement of breath acetone in patients referred for an oral glucose tolerance test.

    PubMed

    Andrews, Brian Terence; Denzer, Wolfgang; Hancock, Gus; Lunn, Dan; Peverall, Robert; Ritchie, Grant; Williams, Karen

    2018-04-12

    Breath acetone concentrations were measured in 141 subjects (aged 19-91 yrs, mean=59.11yrs standard deviation=12.99yrs), male and female, undergoing an oral glucose tolerance test (OGTT), having been referred to clinic on suspicion of type 2 diabetes. Breath samples were measured using an ion-molecule-reaction mass spectrometer, at the commencement of the OGTT, and after 1 and 2hrs. Subjects were asked to observe the normal routine before and during the OGTT, which includes an overnight fast and ingestion of 75g glucose at the beginning of the routine. Several groups of diagnosis were identified: type 2 Diabetes Mellitus positive (T2DM), n=22; impaired glucose intolerance (IGT), n=33; impaired fasting glucose (IFG), n=14; and reactive hypoglycaemia (RHG), n=5. The subjects with no diagnosis (i.e. normoglycaemia) were used as a control group, n=67. Distributions of breath acetone are presented for the different groups. There was no evidence of a direct relationship between blood glucose and acetone measurements at any time during the study (0hr: p=0.4482; 1hr: p=0.6854; and 2hr: p=0.1858). Nor were there significant differences between the measurements of breath acetone for the control group and the T2DM group (0hr: p=0.1759; 1hr: p=0.4521; and 2hr: p=0.7343). However, the ratio of breath acetone at 1hr to the initial breath acetone was found to be significantly different for the T2DM group compared to both the control and IGT groups (p=0.0189 and 0.011, respectively). The T2DM group was also found to be different in terms of ratio of breath acetone after 1hr to that at 2hrs during the OGTT. And was distinctive in that it showed a significant dependence upon the level of blood glucose at 2hrs (p=0.0146). We conclude that single measurements of the concentrations of breath acetone cannot be used as a potential screening diagnostic for T2DM diabetes in this cohort, but monitoring the evolution of breath acetone could open a non-invasive window to aid in the diagnosis of metabolic conditions. © 2018 IOP Publishing Ltd.

  2. Reduction in membrane component of diffusing capacity is associated with the extent of acute pulmonary embolism.

    PubMed

    Piirilä, Päivi; Laiho, Mia; Mustonen, Pirjo; Graner, Marit; Piilonen, Anneli; Raade, Merja; Sarna, Seppo; Harjola, Veli-Pekka; Sovijärvi, Anssi

    2011-05-01

    Acute pulmonary embolism (PE) often decreases pulmonary diffusing capacity for carbon monoxide (DL,CO), but data on the mechanisms involved are inconsistent. We wanted to investigate whether reduction in diffusing capacity of alveolo-capillary membrane (DM) and pulmonary capillary blood volume (Vc) is associated with the extent of PE or the presence and severity of right ventricular dysfunction (RVD) induced by PE and how the possible changes are corrected after 7-month follow-up. Forty-seven patients with acute non-massive PE in spiral computed tomography (CT) were included. The extent of PE was assessed by scoring mass of embolism. DL,CO, Vc, DM and alveolar volume (VA) were measured by using a single breath method with carbon monoxide and oxygen both at the acute phase and 7 months later. RVD was evaluated with transthoracic echocardiography and electrocardiogram. Fifteen healthy subjects were included as controls. DL,CO, DL, CO/VA, DM, vital capacity (VC) and VA were significantly lower in the patients with acute PE than in healthy controls (P < 0.001). DM/Vc relation was significantly lower in patients with RVD than in healthy controls (P = 0.004). DM correlated inversely with central mass of embolism (r = -0.312; P = 0.047) whereas Vc did not. DM, DL,CO, VC and VA improved significantly within 7 months. In all patients (P = 0.001, P = 0.001) and persistent RVD (P = 0.020, P = 0.012), DM and DL,CO remained significantly lower than in healthy controls in the follow-up. DM was inversely related to central mass of embolism. Reduction in DM mainly explains the sustained decrease in DL,CO in PE after 7 months despite modern treatment of PE. © 2010 The Authors. Clinical Physiology and Functional Imaging © 2010 Scandinavian Society of Clinical Physiology and Nuclear Medicine.

  3. Molecular imaging of malignant tumor metabolism: whole-body image fusion of DWI/CT vs. PET/CT.

    PubMed

    Reiner, Caecilia S; Fischer, Michael A; Hany, Thomas; Stolzmann, Paul; Nanz, Daniel; Donati, Olivio F; Weishaupt, Dominik; von Schulthess, Gustav K; Scheffel, Hans

    2011-08-01

    To prospectively investigate the technical feasibility and performance of image fusion for whole-body diffusion-weighted imaging (wbDWI) and computed tomography (CT) to detect metastases using hybrid positron emission tomography/computed tomography (PET/CT) as reference standard. Fifty-two patients (60 ± 14 years; 18 women) with different malignant tumor disease examined by PET/CT for clinical reasons consented to undergo additional wbDWI at 1.5 Tesla. WbDWI was performed using a diffusion-weighted single-shot echo-planar imaging during free breathing. Images at b = 0 s/mm(2) and b = 700 s/mm(2) were acquired and apparent diffusion coefficient (ADC) maps were generated. Image fusion of wbDWI and CT (from PET/CT scan) was performed yielding for wbDWI/CT fused image data. One radiologist rated the success of image fusion and diagnostic image quality. The presence or absence of metastases on wbDWI/CT fused images was evaluated together with the separate wbDWI and CT images by two different, independent radiologists blinded to results from PET/CT. Detection rate and positive predictive values for diagnosing metastases was calculated. PET/CT examinations were used as reference standard. PET/CT identified 305 malignant lesions in 39 of 52 (75%) patients. WbDWI/CT image fusion was technically successful and yielded diagnostic image quality in 73% and 92% of patients, respectively. Interobserver agreement for the evaluation of wbDWI/CT images was κ = 0.78. WbDWI/CT identified 270 metastases in 43 of 52 (83%) patients. Overall detection rate and positive predictive value of wbDWI/CT was 89% (95% CI, 0.85-0.92) and 94% (95% CI, 0.92-0.97), respectively. WbDWI/CT image fusion is technically feasible in a clinical setting and allows the diagnostic assessment of metastatic tumor disease detecting nine of 10 lesions as compared with PET/CT. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.

  4. Novel algorithm to identify and differentiate specific digital signature of breath sound in patients with diffuse parenchymal lung disease.

    PubMed

    Bhattacharyya, Parthasarathi; Mondal, Ashok; Dey, Rana; Saha, Dipanjan; Saha, Goutam

    2015-05-01

    Auscultation is an important part of the clinical examination of different lung diseases. Objective analysis of lung sounds based on underlying characteristics and its subsequent automatic interpretations may help a clinical practice. We collected the breath sounds from 8 normal subjects and 20 diffuse parenchymal lung disease (DPLD) patients using a newly developed instrument and then filtered off the heart sounds using a novel technology. The collected sounds were thereafter analysed digitally on several characteristics as dynamical complexity, texture information and regularity index to find and define their unique digital signatures for differentiating normality and abnormality. For convenience of testing, these characteristic signatures of normal and DPLD lung sounds were transformed into coloured visual representations. The predictive power of these images has been validated by six independent observers that include three physicians. The proposed method gives a classification accuracy of 100% for composite features for both the normal as well as lung sound signals from DPLD patients. When tested by independent observers on the visually transformed images, the positive predictive value to diagnose the normality and DPLD remained 100%. The lung sounds from the normal and DPLD subjects could be differentiated and expressed according to their digital signatures. On visual transformation to coloured images, they retain 100% predictive power. This technique may assist physicians to diagnose DPLD from visual images bearing the digital signature of the condition. © 2015 Asian Pacific Society of Respirology.

  5. Alveolar Thin Layer Flows and Surfactant Dynamics

    NASA Astrophysics Data System (ADS)

    Roumie, Ahmad; Jbaily, Abdulrahman; Szeri, Andrew J.

    2017-11-01

    Pulmonary surfactants play a vital role in everyday respiration. They regulate surface tension in the lungs by diffusing through the hypophase, a liquid layer that lines the interior surface of the alveoli, and adsorbing to the existing air-fluid interface. This decreases the equilibrium surface tension value by as much as a factor of 3, minimizing breathing effort and preventing lung collapse at the end of exhalation. Given that the hypophase thickness h lies within the range 0.1 μm < h <0.5 μm , and that the average alveolar radius R is 100 μm , for some purposes the hypophase may usefully be modeled as a fluid layer on a flat sheet representing the alveolar wall. Moreover, because of the large aspect ratio, the lubrication approximation can be applied. The aim of the present work is to study the interaction between the straining of the alveolar wall and the fluid flow in the hypophase. The analysis is governed by the relative magnitudes of the time scales of surfactant diffusion, adsorption, desorption, viscous dissipation and sheet straining. Cases of particular interest include non-uniform surfactant concentration at the interface, leading to Marangoni flows and a non-uniform hypophase thickness profile. The analytical formulation and numerical simulations are presented. This work is motivated by a need to understand alveolar deformation during breathing, and to do so in a way that derives from improved understanding of the fluid mechanics of the problem.

  6. Estimation of slipping organ motion by registration with direction-dependent regularization.

    PubMed

    Schmidt-Richberg, Alexander; Werner, René; Handels, Heinz; Ehrhardt, Jan

    2012-01-01

    Accurate estimation of respiratory motion is essential for many applications in medical 4D imaging, for example for radiotherapy of thoracic and abdominal tumors. It is usually done by non-linear registration of image scans at different states of the breathing cycle but without further modeling of specific physiological motion properties. In this context, the accurate computation of respiration-driven lung motion is especially challenging because this organ is sliding along the surrounding tissue during the breathing cycle, leading to discontinuities in the motion field. Without considering this property in the registration model, common intensity-based algorithms cause incorrect estimation along the object boundaries. In this paper, we present a model for incorporating slipping motion in image registration. Extending the common diffusion registration by distinguishing between normal- and tangential-directed motion, we are able to estimate slipping motion at the organ boundaries while preventing gaps and ensuring smooth motion fields inside and outside. We further present an algorithm for a fully automatic detection of discontinuities in the motion field, which does not rely on a prior segmentation of the organ. We evaluate the approach for the estimation of lung motion based on 23 inspiration/expiration pairs of thoracic CT images. The results show a visually more plausible motion estimation. Moreover, the target registration error is quantified using manually defined landmarks and a significant improvement over the standard diffusion regularization is shown. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Design of experiments and principal component analysis as approaches for enhancing performance of gas-diffusional air-breathing bilirubin oxidase cathode

    NASA Astrophysics Data System (ADS)

    Babanova, Sofia; Artyushkova, Kateryna; Ulyanova, Yevgenia; Singhal, Sameer; Atanassov, Plamen

    2014-01-01

    Two statistical methods, design of experiments (DOE) and principal component analysis (PCA) are employed to investigate and improve performance of air-breathing gas-diffusional enzymatic electrodes. DOE is utilized as a tool for systematic organization and evaluation of various factors affecting the performance of the composite system. Based on the results from the DOE, an improved cathode is constructed. The current density generated utilizing the improved cathode (755 ± 39 μA cm-2 at 0.3 V vs. Ag/AgCl) is 2-5 times higher than the highest current density previously achieved. Three major factors contributing to the cathode performance are identified: the amount of enzyme, the volume of phosphate buffer used to immobilize the enzyme, and the thickness of the gas-diffusion layer (GDL). PCA is applied as an independent confirmation tool to support conclusions made by DOE and to visualize the contribution of factors in individual cathode configurations.

  8. Substrate structure and dynamics effect on sorption properties: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Connolly, Matthew James

    Adsorbent materials such as activated carbon and metal organic frameworks (MOFs) have received significant attention for their potential for storage of hydrogen and natural gas. Typically the adsorbent is assumed to consist of rigid slit- or cylindrical-shaped pores. Recent experimental adsorption measurements, however, suggest significant mechanical response breathing of the adsorbent in the presence of an adsorbate. In this thesis, I develop theoretical and computational models which predict high adsorbate densities in narrow carbon pores which give rise to a strong pressure on pore walls. I then present predictions of the mechanical response of the solid to this pressure, and the effect of this response on adsorption isotherms. Neutron scattering measurements of this mechanical response as well as the diffusion of the adsorbate in the breathing Graphene Oxide Framework (GOF) material is presented. In addition, calculations are presented which support a route toward enhancing the binding energy in carbonaceous adsorbates through boron doping via decaborane adsorption and subsequent decomposition.

  9. Aspirin does not affect exercise performance.

    PubMed

    Roi, G S; Garagiola, U; Verza, P; Spadari, G; Radice, D; Zecca, L; Cerretelli, P

    1994-07-01

    A single-blind, cross-over study was carried out to evaluate the effects of acetylsalicylic acid (ASA) on cardiorespiratory performance during exercise. Eighteen young men, 9 athletes and 9 untrained but active subjects, performed a progressive maximal exercise test on a cycle ergometer (30 watt, 3 min steps, starting at 60 watt) on three different occasions, after a single administration of plain aspirin (1000mg of ASA), chewable buffered aspirin (1000mg of ASA and 600 mg of calcium carbonate) and placebo. Continuous measurement of breath-by-breath ventilation, oxygen consumption, carbon dioxide output, respiratory frequency and heart rate was carried-out at rest and during the exercise test. Blood lactate concentration was measured just before the start of exercise and at the third minute of each step in order to detect the anaerobic threshold. The pharmacokinetics of aspirin during exercise was also investigated in ten of the eighteen participants. The analysis of all investigated variables did not show any statistically significant difference between treatments, suggesting that a single dose of 1000mg of aspirin does not affect physical performance during submaximal and maximal exercise.

  10. Surface hydration amplifies single-well protein atom diffusion propagating into the macromolecular core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Liang; Cheng, Xiaolin; Glass, Dennis C.

    2012-06-05

    The effect of surface hydration water on internal protein motion is of fundamental interest in molecular biophysics. Here, by decomposing the picosecond to nanosecond atomic motion in molecular dynamics simulations of lysozyme at different hydration levels into three components localized single-well diffusion, methyl group rotation, and nonmethyl jumps we show that the effect of surface hydration is mainly to increase the volume of the localized single-well diffusion. As a result, these diffusive motions are coupled in such a way that the hydration effect propagates from the protein surface into the dry core.

  11. Effect of a single brushing with two Zn-containing toothpastes on VSC in morning breath: a 12 h, randomized, double-blind, cross-over clinical study.

    PubMed

    Young, A; Jonski, G

    2011-12-01

    This randomized, double-blind, 12 h clinical study tested the effect of a single brushing with two Zn-containing toothpastes on volatile sulfur compound (VSC) levels in morning breath. The following toothpastes were each tested by all 28 participants: A-Zn toothpaste, B--experimental toothpaste (Zn citrate + PVM/MA copolymer) and C--control toothpaste without Zn. The evening prior to test days participants brushed their teeth for 2 min with 1 g toothpaste. 12 h later and prior to eating or performing oral hygiene, morning breath levels of VSC (H(2)S, CH(3)SH) were analysed by gas chromatography. Subjects then rinsed for 30 s with 5 ml cysteine and breath samples were analysed for H(2)S (H(2)S(cys)). Median VSC (area under the curve) values were compared for A, B and C and the effects of A and B on VSC were compared with C. Toothpaste B was more effective than both toothpastes A and C in reducing H(2)S, CH(3)SH and H(2)S(cys) (p < 0.05). Compared with toothpaste C, toothpastes A and B reduced H(2)S by 35% and 68%, respectively (p = 0.003), and CH(3)SH by 12% and 47%, respectively (p = 0.002). Toothpaste B reduced H(2)S(cys) by 48% compared with toothpaste C (p = 0.001). It is suggested that the superior effect of the experimental toothpaste was most likely due to a higher Zn concentration combined with longer retention of Zn due to the PVM/MA copolymer.

  12. 24-hour evaluation of dental plaque bacteria and halitosis after consumption of a single placebo or dental treat by dogs.

    PubMed

    Jeusette, Isabelle C; Román, Aurora Mateo; Torre, Celina; Crusafont, Josep; Sánchez, Nuria; Sánchez, Maria C; Pérez-Salcedo, Leire; Herrera, David

    2016-06-01

    OBJECTIVE To determine whether consumption of a single dental treat with specific mechanical properties and active ingredients would provide a 24-hour effect on dental plaque bacteria and halitosis in dogs. ANIMALS 10 dogs of various breeds from a privately owned colony that had received routine dental scaling and polishing 4 weeks before the study began. PROCEDURES Dogs were randomly assigned to receive 1 placebo or dental treat first. A 4-week washout period was provided, and then dogs received the opposite treatment. Oral plaque and breath samples were collected before and 0.5, 3, 12, and 24 hours after treat consumption. Volatile sulfur compounds (VSCs) concentration was measured in breath samples. Total aerobic, total anaerobic, Porphyromonas gulae, Prevotella intermedia-like, Tannerella forsythia, and Fusobacterium nucleatum bacterial counts (measured via bacterial culture) and total live bacterial counts, total live and dead bacterial counts, and bacterial vitality (measured via quantitative real-time PCR assay) were assessed in plaque samples. RESULTS Compared with placebo treat consumption, dental treat consumption resulted in a significant decrease in breath VSCs concentration and all plaque bacterial counts, without an effect on bacterial vitality. Effects of the dental treat versus the placebo treat persisted for 12 hours for several bacterial counts and for 24 hours for breath VSCs concentration. CONCLUSIONS AND CLINICAL RELEVANCE Although clinical benefits should be investigated in larger scale, longer-term studies, results of this study suggested that feeding the evaluated dental treat may help to decrease oral bacterial growth in dogs for 12 hours and oral malodor for 24 hours. A feeding interval of 12 hours is therefore recommended.

  13. Modulated wave formation in myocardial cells under electromagnetic radiation

    NASA Astrophysics Data System (ADS)

    Takembo, Clovis N.; Mvogo, A.; Ekobena Fouda, H. P.; Kofané, T. C.

    2018-06-01

    We exclusively analyze the onset and condition of formation of modulated waves in a diffusive FitzHugh-Nagumo model for myocardial cell excitations. The cells are connected through gap junction coupling. An additive magnetic flux variable is used to describe the effect of electromagnetic induction, while electromagnetic radiation is imposed on the magnetic flux variable as a periodic forcing. We used the discrete multiple scale expansion and obtained, from the model equations, a single differential-difference amplitude nonlinear equation. We performed the linear stability analysis of this equation and found that instability features are importantly influenced by the induced electromagnetic gain. We present the unstable and stable regions of modulational instability (MI). The resulting analytic predictions are confirmed by numerical experiments of the generic equations. The results reveal that due to MI, an initial steady state that consisted of a plane wave with low amplitude evolves into a modulated localized wave patterns, soliton-like in shape, with features of synchronization. Furthermore, the formation of periodic pulse train with breathing motion presents a disappearing pattern in the presence of electromagnetic radiation. This could provide guidance and better understanding of sudden heart failure exposed to heavily electromagnetic radiation.

  14. Analysis of InP-based single photon avalanche diodes based on a single recess-etching process

    NASA Astrophysics Data System (ADS)

    Lee, Kiwon

    2018-04-01

    Effects of the different etching techniques have been investigated by analyzing electrical and optical characteristics of two-types of single-diffused single photon avalanche diodes (SPADs). The fabricated two-types of SPADs have no diffusion depth variation by using a single diffusion process at the same time. The dry-etched SPADs show higher temperature dependence of a breakdown voltage, larger dark-count-rate (DCR), and lower photon-detection-efficiency (PDE) than those of the wet-etched SPADs due to plasma-induced damage of dry-etching process. The results show that the dry etching damages can more significantly affect the performance of the SPADs based on a single recess-etching process.

  15. Interplay effects in proton scanning for lung: a 4D Monte Carlo study assessing the impact of tumor and beam delivery parameters.

    PubMed

    Dowdell, S; Grassberger, C; Sharp, G C; Paganetti, H

    2013-06-21

    Relative motion between a tumor and a scanning proton beam results in a degradation of the dose distribution (interplay effect). This study investigates the relationship between beam scanning parameters and the interplay effect, with the goal of finding parameters that minimize interplay. 4D Monte Carlo simulations of pencil beam scanning proton therapy treatments were performed using the 4DCT geometry of five lung cancer patients of varying tumor size (50.4-167.1 cc) and motion amplitude (2.9-30.1 mm). Treatments were planned assuming delivery in 35 × 2.5 Gy(RBE) fractions. The spot size, time to change the beam energy (τes), time required for magnet settling (τss), initial breathing phase, spot spacing, scanning direction, scanning speed, beam current and patient breathing period were varied for each of the five patients. Simulations were performed for a single fraction and an approximation of conventional fractionation. For the patients considered, the interplay effect could not be predicted using the superior-inferior motion amplitude alone. Larger spot sizes (σ ~ 9-16 mm) were less susceptible to interplay, giving an equivalent uniform dose (EUD) of 99.0 ± 4.4% (1 standard deviation) in a single fraction compared to 86.1 ± 13.1% for smaller spots (σ ~ 2-4 mm). The smaller spot sizes gave EUD values as low as 65.3% of the prescription dose in a single fraction. Reducing the spot spacing improved the target dose homogeneity. The initial breathing phase can have a significant effect on the interplay, particularly for shorter delivery times. No clear benefit was evident when scanning either parallel or perpendicular to the predominant axis of motion. Longer breathing periods decreased the EUD. In general, longer delivery times led to lower interplay effects. Conventional fractionation showed significant improvement in terms of interplay, giving a EUD of at least 84.7% and 100.0% of the prescription dose for the small and larger spot sizes respectively. The interplay effect is highly patient specific, depending on the motion amplitude, tumor location and the delivery parameters. Large degradations of the dose distribution in a single fraction were observed, but improved significantly using conventional fractionation.

  16. Interplay effects in proton scanning for lung: A 4D Monte Carlo study assessing the impact of tumor and beam delivery parameters

    PubMed Central

    Dowdell, S; Grassberger, C; Sharp, G C; Paganetti, H

    2013-01-01

    Relative motion between a tumor and a scanning proton beam results in a degradation of the dose distribution (interplay effect). This study investigates the relationship between beam scanning parameters and the interplay effect, with the goal of finding parameters that minimize interplay. 4D Monte Carlo simulations of pencil beam scanning proton therapy treatments were performed using the 4DCT geometry of 5 lung cancer patients of varying tumor size (50.4–167.1cc) and motion amplitude (2.9–30.1mm). Treatments were planned assuming delivery in 35×2.5Gy(RBE) fractions. The spot size, time to change the beam energy (τes), time required for magnet settling (τss), initial breathing phase, spot spacing, scanning direction, scanning speed, beam current and patient breathing period were varied for each of the 5 patients. Simulations were performed for a single fraction and an approximation of conventional fractionation. For the patients considered, the interplay effect could not be predicted using the superior-inferior (SI) motion amplitude alone. Larger spot sizes (σ ~9–16mm) were less susceptible to interplay, giving an equivalent uniform dose (EUD) of 99.0±4.4% (1 standard deviation) in a single fraction compared to 86.1±13.1% for smaller spots (σ ~2–4mm). The smaller spot sizes gave EUD values as low as 65.3% of the prescription dose in a single fraction. Reducing the spot spacing improved the target dose homogeneity. The initial breathing phase can have a significant effect on the interplay, particularly for shorter delivery times. No clear benefit was evident when scanning either parallel or perpendicular to the predominant axis of motion. Longer breathing periods decreased the EUD. In general, longer delivery times led to lower interplay effects. Conventional fractionation showed significant improvement in terms of interplay, giving a EUD of at least 84.7% and 100.0% of the prescription dose for the small and larger spot sizes respectively. The interplay effect is highly patient specific, depending on the motion amplitude, tumor location and the delivery parameters. Large degradations of the dose distribution in a single fraction were observed, but improved significantly using conventional fractionation. PMID:23689035

  17. Increased cardiac output, not pulmonary artery systolic pressure, increases intrapulmonary shunt in healthy humans breathing room air and 40% O2

    PubMed Central

    Elliott, Jonathan E; Duke, Joseph W; Hawn, Jerold A; Halliwill, John R; Lovering, Andrew T

    2014-01-01

    Blood flow through intrapulmonary arteriovenous anastomoses (IPAVAs) has been demonstrated to increase in healthy humans during a variety of conditions; however, whether or not this blood flow represents a source of venous admixture (/) that impairs pulmonary gas exchange efficiency (i.e. increases the alveolar-to-arterial difference (A–aDO2)) remains controversial and unknown. We hypothesized that blood flow through IPAVAs does provide a source of /. To test this, blood flow through IPAVAs was increased in healthy humans at rest breathing room air and 40% O2: (1) during intravenous adrenaline (epinephrine) infusion at 320 ng kg−1 min−1 (320 ADR), and (2) with vagal blockade (2 mg atropine), before and during intravenous adrenaline infusion at 80 ng kg−1 min−1 (ATR + 80 ADR). When breathing room air the A–aDO2 increased by 6 ± 2 mmHg during 320 ADR and by 5 ± 2 mmHg during ATR + 80 ADR, and the change in calculated / was +2% in both conditions. When breathing 40% O2, which minimizes contributions from diffusion limitation and alveolar ventilation-to-perfusion inequality, the A–aDO2 increased by 12 ± 7 mmHg during 320 ADR, and by 9 ± 6 mmHg during ATR + 80 ADR, and the change in calculated / was +2% in both conditions. During 320 ADR cardiac output () and pulmonary artery systolic pressure (PASP) were significantly increased; however, during ATR + 80 ADR only was significantly increased, yet blood flow through IPAVAs as detected with saline contrast echocardiography was not different between conditions. Accordingly, we suggest that blood flow through IPAVAs provides a source of intrapulmonary shunt, and is mediated primarily by increases in rather than PASP. PMID:25085889

  18. Delay-induced wave instabilities in single-species reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Otto, Andereas; Wang, Jian; Radons, Günter

    2017-11-01

    The Turing (wave) instability is only possible in reaction-diffusion systems with more than one (two) components. Motivated by the fact that a time delay increases the dimension of a system, we investigate the presence of diffusion-driven instabilities in single-species reaction-diffusion systems with delay. The stability of arbitrary one-component systems with a single discrete delay, with distributed delay, or with a variable delay is systematically analyzed. We show that a wave instability can appear from an equilibrium of single-species reaction-diffusion systems with fluctuating or distributed delay, which is not possible in similar systems with constant discrete delay or without delay. More precisely, we show by basic analytic arguments and by numerical simulations that fast asymmetric delay fluctuations or asymmetrically distributed delays can lead to wave instabilities in these systems. Examples, for the resulting traveling waves are shown for a Fisher-KPP equation with distributed delay in the reaction term. In addition, we have studied diffusion-induced instabilities from homogeneous periodic orbits in the same systems with variable delay, where the homogeneous periodic orbits are attracting resonant periodic solutions of the system without diffusion, i.e., periodic orbits of the Hutchinson equation with time-varying delay. If diffusion is introduced, standing waves can emerge whose temporal period is equal to the period of the variable delay.

  19. Optical fiber sensor for breathing diagnostics

    NASA Astrophysics Data System (ADS)

    Claus, Richard O.; Distler, T.; Mecham, J. B.; Davis, B.; Arregui, F. J.; Matias, I. R.

    2004-06-01

    We report improvements of an optical fiber-based humidity sensor to the problem of breathing diagnostics. The sensor is fabricated by molecularly self-assembling selected polymers and functionalized inorganic nanoclusters into multilayered optical thin films on the cleaved and polished flat end of a singlemode optical fiber. Recent work has studied the synthesis process and the fundamental mechanisms responsible for the change in optical reflection from such a multicomponent film that occurs as a function of humidity and various chemicals. We briefly review that prior work as a way to introduce more recent developments. The paper then discusses the application of these humidity sensors to the analysis of air flow associated with breathing [1]. We have designed the sensor thin film materials to enable the detection of relative humidity over a wide range, from approximately 5 to 95%, and for response times as short as several microseconds. This fast response time allows the near real-time analysis of air flow and water vapor transport during a single breath, with the advantage of very small size. The use of multiple sensors spaced a known distance apart allows the measurement of flow velocity, and recent work indicates a variation in sensor response versus coating thickness.

  20. Electronic Noses for Well-Being: Breath Analysis and Energy Expenditure

    PubMed Central

    Gardner, Julian W.; Vincent, Timothy A.

    2016-01-01

    The wealth of information concealed in a single human breath has been of interest for many years, promising not only disease detection, but also the monitoring of our general well-being. Recent developments in the fields of nano-sensor arrays and MEMS have enabled once bulky artificial olfactory sensor systems, or so-called “electronic noses”, to become smaller, lower power and portable devices. At the same time, wearable health monitoring devices are now available, although reliable breath sensing equipment is somewhat missing from the market of physical, rather than chemical sensor gadgets. In this article, we report on the unprecedented rise in healthcare problems caused by an increasingly overweight population. We first review recently-developed electronic noses for the detection of diseases by the analysis of basic volatile organic compounds (VOCs). Then, we discuss the primary cause of obesity from over eating and the high calorific content of food. We present the need to measure our individual energy expenditure from our exhaled breath. Finally, we consider the future for handheld or wearable devices to measure energy expenditure; and the potential of these devices to revolutionize healthcare, both at home and in hospitals. PMID:27347946

  1. Changes in sitting posture induce multiplanar changes in chest wall shape and motion with breathing.

    PubMed

    Lee, Linda-Joy; Chang, Angela T; Coppieters, Michel W; Hodges, Paul W

    2010-03-31

    This study examined the effect of sitting posture on regional chest wall shape in three dimensions, chest wall motion (measured with electromagnetic motion analysis system), and relative contributions of the ribcage and abdomen to tidal volume (%RC/V(t)) (measured with inductance plethysmography) in 7 healthy volunteers. In seven seated postures, increased dead space breathing automatically increased V(t) (to 1.5 V(t)) to match volume between conditions and study the effects of posture independent of volume changes. %RC/V(t) (p<0.05), chest wall shape (p<0.05) and motion during breathing differed between postures. Compared to a reference posture, movement at the 9th rib lateral diameter increased in the thoracolumbar extension posture (p<0.008). In slumped posture movement at the AP diameters at T1 and axilla increased (p<0.00001). Rotation postures decreased movement in the lateral diameter at the axilla (p<0.0007). The data show that single plane changes in sitting posture alter three-dimensional ribcage configuration and chest wall kinematics during breathing, while maintaining constant respiratory function. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Rumination and modes of processing around meal times in women with anorexia nervosa: qualitative and quantitative results from a pilot study.

    PubMed

    Cowdrey, Felicity A; Stewart, Anne; Roberts, Jill; Park, Rebecca J

    2013-09-01

    The primary aim of this exploratory study was to examine qualitatively and quantitatively the effects of rumination, mindful breathing, and distraction on processing styles and the meal time experience in women with a history of anorexia nervosa (AN). A quasi-experimental within-participant design was employed. Thirty-seven women with history of AN and all experiencing current eating disorder psychopathology listened to a single rumination, mindful breathing and distraction exercise before a meal time. Qualitative and quantitative analyses were employed. Specific themes were extracted for each exercise including avoidance, being in the moment and rumination. The rumination exercise led to significantly greater analytical self-focus. Mindful breathing led to significantly greater experiential self-focus compared with distraction in partially weight-restored AN participants. In AN, self-material is processed in a ruminative way and avoidance is valued. It is difficult to shift individuals with AN out of a rumination around meal times using brief mindful breathing. Future research should investigate at what stage of AN illness mindful-based and acceptance-based strategies are useful and how these strategies could be incorporated in treatment. Copyright © 2013 John Wiley & Sons, Ltd and Eating Disorders Association.

  3. Kinetics of the initial steps of G protein-coupled receptor-mediated cellular signaling revealed by single-molecule imaging.

