Methods for forming particles from single source precursors
Fox, Robert V [Idaho Falls, ID; Rodriguez, Rene G [Pocatello, ID; Pak, Joshua [Pocatello, ID
2011-08-23
Single source precursors are subjected to carbon dioxide to form particles of material. The carbon dioxide may be in a supercritical state. Single source precursors also may be subjected to supercritical fluids other than supercritical carbon dioxide to form particles of material. The methods may be used to form nanoparticles. In some embodiments, the methods are used to form chalcopyrite materials. Devices such as, for example, semiconductor devices may be fabricated that include such particles. Methods of forming semiconductor devices include subjecting single source precursors to carbon dioxide to form particles of semiconductor material, and establishing electrical contact between the particles and an electrode.
Methods of forming semiconductor devices and devices formed using such methods
Fox, Robert V; Rodriguez, Rene G; Pak, Joshua
2013-05-21
Single source precursors are subjected to carbon dioxide to form particles of material. The carbon dioxide may be in a supercritical state. Single source precursors also may be subjected to supercritical fluids other than supercritical carbon dioxide to form particles of material. The methods may be used to form nanoparticles. In some embodiments, the methods are used to form chalcopyrite materials. Devices such as, for example, semiconductor devices may be fabricated that include such particles. Methods of forming semiconductor devices include subjecting single source precursors to carbon dioxide to form particles of semiconductor material, and establishing electrical contact between the particles and an electrode.
Single wall carbon nanotube supports for portable direct methanol fuel cells.
Girishkumar, G; Hall, Timothy D; Vinodgopal, K; Kamat, Prashant V
2006-01-12
Single-wall and multiwall carbon nanotubes are employed as carbon supports in direct methanol fuel cells (DMFC). The morphology and electrochemical activity of single-wall and multiwall carbon nanotubes obtained from different sources have been examined to probe the influence of carbon support on the overall performance of DMFC. The improved activity of the Pt-Ru catalyst dispersed on carbon nanotubes toward methanol oxidation is reflected as a shift in the onset potential and a lower charge transfer resistance at the electrode/electrolyte interface. The evaluation of carbon supports in a passive air breathing DMFC indicates that the observed power density depends on the nature and source of carbon nanostructures. The intrinsic property of the nanotubes, dispersion of the electrocatalyst and the electrochemically active surface area collectively influence the performance of the membrane electrode assembly (MEA). As compared to the commercial carbon black support, single wall carbon nanotubes when employed as the support for anchoring the electrocatalyst particles in the anode and cathode sides of MEA exhibited a approximately 30% enhancement in the power density of a single stack DMFC operating at 70 degrees C.
NASA Astrophysics Data System (ADS)
Li, Yuan-Wei; Cao, Bing-Yang
2013-12-01
The thermal conductivity of (5, 5) single-walled carbon nanotubes (SWNTs) with an internal heat source is investigated by using nonequilibrium molecular dynamics (NEMD) simulation incorporating uniform heat source and heat source-and-sink schemes. Compared with SWNTs without an internal heat source, i.e., by a fixed-temperature difference scheme, the thermal conductivity of SWNTs with an internal heat source is much lower, by as much as half in some cases, though it still increases with an increase of the tube length. Based on the theory of phonon dynamics, a function called the phonon free path distribution is defined to develop a simple one-dimensional heat conduction model considering an internal heat source, which can explain diffusive-ballistic heat transport in carbon nanotubes well.
Enhanced biological phosphorus removal with different carbon sources.
Shen, Nan; Zhou, Yan
2016-06-01
Enhanced biological phosphorus removal (EBPR) process is one of the most economical and sustainable methods for phosphorus removal from wastewater. However, the performance of EBPR can be affected by available carbon sources types in the wastewater that may induce different functional microbial communities in the process. Glycogen accumulating organisms (GAOs) and polyphosphate accumulating organisms (PAOs) are commonly found by coexisting in the EBPR process. Predominance of GAO population may lead to EBPR failure due to the competition on carbon source with PAO without contributing phosphorus removal. Carbon sources indeed play an important role in alteration of PAOs and GAOs in EBPR processes. Various types of carbon sources have been investigated for EBPR performance. Certain carbon sources tend to enrich specific groups of GAOs and/or PAOs. This review summarizes the types of carbon sources applied in EBPR systems and highlights the roles of these carbon sources in PAO and GAO competition. Both single (e.g., acetate, propionate, glucose, ethanol, and amino acid) and complex carbon sources (e.g., yeast extract, peptone, and mixed carbon sources) are discussed in this review. Meanwhile, the environmental friendly and economical carbon sources that are derived from waste materials, such as crude glycerol and wasted sludge, are also discussed and compared.
Four-electron deoxygenative reductive coupling of carbon monoxide at a single metal site
NASA Astrophysics Data System (ADS)
Buss, Joshua A.; Agapie, Theodor
2016-01-01
Carbon dioxide is the ultimate source of the fossil fuels that are both central to modern life and problematic: their use increases atmospheric levels of greenhouse gases, and their availability is geopolitically constrained. Using carbon dioxide as a feedstock to produce synthetic fuels might, in principle, alleviate these concerns. Although many homogeneous and heterogeneous catalysts convert carbon dioxide to carbon monoxide, further deoxygenative coupling of carbon monoxide to generate useful multicarbon products is challenging. Molybdenum and vanadium nitrogenases are capable of converting carbon monoxide into hydrocarbons under mild conditions, using discrete electron and proton sources. Electrocatalytic reduction of carbon monoxide on copper catalysts also uses a combination of electrons and protons, while the industrial Fischer-Tropsch process uses dihydrogen as a combined source of electrons and electrophiles for carbon monoxide coupling at high temperatures and pressures. However, these enzymatic and heterogeneous systems are difficult to probe mechanistically. Molecular catalysts have been studied extensively to investigate the elementary steps by which carbon monoxide is deoxygenated and coupled, but a single metal site that can efficiently induce the required scission of carbon-oxygen bonds and generate carbon-carbon bonds has not yet been documented. Here we describe a molybdenum compound, supported by a terphenyl-diphosphine ligand, that activates and cleaves the strong carbon-oxygen bond of carbon monoxide, enacts carbon-carbon coupling, and spontaneously dissociates the resulting fragment. This complex four-electron transformation is enabled by the terphenyl-diphosphine ligand, which acts as an electron reservoir and exhibits the coordinative flexibility needed to stabilize the different intermediates involved in the overall reaction sequence. We anticipate that these design elements might help in the development of efficient catalysts for converting carbon monoxide to chemical fuels, and should prove useful in the broader context of performing complex multi-electron transformations at a single metal site.
Enhanced Single-Photon Emission from Carbon-Nanotube Dopant States Coupled to Silicon Microcavities.
Ishii, Akihiro; He, Xiaowei; Hartmann, Nicolai F; Machiya, Hidenori; Htoon, Han; Doorn, Stephen K; Kato, Yuichiro K
2018-06-13
Single-walled carbon nanotubes are a promising material as quantum light sources at room temperature and as nanoscale light sources for integrated photonic circuits on silicon. Here, we show that the integration of dopant states in carbon nanotubes and silicon microcavities can provide bright and high-purity single-photon emitters on a silicon photonics platform at room temperature. We perform photoluminescence spectroscopy and observe the enhancement of emission from the dopant states by a factor of ∼50, and cavity-enhanced radiative decay is confirmed using time-resolved measurements, in which a ∼30% decrease of emission lifetime is observed. The statistics of photons emitted from the cavity-coupled dopant states are investigated by photon-correlation measurements, and high-purity single photon generation is observed. The excitation power dependence of photon emission statistics shows that the degree of photon antibunching can be kept high even when the excitation power increases, while the single-photon emission rate can be increased to ∼1.7 × 10 7 Hz.
Enhanced Single-Photon Emission from Carbon-Nanotube Dopant States Coupled to Silicon Microcavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishii, Akihiro; He, Xiaowei; Hartmann, Nicolai F.
Single-walled carbon nanotubes are a promising material as quantum light sources at room temperature and as nanoscale light sources for integrated photonic circuits on silicon. Here, we show that the integration of dopant states in carbon nanotubes and silicon microcavities can provide bright and high-purity single-photon emitters on a silicon photonics platform at room temperature. We perform photoluminescence spectroscopy and observe the enhancement of emission from the dopant states by a factor of ~50, and cavity-enhanced radiative decay is confirmed using time-resolved measurements, in which a ~30% decrease of emission lifetime is observed. The statistics of photons emitted from themore » cavity-coupled dopant states are investigated by photon-correlation measurements, and high-purity single photon generation is observed. The excitation power dependence of photon emission statistics shows that the degree of photon antibunching can be kept high even when the excitation power increases, while the single-photon emission rate can be increased to ~1.7 × 10 7 Hz.« less
Enhanced Single-Photon Emission from Carbon-Nanotube Dopant States Coupled to Silicon Microcavities
Ishii, Akihiro; He, Xiaowei; Hartmann, Nicolai F.; ...
2018-05-21
Single-walled carbon nanotubes are a promising material as quantum light sources at room temperature and as nanoscale light sources for integrated photonic circuits on silicon. Here, we show that the integration of dopant states in carbon nanotubes and silicon microcavities can provide bright and high-purity single-photon emitters on a silicon photonics platform at room temperature. We perform photoluminescence spectroscopy and observe the enhancement of emission from the dopant states by a factor of ~50, and cavity-enhanced radiative decay is confirmed using time-resolved measurements, in which a ~30% decrease of emission lifetime is observed. The statistics of photons emitted from themore » cavity-coupled dopant states are investigated by photon-correlation measurements, and high-purity single photon generation is observed. The excitation power dependence of photon emission statistics shows that the degree of photon antibunching can be kept high even when the excitation power increases, while the single-photon emission rate can be increased to ~1.7 × 10 7 Hz.« less
NASA Astrophysics Data System (ADS)
Zhang, Yuan Yuan; Shi, Yumeng; Chen, Fuming; Mhaisalkar, S. G.; Li, Lain-Jong; Ong, Beng S.; Wu, Yiliang
2007-11-01
A solution processable method for employing single-walled carbon nanotubes (SWCNTs) as bottom contact source/drain electrodes for a significant reduction of contact resistance in poly(3,3‴-didodecylquarterthiophene) based organic field effect transistors (OFETs) is proposed. A two order of magnitude reduction in contact resistance and up to a threefold improvement in field effect mobilities were observed in SWCNT contacted OFETs as opposed to similar devices with gold source/drain electrodes. Based on Kelvin probe measurements, this improvement was attributed to a reduction in the Schottky barrier for hole injection into organic semiconductor.
NASA Astrophysics Data System (ADS)
Htoonb, Han; He, Xiaowei; Hartmann, Nicolai; Ma, Xuedan; Doorn, Stephen; CenterIntegrated Nanotechnologies, Los Alamos National Laboratory Team
Recent demonstration that oxygen dopant states covalently attached to the single-walled carbon nanotubes (SWCNTs) are capable of emitting single photons at room-T (RT) opens the possibility of building room-T electrically-driven single photon sources for quantum communication applications. The RT single photon generation was not observed only at wavelength beyond 1.3 μ m. Here in this work we demonstrate RT single photon generation at 1. 5 μ m from diazonium dopant states of (10,3) nanotubes.
NASA Astrophysics Data System (ADS)
Levas, Stephen; Grottoli, Andréa G.; Schoepf, Verena; Aschaffenburg, Matthew; Baumann, Justin; Bauer, James E.; Warner, Mark E.
2016-06-01
Annual coral bleaching events due to increasing sea surface temperatures are predicted to occur globally by the mid-century and as early as 2025 in the Caribbean, and severely impact coral reefs. We hypothesize that heterotrophic carbon (C) in the form of zooplankton and dissolved organic carbon (DOC) is a significant source of C to bleached corals. Thus, the ability to utilize multiple pools of fixed carbon and/or increase the amount of fixed carbon acquired from one or more pools of fixed carbon (defined here as heterotrophic plasticity) could underlie coral acclimatization and persistence under future ocean-warming scenarios. Here, three species of Caribbean coral— Porites divaricata, P. astreoides, and Orbicella faveolata—were experimentally bleached for 2.5 weeks in two successive years and allowed to recover in the field. Zooplankton feeding was assessed after single and repeat bleaching, while DOC fluxes and the contribution of DOC to the total C budget were determined after single bleaching, 11 months on the reef, and repeat bleaching. Zooplankton was a large C source for P. astreoides, but only following single bleaching. DOC was a source of C for single-bleached corals and accounted for 11-36 % of daily metabolic demand (CHARDOC), but represented a net loss of C in repeat-bleached corals. In repeat-bleached corals, DOC loss exacerbated the negative C budgets in all three species. Thus, the capacity for heterotrophic plasticity in corals is compromised under annual bleaching, and heterotrophic uptake of DOC and zooplankton does not mitigate C budget deficits in annually bleached corals. Overall, these findings suggest that some Caribbean corals may be more susceptible to repeat bleaching than to single bleaching due to a lack of heterotrophic plasticity, and coral persistence under increasing bleaching frequency may ultimately depend on other factors such as energy reserves and symbiont shuffling.
NASA Astrophysics Data System (ADS)
Mirzaei, Ali; Ham, Heon; Na, Han Gil; Kwon, Yong Jung; Kang, Sung Yong; Choi, Myung Sik; Bang, Jae Hoon; Park, No-Hyung; Kang, Inpil; Kim, Hyoun Woo
2016-10-01
Nanodiamond (ND) was successfully synthesized using single-walled carbon nanotubes (SWCNTs) as a pure solid carbon source by means of a spark plasma sintering process. Raman spectra and X-ray diffraction patterns revealed the generation of the cubic diamond phase by means of the SPS process. Lattice-resolved TEM images confirmed that diamond nanoparticles with a diameter of about ˜10 nm existed in the products. The NDs were generated mainly through the gas-phase nucleation of carbon atoms evaporated from the SWCNTs. [Figure not available: see fulltext.
The roles of inoculants' carbon source use in the biocontrol of potato scab disease.
Sun, Pingping; Zhao, Xinbei; Shangguan, Nini; Chang, Dongwei; Ma, Qing
2015-04-01
Despite the application of multiple strains in the biocontrol of plant diseases, multistrain inoculation is still constrained by its inconsistency in the field. Nutrients, especially carbons, play an important role in the biocontrol processes. However, little work has been done on the systematic estimation of inoculants' carbon source use on biocontrol efficacies in vivo. In the present study, 7 nonpathogenic Streptomyces strains alone and in different combinations were inoculated as biocontrol agents against the potato scab disease, under field conditions and greenhouse treatments. The influence of the inoculants' carbon source use properties on biocontrol efficacies was investigated. The results showed that increasing the number of inoculated strains did not necessarily result in greater biocontrol efficacy in vivo. However, single strains with higher growth rates or multiple strains with less carbon source competition had positive effects on the biocontrol efficacies. These findings may shed light on optimizing the consistent biocontrol of plant disease with the consideration of inoculants' carbon source use properties.
Production of single-walled carbon nanotube grids
Hauge, Robert H; Xu, Ya-Qiong; Pheasant, Sean
2013-12-03
A method of forming a nanotube grid includes placing a plurality of catalyst nanoparticles on a grid framework, contacting the catalyst nanoparticles with a gas mixture that includes hydrogen and a carbon source in a reaction chamber, forming an activated gas from the gas mixture, heating the grid framework and activated gas, and controlling a growth time to generate a single-wall carbon nanotube array radially about the grid framework. A filter membrane may be produced by this method.
Li, Mai-He; Xiao, Wen-Fa; Shi, Peili; Wang, San-Gen; Zhong, Yong-De; Liu, Xing-Liang; Wang, Xiao-Dan; Cai, Xiao-Hu; Shi, Zuo-Min
2008-10-01
No single hypothesis or theory has been widely accepted for explaining the functional mechanism of global alpine/arctic treeline formation. The present study tested whether the alpine treeline is determined by (1) the needle nitrogen content associated with photosynthesis (carbon gain); (2) a sufficient source-sink ratio of carbon; or (3) a sufficient C-N ratio. Nitrogen does not limit the growth and development of trees studied at the Himalayan treelines. Levels of non-structural carbohydrates (NSC) in trees were species-specific and site-dependent; therefore, the treeline cases studied did not show consistent evidence of source/carbon limitation or sink/growth limitation in treeline trees. However, results of the combined three treelines showed that the treeline trees may suffer from a winter carbon shortage. The source capacity and the sink capacity of a tree influence its tissue NSC concentrations and the carbon balance; therefore, we suggest that the persistence and development of treeline trees in a harsh alpine environment may require a minimum level of the total NSC concentration, a sufficiently high sugar:starch ratio, and a balanced carbon source-sink relationship.
NASA Astrophysics Data System (ADS)
Wegener, Pam; Covino, Tim; Wohl, Ellen
2017-06-01
River networks that drain mountain landscapes alternate between narrow and wide valley segments. Within the wide segments, beaver activity can facilitate the development and maintenance of complex, multithread planform. Because the narrow segments have limited ability to retain water, carbon, and nutrients, the wide, multithread segments are likely important locations of retention. We evaluated hydrologic dynamics, nutrient flux, and aquatic ecosystem metabolism along two adjacent segments of a river network in the Rocky Mountains, Colorado: (1) a wide, multithread segment with beaver activity; and, (2) an adjacent (directly upstream) narrow, single-thread segment without beaver activity. We used a mass balance approach to determine the water, carbon, and nutrient source-sink behavior of each river segment across a range of flows. While the single-thread segment was consistently a source of water, carbon, and nitrogen, the beaver impacted multithread segment exhibited variable source-sink dynamics as a function of flow. Specifically, the multithread segment was a sink for water, carbon, and nutrients during high flows, and subsequently became a source as flows decreased. Shifts in river-floodplain hydrologic connectivity across flows related to higher and more variable aquatic ecosystem metabolism rates along the multithread relative to the single-thread segment. Our data suggest that beaver activity in wide valleys can create a physically complex hydrologic environment that can enhance hydrologic and biogeochemical buffering, and promote high rates of aquatic ecosystem metabolism. Given the widespread removal of beaver, determining the cumulative effects of these changes is a critical next step in restoring function in altered river networks.
Comparison between Single-Walled CNT, Multi-Walled CNT, and Carbon Nanotube-Fiber Pyrograf III
NASA Astrophysics Data System (ADS)
Mousa, Marwan S.
2018-02-01
Single-Walled CNT (SWCNTs), Multi-walled Carbon Nanotubes (MWCNTs), and Carbon Nanotube-Fibers Pyrograf III PR-1 (CNTFs) were deposited by chemical vapor deposition under vacuum pressure value of (10-7mbar). Their structures were investigated by field emission microscopy. Carbon Nano-Fibers Pyrograf III PR-1 showed an average fiber diameter within the range of 100-200 nm and a length of (30-100) μm. Single-walled Carbon Nanotubes were produced by high-pressure Carbon Monoxide process with an average diameter ranging between (1-4) nm and a length of (1-3) μm. Thin Multiwall Carbon Nanotube of carbon purity (90%) showed an average diameter tube (9.5 nm) with a high-aspect-ratio (>150). The research work reported here includes the field electron emission current-voltage (I-V) characteristics and presented as Fowler-Nordheim (FN) plots and the spatial emission current distributions (electron emission images) obtained and analyzed in terms of electron source features. For the three types of emitters, a single spot pattern for the electron spatial; distributions were observed, with emission current fluctuations in some voltage region.
Electrochemical Characterization of Carbon Nanotubes for Fuel Cell MEA's
NASA Technical Reports Server (NTRS)
Panagaris, Jael; Loyselle, Patricia
2004-01-01
Single-walled and multi-walled carbon nanotubes from different sources have been evaluated before and after sonication to identify structural differences and evaluate electrochemical performance. Raman spectral analysis and cyclic voltammetry in situ with QCM were the principle means of evaluating the tubes. The raman data indicates that sonication in toluene modifies the structural properties of the nanotubes. Sonication also affects the electrochemical performance of single-walled nanotubes and the multi-walled tubes differently. The characterization of different types of carbon nanotubes leads up to identifying a potential candidate for incorporating carbon nanotubes for fuel cell MEA structures.
Atypical ethanol production by carbon catabolite derepressed lactobacilli.
Kim, Jae-Han; Block, David E; Shoemaker, Sharon P; Mills, David A
2010-11-01
Cost effective use of lignocellulosic biomass for bio-based chemical production requires the discovery of novel strains and processes. Lactobacillus pentosus JH5XP5 is a carbon catabolite repression negative mutant which utilizes glucose and pentoses derived from lignocellulosic biomass in the media simultaneously. With a broad range of carbon substrates, L. pentosus JH5XP5 produced a significant amount of ethanol without acetate formation. The yields of ethanol were 2.0- to 2.5-fold higher than those of lactate when glucose, galactose or maltose was used either as a single carbon source or simultaneously with glucose. L. pentosus JH5XP5 was successfully used in an integrated process of simultaneous saccharification and mixed sugar fermentation of rice straw hydrolysate. During the fermentation, the enzyme activities for the saccharification of cellulose were not diminished. Moreover glucose, xylose, and arabinose sugars derived from rice straw hyrolysate were consumed concurrently as if a single carbon source existed and no sugars or cellulosic fiber remained after the fermentation.
Goetghebuer, Lise; Servais, Pierre; George, Isabelle F
2017-05-01
Microbial communities play a key role in water self-purification. They are primary drivers of biogenic element cycles and ecosystem processes. However, these communities remain largely uncharacterized. In order to understand the diversity-heterotrophic activity relationship facing sole carbon sources, we assembled a synthetic community composed of 20 'typical' freshwater bacterial species mainly isolated from the Zenne River (Belgium). The carbon source utilization profiles of each individual strain and of the mixed community were measured in Biolog Phenotype MicroArrays PM1 and PM2A microplates that allowed testing 190 different carbon sources. Our results strongly suggest interactions occurring between our planktonic strains as our synthetic community showed metabolic properties that were not displayed by its single components. Finally, the catabolic performances of the synthetic community and a natural community from the same sampling site were compared. The synthetic community behaved like the natural one and was therefore representative of the latter in regard to carbon source consumption. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Zeng, Xin; Zhao, Junjie; Chen, Xusheng; Mao, Zhonggui; Miao, Wenyun
2017-12-01
The simultaneous consumption of glucose and glycerol led to remarkably higher productivity of both biomass and ε-poly-L-lysine (ε-PL), which was of great significance in industrial microbial fermentation. To further understand the superior fermentation performances, transcriptional analysis and exogenous substrates addition were carried out to study the simultaneous utilization of glucose and glycerol by Streptomyces albulus M-Z18. Transcriptome analysis revealed that there was no mutual transcriptional suppression between the utilization of glucose and glycerol, which was quite different from typical "glucose effect". In addition, microorganisms cultivated with single glycerol showed significant demand for ribose-5-phosphate, which resulted in potential demand for glucose and xylitol. The above demand could be relieved by glucose (in the mixed carbon source) or xylitol addition, leading to improvement of biomass production. It indicated that glucose in the mixed carbon source was more important for biomass production. Besides, transcriptional analysis and exogenous citrate addition proved that single carbon sources could not afford enough carbon skeletons for Embden Meyerhof pathway (EMP) while a glucose-glycerol combination could provided sufficient carbon skeletons to saturate the metabolic capability of EMP, which contributed to the replenishment of precursors and energy consumed in ε-PL production. This study offered insight into the simultaneous consumption of glucose and glycerol in the ε-PL batch fermentation, which deepened our comprehension on the high ε-PL productivity in the mixed carbon source.
The effect of various carbon sources on the growth of single-celled cyanophyta
NASA Technical Reports Server (NTRS)
Avilov, I. A.; Sidorenkova, E. S.
1983-01-01
In 19 strains of unicellular blue-green algae, belonging to general Synechococcus, Synechocystis, Aphanocapsa and Aphanothece, the capacity of growth under mixotrophic conditions in mineral media with organic carbon sources (carbohydrates, polyols) was investigated. At moderate light intensity (1200 lx) and 0.5% of carbon source there was revealed: (1) Stimulation of growth; (2) Partial or complete inhibition of growth; (3) No influence of carbohydrate and polyols on the growth of some algae strains. Three physiological groups for the investigated strains have been outlined on the basis of data obtained. The possibility of using the differences revealed in classification of unicellular blue-green algae is discussed.
Xiao, Z; Camino, F E
2009-04-01
Sb(2)Te(3) and Bi(2)Te(2)Se semiconductor materials were used as the source and drain contact materials in the fabrication of carbon nanotube field-effect transistors (CNTFETs). Ultra-purified single-walled carbon nanotubes (SWCNTs) were ultrasonically dispersed in N-methyl pyrrolidone solvent. Dielectrophoresis was used to deposit and align SWCNTs for fabrication of CNTFETs. The Sb(2)Te(3)- and Bi(2)Te(2)Se-based CNTFETs demonstrate p-type metal-oxide-silicon-like I-V curves with high on/off drain-source current ratio at large drain-source voltages and good saturation of drain-source current with increasing drain-source voltage. The fabrication process developed is novel and has general meaning, and could be used for the fabrication of SWCNT-based integrated devices and systems with semiconductor contact materials.
Study of the Emission Characteristics of Single-Walled CNT and Carbon Nano-Fiber Pyrograf III
NASA Astrophysics Data System (ADS)
Mousa, Marwan S.; Al-Akhras, M.-Ali H.; Daradkeh, Samer
2018-02-01
Field emission microscopy measurements from Single-Walled Carbon Nanotubes (SWCNTs) and Carbon Nano-Fibers Pyrograf III PR-1 (CNF) were performed. Details of the materials employed in the experiments are as follows: (a) Carbon Nano-Fibers Pyrograf III PR-1 (CNF), having an average fiber diameter that is ranging between (100-200) nm with a length of (30-100) μm. (b) Single walled Carbon Nanotubes were produced by high-pressure CO over Fe particle (HiPCO: High-Pressure Carbon Monoxide process), having an average diameter ranging between (1-4) nm with a length of (1-3) μm. The experiments were performed under vacuum pressure value of (10-7 mbar). The research work reported here includes the field electron emission current-voltage (I-V) characteristics and presented as Fowler-Nordheim (FN) plots and the spatial emission current distributions (electron emission images) obtained and analyzed in terms of electron source features. For both the SWCNT and the CNF a single spot pattern for the electron spatial; distributions were observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reider Apel, Amanda; Ouellet, Mario; Szmidt-Middleton, Heather
Enhancing xylose utilization has been a major focus in Saccharomyces cerevisiae strain-engineering efforts. The incentive for these studies arises from the need to use all sugars in the typical carbon mixtures that comprise standard renewable plant-biomass-based carbon sources. While major advances have been made in developing utilization pathways, the efficient import of five carbon sugars into the cell remains an important bottleneck in this endeavor. Here we use an engineered S. cerevisiae BY4742 strain, containing an established heterologous xylose utilization pathway, and imposed a laboratory evolution regime with xylose as the sole carbon source. We obtained several evolved strains withmore » improved growth phenotypes and evaluated the best candidate using genome resequencing. We observed remarkably few single nucleotide polymorphisms in the evolved strain, among which we confirmed a single amino acid change in the hexose transporter HXT7 coding sequence to be responsible for the evolved phenotype. Lastly, the mutant HXT7(F79S) shows improved xylose uptake rates (Vmax = 186.4 ± 20.1 nmol•min -1•mg -1) that allows the S. cerevisiae strain to show significant growth with xylose as the sole carbon source, as well as partial co-utilization of glucose and xylose in a mixed sugar cultivation.« less
Reider Apel, Amanda; Ouellet, Mario; Szmidt-Middleton, Heather; ...
2016-01-19
Enhancing xylose utilization has been a major focus in Saccharomyces cerevisiae strain-engineering efforts. The incentive for these studies arises from the need to use all sugars in the typical carbon mixtures that comprise standard renewable plant-biomass-based carbon sources. While major advances have been made in developing utilization pathways, the efficient import of five carbon sugars into the cell remains an important bottleneck in this endeavor. Here we use an engineered S. cerevisiae BY4742 strain, containing an established heterologous xylose utilization pathway, and imposed a laboratory evolution regime with xylose as the sole carbon source. We obtained several evolved strains withmore » improved growth phenotypes and evaluated the best candidate using genome resequencing. We observed remarkably few single nucleotide polymorphisms in the evolved strain, among which we confirmed a single amino acid change in the hexose transporter HXT7 coding sequence to be responsible for the evolved phenotype. Lastly, the mutant HXT7(F79S) shows improved xylose uptake rates (Vmax = 186.4 ± 20.1 nmol•min -1•mg -1) that allows the S. cerevisiae strain to show significant growth with xylose as the sole carbon source, as well as partial co-utilization of glucose and xylose in a mixed sugar cultivation.« less
Li, Jing; Liu, Ruijie; Chang, Guifang; Li, Xiangyu; Chang, Ming; Liu, Yuanfa; Jin, Qingzhe; Wang, Xingguo
2015-02-01
Glucose and glycerol are useful carbon sources for the cultivation of Aurantiochytrium limacinum SR21. Glucose facilitates rapid growth and lipid synthesis, and glycerol promotes the accumulation of docosahexaenoic acid (DHA) in A. limacinum SR21. To improve the DHA productivity of A. limacinum SR21, shake flask and fed-batch cultures were performed using glucose and glycerol as mixed carbon sources (MCSs). Along with optimization of the MCSs, the best DHA yield and productivity (32.36 g/L and 337.1 mg/L/h) were obtained via fed-batch fermentation with maintenance of a constant air supply. The DHA productivity was 15.24% higher than that obtained using glucose as single carbon source (SCS). This study presents a highly efficient and economic strategy for the production of DHA by A. limacinum SR21. Copyright © 2014 Elsevier Ltd. All rights reserved.
G. R. McMeeking; J. W. Taylor; A. P. Sullivan; M. J. Flynn; S. K. Akagi; C. M. Carrico; J. L. Collett; E. Fortner; T. B. Onasch; S. M. Kreidenweis; R. J. Yokelson; C. Hennigan; A. L. Robinson; H. Coe
2010-01-01
We present SP2 observations of BC mass, size distributions and mixing state in emissions from laboratory and field biomass fires in California, USA. Biomass burning is the primary global black carbon (BC) source, but understanding of the amount emitted and its physical properties at and following emission are limited. The single particle soot photometer (SP2) uses a...
NASA Technical Reports Server (NTRS)
Bernstein, Max P.; Sandford, Scott A.; Allamandola, Louis J.; Chang, Sherwood; Scharberg, Maureen A.
1995-01-01
The InfraRed (IR) spectra of UltraViolet (UV) and thermally processed, methanol-containing interstellar / cometary ice analogs at temperatures from 12 to 300 K are presented. Infrared spectroscopy, H-1 and C-13 Nuclear Magnetic Resonance (NMR) spectroscopy, and gas chromatography-mass spectrometry indicate that CO (carbon monoxide), CO2 (carbon dioxide), CH4 (methane), HCO (the formyl radical), H2CO (formaldehyde), CH3CH2OH (ethanol), HC([double bond]O)NH2 (formamide), CH3C([double bond]O)NH2 (acetamide), and R[single bond]C[triple bond]N (nitriles) are formed. In addition, the organic materials remaining after photolyzed ice analogs have been warmed to room temperature contain (in rough order of decreasing abundance), (1) hexamethylenetetramine (HMT, C6H12N4), (2) ethers, alcohols, and compounds related to PolyOxyMethylene (POM, ([single bond]CH2O[single bond](sub n)), and (3) ketones (R[single bond]C([double bond]O)[single bond]R') and amides (H2NC([double bond]O)[single bond]R). Most of the carbon in these residues is thought to come from the methanol in the original ice. Deuterium and C-13 isotopic labeling demonstrates that methanol is definitely the source of carbon in HMT. High concentrations of HMT in interstellar and cometary ices could have important astrophysical consequences. The ultraviolet photolysis of HMT frozen in H2O ice readily produces the 'XCN' band observed in the spectra of protostellar objects and laboratory ices, as well as other nitriles. Thus, HMT may be a precursor of XCN and a source of CN in comets and the interstellar medium. Also, HMT is known to hydrolyze under acidic conditions to yield ammonia, formaldehyde, and amino acids. Thus, HMT may be a significant source of prebiogenic compounds on asteroidal parent bodies. A potential mechanism for the radiative formation of HMT in cosmic ices is outlined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Xiaowei; Hartmann, Nicolai F.; Ma, Xuedan
Generating quantum light emitters that operate at room temperature and at telecom wavelengths remains a significant materials challenge. To achieve this goal requires light sources that emit in the near-infrared wavelength region and that, ideally, are tunable to allow desired output wavelengths to be accessed in a controllable manner. Here, we show that exciton localization at covalently introduced aryl sp 3 defect sites in single-walled carbon nanotubes provides a route to room-temperature single-photon emission with ultrahigh single-photon purity (99%) and enhanced emission stability approaching the shot-noise limit. Moreover, we demonstrate that the inherent optical tunability of single-walled carbon nanotubes, presentmore » in their structural diversity, allows us to generate room-temperature single-photon emission spanning the entire telecom band. Furthermore, single-photon emission deep into the centre of the telecom C band (1.55 um) is achieved at the largest nanotube diameters we explore (0.936 nm).« less
He, Xiaowei; Hartmann, Nicolai F.; Ma, Xuedan; ...
2017-07-31
Generating quantum light emitters that operate at room temperature and at telecom wavelengths remains a significant materials challenge. To achieve this goal requires light sources that emit in the near-infrared wavelength region and that, ideally, are tunable to allow desired output wavelengths to be accessed in a controllable manner. Here, we show that exciton localization at covalently introduced aryl sp 3 defect sites in single-walled carbon nanotubes provides a route to room-temperature single-photon emission with ultrahigh single-photon purity (99%) and enhanced emission stability approaching the shot-noise limit. Moreover, we demonstrate that the inherent optical tunability of single-walled carbon nanotubes, presentmore » in their structural diversity, allows us to generate room-temperature single-photon emission spanning the entire telecom band. Furthermore, single-photon emission deep into the centre of the telecom C band (1.55 um) is achieved at the largest nanotube diameters we explore (0.936 nm).« less
NASA Astrophysics Data System (ADS)
Ma, Xuedan; Doorn, Stephen; Htoon, Han; Brener, Igal
Oxygen dopants in single-walled carbon nanotubes (SWCNTs) have recently been discovered as a novel single photon source enabling single photon generation up to room temperature in the telecom wavelength range. While they are promising for quantum information processing, it is fundamentally important to be able to manipulate their photoluminescence (PL) properties. All-dielectric metasurfaces made from arrays of high index nanoparticles have emerged as an attractive alternative to plasmonic metasurfaces due to their support of both electric and magnetic modes. Their low intrinsic losses at optical frequencies compared to that of plasmonic nanostructures provide a novel setting for tailoring emission from quantum emitters. We couple PL from single oxygen dopants in SWCNTs to the magnetic mode of silicon metasurfaces. Aside from the observation of a PL enhancement due to the Purcell effect, more interestingly, we find that the presence of the silicon metasurfaces significantly modifies the PL polarization of the dopants, which we attribute to near-field polarization modification caused by the silicon metasurfaces. Our finding presents dielectric metasurfaces as potential building blocks of photonic circuits for controlling PL intensity and polarization of single photon sources.
Apportionment of urban aerosol sources in Chongqing (China) using synergistic on-line techniques
NASA Astrophysics Data System (ADS)
Chen, Yang; Yang, Fumo
2016-04-01
The sources of ambient fine particulate matter (PM2.5) during wintertime at a background urban location in Chongqing (southwestern China) have been determined. Aerosol chemical composition analyses were performed using multiple on-line techniques, such as single particle aerosol mass spectrometer (SPAMS) for single particle chemical composition, on-line elemental carbon-organic carbon analyzer (on-line OC-EC), on-line X-ray fluorescence (XRF) for elements, and in-situ Gas and Aerosol Compositions monitor (IGAC) for water-soluble ions in PM2.5. All the datasets from these techniques have been adjusted to a 1-h time resolution for receptor model input. Positive matrix factorization (PMF) has been used for resolving aerosol sources. At least six sources, including domestic coal burning, biomass burning, dust, traffic, industrial and secondary/aged factors have been resolved and interpreted. The synergistic on-line techniques were helpful for identifying aerosol sources more clearly than when only employing the results from the individual techniques. This results are useful for better understanding of aerosol sources and atmospheric processes.
NASA Astrophysics Data System (ADS)
Abegglen, Manuel; Brem, B. T.; Ellenrieder, M.; Durdina, L.; Rindlisbacher, T.; Wang, J.; Lohmann, U.; Sierau, B.
2016-06-01
Non-volatile aircraft engine emissions are an important anthropogenic source of soot particles in the upper troposphere and in the vicinity of airports. They influence climate and contribute to global warming. In addition, they impact air quality and thus human health and the environment. The chemical composition of non-volatile particulate matter emission from aircraft engines was investigated using single particle time-of-flight mass spectrometry. The exhaust from three different aircraft engines was sampled and analyzed. The soot particulate matter was sampled directly behind the turbine in a test cell at Zurich Airport. Single particle analyses will focus on metallic compounds. The particles analyzed herein represent a subset of the emissions composed of the largest particles with a mobility diameter >100 nm due to instrumental restrictions. A vast majority of the analyzed particles was shown to contain elemental carbon, and depending on the engine and the applied thrust the elemental carbon to total carbon ratio ranged from 83% to 99%. The detected metallic compounds were all internally mixed with the soot particles. The most abundant metals in the exhaust were Cr, Fe, Mo, Na, Ca and Al; V, Ba, Co, Cu, Ni, Pb, Mg, Mn, Si, Ti and Zr were also detected. We further investigated potential sources of the ATOFMS-detected metallic compounds using Inductively Coupled Plasma Mass Spectrometry. The potential sources considered were kerosene, engine lubrication oil and abrasion from engine wearing components. An unambiguous source apportionment was not possible because most metallic compounds were detected in several of the analyzed sources.
A Demo opto-electronic power source based on single-walled carbon nanotube sheets.
Hu, Chunhua; Liu, Changhong; Chen, Luzhuo; Meng, Chuizhou; Fan, Shoushan
2010-08-24
It is known that single-walled carbon nanotubes (SWNTs) strongly absorb light, especially in the near-infrared (NIR) region, and convert it into heat. In fact, SWNTs also have considerable ability to convert heat into electricity. In this work, we show that SWNT sheets made from as-grown SWNT arrays display a large positive thermoelectric coefficient (p-type). We designed a simple SWNT device to convert illuminating NIR light directly into a notable voltage output, which was verified by experimental tests. Furthermore, by a simple functionalization step, the p- to n-type transition was conveniently achieved for the SWNT sheets. By integrating p- and n-type elements in series, we constructed a novel NIR opto-electronic power source, which outputs a large voltage that sums over the output of every single element. Additionally, the output of the demo device has shown a good linear relationship with NIR light power density, favorable for IR sensors.
On-road measurement of black carbon mass, absorption, and single-scattering albedo
Absorption and scattering of solar radiation by aerosols emitted from combustion sources can affect the earth’s radiative balance and may potentially affect local and regional climate. Optical properties of aerosols emitted from mobile sources have not been thoroughly characteri...
Sahu, Manoranjan; Hu, Shaohua; Ryan, Patrick H; Le Masters, Grace; Grinshpun, Sergey A; Chow, Judith C; Biswas, Pratim
2011-06-01
Exposure to traffic-related pollution during childhood has been associated with asthma exacerbation, and asthma incidence. The objective of the Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS) is to determine if the development of allergic and respiratory disease is associated with exposure to diesel engine exhaust particles. A detailed receptor model analyses was undertaken by applying positive matrix factorization (PMF) and UNMIX receptor models to two PM₂.₅ data sets: one consisting of two carbon fractions and the other of eight temperature-resolved carbon fractions. Based on the source profiles resolved from the analyses, markers of traffic-related air pollution were estimated: the elemental carbon attributed to traffic (ECAT) and elemental carbon attributed to diesel vehicle emission (ECAD). Application of UNMIX to the two data sets generated four source factors: combustion related sulfate, traffic, metal processing and soil/crustal. The PMF application generated six source factors derived from analyzing two carbon fractions and seven factors from temperature-resolved eight carbon fractions. The source factors (with source contribution estimates by mass concentrations in parentheses) are: combustion sulfate (46.8%), vegetative burning (15.8%), secondary sulfate (12.9%), diesel vehicle emission (10.9%), metal processing (7.5%), gasoline vehicle emission (5.6%) and soil/crustal (0.7%). Diesel and gasoline vehicle emission sources were separated using eight temperature-resolved organic and elemental carbon fractions. Application of PMF to both datasets also differentiated the sulfate rich source from the vegetative burning source, which are combined in a single factor by UNMIX modeling. Calculated ECAT and ECAD values at different locations indicated that traffic source impacts depend on factors such as traffic volumes, meteorological parameters, and the mode of vehicle operation apart from the proximity of the sites to highways. The difference in ECAT and ECAD, however, was less than one standard deviation. Thus, a cost benefit consideration should be used when deciding on the benefits of an eight or two carbon approach. Published by Elsevier B.V.
Single photon generation through exciton-exciton annihilation in air-suspended carbon nanotubes
NASA Astrophysics Data System (ADS)
Ishii, Akihiro; Uda, Takushi; Kato, Yuichiro K.
Carbon nanotubes have great potential for single photon sources as they have stable exciton states even at room temperature and their emission wavelengths cover the telecommunication bands. In recent years, single photon emission from carbon nanotubes has been achieved by creating localized states of excitons. In contrast to such an approach, here we utilize mobile excitons and show that single photons can be generated in air-suspended carbon nanotubes, where exciton diffusion length is as long as several hundred nanometers and exciton-exciton annihilation is efficient. We perform photoluminescence microscopy on as-grown air-suspended carbon nanotubes in order to determine their chirality and suspended length. Photon correlation measurements are performed on nanotube emission at room temperature using a Hanbury-Brown-Twiss setup with InGaAs/InP single photon detectors. We observe antibunching with a clear excitation power dependence, where we obtain g (2) (0) value less than 0.5 at low excitation powers, indicating single photon generation. We show such g (2) (0) data with different chiralities and suspended lengths, and the effects of exciton diffusion on single photon generation processes are discussed. Work supported by KAKENHI (26610080, 16H05962), The Canon Foundation, and MEXT (Photon Frontier Network Program, Nanotechnology Platform). A.I. is supported by MERIT and JSPS Research Fellowship, and T.U. is supported by ALPS.
Nitrogen reduction pathways in estuarine sediments: Influences of organic carbon and sulfide
NASA Astrophysics Data System (ADS)
Plummer, Patrick; Tobias, Craig; Cady, David
2015-10-01
Potential rates of sediment denitrification, anaerobic ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA) were mapped across the entire Niantic River Estuary, CT, USA, at 100-200 m scale resolution consisting of 60 stations. On the estuary scale, denitrification accounted for ~ 90% of the nitrogen reduction, followed by DNRA and anammox. However, the relative importance of these reactions to each other was not evenly distributed through the estuary. A Nitrogen Retention Index (NIRI) was calculated from the rate data (DNRA/(denitrification + anammox)) as a metric to assess the relative amounts of reactive nitrogen being recycled versus retained in the sediments following reduction. The distribution of rates and accompanying sediment geochemical analytes suggested variable controls on specific reactions, and on the NIRI, depending on position in the estuary and that these controls were linked to organic carbon abundance, organic carbon source, and pore water sulfide concentration. The relationship between NIRI and organic carbon abundance was dependent on organic carbon source. Sulfide proved the single best predictor of NIRI, accounting for 44% of its observed variance throughout the whole estuary. We suggest that as a single metric, sulfide may have utility as a proxy for gauging the distribution of denitrification, anammox, and DNRA.
Jeon, Il; Cui, Kehang; Chiba, Takaaki; Anisimov, Anton; Nasibulin, Albert G; Kauppinen, Esko I; Maruyama, Shigeo; Matsuo, Yutaka
2015-07-01
Organic solar cells have been regarded as a promising electrical energy source. Transparent and conductive carbon nanotube film offers an alternative to commonly used ITO in photovoltaics with superior flexibility. This communication reports carbon nanotube-based indium-free organic solar cells and their flexible application. Direct and dry deposited carbon nanotube film doped with MoO(x) functions as an electron-blocking transparent electrode, and its performance is enhanced further by overcoating with PSS. The single-walled carbon nanotube organic solar cell in this work shows a power conversion efficiency of 6.04%. This value is 83% of the leading ITO-based device performance (7.48%). Flexible application shows 3.91% efficiency and is capable of withstanding a severe cyclic flex test.
Factors influencing the production of cellulase by Aspergillus fumigatus (Fresenius).
Stewart, J C; Parry, J B
1981-07-01
During growth in liquid culture containing a single cellulosic or non-cellulosic carbon source, a newly isolated strain of Aspergillus fumigatus released cellulases into the medium; the amounts produced depended on the nitrogen source, the type and concentration of the carbon source, pH and temperature. Extracellular cellulolytic activity was still increasing after incubation for 60 d with 1% (W/V) CF11 cellulose, (NH4)2SO4 as nitrogen source and a starting pH of 7. The activities of the new isolate were compared with those of A. fumigatus IMI 143864 and Trichoderma reesei QM6a (ATCC 13631) and it was shown to be a good producer of beta-glucosidase.
ERIC Educational Resources Information Center
Johnson, William C.; Kraemer, Steven; Ormond, Paul
2011-01-01
Self-declared energy and carbon reduction goals on the part of progressive colleges and universities have driven ground source geothermal space heating and cooling systems into rapid evolution, as part of long-term climate action planning efforts. The period of single-building or single-well solutions is quickly being eclipsed by highly engineered…
Lin, Li; Sun, Luzhao; Zhang, Jincan; Sun, Jingyu; Koh, Ai Leen; Peng, Hailin; Liu, Zhongfan
2016-06-01
A second passivation and a multistage carbon-source supply (CSS) allow a 50-fold enhancement of the growth rate of large single-crystalline graphene with a record growth rate of 101 μm min(-1) , almost 10 times higher than for pure copper. To this end the CSS is tailored at separate stages of graphene growth on copper foil, combined with an effective suppression of new spontaneous nucleation via second passivation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Ruirui; Gu, Pengfei; Fan, Xiangyu; Shen, Junyu; Wu, Yulian; Huang, Lixuan; Li, Qiang
2018-03-21
A polyhydroxyalkanoate (PHA)-producing strain was isolated from propylene oxide (PO) saponification wastewater activated sludge and was identified as Brevundimonas vesicularis UJN1 through 16S rDNA sequencing and Biolog microbiological identification. Single-factor and response surface methodology experiments were used to optimize the culture medium and conditions. The optimal C/N ratio was 100/1.04, and the optimal carbon and nitrogen sources were sucrose (10 g/L) and NH 4 Cl (0.104 g/L) respectively. The optimal culture conditions consisted of initial pH of 6.7 and an incubation temperature of 33.4 °C for 48 h, with 15% inoculum and 100 mL medium at an agitation rate of 180 rpm. The PHA concentration reached 34.1% of the cell dry weight and increased three times compared with that before optimization. The only report of PHA-producing bacteria by Brevundimonas vesicularis showed that the conversion rate of PHAs using glucose as the optimal carbon source was 1.67%. In our research, the conversion rate of PHAs with sucrose as the optimal carbon source was 3.05%, and PHA production using sucrose as the carbon source was much cheaper than that using glucose as the carbon source.
Ulas, Thomas; Riemer, S. Alexander; Zaparty, Melanie; Siebers, Bettina; Schomburg, Dietmar
2012-01-01
We describe the reconstruction of a genome-scale metabolic model of the crenarchaeon Sulfolobus solfataricus, a hyperthermoacidophilic microorganism. It grows in terrestrial volcanic hot springs with growth occurring at pH 2–4 (optimum 3.5) and a temperature of 75–80°C (optimum 80°C). The genome of Sulfolobus solfataricus P2 contains 2,992,245 bp on a single circular chromosome and encodes 2,977 proteins and a number of RNAs. The network comprises 718 metabolic and 58 transport/exchange reactions and 705 unique metabolites, based on the annotated genome and available biochemical data. Using the model in conjunction with constraint-based methods, we simulated the metabolic fluxes induced by different environmental and genetic conditions. The predictions were compared to experimental measurements and phenotypes of S. solfataricus. Furthermore, the performance of the network for 35 different carbon sources known for S. solfataricus from the literature was simulated. Comparing the growth on different carbon sources revealed that glycerol is the carbon source with the highest biomass flux per imported carbon atom (75% higher than glucose). Experimental data was also used to fit the model to phenotypic observations. In addition to the commonly known heterotrophic growth of S. solfataricus, the crenarchaeon is also able to grow autotrophically using the hydroxypropionate-hydroxybutyrate cycle for bicarbonate fixation. We integrated this pathway into our model and compared bicarbonate fixation with growth on glucose as sole carbon source. Finally, we tested the robustness of the metabolism with respect to gene deletions using the method of Minimization of Metabolic Adjustment (MOMA), which predicted that 18% of all possible single gene deletions would be lethal for the organism. PMID:22952675
NASA Astrophysics Data System (ADS)
Jeong, Chan Jin; Roy, Arup Kumer; Kim, Sung Han; Lee, Jung-Eun; Jeong, Ji Hoon; Insik; Park, Sung Young
2014-11-01
Water soluble fluorescent carbon nanoparticles (FCP) obtained from a single natural source, mango fruit, were developed as unique materials for non-toxic bio-imaging with different colors and particle sizes. The prepared FCPs showed blue (FCP-B), green (FCP-G) and yellow (FCP-Y) fluorescence, derived by the controlled carbonization method. The FCPs demonstrated hydrodynamic diameters of 5-15 nm, holding great promise for clinical applications. The biocompatible FCPs demonstrated great potential in biological fields through the results of in vitro imaging and in vivo biodistribution. Using intravenously administered FCPs with different colored particles, we precisely defined the clearance and biodistribution, showing rapid and efficient urinary excretion for safe elimination from the body. These findings therefore suggest the promising possibility of using natural sources for producing fluorescent materials.Water soluble fluorescent carbon nanoparticles (FCP) obtained from a single natural source, mango fruit, were developed as unique materials for non-toxic bio-imaging with different colors and particle sizes. The prepared FCPs showed blue (FCP-B), green (FCP-G) and yellow (FCP-Y) fluorescence, derived by the controlled carbonization method. The FCPs demonstrated hydrodynamic diameters of 5-15 nm, holding great promise for clinical applications. The biocompatible FCPs demonstrated great potential in biological fields through the results of in vitro imaging and in vivo biodistribution. Using intravenously administered FCPs with different colored particles, we precisely defined the clearance and biodistribution, showing rapid and efficient urinary excretion for safe elimination from the body. These findings therefore suggest the promising possibility of using natural sources for producing fluorescent materials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04805a
Xiong, Yi; Wu, Vincent W.; Lubbe, Andrea; ...
2017-05-03
In Neurospora crassa, the transcription factor COL-26 functions as a regulator of glucose signaling and metabolism. Its loss leads to resistance to carbon catabolite repression. Here, we report that COL-26 is necessary for the expression of amylolytic genes in N. crassa and is required for the utilization of maltose and starch. Additionally, the Δcol-26 mutant shows growth defects on preferred carbon sources, such as glucose, an effect that was alleviated if glutamine replaced ammonium as the primary nitrogen source. This rescue did not occur when maltose was used as a sole carbon source. Transcriptome and metabolic analyses of the Δcol-26more » mutant relative to its wild type parental strain revealed that amino acid and nitrogen metabolism, the TCA cycle and GABA shunt were adversely affected. Phylogenetic analysis showed a single col-26 homolog in Sordariales, Ophilostomatales, and the Magnaporthales, but an expanded number of col-26 homologs in other filamentous fungal species. Deletion of the closest homolog of col-26 in Trichoderma reesei, bglR, resulted in a mutant with similar preferred carbon source growth deficiency, and which was alleviated if glutamine was the sole nitrogen source, suggesting conservation of COL-26 and BglR function. Our finding provides novel insight into the role of COL-26 for utilization of starch and in integrating carbon and nitrogen metabolism for balanced metabolic activities for optimal carbon and nitrogen distribution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Yi; Wu, Vincent W.; Lubbe, Andrea
In Neurospora crassa, the transcription factor COL-26 functions as a regulator of glucose signaling and metabolism. Its loss leads to resistance to carbon catabolite repression. Here, we report that COL-26 is necessary for the expression of amylolytic genes in N. crassa and is required for the utilization of maltose and starch. Additionally, the Δcol-26 mutant shows growth defects on preferred carbon sources, such as glucose, an effect that was alleviated if glutamine replaced ammonium as the primary nitrogen source. This rescue did not occur when maltose was used as a sole carbon source. Transcriptome and metabolic analyses of the Δcol-26more » mutant relative to its wild type parental strain revealed that amino acid and nitrogen metabolism, the TCA cycle and GABA shunt were adversely affected. Phylogenetic analysis showed a single col-26 homolog in Sordariales, Ophilostomatales, and the Magnaporthales, but an expanded number of col-26 homologs in other filamentous fungal species. Deletion of the closest homolog of col-26 in Trichoderma reesei, bglR, resulted in a mutant with similar preferred carbon source growth deficiency, and which was alleviated if glutamine was the sole nitrogen source, suggesting conservation of COL-26 and BglR function. Our finding provides novel insight into the role of COL-26 for utilization of starch and in integrating carbon and nitrogen metabolism for balanced metabolic activities for optimal carbon and nitrogen distribution.« less
Xiong, Yi; Qin, Lina; Kennedy, Megan; Bauer, Diane; Barry, Kerrie; Northen, Trent R.; Grigoriev, Igor V.
2017-01-01
In Neurospora crassa, the transcription factor COL-26 functions as a regulator of glucose signaling and metabolism. Its loss leads to resistance to carbon catabolite repression. Here, we report that COL-26 is necessary for the expression of amylolytic genes in N. crassa and is required for the utilization of maltose and starch. Additionally, the Δcol-26 mutant shows growth defects on preferred carbon sources, such as glucose, an effect that was alleviated if glutamine replaced ammonium as the primary nitrogen source. This rescue did not occur when maltose was used as a sole carbon source. Transcriptome and metabolic analyses of the Δcol-26 mutant relative to its wild type parental strain revealed that amino acid and nitrogen metabolism, the TCA cycle and GABA shunt were adversely affected. Phylogenetic analysis showed a single col-26 homolog in Sordariales, Ophilostomatales, and the Magnaporthales, but an expanded number of col-26 homologs in other filamentous fungal species. Deletion of the closest homolog of col-26 in Trichoderma reesei, bglR, resulted in a mutant with similar preferred carbon source growth deficiency, and which was alleviated if glutamine was the sole nitrogen source, suggesting conservation of COL-26 and BglR function. Our finding provides novel insight into the role of COL-26 for utilization of starch and in integrating carbon and nitrogen metabolism for balanced metabolic activities for optimal carbon and nitrogen distribution. PMID:28467421
Flynn, Theodore M.; Koval, Jason C.; Greenwald, Stephanie M.; Owens, Sarah M.; Kemner, Kenneth M.; Antonopoulos, Dionysios A.
2017-01-01
We present DNA sequence data in FASTA-formatted files from aerobic environmental microcosms inoculated with a sole carbon source. DNA sequences are of 16S rRNA genes present in DNA extracted from each microcosm along with the environmental samples (soil, water) used to inoculate them. These samples were sequenced using the Illumina MiSeq platform at the Environmental Sample Preparation and Sequencing Facility at Argonne National Laboratory. This data is compatible with standard microbiome analysis pipelines (e.g., QIIME, mothur, etc.).
Laser ion source with solenoid field
NASA Astrophysics Data System (ADS)
Kanesue, Takeshi; Fuwa, Yasuhiro; Kondo, Kotaro; Okamura, Masahiro
2014-11-01
Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 1011, which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.
Oakes, Michelle M.; Baxter, Lisa K.; Duvall, Rachelle M.; Madden, Meagan; Xie, Mingjie; Hannigan, Michael P.; Peel, Jennifer L.; Pachon, Jorge E.; Balachandran, Siv; Russell, Armistead; Long, Thomas C.
2014-01-01
A variety of single pollutant and multipollutant metrics can be used to represent exposure to traffic pollutant mixtures and evaluate their health effects. Integrated mobile source indicators (IMSIs) that combine air quality concentration and emissions data have recently been developed and evaluated using data from Atlanta, Georgia. IMSIs were found to track trends in traffic-related pollutants and have similar or stronger associations with health outcomes. In the current work, we apply IMSIs for gasoline, diesel and total (gasoline + diesel) vehicles to two other cities (Denver, Colorado and Houston, Texas) with different emissions profiles as well as to a different dataset from Atlanta. We compare spatial and temporal variability of IMSIs to single-pollutant indicators (carbon monoxide (CO), nitrogen oxides (NOx) and elemental carbon (EC)) and multipollutant source apportionment factors produced by Positive Matrix Factorization (PMF). Across cities, PMF-derived and IMSI gasoline metrics were most strongly correlated with CO (r = 0.31–0.98), while multipollutant diesel metrics were most strongly correlated with EC (r = 0.80–0.98). NOx correlations with PMF factors varied across cities (r = 0.29–0.67), while correlations with IMSIs were relatively consistent (r = 0.61–0.94). In general, single-pollutant metrics were more correlated with IMSIs (r = 0.58–0.98) than with PMF-derived factors (r = 0.07–0.99). A spatial analysis indicated that IMSIs were more strongly correlated (r > 0.7) between two sites in each city than single pollutant and PMF factors. These findings provide confidence that IMSIs provide a transferable, simple approach to estimate mobile source air pollution in cities with differing topography and source profiles using readily available data. PMID:25405595
NASA Astrophysics Data System (ADS)
Saraswati, Teguh Endah; Prasiwi, Oktaviana Dewi Indah; Masykur, Abu; Anwar, Miftahul
2017-01-01
The carbon nanotube has widely taken great attractive in carbon nanomaterial research and application. One of its preparation methods is catalytic chemical vapor deposition (CCVD) using catalyst i.e. iron, nickel, etc. Generally, except the catalyst, carbon source gasses as the precursor are still required. Here, we report the use of the bifunctional material of Fe3O4/C which has an incorporated core/shell structures of carbon-encapsulated iron compound nanoparticles. The bifunctional catalyst was prepared by submerged arc discharge that simply performed using carbon and carbon/iron oxide electrodes in ethanol 50%. The prepared material was then used as a catalyst in thermal chemical vapor deposition at 800°C flown with ethanol vapor as the primer carbon source in a low-pressure condition. This catalyst might play a dual role as a catalyst and secondary carbon source for growing carbon nanotubes at the time. The synthesized products were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis. The successful formation of carbon nanotubes was assigned by the shifted X-ray diffracted peak of carbon C(002), the iron oxides of Fe3O4 and γ-Fe2O3, and the other peaks which were highly considered to the other carbon allotropes with sp2 hybridization structures. The other assignment was studied by electron microscopy which successfully observed the presence of single-wall carbon nanotubes. In addition, the as-prepared carbon nanotubes have a magnetic property which was induced by the remaining of metal catalyst inside the CNT.
Preliminary Experimental Measurements for a Gallium Electromagnetic (GEM) Thruster
NASA Technical Reports Server (NTRS)
Thomas, Robert E.; Burton, Rodney L.; Glumac, Nick G.; Polzin, Kurt A.
2007-01-01
A low-energy gallium plasma source is used to perform a spatially and temporally broad spectroscopic survey in the 220-520 nm range. Neutral, singly, and doubly ionized gallium are present in a 20 J, 1.8 kA (peak) arc discharge operating with a central cathode. When the polarity of the inner electrode is reversed the discharge current and arc voltage waveforms remain similar. Utilizing a central anode configuration, multiple Ga lines are absent in the 270-340 nm range. In addition, neutral and singly ionized Fe spectral lines are present, indicating erosion of the outer electrode. With graphite present on the insulator to facilitate breakdown, line emission from the gallium species is further reduced and while emissions from singly and doubly ionized carbon atoms and molecular carbon (C2) radicals are observed. These data indicate that a significant fraction of energy is shifted from the gallium and deposited into the various carbon species.
NASA Astrophysics Data System (ADS)
Wukovits, Julia; Bukenberger, Patrick; Enge, Annekatrin; Wanek, Wolfgang; Watzka, Margarete; Heinz, Petra
2016-04-01
Phytodetritus represents a major component of particulate organic carbon in intertidal mudflats. Estuaries and tidal currents yield an extensive amount of these particles that display a substantial nutrient source for littoral food webs. For benthic foraminifera, a group of marine protists, phytodetritus serves as the main food source. Foraminifera are considered to play a significant role in marine carbon turnover processes and show seasonally very high population densities in intertidal sediments. Therefore, it is important to gather explicit data about the specific carbon uptake behavior of intertidal foraminiferal species. In this study, laboratory feeding experiments were carried out to observe phytodetrital carbon uptake of foraminiferal specimen collected in the German Wadden Sea. Artificially produced phytodetritus was labelled with 13C to follow carbon ingestion into foraminiferal cytoplasm over time at different simulated conditions. The experiments were performed with monocultures under exclusion of other meiofauna. Chlorophyte detritus (Dunaliella tertiolecta) was fed to the two common species Ammonia tepida and Haynesina germanica. Ammonia tepida showed a significantly higher affinity to this food source than H. germanica. Testing the effect of temperature revealed a significant decrease of carbon ingestion with increasing temperature in H. germanica. Observations focusing on A. tepida showed a rising phytodetrital carbon content in the biomass of juvenile individuals in contrast to adult foraminifera. In general, carbon uptake reaches saturation levels a few hours after food supply. Furthermore, A. tepida benefits from constant availability of fresh food rather than from a high amount of phytodetritus derived from a single food pulse. Our investigations showed that the foraminiferal impact on intertidal processing of phytodetrital carbon sources is species specific, temperature related and depends on developmental stage and input dynamics. Additionally, the presented data reveal the quantitative level of food derived carbon gathered within foraminiferal biomass.
Biomass Burning Emissions of Black Carbon from African Sources
NASA Astrophysics Data System (ADS)
Aiken, A. C.; Leone, O.; Nitschke, K. L.; Dubey, M. K.; Carrico, C.; Springston, S. R.; Sedlacek, A. J., III; Watson, T. B.; Kuang, C.; Uin, J.; McMeeking, G. R.; DeMott, P. J.; Kreidenweis, S. M.; Robinson, A. L.; Yokelson, R. J.; Zuidema, P.
2016-12-01
Biomass burning (BB) emissions are a large source of carbon to the atmosphere via particles and gas phase species. Carbonaceous aerosols are emitted along with gas-phase carbon monoxide (CO) and carbon dioxide (CO2) that can be used to determine particulate emission ratios and modified combustion efficiencies. Black carbon (BC) aerosols are potentially underestimated in global models and are considered to be one of the most important global warming factors behind CO2. Half or more BC in the atmosphere is from BB, estimated at 6-9 Tg/yr (IPCC, 5AR) and contributing up to 0.6 W/m2 atmospheric warming (Bond et al., 2013). With a potential rise in drought and extreme events in the future due to climate change, these numbers are expected to increase. For this reason, we focus on BC and organic carbon aerosol species that are emitted from forest fires and compare their emission ratios, physical and optical properties to those from controlled laboratory studies of single-source BB fuels to understand BB carbonaceous aerosols in the atmosphere. We investigate BC in concentrated BB plumes as sampled from the new U.S. DOE ARM Program campaign, Layered Atlantic Smoke Interactions with Clouds (LASIC). The ARM Aerosol Mobile Facility 1 (AMF1) and Mobile Aerosol Observing System (MAOS) are currently located on Ascension Island in the South Atlantic Ocean, located midway between Angola and Brazil. The location was chosen for sampling maximum aerosol outflow from Africa. The far-field aged BC from LASIC is compared to BC from indoor generation from single-source fuels, e.g. African grass, sampled during Fire Lab At Missoula Experiments IV (FLAME-IV). BC is measured with a single-particle soot photometer (SP2) alongside numerous supporting instrumentation, e.g. particle counters, CO and CO2 detectors, aerosol scattering and absorption measurements, etc. FLAME-IV includes both direct emissions and well-mixed aerosol samples that have undergone dilution, cooling, and condensation. BC physical and optical properties change as particles are transported in the atmosphere due to oxidation, coagulation, and condensation which is observed in the laboratory BC data. Laboratory BC emissions and emission ratios are compared with those from LASIC to improve model treatment of BB BC emissions and aging in global climate models.
Laser ion source with solenoid field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanesue, Takeshi, E-mail: tkanesue@bnl.gov; Okamura, Masahiro; Fuwa, Yasuhiro
2014-11-10
Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 10{sup 11}, which was provided by a single 1 J Nd-YAGmore » laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.« less
Laser ion source with solenoid field
Kanesue, Takeshi; Fuwa, Yasuhiro; Kondo, Kotaro; ...
2014-11-12
Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. In this study, the laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 10 11,more » which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.« less
Compensated infrared absorption sensor for carbon dioxide and other infrared absorbing gases
Owen, Thomas E.
2005-11-29
A gas sensor, whose chamber uses filters and choppers in either a semicircular geometry or annular geometry, and incorporates separate infrared radiation filters and optical choppers. This configuration facilitates the use of a single infrared radiation source and a single detector for infrared measurements at two wavelengths, such that measurement errors may be compensated.
Investigation of reductive dechlorination supported by natural organic carbon
Rectanus, H.V.; Widdowson, M.A.; Chapelle, F.H.; Kelly, C.A.; Novak, J.T.
2007-01-01
Because remediation timeframes using monitored natural attenuation may span decades or even centuries at chlorinated solvent sites, new approaches are needed to assess the long-term sustainability of reductive dechlorination in ground water systems. In this study, extraction procedures were used to investigate the mass of indigenous organic carbon in aquifer sediment, and experiments were conducted to determine if the extracted carbon could support reductive dechlorination of chloroethenes. Aquifer sediment cores were collected from a site without an anthropogenic source of organic carbon where organic carbon varied from 0.02% to 0.12%. Single extraction results showed that 1% to 28% of sediment-associated organic carbon and 2% to 36% of the soft carbon were removed depending on nature and concentration of the extracting solution (Nanopure water; 0.1%, 0.5%, and 1.0% sodium pyrophosphate; and 0.5 N sodium hydroxide). Soft carbon is defined as organic carbon oxidized with potassium persulfate and is assumed to serve as a source of biodegradable carbon within the aquifer. Biodegradability studies demonstrated that 20% to 40% of extracted organic carbon was biodegraded aerobically and anaerobically by soil microorganisms in relatively brief tests (45 d). A five-step extraction procedure consisting of 0.1% pyrophosphate and base solutions was investigated to quantify bioavailable organic carbon. Using the extracted carbon as the sole electron donor source, tetrachloroethene was transformed to cis-1,2- dichloroethene and vinyl chloride in anaerobic enrichment culture experiments. Hydrogen gas was produced at levels necessary to sustain reductive dechlorination (>1 nM). ?? 2007 National Ground Water Association.
Carbon nanotube vacuum gauges with wide-dynamic range and processes thereof
NASA Technical Reports Server (NTRS)
Manohara, Harish (Inventor); Kaul, Anupama B. (Inventor)
2013-01-01
A miniature thermal conductivity gauge employs a carbon single-walled-nanotube. The gauge operates on the principle of thermal exchange between the voltage-biased nanotube and the surrounding gas at low levels of power and low temperatures to measure vacuum across a wide dynamic range. The gauge includes two terminals, a source of constant voltage to the terminals, a single-walled carbon nanotube between the terminals, a calibration of measured conductance of the nanotube to magnitudes of surrounding vacuum and a current meter in electrical communication with the source of constant voltage. Employment of the nanotube for measuring vacuum includes calibrating the electrical conductance of the nanotube to magnitudes of vacuum, exposing the nanotube to a vacuum, applying a constant voltage across the nanotube, measuring the electrical conductance of the nanotube in the vacuum with the constant voltage applied and converting the measured electrical conductance to the corresponding calibrated magnitude of vacuum using the calibration. The nanotube may be suspended to minimize heat dissipation through the substrate, increasing sensitivity at even tower pressures.
Electricity generation from carbon monoxide in a single chamber microbial fuel cell.
Mehta, P; Hussain, A; Tartakovsky, B; Neburchilov, V; Raghavan, V; Wang, H; Guiot, S R
2010-05-05
Electricity production from carbon monoxide (CO) is demonstrated in a single chamber microbial fuel cell (MFC) with a CoTMPP-based air cathode. The MFC was inoculated with anaerobic sludge and continuously sparged with CO as a sole carbon source. Volumetric power output was maximized at a CO flow rate of 4.8LLR(-1)d(-1) reaching 6.4mWLR(-1). Several soluble and gaseous degradation products including hydrogen, methane, and acetate were detected, resulting in a relatively low apparent Coulombic efficiency of 8.7%. Tests also demonstrated electricity production from hydrogen and acetate with the highest and fastest increase in voltage exhibited after acetate injection. It is hypothesized that electricity generation in a CO-fed MFC is accomplished by a consortium of carboxydotrophic and carbon monoxide - tolerant anodophilic microorganisms. Crown Copyright © 2010. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Plata, D. L.; Gschwend, P. M.; Reddy, C. M.
2008-05-01
Commercially available single-walled carbon nanotubes (SWCNTs) contain large percentages of metal and carbonaceous impurities. These fractions influence the SWCNT physical properties and performance, yet their chemical compositions are not well defined. This lack of information also precludes accurate environmental risk assessments for specific SWCNT stocks, which emerging local legislation requires of nanomaterial manufacturers. To address these needs, we measured the elemental, molecular, and stable carbon isotope compositions of commercially available SWCNTs. As expected, catalytic metals occurred at per cent levels (1.3-29%), but purified materials also contained unexpected metals (e.g., Cu, Pb at 0.1-0.3 ppt). Nitrogen contents (up to 0.48%) were typically greater in arc-produced SWCNTs than in those derived from chemical vapor deposition. Toluene-extractable materials contributed less than 5% of the total mass of the SWCNTs. Internal standard losses during dichloromethane extractions suggested that metals are available for reductive dehalogenation reactions, ultimately resulting in the degradation of aromatic internal standards. The carbon isotope content of the extracted material suggested that SWCNTs acquired much of their carbonaceous contamination from their storage environment. Some of the SWCNTs, themselves, were highly depleted in 13C relative to petroleum-derived chemicals. The distinct carbon isotopic signatures and unique metal 'fingerprints' may be useful as environmental tracers allowing assessment of SWCNT sources to the environment.
Deposition of defected graphene on (001) Si substrates by thermal decomposition of acetone
NASA Astrophysics Data System (ADS)
Milenov, T. I.; Avramova, I.; Valcheva, E.; Avdeev, G. V.; Rusev, S.; Kolev, S.; Balchev, I.; Petrov, I.; Pishinkov, D.; Popov, V. N.
2017-11-01
We present results on the deposition and characterization of defected graphene by the chemical vapor deposition (CVD) method. The source of carbon/carbon-containing radicals is thermally decomposed acetone (C2H6CO) in Ar main gas flow. The deposition takes place on (001) Si substrates at about 1150-1160 °C. We established by Raman spectroscopy the presence of single- to few- layered defected graphene deposited on two types of interlayers that possess different surface morphology and consisted of mixed sp2 and sp3 hybridized carbon. The study of interlayers by XPS, XRD, GIXRD and SEM identifies different phase composition: i) a diamond-like carbon dominated film consisting some residual SiC, SiO2 etc.; ii) a sp2- dominated film consisting small quantities of C60/C70 fullerenes and residual Si-O-, Cdbnd O etc. species. The polarized Raman studies confirm the presence of many single-layered defected graphene areas that are larger than few microns in size on the predominantly amorphous carbon interlayers.
Davis, Niall F; McGrath, Shannon; Quinlan, Mark; Jack, Gregory; Lawrentschuk, Nathan; Bolton, Damien M
2018-03-01
There are no comparative assessments on the environmental impact of endourologic instruments. We evaluated and compared the environmental impact of single-use flexible ureteroscopes with reusable flexible ureteroscopes. An analysis of the typical life cycle of the LithoVue™ (Boston Scientific) single-use digital flexible ureteroscope and Olympus Flexible Video Ureteroscope (URV-F) was performed. To measure the carbon footprint, data were obtained on manufacturing of single-use and reusable flexible ureteroscopes and from typical uses obtained with a reusable scope, including repairs, replacement instruments, and ultimate disposal of both ureteroscopes. The solid waste generated (kg) and energy consumed (kWh) during each case were quantified and converted into their equivalent mass of carbon dioxide (kg of CO 2 ) released. Flexible ureteroscopic raw materials composed of plastic (90%), steel (4%), electronics (4%), and rubber (2%). The manufacturing cost of a flexible ureteroscope was 11.49 kg of CO 2 per 1 kg of ureteroscope. The weight of the single-use LithoVue and URV-F flexible ureteroscope was 0.3 and 1 kg, respectively. The total carbon footprint of the lifecycle assessment of the LithoVue was 4.43 kg of CO 2 per endourologic case. The total carbon footprint of the lifecycle of the reusable ureteroscope was 4.47 kg of CO 2 per case. The environmental impacts of the reusable flexible ureteroscope and the single-use flexible ureteroscope are comparable. Urologists should be aware that the typical life cycle of urologic instruments is a concerning source of environmental emissions.
Polymorphism of Malassezia furfur.
Salkin, I F; Gordon, M A
1977-04-01
Alterations in the morphologic and physiologic characters of 11 isolates of Pityrosporum orbiculare were noted upon prolonged maintenance in pure culture. Successive subculturing of each isolate resulted in its progressive conversion from globose (P. orbiculare) through ovoid to cylindrical (P. ovale) form. Globose forms utilized neither olive oil nor Tween 20 as a sole carbon source, nor KNO3 as a sole source of nitrogen, while ovoid and cylindrical forms utilized both of these carbon sources, and one of four strains of the cylindrical form assimilated KNO3. These results suggest that P. orbiculare and P. ovale are stages in the complex developmental cycle of a single species (Malassezia furfur), but the three names should be preserved until the life cycle is more fully understood.
