Nanofork for single cells adhesion measurement via ESEM-nanomanipulator system.
Ahmad, Mohd Ridzuan; Nakajima, Masahiro; Kojima, Masaru; Kojima, Seiji; Homma, Michio; Fukuda, Toshio
2012-03-01
In this paper, single cells adhesion force was measured using a nanofork. The nanofork was used to pick up a single cell on a line array substrate inside an environmental scanning electron microscope (ESEM). The line array substrate was used to provide small gaps between the single cells and the substrate. Therefore, the nanofork could be inserted through these gaps in order to successfully pick up a single cell. Adhesion force was measured during the cell pick-up process from the deflection of the cantilever beam. The nanofork was fabricated using focused ion beam (FIB) etching process while the line array substrate was fabricated using nanoimprinting technology. As to investigate the effect of contact area on the strength of the adhesion force, two sizes of gap distance of line array substrate were used, i.e., 1 μm and 2 μm. Results showed that cells attached on the 1 μm gap line array substrate required more force to be released as compared to the cells attached on the 1 μm gap line array substrate.
Yoshimoto, Nobuo; Kuroda, Shun'ichi
2014-04-01
For efficient biomolecule production (e.g., antibodies, recombinant proteins), mammalian cells with high expression rates should be selected from cell libraries, propagated while maintaining a homogenous expression rate, and subsequently stabilized at their high expression rate. Clusters of isogenic cells (i.e., colonies) have been used for these processes. However, cellular heterogeneity makes it difficult to obtain cell lines with the highest expression rates by using single-colony-based breeding. Furthermore, even among the single cells in an isogenic cell population, the desired cell properties fluctuate stochastically during long-term culture. Therefore, although the molecular mechanisms underlying stochastic fluctuation are poorly understood, it is necessary to establish excellent cell lines in order to breed single cells to have higher expression, higher stability, and higher homogeneity while suppressing stochastic fluctuation (i.e., single-cell-based breeding). In this review, we describe various methods for manipulating single cells and facilitating single-cell analysis in order to better understand stochastic fluctuation. We demonstrated that single-cell-based breeding is practical and promising by using a high-throughput automated system to analyze and manipulate single cells. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Gangavarapu, Kalyan J; Miller, Austin; Huss, Wendy J
2016-09-01
Defining biological signals at the single cell level can identify cancer initiating driver mutations. Techniques to isolate single cells such as microfluidics sorting and magnetic capturing systems have limitations such as: high cost, labor intense, and the requirement of a large number of cells. Therefore, the goal of our current study is to identify a cost and labor effective, reliable, and reproducible technique that allows single cell isolation for analysis to promote regular laboratory use, including standard reverse transcription PCR (RT-PCR). In the current study, we utilized single prostate cells isolated from the CWR-R1 prostate cancer cell line and human prostate clinical specimens, based on the ATP binding cassette (ABC) transporter efflux of dye cycle violet (DCV), side population assay. Expression of four genes: ABCG2; Aldehyde dehydrogenase1A1 (ALDH1A1); androgen receptor (AR); and embryonic stem cell marker, Oct-4, were determined. Results from the current study in the CWR-R1 cell line showed ABCG2 and ALDH1A1 gene expression in 67% of single side population cells and in 17% or 100% of non-side population cells respectively. Studies using single cells isolated from clinical specimens showed that the Oct-4 gene is detected in only 22% of single side population cells and in 78% of single non-side population cells. Whereas, AR gene expression is in 100% single side population and non-side population cells isolated from the same human prostate clinical specimen. These studies show that performing RT-PCR on single cells isolated by FACS can be successfully conducted to determine gene expression in single cells from cell lines and enzymatically digested tissue. While these studies provide a simple yes/no expression readout, the more sensitive quantitative RT-PCR would be able to provide even more information if necessary.
Gangavarapu, Kalyan J; Miller, Austin; Huss, Wendy J
2016-01-01
Defining biological signals at the single cell level can identify cancer initiating driver mutations. Techniques to isolate single cells such as microfluidics sorting and magnetic capturing systems have limitations such as: high cost, labor intense, and the requirement of a large number of cells. Therefore, the goal of our current study is to identify a cost and labor effective, reliable, and reproducible technique that allows single cell isolation for analysis to promote regular laboratory use, including standard reverse transcription PCR (RT-PCR). In the current study, we utilized single prostate cells isolated from the CWR-R1 prostate cancer cell line and human prostate clinical specimens, based on the ATP binding cassette (ABC) transporter efflux of dye cycle violet (DCV), side population assay. Expression of four genes: ABCG2; Aldehyde dehydrogenase1A1 (ALDH1A1); androgen receptor (AR); and embryonic stem cell marker, Oct-4, were determined. Results from the current study in the CWR-R1 cell line showed ABCG2 and ALDH1A1 gene expression in 67% of single side population cells and in 17% or 100% of non-side population cells respectively. Studies using single cells isolated from clinical specimens showed that the Oct-4 gene is detected in only 22% of single side population cells and in 78% of single non-side population cells. Whereas, AR gene expression is in 100% single side population and non-side population cells isolated from the same human prostate clinical specimen. These studies show that performing RT-PCR on single cells isolated by FACS can be successfully conducted to determine gene expression in single cells from cell lines and enzymatically digested tissue. While these studies provide a simple yes/no expression readout, the more sensitive quantitative RT-PCR would be able to provide even more information if necessary. PMID:27785389
Cancer stem cell-like cells from a single cell of oral squamous carcinoma cell lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Felthaus, O.; Department of Oral and Maxillofacial Surgery, University of Regensburg; Ettl, T.
2011-04-01
Research highlights: {yields} Four oral squamous cancer cell lines (OSCCL) were analyzed for cancer stem cells (CSCs). {yields} Single cell derived colonies of OSCCL express CSC-marker CD133 differentially. {yields} Monoclonal cell lines showed reduced sensitivity for Paclitaxel. {yields} In situ CD133{sup +} cells are slow cycling (Ki67-) indicating a reduced drug sensitivity. {yields} CD133{sup +} and CSC-like cells can be obtained from single colony forming cells of OSCCL. -- Abstract: Resistance of oral squamous cell carcinomas (OSCC) to conventional chemotherapy or radiation therapy might be due to cancer stem cells (CSCs). The development of novel anticancer drugs requires a simplemore » method for the enrichment of CSCs. CSCs can be enriched from OSCC cell lines, for example, after cultivation in serum-free cell culture medium (SFM). In our study, we analyzed four OSCC cell lines for the presence of CSCs. CSC-like cells could not be enriched with SFM. However, cell lines obtained from holoclone colonies showed CSC-like properties such as a reduced rate of cell proliferation and a reduced sensitivity to Paclitaxel in comparison to cells from the parental lineage. Moreover, these cell lines differentially expressed the CSC-marker CD133, which is also upregulated in OSCC tissues. Interestingly, CD133{sup +} cells in OSCC tissues expressed little to no Ki67, the cell proliferation marker that also indicates reduced drug sensitivity. Our study shows a method for the isolation of CSC-like cell lines from OSCC cell lines. These CSC-like cell lines could be new targets for the development of anticancer drugs under in vitro conditions.« less
Single cell multiplexed assay for proteolytic activity using droplet microfluidics.
Ng, Ee Xien; Miller, Miles A; Jing, Tengyang; Chen, Chia-Hung
2016-07-15
Cellular enzymes interact in a post-translationally regulated fashion to govern individual cell behaviors, yet current platform technologies are limited in their ability to measure multiple enzyme activities simultaneously in single cells. Here, we developed multi-color Förster resonance energy transfer (FRET)-based enzymatic substrates and use them in a microfluidics platform to simultaneously measure multiple specific protease activities from water-in-oil droplets that contain single cells. By integrating the microfluidic platform with a computational analytical method, Proteolytic Activity Matrix Analysis (PrAMA), we are able to infer six different protease activity signals from individual cells in a high throughput manner (~100 cells/experimental run). We characterized protease activity profiles at single cell resolution for several cancer cell lines including breast cancer cell line MDA-MB-231, lung cancer cell line PC-9, and leukemia cell line K-562 using both live-cell and in-situ cell lysis assay formats, with special focus on metalloproteinases important in metastasis. The ability to measure multiple proteases secreted from or expressed in individual cells allows us to characterize cell heterogeneity and has potential applications including systems biology, pharmacology, cancer diagnosis and stem cell biology. Copyright © 2016 Elsevier B.V. All rights reserved.
Micro-patterned agarose gel devices for single-cell high-throughput microscopy of E. coli cells.
Priest, David G; Tanaka, Nobuyuki; Tanaka, Yo; Taniguchi, Yuichi
2017-12-21
High-throughput microscopy of bacterial cells elucidated fundamental cellular processes including cellular heterogeneity and cell division homeostasis. Polydimethylsiloxane (PDMS)-based microfluidic devices provide advantages including precise positioning of cells and throughput, however device fabrication is time-consuming and requires specialised skills. Agarose pads are a popular alternative, however cells often clump together, which hinders single cell quantitation. Here, we imprint agarose pads with micro-patterned 'capsules', to trap individual cells and 'lines', to direct cellular growth outwards in a straight line. We implement this micro-patterning into multi-pad devices called CapsuleHotel and LineHotel for high-throughput imaging. CapsuleHotel provides ~65,000 capsule structures per mm 2 that isolate individual Escherichia coli cells. In contrast, LineHotel provides ~300 line structures per mm that direct growth of micro-colonies. With CapsuleHotel, a quantitative single cell dataset of ~10,000 cells across 24 samples can be acquired and analysed in under 1 hour. LineHotel allows tracking growth of > 10 micro-colonies across 24 samples simultaneously for up to 4 generations. These easy-to-use devices can be provided in kit format, and will accelerate discoveries in diverse fields ranging from microbiology to systems and synthetic biology.
Hsiao, Yen-Ling; Hsieh, Tai-Zu; Liou, Chian-Jiun; Cheng, Yeong-Hsiang; Lin, Chung-Tien; Chang, Chi-Yao; Lai, Yu-Shen
2014-09-30
Canine mammary tumors (CMTs) are the most common type of cancer found in female dogs. Establishment and evaluation of tumor cell lines can facilitate investigations of the biological mechanisms of cancer. Different cell models are used to investigate genetic, epigenetic, and cellular pathways, cancer progression, and cancer therapeutics. Establishment of new cell models will greatly facilitate research in this field. In the present study, we established and characterized two new CMT cell lines derived from a single CMT. We established two cell lines from a single malignant CMT specimen: DTK-E and DTK-SME. Morphologically, the DTK-E cells were large, flat, and epithelial-like, whereas DTK-SME cells were round and epithelial-like. Doubling times were 24 h for DTK-E and 18 h for DTK-SME. On western blots, both cell lines expressed cytokeratin AE1, vimentin, cytokeratin 7 (CK7), and heat shock protein 27 (HSP27). Moreover, investigation of chemoresistance revealed that DTK-SME was more resistant to doxorubicin-induced apoptosis than DTK-E was. After xenotransplantation, both DTK-E and DTK-SME tumors appeared within 14 days, but the average size of DTK-SME tumors was greater than that of DTK-E tumors after 56 days. We established two new cell lines from a single CMT, which exhibit significant diversity in cell morphology, protein marker expression, tumorigenicity, and chemoresistance. The results of this study revealed that the DTK-SME cell line was more resistant to doxorubicin-induced apoptosis and exhibited higher tumorigenicity in vivo than the DTK-E cell line. We anticipate that the two novel CMT cell lines established in this study will be useful for investigating the tumorigenesis of mammary carcinomas and for screening anticancer drugs.