    PubMed

    Lill, Yoriko; Martinez, Karen L; Lill, Markus A; Meyer, Bruno H; Vogel, Horst; Hecht, Bert

    2005-08-12

    We report on an in vivo single-molecule study of the signaling kinetics of G protein-coupled receptors (GPCR) performed using the neurokinin 1 receptor (NK1R) as a representative member. The NK1R signaling cascade is triggered by the specific binding of a fluorescently labeled agonist, substance P (SP). The diffusion of single receptor-ligand complexes in plasma membrane of living HEK 293 cells is imaged using fast single-molecule wide-field fluorescence microscopy at 100 ms time resolution. Diffusion trajectories are obtained which show intra- and intertrace heterogeneity in the diffusion mode. To investigate universal patterns in the diffusion trajectories we take the ligand-binding event as the common starting point. This synchronization allows us to observe changes in the character of the ligand-receptor-complex diffusion. Specifically, we find that the diffusion of ligand-receptor complexes is slowed down significantly and becomes more constrained as a function of time during the first 1000 ms. The decelerated and more constrained diffusion is attributed to an increasing interaction of the GPCR with cellular structures after the ligand-receptor complex is formed.

  4. Measurement tensors in diffusion MRI: generalizing the concept of diffusion encoding.

    PubMed

    Westin, Carl-Fredrik; Szczepankiewicz, Filip; Pasternak, Ofer; Ozarslan, Evren; Topgaard, Daniel; Knutsson, Hans; Nilsson, Markus

    2014-01-01

    In traditional diffusion MRI, short pulsed field gradients (PFG) are used for the diffusion encoding. The standard Stejskal-Tanner sequence uses one single pair of such gradients, known as single-PFG (sPFG). In this work we describe how trajectories in q-space can be used for diffusion encoding. We discuss how such encoding enables the extension of the well-known scalar b-value to a tensor-valued entity we call the diffusion measurement tensor. The new measurements contain information about higher order diffusion propagator covariances not present in sPFG. As an example analysis, we use this new information to estimate a Gaussian distribution over diffusion tensors in each voxel, described by its mean (a diffusion tensor) and its covariance (a 4th order tensor).

  5. Optical oximetry of volume-oscillating vascular compartments: contributions from oscillatory blood flow

    NASA Astrophysics Data System (ADS)

    Kainerstorfer, Jana M.; Sassaroli, Angelo; Fantini, Sergio

    2016-10-01

    We present a quantitative analysis of dynamic diffuse optical measurements to obtain oxygen saturation of hemoglobin in volume oscillating compartments. We used a phasor representation of oscillatory hemodynamics at the heart rate and respiration frequency to separate the oscillations of tissue concentrations of oxyhemoglobin (O) and deoxyhemoglobin (D) into components due to blood volume (subscript V) and blood flow (subscript F): O=OV+OF, D=DV+DF. This is achieved by setting the phase angle Arg(OF)-Arg(O), which can be estimated by a hemodynamic model that we recently developed. We found this angle to be -72 deg for the cardiac pulsation at 1 Hz, and -7 deg for paced breathing at 0.1 Hz. Setting this angle, we can obtain the oxygen saturation of hemoglobin of the volume-oscillating vascular compartment, SV=|OV|/(|OV|+|DV|). We demonstrate this approach with cerebral near-infrared spectroscopy measurements on healthy volunteers at rest (n=4) and during 0.1 Hz paced breathing (n=3) with a 24-channel system. Rest data at the cardiac frequency were used to calculate the arterial saturation, S(a); over all subjects and channels, we found ==0.96±0.02. In the case of paced breathing, we found =0.66±0.14, which reflects venous-dominated hemodynamics at the respiratory frequency.

  6. Implications for osmorespiratory compromise by anatomical remodeling in the gills of Arapaima gigas.

    PubMed

    Ramos, Cleverson Agner; Fernandes, Marisa Narciso; da Costa, Oscar Tadeu Ferreira; Duncan, Wallice Paxiuba

    2013-10-01

    The gill structure of the Amazonian fish Arapaima gigas, an obligatory air breather, was investigated during its transition from water breathing to the obligatory air breathing modes of respiration. The gill structure of A. gigas larvae is similar to that of most teleost fish; however, the morphology of the gills changes as the fish grow. The main morphological changes in the gill structure of a growing fish include the following: (1) intense cell proliferation in the filaments and lamellae, resulting in increasing epithelial thickness and decreasing interlamellar distance; (2) pillar cell system atrophy, which reduces the blood circulation through the lamellae; (3) the generation of long cytoplasmic processes from the epithelial cells into the intercellular space, resulting in continuous and sinuous paracellular channels between the epithelial cells of the filament and lamella that may be involved in gas, ion, and nutrient transport to epithelial cells; and (4) intense mitochondria-rich cell (MRC) proliferation in the lamellar epithelium. All of these morphological changes in the gills contribute to a low increase of the respiratory surface area for gas exchange and an increase in the water-blood diffusion distance increasing their dependence on air-breathing as fish developed. The increased proliferation of MRCs may contribute to increased ion uptake, which favors the regulation of ion content and pH equilibrium. Copyright © 2013 Wiley Periodicals, Inc.

  7. Numerical Comparison of Nasal Aerosol Administration Systems for Efficient Nose-to-Brain Drug Delivery.

    PubMed

    Dong, Jingliang; Shang, Yidan; Inthavong, Kiao; Chan, Hak-Kim; Tu, Jiyuan

    2017-12-29

    Nose-to-brain drug administration along the olfactory and trigeminal nerve pathways offers an alternative route for the treatment of central nervous system (CNS) disorders. The characterization of particle deposition remains difficult to achieve in experiments. Alternative numerical approach is applied to identify suitable aerosol particle size with maximized inhaled doses. This study numerically compared the drug delivery efficiency in a realistic human nasal cavity between two aerosol drug administration systems targeting the olfactory region: the aerosol mask system and the breath-powered bi-directional system. Steady inhalation and exhalation flow rates were applied to both delivery systems. The discrete phase particle tracking method was employed to capture the aerosol drug transport and deposition behaviours in the nasal cavity. Both overall and regional deposition characteristics were analysed in detail. The results demonstrated the breath-powered drug delivery approach can produce superior olfactory deposition with peaking olfactory deposition fractions for diffusive 1 nm particles and inertial 10 μm. While for particles in the range of 10 nm to 2 μm, no significant olfactory deposition can be found, indicating the therapeutic agents should avoid this size range when targeting the olfactory deposition. The breath-powered bi-directional aerosol delivery approach shows better drug delivery performance globally and locally, and improved drug administration doses can be achieved in targeted olfactory region.

  8. Using light transmission to watch hydrogen diffuse

    PubMed Central

    Pálsson, Gunnar K.; Bliersbach, Andreas; Wolff, Max; Zamani, Atieh; Hjörvarsson, Björgvin

    2012-01-01

    Because of its light weight and small size, hydrogen exhibits one of the fastest diffusion rates in solid materials, comparable to the diffusion rate of liquid water molecules at room temperature. The diffusion rate is determined by an intricate combination of quantum effects and dynamic interplay with the displacement of host atoms that is still only partially understood. Here we present direct observations of the spatial and temporal changes in the diffusion-induced concentration profiles in a vanadium single crystal and we show that the results represent the experimental counterpart of the full time and spatial solution of Fick's diffusion equation. We validate the approach by determining the diffusion rate of hydrogen in a single crystal vanadium (001) film, with net diffusion in the [110] direction. PMID:22692535

  9. Using light transmission to watch hydrogen diffuse

    NASA Astrophysics Data System (ADS)

    Pálsson, Gunnar K.; Bliersbach, Andreas; Wolff, Max; Zamani, Atieh; Hjörvarsson, Björgvin

    2012-06-01

    Because of its light weight and small size, hydrogen exhibits one of the fastest diffusion rates in solid materials, comparable to the diffusion rate of liquid water molecules at room temperature. The diffusion rate is determined by an intricate combination of quantum effects and dynamic interplay with the displacement of host atoms that is still only partially understood. Here we present direct observations of the spatial and temporal changes in the diffusion-induced concentration profiles in a vanadium single crystal and we show that the results represent the experimental counterpart of the full time and spatial solution of Fick's diffusion equation. We validate the approach by determining the diffusion rate of hydrogen in a single crystal vanadium (001) film, with net diffusion in the [110] direction.

  10. Incomplete initial nutation diffusion imaging: An ultrafast, single-scan approach for diffusion mapping.

    PubMed

    Ianuş, Andrada; Shemesh, Noam

    2018-04-01

    Diffusion MRI is confounded by the need to acquire at least two images separated by a repetition time, thereby thwarting the detection of rapid dynamic microstructural changes. The issue is exacerbated when diffusivity variations are accompanied by rapid changes in T 2 . The purpose of the present study is to accelerate diffusion MRI acquisitions such that both reference and diffusion-weighted images necessary for quantitative diffusivity mapping are acquired in a single-shot experiment. A general methodology termed incomplete initial nutation diffusion imaging (INDI), capturing two diffusion contrasts in a single shot, is presented. This methodology creates a longitudinal magnetization reservoir that facilitates the successive acquisition of two images separated by only a few milliseconds. The theory behind INDI is presented, followed by proof-of-concept studies in water phantom, ex vivo, and in vivo experiments at 16.4 and 9.4 T. Mean diffusivities extracted from INDI were comparable with diffusion tensor imaging and the two-shot isotropic diffusion encoding in the water phantom. In ex vivo mouse brain tissues, as well as in the in vivo mouse brain, mean diffusivities extracted from conventional isotropic diffusion encoding and INDI were in excellent agreement. Simulations for signal-to-noise considerations identified the regimes in which INDI is most beneficial. The INDI method accelerates diffusion MRI acquisition to single-shot mode, which can be of great importance for mapping dynamic microstructural properties in vivo without T 2 bias. Magn Reson Med 79:2198-2204, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  11. Single file diffusion into a semi-infinite tube.

    PubMed

    Farrell, Spencer G; Brown, Aidan I; Rutenberg, Andrew D

    2015-11-23

    We investigate single file diffusion (SFD) of large particles entering a semi-infinite tube, such as luminal diffusion of proteins into microtubules or flagella. While single-file effects have no impact on the evolution of particle density, we report significant single-file effects for individually tracked tracer particle motion. Both exact and approximate ordering statistics of particles entering semi-infinite tubes agree well with our stochastic simulations. Considering initially empty semi-infinite tubes, with particles entering at one end starting from an initial time t = 0, tracked particles are initially super-diffusive after entering the system, but asymptotically diffusive at later times. For finite time intervals, the ratio of the net displacement of individual single-file particles to the average displacement of untracked particles is reduced at early times and enhanced at later times. When each particle is numbered, from the first to enter (n = 1) to the most recent (n = N), we find good scaling collapse of this distance ratio for all n. Experimental techniques that track individual particles, or local groups of particles, such as photo-activation or photobleaching of fluorescently tagged proteins, should be able to observe these single-file effects. However, biological phenomena that depend on local concentration, such as flagellar extension or luminal enzymatic activity, should not exhibit single-file effects.

  12. Estimating lifetime risk from spot biomarker data and intra‐class correlation coefficients (ICC)

    EPA Science Inventory

    Human biomarker measurements in tissues including blood, breath, and urine can serve as efficient surrogates for environmental monitoring because a single biological sample integrates personal exposure across all environmental media and uptake pathways. However, biomarkers repres...

  13. Improved Pharmacokinetics of Sumatriptan With Breath Powered™ Nasal Delivery of Sumatriptan Powder

    PubMed Central

    Obaidi, Mohammad; Offman, Elliot; Messina, John; Carothers, Jennifer; Djupesland, Per G; Mahmoud, Ramy A

    2013-01-01

    Objectives.— The purpose of this study was to directly compare the pharmacokinetic (PK) profile of 22-mg sumatriptan powder delivered intranasally with a novel Breath Powered™ device (11 mg in each nostril) vs a 20-mg sumatriptan liquid nasal spray, a 100-mg oral tablet, and a 6-mg subcutaneous injection. Background.— A prior PK study found that low doses of sumatriptan powder delivered intranasally with a Breath Powered device were efficiently and rapidly absorbed. An early phase clinical trial with the same device and doses found excellent tolerability with high response rates and rapid onset of pain relief, approaching the benefits of injection despite significantly lower predicted drug levels. Methods.— An open-label, cross-over, comparative bioavailability study was conducted in 20 healthy subjects at a single center in the USA. Following randomization, fasted subjects received a single dose of each of the 4 treatments separated by a 7-day washout. Blood samples were taken pre-dose and serially over 14 hours post-dose for PK analysis. Results.— Quantitative measurement of residuals in used Breath Powered devices demonstrated that the devices delivered 8 ± 0.9 mg (mean ± standard deviation) of sumatriptan powder in each nostril (total dose 16 mg). Although the extent of systemic exposure over 14 hours was similar following Breath Powered delivery of 16-mg sumatriptan powder and 20-mg liquid nasal spray (area under the curve [AUC]0-∞ 64.9 ng*hour/mL vs 61.1 ng*hour/mL), sumatriptan powder, despite a 20% lower dose, produced 27% higher peak exposure (Cmax 20.8 ng/mL vs 16.4 ng/mL) and 61% higher exposure in the first 30 minutes compared with the nasal spray (AUC0-30 minutes 5.8 ng*hour/mL vs 3.6 ng*hour/mL). The magnitude of difference is larger on a per-milligram basis. The absorption profile following standard nasal spray demonstrated bimodal peaks, consistent with lower early followed by higher later absorptions. In contrast, the profile following Breath Powered delivery showed higher early and lower late absorptions. Relative to the 100-mg oral tablet (Cmax 70.2 ng/mL, AUC0-∞, 308.8 ng*hour/mL) and 6-mg injection (Cmax 111.6 ng/mL, AUC0-∞ 128.2 ng*hour/mL), the peak and overall exposure following Breath Powered intranasal delivery of sumatriptan powder was substantially lower. Conclusions.— Breath Powered intranasal delivery of sumatriptan powder is a more efficient form of drug delivery, producing a higher peak and earlier exposure with a lower delivered dose than nasal spray and faster absorption than either nasal spray or oral administration. It also produces a significantly lower peak and total systemic exposure than oral tablet or subcutaneous injection. PMID:23992438

  14. Thermal diffusivity of Bi 2Sr 2CaCu 2O 8 single crystals

    NASA Astrophysics Data System (ADS)

    Wu, X. D.; Fanton, J. G.; Kino, G. S.; Ryu, S.; Mitzi, D. B.; Kapitulnik, A.

    1993-12-01

    We have made direct measurements of the temperature dependence of the thermal diffusivity along all three axes of a single- crystal Bi 2Ca 2SrCu 2O 8 superconductor. We find that the thermal diffusivity is enhanced dramatically along the Cu-O planes below Tc. From our results, we estimate a 40% electronic contribution to the diffusivity along the Cu-O planes. At room temperature the total anisotropy in thermal diffusivity is 7:1, while the lattice contribution has only a 4.2:1 anisotropy.

  15. Analysis of dangerous area of single berth oil tanker operations based on CFD

    NASA Astrophysics Data System (ADS)

    Shi, Lina; Zhu, Faxin; Lu, Jinshu; Wu, Wenfeng; Zhang, Min; Zheng, Hailin

    2018-04-01

    Based on the single process in the liquid cargo tanker berths in the state as the research object, we analyzed the single berth oil tanker in the process of VOCs diffusion theory, built network model of VOCs diffusion with Gambit preprocessor, set up the simulation boundary conditions and simulated the five detection point sources in specific factors under the influence of VOCs concentration change with time by using Fluent software. We analyzed the dangerous area of single berth oil tanker operations through the diffusion of VOCs, so as to ensure the safe operation of oil tanker.

  16. The Short-Term Effect of Breathing Tasks Via an Incentive Spirometer on Lung Function Compared With Autogenic Drainage in Subjects With Cystic Fibrosis.

    PubMed

    Sokol, Gil; Vilozni, Daphna; Hakimi, Ran; Lavie, Moran; Sarouk, Ifat; Bat-El Bar; Dagan, Adi; Ofek, Miryam; Efrati, Ori

    2015-12-01

    Forced expiration may assist secretion movement by manipulating airway dynamics in patients with cystic fibrosis (CF). Expiratory resistive breathing via a handheld incentive spirometer has the potential to control the expiratory flow via chosen resistances (1-8 mm) and thereby mobilize secretions and improve lung function. Our objective was to explore the short-term effect of using a resistive-breathing incentive spirometer on lung function in subjects with CF compared with the autogenic drainage technique. This was a retrospective study. Subjects with CF performed 30-45 min of either the resistive-breathing incentive spirometer (n = 40) or autogenic drainage (n = 32) technique on separate days. The spirometer encourages the patient to exhale as long as possible while maintaining a low lung volume. The autogenic drainage technique includes repetitive inspiratory and expiratory maneuvers at various tidal breathing magnitudes while exhalation is performed in a sighing manner. Spirometry was performed before and 20-30 min after the therapy. Use of a resistive-breathing incentive spirometer improved FVC and FEV1 by 5-42% in 26 subjects. The forced expiratory flow during the middle half of the FVC maneuver (FEF25-75%) improved by >20% in 9 (22%) subjects. FVC improved the most in subjects with an FEV1 of 40-60% of predicted. Improvements negatively correlated with baseline percent-of-predicted FVC values provided improvements were above 10% (r(2) = 0.28). Values improved in a single subjects using the autogenic drainage technique. These 2 techniques may allow lower thoracic pressures and assist in the prevention of central airway collapse. The resistive-breathing incentive spirometer is a self-administered simple method that may aid airway clearance and has the potential to improve lung function as measured by FVC, FEV1, and FEF25-75% in patients with CF. Copyright © 2015 by Daedalus Enterprises.

  17. Atropine microdialysis within or near the pre-Botzinger Complex increases breathing frequency more during wakefulness than during NREM sleep.

    PubMed

    Muere, Clarissa; Neumueller, Suzanne; Miller, Justin; Olesiak, Samantha; Hodges, Matthew R; Pan, Lawrence; Forster, Hubert V

    2013-03-01

    Normal activity of neurons within the medullary ventral respiratory column (VRC) in or near the pre-Bötzinger Complex (preBötC) is dependent on the balance of inhibitory and excitatory neuromodulators acting at their respective receptors. The role of cholinergic neuromodulation during awake and sleep states is unknown. Accordingly, our objective herein was to test the hypotheses that attenuation of cholinergic modulation of VRC/preBötC neurons in vivo with atropine would: 1) decrease breathing frequency more while awake than during non-rapid-eye-movement (NREM) sleep and 2) increase other excitatory neuromodulators. To test these hypotheses, we unilaterally dialyzed mock cerebrospinal fluid (mCSF) or 50 mM atropine in mCSF in or near the preBötC region of adult goats during the awake (n = 9) and NREM sleep (n = 7) states. Breathing was monitored, and effluent dialysate was collected for analysis of multiple neurochemicals. Compared with dialysis of mCSF alone, atropine increased (P < 0.05) breathing frequency while awake during the day [+10 breaths (br)/min] and at night (+9 br/min) and, to a lesser extent, during NREM sleep (+5 br/min). Atropine increased (P < 0.05) effluent concentrations of serotonin (5-HT), substance P (SP), and glycine during the day and at night. When atropine was dialyzed in one preBötC and mCSF in the contralateral preBötC, 5-HT and SP increased only at the site of atropine dialysis. We conclude: 1) attenuation of a single neuromodulator results in local changes in other neuromodulators that affect ventilatory control, 2) effects of perturbations of cholinergic neuromodulation on breathing are state-dependent, and 3) interpretation of perturbations in vivo requires consideration of direct and indirect effects.

  18. Sub-Fickean Diffusion in a One-Dimensional Plasma Ring

    NASA Astrophysics Data System (ADS)

    Theisen, W. L.

    2013-12-01

    A one-dimensional dusty plasma ring is formed in a strongly-coupled complex plasma. The dust particles in the ring can be characterized as a one-dimensional system where the particles cannot pass each other. The particles perform random walks due to thermal motions. This single-file self diffusion is characterized by the mean-squared displacement (msd) of the individual particles which increases with time t. Diffusive processes that follow Ficks law predict that the msd increases as t, however, single-file diffusion is sub-Fickean meaning that the msd is predicted to increase as t^(1/2). Particle position data from the dusty plasma ring is analyzed to determine the scaling of the msd with time. Results are compared with predictions of single-file diffusion theory.

  19. A no-decompression air dive and ultrasound lung comets.

    PubMed

    Dujic, Zeljko; Marinovic, Jasna; Obad, Ante; Ivancev, Vladimir; Breskovic, Toni; Jovovic, Pavle; Ljubkovic, Marko

    2011-01-01

    Increased accumulation of extravascular lung water after repetitive deep trimix dives was recently reported. This effect was evident 40 min post-dive, but in subsequent studies most signs of this lung congestion were not evident 2-3 h post-dive, indicating no major negative effects on respiratory gas exchange following deep dives. Whether this response is unique for trimix dives or also occurs in more frequent air dives is presently unknown. A single no-decompression field dive to 33 m with 20 min bottom time was performed by 12 male divers. Multiple ultrasound lung comets (ULC), bubble grade (BG), and single-breath lung diffusing capacity (DLCO) measurements were made before and up to 120 min after the dive. Median BG was rather high with maximal values observed at 40 min post-dive [median 4 (4-4)]. Arterialization of bubbles from the venous side was observed only in one diver lasting up to 60 min post-dive. Despite high BG, no DCS symptoms were noted. DLCO and ULC were unchanged after the dive at any time point (DLCO(corr) was 33.6 +/- 1.9 ml x min(-1) mmHg(-1) pre-dive, 32.7 +/- 3.8 ml x min(-1) x mmHg(-1) at 60 min post-dive, and 33.2 +/- 5.3 ml x min(-1) x mmHg(-1) at 120 min post-dive; ULC count was 4.1 +/- 1.9 pre-dive, 4.9 +/- 3.3 at 20 min post-dive, and 3.3 +/- 1.9 at 60 min post-dive. These preliminary findings show no evidence of increased accumulation of extravascular lung water in male divers after a single no-decompression air dive at the limits of accepted Norwegian diving tables.

  20. SU-E-J-223: A BOLD Contrast Imaging Sequence to Evaluate Oxygenation Changes Due to Breath Holding for Breast Radiotherapy: A Pilot Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamson, J; Chang, Z; Cai, J

    Purpose: To develop a robust MRI sequence to measure BOLD breath hold induced contrast in context of breast radiotherapy. Methods: Two sequences were selected from prior studies as candidates to measure BOLD contrast attributable to breath holding within the breast: (1) T2* based Gradient Echo EPI (TR/TE = 500/41ms, flip angle = 60°), and (2) T2 based Single Shot Fast Spin Echo (SSFSE) (TR/TE = 3000/60ms). We enrolled ten women post-lumpectomy for breast cancer who were undergoing treatment planning for whole breast radiotherapy. Each session utilized a 1.5T GE MRI and 4 channel breast coil with the subject immobilized pronemore » on a custom board. For each sequence, 1–3 planes of the lumpectomy breast were imaged continuously during a background measurement (1min) and intermittent breath holds (20–40s per breath hold, 3–5 holds per sequence). BOLD contrast was quantified as correlation of changes in per-pixel intensity with the breath hold schedule convolved with a hemodynamic response function. Subtle motion was corrected using a deformable registration algorithm. Correlation with breath-holding was considered significant if p<0.001. Results: The percentage of the breast ROI with positive BOLD contrast measured by the two sequences were in agreement with a correlation coefficient of R=0.72 (p=0.02). While both sequences demonstrated areas with strong BOLD response, the response was more systematic throughout the breast for the SSFSE (T2) sequence (% breast with response in the same direction: 51.2%±0.7% for T2* vs. 68.1%±16% for T2). In addition, the T2 sequence was less prone to magnetic susceptibility artifacts, especially in presence of seroma, and provided a more robust image with little distortion or artifacts. Conclusion: A T2 SSFSE sequence shows promise for measuring BOLD contrast in the context of breast radiotherapy utilizing a breath hold technique. Further study in a larger patient cohort is warranted to better refine this novel technique.« less

  1. "A breath of fresh air worth spreading": media coverage of retailer abandonment of tobacco sales.

    PubMed

    McDaniel, Patricia A; Offen, Naphtali; Yerger, Valerie B; Malone, Ruth E

    2014-03-01

    Media play an important role in the diffusion of innovations by spreading knowledge of their relative advantages. We examined media coverage of retailers abandoning tobacco sales to explore whether this innovation might be further diffused by media accounts. We searched online media databases (Lexis Nexis, Proquest, and Access World News) for articles published from 1995 to 2011, coding retrieved items through a collaborative process. We analyzed the volume, type, provenance, prominence, and content of coverage. We found 429 local and national news items. Two retailers who were the first in their category to end tobacco sales received the most coverage and the majority of prominent coverage. News items cited positive potential impacts of the decision more often than negative potential impacts, and frequently referred to tobacco-caused disease, death, or addiction. Letters to the editor and editorials were overwhelmingly supportive. The content of media coverage about retailers ending tobacco sales could facilitate broader diffusion of this policy innovation, contributing to the denormalization of tobacco and moving society closer to ending the tobacco epidemic. Media advocacy could increase and enhance such coverage.

  2. Proton exchange membrane micro fuel cells on 3D porous silicon gas diffusion layers

    NASA Astrophysics Data System (ADS)

    Kouassi, S.; Gautier, G.; Thery, J.; Desplobain, S.; Borella, M.; Ventura, L.; Laurent, J.-Y.

    2012-10-01

    Since the 90's, porous silicon has been studied and implemented in many devices, especially in MEMS technology. In this article, we present a new approach to build miniaturized proton exchange membrane micro-fuel cells using porous silicon as a hydrogen diffusion layer. In particular, we propose an innovative process to build micro fuel cells from a “corrugated iron like” 3D structured porous silicon substrates. This structure is able to increase up to 40% the cell area keeping a constant footprint on the silicon wafer. We propose here a process route to perform electrochemically 3D porous gas diffusion layers and to deposit fuel cell active layers on such substrates. The prototype peak power performance was measured to be 90 mW cm-2 in a “breathing configuration” at room temperature. These performances are less than expected if we compare with a reference 2D micro fuel cell. Actually, the active layer deposition processes are not fully optimized but this prototype demonstrates the feasibility of these 3D devices.

  3. Labeled carbon dioxide (C18O2): an indicator gas for phase II in expirograms.

    PubMed

    Schulz, Holger; Schulz, Anne; Eder, Gunter; Heyder, Joachim

    2004-11-01

    Carbon dioxide labeled with 18O (C18O2) was used as a tracer gas for single-breath measurements in six anesthetized, mechanically ventilated beagle dogs. C18O2 is taken up quasi-instantaneously in the gas-exchanging region of the lungs but much less so in the conducting airways. Its use allows a clear separation of phase II in an expirogram even from diseased individuals and excludes the influence of alveolar concentration differences. Phase II of a C18O2 expirogram mathematically corresponds to the cumulative distribution of bronchial pathways to be traversed completely in the course of exhalation. The derivative of this cumulative distribution with respect to respired volume was submitted to a power moment analysis to characterize volumetric mean (position), standard deviation (broadness), and skewness (asymmetry) of phase II. Position is an estimate of dead space volume, whereas broadness and skewness are measures of the range and asymmetry of functional airway pathway lengths. The effects of changing ventilatory patterns and of changes in airway size (via carbachol-induced bronchoconstriction) were studied. Increasing inspiratory or expiratory flow rates or tidal volume had only minor influence on position and shape of phase II. With the introduction of a postinspiratory breath hold, phase II was continually shifted toward the airway opening (maximum 45% at 16 s) and became steeper by up to 16%, whereas skewness showed a biphasic response with a moderate decrease at short breath holding and a significant increase at longer breath holds. Stepwise bronchoconstriction decreased position up to 45 +/- 2% and broadness of phase II up to 43 +/- 4%, whereas skewness was increased up to twofold at high-carbachol concentrations. Under all circumstances, position of phase II by power moment analysis and dead space volume by the Fowler technique agreed closely in our healthy dogs. Overall, power moment analysis provides a more comprehensive view on phase II of single-breath expirograms than conventional dead space volume determinations and may be useful for respiratory physiology studies as well as for the study of diseased lungs.

  4. Physiological responses and air consumption during simulated firefighting tasks in a subway system.

    PubMed

    Williams-Bell, F Michael; Boisseau, Geoff; McGill, John; Kostiuk, Andrew; Hughson, Richard L

    2010-10-01

    Professional firefighters (33 men, 3 women), ranging in age from 30 to 53 years, participated in a simulation of a subway system search and rescue while breathing from their self-contained breathing apparatus (SCBA). We tested the hypothesis that during this task, established by expert firefighters to be of moderate intensity, the rate of air consumption would exceed the capacity of a nominal 30-min cylinder. Oxygen uptake, carbon dioxide output, and air consumption were measured with a portable breath-by-breath gas exchange analysis system, which was fully integrated with the expired port of the SCBA. The task involved descending a flight of stairs, walking, performing a search and rescue, retreat walking, then ascending a single flight of stairs to a safe exit. This scenario required between 9:56 and 13:24 min:s (mean, 12:10 ± 1:10 min:s) to complete, with an average oxygen uptake of 24.3 ± 4.5 mL kg(-1) min(-1) (47 ± 10 % peak oxygen uptake) and heart rate of 76% ± 7% of maximum. The highest energy requirement was during the final single-flight stair climb (30.4 ± 5.4 mL kg(-1) min(-1)). The average respiratory exchange ratio (carbon dioxide output/oxygen uptake) throughout the scenario was 0.95 ± 0.08, indicating a high carbon dioxide output for a relatively moderate average energy requirement. Air consumption from the nominal "30-min" cylinder averaged 51% (range, 26%-68%); however, extrapolation of these rates of consumption suggested that the low-air alarm, signalling that only 25% of the air remains, would have occurred as early as 11 min for an individual with the highest rate of air consumption, and at 16 min for the group average. These data suggest that even the moderate physical demands of walking combined with search and rescue while wearing full protective gear and breathing through the SCBA impose considerable physiological strain on professional firefighters. As well, the rate of air consumption in these tasks classed as moderate, compared with high-rise firefighting, would have depleted the air supply well before the nominal time used to describe the cylinders.

  5. Performance Validation Approach for the GTX Air-Breathing Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J.; Roche, Joseph M.

    2002-01-01

    The primary objective of the GTX effort is to determine whether or not air-breathing propulsion can enable a launch vehicle to achieve orbit in a single stage. Structural weight, vehicle aerodynamics, and propulsion performance must be accurately known over the entire flight trajectory in order to make a credible assessment. Structural, aerodynamic, and propulsion parameters are strongly interdependent, which necessitates a system approach to design, evaluation, and optimization of a single-stage-to-orbit concept. The GTX reference vehicle serves this purpose, by allowing design, development, and validation of components and subsystems in a system context. The reference vehicle configuration (including propulsion) was carefully chosen so as to provide high potential for structural and volumetric efficiency, and to allow the high specific impulse of air-breathing propulsion cycles to be exploited. Minor evolution of the configuration has occurred as analytical and experimental results have become available. With this development process comes increasing validation of the weight and performance levels used in system performance determination. This paper presents an overview of the GTX reference vehicle and the approach to its performance validation. Subscale test rigs and numerical studies used to develop and validate component performance levels and unit structural weights are outlined. The sensitivity of the equivalent, effective specific impulse to key propulsion component efficiencies is presented. The role of flight demonstration in development and validation is discussed.

  6. Single-Site Cannulation Venovenous Extracorporeal CO2 Removal as Bridge to Lung Volume Reduction Surgery in End-Stage Lung Emphysema.

    PubMed

    Redwan, Bassam; Ziegeler, Stephan; Semik, Michael; Fichter, Joachim; Dickgreber, Nicolas; Vieth, Volker; Ernst, Erik Christian; Fischer, Stefan

    Lung volume reduction surgery (LVRS) is an important treatment option for end-stage lung emphysema in carefully selected patients. Here, we first describe the application of low-flow venovenous extracorporeal CO2 removal (LFVV-ECCO2R) as bridge to LVRS in patients with end-stage lung emphysema experiencing severe hypercapnia caused by acute failure of the breathing pump. Between March and October 2015, n = 4 patients received single-site LFVV-ECCO2R as bridge to LVRS. Indication for extracorporeal lung support was severe hypercapnia with respiratory acidosis and acute breathing pump failure. Two patients required continuous mechanical ventilation over a temporary tracheostomy and were bed ridden. The other two patients were nearly immobile because of severe dyspnea at rest. Length of preoperative ECCO2R was 14 (1-42) days. All patients underwent unilateral LVRS. Anatomical resection of the right (n = 3) or left (n = 1) upper lobe was performed. Postoperatively, both patients with previous mechanical ventilatory support were successfully weaned. ECCO2R in patients with end-stage lung emphysema experiencing severe hypercapnia caused by acute breathing pump failure is a safe and effective bridging tool to LVRS. In such patients, radical surgery leads to a significant improvement of the performance status and furthermore facilitates respiratory weaning from mechanical ventilation.