NASA Technical Reports Server (NTRS)
Rosario-Castro, Belinda I.; Cabrera, Carlos R.; Perez-Davis, Maria; Lebron, Marisabel; Meador, Michael
2003-01-01
Single-wall carbon nanotubes (SWNTs) are very interesting materials because of their morphology, electronic and mechanical properties. Its morphology (high length-to-diameter ratio) and electronic properties suggest potential application of SWNTs as anode material for lithium ion secondary batteries. The introduction of SWNTs on these types of sources systems will improve their performance, efficiency, and capacity to store energy. A purification method has been applied for the removal of iron and amorphous carbon from the nanotubes. Unpurified and purified SWNTs were characterized by transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). In order to attach carbon nanotubes on platinum electrode surfaces, a self-assembled monolayer (SAM) of 4-aminothiophenol (4-ATP) was deposited over the electrodes. The amino-terminated SAM obtained was characterized by cyclic voltammetry, X-ray photoelectron spectroscopy (XPS), and Fourier-transforms infrared (FTIR) spectroscopy. Carbon nanotubes were deposited over the amino-terminated SAM by an amide bond formed between SAM amino groups and carboxylic acid groups at the open ends of the carbon nanotubes.This deposition was characterized using Raman spectroscopy and Scanning Electron microscopy (SEM).
Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes.
Li, Diao; Jussila, Henri; Wang, Yadong; Hu, Guohua; Albrow-Owen, Tom; C T Howe, Richard; Ren, Zhaoyu; Bai, Jintao; Hasan, Tawfique; Sun, Zhipei
2018-02-09
Ultrafast lasers with tunable parameters in wavelength and time domains are the choice of light source for various applications such as spectroscopy and communication. Here, we report a wavelength and pulse-duration tunable mode-locked Erbium doped fiber laser with single wall carbon nanotube-based saturable absorber. An intra-cavity tunable filter is employed to continuously tune the output wavelength for 34 nm (from 1525 nm to 1559 nm) and pulse duration from 545 fs to 6.1 ps, respectively. Our results provide a novel light source for various applications requiring variable wavelength or pulse duration.
Arrays of Bundles of Carbon Nanotubes as Field Emitters
NASA Technical Reports Server (NTRS)
Manohara, Harish; Bronkowski, Michael
2007-01-01
Experiments have shown that with suitable choices of critical dimensions, planar arrays of bundles of carbon nanotubes (see figure) can serve as high-current-density field emitter (cold-cathode) electron sources. Whereas some hot-cathode electron sources must be operated at supply potentials of thousands of volts, these cold-cathode sources generate comparable current densities when operated at tens of volts. Consequently, arrays of bundles of carbon nanotubes might prove useful as cold-cathode sources in miniature, lightweight electron-beam devices (e.g., nanoklystrons) soon to be developed. Prior to the experiments, all reported efforts to develop carbon-nanotube-based field-emission sources had yielded low current densities from a few hundred microamperes to a few hundred milliamperes per square centimeter. An electrostatic screening effect, in which taller nanotubes screen the shorter ones from participating in field emission, was conjectured to be what restricts the emission of electrons to such low levels. It was further conjectured that the screening effect could be reduced and thus emission levels increased by increasing the spacing between nanotubes to at least by a factor of one to two times the height of the nanotubes. While this change might increase the emission from individual nanotubes, it would decrease the number of nanotubes per unit area and thereby reduce the total possible emission current. Therefore, to maximize the area-averaged current density, it would be necessary to find an optimum combination of nanotube spacing and nanotube height. The present concept of using an array of bundles of nanotubes arises partly from the concept of optimizing the spacing and height of field emitters. It also arises partly from the idea that single nanotubes may have short lifetimes as field emitters, whereas bundles of nanotubes could afford redundancy so that the loss of a single nanotube would not significantly reduce the overall field emission.
Terahertz science and technology of carbon nanomaterials.
Hartmann, R R; Kono, J; Portnoi, M E
2014-08-15
The diverse applications of terahertz (THz) radiation and its importance to fundamental science makes finding ways to generate, manipulate and detect THz radiation one of the key areas of modern applied physics. One approach is to utilize carbon nanomaterials, in particular, single-wall carbon nanotubes and graphene. Their novel optical and electronic properties offer much promise to the field of THz science and technology. This article describes the past, current, and future of THz science and technology of carbon nanotubes and graphene. We will review fundamental studies such as THz dynamic conductivity, THz nonlinearities and ultrafast carrier dynamics as well as THz applications such as THz sources, detectors, modulators, antennas and polarizers.
Multiple Cosmic Sources for Meteorite Macromolecules?
Watson, Jonathan S.; Meredith, William; Love, Gordon D.; Gilmour, Iain; Snape, Colin E.
2015-01-01
Abstract The major organic component in carbonaceous meteorites is an organic macromolecular material. The Murchison macromolecular material comprises aromatic units connected by aliphatic and heteroatom-containing linkages or occluded within the wider structure. The macromolecular material source environment remains elusive. Traditionally, attempts to determine source have strived to identify a single environment. Here, we apply a highly efficient hydrogenolysis method to liberate units from the macromolecular material and use mass spectrometric techniques to determine their chemical structures and individual stable carbon isotope ratios. We confirm that the macromolecular material comprises a labile fraction with small aromatic units enriched in 13C and a refractory fraction made up of large aromatic units depleted in 13C. Our findings suggest that the macromolecular material may be derived from at least two separate environments. Compound-specific carbon isotope trends for aromatic compounds with carbon number may reflect mixing of the two sources. The story of the quantitatively dominant macromolecular material in meteorites appears to be made up of more than one chapter. Key Words: Abiotic organic synthesis—Carbonaceous chondrite—Cosmochemistry—Meteorites. Astrobiology 15, 779–786. PMID:26418568
Synthesis and Electronic Transport in Single-Walled Carbon Nanotubes of Known Chirality
NASA Astrophysics Data System (ADS)
Caldwell, Robert Victor
Since their discovery in 1991, carbon nanotubes have proven to be a very interesting material for its physical strength, originating from the pure carbon lattice and strong covalent sp2 orbital bonds, and electronic properties which are derived from the lattice structure lending itself to either a metallic or semiconducting nature among its other properties. Carbon nanotubes have been researched with an eye towards industry applications ranging from use as an alloy in metals and plastics to improve physical strength of the resulting materials to uses in the semiconductor industry as either an interconnect or device layer for computer chips to chemical or biological sensors. This thesis focuses on both the synthesis of individual single-walled carbon nanotubes as well as the electrical properties of those tubes. What makes the work herein different from that of other thesis is that the research has been performed on carbon nanotubes of known chirality. Having first grown carbon nanotubes with a chemical vapor deposition growth in a quartz tube using ethanol vapor as a feedstock to grow long individual single-walled carbon nanotubes on a silicon chip that is also compatible with Rayleigh scattering spectroscopy to identify the chiral indices of the carbon nanotubes in question, those tubes were then transferred with a mechanical transfer process specially designed in our research lab onto a substrate of our choosing before an electrical device was made out of those tubes using standard electron beam lithography. The focus in this thesis is on the work that went into designing and testing this process as well as the initial results of the electronic properties of those carbon nanotubes of known chirality, such as the first known electrical measurements on single individual armchair carbon nanotubes as well as the first known electrical measurements of a single semiconducting carbon nanotube on thin hexagonal boron nitride to study the effects of the surface optical phonons from the boron nitride on the electrical properties of the carbon nanotube. Finally a few research projects are discussed in which carbon nanotubes of known chirality were used in conjunction with first electrical tests on molecules, secondly on a prefabricated complementary metal-oxide-semiconductor integrated circuit as an inverter and lastly to study the photoconductivity generated by a synchrotron laser source to identify the values for the low energy excitonic peak.
The NatCarb geoportal: Linking distributed data from the Carbon Sequestration Regional Partnerships
Carr, T.R.; Rich, P.M.; Bartley, J.D.
2007-01-01
The Department of Energy (DOE) Carbon Sequestration Regional Partnerships are generating the data for a "carbon atlas" of key geospatial data (carbon sources, potential sinks, etc.) required for rapid implementation of carbon sequestration on a broad scale. The NATional CARBon Sequestration Database and Geographic Information System (NatCarb) provides Web-based, nation-wide data access. Distributed computing solutions link partnerships and other publicly accessible repositories of geological, geophysical, natural resource, infrastructure, and environmental data. Data are maintained and enhanced locally, but assembled and accessed through a single geoportal. NatCarb, as a first attempt at a national carbon cyberinfrastructure (NCCI), assembles the data required to address technical and policy challenges of carbon capture and storage. We present a path forward to design and implement a comprehensive and successful NCCI. ?? 2007 The Haworth Press, Inc. All rights reserved.
Horemans, Benjamin; Breugelmans, Philip; Hofkens, Johan; Springael, Dirk
2017-03-01
Organic pollutant degrading biofilms in natural ecosystems and water treatment systems are often exposed to other carbon sources in addition to the pollutant. The availability of auxiliary carbon sources can lead to surplus biomass growth, changes in biofilm structure and carbon catabolite repression (CCR) which together will affect pollutant degradation rate and efficiency of the system. To understand the interplay between these processes, continuous biofilms of the 3,4-dichloroaniline (3,4-DCA) degrading Comamonas testosteroni WDL7-RFP were grown in single- and dual-substrate conditions with 3,4-DCA and/or citrate and reciprocal effects on 3,4-DCA/citrate degradation, biofilm biomass and biofilm structure were examined. The main mechanism affecting 3,4-DCA degradation in biofilms in dual-substrate conditions was citrate-mediated CCR as reflected by a decrease in specific 3,4-DCA degrading activity. Growth on citrate partially compensated for the lowered specific 3,4-DCA degradation activity under dual substrate conditions but not to the extent expected from growth observed under single-substrate conditions with citrate. This was explained by higher residual 3,4-DCA concentrations in the presence of citrate that increased cell dispersal in the biofilms. Our results show hampered pollutant removal in biofilms due to a complex interplay of auxiliary organic C source utilization for growth affecting the specific pollutant degradation rate and changes in cell physiology due to increased exposure to the pollutant as a result of lowered pollutant degradation rates. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Ge, Jingping; Zhao, Jingwen; Zhang, Luyan; Zhang, Mengyun; Ping, Wenxiang
2014-01-01
Double labeling of resistance markers and report genes can be used to breed engineered Saccharomyces cerevisiae strains that can assimilate xylose and glucose as a mixed carbon source for ethanol fermentation and increased ethanol production. In this study Saccharomyces cerevisiae W5 and Candida shehatae 20335 were used as parent strains to conduct protoplast fusion and the resulting fusants were screened by double labeling. High performance liquid chromatography (HPLC) was used to assess the ethanol yield following the fermentation of xylose and glucose, as both single and mixed carbon sources, by the fusants. Interestingly, one fusant (ZLYRHZ7) was demonstrated to have an excellent fermentation performance, with an ethanol yield using the mixed carbon source of 0.424 g g−1, which compares with 0.240 g g−1 (W5) and 0.353 g g−1 (20335) for the parent strains. This indicates an improvement in the ethanol yield of 43.4% and 16.7%, respectively. PMID:25268957
Dual-ion-beam deposition of carbon films with diamond-like properties
NASA Technical Reports Server (NTRS)
Mirtich, M. J.; Swec, D. M.; Angus, J. C.
1985-01-01
A single and dual ion beam system was used to generate amorphous carbon films with diamond like properties. A methane/argon mixture at a molar ratio of 0.28 was ionized in the low pressure discharge chamber of a 30-cm-diameter ion source. A second ion source, 8 cm in diameter was used to direct a beam of 600 eV Argon ions on the substrates (fused silica or silicon) while the deposition from the 30-cm ion source was taking place. Nuclear reaction and combustion analysis indicate H/C ratios for the films to be 1.00. This high value of H/C, it is felt, allowed the films to have good transmittance. The films were impervious to reagents which dissolve graphitic and polymeric carbon structures. Although the measured density of the films was approximately 1.8 gm/cu cm, a value lower than diamond, the films exhibited other properties that were relatively close to diamond. These films were compared with diamond like films generated by sputtering a graphite target.
Dual ion beam deposition of carbon films with diamondlike properties
NASA Technical Reports Server (NTRS)
Mirtich, M. J.; Swec, D. M.; Angus, J. C.
1984-01-01
A single and dual ion beam system was used to generate amorphous carbon films with diamond like properties. A methane/argon mixture at a molar ratio of 0.28 was ionized in the low pressure discharge chamber of a 30-cm-diameter ion source. A second ion source, 8 cm in diameter was used to direct a beam of 600 eV Argon ions on the substrates (fused silica or silicon) while the deposition from the 30-cm ion source was taking place. Nuclear reaction and combustion analysis indicate H/C ratios for the films to be 1.00. This high value of H/C, it is felt, allowed the films to have good transmittance. The films were impervious to reagents which dissolve graphitic and polymeric carbon structures. Although the measured density of the films was approximately 1.8 gm/cu cm, a value lower than diamond, the films exhibited other properties that were relatively close to diamond. These films were compared with diamondlike films generated by sputtering a graphite target.
Zhao, Zhenyu; Ma, Shasha; Li, Ang; Liu, Pinghuai; Wang, Meng
2016-10-01
The effects of trophic modes, carbon sources, and salinity on the growth and lipid accumulation of a marine oilgae Desmodesmus sp. WC08 in different trophic cultures were assayed by single factor experiment based on the blue-green algae medium (BG-11). The results implied that biomass and lipid accumulation culture process were optimized depending on the tophic modes, sorts, and concentration of carbon sources and salinity in the cultivation. There was no significant difference in growth or lipid accumulation with Na 2 CO 3 amendment or NaHCO 3 amendment. However, Na 2 CO 3 amendment did enhance the biomass and lipid accumulation to some extent. The highest Desmodesmus sp. WC08 biomass and lipid accumulation was achieved in the growth medium with photoautotrophic cultivation, 0.08 g L -1 Na 2 CO 3 amendment and 15 g L -1 sea salt, respectively.
Ge, Jingping; Zhao, Jingwen; Zhang, Luyan; Zhang, Mengyun; Ping, Wenxiang
2014-01-01
Double labeling of resistance markers and report genes can be used to breed engineered Saccharomyces cerevisiae strains that can assimilate xylose and glucose as a mixed carbon source for ethanol fermentation and increased ethanol production. In this study Saccharomyces cerevisiae W5 and Candida shehatae 20335 were used as parent strains to conduct protoplast fusion and the resulting fusants were screened by double labeling. High performance liquid chromatography (HPLC) was used to assess the ethanol yield following the fermentation of xylose and glucose, as both single and mixed carbon sources, by the fusants. Interestingly, one fusant (ZLYRHZ7) was demonstrated to have an excellent fermentation performance, with an ethanol yield using the mixed carbon source of 0.424 g g-1, which compares with 0.240 g g-1 (W5) and 0.353 g g-1 (20335) for the parent strains. This indicates an improvement in the ethanol yield of 43.4% and 16.7%, respectively.
NASA Astrophysics Data System (ADS)
Karwan, D. L.; Aufdenkampe, A. K.; Aalto, R. E.; Newbold, J. D.; Pizzuto, J. E.
2011-12-01
The material exported from a watershed reflects its origin and the processes it undergoes during downhill and downstream transport. Due to its nature as a complex mixture of material, the composition of POM integrates the physical, biological, and chemical processes effecting watershed material. In this study, we integrate sediment fingerprint analyses common in geomorphological studies of mineral suspended particulate material (SPM) with biological and ecological characterizations of particulate organic carbon (POC). Through this combination, we produce quantifiable budgets of particulate organic carbon and mineral material, as well as integrate our calculations of carbon and mineral cycling in a complex, human-influenced watershed. More specifically, we quantify the composition and sources of POM in the third-order White Clay Creek Watershed, and examine the differences in composition and source with hydrologic variations produced by storms and seasonality. POM and watershed sources have been analyzed for particle size, mineral surface area, total mineral elemental composition, fallout radioisotope activity for common erosion tracers (7Be, 210Pb, 137Cs), and organic carbon and nitrogen content with stable isotope (13C, 15N) abundance. Results indicate a difference in POM source with season as well as within individual storms. Beryllium-7 activity, an indicator of landscape surface erosion, nearly triples within a single spring storm, from 389 mBq/g on the rising limb and 1190 mBq/g at the storm hydrograph peak. Fall storms have even lower 7Be concentrations, below 100 mBq/g. Furthermore, weight-percent of organic carbon nearly doubles from 4 - 5% during spring storms to over 8% during fall storms, with smaller variation occurring within individual storms. Despite changes in percent organic carbon, organic carbon to mineral surface area ratios and carbon to nitrogen molar ratios remain similar within storms and across seasons.
NASA Technical Reports Server (NTRS)
Chovit, A. R.; Lieberman, P.; Freeman, D. E.; Beggs, W. C.; Millavec, W. A.
1980-01-01
Carbon fiber sampling instruments were developed: passive collectors made of sticky bridal veil mesh, and active instruments using a light emitting diode (LED) source. These instruments measured the number or number rate of carbon fibers released from carbon/graphite composite material when the material was burned in a 10.7 m (35 ft) dia JP-4 pool fire for approximately 20 minutes. The instruments were placed in an array suspended from a 305 m by 305 m (1000 ft by 1000 ft) Jacob's Ladder net held vertically aloft by balloons and oriented crosswind approximately 140 meters downwind of the pool fire. Three tests were conducted during which released carbon fiber data were acquired. These data were reduced and analyzed to obtain the characteristics of the released fibers including their spatial and size distributions and estimates of the number and total mass of fibers released. The results of the data analyses showed that 2.5 to 3.5 x 10 to the 8th power single carbon fibers were released during the 20 minute burn of 30 to 50 kg mass of initial, unburned carbon fiber material. The mass released as single carbon fibers was estimated to be between 0.1 and 0.2% of the initial, unburned fiber mass.
NASA Technical Reports Server (NTRS)
Kussmaul, Michael T.; Bogdanski, Michael S.; Banks, Bruce A.; Mirtich, Michael J.
1993-01-01
Amorphous diamond-like carbon (DLC) films were deposited using both single and dual ion beam techniques utilizing filament and hollow cathode ion sources. Continuous DLC films up to 3000 A thick were deposited on fused quartz plates. Ion beam process parameters were varied in an effort to create hard, clear films. Total DLC film absorption over visible wavelengths was obtained using a Perkin-Elmer spectrophotometer. An ellipsometer, with an Ar-He laser (wavelength 6328 A) was used to determine index of refraction for the DLC films. Scratch resistance, frictional, and adherence properties were determined for select films. Applications for these films range from military to the ophthalmic industries.
NASA Technical Reports Server (NTRS)
Kussmaul, Michael T.; Bogdanski, Michael S.; Banks, Bruce A.; Mirtich, Michael J.
1993-01-01
Amorphous diamondlike carbon (DLC) films were deposited using both single and dual ion beam techniques utilizing filament and hollow cathode ion sources. Continuous DLC films up to 3000 A thick were deposited on fused quartz plates. Ion beam process parameters were varied in an effort to create hard, clear films. Total DLC film absorption over visible wavelengths was obtained using a Perkin-Elmer spectrophotometer. An ellipsometer, with an Ar-He laser (wavelength 6328 A) was used to determine index of refraction for the DLC films. Scratch resistance and frictional and adherence properties were determined for select films. Applications for these films range from military to the ophthalmic industries.
Initial Study on Thin Film Preparation of Carbon Nanodots Composites as Luminescence Material
NASA Astrophysics Data System (ADS)
Iskandar, F.; Aimon, A. H.; Akmaluddin, A. R.; Nuryadin, B. W.; Abdullah, M.
2016-08-01
Nowadays, the developments of phosphors materials require elements without noble metals and simple production process. Carbon nanodots (C-dots) are one of phosphor materials with wide range of emission band, and high biocompatibility. In this research thin film carbon nanodots composite have been prepared by spin coating method. Prior deposition, powder carbon nanodots were synthesized from a mixture of commercial urea as the nitrogen sources and citric acid as a carbon source by using hydrothermal and microwave-assisted heating method. The prepared powder was dispersed in transparent epoxy resin and then coated on glass substrate. The photoluminescence result for sample with 0.035 g citric acid exhibited an intense, single, homogeneous and broad spectrum with yellowish emission upon excitation at 365 nm. The Fourier Transform Infrared Spectroscopy (FTIR) result showed the existences of C=C, C-H, C=O, N-H and O-H functional groups which confirmed the quality of the sample. Further, based on UV-Vis measurement, the prepared thin film was highly transparent (transmittance 90%) with estimated film thickness around 764 nm. This result may open an opportunity for optoelectronic devices.
Online single particle measurements of black carbon coatings, structure and optical properties
NASA Astrophysics Data System (ADS)
Allan, James; Liu, Dantong; Taylor, Jonathan; Flynn, Michael; Williams, Paul; Morgan, William; Whitehead, James; Alfarra, Rami; McFiggans, Gordon; Coe, Hugh
2016-04-01
The impacts of black carbon on meteorology and climate remain a major source of uncertainty, owing in part to the complex relationship between the bulk composition of the particulates and their optical properties. A particular complication stems from how light interacts with particles in response to the microphysical configuration and any 'coatings', i.e. non-black carbon material that is either co-emitted or subsequently obtained through atmospheric processing. This may cause the particle to more efficiently absorb or scatter light and may even change the sign of its radiative forcing potential. While much insight has been gained through measurements of bulk aerosol properties, either while suspended or after collection on a filter or impactor substrate, this does not provide a complete picture and thus may not adequately constrain the system. Here we present an overview of recent work to better constrain the properties of black carbon using online, in situ measurements of single particles, primarily using a Single Particle Soot Photometer (SP2). We have developed novel methods of inverting the data produced and combining the different metrics derived so as to give the most effective insights into black carbon sources, processes and properties. We have also used this measurement in conjunction with other instruments (sometimes in series) and used the data to challenge many commonly used models of optical properties such as core-shell Mie, Rayleigh-Debeye-Gans and effective medium. This work has been carried out in a variety of atmospheric environments and with laboratory-produced soots, e.g. from a diesel engine rig. Highlights include the finding that with real-world atmospheric aerosols, bulk optical measurements may be insufficient to derive brown carbon parameters without detailed morphological data. We also show that the enhancement of absorption for both ambient and laboratory generated particles only occurs after the coating mass fraction reaches a certain threshold, something that may explain some apparently contradictory results from field measurements. These findings should help to inform atmospheric black carbon models and reduce uncertainties when evaluating its impacts.
Single walled carbon nanotube-based stochastic resonance device with molecular self-noise source
NASA Astrophysics Data System (ADS)
Fujii, Hayato; Setiadi, Agung; Kuwahara, Yuji; Akai-Kasaya, Megumi
2017-09-01
Stochastic resonance (SR) is an intrinsic noise usage system for small-signal sensing found in various living creatures. The noise-enhanced signal transmission and detection system, which is probabilistic but consumes low power, has not been used in modern electronics. We demonstrated SR in a summing network based on a single-walled carbon nanotube (SWNT) device that detects small subthreshold signals with very low current flow. The nonlinear current-voltage characteristics of this SWNT device, which incorporated Cr electrodes, were used as the threshold level of signal detection. The adsorption of redox-active polyoxometalate molecules on SWNTs generated additional noise, which was utilized as a self-noise source. To form a summing network SR device, a large number of SWNTs were aligned parallel to each other between the electrodes, which increased the signal detection ability. The functional capabilities of the present small-size summing network SR device, which rely on dense nanomaterials and exploit intrinsic spontaneous noise at room temperature, offer a glimpse of future bio-inspired electronic devices.
Electrical properties of 0.4 cm long single walled nanotubes
NASA Astrophysics Data System (ADS)
Yu, Zhen
2005-03-01
Centimeter scale aligned carbon nanotube arrays are grown from nanoparticle/metal catalyst pads[1]. We find the nanotubes grow both with and ``against the wind.'' A metal underlayer provides in-situ electrical contact to these long nanotubes with no post growth processing needed. Using the electrically contacted nanotubes, we study electrical transport of 0.4 cm long nanotubes[2]. Using this data, we are able to determine the resistance of a nanotube as a function of length quantitatively, since the contact resistance is negligible in these long nanotubes. The source drain I-V curves are quantitatively described by a classical, diffusive model. Our measurements show that the outstanding transport properties of nanotubes can be extended to the cm scale and open the door to large scale integrated nanotube circuits with macroscopic dimensions. These are the longest electrically contacted single walled nanotubes measured to date. [1] Zhen Yu, Shengdong Li, Peter J. Burke, ``Synthesis of Aligned Arrays of Millimeter Long, Straight Single-Walled Carbon Nanotubes,'' Chemistry of Materials, 16(18), 3414-3416 (2004). [2] Shengdong Li, Zhen Yu, Christopher Rutherglen, Peter J. Burke, ``Electrical properties of 0.4 cm long single-walled carbon nanotubes'' Nano Letters, 4(10), 2003-2007 (2004).
Carbon-Nanotube-Based Thermoelectric Materials and Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blackburn, Jeffrey L.; Ferguson, Andrew J.; Cho, Chungyeon
Conversion of waste heat to voltage has the potential to significantly reduce the carbon footprint of a number of critical energy sectors, such as the transportation and electricity-generation sectors, and manufacturing processes. Thermal energy is also an abundant low-flux source that can be harnessed to power portable/wearable electronic devices and critical components in remote off-grid locations. As such, a number of different inorganic and organic materials are being explored for their potential in thermoelectric-energy-harvesting devices. Carbon-based thermoelectric materials are particularly attractive due to their use of nontoxic, abundant source-materials, their amenability to high-throughput solution-phase fabrication routes, and the high specificmore » energy (i.e., W g-1) enabled by their low mass. Single-walled carbon nanotubes (SWCNTs) represent a unique 1D carbon allotrope with structural, electrical, and thermal properties that enable efficient thermoelectric-energy conversion. Here, the progress made toward understanding the fundamental thermoelectric properties of SWCNTs, nanotube-based composites, and thermoelectric devices prepared from these materials is reviewed in detail. This progress illuminates the tremendous potential that carbon-nanotube-based materials and composites have for producing high-performance next-generation devices for thermoelectric-energy harvesting.« less
Carbon-Nanotube-Based Thermoelectric Materials and Devices
Blackburn, Jeffrey L.; Ferguson, Andrew J.; Cho, Chungyeon; ...
2018-01-22
Conversion of waste heat to voltage has the potential to significantly reduce the carbon footprint of a number of critical energy sectors, such as the transportation and electricity-generation sectors, and manufacturing processes. Thermal energy is also an abundant low-flux source that can be harnessed to power portable/wearable electronic devices and critical components in remote off-grid locations. As such, a number of different inorganic and organic materials are being explored for their potential in thermoelectric-energy-harvesting devices. Carbon-based thermoelectric materials are particularly attractive due to their use of nontoxic, abundant source-materials, their amenability to high-throughput solution-phase fabrication routes, and the high specificmore » energy (i.e., W g-1) enabled by their low mass. Single-walled carbon nanotubes (SWCNTs) represent a unique 1D carbon allotrope with structural, electrical, and thermal properties that enable efficient thermoelectric-energy conversion. Here, the progress made toward understanding the fundamental thermoelectric properties of SWCNTs, nanotube-based composites, and thermoelectric devices prepared from these materials is reviewed in detail. This progress illuminates the tremendous potential that carbon-nanotube-based materials and composites have for producing high-performance next-generation devices for thermoelectric-energy harvesting.« less
Carbon-Nanotube-Based Thermoelectric Materials and Devices.
Blackburn, Jeffrey L; Ferguson, Andrew J; Cho, Chungyeon; Grunlan, Jaime C
2018-03-01
Conversion of waste heat to voltage has the potential to significantly reduce the carbon footprint of a number of critical energy sectors, such as the transportation and electricity-generation sectors, and manufacturing processes. Thermal energy is also an abundant low-flux source that can be harnessed to power portable/wearable electronic devices and critical components in remote off-grid locations. As such, a number of different inorganic and organic materials are being explored for their potential in thermoelectric-energy-harvesting devices. Carbon-based thermoelectric materials are particularly attractive due to their use of nontoxic, abundant source-materials, their amenability to high-throughput solution-phase fabrication routes, and the high specific energy (i.e., W g -1 ) enabled by their low mass. Single-walled carbon nanotubes (SWCNTs) represent a unique 1D carbon allotrope with structural, electrical, and thermal properties that enable efficient thermoelectric-energy conversion. Here, the progress made toward understanding the fundamental thermoelectric properties of SWCNTs, nanotube-based composites, and thermoelectric devices prepared from these materials is reviewed in detail. This progress illuminates the tremendous potential that carbon-nanotube-based materials and composites have for producing high-performance next-generation devices for thermoelectric-energy harvesting. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Iron Speciation and Mixing in Single Aerosol Particles from the Asian Continental Outflow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moffet, Ryan C.; Furutani, Hiroshi; Rodel, Tobias
2012-04-04
Bioavailable iron from atmospheric aerosol is an essential nutrient that can control oceanic productivity, thereby impacting the global carbon budget and climate. Particles collected on Okinawa Island during an atmospheric pollution transport event from China were analyzed using complementary single particle techniques to determine the iron source and speciation. Comparing the spatial distribution of iron within ambient particles and standard Asian mineral dust, it was determined that field-collected atmospheric Fe-containing particles have numerous sources, including anthropogenic sources such as coal combustion. Fe-containing particles were found to be internally mixed with secondary species such as sulfate, soot, and organic carbon. Themore » mass weighted average Fe(II) fraction (defined as Fe(II)/[Fe(II)+Fe(III)]) was determined to be 0.33 {+-} 0.08. Within the experimental uncertainty, this value lies close to the range of 0.26-0.30 determined for representative Asian mineral dust. Previous studies have indicated that the solubility of iron from combustion is much higher than that from mineral dust. Therefore, chemical and/or physical differences other than oxidation state may help explain the higher solubility of iron in atmospheric particles.« less
USDA-ARS?s Scientific Manuscript database
This study was conducted to isolate and characterize soil microorganisms capable of solubilizing Chilembwe and Sinda rock phosphates readily available in Zambia. Single isolates were obtained by direct plating and enrichment cultures with succinate, cellulose and glucose as the carbon sources. Isola...
Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation
NASA Astrophysics Data System (ADS)
Pachiadaki, Maria G.; Sintes, Eva; Bergauer, Kristin; Brown, Julia M.; Record, Nicholas R.; Swan, Brandon K.; Mathyer, Mary Elizabeth; Hallam, Steven J.; Lopez-Garcia, Purificacion; Takaki, Yoshihiro; Nunoura, Takuro; Woyke, Tanja; Herndl, Gerhard J.; Stepanauskas, Ramunas
2017-11-01
Carbon fixation by chemoautotrophic microorganisms in the dark ocean has a major impact on global carbon cycling and ecological relationships in the ocean’s interior, but the relevant taxa and energy sources remain enigmatic. We show evidence that nitrite-oxidizing bacteria affiliated with the Nitrospinae phylum are important in dark ocean chemoautotrophy. Single-cell genomics and community metagenomics revealed that Nitrospinae are the most abundant and globally distributed nitrite-oxidizing bacteria in the ocean. Metaproteomics and metatranscriptomics analyses suggest that nitrite oxidation is the main pathway of energy production in Nitrospinae. Microautoradiography, linked with catalyzed reporter deposition fluorescence in situ hybridization, indicated that Nitrospinae fix 15 to 45% of inorganic carbon in the mesopelagic western North Atlantic. Nitrite oxidation may have a greater impact on the carbon cycle than previously assumed.
Martín, Yusé; González, Yelvis V.; Cabrera, Elisa; Rodríguez, Celia; Siverio, José M.
2011-01-01
Ynt1, the single high affinity nitrate and nitrite transporter of the yeast Hansenula polymorpha, is regulated by the quality of nitrogen sources. Preferred nitrogen sources cause Ynt1 dephosphorylation, ubiquitinylation, endocytosis, and vacuolar degradation. In contrast, under nitrogen limitation Ynt1 is phosphorylated and sorted to the plasma membrane. We show here the involvement of the Ser/Thr kinase HpNpr1 in Ynt1 phosphorylation and regulation of Ynt1 levels in response to nitrogen source quality and the availability of carbon. In Δnpr1, Ynt1 phosphorylation does not take place, although Ynt1 ubiquitin conjugates increase. As a result, in this strain Ynt1 is sorted to the vacuole, from both plasma membrane and the later biosynthetic pathway in nitrogen-free conditions and nitrate. In contrast, overexpression of NPR1 blocks down-regulation of Ynt1, increasing Ynt1 phosphorylation at Ser-244 and -246 and reducing ubiquitinylation. Furthermore, Npr1 is phosphorylated in response to the preferred nitrogen sources, and indeed it is dephosphorylated in nitrogen-free medium. Under conditions where Npr1 is phosphorylated, Ynt1 is not and vice versa. We show for the first time that carbon starvation leads to Npr1 phosphorylation, whereas Ynt1 is dephosphorylated and degraded in the vacuole. Rapamycin prevents this, indicating a possible role of the target of rapamycin signaling pathway in this process. We concluded that Npr1 plays a key role in adapting Ynt1 levels to the nitrogen quality and availability of a source of carbon. PMID:21652715
Photo-stimulated low electron temperature high current diamond film field emission cathode
Shurter,; Roger Philips, Devlin [Los Alamos, NM; David James, Moody [Santa Fe, NM; Nathan Andrew, Taccetti [Los Alamos, NM; Jose Martin, Russell [Santa Fe, NM; John, Steven [Los Alamos, NM
2012-07-24
An electron source includes a back contact surface having a means for attaching a power source to the back contact surface. The electron source also includes a layer comprising platinum in direct contact with the back contact surface, a composite layer of single-walled carbon nanotubes embedded in platinum in direct contact with the layer comprising platinum. The electron source also includes a nanocrystalline diamond layer in direct contact with the composite layer. The nanocrystalline diamond layer is doped with boron. A portion of the back contact surface is removed to reveal the underlying platinum. The electron source is contained in an evacuable container.
Kocbach, Anette; Li, Yanjun; Yttri, Karl E; Cassee, Flemming R; Schwarze, Per E; Namork, Ellen
2006-01-01
Background Exposure to ambient particulate matter has been associated with a number of adverse health effects. Particle characteristics such as size, surface area and chemistry seem to influence the negative effects of particles. In this study, combustion particles from vehicle exhaust and wood smoke, currently used in biological experiments, were analysed with respect to microstructure and chemistry. Methods Vehicle exhaust particles were collected in a road tunnel during two seasons, with and without use of studded tires, whereas wood smoke was collected from a stove with single-stage combustion. Additionally, a reference diesel sample (SRM 2975) was analysed. The samples were characterised using transmission electron microscopy techniques (TEM/HRTEM, EELS and SAED). Furthermore, the elemental and organic carbon fractions were quantified using thermal optical transmission analysis and the content of selected PAHs was determined by gas chromatography-mass spectrometry. Results Carbon aggregates, consisting of tens to thousands of spherical primary particles, were the only combustion particles identified in all samples using TEM. The tunnel samples also contained mineral particles originating from road abrasion. The geometric diameters of primary carbon particles from vehicle exhaust were found to be significantly smaller (24 ± 6 nm) than for wood smoke (31 ± 7 nm). Furthermore, HRTEM showed that primary particles from both sources exhibited a turbostratic microstructure, consisting of concentric carbon layers surrounding several nuclei in vehicle exhaust or a single nucleus in wood smoke. However, no differences were detected in the graphitic character of primary particles from the two sources using SAED and EELS. The total PAH content was higher for combustion particles from wood smoke as compared to vehicle exhaust, whereas no source difference was found for the ratio of organic to total carbon. Conclusion Combustion particles from vehicle exhaust and residential wood smoke differ in primary particle diameter, microstructure, and PAH content. Furthermore, the analysed samples seem suitable for assessing the influence of physicochemical characteristics of particles on biological responses. PMID:16390554
Efficient Utilization of Waste Carbon Source for Advanced Nitrogen Removal of Landfill Leachate
Yin, Wenjun; Tan, Fengxun
2017-01-01
A modified single sequencing batch reactor (SBR) was developed to remove the nitrogen of the real landfill leachate in this study. To take the full advantage of the SBR, stir phase was added before and after aeration, respectively. The new mechanism in this experiment could improve the removal of nitrogen efficiently by the utilization of carbon source in the raw leachate. This experiment adopts the SBR process to dispose of the real leachate, in which the COD and ammonia nitrogen concentrations were about 3800 mg/L and 1000 mg/L, respectively. Results showed that the removal rates of COD and total nitrogen were above 85% and 95%, respectively, and the effluent COD and total nitrogen were less than 500 mg/L and 40 mg/L under the condition of not adding any carbon source. Also, the specific nitrogen removal rate was 1.48 mgN/(h·gvss). In this process, polyhydroxyalkanoate (PHA) as a critical factor for the highly efficient nitrogen removal (>95%) was approved to be the primary carbon source in the sludge. Because most of the organic matter in raw water was used for denitrification, in the duration of this 160-day experiment, zero discharge of sludge was realized when the effluent suspended solids were 30–50 mg/L. PMID:29435456
Characteristics of extreme ultraviolet emission from high-Z plasmas
NASA Astrophysics Data System (ADS)
Ohashi, H.; Higashiguchi, T.; Suzuki, Y.; Kawasaki, M.; Suzuki, C.; Tomita, K.; Nishikino, M.; Fujioka, S.; Endo, A.; Li, B.; Otsuka, T.; Dunne, P.; O'Sullivan, G.
2016-03-01
We demonstrate the extreme ultraviolet (EUV) and soft x-ray sources in the 2 to 7 nm spectral region related to the beyond EUV (BEUV) question at 6.x nm and the water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs), extending below the carbon K edge (4.37 nm). An outline of a microscope design for single-shot live cell imaging is proposed based on high-Z plasma UTA source, coupled to multilayer mirror optics.
Fung, Rowena K. Y.; Grenga, Lucia; Trampari, Eleftheria; Pepe, Simona
2017-01-01
Effective regulation of primary carbon metabolism is critically important for bacteria to successfully adapt to different environments. We have identified an uncharacterised transcriptional regulator; RccR, that controls this process in response to carbon source availability. Disruption of rccR in the plant-associated microbe Pseudomonas fluorescens inhibits growth in defined media, and compromises its ability to colonise the wheat rhizosphere. Structurally, RccR is almost identical to the Entner-Doudoroff (ED) pathway regulator HexR, and both proteins are controlled by the same ED-intermediate; 2-keto-3-deoxy-6-phosphogluconate (KDPG). Despite these similarities, HexR and RccR control entirely different aspects of primary metabolism, with RccR regulating pyruvate metabolism (aceEF), the glyoxylate shunt (aceA, glcB, pntAA) and gluconeogenesis (pckA, gap). RccR displays complex and unusual regulatory behaviour; switching repression between the pyruvate metabolism and glyoxylate shunt/gluconeogenesis loci depending on the available carbon source. This regulatory complexity is enabled by two distinct pseudo-palindromic binding sites, differing only in the length of their linker regions, with KDPG binding increasing affinity for the 28 bp aceA binding site but decreasing affinity for the 15 bp aceE site. Thus, RccR is able to simultaneously suppress and activate gene expression in response to carbon source availability. Together, the RccR and HexR regulators enable the rapid coordination of multiple aspects of primary carbon metabolism, in response to levels of a single key intermediate. PMID:28658302
[Laser Raman spectral investigations of the carbon structure of LiFePO4/C cathode material].
Yang, Chao; Li, Yong-Mei; Zhao, Quan-Feng; Gan, Xiang-Kun; Yao, Yao-Chun
2013-10-01
In the present paper, Laser Raman spectral was used to study the carbon structure of LiFePO4/C positive material. The samples were also been characterized by X-ray diffraction (XRD), scanning electron microscope(SEM), selected area electron diffraction (SEAD) and resistivity test. The result indicated that compared with the sp2/sp3 peak area ratios the I(D)/I(G) ratios are not only more evenly but also exhibited some similar rules. However, the studies indicated that there exist differences of I(D)/ I(G) ratios and sp2/sp3 peak area ratios among different points in the same sample. And compared with the samples using citric acid or sucrose as carbon source, the sample which was synthetized with mixed carbon source (mixed by citric acid and sucrose) exhibited higher I(D)/I(G) ratios and sp2/sp3 peak area ratios. Also, by contrast, the differences of I(D)/I(G) ratios and sp2/sp3 peak area ratios among different points in the same sample are less than the single carbon source samples' datas. In the scanning electron microscopy (sem) and transmission electron microscopy (sem) images, we can observed the uneven distributions of carbon coating of the primary particles and the secondary particles, this may be the main reason for not being uniform of difference data in the same sample. The obvious discreteness will affect the normal use of Raman spectroscopy in these tests.
The complex ion structure of warm dense carbon measured by spectrally resolved x-ray scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraus, D.; Barbrel, B.; Falcone, R. W.
2015-05-15
We present measurements of the complex ion structure of warm dense carbon close to the melting line at pressures around 100 GPa. High-pressure samples were created by laser-driven shock compression of graphite and probed by intense laser-generated x-ray sources with photon energies of 4.75 keV and 4.95 keV. High-efficiency crystal spectrometers allow for spectrally resolving the scattered radiation. Comparing the ratio of elastically and inelastically scattered radiation, we find evidence for a complex bonded liquid that is predicted by ab-initio quantum simulations showing the influence of chemical bonds under these conditions. Using graphite samples of different initial densities we demonstrate the capability ofmore » spectrally resolved x-ray scattering to monitor the carbon solid-liquid transition at relatively constant pressure of 150 GPa. Showing first single-pulse scattering spectra from cold graphite of unprecedented quality recorded at the Linac Coherent Light Source, we demonstrate the outstanding possibilities for future high-precision measurements at 4th Generation Light Sources.« less
Nutritional Requirements of Acinetobacter Strains Isolated from Soil, Water, and Sewage
Warskow, Alice L.; Juni, Elliot
1972-01-01
One hundred five strains of Acinetobacter were isolated from water, soil, and sewage on nonselective complex media, and their nutritional properties were studied. Only one of these strains requires growth factors in order to grow in a mineral medium containing a single carbon source. PMID:4563966
Wigley, K; Wakelin, S A; Moot, D J; Hammond, S; Ridgway, H J
2016-08-01
The aim of this work was to develop a tool to investigate the influence of soil factors on carbon utilization activity of single micro-organisms. The assay for Rhizobium leguminosarum bv. trifolii in γ-irradiated soil, using the MicroResp(™) system, was optimized for sterility, incubation time, and moisture level. The optimized method was validated with experiments that assessed (i) differences in C utilization of different rhizobia strains and (ii) how this was affected by soil type. Carbon utilization differed among strains of the same species (and symbiovar), but some strains were more responsive to the soil environment than others. This novel modification of the MicroResp(™) has enabled the scope of carbon-utilization patterns of single strains of bacteria, such as Rh. leguminosarum bv. trifolii, to be studied in soil. The system is a new tool with applications in microbial ecology adaptable to the study of many culturable bacterial and fungal soil-borne taxa. It will allow measurement of a micro-organism's ability to utilize common C sources released in rhizosphere exudates to be measured in a physical soil background. This knowledge may improve selection efficiency and deployment of commercial microbial inoculants. © 2016 The Society for Applied Microbiology.
Hosseini, Sayed-Rzgar; Barve, Aditya; Wagner, Andreas
2015-01-01
All biological evolution takes place in a space of possible genotypes and their phenotypes. The structure of this space defines the evolutionary potential and limitations of an evolving system. Metabolism is one of the most ancient and fundamental evolving systems, sustaining life by extracting energy from extracellular nutrients. Here we study metabolism’s potential for innovation by analyzing an exhaustive genotype-phenotype map for a space of 1015 metabolisms that encodes all possible subsets of 51 reactions in central carbon metabolism. Using flux balance analysis, we predict the viability of these metabolisms on 10 different carbon sources which give rise to 1024 potential metabolic phenotypes. Although viable metabolisms with any one phenotype comprise a tiny fraction of genotype space, their absolute numbers exceed 109 for some phenotypes. Metabolisms with any one phenotype typically form a single network of genotypes that extends far or all the way through metabolic genotype space, where any two genotypes can be reached from each other through a series of single reaction changes. The minimal distance of genotype networks associated with different phenotypes is small, such that one can reach metabolisms with novel phenotypes – viable on new carbon sources – through one or few genotypic changes. Exceptions to these principles exist for those metabolisms whose complexity (number of reactions) is close to the minimum needed for viability. Increasing metabolic complexity enhances the potential for both evolutionary conservation and evolutionary innovation. PMID:26252881
Sedlacek, III, Arthur J.; Lewis, Ernie R.; Onasch, Timothy B.; ...
2015-07-24
An important source of uncertainty in radiative forcing by absorbing aerosol particles is the uncertainty in their morphologies (i.e., the location of the absorbing substance on/in the particles). To examine the effects of particle morphology on the response of an individual black carbon-containing particle in a Single-Particle Soot Photometer (SP2), a series of experiments was conducted to investigate black carbon-containing particles of known morphology using Regal black (RB), a proxy for collapsed soot, as the light-absorbing substance. Particles were formed by coagulation of RB with either a solid substance (sodium chloride or ammonium sulfate) or a liquid substance (dioctyl sebacate),more » and by condensation with dioctyl sebacate, the latter experiment forming particles in a core-shell configuration. Each particle type experienced fragmentation (observed as negative lagtimes), and each yielded similar lagtime responses in some instances, confounding attempts to differentiate particle morphology using current SP2 lagtime analysis. SP2 operating conditions, specifically laser power and sample flow rate, which in turn affect the particle heating and dissipation rates, play an important role in the behavior of particles in the SP2, including probability of fragmentation. This behavior also depended on the morphology of the particles and on the thermo-chemical properties of the non-RB substance. Although these influences cannot currently be unambiguously separated, the SP2 analysis may still provide useful information on particle mixing states and black carbon particle sources.« less
Petroleum systems of the Northwest Java Province, Java and offshore southeast Sumatra, Indonesia
Bishop, Michele G.
2000-01-01
Mature, synrift lacustrine shales of Eocene to Oligocene age and mature, late-rift coals and coaly shales of Oligocene to Miocene age are source rocks for oil and gas in two important petroleum systems of the onshore and offshore areas of the Northwest Java Basin. Biogenic gas and carbonate-sourced gas have also been identified. These hydrocarbons are trapped primarily in anticlines and fault blocks involving sandstone and carbonate reservoirs. These source rocks and reservoir rocks were deposited in a complex of Tertiary rift basins formed from single or multiple half-grabens on the south edge of the Sunda Shelf plate. The overall transgressive succession was punctuated by clastic input from the exposed Sunda Shelf and marine transgressions from the south. The Northwest Java province may contain more than 2 billion barrels of oil equivalent in addition to the 10 billion barrels of oil equivalent already identified.
Carbohydrate Metabolism and Carbon Fixation in Roseobacter denitrificans OCh114
Tang, Kuo-Hsiang; Feng, Xueyang; Tang, Yinjie J.; Blankenship, Robert E.
2009-01-01
The Roseobacter clade of aerobic marine proteobacteria, which compose 10–25% of the total marine bacterial community, has been reported to fix CO2, although it has not been determined what pathway is involved. In this study, we report the first metabolic studies on carbohydrate utilization, CO2 assimilation, and amino acid biosynthesis in the phototrophic Roseobacter clade bacterium Roseobacter denitrificans OCh114. We develop a new minimal medium containing defined carbon source(s), in which the requirements of yeast extract reported previously for the growth of R. denitrificans can be replaced by vitamin B12 (cyanocobalamin). Tracer experiments were carried out in R. denitrificans grown in a newly developed minimal medium containing isotopically labeled pyruvate, glucose or bicarbonate as a single carbon source or in combination. Through measurements of 13C-isotopomer labeling patterns in protein-derived amino acids, gene expression profiles, and enzymatic activity assays, we report that: (1) R. denitrificans uses the anaplerotic pathways mainly via the malic enzyme to fix 10–15% of protein carbon from CO2; (2) R. denitrificans employs the Entner-Doudoroff (ED) pathway for carbohydrate metabolism and the non-oxidative pentose phosphate pathway for the biosynthesis of histidine, ATP, and coenzymes; (3) the Embden-Meyerhof-Parnas (EMP, glycolysis) pathway is not active and the enzymatic activity of 6-phosphofructokinase (PFK) cannot be detected in R. denitrificans; and (4) isoleucine can be synthesized from both threonine-dependent (20% total flux) and citramalate-dependent (80% total flux) pathways using pyruvate as the sole carbon source. PMID:19794911
NASA Technical Reports Server (NTRS)
Xu, Jianzeng; Woodyward, James R.
2005-01-01
The operation of multi-junction solar cells used for production of space power is critically dependent on the spectral irradiance of the illuminating light source. Unlike single-junction cells where the spectral irradiance of the simulator and computational techniques may be used to optimized cell designs, optimization of multi-junction solar cell designs requires a solar simulator with a spectral irradiance that closely matches AM0.
Mirage effect from thermally modulated transparent carbon nanotube sheets.
Aliev, Ali E; Gartstein, Yuri N; Baughman, Ray H
2011-10-28
The single-beam mirage effect, also known as photothermal deflection, is studied using a free-standing, highly aligned carbon nanotube aerogel sheet as the heat source. The extremely low thermal capacitance and high heat transfer ability of these transparent forest-drawn carbon nanotube sheets enables high frequency modulation of sheet temperature over an enormous temperature range, thereby providing a sharp, rapidly changing gradient of refractive index in the surrounding liquid or gas. The advantages of temperature modulation using carbon nanotube sheets are multiple: in inert gases the temperature can reach > 2500 K; the obtained frequency range for photothermal modulation is ~100 kHz in gases and over 100 Hz in high refractive index liquids; and the heat source is transparent for optical and acoustical waves. Unlike for conventional heat sources for photothermal deflection, the intensity and phase of the thermally modulated beam component linearly depends upon the beam-to-sheet separation over a wide range of distances. This aspect enables convenient measurements of accurate values for thermal diffusivity and the temperature dependence of refractive index for both liquids and gases. The remarkable performance of nanotube sheets suggests possible applications as photo-deflectors and for switchable invisibility cloaks, and provides useful insights into their use as thermoacoustic projectors and sonar. Visibility cloaking is demonstrated in a liquid.
Large-scale carbon fiber tests
NASA Technical Reports Server (NTRS)
Pride, R. A.
1980-01-01
A realistic release of carbon fibers was established by burning a minimum of 45 kg of carbon fiber composite aircraft structural components in each of five large scale, outdoor aviation jet fuel fire tests. This release was quantified by several independent assessments with various instruments developed specifically for these tests. The most likely values for the mass of single carbon fibers released ranged from 0.2 percent of the initial mass of carbon fiber for the source tests (zero wind velocity) to a maximum of 0.6 percent of the initial carbon fiber mass for dissemination tests (5 to 6 m/s wind velocity). Mean fiber lengths for fibers greater than 1 mm in length ranged from 2.5 to 3.5 mm. Mean diameters ranged from 3.6 to 5.3 micrometers which was indicative of significant oxidation. Footprints of downwind dissemination of the fire released fibers were measured to 19.1 km from the fire.
NASA Technical Reports Server (NTRS)
Carozza, David A.; Mysak, Lawrence A.; Schmidt, Gavin A.
2011-01-01
An atmospheric CH4 box model coupled to a global carbon cycle box model is used to constrain the carbon emission associated with the PETM and assess the role of CH4 during this event. A range of atmospheric and oceanic emission scenarios representing different amounts, rates, and isotopic signatures of emitted carbon are used to model the PETM onset. The first 3 kyr of the onset, a pre-isotope excursion stage, is simulated by the atmospheric release of 900 to 1100 Pg C CH4 with a delta C-13 of -22 to - 30 %. For a global average warming of 3 deg C, a release of CO2 to the ocean and CH4 to the atmosphere totalling 900 to 1400 Pg C, with a delta C-13 of -50 to -60%, simulates the subsequent 1 -kyr isotope excursion stage. To explain the observations, the carbon must have been released over at most 500 years. The first stage results cannot be associated with any known PETM hypothesis. However, the second stage results are consistent with a methane hydrate source. More than a single source of carbon is required to explain the PETM onset.
Benoit, Isabelle; Zhou, Miaomiao; Vivas Duarte, Alexandra; Downes, Damien J.; Todd, Richard B.; Kloezen, Wendy; Post, Harm; Heck, Albert J. R.; Maarten Altelaar, A. F.; de Vries, Ronald P.
2015-01-01
Degradation of plant biomass to fermentable sugars is of critical importance for the use of plant materials for biofuels. Filamentous fungi are ubiquitous organisms and major plant biomass degraders. Single colonies of some fungal species can colonize massive areas as large as five soccer stadia. During growth, the mycelium encounters heterogeneous carbon sources. Here we assessed whether substrate heterogeneity is a major determinant of spatial gene expression in colonies of Aspergillus niger. We analyzed whole-genome gene expression in five concentric zones of 5-day-old colonies utilizing sugar beet pulp as a complex carbon source. Growth, protein production and secretion occurred throughout the colony. Genes involved in carbon catabolism were expressed uniformly from the centre to the periphery whereas genes encoding plant biomass degrading enzymes and nitrate utilization were expressed differentially across the colony. A combined adaptive response of carbon-catabolism and enzyme production to locally available monosaccharides was observed. Finally, our results demonstrate that A. niger employs different enzymatic tools to adapt its metabolism as it colonizes complex environments. PMID:26314379
Benoit, Isabelle; Zhou, Miaomiao; Vivas Duarte, Alexandra; Downes, Damien J; Todd, Richard B; Kloezen, Wendy; Post, Harm; Heck, Albert J R; Maarten Altelaar, A F; de Vries, Ronald P
2015-08-28
Degradation of plant biomass to fermentable sugars is of critical importance for the use of plant materials for biofuels. Filamentous fungi are ubiquitous organisms and major plant biomass degraders. Single colonies of some fungal species can colonize massive areas as large as five soccer stadia. During growth, the mycelium encounters heterogeneous carbon sources. Here we assessed whether substrate heterogeneity is a major determinant of spatial gene expression in colonies of Aspergillus niger. We analyzed whole-genome gene expression in five concentric zones of 5-day-old colonies utilizing sugar beet pulp as a complex carbon source. Growth, protein production and secretion occurred throughout the colony. Genes involved in carbon catabolism were expressed uniformly from the centre to the periphery whereas genes encoding plant biomass degrading enzymes and nitrate utilization were expressed differentially across the colony. A combined adaptive response of carbon-catabolism and enzyme production to locally available monosaccharides was observed. Finally, our results demonstrate that A. niger employs different enzymatic tools to adapt its metabolism as it colonizes complex environments.
Seeded Growth Route to Noble Calcium Carbonate Nanocrystal.
Islam, Aminul; Teo, Siow Hwa; Rahman, M Aminur; Taufiq-Yap, Yun Hin
2015-01-01
A solution-phase route has been considered as the most promising route to synthesize noble nanostructures. A majority of their synthesis approaches of calcium carbonate (CaCO3) are based on either using fungi or the CO2 bubbling methods. Here, we approached the preparation of nano-precipitated calcium carbonate single crystal from salmacis sphaeroides in the presence of zwitterionic or cationic biosurfactants without external source of CO2. The calcium carbonate crystals were rhombohedron structure and regularly shaped with side dimension ranging from 33-41 nm. The high degree of morphological control of CaCO3 nanocrystals suggested that surfactants are capable of strongly interacting with the CaCO3 surface and control the nucleation and growth direction of calcium carbonate nanocrystals. Finally, the mechanism of formation of nanocrystals in light of proposed routes was also discussed.
Seeded Growth Route to Noble Calcium Carbonate Nanocrystal
Islam, Aminul; Teo, Siow Hwa; Rahman, M. Aminur; Taufiq-Yap, Yun Hin
2015-01-01
A solution-phase route has been considered as the most promising route to synthesize noble nanostructures. A majority of their synthesis approaches of calcium carbonate (CaCO3) are based on either using fungi or the CO2 bubbling methods. Here, we approached the preparation of nano-precipitated calcium carbonate single crystal from salmacis sphaeroides in the presence of zwitterionic or cationic biosurfactants without external source of CO2. The calcium carbonate crystals were rhombohedron structure and regularly shaped with side dimension ranging from 33–41 nm. The high degree of morphological control of CaCO3 nanocrystals suggested that surfactants are capable of strongly interacting with the CaCO3 surface and control the nucleation and growth direction of calcium carbonate nanocrystals. Finally, the mechanism of formation of nanocrystals in light of proposed routes was also discussed. PMID:26700479
Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation.
Pachiadaki, Maria G; Sintes, Eva; Bergauer, Kristin; Brown, Julia M; Record, Nicholas R; Swan, Brandon K; Mathyer, Mary Elizabeth; Hallam, Steven J; Lopez-Garcia, Purificacion; Takaki, Yoshihiro; Nunoura, Takuro; Woyke, Tanja; Herndl, Gerhard J; Stepanauskas, Ramunas
2017-11-24
Carbon fixation by chemoautotrophic microorganisms in the dark ocean has a major impact on global carbon cycling and ecological relationships in the ocean's interior, but the relevant taxa and energy sources remain enigmatic. We show evidence that nitrite-oxidizing bacteria affiliated with the Nitrospinae phylum are important in dark ocean chemoautotrophy. Single-cell genomics and community metagenomics revealed that Nitrospinae are the most abundant and globally distributed nitrite-oxidizing bacteria in the ocean. Metaproteomics and metatranscriptomics analyses suggest that nitrite oxidation is the main pathway of energy production in Nitrospinae. Microautoradiography, linked with catalyzed reporter deposition fluorescence in situ hybridization, indicated that Nitrospinae fix 15 to 45% of inorganic carbon in the mesopelagic western North Atlantic. Nitrite oxidation may have a greater impact on the carbon cycle than previously assumed. Copyright © 2017, American Association for the Advancement of Science.
Climate Forcing by Particles from Specific Sources, With Implications for No-regrets Scenarios
NASA Astrophysics Data System (ADS)
Bond, T. C.; Roden, C. A.; Subramanian, R.; Rasch, P. J.
2006-12-01
Mitigation-- the act of reducing human effects on climate and atmosphere by changing practices-- occurs one source at a time, one country at a time. Examining climate forcing produced by individual sources could be instructive. Two sectors contribute the largest fraction of black carbon aerosols from energy-related combustion: diesel engines and residential biofuel. We examine direct climate forcing by aerosols from these sources in four locations. Because source characterization is lacking, global emission inventories that include chemical composition of particles have often relied on expert judgment. We are gaining information on emission rates and climate- relevant properties through partnerships with projects related to air quality and health in Thailand and Honduras. Despite the presence of organic carbon, black carbon's constant companion, particles from both diesel and biofuel exert net climate warming. In particular, solid-fuel combustion produces material with weak light absorption and strong absorption spectral dependence. We discuss the expected emissions and properties of this material. Revised emission rates and properties are implemented in the Community Atmosphere Model, housed at the National Center for Atmospheric Research, and we tag particles emitted from individual sources. Which sources feed high-forcing regions, such as the area above the low-cloud deck in the North Pacific? Which particles might have been scavenged, and how does uncertainty in removal rates affect single-source forcing? Using model experiments, we estimate central values and uncertainties of direct radiative forcing from each source. Finally, we discuss the potential for reducing climate forcing by mitigating these individual sources. What is the range of benefits expected by addressing these sources, and what are the costs and obstacles? Only by representing uncertainty can we determine the likelihood that reducing these emissions represents a "no- regret" scenario for climate.
Sampling Singular and Aggregate Point Sources of Carbon Dioxide from Space Using OCO-2
NASA Astrophysics Data System (ADS)
Schwandner, F. M.; Gunson, M. R.; Eldering, A.; Miller, C. E.; Nguyen, H.; Osterman, G. B.; Taylor, T.; O'Dell, C.; Carn, S. A.; Kahn, B. H.; Verhulst, K. R.; Crisp, D.; Pieri, D. C.; Linick, J.; Yuen, K.; Sanchez, R. M.; Ashok, M.
2016-12-01
Anthropogenic carbon dioxide (CO2) sources increasingly tip the natural balance between natural carbon sources and sinks. Space-borne measurements offer opportunities to detect and analyze point source emission signals anywhere on Earth. Singular continuous point source plumes from power plants or volcanoes turbulently mix into their proximal background fields. In contrast, plumes of aggregate point sources such as cities, and transportation or fossil fuel distribution networks, mix into each other and may therefore result in broader and more persistent excess signals of total column averaged CO2 (XCO2). NASA's first satellite dedicated to atmospheric CO2observation, the Orbiting Carbon Observatory-2 (OCO-2), launched in July 2014 and now leads the afternoon constellation of satellites (A-Train). While continuously collecting measurements in eight footprints across a narrow ( < 10 km) wide swath it occasionally cross-cuts coincident emission plumes. For singular point sources like volcanoes and coal fired power plants, we have developed OCO-2 data discovery tools and a proxy detection method for plumes using SO2-sensitive TIR imaging data (ASTER). This approach offers a path toward automating plume detections with subsequent matching and mining of OCO-2 data. We found several distinct singular source CO2signals. For aggregate point sources, we investigated whether OCO-2's multi-sounding swath observing geometry can reveal intra-urban spatial emission structures in the observed variability of XCO2 data. OCO-2 data demonstrate that we can detect localized excess XCO2 signals of 2 to 6 ppm against suburban and rural backgrounds. Compared to single-shot GOSAT soundings which detected urban/rural XCO2differences in megacities (Kort et al., 2012), the OCO-2 swath geometry opens up the path to future capabilities enabling urban characterization of greenhouse gases using hundreds of soundings over a city at each satellite overpass. California Institute of Technology
Emissions of SO2, NOx, and CO2 from the Houston Ship Channel Measured by the NOAA WP-3
NASA Astrophysics Data System (ADS)
Washenfelder, R. A.; Brock, C. A.; Frost, G. J.; Holloway, J. S.; Peischl, J. W.; Ryerson, T. B.; Trainer, M.; Fehsenfeld, F. C.
2007-12-01
The Port of Houston is made up of the Houston Ship Channel and Galveston Bay. Together these comprise a 25- mile long complex of diversified public and private facilities, including a petrochemical complex that is among the largest in the world. The Houston Ship Channel is a major source of industrial pollution, emitting sulfur dioxide (SO2), nitrogen oxides (NOx), carbon monoxide (CO), carbon dioxide (CO2), and volatile organic compounds (VOC). Unlike a single large power plant, the Houston Ship Channel consists of numerous sources that can be difficult to quantify in inventories. In order to evaluate and predict air quality in the Houston area, it is important to understand the magnitude and variability of sources in the Houston Ship Channel, and how these sources are evolving over time. We examine fluxes of SO2, NOx, and CO2 from the Houston Ship Channel observed onboard the NOAA WP-3 during September - October 2006. We report the magnitude of these sources, and compare these results to aircraft measurements from 2000 to identify trends.
Bren, Anat; Park, Junyoung O.; Towbin, Benjamin D.; Dekel, Erez; Rabinowitz, Joshua D.; Alon, Uri
2016-01-01
In most conditions, glucose is the best carbon source for E. coli: it provides faster growth than other sugars, and is consumed first in sugar mixtures. Here we identify conditions in which E. coli strains grow slower on glucose than on other sugars, namely when a single amino acid (arginine, glutamate, or proline) is the sole nitrogen source. In sugar mixtures with these nitrogen sources, E. coli still consumes glucose first, but grows faster rather than slower after exhausting glucose, generating a reversed diauxic shift. We trace this counterintuitive behavior to a metabolic imbalance: levels of TCA-cycle metabolites including α-ketoglutarate are high, and levels of the key regulatory molecule cAMP are low. Growth rates were increased by experimentally increasing cAMP levels, either by adding external cAMP, by genetically perturbing the cAMP circuit or by inhibition of glucose uptake. Thus, the cAMP control circuitry seems to have a ‘bug’ that leads to slow growth under what may be an environmentally rare condition. PMID:27109914
Dual ion beam processed diamondlike films for industrial applications
NASA Technical Reports Server (NTRS)
Mirtich, M. J.; Kussmaul, M. T.; Banks, B. A.; Sovey, J. S.
1991-01-01
Single and dual beam ion source systems are used to generate amorphous diamondlike carbon (DLC) films, which were evaluated for a variety of applications including protective coatings on transmitting materials, power electronics as insulated gates and corrosion resistant barriers. A list of the desirable properties of DLC films along with potential applications are presented.
Gao, Jian; Zhang, Yuechong; Zhang, Meng; Zhang, Jingqiao; Wang, Shulan; Tao, Jun; Wang, Han; Luo, Datong; Chai, Fahe; Ren, Chun
2014-01-01
Beijing suffered from serious air pollution in October, 2011 with the occurrence of three continuous episodes. Here we analyze the pollution status of particulate matter, the relationship between the gaseous pollutants, physical and chemical properties of single particles, and the profile of water-soluble ions in PM2.5 during the three episodes. Regional and photochemically aged air masses, which were characterized as having high values of O3 and SO2, were hypothesized to have played a dominant role in the first episode. After mixing local air masses with freshly-emitted primary pollutants, the concentration of NO(x) continued to increase and the size of SO4(2-), NO3(-) and NH4(+) in the particle population continued to become smaller. The amount of elemental carbon-rich and organic carbon-rich particles in the scaled single particles (0.2-2 microm) and water-soluble K(+) in PM2.5 also increased in the episodes. All the available information suggests that the biomass or fuel burning sources in or around Beijing may have had a huge impact on the last two episodes.
Hao, Liting; Zhang, Baogang; Cheng, Ming; Feng, Chuanping
2016-02-01
Four ordinary carbon sources affecting V(V) reduction and bioelectricity generation in single chamber microbial fuel cells (MFCs) were investigated. Acetate supported highest maximum power density of 589.1mW/m(2), with highest V(V) removal efficiency of 77.6% during 12h operation, compared with glucose, citrate and soluble starch. Exorbitant initial V(V) concentration led to lower V(V) removal efficiencies and power outputs. Extra addition of organics had little effect on the improvement of MFCs performance. V(V) reduction and bioelectricity generation were enhanced and then suppressed by the increase of conductivity. The larger the external resistance, the higher the V(V) removal efficiencies and voltage outputs. High-throughput 16S rRNA gene pyrosequencing analysis implied the accumulation of Enterobacter which had the capabilities of V(V) reduction, electrochemical activity and fermentation, accompanied with other functional species as Pseudomonas, Spirochaeta, Sedimentibacter and Dysgonomonas. This study steps forward to remediate V(V) contaminated environment based on MFC technology. Copyright © 2015 Elsevier Ltd. All rights reserved.
Khani, Mojtaba; Bahrami, Ali; Chegeni, Asma; Ghafari, Mohammad Davoud; Mansouran Zadeh, ALi
2016-06-01
Bacterial Extracellular Polymeric Substances (EPS) are environmental friendly and versatile polymeric materials that are used in a wide range of industries such as: food, textile, cosmetics, and pharmaceuticals. To make the production process of the EPS cost-effective, improvements in the production yield is required which could be implemented through application of processes such as optimized culture conditions, and development of the strains with higher yield ( e.g . through genetic manipulation), or using low-cost substrates. In this work, the effects of carbon and nitrogen sources were studied in order to improve the EPS production by the submerged cultivation of Chryseobacterium indologenes MUT.2. The mesophilic microorganism Chryseobacterium indologenes MUT.2, was grown and maintained in the Luria Bertani agar. The initial basal medium contained: glucose (20 g.L -1 ), yeast extracts (5 g.L -1 ), K 2 HPO 4 (6 g.L -1 ), NaH 2 PO 4 (7 g.L -1 ), NH 4 CL (0.7 g.L -1 ), and MgSO 4 (0.5 g.L -1 ). For evaluating the carbon and nitrogen sources' effect on the fermentation performance, cultures were prepared in 500 mL flasks filled with 300 mL of the medium. The single-factor experiments based on statistics was employed to evaluate and optimize the carbon and nitrogen sources for EPS production in the liquid culture medium of Chryseobacterium indologenes MUT.2. The preferred carbon-sources, sucrose and glucose, commonly gave the highest EPS production of 8.32 and 6.37 g.L -1 , respectively, and the maximum EPS production of 8.87 g.L -1 was achieved when glutamic acid (5 g.L -1 ) was employed as the nitrogen source. In this work, the culture medium for production of EPS by Chryseobacterium indologenes MUT.2 was optimized. Compared to the basal culture medium in shake-flasks and stirred tank bioreactor, the use of optimized culture medium has resulted in a 53% and 73% increase in the EPS production, respectively.
Increased Alignment in Carbon Nanotube Growth
NASA Technical Reports Server (NTRS)
Delzeit, Lance D. (Inventor)
2007-01-01
Method and system for fabricating an array of two or more carbon nanotube (CNT) structures on a coated substrate surface, the structures having substantially the same orientation with respect to a substrate surface. A single electrode, having an associated voltage source with a selected voltage, is connected to a substrate surface after the substrate is coated and before growth of the CNT structures, for a selected voltage application time interval. The CNT structures are then grown on a coated substrate surface with the desired orientation. Optionally, the electrode can be disconnected before the CNT structures are grown.
NASA Astrophysics Data System (ADS)
Joshi, Rutambhara; Liu, Dantong; Allan, James; Coe, Hugh; Flynn, Michael; Broda, Kurtis; Olfert, Jason; Irwin, Martin; Sun, Yele; Fu, Pingqing; Wang, Junfeng; Ge, Xinlei; Langford, Ben; Nemitz, Eiko; Mullinger, Neil
2017-04-01
BC is generated by the incomplete combustion of carbonaceous fuels and it is an important component of fine PM2.5. In the atmosphere BC particles have a complex structure and its mixing state has crucial impact on optical properties. Quantifying the sources and emissions of black carbon in urban environments is important and presently uncertain, particularly in megacities undergoing rapid growth and change in emissions. During the winter of 2016 (10th Nov-10th Dec) the BC was characterised as part of a large joint UK-China field experiment in Beijing. This paper focuses on understanding the mixing state of BC as well as identification and quantification of BC sources. We used a combination of a Centrifugal Particle Mass Analyser (CPMA) and a Single Particle Soot Photometer (SP2) to uniquely quantify the morphology independent mass of single refractory BC particles and their coating content. The CPMA allows us to select pre-charged aerosol particles according to their mass to charge ratio and the SP2 provides information on the mass of refractory BC through a laser-induced incandescence method. Furthermore, another SP2 was used to measure the BC flux at 100m height using the Eddy Covariance method. We have successfully gathered 4 weeks of continuous measurements which include several severe pollution events in Beijing. Here we present preliminary results, characterising the distribution of coating mass on BC particles in Beijing and linking this to the main sources of BC in the city. We will provide initial estimates of the BC flux over a several kilometre footprint. Such analysis will provide important information for the further investigation of source distribution, emission, lifetime and optical properties of BC under complex environments in Beijing.
Are some CEMP-s stars the daughters of spinstars?
NASA Astrophysics Data System (ADS)
Choplin, Arthur; Hirschi, Raphael; Meynet, Georges; Ekström, Sylvia
2017-11-01
Carbon-enhanced metal-poor (CEMP)-s stars are long-lived low-mass stars with a very low iron content as well as overabundances of carbon and s-elements. Their peculiar chemical pattern is often explained by pollution from an asymptotic giant branch (AGB) star companion. Recent observations have shown that most CEMP-s stars are in binary systems, providing support to the AGB companion scenario. A few CEMP-s stars, however, appear to be single. We inspect four apparently single CEMP-s stars and discuss the possibility that they formed from the ejecta of a previous-generation massive star, referred to as the "source" star. In order to investigate this scenario, we computed low-metallicity massive-star models with and without rotation and including complete s-process nucleosynthesis. We find that non-rotating source stars cannot explain the observed abundance of any of the four CEMP-s stars. Three out of the four CEMP-s stars can be explained by a 25M⊙ source star with vini 500 km s-1 (spinstar). The fourth CEMP-s star has a high Pb abundance that cannot be explained by any of the models we computed. Since spinstars and AGB predict different ranges of [O/Fe] and [ls/hs], these ratios could be an interesting way to further test these two scenarios.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marusich, W.C.; Jensen, R.A.; Zamir, L.O.
Rhodotorula glutinis is a convenient source of L-phenylalanine ammonia-lyase, an enzyme that is useful as a biochemical reagent in the assay of L-phenylalanine. There have been previous descriptions of induced lyase production in complex medium where induction occurs late in exponential growth, suggesting a role in secondary metabolism such as is the case in higher plants. A higher specific activity of L-phenylalanine ammonia-lyase (sixfold higher than in complex medium) can be obtained during midexponential growth in a defined medium containing L-phenylalanine as the sole source of carbon. L-phenylalanine will also induce lyase synthesis during exponential growth in minimal medium inmore » which L-phenylalanine is the sole source of nitrogen. The appearance of lyase in complex medium supplemented with L-phenylalanine is probably triggered fortuitously by exhaustion late in growth of a prime source of nitrogen. In this study, R. glutinis appeared to express a single lyase enzyme, regardless of whether induction was nitrogen signaled or carbon signaled. Thin-layer chromatographic analysis of ether extracts prepared fom cultures induced with doubly labeled (U-/sup 14/C; ring-4-/sup 3/H) L-phenylalanine provided evidence of a catabolic sequence containing cinnamic acid, benzoic acid, and 4-hydroxybenzoic acid as degradative intermediates. 3,4-Dihydroxybenzoic acid was not identified as a catabolic intermediate.« less
Marusich, W C; Jensen, R A; Zamir, L O
1981-01-01
Rhodotorula glutinis is a convenient source of L-phenylalanine ammonia-lyase, an enzyme that is useful as a biochemical reagent in the assay of L-phenylalanine. There have been previous descriptions of induced lyase production in complex medium where induction occurs late in exponential growth, suggesting a role in secondary metabolism such as is the case in higher plants. A higher specific activity of L-phenylalanine ammonia-lyase (sixfold higher than a complex medium) can be obtained during midexponential growth in a defined medium containing L-phenylalanine as the sole source of carbon. L-Phenylalanine will also induce lyase synthesis during exponential growth in minimal in which L-phenylalanine is the sole source of nitrogen. The appearance of lyase in complex medium supplemented with L-phenylalanine is probably triggered fortuitously by exhaustion late in growth of a prime source of nitrogen. In this study, R. glutinis appeared to express a single lyase enzyme, regardless of whether induction was nitrogen signaled or carbon signaled. Thin-layer chromatographic analysis of ether extracts prepared from cultures induced with doubly labeled (U-14C; ring-4-3H) L-phenylalanine provided evidence of a catabolic sequence containing cinnamic acid, benzoic acid, and 4-hydroxybenzoic acid as degradative intermediates. 3,4-Dihydroxybenzoic acid was not identified as a catabolic intermediate. PMID:7195398
Schmidt, Marek E; Yasaka, Anto; Akabori, Masashi; Mizuta, Hiroshi
2017-08-01
The recent technological advance of the gas field ion source (GFIS) and its successful integration into systems has renewed the interest in the focused ion beam (FIB) technology. Due to the atomically small source size and the use of light ions, the limitations of the liquid metal ion source are solved as device dimensions are pushed further towards the single-digit nanometer size. Helium and neon ions are the most widely used, but a large portfolio of available ion species is desirable, to allow a wide range of applications. Among argon and hydrogen, $${\\rm N}_{2}^{{\\plus}} $$ ions offer unique characteristics due to their covalent bond and their use as dopant for various carbon-based materials including diamond. Here, we provide a first look at the $${\\rm N}_{2}^{{\\plus}} $$ GFIS-FIB enabled imaging of a large selection of microscopic structures, including gold on carbon test specimen, thin metal films on insulator and nanostructured carbon-based devices, which are among the most actively researched materials in the field of nanoelectronics. The results are compared with images acquired by He+ ions, and we show that $${\\rm N}_{2}^{{\\plus}} $$ GFIS-FIB can offer improved material contrast even at very low imaging dose and is more sensitive to the surface roughness.