Inducible expression of photoacoustic reporter gene tyrosinase in cells using a single plasmid
NASA Astrophysics Data System (ADS)
Paproski, Robert J.; Zemp, Roger J.
2012-02-01
We have previously demonstrated that tyrosinase is a reporter gene for photoacoustic imaging since tyrosinase is the rate-limiting step in the synthesis of melanin, a pigment capable of producing strong photoacoustic signals. We previously created a cell line capable of inducible tyrosinase expression (important due to toxicity of melanin) by stably transfecting tyrosinase in MCF-7 Tet-OnR cell line (Clontech) which expresses a doxycycline-controlled transactivator. Unfortunately, Clontech provides few Tet-On Advanced cell lines making it difficult to have inducible tyrosinase expression in cell lines not provided by Clontech. In order to simplify the creation of cell lines with inducible expression of tyrosinase, we created a single plasmid that encodes both the transactivator as well as tyrosinase. PCR was used to amplify both the transactivator and tyrosinase from the Tet-OnR Advanced and pTRE-Tight-TYR plasmids, respectively. Both PCR products were cloned into the pEGFP-N1 plasmid and the newly created plasmid was transfected into ZR-75-1, MCF-7, and MIA PaCa-1 cells using lipofectamine. After several days, brown melanin was only observed in cells incubated with doxycycline, suggesting that the newly created single plasmid allowed inducible tyrosinase expression in many different cells lines.
Salvianti, Francesca; Rotunno, Giada; Galardi, Francesca; De Luca, Francesca; Pestrin, Marta; Vannucchi, Alessandro Maria; Di Leo, Angelo; Pazzagli, Mario; Pinzani, Pamela
2015-09-01
The purpose of the study was to explore the feasibility of a protocol for the isolation and molecular characterization of single circulating tumor cells (CTCs) from cancer patients using a single-cell next generation sequencing (NGS) approach. To reach this goal we used as a model an artificial sample obtained by spiking a breast cancer cell line (MDA-MB-231) into the blood of a healthy donor. Tumor cells were enriched and enumerated by CellSearch(®) and subsequently isolated by DEPArray™ to obtain single or pooled pure samples to be submitted to the analysis of the mutational status of multiple genes involved in cancer. Upon whole genome amplification, samples were analysed by NGS on the Ion Torrent PGM™ system (Life Technologies) using the Ion AmpliSeq™ Cancer Hotspot Panel v2 (Life Technologies), designed to investigate genomic "hot spot" regions of 50 oncogenes and tumor suppressor genes. We successfully sequenced five single cells, a pool of 5 cells and DNA from a cellular pellet of the same cell line with a mean depth of the sequencing reaction ranging from 1581 to 3479 reads. We found 27 sequence variants in 18 genes, 15 of which already reported in the COSMIC or dbSNP databases. We confirmed the presence of two somatic mutations, in the BRAF and TP53 gene, which had been already reported for this cells line, but also found new mutations and single nucleotide polymorphisms. Three variants were common to all the analysed samples, while 18 were present only in a single cell suggesting a high heterogeneity within the same cell line. This paper presents an optimized workflow for the molecular characterization of multiple genes in single cells by NGS. The described pipeline can be easily transferred to the study of single CTCs from oncologic patients.
USDA-ARS?s Scientific Manuscript database
Five single-cell clone lines (mRTP1B, mRTP1E, mRTP1F, mRTP1K, and mRTP2A) have been developed from adult rainbow trout pituitary glands. These cell lines have been maintained in a CO2-independent medium supplemented with 10% fetal bovine serum (FBS) for more than 150 passages. At about 150 passages,...
Romano, Paolo; Manniello, Assunta; Aresu, Ottavia; Armento, Massimiliano; Cesaro, Michela; Parodi, Barbara
2009-01-01
The Cell Line Data Base (CLDB) is a well-known reference information source on human and animal cell lines including information on more than 6000 cell lines. Main biological features are coded according to controlled vocabularies derived from international lists and taxonomies. HyperCLDB (http://bioinformatics.istge.it/hypercldb/) is a hypertext version of CLDB that improves data accessibility by also allowing information retrieval through web spiders. Access to HyperCLDB is provided through indexes of biological characteristics and navigation in the hypertext is granted by many internal links. HyperCLDB also includes links to external resources. Recently, an interest was raised for a reference nomenclature for cell lines and CLDB was seen as an authoritative system. Furthermore, to overcome the cell line misidentification problem, molecular authentication methods, such as fingerprinting, single-locus short tandem repeat (STR) profile and single nucleotide polymorphisms validation, were proposed. Since this data is distributed, a reference portal on authentication of human cell lines is needed. We present here the architecture and contents of CLDB, its recent enhancements and perspectives. We also present a new related database, the Cell Line Integrated Molecular Authentication (CLIMA) database (http://bioinformatics.istge.it/clima/), that allows to link authentication data to actual cell lines. PMID:18927105
Romano, Paolo; Manniello, Assunta; Aresu, Ottavia; Armento, Massimiliano; Cesaro, Michela; Parodi, Barbara
2009-01-01
The Cell Line Data Base (CLDB) is a well-known reference information source on human and animal cell lines including information on more than 6000 cell lines. Main biological features are coded according to controlled vocabularies derived from international lists and taxonomies. HyperCLDB (http://bioinformatics.istge.it/hypercldb/) is a hypertext version of CLDB that improves data accessibility by also allowing information retrieval through web spiders. Access to HyperCLDB is provided through indexes of biological characteristics and navigation in the hypertext is granted by many internal links. HyperCLDB also includes links to external resources. Recently, an interest was raised for a reference nomenclature for cell lines and CLDB was seen as an authoritative system. Furthermore, to overcome the cell line misidentification problem, molecular authentication methods, such as fingerprinting, single-locus short tandem repeat (STR) profile and single nucleotide polymorphisms validation, were proposed. Since this data is distributed, a reference portal on authentication of human cell lines is needed. We present here the architecture and contents of CLDB, its recent enhancements and perspectives. We also present a new related database, the Cell Line Integrated Molecular Authentication (CLIMA) database (http://bioinformatics.istge.it/clima/), that allows to link authentication data to actual cell lines.
Sreenivasan, Seethalakshmi; Krishnakumar, Subramanian
2015-01-01
Curcumin (diferuloylmethane), a phenolic compound obtained from the rhizome of the herb Curcuma longa, is known to have anti-proliferative and anti-tumor properties. In this study, we evaluated the cytotoxic effect of curcumin alone and in combination with individual drugs like carboplatin, etoposide, or vincristine in a human retinoblastoma (RB) cancer cell line. A drug-drug interaction was analyzed using the median effect/isobologram method and combination index values were used to characterize the interaction as synergistic or additive. We also performed the apoptosis and cell-cycle kinetics study with single drugs in combination with curcumin in a human RB cell lines (Y79 and Weri-Rb1). Curcumin caused concentration-dependent decrease in cell proliferation, cell kinetics, and also induced apoptosis in both the RB cell lines. When combination of curcumin with individual drugs like carboplatin or etoposide or vincristine was treated on to RB cells, both cell viability and cell cycling were reduced and increased apoptosis was noted, in comparison with single drug treatment. These effects were significant in both the cell lines, indicating the ability of curcumin to increase the sensitivity of RB cells to chemotherapy drugs. Our in vitro findings showed that the combination of curcumin with single drug treatment showed marked synergistic inhibitory effect against RB cell lines. These results suggest that curcumin can be used as a modulator which may have a potential therapeutic value for the treatment of RB cancer patients.
Sato, Sachiko; Rancourt, Ann; Sato, Yukiko; Satoh, Masahiko S.