  7. Music structure determines heart rate variability of singers

    PubMed Central

    Vickhoff, Björn; Malmgren, Helge; Åström, Rickard; Nyberg, Gunnar; Ekström, Seth-Reino; Engwall, Mathias; Snygg, Johan; Nilsson, Michael; Jörnsten, Rebecka

    2013-01-01

    Choir singing is known to promote wellbeing. One reason for this may be that singing demands a slower than normal respiration, which may in turn affect heart activity. Coupling of heart rate variability (HRV) to respiration is called Respiratory sinus arrhythmia (RSA). This coupling has a subjective as well as a biologically soothing effect, and it is beneficial for cardiovascular function. RSA is seen to be more marked during slow-paced breathing and at lower respiration rates (0.1 Hz and below). In this study, we investigate how singing, which is a form of guided breathing, affects HRV and RSA. The study comprises a group of healthy 18 year olds of mixed gender. The subjects are asked to; (1) hum a single tone and breathe whenever they need to; (2) sing a hymn with free, unguided breathing; and (3) sing a slow mantra and breathe solely between phrases. Heart rate (HR) is measured continuously during the study. The study design makes it possible to compare above three levels of song structure. In a separate case study, we examine five individuals performing singing tasks (1–3). We collect data with more advanced equipment, simultaneously recording HR, respiration, skin conductance and finger temperature. We show how song structure, respiration and HR are connected. Unison singing of regular song structures makes the hearts of the singers accelerate and decelerate simultaneously. Implications concerning the effect on wellbeing and health are discussed as well as the question how this inner entrainment may affect perception and behavior. PMID:23847555

  8. Underwater study of arterial blood pressure in breath-hold divers.

    PubMed

    Sieber, Arne; L'abbate, Antonio; Passera, Mirko; Garbella, Erika; Benassi, Antonio; Bedini, Remo

    2009-11-01

    Knowledge regarding arterial blood pressure (ABP) values during breath-hold diving is scanty. It derives from a few reports of measurements performed at the water's surface, showing slight or no increase in ABP, and from a single study of two simulated deep breath-hold dives in a hyperbaric chamber. Simulated dives showed an increase in ABP to values considered life threatening by standard clinical criteria. For the first time, using a novel noninvasive subaquatic sphygmomanometer, we successfully measured ABP in 10 healthy elite breath-hold divers at a depth of 10 m of freshwater (mfw). ABP was measured in dry conditions, at the surface (head-out immersion), and twice at a depth of 10 mfw. Underwater measurements of ABP were obtained in all subjects. Each measurement lasted 50-60 s and was accomplished without any complications or diver discomfort. In the 10 subjects as a whole, mean ABP values were 124/93 mmHg at the surface and 123/94 mmHg at a depth of 10 mfw. No significant statistical differences were found when blood pressure measurements at the water surface were compared with breath-hold diving conditions at a depth of 10 mfw. No systolic blood pressure values >140 mmHg or diastolic blood pressure values >115 mmHg were recorded. In conclusion, direct measurements of ABP during apnea diving showed no or only mild increases in ABP. However, our results cannot be extended over environmental conditions different from those of the present study.

  9. Real-time volumetric image reconstruction and 3D tumor localization based on a single x-ray projection image for lung cancer radiotherapy.

    PubMed

    Li, Ruijiang; Jia, Xun; Lewis, John H; Gu, Xuejun; Folkerts, Michael; Men, Chunhua; Jiang, Steve B

    2010-06-01

    To develop an algorithm for real-time volumetric image reconstruction and 3D tumor localization based on a single x-ray projection image for lung cancer radiotherapy. Given a set of volumetric images of a patient at N breathing phases as the training data, deformable image registration was performed between a reference phase and the other N-1 phases, resulting in N-1 deformation vector fields (DVFs). These DVFs can be represented efficiently by a few eigenvectors and coefficients obtained from principal component analysis (PCA). By varying the PCA coefficients, new DVFs can be generated, which, when applied on the reference image, lead to new volumetric images. A volumetric image can then be reconstructed from a single projection image by optimizing the PCA coefficients such that its computed projection matches the measured one. The 3D location of the tumor can be derived by applying the inverted DVF on its position in the reference image. The algorithm was implemented on graphics processing units (GPUs) to achieve real-time efficiency. The training data were generated using a realistic and dynamic mathematical phantom with ten breathing phases. The testing data were 360 cone beam projections corresponding to one gantry rotation, simulated using the same phantom with a 50% increase in breathing amplitude. The average relative image intensity error of the reconstructed volumetric images is 6.9% +/- 2.4%. The average 3D tumor localization error is 0.8 +/- 0.5 mm. On an NVIDIA Tesla C1060 GPU card, the average computation time for reconstructing a volumetric image from each projection is 0.24 s (range: 0.17 and 0.35 s). The authors have shown the feasibility of reconstructing volumetric images and localizing tumor positions in 3D in near real-time from a single x-ray image.

  10. Classification and Segmentation of Nanoparticle Diffusion Trajectories in Cellular Micro Environments

    PubMed Central

    Kroll, Alexandra; Haramagatti, Chandrashekara R.; Lipinski, Hans-Gerd; Wiemann, Martin

    2017-01-01

    Darkfield and confocal laser scanning microscopy both allow for a simultaneous observation of live cells and single nanoparticles. Accordingly, a characterization of nanoparticle uptake and intracellular mobility appears possible within living cells. Single particle tracking allows to measure the size of a diffusing particle close to a cell. However, within the more complex system of a cell’s cytoplasm normal, confined or anomalous diffusion together with directed motion may occur. In this work we present a method to automatically classify and segment single trajectories into their respective motion types. Single trajectories were found to contain more than one motion type. We have trained a random forest with 9 different features. The average error over all motion types for synthetic trajectories was 7.2%. The software was successfully applied to trajectories of positive controls for normal- and constrained diffusion. Trajectories captured by nanoparticle tracking analysis served as positive control for normal diffusion. Nanoparticles inserted into a diblock copolymer membrane was used to generate constrained diffusion. Finally we segmented trajectories of diffusing (nano-)particles in V79 cells captured with both darkfield- and confocal laser scanning microscopy. The software called “TraJClassifier” is freely available as ImageJ/Fiji plugin via https://git.io/v6uz2. PMID:28107406

  11. Optical fiber sensors for breathing diagnostics

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Claus, Richard O.; Mecham, Jeffrey B.; Vercellino, M.; Arregui, Francisco J.; Matias, Ignacio R.

    2002-03-01

    We report the application of an optical fiber-based humidity sensor to the problem of breathing diagnostics. The sensor is fabricated by molecularly self-assembling selected polymers and functionalized inorganic nanoclusters into multilayered optical thin films on the cleaved and polished flat end of a singlemode optical fiber. Prior work has studied the synthesis process and the fundamental mechanisms responsible for the change in optical reflection from the film that occurs as a function of humidity. We will briefly review that prior work as a way to introduce more recent developments. This paper will then discuss the application of these sensors to the analysis of air flow. We have designed the sensor thin film materials for the detection of relative humidity over a wide range, from approximately 10 to 95%, and for response times as short as several tens of milliseconds. This very fast response time allows the near real-time analysis of air flow and humidity during a single breath, with the advantage of very small size.

  12. Heat Exchanger Design in Combined Cycle Engines

    NASA Astrophysics Data System (ADS)

    Webber, H.; Feast, S.; Bond, A.

    Combined cycle engines employing both pre-cooled air-breathing and rocket modes of operation are the most promising propulsion system for achieving single stage to orbit vehicles. The air-breathing phase is purely for augmentation of the mission velocity required in the rocket phase and as such must be mass effective, re-using the components of the rocket cycle, whilst achieving adequate specific impulse. This paper explains how the unique demands placed on the air-breathing cycle results in the need for sophisticated thermodynamics and the use of a series of different heat exchangers to enable precooling and high pressure ratio compression of the air for delivery to the rocket combustion chambers. These major heat exchanger roles are; extracting heat from incoming air in the precooler, topping up cycle flow temperatures to maintain constant turbine operating conditions and extracting rejected heat from the power cycle via regenerator loops for thermal capacity matching. The design solutions of these heat exchangers are discussed.

  13. The Sensitivity of Precooled Air-Breathing Engine Performance to Heat Exchanger Design Parameters

    NASA Astrophysics Data System (ADS)

    Webber, H.; Bond, A.; Hempsell, M.

    The issues relevant to propulsion design for Single Stage To Orbit (SSTO) vehicles are considered. In particular two air- breathing engine concepts involving precooling are compared; SABRE (Synergetic Air-Breathing and Rocket Engine) as designed for the Skylon SSTO launch vehicle, and a LACE (Liquid Air Cycle Engine) considered in the 1960's by the Americans for an early generation spaceplane. It is shown that through entropy minimisation the SABRE has made substantial gains in performance over the traditional LACE precooled engine concept, and has shown itself as the basis of a viable means of realising a SSTO vehicle. Further, it is demonstrated that the precooler is a major source of thermodynamic irreversibility within the engine cycle and that further reduction in entropy can be realised by increasing the heat transfer coefficient on the air side of the precooler. If this were to be achieved, it would improve the payload mass delivered to orbit by the Skylon launch vehicle by between 5 and 10%.

  14. Enhancing the sensitivity of mid-IR quantum cascade laser-based cavity-enhanced absorption spectroscopy using RF current perturbation.

    PubMed

    Manfred, Katherine M; Kirkbride, James M R; Ciaffoni, Luca; Peverall, Robert; Ritchie, Grant A D

    2014-12-15

    The sensitivity of mid-IR quantum cascade laser (QCL) off-axis cavity-enhanced absorption spectroscopy (CEAS), often limited by cavity mode structure and diffraction losses, was enhanced by applying a broadband RF noise to the laser current. A pump-probe measurement demonstrated that the addition of bandwidth-limited white noise effectively increased the laser linewidth, thereby reducing mode structure associated with CEAS. The broadband noise source offers a more sensitive, more robust alternative to applying single-frequency noise to the laser. Analysis of CEAS measurements of a CO(2) absorption feature at 1890  cm(-1) averaged over 100 ms yielded a minimum detectable absorption of 5.5×10(-3)  Hz(-1/2) in the presence of broadband RF perturbation, nearly a tenfold improvement over the unperturbed regime. The short acquisition time makes this technique suitable for breath applications requiring breath-by-breath gas concentration information.

  15. Growth Mechanism Studies of ZnO Nanowires: Experimental Observations and Short-Circuit Diffusion Analysis.

    PubMed

    Shih, Po-Hsun; Wu, Sheng Yun

    2017-07-21

    Plenty of studies have been performed to probe the diverse properties of ZnO nanowires, but only a few have focused on the physical properties of a single nanowire since analyzing the growth mechanism along a single nanowire is difficult. In this study, a single ZnO nanowire was synthesized using a Ti-assisted chemical vapor deposition (CVD) method to avoid the appearance of catalytic contamination. Two-dimensional energy dispersive spectroscopy (EDS) mapping with a diffusion model was used to obtain the diffusion length and the activation energy ratio. The ratio value is close to 0.3, revealing that the growth of ZnO nanowires was attributed to the short-circuit diffusion.

  16. Template-directed fabrication of porous gas diffusion layer for magnesium air batteries

    NASA Astrophysics Data System (ADS)

    Xue, Yejian; Miao, He; Sun, Shanshan; Wang, Qin; Li, Shihua; Liu, Zhaoping

    2015-11-01

    The uniform micropore distribution in the gas diffusion layers (GDLs) of the air-breathing cathode is very important for the metal air batteries. In this work, the super-hydrophobic GDL with the interconnected regular pores is prepared by a facile silica template method, and then the electrochemical properties of the Mg air batteries containing these GDLs are investigated. The results indicate that the interconnected and uniform pore structure, the available water-breakout pressure and the high gas permeability coefficient of the GDL can be obtained by the application of 30% silica template. The maximum power density of the Mg air battery containing the GDL with 30% regular pores reaches 88.9 mW cm-2 which is about 1.2 times that containing the pristine GDL. Furthermore, the GDL with 30% regular pores exhibits the improved the long term hydrophobic stability.

  17. THORON-SCOUT - first diffusion based active Radon and Thoron monitor

    NASA Astrophysics Data System (ADS)

    Wagner, W.; Streil, T.; Oeser, V.; Horak, G.; Duzynski, M.

    2016-10-01

    THORON-SCOUT is a stand-alone diffusion based active Radon and Thoron monitor for long term indoor measurements to evaluate the human health risk due to activity concentration in the breathing air. Alpha-particle spectroscopy of Po isotopes, being the progeny of the decay of the radioactive noble gas Radon, is applied to separately monitor activity contributions of 222Rn and 220Rn (Thoron) as well. In this work we show that the portion of Thoron (Tn) may locally be remarkable and even dominating and cannot be neglected as often has been assumed up to now. Along with tobacco consumption, Rn radioactivity turned out to be a dangerous cause of lung cancer, especially in older badly vented buildings situated in regions of radioactive geological formations. THORON-SCOUT allows a precise examination of the indoor atmosphere with respect to Rn and Inactivity concentration and, therefore, a realistic evaluation of corresponding health risk.

  18. Exploding dissipative solitons in the cubic-quintic complex Ginzburg-Landau equation in one and two spatial dimensions. A review and a perspective

    NASA Astrophysics Data System (ADS)

    Cartes, C.; Descalzi, O.; Brand, H. R.

    2014-10-01

    We review the work on exploding dissipative solitons in one and two spatial dimensions. Features covered include: the transition from modulated to exploding dissipative solitons, the analogue of the Ruelle-Takens scenario for dissipative solitons, inducing exploding dissipative solitons by noise, two classes of exploding dissipative solitons in two spatial dimensions, diffusing asymmetric exploding dissipative solitons as a model for a two-dimensional extended chaotic system. As a perspective we outline the interaction of exploding dissipative solitons with quasi one-dimensional dissipative solitons, breathing quasi one-dimensional solutions and their possible connection with experimental results on convection, and the occurence of exploding dissipative solitons in reaction-diffusion systems. It is a great pleasure to dedicate this work to our long-time friend Hans (Prof. Dr. Hans Jürgen Herrmann) on the occasion of his 60th birthday.

  19. Evaluating indoor exposure modeling alternatives for LCA: A case study in the vehicle repair industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demou, Evangelia; Hellweg, Stefanie; Wilson, Michael P.

    2009-05-01

    We evaluated three exposure models with data obtained from measurements among workers who use"aerosol" solvent products in the vehicle repair industry and with field experiments using these products to simulate the same exposure conditions. The three exposure models were the: 1) homogeneously-mixed-one-box model, 2) multi-zone model, and 3) eddy-diffusion model. Temporally differentiated real-time breathing zone volatile organic compound (VOC) concentration measurements, integrated far-field area samples, and simulated experiments were used in estimating parameters, such as emission rates, diffusivity, and near-field dimensions. We assessed differences in model input requirements and their efficacy for predictive modeling. The One-box model was not ablemore » to resemble the temporal profile of exposure concentrations, but it performed well concerning time-weighted exposure over extended time periods. However, this model required an adjustment for spatial concentration gradients. Multi-zone models and diffusion-models may solve this problem. However, we found that the reliable use of both these models requires extensive field data to appropriately define pivotal parameters such as diffusivity or near-field dimensions. We conclude that it is difficult to apply these models for predicting VOC exposures in the workplace. However, for comparative exposure scenarios in life-cycle assessment they may be useful.« less

  20. Optimization of intra-voxel incoherent motion imaging at 3.0 Tesla for fast liver examination.

    PubMed

    Leporq, Benjamin; Saint-Jalmes, Hervé; Rabrait, Cecile; Pilleul, Frank; Guillaud, Olivier; Dumortier, Jérôme; Scoazec, Jean-Yves; Beuf, Olivier

    2015-05-01

    Optimization of multi b-values MR protocol for fast intra-voxel incoherent motion imaging of the liver at 3.0 Tesla. A comparison of four different acquisition protocols were carried out based on estimated IVIM (DSlow , DFast , and f) and ADC-parameters in 25 healthy volunteers. The effects of respiratory gating compared with free breathing acquisition then diffusion gradient scheme (simultaneous or sequential) and finally use of weighted averaging for different b-values were assessed. An optimization study based on Cramer-Rao lower bound theory was then performed to minimize the number of b-values required for a suitable quantification. The duration-optimized protocol was evaluated on 12 patients with chronic liver diseases No significant differences of IVIM parameters were observed between the assessed protocols. Only four b-values (0, 12, 82, and 1310 s.mm(-2) ) were found mandatory to perform a suitable quantification of IVIM parameters. DSlow and DFast significantly decreased between nonadvanced and advanced fibrosis (P < 0.05 and P < 0.01) whereas perfusion fraction and ADC variations were not found to be significant. Results showed that IVIM could be performed in free breathing, with a weighted-averaging procedure, a simultaneous diffusion gradient scheme and only four optimized b-values (0, 10, 80, and 800) reducing scan duration by a factor of nine compared with a nonoptimized protocol. Preliminary results have shown that parameters such as DSlow and DFast based on optimized IVIM protocol can be relevant biomarkers to distinguish between nonadvanced and advanced fibrosis. © 2014 Wiley Periodicals, Inc.

  1. Evolution of Air Breathing: Oxygen Homeostasis and the Transitions from Water to Land and Sky

    PubMed Central

    Hsia, Connie C. W.; Schmitz, Anke; Lambertz, Markus; Perry, Steven F.; Maina, John N.

    2014-01-01

    Life originated in anoxia, but many organisms came to depend upon oxygen for survival, independently evolving diverse respiratory systems for acquiring oxygen from the environment. Ambient oxygen tension (PO2) fluctuated through the ages in correlation with biodiversity and body size, enabling organisms to migrate from water to land and air and sometimes in the opposite direction. Habitat expansion compels the use of different gas exchangers, for example, skin, gills, tracheae, lungs, and their intermediate stages, that may coexist within the same species; coexistence may be temporally disjunct (e.g., larval gills vs. adult lungs) or simultaneous (e.g., skin, gills, and lungs in some salamanders). Disparate systems exhibit similar directions of adaptation: toward larger diffusion interfaces, thinner barriers, finer dynamic regulation, and reduced cost of breathing. Efficient respiratory gas exchange, coupled to downstream convective and diffusive resistances, comprise the “oxygen cascade”—step-down of PO2 that balances supply against toxicity. Here, we review the origin of oxygen homeostasis, a primal selection factor for all respiratory systems, which in turn function as gatekeepers of the cascade. Within an organism's lifespan, the respiratory apparatus adapts in various ways to upregulate oxygen uptake in hypoxia and restrict uptake in hyperoxia. In an evolutionary context, certain species also become adapted to environmental conditions or habitual organismic demands. We, therefore, survey the comparative anatomy and physiology of respiratory systems from invertebrates to vertebrates, water to air breathers, and terrestrial to aerial inhabitants. Through the evolutionary directions and variety of gas exchangers, their shared features and individual compromises may be appreciated. PMID:23720333

  2. Evolution of air breathing: oxygen homeostasis and the transitions from water to land and sky.

    PubMed

    Hsia, Connie C W; Schmitz, Anke; Lambertz, Markus; Perry, Steven F; Maina, John N

    2013-04-01

    Life originated in anoxia, but many organisms came to depend upon oxygen for survival, independently evolving diverse respiratory systems for acquiring oxygen from the environment. Ambient oxygen tension (PO2) fluctuated through the ages in correlation with biodiversity and body size, enabling organisms to migrate from water to land and air and sometimes in the opposite direction. Habitat expansion compels the use of different gas exchangers, for example, skin, gills, tracheae, lungs, and their intermediate stages, that may coexist within the same species; coexistence may be temporally disjunct (e.g., larval gills vs. adult lungs) or simultaneous (e.g., skin, gills, and lungs in some salamanders). Disparate systems exhibit similar directions of adaptation: toward larger diffusion interfaces, thinner barriers, finer dynamic regulation, and reduced cost of breathing. Efficient respiratory gas exchange, coupled to downstream convective and diffusive resistances, comprise the "oxygen cascade"-step-down of PO2 that balances supply against toxicity. Here, we review the origin of oxygen homeostasis, a primal selection factor for all respiratory systems, which in turn function as gatekeepers of the cascade. Within an organism's lifespan, the respiratory apparatus adapts in various ways to upregulate oxygen uptake in hypoxia and restrict uptake in hyperoxia. In an evolutionary context, certain species also become adapted to environmental conditions or habitual organismic demands. We, therefore, survey the comparative anatomy and physiology of respiratory systems from invertebrates to vertebrates, water to air breathers, and terrestrial to aerial inhabitants. Through the evolutionary directions and variety of gas exchangers, their shared features and individual compromises may be appreciated.

  3. Effects of inspiratory pause on CO2 elimination and arterial PCO2 in acute lung injury

    PubMed Central

    Devaquet, Jérôme; Jonson, Björn; Niklason, Lisbet; Si Larbi, Anne-Gaëlle; Uttman, Leif; Aboab, Jérôme; Brochard, Laurent

    2008-01-01

    A high respiratory rate associated with the use of small tidal volumes, recommended for acute lung injury (ALI), shortens time for gas diffusion in the alveoli. This may decrease CO2 elimination. We hypothesized that a post-inspiratory pause could enhance CO2 elimination and reduce PaCO2 by reducing dead space in ALI. In 15 mechanically ventilated patients with ALI and hypercapnia, a 20% post-inspiratory pause (Tp20) was applied during a period of 30 min between two ventilation periods without post-inspiratory pause (Tp0). Other parameters were kept unchanged. The single breath test for CO2 was recorded every 5 minutes to measure tidal CO2 elimination (VtCO2), airway dead space (VDaw) and slope of the alveolar plateau. PaO2, PaCO2, physiological and alveolar dead space (VDphys, VDalv) were determined at the end of each 30 minute period. The post-inspiratory pause, 0.7±0.2 s, induced on average less than 0.5 cm H2O of intrinsic PEEP. During Tp20, VtCO2 increased immediately by 28±10% (14±5 ml per breath compared to 11±4 for Tp0) and then decreased without reaching the initial value within 30 minutes. The addition of a post-inspiratory pause decreased significantly VDaw by 14% and VDphys by 11% with no change in VDalv. During Tp20, the slope of alveolar plateau initially fell to 65±10 % of baseline value and continued to decrease. Tp20 induced a 10±3% decrease in PaCO2 at 30 minutes (from 55±10 to 49±9 mmHg, p<0.001) with no significant variation in PaO2. Post-inspiratory pause has a significant influence on CO2 elimination when small tidal volumes are used during mechanical ventilation for ALI. PMID:18801962

  4. Do nanoparticles provide a new opportunity for diagnosis of distal airspace disease?

    PubMed Central

    Löndahl, Jakob; Jakobsson, Jonas KF; Broday, David M; Aaltonen, H Laura; Wollmer, Per

    2017-01-01

    There is a need for efficient techniques to assess abnormalities in the peripheral regions of the lungs, for example, for diagnosis of pulmonary emphysema. Considerable scientific efforts have been directed toward measuring lung morphology by studying recovery of inhaled micron-sized aerosol particles (0.4–1.5 µm). In contrast, it is suggested that the recovery of inhaled airborne nanoparticles may be more useful for diagnosis. The objective of this work is to provide a theoretical background for the use of nanoparticles in measuring lung morphology and to assess their applicability based on a review of the literature. Using nanoparticles for studying distal airspace dimensions is shown to have several advantages over other aerosol-based methods. 1) Nanoparticles deposit almost exclusively by diffusion, which allows a simpler breathing maneuver with minor artifacts from particle losses in the oropharyngeal and upper airways. 2) A higher breathing flow rate can be utilized, making it possible to rapidly inhale from residual volume to total lung capacity (TLC), thereby eliminating the need to determine the TLC before measurement. 3) Recent studies indicate better penetration of nanoparticles than micron-sized particles into poorly ventilated and diseased regions of the lungs; thus, a stronger signal from the abnormal parts is expected. 4) Changes in airspace dimensions have a larger impact on the recovery of nanoparticles. Compared to current diagnostic techniques with high specificity for morphometric changes of the lungs, computed tomography and magnetic resonance imaging with hyperpolarized gases, an aerosol-based method is likely to be less time consuming, considerably cheaper, simpler to use, and easier to interpret (providing a single value rather than an image that has to be analyzed). Compared to diagnosis by carbon monoxide (DL,CO), the uptake of nanoparticles in the lung is not affected by blood flow, hemoglobin concentration or alterations of the alveolar membranes, but relies only on lung morphology. PMID:28053522

  5. The use of superoxide mixtures as air-revitalization chemicals in hyperbaric, self-contained, closed-circuit breathing apparatus

    NASA Technical Reports Server (NTRS)

    Wood, P. C.; Wydeven, T.

    1985-01-01

    In portable breathing apparatus applications at 1 atm, potassium superoxide (KO2) has exhibited low-utilization efficiency of the available oxygen (O2) and diminished carbon dioxide-(CO2) scrubbing capacity caused by the formation of a fused, hydrated-hydroxide/carbonate product coating on the superoxide granules. In earlier work, it was discovered that granules fabricated from an intimate mixture of KO2 and calcium superoxide, Ca(O2)2, did not exhibit formation of a fused product coating and the utilization efficiency with respect to both O2 release and CO2 absorption was superior to KO2 granules when both types of granules were reacted with humidified CO2 under identified conditions. In the work described here, single pellets of KO2, KO2/Ca(O2), mixtures and commercially available KO2 tables and granules were reacted with a flow of humidified CO2 in helium at 1- and 10-atm total pressure and at an initial temperature of 40 C. In the 1-atm flow tests, the reaction rates and utilization efficiency of the KO2/Ca(O2)2 pellets were markedly superior to the KO2 pellets, tablets, and granules when the samples were reacted under identical conditions. However, at 10 atm, the rates of O2 release and CO2 absorption, as well as the utilization efficiencies of all the superoxide samples, were one-third to one-eighth of the values observed at 1 atm. The decrease in reaction performance at 10 atm compared to that at 1 atm has been attributed principally to the lower bulk diffusivity of the CO2 and H2O reactants in helium at the higher pressure and secondarily to the moderation of the reaction temperature caused by the higher heat capacity of the 10-atm helium.

  6. Do nanoparticles provide a new opportunity for diagnosis of distal airspace disease?

    PubMed

    Löndahl, Jakob; Jakobsson, Jonas Kf; Broday, David M; Aaltonen, H Laura; Wollmer, Per

    There is a need for efficient techniques to assess abnormalities in the peripheral regions of the lungs, for example, for diagnosis of pulmonary emphysema. Considerable scientific efforts have been directed toward measuring lung morphology by studying recovery of inhaled micron-sized aerosol particles (0.4-1.5 µm). In contrast, it is suggested that the recovery of inhaled airborne nanoparticles may be more useful for diagnosis. The objective of this work is to provide a theoretical background for the use of nanoparticles in measuring lung morphology and to assess their applicability based on a review of the literature. Using nanoparticles for studying distal airspace dimensions is shown to have several advantages over other aerosol-based methods. 1) Nanoparticles deposit almost exclusively by diffusion, which allows a simpler breathing maneuver with minor artifacts from particle losses in the oropharyngeal and upper airways. 2) A higher breathing flow rate can be utilized, making it possible to rapidly inhale from residual volume to total lung capacity (TLC), thereby eliminating the need to determine the TLC before measurement. 3) Recent studies indicate better penetration of nanoparticles than micron-sized particles into poorly ventilated and diseased regions of the lungs; thus, a stronger signal from the abnormal parts is expected. 4) Changes in airspace dimensions have a larger impact on the recovery of nanoparticles. Compared to current diagnostic techniques with high specificity for morphometric changes of the lungs, computed tomography and magnetic resonance imaging with hyperpolarized gases, an aerosol-based method is likely to be less time consuming, considerably cheaper, simpler to use, and easier to interpret (providing a single value rather than an image that has to be analyzed). Compared to diagnosis by carbon monoxide ( D L,CO ), the uptake of nanoparticles in the lung is not affected by blood flow, hemoglobin concentration or alterations of the alveolar membranes, but relies only on lung morphology.

  7. Cardiopulmonary exercise testing and second-line pulmonary function tests to detect obstructive pattern in symptomatic smokers with borderline spirometry.

    PubMed

    Di Marco, Fabiano; Terraneo, Silvia; Job, Sara; Rinaldo, Rocco Francesco; Sferrazza Papa, Giuseppe Francesco; Roggi, Maria Adelaide; Santus, Pierachille; Centanni, Stefano

    2017-06-01

    The need for additional research on symptomatic smokers with normal spirometry has been recently emphasized. Albeit not meeting criteria for Chronic obstructive pulmonary disease (COPD) diagnosis, symptomatic smokers may experience activity limitation, evidence of airway disease, and exacerbations. We, therefore, evaluated whether symptomatic smokers with borderline spirometry (post-bronchodilator FEV 1 /FVC ratio between 5th to 20th percentile of predicted values) have pulmonary function abnormalities at rest and ventilatory constraints during exercise. 48 subjects (aged 60 ± 8 years, mean ± SD, 73% males, 16 healthy, and 17 symptomatic smokers) underwent cardiopulmonary exercise testing (CPET), body plethysmography, nitrogen single-breath washout test (N 2 SBW), lung diffusion for carbon monoxide (DLCO), and forced oscillation technique (FOT). Compared to healthy subjects, symptomatic smokers showed: 1) reduced breathing reserve (36 ± 17 vs. 49 ± 12%, P = 0.050); 2) exercise induced dynamic hyperinflation (-0.20 ± 0.17 vs. -0.03 ± 0.21 L, P = 0.043); 3) higher residual volume (158 ± 22 vs. 112 ± 22%, P < 0.001); 4) phase 3 slope at N 2 SBW (4.7 ± 2.1 vs. 1.4 ± 0.6%, P < 0.001); 5) no significant differences in DLCO and FOT results. In smokers with borderline spirometry, CPET and second-line pulmonary function tests may detect obstructive pattern. These subjects should be referred for second line testing, to obtain a diagnosis, or at least to clarify the mechanisms underlying symptoms. Whether the natural history of these patients is similar to COPD, and they deserve a similar therapeutic approach is worth investigating. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Dynamic Octahedral Breathing in Oxygen-Deficient Ba(0.9)Co(0.7)Fe(0.2)Nb(0.1)O(3-δ) Perovskite Performing as a Cathode in Intermediate-Temperature SOFC.

    PubMed

    Gong, Yudong; Sun, Chunwen; Huang, Qiu-an; Alonso, Jose Antonio; Fernández-Díaz, Maria Teresa; Chen, Liquan

    2016-03-21

    Ba(0.9)Co(0.7)Fe(0.2)Nb(0.1)O(3-δ) outperforms as a cathode in solid-oxide fuel cells (SOFC), at temperatures as low as 700-750 °C. The microscopical reason for this performance was investigated by temperature-dependent neutron powder diffraction (NPD) experiments. In the temperature range of 25-800 °C, Ba(0.9)Co(0.7)Fe(0.2)Nb(0.1)O(3-δ) shows a perfectly cubic structure (a = a0), with a significant oxygen deficiency in a single oxygen site, that substantially increases at the working temperatures of a SOFC. The anisotropic thermal motion of oxygen atoms considerably rises with T, reaching B(eq) ≈ 5 Å(2) at 800 °C, with prolate cigar-shaped, anisotropic vibration ellipsoids that suggest a dynamic breathing of the octahedra as oxygen ions diffuse across the structure by a vacancies mechanism, thus implying a significant ionic mobility that could be described as a molten oxygen sublattice. The test cell with a La(0.8)Sr(0.2)Ga(0.83)Mg(0.17)O(3-δ) electrolyte (∼300 μm in thickness)-supported configuration yields a peak power density of 0.20 and 0.40 W cm(-2) at temperatures of 700 and 750 °C, respectively, with pure H2 as fuel and ambient air as oxidant. The electrochemical impedance spectra (EIS) evolution with time of the symmetric cathode fuel cell measured at 750 °C shows that the Ba(0.9)Co(0.7)Fe(0.2)Nb(0.1)O(3-δ) cathode possesses a superior ORR catalytic activity and long-term stability. The mixed electronic-ionic conduction properties of Ba(0.9)Co(0.7)Fe(0.2)Nb(0.1)O(3-δ) account for its good performance as an oxygen-reduction catalyst.