NASA Astrophysics Data System (ADS)
Haohao, Wu; Xingkai, Xu; Cuntao, Duan; TuanSheng, Li; Weiguo, Cheng
2017-07-01
Packed soil-core incubation experiments were done to study the effects of carbon (glucose, 6.4 g C m-2) and nitrogen (NH4Cl and KNO3, 4.5 g N m-2) addition on nitrous oxide (N2O) and carbon dioxide (CO2) fluxes during thawing of frozen soils under two forest stands (broadleaf and Korean pine mixed forest and white birch forest) with two moisture levels (55 and 80% water-filled pore space). With increasing soil moisture, the magnitude and longevity of the flush N2O flux from forest soils was enhanced during the early period of thawing, which was accompanied by great NO3--N consumption. Without N addition, the glucose-induced cumulative CO2 fluxes ranged from 9.61 to 13.49 g CO2-C m-2, which was larger than the dose of carbon added as glucose. The single addition of glucose increased microbial biomass carbon but slightly affected soil dissolved organic carbon pool. Thus, the extra carbon released upon addition of glucose can result from the decomposition of soil native organic carbon. The glucose-induced N2O and CO2 fluxes were both significantly correlated to the glucose-induced total N and dissolved organic carbon pools and influenced singly and interactively by soil moisture and KNO3 addition. The interactive effects of glucose and nitrogen inputs on N2O and CO2 fluxes from forest soils after frost depended on N sources, soil moisture, and vegetation types.
Biodegradation of alkaline lignin by Bacillus ligniniphilus L1
Zhu, Daochen; Zhang, Peipei; Xie, Changxiao; ...
2017-02-21
Lignin is the most abundant aromatic biopolymer in the biosphere and it comprises up to 30% of plant biomass. Although lignin is the most recalcitrant component of the plant cell wall, still there are microorganisms able to decompose it or degrade it. Fungi are recognized as the most widely used microbes for lignin degradation. However, bacteria have also been known to be able to utilize lignin as a carbon or energy source. Bacillus ligniniphilus L1 was selected in this study due to its capability to utilize alkaline lignin as a single carbon or energy source and its excellent ability tomore » survive in extreme environments. To investigate the aromatic metabolites of strain L1 decomposing alkaline lignin, GC–MS analysis was performed and fifteen single phenol ring aromatic compounds were identified. The dominant absorption peak included phenylacetic acid, 4-hydroxy-benzoicacid, and vanillic acid with the highest proportion of metabolites resulting in 42%. Comparison proteomic analysis was carried out for further study showed that approximately 1447 kinds of proteins were produced, 141 of which were at least twofold up-regulated with alkaline lignin as the single carbon source. The up-regulated proteins contents different categories in the biological functions of protein including lignin degradation, ABC transport system, environmental response factors, protein synthesis, assembly, etc. In conclusion, GC–MS analysis showed that alkaline lignin degradation of strain L1 produced 15 kinds of aromatic compounds. Comparison proteomic data and metabolic analysis showed that to ensure the degradation of lignin and growth of strain L1, multiple aspects of cells metabolism including transporter, environmental response factors, and protein synthesis were enhanced. Based on genome and proteomic analysis, at least four kinds of lignin degradation pathway might be present in strain L1, including a Gentisate pathway, the benzoic acid pathway and the β-ketoadipate pathway. The study provides an important basis for lignin degradation by bacteria.« less
Biodegradation of alkaline lignin by Bacillus ligniniphilus L1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Daochen; Zhang, Peipei; Xie, Changxiao
Background: Lignin is the most abundant aromatic biopolymer in the biosphere and it comprises up to 30% of plant biomass. Although lignin is the most recalcitrant component of the plant cell wall, still there are microorganisms able to decompose it or degrade it. Fungi are recognized as the most widely used microbes for lignin degradation. However, bacteria have also been known to be able to utilize lignin as a carbon or energy source. Bacillus ligniniphilus L1 was selected in this study due to its capability to utilize alkaline lignin as a single carbon or energy source and its excellent abilitymore » to survive in extreme environments. Results: To investigate the aromatic metabolites of strain L1 decomposing alkaline lignin, GC-MS analyze was performed and fifteen single phenol ring aromatic compounds were identified. The dominant absorption peak included phenylacetic acid, 4-hydroxy-benzoicacid, and vanillic acid with the highest proportion of metabolites resulting in 42%. Comparison proteomic analysis were carried out for further study showed that approximately 1447 kinds of proteins were produced, 141 of which were at least 2-fold up-regulated with alkaline lignin as the single carbon source. The up-regulated proteins contents different categories in the biological functions of protein including lignin degradation, ABC transport system, environmental response factors, protein synthesis and assembly, etc. Conclusions: GC-MS analysis showed that alkaline lignin degradation of strain L1 produced 15 kinds of aromatic compounds. Comparison proteomic data and metabolic analysis showed that to ensure the degradation of lignin and growth of strain L1, multiple aspects of cells metabolism including transporter, environmental response factors, and protein synthesis were enhanced. Based on genome and proteomic analysis, at least four kinds of lignin degradation pathway might be present in strain L1, including a Gentisate pathway, the benzoic acid pathway and the β-ketoadipate pathway. The study provides an important basis for lignin degradation by bacteria.« less
Biodegradation of alkaline lignin by Bacillus ligniniphilus L1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Daochen; Zhang, Peipei; Xie, Changxiao
Lignin is the most abundant aromatic biopolymer in the biosphere and it comprises up to 30% of plant biomass. Although lignin is the most recalcitrant component of the plant cell wall, still there are microorganisms able to decompose it or degrade it. Fungi are recognized as the most widely used microbes for lignin degradation. However, bacteria have also been known to be able to utilize lignin as a carbon or energy source. Bacillus ligniniphilus L1 was selected in this study due to its capability to utilize alkaline lignin as a single carbon or energy source and its excellent ability tomore » survive in extreme environments. To investigate the aromatic metabolites of strain L1 decomposing alkaline lignin, GC–MS analysis was performed and fifteen single phenol ring aromatic compounds were identified. The dominant absorption peak included phenylacetic acid, 4-hydroxy-benzoicacid, and vanillic acid with the highest proportion of metabolites resulting in 42%. Comparison proteomic analysis was carried out for further study showed that approximately 1447 kinds of proteins were produced, 141 of which were at least twofold up-regulated with alkaline lignin as the single carbon source. The up-regulated proteins contents different categories in the biological functions of protein including lignin degradation, ABC transport system, environmental response factors, protein synthesis, assembly, etc. In conclusion, GC–MS analysis showed that alkaline lignin degradation of strain L1 produced 15 kinds of aromatic compounds. Comparison proteomic data and metabolic analysis showed that to ensure the degradation of lignin and growth of strain L1, multiple aspects of cells metabolism including transporter, environmental response factors, and protein synthesis were enhanced. Based on genome and proteomic analysis, at least four kinds of lignin degradation pathway might be present in strain L1, including a Gentisate pathway, the benzoic acid pathway and the β-ketoadipate pathway. The study provides an important basis for lignin degradation by bacteria.« less
Single-cell protein from methanol with Enterobacter aerogenes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gnan, S.O.; Abodreheba, A.O.
1987-02-20
An identified Enterobacter aerogenes utilizing methanol as a sole carbon source was studied for the optimization of biomass production and the reduction of its nucleic acid content. Results indicated that the highest yield and conversion were obtained at 0.5% methanol. The addition of seawater as a source of trace elements has an adverse effect. However, the addition of urea as source of nitrogen enhanced the growth of E. aerogenes. Heat shock at 60 degrees C for one minute followed by incubation at 50 degrees C for 2 hours caused 72.6% reduction in the nucleic acid. 12 references.
Senanayake, S D; Idriss, H
2006-01-31
We report the conversion of a large fraction of formamide (NH(2)CHO) to high-molecular-weight compounds attributed to nucleoside bases on the surface of a TiO(2) (001) single crystal in ultra-high vacuum conditions. If true, we present previously unreported evidence for making biologically relevant molecules from a C1 compound on any single crystal surface in high vacuum and in dry conditions. An UV light of 3.2 eV was necessary to make the reaction. This UV light excites the semiconductor surface but not directly the adsorbed formamide molecules or the reaction products. There thus is no need to use high energy in the form of photons or electrical discharge to make the carbon-carbon and carbon-nitrogen bonds necessary for life. Consequently, the reaction products may accumulate with time and may not be subject to decomposition by the excitation source. The formation of these molecules, by surface reaction of formamide, is proof that some minerals in the form of oxide semiconductors are active materials for making high-molecular-weight organic molecules that may have acted as precursors for biological compounds required for life in the universe.
A review of ion sources for medical accelerators (invited)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muramatsu, M.; Kitagawa, A.
2012-02-15
There are two major medical applications of ion accelerators. One is a production of short-lived isotopes for radionuclide imaging with positron emission tomography and single photon emission computer tomography. Generally, a combination of a source for negative ions (usually H- and/or D-) and a cyclotron is used; this system is well established and distributed over the world. Other important medical application is charged-particle radiotherapy, where the accelerated ion beam itself is being used for patient treatment. Two distinctly different methods are being applied: either with protons or with heavy-ions (mostly carbon ions). Proton radiotherapy for deep-seated tumors has become widespreadmore » since the 1990s. The energy and intensity are typically over 200 MeV and several 10{sup 10} pps, respectively. Cyclotrons as well as synchrotrons are utilized. The ion source for the cyclotron is generally similar to the type for production of radioisotopes. For a synchrotron, one applies a positive ion source in combination with an injector linac. Carbon ion radiotherapy awakens a worldwide interest. About 6000 cancer patients have already been treated with carbon beams from the Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences in Japan. These clinical results have clearly verified the advantages of carbon ions. Heidelberg Ion Therapy Center and Gunma University Heavy Ion Medical Center have been successfully launched. Several new facilities are under commissioning or construction. The beam energy is adjusted to the depth of tumors. It is usually between 140 and 430 MeV/u. Although the beam intensity depends on the irradiation method, it is typically several 10{sup 8} or 10{sup 9} pps. Synchrotrons are only utilized for carbon ion radiotherapy. An ECR ion source supplies multi-charged carbon ions for this requirement. Some other medical applications with ion beams attract developer's interests. For example, the several types of accelerators are under development for the boron neutron capture therapy. This treatment is conventionally demonstrated by a nuclear reactor, but it is strongly expected to replace the reactor by the accelerator. We report status of ion source for medical application and such scope for further developments.« less
Noack, Stephan; Voges, Raphael; Gätgens, Jochem; Wiechert, Wolfgang
2017-09-20
Corynebacterium glutamicum serves as important production host for small molecular compounds that are derived from precursor molecules of the central carbon metabolism. It is therefore a well-studied model organism of industrial biotechnology. However, a deeper understanding of the regulatory principles underlying the synthesis of central metabolic enzymes under different environmental conditions as well as its impact on cell growth is still missing. We studied enzyme abundances in C. glutamicum in response to growth on: (i) one limiting carbon source by sampling chemostat and fed-batch cultivations and (ii) changing carbon sources provided in excess by sampling batch cultivations. The targeted quantification of 20 central metabolic enzymes by isotope dilution mass spectrometry revealed that cells maintain stable enzyme concentrations when grown on d-glucose as single carbon and energy source and, most importantly, independent of its availability. By contrast, switching from d-glucose to d-fructose, d-mannose, d-arabitol, acetate, l-lactate or l-glutamate results in highly specific enzyme regulation patterns that can partly be explained by the activity of known transcriptional regulators. Based on these experimental results we propose a simple framework for modeling cell population growth as a nested function of nutrient supply and intracellular enzyme abundances. In summary, our study extends the basis for the formulation of predictive mechanistic models of bacterial growth, applicable in industrial bioprocess development. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hatta, M. N. M.; Hashim, M. S.; Hussin, R.; Aida, S.; Kamdi, Z.; Ainuddin, AR; Yunos, MZ
2017-10-01
In this study, carbon nanostructures were synthesized from High Density Polyethylene (HDPE) and Polyethylene terephthalate (PET) waste by single-stage chemical vapour deposition (CVD) method. In CVD, iron was used as catalyst and pyrolitic of carbon source was conducted at temperature 700, 800 and 900°C for 30 minutes. Argon gas was used as carrier gas with flow at 90 sccm. The synthesized carbon nanostructures were characterized by FESEM, EDS and calculation of carbon yield (%). FESEM micrograph shows that the carbon nanostructures were only grown as nanofilament when synthesized from PET waste. The synthesization of carbon nanostructure at 700°C was produced smooth and the smallest diameter nanofilament compared to others. The carbon yield of synthesized carbon nanostructures from PET was lower from HDPE. Furthermore, the carbon yield is recorded to increase with increasing of reaction temperature for all samples. Elemental study by EDS analysis were carried out and the formation of carbon nanostructures was confirmed after CVD process. Utilization of polymer waste to produce carbon nanostructures is beneficial to ensure that the carbon nanotechnology will be sustained in future.
Carbon dioxide inhalation treatments of neurotic anxiety. An overview.
Wolpe, J
1987-03-01
A lucky chance more than 30 years ago revealed the remarkable efficacy of single inhalations of high concentrations of carbon dioxide in eliminating or markedly reducing free-floating anxiety. The reduction of anxiety lasts for days, weeks, or longer--well beyond the persistence of carbon dioxide in the body. The effects are explicable on the hypothesis that free-floating anxiety is anxiety conditioned to continuously present sources of stimulation, such as background noise or the awareness of space or time, and that the anxiety response habit is weakened when the anxiety is inhibited by the competition of responses that carbon dioxide induces. More recently, it has become apparent that inhalations of carbon dioxide, applied in a different manner, are effective in overcoming maladaptive anxiety responses to specific stimuli, e.g., social stimuli. The substance is also proving to be a valuable resource in the treatment of the common variety of panic attacks.
Biomass burning dominates brown carbon absorption in the rural southeastern United States
NASA Astrophysics Data System (ADS)
Washenfelder, R. A.; Attwood, A. R.; Brock, C. A.; Guo, H.; Xu, L.; Weber, R. J.; Ng, N. L.; Allen, H. M.; Ayres, B. R.; Baumann, K.; Cohen, R. C.; Draper, D. C.; Duffey, K. C.; Edgerton, E.; Fry, J. L.; Hu, W. W.; Jimenez, J. L.; Palm, B. B.; Romer, P.; Stone, E. A.; Wooldridge, P. J.; Brown, S. S.
2015-01-01
carbon aerosol consists of light-absorbing organic particulate matter with wavelength-dependent absorption. Aerosol optical extinction, absorption, size distributions, and chemical composition were measured in rural Alabama during summer 2013. The field site was well located to examine sources of brown carbon aerosol, with influence by high biogenic organic aerosol concentrations, pollution from two nearby cities, and biomass burning aerosol. We report the optical closure between measured dry aerosol extinction at 365 nm and calculated extinction from composition and size distribution, showing agreement within experiment uncertainties. We find that aerosol optical extinction is dominated by scattering, with single-scattering albedo values of 0.94 ± 0.02. Black carbon aerosol accounts for 91 ± 9% of the total carbonaceous aerosol absorption at 365 nm, while organic aerosol accounts for 9 ± 9%. The majority of brown carbon aerosol mass is associated with biomass burning, with smaller contributions from biogenically derived secondary organic aerosol.
USDA-ARS?s Scientific Manuscript database
Nitrogen is an essential nutrient for plants and animals. However, an excess amount of nitrogen in waterways may lead to anoxic condition and negatively alter various aquatic lifeforms due to their toxicity. Main sources of nitrogen in the environment include the discharge from wastewater treatment ...
Room-Temperature Single-Photon Emission from Micrometer-Long Air-Suspended Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Ishii, A.; Uda, T.; Kato, Y. K.
2017-11-01
Statistics of photons emitted by mobile excitons in individual carbon nanotubes are investigated. Photoluminescence spectroscopy is used to identify the chiralities and suspended lengths of air-suspended nanotubes, and photon-correlation measurements are performed at room temperature on telecommunication-wavelength nanotube emission with a Hanbury-Brown-Twiss setup. We obtain zero-delay second-order correlation g(2 )(0 ) less than 0.5, indicating single-photon generation. Excitation power dependence of the photon antibunching characteristics is examined for nanotubes with various chiralities and suspended lengths, where we find that the minimum value of g(2 )(0 ) is obtained at the lowest power. The influence of exciton diffusion and end quenching is studied by Monte Carlo simulations, and we derive an analytical expression for the minimum value of g(2 )(0 ). Our results indicate that mobile excitons in micrometer-long nanotubes can in principle produce high-purity single photons, leading to new design strategies for quantum photon sources.
Purcell-enhanced quantum yield from carbon nanotube excitons coupled to plasmonic nanocavities
Luo, Yue; Ahmadi, Ehsaneh D.; Shayan, Kamran; ...
2017-11-10
Single-walled carbon nanotubes (SWCNTs) are promising absorbers and emitters to enable novel photonic applications and devices but are also known to suffer from low optical quantum yields. Here we demonstrate SWCNT excitons coupled to plasmonic nanocavity arrays reaching deeply into the Purcell regime with Purcell factors (F P) up to F P = 180 (average F P = 57), Purcell-enhanced quantum yields of 62% (average 42%), and a photon emission rate of 15 MHz into the first lens. The cavity coupling is quasi-deterministic since the photophysical properties of every SWCNT are enhanced by at least one order of magnitude. Furthermore,more » the measured ultra-narrow exciton linewidth (18 ueV) reaches the radiative lifetime limit, which is promising towards generation of transform-limited single photons. Furthermore, to demonstrate utility beyond quantum light sources we show that nanocavity-coupled SWCNTs perform as single-molecule thermometers detecting plasmonically induced heat at cryogenic temperatures in a unique interplay of excitons, phonons, and plasmons at the nanoscale.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puri, Nidhi; Department of Physics, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025; Niazi, Asad
2014-10-13
We report the fabrication of a single-walled carbon nanotube (SWNT) based ultrasensitive label-free chemiresistive biosensor for the detection of human cardiac biomarker, myoglobin (Ag-cMb). Poly(pyrrole-co-pyrrolepropylic acid) with pendant carboxyl groups was electrochemically deposited on electrophoretically aligned SWNT channel, as a conducting linker, for biomolecular immobilization of highly specific cardiac myoglobin antibody. The device was characterized by scanning electron microscopy, source-drain current-voltage (I-V), and charge-transfer characteristic studies. The device exhibited a linear response with a change in conductance in SWNT channel towards the target, Ag-cMb, over the concentration range of 1.0 to 1000 ng ml{sup −1} with a sensitivity of ∼118% per decademore » with high specificity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maluta, Jaqueline R.; Machado, Sergio A. S.; Chaudhary, Umesh
The modification of traditional electrodes with mesoporous carbons is a promising strategy to produce high performance electrodes for electrochemical sensing. The high surface area of mesoporous carbons provides a large number of electroactive sites for binding analytes. Controlling the pore size and structure of mesoporous carbons and modifying their electronic properties via doping offers additional benefits like maximizing transport and tuning the electrochemical processes associated with analyte detection. This work reports a facile method to produce sulfur-doped ordered mesoporous carbon materials (S-OMC) with uniform pore structure, large pore volume, high surface area and semigraphitic structure. The synthesis used thiophenol asmore » a single source of carbon and sulfur, and iron as a catalyst for low temperature carbonization. The S-OMC material was deposited on a glassy carbon electrode and used as a sensor with high sensitivity (11.7 A L mol-1) and selectivity for chloramphenicol detection in presence of other antibiotics. As a proof-of-concept, the sensor was applied to the direct analysis of the drug in reconstituted powdered milk and in commercial eye drops.« less
Maluta, Jaqueline R.; Machado, Sergio A. S.; Chaudhary, Umesh; ...
2017-10-29
The modification of traditional electrodes with mesoporous carbons is a promising strategy to produce high performance electrodes for electrochemical sensing. The high surface area of mesoporous carbons provides a large number of electroactive sites for binding analytes. Controlling the pore size and structure of mesoporous carbons and modifying their electronic properties via doping offers additional benefits like maximizing transport and tuning the electrochemical processes associated with analyte detection. This work reports a facile method to produce sulfur-doped ordered mesoporous carbon materials (S-OMC) with uniform pore structure, large pore volume, high surface area and semigraphitic structure. The synthesis used thiophenol asmore » a single source of carbon and sulfur, and iron as a catalyst for low temperature carbonization. The S-OMC material was deposited on a glassy carbon electrode and used as a sensor with high sensitivity (11.7 A L mol-1) and selectivity for chloramphenicol detection in presence of other antibiotics. As a proof-of-concept, the sensor was applied to the direct analysis of the drug in reconstituted powdered milk and in commercial eye drops.« less
Moon, Yoon-Jung; Kwon, Joseph; Yun, Sung-Ho; Lim, Hye Li; Kim, Min-Sik; Kang, Sung Gyun; Lee, Jung-Hyun; Choi, Jong-Soon; Kim, Seung Il; Chung, Young-Ho
2012-01-01
Thermococcus onnurineus NA1, a sulfur-reducing hyperthermophilic archaeon, is capable of H2-producing growth, considered to be hydrogenogenic carboxydotrophy. Utilization of formate as a sole energy source has been well studied in T. onnurineus NA1. However, whether formate can be used as its carbon source remains unknown. To obtain a global view of the metabolic characteristics of H2-producing growth, a quantitative proteome analysis of T. onnurineus NA1 grown on formate, CO, and starch was performed by combining one-dimensional SDS-PAGE with nano UPLC-MSE. A total of 587 proteins corresponding to 29.7% of the encoding genes were identified, and the major metabolic pathways (especially energy metabolism) were characterized at the protein level. Expression of glycolytic enzymes was common but more highly induced in starch-grown cells. In contrast, enzymes involved in key steps of the gluconeogenesis and pentose phosphate pathways were strongly up-regulated in formate-grown cells, suggesting that formate could be utilized as a carbon source by T. onnurineus NA1. In accordance with the genomic analysis, comprehensive proteomic analysis also revealed a number of hydrogenase clusters apparently associated with formate metabolism. On the other hand, CODH and CO-induced hydrogenases belonging to the Hyg4-II cluster, as well as sulfhydrogenase-I and Mbx, were prominently expressed during CO culture. Our data suggest that CO can be utilized as a sole energy source for H2 production via an electron transport mechanism and that CO2 produced from catabolism or CO oxidation by CODH and CO-induced hydrogenases may subsequently be assimilated into the organic carbon. Overall, proteomic comparison of formate- and CO-grown cells with starch-grown cells revealed that a single carbon compound, such as formate and CO, can be utilized as an efficient substrate to provide cellular carbon and/or energy by T. onnurineus NA1. PMID:22232491
NASA Astrophysics Data System (ADS)
Li, Yingfeng; Li, Meicheng; Gu, TianSheng; Bai, Fan; Yu, Yue; Trevor, Mwenya; Yu, Yangxin
2013-11-01
By density functional theory (DFT) calculations, the early stages of the growth of graphene on copper (1 1 1) surface are investigated. At the very first time of graphene growth, the carbon atom sinks into subsurface. As more carbon atoms are adsorbed nearby the site, the sunken carbon atom will spontaneously form a dimer with one of the newly adsorbed carbon atoms, and the formed dimer will up-float on the top of the surface. We emphasize the role of the co-operative relaxation of the co-adsorbed carbon atoms in facilitating the sinking and up-floating of carbon atoms. In detail: when two carbon atoms are co-adsorbed, their co-operative relaxation will result in different carbon-copper interactions for the co-adsorbed carbon atoms. This difference facilitates the sinking of a single carbon atom into the subsurface. As a third carbon atom is co-adsorbed nearby, it draws the sunken carbon atom on top of the surface, forming a dimer. Co-operative relaxations of the surface involving all adsorbed carbon atoms and their copper neighbors facilitate these sinking and up-floating processes. This investigation is helpful for the deeper understanding of graphene synthesis and the choosing of optimal carbon sources or process.
Carr, T.R.; Iqbal, A.; Callaghan, N.; ,; Look, K.; Saving, S.; Nelson, K.
2009-01-01
The US Department of Energy's Regional Carbon Sequestration Partnerships (RCSPs) are responsible for generating geospatial data for the maps displayed in the Carbon Sequestration Atlas of the United States and Canada. Key geospatial data (carbon sources, potential storage sites, transportation, land use, etc.) are required for the Atlas, and for efficient implementation of carbon sequestration on a national and regional scale. The National Carbon Sequestration Database and Geographical Information System (NatCarb) is a relational database and geographic information system (GIS) that integrates carbon storage data generated and maintained by the RCSPs and various other sources. The purpose of NatCarb is to provide a national view of the carbon capture and storage potential in the U.S. and Canada. The digital spatial database allows users to estimate the amount of CO2 emitted by sources (such as power plants, refineries and other fossil-fuel-consuming industries) in relation to geologic formations that can provide safe, secure storage sites over long periods of time. The NatCarb project is working to provide all stakeholders with improved online tools for the display and analysis of CO2 carbon capture and storage data. NatCarb is organizing and enhancing the critical information about CO2 sources and developing the technology needed to access, query, model, analyze, display, and distribute natural resource data related to carbon management. Data are generated, maintained and enhanced locally at the RCSP level, or at specialized data warehouses, and assembled, accessed, and analyzed in real-time through a single geoportal. NatCarb is a functional demonstration of distributed data-management systems that cross the boundaries between institutions and geographic areas. It forms the first step toward a functioning National Carbon Cyberinfrastructure (NCCI). NatCarb provides access to first-order information to evaluate the costs, economic potential and societal issues of CO2 capture and storage, including public perception and regulatory aspects. NatCarb online access has been modified to address the broad needs of a spectrum of users. NatCarb includes not only GIS and database query tools for high-end user, but simplified display for the general public using readily available web tools such as Google Earth???and Google Maps???. Not only is NatCarb connected to all the RCSPs, but data are also pulled from public servers including the U.S. Geological Survey-EROS Data Center and from the Geography Network. Data for major CO2 sources have been obtained from U.S. Environmental Protection Agency (EPA) databases, and data on major coal basins and coalbed methane wells were obtained from the Energy Information Administration (EIA). ?? 2009 Elsevier Ltd. All rights reserved.
Willit, James L [Batavia, IL; Ackerman, John P [Prescott, AZ; Williamson, Mark A [Naperville, IL
2009-12-29
This is a single stage process for treating spent nuclear fuel from light water reactors. The spent nuclear fuel, uranium oxide, UO.sub.2, is added to a solution of UCl.sub.4 dissolved in molten LiCl. A carbon anode and a metallic cathode is positioned in the molten salt bath. A power source is connected to the electrodes and a voltage greater than or equal to 1.3 volts is applied to the bath. At the anode, the carbon is oxidized to form carbon dioxide and uranium chloride. At the cathode, uranium is electroplated. The uranium chloride at the cathode reacts with more uranium oxide to continue the reaction. The process may also be used with other transuranic oxides and rare earth metal oxides.
NASA Astrophysics Data System (ADS)
Gilmore, A. M.
2015-12-01
This study describes a method based on simultaneous absorbance and fluorescence excitation-emission mapping for rapidly and accurately monitoring dissolved organic carbon concentration and disinfection by-product formation potential for surface water sourced drinking water treatment. The method enables real-time monitoring of the Dissolved Organic Carbon (DOC), absorbance at 254 nm (UVA), the Specific UV Absorbance (SUVA) as well as the Simulated Distribution System Trihalomethane (THM) Formation Potential (SDS-THMFP) for the source and treated water among other component parameters. The method primarily involves Parallel Factor Analysis (PARAFAC) decomposition of the high and lower molecular weight humic and fulvic organic component concentrations. The DOC calibration method involves calculating a single slope factor (with the intercept fixed at 0 mg/l) by linear regression for the UVA divided by the ratio of the high and low molecular weight component concentrations. This method thus corrects for the changes in the molecular weight component composition as a function of the source water composition and coagulation treatment effects. The SDS-THMFP calibration involves a multiple linear regression of the DOC, organic component ratio, chlorine residual, pH and alkalinity. Both the DOC and SDS-THMFP correlations over a period of 18 months exhibited adjusted correlation coefficients with r2 > 0.969. The parameters can be reported as a function of compliance rules associated with required % removals of DOC (as a function of alkalinity) and predicted maximum contaminant levels (MCL) of THMs. The single instrument method, which is compatible with continuous flow monitoring or grab sampling, provides a rapid (2-3 minute) and precise indicator of drinking water disinfectant treatability without the need for separate UV photometric and DOC meter measurements or independent THM determinations.
An atomic carbon source for high temperature molecular beam epitaxy of graphene.
Albar, J D; Summerfield, A; Cheng, T S; Davies, A; Smith, E F; Khlobystov, A N; Mellor, C J; Taniguchi, T; Watanabe, K; Foxon, C T; Eaves, L; Beton, P H; Novikov, S V
2017-07-26
We report the use of a novel atomic carbon source for the molecular beam epitaxy (MBE) of graphene layers on hBN flakes and on sapphire wafers at substrate growth temperatures of ~1400 °C. The source produces a flux of predominantly atomic carbon, which diffuses through the walls of a Joule-heated tantalum tube filled with graphite powder. We demonstrate deposition of carbon on sapphire with carbon deposition rates up to 12 nm/h. Atomic force microscopy measurements reveal the formation of hexagonal moiré patterns when graphene monolayers are grown on hBN flakes. The Raman spectra of the graphene layers grown on hBN and sapphire with the sublimation carbon source and the atomic carbon source are similar, whilst the nature of the carbon aggregates is different - graphitic with the sublimation carbon source and amorphous with the atomic carbon source. At MBE growth temperatures we observe etching of the sapphire wafer surface by the flux from the atomic carbon source, which we have not observed in the MBE growth of graphene with the sublimation carbon source.
Zhimiao, Zhao; Xinshan, Song; Yufeng, Zhao; Yanping, Xiao; Yuhui, Wang; Junfeng, Wang; Denghua, Yan
2017-02-01
Iron and calcium carbonate were added in wastewater treatments as the adjusting agents to improve the contaminant removal performance and regulate the variation of carbon source in integrated treatments. At different temperatures, the addition of the adjusting agents obviously improved the nitrogen and phosphorous removals. TN and TP removals were respectively increased by 29.41% and 23.83% in AC-100 treatment under 1-day HRT. Carbon source from dead algae was supplied as green microbial carbon source and Fe 2+ was supplied as carbon source surrogate. COD concentration was increased to 30mg/L and above, so the problem of the shortage of carbon source was solved. Dead algae and Fe 2+ as carbon source supplement or surrogate played significant role, which was proved by microbial community analysis. According to the denitrification performance in the treatments, dead algae as green microbial carbon source combined with iron and calcium carbonate was the optimal supplement carbon source in wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
New Pseudomonad Utilizing Methanol for Growth
Chalfan, Y.; Mateles, R. I.
1972-01-01
A bacterium capable of rapid growth on methanol as sole carbon source was isolated and classified as a new pseudomonad. Its doubling time was about 100 min at 32 to 37 C, and it grew well at methanol concentrations up to 2%. The organism was sensitive to phosphate, but reasonable cell densities could be obtained by using pH control. Cell yields of about 31%, based on methanol consumed, were obtained. The amino acid pattern of the protein indicated that the bacterium holds promise as a source of single-cell protein. Images PMID:4110421
Murr, L. E.; Garza, K. M.; Soto, K. F.; Carrasco, A.; Powell, T. G.; Ramirez, D. A.; Guerrero, P. A.; Lopez, D. A.; Venzor, J.
2005-01-01
Nanotechnology and nanomaterials have become the new frontier world-wide over the past few years and prospects for the production and novel uses of large quantities of carbon nanotubes in particular are becoming an increasing reality. Correspondingly, the potential health risks for these and other nanoparticulate materials have been of considerable concern. Toxicological studies, while sparse, have been concerned with virtually uncharacterized, single wall carbon nanotubes, and the conclusions have been conflicting and uncertain. In this research we performed viability assays on a murine lung macrophage cell line to assess the comparative cytotoxicity of commercial, single wall carbon nanotubes (ropes) and two different multiwall carbon nanotube samples; utilizing chrysotile asbestos nanotubes and black carbon nanoaggregates as toxicity standards. These nanotube materials were completely characterized by transmission electron microscopy and observed to be aggregates ranging from 1 to 2 μm in mean diameter, with closed ends. The cytotoxicity data indicated a strong concentration relationship and toxicity for all the carbon nanotube materials relative to the asbestos nanotubes and black carbon. A commercial multiwall carbon nanotube aggregate exhibiting this significant cell response was observed to be identical in structure to multiwall carbon nanotube aggregates demonstrated to be ubiquitous in the environment, and especially in indoor environments, where natural gas or propane cooking stoves exist. Correspondingly, preliminary epidemiological data, although sparse, indicate a correlation between asthma incidence or classification, and exposure to gas stoves. These results suggest a number of novel epidemiological and etiological avenues for asthma triggers and related respiratory or other environmental health effects, especially since indoor number concentrations for multiwall carbon nanotube aggregates is at least 10 times the outdoor concentration, and virtually all gas combustion processes are variously effective sources. These results also raise concerns for manufactured carbon nanotube aggregates, and related fullerene nanoparticles. PMID:16705799
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-29
... 2020 and by 80% of 1990 levels by 2050. Power generation is a major source of carbon emissions, with 74% of power generated in the United Kingdom coming from fossil fuels. As the government seeks to reduce... power. Highly developed, sophisticated, and diversified, the UK market is the single largest export...
Alternative Fuels (Briefing Charts)
2009-06-19
Fuels Focus Various conversion processes Upgraded to meet fuel specs Diverse energy sources Petroleum Crude Oil Petroleum based Single Fuel in the...feedstock for HRJ, plant cost for F-T) Courtesy AFRL, Dr. Tim Edwards Unclassified • Agricultural crop oils (canola, jatropha, soy, palm, etc...Products (Volume Anticipated / Required) World crude oil production reaches its peak Concerns about Global Warming dictates addressing worldwide carbon
Liu, Lu; Chen, Junhui; Lim, Phaik-Eem; Wei, Dong
2018-05-01
The single cell oil (SCO) production by the mono and mixed culture of microalgae Chlorella pyrenoidosa and red yeast Rhodotorula glutinis was investigated using non-detoxified cassava bagasse hydrolysate (CBH) as carbon source. The results suggested that the two strains were able to tolerate and even degrade some byproducts presented in the CBH, and the mixed culture approach enhanced the degradation of certain byproducts. Biomass (20.37 ± 0.38 g/L) and lipid yield (10.42 ± 1.21 g/L) of the mixed culture achieved in the batch culture were significantly higher than that of the mono-cultures (p < 0.05). The fed-batch culture further raised the biomass and lipid yield to 31.45 ± 4.93 g/L and 18.47 ± 3.25 g/L, respectively. The lipids mainly composed of oleic acid and palmitic acid, suggesting the potential applications such as biofuel feedstock, cosmetics, food additives and lubricant. This study provided new insights for the integration of the economical SCO production with agro-industrial waste disposal. Copyright © 2018 Elsevier Ltd. All rights reserved.
Peeters, Loes H M; Huinink, Hendrik P; Voogt, Benjamin; Adan, Olaf C G
2018-03-12
Aureobasidium melanogenum is the main fungus found in a spontaneously formed biofilm on a oil-treated wood. This dark colored biofilm functions as a protective coating. To better understand biofilm formation, in this study A. melanogenum was cultured on olive oil and raw linseed oil. Metabolic activity and oil conversion were measured. The results show that A. melanogenum is able to grow on linseed oil and olive oil as a single carbon source. The fungus produces the enzyme lipase to convert the oil into fatty acids and glycerol. Metabolic activity and oil conversion were equal on linseed oil and olive oil. The fungus was not able to grow on severe cross-linked linseed oil, meaning that the degree of cross-linking of the oil is important for growth of A. melanogenum. Dark coloring of the colony was seen on linseed oil, which might be a stress response on the presence of autoxidation products in linseed oil. The colony on olive oil showed delayed melanin production indicating an inhibitory effect of olive oil on melanin production. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Enhancement of Hc2 and Jc by carbon-based chemical doping
NASA Astrophysics Data System (ADS)
Yeoh, W. K.; Dou, S. X.
2007-06-01
In the past 5 years, various kinds of doping of MgB 2, including single elements (metal and non-metal), silicates, various carbon sources, and other compounds have been investigated and reported. Most nanoparticle doping leads to improvement of critical current density, Jc( H), and performance, but some types show a negative effect. In this paper, the effect of carbon doping on Jc and the upper critical field, Hc2, of MgB 2 is reviewed. Carbon substitution effects make two distinguishable contributions to the enhancement of Jc field performance: increase of Hc2 and improvement of flux pinning, both because carbon substitutes for boron in the MgB 2 lattice. Among all the carbon sources so far, nano-SiC has been confirmed to be the most effective dopant to enhance the Jc in magnetic fields and Hc2. An irreversibility field, Hirr, of 10 T has been achieved with nano-SiC doping at 20 K, exceeding Hirr of NbTi at 4.2 K. Besides that, Hc2 of carbon alloyed MgB 2 film has reached the value of 71 T. The significant enhancement in Jc( H) and Hc2 via carbon substitution has provided great potential for practical applications of MgB 2. The dual reaction model proposed by the authors’ group provides a comprehensive understanding of the mechanism of enhancement in Jc and Hc2 by chemical doping. Further improvement in self-field Jc performance while maintaining the already achieved in-field performance remains as a major challenge in the development of MgB 2.
Solid-state single-photon emitters
NASA Astrophysics Data System (ADS)
Aharonovich, Igor; Englund, Dirk; Toth, Milos
2016-10-01
Single-photon emitters play an important role in many leading quantum technologies. There is still no 'ideal' on-demand single-photon emitter, but a plethora of promising material systems have been developed, and several have transitioned from proof-of-concept to engineering efforts with steadily improving performance. Here, we review recent progress in the race towards true single-photon emitters required for a range of quantum information processing applications. We focus on solid-state systems including quantum dots, defects in solids, two-dimensional hosts and carbon nanotubes, as these are well positioned to benefit from recent breakthroughs in nanofabrication and materials growth techniques. We consider the main challenges and key advantages of each platform, with a focus on scalable on-chip integration and fabrication of identical sources on photonic circuits.
Gao, Li; Dong, Ting-Ting; Wang, Yu-Qing; Yan, Zhi-Jian; Baoyin, Tao-ge-tao; Wang, Hui; Dai, Ya-Ting
2014-08-01
Characteristics of ecosystem carbon exchange and its impact factors in Artemisia ordosica shrubland in 2011 (low precipitation) and 2012 (high precipitation), Ordos Plateau, were studied using eddy covariance methods. The results showed that the diurnal dynamics of ecosystem carbon exchange could be expressed as single-peak and double-peak curves in the two different precipitation years. In 2011, three carbon absorption peaks and three carbon release peaks of ecosystem carbon exchange presented in the growing season. In 2012, four carbon absorption peaks and one carbon release peak appeared in the growing season. The A. ordosica shrubland was a net carbon sink from June to September and a carbon source in October in 2011. In 2012, A. ordosica shrubland was a net carbon sink in the whole growing season. The amount of carbon fixed by A. ordosica shrubland in the growing season in 2012 was 268.90 mg CO2 x m(-2) x s(-1) higher than that in 2011. The ecosystem carbon exchange of A. ordosica shrubland was controlled by PAR (photosynthetically active radiation) on the day scale, and affected by both abiotic (precipitation and soil water content) and biotic (aboveground net primary, productivity) factors on the growing season scale.
Metal-doped single-walled carbon nanotubes and production thereof
Dillon, Anne C.; Heben, Michael J.; Gennett, Thomas; Parilla, Philip A.
2007-01-09
Metal-doped single-walled carbon nanotubes and production thereof. The metal-doped single-walled carbon nanotubes may be produced according to one embodiment of the invention by combining single-walled carbon nanotube precursor material and metal in a solution, and mixing the solution to incorporate at least a portion of the metal with the single-walled carbon nanotube precursor material. Other embodiments may comprise sputter deposition, evaporation, and other mixing techniques.
Local source impacts on primary and secondary aerosols in the Midwestern United States
NASA Astrophysics Data System (ADS)
Jayarathne, Thilina; Rathnayake, Chathurika M.; Stone, Elizabeth A.
2016-04-01
Atmospheric particulate matter (PM) exhibits heterogeneity in composition across urban areas, leading to poor representation of outdoor air pollutants in human exposure assessments. To examine heterogeneity in PM composition and sources across an urban area, fine particulate matter samples (PM2.5) were chemically profiled in Iowa City, IA from 25 August to 10 November 2011 at two monitoring stations. The urban site is the federal reference monitoring (FRM) station in the city center and the peri-urban site is located 8.0 km to the west on the city edge. Measurements of PM2.5 carbonaceous aerosol, inorganic ions, molecular markers for primary sources, and secondary organic aerosol (SOA) tracers were used to assess statistical differences in composition and sources across the two sites. PM2.5 mass ranged from 3 to 26 μg m-3 during this period, averaging 11.2 ± 4.9 μg m-3 (n = 71). Major components of PM2.5 at the urban site included organic carbon (OC; 22%), ammonium (14%), sulfate (13%), nitrate (7%), calcium (2.9%), and elemental carbon (EC; 2.2%). Periods of elevated PM were driven by increases in ammonium, sulfate, and SOA tracers that coincided with hot and dry conditions and southerly winds. Chemical mass balance (CMB) modeling was used to apportion OC to primary sources; biomass burning, vegetative detritus, diesel engines, and gasoline engines accounted for 28% of OC at the urban site and 24% of OC at the peri-urban site. Secondary organic carbon from isoprene and monoterpene SOA accounted for an additional 13% and 6% of OC at the urban and peri-urban sites, respectively. Differences in biogenic SOA across the two sites were associated with enhanced combustion activities in the urban area and higher aerosol acidity at the urban site. Major PM constituents (e.g., OC, ammonium, sulfate) were generally well-represented by a single monitoring station, indicating a regional source influence. Meanwhile, nitrate, biomass burning, food cooking, suspended dust, and biogenic SOA were not well-represented by a single site and demonstrated local influences. For isoprene SOA, product distributions indicated a larger role for the high-NOx pathway at the urban site. These local sources are largely responsible for differences in population exposures to outdoor PM in the study domain located within the Midwestern US.
Chen, Yabin; Shen, Ziyong; Xu, Ziwei; Hu, Yue; Xu, Haitao; Wang, Sheng; Guo, Xiaolei; Zhang, Yanfeng; Peng, Lianmao; Ding, Feng; Liu, Zhongfan; Zhang, Jin
2013-01-01
Aligned single-walled carbon nanotube arrays provide a great potential for the carbon-based nanodevices and circuit integration. Aligning single-walled carbon nanotubes with selected helicities and identifying their helical structures remain a daunting issue. The widely used gas-directed and surface-directed growth modes generally suffer the drawbacks of mixed and unknown helicities of the aligned single-walled carbon nanotubes. Here we develop a rational approach to anchor the single-walled carbon nanotubes on graphite surfaces, on which the orientation of each single-walled carbon nanotube sensitively depends on its helical angle and handedness. This approach can be exploited to conveniently measure both the helical angle and handedness of the single-walled carbon nanotube simultaneously at a low cost. In addition, by combining with the resonant Raman spectroscopy, the (n,m) index of anchored single-walled carbon nanotube can be further determined from the (d,θ) plot, and the assigned (n,m) values by this approach are validated by both the electronic transition energy Eii measurement and nanodevice application. PMID:23892334
Jain, Astha; Homayoun, Aida; Bannister, Christopher W; Yum, Kyungsuk
2015-03-01
Single-walled carbon nanotubes that emit photostable near-infrared fluorescence have emerged as near-infrared optical biosensors for life sciences and biomedicine. Since the discovery of their near-infrared fluorescence, researchers have engineered single-walled carbon nanotubes to function as an optical biosensor that selectively modulates its fluorescence upon binding of target molecules. Here we review the recent advances in the single-walled carbon nanotube-based optical sensing technology for life sciences and biomedicine. We discuss the structure and optical properties of single-walled carbon nanotubes, the mechanisms for molecular recognition and signal transduction in single-walled carbon nanotube complexes, and the recent development of various single-walled carbon nanotube-based optical biosensors. We also discuss the opportunities and challenges to translate this emerging technology into biomedical research and clinical use, including the biological safety of single-walled carbon nanotubes. The advances in single-walled carbon nanotube-based near-infrared optical sensing technology open up a new avenue for in vitro and in vivo biosensing with high sensitivity and high spatial resolution, beneficial for many areas of life sciences and biomedicine. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Saejung, Chewapat; Thammaratana, Thani
2016-12-01
Utilization of photosynthetic bacteria (PSB) for wastewater treatment and production of biomass for economical single cell protein production is a feasible option. In this study, Rhodopseudomonas sp. CSK01 was used for municipal wastewater treatment and the effect of initial pH, light intensity and additional carbon source was investigated. Optimum chemical oxygen demand (COD) removal and biomass production were achieved when the initial pH and light intensity were 7 and 4000 lux, respectively. The specific growth rate, biomass yield and biomass productivity were found to be 0.4/d, 3.2 g/g COD and 2.1 g/L/d, respectively, which were improved by 100%, 167% and 200% relative to the original condition. Under the optimal conditions, COD removal reached 85% and maximum biomass was 6.2 g/L accomplished within three days of cultivation. The biomass had a relatively high protein content (60.1%) consisting of all essential amino acids. The contents of histidine, lysine, phenylalanine and leucine were superior to those of the previously described PSB. Results showed that COD removal was not improved in the presence of additional carbon sources (glucose, sucrose and malic acid). The addition of malic acid significantly increased the biomass accumulation by 279% relative to the original condition, whereas COD removal was declined due to carbon catabolite repression. In this study, PSB biomass recovery and catabolite repression are proposed in municipal wastewater treatment by Rhodopseudomonas sp.
NASA Astrophysics Data System (ADS)
Ge, Jun; Cheng, Guanghui; Chen, Liwei
2011-08-01
Large-scale transparent and flexible electronic devices have been pursued for potential applications such as those in touch sensors and display technologies. These applications require that the power source of these devices must also comply with transparent and flexible features. Here we present transparent and flexible supercapacitors assembled from polyaniline (PANI)/single-walled carbon nanotube (SWNT) composite thin film electrodes. The ultrathin, optically homogeneous and transparent, electrically conducting films of the PANI/SWNT composite show a large specific capacitance due to combined double-layer capacitance and pseudo-capacitance mechanisms. A supercapacitor assembled using electrodes with a SWNT density of 10.0 µg cm-2 and 59 wt% PANI gives a specific capacitance of 55.0 F g-1 at a current density of 2.6 A g-1, showing its possibility for transparent and flexible energy storage.
The formation of molecules in interstellar clouds from singly and multiply ionized atoms
NASA Technical Reports Server (NTRS)
Langer, W. D.
1978-01-01
The suggestion is considered that multiply ionized atoms produced by K- and L-shell X-ray ionization and cosmic-ray ionization can undergo ion-molecule reactions and also initiate molecule production. The role of X-rays in molecule production in general is discussed, and the contribution to molecule production of the C(+) radiative association with hydrogen is examined. Such gas-phase reactions of singly and multiply ionized atoms are used to calculate molecular abundances of carbon-, nitrogen-, and oxygen-bearing species. The column densities of the molecules are evaluated on the basis of a modified version of previously developed isobaric cloud models. It is found that reactions of multiply ionized carbon with H2 can contribute a significant fraction of the observed CH in diffuse interstellar clouds in the presence of diffuse X-ray structures or discrete X-ray sources and that substantial amounts of CH(+) can be produced under certain conditions.
Ge, Jun; Cheng, Guanghui; Chen, Liwei
2011-08-01
Large-scale transparent and flexible electronic devices have been pursued for potential applications such as those in touch sensors and display technologies. These applications require that the power source of these devices must also comply with transparent and flexible features. Here we present transparent and flexible supercapacitors assembled from polyaniline (PANI)/single-walled carbon nanotube (SWNT) composite thin film electrodes. The ultrathin, optically homogeneous and transparent, electrically conducting films of the PANI/SWNT composite show a large specific capacitance due to combined double-layer capacitance and pseudo-capacitance mechanisms. A supercapacitor assembled using electrodes with a SWNT density of 10.0 µg cm(-2) and 59 wt% PANI gives a specific capacitance of 55.0 F g(-1) at a current density of 2.6 A g(-1), showing its possibility for transparent and flexible energy storage. This journal is © The Royal Society of Chemistry 2011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, X. T.; Zhang, Y.; Liu, X. G., E-mail: liuxuguang@tyut.edu.cn
Carbon quantum dots (CQDs) with high quantum yield (51.4%) were synthesized by a one-step hydrothermal method using thiosalicylic acid and ethylenediamine as precursor. The CQDs have the average diameter of 2.3 nm and possess excitation-independent emission wavelength in the range from 320 to 440 nm excitation. Under an ultraviolet (UV) excitation, the CQDs aqueous solutions emit bright blue fluorescence directly and exhibit broad emission with a high spectral component ratio of 67.4% (blue to red intensity to total intensity). We applied the CQDs as a single white-light converter for white light emitting diodes (WLEDs) using a UV-LED chip as the excitation lightmore » source. The resulted WLED shows superior performance with corresponding color temperature of 5227 K and the color coordinates of (0.34, 0.38) belonging to the white gamut.« less
Development of a Carbon Sequestration Visualization Tool using Google Earth Pro
NASA Astrophysics Data System (ADS)
Keating, G. N.; Greene, M. K.
2008-12-01
The Big Sky Carbon Sequestration Partnership seeks to prepare organizations throughout the western United States for a possible carbon-constrained economy. Through the development of CO2 capture and subsurface sequestration technology, the Partnership is working to enable the region to cleanly utilize its abundant fossil energy resources. The intent of the Los Alamos National Laboratory Big Sky Visualization tool is to allow geochemists, geologists, geophysicists, project managers, and other project members to view, identify, and query the data collected from CO2 injection tests using a single data source platform, a mission to which Google Earth Pro is uniquely and ideally suited . The visualization framework enables fusion of data from disparate sources and allows investigators to fully explore spatial and temporal trends in CO2 fate and transport within a reservoir. 3-D subsurface wells are projected above ground in Google Earth as the KML anchor points for the presentation of various surface subsurface data. This solution is the most integrative and cost-effective possible for the variety of users in the Big Sky community.
Potential release of fibers from burning carbon composites. [aircraft fires
NASA Technical Reports Server (NTRS)
Bell, V. L.
1980-01-01
A comprehensive experimental carbon fiber source program was conducted to determine the potential for the release of conductive carbon fibers from burning composites. Laboratory testing determined the relative importance of several parameters influencing the amounts of single fibers released, while large-scale aviation jet fuel pool fires provided realistic confirmation of the laboratory data. The dimensions and size distributions of fire-released carbon fibers were determined, not only for those of concern in an electrical sense, but also for those of potential interest from a health and environmental standpoint. Fire plume and chemistry studies were performed with large pool fires to provide an experimental input into an analytical modelling of simulated aircraft crash fires. A study of a high voltage spark system resulted in a promising device for the detection, counting, and sizing of electrically conductive fibers, for both active and passive modes of operation.
Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties
Avery, Azure D.; Zhou, Ben H.; Lee, Jounghee; ...
2016-04-04
Thermoelectric power generation, allowing recovery of part of the energy wasted as heat, is emerging as an important component of renewable energy and energy efficiency portfolios. Although inorganic semiconductors have traditionally been employed in thermoelectric applications, organic semiconductors garner increasing attention as versatile thermoelectric materials. Here we present a combined theoretical and experimental study suggesting that semiconducting single-walled carbon nanotubes with carefully controlled chirality distribution and carrier density are capable of large thermoelectric power factors, higher than 340 μW m -1 K -2, comparable to the best-performing conducting polymers and larger than previously observed for carbon nanotube films. Furthermore, wemore » demonstrate that phonons are the dominant source of thermal conductivity in the networks, and that our carrier doping process significantly reduces the thermal conductivity relative to undoped networks. As a result, these findings provide the scientific underpinning for improved functional organic thermoelectric composites with carbon nanotube inclusions.« less
Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avery, Azure D.; Zhou, Ben H.; Lee, Jounghee
Thermoelectric power generation, allowing recovery of part of the energy wasted as heat, is emerging as an important component of renewable energy and energy efficiency portfolios. Although inorganic semiconductors have traditionally been employed in thermoelectric applications, organic semiconductors garner increasing attention as versatile thermoelectric materials. Here we present a combined theoretical and experimental study suggesting that semiconducting single-walled carbon nanotubes with carefully controlled chirality distribution and carrier density are capable of large thermoelectric power factors, higher than 340 μW m -1 K -2, comparable to the best-performing conducting polymers and larger than previously observed for carbon nanotube films. Furthermore, wemore » demonstrate that phonons are the dominant source of thermal conductivity in the networks, and that our carrier doping process significantly reduces the thermal conductivity relative to undoped networks. As a result, these findings provide the scientific underpinning for improved functional organic thermoelectric composites with carbon nanotube inclusions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, D P; Ritts, W D; Wharton, S
2009-02-26
The combination of satellite remote sensing and carbon cycle models provides an opportunity for regional to global scale monitoring of terrestrial gross primary production, ecosystem respiration, and net ecosystem production. FPAR (the fraction of photosynthetically active radiation absorbed by the plant canopy) is a critical input to diagnostic models, however little is known about the relative effectiveness of FPAR products from different satellite sensors nor about the sensitivity of flux estimates to different parameterization approaches. In this study, we used multiyear observations of carbon flux at four eddy covariance flux tower sites within the conifer biome to evaluate these factors.more » FPAR products from the MODIS and SeaWiFS sensors, and the effects of single site vs. cross-site parameter optimization were tested with the CFLUX model. The SeaWiFs FPAR product showed greater dynamic range across sites and resulted in slightly reduced flux estimation errors relative to the MODIS product when using cross-site optimization. With site-specific parameter optimization, the flux model was effective in capturing seasonal and interannual variation in the carbon fluxes at these sites. The cross-site prediction errors were lower when using parameters from a cross-site optimization compared to parameter sets from optimization at single sites. These results support the practice of multisite optimization within a biome for parameterization of diagnostic carbon flux models.« less
40 CFR 721.10156 - Single-walled carbon nanotubes (generic).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Single-walled carbon nanotubes... Specific Chemical Substances § 721.10156 Single-walled carbon nanotubes (generic). (a) Chemical substance... single-walled carbon nanotubes (PMN P-08-328) is subject to reporting under this section for the...
40 CFR 721.10156 - Single-walled carbon nanotubes (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Single-walled carbon nanotubes... Specific Chemical Substances § 721.10156 Single-walled carbon nanotubes (generic). (a) Chemical substance... single-walled carbon nanotubes (PMN P-08-328) is subject to reporting under this section for the...
40 CFR 721.10156 - Single-walled carbon nanotubes (generic).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Single-walled carbon nanotubes... Specific Chemical Substances § 721.10156 Single-walled carbon nanotubes (generic). (a) Chemical substance... single-walled carbon nanotubes (PMN P-08-328) is subject to reporting under this section for the...
40 CFR 721.10156 - Single-walled carbon nanotubes (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Single-walled carbon nanotubes... Specific Chemical Substances § 721.10156 Single-walled carbon nanotubes (generic). (a) Chemical substance... single-walled carbon nanotubes (PMN P-08-328) is subject to reporting under this section for the...
Levine, Zachary H.; Pintar, Adam L.; Dobler, Jeremy T.; ...
2016-04-13
Laser absorption spectroscopy (LAS) has been used over the last several decades for the measurement of trace gasses in the atmosphere. For over a decade, LAS measurements from multiple sources and tens of retroreflectors have been combined with sparse-sample tomography methods to estimate the 2-D distribution of trace gas concentrations and underlying fluxes from point-like sources. In this work, we consider the ability of such a system to detect and estimate the position and rate of a single point leak which may arise as a failure mode for carbon dioxide storage. The leak is assumed to be at a constant ratemore » giving rise to a plume with a concentration and distribution that depend on the wind velocity. Lastly, we demonstrate the ability of our approach to detect a leak using numerical simulation and also present a preliminary measurement.« less
Li, Hou-Jin; Jiang, Wen-Han; Liang, Wan-Ling; Huang, Jia-Xin; Mo, Yu-Fei; Ding, Yan-Qing; Lam, Chi-Keung; Qian, Xiao-Jun; Zhu, Xiao-Feng; Lan, Wen-Jian
2014-01-01
Chondrostereum sp., a marine fungus isolated from a soft coral Sarcophyton tortuosum, can yield hirsutane framework sesquiterpenoids. However, the metabolites profiles vary dramatically with the composition change of the culture media. This fungus was cultured in a liquid medium containing glycerol as the carbon source, and two new metabolites, chondrosterins I and J (1 and 2), were obtained. Their structures were elucidated primarily based on MS, NMR and X-ray single-crystal diffraction data. By comparison with the known hirsutane sesquiterpenoids, chondrosterins I and J have unique structural features, including a methyl was migrated from C-2 to C-6, and the methyl at C-3 was carboxylated. Compound 2 exhibited potent cytotoxic activities against the cancer cell lines CNE-1 and CNE-2 with the IC50 values of 1.32 and 0.56 μM. PMID:24402176
Adaptive evolution of complex innovations through stepwise metabolic niche expansion.
Szappanos, Balázs; Fritzemeier, Jonathan; Csörgő, Bálint; Lázár, Viktória; Lu, Xiaowen; Fekete, Gergely; Bálint, Balázs; Herczeg, Róbert; Nagy, István; Notebaart, Richard A; Lercher, Martin J; Pál, Csaba; Papp, Balázs
2016-05-20
A central challenge in evolutionary biology concerns the mechanisms by which complex metabolic innovations requiring multiple mutations arise. Here, we propose that metabolic innovations accessible through the addition of a single reaction serve as stepping stones towards the later establishment of complex metabolic features in another environment. We demonstrate the feasibility of this hypothesis through three complementary analyses. First, using genome-scale metabolic modelling, we show that complex metabolic innovations in Escherichia coli can arise via changing nutrient conditions. Second, using phylogenetic approaches, we demonstrate that the acquisition patterns of complex metabolic pathways during the evolutionary history of bacterial genomes support the hypothesis. Third, we show how adaptation of laboratory populations of E. coli to one carbon source facilitates the later adaptation to another carbon source. Our work demonstrates how complex innovations can evolve through series of adaptive steps without the need to invoke non-adaptive processes.
Adaptive evolution of complex innovations through stepwise metabolic niche expansion
Szappanos, Balázs; Fritzemeier, Jonathan; Csörgő, Bálint; Lázár, Viktória; Lu, Xiaowen; Fekete, Gergely; Bálint, Balázs; Herczeg, Róbert; Nagy, István; Notebaart, Richard A.; Lercher, Martin J.; Pál, Csaba; Papp, Balázs
2016-01-01
A central challenge in evolutionary biology concerns the mechanisms by which complex metabolic innovations requiring multiple mutations arise. Here, we propose that metabolic innovations accessible through the addition of a single reaction serve as stepping stones towards the later establishment of complex metabolic features in another environment. We demonstrate the feasibility of this hypothesis through three complementary analyses. First, using genome-scale metabolic modelling, we show that complex metabolic innovations in Escherichia coli can arise via changing nutrient conditions. Second, using phylogenetic approaches, we demonstrate that the acquisition patterns of complex metabolic pathways during the evolutionary history of bacterial genomes support the hypothesis. Third, we show how adaptation of laboratory populations of E. coli to one carbon source facilitates the later adaptation to another carbon source. Our work demonstrates how complex innovations can evolve through series of adaptive steps without the need to invoke non-adaptive processes. PMID:27197754
Synthesis Methods of Carbon Nanotubes and Related Materials
Szabó, Andrea; Perri, Caterina; Csató, Anita; Giordano, Girolamo; Vuono, Danilo; Nagy, János B.
2010-01-01
The challenge on carbon nanotubes is still the subject of many research groups. While in the first years the focus was on the new synthesis methods, new carbon sources and support materials, recently, the application possibilities are the principal arguments of the studies. The three main synthesis methods discussed in this review are the arc discharge, the laser ablation and the chemical vapour deposition (CVD) with a special regard to the latter one. In the early stage of the nanotube production the first two methods were utilized mainly for the production of SWNTs while the third one produced mainly MWNTs. The principle of CVD is the decomposition of various hydrocarbons over transition metal supported catalyst. Single-walled (SWNT), multi-walled (MWNT) and coiled carbon nanotubes are produced. In some case, interesting carbonaceous materials are formed during the synthesis process, such as bamboo-like tubes, onions, horn-like structures. In this paper, we refer to the progresses made in the field of the synthesis techniques of carbon nanotubes in the last decade.
Potential Explosion Hazard of Carbonaceous Nanoparticles: Screening of Allotropes
Turkevich, Leonid A.; Fernback, Joseph; Dastidar, Ashok G.; Osterberg, Paul
2016-01-01
There is a concern that engineered carbon nanoparticles, when manufactured on an industrial scale, will pose an explosion hazard. Explosion testing has been performed on 20 codes of carbonaceous powders. These include several different codes of SWCNTs (single-walled carbon nanotubes), MWCNTs (multi-walled carbon nanotubes) and CNFs (carbon nanofibers), graphene, diamond, fullerene, as well as several different control carbon blacks and graphites. Explosion screening was performed in a 20 L explosion chamber (ASTM E1226 protocol), at a concentration of 500 g/m3, using a 5 kJ ignition source. Time traces of overpressure were recorded. Samples typically exhibited overpressures of 5–7 bar, and deflagration index KSt = V1/3 (dP/dt)max ~ 10 – 80 bar-m/s, which places these materials in European Dust Explosion Class St-1. There is minimal variation between these different materials. The explosive characteristics of these carbonaceous powders are uncorrelated with primary particle size (BET specific surface area). PMID:27468178
Irreducible Uncertainty in Terrestrial Carbon Projections
NASA Astrophysics Data System (ADS)
Lovenduski, N. S.; Bonan, G. B.
2016-12-01
We quantify and isolate the sources of uncertainty in projections of carbon accumulation by the ocean and terrestrial biosphere over 2006-2100 using output from Earth System Models participating in the 5th Coupled Model Intercomparison Project. We consider three independent sources of uncertainty in our analysis of variance: (1) internal variability, driven by random, internal variations in the climate system, (2) emission scenario, driven by uncertainty in future radiative forcing, and (3) model structure, wherein different models produce different projections given the same emission scenario. Whereas uncertainty in projections of ocean carbon accumulation by 2100 is 100 Pg C and driven primarily by emission scenario, uncertainty in projections of terrestrial carbon accumulation by 2100 is 50% larger than that of the ocean, and driven primarily by model structure. This structural uncertainty is correlated with emission scenario: the variance associated with model structure is an order of magnitude larger under a business-as-usual scenario (RCP8.5) than a mitigation scenario (RCP2.6). In an effort to reduce this structural uncertainty, we apply various model weighting schemes to our analysis of variance in terrestrial carbon accumulation projections. The largest reductions in uncertainty are achieved when giving all the weight to a single model; here the uncertainty is of a similar magnitude to the ocean projections. Such an analysis suggests that this structural uncertainty is irreducible given current terrestrial model development efforts.
Spray-coated carbon nanotube thin-film transistors with striped transport channels
NASA Astrophysics Data System (ADS)
Jeong, Minho; Lee, Kunhak; Choi, Eunsuk; Kim, Ahsung; Lee, Seung-Beck
2012-12-01
We present results for the transfer characteristics of carbon nanotube thin-film transistors (CNT-TFTs) that utilize single-walled carbon nanotube thin-films prepared by direct spray-coating on the substrate. By varying the number of spray-coatings (Nsp) and the concentration of nanotubes in solution (CNT), it was possible to control the conductivity of the spray-coated nanotube thin-film from 129 to 0.1 kΩ/□. Also, by introducing stripes into the channel of the CNT-TFT, and thereby reducing the number of metallic percolation paths between source and drain, it was possible to enhance the on/off current ratio 1000-fold, from 10 to 104, demonstrating that it may be possible to utilize spray-coating as a method to fabricate CNT-TFTs for large area switching array applications.
Interpretation and application of carbon isotope ratios in freshwater diatom silica
Webb, Megan; Wynn, Peter M.; Heiri, Oliver; van Hardenbroek, Maarten; Pick, Frances; Russell, James M.; Stott, Andy W.; Leng, Melanie J.
2016-01-01
ABSTRACT Carbon incorporated into diatom frustule walls is protected from degradation enabling analysis for carbon isotope composition (δ13Cdiatom). This presents potential for tracing carbon cycles via a single photosynthetic host with well‐constrained ecophysiology. Improved understanding of environmental processes controlling carbon delivery and assimilation is essential to interpret changes in freshwater δ13Cdiatom. Here relationships between water chemistry and δ13Cdiatom from contemporary regional data sets are investigated. Modern diatom and water samples were collected from river catchments within England and lake sediments from across Europe. The data suggest dissolved, biogenically produced carbon supplied proportionately to catchment productivity was critical in the rivers and soft water lakes. However, dissolved carbon from calcareous geology overwhelmed the carbon signature in hard water catchments. Both results demonstrate carbon source characteristics were the most important control on δ13Cdiatom, with a greater impact than productivity. Application of these principles was made to a sediment record from Lake Tanganyika. δ13Cdiatom co‐varied with δ13Cbulk through the last glacial and Holocene. This suggests carbon supply was again dominant and exceeded authigenic demand. This first systematic evaluation of contemporary δ13Cdiatom controls demonstrates that diatoms have the potential to supply a record of carbon cycling through lake catchments from sediment records over millennial timescales. PMID:27656013
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogunlade, Olumide, E-mail: o.ogunlade@ucl.ac.uk; Beard, Paul
2015-01-15
Purpose: Thermoacoustic imaging at microwave excitation frequencies is limited by the low differential contrast exhibited by high water content tissues. To overcome this, exogenous thermoacoustic contrast agents based on gadolinium compounds, iron oxide, and single wall carbon nanotubes have previously been suggested and investigated. However, these previous studies did not fully characterize the electric, magnetic, and thermodynamic properties of these agents thus precluding identification of the underlying sources of contrast. To address this, measurements of the complex permittivity, complex permeability, DC conductivity, and Grüneisen parameter have been made. These measurements allowed the origins of the contrast provided by each substancemore » to be identified. Methods: The electric and magnetic properties of the contrast agents were characterized at 3 GHz using two rectangular waveguide cavities. The DC conductivity was measured separately using a conductivity meter. Thermoacoustic signals were then acquired and compared to those generated in water. Finally, 3D electromagnetic simulations were used to decouple the different contributions to the absorbed power density. Results: It was found that the gadolinium compounds provided appreciable electric contrast but not originating from the gadolinium itself. The contrast was either due to dissociation of the gadolinium salt which increased ionic conductivity or its nondissociated polar fraction which increased dielectric polarization loss or a combination of both. In addition, very high concentrations were required to achieve appreciable contrast, to the extent that the Grüneisen parameter increased significantly and became a source of contrast. Iron oxide particles were found to produce low but measurable dielectric contrast due to dielectric polarization loss, but this is attributed to the coating of the particles not the iron oxide. Single wall carbon nanotubes did not provide measurable contrast of any type. Conclusions: It is concluded that gadolinium based contrast agents, iron oxide particles, and single walled carbon nanotubes have little intrinsic merit as thermoacoustic contrast agents. Simple electrolytes such as saline which yield high contrast based on ionic conductivity provide much higher dielectric contrast per unit solute concentration and are likely to be significantly more effective as contrast agents.« less
Cui, Xiangzhi; Hua, Zile; Wei, Chenyang; Shu, Zhu; Zhang, Liangxia; Chen, Hangrong; Shi, Jianlin
2013-02-01
A meostructured WO(3)/C composite with crystalline framework and high electric conductivity has been synthesized by a new in situ carbonization-replication route using the block copolymer (poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol)) present in situ in the pore channels of mesoporous silica template as carbon source. X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, thermogravimetry differential thermal analysis, and N(2) adsorption techniques were adopted for the structural characterization. Cyclic voltammetry, chronoamperometry, and single-cell test for hydrogen electrochemical oxidation were adopted to characterize the electrochemical activities of the mesoporous WO(3)/C composite. The carbon content and consequent electric conductivity of these high-surface-area (108-130 m(2) g(-1)) mesostructured WO(3)/C composite materials can be tuned by variation of the duration of heat treatment, and the composites exhibited high and stable electrochemical catalytic activity. The single-cell test results indicated that the mesostructured WO(3)/C composites showed clear electrochemical catalytic activity toward hydrogen oxidation at 25 °C, which makes them potential non-precious-metal anode catalysts in proton exchange membrane fuel cell. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Khan, Md Firoz; Sulong, Nor Azura; Latif, Mohd Talib; Nadzir, Mohd Shahrul Mohd; Amil, Norhaniza; Hussain, Dini Fajrina Mohd; Lee, Vernon; Hosaini, Puteri Nurafidah; Shaharom, Suhana; Yusoff, Nur Amira Yasmin Mohd; Hoque, Hossain Mohammed Syedul; Chung, Jing Xiang; Sahani, Mazrura; Mohd Tahir, Norhayati; Juneng, Liew; Maulud, Khairul Nizam Abdul; Abdullah, Sharifah Mastura Syed; Fujii, Yusuke; Tohno, Susumu; Mizohata, Akira
2016-12-01
A comprehensive assessment of fine particulate matter (PM2.5) compositions during the Southeast Asia dry season is presented. Samples of PM2.5 were collected between 24 June and 14 September 2014 using a high-volume sampler. Water-soluble ions, trace species, rare earth elements, and a range of elemental carbon (EC) and organic carbon were analyzed. The characterization and source apportionment of PM2.5 were investigated. The results showed that the 24 h PM2.5 concentration ranged from 6.64 to 68.2 µg m-3. Meteorological driving factors strongly governed the diurnal concentration of aerosol, while the traffic in the morning and evening rush hours coincided with higher levels of CO and NO2. The correlation analysis for non sea-salt K+-EC showed that EC is potentially associated with biomass burning events, while the formation of secondary organic carbon had a moderate association with motor vehicle emissions. Positive matrix factorization (PMF) version 5.0 identified the sources of PM2.5: (i) biomass burning coupled with sea salt [I] (7%), (ii) aged sea salt and mixed industrial emissions (5%), (iii) road dust and fuel oil combustion (7%), (iv) coal-fired combustion (25%), (v) mineral dust (8%), (vi) secondary inorganic aerosol (SIA) coupled with F- (15%), and (vii) motor vehicle emissions coupled with sea salt [II] (24%). Motor vehicle emissions, SIA, and coal-fired power plant are the predominant sources contributing to PM2.5. The response of the potential source contribution function and Hybrid Single-Particle Lagrangian Integrated Trajectory backward trajectory model suggest that the outline of source regions were consistent to the sources by PMF 5.0.
NASA Astrophysics Data System (ADS)
Lee, Jonghoon; Varshney, Vikas; Park, Jeongho; Farmer, Barry L.; Roy, Ajit K.