2016-01-01
Mammalian cell culture has been used in many biological studies on the assumption that a cell line comprises putatively homogeneous clonal cells, thereby sharing similar phenotypic features. This fundamental assumption has not yet been fully tested; therefore, we developed a method for the chronological analysis of individual HeLa cells. The analysis was performed by live cell imaging, tracking of every single cell recorded on imaging videos, and determining the fates of individual cells. We found that cell fate varied significantly, indicating that, in contrast to the assumption, the HeLa cell line is composed of highly heterogeneous cells. Furthermore, our results reveal that only a limited number of cells are immortal and renew themselves, giving rise to the remaining cells. These cells have reduced reproductive ability, creating a functionally heterogeneous cell population. Hence, the HeLa cell line is maintained by the limited number of immortal cells, which could be putative cancer stem cells. PMID:27003384
Human embryonic stem cell lines derived from single blastomeres of two 4-cell stage embryos
Geens, Mieke; Mateizel, Ileana; Sermon, Karen; De Rycke, Martine; Spits, Claudia; Cauffman, Greet; Devroey, Paul; Tournaye, Herman; Liebaers, Inge; Van de Velde, Hilde
2009-01-01
BACKGROUND Recently, we demonstrated that single blastomeres of a 4-cell stage human embryo are able to develop into blastocysts with inner cell mass and trophectoderm. To further investigate potency at the 4-cell stage, we aimed to derive pluripotent human embryonic stem cells (hESC) from single blastomeres. METHODS Four 4-cell stage embryos were split on Day 2 of preimplantation development and the 16 blastomeres were individually cultured in sequential medium. On Day 3 or 4, the blastomere-derived embryos were plated on inactivated mouse embryonic fibroblasts (MEFs). RESULTS Ten out of sixteen blastomere-derived morulae attached to the MEFs, and two produced an outgrowth. They were mechanically passaged onto fresh MEFs as described for blastocyst ICM-derived hESC, and shown to express the typical stemness markers by immunocytochemistry and/or RT–PCR. In vivo pluripotency was confirmed by the presence of all three germ layers in the teratoma obtained after injection in immunodeficient mice. The first hESC line displays a mosaic normal/abnormal 46, XX, dup(7)(q33qter), del(18)(q23qter) karyotype. The second hESC line displays a normal 46, XY karyotype. CONCLUSION We report the successful derivation and characterization of two hESC lines from single blastomeres of four split 4-cell stage human embryos. These two hESC lines were derived from distinct embryos, proving that at least one of the 4-cell stage blastomeres is pluripotent. PMID:19633307
Gilks, Charles F; Walker, A Sarah; Munderi, Paula; Kityo, Cissy; Reid, Andrew; Katabira, Elly; Goodall, Ruth L; Grosskurth, Heiner; Mugyenyi, Peter; Hakim, James; Gibb, Diana M
2013-01-01
In low-income countries, viral load (VL) monitoring of antiretroviral therapy (ART) is rarely available in the public sector for HIV-infected adults or children. Using clinical failure alone to identify first-line ART failure and trigger regimen switch may result in unnecessary use of costly second-line therapy. Our objective was to identify CD4 threshold values to confirm clinically-determined ART failure when VL is unavailable. 3316 HIV-infected Ugandan/Zimbabwean adults were randomised to first-line ART with Clinically-Driven (CDM, CD4s measured but blinded) or routine Laboratory and Clinical Monitoring (LCM, 12-weekly CD4s) in the DART trial. CD4 at switch and ART failure criteria (new/recurrent WHO 4, single/multiple WHO 3 event; LCM: CD4<100 cells/mm(3)) were reviewed in 361 LCM, 314 CDM participants who switched over median 5 years follow-up. Retrospective VLs were available in 368 (55%) participants. Overall, 265/361 (73%) LCM participants failed with CD4<100 cells/mm(3); only 7 (2%) switched with CD4≥250 cells/mm(3), four switches triggered by WHO events. Without CD4 monitoring, 207/314 (66%) CDM participants failed with WHO 4 events, and 77(25%)/30(10%) with single/multiple WHO 3 events. Failure/switching with single WHO 3 events was more likely with CD4≥250 cells/mm(3) (28/77; 36%) (p = 0.0002). CD4 monitoring reduced switching with viral suppression: 23/187 (12%) LCM versus 49/181 (27%) CDM had VL<400 copies/ml at failure/switch (p<0.0001). Amongst CDM participants with CD4<250 cells/mm(3) only 11/133 (8%) had VL<400 copies/ml, compared with 38/48 (79%) with CD4≥250 cells/mm(3) (p<0.0001). Multiple, but not single, WHO 3 events predicted first-line ART failure. A CD4 threshold 'tiebreaker' of ≥250 cells/mm(3) for clinically-monitored patients failing first-line could identify ∼80% with VL<400 copies/ml, who are unlikely to benefit from second-line. Targeting CD4s to single WHO stage 3 'clinical failures' would particularly avoid premature, costly switch to second-line ART.
Munderi, Paula; Kityo, Cissy; Reid, Andrew; Katabira, Elly; Goodall, Ruth L.; Grosskurth, Heiner; Mugyenyi, Peter; Hakim, James; Gibb, Diana M.
2013-01-01
Background In low-income countries, viral load (VL) monitoring of antiretroviral therapy (ART) is rarely available in the public sector for HIV-infected adults or children. Using clinical failure alone to identify first-line ART failure and trigger regimen switch may result in unnecessary use of costly second-line therapy. Our objective was to identify CD4 threshold values to confirm clinically-determined ART failure when VL is unavailable. Methods 3316 HIV-infected Ugandan/Zimbabwean adults were randomised to first-line ART with Clinically-Driven (CDM, CD4s measured but blinded) or routine Laboratory and Clinical Monitoring (LCM, 12-weekly CD4s) in the DART trial. CD4 at switch and ART failure criteria (new/recurrent WHO 4, single/multiple WHO 3 event; LCM: CD4<100 cells/mm3) were reviewed in 361 LCM, 314 CDM participants who switched over median 5 years follow-up. Retrospective VLs were available in 368 (55%) participants. Results Overall, 265/361 (73%) LCM participants failed with CD4<100 cells/mm3; only 7 (2%) switched with CD4≥250 cells/mm3, four switches triggered by WHO events. Without CD4 monitoring, 207/314 (66%) CDM participants failed with WHO 4 events, and 77(25%)/30(10%) with single/multiple WHO 3 events. Failure/switching with single WHO 3 events was more likely with CD4≥250 cells/mm3 (28/77; 36%) (p = 0.0002). CD4 monitoring reduced switching with viral suppression: 23/187 (12%) LCM versus 49/181 (27%) CDM had VL<400 copies/ml at failure/switch (p<0.0001). Amongst CDM participants with CD4<250 cells/mm3 only 11/133 (8%) had VL<400copies/ml, compared with 38/48 (79%) with CD4≥250 cells/mm3 (p<0.0001). Conclusion Multiple, but not single, WHO 3 events predicted first-line ART failure. A CD4 threshold ‘tiebreaker’ of ≥250 cells/mm3 for clinically-monitored patients failing first-line could identify ∼80% with VL<400 copies/ml, who are unlikely to benefit from second-line. Targeting CD4s to single WHO stage 3 ‘clinical failures’ would particularly avoid premature, costly switch to second-line ART. PMID:23437399
USDA-ARS?s Scientific Manuscript database
Currently, American Type Culture Collection (ATCC) makes available two cell lines derived from the same lymphoblast-like suspension cell that have been confirmed by next-generation sequencing and RT-PCR to have either a single contaminate of BVDV2a (CRL-8037) or dual contaminates of both BVDV and BL...
Generating mammalian stable cell lines by electroporation.
A Longo, Patti; Kavran, Jennifer M; Kim, Min-Sung; Leahy, Daniel J
2013-01-01
Expression of functional, recombinant mammalian proteins often requires expression in mammalian cells (see Single Cell Cloning of a Stable Mammalian Cell Line). If the expressed protein needs to be made frequently, it can be best to generate a stable cell line instead of performing repeated transient transfections into mammalian cells. Here, we describe a method to generate stable cell lines via electroporation followed by selection steps. This protocol will be limited to the CHO dhfr-Urlaub et al. (1983) and LEC1 cell lines, which in our experience perform the best with this method. Copyright © 2013 Elsevier Inc. All rights reserved.
Evidence of drug-response heterogeneity rapidly generated from a single cancer cell.
Wang, Rong; Jin, Chengmeng; Hu, Xun
2017-06-20
One cancer cell line is believed to be composed of numerous clones with different drug sensitivity. We sought to investigate the difference of drug-response pattern in clones from a cell line or from a single cell. We showed that 22 clones derived from 4T1 cells were drastically different from each other with respect to drug-response pattern against 11 anticancer drugs and expression profile of 19 genes associated with drug resistance or sensitivity. Similar results were obtained using daughter clones derived from a single 4T1 cell. Each daughter clone showed distinct drug-response pattern and gene expression profile. Similar results were also obtained using Bcap37 cells. We conclude that a single cancer cell can rapidly produce a population of cells with high heterogeneity of drug response and the acquisition of drug-response heterogeneity is random.
Saito, Taiju; Goto-Kazeto, Rie; Arai, Katsutoshi; Yamaha, Etsuro
2008-01-01
Primordial germ cells (PGCs) are the only cells in developing embryos with the potential to transmit genetic information to the next generation. PGCs therefore have the potential to be of value for gene banking and cryopreservation, particularly via the production of donor gametes with germ-line chimeras. Currently, it is not clear how many PGCs are required for germ-line differentiation and formation of gonadal structures. In the present study, we achieved complete germ-line replacement between two related teleost species, the pearl danio (Danio albolineatus) and the zebrafish (Danio rerio), with transplantation of a single PGC into each host embryo. We isolated and transplanted a single PGC into each blastula-stage, zebrafish embryo. Development of host germ-line cells was prevented by an antisense dead end morpholino oligonucleotide. In many host embryos, the transplanted donor PGC successfully migrated toward the gonadal anlage without undergoing cell division. At the gonadal anlage, the PGC differentiated to form one normally sized gonad rather than the pair of gonads usually present. Offspring were obtained from natural spawning of these chimeras. Analyses of morphology and DNA showed that the offspring were of donor origin. We extended our study to confirm that transplanted single PGCs of goldfish (Carassius auratus) and loach (Misgurnus anguillicaudatus) can similarly differentiate into sperm in zebrafish host embryos. Our results show that xenogenesis is realistic and practical across species, genus, and family barriers and can be achieved by the transplantation of a single PGC from a donor species.
Recombinant human albumin supports single cell cloning of CHO cells in chemically defined media.
Zhu, Jiang; Wooh, Jong Wei; Hou, Jeff Jia Cheng; Hughes, Benjamin S; Gray, Peter P; Munro, Trent P
2012-01-01
Biologic drugs, such as monoclonal antibodies, are commonly made using mammalian cells in culture. The cell lines used for manufacturing should ideally be clonal, meaning derived from a single cell, which represents a technically challenging process. Fetal bovine serum is often used to support low cell density cultures, however, from a regulatory perspective, it is preferable to avoid animal-derived components to increase process consistency and reduce the risk of contamination from adventitious agents. Chinese hamster ovary (CHO) cells are the most widely used cell line in industry and a large number of serum-free, protein-free, and fully chemically defined growth media are commercially available, although these media alone do not readily support efficient single cell cloning. In this work, we have developed a simple, fully defined, single-cell cloning media, specifically for CHO cells, using commercially available reagents. Our results show that a 1:1 mixture of CD-CHO™ and DMEM/F12 supplemented with 1.5 g/L of recombinant albumin (Albucult®) supports single cell cloning. This formulation can support recovery of single cells in 43% of cultures compared to 62% in the presence of serum. Copyright © 2012 American Institute of Chemical Engineers (AIChE).
Mantovani, Fernanda B; Morrison, Jodi A; Mutsaers, Anthony J
2016-05-31
Radiation therapy is a palliative treatment modality for canine osteosarcoma, with transient improvement in analgesia observed in many cases. However there is room for improvement in outcome for these patients. It is possible that the addition of sensitizing agents may increase tumor response to radiation therapy and prolong quality of life. Epidermal growth factor receptor (EGFR) expression has been documented in canine osteosarcoma and higher EGFR levels have been correlated to a worse prognosis. However, effects of EGFR inhibition on radiation responsiveness in canine osteosarcoma have not been previously characterized. This study examined the effects of the small molecule EGFR inhibitor erlotinib on canine osteosarcoma radiation responses, target and downstream protein expression in vitro. Additionally, to assess the potential impact of treatment on tumor angiogenesis, vascular endothelial growth factor (VEGF) levels in conditioned media were measured. Erlotinib as a single agent reduced clonogenic survival in two canine osteosarcoma cell lines and enhanced the impact of radiation in one out of three cell lines investigated. In cell viability assays, erlotinib enhanced radiation effects and demonstrated single agent effects. Erlotinib did not alter total levels of EGFR, nor inhibit downstream protein kinase B (PKB/Akt) activation. On the contrary, erlotinib treatment increased phosphorylated Akt in these osteosarcoma cell lines. VEGF levels in conditioned media increased after erlotinib treatment as a single agent and in combination with radiation in two out of three cell lines investigated. However, VEGF levels decreased with erlotinib treatment in the third cell line. Erlotinib treatment promoted modest enhancement of radiation effects in canine osteosarcoma cells, and possessed activity as a single agent in some cell lines, indicating a potential role for EGFR inhibition in the treatment of a subset of osteosarcoma patients. The relative radioresistance of osteosarcoma cells does not appear to be related to EGFR signalling exclusively. Angiogenic responses to radiation and kinase inhibitors are similarly likely to be multifactorial and require further investigation.