  9. Nonstationary multivariate modeling of cerebral autoregulation during hypercapnia.

    PubMed

    Kostoglou, Kyriaki; Debert, Chantel T; Poulin, Marc J; Mitsis, Georgios D

    2014-05-01

    We examined the time-varying characteristics of cerebral autoregulation and hemodynamics during a step hypercapnic stimulus by using recursively estimated multivariate (two-input) models which quantify the dynamic effects of mean arterial blood pressure (ABP) and end-tidal CO2 tension (PETCO2) on middle cerebral artery blood flow velocity (CBFV). Beat-to-beat values of ABP and CBFV, as well as breath-to-breath values of PETCO2 during baseline and sustained euoxic hypercapnia were obtained in 8 female subjects. The multiple-input, single-output models used were based on the Laguerre expansion technique, and their parameters were updated using recursive least squares with multiple forgetting factors. The results reveal the presence of nonstationarities that confirm previously reported effects of hypercapnia on autoregulation, i.e. a decrease in the MABP phase lead, and suggest that the incorporation of PETCO2 as an additional model input yields less time-varying estimates of dynamic pressure autoregulation obtained from single-input (ABP-CBFV) models. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  10. Oxygen Tracer Diffusion in LA(z-x) SR(X) CUO(4-y) Single Crystals

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Tuller, Harry L.; Wuensch, Berhardt J.; Maier, Joachim

    1993-01-01

    The tracer diffusion of O-18 in La(2-x)Sr(x)CuO(4-y) single crystals (x = 0 to 0.12) has been measured from 400 to 700 C in 1 atm of oxygen using SIMS analysis. Evidence for diffusion by a vacancy mechanism was found at low strontium contents. Oxygen diffusivities for x greater than or = 0.07 were depressed by several orders of magnitude below the diffusivity for undoped La2CuO(4+/-y). The observed effects of strontium doping on oxygen diffusivity are discussed in terms of defect chemical models. The decreasing oxygen diffusivity with increasing strontium was attributed to the ordering of oxygen vacancies at large defect concentrations. A diffusion anisotropy D(sub ab)/D(sub c) of nearly 600 was also found at 500 C.

  11. Assessment of exposure to composite nanomaterials and development of a personal respiratory deposition sampler for nanoparticles

    NASA Astrophysics Data System (ADS)

    Cena, Lorenzo

    2011-12-01

    The overall goals of this doctoral dissertation are to provide knowledge of workers' exposure to nanomaterials and to assist in the development of standard methods to measure personal exposure to nanomaterials in workplace environments. To achieve the first goal, a field study investigated airborne particles generated from the weighing of bulk carbon nanotubes (CNTs) and the manual sanding of epoxy test samples reinforced with CNTs. This study also evaluated the effectiveness of three local exhaust ventilation (LEV) conditions (no LEV, custom fume hood and biosafety cabinet) for control of exposure to particles generated during sanding of CNT-epoxy nanocomposites. Particle number and respirable mass concentrations were measured with direct-read instruments, and particle morphology was determined by electron microscopy. Sanding of CNT-epoxy nanocomposites released respirable size airborne particles with protruding CNTs very different in morphology from bulk CNTs that tended to remain in clusters (>1mum). Respirable mass concentrations in the operator's breathing zone were significantly greater when sanding took place in the custom hood (p <0.0001) compared to the other LEV conditions. This study found that workers' exposure was to particles containing protruding CNTs rather than to bulk CNT particles. Particular attention should be placed in the design and selection of hoods to minimize exposure. Two laboratory studies were conducted to realize the second goal. Collection efficiency of submicrometer particles was evaluated for nylon mesh screens with three pore sizes (60, 100 and 180 mum) at three flow rates (2.5, 4, and 6 Lpm). Single-fiber efficiency of nylon mesh screens was then calculated and compared to a theoretical estimation expression. The effects of particle morphology on collection efficiency were also experimentally measured. The collection efficiency of the screens was found to vary by less than 4% regardless of particle morphology. Single-fiber efficiency of the screens calculated from experimental data was in good agreement with that estimated from theory for particles between 40 and 150 nm but deviated from theory for particles outside of this range. New coefficients for the single-fiber efficiency model were identified that minimized the sum of square error (SSE) between the experimental values and those estimated with the model. Compared to the original theory, the SSE calculated using the modified theory was at least threefold lower for all screens and flow rates. Since nylon fibers produce no significant spectral interference when ashed for spectrometric examination, the ability to accurately estimate collection efficiency of submicrometer particles makes nylon mesh screens an attractive collection substrate for nanoparticles. In the third study, laboratory experiments were conducted to develop a novel nanoparticle respiratory deposition (NRD) sampler that selectively collects nanoparticles in a worker's breathing zone apart from larger particles. The NRD sampler consists of a respirable cyclone fitted with an impactor and a diffusion stage containing eight nylon-mesh screens. A sampling criterion for nano-particulate matter (NPM) was developed and set as the target for the collection efficiency of the NRD sampler. The sampler operates at 2.5 Lpm and fits on a worker's lapel. The cut-off diameter of the impactor was experimentally measured to be 300 nm with a sharpness of 1.53. Loading at typical workplace levels was found to have no significant effect (2-way ANOVA, p=0.257) on the performance of the impactor. The effective deposition of particles onto the diffusion stage was found to match the NPM criterion, showing that a sample collected with the NRD sampler represents the concentration of nanoparticles deposited in the human respiratory system.

  12. Single-breath diffusing capacity for carbon monoxide instrument accuracy across 3 health systems.

    PubMed

    Hegewald, Matthew J; Markewitz, Boaz A; Wilson, Emily L; Gallo, Heather M; Jensen, Robert L

    2015-03-01

    Measuring diffusing capacity of the lung for carbon monoxide (DLCO) is complex and associated with wide intra- and inter-laboratory variability. Increased D(LCO) variability may have important clinical consequences. The objective of the study was to assess instrument performance across hospital pulmonary function testing laboratories using a D(LCO) simulator that produces precise and repeatable D(LCO) values. D(LCO) instruments were tested with CO gas concentrations representing medium and high range D(LCO) values. The absolute difference between observed and target D(LCO) value was used to determine measurement accuracy; accuracy was defined as an average deviation from the target value of < 2.0 mL/min/mm Hg. Accuracy of inspired volume measurement and gas sensors were also determined. Twenty-three instruments were tested across 3 healthcare systems. The mean absolute deviation from the target value was 1.80 mL/min/mm Hg (range 0.24-4.23) with 10 of 23 instruments (43%) being inaccurate. High volume laboratories performed better than low volume laboratories, although the difference was not significant. There was no significant difference among the instruments by manufacturers. Inspired volume was not accurate in 48% of devices; mean absolute deviation from target value was 3.7%. Instrument gas analyzers performed adequately in all instruments. D(LCO) instrument accuracy was unacceptable in 43% of devices. Instrument inaccuracy can be primarily attributed to errors in inspired volume measurement and not gas analyzer performance. D(LCO) instrument performance may be improved by regular testing with a simulator. Caution should be used when comparing D(LCO) results reported from different laboratories. Copyright © 2015 by Daedalus Enterprises.

  13. Pulmonary function levels as predictors of mortality in a national sample of US adults.

    PubMed

    Neas, L M; Schwartz, J

    1998-06-01

    Single breath pulmonary diffusing capacity for carbon monoxide (DL(CO)) was examined as a predictor of all-cause mortality among 4,333 subjects who were aged 25-74 years at baseline in the First National Health and Nutrition Examination Survey (NHANES I) conducted from 1971 to 1975. The relation of the percentage of predicted DL(CO) to all-cause mortality was examined in a Cox proportional hazard model that included age, sex, race, current smoking status, systolic blood pressure, serum cholesterol, alcohol consumption, body mass index, percentage of predicted forced vital capacity (FVC), and the ratio of forced expiratory volume at 1 second (FEV1) to FVC. Mortality had a linear association with the percentage of predicted FVC (rate ratio (RR) = 1.12, 95% confidence interval (CI) 1.08-1.17, for a 10% decrement) and a significantly nonlinear association with the percentage of predicted DL(CO) with an adverse effect that was clearly evident for levels below 85% of those predicted (RR = 1.24, 95% CI 1.12-1.37 for a 10% decrement). The relative hazard for the percentage of predicted DL(CO) below 85% was not modified by sex, smoking status, or exclusion of subjects with clinical respiratory disease on the initial examination. This association with the percentage of predicted DL(CO) was present among 3,005 subjects with FEV1 levels above 90% of those predicted. Thus, pulmonary diffusing capacity below 85% of predicted levels is a significant predictor of the all-cause mortality rate within the general US population independent of standard spirometry measures and even in the absence of apparent clinical respiratory disease.

  14. Computed Tomographic Measures of Pulmonary Vascular Morphology in Smokers and Their Clinical Implications

    PubMed Central

    Estépar, Raúl San José; Kinney, Gregory L.; Black-Shinn, Jennifer L.; Bowler, Russell P.; Kindlmann, Gordon L.; Ross, James C.; Kikinis, Ron; Han, MeiLan K.; Come, Carolyn E.; Diaz, Alejandro A.; Cho, Michael H.; Hersh, Craig P.; Schroeder, Joyce D.; Reilly, John J.; Lynch, David A.; Crapo, James D.; Wells, J. Michael; Dransfield, Mark T.; Hokanson, John E.

    2013-01-01

    Rationale: Angiographic investigation suggests that pulmonary vascular remodeling in smokers is characterized by distal pruning of the blood vessels. Objectives: Using volumetric computed tomography scans of the chest we sought to quantitatively evaluate this process and assess its clinical associations. Methods: Pulmonary vessels were automatically identified, segmented, and measured. Total blood vessel volume (TBV) and the aggregate vessel volume for vessels less than 5 mm2 (BV5) were calculated for all lobes. The lobe-specific BV5 measures were normalized to the TBV of that lobe and the nonvascular tissue volume (BV5/TissueV) to calculate lobe-specific BV5/TBV and BV5/TissueV ratios. Densitometric measures of emphysema were obtained using a Hounsfield unit threshold of −950 (%LAA-950). Measures of chronic obstructive pulmonary disease severity included single breath measures of diffusing capacity of carbon monoxide, oxygen saturation, the 6-minute-walk distance, St George’s Respiratory Questionnaire total score (SGRQ), and the body mass index, airflow obstruction, dyspnea, and exercise capacity (BODE) index. Measurements and Main Results: The %LAA-950 was inversely related to all calculated vascular ratios. In multivariate models including age, sex, and %LAA-950, lobe-specific measurements of BV5/TBV were directly related to resting oxygen saturation and inversely associated with both the SGRQ and BODE scores. In similar multivariate adjustment lobe-specific BV5/TissueV ratios were inversely related to resting oxygen saturation, diffusing capacity of carbon monoxide, 6-minute-walk distance, and directly related to the SGRQ and BODE. Conclusions: Smoking-related chronic obstructive pulmonary disease is characterized by distal pruning of the small blood vessels (<5 mm2) and loss of tissue in excess of the vasculature. The magnitude of these changes predicts the clinical severity of disease. PMID:23656466

  15. 3D tumor localization through real-time volumetric x-ray imaging for lung cancer radiotherapy.

    PubMed

    Li, Ruijiang; Lewis, John H; Jia, Xun; Gu, Xuejun; Folkerts, Michael; Men, Chunhua; Song, William Y; Jiang, Steve B

    2011-05-01

    To evaluate an algorithm for real-time 3D tumor localization from a single x-ray projection image for lung cancer radiotherapy. Recently, we have developed an algorithm for reconstructing volumetric images and extracting 3D tumor motion information from a single x-ray projection [Li et al., Med. Phys. 37, 2822-2826 (2010)]. We have demonstrated its feasibility using a digital respiratory phantom with regular breathing patterns. In this work, we present a detailed description and a comprehensive evaluation of the improved algorithm. The algorithm was improved by incorporating respiratory motion prediction. The accuracy and efficiency of using this algorithm for 3D tumor localization were then evaluated on (1) a digital respiratory phantom, (2) a physical respiratory phantom, and (3) five lung cancer patients. These evaluation cases include both regular and irregular breathing patterns that are different from the training dataset. For the digital respiratory phantom with regular and irregular breathing, the average 3D tumor localization error is less than 1 mm which does not seem to be affected by amplitude change, period change, or baseline shift. On an NVIDIA Tesla C1060 graphic processing unit (GPU) card, the average computation time for 3D tumor localization from each projection ranges between 0.19 and 0.26 s, for both regular and irregular breathing, which is about a 10% improvement over previously reported results. For the physical respiratory phantom, an average tumor localization error below 1 mm was achieved with an average computation time of 0.13 and 0.16 s on the same graphic processing unit (GPU) card, for regular and irregular breathing, respectively. For the five lung cancer patients, the average tumor localization error is below 2 mm in both the axial and tangential directions. The average computation time on the same GPU card ranges between 0.26 and 0.34 s. Through a comprehensive evaluation of our algorithm, we have established its accuracy in 3D tumor localization to be on the order of 1 mm on average and 2 mm at 95 percentile for both digital and physical phantoms, and within 2 mm on average and 4 mm at 95 percentile for lung cancer patients. The results also indicate that the accuracy is not affected by the breathing pattern, be it regular or irregular. High computational efficiency can be achieved on GPU, requiring 0.1-0.3 s for each x-ray projection.

  16. Task-dependent output of human parasternal intercostal motor units across spinal levels.

    PubMed

    Hudson, Anna L; Gandevia, Simon C; Butler, Jane E

    2017-12-01

    During breathing, there is differential activity in the human parasternal intercostal muscles and the activity is tightly coupled to the known mechanical advantages for inspiration of the same regions of muscles. It is not known whether differential activity is preserved for the non-respiratory task of ipsilateral trunk rotation. In the present study, we compared single motor units during resting breathing and axial rotation of the trunk during apnoea. We not only confirmed non-uniform recruitment of motor units across parasternal intercostal muscles in breathing, but also demonstrated that the same motor units show an altered pattern of recruitment in the non-respiratory task of trunk rotation. The output of parasternal intercostal motoneurones is modulated differently across spinal levels depending on the task and these results help us understand the mechanisms that may govern task-dependent differences in motoneurone output. During inspiration, there is differential activity in the human parasternal intercostal muscles across interspaces. We investigated whether the earlier recruitment of motor units in the rostral interspaces compared to more caudal spaces during inspiration is preserved for the non-respiratory task of ipsilateral trunk rotation. Single motor unit activity (SMU) was recorded from the first, second and fourth parasternal interspaces on the right side in five participants in two tasks: resting breathing and 'isometric' axial rotation of the trunk during apnoea. Recruitment of the same SMUs was compared between tasks (n = 123). During resting breathing, differential activity was indicated by earlier recruitment of SMUs in the first and second interspaces compared to the fourth space in inspiration (P < 0.01). By contrast, during trunk rotation, the same motor units showed an altered pattern of recruitment because SMUs in the first interspace were recruited later and at a higher rotation torque than those in the second and fourth interspaces (P < 0.05). Tested for a subset of SMUs, the reliability of the breathing and rotation tasks, as well as the SMU recruitment measures, was good-excellent [intraclass correlation (2,1): 0.69-0.91]. Thus, the output of parasternal intercostal motoneurones is modulated differently across spinal levels depending on the task. Given that the differential inspiratory output of parasternal intercostal muscles is linked to their relative mechanical effectiveness for inspiration and also that this output is altered in trunk rotation, we speculate that a mechanism matching neural drive to muscle mechanics underlies the task-dependent differences in output of axial motoneurone pools. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  17. Molecular diffusion of stable water isotopes in polar firn as a proxy for past temperatures

    NASA Astrophysics Data System (ADS)

    Holme, Christian; Gkinis, Vasileios; Vinther, Bo M.

    2018-03-01

    Polar precipitation archived in ice caps contains information on past temperature conditions. Such information can be retrieved by measuring the water isotopic signals of δ18O and δD in ice cores. These signals have been attenuated during densification due to molecular diffusion in the firn column, where the magnitude of the diffusion is isotopologue specific and temperature dependent. By utilizing the differential diffusion signal, dual isotope measurements of δ18O and δD enable multiple temperature reconstruction techniques. This study assesses how well six different methods can be used to reconstruct past surface temperatures from the diffusion-based temperature proxies. Two of the methods are based on the single diffusion lengths of δ18O and δD , three of the methods employ the differential diffusion signal, while the last uses the ratio between the single diffusion lengths. All techniques are tested on synthetic data in order to evaluate their accuracy and precision. We perform a benchmark test to thirteen high resolution Holocene data sets from Greenland and Antarctica, which represent a broad range of mean annual surface temperatures and accumulation rates. Based on the benchmark test, we comment on the accuracy and precision of the methods. Both the benchmark test and the synthetic data test demonstrate that the most precise reconstructions are obtained when using the single isotope diffusion lengths, with precisions of approximately 1.0 °C . In the benchmark test, the single isotope diffusion lengths are also found to reconstruct consistent temperatures with a root-mean-square-deviation of 0.7 °C . The techniques employing the differential diffusion signals are more uncertain, where the most precise method has a precision of 1.9 °C . The diffusion length ratio method is the least precise with a precision of 13.7 °C . The absolute temperature estimates from this method are also shown to be highly sensitive to the choice of fractionation factor parameterization.

  18. The environmental effect on the radial breathing mode of carbon nanotubes in water

    NASA Astrophysics Data System (ADS)

    Longhurst, M. J.; Quirke, N.

    2006-06-01

    We investigate, using molecular dynamics, the effect on the radial breathing mode (RBM) frequency of immersion in water for a range of single-walled carbon nanotubes. We find that nanotube-water interactions are responsible for an upshift in the RBM frequency of the order of 4-10 wave numbers. The upshift is comprised of two components: increased hydrostatic pressure on the nanotube due to curvature effects, and the dynamic coupling of the RBM with its solvation shell. In contrast to much of the current literature, we find that the latter of the two effects is dominant. This could serve as an innovative tool for determining the interaction potential between nanotubes/graphitic surfaces and fluids.

  19. Giant Acceleration of Diffusion Observed in a Single-Molecule Experiment on F(1)-ATPase.

    PubMed

    Hayashi, Ryunosuke; Sasaki, Kazuo; Nakamura, Shuichi; Kudo, Seishi; Inoue, Yuichi; Noji, Hiroyuki; Hayashi, Kumiko

    2015-06-19

    The giant acceleration (GA) of diffusion is a universal phenomenon predicted by the theoretical analysis given by Reimann et al. [Phys. Rev. Lett. 87, 010602 (2001)]. Here we apply the theory of the GA of diffusion to a single-molecule experiment on a rotary motor protein, F(1), which is a component of F(o)F(1) adenosine triphosphate synthase. We discuss the energetic properties of F(1) and identify a high energy barrier of the rotary potential to be 20k(B)T, with the condition that the adenosine diphosphates are tightly bound to the F(1) catalytic sites. To conclude, the GA of diffusion is useful for measuring energy barriers in nonequilibrium and single-molecule experiments.

  20. Growth Mechanism Studies of ZnO Nanowires: Experimental Observations and Short-Circuit Diffusion Analysis

    PubMed Central

    Shih, Po-Hsun

    2017-01-01

    Plenty of studies have been performed to probe the diverse properties of ZnO nanowires, but only a few have focused on the physical properties of a single nanowire since analyzing the growth mechanism along a single nanowire is difficult. In this study, a single ZnO nanowire was synthesized using a Ti-assisted chemical vapor deposition (CVD) method to avoid the appearance of catalytic contamination. Two-dimensional energy dispersive spectroscopy (EDS) mapping with a diffusion model was used to obtain the diffusion length and the activation energy ratio. The ratio value is close to 0.3, revealing that the growth of ZnO nanowires was attributed to the short-circuit diffusion. PMID:28754030

  1. Giant Acceleration of Diffusion Observed in a Single-Molecule Experiment on F1-ATPase

    NASA Astrophysics Data System (ADS)

    Hayashi, Ryunosuke; Sasaki, Kazuo; Nakamura, Shuichi; Kudo, Seishi; Inoue, Yuichi; Noji, Hiroyuki; Hayashi, Kumiko

    2015-06-01

    The giant acceleration (GA) of diffusion is a universal phenomenon predicted by the theoretical analysis given by Reimann et al. [Phys. Rev. Lett. 87, 010602 (2001)]. Here we apply the theory of the GA of diffusion to a single-molecule experiment on a rotary motor protein, F1 , which is a component of Fo F1 adenosine triphosphate synthase. We discuss the energetic properties of F1 and identify a high energy barrier of the rotary potential to be 20 kBT , with the condition that the adenosine diphosphates are tightly bound to the F1 catalytic sites. To conclude, the GA of diffusion is useful for measuring energy barriers in nonequilibrium and single-molecule experiments.

  2. TrackArt: the user friendly interface for single molecule tracking data analysis and simulation applied to complex diffusion in mica supported lipid bilayers.

    PubMed

    Matysik, Artur; Kraut, Rachel S

    2014-05-01

    Single molecule tracking (SMT) analysis of fluorescently tagged lipid and protein probes is an attractive alternative to ensemble averaged methods such as fluorescence correlation spectroscopy (FCS) or fluorescence recovery after photobleaching (FRAP) for measuring diffusion in artificial and plasma membranes. The meaningful estimation of diffusion coefficients and their errors is however not straightforward, and is heavily dependent on sample type, acquisition method, and equipment used. Many approaches require advanced computing and programming skills for their implementation. Here we present TrackArt software, an accessible graphic interface for simulation and complex analysis of multiple particle paths. Imported trajectories can be filtered to eliminate spurious or corrupted tracks, and are then analyzed using several previously described methodologies, to yield single or multiple diffusion coefficients, their population fractions, and estimated errors. We use TrackArt to analyze the single-molecule diffusion behavior of a sphingolipid analog SM-Atto647N, in mica supported DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) bilayers. Fitting with a two-component diffusion model confirms the existence of two separate populations of diffusing particles in these bilayers on mica. As a demonstration of the TrackArt workflow, we characterize and discuss the effective activation energies required to increase the diffusion rates of these populations, obtained from Arrhenius plots of temperature-dependent diffusion. Finally, TrackArt provides a simulation module, allowing the user to generate models with multiple particle trajectories, diffusing with different characteristics. Maps of domains, acting as impermeable or permeable obstacles for particles diffusing with given rate constants and diffusion coefficients, can be simulated or imported from an image. Importantly, this allows one to use simulated data with a known diffusion behavior as a comparison for results acquired using particular algorithms on actual, "natural" samples whose diffusion behavior is to be extracted. It can also serve as a tool for demonstrating diffusion principles. TrackArt is an open source, platform-independent, Matlab-based graphical user interface, and is easy to use even for those unfamiliar with the Matlab programming environment. TrackArt can be used for accurate simulation and analysis of complex diffusion data, such as diffusion in lipid bilayers, providing publication-quality formatted results.

  3. Abnormal exhaled ethane concentrations in scleroderma.

    PubMed

    Cope, K A; Solga, S F; Hummers, L K; Wigley, F M; Diehl, A M; Risby, T H

    2006-01-01

    Scleroderma (systemic sclerosis) is a chronic multisystem autoimmune disease in which oxidative stress is suspected to play a role in the pathophysiology. Therefore, it was postulated that patients with scleroderma would have abnormally high breath ethane concentrations, which is a volatile product of free-radical-mediated lipid peroxidation, compared with a group of controls. There was a significant difference (p<0.05) between the mean exhaled ethane concentration of 5.27 pmol ml(-1) CO(2) (SEM=0.76) in the scleroderma patients (n=36) versus the mean exhaled concentration of 2.72 pmol ml(-1) CO(2) (SEM=0.71) in a group of healthy controls (n=21). Within the scleroderma group, those subjects taking a calcium channel blocker had lower ethane concentrations compared with patients who were not taking these drugs (p=0.05). There was a significant inverse association between lung diffusion capacity for carbon monoxide (per cent of predicted) and ethane concentration (b=-2.8, p=0.026, CI=-5.2 to -0.35). These data support the presence of increased oxidative stress among patients with scleroderma that is detected by measuring breath ethane concentrations.

  4. Automated acoustic analysis in detection of spontaneous swallows in Parkinson's disease.

    PubMed

    Golabbakhsh, Marzieh; Rajaei, Ali; Derakhshan, Mahmoud; Sadri, Saeed; Taheri, Masoud; Adibi, Peyman

    2014-10-01

    Acoustic monitoring of swallow frequency has become important as the frequency of spontaneous swallowing can be an index for dysphagia and related complications. In addition, it can be employed as an objective quantification of ingestive behavior. Commonly, swallowing complications are manually detected using videofluoroscopy recordings, which require expensive equipment and exposure to radiation. In this study, a noninvasive automated technique is proposed that uses breath and swallowing recordings obtained via a microphone located over the laryngopharynx. Nonlinear diffusion filters were used in which a scale-space decomposition of recorded sound at different levels extract swallows from breath sounds and artifacts. This technique was compared to manual detection of swallows using acoustic signals on a sample of 34 subjects with Parkinson's disease. A speech language pathologist identified five subjects who showed aspiration during the videofluoroscopic swallowing study. The proposed automated method identified swallows with a sensitivity of 86.67 %, a specificity of 77.50 %, and an accuracy of 82.35 %. These results indicate the validity of automated acoustic recognition of swallowing as a fast and efficient approach to objectively estimate spontaneous swallow frequency.

  5. The role of anisotropic expansion for pulmonary acinar aerosol deposition

    PubMed Central

    Hofemeier, Philipp; Sznitman, Josué

    2016-01-01

    Lung deformations at the local pulmonary acinar scale are intrinsically anisotropic. Despite progress in imaging modalities, the true heterogeneous nature of acinar expansion during breathing remains controversial, where our understanding of inhaled aerosol deposition still widely emanates from studies under self-similar, isotropic wall motions. Building on recent 3D models of multi-generation acinar networks, we explore in numerical simulations how different hypothesized scenarios of anisotropic expansion influence deposition outcomes of inhaled aerosols in the acinar depths. While the broader range of particles acknowledged to reach the acinar region (dp = 0.005–5.0 μm) are largely unaffected by the details of anisotropic expansion under tidal breathing, our results suggest nevertheless that anisotropy modulates the deposition sites and fractions for a narrow band of sub-micron particles (dp ~ 0.5–0.75 μm), where the fate of aerosols is greatly intertwined with local convective flows. Our findings underscore how intrinsic aerosol motion (i.e. diffusion, sedimentation) undermines the role of anisotropic wall expansion that is often attributed in determining aerosol mixing and acinar deposition. PMID:27614613

  6. The role of anisotropic expansion for pulmonary acinar aerosol deposition.

    PubMed

    Hofemeier, Philipp; Sznitman, Josué

    2016-10-03

    Lung deformations at the local pulmonary acinar scale are intrinsically anisotropic. Despite progress in imaging modalities, the true heterogeneous nature of acinar expansion during breathing remains controversial, where our understanding of inhaled aerosol deposition still widely emanates from studies under self-similar, isotropic wall motions. Building on recent 3D models of multi-generation acinar networks, we explore in numerical simulations how different hypothesized scenarios of anisotropic expansion influence deposition outcomes of inhaled aerosols in the acinar depths. While the broader range of particles acknowledged to reach the acinar region (d p =0.005-5.0μm) are largely unaffected by the details of anisotropic expansion under tidal breathing, our results suggest nevertheless that anisotropy modulates the deposition sites and fractions for a narrow band of sub-micron particles (d p ~0.5-0.75μm), where the fate of aerosols is greatly intertwined with local convective flows. Our findings underscore how intrinsic aerosol motion (i.e. diffusion, sedimentation) undermines the role of anisotropic wall expansion that is often attributed in determining aerosol mixing and acinar deposition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Resolving Fast, Confined Diffusion in Bacteria with Image Correlation Spectroscopy.

    PubMed

    Rowland, David J; Tuson, Hannah H; Biteen, Julie S

    2016-05-24

    By following single fluorescent molecules in a microscope, single-particle tracking (SPT) can measure diffusion and binding on the nanometer and millisecond scales. Still, although SPT can at its limits characterize the fastest biomolecules as they interact with subcellular environments, this measurement may require advanced illumination techniques such as stroboscopic illumination. Here, we address the challenge of measuring fast subcellular motion by instead analyzing single-molecule data with spatiotemporal image correlation spectroscopy (STICS) with a focus on measurements of confined motion. Our SPT and STICS analysis of simulations of the fast diffusion of confined molecules shows that image blur affects both STICS and SPT, and we find biased diffusion rate measurements for STICS analysis in the limits of fast diffusion and tight confinement due to fitting STICS correlation functions to a Gaussian approximation. However, we determine that with STICS, it is possible to correctly interpret the motion that blurs single-molecule images without advanced illumination techniques or fast cameras. In particular, we present a method to overcome the bias due to image blur by properly estimating the width of the correlation function by directly calculating the correlation function variance instead of using the typical Gaussian fitting procedure. Our simulation results are validated by applying the STICS method to experimental measurements of fast, confined motion: we measure the diffusion of cytosolic mMaple3 in living Escherichia coli cells at 25 frames/s under continuous illumination to illustrate the utility of STICS in an experimental parameter regime for which in-frame motion prevents SPT and tight confinement of fast diffusion precludes stroboscopic illumination. Overall, our application of STICS to freely diffusing cytosolic protein in small cells extends the utility of single-molecule experiments to the regime of fast confined diffusion without requiring advanced microscopy techniques. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Electron-hole diffusion lengths >175 μm in solution-grown CH 3NH 3PbI 3 single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Qingfeng; Fang, Yanjun; Shao, Yuchuan

    Long, balanced electron and hole diffusion lengths greater than 100 nanometers in the polycrystalline organolead trihalide compound CH 3NH 3PbI 3 are critical for highly efficient perovskite solar cells. We found that the diffusion lengths in CH 3NH 3PbI 3 single crystals grown by a solution-growth method can exceed 175 micrometers under 1 sun (100 mW cm –2) illumination and exceed 3 millimeters under weak light for both electrons and holes. The internal quantum efficiencies approach 100% in 3-millimeter-thick single-crystal perovskite solar cells under weak light. These long diffusion lengths result from greater carrier mobility, longer lifetime, and much smallermore » trap densities in the single crystals than in polycrystalline thin films. As a result, the long carrier diffusion lengths enabled the use of CH 3NH 3PbI 3 in radiation sensing and energy harvesting through the gammavoltaic effect, with an efficiency of 3.9% measured with an intense cesium-137 source.« less

  9. Electron-hole diffusion lengths >175 μm in solution-grown CH 3NH 3PbI 3 single crystals

    DOE PAGES

    Dong, Qingfeng; Fang, Yanjun; Shao, Yuchuan; ...

    2015-02-27

    Long, balanced electron and hole diffusion lengths greater than 100 nanometers in the polycrystalline organolead trihalide compound CH 3NH 3PbI 3 are critical for highly efficient perovskite solar cells. We found that the diffusion lengths in CH 3NH 3PbI 3 single crystals grown by a solution-growth method can exceed 175 micrometers under 1 sun (100 mW cm –2) illumination and exceed 3 millimeters under weak light for both electrons and holes. The internal quantum efficiencies approach 100% in 3-millimeter-thick single-crystal perovskite solar cells under weak light. These long diffusion lengths result from greater carrier mobility, longer lifetime, and much smallermore » trap densities in the single crystals than in polycrystalline thin films. As a result, the long carrier diffusion lengths enabled the use of CH 3NH 3PbI 3 in radiation sensing and energy harvesting through the gammavoltaic effect, with an efficiency of 3.9% measured with an intense cesium-137 source.« less

  10. Assessment of Pulmonary Capillary Blood Volume, Membrane Diffusing Capacity, and Intrapulmonary Arteriovenous Anastomoses During Exercise.