2016-05-01
Against the presumption that hexagonal boron-nitride (h-BN) should provide an ideal substrate for van der Waals (vdW) epitaxy to grow high quality graphene films, carbon molecular beam epitaxy (CMBE) techniques using solid carbon sublimation have reported relatively poor quality of the graphene. In this article, the CMBE growth of graphene on the h-BN substrate is numerically studied in order to identify the effect of the carbon source on the quality of the graphene film. The carbon molecular beam generated by the sublimation of solid carbon source materials such as graphite and glassy carbon is mostly composed of atomic carbon, carbon dimers and carbon trimers. Therefore, the graphene film growth becomes a complex process involving various deposition characteristics of a multitude of carbon entities. Based on the study of surface adsorption and film growth characteristics of these three major carbon entities comprising graphite vapour, we report that carbon trimers convey strong traits of vdW epitaxy prone to high quality graphene growth, while atomic carbon deposition is a surface-reaction limited process accompanied by strong chemisorption. The vdW epitaxial behaviour of carbon trimers is found to be substantial enough to nucleate and develop into graphene like planar films within a nanosecond of high flux growth simulation, while reactive atomic carbons tend to impair the structural integrity of the crystalline h-BN substrate upon deposition to form an amorphous interface between the substrate and the growing carbon film. The content of reactive atomic carbons in the molecular beam is suspected to be the primary cause of low quality graphene reported in the literature. A possible optimization of the molecular beam composition towards the synthesis of better quality graphene films is suggested.Against the presumption that hexagonal boron-nitride (h-BN) should provide an ideal substrate for van der Waals (vdW) epitaxy to grow high quality graphene films, carbon molecular beam epitaxy (CMBE) techniques using solid carbon sublimation have reported relatively poor quality of the graphene. In this article, the CMBE growth of graphene on the h-BN substrate is numerically studied in order to identify the effect of the carbon source on the quality of the graphene film. The carbon molecular beam generated by the sublimation of solid carbon source materials such as graphite and glassy carbon is mostly composed of atomic carbon, carbon dimers and carbon trimers. Therefore, the graphene film growth becomes a complex process involving various deposition characteristics of a multitude of carbon entities. Based on the study of surface adsorption and film growth characteristics of these three major carbon entities comprising graphite vapour, we report that carbon trimers convey strong traits of vdW epitaxy prone to high quality graphene growth, while atomic carbon deposition is a surface-reaction limited process accompanied by strong chemisorption. The vdW epitaxial behaviour of carbon trimers is found to be substantial enough to nucleate and develop into graphene like planar films within a nanosecond of high flux growth simulation, while reactive atomic carbons tend to impair the structural integrity of the crystalline h-BN substrate upon deposition to form an amorphous interface between the substrate and the growing carbon film. The content of reactive atomic carbons in the molecular beam is suspected to be the primary cause of low quality graphene reported in the literature. A possible optimization of the molecular beam composition towards the synthesis of better quality graphene films is suggested. Electronic supplementary information (ESI) available: Three movie files: 3mer-physorption.mpg and 3mer-chemisorption.mpg feature examples of the adsorption state sampling of a carbon trimer on the heated h-BN substrate as mentioned in the ``Single Molecule Adsorption Study'' section. In 3mer-film-growth.mpg, an instance of honey comb formation during the initial phase of graphene growth simulation using a carbon trimer beam is captured. An initially sp hybridized carbon atom (red colored) becomes sp2 hybridized as a result of additional covalent bonding with the impinging carbon trimer. As the bond angle around the red carbon changes from 180 degree (sp) to 120 degree (sp2), nearby carbon atoms enclose to form a hexagon structure composed of 6 carbon atoms. See DOI: 10.1039/c6nr01396a
NASA Astrophysics Data System (ADS)
Yan, Zheng
Graphene, a two-dimensional sp2-bonded carbon material, has attracted enormous attention due to its excellent electrical, optical and mechanical properties. Recently developed chemical vapor deposition (CVD) methods could produce large-size and uniform polycrystalline graphene films, limited to gas carbon sources, metal catalyst substrates and degraded properties induced by grain boundaries. Meanwhile, pristine monolayer graphene exhibits a standard ambipolar behavior with a zero neutrality point in field-effect transistors (FETs), limiting its future electronic applications. This thesis starts with the investigation of CVD synthesis of pristine and N-doped graphene with controlled thickness using solid carbon sources on metal catalyst substrates (chapter 1), and then discusses the direct growth of bilayer graphene on insulating substrates, including SiO2, h-BN, Si3N4 and Al2O3, without needing further transfer-process (chapter 2). Chapter 3 discusses the synthesis of high-quality graphene single crystals and hexagonal onion-ring-like graphene domains, and also explores the basic growth mechanism of graphene on Cu substrates. To extend graphene's potential applications, both vertical and planar graphene-carbon nanotube hybrids are fabricated using CVD method and their interesting properties are investigated (chapter 4). Chapter 5 discusses how to use chemical methods to modulate graphene's electronic behaviors.
Low-Temperature and Rapid Growth of Large Single-Crystalline Graphene with Ethane.
Sun, Xiao; Lin, Li; Sun, Luzhao; Zhang, Jincan; Rui, Dingran; Li, Jiayu; Wang, Mingzhan; Tan, Congwei; Kang, Ning; Wei, Di; Xu, H Q; Peng, Hailin; Liu, Zhongfan
2018-01-01
Future applications of graphene rely highly on the production of large-area high-quality graphene, especially large single-crystalline graphene, due to the reduction of defects caused by grain boundaries. However, current large single-crystalline graphene growing methodologies are suffering from low growth rate and as a result, industrial graphene production is always confronted by high energy consumption, which is primarily caused by high growth temperature and long growth time. Herein, a new growth condition achieved via ethane being the carbon feedstock to achieve low-temperature yet rapid growth of large single-crystalline graphene is reported. Ethane condition gives a growth rate about four times faster than methane, achieving about 420 µm min -1 for the growth of sub-centimeter graphene single crystals at temperature about 1000 °C. In addition, the temperature threshold to obtain graphene using ethane can be reduced to 750 °C, lower than the general growth temperature threshold (about 1000 °C) with methane on copper foil. Meanwhile ethane always keeps higher graphene growth rate than methane under the same growth temperature. This study demonstrates that ethane is indeed a potential carbon source for efficient growth of large single-crystalline graphene, thus paves the way for graphene in high-end electronical and optoelectronical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Different Levels of Catabolite Repression Optimize Growth in Stable and Variable Environments
New, Aaron M.; Cerulus, Bram; Govers, Sander K.; Perez-Samper, Gemma; Zhu, Bo; Boogmans, Sarah; Xavier, Joao B.; Verstrepen, Kevin J.
2014-01-01
Organisms respond to environmental changes by adapting the expression of key genes. However, such transcriptional reprogramming requires time and energy, and may also leave the organism ill-adapted when the original environment returns. Here, we study the dynamics of transcriptional reprogramming and fitness in the model eukaryote Saccharomyces cerevisiae in response to changing carbon environments. Population and single-cell analyses reveal that some wild yeast strains rapidly and uniformly adapt gene expression and growth to changing carbon sources, whereas other strains respond more slowly, resulting in long periods of slow growth (the so-called “lag phase”) and large differences between individual cells within the population. We exploit this natural heterogeneity to evolve a set of mutants that demonstrate how the frequency and duration of changes in carbon source can favor different carbon catabolite repression strategies. At one end of this spectrum are “specialist” strategies that display high rates of growth in stable environments, with more stringent catabolite repression and slower transcriptional reprogramming. The other mutants display less stringent catabolite repression, resulting in leaky expression of genes that are not required for growth in glucose. This “generalist” strategy reduces fitness in glucose, but allows faster transcriptional reprogramming and shorter lag phases when the cells need to shift to alternative carbon sources. Whole-genome sequencing of these mutants reveals that mutations in key regulatory genes such as HXK2 and STD1 adjust the regulation and transcriptional noise of metabolic genes, with some mutations leading to alternative gene regulatory strategies that allow “stochastic sensing” of the environment. Together, our study unmasks how variable and stable environments favor distinct strategies of transcriptional reprogramming and growth. PMID:24453942
Anthropogenic Carbon Pump in an Urbanized Estuary
NASA Astrophysics Data System (ADS)
Park, J. H.; Yoon, T. K.; Jin, H.; Begum, M. S.
2015-12-01
The importance of estuaries as a carbon source has been increasingly recognized over the recent decades. However, constraining sources of CO2 evasion from urbanized estuaries remains incomplete, particularly in densely populated river systems receiving high loads of organic carbon from anthropogenic sources. To account for major factors regulating carbon fluxes the tidal reach of the Han River estuary along the metropolitan Seoul, characterization of organic carbon in the main stem and major urban tributaries were combined with continuous, submersible sensor measurements of pCO2 at a mid-channel location over a year and continuous underway measurements using a submersible sensor and two equilibrator sytems across the estuarine section receiving urban streams. Single-site continuous measurements exhibited large seasonal and diurnal variations in pCO2, ranging from sub-ambient air levels to exceptionally high values approaching 10,000 ppm. Diurnal variations of pCO2 were pronounced in summer and had an inverse relationship with dissolved oxygen, pointing to a potential role of day-time algal consumption of CO2. Cruise measurements displayed sharp pCO2 pulses along the confluences of urban streams as compared with relatively low values along the upper estuary receiving low-CO2 outflows from upstream dams. Large downstream increases in pCO2, concurrent with increases in DOC concentrations and fluorescence intensities indicative of microbially processed organic components, imply a translocation and subsequent dilution of CO2 carried by urban streams and/or fast transformations of labile C during transit along downstream reaches. The unique combination of spatial and temporal continuous measurements of pCO2 provide insights on estuarine CO2 pulses that might have resulted from the interplay between high loads of CO2 and organic C of anthropogenic origin and their priming effects on estuarine microbial processing of terrigenous and algal organic matter.
NASA Astrophysics Data System (ADS)
Kraiem, M.; Mayer, K.; Gouder, T.; Seibert, A.; Wiss, T.; Thiele, H.; Hiernaut, J.-P.
2010-01-01
Thermal ionization mass spectrometry (TIMS) is a well established instrumental technique for providing accurate and precise isotope ratio measurements of elements with reasonably low first ionization potential. In nuclear safeguards and in environmental research, it is often required to measure the isotope ratios in small samples of uranium. Empirical studies had shown that the ionization yield of uranium and plutonium in a TIMS ion source can be significantly increased in the presence of a carbon source. But, even though carbon appeared crucial in providing high ionization yields, processes taking place on the ionization surface were still not well understood. This paper describes the experimental results obtained from an extended study on the evaporation and ionization mechanisms of uranium occurring on a rhenium mass spectrometry filament in the presence of carbon. Solid state reactions were investigated using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Additionally, vaporization measurements were performed with a modified-Knudsen cell mass spectrometer for providing information on the neutral uranium species in the vapor phase. Upon heating, under vacuum, the uranyl nitrate sample was found to turn into a uranium carbide compound, independent of the type of carbon used as ionization enhancer. With further heating, uranium carbide leads to formation of single charged uranium metal ions and a small amount of uranium carbide ions. The results are relevant for a thorough understanding of the ion source chemistry of a uranyl nitrate sample under reducing conditions. The significant increase in ionization yield described by many authors on the basis of empirical results can be now fully explained and understood.
Hungate, F.P.; Riemath, W.F.; Bunnell, L.R.
1975-12-16
A tissue irradiator is provided for the in-vivo irradiation of body tissue. The irradiator comprises a radiation source material contained and completely encapsulated within vitreous carbon. An embodiment for use as an in- vivo blood irradiator comprises a cylindrical body having an axial bore therethrough. A radioisotope is contained within a first portion of vitreous carbon cylindrically surrounding the axial bore, and a containment portion of vitreous carbon surrounds the radioisotope containing portion, the two portions of vitreous carbon being integrally formed as a single unit. Connecting means are provided at each end of the cylindrical body to permit connections to blood- carrying vessels and to provide for passage of blood through the bore. In a preferred embodiment, the radioisotope is thulium-170 which is present in the irradiator in the form of thulium oxide. A method of producing the preferred blood irradiator is also provided, whereby nonradioactive thulium-169 is dispersed within a polyfurfuryl alcohol resin which is carbonized and fired to form the integral vitreous carbon body and the device is activated by neutron bombardment of the thulium-169 to produce the beta-emitting thulium-170.
NASA Astrophysics Data System (ADS)
Jayalakshmi, M.; Venugopal, N.; Raja, K. Phani; Rao, M. Mohan
New nano-materials like SnO 2-Al 2O 3 and SnO 2-Al 2O 3-carbon were synthesized by a single step hydrothermal method in searching for novel mixed oxides with high electrochemical double layer capacitance. A SnO 2-Al 2O 3-carbon sample was calcined at 600 °C and tested for its performance. The source of carbon was tetrapropyl ammonium hydroxide. The capacitive behavior of SnO 2 was compared to the performance of SnO 2-Al 2O 3, SnO 2-Al 2O 3-carbon and calcined SnO 2-Al 2O 3-carbon using the techniques of cyclic voltammetry, double potential step, chronopotentiometry and E-log I polarization. In 0.1 M NaCl solutions, SnO 2-Al 2O 3 gave the best performance with a value of 119 Fg -1 and cycled 1000 times. The nano-material mixed oxides were characterized by TEM, XRD, ICP-AES and SEM-EDAX.
The Dissolved Ca Isotope Composition of Himalayan-Tibetan Waters
NASA Astrophysics Data System (ADS)
Tipper, E. T.; Galy, A.; Bickle, M. J.
2004-12-01
Determining the relative proportions of carbonate versus silicate weathering in the Himalaya is important for understanding the long-term atmospheric CO2 budget and the marine Sr isotope record. 87Sr/86Sr is not a straightforward proxy of carbonate to silicate weathering in the Himalaya and up to 50% of the dissolved Ca may be removed by the precipitation of secondary calcite. Ca isotopes have the potential to constrain the relative inputs of carbonates to silicates and incongruent dissolution processes in the weathering environment. Ca is the major cation carried by rivers. Thirty four Himalayan rock and water samples from the Nepal Himalaya and Tibet have been analysed for 44/42Ca and 43/42Ca on a Nu-Instruments Multiple Collector -ICP-MS. Unlike the 44/40Ca ratio the 44/42Ca is not susceptible to excess 40Ca production from the decay of K. All samples lie on a single mass fractionation line. There is a total range of 0.4 \\permil variation in \\delta44Ca with values from 0.63 \\permil - 0.21 \\permil relative to the SRM915a standard. This is comparable to that already reported with \\delta44/40Ca for small catchments and global rivers. Small first order catchments from each of the main lithotectonic units of the Himalaya have been analysed to examine the effect of lithology on dissolved Ca isotopic composition. In agreement with previous studies elsewhere there is little correlation between source rock and dissolved composition for small rivers spanning a range of source rock from limestone to various silicates and covering a vegetation range from temperate semi-desert to jungle. \\delta44Ca is not correlated with 87Sr/86Sr or Na/Ca ratios confirming that source rock composition is not the dominant control on the observed range in \\delta44Ca. A time-series has been examined for the Marsyandi River, central Nepal. In spite of significant systematic variations in major element chemistry including Ca concentration and 87Sr/86Sr the variations in \\delta44Ca are limited to 0.16 \\permil. Either there is only a single isotopic source of Ca or the \\delta44Ca is controlled by incongruent dissolution processes. The most important incongruent process to affect the Ca budget is the precipitation of pedogenic carbonate. Such incongruent processes should be detectable in the Ca-isotope budget.
Santos, Júlia; Leitão-Correia, Fernanda; Sousa, Maria João; Leão, Cecília
2016-04-26
Dietary regimens have proven to delay aging and age-associated diseases in several eukaryotic model organisms but the input of nutritional balance to longevity regulation is still poorly understood. Here, we present data on the role of single carbon and nitrogen sources and their interplay in yeast longevity. Data demonstrate that ammonium, a rich nitrogen source, decreases chronological life span (CLS) of the prototrophic Saccharomyces cerevisiae strain PYCC 4072 in a concentration-dependent manner and, accordingly, that CLS can be extended through ammonium restriction, even in conditions of initial glucose abundance. We further show that CLS extension depends on initial ammonium and glucose concentrations in the growth medium, as long as other nutrients are not limiting. Glutamine, another rich nitrogen source, induced CLS shortening similarly to ammonium, but this effect was not observed with the poor nitrogen source urea. Ammonium decreased yeast CLS independently of the metabolic process activated during aging, either respiration or fermentation, and induced replication stress inhibiting a proper cell cycle arrest in G0/G1 phase. The present results shade new light on the nutritional equilibrium as a key factor on cell longevity and may contribute for the definition of interventions to promote life span and healthy aging.
NASA Astrophysics Data System (ADS)
Coe, H.; Allan, J. D.; Whitehead, J.; Alfarra, M. R. R.; Villegas, E.; Kong, S.; Williams, P. I.; Ting, Y. C.; Haslett, S.; Taylor, J.; Morgan, W.; McFiggans, G.; Spracklen, D. V.; Reddington, C.
2015-12-01
The mixing state of black carbon is uncertain yet has a significant influence on the efficiency with which a particle absorbs light. In turn, this may make a significant contribution to the uncertainty in global model predictions of the black carbon radiative budget. Previous modelling studies that have represented this mixing state using a core-shell approach have shown that aged black carbon particles may be considerably enhanced compared to freshly emitted black carbon due to the addition of co-emitted, weakly absorbing species. However, recent field results have demonstrated that any enhancement of absorption is minor in the ambient atmosphere. Resolving these differences in absorption efficiency is important as they will have a major impact on the extent to which black carbon heats the atmospheric column. We have made morphology-independent measurements of refractory black carbon mass and associated weakly absorbing material in single particles from laboratory-generated diesel soot and black carbon particles in ambient air influenced by traffic and wood burning sources and related these to the optical properties of the particles. We compared our calculated optical properties with optical models that use varying mixing state assumptions and by characterising the behaviour in terms of the relative amounts of weakly absorbing material and black carbon in a particle we show a sharp transition in mixing occurs. We show that the majority of black carbon particles from traffic-dominated sources can be treated as externally mixed and show no absorption enhancement, whereas models assuming internal mixing tend to give the best estimate of the absorption enhancement of thickly coated black carbon particles from biofuel or biomass burning. This approach reconciles the differences in absorption enhancement previously observed and offers a systematic way of treating the differences in behaviour observed.
NASA Technical Reports Server (NTRS)
Koratkar, Anuradha P.; Macalpine, Gordon M.
1992-01-01
Well-constrained photoionization models for the Seyfert I galaxy NGC 3783 are developed. Both cross-correlation analyses and line variability trends with varying ionizing radiation flux require a multicomponent picture. All the data for He II 1640 A, C IV 1549 A, and semiforbidden C III 1909 A can be reasonably well reproduced by two cloud components. One has a source-cloud distance of 24 lt-days, gas density around 3 x 10 exp 10/cu cm, ionization parameter range of 0.04-0.2, and cloud thickness such that about half of the carbon is doubly ionized and about half is triply ionized. The other component is located approximately 96 lt-days from the source, is shielded from the source by the inner cloud, has a density about 3 x 10 to the 9th/cu cm, and is characterized by an ionization parameter range of 0.001-0.03, The cloud thickness is such that about 45 percent carbon is doubly ionized and about 55 percent is singly ionized.
Tao, Jun; Zhang, Leiming; Zhang, Renjian; Wu, Yunfei; Zhang, Zhisheng; Zhang, Xiaoling; Tang, Yixi; Cao, Junji; Zhang, Yuanhang
2016-02-01
Daily PM2.5 samples were collected at an urban site in Beijing during four one-month periods in 2009-2010, with each period in a different season. Samples were subject to chemical analysis for various chemical components including major water-soluble ions, organic carbon (OC) and water-soluble organic carbon (WSOC), element carbon (EC), trace elements, anhydrosugar levoglucosan (LG), and mannosan (MN). Three sets of source profiles of PM2.5 were first identified through positive matrix factorization (PMF) analysis using single or combined biomass tracers - non-sea salt potassium (nss-K(+)), LG, and a combination of nss-K(+) and LG. The six major source factors of PM2.5 included secondary inorganic aerosol, industrial pollution, soil dust, biomass burning, traffic emission, and coal burning, which were estimated to contribute 31±37%, 39±28%, 14±14%, 7±7%, 5±6%, and 4±8%, respectively, to PM2.5 mass if using the nss-K(+) source profiles, 22±19%, 29±17%, 20±20%, 13±13%, 12±10%, and 4±6%, respectively, if using the LG source profiles, and 21±17%, 31±18%, 19±19%, 11±12%, 14±11%, and 4±6%, respectively, if using the combined nss-K(+) and LG source profiles. The uncertainties in the estimation of biomass burning contributions to WSOC due to the different choices of biomass burning tracers were around 3% annually and up to 24% seasonally in terms of absolute percentage contributions, or on a factor of 1.7 annually and up to a factor of 3.3 seasonally in terms of the actual concentrations. The uncertainty from the major source (e.g. industrial pollution) was on a factor of 1.9 annually and up to a factor of 2.5 seasonally in the estimated WSOC concentrations. Copyright © 2015 Elsevier B.V. All rights reserved.
Khani, Mojtaba; Bahrami, Ali; Chegeni, Asma; Ghafari, Mohammad Davoud; Mansouran Zadeh, ALi
2016-01-01
Background Bacterial Extracellular Polymeric Substances (EPS) are environmental friendly and versatile polymeric materials that are used in a wide range of industries such as: food, textile, cosmetics, and pharmaceuticals. To make the production process of the EPS cost-effective, improvements in the production yield is required which could be implemented through application of processes such as optimized culture conditions, and development of the strains with higher yield (e.g. through genetic manipulation), or using low-cost substrates. Objectives In this work, the effects of carbon and nitrogen sources were studied in order to improve the EPS production by the submerged cultivation of Chryseobacterium indologenes MUT.2. Materials and Methods The mesophilic microorganism Chryseobacterium indologenes MUT.2, was grown and maintained in the Luria Bertani agar. The initial basal medium contained: glucose (20 g.L-1), yeast extracts (5 g.L-1), K2HPO4 (6 g.L-1), NaH2PO4 (7 g.L-1), NH4CL (0.7 g.L-1), and MgSO4 (0.5 g.L-1). For evaluating the carbon and nitrogen sources’ effect on the fermentation performance, cultures were prepared in 500 mL flasks filled with 300 mL of the medium. The single-factor experiments based on statistics was employed to evaluate and optimize the carbon and nitrogen sources for EPS production in the liquid culture medium of Chryseobacterium indologenes MUT.2. Results The preferred carbon-sources, sucrose and glucose, commonly gave the highest EPS production of 8.32 and 6.37 g.L-1, respectively, and the maximum EPS production of 8.87 g.L-1 was achieved when glutamic acid (5 g.L-1) was employed as the nitrogen source. Conclusions In this work, the culture medium for production of EPS by Chryseobacterium indologenes MUT.2 was optimized. Compared to the basal culture medium in shake-flasks and stirred tank bioreactor, the use of optimized culture medium has resulted in a 53% and 73% increase in the EPS production, respectively. PMID:28959321
Local gate control in carbon nanotube quantum devices
NASA Astrophysics Data System (ADS)
Biercuk, Michael Jordan
This thesis presents transport measurements of carbon nanotube electronic devices operated in the quantum regime. Nanotubes are contacted by source and drain electrodes, and multiple lithographically-patterned electrostatic gates are aligned to each device. Transport measurements of device conductance or current as a function of local gate voltages reveal that local gates couple primarily to the proximal section of the nanotube, hence providing spatially localized control over carrier density along the nanotube length. Further, using several different techniques we are able to produce local depletion regions along the length of a tube. This phenomenon is explored in detail for different contact metals to the nanotube. We utilize local gating techniques to study multiple quantum dots in carbon nanotubes produced both by naturally occurring defects, and by the controlled application of voltages to depletion gates. We study double quantum dots in detail, where transport measurements reveal honeycomb charge stability diagrams. We extract values of energy-level spacings, capacitances, and interaction energies for this system, and demonstrate independent control over all relevant tunneling rates. We report rf-reflectometry measurements of gate-defined carbon nanotube quantum dots with integrated charge sensors. Aluminum rf-SETs are electrostatically coupled to carbon nanotube devices and detect single electron charging phenomena in the Coulomb blockade regime. Simultaneous correlated measurements of single electron charging are made using reflected rf power from the nanotube itself and from the rf-SET on microsecond time scales. We map charge stability diagrams for the nanotube quantum dot via charge sensing, observing Coulomb charging diamonds beyond the first order. Conductance measurements of carbon nanotubes containing gated local depletion regions exhibit plateaus as a function of gate voltage, spaced by approximately 1e2/h, the quantum of conductance for a single (non-degenerate) mode. Plateau structure is investigated as a function of bias voltage, temperature, and magnetic field. We speculate on the origin of this surprising quantization, which appears to lack band and spin degeneracy.
Prielhofer, Roland; Cartwright, Stephanie P; Graf, Alexandra B; Valli, Minoska; Bill, Roslyn M; Mattanovich, Diethard; Gasser, Brigitte
2015-03-11
The methylotrophic, Crabtree-negative yeast Pichia pastoris is widely used as a heterologous protein production host. Strong inducible promoters derived from methanol utilization genes or constitutive glycolytic promoters are typically used to drive gene expression. Notably, genes involved in methanol utilization are not only repressed by the presence of glucose, but also by glycerol. This unusual regulatory behavior prompted us to study the regulation of carbon substrate utilization in different bioprocess conditions on a genome wide scale. We performed microarray analysis on the total mRNA population as well as mRNA that had been fractionated according to ribosome occupancy. Translationally quiescent mRNAs were defined as being associated with single ribosomes (monosomes) and highly-translated mRNAs with multiple ribosomes (polysomes). We found that despite their lower growth rates, global translation was most active in methanol-grown P. pastoris cells, followed by excess glycerol- or glucose-grown cells. Transcript-specific translational responses were found to be minimal, while extensive transcriptional regulation was observed for cells grown on different carbon sources. Due to their respiratory metabolism, cells grown in excess glucose or glycerol had very similar expression profiles. Genes subject to glucose repression were mainly involved in the metabolism of alternative carbon sources including the control of glycerol uptake and metabolism. Peroxisomal and methanol utilization genes were confirmed to be subject to carbon substrate repression in excess glucose or glycerol, but were found to be strongly de-repressed in limiting glucose-conditions (as are often applied in fed batch cultivations) in addition to induction by methanol. P. pastoris cells grown in excess glycerol or glucose have similar transcript profiles in contrast to S. cerevisiae cells, in which the transcriptional response to these carbon sources is very different. The main response to different growth conditions in P. pastoris is transcriptional; translational regulation was not transcript-specific. The high proportion of mRNAs associated with polysomes in methanol-grown cells is a major finding of this study; it reveals that high productivity during methanol induction is directly linked to the growth condition and not only to promoter strength.
Ferone, Mariateresa; Raganati, Francesca; Olivieri, Giuseppe; Salatino, Piero; Marzocchella, Antonio
2017-12-01
Succinic acid (SA) is a well-established chemical building block. Actinobacillus succinogenes fermentation is by far the most investigated route due to very promising high SA yield and titer on several sugars. This study contributes to include the SA production within the concept of biorefinery of lignocellulose biomass. The study was focused on the SA production by A. succinogenes DSM 22257 using sugars representative from lignocellulose hydrolysis-glucose, mannose, arabinose, and xylose-as carbon source. Single sugar batch fermentation tests and mixture sugar fermentation tests were carried out. All the sugars investigated were converted in succinic acid by A. succinogenes. The best fermentation performances were measured in tests with glucose as carbon source. The bacterial growth kinetics was characterized by glucose inhibition. No inhibition phenomena were observed with the other sugar investigated. The sugar mixture fermentation tests highlighted the synergic effects of the co-presence of the four sugars. Under the operating conditions tested, the final concentration of succinic acid in the sugar mixture test was larger (27 g/L) than that expected (25.5 g/L) by combining the fermentation of the single sugar. Moreover, the concentration of acetic and formic acid was lower, consequently obtaining an increment in the succinic acid specificity.
Engineering E. coli–E. coli cocultures for production of muconic acid from glycerol
Zhang, Haoran; Li, Zhengjun; Pereira, Brian; ...
2015-09-15
cis, cis-Muconic acid is an important chemical that can be biosynthesized from simple substrates in engineered microorganisms. Recently, it has been shown that engineering microbial cocultures is an emerging and promising approach for biochemical production. In this study, we aim to explore the potential of the E. coli–E. coli coculture system to use a single renewable carbon source, glycerol, for the production of value-added product cis, cis-muconic acid. As a result, two coculture engineering strategies were investigated. In the first strategy, an E. coli strain containing the complete biosynthesis pathway was co-cultivated with another E. coli strain containing only amore » heterologous intermediate-to-product biosynthetic pathway. In the second strategy, the upstream and downstream pathways were accommodated in two separate E. coli strains, each of which was dedicated to one portion of the biosynthesis process. Compared with the monoculture approach, both coculture engineering strategies improved the production significantly. Using a batch bioreactor, the engineered coculture achieved a 2 g/L muconic acid production with a yield of 0.1 g/g. In conclusion, our results demonstrate that coculture engineering is a viable option for producing muconic acid from glycerol. Moreover, microbial coculture systems are shown to have the potential for converting single carbon source to value-added products.« less
Skovran, Elizabeth; Crowther, Gregory J; Guo, Xiaofeng; Yang, Song; Lidstrom, Mary E
2010-11-24
When organisms experience environmental change, how does their metabolic network reset and adapt to the new condition? Methylobacterium extorquens is a bacterium capable of growth on both multi- and single-carbon compounds. These different modes of growth utilize dramatically different central metabolic pathways with limited pathway overlap. This study focused on the mechanisms of metabolic adaptation occurring during the transition from succinate growth (predicted to be energy-limited) to methanol growth (predicted to be reducing-power-limited), analyzing changes in carbon flux, gene expression, metabolites and enzymatic activities over time. Initially, cells experienced metabolic imbalance with excretion of metabolites, changes in nucleotide levels and cessation of cell growth. Though assimilatory pathways were induced rapidly, a transient block in carbon flow to biomass synthesis occurred, and enzymatic assays suggested methylene tetrahydrofolate dehydrogenase as one control point. This "downstream priming" mechanism ensures that significant carbon flux through these pathways does not occur until they are fully induced, precluding the buildup of toxic intermediates. Most metabolites that are required for growth on both carbon sources did not change significantly, even though transcripts and enzymatic activities required for their production changed radically, underscoring the concept of metabolic setpoints. This multi-level approach has resulted in new insights into the metabolic strategies carried out to effect this shift between two dramatically different modes of growth and identified a number of potential flux control and regulatory check points as a further step toward understanding metabolic adaptation and the cellular strategies employed to maintain metabolic setpoints.
Anion-Receptor Mediated Oxidation of Carbon Monoxide to Carbonate by Peroxide Dianion
Nava, Matthew; Lopez, Nazario; Muller, Peter; ...
2015-10-14
The reactivity of peroxide dianion O 2 2– has been scarcely explored in organic media due to the lack of soluble sources of this reduced oxygen species. We now report the finding that the encapsulated peroxide cryptate, [O 2cmBDCA-5t-H 6] 2– (1), reacts with carbon monoxide in organic solvents at 40 °C to cleanly form an encapsulated carbonate. Characterization of the resulting hexacarboxamide carbonate cryptate by single crystal X-ray diffraction reveals that carbonate dianion forms nine complementary hydrogen bonds with the hexacarboxamide cryptand, [CO 3cmBDCA-5t-H 6] 2– (2), a conclusion that is supported by spectroscopic data. Labeling studies and 17Omore » solid-state NMR data confirm that two-thirds of the oxygen atoms in the encapsulated carbonate derive from peroxide dianion, while the carbon is derived from CO. Further evidence for the formation of a carbonate cryptate was obtained by three methods of independent synthesis: treatment of (i) free cryptand with K 2CO 3; (ii) monodeprotonated cryptand with PPN[HCO 3]; and (iii) free cryptand with TBA[OH] and atmospheric CO 2. This work demonstrates CO oxidation mediated by a hydrogen-bonding anion receptor, constituting an alternative to transition-metal catalysis.« less
A study of the mixing state of black carbon in urban zone
NASA Astrophysics Data System (ADS)
Mallet, M.; Roger, J. C.; Despiau, S.; Putaud, J. P.; Dubovik, O.
2004-02-01
The knowledge of the mixing state of black carbon particle with other aerosol species is critical for adequate simulations of the direct radiative effect of black carbon particles and its effect on climate. This paper reports the investigation of the mixing state of black carbon aerosol in the urban zone. The study uses a combination of in situ and ground-based remote sensing observations conducted during the ESCOMPTE experiment, which took place in industrialized region in France in summer of 2001. The criteria we used for identifying mixing state relies on the known enhancement of absorption for aerosol composed by internal versus external mixtures of black carbon with weakly absorbing aerosol components. First, using in situ aerosol data, we performed Mie computations and reconstructed the single scattering albedo of aerosol for the two different mixing assumptions: black carbon mixed externally or internally with other aerosol species. Then, we compared the obtained values ωo,int and ωo,ext with the retrievals of ωo from independent AERONET Sun-photometric measurements. The aerosol single scattering albedo (ωo,aer.) derived from the AERONET photometer observations (with the mean value equal to 0.84 ± 0.04) was found to be close to ωo,ext reconstructed from in situ observation under assumptions of external mixture. This similarity between AERONET values and external mixture simulations was observed during all the days studied. Our conclusion on external mixture of black carbon aerosol with other particles in urban zone during ESCOMPTE (close to the pollution source) is coherent with observations made during other independent studies reported in a number of recent publications.
Zhao, Meng-Qiang; Tian, Gui-Li; Zhang, Qiang; Huang, Jia-Qi; Nie, Jing-Qi; Wei, Fei
2012-04-07
Direct bulk growth of single-walled carbon nanotubes (SWCNTs) with required properties, such as diameter, length, and chirality, is the first step to realize their advanced applications in electrical and optical devices, transparent conductive films, and high-performance field-effect transistors. Preferential growth of short aligned, metallic-rich SWCNTs is a great challenge to the carbon nanotube community. We report the bulk preferential growth of short aligned SWCNTs from perpendicular Mo-containing FeMgAl layered double hydroxide (LDH) film by a facile thermal chemical vapor deposition with CH(4) as carbon source. The growth of the short aligned SWCNTs showed a decreased growth velocity with an initial value of 1.9 nm s(-1). Such a low growth velocity made it possible to get aligned SWCNTs shorter than 1 μm with a growth duration less than 15 min. Raman spectra with different excitation wavelengths indicated that the as-grown short aligned SWCNTs showed high selectivity of metallic SWCNTs. Various kinds of materials, such as mica, quartz, Cu foil, and carbon fiber, can serve as the substrates for the growth of perpendicular FeMoMgAl LDH films and also the growth of the short aligned SWCNTs subsequently. These findings highlight the easy route for bulk preferential growth of aligned metallic-rich SWCNTs with well defined length for further bulk characterization and applications. This journal is © The Royal Society of Chemistry 2012
NASA Astrophysics Data System (ADS)
Tasoglou, A.; Ramachandran, S.; Khlystov, A.; Saha, P.; Grieshop, A. P.; Pandis, S. N.
2015-12-01
Secondary organic aerosol (SOA) is a major contributor to the global aerosol burden. Black carbon (BC) is a significant climate warming agent, while light-absorbing organic carbon (brown carbon, BrC), also impacts the atmospheric radiative balance. The optical properties of ambient aerosols can be affected by biogenic SOA through the lensing effect (coating of BC cores by semivolatile SOA), and by the potential formation of BrC from biogenic sources influenced by anthropogenic sources. To evaluate these effects, measurements of ambient aerosol optical properties and BC concentrations were made in rural Centreville, AL (a remote site with little anthropogenic influence) in summer 2013 and at Duke Forest in Chapel Hill, NC (a site close to high density vehicular traffic and industrial sources), during summer 2015. Photoacoustic extinctiometers (PAX, 405 nm and 532 nm) measured particulate light absorption and a single particle soot photometer (SP2) measured BC mass at both locations. A seven-wavelength Aethalometer and a three-wavelength nephelometer were also deployed at Duke Forest. A third PAX (870 nm) was deployed at Centreville. For absorption and BC measurements, the sample was cycled between a dry line and a dry/thermally-denuded line. Hourly samples were collected with a steam jet aerosol collector (SJAC) for online (2013) and offline (2015) chemical composition analysis. BC concentrations were generally higher at Duke Forest compared to the rural Centreville site. The Aethalometer readings at Duke Forest show greater absorption at the shorter wavelengths (370 nm and 470 nm) than expected from the absorption at 880 nm coupled with an inverse wavelength dependence, suggesting the presence of brown carbon. This presentation will examine the evidence for brown carbon at the two sites, as well as the effect of non-BC coatings on BC light absorption (the lensing effect.)
Identifying Aerosol Type/Mixture from Aerosol Absorption Properties Using AERONET
NASA Technical Reports Server (NTRS)
Giles, D. M.; Holben, B. N.; Eck, T. F.; Sinyuk, A.; Dickerson, R. R.; Thompson, A. M.; Slutsker, I.; Li, Z.; Tripathi, S. N.; Singh, R. P.;
2010-01-01
Aerosols are generated in the atmosphere through anthropogenic and natural mechanisms. These sources have signatures in the aerosol optical and microphysical properties that can be used to identify the aerosol type/mixture. Spectral aerosol absorption information (absorption Angstrom exponent; AAE) used in conjunction with the particle size parameterization (extinction Angstrom exponent; EAE) can only identify the dominant absorbing aerosol type in the sample volume (e.g., black carbon vs. iron oxides in dust). This AAE/EAE relationship can be expanded to also identify non-absorbing aerosol types/mixtures by applying an absorption weighting. This new relationship provides improved aerosol type distinction when the magnitude of absorption is not equal (e.g, black carbon vs. sulfates). The Aerosol Robotic Network (AERONET) data provide spectral aerosol optical depth and single scattering albedo - key parameters used to determine EAE and AAE. The proposed aerosol type/mixture relationship is demonstrated using the long-term data archive acquired at AERONET sites within various source regions. The preliminary analysis has found that dust, sulfate, organic carbon, and black carbon aerosol types/mixtures can be determined from this AAE/EAE relationship when applying the absorption weighting for each available wavelength (Le., 440, 675, 870nm). Large, non-spherical dust particles absorb in the shorter wavelengths and the application of 440nm wavelength absorption weighting produced the best particle type definition. Sulfate particles scatter light efficiently and organic carbon particles are small near the source and aggregate over time to form larger less absorbing particles. Both sulfates and organic carbon showed generally better definition using the 870nm wavelength absorption weighting. Black carbon generation results from varying combustion rates from a number of sources including industrial processes and biomass burning. Cases with primarily black carbon showed improved definition in the 870nm wavelength absorption weighting due to the increased absorption in the near-infrared wavelengths, while the 440nm wavelength provided better definition when black carbon mixed with dust. Utilization of this particle type scheme provides necessary information for remote sensing applications, which needs a priori knowledge of aerosol type to model the retrieved properties especially over semi-bright surfaces. In fact, this analysis reveals that the aerosol types occurred in mixtures with varying magnitudes of absorption and requires the use of more than one assumed aerosol mixture model. Furthermore, this technique will provide the aerosol transport model community a data set for validating aerosol type.
Palovaara, Joakim; Akram, Neelam; Baltar, Federico; Bunse, Carina; Forsberg, Jeremy; Pedrós-Alió, Carlos; González, José M; Pinhassi, Jarone
2014-09-02
Proteorhodopsin (PR) is present in half of surface ocean bacterioplankton, where its light-driven proton pumping provides energy to cells. Indeed, PR promotes growth or survival in different bacteria. However, the metabolic pathways mediating the light responses remain unknown. We analyzed growth of the PR-containing Dokdonia sp. MED134 (where light-stimulated growth had been found) in seawater with low concentrations of mixed [yeast extract and peptone (YEP)] or single (alanine, Ala) carbon compounds as models for rich and poor environments. We discovered changes in gene expression revealing a tightly regulated shift in central metabolic pathways between light and dark conditions. Bacteria showed relatively stronger light responses in Ala compared with YEP. Notably, carbon acquisition pathways shifted toward anaplerotic CO2 fixation in the light, contributing 31 ± 8% and 24 ± 6% of the carbon incorporated into biomass in Ala and YEP, respectively. Thus, MED134 was a facultative double mixotroph, i.e., photo- and chemotrophic for its energy source and using both bicarbonate and organic matter as carbon sources. Unexpectedly, relative expression of the glyoxylate shunt genes (isocitrate lyase and malate synthase) was >300-fold higher in the light--but only in Ala--contributing a more efficient use of carbon from organic compounds. We explored these findings in metagenomes and metatranscriptomes and observed similar prevalence of the glyoxylate shunt compared with PR genes and highest expression of the isocitrate lyase gene coinciding with highest solar irradiance. Thus, regulatory interactions between dissolved organic carbon quality and central metabolic pathways critically determine the fitness of surface ocean bacteria engaging in PR phototrophy.
Monitoring CO2 sources and sinks from space : the Orbiting Carbon Observatory (OCO) Mission
NASA Technical Reports Server (NTRS)
Crisp, David
2006-01-01
NASA's Orbiting Carbon Observatory (OCO) will make the first space-based measurements of atmospheric carbon dioxide (CO2) with the precision, resolution, and coverage needed to characterize the geographic distribution of CO2 sources and sinks and quantify their variability over the seasonal cycle. OCO is currently scheduled for launch in 2008. The observatory will carry a single instrument that incorporates three high-resolution grating spectrometers designed to measure the near-infrared absorption by CO2 and molecular oxygen (O2) in reflected sunlight. OCO will fly 12 minutes ahead of the EOS Aqua platform in the Earth Observing System (EOS) Afternoon Constellation (A-Train). The in-strument will collect 12 to 24 soundings per second as the Observatory moves along its orbit track on the day side of the Earth. A small sampling footprint (<3 km2 at nadir) was adopted to reduce biases in each sounding associated with clouds and aerosols and spatial variations in surface topography. A comprehensive ground-based validation program will be used to assess random errors and biases in the XCO2 product on regional to continental scales. Measurements collected by OCO will be assimilated with other environmental measurements to retrieve surface sources and sinks of CO2. This information could play an important role in monitoring the integrity of large scale CO2 sequestration projects.
Use of carbon monoxide and hydrogen by a bacteria-animal symbiosis from seagrass sediments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleiner, Manuel; Wentrup, Cecilia; Holler, Thomas
The gutless marine worm Olavius algarvensis lives in symbiosis with chemosynthetic bacteria that provide nutrition by fixing carbon dioxide (CO 2) into biomass using reduced sulfur compounds as energy sources. A recent metaproteomic analysis of the O. algarvensis symbiosis indicated that carbon monoxide (CO) and hydrogen (H 2) might also be used as energy sources. We provide direct evidence that the O. algarvensis symbiosis consumes CO and H 2. Single cell imaging using nanoscale secondary ion mass spectrometry revealed that one of the symbionts, the γ3-symbiont, uses the energy from CO oxidation to fix CO 2. Pore water analysis revealedmore » considerable in-situ concentrations of CO and H 2 in the O. algarvensis environment, Mediterranean seagrass sediments. Pore water H 2 concentrations (89-2147 nM) were up to two orders of magnitude higher than in seawater, and up to 36-fold higher than previously known from shallow-water marine sediments. Pore water CO concentrations (17-51 nM) were twice as high as in the overlying seawater (no literature data from other shallow-water sediments are available for comparison). Ex-situ incubation experiments showed that dead seagrass rhizomes produced large amounts of CO. Lastly, CO production from decaying plant material could thus be a significant energy source for microbial primary production in seagrass sediments.« less
Use of carbon monoxide and hydrogen by a bacteria-animal symbiosis from seagrass sediments
Kleiner, Manuel; Wentrup, Cecilia; Holler, Thomas; ...
2015-05-27
The gutless marine worm Olavius algarvensis lives in symbiosis with chemosynthetic bacteria that provide nutrition by fixing carbon dioxide (CO 2) into biomass using reduced sulfur compounds as energy sources. A recent metaproteomic analysis of the O. algarvensis symbiosis indicated that carbon monoxide (CO) and hydrogen (H 2) might also be used as energy sources. We provide direct evidence that the O. algarvensis symbiosis consumes CO and H 2. Single cell imaging using nanoscale secondary ion mass spectrometry revealed that one of the symbionts, the γ3-symbiont, uses the energy from CO oxidation to fix CO 2. Pore water analysis revealedmore » considerable in-situ concentrations of CO and H 2 in the O. algarvensis environment, Mediterranean seagrass sediments. Pore water H 2 concentrations (89-2147 nM) were up to two orders of magnitude higher than in seawater, and up to 36-fold higher than previously known from shallow-water marine sediments. Pore water CO concentrations (17-51 nM) were twice as high as in the overlying seawater (no literature data from other shallow-water sediments are available for comparison). Ex-situ incubation experiments showed that dead seagrass rhizomes produced large amounts of CO. Lastly, CO production from decaying plant material could thus be a significant energy source for microbial primary production in seagrass sediments.« less
Use of carbon monoxide and hydrogen by a bacteria–animal symbiosis from seagrass sediments
Holler, Thomas; Lavik, Gaute; Harder, Jens; Lott, Christian; Littmann, Sten; Kuypers, Marcel M. M.; Dubilier, Nicole
2015-01-01
Summary The gutless marine worm O lavius algarvensis lives in symbiosis with chemosynthetic bacteria that provide nutrition by fixing carbon dioxide (CO 2) into biomass using reduced sulfur compounds as energy sources. A recent metaproteomic analysis of the O . algarvensis symbiosis indicated that carbon monoxide (CO) and hydrogen (H 2) might also be used as energy sources. We provide direct evidence that the O . algarvensis symbiosis consumes CO and H 2. Single cell imaging using nanoscale secondary ion mass spectrometry revealed that one of the symbionts, the γ3‐symbiont, uses the energy from CO oxidation to fix CO 2. Pore water analysis revealed considerable in‐situ concentrations of CO and H 2 in the O . algarvensis environment, Mediterranean seagrass sediments. Pore water H 2 concentrations (89–2147 nM) were up to two orders of magnitude higher than in seawater, and up to 36‐fold higher than previously known from shallow‐water marine sediments. Pore water CO concentrations (17–51 nM) were twice as high as in the overlying seawater (no literature data from other shallow‐water sediments are available for comparison). Ex‐situ incubation experiments showed that dead seagrass rhizomes produced large amounts of CO. CO production from decaying plant material could thus be a significant energy source for microbial primary production in seagrass sediments. PMID:26013766
Input related microbial carbon dynamic of soil organic matter in particle size fractions
NASA Astrophysics Data System (ADS)
Gude, A.; Kandeler, E.; Gleixner, G.
2012-04-01
This paper investigated the flow of carbon into different groups of soil microorganisms isolated from different particle size fractions. Two agricultural sites of contrasting organic matter input were compared. Both soils had been submitted to vegetation change from C3 (Rye/Wheat) to C4 (Maize) plants, 25 and 45 years ago. Soil carbon was separated into one fast-degrading particulate organic matter fraction (POM) and one slow-degrading organo-mineral fraction (OMF). The structure of the soil microbial community were investigated using phospholipid fatty acids (PLFA), and turnover of single PLFAs was calculated from the changes in their 13C content. Soil enzyme activities involved in the degradation of carbohydrates was determined using fluorogenic MUF (methyl-umbelliferryl phosphate) substrates. We found that fresh organic matter input drives soil organic matter dynamic. Higher annual input of fresh organic matter resulted in a higher amount of fungal biomass in the POM-fraction and shorter mean residence times. Fungal activity therefore seems essential for the decomposition and incorporation of organic matter input into the soil. As a consequence, limited litter input changed especially the fungal community favouring arbuscular mycorrhizal fungi. Altogether, supply and availability of fresh plant carbon changed the distribution of microbial biomass, the microbial community structure and enzyme activities and resulted in different priming of soil organic matter. Most interestingly we found that only at low input the OMF fraction had significantly higher calculated MRT for Gram-positive and Gram-negative bacteria suggesting high recycling of soil carbon or the use of other carbon sources. But on average all microbial groups had nearly similar carbon uptake rates in all fractions and both soils, which contrasted the turnover times of bulk carbon. Hereby the microbial carbon turnover was always faster than the soil organic carbon turnover and higher carbon input reduced the carbon storage efficiency from 51 % in the low input to 20 %. These findings suggest that microbial community preferentially assimilated fresh carbon sources but also used recycled existing soil carbon. However, the priming rate was drastically reduced under carbon limitation. In consequence at high carbon availability more carbon was respired to activate the existing soil carbon (priming) whereas at low carbon availability new soil carbon was formed at higher efficiencies.
Zhang, Jian-Hua; Zeng, Xin; Chen, Xu-Sheng; Mao, Zhong-Gui
2018-04-21
The glucose-glycerol mixed carbon source remarkably reduced the batch fermentation time of ε-poly-L-lysine (ε-PL) production, leading to higher productivity of both biomass and ε-PL, which was of great significance in industrial microbial fermentation. Our previous study confirmed the positive influence of fast cell growth on the ε-PL biosynthesis, while the direct influence of mixed carbon source on ε-PL production was still unknown. In this work, chemostat culture was employed to study the capacity of ε-PL biosynthesis in different carbon sources at a same dilution rate of 0.05 h -1 . The results indicated that the mixed carbon source could enhance the ε-PL productivity besides the rapid cell growth. Analysis of key enzymes demonstrated that the activities of phosphoenolpyruvate carboxylase, citrate synthase, aspartokinase and ε-PL synthetase were all increased in chemostat culture with the mixed carbon source. In addition, the carbon fluxes were also improved in the mixed carbon source in terms of tricarboxylic acid cycle, anaplerotic and diaminopimelate pathway. Moreover, the mixed carbon source also accelerated the energy metabolism, leading to higher levels of energy charge and NADH/NAD + ratio. The overall improvements of primary metabolism in chemostat culture with glucose-glycerol combination provided sufficient carbon skeletons and ATP for ε-PL biosynthesis. Therefore, the significantly higher ε-PL productivity in the mixed carbon source was a combined effect of both superior substrate group and rapid cell growth.
NASA Astrophysics Data System (ADS)
Bovensmann, Heinrich; Buchwitz, M.; Burrows, J. P.; Notholt, J.; Bovensmann, H.; Reuter, M.; Trautmann, T.; Ehret, G.; Heimann, M.; Monks, P.; B&Ü, H.; Sch; Harding, R.; Quegan, S.; Rayner, P.; Breon, F. M.; Bergam-O Aschi, P.; Dittus, H. J.; Erzinger, J.; Crisp, D.
Surprisingly and in spite of their exceptional driving role in climate change, our knowledge about the variable sources and sinks of the greenhouse gases CO2 and CH4 is currently inadequate. For example, the ability of the Earth-atmosphere system to buffer increasing anthropogenic emissions into the atmosphere has large uncertainties and emissions from many sources (geo-logic, anthropogenic, biogenic) are to a large degree uncertain. An adequate knowledge of the sources and sinks of CO2 and CH4 and their response to a changing climate is a pre-requisite for the accurate prediction of the regional variation of the climate of our planet. CarbonSat is a new mission concept to quantify and monitor CO2 and CH4 sources and sinks at the regional to local scale. The data will allow a better understanding of the processes that control the Carbon Cycle dynamics and an independent estimate of local greenhouse gas emissions (fossil fuel, geological CO2 and CH4, etc.). This will be achieved by a unique combination of high spatial resolution passive and active compact remote sensing with inverse modeling techniques. CarbonSat will accurately measure column-averaged mixing ratios of CO2 and CH4, i.e., XCO2 and XCH4, at a spatial resolution of 2 x 2 km2 (500 km continuous swath) with 0.5 percent goal (1 percent threshold) single measurement precision and global coverage within 3-6 days. Beside the quantification of sources and sinks on the regional scale, one key and innovative aim of the CarbonSat mission is to go a step forward towards quantifying local emission hot spots (fossil fuel emissions by power plants, gas/oil production, geological sources etc.). The core sensor will be a compact Imaging NIR/SWIR spectrometer (SCIAMACHY, OCO her-itage) whose measurements yield global data sets of XCO2 and XCH4 with at least one order of magnitude higher number of cloud free measurements than GOSAT and OCO and one order of magnitude better spatial coverage than OCO, due to CarbonSat's 500 km swath continuous across track coverage with 2 x 2 km2 spatial resolution. Ideally, the imaging spectrometer will be accompanied by a compact CH4 Lidar, to derive complementary accurate XCH4 -especially in high northern latitudes -as well as information on clouds and vegetation height. The overall mission concept will be presented.
NASA Astrophysics Data System (ADS)
Bovensmann, Heinrich; Buchwitz, Michael
2010-05-01
Surprisingly and in spite of their exceptional driving role in climate change, our knowledge about the variable sources and sinks of the greenhouse gases CO2 and CH4 is currently inadequate. For example, the ability of the Earth-atmosphere system to buffer increasing anthropogenic emissions into the atmosphere has large uncertainties and emissions from many sources (geologic, anthropogenic, biogenic) are to a large degree uncertain. An adequate knowledge of the sources and sinks of CO2 and CH4 and their response to a changing climate is a pre-requisite for the accurate prediction of the regional variation of the climate of our planet. CarbonSat is a new mission concept to quantify and monitor CO2 and CH4 sources and sinks at the regional to local scale. The data will allow a better understanding of the processes that control the Carbon Cycle dynamics and an independent estimate of local greenhouse gas emissions (fossil fuel, geological CO2 and CH4, etc.). This will be achieved by a unique combination of high spatial resolution passive and active compact remote sensing with inverse modeling techniques. CarbonSat will accurately measure column-averaged mixing ratios of CO2 and CH4, i.e., XCO2 and XCH4, at a spatial resolution of 2 x 2 km2 (500 km continuous swath) with 0.5% goal (1%, threshold) single measurement precision and global coverage within 3-6 days. Beside the quantification of sources and sinks on the regional scale, one key and innovative aim of the CarbonSat mission is to go a step forward towards quantifying local emission hot spots (fossil fuel emissions by power plants, gas/oil production, geological sources etc.). The core sensor will be a compact Imaging NIR/SWIR spectrometer (SCIAMACHY, OCO heritage) whose measurements yield global data sets of XCO2 and XCH4 with at least one order of magnitude higher number of cloud free measurements than GOSAT and OCO and one order of magnitude better spatial coverage than OCO, due to CarbonSat's 500 km swath continuous across track coverage with 2 x 2 km2 spatial resolution. Ideally, the imaging spectrometer will be accompanied by a compact CH4 Lidar, to derive complementary accurate XCH4 - especially in high northern latitudes - as well as information on clouds and vegetation height. The overall mission concept, the expected data quality and selected application areas will be presented.
Hackley, Paul C.; Kolak, Jonathan J.
2008-01-01
This report presents vitrinite reflectance and detailed organic composition data for nine high volatile bituminous coal samples. These samples were selected to provide a single, internally consistent set of reflectance and composition analyses to facilitate the study of linkages among coal composition, bitumen generation during thermal maturation, and geochemical characteristics of generated hydrocarbons. Understanding these linkages is important for addressing several issues, including: the role of coal as a source rock within a petroleum system, the potential for conversion of coal resources to liquid hydrocarbon fuels, and the interactions between coal and carbon dioxide during enhanced coalbed methane recovery and(or) carbon dioxide sequestration in coal beds.
Production of a Biosurfactant from Torulopsis bombicola
Cooper, D. G.; Paddock, D. A.
1984-01-01
Two types of carbon sources—carbohydrate and vegetable oil—are necessary to obtain large yields of biosurfactant from Torulopsis bombicola ATCC 22214. Most of the surfactant is produced in the late exponential phase of growth. It is possible to grow the yeast on a single carbon source and then add the other type of substrate, after the exponential growth phase, and cause a burst of surfactant production. This product is a mixture of glycolipids. The maximum yield is 70 g liter−1, or 35% of the weight of the substrate used. An economic comparison demonstrated that this biosurfactant could be produced significantly more cheaply than any of the previously reported microbial surfactants. PMID:16346455
NASA Astrophysics Data System (ADS)
Kuze, A.; Suto, H.; Kataoka, F.; Shiomi, K.; Kondo, Y.; Crisp, D.; Butz, A.
2017-12-01
Atmospheric methane (CH4) has an important role in global radiative forcing of climate but its emission estimates have larger uncertainties than carbon dioxide (CO2). The area of anthropogenic emission sources is usually much smaller than 100 km2. The Thermal And Near infrared Sensor for carbon Observation Fourier-Transform Spectrometer (TANSO-FTS) onboard the Greenhouse gases Observing SATellite (GOSAT) has measured CO2 and CH4 column density using sun light reflected from the earth's surface. It has an agile pointing system and its footprint can cover 87-km2 with a single detector. By specifying pointing angles and observation time for every orbit, TANSO-FTS can target various CH4 point sources together with reference points every 3 day over years. We selected a reference point that represents CH4 background density before or after targeting a point source. By combining satellite-measured enhancement of the CH4 column density and surface measured wind data or estimates from the Weather Research and Forecasting (WRF) model, we estimated CH4emission amounts. Here, we picked up two sites in the US West Coast, where clear sky frequency is high and a series of data are available. The natural gas leak at Aliso Canyon showed a large enhancement and its decrease with time since the initial blowout. We present time series of flux estimation assuming the source is single point without influx. The observation of the cattle feedlot in Chino, California has weather station within the TANSO-FTS footprint. The wind speed is monitored continuously and the wind direction is stable at the time of GOSAT overpass. The large TANSO-FTS footprint and strong wind decreases enhancement below noise level. Weak wind shows enhancements in CH4, but the velocity data have large uncertainties. We show the detection limit of single samples and how to reduce uncertainty using time series of satellite data. We will propose that the next generation instruments for accurate anthropogenic CO2 and CH4 flux estimation have improve spatial resolution (˜1km2 ) to further enhance column density changes. We also propose adding imaging capability to monitor plume orientation. We will present laboratory model results and a sampling pattern optimization study that combines local emission source and global survey observations.
Murmu, Peter P; Markwitz, Andreas; Suschke, Konrad; Futter, John
2014-08-01
We report a new ion source development for inner wall pipe coating and materials modification. The ion source deposits coatings simultaneously in a 360° radial geometry and can be used to coat inner walls of pipelines by simply moving the ion source in the pipe. Rotating parts are not required, making the source ideal for rough environments and minimizing maintenance and replacements of parts. First results are reported for diamond-like carbon (DLC) coatings on Si and stainless steel substrates deposited using a novel 360° ion source design. The ion source operates with permanent magnets and uses a single power supply for the anode voltage and ion acceleration up to 10 kV. Butane (C4H10) gas is used to coat the inner wall of pipes with smooth and homogeneous DLC coatings with thicknesses up to 5 μm in a short time using a deposition rate of 70 ± 10 nm min(-1). Rutherford backscattering spectrometry results showed that DLC coatings contain hydrogen up to 30 ± 3% indicating deposition of hydrogenated DLC (a-C:H) coatings. Coatings with good adhesion are achieved when using a multiple energy implantation regime. Raman spectroscopy results suggest slightly larger disordered DLC layers when using low ion energy, indicating higher sp(3) bonds in DLC coatings. The results show that commercially interesting coatings can be achieved in short time.
X-ray Observations of Binary and Single Wolf-Rayet Stars with XMM-Newton and Chandra
NASA Technical Reports Server (NTRS)
Skinner, Stephen; Gudel, Manuel; Schmutz, Werner; Zhekov, Svetozar
2006-01-01
We present an overview of recent X-ray observations of Wolf-Rayet (WR) stars with XMM-Newton and Chandra. These observations are aimed at determining the differences in X-ray properties between massive WR + OB binary systems and putatively single WR stars. A new XMM spectrum of the nearby WN8 + OB binary WR 147 shows hard absorbed X-ray emission (including the Fe Ka line complex), characteristic of colliding wind shock sources. In contrast, sensitive observations of four of the closest known single WC (carbon-rich) WR stars have yielded only nondetections. These results tentatively suggest that single WC stars are X-ray quiet. The presence of a companion may thus be an essential factor in elevating the X-ray emission of WC + OB stars to detectable levels.
Detecting small scale CO2 emission structures using OCO-2
NASA Astrophysics Data System (ADS)
Schwandner, Florian M.; Eldering, Annmarie; Verhulst, Kristal R.; Miller, Charles E.; Nguyen, Hai M.; Oda, Tomohiro; O'Dell, Christopher; Rao, Preeti; Kahn, Brian; Crisp, David; Gunson, Michael R.; Sanchez, Robert M.; Ashok, Manasa; Pieri, David; Linick, Justin P.; Yuen, Karen
2016-04-01
Localized carbon dioxide (CO2) emission structures cover spatial domains of less than 50 km diameter and include cities and transportation networks, as well as fossil fuel production, upgrading and distribution infra-structure. Anthropogenic sources increasingly upset the natural balance between natural carbon sources and sinks. Mitigation of resulting climate change impacts requires management of emissions, and emissions management requires monitoring, reporting and verification. Space-borne measurements provide a unique opportunity to detect, quantify, and analyze small scale and point source emissions on a global scale. NASA's first satellite dedicated to atmospheric CO2 observation, the July 2014 launched Orbiting Carbon Observatory (OCO-2), now leads the afternoon constellation of satellites (A-Train). Its continuous swath of 2 to 10 km in width and eight footprints across can slice through coincident emission plumes and may provide momentary cross sections. First OCO-2 results demonstrate that we can detect localized source signals in the form of urban total column averaged CO2 enhancements of ~2 ppm against suburban and rural backgrounds. OCO-2's multi-sounding swath observing geometry reveals intra-urban spatial structures reflected in XCO2 data, previously unobserved from space. The transition from single-shot GOSAT soundings detecting urban/rural differences (Kort et al., 2012) to hundreds of soundings per OCO-2 swath opens up the path to future capabilities enabling urban tomography of greenhouse gases. For singular point sources like coal fired power plants, we have developed proxy detections of plumes using bands of imaging spectrometers with sensitivity to SO2 in the thermal infrared (ASTER). This approach provides a means to automate plume detection with subsequent matching and mining of OCO-2 data for enhanced detection efficiency and validation. © California Institute of Technology
Source attribution of black carbon in Arctic snow.
Hegg, Dean A; Warren, Stephen G; Grenfell, Thomas C; Doherty, Sarah J; Larson, Timothy V; Clarke, Antony D
2009-06-01
Snow samples obtained at 36 sites in Alaska, Canada, Greenland, Russia, and the Arctic Ocean in early 2007 were analyzed for light-absorbing aerosol concentration together with a suite of associated chemical species. The light absorption data, interpreted as black carbon concentrations, and other chemical data were input into the EPA PMF 1.1 receptor model to explore the sources for black carbon in the snow. The analysis found four factors or sources: two distinct biomass burning sources, a pollution source, and a marine source. The first three of these were responsible for essentially all of the black carbon, with the two biomass sources (encompassing both open and closed combustion) together accounting for >90% of the black carbon.
Single well productivity prediction of carbonate reservoir
NASA Astrophysics Data System (ADS)
Le, Xu
2018-06-01
It is very important to predict the single-well productivity for the development of oilfields. The fracture structure of carbonate fractured-cavity reservoirs is complex, and the change of single-well productivity is inconsistent with that of sandstone reservoir. Therefore, the establishment of carbonate oil well productivity It is very important. Based on reservoir reality, three different methods for predicting the productivity of carbonate reservoirs have been established based on different types of reservoirs. (1) To qualitatively analyze the single-well capacity relations corresponding to different reservoir types, predict the production capacity according to the different wells encountered by single well; (2) Predict the productivity of carbonate reservoir wells by using numerical simulation technology; (3) According to the historical production data of oil well, fit the relevant capacity formula and make single-well productivity prediction; (4) Predict the production capacity by using oil well productivity formula of carbonate reservoir.
Synthesizing and characterization of titanium diboride for composite bipolar plates in PEM fuel cell
NASA Astrophysics Data System (ADS)
Duddukuri, Ramesh
This research deals with the synthesis and characterization of titanium diboride (TiB2) from novel carbon coated precursors. This work provides information on using different boron sources and their effect on the resulting powders of TiB2. The process has two steps in which the oxide powders were first coated with carbon by cracking of a hydrocarbon gas, propylene (C3H6) and then, mixed with boron carbide and boric acid powders in a stoichiometric ratio. These precursors were treated at temperatures in the range of 1200--1400° C for 2 h in flowing Argon atmosphere to synthesize TiB2. The process utilizes a carbothermic reduction reaction of novel carbon coated precursor that has potential of producing high-quality powders (sub-micrometer and high purity). Single phase TiB2 powders produced, were compared with commercially available titanium diboride using X-ray diffraction and Transmission electron microscopy obtained from boron carbide and boric acid containing carbon coated precursor.
NASA Astrophysics Data System (ADS)
Lee, Hyunjoon; Sung, Yung-Eun; Choi, Insoo; Lim, Taeho; Kwon, Oh Joong
2017-09-01
Novel synthesis of a Pt catalyst encapsulated in a N-containing carbon layer for use in a polymer electrolyte membrane fuel cell is described in this study. A Pt-aniline complex, formed by mixing Pt precursor and aniline monomer, was used as the source of Pt, C, and N. Heat treatment of the Pt-aniline complex with carbon black yielded 5 nm Pt nanoparticles encapsulated by a N-containing carbon layer originating from aniline carbonization. The synthesized Pt catalyst exhibited higher mass specific activity to oxygen reduction reaction than that shown by conventional Pt/C catalyst because pyridinic N with graphitic carbon in the carbon layer provided active sites for oxygen reduction reaction in addition to those provided by Pt. In single cell testing, initial performance of the synthesized catalyst was limited because the thick catalyst layer increased resistance related to mass transfer. However, it was observed that the carbon layer successfully prevented Pt nanoparticles from growing via agglomeration and Ostwald ripening under fuel cell operation, thereby improving durability. Furthermore, a mass specific performance of the synthesized catalyst higher than that of a conventional Pt/C catalyst was achieved by modifying the synthesized catalyst's layer thickness.
Zaia Alves, Gustavo H; Hoeinghaus, David J; Manetta, Gislaine I; Benedito, Evanilde
2017-01-01
Studies in freshwater ecosystems are seeking to improve understanding of carbon flow in food webs and stable isotopes have been influential in this work. However, variation in isotopic values of basal production sources could either be an asset or a hindrance depending on study objectives. We assessed the potential for basin geology and local limnological conditions to predict stable carbon and nitrogen isotope values of six carbon sources at multiple locations in four Neotropical floodplain ecosystems (Paraná, Pantanal, Araguaia, and Amazon). Limnological conditions exhibited greater variation within than among systems. δ15N differed among basins for most carbon sources, but δ13C did not (though high within-basin variability for periphyton, phytoplankton and particulate organic carbon was observed). Although δ13C and δ15N values exhibited significant correlations with some limnological factors within and among basins, those relationships differed among carbon sources. Regression trees for both carbon and nitrogen isotopes for all sources depicted complex and in some cases nested relationships, and only very limited similarity was observed among trees for different carbon sources. Although limnological conditions predicted variation in isotope values of carbon sources, we suggest the resulting models were too complex to enable mathematical corrections of source isotope values among sites based on these parameters. The importance of local conditions in determining variation in source isotope values suggest that isotopes may be useful for examining habitat use, dispersal and patch dynamics within heterogeneous floodplain ecosystems, but spatial variability in isotope values needs to be explicitly considered when testing ecosystem models of carbon flow in these systems.
Hoeinghaus, David J.; Manetta, Gislaine I.; Benedito, Evanilde
2017-01-01
Studies in freshwater ecosystems are seeking to improve understanding of carbon flow in food webs and stable isotopes have been influential in this work. However, variation in isotopic values of basal production sources could either be an asset or a hindrance depending on study objectives. We assessed the potential for basin geology and local limnological conditions to predict stable carbon and nitrogen isotope values of six carbon sources at multiple locations in four Neotropical floodplain ecosystems (Paraná, Pantanal, Araguaia, and Amazon). Limnological conditions exhibited greater variation within than among systems. δ15N differed among basins for most carbon sources, but δ13C did not (though high within-basin variability for periphyton, phytoplankton and particulate organic carbon was observed). Although δ13C and δ15N values exhibited significant correlations with some limnological factors within and among basins, those relationships differed among carbon sources. Regression trees for both carbon and nitrogen isotopes for all sources depicted complex and in some cases nested relationships, and only very limited similarity was observed among trees for different carbon sources. Although limnological conditions predicted variation in isotope values of carbon sources, we suggest the resulting models were too complex to enable mathematical corrections of source isotope values among sites based on these parameters. The importance of local conditions in determining variation in source isotope values suggest that isotopes may be useful for examining habitat use, dispersal and patch dynamics within heterogeneous floodplain ecosystems, but spatial variability in isotope values needs to be explicitly considered when testing ecosystem models of carbon flow in these systems. PMID:28358822
NASA Astrophysics Data System (ADS)
Ryu, Jae Hyeon; Baek, Geun-Woo; Kim, Seung Yeob; Kwon, Hyuck-In; Jin, Sung Hun
2018-07-01
In this letter, spray-coated single walled carbon nanotubes (SWNTs) as one of alternative electrodes in SnO thin-film transistors are demonstrated for emerging electronic applications. Herein, the device architecture of SnO TFTs with a polymer etch stop layer (SU-8) enables the selective etching of SWNTs in a desired region without the detrimental effects of SnO channel layers. Moreover, SnO TFTs with SWNT electrodes as substitutes successfully demonstrate decent width normalized electrical contact properties (∼1.49 kΩ cm), field effect mobility (∼0.69 cm2 V‑1 s‑1), sub-threshold slope (∼0.4 V dec‑1), and current on–off ratio (I on/I off ∼ 3.5 × 103). Systematic temperature dependency measurements elucidate that SnO channel transports with an activation energy within several tens of meV, together with decent contact resistance as compared to that of conventional Ni electrodes.
Plasmonic welded single walled carbon nanotubes on monolayer graphene for sensing target protein
NASA Astrophysics Data System (ADS)
Kim, Jangheon; Kim, Gi Gyu; Kim, Soohyun; Jung, Wonsuk
2016-05-01
We developed plasmonic welded single walled carbon nanotubes (SWCNTs) on monolayer graphene as a biosensor to detect target antigen molecules, fc fusion protein without any treatment to generate binder groups for linker and antibody. This plasmonic welding induces atomic networks between SWCNTs as junctions containing carboxylic groups and improves the electrical sensitivity of a SWCNTs and the graphene membrane to detect target protein. We investigated generation of the atomic networks between SWCNTs by field-emission scanning electron microscopy and atomic force microscopy after plasmonic welding process. We compared the intensity ratios of D to G peaks from the Raman spectra and electrical sheet resistance of welded SWCNTs with the results of normal SWCNTs, which decreased from 0.115 to 0.086 and from 10.5 to 4.12, respectively. Additionally, we measured the drain current via source/drain voltage after binding of the antigen to the antibody molecules. This electrical sensitivity of the welded SWCNTs was 1.55 times larger than normal SWCNTs.
NASA Astrophysics Data System (ADS)
Rajesh, Sharma, Vikash; Puri, Nitin K.; Mulchandani, Ashok; Kotnala, Ravinder K.
2016-12-01
We report a single-walled carbon nanotube (SWNT) field-effect transistor (FET) functionalized with Polyamidoamine (PAMAM) dendrimer with 128 carboxyl groups as anchors for site specific biomolecular immobilization of protein antibody for C-reactive protein (CRP) detection. The FET device was characterized by scanning electron microscopy and current-gate voltage (I-Vg) characteristic studies. A concentration-dependent decrease in the source-drain current was observed in the regime of clinical significance, with a detection limit of ˜85 pM and a high sensitivity of 20% change in current (ΔI/I) per decade CRP concentration, showing SWNT being locally gated by the binding of CRP to antibody (anti-CRP) on the FET device. The low value of the dissociation constant (Kd = 0.31 ± 0.13 μg ml-1) indicated a high affinity of the device towards CRP analyte arising due to high anti-CRP loading with a better probe orientation on the 3-dimensional PAMAM structure.
NASA Astrophysics Data System (ADS)
Zarnetske, J. P.; Abbott, B. W.; Bowden, W. B.; Iannucci, F.; Griffin, N.; Parker, S.; Pinay, G.; Aanderud, Z.
2017-12-01
Dissolved organic carbon (DOC), nutrients, and other solute concentrations are increasing in rivers across the Arctic. Two hypotheses have been proposed to explain these trends: 1. distributed, top-down permafrost degradation, and 2. discrete, point-source delivery of DOC and nutrients from permafrost collapse features (thermokarst). While long-term monitoring at a single station cannot discriminate between these mechanisms, synoptic sampling of multiple points in the stream network could reveal the spatial structure of solute sources. In this context, we sampled carbon and nutrient chemistry three times over two years in 119 subcatchments of three distinct Arctic catchments (North Slope, Alaska). Subcatchments ranged from 0.1 to 80 km2, and included three distinct types of Arctic landscapes - mountainous, tundra, and glacial-lake catchments. We quantified the stability of spatial patterns in synoptic water chemistry and analyzed high-frequency time series from the catchment outlets across the thaw season to identify source areas for DOC, nutrients, and major ions. We found that variance in solute concentrations between subcatchments collapsed at spatial scales between 1 to 20 km2, indicating a continuum of diffuse- and point-source dynamics, depending on solute and catchment characteristics (e.g. reactivity, topography, vegetation, surficial geology). Spatially-distributed mass balance revealed conservative transport of DOC and nitrogen, and indicates there may be strong in-stream retention of phosphorus, providing a network-scale confirmation of previous reach-scale studies in these Arctic catchments. Overall, we present new approaches to analyzing synoptic data for change detection and quantification of ecohydrological mechanisms in ecosystems in the Arctic and beyond.
Medrano-Félix, Andrés; Estrada-Acosta, Mitzi; Peraza-Garay, Felipe; Castro-Del Campo, Nohelia; Martínez-Urtaza, Jaime; Chaidez, Cristóbal
2017-08-01
Long-term exposure to river water by non-indigenous micro-organisms such as Salmonella may affect metabolic adaptation to carbon sources. This study was conducted to determine differences in carbon source utilization of Salmonella Oranienburg and Salmonella Saintpaul (isolated from tropical river water) as well as the control strain Salmonella Typhimurium exposed to laboratory, river water, and host cells (Hep-2 cell line) growth conditions. Results showed that Salmonella Oranienburg and Salmonella Saintpaul showed better ability for carbon source utilization under the three growth conditions evaluated; however, S. Oranienburg showed the fastest and highest utilization on different carbon sources, including D-Glucosaminic acid, N-acetyl-D-Glucosamine, Glucose-1-phosphate, and D-Galactonic acid, while Salmonella Saintpaul and S. Typhimurium showed a limited utilization of carbon sources. In conclusion, this study suggests that environmental Salmonella strains show better survival and preconditioning abilities to external environments than the control strain based on their plasticity on diverse carbon sources use.
Spontaneous and controlled-diameter synthesis of single-walled and few-walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Inoue, Shuhei; Lojindarat, Supanat; Kawamoto, Takahiro; Matsumura, Yukihiko; Charinpanitkul, Tawatchai
2018-05-01
In this study, we explored the spontaneous and controlled-diameter growth of carbon nanotubes. We evaluated the effects of catalyst density, reduction time, and a number of catalyst coating on the substrate (for multi-walled carbon nanotubes) on the diameter of single-walled carbon nanotubes and the number of layers in few-walled carbon nanotubes. Increasing the catalyst density and reduction time increased the diameters of the carbon nanotubes, with the average diameter increasing from 1.05 nm to 1.86 nm for single-walled carbon nanotubes. Finally, we succeeded in synthesizing a significant double-walled carbon nanotube population of 24%.
Aging yeast gain a competitive advantage on non-optimal carbon sources.