NASA Astrophysics Data System (ADS)
Li, Yunjun; Zhang, Jinqian; Zhao, Ming; Shi, Zujin; Chen, Xin; He, Xihui; Han, Nanyin; Xu, Ruxiang
2013-08-01
Although single-wall carbon nanohorns (SWNHs) have been demonstrated to accumulate to cytotoxic levels within organs of various animal models and cell types, they have been exploited for cancer therapies. The role of SWNHs in human glioma cell lines was unclear. To address this question, the research about direct role of SWNHs on the growth, proliferation, and apoptosis of human glioma cell lines (U87, U251, and U373) had been performed. Our results indicate that particle size of SWNHs in water is between 342 and 712 nm, the films of SEM show that SWNHs on PS surface are individual particles. SWNHs significantly delayed mitotic entry of human glioma cell lines cells, and inhibited its proliferation in a time- and dose-dependent manner. SWNHs induced a significant increase in G1 phase and inhibition of S phase followed the gradually increasing concentrations. SWNHs in human glioma cell lines cells significantly induced apoptosis followed by their gradually increasing concentrations. The TEM images showed that individual spherical SWNHs particles smaller than 100 nm in diameters were localized inside lysosomes of human glioma cell lines. SWNHs inhibited mitotic entry, growth, and proliferation of human glioma cell lines, and promoted its apoptosis. SWNHs may be a novel opportunity or method for the research on treatment of human glioma.
Zhou, Yizhou; Shaw, David; Lam, Cynthia; Tsukuda, Joni; Yim, Mandy; Tang, Danming; Louie, Salina; Laird, Michael W; Snedecor, Brad; Misaghi, Shahram
2017-09-23
Establishing that a cell line was derived from a single cell progenitor and defined as clonally-derived for the production of clinical and commercial therapeutic protein drugs has been the subject of increased emphasis in cell line development (CLD). Several regulatory agencies have expressed that the prospective probability of clonality for CHO cell lines is assumed to follow the Poisson distribution based on the input cell count. The probability of obtaining monoclonal progenitors based on the Poisson distribution of all cells suggests that one round of limiting dilution may not be sufficient to assure the resulting cell lines are clonally-derived. We experimentally analyzed clonal derivatives originating from single cell cloning (SCC) via one round of limiting dilution, following our standard legacy cell line development practice. Two cell populations with stably integrated DNA spacers were mixed and subjected to SCC via limiting dilution. Cells were cultured in the presence of selection agent, screened, and ranked based on product titer. Post-SCC, the growing cell lines were screened by PCR analysis for the presence of identifying spacers. We observed that the percentage of nonclonal populations was below 9%, which is considerably lower than the determined probability based on the Poisson distribution of all cells. These results were further confirmed using fluorescence imaging of clonal derivatives originating from SCC via limiting dilution of mixed cell populations expressing GFP or RFP. Our results demonstrate that in the presence of selection agent, the Poisson distribution of all cells clearly underestimates the probability of obtaining clonally-derived cell lines. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 2017. © 2017 American Institute of Chemical Engineers.
Wang, Hailong; Wang, Meng; Wang, Bing; Zheng, Lingna; Chen, Hanqing; Chai, Zhifang; Feng, Weiyue
2017-02-01
Cellular heterogeneity is an inherent condition of cell populations, which results from stochastic expression of genes, proteins, and metabolites. The heterogeneity of individual cells can dramatically influence cellular decision-making and cell fate. So far, our knowledge about how the variation of endogenous metals and non-metals in individual eukaryotic cells is limited. In this study, ICP-MS equipped with a high efficiency cell introduction system (HECIS) was developed as a method of single-cell ICP-MS (SC-ICP-MS). The method was applied to the single-cell analysis of Mn, Fe, Co, Cu, Zn, P, and S in human cancer cell lines (HeLa and A549) and normal human bronchial epithelial cell line (16HBE). The analysis showed obvious variation of the masses of Cu, Fe, Zn, and P in individual HeLa cells, and variation of Fe, Zn, and P in individual A549 cells. On the basis of the single-cell data, a multimodal distribution of the elements in the cell population was fitted, which showed marked differences among the various cell lines. Importantly, subpopulations of the elements were found in the cell populations, especially in the HeLa cancer cells. This study demonstrates that SC-ICP-MS is able to unravel the extent of variation of endogenous elements in individual cells, which will help to improve our fundamental understanding of cellular biology and reveal novel insights into human biology and medicine. Graphical abstract The variations of masses and distribution patterns of elements Mn, Fe, Co, Cu, Zn, P, and S in single cells were successfully detected by ICP-MS coupled with a high efficiency cell introduction system (HECIS).
Overcoming CRPC Treatment Resistance via Novel Dual AKR1C3 Targeting
2017-10-01
We therefore characterized another drug resistant line from C4-2B cells, C4-2B AbiR cells. C4-2B AbiR cells were resistant to Abi acetate in a...Testosterone level in C4-2B AbiR cell was 12 pg/50 million cells, similar to that in C4-2B MDVR or LNCaP-AKR1C3 cells. With the single drug resistant...cell lines on hand, we tested for their cross- resistance to Enza and Abi. While the parental line was sensitive to both drugs , the resistant lines
Alqabandi, Jassim A; Abdel-Motal, Ussama M; Youcef-Toumi, Kamal
2009-02-01
Cancer cells have distinctive electrochemical properties. This work sheds light on the system design aspects and key challenges that should be considered when experimentally analyzing and extracting the electrical characteristics of a tumor cell line. In this study, we developed a cellularbased functional microfabricated device using lithography technology. This device was used to investigate the electrochemical parameters of cultured cancer cells at the single-cell level. Using impedance spectroscopy analyses, we determined the average specific capacitance and resistance of the membrane of the cancer cell line B16-F10 to be 1.154 +/- 0.29 microF/cm(2), and 3.9 +/- 1.15 KOmega.cm(2) (mean +/- SEM, n =14 cells), respectively. The consistency of our findings via different trails manifests the legitimacy of our experimental procedure. Furthermore, the data were compared with a proposed constructed analytical-circuit model. The results of this work may greatly assist researchers in defining an optimal procedure while extracting electrical properties of cancer cells. Detecting electrical signals at the single cell level could lead to the development of novel approaches for analysis of malignant cells in human tissues and biopsies.
NASA Astrophysics Data System (ADS)
Matthews, Q.; Jirasek, A.; Lum, J. J.; Brolo, A. G.
2011-11-01
This work applies noninvasive single-cell Raman spectroscopy (RS) and principal component analysis (PCA) to analyze and correlate radiation-induced biochemical changes in a panel of human tumour cell lines that vary by tissue of origin, p53 status and intrinsic radiosensitivity. Six human tumour cell lines, derived from prostate (DU145, PC3 and LNCaP), breast (MDA-MB-231 and MCF7) and lung (H460), were irradiated in vitro with single fractions (15, 30 or 50 Gy) of 6 MV photons. Remaining live cells were harvested for RS analysis at 0, 24, 48 and 72 h post-irradiation, along with unirradiated controls. Single-cell Raman spectra were acquired from 20 cells per sample utilizing a 785 nm excitation laser. All spectra (200 per cell line) were individually post-processed using established methods and the total data set for each cell line was analyzed with PCA using standard algorithms. One radiation-induced PCA component was detected for each cell line by identification of statistically significant changes in the PCA score distributions for irradiated samples, as compared to unirradiated samples, in the first 24-72 h post-irradiation. These RS response signatures arise from radiation-induced changes in cellular concentrations of aromatic amino acids, conformational protein structures and certain nucleic acid and lipid functional groups. Correlation analysis between the radiation-induced PCA components separates the cell lines into three distinct RS response categories: R1 (H460 and MCF7), R2 (MDA-MB-231 and PC3) and R3 (DU145 and LNCaP). These RS categories partially segregate according to radiosensitivity, as the R1 and R2 cell lines are radioresistant (SF2 > 0.6) and the R3 cell lines are radiosensitive (SF2 < 0.5). The R1 and R2 cell lines further segregate according to p53 gene status, corroborated by cell cycle analysis post-irradiation. Potential radiation-induced biochemical response mechanisms underlying our RS observations are proposed, such as (1) the regulated synthesis and degradation of structured proteins and (2) the expression of anti-apoptosis factors or other survival signals. This study demonstrates the utility of RS for noninvasive radiobiological analysis of tumour cell radiation response, and indicates the potential for future RS studies designed to investigate, monitor or predict radiation response.