    PubMed

    Tedjasaputra, Vincent; van Diepen, Sean; Collins, Sophie É; Michaelchuk, Wade M; Stickland, Michael K

    2017-02-20

    Exercise is a stress to the pulmonary vasculature. With incremental exercise, the pulmonary diffusing capacity (DLCO) must increase to meet the increased oxygen demand; otherwise, a diffusion limitation may occur. The increase in DLCO with exercise is due to increased capillary blood volume (Vc) and membrane diffusing capacity (Dm). Vc and Dm increase secondary to the recruitment and distension of pulmonary capillaries, increasing the surface area for gas exchange and decreasing pulmonary vascular resistance, thereby attenuating the increase in pulmonary arterial pressure. At the same time, the recruitment of intrapulmonary arteriovenous anastomoses (IPAVA) during exercise may contribute to gas exchange impairment and/or prevent large increases in pulmonary artery pressure. We describe two techniques to evaluate pulmonary diffusion and circulation at rest and during exercise. The first technique uses multiple-fraction of inspired oxygen (FIO2) DLCO breath holds to determine Vc and Dm at rest and during exercise. Additionally, echocardiography with intravenous agitated saline contrast is used to assess IPAVAs recruitment. Representative data showed that the DLCO, Vc, and Dm increased with exercise intensity. Echocardiographic data showed no IPAVA recruitment at rest, while contrast bubbles were seen in the left ventricle with exercise, suggesting exercise-induced IPAVA recruitment. The evaluation of pulmonary capillary blood volume, membrane diffusing capacity, and IPAVA recruitment using echocardiographic methods is useful to characterize the ability of the lung vasculature to adapt to the stress of exercise in health as well as in diseased groups, such as those with pulmonary arterial hypertension and chronic obstructive pulmonary disease.

  11. Assessment of Pulmonary Capillary Blood Volume, Membrane Diffusing Capacity, and Intrapulmonary Arteriovenous Anastomoses During Exercise

    PubMed Central

    Tedjasaputra, Vincent; van Diepen, Sean; Collins, Sophie É; Michaelchuk, Wade M.; Stickland, Michael K.

    2017-01-01

    Exercise is a stress to the pulmonary vasculature. With incremental exercise, the pulmonary diffusing capacity (DLCO) must increase to meet the increased oxygen demand; otherwise, a diffusion limitation may occur. The increase in DLCO with exercise is due to increased capillary blood volume (Vc) and membrane diffusing capacity (Dm). Vc and Dm increase secondary to the recruitment and distension of pulmonary capillaries, increasing the surface area for gas exchange and decreasing pulmonary vascular resistance, thereby attenuating the increase in pulmonary arterial pressure. At the same time, the recruitment of intrapulmonary arteriovenous anastomoses (IPAVA) during exercise may contribute to gas exchange impairment and/or prevent large increases in pulmonary artery pressure. We describe two techniques to evaluate pulmonary diffusion and circulation at rest and during exercise. The first technique uses multiple-fraction of inspired oxygen (FIO2) DLCO breath holds to determine Vc and Dm at rest and during exercise. Additionally, echocardiography with intravenous agitated saline contrast is used to assess IPAVAs recruitment. Representative data showed that the DLCO, Vc, and Dm increased with exercise intensity. Echocardiographic data showed no IPAVA recruitment at rest, while contrast bubbles were seen in the left ventricle with exercise, suggesting exercise-induced IPAVA recruitment. The evaluation of pulmonary capillary blood volume, membrane diffusing capacity, and IPAVA recruitment using echocardiographic methods is useful to characterize the ability of the lung vasculature to adapt to the stress of exercise in health as well as in diseased groups, such as those with pulmonary arterial hypertension and chronic obstructive pulmonary disease. PMID:28287506

  12. Soot Volume Fraction Maps for Normal and Reduced Gravity Laminar Acetylene Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Greenberg, Paul S.; Ku, Jerry C.

    1997-01-01

    The study of soot particulate distribution inside gas jet diffusion flames is important to the understanding of fundamental soot particle and thermal radiative transport processes, as well as providing findings relevant to spacecraft fire safety, soot emissions, and radiant heat loads for combustors used in air-breathing propulsion systems. Compared to those under normal gravity (1-g) conditions, the elimination of buoyancy-induced flows is expected to significantly change the flow field in microgravity (O g) flames, resulting in taller and wider flames with longer particle residence times. Work by Bahadori and Edelman demonstrate many previously unreported qualitative and semi-quantitative results, including flame shape and radiation, for sooting laminar zas jet diffusion flames. Work by Ku et al. report soot aggregate size and morphology analyses and data and model predictions of soot volume fraction maps for various gas jet diffusion flames. In this study, we present the first 1-g and 0-g comparisons of soot volume fraction maps for laminar acetylene and nitrogen-diluted acetylene jet diffusion flames. Volume fraction is one of the most useful properties in the study of sooting diffusion flames. The amount of radiation heat transfer depends directly on the volume fraction and this parameter can be measured from line-of-sight extinction measurements. Although most Soot aggregates are submicron in size, the primary particles (20 to 50 nm in diameter) are in the Rayleigh limit, so the extinction absorption) cross section of aggregates can be accurately approximated by the Rayleigh solution as a function of incident wavelength, particles' complex refractive index, and particles' volume fraction.

  13. Fractional Dynamics of Single File Diffusion in Dusty Plasma Ring

    NASA Astrophysics Data System (ADS)

    Muniandy, S. V.; Chew, W. X.; Asgari, H.; Wong, C. S.; Lim, S. C.

    2011-11-01

    Single file diffusion (SFD) refers to the constrained motion of particles in quasi-one-dimensional channel such that the particles are unable to pass each other. Possible SFD of charged dust confined in biharmonic annular potential well with screened Coulomb interaction is investigated. Transition from normal diffusion to anomalous sub-diffusion behaviors is observed. Deviation from SFD's mean square displacement scaling behavior of 1/2-exponent may occur in strongly interacting systems. A phenomenological model based on fractional Langevin equation is proposed to account for the anomalous SFD behavior in dusty plasma ring.

  14. Detection of gaseous compounds by needle trap sampling and direct thermal-desorption photoionization mass spectrometry: concept and demonstrative application to breath gas analysis.

    PubMed

    Kleeblatt, Juliane; Schubert, Jochen K; Zimmermann, Ralf

    2015-02-03

    A fast detection method to analyze gaseous organic compounds in complex gas mixtures was developed, using a needle trap device (NTD) in conjunction with thermal-desorption photoionization time-of-flight mass spectrometry (TD-PI-TOFMS). The mass spectrometer was coupled via a deactivated fused silica capillary to an injector of a gas chromatograph. In the hot injector, the analytes collected on the NTD were thermally desorbed and directly transferred to the PI-TOFMS ion source. The molecules are softly ionized either by single photon ionization (SPI, 118 nm) or by resonance enhanced multiphoton ionization (REMPI, 266 nm), and the molecular ion signals are detected in the TOF mass analyzer. Analyte desorption and the subsequent PI-TOFMS detection step only lasts ten seconds. The specific selectivity of REMPI (i.e., aromatic compounds) and universal ionization characteristics render PI-MS as a promising detection system. As a first demonstrative application, the alveolar phase breath gas of healthy, nonsmoking subjects was sampled on NTDs. While smaller organic compounds such as acetone, acetaldehyde, isoprene, or cysteamine can be detected in the breath gas with SPI, REMPI depicts the aromatic substances phenol and indole at 266 nm. In the breath gas of a healthy, smoking male subject, several xenobiotic substances such as benzene, toluene, styrene, and ethylbenzene can be found as well. Furthermore, the NTD-REMPI-TOFMS setup was tested for breath gas taken from a mechanically ventilated pig under continuous intravenous propofol (2,6-diisopropylphenol, narcotic drug) infusion.

  15. Fiber-enhanced Raman multigas spectroscopy: a versatile tool for environmental gas sensing and breath analysis.

    PubMed

    Hanf, Stefan; Keiner, Robert; Yan, Di; Popp, Jürgen; Frosch, Torsten

    2014-06-03

    Versatile multigas analysis bears high potential for environmental sensing of climate relevant gases and noninvasive early stage diagnosis of disease states in human breath. In this contribution, a fiber-enhanced Raman spectroscopic (FERS) analysis of a suite of climate relevant atmospheric gases is presented, which allowed for reliable quantification of CH4, CO2, and N2O alongside N2 and O2 with just one single measurement. A highly improved analytical sensitivity was achieved, down to a sub-parts per million limit of detection with a high dynamic range of 6 orders of magnitude and within a second measurement time. The high potential of FERS for the detection of disease markers was demonstrated with the analysis of 27 nL of exhaled human breath. The natural isotopes (13)CO2 and (14)N(15)N were quantified at low levels, simultaneously with the major breath components N2, O2, and (12)CO2. The natural abundances of (13)CO2 and (14)N(15)N were experimentally quantified in very good agreement to theoretical values. A fiber adapter assembly and gas filling setup was designed for rapid and automated analysis of multigas compositions and their fluctuations within seconds and without the need for optical readjustment of the sensor arrangement. On the basis of the abilities of such miniaturized FERS system, we expect high potential for the diagnosis of clinically administered (13)C-labeled CO2 in human breath and also foresee high impact for disease detection via biologically vital nitrogen compounds.

  16. Deep Inspiration Breath Hold—Based Radiation Therapy: A Clinical Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boda-Heggemann, Judit, E-mail: judit.boda-heggemann@umm.de; Knopf, Antje-Christin; Simeonova-Chergou, Anna

    Several recent developments in linear accelerator–based radiation therapy (RT) such as fast multileaf collimators, accelerated intensity modulation paradigms like volumeric modulated arc therapy and flattening filter-free (FFF) high-dose-rate therapy have dramatically shortened the duration of treatment fractions. Deliverable photon dose distributions have approached physical complexity limits as a consequence of precise dose calculation algorithms and online 3-dimensional image guided patient positioning (image guided RT). Simultaneously, beam quality and treatment speed have continuously been improved in particle beam therapy, especially for scanned particle beams. Applying complex treatment plans with steep dose gradients requires strategies to mitigate and compensate for motion effectsmore » in general, particularly breathing motion. Intrafractional breathing-related motion results in uncertainties in dose delivery and thus in target coverage. As a consequence, generous margins have been used, which, in turn, increases exposure to organs at risk. Particle therapy, particularly with scanned beams, poses additional problems such as interplay effects and range uncertainties. Among advanced strategies to compensate breathing motion such as beam gating and tracking, deep inspiration breath hold (DIBH) gating is particularly advantageous in several respects, not only for hypofractionated, high single-dose stereotactic body RT of lung, liver, and upper abdominal lesions but also for normofractionated treatment of thoracic tumors such as lung cancer, mediastinal lymphomas, and breast cancer. This review provides an in-depth discussion of the rationale and technical implementation of DIBH gating for hypofractionated and normofractionated RT of intrathoracic and upper abdominal tumors in photon and proton RT.« less

  17. New method to calculate the N2 evolution from mixed venous blood during the N2 washout.

    PubMed

    Han, D; Jeng, D R; Cruz, J C; Flores, X F; Mallea, J M

    2001-08-01

    To model the normalized phase III slope (Sn) from N2 expirograms of the multibreath N2 washout is a challenge to researchers. Experimental measurements show that Sn increases with the number of breaths. Previously, we predicted Sn by setting the concentration (atm) of mixed venous blood (Fbi,N2) to a constant value of 0.3 after the fifth breath to calculate the amount of N2 transferred from the blood to the alveoli. As a consequence, the predicted curve of the Sn values showed a maximum before the quasi-steady state was reached. In this paper, we present a way of calculating the amount of N2 transferred from the blood to the alveoli by setting Fbi,N2 in the following way: In the first six breaths Fbi,N2 is kept constant at the initial value of 0.8 because circulation time needs at least 30 s to alter it. Thereafter, a single exponential function with respect the number of breaths is used: Fbi = 0.8 exp[0.112(6-n)], in which n is the breath number. The predicted Sn values were compared with experimental data from the literature. The assumption of an exponential decay in the N2 evolved from mixed venous blood is important in determining the shape of the Sn curve but new experimental data are needed to determine the validity of the model. We concluded that this new approach to calculate the N2 evolution from the blood is more meaningful physiologically.

  18. Total body calcium analysis. [neutron irradiation

    NASA Technical Reports Server (NTRS)

    Lewellen, T. K.; Nelp, W. B.

    1974-01-01

    A technique to quantitate total body calcium in humans is developed. Total body neutron irradiation is utilized to produce argon 37. The radio argon, which diffuses into the blood stream and is excreted through the lungs, is recovered from the exhaled breath and counted inside a proportional detector. Emphasis is placed on: (1) measurement of the rate of excretion of radio argon following total body neutron irradiation; (2) the development of the radio argon collection, purification, and counting systems; and (3) development of a patient irradiation facility using a 14 MeV neutron generator. Results and applications are discussed in detail.

  19. Breathing of Graphite Particles in a Lithium-Ion Battery

    NASA Astrophysics Data System (ADS)

    Takata, Keiji; Okuda, Mitsuhiro; Yura, Nobuki; Tamura, Ryota

    2012-04-01

    We imaged changes in volume of graphite particles in a Li-ion battery due to the insertion and extraction of Li ions using scanning probe microscopy. When Li ions were extracted from the graphite particles, the particles were contracted, while expansion was induced in the interspaces between the particles. Variations of the images of volume changes depending on modulation frequencies clearly showed lithium intercalation. A linear relationship between the amplitudes of volume changes and the products of the diffusion elements and the reciprocals of the frequencies has been proven. Thus, the detected signals quantitatively well corresponded to the lithium ion movements.

  20. Usefulness of free-breathing readout-segmented echo-planar imaging (RESOLVE) for detection of malignant liver tumors: comparison with single-shot echo-planar imaging (SS-EPI).

    PubMed

    Tokoro, Hirokazu; Fujinaga, Yasunari; Ohya, Ayumi; Ueda, Kazuhiko; Shiobara, Aya; Kitou, Yoshihiro; Ueda, Hitoshi; Kadoya, Masumi

    2014-10-01

    We aimed to clarify the usefulness of free-breathing readout-segmented echo-planar imaging (RESOLVE), which is multi-shot echo-planar imaging based on a 2D-navigator-based reacquisition technique, for detecting malignant liver tumor. In 77 patients with malignant liver tumors, free-breathing RESOLVE and respiratory-triggered single-shot echo-planar imaging (SS-EPI) at 3-T MR unit were performed. We set a scan time up to approximately 5 min (300s) before examination, measured actual scan time and assessed (1) susceptibility and (2) motion artifacts in the right and left liver lobes (3, no artifact; 1, marked), and (3) detectability of malignant liver tumors (3, good; 1, poor) using a 3-point scale. The median actual scan time of RESOLVE/SS-EPI was 365/423s. The median scores of each factor in RESOLVE/SS-EPI were as following in this order: (1) 3/2 (right lobe); 3/3 (left lobe), (2) 2/3 (right lobe); 1/2 (left lobe), and (3) 3/3, respectively. Significant differences were noted between RESOLVE and SS-EPI in all evaluated factors (P<0.05) except for susceptibility of left lobe and detectability of the lesions. Despite the effect of motion artifacts, RESOLVE provides a comparable detectability of the lesion and the advantage of reducing scanning time compared with SS-EPI. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Empirical constraints on closure temperatures from a single diffusion coefficient

    NASA Astrophysics Data System (ADS)

    Lee, J. K. W.

    The elucidation of thermal histories by geochronological and isotopic means is based fundamentally on solid-state diffusion and the concept of closure temperatures. Because diffusion is thermally activated, an analytical solution of the closure temperature (Tc*) can only be obtained if the diffusion coefficient D of the diffusion process is measured at two or more different temperatures. If the diffusion coefficient is known at only one temperature, however, the true closure temperature (Tc*) cannot be calculated analytically because there exist an infinite number of possible (apparent) closure temperatures (Tc) which can be generated by this single datum. By introducing further empirical constraints to limit the range of possible closure temperatures, however, mathematical analysis of a modified form of the closure temperature equation shows that it is possible to make both qualitative and quantitative estimates of Tc* given knowledge of only one diffusion coefficient DM measured at one temperature TM. Qualitative constraints of the true closure temperature Tc* are obtained from the shapes of curves on a graph of the apparent Tc (Tc) vs. activation energy E, in which each curve is based on a single diffusion coefficient measurement DM at temperature TM. Using a realistic range of E, the concavity of the curve shows whether TM is less than, approximately equal to, or greater than Tc*. Quantitative estimates are obtained by considering two dimensionless parameters [lnÊRT^c vs. Tc*/TM] derived from these curves. When these parameters are plotted for known argon diffusion data and for a given diffusion size and cooling rate, it is found that the resultant curves are almost identical for all of the commonly dated K-Ar minerals - biotite, phlogopite, muscovite, hornblende and orthoclase - in spite of differences in their diffusion parameters. A common curve for Ar diffusion can be derived by least-squares fitting of all the Ar diffusion data and provides a way of predicting a ``model'' closure temperature Tcm from a single diffusion coefficient DM at temperature TM. Preliminary diffusion data for a labradorite lead to a Tcm of 507+/-17°C and a corresponding activation energy of about 65kcal/mol, given a grain size of 200μm and a cooling rate of 5°C/Ma. Curves for He diffusion in silicates (augite, quartz and sanidine) also overlap to a significant degree, both among themselves and with the Ar model curve, suggesting that a single model curve may be a good representation of noble gas closure temperatures in silicates. An analogous model curve for a selection of 18O data can also be constructed, but this curve differs from the Ar model curve. A single model curve for cationic species does not appear to exist, however, suggesting that chemical bonding relationships between the ionic size/charge and crystal structure may influence the closure temperatures of diffusing cations. An indication of the degree of overlap among the various curves for Ar, He, 18O and cations is also obtained by considering the dimensionless parameter E/RTc*; for the noble gases and 18O, E/RTc* values for the respective minerals are very similar, whereas for cations, there is significant dispersion. Given these constraints, this may be a potential method of estimating closure temperatures for certain diffusing species when there are limited diffusion data.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiely, J Blanco; Olszanski, A; Both, S

    Purpose: To develop a quantitative decision making metric for automatically detecting irregular breathing using a large patient population that received phase-sorted 4DCT. Methods: This study employed two patient cohorts. Cohort#1 contained 256 patients who received a phasesorted 4DCT. Cohort#2 contained 86 patients who received three weekly phase-sorted 4DCT scans. A previously published technique used a single abdominal surrogate to calculate the ratio of extreme inhalation tidal volume to normal inhalation tidal volume, referred to as the κ metric. Since a single surrogate is standard for phase-sorted 4DCT in radiation oncology clinical practice, tidal volume was not quantified. Without tidal volume,more » the absolute κ metric could not be determined, so a relative κ (κrel) metric was defined based on the measured surrogate amplitude instead of tidal volume. Receiver operator characteristic (ROC) curves were used to quantitatively determine the optimal cutoff value (jk) and efficiency cutoff value (τk) of κrel to automatically identify irregular breathing that would reduce the image quality of phase-sorted 4DCT. Discriminatory accuracy (area under the ROC curve) of κrel was calculated by a trapezoidal numeric integration technique. Results: The discriminatory accuracy of ?rel was found to be 0.746. The key values of jk and tk were calculated to be 1.45 and 1.72 respectively. For values of ?rel such that jk≤κrel≤τk, the decision to reacquire the 4DCT would be at the discretion of the physician. This accounted for only 11.9% of the patients in this study. The magnitude of κrel held consistent over 3 weeks for 73% of the patients in cohort#3. Conclusion: The decision making metric, ?rel, was shown to be an accurate classifier of irregular breathing patients in a large patient population. This work provided an automatic quantitative decision making metric to quickly and accurately assess the extent to which irregular breathing is occurring during phase-sorted 4DCT.« less

  3. Application of ion chemistry and the SIFT technique to the quantitative analysis of trace gases in air and on breath

    NASA Astrophysics Data System (ADS)

    Smith, David; Španěl, Patrik

    Our major objective in this paper is to describe a new method we have developed for the analysis of trace gases at partial pressures down to the ppb level in atmospheric air, with special emphasis on the detection and quantification of trace gases on human breath. It involves the use of our selected ion flow tube (Sift) technique which we previously developed and used extensively for the study of gas phase ionic reactions occurring in ionized media such as the terrestrial atmosphere and interstellar gas clouds. Before discussing this analytical technique we describe the results of our very recent Sift and flowing afterglow (FA) studies of the reactions of the H3O+ and OH- ions, of their hydrates H3O+(H2O)1,2,3 and OH- (H2O)1,2, and of NO+ and O2+, with several hydrocarbons and oxygen-bearing organic molecules, studies that are very relevant to our trace gas analytical studies. Then follows a detailed discussion of the application of our Sift technique to trace gas analysis, after which we present some results obtained for the analyses of laboratory air, the breath of a healthy non-smoking person, the breath of a person who regularly smokes cigarettes, the complex vapours emitted by banana and onion, and the molecules present in a butane/air flame. We show how the quantitative analysis of breath can be achieved from only a single exhalation and in real time (the time response of the instrument is only about 20 ms). We also show how the time variation of breath gases over long time periods can be followed, using the decay of ethanol on the breath after the ingestion of distilled liquor as an example, yet simultaneously following several other trace gases including acetone and isoprene which are very easily detected on the breath of all individuals because of their relatively high partial pressures (typically 100 to 1000 ppb). The breath of a smoker is richer in complex molecules, some nitrogen containing organics apparently being very evident at the 5 to 50 ppb level. These results and those for banana and onion vapours and butane/air flame forcibly demonstrate the value and the scope of our Sift ion chemistry approach to the analysis of very complex gas mixtures, and that this method is accurately quantitative if the appropriate ion chemistry is properly understood.

  4. A Comparative Analysis of Single-Stage-To-Orbit Rocket and Air-Breathing Vehicles

    DTIC Science & Technology

    2006-06-01

    passion to explore. I am indebted to my friends and co-workers who, through their humor and shenanigans , have made this educational experience both...the Nixon administration canceling the program, NASA enlisted financial support from the Air Force in exchange for USAF use of the Shuttle

  5. Characterization of the diffusion of epidermal growth factor receptor clusters by single particle tracking.

    PubMed

    Boggara, Mohan; Athmakuri, Krishna; Srivastava, Sunit; Cole, Richard; Kane, Ravi S

    2013-02-01

    A number of studies have shown that receptors of the epidermal growth factor receptor family (ErbBs) exist as higher-order oligomers (clusters) in cell membranes in addition to their monomeric and dimeric forms. Characterizing the lateral diffusion of such clusters may provide insights into their dynamics and help elucidate their functional relevance. To that end, we used single particle tracking to study the diffusion of clusters of the epidermal growth factor (EGF) receptor (EGFR; ErbB1) containing bound fluorescently-labeled ligand, EGF. EGFR clusters had a median diffusivity of 6.8×10(-11)cm(2)/s and were found to exhibit different modes of transport (immobile, simple, confined, and directed) similar to that previously reported for single EGFR molecules. Disruption of actin filaments increased the median diffusivity of EGFR clusters to 10.3×10(-11)cm(2)/s, while preserving the different modes of diffusion. Interestingly, disruption of microtubules rendered EGFR clusters nearly immobile. Our data suggests that microtubules may play an important role in the diffusion of EGFR clusters either directly or perhaps indirectly via other mechanisms. To our knowledge, this is the first report probing the effect of the cytoskeleton on the diffusion of EGFR clusters in the membranes of live cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Oxidative lung injury correlates with one-lung ventilation time during pulmonary lobectomy: a study of exhaled breath condensate and blood.

    PubMed

    García-de-la-Asunción, José; García-del-Olmo, Eva; Perez-Griera, Jaume; Martí, Francisco; Galan, Genaro; Morcillo, Alfonso; Wins, Richard; Guijarro, Ricardo; Arnau, Antonio; Sarriá, Benjamín; García-Raimundo, Miguel; Belda, Javier

    2015-09-01

    During lung lobectomy, the operated lung is collapsed and hypoperfused; oxygen deprivation is accompanied by reactive hypoxic pulmonary vasoconstriction. After lung lobectomy, ischaemia present in the collapsed state is followed by expansion-reperfusion and lung injury attributed to the production of reactive oxygen species. The primary objective of this study was to investigate the time course of several markers of oxidative stress simultaneously in exhaled breath condensate and blood and to determine the relationship between oxidative stress and one-lung ventilation time in patients undergoing lung lobectomy. This single-centre, observational, prospective study included 28 patients with non-small-cell lung cancer who underwent lung lobectomy. We measured the levels of hydrogen peroxide, 8-iso-PGF2α, nitrites plus nitrates and pH in exhaled breath condensate (n = 25). The levels of 8-iso-PGF2α and nitrites plus nitrates were also measured in blood (n = 28). Blood samples and exhaled breath condensate samples were collected from all patients at five time points: preoperatively; during one-lung ventilation, immediately before resuming two-lung ventilation; immediately after resuming two-lung ventilation; 60 min after resuming two-lung ventilation and 180 min after resuming two-lung ventilation. Both exhaled breath condensate and blood exhibited significant and simultaneous increases in oxidative-stress markers immediately before two-lung ventilation was resumed. However, all these values underwent larger increases immediately after resuming two-lung ventilation. In both exhaled breath condensate and blood, marker levels significantly and directly correlated with the duration of one-lung ventilation immediately before resuming two-lung ventilation and immediately after resuming two-lung ventilation. Although pH significantly decreased in exhaled breath condensate immediately after resuming two-lung ventilation, these pH values were inversely correlated with the duration of one-lung ventilation. During lung lobectomy, the operated lung is collapsed and oxidative injury occurs, with the levels of markers of oxidative stress increasing simultaneously in exhaled breath condensate and blood during one-lung ventilation. These increases were larger after resuming two-lung ventilation. Increases immediately before resuming two-lung ventilation and immediately after resuming two-lung ventilation were directly correlated with the duration of one-lung ventilation. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  7. Diffusion maps for high-dimensional single-cell analysis of differentiation data.

    PubMed

    Haghverdi, Laleh; Buettner, Florian; Theis, Fabian J

    2015-09-15

    Single-cell technologies have recently gained popularity in cellular differentiation studies regarding their ability to resolve potential heterogeneities in cell populations. Analyzing such high-dimensional single-cell data has its own statistical and computational challenges. Popular multivariate approaches are based on data normalization, followed by dimension reduction and clustering to identify subgroups. However, in the case of cellular differentiation, we would not expect clear clusters to be present but instead expect the cells to follow continuous branching lineages. Here, we propose the use of diffusion maps to deal with the problem of defining differentiation trajectories. We adapt this method to single-cell data by adequate choice of kernel width and inclusion of uncertainties or missing measurement values, which enables the establishment of a pseudotemporal ordering of single cells in a high-dimensional gene expression space. We expect this output to reflect cell differentiation trajectories, where the data originates from intrinsic diffusion-like dynamics. Starting from a pluripotent stage, cells move smoothly within the transcriptional landscape towards more differentiated states with some stochasticity along their path. We demonstrate the robustness of our method with respect to extrinsic noise (e.g. measurement noise) and sampling density heterogeneities on simulated toy data as well as two single-cell quantitative polymerase chain reaction datasets (i.e. mouse haematopoietic stem cells and mouse embryonic stem cells) and an RNA-Seq data of human pre-implantation embryos. We show that diffusion maps perform considerably better than Principal Component Analysis and are advantageous over other techniques for non-linear dimension reduction such as t-distributed Stochastic Neighbour Embedding for preserving the global structures and pseudotemporal ordering of cells. The Matlab implementation of diffusion maps for single-cell data is available at https://www.helmholtz-muenchen.de/icb/single-cell-diffusion-map. fbuettner.phys@gmail.com, fabian.theis@helmholtz-muenchen.de Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Catalytic conversion reactions mediated by single-file diffusion in linear nanopores: hydrodynamic versus stochastic behavior.

    PubMed

    Ackerman, David M; Wang, Jing; Wendel, Joseph H; Liu, Da-Jiang; Pruski, Marek; Evans, James W

    2011-03-21

    We analyze the spatiotemporal behavior of species concentrations in a diffusion-mediated conversion reaction which occurs at catalytic sites within linear pores of nanometer diameter. Diffusion within the pores is subject to a strict single-file (no passing) constraint. Both transient and steady-state behavior is precisely characterized by kinetic Monte Carlo simulations of a spatially discrete lattice-gas model for this reaction-diffusion process considering various distributions of catalytic sites. Exact hierarchical master equations can also be developed for this model. Their analysis, after application of mean-field type truncation approximations, produces discrete reaction-diffusion type equations (mf-RDE). For slowly varying concentrations, we further develop coarse-grained continuum hydrodynamic reaction-diffusion equations (h-RDE) incorporating a precise treatment of single-file diffusion in this multispecies system. The h-RDE successfully describe nontrivial aspects of transient behavior, in contrast to the mf-RDE, and also correctly capture unreactive steady-state behavior in the pore interior. However, steady-state reactivity, which is localized near the pore ends when those regions are catalytic, is controlled by fluctuations not incorporated into the hydrodynamic treatment. The mf-RDE partly capture these fluctuation effects, but cannot describe scaling behavior of the reactivity.

  9. Modes of Diffusion of Cholera Toxin Bound to GM1 on Live Cell Membrane by Image Mean Square Displacement Analysis

    PubMed Central

    Moens, Pierre D.J.; Digman, Michelle A.; Gratton, Enrico

    2015-01-01

    The image-mean square displacement technique applies the calculation of the mean square displacement commonly used in single-molecule tracking to images without resolving single particles. The image-mean square displacement plot obtained is similar to the mean square displacement plot obtained using the single-particle tracking technique. This plot is then used to reconstruct the protein diffusion law and to identify whether the labeled molecules are undergoing pure isotropic, restricted, corralled, transiently confined, or directed diffusion. In our study total internal reflection fluorescence microscopy images were taken of Cholera toxin subunit B (CtxB) membrane-labeled NIH 3T3 mouse fibroblasts and MDA 231 MB cells. We found a population of CTxB undergoing purely isotropic diffusion and one displaying restricted diffusion with corral sizes ranging from 150 to ∼1800 nm. We show that the diffusion rate of CTxB bound to GM1 is independent of the size of the confinement, suggesting that the mechanism of confinement is different from the mechanism controlling the diffusion rate of CtxB. We highlight the potential effect of continuous illumination on the diffusion mode of CTxB. We also show that aggregation of CTxB/GM1 in large complexes occurs and that these aggregates tend to have slower diffusion rates. PMID:25809257

  10. Modes of diffusion of cholera toxin bound to GM1 on live cell membrane by image mean square displacement analysis.

    PubMed

    Moens, Pierre D J; Digman, Michelle A; Gratton, Enrico

    2015-03-24

    The image-mean square displacement technique applies the calculation of the mean square displacement commonly used in single-molecule tracking to images without resolving single particles. The image-mean square displacement plot obtained is similar to the mean square displacement plot obtained using the single-particle tracking technique. This plot is then used to reconstruct the protein diffusion law and to identify whether the labeled molecules are undergoing pure isotropic, restricted, corralled, transiently confined, or directed diffusion. In our study total internal reflection fluorescence microscopy images were taken of Cholera toxin subunit B (CtxB) membrane-labeled NIH 3T3 mouse fibroblasts and MDA 231 MB cells. We found a population of CTxB undergoing purely isotropic diffusion and one displaying restricted diffusion with corral sizes ranging from 150 to ∼1800 nm. We show that the diffusion rate of CTxB bound to GM1 is independent of the size of the confinement, suggesting that the mechanism of confinement is different from the mechanism controlling the diffusion rate of CtxB. We highlight the potential effect of continuous illumination on the diffusion mode of CTxB. We also show that aggregation of CTxB/GM1 in large complexes occurs and that these aggregates tend to have slower diffusion rates. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Single-shot spiral imaging enabled by an expanded encoding model: Demonstration in diffusion MRI.

    PubMed

    Wilm, Bertram J; Barmet, Christoph; Gross, Simon; Kasper, Lars; Vannesjo, S Johanna; Haeberlin, Max; Dietrich, Benjamin E; Brunner, David O; Schmid, Thomas; Pruessmann, Klaas P

    2017-01-01

    The purpose of this work was to improve the quality of single-shot spiral MRI and demonstrate its application for diffusion-weighted imaging. Image formation is based on an expanded encoding model that accounts for dynamic magnetic fields up to third order in space, nonuniform static B 0 , and coil sensitivity encoding. The encoding model is determined by B 0 mapping, sensitivity mapping, and concurrent field monitoring. Reconstruction is performed by iterative inversion of the expanded signal equations. Diffusion-tensor imaging with single-shot spiral readouts is performed in a phantom and in vivo, using a clinical 3T instrument. Image quality is assessed in terms of artefact levels, image congruence, and the influence of the different encoding factors. Using the full encoding model, diffusion-weighted single-shot spiral imaging of high quality is accomplished both in vitro and in vivo. Accounting for actual field dynamics, including higher orders, is found to be critical to suppress blurring, aliasing, and distortion. Enhanced image congruence permitted data fusion and diffusion tensor analysis without coregistration. Use of an expanded signal model largely overcomes the traditional vulnerability of spiral imaging with long readouts. It renders single-shot spirals competitive with echo-planar readouts and thus deploys shorter echo times and superior readout efficiency for diffusion imaging and further prospective applications. Magn Reson Med 77:83-91, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  12. A rapid non invasive L-DOPA-¹³C breath test for optimally suppressing extracerebral AADC enzyme activity - toward individualizing carbidopa therapy in Parkinson’s disease.