Frenk, Stephen; Pizza, Grazia; Walker, Rachael V; Houseley, Jonathan
2017-06-01
Animals, plants and fungi undergo an aging process with remarkable physiological and molecular similarities, suggesting that aging has long been a fact of life for eukaryotes and one to which our unicellular ancestors were subject. Key biochemical pathways that impact longevity evolved prior to multicellularity, and the interactions between these pathways and the aging process therefore emerged in ancient single-celled eukaryotes. Nevertheless, we do not fully understand how aging impacts the fitness of unicellular organisms, and whether such cells gain a benefit from modulating rather than simply suppressing the aging process. We hypothesized that age-related loss of fitness in single-celled eukaryotes may be counterbalanced, partly or wholly, by a transition from a specialist to a generalist life-history strategy that enhances adaptability to other environments. We tested this hypothesis in budding yeast using competition assays and found that while young cells are more successful in glucose, highly aged cells outcompete young cells on other carbon sources such as galactose. This occurs because aged yeast divide faster than young cells in galactose, reversing the normal association between age and fitness. The impact of aging on single-celled organisms is therefore complex and may be regulated in ways that anticipate changing nutrient availability. We propose that pathways connecting nutrient availability with aging arose in unicellular eukaryotes to capitalize on age-linked diversity in growth strategy and that individual cells in higher eukaryotes may similarly diversify during aging to the detriment of the organism as a whole. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Manikan, Vidyah; Kalil, Mohd. Sahaid; Shuib, Shuwahida; Hamid, Aidil Abdul
2018-04-01
Thraustochytrids are a group of marine fungus-like microheterotrophs of which some can accumulate considerable amounts of the high valued omega-3 oil, docosahexaenoic acid (DHA). In this study, a local thraustochytrid isolate, Aurantiochytrium sp. SW1, was cultivated in a medium containing fructose as the major carbon source. The effects of this carbon source in interaction with yeast extract, monosodium glutamate (MSG) and sea salt were studied using a software-based two level full factorial design. Results showed that fructose as a single factor, has significant positive effect on the volumetric DHA content of SW1. Similarly, its interaction with yeast extract has profound positive effect. However, interactions of fructose with MSG and sea salt were significant negative effects. These results indicate that manipulation of the concentration of fructose in the culture medium may serve as a simple and useful strategy to help achieve preferred amount of DHA.
NASA Astrophysics Data System (ADS)
Li, Zhao; Yang, Wang; Xu, Xiuwen; Tang, Yushu; Zeng, Ziwei; Yang, Fan; Zhang, Liqiang; Ning, Guoqing; Xu, Chunming; Li, Yongfeng
2016-09-01
Exploiting cost-effective and efficient counter electrodes (CEs) for the reduction of triiodide (I3-) has been a persistent objective for the development of dye-sensitized solar cells (DSSCs). Here, we propose a strategy for the synthesis of nitrogen and sulfur dual-doped porous carbon (N/S-PC) via a thermal annealing approach by using melamine as N source, and basic magnesium sulfate (BMS) whiskers as S source and templates. Benefiting from the high surface area, unique interconnected structural feature and synergistic effects of N/S dual-doping, the N/S-PC shows excellent electrocatalytic activity toward I3- reduction, which has simultaneously been confirmed by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Tafel polarization measurements. The DSSC devices with N/S-PC CEs exhibit a PCE up to 7.41%, which is higher than that of DSSC devices with single heteroatom (N or S) doped CEs and even Pt CEs (7.14%).
Balloon-Borne Full-Column Greenhouse Gas Profiling Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, Marc L
The vertical distributions of CO2, CH4, and other gases provide important constraints for the determination of terrestrial and ocean sources and sinks of carbon and other biogeochemical processes in the Earth system. The DOE Biological and Environmental Research Program (DOE-BER) and the NOAA Earth System Research Laboratory (NOAA-ESRL) collaborate to quantify the vertically resolved distribution of atmospheric carbon-cycle gases (CO2, and CH4) within approximately 99% of the atmospheric column at the DOE ARM Southern Great Plains Facility in Oklahoma. In 2015, flights were delayed while research at NOAA focused on evaluating sources of systematic errors in the gas collection andmore » analysis system and modifying the sampling system to provide duplicate air samples in a single flight package. In 2017, we look forward to proposing additional sampling and analysis at ARM-SGP (and other sites) that characterize the vertical distribution of CO2 and CH4 over time and space.« less
NASA Technical Reports Server (NTRS)
Kenig, F.; Damste, J. S.; Frewin, N. L.; Hayes, J. M.; De Leeuw, J. W.
1995-01-01
The extractable organic matter of 10 immature samples from a marl bed of one evaporitic cycle of the Vena del Gesso sediments (Gessoso-solfifera Fm., Messinian, Italy) was analyzed quantitatively for free hydrocarbons and organic sulphur compounds. Nickel boride was used as a desulphurizing agent to recover sulphur-bound lipids from the polar and asphaltene fractions. Carbon isotopic compositions (delta vs PDB) of free hydrocarbons and of S-bound hydrocarbons were also measured. Relationships between these carbon skeletons, precursor biolipids, and the organisms producing them could then be examined. Concentrations of S-bound lipids and free hydrocarbons and their delta values were plotted vs depth in the marl bed and the profiles were interpreted in terms of variations in source organisms, 13 C contents of the carbon source, and environmentally induced changes in isotopic fractionation. The overall range of delta values measured was 24.7%, from -11.6% for a component derived from green sulphur bacteria (Chlorobiaceae) to -36.3% for a lipid derived from purple sulphur bacteria (Chromatiaceae). Deconvolution of mixtures of components deriving from multiple sources (green and purple sulphur bacteria, coccolithophorids, microalgae and higher plants) was sometimes possible because both quantitative and isotopic data were available and because either the free or S-bound pool sometimes appeared to contain material from a single source. Several free n-alkanes and S-bound lipids appeared to be specific products of upper-water-column primary producers (i.e. algae and cyanobacteria). Others derived from anaerobic photoautotrophs and from heterotrophic protozoa (ciliates), which apparently fed partly on Chlorobiaceae. Four groups of n-alkanes produced by algae or cyanobacteria were also recognized based on systematic variations of abundance and isotopic composition with depth. For hydrocarbons probably derived from microalgae, isotopic variations are well correlated with those of total organic carbon. A resistant aliphatic biomacromolecule produced by microalgae is, therefore, probably an important component of the kerogen. These variations reflect changes in the depositional environment and early diagenetic transformations. Changes in the concentrations of S-bound lipids induced by variations in conditions favourable for sulphurization were discriminated from those related to variations in primary producer assemblages. The water column of the lagoonal basin was stratified and photic zone anoxia occurred during the early and middle stages of marl deposition. During the last stage of the marl deposition the stratification collapsed due to a significant shallowing of the water column. Contributions from anaerobic photoautotrophs were apparently associated with variations in depth of the chemocline.
Kenig, F; Damsté, J S; Frewin, N L; Hayes, J M; De Leeuw, J W
1995-06-01
The extractable organic matter of 10 immature samples from a marl bed of one evaporitic cycle of the Vena del Gesso sediments (Gessoso-solfifera Fm., Messinian, Italy) was analyzed quantitatively for free hydrocarbons and organic sulphur compounds. Nickel boride was used as a desulphurizing agent to recover sulphur-bound lipids from the polar and asphaltene fractions. Carbon isotopic compositions (delta vs PDB) of free hydrocarbons and of S-bound hydrocarbons were also measured. Relationships between these carbon skeletons, precursor biolipids, and the organisms producing them could then be examined. Concentrations of S-bound lipids and free hydrocarbons and their delta values were plotted vs depth in the marl bed and the profiles were interpreted in terms of variations in source organisms, 13 C contents of the carbon source, and environmentally induced changes in isotopic fractionation. The overall range of delta values measured was 24.7%, from -11.6% for a component derived from green sulphur bacteria (Chlorobiaceae) to -36.3% for a lipid derived from purple sulphur bacteria (Chromatiaceae). Deconvolution of mixtures of components deriving from multiple sources (green and purple sulphur bacteria, coccolithophorids, microalgae and higher plants) was sometimes possible because both quantitative and isotopic data were available and because either the free or S-bound pool sometimes appeared to contain material from a single source. Several free n-alkanes and S-bound lipids appeared to be specific products of upper-water-column primary producers (i.e. algae and cyanobacteria). Others derived from anaerobic photoautotrophs and from heterotrophic protozoa (ciliates), which apparently fed partly on Chlorobiaceae. Four groups of n-alkanes produced by algae or cyanobacteria were also recognized based on systematic variations of abundance and isotopic composition with depth. For hydrocarbons probably derived from microalgae, isotopic variations are well correlated with those of total organic carbon. A resistant aliphatic biomacromolecule produced by microalgae is, therefore, probably an important component of the kerogen. These variations reflect changes in the depositional environment and early diagenetic transformations. Changes in the concentrations of S-bound lipids induced by variations in conditions favourable for sulphurization were discriminated from those related to variations in primary producer assemblages. The water column of the lagoonal basin was stratified and photic zone anoxia occurred during the early and middle stages of marl deposition. During the last stage of the marl deposition the stratification collapsed due to a significant shallowing of the water column. Contributions from anaerobic photoautotrophs were apparently associated with variations in depth of the chemocline.
Adnan, Muhammad; Shah, Zahir; Sharif, Muhammad; Rahman, Hidayatur
2018-04-01
Agricultural land is a major sink of global organic carbon (C). Its suitable management is crucial for improving C sequestration and reducing soil CO 2 emission. Incubation experiments were performed to assess the impact of phosphate solubilizing bacterial (PSB) inoculation (inoculated and uninoculated) and soil calcification (4.78, 10, 15, and 20% crushed CaCO 3 ) with phosphorus (P) sources [single superphosphate (SSP), rock phosphate (RP), farm yard manure (FYM), and poultry manure (PM)] in experiment 1 and with various rates of PM (4, 8, and 12 kg ha -1 ) in experiment 2 on cumulative soil respiration. These experiments were arranged in three factorial, complete randomize design (CRD) with three replications. Interactively, lime with P sources (at day 1 and 3) and lime with PSB (at day 1) significantly expedited soil respiration. Mainly, PSB inoculation, liming, PM fertilization, and its various rates significantly enhanced soil respiration with time over control/minimum in alkaline soil at all incubation periods. Higher CO 2 emission was detected in soil supplemented with organic P sources (PM and FYM) than mineral sources (SSP and RP). CO 2 emission was noted to increase with increasing PM content. Since liming intensified CO 2 discharge from soil, therefore addition of lime to an alkaline soil should be avoided; instead, integrated approaches must be adopted for P management in alkaline calcareous soils for climate-smart agriculture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, David A.; Hughes, Henry Grady
In this paper, we expand on previous validation work by Dixon and Hughes. That is, we present a more complete suite of validation results with respect to to the well-known Lockwood energy deposition experiment. Lockwood et al. measured energy deposition in materials including beryllium, carbon, aluminum, iron, copper, molybdenum, tantalum, and uranium, for both single- and multi-layer 1-D geometries. Source configurations included mono-energetic, mono-directional electron beams with energies of 0.05-MeV, 0.1-MeV, 0.3- MeV, 0.5-MeV, and 1-MeV, in both normal and off-normal angles of incidence. These experiments are particularly valuable for validating electron transport codes, because they are closely represented bymore » simulating pencil beams incident on 1-D semi-infinite slabs with and without material interfaces. Herein, we include total energy deposition and energy deposition profiles for the single-layer experiments reported by Lockwood et al. (a more complete multi-layer validation will follow in another report).« less
Zhang, Yaping; Wang, Xiaofei; Chen, Hong; Yang, Xin; Chen, Jianmin; Allen, Jonathan O
2009-01-01
Lead (Pb) in individual aerosol particles was measured using single particle aerosol mass spectrometer (ATOFMS) in the summer of 2007 in Shanghai, China. Pb was found in 3% of particles with diameters in the range 0.1-2.0 microm. Single particle data were analyzed focusing on the particles with high Pb content which were mostly submicron. Using the ART-2a neural network algorithm, these fine Pb-rich particles were classified into eight main classes by their mass spectral patterns. Based on the size distribution, temporal variation of number density, chemical composition and the correlation between different chemical species for each class, three major emission sources were identified. About 45% of the Pb-rich particles contained organic or elemental carbon and were attributed to the emission from coal combustion; particles with good correlation between Cl and Pb content were mostly attributed to waste incineration. One unique class of particles was identified by strong phosphate and Pb signals, which were assigned to emissions from phosphate industry. Other Pb-rich particles included aged sea salt and particles from metallurgical processes.
Soft X-ray imaging of thick carbon-based materials using the normal incidence multilayer optics.
Artyukov, I A; Feschenko, R M; Vinogradov, A V; Bugayev, Ye A; Devizenko, O Y; Kondratenko, V V; Kasyanov, Yu S; Hatano, T; Yamamoto, M; Saveliev, S V
2010-10-01
The high transparency of carbon-containing materials in the spectral region of "carbon window" (lambda approximately 4.5-5nm) introduces new opportunities for various soft X-ray microscopy applications. The development of efficient multilayer coated X-ray optics operating at the wavelengths of about 4.5nm has stimulated a series of our imaging experiments to study thick biological and synthetic objects. Our experimental set-up consisted of a laser plasma X-ray source generated with the 2nd harmonics of Nd-glass laser, scandium-based thin-film filters, Co/C multilayer mirror and X-ray film UF-4. All soft X-ray images were produced with a single nanosecond exposure and demonstrated appropriate absorption contrast and detector-limited spatial resolution. A special attention was paid to the 3D imaging of thick low-density foam materials to be used in design of laser fusion targets.
Ion beam sputter deposited diamond like films
NASA Technical Reports Server (NTRS)
Banks, B. A.; Rutledge, S. K.
1982-01-01
A single argon ion beam source was used to sputter deposit carbon films on fused silica, copper, and tantalum substrates under conditions of sputter deposition alone and sputter deposition combined with simultaneous argon ion bombardment. Simultaneously deposited and ion bombarded carbon films were prepared under conditions of carbon atom removal to arrival ratios of 0, 0.036, and 0.71. Deposition and etch rates were measured for films on fused silica substrates. Resulting characteristics of the deposited films are: electrical resistivity of densities of 2.1 gm/cu cm for sputter deposited films and 2.2 gm/cu cm for simultaneously sputter deposited and Ar ion bombarded films. For films approximately 1700 A thick deposited by either process and at 5550 A wavelength light the reflectance was 0.2, the absorptance was 0.7, the absorption coefficient was 67,000 cm to the -1 and the transmittance was 0.1.
Skovran, Elizabeth; Crowther, Gregory J.; Guo, Xiaofeng; Yang, Song; Lidstrom, Mary E.
2010-01-01
Background When organisms experience environmental change, how does their metabolic network reset and adapt to the new condition? Methylobacterium extorquens is a bacterium capable of growth on both multi- and single-carbon compounds. These different modes of growth utilize dramatically different central metabolic pathways with limited pathway overlap. Methodology/Principal Findings This study focused on the mechanisms of metabolic adaptation occurring during the transition from succinate growth (predicted to be energy-limited) to methanol growth (predicted to be reducing-power-limited), analyzing changes in carbon flux, gene expression, metabolites and enzymatic activities over time. Initially, cells experienced metabolic imbalance with excretion of metabolites, changes in nucleotide levels and cessation of cell growth. Though assimilatory pathways were induced rapidly, a transient block in carbon flow to biomass synthesis occurred, and enzymatic assays suggested methylene tetrahydrofolate dehydrogenase as one control point. This “downstream priming” mechanism ensures that significant carbon flux through these pathways does not occur until they are fully induced, precluding the buildup of toxic intermediates. Most metabolites that are required for growth on both carbon sources did not change significantly, even though transcripts and enzymatic activities required for their production changed radically, underscoring the concept of metabolic setpoints. Conclusions/Significance This multi-level approach has resulted in new insights into the metabolic strategies carried out to effect this shift between two dramatically different modes of growth and identified a number of potential flux control and regulatory check points as a further step toward understanding metabolic adaptation and the cellular strategies employed to maintain metabolic setpoints. PMID:21124828
Mascorro, Vanessa S; Coops, Nicholas C; Kurz, Werner A; Olguín, Marcela
2015-12-01
Remote sensing products can provide regular and consistent observations of the Earth´s surface to monitor and understand the condition and change of forest ecosystems and to inform estimates of terrestrial carbon dynamics. Yet, challenges remain to select the appropriate satellite data source for ecosystem carbon monitoring. In this study we examine the impacts of three attributes of four remote sensing products derived from Landsat, Landsat-SPOT, and MODIS satellite imagery on estimates of greenhouse gas emissions and removals: (1) the spatial resolution (30 vs. 250 m), (2) the temporal resolution (annual vs. multi-year observations), and (3) the attribution of forest cover changes to disturbance types using supplementary data. With a spatially-explicit version of the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3), we produced annual estimates of carbon fluxes from 2002 to 2010 over a 3.2 million ha forested region in the Yucatan Peninsula, Mexico. The cumulative carbon balance for the 9-year period differed by 30.7 million MgC (112.5 million Mg CO 2e ) among the four remote sensing products used. The cumulative difference between scenarios with and without attribution of disturbance types was over 5 million Mg C for a single Landsat scene. Uncertainty arising from activity data (rates of land-cover changes) can be reduced by, in order of priority, increasing spatial resolution from 250 to 30 m, obtaining annual observations of forest disturbances, and by attributing land-cover changes by disturbance type. Even missing a single year in the land-cover observations can lead to substantial errors in ecosystems with rapid forest regrowth, such as the Yucatan Peninsula.
Mechanochemical Synthesis of Carbon Nanothread Single Crystals.
Li, Xiang; Baldini, Maria; Wang, Tao; Chen, Bo; Xu, En-Shi; Vermilyea, Brian; Crespi, Vincent H; Hoffmann, Roald; Molaison, Jamie J; Tulk, Christopher A; Guthrie, Malcolm; Sinogeikin, Stanislav; Badding, John V
2017-11-15
Synthesis of well-ordered reduced dimensional carbon solids with extended bonding remains a challenge. For example, few single-crystal organic monomers react under topochemical control to produce single-crystal extended solids. We report a mechanochemical synthesis in which slow compression at room temperature under uniaxial stress can convert polycrystalline or single-crystal benzene monomer into single-crystalline packings of carbon nanothreads, a one-dimensional sp 3 carbon nanomaterial. The long-range order over hundreds of microns of these crystals allows them to readily exfoliate into fibers. The mechanochemical reaction produces macroscopic single crystals despite large dimensional changes caused by the formation of multiple strong, covalent C-C bonds to each monomer and a lack of reactant single-crystal order. Therefore, it appears not to follow a topochemical pathway, but rather one guided by uniaxial stress, to which the nanothreads consistently align. Slow-compression room-temperature synthesis may allow diverse molecular monomers to form single-crystalline packings of polymers, threads, and higher dimensional carbon networks.
NASA Astrophysics Data System (ADS)
Kim, Eugene; Hopke, Philip K.; Edgerton, Eric S.
Daily integrated PM 2.5 (particulate matter ⩽2.5 μm in aerodynamic diameter) composition data including eight individual carbon fractions collected at the Jefferson Street monitoring site in Atlanta were analyzed with positive matrix factorization (PMF). Particulate carbon was analyzed using the thermal optical reflectance method that divides carbon into four organic carbon (OC), pyrolized organic carbon (OP), and three elemental carbon (EC) fractions. A total of 529 samples and 28 variables were measured between August 1998 and August 2000. PMF identified 11 sources in this study: sulfate-rich secondary aerosol I (50%), on-road diesel emissions (11%), nitrate-rich secondary aerosol (9%), wood smoke (7%), gasoline vehicle (6%), sulfate-rich secondary aerosol II (6%), metal processing (3%), airborne soil (3%), railroad traffic (3%), cement kiln/carbon-rich (2%), and bus maintenance facility/highway traffic (2%). Differences from previous studies using only the traditional OC and EC data (J. Air Waste Manag. Assoc. 53(2003a)731; Atmos Environ. (2003b)) include four traffic-related combustion sources (gasoline vehicle, on-road diesel, railroad, and bus maintenance facility) containing carbon fractions whose abundances were different between the various sources. This study indicates that the temperature resolved fractional carbon data can be utilized to enhance source apportionment study, especially with respect to the separation of diesel emissions from gasoline vehicle sources. Conditional probability functions using surface wind data and identified source contributions aid the identifications of local point sources.
40 CFR 458.45 - Standards of performance for new sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) EFFLUENT GUIDELINES AND STANDARDS CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Lamp... paragraph, which may be discharged from the carbon black lamp process by a new source subject to the...
NASA Astrophysics Data System (ADS)
Ortiz-Rivera, William; Pacheco-Londoño, Leonardo C.; Hernández-Rivera, Samuel P.
2010-09-01
This study describes the design, assembly, testing and comparison of two Remote Raman Spectroscopy (RRS) systems intended for standoff detection of hazardous chemical liquids. Raman spectra of Chemical Warfare Agents Simulants (CWAS) and Toxic Industrial Compounds (TIC) were measured in the laboratory at a 6.6 m source-target distance using continuous wave (CW) laser detection. Standoff distances for pulsed measurements were 35 m for dimethyl methylphosphonate (DMMP) detection and 60, 90 and 140 m for cyclohexane detection. The prototype systems consisted of a Raman spectrometer equipped with a CCD detector (for CW measurements) and an I-CCD camera with time-gated electronics (for pulsed laser measurements), a reflecting telescope, a fiber optic assembly, a single-line CW laser source (514.5, 488.0, 351.1 and 363.8 nm) and a frequency-doubled single frequency Nd:YAG 532 nm laser (5 ns pulses at 10 Hz). The telescope was coupled to the spectrograph using an optical fiber, and filters were used to reject laser radiation and Rayleigh scattering. Two quartz convex lenses were used to collimate the light from the telescope from which the telescope-focusing eyepiece was removed, and direct it to the fiber optic assembly. To test the standoff sensing system, the Raman Telescope was used in the detection of liquid TIC: benzene, chlorobenzene, toluene, carbon tetrachloride, cyclohexane and carbon disulfide. Other compounds studied were CWAS: dimethylmethyl phosphonate, 2-chloroethyl ethyl sulfide and 2-(butylamino)-ethanethiol. Relative Raman scattering cross sections of liquid CWAS were measured using single-line sources at 532.0, 488.0, 363.8 and 351.1 nm. Samples were placed in glass and quartz vials at the standoff distances from the telescope for the Remote Raman measurements. The mass of DMMP present in water solutions was also quantified as part of the system performance tests.
The sensing mechanism of N-doped SWCNTs toward SF6 decomposition products: A first-principle study
NASA Astrophysics Data System (ADS)
Gui, Yingang; Tang, Chao; Zhou, Qu; Xu, Lingna; Zhao, Zhongyong; Zhang, Xiaoxing
2018-05-01
In order to monitor the insulation status of SF6-insulated equipment on-line, SOF2 and SO2F2, two typical decomposition products of SF6 under electric discharge condition, are chosen as the target gases to evaluate the type and severity of discharge. In this work, single N atom doping method is adopted to improve the gas sensitivity of single wall carbon nanotubes to SOF2 and SO2F2. Single and double gas molecules adsorptions are considered to completely analyze the adsorption properties of N-doped single wall carbon nanotubes. Calculation results show that N atom doping enhances the surface activity of carbon nanotubes. When gas molecules physically adsorbed on N-doped single wall carbon nanotubes, the weak interaction between gas molecules and N-doped single wall carbon nanotubes nearly not changes the electrical property according to analysis of the density of states and molecular orbitals. While the chemisorption between gas molecules and N-doped single wall carbon nanotubes distinctly decreases the conductivity of adsorption system.
Self-assembly of single-wall carbon nanotubes during the cooling process of hot carbon gas.
Wen, Yushi; Zheng, Ke; Long, Xinping; Li, Ming; Xue, Xianggui; Dai, Xiaogan; Deng, Chuan
2018-04-25
In this work, self-assembly mechanism of single-wall carbon nanotube (SWCNT) during the annealing process of hot gaseous carbon is presented using reactive force field (ReaxFF)-based reactive molecular simulations. A series of simulations were performed on the evolution of reactive carbon gas. The simulation results show that the reactive carbon gas can be assembled into regular SWCNT without a catalyst. Five distinct stages of SWCNT self-assembly are proposed. For some initial configurations, the CNT was found to spin at an ultra-high rate after the nucleation. Graphical abstract Self-assembly process of single-wall carbon nanotube from the annealing of hot gaseous carbon.
Dual-Carbon sources fuel the OCS deep-reef Community, a stable isotope investigation
Sulak, Kenneth J.; Berg, J.; Randall, Michael T.; Dennis, George D.; Brooks, R.A.
2008-01-01
The hypothesis that phytoplankton is the sole carbon source for the OCS deep-reef community (>60 m) was tested. Trophic structure for NE Gulf of Mexico deep reefs was analyzed via carbon and nitrogen stable isotopes. Carbon signatures for 114 entities (carbon sources, sediment, fishes, and invertebrates) supported surface phytoplankton as the primary fuel for the deep reef. However, a second carbon source, the macroalga Sargassum, with its epiphytic macroalgal associate, Cladophora liniformis, was also identified. Macroalgal carbon signatures were detected among 23 consumer entities. Most notably, macroalgae contributed 45 % of total carbon to the 13C isotopic spectrum of the particulate-feeding reef-crest gorgonian Nicella. The discontinuous spatial distribution of some sessile deep-reef invertebrates utilizing pelagic macroalgal carbon may be trophically tied to the contagious distribution of Sargassum biomass along major ocean surface features.
Sun, Jian; Guo, Lisheng; Ma, Qingxiang; Gao, Xinhua; Yamane, Noriyuki; Xu, Hengyong; Tsubaki, Noritatsu
2017-02-01
We report a one-pot and eco-friendly synthesis of carbon-supported cobalt nanoparticles, achieved by carbonization of waste biomass (rice bran) with a cobalt source. The functionalized biomass provides carbon microspheres as excellent catalyst support, forming a unique interface between hydrophobic and hydrophilic groups. The latter, involving hydroxyl and amino groups, can catch much more active cobalt nanoparticles on surface for Fischer-Tropsch synthesis than chemical carbon. The loading amount of cobalt on the final catalyst is much higher than that prepared with a chemical carbon source, such as glucose. The proposed concept of using a functionalized natural carbon source shows great potential compared with conventional carbon sources, and will be meaningful for other fields concerning carbon support, such as heterogeneous catalysis or electrochemical fields. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Enhancement of Composite Scarf Joint Interface Strength Through Carbon Nanotube Reinforcement
2007-06-01
includes single walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes ( MWCNT ) with varying length, purity, and concentration levels along the...OF PAGES 106 14. SUBJECT TERMS Carbon Nanotubes, CNT, SWCNT, MWCNT , Bamboo, Polymer Composite, Joint Strength Enhancement, Reinforcement 16...variables concerning the carbon nanotube application. The testing includes single walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes ( MWCNT
Continuous growth of single-wall carbon nanotubes using chemical vapor deposition
Grigorian, Leonid [Raymond, OH; Hornyak, Louis [Evergreen, CO; Dillon, Anne C [Boulder, CO; Heben, Michael J [Denver, CO
2008-10-07
The invention relates to a chemical vapor deposition process for the continuous growth of a carbon single-wall nanotube where a carbon-containing gas composition is contacted with a porous membrane and decomposed in the presence of a catalyst to grow single-wall carbon nanotube material. A pressure differential exists across the porous membrane such that the pressure on one side of the membrane is less than that on the other side of the membrane. The single-wall carbon nanotube growth may occur predominately on the low-pressure side of the membrane or, in a different embodiment of the invention, may occur predominately in between the catalyst and the membrane. The invention also relates to an apparatus used with the carbon vapor deposition process.
Continuous growth of single-wall carbon nanotubes using chemical vapor deposition
Grigorian, Leonid; Hornyak, Louis; Dillon, Anne C; Heben, Michael J
2014-09-23
The invention relates to a chemical vapor deposition process for the continuous growth of a carbon single-wall nanotube where a carbon-containing gas composition is contacted with a porous membrane and decomposed in the presence of a catalyst to grow single-wall carbon nanotube material. A pressure differential exists across the porous membrane such that the pressure on one side of the membrane is less than that on the other side of the membrane. The single-wall carbon nanotube growth may occur predominately on the low-pressure side of the membrane or, in a different embodiment of the invention, may occur predominately in between the catalyst and the membrane. The invention also relates to an apparatus used with the carbon vapor deposition process.
Atmospheric Teleconnection over Eurasia Induced by Aerosol Radiative Forcing During Boreal Spring
NASA Technical Reports Server (NTRS)
Kim, Maeng-Ki; Lau, K. M.; Chin, Mian; Kim, Kyu-Myong; Sud, Y. C.; Walker, Greg K.
2005-01-01
The direct effects of aerosols on global and regional climate during boreal spring are investigated based on simulations using the NASA Global Modeling and Assimilation Office (GMAO) finite-volume general circulation model (fvGCM) with Microphyics of clouds in Relaxed Arakawa Schubert Scheme (McRAS). The aerosol loading are prescribed from three-dimensional monthly distribution of tropospheric aerosols viz., sulfate, black carbon, organic carbon, soil dust, and sea salt from output of the Goddard Ozone Chemistry Aerosol Radiation and Transport model (GOCART). The aerosol extinction coefficient, single scattering albedo, and asymmetric factor are computed as wavelength-dependent radiative forcing in the radiative transfer scheme of the fvGCM, and as a function of the aerosol loading and ambient relative humidity. We find that anomalous atmospheric heat sources induced by absorbing aerosols (dust and black carbon) excites a planetary scale teleconnection pattern in sea level pressure, temperature and geopotential height spanning North Africa through Eurasia to the North Pacific. Surface cooling due to direct effects of aerosols is found in the vicinity and downstream of the aerosol source regions, i.e., South Asia, East Asia, and northern and western Africa. Additionally, atmospheric heating is found in regions with large loading of dust (over Northern Africa, and Middle East), and black carbon (over South-East Asia). Paradoxically, the most pronounced feature in aerosol-induced surface temperature is an east-west dipole anomaly with strong cooling over the Caspian Sea, and warming over central and northeastern Asia, where aerosol concentration are low. Analyses of circulation anomalies show that the dipole anomaly is a part of an atmospheric teleconnection driven by atmospheric heating anomalies induced by absorbing aerosols in the source regions, but the influence was conveyed globally through barotropic energy dispersion and sustained by feedback processes associated with the regional circulations.
Ding, Yan-Hong; Huang, Guo-Long; Li, Huan-Huan; Xie, Hai-Ming; Sun, Hai-Zhu; Zhang, Jing-Ping
2015-12-01
Double carbon-coated LiFePO4 (D-LiFePO4/C) composite with sphere-like structure was synthesized through combination of co-precipitation and solid-state methods. Cetyl-trimethyl-ammonium bromide (CTAB) and citric acid served as two kinds of carbon sources in sequence. SEM images demonstrated that double carbon coating had certain influence on the morphology. The thickness of carbon coating on D-LiFePO4/C was about 1.7 nm and the content of carbon was 2.48 wt%, according to HRTEM and TG analysis. The electrochemical impedance spectroscopy analysis indicated that the D-LiFePO4/C composite presented the charge-transfer resistance of 68 Ω and Li ion diffusion coefficient of 2.68 x 10(-13) cm2 S(-1), while the single carbon-coated LiFePO4 (S-LiFePO4/C) exhibited 135.5Ω and 4.03 x 10(-14) cm2 S(-1). Especially, the prepared D-LiFePO4/C electrode showed discharge capacities of 102.9 (10C) and 87.1 (20C) mA h g(-1), respectively, with almost no capacity lost after 400 cycles at 10C, which were much better than those of S-LiFePO4/C composite.
A quantum spin-probe molecular microscope
NASA Astrophysics Data System (ADS)
Perunicic, V. S.; Hill, C. D.; Hall, L. T.; Hollenberg, L. C. L.
2016-10-01
Imaging the atomic structure of a single biomolecule is an important challenge in the physical biosciences. Whilst existing techniques all rely on averaging over large ensembles of molecules, the single-molecule realm remains unsolved. Here we present a protocol for 3D magnetic resonance imaging of a single molecule using a quantum spin probe acting simultaneously as the magnetic resonance sensor and source of magnetic field gradient. Signals corresponding to specific regions of the molecule's nuclear spin density are encoded on the quantum state of the probe, which is used to produce a 3D image of the molecular structure. Quantum simulations of the protocol applied to the rapamycin molecule (C51H79NO13) show that the hydrogen and carbon substructure can be imaged at the angstrom level using current spin-probe technology. With prospects for scaling to large molecules and/or fast dynamic conformation mapping using spin labels, this method provides a realistic pathway for single-molecule microscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, H M; Young, T M; Buchholz, B A
2009-04-16
This study was motivated by a desire to improve understanding of the sources contributing to the carbon that is an important component of airborne particulate matter (PM). The ultimate goal of this project was to lay a ground work for future tools that might be easily implemented with archived or routinely collected samples. A key feature of this study was application of radiocarbon measurement that can be interpreted to indicate the relative contributions from fossil and non-fossil carbon sources of atmospheric PM. Size-resolved PM and time-resolved PM{sub 10} collected from a site in Sacramento, CA in November 2007 (Phase I)more » and March 2008 (Phase II) were analyzed for radiocarbon and source markers such as levoglucosan, cholesterol, and elemental carbon. Radiocarbon data indicates that the contributions of non-fossil carbon sources were much greater than that from fossil carbon sources in all samples. Radiocarbon and source marker measurements confirm that a greater contribution of non-fossil carbon sources in Phase I samples was highly likely due to residential wood combustion. The present study proves that measurement of radiocarbon and source markers can be readily applied to archived or routinely collected samples for better characterization of PM sources. More accurate source apportionment will support ARB in developing more efficient control strategies.« less
Chen, Yanting; Du, Wenjiao; Chen, Jinsheng; Hong, Youwei; Zhao, Jinping; Xu, Lingling; Xiao, Hang
2017-02-01
Particulate matter (PM 10 ) associated with the fractions of organic macromolecules, including humic acid (HA), kerogen + black carbon (KB), and black carbon (BC), was determined during summer and winter at urban and suburban sites in a coastal city of southeast China. The organic macromolecules were characterized by elemental analysis (EA), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR), and their sources were identified by using stable carbon/nitrogen isotope (δ 13 C/δ 15 N) and the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) Model. The results showed that HA, kerogen (K), and BC accounted for the range of 3.89 to 4.55 % in PM 10 , while they were the dominant fractions of total organic carbon (TOC), ranging from 64.70 to 84.99 %. SEM analysis indicated that BC particles were porous/nonporous and consisted of spherical and non-spherical (i.e., cylindrical and elongate) structures. The FTIR spectra of HA, KB, and BC exhibited similar functional groups, but the difference of various sites and seasons was observed. HA in PM 10 contained a higher fraction of aliphatic structures, such as long-chain fatty and carbohydrates with a carboxylic extremity. The C/N ratio, SEM, and δ 13 C/δ 15 N values provided reliable indicators of the sources of HA, K, and BC in PM 10 . The results suggested that HA and K majorly originated from terrestrial plants, and BC came from the mixture of combustion of terrestrial plants, fossil fuel, and charcoal. The air masses in winter originated from Mongolia (4 %), the northern area of China (48 %), and northern adjacent cities (48 %), suggesting the influence of anthropogenic sources through long-range transport, while the air masses for the summer period came from South China Sea (34 %) and Western Pacific Sea (66 %), representing clean marine air masses with low concentrations of organic macromolecules.
Li, Tian-Yi; Zheng, You-Xuan; Zhou, Yong-Hui
2016-12-06
Iridium complexes with a chiral metal center and chiral carbons, Λ/Δ-(dfppy) 2 Ir(chty-R) and Λ/Δ-(dfppy) 2 Ir(chty-S), were synthesized and characterized. These isomers have the same steady-state photophysical properties, and obvious offsets in ECD spectra highlight both the chiral sources. Each enantiomeric couple shows mirror-image CPL bands with a dissymmetry factor in the order of 10 -3 .
Low Voltage, Low Power Organic Light Emitting Transistors for AMOLED Displays
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCarthy, M. A.; Liu, B.; Donoghue, E. P.
2011-01-01
Low voltage, low power dissipation, high aperture ratio organic light emitting transistors are demonstrated. The high level of performance is enabled by a carbon nanotube source electrode that permits integration of the drive transistor and the organic light emitting diode into an efficient single stacked device. Given the demonstrated performance, this technology could break the technical logjam holding back widespread deployment of active matrix organic light emitting displays at flat panel screen sizes.
Catal, Tunc; Cysneiros, Denise; O'Flaherty, Vincent; Leech, Dónal
2011-01-01
Production of electricity from samples obtained during anaerobic digestion of grass silage was examined using single-chamber air-cathode mediator-less microbial fuel cells (MFCs). The samples were obtained from anaerobic reactors at start-up conditions after 3 and 10 days of operation under psychrophilic (15 °C) and mesophilic (37 °C) temperatures. Electricity was directly produced from all samples at a concentration of 1500 mg CODL(-1). Power density obtained from the samples, as a sole carbon source, ranged from 56 ± 3 Wm(-3) to 31 ± 1 Wm(-3) for the mesophilic and psychrophilic samples, respectively. Coulombic efficiencies ranged from 18 ± 1% to 12 ± 1% for the same samples. The relationship between the maximum voltage output and initial COD concentration appeared to follow saturation kinetics at the external resistance of 217 Ω. Chemical oxygen demand (COD) removal was over 90% and total phenolics removal was in the range of 30-75% for all samples tested, with a standard amount of 60 mg L(-1) total phenolics removed for every sample. Our results indicate that generating electricity from solution samples of anaerobic reactors utilizing grass silage is possible, opening the possibility for combination of anaerobic digestion with MFC technology for energy generation. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Elefsiniotis, P.; Wareham, D. G.; Fongsatitukul, P.
2017-08-01
This paper compares the practical limits of 2, 4-dichlorophenoxy acetic acid (2,4-D) degradation that can be obtained in two laboratory-scale anaerobic digestion systems; namely, a sequencing batch reactor (SBR) and a single-fed batch reactor (SFBR) system. The comparison involved synthesizing a decade of research conducted by the lead author and drawing summative conclusions about the ability of each system to accommodate industrial-strength concentrations of 2,4-D. In the main, 2 L liquid volume anaerobic SBRs were used with glucose as a supplemental carbon source for both acid-phase and two-phase conditions. Volatile fatty acids however were used as a supplemental carbon source for the methanogenic SBRs. The anaerobic SBRs were operated at an hydraulic retention time of 48 hours, while being subjected to increasing concentrations of 2,4-D. The SBRs were able to degrade between 130 and 180 mg/L of 2,4-D depending upon whether they were operated in the acid-phase or two-phase regime. The methanogenic-only phase did not achieve 2,4-D degradation however this was primarily attributed to difficulties with obtaining a sufficiently long SRT. For the two-phase SFBR system, 3.5 L liquid-volume digesters were used and no difficulty was experienced with degrading 100 % of the 2,4-D concentration applied (300 mg/L).
Jeantet, A; Chassagneux, Y; Claude, T; Roussignol, P; Lauret, J S; Reichel, J; Voisin, C
2017-07-12
Condensed-matter emitters offer enriched cavity quantum electrodynamical effects due to the coupling to external degrees of freedom. In the case of carbon nanotubes, a very peculiar coupling between localized excitons and the one-dimensional acoustic phonon modes can be achieved, which gives rise to pronounced phonon wings in the luminescence spectrum. By coupling an individual nanotube to a tunable optical microcavity, we show that this peculiar exciton-phonon coupling is a valuable resource to enlarge the tuning range of the single-photon source while keeping an excellent exciton-photon coupling efficiency and spectral purity. Using the unique flexibility of our scanning fiber cavity, we are able to measure the efficiency spectrum of the very same nanotube in the Purcell regime for several mode volumes. Whereas this efficiency spectrum looks very much like the free-space luminescence spectrum when the Purcell factor is small (large mode volume), we show that the deformation of this spectrum at lower mode volumes can be traced back to the strength of the exciton-photon coupling. It shows an enhanced efficiency on the red wing that arises from the asymmetry of the incoherent energy exchange processes between the exciton and the cavity. This allows us to obtain a tuning range up to several hundred times the spectral width of the source.
Liu, Feng; Tian, Yu; Ding, Yi; Li, Zhipeng
2016-11-01
Wastewater primary sedimentation sludge was prepared into fermentation liquid as denitrification carbon source, and the main components of fermentation liquid was short-chain volatile fatty acids. Meanwhile, the acetic acid and propionic acid respectively accounted for about 29.36% and 26.56% in short-chain volatile fatty acids. The performance of fermentation liquid, methanol, acetic acid, propionic acid and glucose used as sole carbon source were compared. It was found that the denitrification rate with fermentation liquid as carbon source was 0.17mgNO3(-)-N/mg mixed liquor suspended solid d, faster than that with methanol, acetic acid, and propionic acid as sole carbon source, and lower than that with glucose as sole carbon source. For the fermentation liquid as carbon source, the transient accumulation of nitrite was insignificantly under different initial total nitrogen concentration. Therefore, the use of fermentation liquid for nitrogen removal could improve denitrification rate, and reduce nitrite accumulation in denitrification process. Copyright © 2016 Elsevier Ltd. All rights reserved.
Graphene: powder, flakes, ribbons, and sheets.
James, Dustin K; Tour, James M
2013-10-15
Graphene's unique physical and electrical properties (high tensile strength, Young's modulus, electron mobility, and thermal conductivity) have led to its nickname of "super carbon." Graphene research involves the study of several different physical forms of the material: powders, flakes, ribbons, and sheets and others not yet named or imagined. Within those forms, graphene can include a single layer, two layers, or ≤10 sheets of sp² carbon atoms. The chemistry and applications available with graphene depend on both the physical form of the graphene and the number of layers in the material. Therefore the available permutations of graphene are numerous, and we will discuss a subset of this work, covering some of our research on the synthesis and use of many of the different physical and layered forms of graphene. Initially, we worked with commercially available graphite, with which we extended diazonium chemistry developed to functionalize single-walled carbon nanotubes to produce graphitic materials. These structures were soluble in common organic solvents and were better dispersed in composites. We developed an improved synthesis of graphene oxide (GO) and explored how the workup protocol for the synthesis of GO can change the electronic structure and chemical functionality of the GO product. We also developed a method to remove graphene layers one-by-one from flakes. These powders and sheets of GO can serve as fluid loss prevention additives in drilling fluids for the oil industry. Graphene nanoribbons (GNRs) combine small width with long length, producing valuable electronic and physical properties. We developed two complementary syntheses of GNRs from multiwalled carbon nanotubes: one simple oxidative method that produces GNRs with some defects and one reductive method that produces GNRs that are less defective and more electrically conductive. These GNRs can be used in low-loss, high permittivity composites, as conductive reinforcement coatings on Kevlar fibers and in the fabrication of large area transparent electrodes. Using solid carbon sources such as polymers, food, insects, and waste, we can grow monolayer and bilayer graphene directly on metal catalysts, and carbon-sources containing nitrogen can produce nitrogen-doped graphene. The resulting graphene can be transferred to other surfaces, such as metal grids, for potential use in transparent touch screens for applications in personal electronics and large area photovoltaic devices. Because the transfer of graphene from one surface to another can lead to defects, low yields, and higher costs, we have developed methods for growing graphene directly on the substrates of interest. We can also produce patterned graphene to make GNRs or graphane/graphene superlattices within a single sheet. These superlattices could have multiple functions for use in sensors and other devices. This Account only touches upon this burgeoning area of materials chemistry, and the field will continue to expand as researchers imagine new forms and applications of graphene.
Duoplasmatron source modifications for 3He+ operation
NASA Astrophysics Data System (ADS)
Schmidt, C. W.; Popovic, M.
1998-02-01
A duoplasmatron ion source is used to produce 25 mA of 3He+ with a pulse width of ˜80 ms at 360 Hz for acceleration to 10.5 MeV. At this energy, 3He striking water or carbon targets can produce short lived isotopes of 11C, 13N, 15O, and 18F for medical positron emission tomography (PET). A duoplasmatron ion source was chosen originally since it is capable of a sufficient singly charged helium beam with an acceptable gas consumption. Stable long-term operation of the source required a change in the filament material to molybdenum, and a careful understanding of the oxide filament conditioning, operation and geometry. Other improvements, particularly in the electronics, were helpful to increasing the reliability. The source has operated for many months at ˜2.5% duty factor without significant problems and with good stability. We report here the effort that was done to make this source understandable and reliable.
NASA Astrophysics Data System (ADS)
Sheesley, Rebecca J.; Nallathamby, Punith Dev; Surratt, Jason D.; Lee, Anita; Lewandowski, Michael; Offenberg, John H.; Jaoui, Mohammed; Kleindienst, Tadeusz E.
2017-10-01
The present study investigates primary and secondary sources of organic carbon for Bakersfield, CA, USA as part of the 2010 CalNex study. The method used here involves integrated sampling that is designed to allow for detailed and specific chemical analysis of particulate matter (PM) in the Bakersfield airshed. To achieve this objective, filter samples were taken during thirty-four 23-hr periods between 19 May and 26 June 2010 and analyzed for organic tracers by gas chromatography - mass spectrometry (GC-MS). Contributions to organic carbon (OC) were determined by two organic tracer-based techniques: primary OC by chemical mass balance and secondary OC by a mass fraction method. Radiocarbon (14C) measurements of the total organic carbon were also made to determine the split between the modern and fossil carbon and thereby constrain unknown sources of OC not accounted for by either tracer-based attribution technique. From the analysis, OC contributions from four primary sources and four secondary sources were determined, which comprised three sources of modern carbon and five sources of fossil carbon. The major primary sources of OC were from vegetative detritus (9.8%), diesel (2.3%), gasoline (<1.0%), and lubricating oil impacted motor vehicle exhaust (30%); measured secondary sources resulted from isoprene (1.5%), α-pinene (<1.0%), toluene (<1.0%), and naphthalene (<1.0%, as an upper limit) contributions. The average observed organic carbon (OC) was 6.42 ± 2.33 μgC m-3. The 14C derived apportionment indicated that modern and fossil components were nearly equivalent on average; however, the fossil contribution ranged from 32 to 66% over the five week campaign. With the fossil primary and secondary sources aggregated, only 25% of the fossil organic carbon could not be attributed. Whereas, nearly 80% of the modern carbon could not be attributed to primary and secondary sources accessible to this analysis, which included tracers of biomass burning, vegetative detritus and secondary biogenic carbon. The results of the current study contributes source-based evaluation of the carbonaceous aerosol at CalNex Bakersfield.
Sheesley, Rebecca J.; Nallathamby, Punith Dev; Surratt, Jason D.; Lee, Anita; Lewandowski, Michael; Offenberg, John H.; Jaoui, Mohammed; Kleindienst, Tadeusz E.
2018-01-01
The present study investigates primary and secondary sources of organic carbon for Bakersfield, CA, USA as part of the 2010 CalNex study. The method used here involves integrated sampling that is designed to allow for detailed and specific chemical analysis of particulate matter (PM) in the Bakersfield airshed. To achieve this objective, filter samples were taken during thirty-four 23-hr periods between 19 May and 26 June 2010 and analyzed for organic tracers by gas chromatography – mass spectrometry (GC-MS). Contributions to organic carbon (OC) were determined by two organic tracer-based techniques: primary OC by chemical mass balance and secondary OC by a mass fraction method. Radiocarbon (14C) measurements of the total organic carbon were also made to determine the split between the modern and fossil carbon and thereby constrain unknown sources of OC not accounted for by either tracer-based attribution technique. From the analysis, OC contributions from four primary sources and four secondary sources were determined, which comprised three sources of modern carbon and five sources of fossil carbon. The major primary sources of OC were from vegetative detritus (9.8%), diesel (2.3%), gasoline (<1.0%), and lubricating oil impacted motor vehicle exhaust (30%); measured secondary sources resulted from isoprene (1.5%), α-pinene (<1.0%), toluene (<1.0%), and naphthalene (<1.0%, as an upper limit) contributions. The average observed organic carbon (OC) was 6.42 ± 2.33 μgC m−3. The 14C derived apportionment indicated that modern and fossil components were nearly equivalent on average; however, the fossil contribution ranged from 32-66% over the five week campaign. With the fossil primary and secondary sources aggregated, only 25% of the fossil organic carbon could not be attributed. Whereas, nearly 80% of the modern carbon could not be attributed to primary and secondary sources accessible to this analysis, which included tracers of biomass burning, vegetative detritus and secondary biogenic carbon. The results of the current study contributes source-based evaluation of the carbonaceous aerosol at CalNex Bakersfield. PMID:29681757
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Bongjun; Liang, Kelly; Dodabalapur, Ananth, E-mail: ananth.dodabalapur@engr.utexas.edu
We show that double-gate ambipolar thin-film transistors can be operated to enhance minority carrier injection. The two gate potentials need to be significantly different for enhanced injection to be observed. This enhancement is highly beneficial in devices such as light-emitting transistors where balanced electron and hole injections lead to optimal performance. With ambipolar single-walled carbon nanotube semiconductors, we demonstrate that higher ambipolar currents are attained at lower source-drain voltages, which is desired for portable electronic applications, by employing double-gate structures. In addition, when the two gates are held at the same potential, the expected advantages of the double-gate transistors suchmore » as enhanced on-current are also observed.« less
Electrochemical process for the preparation of nitrogen fertilizers
Aulich, Ted R [Grand Forks, ND; Olson, Edwin S [Grand Forks, ND; Jiang, Junhua [Grand Forks, ND
2012-04-10
The present invention provides methods and apparatus for the preparation of nitrogen fertilizers including ammonium nitrate, urea, urea-ammonium nitrate, and/or ammonia, at low temperature and pressure, preferably at ambient temperature and pressure, utilizing a source of carbon, a source of nitrogen, and/or a source of hydrogen or hydrogen equivalent. Implementing an electrolyte serving as ionic charge carrier, (1) ammonium nitrate is produced via the reduction of a nitrogen source at the cathode and the oxidation of a nitrogen source at the anode; (2) urea or its isomers are produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source; (3) ammonia is produced via the reduction of nitrogen source at the cathode and the oxidation of a hydrogen source or a hydrogen equivalent such as carbon monoxide or a mixture of carbon monoxide and hydrogen at the anode; and (4) urea-ammonium nitrate is produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source, and anodic oxidation of a nitrogen source. The electrolyte can be aqueous, non-aqueous, or solid.
Photoionization and Photofragmentation of Carbon Fullerene Molecular Ions
NASA Astrophysics Data System (ADS)
Baral, Kiran Kumar
Cross sections are reported for single and double photoionization accompanied by the loss of as many as seven pairs of C atoms of C60 + and C70+ fullerene molecular ions in the photon energy range 18 eV to 150 eV. These measurements were performed at the Advanced Light Source (ALS) by merging a mass-selected ion beam with a beam of monochromatized synchrotron radiation. Threshold energies were determined for the formation of doubly and triply charged fragment ions from parent ions C60+ and C70+. The energy dependences of cross-sections for direct photoionization yielding C60 2+ and C702+ are compared with those for forming different doubly and triply charged fullerene fragment ions. Two-dimensional product ion scans were measured and quantified at four discrete photon energies: 35 eV, 65 eV, 105 eV and 140 eV, in the vacuum ultraviolet region, providing a comprehensive mapping of the product channels involving single ionization of fullerene ions C60+ and C 70+ accompanied by fragmentation. Since fullerenes are composed of even numbers of carbon atoms, the fragmentation occurs by the loss of differing numbers of carbon atom pairs. In addition to pure ionization, fragmentation product channels become relatively more important at higher photon energies.
Spatial and temporal variability of particulate polycyclic aromatic hydrocarbons in Mexico City
NASA Astrophysics Data System (ADS)
Thornhill, D. A.; de Foy, B.; Herndon, S. C.; Onasch, T. B.; Wood, E. C.; Zavala, M.; Molina, L. T.; Gaffney, J. S.; Marley, N. A.; Marr, L. C.
2008-06-01
As part of the Megacities Initiative: Local and Global Research Observations (MILAGRO) study in the Mexico City Metropolitan Area in March 2006, we measured particulate polycyclic aromatic hydrocarbons (PAHs) and other gaseous species and particulate properties, including light absorbing carbon or effective black carbon (BC), at six locations throughout the city. The measurements were intended to support the following objectives: to describe spatial and temporal patterns in PAH concentrations, to gain insight into sources and transformations of PAHs and BC, and to quantify the relationships between PAHs and other pollutants. Total particulate PAHs at the Instituto Mexicano del Petróleo (T0 supersite) located near downtown averaged 50 ng m-3, and aerosol active surface area averaged 80 mm2 m-3. PAHs were also measured on board the Aerodyne Mobile Laboratory, which visited six sites encompassing a mixture of different land uses and a range of ages of air parcels transported from the city core. A combination of analyses of time series, back trajectories, concentration fields, pollutant ratios, and correlation coefficients supports the concept of T0 as an urban source site, T1 as a receptor site with strong local sources, Pedregal and PEMEX as intermediate sites, Pico Tres Padres as a vertical receptor site, and Santa Ana as a downwind receptor site. Weak intersite correlations suggest that local sources are important and variable and that exposure to PAHs and BC cannot be represented by a single regional-scale value. The relationships between PAHs and other pollutants suggest that a variety of sources and ages of particles are present. Among carbon monoxide, nitrogen oxides (NOx), and carbon dioxide, particulate PAHs are most strongly correlated with NOx. Mexico City's PAH/BC mass ratio of 0.01 is similar to that found on a freeway loop in the Los Angeles area and approximately 8 30 times higher than that found in other cities. Evidence also suggests that primary combustion particles are rapidly coated by secondary aerosol in Mexico City. If so, their optical properties may change, and the lifetime of PAHs may be prolonged if the coating protects them against photodegradation or heterogeneous reactions.
Yan, S; Tyagi, R D; Surampalli, R Y
2006-01-01
Activated sludge from different full-scale wastewater treatment plants (municipal, pulp and paper industry, starch manufacturing and cheese manufacturing wastewaters) was used as a source of microorganisms to produce biodegradable plastics in shake flask experiments. Acetate, glucose and different wastewaters were used as carbon sources. Pulp and paper wastewater sludge was found to accumulate maximum concentration (43% of dry weight of suspended solids) of polyhydroxy alkanoates (PHA) with acetate as carbon source. Among the different wastewaters tested as a source of carbon, pulp and paper industry and starch industry wastewaters were found to be the best source of carbon while employing pulp and paper activated sludge for maximum accumulation of PHA. High concentration of volatile fatty acids in these wastewaters was the probable reason.
Nitrogen-doped hierarchical porous carbon microsphere through KOH activation for supercapacitors.
Jiang, Jingui; Chen, Hao; Wang, Zhao; Bao, Luke; Qiang, Yiwei; Guan, Shiyou; Chen, Jianding
2015-08-15
A porous carbon microsphere with moderate specific surface area and superior specific capacitance for supercapacitors is fabricated from polyphosphazene microsphere as the single heteroatoms source by the carbonization and subsequent KOH activation under N2 atmosphere. With KOH activation, X-ray photoelectron spectroscopy analysis confirms that the phosphorus of polyphosphazene microsphere totally vanishes, and the doping content of nitrogen and its population of various functionalities on porous carbon microsphere surface are tuned. Compared with non-porous carbon microsphere, the texture property of the resultant porous carbon microsphere subjected to KOH activation has been remarkably developed with the specific surface area growing from 315 to 1341 m(2) g(-1)and the pore volume turning from 0.17 to 0.69 cm(3) g(-1). Prepared with the KOH/non-porous carbon microsphere weight ratio at 1.0, the porous carbon microsphere with moderate specific surface area of 568 m(2) g(-1), exhibits intriguing electrochemical behavior in 1 M H2SO4 aqueous electrolyte, with superior specific capacitance (278 F g(-1) at 0.1 A g(-1)), good rate capability (147 F g(-1) remained at 10 A g(-1)) and robust cycling durability (No capacitance loss after 5000 cycles). The promising electrochemical performance could be ascribed to the synergy of nitrogen heteroatom functionalities and the porous morphology. Copyright © 2015 Elsevier Inc. All rights reserved.
The impacts of tropical cyclones on the net carbon balance of eastern US forests (1851-2000)
NASA Astrophysics Data System (ADS)
Fisk, J. P.; Hurtt, G. C.; Chambers, J. Q.; Zeng, H.; Dolan, K. A.; Negrón-Juárez, R. I.
2013-12-01
In temperate forests of the eastern US, tropical cyclones are a principal agent of catastrophic wind damage, with dramatic impacts on the structure and functioning of forests. Substantial progress has been made to quantify forest damage and resulting gross carbon emissions from tropical cyclones. However, the net effect of storms on the carbon balance of forests depends not only on the biomass lost in single events, but also on the uptake during recovery from a mosaic of past events. This study estimates the net impacts of tropical cyclones on the carbon balance of US forests over the period 1851-2000. To track both disturbance and recovery and to isolate the effects of storms, a modeling framework is used combining gridded historical estimates of mortality and damage with a mechanistic model using an ensemble approach. The net effect of tropical cyclones on the carbon balance is shown to depend strongly on the spatial and temporal scales of analysis. On average, tropical cyclones contribute a net carbon source over latter half of the 19th century. However, throughout much of the 20th century a regional carbon sink is estimated resulting from periods of forest recovery exceeding damage. The large-scale net annual flux resulting from tropical cyclones varies by up to 50 Tg C yr-1, an amount equivalent to 17%-36% of the US forest carbon sink.
Electrochemical process for the preparation of nitrogen fertilizers
Jiang, Junhua; Aulich, Ted R; Ignatchenko, Alexey V
2015-04-14
Methods and apparatus for the preparation of nitrogen fertilizers including ammonium nitrate, urea, urea-ammonium nitrate, and/or ammonia are disclosed. Embodiments include (1) ammonium nitrate produced via the reduction of a nitrogen source at the cathode and the oxidation of a nitrogen source at the anode; (2) urea or its isomers produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source: (3) ammonia produced via the reduction of nitrogen source at the cathode and the oxidation of a hydrogen source or a hydrogen equivalent such as carbon monoxide or a mixture of carbon monoxide and hydrogen at the anode; and (4) urea-ammonium nitrate produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source, and anodic oxidation of a nitrogen source.
Measurement of carbon capture efficiency and stored carbon leakage
Keeling, Ralph F.; Dubey, Manvendra K.
2013-01-29
Data representative of a measured carbon dioxide (CO.sub.2) concentration and of a measured oxygen (O.sub.2) concentration at a measurement location can be used to determine whether the measured carbon dioxide concentration at the measurement location is elevated relative to a baseline carbon dioxide concentration due to escape of carbon dioxide from a source associated with a carbon capture and storage process. Optionally, the data can be used to quantify a carbon dioxide concentration increase at the first location that is attributable to escape of carbon dioxide from the source and to calculate a rate of escape of carbon dioxide from the source by executing a model of gas-phase transport using at least the first carbon dioxide concentration increase. Related systems, methods, and articles of manufacture are also described.
Ozone-induced changes in natural organic matter (NOM) structure
Westerhoff, P.; Debroux, J.; Aiken, G.; Amy, G.
1999-01-01
Hydrophobic organic acids (combined humic and fulvic acids), obtained from an Antarctic Lake with predominantly microbially derived organic carbon sources and two US fiver systems with terrestrial organic carbon sources, were ozonated. Several analyses, including 13C-NMR, UV absorbance, fluorescence, hydrophobic/transphilic classification, and potentiometric titrations, were performed before and after ozonation. Ozonation reduced aromatic carbon content, selectively reducing phenolic carbon content. Ozonation of the samples resulted in increased aliphatic, carboxyl, plus acetal and ketal anomeric carbon content and shifted towards less hydrophobic compounds.Hydrophobic organic acids (combined humic and fulvic acids), obtained from an Antarctic Lake with predominantly microbially derived organic carbon sources and two US river systems with terrestrial organic carbon sources, were ozonated. Several analyses, including 13C-NMR, UV absorbance, fluorescence, hydrophobic/transphilic classification, and potentiometric titrations, were performed before and after ozonation. Ozonation reduced aromatic carbon content, selectively reducing phenolic carbon content. Ozonation of the samples resulted in increased aliphatic, carboxyl, plus acetal and ketal anomeric carbon content and shifted towards less hydrophobic compounds.
Trace metal (Mg/Ca and Sr/Ca) analyses of single coccoliths by Secondary Ion Mass Spectrometry
NASA Astrophysics Data System (ADS)
Prentice, Katy; Jones, Tom Dunkley; Lees, Jackie; Young, Jeremy; Bown, Paul; Langer, Gerald; Fearn, Sarah; EIMF
2014-12-01
Here we present the first multi-species comparison of modern and fossil coccolith trace metal data obtained from single liths. We present both trace metal analyses (Sr, Ca, Mg and Al) and distribution maps of individual Paleogene fossil coccoliths obtained by Secondary Ion Mass Spectrometry (SIMS). We use this data to determine the effects of variable coccolith preservation and diagenetic calcite overgrowths on the recorded concentrations of strontium and magnesium in coccolith calcite. The analysis of coccoliths from deep-ocean sediments spanning the Eocene/Oligocene transition demonstrates that primary coccolith calcite is resistant to the neomorphism that is common in planktonic foraminifera from similar depositional environments. Instead, where present, diagenetic calcite forms distinct overgrowths over primary coccolith calcite rather than replacing this calcite. Diagenetic overgrowths on coccoliths are easily distinguished in SIMS analyses on the basis of relatively higher Mg and lower Sr concentrations than co-occurring primary coccolith calcite. This interpretation is confirmed by the comparable SIMS analyses of modern cultured coccoliths of Coccolithus braarudii. Further, with diagenetic calcite overgrowth being the principle source of bias in coccolith-based geochemical records, we infer that lithologies with lower carbonate content, deposited below the palaeo-lysocline, are more likely to produce geochemical records dominated by primary coccolith calcite than carbonate-rich sediments where overgrowth is ubiquitous. The preservation of primary coccolith carbonate in low-carbonate lithologies thus provides a reliable geochemical archive where planktonic foraminifera are absent or have undergone neomorphism.
Size-resolved ultrafine particle composition analysis 1. Atlanta
NASA Astrophysics Data System (ADS)
Rhoads, K. P.; Phares, D. J.; Wexler, A. S.; Johnston, M. V.
2003-04-01
During August 1999 as part of the Southern Oxidants Study Supersite Experiment, our group collected size-resolved measurements of the chemical composition of single ambient aerosol particles with a unique real-time laser desorption/ionization mass spectrometry technique. The rapid single-particle mass spectrometry instrument is capable of analyzing "ultrafine" particles with aerodynamic diameters ranging from 0.01 to 1.5 μm. Under the heaviest loading observed in Atlanta, particles were analyzed at a rate of roughly one per second in sizes ranging from 0.1 to 0.2 μm. Nearly 16,000 individual spectra were recorded over the course of the month during both daytime and nighttime sampling periods. Evaluation of the data indicates that the composition of the ultrafine (less than 100 nm) particles is dominated by carbon-containing compounds. Larger particles show varied compositions but typically appeared to have organic carbon characteristics mixed with an inorganic component (e.g., crustal materials, metals, etc.). During the experiment, 70 composition classes were identified. In this paper we report the average spectra and correlations with various meteorological parameters for all major compound classes and a number of minor ones. The major composition classes are identified from the primary peaks in their spectra as organic carbon (about 74% of the particles), potassium (8%), iron (3%), calcium (2%), nitrate (2%), elemental carbon (1.5%), and sodium (1%). Many of these compound classes appeared in repeatable size ranges and quadrants of the wind rose, indicating emission from specific sources.
NASA Astrophysics Data System (ADS)
Barré, Jérôme; Edwards, David; Worden, Helen; Arellano, Avelino; Gaubert, Benjamin; Da Silva, Arlindo; Lahoz, William; Anderson, Jeffrey
2016-09-01
This paper describes the second phase of an Observing System Simulation Experiment (OSSE) that utilizes the synthetic measurements from a constellation of satellites measuring atmospheric composition from geostationary (GEO) Earth orbit presented in part I of the study. Our OSSE is focused on carbon monoxide observations over North America, East Asia and Europe where most of the anthropogenic sources are located. Here we assess the impact of a potential GEO constellation on constraining northern hemisphere (NH) carbon monoxide (CO) using data assimilation. We show how cloud cover affects the GEO constellation data density with the largest cloud cover (i.e., lowest data density) occurring during Asian summer. We compare the modeled state of the atmosphere (Control Run), before CO data assimilation, with the known "true" state of the atmosphere (Nature Run) and show that our setup provides realistic atmospheric CO fields and emission budgets. Overall, the Control Run underestimates CO concentrations in the northern hemisphere, especially in areas close to CO sources. Assimilation experiments show that constraining CO close to the main anthropogenic sources significantly reduces errors in NH CO compared to the Control Run. We assess the changes in error reduction when only single satellite instruments are available as compared to the full constellation. We find large differences in how measurements for each continental scale observation system affect the hemispherical improvement in long-range transport patterns, especially due to seasonal cloud cover. A GEO constellation will provide the most efficient constraint on NH CO during winter when CO lifetime is longer and increments from data assimilation associated with source regions are advected further around the globe.
Diurnal and seasonal variation of various carbon fluxes from an urban tower platform in Houston, TX
NASA Astrophysics Data System (ADS)
Schade, G. W.; Werner, N.; Hale, M. C.
2013-12-01
We measured carbon fluxes (CO2, CO, VOCs) from a tall lattice tower in Houston between 2007 and 2009, and 2011-2013. We present results from various analyses of (i) anthropogenic and biogenic CO2 fluxes using a quadrant segregation technique, (ii) seasonal and multi-year changes of CO fluxes as related to car traffic and industrial sources, and (iii) the accuracy of, and usefulness of a bulk flux footprint model to quantify pentane emissions form a distant source in comparison to permitted emission levels. Segregated and net anthropogenic CO2 fluxes were dominated by car traffic but industrial sources were identified as well. Emissions sank to minimal levels after hurricane Ike had passed over Houston, causing a traffic shutdown and lower population density. Segregated biogenic fluxes showed a clear seasonal variation with photosynthetic activity between April and November, and large effects of the 2011 Texas drought due to negligible irrigation in the study area. Carbon monoxide fluxes, measured via a flux gradient technique, are even stronger dominated by car traffic than CO2 fluxes and serve as a traffic tracer. Our data show a continued drop in emissions over time, seasonal changes with higher emissions during winter, and local influences due to industrial emissions. Lastly, we present the results of a tracer release study and a single point source quantification to test a bulk footprint model in this complex urban area. Known releases of volatile acetone and MEK were compered to measured fluxes using a REA-GC-FID system, and permit emissions of pentane from a foam plastics manufacturing facility were compared to measured pentane fluxes. Both comparisons reveal a surprisingly accurate performance of the footprint model within a factor of 2.
NASA Technical Reports Server (NTRS)
Barre, Jerome; Edwards, David; Worden, Helen; Arellano, Avelino; Gaubert, Benjamin; Da Silva, Arlindo; Lahoz, William; Anderson, Jeffrey
2016-01-01
This paper describes the second phase of an Observing System Simulation Experiment (OSSE) that utilizes the synthetic measurements from a constellation of satellites measuring atmospheric composition from geostationary (GEO) Earth orbit presented in part I of the study. Our OSSE is focused on carbon monoxide observations over North America, East Asia and Europe where most of the anthropogenic sources are located. Here we assess the impact of a potential GEO constellation on constraining northern hemisphere (NH) carbon monoxide (CO) using data assimilation. We show how cloud cover affects the GEO constellation data density with the largest cloud cover (i.e., lowest data density) occurring during Asian summer. We compare the modeled state of the atmosphere (Control Run), before CO data assimilation, with the known 'true' state of the atmosphere (Nature Run) and show that our setup provides realistic atmospheric CO fields and emission budgets. Overall, the Control Run underestimates CO concentrations in the northern hemisphere, especially in areas close to CO sources. Assimilation experiments show that constraining CO close to the main anthropogenic sources significantly reduces errors in NH CO compared to the Control Run. We assess the changes in error reduction when only single satellite instruments are available as compared to the full constellation. We find large differences in how measurements for each continental scale observation system affect the hemispherical improvement in long-range transport patterns, especially due to seasonal cloud cover. A GEO constellation will provide the most efficient constraint on NH CO during winter when CO lifetime is longer and increments from data assimilation associated with source regions are advected further around the globe.
Li, Liang; Hale, McKenzie; Olsen, Petra; Berge, Nicole D
2014-11-01
Hydrothermal carbonization (HTC) is a thermal conversion process that can be an environmentally beneficial approach for the conversion of municipal solid wastes to value-added products. The influence of using activated sludge and landfill leachate as initial moisture sources during the carbonization of paper, food waste and yard waste over time at 250°C was evaluated. Results from batch experiments indicate that the use of activated sludge and landfill leachate are acceptable alternative supplemental liquid sources, ultimately imparting minimal impact on carbonization product characteristics and yields. Regression results indicate that the initial carbon content of the feedstock is more influential than any of the characteristics of the initial liquid source and is statistically significant when describing the relationship associated with all evaluated carbonization products. Initial liquid-phase characteristics are only statistically significant when describing the solids energy content and the mass of carbon in the gas-phase. The use of these alternative liquid sources has the potential to greatly increase the sustainability of the carbonization process. A life cycle assessment is required to quantify the benefits associated with using these alternative liquid sources. Copyright © 2014 Elsevier Ltd. All rights reserved.
López-Andarias, Javier; López, Juan Luis; Atienza, Carmen; Brunetti, Fulvio G; Romero-Nieto, Carlos; Guldi, Dirk M; Martín, Nazario
2014-04-29
The construction of ordered single-wall carbon nanotube soft-materials at the nanoscale is currently an important challenge in science. Here we use single-wall carbon nanotubes as a tool to gain control over the crystalline ordering of three-dimensional bulk materials composed of suitably functionalized molecular building blocks. We prepare p-type nanofibres from tripeptide and pentapeptide-containing small molecules, which are covalently connected to both carboxylic and electron-donating 9,10-di(1,3-dithiol-2-ylidene)-9,10-dihydroanthracene termini. Adding small amounts of single-wall carbon nanotubes to the so-prepared p-nanofibres together with the externally controlled self assembly by charge screening by means of Ca(2+) results in new and stable single-wall carbon nanotube-based supramolecular gels featuring remarkably long-range internal order.
Improved Nitrogen Removal Effect In Continuous Flow A2/O Process Using Typical Extra Carbon Source
NASA Astrophysics Data System (ADS)
Wu, Haiyan; Gao, Junyan; Yang, Dianhai; Zhou, Qi; Cai, Bijing
2010-11-01
In order to provide a basis for optimal selection of carbon source, three typical external carbon sources (i.e. methanol, sodium acetate and leachate) were applied to examine nitrogen removal efficiency of continuous flow A2/O system with the influent from the effluent of grit chamber in the second Kunming wastewater treatment plant. The best dosage was determined, and the specific nitrogen removal rate and carbon consumption rate were calculated with regard to individual external carbon source in A2/O system. Economy and technology analysis was also conducted to select the suitable carbon source with a low operation cost. Experimental results showed that the external typical carbon source caused a remarkable enhancement of system nitrate degradation ability. In comparison with the blank test, the average TN and NH3-N removal efficiency of system with different dosing quantities of external carbon source was improved by 15.2% and 34.2%, respectively. The optimal dosage of methanol, sodium acetate and leachate was respectively up to 30 mg/L, 40 mg/L and 100 mg COD/L in terms of a high nitrogen degradation effect. The highest removal efficiency of COD, TN and NH3-N reached respectively 92.3%, 73.9% and 100% with methanol with a dosage of 30 mg/L. The kinetic analysis and calculation revealed that the greatest denitrification rate was 0.0107 mg TN/mg MLVSSṡd with sodium acetate of 60 mg/L. As to carbon consumption rate, however, the highest value occurred in the blank test with a rate of 0.1955 mg COD/mg MLVSSṡd. Also, further economic analysis proved leachate to be pragmatic external carbon source whose cost was far cheaper than methanol.
Trichoderma Reesei single cell protein production from rice straw pulp in solid state fermentation
NASA Astrophysics Data System (ADS)
Zaki, M.; Said, S. D.
2018-04-01
The dependency on fish meal as a major protein source for animal feed can lead toit priceinstability in line with the increasing in meat production and consumption in Indonesia. In order todeal with this problem, an effort to produce an alternative protein sources production is needed. This scenario is possible due to the abundantavailability of agricultural residues such as rice straw whichcould be utilized as substrate for production of single cell proteins as an alternative proteinsource. This work investigated the potential utilization of rice straw pulp and urea mixture as substrate for the production of local Trichoderma reesei single cell protein in solid state fermentation system. Some parameters have been analyzed to evaluate the effect of ratio of rice straw pulp to urea on mixed single cell protein biomass (mixed SCP biomass) composition, such as total crude protein (analyzed by kjedhal method) and lignin content (TAPPI method).The results showed that crude protein content in mixed SCP biomassincreases with the increasing in fermentation time, otherwise it decreases with the increasing insubstrate carbon to nitrogen (C/N) ratio. Residual lignin content in mixed SCP biomass decreases from 7% to 0.63% during fermentationproceeded of 21 days. The highest crude protein content in mixed SCP biomasswas obtained at substrate C/N ratio 20:1 of 25%.