2012-01-01
Background The Hedgehog Signaling Pathway is one of signaling pathways that are very important to embryonic development. The participation of inhibitors in the Hedgehog Signal Pathway can control cell growth and death, and searching novel inhibitors to the functioning of the pathway are in a great demand. As the matter of fact, effective inhibitors could provide efficient therapies for a wide range of malignancies, and targeting such pathway in cells represents a promising new paradigm for cell growth and death control. Current research mainly focuses on the syntheses of the inhibitors of cyclopamine derivatives, which bind specifically to the Smo protein, and can be used for cancer therapy. While quantitatively structure-activity relationship (QSAR) studies have been performed for these compounds among different cell lines, none of them have achieved acceptable results in the prediction of activity values of new compounds. In this study, we proposed a novel collaborative QSAR model for inhibitors of the Hedgehog Signaling Pathway by integration the information from multiple cell lines. Such a model is expected to substantially improve the QSAR ability from single cell lines, and provide useful clues in developing clinically effective inhibitors and modifications of parent lead compounds for target on the Hedgehog Signaling Pathway. Results In this study, we have presented: (1) a collaborative QSAR model, which is used to integrate information among multiple cell lines to boost the QSAR results, rather than only a single cell line QSAR modeling. Our experiments have shown that the performance of our model is significantly better than single cell line QSAR methods; and (2) an efficient feature selection strategy under such collaborative environment, which can derive the commonly important features related to the entire given cell lines, while simultaneously showing their specific contributions to a specific cell-line. Based on feature selection results, we have proposed several possible chemical modifications to improve the inhibitor affinity towards multiple targets in the Hedgehog Signaling Pathway. Conclusions Our model with the feature selection strategy presented here is efficient, robust, and flexible, and can be easily extended to model large-scale multiple cell line/QSAR data. The data and scripts for collaborative QSAR modeling are available in the Additional file 1. PMID:22849868
Gao, Jun; Che, Dongsheng; Zheng, Vincent W; Zhu, Ruixin; Liu, Qi
2012-07-31
The Hedgehog Signaling Pathway is one of signaling pathways that are very important to embryonic development. The participation of inhibitors in the Hedgehog Signal Pathway can control cell growth and death, and searching novel inhibitors to the functioning of the pathway are in a great demand. As the matter of fact, effective inhibitors could provide efficient therapies for a wide range of malignancies, and targeting such pathway in cells represents a promising new paradigm for cell growth and death control. Current research mainly focuses on the syntheses of the inhibitors of cyclopamine derivatives, which bind specifically to the Smo protein, and can be used for cancer therapy. While quantitatively structure-activity relationship (QSAR) studies have been performed for these compounds among different cell lines, none of them have achieved acceptable results in the prediction of activity values of new compounds. In this study, we proposed a novel collaborative QSAR model for inhibitors of the Hedgehog Signaling Pathway by integration the information from multiple cell lines. Such a model is expected to substantially improve the QSAR ability from single cell lines, and provide useful clues in developing clinically effective inhibitors and modifications of parent lead compounds for target on the Hedgehog Signaling Pathway. In this study, we have presented: (1) a collaborative QSAR model, which is used to integrate information among multiple cell lines to boost the QSAR results, rather than only a single cell line QSAR modeling. Our experiments have shown that the performance of our model is significantly better than single cell line QSAR methods; and (2) an efficient feature selection strategy under such collaborative environment, which can derive the commonly important features related to the entire given cell lines, while simultaneously showing their specific contributions to a specific cell-line. Based on feature selection results, we have proposed several possible chemical modifications to improve the inhibitor affinity towards multiple targets in the Hedgehog Signaling Pathway. Our model with the feature selection strategy presented here is efficient, robust, and flexible, and can be easily extended to model large-scale multiple cell line/QSAR data. The data and scripts for collaborative QSAR modeling are available in the Additional file 1.
Reality of Single Circulating Tumor Cell Sequencing for Molecular Diagnostics in Pancreatic Cancer.
Court, Colin M; Ankeny, Jacob S; Sho, Shonan; Hou, Shuang; Li, Qingyu; Hsieh, Carolyn; Song, Min; Liao, Xinfang; Rochefort, Matthew M; Wainberg, Zev A; Graeber, Thomas G; Tseng, Hsian-Rong; Tomlinson, James S
2016-09-01
To understand the potential and limitations of circulating tumor cell (CTC) sequencing for molecular diagnostics, we investigated the feasibility of identifying the ubiquitous KRAS mutation in single CTCs from pancreatic cancer (PC) patients. We used the NanoVelcro/laser capture microdissection CTC platform, combined with whole genome amplification and KRAS Sanger sequencing. We assessed both KRAS codon-12 coverage and the degree that allele dropout during whole genome amplification affected the detection of KRAS mutations from single CTCs. We isolated 385 single cells, 163 from PC cell lines and 222 from the blood of 12 PC patients, and obtained KRAS sequence coverage in 218 of 385 single cells (56.6%). For PC cell lines with known KRAS mutations, single mutations were detected in 67% of homozygous cells but only 37.4% of heterozygous single cells, demonstrating that both coverage and allele dropout are important causes of mutation detection failure from single cells. We could detect KRAS mutations in CTCs from 11 of 12 patients (92%) and 33 of 119 single CTCs sequenced, resulting in a KRAS mutation detection rate of 27.7%. Importantly, KRAS mutations were never found in the 103 white blood cells sequenced. Sequencing of groups of cells containing between 1 and 100 cells determined that at least 10 CTCs are likely required to reliably assess KRAS mutation status from CTCs. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Shalygin, A V; Vigont, V A; Glushankova, L N; Zimina, O A; Kolesnikov, D O; Skopin, A Yu; Kaznacheeva, E V
2017-07-01
An important role in intracellular calcium signaling is played by store-operated channels activated by STIM proteins, calcium sensors of the endoplasmic reticulum. In stable STIM1 knockdown HEK S4 cells, single channels activated by depletion of intracellular calcium stores were detected by cell-attached patch-clamp technique and their electrophysiological parameters were described. Comparison of the properties of single channels in HEK293 and HEK S4 cells revealed no significant differences in their current-voltage curves, while regulation of store-operated calcium channels in these cell lines depended on the level of STIM1 expression. We can conclude that electrophysiological peculiarities of store-regulated calcium entry observed in different cells can be explained by differences in STIM1 expression.
Wu, Liang; Zhang, Xiaolong; Zhao, Zhikun; Wang, Ling; Li, Bo; Li, Guibo; Dean, Michael; Yu, Qichao; Wang, Yanhui; Lin, Xinxin; Rao, Weijian; Mei, Zhanlong; Li, Yang; Jiang, Runze; Yang, Huan; Li, Fuqiang; Xie, Guoyun; Xu, Liqin; Wu, Kui; Zhang, Jie; Chen, Jianghao; Wang, Ting; Kristiansen, Karsten; Zhang, Xiuqing; Li, Yingrui; Yang, Huanming; Wang, Jian; Hou, Yong; Xu, Xun
2015-01-01
Viral infection causes multiple forms of human cancer, and HPV infection is the primary factor in cervical carcinomas. Recent single-cell RNA-seq studies highlight the tumor heterogeneity present in most cancers, but virally induced tumors have not been studied. HeLa is a well characterized HPV+ cervical cancer cell line. We developed a new high throughput platform to prepare single-cell RNA on a nanoliter scale based on a customized microwell chip. Using this method, we successfully amplified full-length transcripts of 669 single HeLa S3 cells and 40 of them were randomly selected to perform single-cell RNA sequencing. Based on these data, we obtained a comprehensive understanding of the heterogeneity of HeLa S3 cells in gene expression, alternative splicing and fusions. Furthermore, we identified a high diversity of HPV-18 expression and splicing at the single-cell level. By co-expression analysis we identified 283 E6, E7 co-regulated genes, including CDC25, PCNA, PLK4, BUB1B and IRF1 known to interact with HPV viral proteins. Our results reveal the heterogeneity of a virus-infected cell line. It not only provides a transcriptome characterization of HeLa S3 cells at the single cell level, but is a demonstration of the power of single cell RNA-seq analysis of virally infected cells and cancers.
Model-based branching point detection in single-cell data by K-branches clustering
Chlis, Nikolaos K.; Wolf, F. Alexander; Theis, Fabian J.
2017-01-01
Abstract Motivation The identification of heterogeneities in cell populations by utilizing single-cell technologies such as single-cell RNA-Seq, enables inference of cellular development and lineage trees. Several methods have been proposed for such inference from high-dimensional single-cell data. They typically assign each cell to a branch in a differentiation trajectory. However, they commonly assume specific geometries such as tree-like developmental hierarchies and lack statistically sound methods to decide on the number of branching events. Results We present K-Branches, a solution to the above problem by locally fitting half-lines to single-cell data, introducing a clustering algorithm similar to K-Means. These halflines are proxies for branches in the differentiation trajectory of cells. We propose a modified version of the GAP statistic for model selection, in order to decide on the number of lines that best describe the data locally. In this manner, we identify the location and number of subgroups of cells that are associated with branching events and full differentiation, respectively. We evaluate the performance of our method on single-cell RNA-Seq data describing the differentiation of myeloid progenitors during hematopoiesis, single-cell qPCR data of mouse blastocyst development, single-cell qPCR data of human myeloid monocytic leukemia and artificial data. Availability and implementation An R implementation of K-Branches is freely available at https://github.com/theislab/kbranches. Contact fabian.theis@helmholtz-muenchen.de Supplementary information Supplementary data are available at Bioinformatics online. PMID:28582478
Modeling Bi-modality Improves Characterization of Cell Cycle on Gene Expression in Single Cells
Danaher, Patrick; Finak, Greg; Krouse, Michael; Wang, Alice; Webster, Philippa; Beechem, Joseph; Gottardo, Raphael
2014-01-01
Advances in high-throughput, single cell gene expression are allowing interrogation of cell heterogeneity. However, there is concern that the cell cycle phase of a cell might bias characterizations of gene expression at the single-cell level. We assess the effect of cell cycle phase on gene expression in single cells by measuring 333 genes in 930 cells across three phases and three cell lines. We determine each cell's phase non-invasively without chemical arrest and use it as a covariate in tests of differential expression. We observe bi-modal gene expression, a previously-described phenomenon, wherein the expression of otherwise abundant genes is either strongly positive, or undetectable within individual cells. This bi-modality is likely both biologically and technically driven. Irrespective of its source, we show that it should be modeled to draw accurate inferences from single cell expression experiments. To this end, we propose a semi-continuous modeling framework based on the generalized linear model, and use it to characterize genes with consistent cell cycle effects across three cell lines. Our new computational framework improves the detection of previously characterized cell-cycle genes compared to approaches that do not account for the bi-modality of single-cell data. We use our semi-continuous modelling framework to estimate single cell gene co-expression networks. These networks suggest that in addition to having phase-dependent shifts in expression (when averaged over many cells), some, but not all, canonical cell cycle genes tend to be co-expressed in groups in single cells. We estimate the amount of single cell expression variability attributable to the cell cycle. We find that the cell cycle explains only 5%–17% of expression variability, suggesting that the cell cycle will not tend to be a large nuisance factor in analysis of the single cell transcriptome. PMID:25032992
Single Chain Antibodies as Estrogen Receptor Repressors in Breast Cancer
2000-06-01
differential display we identified proteinase inhibitor-9 as an mRNA upregulated by estrogen in a human hepatoblastoma cell line (HepG2) stably transfected...antiestrogen ICI 182,780 was a pure antag- human hepatoblastoma cell line (3), contained ER (4), this cell onist. Western blot analysis showed that
Das, Krishna; Eisel, David; Lenkl, Clarissa; Goyal, Ashish; Diederichs, Sven; Dickes, Elke; Osen, Wolfram; Eichmüller, Stefan B
2017-01-01
In this study, the CRISPR/Cas9 technology was used to establish murine tumor cell lines, devoid of MHC I or MHC II surface expression, respectively. The melanoma cell line B16F10 and the murine breast cancer cell line EO-771, the latter stably expressing the tumor antigen NY-BR-1 (EO-NY), were transfected with an expression plasmid encoding a β2m-specific single guide (sg)RNA and Cas9. The resulting MHC I negative cells were sorted by flow cytometry to obtain single cell clones, and loss of susceptibility of peptide pulsed MHC I negative clones to peptide-specific CTL recognition was determined by IFNγ ELISpot assay. The β2m knockout (KO) clones did not give rise to tumors in syngeneic mice (C57BL/6N), unless NK cells were depleted, suggesting that outgrowth of the β2m KO cell lines was controlled by NK cells. Using sgRNAs targeting the β-chain encoding locus of the IAb molecule we also generated several B16F10 MHC II KO clones. Peptide loaded B16F10 MHC II KO cells were insusceptible to recognition by OT-II cells and tumor growth was unaltered compared to parental B16F10 cells. Thus, in our hands the CRISPR/Cas9 system has proven to be an efficient straight forward strategy for the generation of MHC knockout cell lines. Such cell lines could serve as parental cells for co-transfection of compatible HLA alleles together with human tumor antigens of interest, thereby facilitating the generation of HLA matched transplantable tumor models, e.g. in HLAtg mouse strains of the newer generation, lacking cell surface expression of endogenous H2 molecules. In addition, our tumor cell lines established might offer a useful tool to investigate tumor reactive T cell responses that function independently from MHC molecule surface expression by the tumor.