    PubMed

    Modak, Anil; Durso, Raymon; Josephs, Ephraim; Rosen, David

    2012-01-01

    Peripheral carbidopa (CD) levels directly impact on central dopamine (DA) production in Parkinson disease (PD) through extracerebral inhibition of dopa decarboxylase (AADC) resulting in an increase in levodopa (LD) bioavailability. Recent data suggests that higher CD doses than those presently used in PD treatment may result in improved clinical response. Optimizing CD doses in individual patients may, therefore, result in ideal individualized treatment. A single center, randomized, double-blind study was carried out recruiting 5 Parkinson’s disease (PD) patients already on LD/CD and 1 treatment näve PD patient using stable isotope labeled LD-1-¹³C as a substrate for a noninvasive breath test to evaluate individual AADC enzyme activity. Each patient was studied five times, receiving 200 mg LD-¹³C at each visit along with one of five randomized CD doses (0, 25, 50, 100 and 200 mg). The metabolite ¹³CO₂ in breath was measured for evaluating AADC enzyme activity and plasma metabolite levels for LD-¹³C and homovanillic acid (HVA) were measured for 4 hours. HVA in plasma and ¹³CO₂ in breath are metabolic products of LD. We found a significant positive correlation of ¹³CO₂ DOB AUC0-240 with serum HVA AUC0-240 following the oral dose of LD-1-¹³C for all 5 doses of CD (r² = 0.9378). With increasing inhibition of AADC enzyme activity with CD, we observed an increase in the plasma concentration of LD.We found an inverse correlation of the 13CO2 DOB AUC with serum LD-¹³C AUC. Our studies indicate the optimal dose of CD for maximal suppression of AADC enzyme activity can be determined for each individual from ¹³CO₂ generation in breath. The LD-breath test can be a useful noninvasive diagnostic tool for evaluation of AADC enzyme activity using the biomarker ¹³CO₂ in breath, a first step in personalizing CD doses for PD patients.

  13. Single particle tracking with sterol modulation reveals the cholesterol-mediated diffusion properties of integrin receptors.

    PubMed

    Arora, Neha; Syed, Aleem; Sander, Suzanne; Smith, Emily A

    2014-10-07

    A combination of sterol modulation with cyclodextrins plus fluorescence microscopy revealed a biophysical mechanism behind cholesterol's influence on the diffusion of a ubiquitous class of receptors called integrins. The heterogeneous diffusion of integrins bound to ligand-coated quantum dots was measured using single particle tracking (SPT), and the ensemble changes in integrin diffusion were measured by fluorescence recovery after photobleaching (FRAP). A 25 ± 1% reduction of membrane cholesterol resulted in three significant changes to the diffusion of ligand-bound αPS2CβPS integrins as measured by SPT. There was a 23% increase in ligand-bound mobile integrins; there was a statistically significant increase in the average diffusion coefficient inside zones of confined diffusion, and histograms of confined integrin trajectories showed an increased frequency in the range of 0.1-1 μm(2) s(-1) and a decreased frequency in the 0.001-0.1 μm(2) s(-1) range. No statistical change was measured in the duration of confinement nor the size of confined zones. Restoring the cholesterol-depleted cells with exogenous cholesterol or exogenous epicholesterol resulted in similar diffusion properties. Epicholesterol differs from cholesterol in the orientation of a single hydroxyl group. The ability of epicholesterol to substitute for cholesterol suggests a biophysical mechanism for cholesterol's effect on integrin diffusion. Influences of bilayer thickness, viscosity and organization are discussed as possible explanations for the measured changes in integrin diffusion when the membrane cholesterol concentration is reduced.

  14. Diffusion in Single Supported Lipid Bilayers

    NASA Astrophysics Data System (ADS)

    Armstrong, C. L.; Trapp, M.; Rheinstädter, M. C.

    2011-03-01

    Despite their potential relevance for the development of functionalized surfaces and biosensors, the study of single supported membranes using neutron scattering has been limited by the challenge of obtaining relevant dynamic information from a sample with minimal material. Using state of the art neutron instrumentation we have, for the first time, modeled lipid diffusion in single supported lipid bilayers. While we find that the diffusion coefficient for the single bilayer system is comparable to a multi-lamellar lipid system, the molecular mechanism for lipid motion in the single bilayer is a continuous diffusion process with no sign of the flow-like ballistic motion reported in the stacked membrane system. In the future, these membranes will be used to hold and align proteins, mimicking physiological conditions enabling the study of protein structure, function and interactions in relevant and highly topical membrane/protein systems with minimal sample material. C.L. Armstrong, M.D. Kaye, M. Zamponi, E. Mamontov, M. Tyagi, T. Jenkins and M.C. Rheinstädter, Soft Matter Communication, 2010, Advance Article, DOI: 10.1039/C0SM00637H

  15. Test of the diffusing-diffusivity mechanism using near-wall colloidal dynamics

    NASA Astrophysics Data System (ADS)

    Matse, Mpumelelo; Chubynsky, Mykyta V.; Bechhoefer, John

    2017-10-01

    The mechanism of diffusing diffusivity predicts that, in environments where the diffusivity changes gradually, the displacement distribution becomes non-Gaussian, even though the mean-square displacement grows linearly with time. Here, we report single-particle tracking measurements of the diffusion of colloidal spheres near a planar substrate. Because the local effective diffusivity is known, we have been able to carry out a direct test of this mechanism for diffusion in inhomogeneous media.

  16. CIRCULATORY FAILURE DURING NON-INHALED FORMS OF CYANIDE INTOXICATION

    PubMed Central

    Haouzi, Philippe; Tubbs, Nicole; Rannals, Matthew D.; Judenherc-Haouzi, Annick; Cabell, Larry A.; McDonough, Joe A.; Sonobe, Takashi

    2016-01-01

    Our objective was to determine how circulatory failure develops following systemic administration of potassium cyanide (KCN). We used a non-inhaled modality of intoxication, wherein the change in breathing pattern would not influence the diffusion of CN into the blood, akin to the effects of ingesting toxic levels of CN. In a group of 300–400 g rats, CN-induced coma (CN IP, 7 mg/kg) produced a central apnea within 2–3 minutes along with a potent and prolonged gasping pattern leading to auto-resuscitation in 38% of the animals. Motor deficits and neuronal necrosis were nevertheless observed in the surviving animals. To clarify the mechanisms leading to potential auto-resuscitation versus asystole, 12 urethane-anesthetized rats were then exposed to the lowest possible levels of CN exposure that would lead to breathing depression within 7–8 minutes; this dose averaged 0.375 mg/kg/min iv. At this level of intoxication, a cardiac depression developed several minutes only after the onset of the apnea, leading to cardiac asystole as PaO2 reached value around 15 Torr, unless breathing was maintained by mechanical ventilation or through spontaneous gasping. Higher levels of KCN exposure in 10 animals provoked a primary cardiac depression, which led to a rapid cardiac arrest by pulseless electrical activity despite the maintenance of PaO2 by mechanical ventilation. These effects were totally unrelated to the potassium contained in KCN. It is concluded that circulatory failure can develop as a direct consequence of CN induced apnea but in a narrow range of exposure. In this “low” range, maintaining pulmonary gas exchange after exposure, through mechanical ventilation (or spontaneous gasping) can reverse cardiac depression and restore spontaneous breathing. At higher level of intoxication, cardiac depression is to be treated as a specific and spontaneously irreversible consequence of CN exposure, leading to a pulseless electrical activity. PMID:27513083

  17. Exposure to household air pollution from wood combustion and association with respiratory symptoms and lung function in nonsmoking women: results from the RESPIRE trial, Guatemala.

    PubMed

    Pope, Daniel; Diaz, Esperanza; Smith-Sivertsen, Tone; Lie, Rolv T; Bakke, Per; Balmes, John R; Smith, Kirk R; Bruce, Nigel G

    2015-04-01

    With 40% of the world's population relying on solid fuel, household air pollution (HAP) represents a major preventable risk factor for COPD (chronic obstructive pulmonary disease). Meta-analyses have confirmed this relationship; however, constituent studies are observational, with virtually none measuring exposure directly. We estimated associations between HAP exposure and respiratory symptoms and lung function in young, nonsmoking women in rural Guatemala, using measured carbon monoxide (CO) concentrations in exhaled breath and personal air to assess exposure. The Randomized Exposure Study of Pollution Indoors and Respiratory Effects (RESPIRE) Guatemala study was a trial comparing respiratory outcomes among 504 women using improved chimney stoves versus traditional cookstoves. The present analysis included 456 women with data from postintervention surveys including interviews at 6, 12, and 18 months (respiratory symptoms) and spirometry and CO (ppm) in exhaled breath measurements. Personal CO was measured using passive diffusion tubes at variable times during the study. Associations between CO concentrations and respiratory health were estimated using random intercept regression models. Respiratory symptoms (cough, phlegm, wheeze, or chest tightness) during the previous 6 months were positively associated with breath CO measured at the same time of symptom reporting and with average personal CO concentrations during the follow-up period. CO in exhaled breath at the same time as spirometry was associated with lower lung function [average reduction in FEV1 (forced expiratory volume in 1 sec) for a 10% increase in CO was 3.33 mL (95% CI: -0.86, -5.81)]. Lung function measures were not significantly associated with average postintervention personal CO concentrations. Our results provide further support for the effects of HAP exposures on airway inflammation. Further longitudinal research modeling continuous exposure to particulate matter against lung function will help us understand more fully the impact of HAP on COPD.

  18. Early diagnosis of thoracolumbar spine fractures in children. A prospective study.

    PubMed

    Leroux, J; Vivier, P-H; Ould Slimane, M; Foulongne, E; Abu-Amara, S; Lechevallier, J; Griffet, J

    2013-02-01

    Early detection of spine fractures in children is difficult because the clinical examination does not always raise worrisome symptoms and the vertebrae are still cartilaginous, and consequently incompletely visualized on routine X-rays. Therefore, diagnosis is often delayed or missed. The search for a "breath arrest" sensation at the moment of the trauma improves early detection of thoracolumbar spine fractures in children. This was a prospective monocentric study including all children consulting at the paediatric emergency unit of a single university hospital with a thoracolumbar spine trauma between January 2008 and March 2009. All children had the same care. Pain was quantified when they arrived using the visual analog scale. Clinical examination searched for a "breath arrest" sensation at the moment of the trauma and noted the circumstances of the accident. X-rays and MRI were done in all cases. Fifty children were included with a mean age of 11.4 years. Trauma occurred during games or sports in 94% of the cases. They fell on the back in 72% cases. Twenty-three children (46%) had fractures on the MRI, with a mean number of four fractured vertebrae (range, 1-10). Twenty-one of them (91%) had a "breath arrest" sensation. Fractures were not visualized on X-rays in five cases (22%). Twenty-seven children had no fracture; 19 of them (70%) did not feel a "breath arrest". Fractures were suspected on X-rays in 15 cases (56%). The search for a "breath arrest" sensation at the moment of injury improves early detection of thoracolumbar spine fractures in children (Se=87%, Sp=67%, PPV=69%, NPV=86%). When no fracture is apparent on X-rays and no "breath arrest" sensation is expressed by the child, the clinician can be sure there is no fracture (Se=26%, Sp=100%, PPV=100%, NPV=53%). Level III. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  19. Atropine microdialysis within or near the pre-Bötzinger Complex increases breathing frequency more during wakefulness than during NREM sleep

    PubMed Central

    Muere, Clarissa; Neumueller, Suzanne; Miller, Justin; Olesiak, Samantha; Hodges, Matthew R.; Pan, Lawrence

    2013-01-01

    Normal activity of neurons within the medullary ventral respiratory column (VRC) in or near the pre-Bötzinger Complex (preBötC) is dependent on the balance of inhibitory and excitatory neuromodulators acting at their respective receptors. The role of cholinergic neuromodulation during awake and sleep states is unknown. Accordingly, our objective herein was to test the hypotheses that attenuation of cholinergic modulation of VRC/preBötC neurons in vivo with atropine would: 1) decrease breathing frequency more while awake than during non-rapid-eye-movement (NREM) sleep and 2) increase other excitatory neuromodulators. To test these hypotheses, we unilaterally dialyzed mock cerebrospinal fluid (mCSF) or 50 mM atropine in mCSF in or near the preBötC region of adult goats during the awake (n = 9) and NREM sleep (n = 7) states. Breathing was monitored, and effluent dialysate was collected for analysis of multiple neurochemicals. Compared with dialysis of mCSF alone, atropine increased (P < 0.05) breathing frequency while awake during the day [+10 breaths (br)/min] and at night (+9 br/min) and, to a lesser extent, during NREM sleep (+5 br/min). Atropine increased (P < 0.05) effluent concentrations of serotonin (5-HT), substance P (SP), and glycine during the day and at night. When atropine was dialyzed in one preBötC and mCSF in the contralateral preBötC, 5-HT and SP increased only at the site of atropine dialysis. We conclude: 1) attenuation of a single neuromodulator results in local changes in other neuromodulators that affect ventilatory control, 2) effects of perturbations of cholinergic neuromodulation on breathing are state-dependent, and 3) interpretation of perturbations in vivo requires consideration of direct and indirect effects. PMID:23271698

  20. Investigating axial diffusion in cylindrical pores using confocal single-particle fluorescence correlation spectroscopy.

    PubMed

    Chen, Fang; Neupane, Bhanu; Li, Peiyuan; Su, Wei; Wang, Gufeng

    2016-08-01

    We explored the feasibility of using confocal fluorescence correlation spectroscopy to study small nanoparticle diffusion in hundred-nanometer-sized cylindrical pores. By modeling single particle diffusion in tube-like confined three-dimensional space aligned parallel to the confocal optical axis, we showed that two diffusion dynamics can be observed in both original intensity traces and the autocorrelation functions (ACFs): the confined two-dimensional lateral diffusion and the unconfined one-dimensional (1D) axial diffusion. The separation of the axial and confined lateral diffusion dynamics provides an opportunity to study diffusions in different dimensions separately. We further experimentally studied 45 nm carboxylated polystyrene particles diffusing in 300 nm alumina pores. The experimental data showed consistency with the simulation. To extract the accurate axial diffusion coefficient, we found that a 1D diffusion model with a Lorentzian axial collection profile needs to be used to analyze the experimental ACFs. The diffusion of the 45 nm nanoparticles in polyethyleneglycol-passivated 300 nm pores slowed down by a factor of ∼2, which can be satisfactorily explained by hydrodynamic frictions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Expanding the calculation of activation volumes: Self-diffusion in liquid water

    NASA Astrophysics Data System (ADS)

    Piskulich, Zeke A.; Mesele, Oluwaseun O.; Thompson, Ward H.

    2018-04-01

    A general method for calculating the dependence of dynamical time scales on macroscopic thermodynamic variables from a single set of simulations is presented. The approach is applied to the pressure dependence of the self-diffusion coefficient of liquid water as a particularly useful illustration. It is shown how the activation volume associated with diffusion can be obtained directly from simulations at a single pressure, avoiding approximations that are typically invoked.

  2. [Examination of upper abdominal region in high spatial resolution diffusion-weighted imaging using 3-Tesla MRI].

    PubMed

    Terada, Masaki; Matsushita, Hiroki; Oosugi, Masanori; Inoue, Kazuyasu; Yaegashi, Taku; Anma, Takeshi

    2009-03-20

    The advantage of the higher signal-to-noise ratio (SNR) of 3-Tesla magnetic resonance imaging (3-Tesla) has the possibility of contributing to the improvement of high spatial resolution without causing image deterioration. In this study, we compared SNR and the apparent diffusion coefficient (ADC) value with 3-Tesla as the condition in the diffusion-weighted image (DWI) parameter of the 1.5-Tesla magnetic resonance imaging (1.5-Tesla) and we examined the high spatial resolution images in the imaging method [respiratory-triggering (RT) method and breath free (BF) method] and artifact (motion and zebra) in the upper abdominal region of DWI at 3-Tesla. We have optimized scan parameters based on phantom and in vivo study. As a result, 3-Tesla was able to obtain about 1.5 times SNR in comparison with the 1.5-Tesla, ADC value had few differences. Moreover, the RT method was effective in correcting the influence of respiratory movement in comparison with the BF method, and image improvement by the effective acquisition of SNR and reduction of the artifact were provided. Thus, DWI of upper abdominal region was a useful sequence for the high spatial resolution in 3-Tesla.

  3. “A Breath of Fresh Air Worth Spreading”: Media Coverage of Retailer Abandonment of Tobacco Sales

    PubMed Central

    Offen, Naphtali; Yerger, Valerie B.; Malone, Ruth E.

    2014-01-01

    Objectives. Media play an important role in the diffusion of innovations by spreading knowledge of their relative advantages. We examined media coverage of retailers abandoning tobacco sales to explore whether this innovation might be further diffused by media accounts. Methods. We searched online media databases (Lexis Nexis, Proquest, and Access World News) for articles published from 1995 to 2011, coding retrieved items through a collaborative process. We analyzed the volume, type, provenance, prominence, and content of coverage. Results. We found 429 local and national news items. Two retailers who were the first in their category to end tobacco sales received the most coverage and the majority of prominent coverage. News items cited positive potential impacts of the decision more often than negative potential impacts, and frequently referred to tobacco-caused disease, death, or addiction. Letters to the editor and editorials were overwhelmingly supportive. Conclusions. The content of media coverage about retailers ending tobacco sales could facilitate broader diffusion of this policy innovation, contributing to the denormalization of tobacco and moving society closer to ending the tobacco epidemic. Media advocacy could increase and enhance such coverage. PMID:24432885

  4. Optimizing mini-ridge filter thickness to reduce proton treatment times in a spot-scanning synchrotron system.

    PubMed

    Courneyea, Lorraine; Beltran, Chris; Tseung, Hok Seum Wan Chan; Yu, Juan; Herman, Michael G

    2014-06-01

    Study the contributors to treatment time as a function of Mini-Ridge Filter (MRF) thickness to determine the optimal choice for breath-hold treatment of lung tumors in a synchrotron-based spot-scanning proton machine. Five different spot-scanning nozzles were simulated in TOPAS: four with MRFs of varying maximal thicknesses (6.15-24.6 mm) and one with no MRF. The MRFs were designed with ridges aligned along orthogonal directions transverse to the beam, with the number of ridges (4-16) increasing with MRF thickness. The material thickness given by these ridges approximately followed a Gaussian distribution. Using these simulations, Monte Carlo data were generated for treatment planning commissioning. For each nozzle, standard and stereotactic (SR) lung phantom treatment plans were created and assessed for delivery time and plan quality. Use of a MRF resulted in a reduction of the number of energy layers needed in treatment plans, decreasing the number of synchrotron spills needed and hence the treatment time. For standard plans, the treatment time per field without a MRF was 67.0 ± 0.1 s, whereas three of the four MRF plans had treatment times of less than 20 s per field; considered sufficiently low for a single breath-hold. For SR plans, the shortest treatment time achieved was 57.7 ± 1.9 s per field, compared to 95.5 ± 0.5 s without a MRF. There were diminishing gains in time reduction as the MRF thickness increased. Dose uniformity of the PTV was comparable across all plans; however, when the plans were normalized to have the same coverage, dose conformality decreased with MRF thickness, as measured by the lung V20%. Single breath-hold treatment times for plans with standard fractionation can be achieved through the use of a MRF, making this a viable option for motion mitigation in lung tumors. For stereotactic plans, while a MRF can reduce treatment times, multiple breath-holds would still be necessary due to the limit imposed by the proton extraction time. To balance treatment time and normal tissue dose, the ideal MRF choice was shown to be the thinnest option that is able to achieve the desired breath-hold timing.

  5. Appearance of radial breathing modes in Raman spectra of multi-walled carbon nanotubes upon laser illumination

    NASA Astrophysics Data System (ADS)

    Rai, Padmnabh; Mohapatra, Dipti R.; Hazra, K. S.; Misra, D. S.; Ghatak, Jay; Satyam, P. V.

    2008-03-01

    The Raman spectra of the multi-walled carbon nanotubes are studied with the laser power of 5-20 mW. We observe the Raman bands at ˜1352, 1581, 1607, and 2700 cm -1 with 5 mW laser power. As the laser power is increased to 10, 15 and 20 mW, the radial breathing modes (RBMs) of the single wall carbon nanotubes (SWNTs) appear in the range 200-610 cm -1. The diameter corresponding to the highest RBM is ˜0.37 nm, the lowest reported so far. The RBMs are attributed to the local synthesis of the SWNTs at the top surface of the samples at higher laser power.

  6. Multiview 3-D Echocardiography Fusion with Breath-Hold Position Tracking Using an Optical Tracking System.

    PubMed

    Punithakumar, Kumaradevan; Hareendranathan, Abhilash R; McNulty, Alexander; Biamonte, Marina; He, Allen; Noga, Michelle; Boulanger, Pierre; Becher, Harald

    2016-08-01

    Recent advances in echocardiography allow real-time 3-D dynamic image acquisition of the heart. However, one of the major limitations of 3-D echocardiography is the limited field of view, which results in an acquisition insufficient to cover the whole geometry of the heart. This study proposes the novel approach of fusing multiple 3-D echocardiography images using an optical tracking system that incorporates breath-hold position tracking to infer that the heart remains at the same position during different acquisitions. In six healthy male volunteers, 18 pairs of apical/parasternal 3-D ultrasound data sets were acquired during a single breath-hold as well as in subsequent breath-holds. The proposed method yielded a field of view improvement of 35.4 ± 12.5%. To improve the quality of the fused image, a wavelet-based fusion algorithm was developed that computes pixelwise likelihood values for overlapping voxels from multiple image views. The proposed wavelet-based fusion approach yielded significant improvement in contrast (66.46 ± 21.68%), contrast-to-noise ratio (49.92 ± 28.71%), signal-to-noise ratio (57.59 ± 47.85%) and feature count (13.06 ± 7.44%) in comparison to individual views. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  7. Cu diffusion in single-crystal and polycrystalline TiN barrier layers: A high-resolution experimental study supported by first-principles calculations

    NASA Astrophysics Data System (ADS)

    Mühlbacher, Marlene; Bochkarev, Anton S.; Mendez-Martin, Francisca; Sartory, Bernhard; Chitu, Livia; Popov, Maxim N.; Puschnig, Peter; Spitaler, Jürgen; Ding, Hong; Schalk, Nina; Lu, Jun; Hultman, Lars; Mitterer, Christian

    2015-08-01

    Dense single-crystal and polycrystalline TiN/Cu stacks were prepared by unbalanced DC magnetron sputter deposition at a substrate temperature of 700 °C and a pulsed bias potential of -100 V. The microstructural variation was achieved by using two different substrate materials, MgO(001) and thermally oxidized Si(001), respectively. Subsequently, the stacks were subjected to isothermal annealing treatments at 900 °C for 1 h in high vacuum to induce the diffusion of Cu into the TiN. The performance of the TiN diffusion barrier layers was evaluated by cross-sectional transmission electron microscopy in combination with energy-dispersive X-ray spectrometry mapping and atom probe tomography. No Cu penetration was evident in the single-crystal stack up to annealing temperatures of 900 °C, due to the low density of line and planar defects in single-crystal TiN. However, at higher annealing temperatures when diffusion becomes more prominent, density-functional theory calculations predict a stoichiometry-dependent atomic diffusion mechanism of Cu in bulk TiN, with Cu diffusing on the N sublattice for the experimental N/Ti ratio. In comparison, localized diffusion of Cu along grain boundaries in the columnar polycrystalline TiN barriers was detected after the annealing treatment. The maximum observed diffusion length was approximately 30 nm, yielding a grain boundary diffusion coefficient of the order of 10-16 cm2 s-1 at 900 °C. This is 10 to 100 times less than for comparable underdense polycrystalline TiN coatings deposited without external substrate heating or bias potential. The combined numerical and experimental approach presented in this paper enables the contrasting juxtaposition of diffusion phenomena and mechanisms in two TiN coatings, which differ from each other only in the presence of grain boundaries.

  8. Hypersonic Materials and Structures

    NASA Technical Reports Server (NTRS)

    Glass, David E.

    2016-01-01

    Thermal protection systems (TPS) and hot structures are required for a range of hypersonic vehicles ranging from ballistic reentry to hypersonic cruise vehicles, both within Earth's atmosphere and non-Earth atmospheres. The focus of this presentation is on air breathing hypersonic vehicles in the Earth's atmosphere. This includes single-stage to orbit (SSTO), two-stage to orbit (TSTO) accelerators, access to space vehicles, and hypersonic cruise vehicles. This paper will start out with a brief discussion of aerodynamic heating and thermal management techniques to address the high heating, followed by an overview of TPS for rocket-launched and air-breathing vehicles. The argument is presented that as we move from rocket-based vehicles to air-breathing vehicles, we need to move away from the insulated airplane approach used on the Space Shuttle Orbiter to a wide range of TPS and hot structure approaches. The primary portion of the paper will discuss issues and design options for CMC TPS and hot structure components, including leading edges, acreage TPS, and control surfaces. The current state-of-the-art will be briefly discussed for some of the components.

  9. Controlled breathing with or without peppermint aromatherapy for postoperative nausea and/or vomiting symptom relief: a randomized controlled trial.

    PubMed

    Sites, Debra S; Johnson, Nancy T; Miller, Jacqueline A; Torbush, Pauline H; Hardin, Janis S; Knowles, Susan S; Nance, Jennifer; Fox, Tara H; Tart, Rebecca Creech

    2014-02-01

    With little scientific evidence to support use of aromatherapy for postoperative nausea and/or vomiting (PONV) symptoms, this study evaluated controlled breathing with peppermint aromatherapy (AR) and controlled breathing alone (CB) for PONV relief. A single blind randomized control trial design was used. On initial PONV complaint, symptomatic subjects received either CB (n = 16) or AR (n = 26) intervention based on randomization at enrollment. A second treatment was repeated at 5 minutes if indicated. Final assessment occurred 10 minutes post initial treatment. Rescue medication was offered for persistent symptoms. Among eligible subjects, PONV incidence was 21.4% (42/196). Gender was the only risk factor contributing to PONV symptoms (P = .0024). Though not statistically significant, CB was more efficacious than AR, 62.5% versus 57.7%, respectively. CB can be initiated without delay as an alternative to prescribed antiemetics. Data also support use of peppermint AR in conjunction with CB for PONV relief. Copyright © 2014 American Society of PeriAnesthesia Nurses. Published by Elsevier Inc. All rights reserved.

  10. Specialized physiological studies in support of manned space flight

    NASA Technical Reports Server (NTRS)

    Luft, U. C.

    1973-01-01

    The areas of physiological research reported include: (1) evaluation of the single-breath method for determining cardiac output, (2) optimum protocol for the assessment of cardio-pulmonary competence, (3) body fluids and electrolytes under conditions of single and combined stress, (4) re-evaluation of the open-circuit method for measuring metabolic rate with regard to the alleged metabolic production of gaseous nitrogen, and (5) the use of the forced-oscillation method to determine total respiratory conductance in healthy subjects and pulmonary patients.

  11. Active cycle of breathing technique for cystic fibrosis.

    PubMed

    Mckoy, Naomi A; Wilson, Lisa M; Saldanha, Ian J; Odelola, Olaide A; Robinson, Karen A

    2016-07-05

    People with cystic fibrosis experience chronic airway infections as a result of mucus build up within the lungs. Repeated infections often cause lung damage and disease. Airway clearance therapies aim to improve mucus clearance, increase sputum production, and improve airway function. The active cycle of breathing technique (also known as ACBT) is an airway clearance method that uses a cycle of techniques to loosen airway secretions including breathing control, thoracic expansion exercises, and the forced expiration technique. This is an update of a previously published review. To compare the clinical effectiveness of the active cycle of breathing technique with other airway clearance therapies in cystic fibrosis. We searched the Cochrane Cystic Fibrosis Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. We also searched the reference lists of relevant articles and reviews.Date of last search: 25 April 2016. Randomised or quasi-randomised controlled clinical studies, including cross-over studies, comparing the active cycle of breathing technique with other airway clearance therapies in cystic fibrosis. Two review authors independently screened each article, abstracted data and assessed the risk of bias of each study. Our search identified 62 studies, of which 19 (440 participants) met the inclusion criteria. Five randomised controlled studies (192 participants) were included in the meta-analysis; three were of cross-over design. The 14 remaining studies were cross-over studies with inadequate reports for complete assessment. The study size ranged from seven to 65 participants. The age of the participants ranged from six to 63 years (mean age 22.33 years). In 13 studies, follow up lasted a single day. However, there were two long-term randomised controlled studies with follow up of one to three years. Most of the studies did not report on key quality items, and therefore, have an unclear risk of bias in terms of random sequence generation, allocation concealment, and outcome assessor blinding. Due to the nature of the intervention, none of the studies blinded participants or the personnel applying the interventions. However, most of the studies reported on all planned outcomes, had adequate follow up, assessed compliance, and used an intention-to-treat analysis.Included studies compared the active cycle of breathing technique with autogenic drainage, airway oscillating devices, high frequency chest compression devices, conventional chest physiotherapy, and positive expiratory pressure. Preference of technique varied: more participants preferred autogenic drainage over the active cycle of breathing technique; more preferred the active cycle of breathing technique over airway oscillating devices; and more were comfortable with the active cycle of breathing technique versus high frequency chest compression. No significant difference was seen in quality of life, sputum weight, exercise tolerance, lung function, or oxygen saturation between the active cycle of breathing technique and autogenic drainage or between the active cycle of breathing technique and airway oscillating devices. There was no significant difference in lung function and the number of pulmonary exacerbations between the active cycle of breathing technique alone or in conjunction with conventional chest physiotherapy. All other outcomes were either not measured or had insufficient data for analysis. There is insufficient evidence to support or reject the use of the active cycle of breathing technique over any other airway clearance therapy. Five studies, with data from eight different comparators, found that the active cycle of breathing technique was comparable with other therapies in outcomes such as participant preference, quality of life, exercise tolerance, lung function, sputum weight, oxygen saturation, and number of pulmonary exacerbations. Longer-term studies are needed to more adequately assess the effects of the active cycle of breathing technique on outcomes important for people with cystic fibrosis such as quality of life and preference.

  12. High blood oxygen affinity in the air-breathing swamp eel Monopterus albus.

    PubMed

    Damsgaard, Christian; Findorf, Inge; Helbo, Signe; Kocagoz, Yigit; Buchanan, Rasmus; Huong, Do Thi Thanh; Weber, Roy E; Fago, Angela; Bayley, Mark; Wang, Tobias

    2014-12-01

    The Asian swamp eel (Monopterus albus, Zuiew 1793) is a facultative air-breathing fish with reduced gills. Previous studies have shown that gas exchange seems to occur across the epithelium of the buccopharyngeal cavity, the esophagus and the integument, resulting in substantial diffusion limitations that must be compensated by adaptations in others steps of the O₂ transport system to secure adequate O₂ delivery to the respiring tissues. We therefore investigated O₂ binding properties of whole blood, stripped hemoglobin (Hb), two major isoHb components and the myoglobin (Mb) from M. albus. Whole blood was sampled using indwelling catheters for blood gas analysis and determination of O₂ equilibrium curves. Hb was purified to assess the effects of endogenous allosteric effectors, and Mb was isolated from heart and skeletal muscle to determine its O₂ binding properties. The blood of M. albus has a high O₂ carrying capacity [hematocrit (Hct) of 42.4±4.5%] and binds O₂ with an unusually high affinity (P₅₀=2.8±0.4mmHg at 27°C and pH7.7), correlating with insensitivity of the Hb to the anionic allosteric effectors that normally decrease Hb-O₂ affinity. In addition, Mb is present at high concentrations in both heart and muscle (5.16±0.99 and 1.08±0.19mg ∙ g wet tissue⁻¹, respectively). We suggest that the high Hct and high blood O₂ affinity serve to overcome the low diffusion capacity in the relatively inefficient respiratory surfaces, while high Hct and Mb concentration aid in increasing the O₂ flux from the blood to the muscles. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Automatic detection of respiration rate from ambulatory single-lead ECG.