Miao, Lei; Wang, Shuying; Li, Baikun; Cao, Tianhao; Zhang, Fangzhai; Wang, Zhong; Peng, Yongzhen
2016-09-01
Glycogen accumulating organisms (GAOs) capable of storing organic compounds as polyhydroxyalkanoate (PHA) have been used for endogenous denitritation (ED), but the effect of carbon sources type on nitrogen removal performance of GAOs treating landfill leachate is unclear. In this study, a successful ED system treating landfill leachate (COD/NH4(+)-N (C/N): 4) without external carbon source addition was applied. The mature leachate with C/N of 1 was used as the feeding base solution, with acetate, propionate, and glucose examined as the carbon sources, and their effects on yields and compositions of PHA produced by GAOs were determined and associated with nitrogen removal performance. In the case of sole carbon source, acetate was much easier to be stored than propionate and glucose, which led to a higher nitrogen removal efficiency. Glucose had the lowest amount of PHA storage and led to the lowest performance. In the case of composite carbon sources (two scenarios: acetate + propionate; acetate + propionate + glucose), GAOs stored sufficient PHA and exhibited similar nitrogen removal efficiencies. Moreover, type of carbon source influenced the compositions of PHA. The polyhydroxybutyrate (PHB) fraction in PHA was far more than polyhydroxyvalerate (PHV) in all tests. PHV was synthesized only when acetate existed in carbon source. The microbial diversity analysis revealed that Proteobacteria was the most abundant phylum. Among the 108 genera detected in this ED system, the genera responsible for denitritation were Thauera, Paracoccus, Ottowia and Comamonadaceae_unclassified, accounting for 46.21% of total bacteria. Especially, Paracoccus and Comamonadaceae_unclassified transformed the carbon source into PHA for denitritation, and carried out endogenous denitritation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lueking, Angela [State College, PA; Narayanan, Deepa [Redmond, WA
2011-03-08
A process for making a hydrogenated carbon material is provided which includes forming a mixture of a carbon source, particularly a carbonaceous material, and a hydrogen source. The mixture is reacted under reaction conditions such that hydrogen is generated and/or released from the hydrogen source, an amorphous diamond-like carbon is formed, and at least a portion of the generated and/or released hydrogen associates with the amorphous diamond-like carbon, thereby forming a hydrogenated carbon material. A hydrogenated carbon material including a hydrogen carbon clathrate is characterized by evolution of molecular hydrogen at room temperature at atmospheric pressure in particular embodiments of methods and compositions according to the present invention.
Carbon nanotubes buckypaper radiation studies for medical physics applications.
Alanazi, Abdulaziz; Alkhorayef, Mohammed; Alzimami, Khalid; Jurewicz, Izabela; Abuhadi, Nouf; Dalton, Alan; Bradley, D A
2016-11-01
Graphite ion chambers and semiconductor diode detectors have been used to make measurements in phantoms but these active devices represent a clear disadvantage when considered for in vivo dosimetry. In such circumstance, dosimeters with atomic number similar to human tissue are needed. Carbon nanotubes have properties that potentially meet the demand, requiring low voltage in active devices and an atomic number similar to adipose tissue. In this study, single-wall carbon nanotubes (SWCNTs) buckypaper has been used to measure the beta particle dose deposited from a strontium-90 source, the medium displaying thermoluminescence at potentially useful sensitivity. As an example, the samples show a clear response for a dose of 2Gy. This finding suggests that carbon nanotubes can be used as a passive dosimeter specifically for the high levels of radiation exposures used in radiation therapy. Furthermore, the finding points towards further potential applications such as for space radiation measurements, not least because the medium satisfies a demand for light but strong materials of minimal capacitance. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cui, Xiangzhi; Shi, Jianlin; Wang, Yongxia; Chen, Yu; Zhang, Lingxia; Hua, Zile
2014-01-01
As one of the most important clean energy sources, proton exchange membrane fuel cells (PEMFCs) have been a topic of extensive research focus for decades. Unfortunately, several critical technique obstacles, such as the high cost of platinum electrode catalysts, performance degradation due to the CO poisoning of the platinum anode, and carbon corrosion by oxygen in the cathode, have greatly impeded its commercial development. A prototype of a single PEMFC catalyzed by a mesostructured platinum-free WO3/C anode and a mesostructured carbon-free Pt/WC cathode catalysts is reported herein. The prototype cell exhibited 93% power output of a standard PEMFC using commercial Pt/C catalysts at 50 and 70 °C, and more importantly, CO poisoning-free and carbon corrosion-resistant characters of the anode and cathode, respectively. Consequently, the prototype cell demonstrated considerably enhanced cell operation durability. The mesostructured electrode catalysts are therefore highly promising in the future development and application of PEMFCs. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Direct Carbon Fuel Cells: Converting Waste to Electricity
2007-09-01
Contained energy DCFC single cell ....................................................................................20 10 Direct Carbon...to convert the chemical energy in solid carbon particles directly to electricity in single cell systems with (an experimentally verified...at the polarized condition. The reactivity of carbon is affected by many properties, such as crystallization , electrical conductivity, surface area
Adsorption of hydrophobic organic contaminants (HOCs) to black carbon is a well studied phenomenon. One emerging class of engineered black carbon materials are single-walled carbon nanotubes (SWNT). Little research has investigated the potential of SWNT to adsorb and sequester HO...
Method for the production of dicarboxylic acids
Nghiem, N.P.; Donnelly, M.; Millard, C.S.; Stols, L.
1999-02-09
The present invention is an economical fermentation method for the production of carboxylic acids comprising the steps of (a) inoculating a medium having a carbon source with a carboxylic acid-producing organism; (b) incubating the carboxylic acid-producing organism in an aerobic atmosphere to promote rapid growth of the organism thereby increasing the biomass of the organism; (c) controllably releasing oxygen to maintain the aerobic atmosphere; (d) controllably feeding the organism having increased biomass with a solution containing the carbon source to maintain the concentration of the carbon source within the medium of about 0.5 g/l up to about 1 g/l; (e) depriving the aerobic atmosphere of oxygen to produce an anaerobic atmosphere to cause the organism to undergo anaerobic metabolism; (f) controllably feeding the organism having increased biomass a solution containing the carbon source to maintain the concentration of the carbon source within the medium of {>=}1 g/l; and (g) converting the carbon source to carboxylic acids using the anaerobic metabolism of the organism. 7 figs.
Method for the production of dicarboxylic acids
Nghiem, Nhuan Phu; Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy
1999-01-01
The present invention is an economical fermentation method for the production of carboxylic acids comprising the steps of a) inoculating a medium having a carbon source with a carboxylic acid-producing organism; b) incubating the carboxylic acid-producing organism in an aerobic atmosphere to promote rapid growth of the organism thereby increasing the biomass of the organism; c) controllably releasing oxygen to maintain the aerobic atmosphere; d) controllably feeding the organism having increased biomass with a solution containing the carbon source to maintain the concentration of the carbon source within the medium of about 0.5 g/L up to about 1 g/L; e) depriving the aerobic atmosphere of oxygen to produce an anaerobic atmosphere to cause the organism to undergo anaerobic metabolism; f) controllably feeding the organism having increased biomass a solution containing the carbon source to maintain the concentration of the carbon source within the medium of .gtoreq.1 g/L; and g) converting the carbon source to carboxylic acids using the anaerobic metabolism of the organism.
Synthesis and characterization of carbon nanotube from coconut shells activated carbon
NASA Astrophysics Data System (ADS)
Melati, A.; Hidayati, E.
2016-03-01
Carbon nanotubes (CNTs) have been explored in almost every single cancer treatment modality, including drug delivery, lymphatic targeted chemotherapy, photodynamic therapy, and gene therapy. They are considered as one of the most promising nanomaterial with the capability of both detecting the cancerous cells and delivering drugs or small therapeutic molecules to the cells. CNTs have unique physical and chemical properties such as high aspect ratio, ultralight weight, high mechanical strength, high electrical conductivity, and high thermal conductivity. Coconut Shell was researched as active carbon source on 500 - 600°C. These activated carbon was synthesized becomes carbon nanotube and have been proposed as a promising tool for detecting the expression of indicative biological molecules at early stage of cancer. Clinically, biomarkers cancer can be detected by CNT Biosensor. We are using pyrolysis methods combined with CVD process or Wet Chemical Process on 600°C. Our team has successfully obtained high purity, and aligned MWCNT (Multi Wall Nanotube) bundles on synthesis CNT based on coconut shells raw materials. CNTs can be used to cross the mammalian cell membrane by endocytosis or other mechanisms. SEM characterization of these materials have 179 nm bundles on phase 83° and their materials compound known by using FTIR characterization.
Rhodium-catalysed syn-carboamination of alkenes via a transient directing group.
Piou, Tiffany; Rovis, Tomislav
2015-11-05
Alkenes are the most ubiquitous prochiral functional groups--those that can be converted from achiral to chiral in a single step--that are accessible to synthetic chemists. For this reason, difunctionalization reactions of alkenes (whereby two functional groups are added to the same double bond) are particularly important, as they can be used to produce highly complex molecular architectures. Stereoselective oxidation reactions, including dihydroxylation, aminohydroxylation and halogenation, are well established methods for functionalizing alkenes. However, the intermolecular incorporation of both carbon- and nitrogen-based functionalities stereoselectively across an alkene has not been reported. Here we describe the rhodium-catalysed carboamination of alkenes at the same (syn) face of a double bond, initiated by a carbon-hydrogen activation event that uses enoxyphthalimides as the source of both the carbon and the nitrogen functionalities. The reaction methodology allows for the intermolecular, stereospecific formation of one carbon-carbon and one carbon-nitrogen bond across an alkene, which is, to our knowledge, unprecedented. The reaction design involves the in situ generation of a bidentate directing group and the use of a new cyclopentadienyl ligand to control the reactivity of rhodium. The results provide a new way of synthesizing functionalized alkenes, and should lead to the convergent and stereoselective assembly of amine-containing acyclic molecules.
Photovoltaic device using single wall carbon nanotubes and method of fabricating the same
Biris, Alexandru S.; Li, Zhongrui
2012-11-06
A photovoltaic device and methods for forming the same. In one embodiment, the photovoltaic device has a silicon substrate, and a film comprising a plurality of single wall carbon nanotubes disposed on the silicon substrate, wherein the plurality of single wall carbon nanotubes forms a plurality of heterojunctions with the silicon in the substrate.
High flux table-top ultrafast soft X-ray source generated by high harmonic generation
NASA Astrophysics Data System (ADS)
Thiré, Nicolas; Schmidt, Bruno E.; Fourmeaux, Sylvain; Beaulieu, Samuel; Cardin, Vincent; Negro, Matteo; Kieffer, Jean-Claude; Vozzi, Caterina; Legare, François
2014-05-01
Generation of ultrafast soft X-ray pulses is a major challenge for conventional laboratories. Using the process of HHG enables generation of such short wavelength photons. Intense laser sources in the infrared are necessary to reach the soft X-ray spectral range as the HHG cut-off scales with Iλ2. However, in the limit of the single atom response, increasing the laser wavelength leads to a significant decrease of the HHG flux. To compensate, one has to increase the number of emitters with high ionization potential. At the Advanced Laser Light Source, we have addressed this challenge by using a new gas cell design and developing a 10 mJ - 30 fs source at 1.8 μm. Using this setup, we have been able to generate harmonics in the water window spectral range for neon and helium with short time duration (<30 fs) in a conventional laboratory. A flux measurement has been performed showing ~ 2 × 105 photons/shot between 280 and 540 eV, making it possible to see the carbon k-edge at 280eV in a single shot manner. This soft X-ray beam is also extremely well collimated (0.1 mrad) making it this table-top beamline ideal for a number of applications.
Morphology and topography study of graphene synthesized from plant oil
NASA Astrophysics Data System (ADS)
Robaiah, M.; Rusop, M.; Abdullah, S.; Khusaimi, Z.; Azhan, H.; Laila, M. O.; Salifairus, M. J.; Asli, N. A.
2018-05-01
The graphene is material consists of bonded atom carbon atoms in sheet form one atom thick. The different types of carbon sources which are refined corn oil, palm oil and waste cooking palm oil were used as carbon feedstock to supply carbon atom for synthesizing graphene on the nickel substrate by thermal chemical vapour deposition. The substrate and carbon sources were placed in double zone furnaces. The carbon sources and the substrate were heated at 300 °C and 900 °C respectively. The both furnaces were switched off after synthesis time for cooling process finish. The formation of the graphene on the Ni surface appears due to segregation and precipitation of a high amount of carbon from the source material during the cooling process. FESEM, AFM, UV-VIS Spectroscopy and Raman Spectroscopy were used to characterize and synthesized graphene.
New PHA products using unrelated carbon sources
Matias, Fernanda; de Andrade Rodrigues, Maria Filomena
2011-01-01
Polyhydroxyalkanoates (PHA) are natural polyesters stored by a wide range of bacteria as carbon source reserve. Due to its chemical characteristics and biodegradability PHA can be used in chemical, medical and pharmaceutical industry for many human purposes. Over the past years, few Burkholderia species have become known for production of PHA. Aside from that, these bacteria seem to be interesting for discovering new PHA compositions which is important to different industrial applications. In this paper, we introduce two new strains which belong either to Burkholderia cepacia complex (Bcc) or genomovar-type, Burkholderia cepacia SA3J and Burkholderia contaminans I29B, both PHA producers from unrelated carbon sources. The classification was based on 16S rDNA and recA partial sequence genes and cell wall fatty acids composition. These two strains were capable to produce different types of PHA monomers or precursors. Unrelated carbon sources were used for growth and PHA accumulation. The amount of carbon source evaluated, or mixtures of them, was increased with every new experiment until it reaches eighteen carbon sources. As first bioprospection experiments staining methods were used with colony fluorescent dye Nile Red and the cell fluorescent dye Nile Blue A. Gas chromatography analysis coupled to mass spectrometry was used to evaluate the PHA composition on each strain cultivated on different carbon sources. The synthesized polymers were composed by short chain length-PHA (scl-PHA), especially polyhydroxybutyrate, and medium chain length-PHA (mcl-PHA) depending on the carbon source used. PMID:24031764
NASA Astrophysics Data System (ADS)
Dolan, K. A.; DeCola, P.; Dubayah, R.; Huang, W.; Hurtt, G. C.; Tang, H.; Whitehurst, A.
2017-12-01
As societies move towards increased valuation of carbon through markets, regulations, and voluntary agreements the need to develop comprehensive, traceable and continuous, carbon monitoring, reporting and verification (MRV) systems has risen in priority locally to globally. Future landuse decisions, to conserve, develop or reforest, rests on the perceived valuation of anthropogenic and ecological benefits, as well as our ability to measure, report, verify, and "project" those benefits. Two carbon markets in the US, the Regional Green House Gas Initiative (RGGI) and the California Cap and Trade, accept carbon credits or offsets from the forestry sector from avoided emissions through forest conservation, by the enhancement land carbon sequestration through improved forest management and through reforestation projects. These investments often go beyond state, and national boundaries. For example, Blue Source a leading investment firm in forest carbon credits invested in over 20,000 acres of Pennsylvania forests in collaboration with The Nature Conservatory (TNC) Forest Conservation Program. Further local to national governments are writing their own climate policies and regulations and are setting targets for forest carbon storage and sequestration as part of their climate action portfolios. Yet, often little resources or effort is left for monitoring the success of projects such as afforestation initiatives once they have been completed. While field data is critical to monitoring efforts, covering the vast areas needed and getting accurate structural information from field campaigns alone can be difficult and costly. The use of Lidar as a supplement to other developed forest monitoring techniques has advanced significantly over the last decade. Here we evaluate the use of single photon lidar (SPL) collected in the summer of 2015, developed for rapidly collecting high-density, three-dimensional data over a variety of terrain targets, to aid in carbon offset MRV on an 8 ha site reforested in 2002 in central Maryland, USA. With two previous comprehensive field inventories measuring every tree in 2004 and 2013, as well as two county-wide leaf off small footprint lidar campaigns (1pt/m2) in 2004 and 2011, this site represents an ideal candidate to research afforestation MRV capabilities and requirements.
NASA Astrophysics Data System (ADS)
Hu, Xiang; Zhang, Jing; Hou, Hongxun
2018-01-01
The aim of this study was to investigate the effects of two different external carbon sources (acetate and ethanol) on the nitrous oxide (N2O) emissions during denitrification in biological nutrient removal processes. Results showed that external carbon source significantly influenced N2O emissions during the denitrification process. When acetate served as the external carbon source, 0.49 mg N/L and 0.85 mg N/L of N2O was produced during the denitrificaiton processes in anoxic and anaerobic/anoxic experiments, giving a ratio of N2O-N production to TN removal of 2.37% and 4.96%, respectively. Compared with acetate, the amount of N2O production is negligible when ethanol used as external carbon addition. This suggested that ethanol is a potential alternative external carbon source for acetate from the point of view of N2O emissions.
Dissolved Carbon Fluxes During the 2017 Mississippi River Flood
NASA Astrophysics Data System (ADS)
Reiman, J. H.; Xu, Y. J.
2017-12-01
The Mississippi River drains approximately 3.2 million square kilometres of land and discharges about 680 cubic kilometres of water into the Northern Gulf of Mexico annually, acting as a significant medium for carbon transport from land to the ocean. A few studies have documented annual carbon fluxes in the river, however it is unclear whether floods can create riverine carbon pulses. Such information is critical in understanding the effects that extreme precipitation events may have on carbon transport under the changing climate. We hypothesize that carbon concentration and mass loading will increase in response to an increase in river discharge, creating a carbon pulse, and that the source of carbon varies from river rising to falling due to terrestrial runoff processes. This study investigated dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) loadings during the 2017 Mississippi River early-summer flood. Water samples were taken from the Mississippi River at Baton Rouge on the rising limb, crest, and falling limb of the flood. All samples were analysed for concentrations of DOC, DIC, and their respective isotopic signature (δ13C). Partial pressure of carbon dioxide (pCO2) was also recorded in the field at each sampling trip. Additionally, the water samples were analysed for nutrients, dissolved metals, and suspended solids, and in-situ measurements were made on water temperature, pH, dissolved oxygen, and specific conductance. The preliminary findings suggest that carbon species responded differently to the flood event and that δ13C values were dependent on river flood stage. This single flood event transported a large quantity of carbon, indicating that frequent large pulses of riverine carbon should be expected in the future as climate change progresses.
Kritcher, A. L.; Neumayer, P.; Lee, H. J.; ...
2008-10-31
Here, we present K-α x-ray Thomson scattering from shock compressed matter for use as a diagnostic in determining the temperature, density, and ionization state with picosecond resolution. The development of this source as a diagnostic as well as stringent requirements for successful K-α x-ray Thomson scattering are addressed. Here, the first elastic and inelastic scattering measurements on a medium size laser facility have been observed. We present scattering data from solid density carbon plasmas with >1X 10 5 photons in the elastic peak that validate the capability of single shot characterization of warm dense matter and the ability to usemore » this scattering source at future free electron lasers and for fusion experiments at the National Ignition Facility (NIF), LLNL.« less
The quest for inorganic fullerenes
NASA Astrophysics Data System (ADS)
Pietsch, Susanne; Dollinger, Andreas; Strobel, Christoph H.; Park, Eun Ji; Ganteför, Gerd; Seo, Hyun Ook; Kim, Young Dok; Idrobo, Juan-Carlos; Pennycook, Stephen J.
2015-10-01
Experimental results of the search for inorganic fullerenes are presented. MonSm- and WnSm- clusters are generated with a pulsed arc cluster ion source equipped with an annealing stage. This is known to enhance fullerene formation in the case of carbon. Analogous to carbon, the mass spectra of the metal chalcogenide clusters produced in this way exhibit a bimodal structure. The species in the first maximum at low mass are known to be platelets. Here, the structure of the species in the second maximum is studied by anion photoelectron spectroscopy, scanning transmission electron microscopy, and scanning tunneling microcopy. All experimental results indicate a two-dimensional structure of these species and disagree with a three-dimensional fullerene-like geometry. A possible explanation for this preference of two-dimensional structures is the ability of a two-element material to saturate the dangling bonds at the edges of a platelet by excess atoms of one element. A platelet consisting of a single element only cannot do this. Accordingly, graphite and boron might be the only materials forming nano-spheres because they are the only single element materials assuming two-dimensional structures.
Suicide from carbon monoxide poisoning in South Korea: 2006-2012.
Choi, Young-Rim; Cha, Eun Shil; Chang, Shu-Sen; Khang, Young-Ho; Lee, Won Jin
2014-01-01
Suicide from carbon monoxide poisoning by burning coal briquette or barbecue charcoal increased rapidly in some East Asian countries in the recent decade. The purpose of this study was to examine trends in suicides from carbon monoxide poisoning in South Korea and their epidemiologic characteristics. We presented age-standardized mortality rates of carbon monoxide suicide and compared them with those of suicide by other methods using registered death data from Statistics Korea (South Korea) from 2006 to 2012. Logistic regression analysis was conducted to estimate odds ratios of carbon monoxide suicide by socio-demographic characteristics before and after the marked increase in carbon monoxide suicide in September 2008. The number of carbon monoxide suicides in South Korea was only 34 in 2006 but rapidly increased to 267 in 2008 and was 1125 in 2012, with the age-standardized rates of 0.06 (2006), 0.48 (2008), and 1.97 (2012) per 100,000 population respectively (a striking 3,183% increase in 2006-2012). Suicide by carbon monoxide poisoning showed greater odds ratios among men, younger age groups, single or the divorced, and those with high education and non-manual jobs compared with suicides by other methods. This study only used data for fatal self-poisoning by carbon monoxide (non-fatal cases not included) and had no information on the sources of carbon monoxide. Carbon monoxide suicides substantially increased in South Korea over the relatively short study period and showed some distinct socio-demographic characteristics compared with suicides by other methods. Copyright © 2014 Elsevier B.V. All rights reserved.
Deep mantle: Enriched carbon source detected
NASA Astrophysics Data System (ADS)
Barry, Peter H.
2017-09-01
Estimates of carbon in the deep mantle vary by more than an order of magnitude. Coupled volcanic CO2 emission data and magma supply rates reveal a carbon-rich mantle plume source region beneath Hawai'i with 40% more carbon than previous estimates.
Thermal-optical analysis (TOA) is typically used to measure the OC/EC (organic carbon/elemental carbon) and EC/TC (elemental carbon/total carbon) ratios in source and atmospheric aerosols. The present study utilizes a dual-optical carbon aerosol analyzer to examine the effects of...
Xiang, Hong; Lü, Xi-Wu; Yang, Fei; Yin, Li-Hong; Zhu, Guang-Can
2011-04-01
In order to explore characteristics of microbial community and operation efficiency in biofilter (biologically-enhanced active filter and biological activated carbon filter) process for drinking water purification, Biolog and polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) techniques were applied to analyze the metabolic function and structure of microbial community developing in biofilters. Water quality parameters, such as NH; -N, NO; -N, permanganate index, UV254 and BDOC etc, were determined in inflow and outflow of biofilters for investigation of operation efficiency of the biofilters. The results show that metabolic capacity of microbial community of the raw water is reduced after the biofilters, which reflect that metabolically active microbial communities in the raw water can be intercepted by biofilters. After 6 months operation of biofilters, the metabolic profiles of microbial communities are similar between two kinds of biologically-enhanced active filters, and utilization of carbon sources of microbial communities in the two filters are 73.4% and 75.5%, respectively. The metabolic profiles of microbial communities in two biological activated carbon filters showed significant difference. The carbon source utilization rate of microbial community in granule-activated carbon filter is 79.6%, which is obviously higher than 53.8% of the rate in the columnar activated carbon filter (p < 0.01). The analysis results of PCR-SSCP indicate that microbial communities in each biofilter are variety, but the structure of dominant microorganisms is similar among different biofilters. The results also show that the packing materials had little effect on the structure and metabolic function of microbial community in biologically-enhanced active filters, and the difference between two biofilters for the water purification efficiency was not significant (p > 0.05). However, in biological activated carbon filters, granule-activated carbon is conducive to microbial growth and reproduction, and the microbial communities in the biofilter present high metabolic activities, and the removal efficiency for NH4(+)-N, permanganate index and BDOC is better than the columnar activated carbon filter(p < 0.05). The results also suggest that operation efficiency of biofilter is related to the metabolic capacity of microbial community in biofilter.
Methods for Gas Sensing with Single-Walled Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Kaul, Anupama B. (Inventor)
2013-01-01
Methods for gas sensing with single-walled carbon nanotubes are described. The methods comprise biasing at least one carbon nanotube and exposing to a gas environment to detect variation in temperature as an electrical response.
Constraining the subsoil carbon source to cave-air CO2 and speleothem calcite in central Texas
NASA Astrophysics Data System (ADS)
Bergel, Shelly J.; Carlson, Peter E.; Larson, Toti E.; Wood, Chris T.; Johnson, Kathleen R.; Banner, Jay L.; Breecker, Daniel O.
2017-11-01
Canonical models for speleothem formation and the subsurface carbon cycle invoke soil respiration as the dominant carbon source. However, evidence from some karst regions suggests that belowground CO2 originates from a deeper, older source. We therefore investigated the carbon sources to central Texas caves. Drip-water chemistry of two caves in central Texas implies equilibration with calcite at CO2 concentrations (PCO2_sat) higher than the maximum CO2 concentrations observed in overlying soils. This observation suggests that CO2 is added to waters after they percolate through the soils, which requires a subsoil carbon source. We directly evaluate the carbon isotope composition of the subsoil carbon source using δ13C measurements on cave-air CO2, which we independently demonstrate has little to no contribution from host rock carbon. We do so using the oxidative ratio, OR, defined as the number of moles of O2 consumed per mole of CO2 produced during respiration. However, additional belowground processes that affect O2 and CO2 concentrations, such as gas-water exchange and/or diffusion, may also influence the measured oxidative ratio, yielding an apparent OR (ORapparent). Cave air in Natural Bridge South Cavern has ORapparent values (1.09 ± 0.06) indistinguishable from those expected for respiration alone (1.08 ± 0.06). Pore space gases from soils above the cave have lower values (ORapparent = 0.67 ± 0.05) consistent with respiration and gas transport by diffusion. The simplest explanation for these observations is that cave air in NB South is influenced by respiration in open-system bedrock fractures such that neither diffusion nor exchange with water influence the composition of the cave air. The radiocarbon activities of NB South cave-air CO2 suggest the subsoil carbon source is hundreds of years old. The calculated δ13C values of the subsoil carbon source are consistent with tree-sourced carbon (perhaps decomposing root matter), the δ13C values of which have shifted during industrialization due to changes in the δ13C values and concentrations of atmospheric CO2. Seasonal variations in PCO2_sat in most of the drip waters suggest that these waters exchange with ventilated bedrock fractures in the epikarst, implying that the subsoil CO2 source contributes carbon to speleothems.
Recent progress in the development of a SPARROW model of sediment for the conterminous U.S.
Schwarz, Gregory; Smith, Richard; Alexander, Richard; Gray, John
2003-01-01
Suspended sediment has long been recognized as an important contaminant affecting water resources. Besides its direct role in determining water clarity, bridge scour and reservoir storage, sediment serves as a vehicle for the transport of many binding contaminants, including nutrients, trace metals, semi- volatile organic compounds, and numerous pesticides (U.S. Environmental Protection Agency 2000a). Recent efforts to address water quality concerns through the TMDL process have identified sediment as the single most prevalent cause of impairment in the Nation’s streams and rivers (U.S. Environmental Protection Agency 2000b). Moreover, sediment has been identified as a medium for the transport and sequestration of organic carbon, playing a potentially important role in understanding sources and sinks in the global carbon budget (Stallard 1998).
NASA Technical Reports Server (NTRS)
Arepalli, S.; Fireman, H.; Huffman, C.; Maloney, P.; Nikolaev, P.; Yowell, L.; Kim, K.; Kohl, P. A.; Higgins, C. D.; Turano, S. P.
2005-01-01
Electrochemical double-layer capacitors, or supercapacitors, have tremendous potential as high-power energy sources for use in low-weight hybrid systems for space exploration. Electrodes based on single-wall carbon nanotubes (SWCNTs) offer exceptional power and energy performance due to the high surface area, high conductivity, and the ability to functionalize the SWCNTs to optimize capacitor properties. This paper will report on the preparation of electrochemical capacitors incorporating SWCNT electrodes and their performance compared with existing commercial technology. Preliminary results indicate that substantial increases in power and energy density are possible. The effects of nanotube growth and processing methods on electrochemical capacitor performance is also presented. The compatibility of different SWCNTs and electrolytes was studied by varying the type of electrolyte ions that accumulate on the high-surface-area electrodes.
2011-01-01
On February 15, 2008, the National Academy of Engineering unveiled their list of 14 Grand Challenges for Engineering. Building off of tremendous advancements in the past century, these challenges were selected for their role in assuring a sustainable existence for the rapidly increasing global community. It is no accident that the first five Challenges on the list involve the development of sustainable energy sources and management of environmental resources. While the focus of this review is to address the single Grand Challenge of "develop carbon sequestration methods", is will soon be clear that several other Challenges are intrinsically tied to it through the principles of sustainability. How does the realm of biological engineering play a role in addressing these Grand Challenges? PMID:22047501
40 CFR 458.45 - Standards of performance for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... paragraph, which may be discharged from the carbon black lamp process by a new source subject to the provisions of this subpart: There shall be no discharge of process waste water pollutants to navigable waters. ...) EFFLUENT GUIDELINES AND STANDARDS CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Lamp...
Growth of graphene films from non-gaseous carbon sources
Tour, James; Sun, Zhengzong; Yan, Zheng; Ruan, Gedeng; Peng, Zhiwei
2015-08-04
In various embodiments, the present disclosure provides methods of forming graphene films by: (1) depositing a non-gaseous carbon source onto a catalyst surface; (2) exposing the non-gaseous carbon source to at least one gas with a flow rate; and (3) initiating the conversion of the non-gaseous carbon source to the graphene film, where the thickness of the graphene film is controllable by the gas flow rate. Additional embodiments of the present disclosure pertain to graphene films made in accordance with the methods of the present disclosure.
The influence of various carbon and nitrogen sources on oil production by Fusarium oxysporum.
Joshi, S; Mathur, J M
1987-01-01
The oil-synthesizing capacity of Fusarium oxysporum, cultivated on basal nutrient medium, was evaluated using different carbon and nitrogen sources. In one of the media, molasses was also used as a principal carbon source. Media containing glucose and ammonium nitrate were found to be most efficient for oil production. Fatty acid profile of the fungal oil indicated the presence of a wide range of fatty acids ranging from C8 to C24. Fatty acid composition largely depends on the type of carbon and nitrogen sources.
We report a facile method to accomplish cross-linking reaction of poly (vinyl alcohol) (PVA) with single-wall carbon nanotubes (SWNT), multi-wall carbon nanotubes (MWNT), and Buckminsterfullerene (C-60) using microwave (MW) irradiation. Nanocomposites of PVA cross-linked with SW...
Study on the Microwave Permittivity of Single-Walled Carbon Nanotube
ERIC Educational Resources Information Center
Liu, Xiaolai; Zhao, Donglin
2009-01-01
In this article, we studied the microwave permittivity of the complex of the single-walled carbon nanotube and paraffin in 2-18GHz. In the range, the dielectric loss of single-walled carbon nanotube is higher, and the real part and the imaginary part of the dielectric constant decrease with the increase of frequency, and the dielectric constant…
Alhans, Ruby; Singh, Anukriti; Singhal, Chaitali; Narang, Jagriti; Wadhwa, Shikha; Mathur, Ashish
2018-09-01
In the present work, a comparative study was performed between single-walled carbon nanotubes and multi-walled carbon nanotubes coated gold printed circuit board electrodes for glucose detection. Various characterization techniques were demonstrated in order to compare the modified electrodes viz. cyclic voltammetry, electrochemical impedance spectroscopy and chrono-amperometry. Results revealed that single-walled carbon nanotubes outperformed multi-walled carbon nanotubes and proved to be a better sensing interface for glucose detection. The single-walled carbon nanotubes coated gold printed circuit board electrodes showed a wide linear sensing range (1 mM to 100 mM) with detection limit of 0.1 mM with response time of 5 s while multi-walled carbon nanotubes coated printed circuit board gold electrodes showed linear sensing range (1 mM to 100 mM) with detection limit of 0.1 mM with response time of 5 s. This work provided low cost sensors with enhanced sensitivity, fast response time and reliable results for glucose detection which increased the affordability of such tests in remote areas. In addition, the comparative results confirmed that single-walled carbon nanotubes modified electrodes can be exploited for better amplification signal as compared to multi-walled carbon nanotubes. Copyright © 2018. Published by Elsevier B.V.
Single-Walled Carbon Nanotubes: Mimics of Biological Ion Channels.
Amiri, Hasti; Shepard, Kenneth L; Nuckolls, Colin; Hernández Sánchez, Raúl
2017-02-08
Here we report on the ion conductance through individual, small diameter single-walled carbon nanotubes. We find that they are mimics of ion channels found in natural systems. We explore the factors governing the ion selectivity and permeation through single-walled carbon nanotubes by considering an electrostatic mechanism built around a simplified version of the Gouy-Chapman theory. We find that the single-walled carbon nanotubes preferentially transported cations and that the cation permeability is size-dependent. The ionic conductance increases as the absolute hydration enthalpy decreases for monovalent cations with similar solid-state radii, hydrated radii, and bulk mobility. Charge screening experiments using either the addition of cationic or anionic polymers, divalent metal cations, or changes in pH reveal the enormous impact of the negatively charged carboxylates at the entrance of the single-walled carbon nanotubes. These observations were modeled in the low-to-medium concentration range (0.1-2.0 M) by an electrostatic mechanism that mimics the behavior observed in many biological ion channel-forming proteins. Moreover, multi-ion conduction in the high concentration range (>2.0 M) further reinforces the similarity between single-walled carbon nanotubes and protein ion channels.
Jia, Jia; Yang, Xiaofeng; Wu, Zhiliang; Zhang, Qian; Lin, Zhi; Guo, Hongtao; Lin, Carol Sze Ki; Wang, Jianying; Wang, Yunshan
2015-01-01
Lipase produced by Aspergillus niger is widely used in various industries. In this study, extracellular lipase production from an industrial producing strain of A. niger was improved by medium optimization. The secondary carbon source, nitrogen source, and lipid were found to be the three most influential factors for lipase production by single-factor experiments. According to the statistical approach, the optimum values of three most influential parameters were determined: 10.5 g/L corn starch, 35.4 g/L soybean meal, and 10.9 g/L soybean oil. Using this optimum medium, the best lipase activity was obtained at 2,171 U/mL, which was 16.4% higher than using the initial medium. All these results confirmed the validity of the model. Furthermore, results of the Box-Behnken Design and quadratic models analysis indicated that the carbon to nitrogen (C/N) ratio significantly influenced the enzyme production, which also suggested that more attention should be paid to the C/N ratio for the optimization of enzyme production. PMID:26366414
Amsden, Jason J; Herr, Philip J; Landry, David M W; Kim, William; Vyas, Raul; Parker, Charles B; Kirley, Matthew P; Keil, Adam D; Gilchrist, Kristin H; Radauscher, Erich J; Hall, Stephen D; Carlson, James B; Baldasaro, Nicholas; Stokes, David; Di Dona, Shane T; Russell, Zachary E; Grego, Sonia; Edwards, Steven J; Sperline, Roger P; Denton, M Bonner; Stoner, Brian R; Gehm, Michael E; Glass, Jeffrey T
2018-02-01
Despite many potential applications, miniature mass spectrometers have had limited adoption in the field due to the tradeoff between throughput and resolution that limits their performance relative to laboratory instruments. Recently, a solution to this tradeoff has been demonstrated by using spatially coded apertures in magnetic sector mass spectrometers, enabling throughput and signal-to-background improvements of greater than an order of magnitude with no loss of resolution. This paper describes a proof of concept demonstration of a cycloidal coded aperture miniature mass spectrometer (C-CAMMS) demonstrating use of spatially coded apertures in a cycloidal sector mass analyzer for the first time. C-CAMMS also incorporates a miniature carbon nanotube (CNT) field emission electron ionization source and a capacitive transimpedance amplifier (CTIA) ion array detector. Results confirm the cycloidal mass analyzer's compatibility with aperture coding. A >10× increase in throughput was achieved without loss of resolution compared with a single slit instrument. Several areas where additional improvement can be realized are identified. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Amsden, Jason J.; Herr, Philip J.; Landry, David M. W.; Kim, William; Vyas, Raul; Parker, Charles B.; Kirley, Matthew P.; Keil, Adam D.; Gilchrist, Kristin H.; Radauscher, Erich J.; Hall, Stephen D.; Carlson, James B.; Baldasaro, Nicholas; Stokes, David; Di Dona, Shane T.; Russell, Zachary E.; Grego, Sonia; Edwards, Steven J.; Sperline, Roger P.; Denton, M. Bonner; Stoner, Brian R.; Gehm, Michael E.; Glass, Jeffrey T.
2018-02-01
Despite many potential applications, miniature mass spectrometers have had limited adoption in the field due to the tradeoff between throughput and resolution that limits their performance relative to laboratory instruments. Recently, a solution to this tradeoff has been demonstrated by using spatially coded apertures in magnetic sector mass spectrometers, enabling throughput and signal-to-background improvements of greater than an order of magnitude with no loss of resolution. This paper describes a proof of concept demonstration of a cycloidal coded aperture miniature mass spectrometer (C-CAMMS) demonstrating use of spatially coded apertures in a cycloidal sector mass analyzer for the first time. C-CAMMS also incorporates a miniature carbon nanotube (CNT) field emission electron ionization source and a capacitive transimpedance amplifier (CTIA) ion array detector. Results confirm the cycloidal mass analyzer's compatibility with aperture coding. A >10× increase in throughput was achieved without loss of resolution compared with a single slit instrument. Several areas where additional improvement can be realized are identified.
Andersen, Stephen J; Berton, Jan K E T; Naert, Pieter; Gildemyn, Sylvia; Rabaey, Korneel; Stevens, Christian V
2016-08-23
Ionic liquids can both act as a solvent and mediate esterification to valorize low-titer volatile fatty acids and generate organic solvents from renewable carbon sources including biowaste and CO2 . In this study, four phosphonium ionic liquids were tested for single-stage extraction of acetic acid from a dilute stream and esterification to ethyl acetate with added ethanol and heat. The esterification proceeded with a maximum conversion of 85.9±1.3 % after 30 min at 75 °C at a 1:1 stoichiometric ratio of reactants. Extraction and esterification can be tailored using mixed-anion ionic liquids; this is demonstrated herein using a common trihexyl(tetradecyl)phosphonium cation and a mixed chloride and bis(trifluoromethylsulfonyl)imide anion ionic liquid. As a further proof-of-concept, ethyl acetate was generated from an ionic liquid-driven esterification of an acetic acid extractant generated using CO2 as the only carbon source by microbial electrosynthesis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Carbon Monoxide Epidemic Among Immigrant Populations: King County, Washington, 2006
Kwan-Gett, Tao; Hampson, Neil B.; Baer, Atar; Shusterman, Dennis; Shandro, Jamie R.; Duchin, Jeffrey S.
2009-01-01
Objectives. We investigated an outbreak of carbon monoxide (CO) poisoning after a power outage to determine its extent, identify risk factors, and develop prevention measures. Methods. We reviewed medical records and medical examiner reports of patients with CO poisoning or related symptoms during December 15 to 24, 2006. We grouped patients into households exposed concurrently to a single source of CO. Results. Among 259 patients with CO poisoning, 204 cases were laboratory confirmed, 37 were probable, 10 were suspected, and 8 were fatal. Of 86 households studied, 58% (n = 50) were immigrant households from Africa (n = 21), Asia (n = 15), Latin America (n = 10), and the Middle East (n = 4); 34% (n = 29) were US-born households. One percent of households was European (n = 1), and the origin for 7% (n = 6) was unknown. Charcoal was the most common fuel source used among immigrant households (82%), whereas liquid fuel was predominant among US-born households (34%). Conclusions. Educational campaigns to prevent CO poisoning should consider immigrants’ cultural practices and languages and specifically warn against burning charcoal indoors and incorrect ventilation of gasoline- or propane-powered electric generators. PMID:19608962
Field Emission Properties of Carbon Nanotube Fibers and Sheets for a High Current Electron Source
NASA Astrophysics Data System (ADS)
Christy, Larry
Field emission (FE) properties of carbon nanotube (CNT) fibers from Rice University and the University of Cambridge have been studied for use within a high current electron source for a directed energy weapon. Upon reviewing the performance of these two prevalent CNT fibers, cathodes were designed with CNT fibers from the University of Cincinnati Nanoworld Laboratory. Cathodes composed of a single CNT fiber, an array of three CNT fibers, and a nonwoven CNT sheet were investigated for FE properties; the goal was to design a cathode with emission current in excess of 10 mA. Once the design phase was complete, the cathode samples were fabricated, characterized, and then analyzed to determine FE properties. Electrical conductivity of the CNT fibers was characterized with a 4-probe technique. FE characteristics were measured in an ultra-high vacuum chamber at Wright-Patterson Air Force Base. The arrayed CNT fiber and the enhanced nonwoven CNT sheet emitter design demonstrated the most promising FE properties. Future work will include further analysis and cathode design using this nonwoven CNT sheet material to increase peak current performance during electron emission.
Hoover, David L.; Rogers, Brendan M.
2016-01-01
Climate extremes, such as drought, may have immediate and potentially prolonged effects on carbon cycling. Grasslands store approximately one-third of all terrestrial carbon and may become carbon sources during droughts. However, the magnitude and duration of drought-induced disruptions to the carbon cycle, as well as the mechanisms responsible, remain poorly understood. Over the next century, global climate models predict an increase in two types of drought: chronic but subtle ‘press-droughts’, and shorter term but extreme ‘pulse-droughts’. Much of our current understanding of the ecological impacts of drought comes from experimental rainfall manipulations. These studies have been highly valuable, but are often short term and rarely quantify carbon feedbacks. To address this knowledge gap, we used the Community Land Model 4.0 to examine the individual and interactive effects of pulse- and press-droughts on carbon cycling in a mesic grassland of the US Great Plains. A series of modeling experiments were imposed by varying drought magnitude (precipitation amount) and interannual pattern (press- vs. pulse-droughts) to examine the effects on carbon storage and cycling at annual to century timescales. We present three main findings. First, a single-year pulse-drought had immediate and prolonged effects on carbon storage due to differential sensitivities of ecosystem respiration and gross primary production. Second, short-term pulse-droughts caused greater carbon loss than chronic press-droughts when total precipitation reductions over a 20-year period were equivalent. Third, combining pulse- and press-droughts had intermediate effects on carbon loss compared to the independent drought types, except at high drought levels. Overall, these results suggest that interannual drought pattern may be as important for carbon dynamics as drought magnitude and that extreme droughts may have long-lasting carbon feedbacks in grassland ecosystems.
Recent Increase in Black Carbon Concentrations from a Mt. Everest Ice Core Spanning 1860-2000 AD
NASA Astrophysics Data System (ADS)
Kaspari, S.; Schwikowski, M.; Gysel, M.; Mayewski, P. A.; Kang, S.; Hou, S.
2009-12-01
Black carbon produced by the incomplete combustion of biomass, coal and diesel fuels can significantly contribute to climate change by altering the Earth’s radiative balance. Black carbon in the atmosphere absorbs light and causes atmospheric heating, whereas black carbon deposited on snow and ice can significantly reduce the surface albedo, resulting in rapid melting of snow and ice. Historical records of black carbon concentration and distribution in the atmosphere are needed to determine the role of black carbon in climate change, however most studies have relied on estimated inventories based on wood and/or fossil fuel consumption data. Reconstructing black carbon concentrations in Asia is particularly important because this region has some of the largest black carbon sources globally, which negatively impact climate, water resources, agriculture and human health. We analyzed a Mt. Everest ice core for black carbon using a single particle soot photometer (SP2). The high-resolution black carbon data demonstrates strong seasonality, with peak concentrations during the winter-spring, and low concentrations during the summer monsoon season. Black carbon concentrations from 1975-2000 relative to 1860-1975 have increased approximately threefold, and the timing of this increase is consistent with black carbon emission inventory data from South Asia. It is notable that there is no increasing trend in iron (used as a proxy for dust) since 1860. This is significant because it suggests that if the recent retreat of glaciers in the region is due, at least in part, to the effect of impurities on snow albedo, the reduced albedo is due to changes in black carbon emissions, not dust.
Non-stationary (13)C-metabolic flux ratio analysis.
Hörl, Manuel; Schnidder, Julian; Sauer, Uwe; Zamboni, Nicola
2013-12-01
(13)C-metabolic flux analysis ((13)C-MFA) has become a key method for metabolic engineering and systems biology. In the most common methodology, fluxes are calculated by global isotopomer balancing and iterative fitting to stationary (13)C-labeling data. This approach requires a closed carbon balance, long-lasting metabolic steady state, and the detection of (13)C-patterns in a large number of metabolites. These restrictions mostly reduced the application of (13)C-MFA to the central carbon metabolism of well-studied model organisms grown in minimal media with a single carbon source. Here we introduce non-stationary (13)C-metabolic flux ratio analysis as a novel method for (13)C-MFA to allow estimating local, relative fluxes from ultra-short (13)C-labeling experiments and without the need for global isotopomer balancing. The approach relies on the acquisition of non-stationary (13)C-labeling data exclusively for metabolites in the proximity of a node of converging fluxes and a local parameter estimation with a system of ordinary differential equations. We developed a generalized workflow that takes into account reaction types and the availability of mass spectrometric data on molecular ions or fragments for data processing, modeling, parameter and error estimation. We demonstrated the approach by analyzing three key nodes of converging fluxes in central metabolism of Bacillus subtilis. We obtained flux estimates that are in agreement with published results obtained from steady state experiments, but reduced the duration of the necessary (13)C-labeling experiment to less than a minute. These results show that our strategy enables to formally estimate relative pathway fluxes on extremely short time scale, neglecting cellular carbon balancing. Hence this approach paves the road to targeted (13)C-MFA in dynamic systems with multiple carbon sources and towards rich media. © 2013 Wiley Periodicals, Inc.
Whaley-Martin, K J; Mailloux, B J; van Geen, A; Bostick, B C; Silvern, R F; Kim, C; Ahmed, K M; Choudhury, I; Slater, G F
2016-07-19
The sources of reduced carbon driving the microbially mediated release of arsenic to shallow groundwater in Bangladesh remain poorly understood. Using radiocarbon analysis of phospholipid fatty acids (PLFAs) and potential carbon pools, the abundance and carbon sources of the active, sediment-associated, in situ bacterial communities inhabiting shallow aquifers (<30 m) at two sites in Araihazar, Bangladesh, were investigated. At both sites, sedimentary organic carbon (SOC) Δ(14)C signatures of -631 ± 54‰ (n = 12) were significantly depleted relative to dissolved inorganic carbon (DIC) of +24 ± 30‰ and dissolved organic carbon (DOC) of -230 ± 100‰. Sediment-associated PLFA Δ(14)C signatures (n = 10) at Site F (-167‰ to +20‰) and Site B (-163‰ to +21‰) were highly consistent and indicated utilization of carbon sources younger than the SOC, likely from the DOC pool. Sediment-associated PLFA Δ(14)C signatures were consistent with previously determined Δ(14)C signatures of microbial DNA sampled from groundwater at Site F indicating that the carbon source for these two components of the subsurface microbial community is consistent and is temporally stable over the two years between studies. These results demonstrate that the utilization of relatively young carbon sources by the subsurface microbial community occurs at sites with varying hydrology. Further they indicate that these young carbon sources drive the metabolism of the more abundant sediment-associated microbial communities that are presumably more capable of Fe reduction and associated release of As. This implies that an introduction of younger carbon to as of yet unaffected sediments (such as those comprising the deeper Pleistocene aquifer) could stimulate microbial communities and result in arsenic release.
Development of a stationary digital breast tomosynthesis system for clinical applications
NASA Astrophysics Data System (ADS)
Tucker, Andrew Wallace
Digital breast tomosynthesis (DBT) has been shown to be a very beneficial tool in the fight against breast cancer. However, current DBT systems have poor spatial resolution compared to full field digital mammography (FFDM), the current gold standard for screening mammography. The poor spatial resolution of DBT systems is a result of the single X-ray source design. In DBT systems a single X-ray source is rotated over an angular span in order to acquire the images needed for 3D reconstruction. The rotation of the X-ray source degrades the spatial resolution of the images. DBT systems which are approved for use in the United States for screening mammography are required to also take a full field digital mammogram with every DBT acquisition in order to compensate for the poor spatial resolution. This double exposure essentially doubles the radiation dose to patients. Over the past few years our research group has developed a carbon nanotube (CNT) based X-ray source technology. The unique nature of CNT X-ray sources allows for multiple X-ray focal spots in a single X-ray source. Using this technology we have recently developed a stationary DBT system (s-DBT) system which is capable of producing a full tomosynthesis image dataset with zero motion of the X-ray source. This system has been shown to have increased spatial resolution over other DBT systems in a laboratory setting. The goal of this thesis work was to optimize the s-DBT system, demonstrate its usefulness over other systems, and finally implement it into the clinic for a clinical trial. The s-DBT system was optimized using different image quality measurements. The optimized system was then used in a breast specimen imaging trial which compared s-DBT to magnified 2D mammography and a conventional single source DBT system. Readers preferred s-DBT to magnified 2D mammography for specimen margin delineation and mass detection, these results were not significant. Using physical measures for spatial resolution the s-DBT system was shown to have improved image quality over conventional single source DBT systems in breast tissue. A separate study showed that s-DBT could be a feasible alternative to FFDM for screening patients with breast implants. Finally, a second s-DBT system was constructed and implemented into the Department of Mammography at UNC hospitals. The first patient was imaged on the system in December of 2013.
Denitrification-Efficiencies of Alternate Carbon Sources
1984-07-01
carbon source evaluated, while sweet whey, corn steep liquor , acid whey and soluble potato solids followed in order of decreasing efficiency. Three of...denitrification and total organic carbon removal with ’I. sweet whey 11 3. Percent denitrification and total organic carbon removal with corn steep liquor ...and total organic carbon removal with hydrolyzed sludge 18 10. Percent denitrification and total organic carbon removal with fish stick 19 11
Chambers, Jeffrey; Alves, Eliane G.; Teixeira, Andrea; Garcia, Sabrina; Holm, Jennifer; Higuchi, Niro; Manzi, Antonio; Abrell, Leif; Fuentes, Jose D.; Nielsen, Lars K.; Torn, Margaret S.; Vickers, Claudia E.
2014-01-01
The volatile gas isoprene is emitted in teragrams per annum quantities from the terrestrial biosphere and exerts a large effect on atmospheric chemistry. Isoprene is made primarily from recently fixed photosynthate; however, alternate carbon sources play an important role, particularly when photosynthate is limiting. We examined the relative contribution of these alternate carbon sources under changes in light and temperature, the two environmental conditions that have the strongest influence over isoprene emission. Using a novel real-time analytical approach that allowed us to examine dynamic changes in carbon sources, we observed that relative contributions do not change as a function of light intensity. We found that the classical uncoupling of isoprene emission from net photosynthesis at elevated leaf temperatures is associated with an increased contribution of alternate carbon. We also observed a rapid compensatory response where alternate carbon sources compensated for transient decreases in recently fixed carbon during thermal ramping, thereby maintaining overall increases in isoprene production rates at high temperatures. Photorespiration is known to contribute to the decline in net photosynthesis at high leaf temperatures. A reduction in the temperature at which the contribution of alternate carbon sources increased was observed under photorespiratory conditions, while photosynthetic conditions increased this temperature. Feeding [2-13C]glycine (a photorespiratory intermediate) stimulated emissions of [13C1–5]isoprene and 13CO2, supporting the possibility that photorespiration can provide an alternate source of carbon for isoprene synthesis. Our observations have important implications for establishing improved mechanistic predictions of isoprene emissions and primary carbon metabolism, particularly under the predicted increases in future global temperatures. PMID:25318937
Jardine, Kolby; Chambers, Jeffrey; Alves, Eliane G; Teixeira, Andrea; Garcia, Sabrina; Holm, Jennifer; Higuchi, Niro; Manzi, Antonio; Abrell, Leif; Fuentes, Jose D; Nielsen, Lars K; Torn, Margaret S; Vickers, Claudia E
2014-12-01
The volatile gas isoprene is emitted in teragrams per annum quantities from the terrestrial biosphere and exerts a large effect on atmospheric chemistry. Isoprene is made primarily from recently fixed photosynthate; however, alternate carbon sources play an important role, particularly when photosynthate is limiting. We examined the relative contribution of these alternate carbon sources under changes in light and temperature, the two environmental conditions that have the strongest influence over isoprene emission. Using a novel real-time analytical approach that allowed us to examine dynamic changes in carbon sources, we observed that relative contributions do not change as a function of light intensity. We found that the classical uncoupling of isoprene emission from net photosynthesis at elevated leaf temperatures is associated with an increased contribution of alternate carbon. We also observed a rapid compensatory response where alternate carbon sources compensated for transient decreases in recently fixed carbon during thermal ramping, thereby maintaining overall increases in isoprene production rates at high temperatures. Photorespiration is known to contribute to the decline in net photosynthesis at high leaf temperatures. A reduction in the temperature at which the contribution of alternate carbon sources increased was observed under photorespiratory conditions, while photosynthetic conditions increased this temperature. Feeding [2-(13)C]glycine (a photorespiratory intermediate) stimulated emissions of [(13)C1-5]isoprene and (13)CO2, supporting the possibility that photorespiration can provide an alternate source of carbon for isoprene synthesis. Our observations have important implications for establishing improved mechanistic predictions of isoprene emissions and primary carbon metabolism, particularly under the predicted increases in future global temperatures. © 2014 American Society of Plant Biologists. All Rights Reserved.
Growth characteristics of a new methylomonad.
Chen, B J; Hirt, W; Lim, H C; Tsao, G T
1977-01-01
A methylomonad culture was isolated from pond water and examined as a potential source of single-cell protein. A medium containing magnesium sulfate, ammonium hydroxide, sodium phosphate, tap water, and methanol supported the growth of the isolate. Optimal growth conditions in batch cultures for the organism were: temperature, 30 to 33 degrees C; pH 7.1; and phosphate concentration, 0.015 M. The minimum doubling time obtained was 1.6 h. The specific growth rate in batch culture was dependent on the methanol concentration, reaching a maximum around 0.2% (wt/vol). Growth inhibition was apparent above 0.3% (wt/vol), and growth was completely inhibited above 4.6% (wt/vol) methanol. Although the inhibitory effect of formaldehyde on the specific growth rate was much greater than that of formate, the organism utilized formaldehyde, but not formate, as a sole carbon and energy source in batch cultures. The isolate was identified primarily by its inability to utilize any carbon source other than methanol and formaldehyde for growth. Although it is capable of rapid growth on methanol, the organism showed a very weak catalase activity. The amino acid content of the cells compared favorably with the reference levels for the essential amino acids specific by the Food and Agricultural Organization of the United Nations. PMID:15510
Yen, Hong-Wei; Yang, Ya-Chun; Yu, Yi-Huan
2012-10-01
Single cell oils (SCO) produced from oleaginous microorganisms are a potential alternative oil feedstock for biodiesel production. The worldwide production of glycerol, a 10% (w/w) byproduct produced in the transesterfication process of oils converted to biodiesel, is increasing as more biodiesel is being produced. For the purposes of cost reduction, crude glycerol was regarded as a suitable carbon source for the cultivation of Rhodotorula glutinis. In addition to using renewable crude glycerol, waste solution collected from the brewing company (called thin stillage) was adopted as a substitute to replace a costly nitrogen source used in the medium. The results of using mixture of crude glycerol and thin stillage indicated about a 27% increase in total biomass as compared to that of using crude glycerol with a standard medium. Using glycerol instead of glucose as the carbon source could also alter the lipid profile, resulting in an increase in linolenic acid (C18:2) to comprise over 20% of the total lipid. Successfully using renewable crude glycerol and thin stillage for the cultivation of oleaginous microorganisms could greatly enhance the economic competition of biodiesel produced from SCO. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Resolution of the carbon contamination problem in ion irradiation experiments
NASA Astrophysics Data System (ADS)
Was, G. S.; Taller, S.; Jiao, Z.; Monterrosa, A. M.; Woodley, D.; Jennings, D.; Kubley, T.; Naab, F.; Toader, O.; Uberseder, E.
2017-12-01
The widely experienced problem of carbon uptake in samples during ion irradiation was systematically investigated to identify the source of carbon and to develop mitigation techniques. Possible sources of carbon included carbon ions or neutrals incorporated into the ion beam, hydrocarbons in the vacuum system, and carbon species on the sample and fixture surfaces. Secondary ion mass spectrometry, atom probe tomography, elastic backscattering spectrometry, and principally, nuclear reaction analysis, were used to profile carbon in a variety of substrates prior to and following irradiation with Fe2+ ions at high temperature. Ion irradiation of high purity Si and Ni, and also of alloy 800H coated with a thin film of alumina eliminated the ion beam as the source of carbon. Hydrocarbons in the vacuum and/or on the sample and fixtures was the source of the carbon that became incorporated into the samples during irradiation. Plasma cleaning of the sample and sample stage, and incorporation of a liquid nitrogen cold trap both individually and especially in combination, completely eliminated the uptake of carbon during heavy ion irradiation. While less convenient, coating the sample with a thin film of alumina was also effective in eliminating carbon incorporation.
Carbon-14 decay as a source of non-canonical bases in DNA.
Sassi, Michel; Carter, Damien J; Uberuaga, Blas P; Stanek, Chris R; Marks, Nigel A
2014-01-01
Significant experimental effort has been applied to study radioactive beta-decay in biological systems. Atomic-scale knowledge of this transmutation process is lacking due to the absence of computer simulations. Carbon-14 is an important beta-emitter, being ubiquitous in the environment and an intrinsic part of the genetic code. Over a lifetime, around 50 billion (14)C decays occur within human DNA. We apply ab initio molecular dynamics to quantify (14)C-induced bond rupture in a variety of organic molecules, including DNA base pairs. We show that double bonds and ring structures confer radiation resistance. These features, present in the canonical bases of the DNA, enhance their resistance to (14)C-induced bond-breaking. In contrast, the sugar group of the DNA and RNA backbone is vulnerable to single-strand breaking. We also show that Carbon-14 decay provides a mechanism for creating mutagenic wobble-type mispairs. The observation that DNA has a resistance to natural radioactivity has not previously been recognized. We show that (14)C decay can be a source for generating non-canonical bases. Our findings raise questions such as how the genetic apparatus deals with the appearance of an extra nitrogen in the canonical bases. It is not obvious whether or not the DNA repair mechanism detects this modification nor how DNA replication is affected by a non-canonical nucleobase. Accordingly, (14)C may prove to be a source of genetic alteration that is impossible to avoid due to the universal presence of radiocarbon in the environment. © 2013.
Chee, J-Y; Lau, N-S; Samian, M-R; Tsuge, T; Sudesh, K
2012-01-01
Burkholderia sp. USM (JCM15050) isolated from oil-polluted wastewater is capable of utilizing palm oil products and glycerol to synthesize poly(3-hydroxybutyrate) [P(3HB)]. To confer the ability to produce polymer containing 3-hydroxyhexanoate (3HHx), plasmid (pBBREE32d13) harbouring the polyhydroxyalkanoate (PHA) synthase gene of Aeromonas caviae (phaC(Ac)) was transformed into this strain. The resulting transformant incorporated approximately 1 ± 0·3 mol% of 3HHx in the polymer when crude palm kernel oil (CPKO) or palm kernel acid oil was used as the sole carbon source. In addition, when the transformed strain was cultivated in the mixtures of CPKO and sodium valerate, PHA containing 69 mol% 3HB, 30 mol% 3-hydroxyvalerate and 1 mol% 3HHx monomers was produced. Batch feeding of carbon sources with 0·5% (v/v) CPKO at 0 h and 0·25% (w/v) sodium valerate at 36 h yielded 6 mol% of 3HHx monomer by controlled-feeding strategies. Burkholderia sp. USM (JCM15050) has the metabolic pathways to supply both the short-chain length (SCL) and medium-chain length (MCL) PHA monomers. By transforming the strain with the Aer. caviae PHA synthase with broader substrate specificity, SCL-MCL PHA was produced. This is the first study demonstrating the ability of transformant Burkholderia to produce P(3HB-co-3HHx) from a single carbon source. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.
The U.S. Environmental Protection Agency, Battelle Memorial Institute and WWF-Russia organized the final workshop on Arctic Black Carbon: Reduction of Black Carbon from Diesel Sources on November 5, 2014 in Murmansk, Russia.
From April 15-19, 2013, EPA's partners hosted the Best Practices Training on Arctic Black Carbon: Reduction of Black Carbon from Diesel Sources in Murmansk, Russia. Over the course of this event, participants:
García, Gregorio; Atilhan, Mert; Aparicio, Santiago
2015-09-17
The N-ethyl-N-(furan-2-ylmethyl)ethanaminium dihydrogen phosphate ionic liquid was studied as a model of ionic liquids which can be produced from totally renewable sources. A computational study using both molecular dynamics and density functional theory methods was carried out. The properties, structuring, and intermolecular interactions (hydrogen bonding) of this fluid in the pure state were studied as a function of pressure and temperature. Likewise, the adsorption on graphene and the confinement between graphene sheets was also studied. The solvation of single walled carbon nanotubes in the selected ionic liquid was analyzed together with the behavior of ions confined inside these nanotubes. The reported results show remarkable properties for this fluid, which show that many of the most relevant properties of ionic liquids and their ability to interact with carbon nanosystems may be maintained and even improved using new families of renewable compounds instead of classic types of ionic liquids with worse environmental, toxicological, and economical profiles.
Wu, Angjian; Li, Xiaodong; Yang, Jian; Du, Changming; Shen, Wangjun; Yan, Jianhua
2017-10-12
Vertical graphene (VG) sheets were single-step synthesized via inductively coupled plasma (ICP)-enhanced chemical vapor deposition (PECVD) using waste lard oil as a sustainable and economical carbon source. Interweaved few-layer VG sheets, H₂, and other hydrocarbon gases were obtained after the decomposition of waste lard oil. The influence of parameters such as temperature, gas proportion, ICP power was investigated to tune the nanostructures of obtained VG, which indicated that a proper temperature and H₂ concentration was indispensable for the synthesis of VG sheets. Rich defects of VG were formed with a high I D / I G ratio (1.29), consistent with the dense edges structure observed in electron microscopy. Additionally, the morphologies, crystalline degree, and wettability of nanostructure carbon induced by PECVD and ICP separately were comparatively analyzed. The present work demonstrated the potential of our PECVD recipe to synthesize VG from abundant natural waste oil, which paved the way to upgrade the low-value hydrocarbons into advanced carbon material.
New Molecular Detections in TMC-1 with the Green Bank Telescope: Carbon-Chain and Aromatic Molecules
NASA Astrophysics Data System (ADS)
Burkhardt, Andrew Michael
2018-01-01
Polycyclic aromatic hydrocarbons (PAHs) and polycyclic aromatic nitrogen heterocycles PA(N)Hs are believed to be widespread throughout the Universe, and are likely responsible for the unidentified infrared bands. However, the individual detection of aromatic molecules has been limited to a single weak absorption feature of an infrared bending mode of benzene (c-C6H6). The cold core TMC-1 has long been a source of new molecular detections, particularly for unsaturated carbon-rich molecules that are appealing potential precursors of PA(N)Hs. Through deep observations with the Green Bank Telescope of TMC-1, we report the first rotational detection of an aromatic molecule, benzonitrile (c-C6H5CN), along with 8 new isotopologues of HC5N and HC7N and an entirely new molecular family (HC5O, HC7O). These new detections provide crucial insights to the formation of PAHs and the underlying carbon-chain chemistry of dark clouds.
Lightweight Fiber Optic Gas Sensor for Monitoring Regenerative Food Production
NASA Technical Reports Server (NTRS)
Schmidlin, Edward; Goswami, Kisholoy
1995-01-01
In this final report, Physical Optics Corporation (POC) describes its development of sensors for oxygen, carbon dioxide, and relative humidity. POC has constructed a phase fluorometer that can detect oxygen over the full concentration range from 0 percent to 100 percent. Phase-based measurements offer distinct advantages, such as immunity to source fluctuation, photobleaching, and leaching. All optics, optoelectronics, power supply, and the printed circuit board are included in a single box; the only external connections to the fluorometer are the optical fiber sensor and a power cord. The indicator-based carbon dioxide sensor is also suitable for short-term and discrete measurements over the concentration range from 0 percent to 100 percent. The optical fiber-based humidity sensor contains a porous core for direct interaction of the light beam with water vapor within fiber pores; the detection range for the humidity sensor is 10 percent to 100 percent, and response time is under five minutes. POC is currently pursuing the commercialization of these oxygen and carbon dioxide sensors for environmental applications.
Baron, Jill S.; McKnight, Diane M.; Denning, A. Scott
1991-01-01
The sources of both dissolved organic carbon (DOC) and particulate organic carbon (POC) to an alpine (Sky Pond) and a subalpine lake (The Loch) in Rocky Mountain National Park were explored for four years. The importance of both autochthonous and allochthonous sources of organic matter differ, not only between alpine and subalpine locations, but also seasonally. Overall, autochthonous sources dominate the organic carbon of the alpine lake, while allochthonous sources are a more significant source of organic carbon to the subalpine lake. In the alpine lake, Sky Pond, POC makes up greater than one third of the total organic matter content of the water column, and is related to phytoplankton abundance. Dissolved organic carbon is a product of within-lake activity in Sky Pond except during spring snowmelt and early summer (May–July), when stable carbon isotope ratios suggest a terrestrial source. In the subalpine lake, The Loch, DOC is a much more important constituent of water column organic material than POC, comprising greater than 90% of the spring snowmelt organic matter, and greater than 75% of the organic matter over the rest of the year. Stable carbon isotope ratios and a very strong relation of DOC with soluble Al(tot) indicate DOC concentrations are almost entirely related to flushing of soil water from the surrounding watershed during spring snowmelt. Stable carbon isotope ratios indicate that, for both lakes, phytoplankton is an important source of DOC in the winter, while terrestrial material of plant or microbial origin contributes DOC during snowmelt and summer.
Strain Sensitivity in Single Walled Carbon Nanotubes for Multifunctional Materials
NASA Technical Reports Server (NTRS)
Heath, D. M. (Technical Monitor); Smits, Jan M., VI
2005-01-01
Single walled carbon nanotubes represent the future of structural aerospace vehicle systems due to their unparalleled strength characteristics and demonstrated multifunctionality. This multifunctionality rises from the CNT's unique capabilities for both metallic and semiconducting electron transport, electron spin polarizability, and band gap modulation under strain. By incorporating the use of electric field alignment and various lithography techniques, a single wall carbon nanotube (SWNT) test bed for measurement of conductivity/strain relationships has been developed. Nanotubes are deposited at specified locations through dielectrophoresis. The circuit is designed such that the central, current carrying section of the nanotube is exposed to enable atomic force microscopy and manipulation in situ while the transport properties of the junction are monitored. By applying this methodology to sensor development a flexible single wall carbon nanotube (SWNT) based strain sensitive device has been developed. Studies of tensile testing of the flexible SWNT device vs conductivity are also presented, demonstrating the feasibility of using single walled HiPCO (high-pressure carbon monoxide) carbon nanotubes as strain sensing agents in a multi-functional materials system.
A Comparison of Single-Wall Carbon Nanotube Electrochemical Capacitor Electrode Fabrication Methods
2012-01-24
REPORT A comparison of single-wall carbon nanotube electrochemical capacitor electrode fabrication methods 14. ABSTRACT 16. SECURITY CLASSIFICATION OF... Carbon nanotubes (CNTs) are being widely investigated as a replacement for activated carbon in super- capacitors. A wide range of CNT specific...ORGANIZATION NAMES AND ADDRESSES U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS Carbon nanotube
Steel slag carbonation in a flow-through reactor system: the role of fluid-flux.
Berryman, Eleanor J; Williams-Jones, Anthony E; Migdisov, Artashes A
2015-01-01
Steel production is currently the largest industrial source of atmospheric CO2. As annual steel production continues to grow, the need for effective methods of reducing its carbon footprint increases correspondingly. The carbonation of the calcium-bearing phases in steel slag generated during basic oxygen furnace (BOF) steel production, in particular its major constituent, larnite {Ca2SiO4}, which is a structural analogue of olivine {(MgFe)2SiO4}, the main mineral subjected to natural carbonation in peridotites, offers the potential to offset some of these emissions. However, the controls on the nature and efficiency of steel slag carbonation are yet to be completely understood. Experiments were conducted exposing steel slag grains to a CO2-H2O mixture in both batch and flow-through reactors to investigate the impact of temperature, fluid flux, and reaction gradient on the dissolution and carbonation of steel slag. The results of these experiments show that dissolution and carbonation of BOF steel slag are more efficient in a flow-through reactor than in the batch reactors used in most previous studies. Moreover, they show that fluid flux needs to be optimized in addition to grain size, pressure, and temperature, in order to maximize the efficiency of carbonation. Based on these results, a two-stage reactor consisting of a high and a low fluid-flux chamber is proposed for CO2 sequestration by steel slag carbonation, allowing dissolution of the slag and precipitation of calcium carbonate to occur within a single flow-through system. Copyright © 2014. Published by Elsevier B.V.
Characterization of Black and Brown Carbon Concentrations and Sources during winter in Beijing
NASA Astrophysics Data System (ADS)
Yan, Caiqing; Liu, Yue; Hansen, Anthony D. A.; Močnik, Griša; Zheng, Mei
2017-04-01
Carbonaceous aerosols, including black carbon (BC) and organic carbon (OC), play important roles in air quality, human health, and climate change. A better understanding of sources of light-absorbing carbonaceous aerosol (including black carbon and brown carbon) is particular critical for formulating emission-based control strategies and reducing uncertainties in current aerosol radiative forcing estimates. Beijing, the capital of China, has experienced serious air pollution problems and high concentrations of carbonaceous aerosols in recent years, especially during heating seasons. During November and December of 2016, several severe haze episodes occurred in Beijing, with hourly average PM2.5 mass concentration up to 400 μg/m3. In this study, concentration levels and sources of black carbon and brown carbon were investigated based on 7-wavelength Aethalometer (AE-33) with combination of other PM2.5 chemical composition information. Contributions of traffic and non-traffic emissions (e.g., coal combustion, biomass burning) were apportioned, and brown carbon was separated from black carbon. Our preliminary results showed that (1) Concentrations of BC were around 5.3±4.2 μg/m3 during the study period, with distinct diurnal variations during haze and non-haze days. (2) Traffic emissions contributed to about 37±17% of total BC, and exhibited higher contributions during non-haze days compared to haze days. (3) Coal combustion was a major source of black carbon and brown carbon in Beijing, which was more significant compared to biomass burning. Sources and the relative contributions to black carbon and brown carbon during haze and non-haze days will be further discussed.
Polysaccharide production by a reduced pigmentation mutant of Aureobasidium pullulans NYS-1.
West, T P; Strohfus, B
2001-08-01
To isolate a reduced pigmentation mutant of Aureobasidium pullulans NYS-1 and characterize its cellular pigmentation plus its polysaccharide and biomass production relative to carbon source. Cellular pigmentation, polysaccharide levels and biomass production by the isolated mutant NYSRP-1 were analysed relative to carbon source. Cellular pigmentation of the mutant was lower than its parent strain using either carbon source. The mutant elaborated higher polysaccharide levels on sucrose than on corn syrup. The pullulan content of the polysaccharide synthesized and biomass production by the mutant rose as the carbon source concentration was increased. It is feasible to isolate a reduced pigmentation mutant from strain NYS-1 that exhibits elevated polysaccharide production using corn syrup as a carbon source. The mutant provides an advantage for commercial pullulan production because of its reduced pigmentation and enhanced polysaccharide synthesis.
Zhang, Chao; Chen, Yin-Guang
2013-07-01
As a high-quality carbon source, fermentation broth could promote the phosphorus removal efficiency in enhanced biological phosphorus removal (EBPR). The transformation of substrates in EBPR fed with fermentation broth was well simulated using the modified activated sludge model No. 2 (ASM2) based on the carbon source metabolism. When fermentation broth was used as the sole carbon source, it was found that heterotrophic bacteria acted as a promoter rather than a competitor to the phosphorus accumulating organisms (PAO). When fermentation broth was used as a supplementary carbon source of real municipal wastewater, the wastewater composition was optimized for PAO growth; and the PAO concentration, which was increased by 3.3 times compared to that in EBPR fed with solely real municipal wastewater, accounting for about 40% of the total biomass in the reactor.
Low-Temperature Single Carbon Nanotube Spectroscopy of sp 3 Quantum Defects
He, Xiaowei; Gifford, Brendan J.; Hartmann, Nicolai F.; ...
2017-09-28
Aiming to unravel the relationship between chemical configuration and electronic structure of sp3 defects of aryl-functionalized (6,5) single-walled carbon nanotubes (SWCNTs), we perform low-temperature single nanotube photoluminescence (PL) spectroscopy studies and correlate our observations with quantum chemistry simulations. Here, we observe sharp emission peaks from individual defect sites that are spread over an extremely broad, 1000-1350 nm, spectral range. Our simulations allow us to attribute this spectral diversity to the occurrence of six chemically and energetically distinct defect states resulting from topological variation in the chemical binding configuration of the monovalent aryl groups. Both PL emission efficiency and spectral linemore » width of the defect states are strongly influenced by the local dielectric environment. Wrapping the SWCNT with a polyfluorene polymer provides the best isolation from the environment and yields the brightest emission with near-resolution limited spectral line width of 270 ueV, as well as spectrally resolved emission wings associated with localized acoustic phonons. Pump-dependent studies further revealed that the defect states are capable of emitting single, sharp, isolated PL peaks over 3 orders of magnitude increase in pump power, a key characteristic of two-level systems and an important prerequisite for single-photon emission with high purity. Our findings point to the tremendous potential of sp3 defects in development of room temperature quantum light sources capable of operating at telecommunication wavelengths as the emission of the defect states can readily be extended to this range via use of larger diameter SWCNTs.« less
Low-Temperature Single Carbon Nanotube Spectroscopy of sp 3 Quantum Defects
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Xiaowei; Gifford, Brendan J.; Hartmann, Nicolai F.