Cell Motility and Jamming across the EMT
NASA Astrophysics Data System (ADS)
Grosser, Steffen; Oswald, Linda; Lippoldt, Jürgen; Heine, Paul; Kaes, Josef A.
We use single-cell tracking and cell shape analysis to highlight the different roles that cell jamming plays in the behaviour of epithelial vs. mesenchymal mammary breast cell lines (MCF-10A, MDA-MB-231) in 2D adherent culture. An automatic segmentation allows for the evaluation of cell shapes, which we compare to predictions made by the self-propelled vertex (SPV) model. On top of that, we employ co-cultures to study the emerging demixing behaviour of these cell lines, demonstrating that the mesenchymal MDA-MB-231 cell line forms unjammed islands within the jammed collective.
Schneider, S; Thurnher, D; Kadletz, L; Seemann, R; Brunner, M; Kotowski, U; Schmid, R; Lill, C; Heiduschka, G
2016-11-01
Prognosis of patients with head and neck squamous cell carcinoma (HNSCC) is still poor. Novel therapeutic approaches are of great interest to improve the effects of radiochemotherapy. We evaluated the effects of tyrosine kinase inhibitor neratinib on HNSCC cell lines CAL27, SCC25 and FaDu as a single agent and in combination with irradiation and chemotherapy. Effects of neratinib were evaluated in HNSCC cell lines CAL27, SCC25 and FaDu. Effect on cell viability of neratinib and combination with cisplatin and irradiation was measured using CCK-8 assays and clonogenic assays. Western blot analysis was performed to distinguish the effect on epithelial growth factor receptor and HER2 expression. Apoptosis was evaluated by flow cytometry analysis. Growth inhibition was achieved in all cell lines, whereas combination of cisplatin and neratinib showed greater inhibition than each agent alone. Apoptosis was induced in all cell lines. Combination of neratinib with irradiation or cisplatin showed significantly increased apoptosis. In clonogenic assays, significant growth inhibition was observed in all investigated cell lines. Neratinib, as a single agent or in combination with chemo-irradiation, may be a promising treatment option for patients with head and neck cancer. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Clonogenic assay: adherent cells.
Rafehi, Haloom; Orlowski, Christian; Georgiadis, George T; Ververis, Katherine; El-Osta, Assam; Karagiannis, Tom C
2011-03-13
The clonogenic (or colony forming) assay has been established for more than 50 years; the original paper describing the technique was published in 1956. Apart from documenting the method, the initial landmark study generated the first radiation-dose response curve for X-ray irradiated mammalian (HeLa) cells in culture. Basically, the clonogenic assay enables an assessment of the differences in reproductive viability (capacity of cells to produce progeny; i.e. a single cell to form a colony of 50 or more cells) between control untreated cells and cells that have undergone various treatments such as exposure to ionising radiation, various chemical compounds (e.g. cytotoxic agents) or in other cases genetic manipulation. The assay has become the most widely accepted technique in radiation biology and has been widely used for evaluating the radiation sensitivity of different cell lines. Further, the clonogenic assay is commonly used for monitoring the efficacy of radiation modifying compounds and for determining the effects of cytotoxic agents and other anti-cancer therapeutics on colony forming ability, in different cell lines. A typical clonogenic survival experiment using adherent cells lines involves three distinct components, 1) treatment of the cell monolayer in tissue culture flasks, 2) preparation of single cell suspensions and plating an appropriate number of cells in petri dishes and 3) fixing and staining colonies following a relevant incubation period, which could range from 1-3 weeks, depending on the cell line. Here we demonstrate the general procedure for performing the clonogenic assay with adherent cell lines with the use of an immortalized human keratinocyte cell line (FEP-1811). Also, our aims are to describe common features of clonogenic assays including calculation of the plating efficiency and survival fractions after exposure of cells to radiation, and to exemplify modification of radiation-response with the use of a natural antioxidant formulation.
Ramos, Grasieli de Oliveira; Bernardi, Lisiane; Lauxen, Isabel; Sant’Ana Filho, Manoel; Horwitz, Alan Rick; Lamers, Marcelo Lazzaron
2016-01-01
Cell migration is regulated by adhesion to the extracellular matrix (ECM) through integrins and activation of small RhoGTPases, such as RhoA and Rac1, resulting in changes to actomyosin organization. During invasion, epithelial-derived tumor cells switch from laminin-enriched basal membrane to collagen and fibronectin-enriched connective tissue. How this switch affects the tumor migration is still unclear. We tested the hypothesis that ECM dictates the invasiveness of Oral Squamous Cell Carcinoma (OSCC). We analyzed the migratory properties of two OSCC lines, a low invasive cell line with high e-cadherin levels (Linv/HE-cad) or a highly invasive cell line with low e-cadherin levels (Hinv/LE-cad), plated on different ECM components. Compared to laminin, fibronectin induced non-directional collective migration and decreased RhoA activity in Linv/HE-cad OSCC. For Hinv/LE-cad OSCC, fibronectin increased Rac1 activity and induced smaller adhesions, resulting in a fast single cell migration in both 2D and 3D environments. Consistent with these observations, human OSCC biopsies exhibited similar changes in cell-ECM adhesion distribution at the invasive front of the tumor, where cells encounter fibronectin. Our results indicate that ECM composition might induce a switch from collective to single cell migration according to tumor invasiveness due to changes in cell-ECM adhesion and the resulting signaling pathways that alter actomyosin organization. PMID:26978651
Magnetophoretic circuits for digital control of single particles and cells
NASA Astrophysics Data System (ADS)
Lim, Byeonghwa; Reddy, Venu; Hu, Xinghao; Kim, Kunwoo; Jadhav, Mital; Abedini-Nassab, Roozbeh; Noh, Young-Woock; Lim, Yong Taik; Yellen, Benjamin B.; Kim, Cheolgi
2014-05-01
The ability to manipulate small fluid droplets, colloidal particles and single cells with the precision and parallelization of modern-day computer hardware has profound applications for biochemical detection, gene sequencing, chemical synthesis and highly parallel analysis of single cells. Drawing inspiration from general circuit theory and magnetic bubble technology, here we demonstrate a class of integrated circuits for executing sequential and parallel, timed operations on an ensemble of single particles and cells. The integrated circuits are constructed from lithographically defined, overlaid patterns of magnetic film and current lines. The magnetic patterns passively control particles similar to electrical conductors, diodes and capacitors. The current lines actively switch particles between different tracks similar to gated electrical transistors. When combined into arrays and driven by a rotating magnetic field clock, these integrated circuits have general multiplexing properties and enable the precise control of magnetizable objects.
An, Liyou; Yuan, Yuguo; Yu, Baoli; Yang, Tingjia; Cheng, Yong
2012-12-01
We compared the efficiency of cloning goat using human lactoferrin (hLF) with genetically modified donor cells marked by single (Neo(r)) or double (Neo(r)/GFP) markers. Single marker expression vector (pBLC14) or dual markers expression vector (pAPLM) was delivered to goat fetal fibroblasts (GFF), and then the transgenic GFF was used as donor cells to produce transgenic goats. Respectively, 58.8% (20/34) and 86.7% (26/30) resistant cell lines confirmed the transgenic integration by PCR. Moreover, pAPLM cells lines were subcultured with several passages, only 20% (6/30) cell lines was observed fluorescence from each cell during the cell passage. Somatic cell nuclear transfer using the donor cells harbouring pBLC14 or pAPLM construct, resulting in a total of 806 reconstructed embryos, a pregnancy rate at 35 d (53.8%, 39.1%) and 60 d (26.9%, 21.7%), and an offspring birth rate (1.9%, 1.4%) with 5 and 7 newborn cloned goats, respectively. Transgene was confirmed by PCR and southern-blot in all cloned offspring. There were no significant differences at the reconstructed embryo fusion rates, pregnancy rates and the birth rate (P > 0.05) between single and double markers groups. The Neo(r)/GFP double markers could improve the reliability for accurately and efficiently selecting the genetically modified donor cells. No adverse effect was observed on the efficiency of transgenic goat production by SCNT using somatic cells transfected with double (Neo(r)/GFP) markers vector.
Single cell RNA sequencing of stem cell-derived retinal ganglion cells.
Daniszewski, Maciej; Senabouth, Anne; Nguyen, Quan H; Crombie, Duncan E; Lukowski, Samuel W; Kulkarni, Tejal; Sluch, Valentin M; Jabbari, Jafar S; Chamling, Xitiz; Zack, Donald J; Pébay, Alice; Powell, Joseph E; Hewitt, Alex W
2018-02-13
We used single cell sequencing technology to characterize the transcriptomes of 1,174 human embryonic stem cell-derived retinal ganglion cells (RGCs) at the single cell level. The human embryonic stem cell line BRN3B-mCherry (A81-H7), was differentiated to RGCs using a guided differentiation approach. Cells were harvested at day 36 and prepared for single cell RNA sequencing. Our data indicates the presence of three distinct subpopulations of cells, with various degrees of maturity. One cluster of 288 cells showed increased expression of genes involved in axon guidance together with semaphorin interactions, cell-extracellular matrix interactions and ECM proteoglycans, suggestive of a more mature RGC phenotype.