    PubMed

    Boyle, Justin; Bidargaddi, Niranjan; Sarela, Antti; Karunanithi, Mohan

    2009-11-01

    Ambulatory electrocardiography is increasingly being used in clinical practice to detect abnormal electrical behavior of the heart during ordinary daily activities. The utility of this monitoring can be improved by deriving respiration, which previously has been based on overnight apnea studies where patients are stationary, or the use of multilead ECG systems for stress testing. We compared six respiratory measures derived from a single-lead portable ECG monitor with simultaneously measured respiration air flow obtained from an ambulatory nasal cannula respiratory monitor. Ten controlled 1-h recordings were performed covering activities of daily living (lying, sitting, standing, walking, jogging, running, and stair climbing) and six overnight studies. The best method was an average of a 0.2-0.8 Hz bandpass filter and RR technique based on lengthening and shortening of the RR interval. Mean error rates with the reference gold standard were +/-4 breaths per minute (bpm) (all activities), +/-2 bpm (lying and sitting), and +/-1 breath per minute (overnight studies). Statistically similar results were obtained using heart rate information alone (RR technique) compared to the best technique derived from the full ECG waveform that simplifies data collection procedures. The study shows that respiration can be derived under dynamic activities from a single-lead ECG without significant differences from traditional methods.

  14. External and Intraparticle Diffusion of Coumarin 102 with Surfactant in the ODS-silica Gel/water System by Single Microparticle Injection and Confocal Fluorescence Microspectroscopy.

    PubMed

    Nakatani, Kiyoharu; Matsuta, Emi

    2015-01-01

    The release mechanism of coumarin 102 from a single ODS-silica gel microparticle into the water phase in the presence of Triton X-100 was investigated by confocal fluorescence microspectroscopy combined with the single microparticle injection technique. The release rate significantly depended on the Triton X-100 concentration in the water phase and was not limited by diffusion in the pores of the microparticle. The release rate constant was inversely proportional to the microparticle radius squared, indicating that the rate-determining step is the external diffusion between the microparticle and the water phase.

  15. Phase transition in conservative diffusive contact processes

    NASA Astrophysics Data System (ADS)

    Fiore, Carlos E.; de Oliveira, Mário J.

    2004-10-01

    We determine the phase diagrams of conservative diffusive contact processes by means of numerical simulations. These models are versions of the ordinary diffusive single-creation, pair-creation, and triplet-creation contact processes in which the particle number is conserved. The transition between the frozen and active states was determined by studying the system in the subcritical regime, and the nature of the transition, whether continuous or first order, was determined by looking at the fractal dimension of the critical cluster. For the single-creation model the transition remains continuous for any diffusion rate. For pair- and triplet-creation models, however, the transition becomes first order for high enough diffusion rate. Our results indicate that in the limit of infinite diffusion rate the jump in density equals 2/3 for the pair-creation model and 5/6 for the triplet-creation model.

  16. Ensemble and single particle fluorimetric techniques in concerted action to study the diffusion and aggregation of the glycine receptor α3 isoforms in the cell plasma membrane.

    PubMed

    Notelaers, Kristof; Smisdom, Nick; Rocha, Susana; Janssen, Daniel; Meier, Jochen C; Rigo, Jean-Michel; Hofkens, Johan; Ameloot, Marcel

    2012-12-01

    The spatio-temporal membrane behavior of glycine receptors (GlyRs) is known to be of influence on receptor homeostasis and functionality. In this work, an elaborate fluorimetric strategy was applied to study the GlyR α3K and L isoforms. Previously established differential clustering, desensitization and synaptic localization of these isoforms imply that membrane behavior is crucial in determining GlyR α3 physiology. Therefore diffusion and aggregation of homomeric α3 isoform-containing GlyRs were studied in HEK 293 cells. A unique combination of multiple diffraction-limited ensemble average methods and subdiffraction single particle techniques was used in order to achieve an integrated view of receptor properties. Static measurements of aggregation were performed with image correlation spectroscopy (ICS) and, single particle based, direct stochastic optical reconstruction microscopy (dSTORM). Receptor diffusion was measured by means of raster image correlation spectroscopy (RICS), temporal image correlation spectroscopy (TICS), fluorescence recovery after photobleaching (FRAP) and single particle tracking (SPT). The results show a significant difference in diffusion coefficient and cluster size between the isoforms. This reveals a positive correlation between desensitization and diffusion and disproves the notion that receptor aggregation is a universal mechanism for accelerated desensitization. The difference in diffusion coefficient between the clustering GlyR α3L and the non-clustering GlyR α3K cannot be explained by normal diffusion. SPT measurements indicate that the α3L receptors undergo transient trapping and directed motion, while the GlyR α3K displays mild hindered diffusion. These findings are suggestive of differential molecular interaction of the isoforms after incorporation in the membrane. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Transport of neutral solute across articular cartilage: the role of zonal diffusivities.

    PubMed

    Arbabi, V; Pouran, B; Weinans, H; Zadpoor, A A

    2015-07-01

    Transport of solutes through diffusion is an important metabolic mechanism for the avascular cartilage tissue. Three types of interconnected physical phenomena, namely mechanical, electrical, and chemical, are all involved in the physics of transport in cartilage. In this study, we use a carefully designed experimental-computational setup to separate the effects of mechanical and chemical factors from those of electrical charges. Axial diffusion of a neutral solute Iodixanol into cartilage was monitored using calibrated microcomputed tomography micro-CT images for up to 48 hr. A biphasic-solute computational model was fitted to the experimental data to determine the diffusion coefficients of cartilage. Cartilage was modeled either using one single diffusion coefficient (single-zone model) or using three diffusion coefficients corresponding to superficial, middle, and deep cartilage zones (multizone model). It was observed that the single-zone model cannot capture the entire concentration-time curve and under-predicts the near-equilibrium concentration values, whereas the multizone model could very well match the experimental data. The diffusion coefficient of the superficial zone was found to be at least one order of magnitude larger than that of the middle zone. Since neutral solutes were used, glycosaminoglycan (GAG) content cannot be the primary reason behind such large differences between the diffusion coefficients of the different cartilage zones. It is therefore concluded that other features of the different cartilage zones such as water content and the organization (orientation) of collagen fibers may be enough to cause large differences in diffusion coefficients through the cartilage thickness.

  18. Double-blind randomized controlled trial of rifaximin for persistent symptoms in patients with celiac disease.

    PubMed

    Chang, Matthew S; Minaya, Maria T; Cheng, Jianfeng; Connor, Bradley A; Lewis, Suzanne K; Green, Peter H R

    2011-10-01

    Small intestinal bacterial overgrowth (SIBO) is one cause of a poor response to a gluten-free diet (GFD) and persistent symptoms in celiac disease. Rifaximin has been reported to improve symptoms in non-controlled trials. To determine the effect of rifaximin on gastrointestinal symptoms and lactulose-hydrogen breath tests in patients with poorly responsive celiac disease. A single-center, double-blind, randomized, controlled trial of patients with biopsy-proven celiac disease and persistent gastrointestinal symptoms despite a GFD was conducted. Patients were randomized to placebo (n = 25) or rifaximin (n = 25) 1,200 mg daily for 10 days. They completed the Gastrointestinal Symptom Rating Scale (GSRS) and underwent lactulose-hydrogen breath tests at weeks 0, 2, and 12. An abnormal breath test was defined as: (1) a rise in hydrogen of ≥20 parts per million (ppm) within 100 min, or (2) two peaks ≥20 ppm over baseline. GSRS scores were unaffected by treatment with rifaximin, regardless of baseline breath tests. In a multivariable regression model, the duration of patients' gastrointestinal symptoms significantly predicted their overall GSRS scores (estimate 0.029, p < 0.006). According to criteria 1 and 2, respectively, SIBO was present in 55 and 8% of patients at baseline, intermittently present in 28 and 20% given placebo, and 28 and 12% given rifaximin. There was no difference in the prevalence of SIBO between placebo and treatment groups at weeks 2 and 12. Rifaximin does not improve patients' reporting of gastrointestinal symptoms and hydrogen breath tests do not reliably identify who will respond to antibiotic therapy.

  19. Evaluation of needle trap micro-extraction and automatic alveolar sampling for point-of-care breath analysis.

    PubMed

    Trefz, Phillip; Rösner, Lisa; Hein, Dietmar; Schubert, Jochen K; Miekisch, Wolfram

    2013-04-01

    Needle trap devices (NTDs) have shown many advantages such as improved detection limits, reduced sampling time and volume, improved stability, and reproducibility if compared with other techniques used in breath analysis such as solid-phase extraction and solid-phase micro-extraction. Effects of sampling flow (2-30 ml/min) and volume (10-100 ml) were investigated in dry gas standards containing hydrocarbons, aldehydes, and aromatic compounds and in humid breath samples. NTDs contained (single-bed) polymer packing and (triple-bed) combinations of divinylbenzene/Carbopack X/Carboxen 1000. Substances were desorbed from the NTDs by means of thermal expansion and analyzed by gas chromatography-mass spectrometry. An automated CO2-controlled sampling device for direct alveolar sampling at the point-of-care was developed and tested in pilot experiments. Adsorption efficiency for small volatile organic compounds decreased and breakthrough increased when sampling was done with polymer needles from a water-saturated matrix (breath) instead from dry gas. Humidity did not affect analysis with triple-bed NTDs. These NTDs showed only small dependencies on sampling flow and low breakthrough from 1-5 %. The new sampling device was able to control crucial parameters such as sampling flow and volume. With triple-bed NTDs, substance amounts increased linearly with increasing sample volume when alveolar breath was pre-concentrated automatically. When compared with manual sampling, automatic sampling showed comparable or better results. Thorough control of sampling and adequate choice of adsorption material is mandatory for application of needle trap micro-extraction in vivo. The new CO2-controlled sampling device allows direct alveolar sampling at the point-of-care without the need of any additional sampling, storage, or pre-concentration steps.

  20. An electronic nose in the discrimination of patients with non-small cell lung cancer and COPD.

    PubMed

    Dragonieri, Silvano; Annema, Jouke T; Schot, Robert; van der Schee, Marc P C; Spanevello, Antonio; Carratú, Pierluigi; Resta, Onofrio; Rabe, Klaus F; Sterk, Peter J

    2009-05-01

    Exhaled breath contains thousands of gaseous volatile organic compounds (VOCs) that may be used as non-invasive markers of lung disease. The electronic nose analyzes VOCs by composite nano-sensor arrays with learning algorithms. It has been shown that an electronic nose can distinguish the VOCs pattern in exhaled breath of lung cancer patients from healthy controls. We hypothesized that an electronic nose can discriminate patients with lung cancer from COPD patients and healthy controls by analyzing the VOC-profile in exhaled breath. 30 subjects participated in a cross-sectional study: 10 patients with non-small cell lung cancer (NSCLC, [age 66.4+/-9.0, FEV(1) 86.3+/-20.7]), 10 patients with COPD (age 61.4+/-5.5, FEV(1) 70.0+/-14.8) and 10 healthy controls (age 58.3+/-8.1, FEV(1) 108.9+/-14.6). After 5 min tidal breathing through a non-rebreathing valve with inspiratory VOC-filter, subjects performed a single vital capacity maneuver to collect dried exhaled air into a Tedlar bag. The bag was connected to the electronic nose (Cyranose 320) within 10 min, with VOC-filtered room air as baseline. The smellprints were analyzed by onboard statistical software. Smellprints from NSCLC patients clustered distinctly from those of COPD subjects (cross validation value [CVV]: 85%; M-distance: 3.73). NSCLC patients could also be discriminated from healthy controls in duplicate measurements (CVV: 90% and 80%, respectively; M-distance: 2.96 and 2.26). VOC-patterns of exhaled breath discriminates patients with lung cancer from COPD patients as well as healthy controls. The electronic nose may qualify as a non-invasive diagnostic tool for lung cancer in the future.

  1. Comparison of breathing gated CT images generated using a 5DCT technique and a commercial clinical protocol in a porcine model

    PubMed Central

    O’Connell, Dylan P.; Thomas, David H.; Dou, Tai H.; Lamb, James M.; Feingold, Franklin; Low, Daniel A.; Fuld, Matthew K.; Sieren, Jered P.; Sloan, Chelsea M.; Shirk, Melissa A.; Hoffman, Eric A.; Hofmann, Christian

    2015-01-01

    Purpose: To demonstrate that a “5DCT” technique which utilizes fast helical acquisition yields the same respiratory-gated images as a commercial technique for regular, mechanically produced breathing cycles. Methods: Respiratory-gated images of an anesthetized, mechanically ventilated pig were generated using a Siemens low-pitch helical protocol and 5DCT for a range of breathing rates and amplitudes and with standard and low dose imaging protocols. 5DCT reconstructions were independently evaluated by measuring the distances between tissue positions predicted by a 5D motion model and those measured using deformable registration, as well by reconstructing the originally acquired scans. Discrepancies between the 5DCT and commercial reconstructions were measured using landmark correspondences. Results: The mean distance between model predicted tissue positions and deformably registered tissue positions over the nine datasets was 0.65 ± 0.28 mm. Reconstructions of the original scans were on average accurate to 0.78 ± 0.57 mm. Mean landmark displacement between the commercial and 5DCT images was 1.76 ± 1.25 mm while the maximum lung tissue motion over the breathing cycle had a mean value of 27.2 ± 4.6 mm. An image composed of the average of 30 deformably registered images acquired with a low dose protocol had 6 HU image noise (single standard deviation) in the heart versus 31 HU for the commercial images. Conclusions: An end to end evaluation of the 5DCT technique was conducted through landmark based comparison to breathing gated images acquired with a commercial protocol under highly regular ventilation. The techniques were found to agree to within 2 mm for most respiratory phases and most points in the lung. PMID:26133604

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Depauw, N; Patel, S; MacDonald, S

    Purpose: Deep inspiration breath-hold techniques (DIBH) have been shown to carry significant dosimetric advantages in conventional radiotherapy of left-sided breast cancer. The purpose of this study is to evaluate the use of DIBH techniques for post-mastectomy radiation therapy (PMRT) using proton pencil beam scanning (PBS). Method: Ten PMRT patients, with or without breast implant, underwent two helical CT scans: one with free breathing and the other with deep inspiration breath-hold. A prescription of 50.4 Gy(RBE) to the whole chest wall and lymphatics (axillary, supraclavicular, and intramammary nodes) was considered. PBS plans were generated for each patient’s CT scan using Astroid,more » an in-house treatment planning system, with the institution conventional clinical PMRT parameters; that is, using a single en-face field with a spot size varying from 8 mm to 14 mm as a function of energy. Similar optimization parameters were used in both plans in order to ensure appropriate comparison. Results: Regardless of the technique (free breathing or DIBH), the generated plans were well within clinical acceptability. DIBH allowed for higher target coverage with better sparing of the cardiac structures. The lung doses were also slightly improved. While the use of DIBH techniques might be of interest, it is technically challenging as it would require a fast PBS delivery, as well as the synchronization of the beam delivery with a gating system, both of which are not currently available at the institution. Conclusion: DIBH techniques display some dosimetric advantages over free breathing treatment for PBS PMRT patients, which warrants further investigation. Plans will also be generated with smaller spot sizes (2.5 mm to 5.5 mm and 5 mm to 9 mm), corresponding to new generation machines, in order to further quantify the dosimetric advantages of DIBH as a function of spot size.« less

  3. Clinical research on liver reserve function by 13C-phenylalanine breath test in aged patients with chronic liver diseases

    PubMed Central

    2010-01-01

    Background The objective of this study was to investigate whether the 13C-phenylalanine breath test could be useful for the evaluation of hepatic function in elderly volunteers and patients with chronic hepatitis B and liver cirrhosis. Methods L-[1-13C] phenylalanine was administered orally at a dose of 100 mg to 55 elderly patients with liver cirrhosis, 30 patients with chronic hepatitis B and 38 elderly healthy subjects. The breath test was performed at 8 different time points (0, 10, 20, 30, 45, 60, 90, 120 min) to obtain the values of Delta over baseline, percentage 13CO2 exhalation rate and cumulative excretion (Cum). The relationships of the cumulative excretion with the 13C-%dose/h and blood biochemical parameters were investigated. Results The 13C-%dose/h at 20 min and 30 min combined with the cumulative excretion at 60 min and 120 min correlated with hepatic function tests, serum albumin, hemoglobin, platelet and Child-Pugh score. Prothrombin time, total and direct bilirubin were significantly increased, while serum albumin, hemoglobin and platelet, the cumulative excretion at 60 min and 120 min values decreased by degrees of intensity of the disease in Child-Pugh A, B, and C patients (P < 0.01). Conclusions The 13C-phenylalanine breath test can be used as a non-invasive assay to evaluate hepatic function in elderly patients with liver cirrhosis. The 13C-%dose/h at 20 min, at 30 min and cumulative excretion at 60 min may be the key value for determination at a single time-point. 13C-phenylalanine breath test is safe and helpful in distinguishing different stages of hepatic dysfunction for elderly cirrhosis patients. PMID:20459849

  4. In vitro degradation and release characteristics of spin coated thin films of PLGA with a “breath figure” morphology

    PubMed Central

    Ponnusamy, Thiruselvam; Lawson, Louise B.; Freytag, Lucy C.; Blake, Diane A.; Ayyala, Ramesh S.; John, Vijay T.

    2012-01-01

    Poly (lactic-co-glycolic acid) (PLGA) coatings on implant materials are widely used in controlled drug delivery applications. Typically, such coatings are made with non-porous films. Here, we have synthesized a thin PLGA film coating with a highly ordered microporous structure using a simple and inexpensive water templating “breath figure” technique. A single stage process combining spin coating and breath figure process was used to obtain drug incorporated porous thin films. The films were characterized by scanning electron microscope (SEM) to observe the surface and bulk features of porosity and also, degradation pattern of the films. Moreover, the effect of addition of small amount of poly (ethylene glycol) (PEG) into PLGA was characterized. SEM analysis revealed an ordered array of ~2 µm sized pores on the surface with the average film thickness measured to be 20 µm. The incorporation of hydrophilic poly (ethylene glycol) (PEG) enhances pore structure uniformity and facilitates ingress of water into the structure. A five week in vitro degradation study showed a gradual deterioration of the breath figure pores. During the course of degradation, the surface pore structure deteriorates to initially flatten the surface. This is followed by the formation of new pinprick pores that eventually grow into a macroporous film prior to film breakup. Salicylic acid (highly water soluble) and Ibuprofen (sparingly water soluble) were chosen as model drug compounds to characterize release rates, which are higher in films of the breath figure morphology rather than in non-porous films. The results are of significance in the design of biodegradable films used as coatings to modulate delivery. PMID:23507805

  5. The Effect of a Self-Monitored Relaxation Breathing Exercise on Male Adolescent Aggressive Behavior

    ERIC Educational Resources Information Center

    Gaines, Trudi; Barry, Leasha M.

    2008-01-01

    This study sought to contribute to the identification of effective interventions in the area of male adolescent aggressive behavior. Existing research includes both group- and single-case studies implementing treatments which typically include an anger-management component and its attendant relaxation and stress-reduction techniques. The design of…

  6. Efficacy of a Brief Relaxation Training Intervention for Pediatric Recurrent Abdominal Pain

    ERIC Educational Resources Information Center

    Bell, Katrina M.; Meadows, Elizabeth A.

    2013-01-01

    This study is a preliminary investigation of the efficacy of a brief intervention for recurrent abdominal pain (RAP) via a multiple baseline across subjects design. The intervention consisted of a single 1-hour session including psychoeducation and coaching of breathing retraining; the length, duration, and content of the intervention were…

  7. Determination of pressure drop across activated carbon fiber respirator cartridges.

    PubMed

    Balanay, Jo Anne G; Lungu, Claudiu T

    2016-01-01

    Activated carbon fiber (ACF) is considered as an alternative adsorbent to granular activated carbon (GAC) for the development of thinner, lighter, and efficient respirators because of their larger surface area and adsorption capacities, thinner critical bed depth, lighter weight, and fabric form. This study aims to measure the pressure drop across different types of commercially available ACFs in respirator cartridges to determine the ACF composition and density that will result in acceptably breathable respirators. Seven ACF types in cloth (ACFC) and felt (ACFF) forms were tested. ACFs in cartridges were challenged with pre-conditioned constant air flow (43 LPM, 23°C, 50% RH) at different compositions (single- or combination-ACF type) in a test chamber. Pressure drop across ACF cartridges were obtained using a micromanometer, and compared among different cartridge configurations, to those of the GAC cartridge, and to the NIOSH breathing resistance requirements for respirator cartridges. Single-ACF type cartridges filled with any ACFF had pressure drop measurements (23.71-39.93 mmH2O) within the NIOSH inhalation resistance requirement of 40 mmH2O, while those of the ACFC cartridges (85.47±3.67 mmH2O) exceeded twice the limit due possibly to the denser weaving of ACFC fibers. All single ACFF-type cartridges had higher pressure drop compared to the GAC cartridge (23.13±1.14 mmH2O). Certain ACF combinations (2 ACFF or ACFC/ACFF types) resulted to pressure drop (26.39-32.81 mmH2O) below the NIOSH limit. All single-ACFF type and all combination-ACF type cartridges with acceptable pressure drop had much lower adsorbent weights than GAC (≤15.2% of GAC weight), showing potential for light-weight respirator cartridges. 100% ACFC in cartridges may result to respirators with high breathing resistance and, thus, is not recommended. The more dense ACFF and ACFC types may still be possibly used in respirators by combining them with less dense ACFF materials and/or by reducing cartridge bed depth to reduce pressure drop to acceptable levels. ACFF by itself may be more appropriate as adsorbent materials in ACF respirator cartridges in terms of acceptable breathing resistance.

  8. Treatment response of airway clearance assessed by single-breath washout in children with cystic fibrosis.

    PubMed

    Abbas, Chiara; Singer, Florian; Yammine, Sophie; Casaulta, Carmen; Latzin, Philipp

    2013-12-01

    We studied the ability of 4 single-breath gas washout (SBW) tests to measure immediate effects of airway clearance in children with CF. 25 children aged 4-16 years with CF performed pulmonary function tests to assess short-term variability at baseline and response to routine airway clearance. Tidal helium and sulfur hexafluoride (double-tracer gas: DTG) SBW, tidal capnography, tidal and vital capacity nitrogen (N2) SBW and spirometry were applied. We analyzed the gasses' phase III slope (SnIII--normalized for tidal volume) and FEV1 from spirometry. SnIII from tidal DTG-SBW, SnIII from vital capacity N2-SBW, and FEV1 improved significantly after airway clearance. From these tests, individual change of SnIII from tidal DTG-SBW and FEV1 exceeded short-term variability in 10 and 6 children. With the tidal DTG-SBW, an easy and promising test for peripheral gas mixing efficiency, immediate pulmonary function response to airway clearance can be assessed in CF children. Copyright © 2013 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  9. All-optical in-depth detection of the acoustic wave emitted by a single gold nanorod

    NASA Astrophysics Data System (ADS)

    Xu, Feng; Guillet, Yannick; Ravaine, Serge; Audoin, Bertrand

    2018-04-01

    A single gold nanorod dropped on the surface of a silica substrate is used as a transient optoacoustic source of gigahertz hypersounds. We demonstrate the all-optical detection of the as-generated acoustic wave front propagating in the silica substrate. For this purpose, time-resolved femtosecond pump-probe experiments are performed in a reflection configuration. The fundamental breathing mode of the nanorod is detected at 23 GHz by interferometry, and the longitudinal acoustic wave radiated in the silica substrate is detected by time-resolved Brillouin scattering. By tuning the optical probe wavelength from 750 to 900 nm, hypersounds with wavelengths of 260-315 nm are detected in the silica substrate, with corresponding acoustic frequencies in the range of 19-23 GHz. To confirm the origin of these hypersounds, we theoretically analyze the influence of the acoustic excitation spectrum on the temporal envelope of the transient reflectivity. This analysis proves that the acoustic wave detected in the silica substrate results from the excitation of the breathing mode of the nanorod. These results pave the way for performing local in-depth elastic nanoscopy.

  10. First report on the pharmacokinetics of tramadol and O-desmethyltramadol in exhaled breath compared to plasma and oral fluid after a single oral dose.

    PubMed

    Meyer, Markus R; Rosenborg, Staffan; Stenberg, Marta; Beck, Olof

    2015-12-01

    Exhaled breath (EB) is a promising matrix for bioanalysis of non-volatiles and has been routinely implemented for drugs of abuse analysis. Nothing is known regarding the pharmacokinetics of therapeutics and their metabolites in EB. Therefore, we used tramadol as a model drug. Twelve volunteers received a single oral dose of tramadol and repeated sampling of EB, plasma, and oral fluid (OF) was done for 48 h using a particle filter device for EB and the Quantisal-device for OF. Samples were analyzed with LC-MS/MS and the pharmacokinetic correlations between matrices were investigated. The initial tramadol half-life in EB was shorter than in plasma but it reappeared in EB after 8-24 h. The ratio of O-desmethyltramadol to tramadol was considerably lower in EB and OF compared to plasma. This pilot study compared for the first time the pharmacokinetics of a therapeutic drug and active metabolite in different biomatrices including EB and demonstrated its potential for bioanalysis. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Test-retest reliability and repeatability of renal diffusion tensor MRI in healthy subjects.

    PubMed

    Cutajar, Marica; Clayden, Jonathan D; Clark, Christopher A; Gordon, Isky

    2011-12-01

    This study assessed test-retest reliability and repeatability of diffusion tensor imaging (DTI) in the kidneys. Seven healthy volunteers (age range, 19-31 years), were imaged three consecutive times on the same day (short-term reliability) and the same imaging protocol was repeated after a month (long-term reliability). Diffusion-weighted magnetic resonance imaging scans in the coronal-oblique projection of the kidney were acquired on a 1.5 T scanner using a multi-section echo-planar sequence; six contiguous slices each 5 mm thick, diffusion sensitisation along 20 non-collinear directions, TR=730 ms, TE=73 ms and 2 b-values (0 and 400 s mm(-2)). Volunteers were asked to hold their breath throughout each data acquisition (approx. 20 s). The apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values were obtained from maps generated using dedicated software MIStar (Apollo Medical Imaging, Melbourne, Australia). Statistical analyses of both short- and long-term repeats were carried out from which the within-subject coefficient of variation (wsCV) was calculated. The wsCV obtained for both the ADC and FA values were less than 10% in all the analyses carried out. In addition, paired (repeated measures) t-test was used to measure the variation between the diffusion parameters collected from the two scanning sessions a month apart. It showed no significant difference and the wsCV obtained after comparing the first and second scans were found to be smaller than 15% for both ADC and FA. Renal DTI produces reliable and repeatable results which make longitudinal investigation of patients viable. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Measuring molecular motions inside single cells with improved analysis of single-particle trajectories

    NASA Astrophysics Data System (ADS)

    Rowland, David J.; Biteen, Julie S.

    2017-04-01

    Single-molecule super-resolution imaging and tracking can measure molecular motions inside living cells on the scale of the molecules themselves. Diffusion in biological systems commonly exhibits multiple modes of motion, which can be effectively quantified by fitting the cumulative probability distribution of the squared step sizes in a two-step fitting process. Here we combine this two-step fit into a single least-squares minimization; this new method vastly reduces the total number of fitting parameters and increases the precision with which diffusion may be measured. We demonstrate this Global Fit approach on a simulated two-component system as well as on a mixture of diffusing 80 nm and 200 nm gold spheres to show improvements in fitting robustness and localization precision compared to the traditional Local Fit algorithm.

  13. Optimal estimates of the diffusion coefficient of a single Brownian trajectory.

    PubMed

    Boyer, Denis; Dean, David S; Mejía-Monasterio, Carlos; Oshanin, Gleb

    2012-03-01

    Modern developments in microscopy and image processing are revolutionizing areas of physics, chemistry, and biology as nanoscale objects can be tracked with unprecedented accuracy. The goal of single-particle tracking is to determine the interaction between the particle and its environment. The price paid for having a direct visualization of a single particle is a consequent lack of statistics. Here we address the optimal way to extract diffusion constants from single trajectories for pure Brownian motion. It is shown that the maximum likelihood estimator is much more efficient than the commonly used least-squares estimate. Furthermore, we investigate the effect of disorder on the distribution of estimated diffusion constants and show that it increases the probability of observing estimates much smaller than the true (average) value.

  14. Single Molecule Spectral Diffusion in a Solid Detected Via Fluorescence Spectroscopy

    DTIC Science & Technology

    1991-10-15

    other local fields) at the position of the molecule, the spectral jumps may occur because the class II pentacene molecules are coupled to an...and identify by block number) FIELD jGROUP SUB-GROUP_ Single molecule spectroscopy Precision detection Spectral diffusion, Pentacene in p-terphenyl 19...significant increases in detection sensitivity for single pentacene molecules in crystals of p-terphenyl at low temperatures. With the increased signal to

  15. Flame ignition studies of conventional and alternative jet fuels and surrogate components

    NASA Astrophysics Data System (ADS)

    Liu, Ning

    Practical jet fuels are widely used in air-breathing propulsion, but the chemical mechanisms that control their combustion are not yet understood. Thousands of components are contained in conventional and alternative jet fuels, making thus any effort to model their combustion behavior a daunting task. That has been the motivation behind the development of surrogate fuels that contain typically a small number of neat components, whose physical properties and combustion behavior mimic those of the real jet fuel, and whose kinetics could be modeled with increased degree of confidence. Towards that end, a large number of experimental data are required both for the real fuels and the attendant surrogate components that could be used to develop and validate detailed kinetic models. Those kinetic models could be used then upon reduction to model a combustor and eventually optimize its performance. Among all flame phenomena, ignition is rather sensitive to the oxidative and pyrolytic propensity of the fuel as well as to its diffusivity. The counterflow configuration is ideal in probing both the fuel reactivity and diffusivity aspects of the ignition process and it was used in the present work to determine the ignition temperatures of premixed and non-premixed flames of a variety of fuels relevant to air-breathing propulsion. The experiments were performed at atmospheric pressure, elevated unburned fuel mixture temperatures, and various strain rates that were measured locally. Several recent kinetic models were used in direct numerical simulations of the experiments and the computed results were tested against the experimental data. Furthermore, through sensitivity, reaction path, and structure analyses of the computed flames, insight was provided into the dominant mechanisms that control ignition. It was found that ignition is primarily sensitive to fuel diffusion and secondarily sensitive to chemical kinetics and intermediate species diffusivities under the low fuel concentrations. As for the detailed high temperature oxidation chemistry, ignition of normal, branched, and cyclic alkane flames were found to be sensitive largely to H2/CO and C1-C4 small hydrocarbon chemistry, while for branched alkanes fuel-related reactions do have accountable effect on ignition due to the low rate of initial fuel decomposition that limits the overall reactions preceding ignition. Analyses of the computed flame structures revealed that the concentrations of ignition-promoting radicals such as H, HCO, C2H3, and OH, and ignition-inhibiting radicals such as C3H6, aC3H5, and CH3 are key to the occurrence of ignition. Finally, the ignition characteristics of conventional and alternative jet fuels were studied and were to correlate with the chemical classifications and diffusivities of the neat species that are present in the practical fuel.

  16. Association of expiratory airway dysfunction with marked obesity in healthy adult dogs.

    PubMed

    Bach, Jonathan F; Rozanski, Elizabeth A; Bedenice, Daniela; Chan, Daniel L; Freeman, Lisa M; Lofgren, Jennifer L S; Oura, Trisha J; Hoffman, Andrew M

    2007-06-01

    To evaluate the effects of obesity on pulmonary function in healthy adult dogs. 36 Retrievers without cardiopulmonary disease. Dogs were assigned to 1 of 3 groups on the basis of body condition score (1 through 9): nonobese (score, 4.5 to 5.5), moderately obese (score, 6.0 to 6.5), and markedly obese (score, 7.0 to 9.0). Pulmonary function tests performed in conscious dogs included spirometry and measurement of inspiratory and expiratory airway resistance (R(aw)) and specific R(aw) (sR(aw)) during normal breathing and during hyperpnea via head-out whole-body plethysmography. Functional residual capacity (FRC; measured by use of helium dilution), diffusion capacity of lungs for carbon monoxide (DLCO), and arterial blood gas variables (PaO(2), PaCO(2), and alveolar-arterial gradient) were assessed. During normal breathing, body condition score did not influence airway function, DLCO, or arterial blood gas variables. During hyperpnea, expiratory sR(aw) was significantly greater in markedly obese dogs than nonobese dogs and R(aw) was significantly greater in markedly obese dogs, compared with nonobese and moderately obese dogs. Although not significantly different, markedly obese dogs had a somewhat lower FRC, compared with other dogs. In dogs, obesity appeared to cause airflow limitation during the expiratory phase of breathing, but this was only evident during hyperpnea. This suggests that flow limitation is dynamic and likely occurs in the distal (rather than proximal) portions of the airways. Further studies are warranted to localize the flow-limited segment and understand whether obesity is linked to exercise intolerance via airway dysfunction in dogs.