Aiming to unravel the relationship between chemical configuration and electronic structure of sp3 defects of aryl-functionalized (6,5) single-walled carbon nanotubes (SWCNTs), we perform low-temperature single nanotube photoluminescence (PL) spectroscopy studies and correlate our observations with quantum chemistry simulations. Here, we observe sharp emission peaks from individual defect sites that are spread over an extremely broad, 1000-1350 nm, spectral range. Our simulations allow us to attribute this spectral diversity to the occurrence of six chemically and energetically distinct defect states resulting from topological variation in the chemical binding configuration of the monovalent aryl groups. Both PL emission efficiency and spectral linemore » width of the defect states are strongly influenced by the local dielectric environment. Wrapping the SWCNT with a polyfluorene polymer provides the best isolation from the environment and yields the brightest emission with near-resolution limited spectral line width of 270 ueV, as well as spectrally resolved emission wings associated with localized acoustic phonons. Pump-dependent studies further revealed that the defect states are capable of emitting single, sharp, isolated PL peaks over 3 orders of magnitude increase in pump power, a key characteristic of two-level systems and an important prerequisite for single-photon emission with high purity. Our findings point to the tremendous potential of sp3 defects in development of room temperature quantum light sources capable of operating at telecommunication wavelengths as the emission of the defect states can readily be extended to this range via use of larger diameter SWCNTs.« less
Pyrolytic carbon black composite and method of making the same
Naskar, Amit K.; Paranthaman, Mariappan Parans; Bi, Zhonghe
2016-09-13
A method of recovering carbon black includes the step of providing a carbonaceous source material containing carbon black. The carbonaceous source material is contacted with a sulfonation bath to produce a sulfonated material. The sulfonated material is pyrolyzed to produce a carbon black containing product comprising a glassy carbon matrix phase having carbon black dispersed therein. A method of making a battery electrode is also disclosed.
Mapping of thermal injury in biologic tissues using quantitative pathologic techniques
NASA Astrophysics Data System (ADS)
Thomsen, Sharon L.
1999-05-01
Qualitative and quantitative pathologic techniques can be used for (1) mapping of thermal injury, (2) comparisons lesion sizes and configurations for different instruments or heating sources and (3) comparisons of treatment effects. Concentric zones of thermal damage form around a single volume heat source. The boundaries between some of these zones are distinct and measurable. Depending on the energy deposition, heating times and tissue type, the zones can include the following beginning at the hotter center and progressing to the cooler periphery: (1) tissue ablation, (2) carbonization, (3) tissue water vaporization, (4) structural protein denaturation (thermal coagulation), (5) vital enzyme protein denaturation, (6) cell membrane disruption, (7) hemorrhage, hemostasis and hyperhemia, (8) tissue necrosis and (9) wound organization and healing.
NASA Astrophysics Data System (ADS)
Fransiscus, Yunus; Purwanto, Edy
2017-05-01
A cultivation process of Chlorella vulgaris has been done in different treatment to investigate the optimum condition for lipid production. Firstly, autotroph and heterotroph condition have been applied to test the significance impact of carbon availability to the growth and lipid production of Chlorella vulgaris. And for the same purpose, heterotroph condition using glucose, fructose and sucrose as carbon sources was independently implemented. The growth rate of Chlorella vulgaris in autotroph condition was much slower than those in heterotroph. The different sources of carbon gave no significant different in the growth pattern, but in term of lipid production it was presented a considerable result. At lower concentration (3 and 6 gr/L) of carbon sources there was only slight different in lipid production level. At higher concentration (12 gr/L) glucose as a carbon source produced the highest result, 60.18% (w/w) compared to fructose and sucrose that produced 27.34% (w/w) and 18.19% (w/w) respectively.
Ichinose, Sakurako; Tanaka, Mizuki; Shintani, Takahiro; Gomi, Katsuya
2018-02-01
In a previous study, we reported that a double gene deletion mutant for CreA and CreB, which constitute the regulatory machinery involved in carbon catabolite repression, exhibited improved production of α-amylase compared with the wild-type strain and single creA or creB deletion mutants in Aspergillus oryzae. Because A. oryzae can also produce biomass-degrading enzymes, such as xylolytic and cellulolytic enzymes, we examined the production levels of those enzymes in deletion mutants in this study. Xylanase and β-glucosidase activities in the wild-type were hardly detected in submerged culture containing xylose as the carbon source, whereas those enzyme activities were significantly increased in the single creA deletion (ΔcreA) and double creA and creB deletion (ΔcreAΔcreB) mutants. In particular, the ΔcreAΔcreB mutant exhibited >100-fold higher xylanase and β-glucosidase activities than the wild-type. Moreover, in solid-state culture, the β-glucosidase activity of the double deletion mutant was >7-fold higher than in the wild-type. These results suggested that deletion of both creA and creB genes could also efficiently improve the production levels of biomass-degrading enzymes in A. oryzae. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Nutrient depletion in Bacillus subtilis biofilms triggers matrix production
NASA Astrophysics Data System (ADS)
Zhang, Wenbo; Seminara, Agnese; Suaris, Melanie; Brenner, Michael P.; Weitz, David A.; Angelini, Thomas E.
2014-01-01
Many types of bacteria form colonies that grow into physically robust and strongly adhesive aggregates known as biofilms. A distinguishing characteristic of bacterial biofilms is an extracellular polymeric substance (EPS) matrix that encases the cells and provides physical integrity to the colony. The EPS matrix consists of a large amount of polysaccharide, as well as protein filaments, DNA and degraded cellular materials. The genetic pathways that control the transformation of a colony into a biofilm have been widely studied, and yield a spatiotemporal heterogeneity in EPS production. Spatial gradients in metabolites parallel this heterogeneity in EPS, but nutrient concentration as an underlying physiological initiator of EPS production has not been explored. Here, we study the role of nutrient depletion in EPS production in Bacillus subtilis biofilms. By monitoring simultaneously biofilm size and matrix production, we find that EPS production increases at a critical colony thickness that depends on the initial amount of carbon sources in the medium. Through studies of individual cells in liquid culture we find that EPS production can be triggered at the single-cell level by reducing nutrient concentration. To connect the single-cell assays with conditions in the biofilm, we calculate carbon concentration with a model for the reaction and diffusion of nutrients in the biofilm. This model predicts the relationship between the initial concentration of carbon and the thickness of the colony at the point of internal nutrient deprivation.
Single-walled carbon nanotubes (SWCNTs) with proper functionalization are desirable for applications that require dispersion in aqueous and biological environments, and functionalized SWCNTs also serve as building blocks for conjugation with specific molecules in these applicatio...
Nonoguchi, Yoshiyuki; Ohashi, Kenji; Kanazawa, Rui; Ashiba, Koji; Hata, Kenji; Nakagawa, Tetsuya; Adachi, Chihaya; Tanase, Tomoaki; Kawai, Tsuyoshi
2013-01-01
Thermoelectrics is a challenging issue for modern and future energy conversion and recovery technology. Carbon nanotubes are promising active thermoelectic materials owing to their narrow bandgap energy and high charge carrier mobility, and they can be integrated into flexible thermoelectrics that can recover any waste heat. We here report air-stable n-type single walled carbon nanotubes with a variety of weak electron donors in the range of HOMO level between ca. −4.4 eV and ca. −5.6 eV, in which partial uphill electron injection from the dopant to the conduction band of single walled carbon nanotubes is dominant. We display flexible films of the doped single walled carbon nanotubes possessing significantly large thermoelectric effect, which is applicable to flexible ambient thermoelectric modules. PMID:24276090
USE OF FATTY ACID STABLE CARBON ISOTOPE RATIO TO INDICATE MICROBIAL CARBON SOURCE IN TROPICAL SOILS
We use measurements of the concentration and stable carbon isotope ratio of individual microbial phospholipid fatty acids (PLFAs) in soils as indicators of live microbial biomass levels, broad microbial community structure, and microbial carbon source. For studies of soil o...
Extinction coefficients and purity of single-walled carbon nanotubes.
Zhao, B; Itkis, M E; Niyogi, S; Hu, H; Perea, D E; Haddon, R C
2004-11-01
Single-walled carbon nanotubes (SWNTs) hold great promise for advanced applications in aerospace, electronics and medicine, yet these industries require materials with rigorous quality control. There are currently no accepted standards for quality assurance or quality control among the commercial suppliers of SWNTs. We briefly discuss the applicability of various techniques to measure SWNT purity and review, in detail, the advantages of near infrared (NIR) spectroscopy for the quantitative assessment of the bulk carbonaceous purity of SWNTs. We review the use of solution phase NIR spectroscopy for the analysis and characterization of a variety of carbon materials, emphasizing SWNTs produced by the electric arc (EA), laser oven (LO) and HiPco (HC) methods. We consider the applicability of Beer's law to carbon materials dispersed in dimethylformamide (DMF) and the effective extinction coefficients that are obtained from such dispersions. Analysis of the areal absorptivities of the second interband transition of semiconducting EA-produced SWNTs for a number of samples of differing purities has lead to an absolute molar extinction coefficient for the carbonaceous impurities in EA-produced SWNT samples. We conclude that NIR spectroscopy is the clear method of choice for the assessment of the bulk carbonaceous purity of EA-produced SWNTs, and we suggest that an absolute determination of the purity of SWNTs is within reach. Continued work in this area is expected to lead to a universal method for the assessment of the absolute bulk purity of SWNTs from all sources--such a development will be of great importance for nanotube science and for future customers for this product.
Single-Step, Solvent-Free, Catalyst-Free Preparation of Holey Carbon Allotropes
NASA Technical Reports Server (NTRS)
Lin, Yi (Inventor); Funk, Michael R. (Inventor); Kim, Jae-Woo (Inventor); Connell, John W. (Inventor); Campbell, Caroline J. (Inventor)
2017-01-01
Methods for forming holey carbon allotropes and graphene nanomeshes are provided by the various embodiments. The various embodiments may be applicable to a variety of carbon allotropes, such as graphene, graphene oxide, reduced graphene oxide, thermal exfoliated graphene, graphene nanoribbons, graphite, exfoliated graphite, expanded graphite, carbon nanotubes (e.g., single-walled carbon nanotubes, double-walled carbon nanotubes, few-walled carbon nanotubes, multi-walled carbon nanotubes, etc.), carbon nanofibers, carbon fibers, carbon black, amorphous carbon, fullerenes, etc. The methods may produce holey carbon allotropes without the use of solvents, catalysts, flammable gas, additional chemical agents, or electrolysis to produce the pores (e.g., holes, etc.) in the carbon allotropes. In an embodiment, a carbon allotrope may be heated at a working window temperature for a working period of time to create holes in the carbon allotrope.
Nanotechnology with Carbon Nanotubes: Mechanics, Chemistry, and Electronics
NASA Technical Reports Server (NTRS)
Srivastava, Deepak
2003-01-01
This viewgraph presentation reviews the Nanotechnology of carbon nanotubes. The contents include: 1) Nanomechanics examples; 2) Experimental validation of nanotubes in composites; 3) Anisotropic plastic collapse; 4) Spatio-temporal scales, yielding single-wall nanotubes; 5) Side-wall functionalization of nanotubes; 6) multi-wall Y junction carbon nanotubes; 7) Molecular electronics with Nanotube junctions; 8) Single-wall carbon nanotube junctions; welding; 9) biomimetic dendritic neurons: Carbon nanotube, nanotube electronics (basics), and nanotube junctions for Devices,
Blind Leak Detection for Closed Systems
NASA Technical Reports Server (NTRS)
Oelgoetz, Peter; Johnson, Ricky; Todd, Douglas; Russell, Samuel; Walker, James
2003-01-01
The current inspection technique for locating interstitial leaking in the Space Shuttle Main Engine nozzles is the application of a liquid leak check solution in the openings where the interstitials space between the tubing and the structural jacket vent out the aft end of the nozzle, while its cooling tubes are pressurized to 25 psig with Helium. When a leak is found, it is classified, and if the leak is severe enough the suspect tube is cut open so that a boroscope can be inserted to find the leak point. Since the boroscope can only cover a finite tube length and since it is impossible to identify which tube (to the right or left of the identified interstitial) is leaking, many extra and undesired repairs have been made to fix just one leak. In certain instances when the interstitials are interlinked by poor braze bonding, many interstitials will show indications of leaking from a single source. What is desired is a technique that can identify the leak source so that a single repair can be performed. Dr, Samuel Russell and James Walker, both with NASA/MSFC have developed a thermographic inspection system that addresses a single repair approach. They have teamed with Boeing/Rocketdyne to repackage the inspection processes to be suitable to address full scale Shuttle development and flight hardware and implement the process at NASA centers. The methods and results presented address the thermographic identification of interstitial leaks in the Space Shuttle Main Engine nozzles. A highly sensitive digital infrared camera (capable of detecting a delta temperature difference of 0.025 C) is used to record the cooling effects associated with a leak source, such as a crack or pinhole, hidden within the nozzle wall by observing the inner hot wall surface as the nozzle is pressurized, These images are enhanced by digitally subtracting a thermal reference image taken before pressurization. The method provides a non-intrusive way of locating the tube that is leaking and the exact leak source position to within a very small axial distance. Many of the factors that influence the inspectability of the nozzle are addressed; including pressure rate, peak pressure, gas type, ambient temperature and surface preparation. Other applications for this thermographic inspection system are the Reinforced-Carbon-Carbon (RCC) leading edge of the Space Shuttle orbiter and braze joint integrity.
The purpose of this study was to improve combustion source profiles and apportionment of a PM2.5 urban aerosol by using 7 individual organic and elemental carbon thermal fractions in place of total organic and elemental carbon. This study used 3 years (96-99) of speciated data...
ERIC Educational Resources Information Center
Paulino, Tony P.; Andrade, Ricardo O.; Bruschi-Thedei, Giuliana C. M.; Thedei, Geraldo, Jr.; Ciancaglini, Pietro
2004-01-01
The main objective of this class experiment is to show the influence of carbon source and of different fluoride concentrations on the biofilm formation by the bacterium "Streptococcus mutans." The observation of different biofilm morphology as a function of carbon source and fluoride concentration allows an interesting discussion regarding the…
Wan, Rui; Chen, Yinguang; Zheng, Xiong; Su, Yinglong; Huang, Haining
2018-06-15
The potential effect of CO 2 on environmental microbes has drawn much attention recently. As an important section of the nitrogen cycle, biological denitrification requires electron donor to reduce nitrogen oxide. Nicotinamide adenine dinucleotide (NADH), which is formed during carbon source metabolism, is a widely reported electron donor for denitrification. Here we studied the effect of CO 2 on NADH production and carbon source utilization in the denitrifying microbe Paracoccus denitrificans. We observed that NADH level was decreased by 45.5% with the increase of CO 2 concentration from 0 to 30,000ppm, which was attributed to the significantly decreased utilization of carbon source (i.e., acetate). Further study showed that CO 2 inhibited carbon source utilization because of multiple negative influences: (1) suppressing the growth and viability of denitrifier cells, (2) weakening the driving force for carbon source transport by decreasing bacterial membrane potential, and (3) downregulating the expression of genes encoding key enzymes involved in intracellular carbon metabolism, such as citrate synthase, aconitate hydratase, isocitrate dehydrogenase, succinate dehydrogenase, and fumarate reductase. This study suggests that the inhibitory effect of CO 2 on NADH production in denitrifiers might deteriorate the denitrification performance in an elevated CO 2 climate scenario. Copyright © 2018 Elsevier B.V. All rights reserved.
Heal, Mathew R
2014-01-01
Organic carbon (OC) and elemental carbon (EC) together constitute a substantial proportion of airborne particulate matter (PM). Insight into the sources of this major contributor to PM is important for policies to mitigate the impact of PM on human health and climate change. In recent years measurement of the abundance of the radioisotope of carbon ((14)C) in samples of PM by accelerator mass spectrometry has been used to help quantify the relative contributions from sources of fossil carbon and contemporary carbon. This review provides an introduction to the different sources of carbon within PM and the role of (14)C measurements, a description of the preparation of PM samples and of the instrumentation used to quantify (14)C, and a summary of the results and source apportionment methods reported in published studies since 2004. All studies report a sizable fraction of the carbonaceous PM as of non-fossil origin. Even for PM collected in urban locations, the proportions of non-fossil carbon generally exceed 30%; typically the proportion in urban background locations is around 40-60% depending on the local influence of biomass burning. Where values have been measured directly, proportions of non-fossil carbon in EC are lower than in OC, reflecting the greater contribution of fossil-fuel combustion to EC and the generally small sources of contemporary EC. Detailed source apportionment studies point to important contributions from biogenic-derived secondary OC, consistent with other evidence of a ubiquitous presence of heavily oxidized background secondary OC. The review concludes with some comments on current issues and future prospects, including progress towards compound-class and individual-compound-specific (14)C analyses.
DCO-VIVO: A Collaborative Data Platform for the Deep Carbon Science Communities
NASA Astrophysics Data System (ADS)
Wang, H.; Chen, Y.; West, P.; Erickson, J. S.; Ma, X.; Fox, P. A.
2014-12-01
Deep Carbon Observatory (DCO) is a decade-long scientific endeavor to understand carbon in the complex deep Earth system. Thousands of DCO scientists from institutions across the globe are organized into communities representing four domains of exploration: Extreme Physics and Chemistry, Reservoirs and Fluxes, Deep Energy, and Deep Life. Cross-community and cross-disciplinary collaboration is one of the most distinctive features in DCO's flexible research framework. VIVO is an open-source Semantic Web platform that facilitates cross-institutional researcher and research discovery. it includes a number of standard ontologies that interconnect people, organizations, publications, activities, locations, and other entities of research interest to enable browsing, searching, visualizing, and generating Linked Open (research) Data. The DCO-VIVO solution expedites research collaboration between DCO scientists and communities. Based on DCO's specific requirements, the DCO Data Science team developed a series of extensions to the VIVO platform including extending the VIVO information model, extended query over the semantic information within VIVO, integration with other open source collaborative environments and data management systems, using single sign-on, assigning of unique Handles to DCO objects, and publication and dataset ingesting extensions using existing publication systems. We present here the iterative development of these requirements that are now in daily use by the DCO community of scientists for research reporting, information sharing, and resource discovery in support of research activities and program management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sedlacek, III, Arthur J.; Lewis, Ernie R.; Onasch, Timothy B.
An important source of uncertainty in radiative forcing by absorbing aerosol particles is the uncertainty in their morphologies (i.e., the location of the absorbing substance on/in the particles). To examine the effects of particle morphology on the response of an individual black carbon-containing particle in a Single-Particle Soot Photometer (SP2), a series of experiments was conducted to investigate black carbon-containing particles of known morphology using Regal black (RB), a proxy for collapsed soot, as the light-absorbing substance. Particles were formed by coagulation of RB with either a solid substance (sodium chloride or ammonium sulfate) or a liquid substance (dioctyl sebacate),more » and by condensation with dioctyl sebacate, the latter experiment forming particles in a core-shell configuration. Each particle type experienced fragmentation (observed as negative lagtimes), and each yielded similar lagtime responses in some instances, confounding attempts to differentiate particle morphology using current SP2 lagtime analysis. SP2 operating conditions, specifically laser power and sample flow rate, which in turn affect the particle heating and dissipation rates, play an important role in the behavior of particles in the SP2, including probability of fragmentation. This behavior also depended on the morphology of the particles and on the thermo-chemical properties of the non-RB substance. Although these influences cannot currently be unambiguously separated, the SP2 analysis may still provide useful information on particle mixing states and black carbon particle sources.« less
da Silva, Paula Renata Alves; Vidal, Marcia Soares; de Paula Soares, Cleiton; Polese, Valéria; Simões-Araújo, Jean Luís; Baldani, José Ivo
2016-11-01
Among the members of the genus Burkholderia, Burkholderia tropica has the ability to fix nitrogen and promote sugarcane plant growth as well as act as a biological control agent. There is little information about how this bacterium metabolizes carbohydrates as well as those carbon sources found in the sugarcane juice that accumulates in stems during plant growth. Reverse transcription quantitative PCR (RT-qPCR) can be used to evaluate changes in gene expression during bacterial growth on different carbon sources. Here we tested the expression of six reference genes, lpxC, gyrB, recA, rpoA, rpoB, and rpoD, when cells were grown with glucose, fructose, sucrose, mannitol, aconitic acid, and sugarcane juice as carbon sources. The lpxC, gyrB, and recA were selected as the most stable reference genes based on geNorm and NormFinder software analyses. Validation of these three reference genes during strain Ppe8 growth on the same carbon sources showed that genes involved in glycogen biosynthesis (glgA, glgB, glgC) and trehalose biosynthesis (treY and treZ) were highly expressed when Ppe8 was grown in aconitic acid relative to other carbon sources, while otsA expression (trehalose biosynthesis) was reduced with all carbon sources. In addition, the expression level of the ORF_6066 (gluconolactonase) gene was reduced on sugarcane juice. The results confirmed the stability of the three selected reference genes (lpxC, gyrB, and recA) during the RT-qPCR and also their robustness by evaluating the relative expression of genes involved in glycogen and trehalose biosynthesis when strain Ppe8 was grown on different carbon sources and sugarcane juice.
Kim, Min Kyung; Lane, Anatoliy; Kelley, James J; Lun, Desmond S
2016-01-01
Several methods have been developed to predict system-wide and condition-specific intracellular metabolic fluxes by integrating transcriptomic data with genome-scale metabolic models. While powerful in many settings, existing methods have several shortcomings, and it is unclear which method has the best accuracy in general because of limited validation against experimentally measured intracellular fluxes. We present a general optimization strategy for inferring intracellular metabolic flux distributions from transcriptomic data coupled with genome-scale metabolic reconstructions. It consists of two different template models called DC (determined carbon source model) and AC (all possible carbon sources model) and two different new methods called E-Flux2 (E-Flux method combined with minimization of l2 norm) and SPOT (Simplified Pearson cOrrelation with Transcriptomic data), which can be chosen and combined depending on the availability of knowledge on carbon source or objective function. This enables us to simulate a broad range of experimental conditions. We examined E. coli and S. cerevisiae as representative prokaryotic and eukaryotic microorganisms respectively. The predictive accuracy of our algorithm was validated by calculating the uncentered Pearson correlation between predicted fluxes and measured fluxes. To this end, we compiled 20 experimental conditions (11 in E. coli and 9 in S. cerevisiae), of transcriptome measurements coupled with corresponding central carbon metabolism intracellular flux measurements determined by 13C metabolic flux analysis (13C-MFA), which is the largest dataset assembled to date for the purpose of validating inference methods for predicting intracellular fluxes. In both organisms, our method achieves an average correlation coefficient ranging from 0.59 to 0.87, outperforming a representative sample of competing methods. Easy-to-use implementations of E-Flux2 and SPOT are available as part of the open-source package MOST (http://most.ccib.rutgers.edu/). Our method represents a significant advance over existing methods for inferring intracellular metabolic flux from transcriptomic data. It not only achieves higher accuracy, but it also combines into a single method a number of other desirable characteristics including applicability to a wide range of experimental conditions, production of a unique solution, fast running time, and the availability of a user-friendly implementation.
Kim, Eunji; Shin, Seung Gu; Jannat, Md Abu Hanifa; Tongco, Jovale Vincent; Hwang, Seokhwan
2017-12-01
Using organic wastes as an alternative to commercial carbon sources could be beneficial by reducing costs and environmental impacts. In this study, food waste-recycling wastewater (FRW) was evaluated as an alternative carbon source for biological denitrification over a period of seven months in a full-scale sewage wastewater treatment plant. The denitrification performance was stable with a mean nitrate removal efficiency of 97.2%. Propionate was initially the most persistent volatile fatty acid, but was completely utilized after 19days. Eubacteriacea, Saprospiraceae, Rhodocyclaceae and Comamonadaceae were the major bacterial families during FRW treatment and were regarded as responsible for hydrolysis (former two) and nitrate removal (latter two) of FRW. These results demonstrate that FRW can be an effective external carbon source; process stabilization was linked to the acclimation and function of bacterial populations to the change of carbon source. Copyright © 2017 Elsevier Ltd. All rights reserved.
Review: role of carbon sources for in vitro plant growth and development.
Yaseen, Mehwish; Ahmad, Touqeer; Sablok, Gaurav; Standardi, Alvaro; Hafiz, Ishfaq Ahmad
2013-04-01
In vitro plant cells, tissues and organ cultures are not fully autotrophic establishing a need for carbohydrates in culture media to maintain the osmotic potential, as well as to serve as energy and carbon sources for developmental processes including shoot proliferation, root induction as well as emission, embryogenesis and organogenesis, which are highly energy demanding developmental processes in plant biology. A variety of carbon sources (both reducing and non-reducing) are used in culture media depending upon genotypes and specific stages of growth. However, sucrose is most widely used as a major transport-sugar in the phloem sap of many plants. In micropropagation systems, morphogenetic potential of plant tissues can greatly be manipulated by varying type and concentration of carbon sources. The present article reviews the past and current findings on carbon sources and their sustainable utilization for in vitro plant tissue culture to achieve better growth rate and development.
Di Palma, A; Capozzi, F; Agrelli, D; Amalfitano, C; Giordano, S; Spagnuolo, V; Adamo, P
2018-08-01
Investigating the nature of PM 10 is crucial to differentiate sources and their relative contributions. In this study we compared the levels, and the chemical and mineralogical properties of PM 10 particles sampled in different seasons at monitoring stations representative of urban background, urban traffic and suburban traffic areas of Naples city. The aims were to relate the PM 10 load and characteristics to the location of the monitoring stations, to investigate the different sources contributing to PM 10 and to highlight PM 10 seasonal variability. Bulk analyses of chemical species in the PM 10 fraction included total carbon and nitrogen, δ 13 C and other 20 elements. Both natural and anthropogenic sources were found to contribute to the exceedances of the EU PM 10 limit values. The natural contribution was mainly related to marine aerosols and soil dust, as highlighted by X-ray diffractometry and SEM-EDS microscopy. The percentage of total carbon suggested a higher contribution of biogenic components to PM 10 in spring. However, this result was not supported by the δ 13 C values which were seasonally homogeneous and not sufficient to extract single emission sources. No significant differences, in terms of PM 10 load and chemistry, were observed between monitoring stations with different locations, suggesting a homogeneous distribution of PM 10 on the studied area in all seasons. The anthropogenic contribution to PM 10 seemed to dominate in all sites and seasons with vehicular traffic acting as a main source mostly by generation of non-exhaust emissions Our findings reinforce the need to focus more on the analysis of PM 10 in terms of quality than of load, to reconsider the criteria for the classification and the spatial distribution of the monitoring stations within urban and suburban areas, with a special attention to the background location, and to emphasize all the policies promoting sustainable mobility and reduction of both exhaust and not-exhaust traffic-related emissions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lovley, Derek R; Nevin, Kelly
2015-11-03
The invention provides systems and methods for generating organic compounds using carbon dioxide as a source of carbon and electrical current as an energy source. In one embodiment, a reaction cell is provided having a cathode electrode and an anode electrode that are connected to a source of electrical power, and which are separated by a permeable membrane. A biological film is provided on the cathode. The biological film comprises a bacterium that can accept electrons and that can convert carbon dioxide to a carbon-bearing compound and water in a cathode half-reaction. At the anode, water is decomposed to free molecular oxygen and solvated protons in an anode half-reaction. The half-reactions are driven by the application of electrical current from an external source. Compounds that have been produced include acetate, butanol, 2-oxobutyrate, propanol, ethanol, and formate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lovley, Derek R.; Nevin, Kelly P.
The invention provides systems and methods for generating organic compounds using carbon dioxide as a source of carbon and electrical current as an energy source. In one embodiment, a reaction cell is provided having a cathode electrode and an anode electrode that are connected to a source of electrical power, and which are separated by a permeable membrane. A biological film is provided on the cathode. The biological film comprises a bacterium that can accept electrons and that can convert carbon dioxide to a carbon-bearing compound and water in a cathode half-reaction. At the anode, water is decomposed to freemore » molecular oxygen and solvated protons in an anode half-reaction. The half-reactions are driven by the application of electrical current from an external source. Compounds that have been produced include acetate, butanol, 2-oxobutyrate, propanol, ethanol, and formate.« less
Fractal and spectroscopic analysis of soot from internal combustion engines
NASA Astrophysics Data System (ADS)
Swapna, M. S.; Saritha Devi, H. V.; Raj, Vimal; Sankararaman, S.
2018-03-01
Today diesel engines are used worldwide for various applications and very importantly in transportation. Hydrocarbons are the most widespread precursors among carbon sources employed in the production of carbon nanotubes (CNTs). The aging of internal combustion engine is an important parameter in deciding the carbon emission and particulate matter due to incomplete combustion of fuel. In the present work, an attempt has been made for the effective utilization of the aged engines for potential applicationapplications in fuel cells and nanoelectronics. To analyze the impact of aging, the particulate matter rich in carbon content areis collected from diesel engines of different ages. The soot with CNTs is purified by the liquid phase oxidation method and analyzed by Field Emission Scanning Electron Microscopy, High-Resolution Transmission Electron Microscopy, Energy Dispersive Spectroscopy, UV-Visible spectroscopy, Raman spectroscopy and Thermogravimetric analysis. The SEM image contains self-similar patterns probing fractal analysis. The fractal dimensions of the samples are determined by the box counting method. We could find a greater amount of single-walled carbon nanotubes (SWCNTs) in the particulate matter emitted by aged diesel engines and thereby giving information about the combustion efficiency of the engine. The SWCNT rich sample finds a wide range of applicationapplications in nanoelectronics and thereby pointing a potential use of these aged engines.
Filippini, Maria; Nijenhuis, Ivonne; Kümmel, Steffen; Chiarini, Veronica; Crosta, Giovanni; Richnow, Hans H; Gargini, Alessandro
2018-05-30
Tetrachloroethene and trichloroethene are typical by-products of the industrial production of chloromethanes. These by-products are known as "chlorinated pitches" and were often dumped in un-contained waste disposal sites causing groundwater contaminations. Previous research showed that a strongly depleted stable carbon isotope signature characterizes chlorinated compounds associated with chlorinated pitches whereas manufactured commercial compounds have more enriched carbon isotope ratios. The findings were restricted to a single case study and one element (i.e. carbon). This paper presents a multi-element Compound-Specific Stable Isotope Analysis (CSIA, including carbon, chlorine and hydrogen) of chlorinated aliphatic contaminants originated from chlorinated pitches at two sites with different hydrogeology and different producers of chloromethanes. The results show strongly depleted carbon signatures at both sites whereas the chlorine and the hydrogen signatures are comparable to those presented in the literature for manufactured commercial compounds. Multi-element CSIA allowed the identification of sources and site-specific processes affecting chloroethene transformation in groundwater as a result of emergency remediation measures. CSIA turned out to be an effective forensic tool to address the liability for the contamination, leading to a conviction for the crimes of unintentional aggravated public water supply poisoning and environmental disaster. Copyright © 2018 Elsevier B.V. All rights reserved.
2013-02-01
Purified cultures are tested for optimized production under heterotrophic conditions with several organic carbon sources like beet and sorghum juice using ...Moreover, AFRL support sponsored the Master’s in Chemical Engineering project titled “Cost Analysis Of Local Bio- Products Processing Plant Using ...unlimited. 2.5 Screening for High Lipid Production Mutants Procedure: A selection of 84 single colony cultures was analyzed in this phase using the
We use measurements of the concentration and stable carbon isotopic ratio (D 13C) of individual microbial phospholipid fatty acids (PLFAs) in soils as indicators of live microbial biomass levels and microbial carbon source. We found that intensive sugar cane cultivation leads to ...
Zhang, Suoming; Cai, Le; Wang, Tongyu; Shi, Rongmei; Miao, Jinshui; Wei, Li; Chen, Yuan; Sepúlveda, Nelson; Wang, Chuan
2015-01-01
This paper exploits the chirality-dependent optical properties of single-wall carbon nanotubes for applications in wavelength-selective photodetectors. We demonstrate that thin-film transistors made with networks of carbon nanotubes work effectively as light sensors under laser illumination. Such photoresponse was attributed to photothermal effect instead of photogenerated carriers and the conclusion is further supported by temperature measurements. Additionally, by using different types of carbon nanotubes, including a single chirality (9,8) nanotube, the devices exhibit wavelength-selective response, which coincides well with the absorption spectra of the corresponding carbon nanotubes. This is one of the first reports of controllable and wavelength-selective bolometric photoresponse in macroscale assemblies of chirality-sorted carbon nanotubes. The results presented here provide a viable route for achieving bolometric-effect-based photodetectors with programmable response spanning from visible to near-infrared by using carbon nanotubes with pre-selected chiralities. PMID:26643777
Schiestl-Aalto, Pauliina; Kulmala, Liisa; Mäkinen, Harri; Nikinmaa, Eero; Mäkelä, Annikki
2015-04-01
The control of tree growth vs environment by carbon sources or sinks remains unresolved although it is widely studied. This study investigates growth of tree components and carbon sink-source dynamics at different temporal scales. We constructed a dynamic growth model 'carbon allocation sink source interaction' (CASSIA) that calculates tree-level carbon balance from photosynthesis, respiration, phenology and temperature-driven potential structural growth of tree organs and dynamics of stored nonstructural carbon (NSC) and their modifying influence on growth. With the model, we tested hypotheses that sink demand explains the intra-annual growth dynamics of the meristems, and that the source supply is further needed to explain year-to-year growth variation. The predicted intra-annual dimensional growth of shoots and needles and the number of cells in xylogenesis phases corresponded with measurements, whereas NSC hardly limited the growth, supporting the first hypothesis. Delayed GPP influence on potential growth was necessary for simulating the yearly growth variation, indicating also at least an indirect source limitation. CASSIA combines seasonal growth and carbon balance dynamics with long-term source dynamics affecting growth and thus provides a first step to understanding the complex processes regulating intra- and interannual growth and sink-source dynamics. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Sources and mixing state of size-resolved elemental carbon particles in a European megacity: Paris
NASA Astrophysics Data System (ADS)
Healy, R. M.; Sciare, J.; Poulain, L.; Kamili, K.; Merkel, M.; Müller, T.; Wiedensohler, A.; Eckhardt, S.; Stohl, A.; Sarda-Estève, R.; McGillicuddy, E.; O'Connor, I. P.; Sodeau, J. R.; Wenger, J. C.
2012-02-01
An Aerosol Time-Of-Flight Mass Spectrometer (ATOFMS) was deployed to investigate the size-resolved chemical composition of single particles at an urban background site in Paris, France, as part of the MEGAPOLI winter campaign in January/February 2010. ATOFMS particle counts were scaled to match coincident Twin Differential Mobility Particle Sizer (TDMPS) data in order to generate hourly size-resolved mass concentrations for the single particle classes observed. The total scaled ATOFMS particle mass concentration in the size range 150-1067 nm was found to agree very well with the sum of concurrent High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and Multi-Angle Absorption Photometer (MAAP) mass concentration measurements of organic carbon (OC), inorganic ions and black carbon (BC) (R2 = 0.91). Clustering analysis of the ATOFMS single particle mass spectra allowed the separation of elemental carbon (EC) particles into four classes: (i) EC attributed to biomass burning (ECbiomass), (ii) EC attributed to traffic (ECtraffic), (iii) EC internally mixed with OC and ammonium sulfate (ECOCSOx), and (iv) EC internally mixed with OC and ammonium nitrate (ECOCNOx). Average hourly mass concentrations for EC-containing particles detected by the ATOFMS were found to agree reasonably well with semi-continuous quantitative thermal/optical EC and optical BC measurements (r2 = 0.61 and 0.65-0.68 respectively, n = 552). The EC particle mass assigned to fossil fuel and biomass burning sources also agreed reasonably well with BC mass fractions assigned to the same sources using seven-wavelength aethalometer data (r2 = 0.60 and 0.48, respectively, n = 568). Agreement between the ATOFMS and other instrumentation improved noticeably when a period influenced by significantly aged, internally mixed EC particles was removed from the intercomparison. 88% and 12% of EC particle mass was apportioned to fossil fuel and biomass burning respectively using the ATOFMS data compared with 85% and 15% respectively for BC estimated from the aethalometer model. On average, the mass size distribution for EC particles is bimodal; the smaller mode is attributed to locally emitted, mostly externally mixed EC particles, while the larger mode is dominated by aged, internally mixed ECOCNOx particles associated with continental transport events. Periods of continental influence were identified using the Lagrangian Particle Dispersion Model (LPDM) "FLEXPART". A consistent minimum between the two EC mass size modes was observed at approximately 400 nm for the measurement period. EC particles below this size are attributed to local emissions using chemical mixing state information and contribute 79% of the scaled ATOFMS EC particle mass, while particles above this size are attributed to continental transport events and contribute 21% of the EC particle mass. These results clearly demonstrate the potential benefit of monitoring size-resolved mass concentrations for the separation of local and continental EC emissions. Knowledge of the relative input of these emissions is essential for assessing the effectiveness of local abatement strategies.
Dubinsky, Eric A; Butkus, Steven R; Andersen, Gary L
2016-11-15
Sources of fecal indicator bacteria are difficult to identify in watersheds that are impacted by a variety of non-point sources. We developed a molecular source tracking test using the PhyloChip microarray that detects and distinguishes fecal bacteria from humans, birds, ruminants, horses, pigs and dogs with a single test. The multiplexed assay targets 9001 different 25-mer fragments of 16S rRNA genes that are common to the bacterial community of each source type. Both random forests and SourceTracker were tested as discrimination tools, with SourceTracker classification producing superior specificity and sensitivity for all source types. Validation with 12 different mammalian sources in mixtures found 100% correct identification of the dominant source and 84-100% specificity. The test was applied to identify sources of fecal indicator bacteria in the Russian River watershed in California. We found widespread contamination by human sources during the wet season proximal to settlements with antiquated septic infrastructure and during the dry season at beaches during intense recreational activity. The test was more sensitive than common fecal indicator tests that failed to identify potential risks at these sites. Conversely, upstream beaches and numerous creeks with less reliance on onsite wastewater treatment contained no fecal signal from humans or other animals; however these waters did contain high counts of fecal indicator bacteria after rain. Microbial community analysis revealed that increased E. coli and enterococci at these locations did not co-occur with common fecal bacteria, but rather co-varied with copiotrophic bacteria that are common in freshwaters with high nutrient and carbon loading, suggesting runoff likely promoted the growth of environmental strains of E. coli and enterococci. These results indicate that machine-learning classification of PhyloChip microarray data can outperform conventional single marker tests that are used to assess health risks, and is an effective tool for distinguishing numerous fecal and environmental sources of pathogen indicators. Copyright © 2016 Elsevier Ltd. All rights reserved.
Blue photoluminescent carbon nanodots from limeade.
Suvarnaphaet, Phitsini; Tiwary, Chandra Sekhar; Wetcharungsri, Jutaphet; Porntheeraphat, Supanit; Hoonsawat, Rassmidara; Ajayan, Pulickel Madhavapanicker; Tang, I-Ming; Asanithi, Piyapong
2016-12-01
Carbon-based photoluminescent nanodot has currently been one of the promising materials for various applications. The remaining challenges are the carbon sources and the simple synthetic processes that enhance the quantum yield, photostability and biocompatibility of the nanodots. In this work, the synthesis of blue photoluminescent carbon nanodots from limeade via a single-step hydrothermal carbonization process is presented. Lime carbon nanodot (L-CnD), whose the quantum yield exceeding 50% for the 490nm emission in gram-scale amounts, has the structure of graphene core functionalized with the oxygen functional groups. The micron-sized flake of the as-prepared L-CnD powder exhibits multicolor emission depending on an excitation wavelength. The L-CnDs are demonstrated for rapidly ferric-ion (Fe(3+)) detection in water compared to Fe(2+), Cu(2+), Co(2+), Zn(2+), Mn(2+) and Ni(2+) ions. The photoluminescence quenching of L-CnD solution under UV light is used to distinguish the Fe(3+) ions from others by naked eyes as low concentration as 100μM. Additionally, L-CnDs provide exceptional photostability and biocompatibility for imaging yeast cell morphology. Changes in morphology of living yeast cells, i.e. cell shape variation, and budding, can be observed in a minute-period until more than an hour without the photoluminescent intensity loss. Copyright © 2016 Elsevier B.V. All rights reserved.
Source-sink-storage relationships of conifers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luxmoore, R.J.; Oren, R.; Sheriff, D.W.
1995-07-01
Irradiance, air temperature, saturation vapor pressure deficit, and soil temperature vary in association with Earth`s daily rotation, inducing significant hourly changes in the rates of plant physiological processes. These processes include carbon fixation in photosynthesis, sucrose translocation, and carbon utilization in growth, storage, and respiration. The sensitivity of these physiological processes to environmental factors such as temperature, soil water availability, and nutrient supply reveals differences that must be viewed as an interactive whole in order to comprehend whole-plant responses to the environment. Integrative frameworks for relationships between plant physiological processes are needed to provide syntheses of plant growth and development.more » Source-sink-storage relationships, addressed in this chapter, provide one framework for synthesis of whole-plant responses to external environmental variables. To address this issue, some examples of carbon assimilation and utilization responses of five conifer species to environmental factors from a range of field environments are first summarized. Next, the interactions between sources, sinks, and storages of carbon are examined at the leaf and tree scales, and finally, the review evaluates the proposition that processes involved with carbon utilization (sink activity) are more sensitive to the supply of water and nutrients (particularly nitrogen) than are the processes of carbon gain (source activity) and carbon storage. The terms {open_quotes}sink{close_quotes} and {open_quotes}source{close_quotes} refer to carbon utilization and carbon gain, respectively. The relative roles of stored carbon reserves and of current photosynthate in meeting sink demand are addressed. Discussions focus on source-sink-storage relationships within the diurnal, wetting-drying, and annual cycles of conifer growth and development, and some discussion of life cycle aspects is also presented.« less
NASA Astrophysics Data System (ADS)
Zarubin, V. S.; Sergeeva, E. S.
2018-04-01
Composite materials (composites) composed of a matrix and reinforcing components are currently widely used as structural materials for various engineering devices designed to operate under extreme thermal and mechanical loads. By modifying a composite with structure-sensitive inclusions such as single-wall carbon nanotubes, one can significantly improve the thermomechanical properties of the resulting material. The paper presents relationships obtained for the equivalent thermal conductivity coefficients of single-wall carbon nanotubes versus their chirality using a simulation model developed to simulate the heat transfer process through thermal conductivity in a transversely isotropic environment. With these coefficients, one can conventionally substitute a single-wall carbon nanotube with a continuous anisotropic fiber, thus allowing one to estimate the thermal properties of composites reinforced with objects of this sort by using the well-known models developed for fibered composites. The results presented here can be used to estimate the thermal properties of carbon nanotube-reinforced composites.
Nakano, Motohiro; Nakashima, Takuya; Kawai, Tsuyoshi; Nonoguchi, Yoshiyuki
2017-08-01
Single-walled carbon nanotubes are promising candidates for light-weight and flexible energy materials. Recently, the thermoelectric properties of single-walled carbon nanotubes have been dramatically improved by ionic liquid addition; however, controlling factors remain unsolved. Here the thermoelectric properties of single-walled carbon nanotubes enhanced by electrolytes are investigated. Complementary characterization with absorption, Raman, and X-ray photoelectron spectroscopy reveals that shallow hole doping plays a partial role in the enhanced electrical conductivity. The molecular factors controlling the thermoelectric properties of carbon nanotubes are systematically investigated in terms of the ionic functionalities of ionic liquids. It is revealed that appropriate ionic liquids show a synergistic enhancement in conductivity and the Seebeck coefficient. The discovery of significantly precise doping enables the generation of thermoelectric power factor exceeding 460 µW m - 1 K -2 . © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of carbon source on nitrogen removal in anaerobic ammonium oxidation (anammox) process.
Zhu, Weiqiang; Zhang, Peiyu; Dong, Huiyu; Li, Jin
2017-04-01
Anaerobic ammonium oxidation (anammox) has been regarded as an efficient process to treat high-strength wastewater without organic carbon source. To investigate nitrogen removal performance of anammox in presence of organic carbon source can broaden its application on organic wastewater treatment. In this work, effect of carbon source on anammox process was explored. Operating temperature was set at 35 ± 1°C. Influent pH and hydraulic retention time were 7.5 and 6 h, respectively. Effluent [Formula: see text] was affected little with COD no more than 480 mg/L. Independent of carbon source content, nitrite removal rate was around 99%. The variation of [Formula: see text] lagged behind [Formula: see text] at high COD content, and pH could be used as an indicator for [Formula: see text] removal. Specific anammox activity dropped from 0.39 to 0.19 [Formula: see text] at COD=720 mg/L. The remodified logistic model was quite appropriate for describing the nitrogen removal kinetics and predicting the performance of anammox process in presence of carbon source. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
[Quantitative estimation source of urban atmospheric CO2 by carbon isotope composition].
Liu, Wei; Wei, Nan-Nan; Wang, Guang-Hua; Yao, Jian; Zeng, You-Shi; Fan, Xue-Bo; Geng, Yan-Hong; Li, Yan
2012-04-01
To effectively reduce urban carbon emissions and verify the effectiveness of currently project for urban carbon emission reduction, quantitative estimation sources of urban atmospheric CO2 correctly is necessary. Since little fractionation of carbon isotope exists in the transportation from pollution sources to the receptor, the carbon isotope composition can be used for source apportionment. In the present study, a method was established to quantitatively estimate the source of urban atmospheric CO2 by the carbon isotope composition. Both diurnal and height variations of concentrations of CO2 derived from biomass, vehicle exhaust and coal burning were further determined for atmospheric CO2 in Jiading district of Shanghai. Biomass-derived CO2 accounts for the largest portion of atmospheric CO2. The concentrations of CO2 derived from the coal burning are larger in the night-time (00:00, 04:00 and 20:00) than in the daytime (08:00, 12:00 and 16:00), and increase with the increase of height. Those derived from the vehicle exhaust decrease with the height increase. The diurnal and height variations of sources reflect the emission and transport characteristics of atmospheric CO2 in Jiading district of Shanghai.
Delayed Ionization in Transition Metal Carbon Clusters
NASA Astrophysics Data System (ADS)
Kooi, S. E.; Castleman, A. W., Jr.
1997-03-01
Mass spectrometric studies of several single and binary transition metal carbon cluster systems, produced in a laser vaporization source, reveal several species that undergo delayed ionization. Pulsed extraction and blocking electric fields, in a time-of-flight mass spectrometer, allow the study of delayed ionization over a time window after excitation with a pulsed laser. In systems where metallocarbohedrenes (Met-Cars) are produced, the Met-Cars are the dominate delayed species. Delayed ionization of binary metal Met-Cars Ti_xM_yC_12 (M=Zr,Nb,Y; x+y=8) is dependent on the ratio of the two metals. Delayed behavior is investigated over a range of photoionization wavelengths and fluences. In order to determine the degree to which the delayed ionization is thermionic in character, the experimental data have been compared to Klots's model for thermionic emission from small particles.
Elder, J.F.; Rybicki, N.B.; Carter, V.; Weintraub, V.
2000-01-01
In five tributary streams (four inflowing and one outflowing) of 1600-ha Trout Lake in northern Wisconsin, USA, we examined factors that can affect the magnitude of stream flow and transport of dissolved organic and inorganic carbon (DOC and DIC) through the streams to the lake. One catchment, the Allequash Creek basin, was investigated in more detail to describe the dynamics of carbon flow and to identify potential carbon sources. Stream flows and carbon loads showed little or no relation to surface-water catchment area. They were more closely related to ground-water watershed area because ground-water discharge, from both local and regional sources, is a major contributor to the hydrologic budgets of these catchments. An important factor in determining carbon influx to the stream is the area of peatland in the catchment. Peatland porewaters contain DOC concentrations up to 40 mg l-1 and are a significant potential carbon source. Ground-water discharge and lateral flow through peat are the suspected mechanisms for transport of that carbon to the streams. Carbon and nitrogen isotopes suggested that the sources of DOC in Allequash Creek above Allequash Lake were wetland vegetation and peat and that the sources below Allequash Lake were filamentous algae and wild rice. Catchments with high proportions of peatland, including the Allequash Creek catchment, tended to have elevated DOC loads in outflowing stream water. Respiration and carbon mineralization in lakes within the system tend to produce low DOC and low DOC/DIC in lake outflows, especially at Trout Lake. In Allequash Lake, however, the shallow peat island and vegetation-filled west end were sources of DOC. Despite the vast carbon reservoir in the peatlands, carbon yields were very low in these catchments. Maximum yields were on the order of 2.5 g m-2 y-1 DOC and 5.5 g m-2 y-1 DIC. The small yields were attributable to low stream flows due to lack of significant overland runoff and very limited stream channel coverage of the total catchment area.
Mineral Carbonation Potential of CO2 from Natural and Industrial-based Alkalinity Sources
NASA Astrophysics Data System (ADS)
Wilcox, J.; Kirchofer, A.
2014-12-01
Mineral carbonation is a Carbon Capture and Storage (CSS) technology where gaseous CO2 is reacted with alkaline materials (such as silicate minerals and alkaline industrial wastes) and converted into stable and environmentally benign carbonate minerals (Metz et al., 2005). Here, we present a holistic, transparent life cycle assessment model of aqueous mineral carbonation built using a hybrid process model and economic input-output life cycle assessment approach. We compared the energy efficiency and the net CO2 storage potential of various mineral carbonation processes based on different feedstock material and process schemes on a consistent basis by determining the energy and material balance of each implementation (Kirchofer et al., 2011). In particular, we evaluated the net CO2 storage potential of aqueous mineral carbonation for serpentine, olivine, cement kiln dust, fly ash, and steel slag across a range of reaction conditions and process parameters. A preliminary systematic investigation of the tradeoffs inherent in mineral carbonation processes was conducted and guidelines for the optimization of the life-cycle energy efficiency are provided. The life-cycle assessment of aqueous mineral carbonation suggests that a variety of alkalinity sources and process configurations are capable of net CO2 reductions. The maximum carbonation efficiency, defined as mass percent of CO2 mitigated per CO2 input, was 83% for CKD at ambient temperature and pressure conditions. In order of decreasing efficiency, the maximum carbonation efficiencies for the other alkalinity sources investigated were: olivine, 66%; SS, 64%; FA, 36%; and serpentine, 13%. For natural alkalinity sources, availability is estimated based on U.S. production rates of a) lime (18 Mt/yr) or b) sand and gravel (760 Mt/yr) (USGS, 2011). The low estimate assumes the maximum sequestration efficiency of the alkalinity source obtained in the current work and the high estimate assumes a sequestration efficiency of 85%. The total CO2 storage potential for the alkalinity sources considered in the U.S. ranges from 1.3% to 23.7% of U.S. CO2 emissions, depending on the assumed availability of natural alkalinity sources and efficiency of the mineral carbonation processes.
NASA Astrophysics Data System (ADS)
Krause, O.; Bouchiat, V.; Bonnot, A. M.
2007-03-01
Due to their extreme aspect ratios and exceptional mechanical properties Carbon Nanotubes terminated silicon probes have proven to be the ''ideal'' probe for Atomic Force Microscopy. But especially for the manufacturing and use of Single Walled Carbon Nanotubes there are serious problems, which have not been solved until today. Here, Single and Double Wall Carbon Nanotubes, batch processed and used as deposited by Chemical Vapor Deposition without any postprocessing, are compared to standard and high resolution silicon probes concerning resolution, scanning speed and lifetime behavior.
Origin and sources of dissolved organic matter in snow on the East Antarctic ice sheet.
Antony, Runa; Grannas, Amanda M; Willoughby, Amanda S; Sleighter, Rachel L; Thamban, Meloth; Hatcher, Patrick G
2014-06-03
Polar ice sheets hold a significant pool of the world's carbon reserve and are an integral component of the global carbon cycle. Yet, organic carbon composition and cycling in these systems is least understood. Here, we use ultrahigh resolution mass spectrometry to elucidate, at an unprecedented level, molecular details of dissolved organic matter (DOM) in Antarctic snow. Tens of thousands of distinct molecular species are identified, providing clues to the nature and sources of organic carbon in Antarctica. We show that many of the identified supraglacial organic matter formulas are consistent with material from microbial sources, and terrestrial inputs of vascular plant-derived materials are likely more important sources of organic carbon to Antarctica than previously thought. Black carbon-like material apparently originating from biomass burning in South America is also present, while a smaller fraction originated from soil humics and appears to be photochemically or microbially modified. In addition to remote continental sources, we document signals of oceanic emissions of primary aerosols and secondary organic aerosol precursors. The new insights on the diversity of organic species in Antarctic snowpack reinforce the importance of studying organic carbon associated with the Earth's polar regions in the face of changing climate.
Ries, Laure Nicolas Annick; de Assis, Leandro José; Rodrigues, Fernando José Santos; Caldana, Camila; Rocha, Marina Campos; Malavazi, Iran; Bayram, Özgür; Goldman, Gustavo H
2018-05-24
The pyruvate dehydrogenase complex (PDH), that converts pyruvate to acetyl-coA, is regulated by pyruvate dehydrogenase kinases (PDHK) and phosphatases (PDHP) that have been shown to be important for morphology, pathogenicity and carbon source utilisation in different fungal species. The aim of this study was to investigate the role played by the three PDHKs PkpA, PkpB and PkpC in carbon source utilisation in the reference filamentous fungus Aspergillus nidulans , in order to unravel regulatory mechanisms which could prove useful for fungal biotechnological and biomedical applications. PkpA and PkpB were shown to be mitochondrial whereas PkpC localised to the mitochondria in a carbon source-dependent manner. Only PkpA was shown to regulate PDH activity. In the presence of glucose, deletion of pkpA and pkpC resulted in reduced glucose utilisation, which affected carbon catabolite repression (CCR) and hydrolytic enzyme secretion, due to de-regulated glycolysis and TCA cycle enzyme activities. Furthermore, PkpC was shown to be required for the correct metabolic utilisation of cellulose and acetate. PkpC negatively regulated the activity of the glyoxylate cycle enzyme isocitrate lyase (ICL), required for acetate metabolism. In summary, this study identified PDHKs important for the regulation of central carbon metabolism in the presence of different carbon sources, with effects on the secretion of biotechnologically important enzymes and carbon source-related growth. This work demonstrates how central carbon metabolism can affect a variety of fungal traits and lays a basis for further investigation into these characteristics with potential interest for different applications. Copyright © 2018, G3: Genes, Genomes, Genetics.
Material Characterization for Composite Materials in Load Bearing Wave Guides
2012-03-01
ISIS Integrated Sensor Is Structure MUSTRAP Multifunctional Structural Aperture MWCNT Multi-walled Carbon Nanotube SWCNT Single-walled Carbon...CNTs go through a specific process to coat them with nickel. The process includes conditioning the CNTs in different solutions and adding...a single-walled carbon nanotube (SWCNT), a multi-walled carbon nanotube ( MWCNT ), or a graphene nanoribbon (GNR). A SWCNT is a hollow cylindrical
A review of carbon monoxide sources, sinks, and concentrations in the earth's atmosphere
NASA Technical Reports Server (NTRS)
Bortner, M. H.; Kummler, R. H.; Jaffe, L. S.
1972-01-01
Carbon monoxide is a toxic pollutant which is continually introduced into the earth's atmosphere in significant quantities. There are apparently some mechanisms operating which destroy most of the CO in the atmosphere, i.e., a carbon monoxide sink. These mechanisms have not as yet been established in a quantitative sense. This report discusses the various possible removal mechanisms which warrant serious consideration. Particular emphasis is given to chemical reactions (especially that with OH), soil bacteria and other biological action, and transport effects. The sources of carbon monoxide, both natural and anthropogenic, are reviewed and it is noted that there is quite possibly a significant undefined natural source. Atmospheric CO concentrations are discussed and their implications on carbon monoxide lifetime, sinks and sources are considered.
Aravena, R.; Wassenaar, L.I.; Spiker, E. C.
2004-01-01
This study demonstrates the advantage of a combined use of chemical and isotopic tools to understand the dissolved organic carbon (DOC) cycle in a regional confined methanogenic aquifer. DOC concentration and carbon isotopic data demonstrate that the soil zone is a primary carbon source of groundwater DOC in areas close to recharge zones. An in-situ DOC source linked to organic rich sediments present in the aquifer matrix is controlling the DOC pool in the central part of the groundwater flow system. DOC fractions, 13C-NMR on fulvic acids and 14C data on DOC and CH4 support the hypothesis that the in-situ DOC source is a terrestrial organic matter and discard the Ordovician bedrock as a source of DOC. ?? 2004 Taylor and Francis Ltd.
NASA Astrophysics Data System (ADS)
Sturtz, Timothy M.
Source apportionment models attempt to untangle the relationship between pollution sources and the impacts at downwind receptors. Two frameworks of source apportionment models exist: source-oriented and receptor-oriented. Source based apportionment models use presumed emissions and atmospheric processes to estimate the downwind source contributions. Conversely, receptor based models leverage speciated concentration data from downwind receptors and apply statistical methods to predict source contributions. Integration of both source-oriented and receptor-oriented models could lead to a better understanding of the implications sources have on the environment and society. The research presented here investigated three different types of constraints applied to the Positive Matrix Factorization (PMF) receptor model within the framework of the Multilinear Engine (ME-2): element ratio constraints, spatial separation constraints, and chemical transport model (CTM) source attribution constraints. PM10-2.5 mass and trace element concentrations were measured in Winston-Salem, Chicago, and St. Paul at up to 60 sites per city during two different seasons in 2010. PMF was used to explore the underlying sources of variability. Information on previously reported PM10-2.5 tire and brake wear profiles were used to constrain these features in PMF by prior specification of selected species ratios. We also modified PMF to allow for combining the measurements from all three cities into a single model while preserving city-specific soil features. Relatively minor differences were observed between model predictions with and without the prior ratio constraints, increasing confidence in our ability to identify separate brake wear and tire wear features. Using separate data, source contributions to total fine particle carbon predicted by a CTM were incorporated into the PMF receptor model to form a receptor-oriented hybrid model. The level of influence of the CTM versus traditional PMF was varied using a weighting parameter applied to an object function as implemented in ME-2. The resulting hybrid model was used to quantify the contributions of total carbon from both wildfires and biogenic sources at two Interagency Monitoring of Protected Visual Environment monitoring sites, Monture and Sula Peak, Montana, from 2006 through 2008.
Gaa, T; Reinhart, M; Hartmann, B; Jakubek, J; Soukup, P; Jäkel, O; Martišíková, M
2017-06-01
Non-invasive methods for monitoring of the therapeutic ion beam extension in the patient are desired in order to handle deteriorations of the dose distribution related to changes of the patient geometry. In carbon ion radiotherapy, secondary light ions represent one of potential sources of information about the dose distribution in the irradiated target. The capability to detect range-changing inhomogeneities inside of an otherwise homogeneous phantom, based on single track measurements, is addressed in this paper. Air and stainless steel inhomogeneities, with PMMA equivalent thickness of 10mm and 4.8mm respectively, were inserted into a PMMA-phantom at different positions in depth. Irradiations of the phantom with therapeutic carbon ion pencil beams were performed at the Heidelberg Ion Beam Therapy Center. Tracks of single secondary ions escaping the phantom under irradiation were detected with a pixelized semiconductor detector Timepix. The statistical relevance of the found differences between the track distributions with and without inhomogeneities was evaluated. Measured shifts of the distal edge and changes in the fragmentation probability make the presence of inhomogeneities inserted into the traversed medium detectable for both, 10mm air cavities and 1mm thick stainless steel. Moreover, the method was shown to be sensitive also on their position in the observed body, even when localized behind the Bragg-peak. The presented results demonstrate experimentally, that the method using distributions of single secondary ion tracks is sensitive to the changes of homogeneity of the traversed material for the studied geometries of the target. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
From agro-industrial wastes to single cell oils: a step towards prospective biorefinery.
Diwan, Batul; Parkhey, Piyush; Gupta, Pratima
2018-04-23
The reserves of fossil-based fuels, which currently seem sufficient to meet the global demands, is inevitably on the verge of exhaustion. Contemporary raw material for alternate fuel like biodiesel is usually edible plant commodity oils, whose increasing public consumption rate raises the need of finding a non-edible and fungible alternate oil source. In this quest, single cell oils (SCO) from oleaginous yeasts and fungi can provide a sustainable alternate of not only functional but also valuable (polyunsaturated fatty acids (PUFA)-rich) lipids. Researches are been increasingly driven towards increasing the SCO yield in order to realize its commercial importance. However, bulk requirement of expensive synthetic carbon substrate, which inflates the overall SCO production cost, is the major limitation towards complete acceptance of this technology. Even though substrate cost minimization could make the SCO production profitable is uncertain, it is still essential to identify suitable cheap and abundant substrates in an attempt to potentially reduce the overall process economy. One of the most sought-after in-expensive carbon reservoirs, agro-industrial wastes, can be an attractive replacement to expensive synthetic carbon substrates in this regard. The present review assess these possibilities referring to the current experimental investigations on oleaginous yeasts, and fungi reported for conversion of agro-industrial feedstocks into triacylglycerols (TAGs) and PUFA-rich lipids. Multiple associated factors regulating lipid accumulation utilizing such substrates and impeding challenges has been analyzed. The review infers that production of bulk oil in combination to high-value fatty acids, co-production strategies for SCO and different microbial metabolites, and reutilization and value addition to spent wastes could possibly leverage the high operating costs and help in commencing a successful biorefinery. Rigorous research is nevertheless required whether it is PUFA-rich oil production (for competing with algal omega oils) or neutral bulk oil production (for overcoming yield limitations and managing process economy) to establish this potential source as future resource.
Fan, Xiujun; Zhou, Haiqing; Guo, Xia
2015-05-26
Single nanocrystalline tungsten carbide (WC) was first synthesized on the tips of vertically aligned carbon nanotubes (VA-CNTs) with a hot filament chemical vapor deposition (HF-CVD) method through the directly reaction of tungsten metal with carbon source. The VA-CNTs with preservation of vertical structure integrity and alignment play an important role to support the nanocrystalline WC growth. With the high crystallinity, small size, and uniform distribution of WC particles on the carbon support, the formed WC-CNTs material exhibited an excellent catalytic activity for hydrogen evolution reaction (HER), giving a η10 (the overpotential for driving a current of 10 mA cm(-2)) of 145 mV, onset potential of 15 mV, exchange current density@ 300 mV of 117.6 mV and Tafel slope values of 72 mV dec(-1) in acid solution, and η10 of 137 mV, onset potential of 16 mV, exchange current density@ 300 mV of 33.1 mV and Tafel slope values of 106 mV dec(-1) in alkaline media, respectively. Electrochemical stability test further confirms the long-term operation of the catalyst in both acidic and alkaline media.
Ma, Jing-Yun; Quan, Xian-Chun; Xiong, Wei-Cong
2010-11-01
This study investigated the changes of the morphology, structure, and capability of removing the target contamination of the aerobic granules pre-cultured with mixed substrates of glucose and 2,4-dichlorophenoxyacetic acid (2,4-D) in a long-time running sequence batch reactor (SBR), when the carbon source transformed into the sole carbon source of 2,4-D. Results showed that when the substrate turned to the sole carbon source of 2,4-D, the aerobic granules still maintained a strong degradation ability to the target contamination; a 2,4-D removal percentage of 99.2% -100% and an average COD removal rate of 85.6% were achieved at the initial 2,4-D concentration of 361-564 mg/L. Carbon source transformation caused certain damages to the original aerobic granule structure, made some parts of granules disintegrated, and led to granule size decline from 513 microm to 302 microm. However, those granules maintained the main body, re-aggregated and grew after a period of adaptation due to their strong resistance to toxicity. Aerobic granules capable of utilizing 2,4-D as the sole carbon source with a good settling ability (SYI 20-40 mL/g) and a mean diameter of 489 microm were finally obtained in this study. Scanning electron microscope (SEM) observation showed that the diversity of granule microbial species was declined when turned to the sole carbon source.
Mehra, S; Morrison, P D; Coates, F; Lawrie, A C
2017-02-01
Terrestrial orchids depend on orchid mycorrhizal fungi (OMF) as symbionts for their survival, growth and nutrition. The ability of OMF from endangered orchid species to compete for available resources with OMF from common species may affect the distribution, abundance and therefore conservation status of their orchid hosts. Eight symbiotically effective OMF from endangered and more common Caladenia species were tested for their ability to utilise complex insoluble and simple soluble carbon sources produced during litter degradation by growth with different carbon sources in liquid medium to measure the degree of OMF variation with host conservation status or taxonomy. On simple carbon sources, fungal growth was assessed by biomass. On insoluble substrates, ergosterol content was assessed using ultra-performance liquid chromatography (UPLC). The OMF grew on all natural materials and complex carbon sources, but produced the greatest biomass on xylan and starch and the least on bark and chitin. On simple carbon sources, the greatest OMF biomass was measured on most hexoses and disaccharides and the least on galactose and arabinose. Only some OMF used sucrose, the most common sugar in green plants, with possible implications for symbiosis. OMF from common orchids produced more ergosterol and biomass than those from endangered orchids in the Dilatata and Reticulata groups but not in the Patersonii and Finger orchids. This suggests that differences in carbon source utilisation may contribute to differences in the distribution of some orchids, if these differences are retained on site.
Production of polyhydroxybutyrate by the marine photosynthetic bacterium Rhodovulum sulfidophilum P5
NASA Astrophysics Data System (ADS)
Cai, Jinling; Wei, Ying; Zhao, Yupeng; Pan, Guanghua; Wang, Guangce
2012-07-01
The effects of different NaCl concentrations, nitrogen sources, carbon sources, and carbon to nitrogen molar ratios on biomass accumulation and polyhydroxybutyrate (PHB) production were studied in batch cultures of the marine photosynthetic bacterium Rhodovulum sulfidophilum P5 under aerobic-dark conditions. The results show that the accumulation of PHB in strain P5 is a growth-associated process. Strain P5 had maximum biomass and PHB accumulation at 2%-3% NaCl, suggesting that the bacterium can maintain growth and potentially produce PHB at natural seawater salinity. In the nitrogen source test, the maximum biomass accumulation (8.10±0.09 g/L) and PHB production (1.11±0.13 g/L and 14.62%±2.2 of the cell dry weight) were observed when peptone and ammonium chloride were used as the sole nitrogen source. NH{4/+}-N was better for PHB production than other nitrogen sources. In the carbon source test, the maximum biomass concentration (7.65±0.05 g/L) was obtained with malic acid as the sole carbon source, whereas the maximum yield of PHB (5.03±0.18 g/L and 66.93%±1.69% of the cell dry weight) was obtained with sodium pyruvate as the sole carbon source. In the carbon to nitrogen ratios test, sodium pyruvate and ammonium chloride were selected as the carbon and nitrogen sources, respectively. The best carbon to nitrogen molar ratio for biomass accumulation (8.77±0.58 g/L) and PHB production (6.07±0.25 g/L and 69.25%±2.05% of the cell dry weight) was 25. The results provide valuable data on the production of PHB by R. sulfidophilum P5 and further studies are on-going for best cell growth and PHB yield.
Bouyssou, Guillaume; Allmann, Stefan; Kiema, Tiila-Riikka; Biran, Marc; Plazolles, Nicolas; Dittrich-Domergue, Franziska; Crouzols, Aline; Wierenga, Rik K.; Rotureau, Brice; Moreau, Patrick
2018-01-01
De novo biosynthesis of lipids is essential for Trypanosoma brucei, a protist responsible for the sleeping sickness. Here, we demonstrate that the ketogenic carbon sources, threonine, acetate and glucose, are precursors for both fatty acid and sterol synthesis, while leucine only contributes to sterol production in the tsetse fly midgut stage of the parasite. Degradation of these carbon sources into lipids was investigated using a combination of reverse genetics and analysis of radio-labelled precursors incorporation into lipids. For instance, (i) deletion of the gene encoding isovaleryl-CoA dehydrogenase, involved in the leucine degradation pathway, abolished leucine incorporation into sterols, and (ii) RNAi-mediated down-regulation of the SCP2-thiolase gene expression abolished incorporation of the three ketogenic carbon sources into sterols. The SCP2-thiolase is part of a unidirectional two-step bridge between the fatty acid precursor, acetyl-CoA, and the precursor of the mevalonate pathway leading to sterol biosynthesis, 3-hydroxy-3-methylglutaryl-CoA. Metabolic flux through this bridge is increased either in the isovaleryl-CoA dehydrogenase null mutant or when the degradation of the ketogenic carbon sources is affected. We also observed a preference for fatty acids synthesis from ketogenic carbon sources, since blocking acetyl-CoA production from both glucose and threonine abolished acetate incorporation into sterols, while incorporation of acetate into fatty acids was increased. Interestingly, the growth of the isovaleryl-CoA dehydrogenase null mutant, but not that of the parental cells, is interrupted in the absence of ketogenic carbon sources, including lipids, which demonstrates the essential role of the mevalonate pathway. We concluded that procyclic trypanosomes have a strong preference for fatty acid versus sterol biosynthesis from ketogenic carbon sources, and as a consequence, that leucine is likely to be the main source, if not the only one, used by trypanosomes in the infected insect vector digestive tract to feed the mevalonate pathway. PMID:29813135
Jackson, Mark A.; Bothast, Rodney J.
1990-01-01
We assessed the influence of various carbon concentrations and carbon-to-nitrogen (C:N) ratios on Colletotrichum truncatum NRRL 13737 conidium formation in submerged cultures grown in a basal salts medium containing various amounts of glucose and Casamino Acids. Under the nutritional conditions tested, the highest conidium concentrations were produced in media with carbon concentrations of 4.0 to 15.3 g/liter. High carbon concentrations (20.4 to 40.8 g/liter) inhibited sporulation and enhanced the formation of microsclerotiumlike hyphal masses. At all the carbon concentrations tested, a culture grown in a medium with a C:N ratio of 15:1 produced more conidia than cultures grown in media with C:N ratios of 40:1 or 5:1. While glucose exhaustion was often coincident with conidium formation, cultures containing residual glucose sporulated and those with high carbon concentrations (>25 g/liter) exhausted glucose without sporulation. Nitrogen source studies showed that the levels of C. truncatum NRRL 13737 conidiation were similar for all protein hydrolysates tested. Reduced conidiation occurred when amino acid and inorganic nitrogen sources were used. Of the nine carbon sources evaluated, acetate as the sole carbon source resulted in the lowest level of sporulation. Images PMID:16348348
Brzonkalik, Katrin; Herrling, Tanja; Syldatk, Christoph; Neumann, Anke
2011-05-27
The aim of this study was to determine the influence of different carbon and nitrogen sources on the production of the mycotoxins alternariol (AOH), alternariol monomethyl ether (AME) and tenuazonic acid (TA) by Alternaria alternata at 28°C using a semi-synthetic medium (modified Czapek-Dox broth) supplemented with nitrogen and carbon sources. Additionally the effect of shaken and static cultivation on mycotoxin production was tested. Initial experiments showed a clear dependency between nitrogen depletion and mycotoxin production. To assess whether nitrogen limitation in general or the type of nitrogen source triggers the production, various nitrogen sources including several ammonium/nitrate salts and amino acids were tested. In static culture the production of AOH/AME can be enhanced greatly with phenylalanine whereas some nitrogen sources seem to inhibit the AOH/AME production completely. TA was not significantly affected by the choice of nitrogen source. In shaken culture the overall production of all mycotoxins was lower compared to static cultivation. Furthermore tests with a wide variety of carbon sources including monosaccharides, disaccharides, complex saccharides such as starch as well as glycerol and acetate were performed. In shaken culture AOH was produced when glucose, fructose, sucrose, acetate or mixtures of glucose/sucrose and glucose/acetate were used as carbon sources. AME production was not detected. The use of sodium acetate resulted in the highest AOH production. In static culture AOH production was also stimulated by acetate and the amount is comparable to shaken conditions. Under static conditions production of AOH was lower except when cultivated with acetate. In static cultivation 9 of 14 tested carbon sources induced mycotoxin production compared to 4 in shaken culture. This is the first study which analyses the influence of carbon and nitrogen sources in a semi-synthetic medium and assesses the effects of culture conditions on mycotoxin production by A. alternata. Copyright © 2011 Elsevier B.V. All rights reserved.
Scanning gate imaging of two coupled quantum dots in single-walled carbon nanotubes.
Zhou, Xin; Hedberg, James; Miyahara, Yoichi; Grutter, Peter; Ishibashi, Koji
2014-12-12
Two coupled single wall carbon nanotube quantum dots in a multiple quantum dot system were characterized by using a low temperature scanning gate microscopy (SGM) technique, at a temperature of 170 mK. The locations of single wall carbon nanotube quantum dots were identified by taking the conductance images of a single wall carbon nanotube contacted by two metallic electrodes. The single electron transport through single wall carbon nanotube multiple quantum dots has been observed by varying either the position or voltage bias of a conductive atomic force microscopy tip. Clear hexagonal patterns were observed in the region of the conductance images where only two sets of overlapping conductance rings are visible. The values of coupling capacitance over the total capacitance of the two dots, C(m)/C(1(2)) have been extracted to be 0.21 ∼ 0.27 and 0.23 ∼ 0.28, respectively. In addition, the interdot coupling (conductance peak splitting) has also been confirmed in both conductance image measurement and current-voltage curves. The results show that a SGM technique enables spectroscopic investigation of coupled quantum dots even in the presence of unexpected multiple quantum dots.
Placing barrier-island transgression in a blue-carbon context
NASA Astrophysics Data System (ADS)
Theuerkauf, Ethan J.; Rodriguez, Antonio B.
2017-07-01
Backbarrier saltmarshes are considered carbon sinks; however, barrier island transgression and the associated processes of erosion and overwash are typically not included in coastal carbon budgets. Here, we present a carbon-budget model for transgressive barrier islands that includes a dynamic carbon-storage term, driven by backbarrier-marsh width, and a carbon-export term, driven by ocean and backbarrier shoreline erosion. To examine the impacts of storms, human disturbances and the backbarrier setting of a transgressive barrier island on carbon budgets and reservoirs, the model was applied to sites at Core Banks and Onslow Beach, NC, USA. Results show that shoreline erosion and burial of backbarrier marsh from washover deposition and dredge-spoil disposal temporarily transitioned each site into a net exporter (source) of carbon. The magnitude of the carbon reservoir was linked to the backbarrier setting of an island. Carbon reservoirs of study sites separated from the mainland by only backbarrier marsh (no lagoon) decreased for over a decade because carbon storage could not keep pace with erosion. With progressive narrowing of the backbarrier marsh, these barriers will begin to function more persistently as carbon sources until the reservoir is depleted at the point where the barrier welds with the mainland. Undeveloped barrier islands with wide lagoons are carbon sources briefly during erosive periods; however, at century time scales are net carbon importers (sinks) because new marsh habitat can form during barrier rollover. Human development on backbarrier saltmarsh serves to reduce the carbon storage capacity and can hasten the transition of an island from a sink to a source.