Tezcan, Kerem Can; Schaufler, Wladimir; Bestvater, Felix; Patil, Nitin; Birk, Udo; Hafner, Mathias; Altevogt, Peter; Cremer, Christoph; Allgayer, Heike
2015-01-01
We describe a novel approach for the detection of small non-coding RNAs in single cells by Single-Molecule Localization Microscopy (SMLM). We used a modified SMLM–setup and applied this instrument in a first proof-of-principle concept to human cancer cell lines. Our method is able to visualize single microRNA (miR)-molecules in fixed cells with a localization accuracy of 10–15 nm, and is able to quantify and analyse clustering and localization in particular subcellular sites, including exosomes. We compared the metastasis-site derived (SW620) and primary site derived (SW480) human colorectal cancer (CRC) cell lines, and (as a proof of principle) evaluated the metastasis relevant miR-31 as a first example. We observed that the subcellular distribution of miR-31 molecules in both cell lines was very heterogeneous with the largest subpopulation of optically acquired weakly metastatic cells characterized by a low number of miR-31 molecules, as opposed to a significantly higher number in the majority of the highly metastatic cells. Furthermore, the highly metastatic cells had significantly more miR-31-molecules in the extracellular space, which were visualized to co-localize with exosomes in significantly higher numbers. From this study, we conclude that miRs are not only aberrantly expressed and regulated, but also differentially compartmentalized in cells with different metastatic potential. Taken together, this novel approach, by providing single molecule images of miRNAs in cellulo can be used as a powerful supplementary tool in the analysis of miRNA function and behaviour and has far reaching potential in defining metastasis-critical subpopulations within a given heterogeneous cancer cell population. PMID:26561203
Dielectrophoretic Capture and Genetic Analysis of Single Neuroblastoma Tumor Cells
Carpenter, Erica L.; Rader, JulieAnn; Ruden, Jacob; Rappaport, Eric F.; Hunter, Kristen N.; Hallberg, Paul L.; Krytska, Kate; O’Dwyer, Peter J.; Mosse, Yael P.
2014-01-01
Our understanding of the diversity of cells that escape the primary tumor and seed micrometastases remains rudimentary, and approaches for studying circulating and disseminated tumor cells have been limited by low throughput and sensitivity, reliance on single parameter sorting, and a focus on enumeration rather than phenotypic and genetic characterization. Here, we utilize a highly sensitive microfluidic and dielectrophoretic approach for the isolation and genetic analysis of individual tumor cells. We employed fluorescence labeling to isolate 208 single cells from spiking experiments conducted with 11 cell lines, including 8 neuroblastoma cell lines, and achieved a capture sensitivity of 1 tumor cell per 106 white blood cells (WBCs). Sample fixation or freezing had no detectable effect on cell capture. Point mutations were accurately detected in the whole genome amplification product of captured single tumor cells but not in negative control WBCs. We applied this approach to capture 144 single tumor cells from 10 bone marrow samples of patients suffering from neuroblastoma. In this pediatric malignancy, high-risk patients often exhibit wide-spread hematogenous metastasis, but access to primary tumor can be difficult or impossible. Here, we used flow-based sorting to pre-enrich samples with tumor involvement below 0.02%. For all patients for whom a mutation in the Anaplastic Lymphoma Kinase gene had already been detected in their primary tumor, the same mutation was detected in single cells from their marrow. These findings demonstrate a novel, non-invasive, and adaptable method for the capture and genetic analysis of single tumor cells from cancer patients. PMID:25133137
Qiu, Youyi; Zhou, Bin; Yang, Xiaojuan; Long, Dongping; Hao, Yan; Yang, Peihui
2017-05-24
A novel single-cell analysis platform was fabricated using solid-state zinc-coadsorbed carbon quantum dot (ZnCQDs) nanocomposites as an electrochemiluminescence (ECL) probe for the detection of breast cancer cells and evaluation of the CD44 expression level. Solid-state ZnCQDs nanocomposite probes were constructed through the attachment of ZnCQDs to gold nanoparticles and then the loading of magnetic beads to amplify the ECL signal, exhibiting a remarkable 120-fold enhancement of the ECL intensity. Hyaluronic acid (HA)-functionalized solid-state probes were used to label a single breast cancer cell by the specific recognition of HA with CD44 on the cell surface, revealing more stable, sensitive, and effective tagging in comparison with the water-soluble CQDs. This strategy exhibited a good analytical performance for the analysis of MDA-MB-231 and MCF-7 single cells with linear range from 1 to 18 and from 1 to 12 cells, respectively. Furthermore, this single-cell analysis platform was used for evaluation of the CD44 expression level of these two cell lines, in which the MDA-MB-231 cells revealed a 2.8-5.2-fold higher CD44 expression level. A total of 20 single cells were analyzed individually, and the distributions of the ECL intensity revealed larger variations, indicating the high cellular heterogeneity of the CD44 expression level on the same cell line. The as-proposed single-cell analysis platform might provide a novel protocol to effectively study the individual cellular function and cellular heterogeneity.
Neoplastic transformation of human thyroid epithelial cells by ionizing radiation
NASA Astrophysics Data System (ADS)
Herceg, Zdenko
Neoplastic transformation of human thyroid epithelial cells has been investigated following exposure to ionizing radiation in vitro. The effects of radiation type, irradiation regime, and postirradiation passaging were examined using a human thyroid epithelial cell line, designated HToriS, which was previously immortalized with SV40 genome. Exponentially growing HToriS cells were irradiated with graded doses of 137 Cs gamma- and 238pu alpha-irradiation. Cells were irradiated with either a single or multiple doses of 0.5, 1, 2, 3, or 4 Gy gamma-radiation, or single doses of 0.125, 0.25, 0.5, 1, or 1.5 Gy gamma-radiation. Following passaging, the cells were transplanted into the athymic nude mice, and the animals were screened for tumour formation. Statistically significant increases in tumour incidence were obtained with both gamma- and alpha-irradiation and with both single and multiple irradiation regimes as compared with the un-irradiated group. Regardless of radiation type and or radiation regime there appears to be a trend, with increasing doses of radiation, in which tumour incidence increases and reaches a maximum, after which the tumour incidence decreases. Tumours were characterized by histopathological examination as undifferentiated carcinomas. Investigation of expression time following irradiation demonstrated that post-irradiation passaging, generally regarded as a critical step for expression of radiation-induced DNA damage, was not a prerequisite for the neoplastic conversion of irradiated cells with this system. Cell lines were established from the tumours and their identification and characterization carried out. All cell lines established were determined to be derived from the parent HTori3 cells by DNA fingerprinting, karyotype analysis, cytokeratin staining, and SV40 large T-antigen staining. Tumorigenicity of the cell lines was confirmed by retransplantation. Comparison of the morphology in vitro showed that the tumour cell lines retained the basic epithelial morphology of the parent HToriS cells. Investigation of radiosensitivity showed that none of the 6 tumour cell lines examined had a higher radiosensitivity compared to the parent HToriS cells. This excludes the possibility that the observed transformation was the result of the selection of a pre-existing transformed subpopulation of the parent cells but that radiation-induced transformants were being induced de novo. The tumour cell lines were screened for mutations in H- and K-ras oncogenes using restriction enzyme analysis of PCR amplified DNA. No mutations were detected in 26 tumour cell lines suggesting that mutations in these two genes do not appear to be involved in radiation- induced neoplastic transformation in human thyroid epithelial cells. Screening for mutations in p53 protein using immunoprecipitation method detected no mutations in 6 tumour cell lines. This human thyroid epithelial cell line may thus be useful for the in vitro study of cellular and molecular mechanisms that are involved in human epithelial cell carcinogenesis.
Mandai, Shintaro; Mori, Takayasu; Sohara, Eisei; Rai, Tatemitsu; Uchida, Shinichi
2015-12-01
Previous genome-wide association studies identified serine threonine kinase 39 (STK39), encoding STE20/SPS1-related proline/alanine-rich kinase, as one of a limited number of hypertension susceptibility genes. A recent meta-analysis confirmed the association of STK39 intronic polymorphism rs3754777 with essential hypertension, among previously reported hypertension-associated STK39 polymorphisms. However, the biochemical function of this polymorphism in the mechanism responsible for hypertension is yet to be clarified. We generated rs3754777G>A knockin human cell lines with clustered regularly interspaced short palindromic repeats-mediated genome engineering. Homozygous (A/A) and heterozygous (G/A) knockin human embryonic kidney cell lines were generated using a double nickase, single-guide RNAs targeting STK39 intron 5 around single-nucleotide polymorphism, and a 100-bp donor single-stranded DNA oligonucleotide. Reverse transcription polymerase chain reaction with sequencing analyses revealed the identical STK39 transcripts among the wild-type and both knockin cell lines. Quantitative reverse transcription polymerase chain reaction showed increased STK39 mRNA expression, and immunoblot analysis revealed increases in total and phosphorylated STE20/SPS1-related proline/alanine-rich kinase with increased phosphorylated Na-K-Cl cotransporter isoform 1 in both knockin cell lines. The largest increases in these molecules were observed in the homozygous cell line. These findings indicated that this intronic polymorphism increases STK39 transcription, leading to activation of the STE20/SPS1-related proline/alanine-rich kinase-solute carrier family 12A signaling cascade. Increased interactions between STE20/SPS1-related proline/alanine-rich kinase and the target cation-chloride cotransporters may be responsible for hypertension susceptibility in individuals with this polymorphism. © 2015 American Heart Association, Inc.
Formation of solid tumors by a single multinucleated cancer cel
Weihua, Zhang; Lin, Qingtang; Ramoth, Asa J.; Fan, Dominic; Fidler, Isaiah J.
2011-01-01
BACKGROUND Large multinucleated cells (MNC) commonly exist in tumorigenic cancer cell lines widely used in research, but their contributions to tumorigenesis are unknown. METHODS In this study, we characterized MNCs in the murine fibrosarcoma cell line UV-2237 in vitro and in vivo at a single cell level. RESULTS We observed that MNCs originated from a rare subpopulation of mononuclear cells; MNCs were positive for a senescent marker, β-galacosidase (SA-β-Gal); MNCs were responsible for the majority of clonogenic activity when cultured in hard agar; MNCs were more resistant to chemotherapeutic agents than were mononuclear cells; MNCs could undergo asymmetric division (producing mononuclear cells) and self-renewal in vitro and in vivo; and, most importantly a single MNC produced orthotopic subcutaneous tumors (composed mainly of mononuclear cells) that gave rise to spontaneous lung metastases in nude mice. CONCLUSIONS MNCs can be growth-arrested under stress, are highly resistant to chemotherapy, and can generate clonal orthotopic metastatic tumors PMID:21365635
Ishikawa, Tetsuya
2017-05-26
To investigate genotype variation among induced pluripotent stem cell (iPSC) lines that were clonally generated from heterogeneous colon cancer tissues using next-generation sequencing. Human iPSC lines were clonally established by selecting independent single colonies expanded from heterogeneous primary cells of S-shaped colon cancer tissues by retroviral gene transfer ( OCT3/4 , SOX2 , and KLF4 ). The ten iPSC lines, their starting cancer tissues, and the matched adjacent non-cancerous tissues were analyzed using next-generation sequencing and bioinformatics analysis using the human reference genome hg19. Non-synonymous single-nucleotide variants (SNVs) (missense, nonsense, and read-through) were identified within the target region of 612 genes related to cancer and the human kinome. All SNVs were annotated using dbSNP135, CCDS, RefSeq, GENCODE, and 1000 Genomes. The SNVs of the iPSC lines were compared with the genotypes of the cancerous and non-cancerous tissues. The putative genotypes were validated using allelic depth and genotype quality. For final confirmation, mutated genotypes were manually curated using the Integrative Genomics Viewer. In eight of the ten iPSC lines, one or two non-synonymous SNVs in EIF2AK2 , TTN , ULK4 , TSSK1B , FLT4 , STK19 , STK31 , TRRAP , WNK1 , PLK1 or PIK3R5 were identified as novel SNVs and were not identical to the genotypes found in the cancer and non-cancerous tissues. This result suggests that the SNVs were de novo or pre-existing mutations that originated from minor populations, such as multifocal pre-cancer (stem) cells or pre-metastatic cancer cells from multiple, different clonal evolutions, present within the heterogeneous cancer tissue. The genotypes of all ten iPSC lines were different from the mutated ERBB2 and MKNK2 genotypes of the cancer tissues and were identical to those of the non-cancerous tissues and that found in the human reference genome hg19. Furthermore, two of the ten iPSC lines did not have any confirmed mutated genotypes, despite being derived from cancerous tissue. These results suggest that the traceability and preference of the starting single cells being derived from pre-cancer (stem) cells, stroma cells such as cancer-associated fibroblasts, and immune cells that co-existed in the tissues along with the mature cancer cells. The genotypes of iPSC lines derived from heterogeneous cancer tissues can provide information on the type of starting cell that the iPSC line was generated from.