  17. Mechanical indentation improves cerebral blood oxygenation signal quality of functional near-infrared spectroscopy (fNIRS) during breath holding

    NASA Astrophysics Data System (ADS)

    Vogt, William C.; Romero, Edwin; LaConte, Stephen M.; Rylander, Christopher G.

    2013-03-01

    Functional near-infrared spectroscopy (fNIRS) is a well-known technique for non-invasively measuring cerebral blood oxygenation, and many studies have demonstrated that fNIRS signals can be related to cognitive function. However, the fNIRS signal is attenuated by the skin, while scalp blood content has been reported to influence cerebral oxygenation measurements. Mechanical indentation has been shown to increase light transmission through soft tissues by causing interstitial water and blood flow away from the compressed region. To study the effects of indentation on fNIRS, a commercial fNIRS system with 16 emitter/detector pairs was used to measure cerebral blood oxygenation at 2 Hz. This device used diffuse reflectance at 730 nm and 850 nm to calculate deoxy- and oxy-hemoglobin concentrations. A borosilicate glass hemisphere was epoxied over each sensor to function as both an indenter and a lens. After placing the indenter/sensor assembly on the forehead, a pair of plastic bands was placed on top of the fNIRS headband and strapped to the head to provide uniform pressure and tightened to approx. 15 N per strap. Cerebral blood oxygenation was recorded during a breath holding regime (15 second hold, 15 second rest, 6 cycles) in 4 human subjects both with and without the indenter array. Results showed that indentation increased raw signal intensity by 85 +/- 35%, and that indentation increased amplitude of hemoglobin changes during breath cycles by 313% +/- 105%. These results suggest that indentation improves sensing of cerebral blood oxygenation, and may potentially enable sensing of deeper brain tissues.

  18. Benefits of a Single-Person Spacecraft for Weightless Operations. [(Stop Walking and Start Flying)

    NASA Technical Reports Server (NTRS)

    Griffin, Brand N.

    2012-01-01

    Historically, less than 20 percent of crew time related to extravehicular activity (EVA) is spent on productive external work.1 A single-person spacecraft with 90 percent efficiency provides productive new capabilities for maintaining the International Space Station (ISS), exploring asteroids, and servicing telescopes or satellites. With suits, going outside to inspect, service or repair a spacecraft is time-consuming, requiring pre-breathe time, donning a fitted space suit, and pumping down an airlock. For ISS, this is between 12.5 and 16 hours for each EVA, not including translation and work-site set up. The work is physically demanding requiring a day of rest between EVAs and often results in suit-induced trauma with frequent injury to astronauts fingers2. For maximum mobility, suits use a low pressure, pure oxygen atmosphere. This represents a fire hazard and requires pre-breathing to reduce the risk of decompression sickness (bends). With virtually no gravity, humans exploring asteroids cannot use legs for walking. The Manned Maneuvering Unit offers a propulsive alternative however it is no longer in NASA s flight inventory. FlexCraft is a single person spacecraft operating at the same cabin atmosphere as its host so there is no risk of the bends and no pre-breathing. This allows rapid, any-time access to space for repeated short or long EVAs by different astronauts. Integrated propulsion eliminates hand-over-hand translation or having another crew member operate the robotic arm. The one-size-fits-all FlexCraft interior eliminates the suit part inventory and crew time required to fit all astronauts. With a shirtsleeve cockpit, conventional displays and controls are used and because the work is not strenuous no rest days are required. Furthermore, there is no need for hand tools because manipulators are equipped with force multiplying end-effectors that can deliver the precise torque for the job.

  19. Single-beam thermal lens measurement of thermal diffusivity of engine coolants

    NASA Astrophysics Data System (ADS)

    George, Nibu A.; Thomas, Nibu B.; Chacko, Kavya; T, Neethu V.; Hussain Moidu, Haroon; Piyush, K.; David, Nitheesh M.

    2015-04-01

    Automobile engine coolant liquids are commonly used for efficient heat transfer from the engine to the surroundings. In this work we have investigated the thermal diffusivity of various commonly available engine coolants in Indian automobile market. We have used single beam laser induced thermal lens technique for the measurements. Engine coolants are generally available in concentrated solution form and are recommended to use at specified dilution. We have investigated the samples in the entire recommended concentration range for the use in radiators. While some of the brands show an enhanced thermal diffusivity compared to pure water, others show slight decrease in thermal diffusivity.

  20. Numerical schemes for anomalous diffusion of single-phase fluids in porous media

    NASA Astrophysics Data System (ADS)

    Awotunde, Abeeb A.; Ghanam, Ryad A.; Al-Homidan, Suliman S.; Tatar, Nasser-eddine

    2016-10-01

    Simulation of fluid flow in porous media is an indispensable part of oil and gas reservoir management. Accurate prediction of reservoir performance and profitability of investment rely on our ability to model the flow behavior of reservoir fluids. Over the years, numerical reservoir simulation models have been based mainly on solutions to the normal diffusion of fluids in the porous reservoir. Recently, however, it has been documented that fluid flow in porous media does not always follow strictly the normal diffusion process. Small deviations from normal diffusion, called anomalous diffusion, have been reported in some experimental studies. Such deviations can be caused by different factors such as the viscous state of the fluid, the fractal nature of the porous media and the pressure pulse in the system. In this work, we present explicit and implicit numerical solutions to the anomalous diffusion of single-phase fluids in heterogeneous reservoirs. An analytical solution is used to validate the numerical solution to the simple homogeneous case. The conventional wellbore flow model is modified to account for anomalous behavior. Example applications are used to show the behavior of wellbore and wellblock pressures during the single-phase anomalous flow of fluids in the reservoirs considered.

  1. Pulmonary function in men after oxygen breathing at 3.0 ATA for 3.5 h

    NASA Technical Reports Server (NTRS)

    Clark, J. M.; Jackson, R. M.; Lambertsen, C. J.; Gelfand, R.; Hiller, W. D. B.; Unger, M.

    1991-01-01

    A complete description of pulmonary measurements obtained after continuous O2 exposure of 13 healthy men at 3.0 ATA for 3.5 h is presented. Measurements included flow-volume loops, spirometry, and airway resistance(n = 12); CO diffusing capacity (n = 11); closing volumes (n= 6); and air vs. HeO2 forced vital capacity maneuvers (n = 5). The average difference in maximum mid expiratory flows at 50 percent vital capacity on air and HeO2 was found to be significantly reduced postexposure by 18 percent. Raw and CO diffusing capacity were not changed postexposure. It is concluded that the relatively large change in forced expiratory flow at 25-75 percent of vital capacity compared with the mean forced expiratory volume in 1 s, the reduction in density dependence of flow, and the normal Raw postexposure are all consistent with flow limitation in peripheral airways as a major cause of the observed reduction in expiratory flow.

  2. Effects of water immersion to the neck on pulmonary circulation and tissue volume in man

    NASA Technical Reports Server (NTRS)

    Begin, R.; Epstein, M.; Sackner, M. A.; Levinson, R.; Dougherty, R.; Duncan, D.

    1976-01-01

    A rapid noninvasive breathing method is used to obtain serial measurements of the pulmonary capillary blood flow, diffusing capacity per unit of alveolar volume, combined pulmonary tissue plus capillary volume, functional residual capacity, and oxygen consumption in five normal subjects undergoing 6 h of sitting, 4 h of sitting while immersed to the neck in thermoneutral water, and 4 h of lying in thermoneutral water to the neck. The rebreathing method employed a test gas mixture containing 0.5% C2H2, 0.3% C(18)O, 10% He, 21% O2, and balance N2. It is shown that immersion to the neck in the seated posture results in significant increases in sodium excretion cardiac output, and diffusing capacity per unit of alveolar volume. The pulmonary tissue plus capillary volume did not change, demonstrating that the central vascular engorgement induced by water immersion is not accompanied by significant extravasation of fluid into the pulmonary interstitial space.

  3. A Case Report of Cannabis Induced Hemoptysis

    PubMed Central

    Hashmi, Hafiz Rizwan Talib; Duncalf, Richard; Khaja, Misbahuddin

    2016-01-01

    Abstract As the principal route of marijuana use is by inhalation, potential harmful consequences on pulmonary structure and function can be anticipated. Here, we present a case of hemoptysis attributed to smoking cannabis in a 38-year-old man. The patient experienced an episode of hemoptysis and shortness of breath immediately after smoking marijuana. Chest radiograph and computed tomography (CT) scans of the chest showed bilateral diffuse ground-glass opacities. A fiber optic bronchoscopy confirmed bilateral diffuse bleeding from respiratory tract. Additional evaluation of hemoptysis indicated no infection or immunological responses. Urine toxicology was positive for cannabis. Chronic marijuana smoking causes visible and microscopic injury to the larger airways responsible for symptoms or chronic bronchitis. We review the beneficial and deleterious effects of marijuana and describe a case of significant hemoptysis attributed to smoking marijuana. In addition to other respiratory complications of marijuana use, physicians should educate their patients about this potentially lethal effect of marijuana smoking in the form of hemoptysis. PMID:27043693

  4. Accelerated and Airy-Bloch oscillations

    NASA Astrophysics Data System (ADS)

    Longhi, Stefano

    2016-09-01

    A quantum particle subjected to a constant force undergoes an accelerated motion following a parabolic path, which differs from the classical motion just because of wave packet spreading (quantum diffusion). However, when a periodic potential is added (such as in a crystal) the particle undergoes Bragg scattering and an oscillatory (rather than accelerated) motion is found, corresponding to the famous Bloch oscillations (BOs). Here, we introduce an exactly-solvable quantum Hamiltonian model, corresponding to a generalized Wannier-Stark Hamiltonian Ĥ, in which a quantum particle shows an intermediate dynamical behavior, namely an oscillatory motion superimposed to an accelerated one. Such a novel dynamical behavior is referred to as accelerated BOs. Analytical expressions of the spectrum, improper eigenfunctions and propagator of the generalized Wannier-Stark Hamiltonian Ĥ are derived. Finally, it is shown that acceleration and quantum diffusion in the generalized Wannier-Stark Hamiltonian are prevented for Airy wave packets, which undergo a periodic breathing dynamics that can be referred to as Airy-Bloch oscillations.

  5. Higher levels of spontaneous breathing reduce lung injury in experimental moderate acute respiratory distress syndrome.

    PubMed

    Carvalho, Nadja C; Güldner, Andreas; Beda, Alessandro; Rentzsch, Ines; Uhlig, Christopher; Dittrich, Susanne; Spieth, Peter M; Wiedemann, Bärbel; Kasper, Michael; Koch, Thea; Richter, Torsten; Rocco, Patricia R; Pelosi, Paolo; de Abreu, Marcelo Gama

    2014-11-01

    To assess the effects of different levels of spontaneous breathing during biphasic positive airway pressure/airway pressure release ventilation on lung function and injury in an experimental model of moderate acute respiratory distress syndrome. Multiple-arm randomized experimental study. University hospital research facility. Thirty-six juvenile pigs. Pigs were anesthetized, intubated, and mechanically ventilated. Moderate acute respiratory distress syndrome was induced by repetitive saline lung lavage. Biphasic positive airway pressure/airway pressure release ventilation was conducted using the airway pressure release ventilation mode with an inspiratory/expiratory ratio of 1:1. Animals were randomly assigned to one of four levels of spontaneous breath in total minute ventilation (n = 9 per group, 6 hr each): 1) biphasic positive airway pressure/airway pressure release ventilation, 0%; 2) biphasic positive airway pressure/airway pressure release ventilation, > 0-30%; 3) biphasic positive airway pressure/airway pressure release ventilation, > 30-60%, and 4) biphasic positive airway pressure/airway pressure release ventilation, > 60%. The inspiratory effort measured by the esophageal pressure time product increased proportionally to the amount of spontaneous breath and was accompanied by improvements in oxygenation and respiratory system elastance. Compared with biphasic positive airway pressure/airway pressure release ventilation of 0%, biphasic positive airway pressure/airway pressure release ventilation more than 60% resulted in lowest venous admixture, as well as peak and mean airway and transpulmonary pressures, redistributed ventilation to dependent lung regions, reduced the cumulative diffuse alveolar damage score across lungs (median [interquartile range], 11 [3-40] vs 18 [2-69]; p < 0.05), and decreased the level of tumor necrosis factor-α in ventral lung tissue (median [interquartile range], 17.7 pg/mg [8.4-19.8] vs 34.5 pg/mg [29.9-42.7]; p < 0.05). Biphasic positive airway pressure/airway pressure release ventilation more than 0-30% and more than 30-60% showed a less consistent pattern of improvement in lung function, inflammation, and damage compared with biphasic positive airway pressure/airway pressure release ventilation more than 60%. In this model of moderate acute respiratory distress syndrome in pigs, biphasic positive airway pressure/airway pressure release ventilation with levels of spontaneous breath higher than usually seen in clinical practice, that is, more than 30% of total minute ventilation, reduced lung injury with improved respiratory function, as compared with protective controlled mechanical ventilation.

  6. Single-breath-hold abdominal [Formula: see text]  mapping using 3D Cartesian Look-Locker with spatiotemporal sparsity constraints.

    PubMed

    Lugauer, Felix; Wetzl, Jens; Forman, Christoph; Schneider, Manuel; Kiefer, Berthold; Hornegger, Joachim; Nickel, Dominik; Maier, Andreas

    2018-06-01

    Our aim was to develop and validate a 3D Cartesian Look-Locker [Formula: see text] mapping technique that achieves high accuracy and whole-liver coverage within a single breath-hold. The proposed method combines sparse Cartesian sampling based on a spatiotemporally incoherent Poisson pattern and k-space segmentation, dedicated for high-temporal-resolution imaging. This combination allows capturing tissue with short relaxation times with volumetric coverage. A joint reconstruction of the 3D + inversion time (TI) data via compressed sensing exploits the spatiotemporal sparsity and ensures consistent quality for the subsequent multistep [Formula: see text] mapping. Data from the National Institute of Standards and Technology (NIST) phantom and 11 volunteers, along with reference 2D Look-Locker acquisitions, are used for validation. 2D and 3D methods are compared based on [Formula: see text] values in different abdominal tissues at 1.5 and 3 T. [Formula: see text] maps obtained from the proposed 3D method compare favorably with those from the 2D reference and additionally allow for reformatting or volumetric analysis. Excellent agreement is shown in phantom [bias[Formula: see text] < 2%, bias[Formula: see text] < 5% for (120; 2000) ms] and volunteer data (3D and 2D deviation < 4% for liver, muscle, and spleen) for clinically acceptable scan (20 s) and reconstruction times (< 4 min). Whole-liver [Formula: see text] mapping with high accuracy and precision is feasible in one breath-hold using spatiotemporally incoherent, sparse 3D Cartesian sampling.

  7. Fetal oxygenation measurement using wireless near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Macnab, Andrew; Shadgan, Babak; Janssen, Patricia; Rurak, Dan

    2012-03-01

    Background: Fetal well-being is determined in large part by how well the placenta is able to supply oxygen and nutrients, but current technology is unable to directly measure how well a placenta functions. Near-infrared spectroscopy (NIRS) utilizes optical methods to measure tissue oxygenation. This pilot project evaluated the feasibility of NIRS for fetal monitoring through the maternal abdominal wall using a sheep model. Methods: A miniature wireless 2-wavelength NIRS device was placed on the abdominal skin over the placenta of a pregnant ewe whose fetus had been chronically catheterized to allow arterial sampling for measurement of arterial oxygen saturation. The NIRS device has 3-paired light emitting diodes and a single photodiode detector; allowing measurement of an index of tissue oxygen saturation (TSI%). Fetal limb TSI% values were compared before and during fetal breathing movements. Correlation was made during these events between arterial values and placental TSI% monitored continuously in real time. Results: Serial measurements were obtained in a single experiment. The correlation between transcutaneous NIRS derived TSI% and direct arterial oxygen saturation was very high (R2=0.86). Measures of fetal limb TSI% were declined after episodes of fetal breathing (P<0.005). Conclusions: This correlation suggests that NIRS is sensitive enough to detect changes in fetal tissue oxygenation noninvasively through the maternal abdominal wall in real-time in a sheep model. NIRS data confirmed that fetal breathing movements decrease arterial oxygen saturation in fetal lambs. If validated by further study this optical methodology could be applied as means of monitoring fetal wellbeing in humans.

  8. Sleep Bruxism in Respiratory Medicine Practice.

    PubMed

    Mayer, Pierre; Heinzer, Raphael; Lavigne, Gilles

    2016-01-01

    Sleep bruxism (SB) consists of involuntary episodic and repetitive jaw muscle activity characterized by occasional tooth grinding or jaw clenching during sleep. Prevalence decreases from 20% to 14% in childhood to 8% to 3% in adulthood. Although the causes and mechanisms of idiopathic primary SB are unknown, putative candidates include psychologic risk factors (eg, anxiety, stress due to life events, hypervigilance) and sleep physiologic reactivity (eg, sleep arousals with autonomic activity, breathing events). Although certain neurotransmitters (serotonin, dopamine, noradrenalin, histamine) have been proposed to play an indirect role in SB, their exact contribution to rhythmic masticatory muscle activity (RMMA) (the electromyography marker of SB) genesis remains undetermined. No specific gene is associated with SB; familial environmental influence plays a significant role. To date, no single explanation can account for the SB mechanism. Secondary SB with sleep comorbidities that should be clinically assessed are insomnia, periodic limb movements during sleep, sleep-disordered breathing (eg, apnea-hypopnea), gastroesophageal reflux disease, and neurologic disorders (eg, sleep epilepsy, rapid eye movement behavior disorder). SB is currently quantified by scoring RMMA recordings in parallel with brain, respiratory, and heart activity recordings in a sleep laboratory or home setting. RMMA confirmation with audio-video recordings is recommended for better diagnostic accuracy in the presence of neurologic conditions. Management strategies (diagnostic tests, treatment) should be tailored to the patient's phenotype and comorbidities. In the presence of sleep-disordered breathing, a mandibular advancement appliance or CPAP treatment is preferred over single occlusal splint therapy on the upper jaw. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  9. Sustained apnea induces endothelial activation.

    PubMed

    Eichhorn, Lars; Dolscheid-Pommerich, Ramona; Erdfelder, Felix; Ayub, Muhammad Ajmal; Schmitz, Theresa; Werner, Nikos; Jansen, Felix

    2017-09-01

    Apnea diving has gained worldwide popularity, even though the pathophysiological consequences of this challenging sport on the human body are poorly investigated and understood. This study aims to assess the influence of sustained apnea in healthy volunteers on circulating microparticles (MPs) and microRNAs (miRs), which are established biomarkers reflecting vascular function. Short intermittent hypoxia due to voluntary breath-holding affects circulating levels of endothelial cell-derived MPs (EMPs) and endothelial cell-derived miRs. Under dry laboratory conditions, 10 trained apneic divers performed maximal breath-hold. Venous blood samples were taken, once before and at 4 defined points in time after apnea. Samples were analyzed for circulating EMPs and endothelial miRs. Average apnea time was 329 seconds (±103), and SpO 2 at the end of apnea was 79% (±12). Apnea was associated with a time-dependent increase of circulating endothelial cell-derived EMPs and endothelial miRs. Levels of circulating EMPs in the bloodstream reached a peak 4 hours after the apnea period and returned to baseline levels after 24 hours. Circulating miR-126 levels were elevated at all time points after a single voluntary maximal apnea, whereas miR-26 levels were elevated significantly only after 30 minutes and 4 hours. Also miR-21 and miR-92 levels increased, but did not reach the level of significance. Even a single maximal breath-hold induces acute endothelial activation and should be performed with great caution by subjects with preexisting vascular diseases. Voluntary apnea might be used as a model to simulate changes in endothelial function caused by hypoxia in humans. © 2017 Wiley Periodicals, Inc.

  10. Pulmonary function in microgravity

    NASA Technical Reports Server (NTRS)

    Guy, H. J.; Prisk, G. K.; West, J. B.

    1992-01-01

    We report the successful collection of a large quantity of human resting pulmonary function data on the SLS-1 mission. Preliminary analysis suggests that cardiac stroke volumes are high on orbit, and that an adaptive reduction takes at least several days, and in fact may still be in progress after 9 days on orbit. It also suggests that pulmonary capillary blood volumes are high, and remain high on orbit, but that the pulmonary interstitium is not significantly impacted. The data further suggest that the known large gravitational gradients of lung function have only a modest influence on single breath tests such as the SBN washout. They account for only approximately 25% of the phase III slope of nitrogen, on vital capacity SBN washouts. These gradients are only a moderate source of the cardiogenic oscillations seen in argon (bolus gas) and nitrogen (resident gas), on such tests. They may have a greater role in generating the normal CO2 oscillations, as here the phase relationship to argon and nitrogen reverses in microgravity, at least at mid exhalation in those subjects studied to date. Microgravity may become a useful tool in establishing the nature of the non-gravitational mechanisms that can now be seen to play such a large part in the generation of intra-breath gradients and oscillations of expired gas concentration. Analysis of microgravity multibreath nitrogen washouts, single breath washouts from more physiological pre-inspiratory volumes, both using our existing SLS-1 data, and data from the upcoming D-2 and SLS-2 missions, should be very fruitful in this regard.(ABSTRACT TRUNCATED AT 250 WORDS).

  11. Nonlinear optical susceptibilities in the diffusion modified AlxGa1-xN/GaN single quantum well

    NASA Astrophysics Data System (ADS)

    Das, T.; Panda, S.; Panda, B. K.

    2018-05-01

    Under thermal treatment of the post growth AlGaN/GaN single quantum well, the diffusion of Al and Ga atoms across the interface is expected to form the diffusion modified quantum well with diffusion length as a quantitative parameter for diffusion. The modification of confining potential and position-dependent effective mass in the quantum well due to diffusion is calculated taking the Fick's law. The built-in electric field which arises from spontaneous and piezoelectric polarizations in the wurtzite structure is included in the effective mass equation. The electronic states are calculated from the effective mass equation using the finite difference method for several diffusion lengths. Since the effective well width decreases with increasing diffusion length, the energy levels increase with it. The intersubband energy spacing in the conduction band decreases with diffusion length due to built-in electric field and reduction of effective well width. The linear susceptibility for first-order and the nonlinear second-order and third-order susceptibilities are calculated using the compact density matrix approach taking only two levels. The calculated susceptibilities are red shifted with increase in diffusion lengths due to decrease in intersubband energy spacing.

  12. Solvation and Evolution Dynamics of an Excess Electron in Supercritical CO2

    NASA Astrophysics Data System (ADS)

    Wang, Zhiping; Liu, Jinxiang; Zhang, Meng; Cukier, Robert I.; Bu, Yuxiang

    2012-05-01

    We present an ab initio molecular dynamics simulation of the dynamics of an excess electron solvated in supercritical CO2. The excess electron can exist in three types of states: CO2-core localized, dual-core localized, and diffuse states. All these states undergo continuous state conversions via a combination of long lasting breathing oscillations and core switching, as also characterized by highly cooperative oscillations of the excess electron volume and vertical detachment energy. All of these oscillations exhibit a strong correlation with the electron-impacted bending vibration of the core CO2, and the core-switching is controlled by thermal fluctuations.

  13. Influence of crystal orientation and ion bombardment on the nitrogen diffusivity in single-crystalline austenitic stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinavicius, A.; Abrasonis, G.; Moeller, W.

    2011-10-01

    The nitrogen diffusivity in single-crystalline AISI 316L austenitic stainless steel (ASS) during ion nitriding has been investigated at different crystal orientations ((001), (110), (111)) under variations of ion flux (0.3-0.7 mA cm{sup -2}), ion energy (0.5-1.2 keV), and temperature (370-430 deg. C). The nitrogen depth profiles obtained from nuclear reaction analysis are in excellent agreement with fits using the model of diffusion under the influence of traps, from which diffusion coefficients were extracted. At fixed ion energy and flux, the diffusivity varies by a factor up to 2.5 at different crystal orientations. At (100) orientation, it increases linearly with increasingmore » ion flux or energy. The findings are discussed on the basis of atomistic mechanisms of interstitial diffusion, potential lattice distortions, local decomposition, and ion-induced lattice vibrational excitations.« less

  14. Single ion dynamics in molten sodium bromide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alcaraz, O.; Trullas, J.; Demmel, F.

    We present a study on the single ion dynamics in the molten alkali halide NaBr. Quasielastic neutron scattering was employed to extract the self-diffusion coefficient of the sodium ions at three temperatures. Molecular dynamics simulations using rigid and polarizable ion models have been performed in parallel to extract the sodium and bromide single dynamics and ionic conductivities. Two methods have been employed to derive the ion diffusion, calculating the mean squared displacements and the velocity autocorrelation functions, as well as analysing the increase of the line widths of the self-dynamic structure factors. The sodium diffusion coefficients show a remarkable goodmore » agreement between experiment and simulation utilising the polarisable potential.« less

  15. Nanostructures and dynamics of macromolecules bound to attractive filler surfaces

    NASA Astrophysics Data System (ADS)

    Koga, Tad; Barkley, Deborah; Jiang, Naisheng; Endoh, Maya; Masui, Tomomi; Kishimoto, Hiroyuki; Nagao, Michihiro; Satija, Sushil; Taniguchi, Takashi

    We report in-situ nanostructures and dynamics of polybutadiene (PB) chains bound to carbon black (CB) fillers (the so-called ``bound polymer layer (BPL)'') in a good solvent. The BPL on the CB fillers were extracted by solvent leaching of a CB-filled PB compound and subsequently dispersed in deuterated toluene to label the BPL for small-angle neutron scattering and neutron spin echo techniques. Intriguingly, the results demonstrate that the BPL is composed of two regions regardless of molecular weights of PB: the inner unswollen region of ~ 0.5 nm thick and outer swollen region where the polymer chains display a parabolic profile with a diffuse tail. This two-layer formation on the filler surface is similar to that reported for polymer chains adsorbed on planar substrates from melts. In addition, the results show that the dynamics of the swollen bound chains can be explained by the so-called ``breathing mode'' and is generalized with the thickness of the swollen BPL. Furthermore, we will discuss how the breathing collective dynamics is affected by the presence of polymer chains in a matrix solution. We acknowledge the financial support from NSF Grant No. CMMI-1332499.

  16. [Oxygen diffusion through the venule walls in the rat cerebral cortex during breathing with pure oxygen].

    PubMed

    Vovenko, E P; Sokolova, I B; Loshchagin, O V

    2002-03-01

    Using oxygen microelectrodes, distribution of oxygen tension (pO2) has been studied in venules of the rat brain cortex at normobaric hyperoxia (spontaneous breathing with pure oxygen). It has been shown that inhalation of oxygen results in sharp increase of pO2 in majority of the venules under study. The pO2 distribution along the length of venous microvessels of 7-280 microns in diameter is best approximated by equation: pO2 = 76.44 e-0.0008D, n = 407. The pO2 distribution was characterised by extremely high pO2 values (180-240 mm Hg) in some minute venules. Heterogeneity of pO2 distribution in venous microvessels at hyperoxia was shown to be significantly increased. Profiles of pO2 between neighbouring arterioles and venules were for the first time measured. The data clearly evidenced that O2 diffusional shunting took place between cortical arterioles and venules, provided they were distanced from each other for not over 80-100 microns. Distribution of pO2 in venules has been shown to be dependent on the blood flow in the brain cortical microvessels.

  17. Gas analysis of human exhalation by tunable diode laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Stepanov, Eugene V.; Moskalenko, Konstantin L.

    1993-02-01

    Results of the application of a tunable diode laser (TDL) to determining the trace gas components of human exhalation are presented. The analyzer is specially developed to measure both carbon oxides (CO and CO2) in expired air. A few results illuminating possible applications of TDLs in high-sensitivity medical diagnostics have been obtained. For nonsmokers, expired concentrations of CO are slightly higher than those in inhaled air. The specific surplus value seems to be independent of the ambient atmospheric CO content. The surplus CO content increases by more than an order of magnitude just after intensive exercises, e.g., jogging. For smokers, the pharmacokinetic of abundant CO removal from the organism could be investigated by this technique, which provides quick and reliable measurements of smoking status. Breath-holding synchronous measurements of CO and CO2 in exhalation demonstrate behavior that is different with breath-holding time. The method seems useful for the investigation of phenomena such as molecular pulmonary diffusion through the alveolar-capillary membrane and an organism's adaptation to oxygen shortage. Prospects for the development and application of diode laser spectroscopy to trace gas analysis in medicine are also discussed.

  18. Exhaled Breath Condensate Detects Baseline Reductions in Chloride and Increases in Response to Albuterol in Cystic Fibrosis Patients

    PubMed Central

    Wheatley, Courtney M.; Morgan, Wayne J.; Cassuto, Nicholas A.; Foxx-Lupo, William T.; Daines, Cori L.; Morgan, Mary A.; Phan, Hanna; Snyder, Eric M.

    2013-01-01

    Impaired ion regulation and dehydration is the primary pathophysiology in cystic fibrosis (CF) lung disease. A potential application of exhaled breath condensate (EBC) collection is to assess airway surface liquid ionic composition at baseline and in response to pharmacological therapy in CF. Our aims were to determine if EBC could detect differences in ion regulation between CF and healthy and measure the effect of the albuterol on EBC ions in these populations. Baseline EBC Cl−, DLCO and SpO2 were lower in CF (n = 16) compared to healthy participants (n = 16). EBC Cl− increased in CF subjects, while there was no change in DLCO or membrane conductance, but a decrease in pulmonary-capillary blood volume in both groups following albuterol. This resulted in an improvement in diffusion at the alveolar-capillary unit, and removal of the baseline difference in SpO2 by 90-minutes in CF subjects. These results demonstrate that EBC detects differences in ion regulation between healthy and CF individuals, and that albuterol mediates increases in Cl− in CF, suggesting that the benefits of albuterol extend beyond simple bronchodilation. PMID:24367235

  19. Physiological effects on fishes in a high-CO2 world

    NASA Astrophysics Data System (ADS)

    Ishimatsu, Atsushi; Hayashi, Masahiro; Lee, Kyoung-Seon; Kikkawa, Takashi; Kita, Jun

    2005-09-01

    Fish are important members of both freshwater and marine ecosystems and constitute a major protein source in many countries. Thus potential reduction of fish resources by high-CO2 conditions due to the diffusion of atmospheric CO2 into the surface waters or direct CO2 injection into the deep sea can be considered as another potential threat to the future world population. Fish, and other water-breathing animals, are more susceptible to a rise in environmental CO2 than terrestrial animals because the difference in CO2 partial pressure (PCO2) of the body fluid of water-breathing animals and ambient medium is much smaller (only a few torr (1 torr = 0.1333 kPa = 1316 μatm)) than in terrestrial animals (typically 30-40 torr). A survey of the literature revealed that hypercapnia acutely affects vital physiological functions such as respiration, circulation, and metabolism, and changes in these functions are likely to reduce growth rate and population size through reproduction failure and change the distribution pattern due to avoidance of high-CO2 waters or reduced swimming activities. This paper reviews the acute and chronic effects of CO2 on fish physiology and tries to clarify necessary areas of future research.

  20. Determination of the radioprotective effects of topical applications of MEA, WR-2721, and N-acetylcysteine on murine skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verhey, L.J.; Sedlacek, R.

    1983-01-01

    Topical applications of MEA (beta-mercaptoethylamine or cysteamine), WR-2721 (S-2-(3-aminopropylamino)-ethylphosphorothioic acid), and N-acetylcysteine (NAC) were tested for their ability to protect the normal skin of the hind legs of mice against acute and late damage from single doses of /sup 137/Cs radiation. No significant protection was observed with either WR-2721 or NAC. MEA was shown to offer significant protection against acute skin damage in both buffered and unbuffered forms, but no significant protection against late contraction. The use of topical MEA on unanesthetized animals breathing carbogen (95% O2, 5% CO2) appears to give an enhanced level of radioprotection over that shownmore » for anesthetized, air-breathing animals.« less

Top