Heller, Daniel A.; Pratt, George W.; Zhang, Jingqing; Nair, Nitish; Hansborough, Adam J.; Boghossian, Ardemis A.; Reuel, Nigel F.; Barone, Paul W.; Strano, Michael S.
2011-01-01
A class of peptides from the bombolitin family, not previously identified for nitroaromatic recognition, allows near-infrared fluorescent single-walled carbon nanotubes to transduce specific changes in their conformation. In response to the binding of specific nitroaromatic species, such peptide–nanotube complexes form a virtual “chaperone sensor,” which reports modulation of the peptide secondary structure via changes in single-walled carbon nanotubes, near-infrared photoluminescence. A split-channel microscope constructed to image quantized spectral wavelength shifts in real time, in response to nitroaromatic adsorption, results in the first single-nanotube imaging of solvatochromic events. The described indirect detection mechanism, as well as an additional exciton quenching-based optical nitroaromatic detection method, illustrate that functionalization of the carbon nanotube surface can result in completely unique sites for recognition, resolvable at the single-molecule level. PMID:21555544
Thermionic Emission of Single-Wall Carbon Nanotubes Measured
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Krainsky, Isay L.; Bailey, Sheila G.; Elich, Jeffrey M.; Landi, Brian J.; Gennett, Thomas; Raffaelle, Ryne P.
2004-01-01
Researchers at the NASA Glenn Research Center, in collaboration with the Rochester Institute of Technology, have investigated the thermionic properties of high-purity, single-wall carbon nanotubes (SWNTs) for use as electron-emitting electrodes. Carbon nanotubes are a recently discovered material made from carbon atoms bonded into nanometer-scale hollow tubes. Such nanotubes have remarkable properties. An extremely high aspect ratio, as well as unique mechanical and electronic properties, make single-wall nanotubes ideal for use in a vast array of applications. Carbon nanotubes typically have diameters on the order of 1 to 2 nm. As a result, the ends have a small radius of curvature. It is these characteristics, therefore, that indicate they might be excellent potential candidates for both thermionic and field emission.
Lignin-Derived Advanced Carbon Materials
Chatterjee, Sabornie; Saito, Tomonori
2015-11-16
Lignin is a highly abundant source of renewable carbon that can be considered as a valuable sustainable source of biobased materials. By applying specific pretreatments and manufacturing methods, it has been found that lignin can be converted into a variety of value-added carbon materials. However, the physical and chemical heterogeneities of lignin complicate its use as a feedstock. Herein, we discuss the lignin manufacturing process, the effects of pretreatments and manufacturing methods on the properties of product lignin, and structure–property relationships in various applications of lignin-derived carbon materials, such as carbon fibers, carbon mats, activated carbons, carbon films, and templatedmore » carbon.« less
Lignin-Derived Advanced Carbon Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, Sabornie; Saito, Tomonori
Lignin is a highly abundant source of renewable carbon that can be considered as a valuable sustainable source of biobased materials. By applying specific pretreatments and manufacturing methods, it has been found that lignin can be converted into a variety of value-added carbon materials. However, the physical and chemical heterogeneities of lignin complicate its use as a feedstock. Herein, we discuss the lignin manufacturing process, the effects of pretreatments and manufacturing methods on the properties of product lignin, and structure–property relationships in various applications of lignin-derived carbon materials, such as carbon fibers, carbon mats, activated carbons, carbon films, and templatedmore » carbon.« less
NASA Astrophysics Data System (ADS)
Loisel, J.; Nichols, J. E.; Kaiser, K.; Beilman, D. W.; Yu, Z.
2016-12-01
The carbon isotope signature (δ13C) of Sphagnum moss is increasingly used as a proxy for past surface wetness in peatlands. However, conflicting interpretations of these carbon isotope records have recently been published. While the water film hypothesis suggests that the presence of a thick (thin) water film around hollow (hummock) mosses leads to less (more) negative δ13C values, the carbon source hypothesis poses that a significant (insignificant) amount of CH4 assimilation by hollow (hummock) mosses leads to more (less) negative δ13C values. To evaluate these competing mechanisms and their impact on moss δ13C, we gathered 30 moss samples from 6 peatlands in southern Patagonia. Samples were collected along a strong hydrological gradient, from very dry hummocks (80 cm above water table depth) to submerged hollows (5 cm below water surface). These peat bogs have the advantage of being colonized by a single cosmopolitan moss species, Sphagnum magellanicum, limiting potential biases introduced by species-specific carbon discrimination. We measured δ13C from stem cellulose and leaf waxes on the same samples to quantify compound-specific carbon signatures. We found that stem cellulose and leaf-wax lipids were both strongly negatively correlated with moss water content, suggesting a primary role of water film thickness on carbon assimilation. In addition, isotopic fractionation during wax synthesis was greater than for cellulose. This offset decreases as conditions get drier, due to (i) a more effective carbon assimilation, or (ii) CH4 uptake through symbiosis with methanotrophic bacteria within the leaves of wet mosses. Biochemical analysis (carbohydrates, amino acids, hydrophenols, cutin acids) of surface moss are currently being conducted to characterize moss carbon allocation under different hydrological conditions. Overall, this modern calibration work should be of use for interpreting carbon isotope records from peatlands.
NASA Astrophysics Data System (ADS)
González-Guerrero, Maria José; del Campo, F. Javier; Esquivel, Juan Pablo; Giroud, Fabien; Minteer, Shelley D.; Sabaté, Neus
2016-09-01
This work presents a first approach towards the development of a cost-effective enzymatic paper-based glucose/O2 microfluidic fuel cell in which fluid transport is based on capillary action. A first fuel cell configuration consists of a Y-shaped paper device with the fuel and the oxidant flowing in parallel over carbon paper electrodes modified with bioelectrocatalytic enzymes. The anode consists of a ferrocenium-based polyethyleneimine polymer linked to glucose oxidase (GOx/Fc-C6-LPEI), while the cathode contains a mixture of laccase, anthracene-modified multiwall carbon nanotubes, and tetrabutylammonium bromide-modified Nafion (MWCNTs/laccase/TBAB-Nafion). Subsequently, the Y-shaped configuration is improved to use a single solution containing both, the anolyte and the catholyte. Thus, the electrolytes pHs of the fuel and the oxidant solutions are adapted to an intermediate pH of 5.5. Finally, the fuel cell is run with this single solution obtaining a maximum open circuit of 0.55 ± 0.04 V and a maximum current and power density of 225 ± 17 μA cm-2 and 24 ± 5 μW cm-2, respectively. Hence, a power source closer to a commercial application (similar to conventional lateral flow test strips) is developed and successfully operated. This system can be used to supply the energy required to power microelectronics demanding low power consumption.
Gulotty, Richard; Castellino, Micaela; Jagdale, Pravin; Tagliaferro, Alberto; Balandin, Alexander A
2013-06-25
Carboxylic functionalization (-COOH groups) of carbon nanotubes is known to improve their dispersion properties and increase the electrical conductivity of carbon-nanotube-polymer nanocomposites. We have studied experimentally the effects of this type of functionalization on the thermal conductivity of the nanocomposites. It was found that while even small quantities of carbon nanotubes (~1 wt %) can increase the electrical conductivity, a larger loading fraction (~3 wt %) is required to enhance the thermal conductivity of nanocomposites. Functionalized multi-wall carbon nanotubes performed the best as filler material leading to a simultaneous improvement of the electrical and thermal properties of the composites. Functionalization of the single-wall carbon nanotubes reduced the thermal conductivity enhancement. The observed trends were explained by the fact that while surface functionalization increases the coupling between carbon nanotube and polymer matrix, it also leads to formation of defects, which impede the acoustic phonon transport in the single-wall carbon nanotubes. The obtained results are important for applications of carbon nanotubes and graphene flakes as fillers for improving thermal, electrical and mechanical properties of composites.
Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayorga, E; Aufdenkampe, A K; Masiello, C A
2005-06-23
Rivers are generally supersaturated with respect to carbon dioxide, resulting in large gas evasion fluxes that can be a significant component of regional net carbon budgets. Amazonian rivers were recently shown to outgas more than ten times the amount of carbon exported to the ocean in the form of total organic carbon or dissolved inorganic carbon. High carbon dioxide concentrations in rivers originate largely from in situ respiration of organic carbon, but little agreement exists about the sources or turnover times of this carbon. Here we present results of an extensive survey of the carbon isotope composition ({sup 13}C andmore » {sup 14}C) of dissolved inorganic carbon and three size-fractions of organic carbon across the Amazonian river system. We find that respiration of contemporary organic matter (less than 5 years old) originating on land and near rivers is the dominant source of excess carbon dioxide that drives outgassing in mid-size to large rivers, although we find that bulk organic carbon fractions transported by these rivers range from tens to thousands of years in age. We therefore suggest that a small, rapidly cycling pool of organic carbon is responsible for the large carbon fluxes from land to water to atmosphere in the humid tropics.« less
Electrochemical process for the preparation of nitrogen fertilizers
Aulich, Ted R.; Olson, Edwin S.; Jiang, Junhua
2013-03-19
The present invention provides methods and apparatus for the preparation of nitrogen fertilizers including ammonium nitrate, urea, urea-ammonium nitrate, and/or ammonia utilizing a source of carbon, a source of nitrogen, and/or a source of hydrogen. Implementing an electrolyte serving as ionic charge carrier, (1) ammonium nitrate is produced via the reduction of a nitrogen source at the cathode and the oxidation of a nitrogen source at the anode; (2) urea or its isomers are produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source; (3) ammonia is produced via the reduction of nitrogen source at the cathode and the oxidation of a hydrogen source at the anode; and (4) urea-ammonium nitrate is produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source, and anodic oxidation of a nitrogen source. The electrolyte can be solid.
Particulate polycyclic aromatic hydrocarbon spatial variability and aging in Mexico City
NASA Astrophysics Data System (ADS)
Thornhill, D. A.; Herndon, S. C.; Onasch, T. B.; Wood, E. C.; Zavala, M.; Molina, L. T.; Gaffney, J. S.; Marley, N. A.; Marr, L. C.
2007-11-01
As part of the Megacities Initiative: Local and Global Research Observations (MILAGRO) study in the Mexico City Metropolitan Area in March 2006, we measured particulate polycyclic aromatic hydrocarbons (PAHs) and other gaseous species and particulate properties at six locations throughout the city. The measurements were intended to support the following objectives: to describe spatial and temporal patterns in PAH concentrations, to gain insight into sources and transformations of PAHs, and to quantify the relationships between PAHs and other pollutants. Total particulate PAHs at the Instituto Mexicano del Petróleo (T0 supersite) located near downtown averaged 50 ng m-3, and aerosol active surface area averaged 80 mm2 m-3. PAHs were also measured on board the Aerodyne Mobile Laboratory, which visited six sites encompassing a mixture of different land uses and a range of ages of air parcels transported from the city core. Weak intersite correlations suggest that local sources are important and variable and that exposure to PAHs cannot be represented by a single regional-scale value. The relationships between PAHs and other pollutants suggest that a variety of sources and ages of particles are present. Among carbon monoxide, nitrogen oxides (NOx), and carbon dioxide, particulate PAHs are most strongly correlated with NOx. Mexico City's PAH-to-black carbon mass ratio of 0.01 is similar to that found on a freeway loop in the Los Angeles area and approximately 8-30 times higher than that found in other cities. Ratios also indicate that primary combustion particles are rapidly coated by secondary aerosol in Mexico City. If so, the lifetime of PAHs may be prolonged if the coating protects them against photodegradation or heterogeneous reactions.
Pyrolysis reactor and fluidized bed combustion chamber
Green, Norman W.
1981-01-06
A solid carbonaceous material is pyrolyzed in a descending flow pyrolysis reactor in the presence of a particulate source of heat to yield a particulate carbon containing solid residue. The particulate source of heat is obtained by educting with a gaseous source of oxygen the particulate carbon containing solid residue from a fluidized bed into a first combustion zone coupled to a second combustion zone. A source of oxygen is introduced into the second combustion zone to oxidize carbon monoxide formed in the first combustion zone to heat the solid residue to the temperature of the particulate source of heat.
Method for making an energetic material
Fox, Robert V [Idaho Falls, ID
2008-03-18
A method for making trinitrotoluene is described, and which includes the steps of providing a source of aqueous nitric acid having a concentration of less than about 95% by weight; mixing a surfactant with the source of aqueous nitric acid so as to dehydrate the aqueous nitric acid to produce a source of nitronium ions; providing a supercritical carbon dioxide environment; providing a source of an organic material to be nitrated to the supercritical carbon dioxide environment; and controllably mixing the source or nitronium ions with the supercritical carbon dioxide environment to nitrate the organic material and produce trinitrotoluene.
Liu, Yu; Wang, Can; Chen, Minpeng
2017-05-01
Research on carbon cycling has attracted attention from both scientists and policy-makers. Based on material flow analysis, this study systematically budgets the carbon inputs, outputs and balance from 1980 to 2013 for China's agro-ecosystem and its sub-systems, including agricultural land use, livestock breeding and rural life. The results show that from 1980 to 2013, both the carbon input and output were growing gradually, with the carbon input doubling from 1.6PgC/year in 1980 to 3.4PgC/year in 2013, while carbon output grew from 2.2PgC/year in 1980 to 3.8PgC/year in 2013. From 1980 to 2013, the crop production system in China has remained a carbon source, and the agricultural land uses were also almost all carbon sources instead of carbon sinks. As soil carbon stock plays a very important role in deciding the function of China's agro-ecosystem as a carbon sink or source, practices that can promote carbon storage and sequestration will be an essential component of low carbon agriculture development in China. Copyright © 2016. Published by Elsevier B.V.
Zhu, Xiuping; Logan, Bruce E
2013-05-15
Electro-Fenton reactions can be very effective for organic pollutant degradation, but they typically require non-sustainable electrical power to produce hydrogen peroxide. Two-chamber microbial fuel cells (MFCs) have been proposed for pollutant treatment using Fenton-based reactions, but these types of MFCs have low power densities and require expensive membranes. Here, more efficient dual reactor systems were developed using a single-chamber MFC as a low-voltage power source to simultaneously accomplish H2O2 generation and Fe(2+) release for the Fenton reaction. In tests using phenol, 75 ± 2% of the total organic carbon (TOC) was removed in the electro-Fenton reactor in one cycle (22 h), and phenol was completely degraded to simple and readily biodegradable organic acids. Compared to previously developed systems based on two-chamber MFCs, the degradation efficiency of organic pollutants was substantially improved. These results demonstrate that this system is an energy-efficient and cost-effective approach for industrial wastewater treatment of certain pollutants. Copyright © 2013 Elsevier B.V. All rights reserved.
A complete collection of single-gene deletion mutants of Acinetobacter baylyi ADP1
de Berardinis, Véronique; Vallenet, David; Castelli, Vanina; Besnard, Marielle; Pinet, Agnès; Cruaud, Corinne; Samair, Sumitta; Lechaplais, Christophe; Gyapay, Gabor; Richez, Céline; Durot, Maxime; Kreimeyer, Annett; Le Fèvre, François; Schächter, Vincent; Pezo, Valérie; Döring, Volker; Scarpelli, Claude; Médigue, Claudine; Cohen, Georges N; Marlière, Philippe; Salanoubat, Marcel; Weissenbach, Jean
2008-01-01
We have constructed a collection of single-gene deletion mutants for all dispensable genes of the soil bacterium Acinetobacter baylyi ADP1. A total of 2594 deletion mutants were obtained, whereas 499 (16%) were not, and are therefore candidate essential genes for life on minimal medium. This essentiality data set is 88% consistent with the Escherichia coli data set inferred from the Keio mutant collection profiled for growth on minimal medium, while 80% of the orthologous genes described as essential in Pseudomonas aeruginosa are also essential in ADP1. Several strategies were undertaken to investigate ADP1 metabolism by (1) searching for discrepancies between our essentiality data and current metabolic knowledge, (2) comparing this essentiality data set to those from other organisms, (3) systematic phenotyping of the mutant collection on a variety of carbon sources (quinate, 2-3 butanediol, glucose, etc.). This collection provides a new resource for the study of gene function by forward and reverse genetic approaches and constitutes a robust experimental data source for systems biology approaches. PMID:18319726
In situ synthesis of luminescent carbon nanoparticles toward target bioimaging
NASA Astrophysics Data System (ADS)
Sharker, Shazid Md.; Kim, Sung Min; Lee, Jung Eun; Jeong, Ji Hoon; in, Insik; Lee, Kang Dea; Lee, Haeshin; Park, Sung Young
2015-03-01
This paper describes the in situ synthesis of single fluorescence carbon nanoparticles (FCNs) for target bioimaging applications derived from biocompatible hyaluronic acid (HA) without using common conjugation processes. FCNs formed via the dehydration of hyaluronic acid, which were obtained by carbonizing HA, and partially carbonized HA fluorescence carbon nanoparticles (HA-FCNs), formed by a lower degree of carbonization, show good aqueous solubility, small particle size (<20 nm) and different fluorescence intensities with a red shift. After confirming the cytotoxicity of HA-FCNs and FCNs, we carried out in vitro and in vivo bioimaging studies where HA-FCNs themselves functioned as single particle triggers in target imaging. The converted nanocrystal carbon particles from HA provide outstanding features for in vitro and in vivo new targeted delivery and diagnostic tools.This paper describes the in situ synthesis of single fluorescence carbon nanoparticles (FCNs) for target bioimaging applications derived from biocompatible hyaluronic acid (HA) without using common conjugation processes. FCNs formed via the dehydration of hyaluronic acid, which were obtained by carbonizing HA, and partially carbonized HA fluorescence carbon nanoparticles (HA-FCNs), formed by a lower degree of carbonization, show good aqueous solubility, small particle size (<20 nm) and different fluorescence intensities with a red shift. After confirming the cytotoxicity of HA-FCNs and FCNs, we carried out in vitro and in vivo bioimaging studies where HA-FCNs themselves functioned as single particle triggers in target imaging. The converted nanocrystal carbon particles from HA provide outstanding features for in vitro and in vivo new targeted delivery and diagnostic tools. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07422j
Microspheres and their methods of preparation
Bose, Anima B; Yang, Junbing
2015-03-24
Carbon microspheres are doped with boron to enhance the electrical and physical properties of the microspheres. The boron-doped carbon microspheres are formed by a CVD process in which a catalyst, carbon source and boron source are evaporated, heated and deposited onto an inert substrate.
Giorio, Chiara; Tapparo, Andrea; Dall'Osto, Manuel; Beddows, David C S; Esser-Gietl, Johanna K; Healy, Robert M; Harrison, Roy M
2015-03-17
Positive matrix factorization (PMF) has been applied to single particle ATOFMS spectra collected on a six lane heavily trafficked road in central London (Marylebone Road), which well represents an urban street canyon. PMF analysis successfully extracted 11 factors from mass spectra of about 700,000 particles as a complement to information on particle types (from K-means cluster analysis). The factors were associated with specific sources and represent the contribution of different traffic related components (i.e., lubricating oils, fresh elemental carbon, organonitrogen and aromatic compounds), secondary aerosol locally produced (i.e., nitrate, oxidized organic aerosol and oxidized organonitrogen compounds), urban background together with regional transport (aged elemental carbon and ammonium) and fresh sea spray. An important result from this study is the evidence that rapid chemical processes occur in the street canyon with production of secondary particles from road traffic emissions. These locally generated particles, together with aging processes, dramatically affected aerosol composition producing internally mixed particles. These processes may become important with stagnant air conditions and in countries where gasoline vehicles are predominant and need to be considered when quantifying the impact of traffic emissions.
The quest for inorganic fullerenes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pietsch, Susanne; Dollinger, Andreas; Strobel, Christoph H.
2015-10-02
Experimental results of the search for inorganic fullerenes are presented. Mo nS m - and W nS m - clusters are generated with a pulsed arc cluster ion source equipped with an annealing stage. This is known to enhance fullerene formation in the case of carbon. Analogous to carbon, the mass spectra of the metal chalcogenide clusters produced in this way exhibit a bimodal structure. Moreover, the species in the first maximum at low mass are known to be platelets. The structure of the species in the second maximum is studied by anion photoelectron spectroscopy, scanning transmission electron microscopy,more » and scanning tunneling microcopy. All experimental results indicate a two-dimensional structure of these species and disagree with a three-dimensional fullerene-like geometry. A possible explanation for this preference of two-dimensional structures is the ability of a two-element material to saturate the dangling bonds at the edges of a platelet by excess atoms of one element. A platelet consisting of a single element only cannot do this. Likewise, graphite and boron might be the only materials forming nano-spheres because they are the only single element materials assuming two-dimensional structures.« less
The quest for inorganic fullerenes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pietsch, Susanne; Dollinger, Andreas; Strobel, Christoph H.
2015-10-07
Experimental results of the search for inorganic fullerenes are presented. Mo{sub n}S{sub m}{sup −} and W{sub n}S{sub m}{sup −} clusters are generated with a pulsed arc cluster ion source equipped with an annealing stage. This is known to enhance fullerene formation in the case of carbon. Analogous to carbon, the mass spectra of the metal chalcogenide clusters produced in this way exhibit a bimodal structure. The species in the first maximum at low mass are known to be platelets. Here, the structure of the species in the second maximum is studied by anion photoelectron spectroscopy, scanning transmission electron microscopy, andmore » scanning tunneling microcopy. All experimental results indicate a two-dimensional structure of these species and disagree with a three-dimensional fullerene-like geometry. A possible explanation for this preference of two-dimensional structures is the ability of a two-element material to saturate the dangling bonds at the edges of a platelet by excess atoms of one element. A platelet consisting of a single element only cannot do this. Accordingly, graphite and boron might be the only materials forming nano-spheres because they are the only single element materials assuming two-dimensional structures.« less
Manufacturing High-Quality Carbon Nanotubes at Lower Cost
NASA Technical Reports Server (NTRS)
Benavides, Jeanette M.; Lidecker, Henning
2004-01-01
A modified electric-arc welding process has been developed for manufacturing high-quality batches of carbon nanotubes at relatively low cost. Unlike in some other processes for making carbon nanotubes, metal catalysts are not used and, consequently, it is not necessary to perform extensive cleaning and purification. Also, unlike some other processes, this process is carried out at atmospheric pressure under a hood instead of in a closed, pressurized chamber; as a result, the present process can be implemented more easily. Although the present welding-based process includes an electric arc, it differs from a prior electric-arc nanotube-production process. The welding equipment used in this process includes an AC/DC welding power source with an integral helium-gas delivery system and circulating water for cooling an assembly that holds one of the welding electrodes (in this case, the anode). The cathode is a hollow carbon (optionally, graphite) rod having an outside diameter of 2 in. (approximately equal to 5.1 cm) and an inside diameter of 5/8 in. (approximately equal to 1.6 cm). The cathode is partly immersed in a water bath, such that it protrudes about 2 in. (about 5.1 cm) above the surface of the water. The bottom end of the cathode is held underwater by a clamp, to which is connected the grounding cable of the welding power source. The anode is a carbon rod 1/8 in. (approximately equal to 0.3 cm) in diameter. The assembly that holds the anode includes a thumbknob- driven mechanism for controlling the height of the anode. A small hood is placed over the anode to direct a flow of helium downward from the anode to the cathode during the welding process. A bell-shaped exhaust hood collects the helium and other gases from the process. During the process, as the anode is consumed, the height of the anode is adjusted to maintain an anode-to-cathode gap of 1 mm. The arc-welding process is continued until the upper end of the anode has been lowered to a specified height above the surface of the water bath. The process causes carbon nanotubes to form in the lowest 2.5 cm of the anode. It also causes a deposit reminiscent of a sandcastle to form on the cathode. The nanotube-containing material is harvested. The cathode and anode can then be cleaned (or the anode is replaced, if necessary) and the process repeated to produce more nanotubes. Tests have shown that the process results in approximately equal to 50-percent yield of carbon nanotubes (mostly of the single-wall type) of various sizes. Whereas the unit cost of purified single-wall carbon nanotubes produced by other process is about $1,000/g in the year 2000, it has been estimated that for the present process, the corresponding cost would be about $10/g.
Co@Carbon and Co 3 O4@Carbon nanocomposites derived from a single MOF for supercapacitors.
Dai, Engao; Xu, Jiao; Qiu, Junjie; Liu, Shucheng; Chen, Ping; Liu, Yi
2017-10-03
Developing a composite electrode containing both carbon and transition metal/metal oxide as the supercapacitor electrode can combine the merits and mitigate the shortcomings of both the components. Herein, we report a simple strategy to prepare the hybrid nanostructure of Co@Carbon and Co 3 O 4 @Carbon by pyrolysis a single MOFs precursor. Co-based MOFs (Co-BDC) nanosheets with morphology of regular parallelogram slice have been prepared by a bottom-up synthesis strategy. One-step pyrolysis of Co-BDC, produces a porous carbon layer incorporating well-dispersed Co and Co 3 O 4 nanoparticles. The as-prepared cobalt-carbon composites exhibit the thin layer morphology and large specific surface area with hierarchical porosity. These features significantly improve the ion-accessible surface area for charge storage and shorten the ion transport length in thin dimension, thus contributing to a high specific capacitance. Improved capacitance performance was successfully realized for the asymmetric supercapacitors (ASCs) (Co@Carbon//Co 3 O 4 @Carbon), better than those of the symmetric supercapacitors (SSCs) based on Co@Carbon and Co 3 O 4 @Carbon materials (i.e., Co@Carbon//Co@Carbon and Co 3 O 4 @Carbon//Co 3 O 4 @Carbon). The working voltage of the ASCs can be extended to 1.5 V and show a remarkable high power capability in aqueous electrolyte. This work provides a controllable strategy for nanostructured carbon-metal and carbon-metal oxide composite electrodes from a single precursor.
NASA Astrophysics Data System (ADS)
Dusek, Ulrike; Hitzenberger, Regina; Kasper-Giebl, Anne; Kistler, Magdalena; Meijer, Harro A. J.; Szidat, Sönke; Wacker, Lukas; Holzinger, Rupert; Röckmann, Thomas
2017-03-01
We measured the radioactive carbon isotope 14C (radiocarbon) in various fractions of the carbonaceous aerosol sampled between February 2011 and March 2012 at the Cesar Observatory in the Netherlands. Based on the radiocarbon content in total carbon (TC), organic carbon (OC), water-insoluble organic carbon (WIOC), and elemental carbon (EC), we estimated the contribution of major sources to the carbonaceous aerosol. The main source categories were fossil fuel combustion, biomass burning, and other contemporary carbon, which is mainly biogenic secondary organic aerosol material (SOA). A clear seasonal variation is seen in EC from biomass burning (ECbb), with lowest values in summer and highest values in winter, but ECbb is a minor fraction of EC in all seasons. WIOC from contemporary sources is highly correlated with ECbb, indicating that biomass burning is a dominant source of contemporary WIOC. This suggests that most biogenic SOA is water soluble and that water-insoluble carbon stems mainly from primary sources. Seasonal variations in other carbon fractions are less clear and hardly distinguishable from variations related to air mass history. Air masses originating from the ocean sector presumably contain little carbonaceous aerosol from outside the Netherlands, and during these conditions measured carbon concentrations reflect regional sources. In these situations absolute TC concentrations are usually rather low, around 1.5 µg m-3, and ECbb is always very low ( ˜ 0.05 µg m-3), even in winter, indicating that biomass burning is not a strong source of carbonaceous aerosol in the Netherlands. In continental air masses, which usually arrive from the east or south and have spent several days over land, TC concentrations are on average by a factor of 3.5 higher. ECbb increases more strongly than TC to 0.2 µg m-3. Fossil EC and fossil WIOC, which are indicative of primary emissions, show a more moderate increase by a factor of 2.5 on average. An interesting case is fossil water-soluble organic carbon (WSOC, calculated as OC-WIOC), which can be regarded as a proxy for SOA from fossil precursors. Fossil WSOC has low concentrations when regional sources are sampled and increases by more than a factor of 5 in continental air masses. A longer residence time of air masses over land seems to result in increased SOA concentrations from fossil origin.
Design Study for a Mars Geyser Hopper
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Oleson, Steven J.; McGuire, Melissa
2012-01-01
The Mars Geyser Hopper is a design reference missions (DRMs) for a Discovery-class spacecraft using Advanced Stirling Radioisotope Generator (ASRG) power source. The Geyser Hopper is a mission concept that will investigate the springtime carbon-dioxide geysers found in regions around the south pole of Mars. The Geyser Hopper design uses Phoenix heritage systems and approach, but uses a single ASRG as the power source, rather than twin solar arrays, and is designed to last over a one-year stay on the South Pole. The spacecraft will land at a target landing area near the south pole of Mars, and have the ability to "hop" after a summertime landing to reposition itself close to a geyser site, and wait through the winter until the first sunlight of spring to witness first-hand the geyser phenomenon.
The extraction of negative carbon ions from a volume cusp ion source
NASA Astrophysics Data System (ADS)
Melanson, Stephane; Dehnel, Morgan; Potkins, Dave; McDonald, Hamish; Hollinger, Craig; Theroux, Joseph; Martin, Jeff; Stewart, Thomas; Jackle, Philip; Philpott, Chris; Jones, Tobin; Kalvas, Taneli; Tarvainen, Olli
2017-08-01
Acetylene and carbon dioxide gases are used in a filament-powered volume-cusp ion source to produce negative carbon ions for the purpose of carbon implantation for gettering applications. The beam was extracted to an energy of 25 keV and the composition was analyzed with a spectrometer system consisting of a 90° dipole magnet and a pair of slits. It is found that acetylene produces mostly C2- ions (up to 92 µA), while carbon dioxide produces mostly O- with only trace amounts of C-. Maximum C2- current was achieved with 400 W of arc power and, the beam current and composition were found to be highly dependent on the pressure in the source. The beam properties as a function of source settings are analyzed, and plasma properties are measured with a Langmuir probe. Finally, we describe testing of a new RF H- ion source, found to produce more than 6 mA of CW H- beam.
Controls on the Origin and Cycling of Riverine Dissolved Inorganic Carbon in the Brazos River, Texas
NASA Astrophysics Data System (ADS)
Zeng, F.; Masiello, C. A.; Hockaday, W. C.
2008-12-01
Rivers are generally supersaturated in CO2 with respect to the atmosphere. However, there is little agreement on the sources and turnover times of excess CO2 in river waters. This is likely due to varying dominant controls on carbon sources (e.g. geologic setting, climate, land use, or human activities). In this study, we measured carbon isotopic signatures (δ13C and Δ14C) of riverine dissolved inorganic carbon (DIC), as well as solid state cross polarization/magic angle spinning (CP/MAS) 13C nuclear magnetic resonance (NMR) of particulate organic carbon (POC), to determine carbon sources fuelling respiration of the Brazos River in Texas. We found that sources of riverine CO2 varied significantly along the length of the Brazos. In the middle Brazos (between Graham and Waco), which is partially underlain by limestone, riverine DIC had average Δ14C of 74 ‰ and δ13C of -7.5 ‰, suggesting that riverine CO2 is derived almost entirely from contemporary carbon (less than 5 years old) with little evidence of carbonate input, probably due to the damming upstream of Waco. In the lower Brazos (downstream of Bryan), riverine DIC was highly depleted in 14C (average Δ14C = -148.5 ‰) and enriched in 13C (average δ13C= -9.32 ‰), indicative of the presence of old carbonate. Since there is no carbonate bedrock in contact with the river in this area, the most likely source of old carbonate is the shell used in road and building construction throughout the 19th century. Our results suggest that the effect of human activities superimposes and even surpasses the effect of natural controls (e.g. geologic setting and climate) on C cycling in the Brazos.
Wu, Jiaqiang; Hu, Jinlong; Zhao, Shumiao; He, Mingxiong; Hu, Guoquan; Ge, Xiangyang; Peng, Nan
2018-05-01
Yeasts are good candidates to utilize the hydrolysates of lignocellulose, the most abundant bioresource, for bioproducts. This study aimed to evaluate the efficiencies of single-cell protein (SCP) and xylitol production by a novel yeast strain, Candida intermedia FL023, from lignocellulosic hydrolysates and xylose. This strain efficiently assimilated hexose, pentose, and cellubiose for cell mass production with the crude protein content of 484.2 g kg -1 dry cell mass. SCP was produced by strain FL023 using corncob hydrolysate and urea as the carbon and nitrogen sources with the dry cell mass productivity 0.86 g L -1 h -1 and the yield of 0.40 g g -1 sugar. SCP was also produced using NaOH-pretreated Miscanthus sinensis straw and corn steep liquor as the carbon and nitrogen sources through simultaneous saccharification and fermentation with the dry cell productivity of 0.23 g L -1 h -1 and yield of 0.17 g g -1 straw. C. intermedia FL023 was tolerant to 0.5 g L -1 furfural, acetic acid, and syringaldehyde in xylitol fermentation and produced 45.7 g L -1 xylitol from xylose with the productivity of 0.38 g L -1 h -1 and the yield of 0.57 g g -1 xylose. This study provides feasible methods for feed and food additive production from the abundant lignocellulosic bioresources.
Khalil, Sammar; Alsanius, Beatrix W
2009-01-01
This study examined the metabolic activity of pure cultures of five root pathogens commonly found in closed hydroponic cultivation systems (Phytophthora cryptogea (PC), Phytophthora capsici (PCP), Pythium aphanidermatum (PA), Fusarium oxysporum f.sp. radicis-lycopersici (FORL) and Fusarium solani (FS)) using sole carbon source utilisation in order to develop effective biocontrol strategies against these pathogens. Aliquots of 150 µL of the mycelial suspension were inoculated in each well of GN2 microtitre plates. On the basis of average well colour development and number of positive wells, the pathogens were divided into two groups, (i) PA and FORL and (ii) PC, PCP and FS. Group (i) was characterised by a short lag-phase, a rapid exponential phase involving almost all carbon sources offered and a long stationary phase, while group (ii) had a more extended lag-phase and a slower utilisation rate of the carbon sources offered. The three isolates in group (ii) differed significantly during their exponential phase. The lowest utilisation rate of carbon sources and number of sources utilised was found for PCP. Of the major group of carbon sources, six carbohydrates, three carboxylic acids and four amino acids were rapidly used by all isolates tested at an early stage. The carbon sources gentibiose, α-D-glucose, maltose, sucrose, D-trehalose, L-aspartic acid, L-glutamic acid, L-proline persisted to the end of the exponential phase.Moreover, similarities between the metabolic profiles of the tested pathogen and the those of the resident microflora could also be found. These findings are of great importance as regards the role of the resident microflora in the biocontrol. PMID:19294012
Liu, Shuxin; Wang, Haibin; Yin, Hengbo; Wang, Hong; He, Jichuan
2014-03-01
The carbon coated LiFePO4 (LiFePO4/C) nanocomposites materials were successfully synthesized by sol-gel method. The microstructure and morphology of LiFePO4/C nanocomposites were characterized by X-ray diffraction, Raman spectroscopy and scanning electron microscopy. The results showed that the carbon layers decomposed by different dispersant and carbon source had different graphitization degree, and the sugar could decompose to form more graphite-like structure carbon. The carbon source and heat-treatment temperature had some effect on the particle size and morphology, the sample LFP-S700 synthesized by adding sugar as carbon source at 700 degrees C had smaller particle size, uniform size distribution and spherical shape. The electrochemical behavior of LiFePO4/C nanocomposites was analyzed using galvanostatic measurements and cyclic voltammetry (CV). The results showed that the sample LFP-S700 had higher discharge specific capacities, higher apparent lithium ion diffusion coefficient and lower charge transfer resistance. The excellent electrochemical performance of sample LFP-S700 could be attributed to its high graphitization degree of carbon, smaller particle size and uniform size distribution.
Wu, Xueyun; Yang, Dong; Zhu, Xiangcheng; Feng, Zhiyang; Lv, Zhengbin; Zhang, Yaozhou; Shen, Ben; Xu, Zhinan
2011-01-01
The heterologous production of iso-migrastatin (iso-MGS) was successfully demonstrated in an engineered S. lividans SB11002 strain, which was derived from S. lividans K4–114, following introduction of pBS11001, which harbored the entire mgs biosynthetic gene cluster. However, under similar fermentation conditions, the iso-MGS titer in the engineered strain was significantly lower than that in the native producer - Streptomyces platensis NRRL 18993. To circumvent the problem of low iso-MGS titers and to expand the utility of this heterologous system for iso-MGS biosynthesis and engineering, systematic optimization of the fermentation medium was carried out. The effects of major components in the cultivation medium, including carbon, organic and inorganic nitrogen sources, were investigated using a single factor optimization method. As a result, sucrose and yeast extract were determined to be the best carbon and organic nitrogen sources, resulting in optimized iso-MGS production. Conversely, all other inorganic nitrogen sources evaluated produced various levels of inhibition of iso-MGS production. The final optimized R2YE production medium produced iso-MGS with a titer of 86.5 mg/L, about 3.6-fold higher than that in the original R2YE medium, and 1.5 fold higher than that found within the native S. platensis NRRL 18993 producer. PMID:21625393
Code of Federal Regulations, 2011 CFR
2011-07-01
... affected source a. reduce emissions of total HAP, measured as THC (as carbon), a by 97 percent; orb. limit emissions of total HAP, measured as THC (as carbon), a to 20 ppmvd at the control device outlet and use a PTE. 2. in an existing affected source a. reduce emissions of total HAP, measured as THC (as carbon...
Code of Federal Regulations, 2010 CFR
2010-07-01
... affected source a. reduce emissions of total HAP, measured as THC (as carbon), a by 97 percent; orb. limit emissions of total HAP, measured as THC (as carbon), a to 20 ppmvd at the control device outlet and use a PTE. 2. in an existing affected source a. reduce emissions of total HAP, measured as THC (as carbon...
Zhu, Chengzhou; Fu, Shaofang; Song, Junhua; ...
2017-02-06
In this study, self-assembled M–N-doped carbon nanotube aerogels with single-atom catalyst feature are for the first time reported through one-step hydrothermal route and subsequent facile annealing treatment. By taking advantage of the porous nanostructures, 1D nanotubes as well as single-atom catalyst feature, the resultant Fe–N-doped carbon nanotube aerogels exhibit excellent oxygen reduction reaction electrocatalytic performance even better than commercial Pt/C in alkaline solution.
Cultured fungal associates from the deep-sea coral Lophelia pertusa
NASA Astrophysics Data System (ADS)
Galkiewicz, Julia P.; Stellick, Sarah H.; Gray, Michael A.; Kellogg, Christina A.
2012-09-01
The cold-water coral Lophelia pertusa provides important habitat to many deep-sea fishes and invertebrates. Studies of the microbial taxa associated with L. pertusa thus far have focused on bacteria, neglecting the microeukaryotic members. This is the first study to culture fungi from living L. pertusa and to investigate carbon source utilization by the fungal associates. Twenty-seven fungal isolates from seven families, including both filamentous and yeast morphotypes, were cultured from healthy L. pertusa colonies collected from the northern Gulf of Mexico, the West Florida Slope, and the western Atlantic Ocean off the Florida coast. Isolates from different sites were phylogenetically closely related, indicating these genera are widely distributed in association with L. pertusa. Biolog™ Filamentous Fungi microtiter plates were employed to determine the functional capacity of a subset of isolates to grow on varied carbon sources. While four of the isolates exhibited no growth on any provided carbon source, the rest (n=10) grew on 8.3-66.7% of carbon sources available. Carbohydrates, carboxylic acids, and amino acids were the most commonly metabolized carbon sources, with overlap between the carbon sources used and amino acids found in L. pertusa mucus. This study represents the first attempt to characterize a microeukaryotic group associated with L. pertusa. However, the functional role of fungi within the coral holobiont remains unclear.
Laboratory Evaluation of Selected Ways for Determining Black Carbon Source Emissions
A number of studies have been conducted which compare various methods for the determination of black carbon in the atmosphere. Relatively little attention has been paid, however, to similar measurements of black carbon from different types of emission sources. Of particular int...
TOWARD ERROR ANALYSIS OF LARGE-SCALE FOREST CARBON BUDGETS
Quantification of forest carbon sources and sinks is an important part of national inventories of net greenhouse gas emissions. Several such forest carbon budgets have been constructed, but little effort has been made to analyse the sources of error and how these errors propagate...
Qiao, Yiqiang; Luo, Dan; Yu, Min; Zhang, Ting; Cao, Xuanping; Zhou, Yanheng; Liu, Yan
2018-02-09
A broad range of carbon sources have been used to fabricate varieties of carbon quantum dots (CQDs). However, the majority of these studies concern the influence of primary structures and chemical compositions of precursors on the CQDs; it is still unclear whether or not the superstructures of carbon sources have effects on the physiochemical properties of the synthetic CQDs. In this work, the concept of molecular assembly is first introduced into the design of a new carbon source. Compared with the tropocollagen molecules, the hierarchically assembled collagen scaffolds, as a new carbon source, immobilize functional groups of the precursors through hydrogen bonds, electrostatic attraction, and hydrophobic forces. Moreover, the accumulation of functional groups in collagen self-assembly further promotes the covalent bond formation in the obtained CQDs through a hydrothermal process. Both of these two chemical superiorities give rise to high quality CQDs with enhanced emission. The assembled collagen scaffold-based CQDs with heteroatom doping exhibit superior stability, and could be further applied as effective fluorescent probes for Fe 3+ detection and cellular cytosol imaging. These findings open a wealth of possibilities to explore more nanocarbons from precursors with assembled superstructures. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Method for in-situ cleaning of carbon contaminated surfaces
Klebanoff, Leonard E.; Grunow, Philip; Graham, Jr., Samuel
2006-12-12
Activated gaseous species generated adjacent a carbon contaminated surface affords in-situ cleaning. A device for removing carbon contamination from a surface of the substrate includes (a) a housing defining a vacuum chamber in which the substrate is located; (b) a source of gaseous species; and (c) a source of electrons that are emitted to activate the gaseous species into activated gaseous species. The source of electrons preferably includes (i) a filament made of a material that generates thermionic electron emissions; (ii) a source of energy that is connected to the filament; and (iii) an electrode to which the emitted electrons are attracted. The device is particularly suited for photolithography systems with optic surfaces, e.g., mirrors, that are otherwise inaccessible unless the system is dismantled. A method of removing carbon contaminants from a substrate surface that is housed within a vacuum chamber is also disclosed. The method employs activated gaseous species that react with the carbon contaminants to form carbon containing gaseous byproducts.
Effect of Silica Nanoparticles on the Photoluminescence Properties of BCNO Phosphor
NASA Astrophysics Data System (ADS)
Nuryadin, Bebeh W.; Faryuni, Irfana Diah; Iskandar, Ferry; Abdullah, Mikrajuddin; Khairurrijal, Khairurrijal
2011-12-01
Effect of additional silica nanoparticles on the photoluminescence (PL) performance of boron carbon oxy-nitride (BCNO) phosphor was investigated. As a precursor, boric acid and urea were used as boron and nitrogen sources, respectively. The carbon sources was polyethylene glycol (PEG) with average molecule weight 20000 g/mol.. Precursor solutions were prepared by mixing these raw materials in pure water, followed by stirring to achieve homogeneous solutions. In this precursor, silica nanoparticles were added at various mass ratio from 0 to 7 %wt in the solution. The precursors were then heated at 750 °C for 60 min in a ceramic crucible under atmospheric pressure. The photoluminescence (PL) spectrum that characterized by spectrophotometer showed a single, distinct, and broad emission band varied from blue to near red color, depend on the PEG, boric acid and urea ratio in the precursor. The addition of silica nanoparticles caused the increasing of PL intensity as well as the shifting of peak wavelength of PL spectrum. The peak shifting of PL was affected by the concentration of silica nanoparticles that added into the precursor. We believe that the BCNO-silica composite phosphor becomes a promising material for the phosphor conversion-based white light-emitting diodes.
Dutta, Debasree; Gachhui, Ratan
2007-02-01
A few members of the family Acetobacteraceae are cellulose-producers, while only six members fix nitrogen. Bacterial strain RG3T, isolated from Kombucha tea, displays both of these characteristics. A high bootstrap value in the 16S rRNA gene sequence-based phylogenetic analysis supported the position of this strain within the genus Gluconacetobacter, with Gluconacetobacter hansenii LMG 1527T as its nearest neighbour (99.1 % sequence similarity). It could utilize ethanol, fructose, arabinose, glycerol, sorbitol and mannitol, but not galactose or xylose, as sole sources of carbon. Single amino acids such as L-alanine, L-cysteine and L-threonine served as carbon and nitrogen sources for growth of strain RG3T. Strain RG3T produced cellulose in both nitrogen-free broth and enriched medium. The ubiquinone present was Q-10 and the DNA base composition was 55.8 mol% G+C. It exhibited low values of 5.2-27.77 % DNA-DNA relatedness to the type strains of related gluconacetobacters, which placed it within a separate taxon, for which the name Gluconacetobacter kombuchae sp. nov. is proposed, with the type strain RG3T (=LMG 23726T=MTCC 6913T).
Maggio-Hall, Lori A.; Lyne, Paul; Wolff, Jon A.; Keller, Nancy P.
2010-01-01
An acyl-CoA dehydrogenase has been identified as part of the mitochondrial β-oxidation pathway in the ascomycete fungus Aspergillus nidulans. Disruption of the scdA gene prevented use of butyric acid (C4) and hexanoic acid (C6) as carbon sources and reduced cellular butyryl-CoA dehydrogenase activity by 7.5-fold. While the mutant strain exhibited wild-type levels of growth on erucic acid (C22:1) and oleic acid (C18:1), some reduction in growth was observed with myristic acid (C14). The ΔscdA mutation was found to be epistatic to a mutation downstream in the β-oxidation pathway (disruption of enoyl-CoA hydratase). The ΔscdA mutant was also unable to use isoleucine or valine as a carbon source. Transcription of scdA was observed in the presence of either fatty acids or amino acids. When the mutant was grown in medium containing either isoleucine or valine, organic acid analysis of culture supernatants showed accumulation of 2-oxo acid intermediates of branched chain amino acid catabolism, suggesting feedback inhibition of the upstream branched-chain α-keto acid dehydrogenase. PMID:17656140
Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis.
Hadad, D; Geresh, S; Sivan, A
2005-01-01
To select a polyethylene-degrading micro-organism and to study the factors affecting its biodegrading activity. A thermophilic bacterium Brevibaccillus borstelensis strain 707 (isolated from soil) utilized branched low-density polyethylene as the sole carbon source and degraded it. Incubation of polyethylene with B. borstelensis (30 days, 50 degrees C) reduced its gravimetric and molecular weights by 11 and 30% respectively. Brevibaccillus borstelensis also degraded polyethylene in the presence of mannitol. Biodegradation of u.v. photo-oxidized polyethylene increased with increasing irradiation time. Fourier Transform Infra-Red (FTIR) analysis of photo-oxidized polyethylene revealed a reduction in carbonyl groups after incubation with the bacteria. This study demonstrates that polyethylene--considered to be inert--can be biodegraded if the right microbial strain is isolated. Enrichment culture methods were effective for isolating a thermophilic bacterium capable of utilizing polyethylene as the sole carbon and energy source. Maximal biodegradation was obtained in combination with photo-oxidation, which showed that carbonyl residues formed by photo-oxidation play a role in biodegradation. Brevibaccillus borstelensis also degraded the CH2 backbone of nonirradiated polyethylene. Biodegradation of polyethylene by a single bacterial strain contributes to our understanding of the process and the factors affecting polyethylene biodegradation.
Brock, Matthias
2005-01-01
Propionate is a very abundant carbon source in soil, and many microorganisms are able to use this as the sole carbon source. Nevertheless, propionate not only serves as a carbon source for filamentous fungi but also acts as a preservative when added to glucose containing media. To solve this contradiction between carbon source and preservative effect, propionate metabolism of Aspergillus nidulans was studied and revealed the methylcitrate cycle as the responsible pathway. Methylisocitrate lyase is one of the key enzymes of that cycle. It catalyzes the cleavage of methylisocitrate into succinate and pyruvate and completes the α-oxidation of propionate. Previously, methylisocitrate lyase was shown to be highly specific for the substrate (2R,3S)-2-methylisocitrate. Here, the identification of the genomic sequence of the corresponding gene and the generation of deletion mutants is reported. Deletion mutants did not grow on propionate as sole carbon and energy source and were severely inhibited during growth on alternative carbon sources, when propionate was present. The strongest inhibitory effect was observed, when glycerol was the main carbon source, followed by glucose and acetate. In addition, asexual conidiation was strongly impaired in the presence of propionate. These effects might be caused by competitive inhibition of the NADP-dependent isocitrate dehydrogenase, because the Ki of (2R,3S)-2-methylisocitrate, the product of the methylcitrate cycle, on NADP-dependent isocitrate dehydrogenase was determined as 1.55 μM. Other isomers had no effect on enzymatic activity. Therefore, methylisocitrate was identified as a potential toxic compound for cellular metabolism. PMID:16151139
Vibrational Modes of Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Eklund, Peter; Bandow, Shunji
1996-03-01
We report results of vibrational spectroscopic studies of single and multiwall carbon nanotubes generated by carbon arc discharges. The carbonaceous material obtained is processed using surfactants and centrifugation to increase the concentration of nanotubes in the sample. Transmission and high resolution scanning electron microscopy (TEM and HRSEM) were used to observe the progress in the sample purification. Raman and IR spectra were collected at various stages as well. In this way, we have been able to separate the contributions to the Raman and IR spectra from carbon materials other than the nanotubes (i.e., carbon nanospheres, amorphous carbon ). The results of the Raman measurements on single wall and multiwall nanotubes are compared to previous experimental work, and the IR modes of single wall nanotubes are presented for the first time. The experimental results will be compared to theory. This work done in collaboration with Dr. Shunji Bandow, Institute for Molecular Science, Myodaiji, Okazaki, 444, Japan
Single-molecule electrocatalysis by single-walled carbon nanotubes.
Xu, Weilin; Shen, Hao; Kim, Yoon Ji; Zhou, Xiaochun; Liu, Guokun; Park, Jiwoong; Chen, Peng
2009-12-01
We report a single-molecule fluorescence study of electrocatalysis by single-walled carbon nanotubes (SWNTs) at single-reaction resolution. Applying super-resolution optical imaging, we find that the electrocatalysis occurs at discrete, nanometer-dimension sites on SWNTs. Single-molecule kinetic analysis leads to an electrocatalytic mechanism, allowing quantification of the reactivity and heterogeneity of individual reactive sites. Combined with conductivity measurements, this approach will be powerful to interrogate how the electronic structure of SWNTs affects the electrocatalytic interfacial charge transfer, a process fundamental to photoelectrochemical cells.
Estimation of Effective Directional Strength of Single Walled Wavy CNT Reinforced Nanocomposite
NASA Astrophysics Data System (ADS)
Bhowmik, Krishnendu; Kumar, Pranav; Khutia, Niloy; Chowdhury, Amit Roy
2018-03-01
In this present work, single walled wavy carbon nanotube reinforced into composite has been studied to predict the effective directional strength of the nanocomposite. The effect of waviness on the overall Young’s modulus of the composite has been analysed using three dimensional finite element model. Waviness pattern of carbon nanotube is considered as periodic cosine function. Both long (continuous) and short (discontinuous) carbon nanotubes are being idealized as solid annular tube. Short carbon nanotube is modelled with hemispherical cap at its both ends. Representative Volume Element models have been developed with different waviness, height fractions, volume fractions and modulus ratios of carbon nanotubes. Consequently a micromechanics based analytical model has been formulated to derive the effective reinforcing modulus of wavy carbon nanotubes. In these models wavy single walled wavy carbon nanotubes are considered to be aligned along the longitudinal axis of the Representative Volume Element model. Results obtained from finite element analyses are compared with analytical model and they are found in good agreement.
Hsieh, Hsin-Se; Wu, Renren; Jafvert, Chad T
2014-10-07
Promising developments in application of carbon nanotubes (CNTs) have raised concern regarding potential biological and environmental effects upon their inevitable release to the environment. Although some CNTs have been reported to generate reactive oxygen species (ROS) under light, limited information exists on ROS generation by these materials in the dark. In this study, generation of ROS was examined, initiated by electron transfer from biological electron donors through carboxylated single-walled carbon nanotubes (C-SWCNT) to molecular oxygen in water in the dark. In the presence of C-SWCNT, the oxidation of NADH (β-nicotinamide adenine dinucleotide, reduced form) and DTTre (DL-dithiothreitol, reduced form) was confirmed by light absorbance shifts (340 nm to 260 nm during oxidation of NADH to NAD(+), and increased light absorbance at 280 nm during oxidation of DTTre). Production of superoxide anion (O2(•-)) was detected by its selective reaction with a tetrazolium salt (NBT(2+)), forming a formazan product that is visible at 530 nm. A modified acid-quenched N,N-diethyl-p-phenylenediamine (DPD) assay was used to measure the accumulation of H2O2 in C-SWCNT suspensions containing O2 and NADH. In the same suspensions (i.e., containing C-SWCNT, NADH, and O2), pBR322 DNA plasmid was cleaved, although •OH was not detected when using •OH scavenging molecular probes. These results indicate that the oxidation of electron donors by C-SWCNT can be a light-independent source of ROS in water, and that electron shuttling through CNTs to molecular oxygen may be a potential mechanism for DNA damage by this specific CNT and potentially other carbon-based nanomaterials.
NASA Astrophysics Data System (ADS)
Yue, Ping; Cui, Xiaoqing; Gong, Yanming; Li, Kaihui; Goulding, Keith; Liu, Xuejun
2018-04-01
Soil respiration (Rs) is the most important source of carbon dioxide emissions from soil to atmosphere. However, it is unclear what the interactive response of Rs would be to environmental changes such as elevated precipitation, nitrogen (N) deposition and warming, especially in unique temperate desert ecosystems. To investigate this an in situ field experiment was conducted in the Gurbantunggut Desert, northwest China, from September 2014 to October 2016. The results showed that precipitation and N deposition significantly increased Rs, but warming decreased Rs, except in extreme precipitation events, which was mainly through its impact on the variation of soil moisture at 5 cm depth. In addition, the interactive response of Rs to combinations of the factors was much less than that of any single-factor, and the main response was a positive effect, except for the response from the interaction of increased precipitation and high N deposition (60 kg N ha-1 yr-1). Although Rs was found to show a unimodal change pattern with the variation of soil moisture, soil temperature and soil NH4+-N content, and it was significantly positively correlated to soil dissolved organic carbon (DOC) and pH, a structural equation model found that soil temperature was the most important controlling factor. Those results indicated that Rs was mainly interactively controlled by the soil multi-environmental factors and soil nutrients, and was very sensitive to elevated precipitation, N deposition and warming. However, the interactions of multiple factors largely reduced between-year variation of Rs more than any single-factor, suggesting that the carbon cycle in temperate deserts could be profoundly influenced by positive carbon-climate feedback.
Sink- or Source-driven Phanerozoic carbon cycle?
NASA Astrophysics Data System (ADS)
Godderis, Y.; Donnadieu, Y.; Maffre, P.; Carretier, S.
2017-12-01
The Phanerozoic evolution of the atmospheric CO2 level is controlled by the fluxes entering or leaving the exospheric system. Those fluxes (including continental weathering, magmatic degassing, organic carbon burial, oxidation of sedimentary organic carbon) are intertwined, and their relative importance in driving the global carbon cycle evolution may have fluctuated through time. Deciphering the causes of the Phanerozoic climate evolution thus requires a holistic and quantitative approach. Here we focus on the role played by the paleogeographic configuration on the efficiency of the CO2 sink by continental silicate weathering, and on the impact of the magmatic degassing of CO2. We use the spatially resolved numerical model GEOCLIM (geoclimmodel.worpress.com) to compute the response of the silicate weathering and atmospheric CO2 to continental drift for 22 time slices of the Phanerozoic. Regarding the CO2 released by the magmatic activity, we reconstruct several Phanerozoic histories of this flux, based on published indexes. We calculate the CO2 evolution for each degassing scenario, and accounting for the paleogeographic setting. We show that the paleogeographic setting is a main driver of the climate from 540 Ma to about the beginning of the Jurassic. Regarding the role of the magmatic degassing, the various reconstructions do not converge towards a single signal, and thus introduce large uncertainties in the calculated CO2 level over time. Nevertheless, the continental dispersion, which prevails since the Jurassic, promotes the CO2 consumption by weathering and forces atmospheric CO2 to stay low. Warm climates of the "middle" Cretaceous and early Cenozoic require enhanced CO2 degassing by magmatic activity. In summary, the Phanerozoic climate evolution can be hardly assigned to a single process, but is the result of complex and intertwined processes.
Tropical forests are a net carbon source based on aboveground measurements of gain and loss
NASA Astrophysics Data System (ADS)
Baccini, A.; Walker, W.; Carvalho, L.; Farina, M.; Sulla-Menashe, D.; Houghton, R. A.
2017-10-01
The carbon balance of tropical ecosystems remains uncertain, with top-down atmospheric studies suggesting an overall sink and bottom-up ecological approaches indicating a modest net source. Here we use 12 years (2003 to 2014) of MODIS pantropical satellite data to quantify net annual changes in the aboveground carbon density of tropical woody live vegetation, providing direct, measurement-based evidence that the world’s tropical forests are a net carbon source of 425.2 ± 92.0 teragrams of carbon per year (Tg C year-1). This net release of carbon consists of losses of 861.7 ± 80.2 Tg C year-1 and gains of 436.5 ± 31.0 Tg C year-1. Gains result from forest growth; losses result from deforestation and from reductions in carbon density within standing forests (degradation or disturbance), with the latter accounting for 68.9% of overall losses.
Preferential destruction of metallic single-walled carbon nanotubes by laser irradiation.
Huang, Houjin; Maruyama, Ryuichiro; Noda, Kazuhiro; Kajiura, Hisashi; Kadono, Koji
2006-04-13
Upon laser irradiation in air, metallic single-walled carbon nanotubes (SWNTs) in carbon nanotube thin film can be destroyed in preference to their semiconducting counterparts when the wavelength and power intensity of the irradiation are appropriate and the carbon nanotubes are not heavily bundled. Our method takes advantage of these two species' different rates of photolysis-assisted oxidation, creating the possibility of defining the semiconducting portions of carbon nanotube (CNT) networks using optical lithography, particularly when constructing all-CNT FETs (without metal electrodes) in the future.
Shunting arc plasma source for pure carbon ion beam.
Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y
2012-02-01
A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA∕mm(2) at the peak of the pulse.
Shunting arc plasma source for pure carbon ion beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koguchi, H.; Sakakita, H.; Kiyama, S.
2012-02-15
A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA/mm{sup 2} at the peak of the pulse.
NASA Astrophysics Data System (ADS)
Marchais, V.; Richard, J.; Jolivet, A.; Flye-Sainte-Marie, J.; Thébault, J.; Jean, F.; Richard, P.; Paulet, Y.-M.; Clavier, J.; Chauvaud, L.
2015-11-01
This research investigated how the carbon isotopic composition of food source (δ13Cfood) and dissolved inorganic carbon (δ13CDIC) influences the carbon isotopic composition of Pecten maximus shells (δ13Cshell) under both experimental and natural conditions. The objectives are to better understand the relationship between P. maximus and its environment, and to specifically distinguish conditions under which calcification is influenced by respired CO2 derived from food sources versus conditions in which calcification uses inorganic carbon from seawater. Laboratory experiment investigated carbon incorporation into shell carbonates by maintaining scallops under conditions where the stable carbon isotopic composition of food sources was considerably depleted (-54‰), relative to values observed in the natural environment (-21‰). Laboratory experiment ran for 78 days under three temperature conditions, 15 °C, 21 °C and 25 °C. A survey of the environmental parameters and stable carbon isotopic composition into shell carbonate of natural population of P. maximus was also realized during the same year in the Bay of Brest, France. Data collected from both laboratory experiment and the natural environment confirmed that both δ13CDIC and δ13Cfood influence δ13Cshell values and that organic carbon incorporation (CM) averages about 10% (4.3-6.8% under experimental conditions and 1.9-16.6% in the natural environment). The shift in stable carbon isotopic composition from the uptake of depleted food sources under experimental conditions realized a marked divergence in the predicted equilibrium between calcium carbonate and ambient bicarbonate, relative to the natural environment. This offset was 1.7 ± 0.6‰ for scallops in their natural environment and 2.5 ± 0.5 and 3.2 ± 0.9‰ for scallops under experimental conditions at water temperatures of 15 °C and 21 °C, respectively. The offset of 3‰ for scallops subjected to laboratory experiment could not be explained in light of growth rate but may be related to food supply and/or temperature. Food source and temperature effects may also explain the annual variation observed in CM values measured from scallops in their natural environment. CM estimation from the natural population of P. maximus varied seasonally from around 2% at the end of winter, to 12% in summer. The seasonal variation resembles variability in the carbon isotopic composition of the food sources throughout the year with an exception at the end of winter.
Li, Jie; He, Yujun; Han, Yimo; Liu, Kai; Wang, Jiaping; Li, Qunqing; Fan, Shoushan; Jiang, Kaili
2012-08-08
Because of their excellent electrical and optical properties, carbon nanotubes have been regarded as extremely promising candidates for high-performance electronic and optoelectronic applications. However, effective and efficient distinction and separation of metallic and semiconducting single-walled carbon nanotubes are always challenges for their practical applications. Here we show that metallic and semiconducting single-walled carbon nanotubes on SiO(2) can have obviously different contrast in scanning electron microscopy due to their conductivity difference and thus can be effectively and efficiently identified. The correlation between conductivity and contrast difference has been confirmed by using voltage-contrast scanning electron microcopy, peak force tunneling atom force microscopy, and field effect transistor testing. This phenomenon can be understood via a proposed mechanism involving the e-beam-induced surface potential of insulators and the conductivity difference between metallic and semiconducting SWCNTs. This method demonstrates great promise to achieve rapid and large-scale distinguishing between metallic and semiconducting single-walled carbon nanotubes, adding a new function to conventional SEM.
Single-Walled Carbon Nanotubes as Fluorescence Biosensors for Pathogen Recognition in Water Systems
Upadhyayula, Venkata K. K.; Ghoshroy, Soumitra; Nair, Vinod S.; ...
2008-01-01
Tmore » he possibility of using single-walled carbon nanotubes (SWCNs) aggregates as fluorescence sensors for pathogen recognition in drinking water treatment applications has been studied. Batch adsorption study is conducted to adsorb large concentrations of Staphylococcus aureus aureus SH 1000 and Escherichia coli pKV-11 on single-walled carbon nanotubes. Subsequently the immobilized bacteria are detected with confocal microscopy by coating the nanotubes with fluorescence emitting antibodies. he Freundlich adsorption equilibrium constant ( k ) for S.aureus and E.coli determined from batch adsorption study was found to be 9 × 10 8 and 2 × 10 8 ml/g, respectively. he visualization of bacterial cells adsorbed on fluorescently modified carbon nanotubes is also clearly seen. he results indicate that hydrophobic single-walled carbon nanotubes have excellent bacterial adsorption capacity and fluorescent detection capability. his is an important advancement in designing fluorescence biosensors for pathogen recognition in water systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konov, V I
The properties of new carbon materials (single-crystal and polycrystalline CVD diamond films and wafers, single-wall carbon nanotubes and graphene) and the prospects of their use as optical elements and devices are discussed. (optical elements of laser devices)
40 CFR 63.1103 - Source category-specific applicability, definitions, and requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... compliance schedule for the carbon black production and acetylene decomposition carbon black production... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Source...
40 CFR 63.1103 - Source category-specific applicability, definitions, and requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... compliance schedule for the carbon black production and acetylene decomposition carbon black production... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Source...
40 CFR 63.1103 - Source category-specific applicability, definitions, and requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... compliance schedule for the carbon black production and acetylene decomposition carbon black production... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Source...
40 CFR 63.1103 - Source category-specific applicability, definitions, and requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... compliance schedule for the carbon black production and acetylene decomposition carbon black production... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Source...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sedlacek, Arthur J
One of the major issues confronting aerosol climate simulations of the Arctic and Antarctic cryospheres is the lack of detailed data on the vertical and spatial distribution of aerosols with which to test these models. This is due, in part, to the inherent difficulty of conducting such measurements in extreme environments. However given the pronounced sensitivity of the polar regions to radiative balance perturbations, it is incumbent upon our community to better understand and quantify these perturbations, and their unique feedbacks, so that robust model predictions of this region can be realized. One class of under-measured radiative forcing agents inmore » the polar region is the absorbing aerosol—black carbon and brown carbon. Black carbon (BC; also referred to as light-absorbing carbon [LAC], refractory black carbon [rBC], and soot) is second only to CO2 as a positive forcing agent. Roughly 60% of BC emissions can be attributed to anthropogenic sources (fossil fuel combustion and open-pit cooking), with the remaining fraction being due to biomass burning. Brown carbon (BrC), a major component of biomass burning, collectively refers to non-BC carbonaceous aerosols that typically possess minimal light absorption at visible wavelengths but exhibit pronounced light absorption in the near-ultraviolet (UV) spectrum. Both species can be sourced locally or be remotely transported to the Arctic region and are expected to perturb the radiative balance. The work conducted in this field campaign addresses one of the more glaring deficiencies currently limiting improved quantification of the impact of BC radiative forcing in the cryosphere: the paucity of data on the vertical and spatial distributions of BC. By expanding the Gulfstream aircraft (G-1) payload for the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility-sponsored ACME-V campaign to include the Single-Particle Soot Photometer (SP2)) and leveraging the ACME-V campaign’s deployment within the Arctic Circle during the summer of 2015 (Deadhorse, Alaska [70° 12' 20" N, 148° 30' 42" W]), the truly unique opportunity presented itself to acquire profile data on BC loading at little additional cost. Since the SP2 is a particle-resolved measurement, the resulting data set provides refractory black carbon (rBC) mass loadings, size and mass distributions, and rBC-containing particle mixing state, all of which are expected to readily find value in the modeling community. As part of the ACME-V (http://www.arm.gov/campaigns/aaf2014armacmev) campaign, CO, CO2, and CH4 were also measured, providing the unique opportunity for carbon closure. We will also work closely with modelers who require such data and expect this collaboration will lead directly to a better understanding of the climate impacts of BC in the Arctic. The primary measurement objective was to acquire airborne data on the vertical and spatial distributions of refractory black carbon (rBC) loading, size and mass distribution, and particle mixing state. The primary scientific objective was to provide a targeted data set of rBC particle distributions to better understand and constrain the impact of black carbon radiative forcing in the cryosphere. The SP2-based data set during this campaign is available in the DOE-ARM archive (http://www.arm.gov/campaigns/aaf2015abclp).« less
2013-01-01
With the development of nanomaterial-based nanodevices, it became inevitable to develop cost-effective and simple nanofabrication technologies enabling the formation of nanomaterial assembly in a controllable manner. Herein, we present suspended monolithic carbon single nanowires and nanomeshes bridging two bulk carbon posts, fabricated in a designed manner using two successive UV exposure steps and a single pyrolysis step. The pyrolysis step is accompanied with a significant volume reduction, resulting in the shrinkage of micro-sized photoresist structures into nanoscale carbon structures. Even with the significant elongation of the suspended carbon nanowire induced by the volume reduction of the bulk carbon posts, the resultant tensional stress along the nanowire is not significant but grows along the wire thickness; this tensional stress gradient and the bent supports of the bridge-like carbon nanowire enhance structural robustness and alleviate the stiction problem that suspended nanostructures frequently experience. The feasibility of the suspended carbon nanostructures as a sensor platform was demonstrated by testing its electrochemical behavior, conductivity-temperature relationship, and hydrogen gas sensing capability. PMID:24256942
Hoover, David L; Rogers, Brendan M
2016-05-01
Climate extremes, such as drought, may have immediate and potentially prolonged effects on carbon cycling. Grasslands store approximately one-third of all terrestrial carbon and may become carbon sources during droughts. However, the magnitude and duration of drought-induced disruptions to the carbon cycle, as well as the mechanisms responsible, remain poorly understood. Over the next century, global climate models predict an increase in two types of drought: chronic but subtle 'press-droughts', and shorter term but extreme 'pulse-droughts'. Much of our current understanding of the ecological impacts of drought comes from experimental rainfall manipulations. These studies have been highly valuable, but are often short term and rarely quantify carbon feedbacks. To address this knowledge gap, we used the Community Land Model 4.0 to examine the individual and interactive effects of pulse- and press-droughts on carbon cycling in a mesic grassland of the US Great Plains. A series of modeling experiments were imposed by varying drought magnitude (precipitation amount) and interannual pattern (press- vs. pulse-droughts) to examine the effects on carbon storage and cycling at annual to century timescales. We present three main findings. First, a single-year pulse-drought had immediate and prolonged effects on carbon storage due to differential sensitivities of ecosystem respiration and gross primary production. Second, short-term pulse-droughts caused greater carbon loss than chronic press-droughts when total precipitation reductions over a 20-year period were equivalent. Third, combining pulse- and press-droughts had intermediate effects on carbon loss compared to the independent drought types, except at high drought levels. Overall, these results suggest that interannual drought pattern may be as important for carbon dynamics as drought magnitude and that extreme droughts may have long-lasting carbon feedbacks in grassland ecosystems. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Utilization of carbon sources by clinical isolates of Aeromonas.
Prediger, Karoline C; Surek, Monica; Dallagassa, Cibelle B; Assis, Flávia E A; Piantavini, Mario S; Souza, Emanuel M; Pedrosa, Fábio O; Farah, Sônia M S S; Alberton, Dayane; Fadel-Picheth, Cyntia M T
2017-04-01
Bacteria in the genus Aeromonas are primarily aquatic organisms; however, some species can cause diseases in humans, ranging from wound infections to septicemia, of which diarrhea is the most common condition. The ability to use a variety of carbon substrates is advantageous for pathogenic bacteria. Therefore, we used Biolog GN2 microplates to analyze the ability of 103 clinical, predominantly diarrheal, isolates of Aeromonas to use various carbon sources, and we verified whether, among the substrates metabolized by these strains, there were some endogenous to the human intestine. The results indicate that Aeromonas present great diversity in the utilization of carbon sources, and that they preferentially use carbohydrates and amino acids as carbon sources. Among the carbon sources metabolized by Aeromonas in vitro, some were found to be components of intestinal mucin, including aspartic acid, glutamic acid, l-serine, galactose, N-acetyl-glucosamine, and glucose, which were used by all strains tested. Additionally, mannose, d-serine, proline, threonine, and N-acetyl-galactosamine were used by several strains. The potential to metabolize substrates endogenous to the intestine may contribute to Aeromonas' capacity to grow in and colonize the intestine. We speculate that this may help explain the ability of Aeromonas to cause diarrhea.
NASA Astrophysics Data System (ADS)
Stone, Elizabeth; Jayarathne, Thilina; Stockwell, Chelsea; Christian, Ted; Bhave, Prakash; Siva Praveen, Puppala; Panday, Arnico; Adhikari, Sagar; Maharjan, Rashmi; Goetz, Doug; DeCarlo, Peter; Saikawa, Eri; Yokelson, Robert
2016-04-01
The Nepal Ambient Monitoring and Source Testing Experiment (NAMASTE) field campaign targeted the in situ characterization of widespread and under-sampled combustion sources. In Kathmandu and the Terai, southern Nepal's flat plains, samples of fine particulate matter (PM2.5) were collected from wood and dung cooking fires (n = 22), generators (n = 2), groundwater pumps (n = 2), clamp kilns (n = 3), zig-zag kilns (n = 3), trash burning (n = 4), one heating fire, and one crop residue fire. Co-located measurements of carbon dioxide, carbon monoxide, and volatile organic compounds allowed for the application of the carbon mass balance approach to estimate emission factors for PM2.5, elemental carbon, organic carbon, and water-soluble inorganic ions. Organic matter was chemically speciated using gas chromatography - mass spectrometry for polycyclic aromatic hydrocarbons, sterols, n-alkanes, hopanes, steranes, and levoglucosan, which accounted for 2-8% of the measured organic carbon. These data were used to develop molecular-marker based profiles for use in source apportionment modeling. This study provides quantitative emission factors for particulate matter and its constituents for many important combustion sources in Nepal and South Asia.
Particle emissions from laboratory activities involving carbon nanotubes
NASA Astrophysics Data System (ADS)
Lo, Li-Ming; Tsai, Candace S.-J.; Heitbrink, William A.; Dunn, Kevin H.; Topmiller, Jennifer; Ellenbecker, Michael
2017-08-01
This site study was conducted in a chemical laboratory to evaluate nanomaterial emissions from 20-30-nm-diameter bundles of single-walled carbon nanotubes (CNTs) during product development activities. Direct-reading instruments were used to monitor the tasks in real time, and airborne particles were collected using various methods to characterize released nanomaterials using electron microscopy and elemental carbon (EC) analyses. CNT clusters and a few high-aspect-ratio particles were identified as being released from some activities. The EC concentration (0.87 μg/m3) at the source of probe sonication was found to be higher than other activities including weighing, mixing, centrifugation, coating, and cutting. Various sampling methods all indicated different levels of CNTs from the activities; however, the sonication process was found to release the highest amounts of CNTs. It can be cautiously concluded that the task of probe sonication possibly released nanomaterials into the laboratory and posed a risk of surface contamination. Based on these results, the sonication of CNT suspension should be covered or conducted inside a ventilated enclosure with proper filtration or a glovebox to minimize the potential of exposure.
Ratani, Tanvi S; Bachman, Shoshana; Fu, Gregory C; Peters, Jonas C
2015-11-04
We have recently reported that, in the presence of light and a copper catalyst, nitrogen nucleophiles such as carbazoles and primary amides undergo C-N coupling with alkyl halides under mild conditions. In the present study, we establish that photoinduced, copper-catalyzed alkylation can also be applied to C-C bond formation, specifically, that the cyanation of unactivated secondary alkyl chlorides can be achieved at room temperature to afford nitriles, an important class of target molecules. Thus, in the presence of an inexpensive copper catalyst (CuI; no ligand coadditive) and a readily available light source (UVC compact fluorescent light bulb), a wide array of alkyl halides undergo cyanation in good yield. Our initial mechanistic studies are consistent with the hypothesis that an excited state of [Cu(CN)2](-) may play a role, via single electron transfer, in this process. This investigation provides a rare example of a transition metal-catalyzed cyanation of an alkyl halide, as well as the first illustrations of photoinduced, copper-catalyzed alkylation with either a carbon nucleophile or a secondary alkyl chloride.