Sequencing thousands of single-cell genomes with combinatorial indexing.
Vitak, Sarah A; Torkenczy, Kristof A; Rosenkrantz, Jimi L; Fields, Andrew J; Christiansen, Lena; Wong, Melissa H; Carbone, Lucia; Steemers, Frank J; Adey, Andrew
2017-03-01
Single-cell genome sequencing has proven valuable for the detection of somatic variation, particularly in the context of tumor evolution. Current technologies suffer from high library construction costs, which restrict the number of cells that can be assessed and thus impose limitations on the ability to measure heterogeneity within a tissue. Here, we present single-cell combinatorial indexed sequencing (SCI-seq) as a means of simultaneously generating thousands of low-pass single-cell libraries for detection of somatic copy-number variants. We constructed libraries for 16,698 single cells from a combination of cultured cell lines, primate frontal cortex tissue and two human adenocarcinomas, and obtained a detailed assessment of subclonal variation within a pancreatic tumor.
HuH-7 reference genome profile: complex karyotype composed of massive loss of heterozygosity.
Kasai, Fumio; Hirayama, Noriko; Ozawa, Midori; Satoh, Motonobu; Kohara, Arihiro
2018-05-17
Human cell lines represent a valuable resource as in vitro experimental models. A hepatoma cell line, HuH-7 (JCRB0403), has been used extensively in various research fields and a number of studies using this line have been published continuously since it was established in 1982. However, an accurate genome profile, which can be served as a reliable reference, has not been available. In this study, we performed M-FISH, SNP microarray and amplicon sequencing to characterize the cell line. Single cell analysis of metaphases revealed a high level of heterogeneity with a mode of 60 chromosomes. Cytogenetic results demonstrated chromosome abnormalities involving every chromosome in addition to a massive loss of heterozygosity, which accounts for 55.3% of the genome, consistent with the homozygous variants seen in the sequence analysis. We provide empirical data that the HuH-7 cell line is composed of highly heterogeneous cell populations, suggesting that besides cell line authentication, the quality of cell lines needs to be taken into consideration in the future use of tumor cell lines.
Klinker, Matthew W.; Marklein, Ross A.; Lo Surdo, Jessica L.; Wei, Cheng-Hong
2017-01-01
Human mesenchymal stromal cell (MSC) lines can vary significantly in their functional characteristics, and the effectiveness of MSC-based therapeutics may be realized by finding predictive features associated with MSC function. To identify features associated with immunosuppressive capacity in MSCs, we developed a robust in vitro assay that uses principal-component analysis to integrate multidimensional flow cytometry data into a single measurement of MSC-mediated inhibition of T-cell activation. We used this assay to correlate single-cell morphological data with overall immunosuppressive capacity in a cohort of MSC lines derived from different donors and manufacturing conditions. MSC morphology after IFN-γ stimulation significantly correlated with immunosuppressive capacity and accurately predicted the immunosuppressive capacity of MSC lines in a validation cohort. IFN-γ enhanced the immunosuppressive capacity of all MSC lines, and morphology predicted the magnitude of IFN-γ–enhanced immunosuppressive activity. Together, these data identify MSC morphology as a predictive feature of MSC immunosuppressive function. PMID:28283659
A Standard Nomenclature for Referencing and Authentication of Pluripotent Stem Cells.
Kurtz, Andreas; Seltmann, Stefanie; Bairoch, Amos; Bittner, Marie-Sophie; Bruce, Kevin; Capes-Davis, Amanda; Clarke, Laura; Crook, Jeremy M; Daheron, Laurence; Dewender, Johannes; Faulconbridge, Adam; Fujibuchi, Wataru; Gutteridge, Alexander; Hei, Derek J; Kim, Yong-Ou; Kim, Jung-Hyun; Kokocinski, Anja Kolb-; Lekschas, Fritz; Lomax, Geoffrey P; Loring, Jeanne F; Ludwig, Tenneille; Mah, Nancy; Matsui, Tohru; Müller, Robert; Parkinson, Helen; Sheldon, Michael; Smith, Kelly; Stachelscheid, Harald; Stacey, Glyn; Streeter, Ian; Veiga, Anna; Xu, Ren-He
2018-01-09
Unambiguous cell line authentication is essential to avoid loss of association between data and cells. The risk for loss of references increases with the rapidity that new human pluripotent stem cell (hPSC) lines are generated, exchanged, and implemented. Ideally, a single name should be used as a generally applied reference for each cell line to access and unify cell-related information across publications, cell banks, cell registries, and databases and to ensure scientific reproducibility. We discuss the needs and requirements for such a unique identifier and implement a standard nomenclature for hPSCs, which can be automatically generated and registered by the human pluripotent stem cell registry (hPSCreg). To avoid ambiguities in PSC-line referencing, we strongly urge publishers to demand registration and use of the standard name when publishing research based on hPSC lines. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Recombinant protein production from stable mammalian cell lines and pools.
Hacker, David L; Balasubramanian, Sowmya
2016-06-01
We highlight recent developments for the production of recombinant proteins from suspension-adapted mammalian cell lines. We discuss the generation of stable cell lines using transposons and lentivirus vectors (non-targeted transgene integration) and site-specific recombinases (targeted transgene integration). Each of these methods results in the generation of cell lines with protein yields that are generally superior to those achievable through classical plasmid transfection that depends on the integration of the transfected DNA by non-homologous DNA end-joining. This is the main reason why these techniques can also be used for the generation of stable cell pools, heterogenous populations of recombinant cells generated by gene delivery and genetic selection without resorting to single cell cloning. This allows the time line from gene transfer to protein production to be reduced. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lakatos, Eszter; Salehi-Reyhani, Ali; Barclay, Michael; Stumpf, Michael P H; Klug, David R
2017-01-01
We determine p53 protein abundances and cell to cell variation in two human cancer cell lines with single cell resolution, and show that the fractional width of the distributions is the same in both cases despite a large difference in average protein copy number. We developed a computational framework to identify dominant mechanisms controlling the variation of protein abundance in a simple model of gene expression from the summary statistics of single cell steady state protein expression distributions. Our results, based on single cell data analysed in a Bayesian framework, lends strong support to a model in which variation in the basal p53 protein abundance may be best explained by variations in the rate of p53 protein degradation. This is supported by measurements of the relative average levels of mRNA which are very similar despite large variation in the level of protein.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seetharam, S.; Waters, H.L.; Seidman, M.M.
The hereditary dysplastic nevus syndrome (DNS) is an autosomal dominant disorder in which affected individuals have increased numbers of dysplastic (premalignant) nevi and a greater than 100-fold increased risk of developing cutaneous melanoma. Epstein-Barr virus-transformed lymphoblastoid cell lines from patients with hereditary DNS have been shown to be hypermutable to UV radiation. To examine the mechanism involved in this UV hypermutability, we used a shuttle vector plasmid, pZ189, which carries a 160-base pair marker gene, supF, and can replicate in human cells. pZ189 was treated with UV radiation and transfected into DNS6BE, a lymphoblastoid cell line from a patient withmore » hereditary DNS. Plasmid survival after UV was similar with the DNS6BE line and with a lymphoblastoid cell line from a normal donor. Plasmid mutation frequency was greater with the DNS line in accord with the DNS cellular hypermutability. Base sequence analysis was performed on 69 mutated plasmids recovered from the DNS line. There were significantly more plasmids with single base substitution mutations (P less than 0.01) in comparison to UV-treated plasmids passed through normal fibroblasts. pZ189 hypermutability and an increased frequency of single base substitutions was previously found with a cell line from a melanoma-prone xeroderma pigmentosum patient. These differences may be related to the increased melanoma susceptibility in both DNS and xeroderma pigmentosum.« less
Toward improving fine needle aspiration cytology by applying Raman microspectroscopy
NASA Astrophysics Data System (ADS)
Becker-Putsche, Melanie; Bocklitz, Thomas; Clement, Joachim; Rösch, Petra; Popp, Jürgen
2013-04-01
Medical diagnosis of biopsies performed by fine needle aspiration has to be very reliable. Therefore, pathologists/cytologists need additional biochemical information on single cancer cells for an accurate diagnosis. Accordingly, we applied three different classification models for discriminating various features of six breast cancer cell lines by analyzing Raman microspectroscopic data. The statistical evaluations are implemented by linear discriminant analysis (LDA) and support vector machines (SVM). For the first model, a total of 61,580 Raman spectra from 110 single cells are discriminated at the cell-line level with an accuracy of 99.52% using an SVM. The LDA classification based on Raman data achieved an accuracy of 94.04% by discriminating cell lines by their origin (solid tumor versus pleural effusion). In the third model, Raman cell spectra are classified by their cancer subtypes. LDA results show an accuracy of 97.45% and specificities of 97.78%, 99.11%, and 98.97% for the subtypes basal-like, HER2+/ER-, and luminal, respectively. These subtypes are confirmed by gene expression patterns, which are important prognostic features in diagnosis. This work shows the applicability of Raman spectroscopy and statistical data handling in analyzing cancer-relevant biochemical information for advanced medical diagnosis on the single-cell level.
Large-scale culture of a megakaryocytic progenitor cell line with a single-use bioreactor system.
Nurhayati, Retno Wahyu; Ojima, Yoshihiro; Dohda, Takeaki; Kino-Oka, Masahiro
2018-03-01
The increasing application of regenerative medicine has generated a growing demand for stem cells and their derivatives. Single-use bioreactors offer an attractive platform for stem cell expansion owing to their scalability for large-scale production and feasibility of meeting clinical-grade standards. The current work evaluated the capacity of a single-use bioreactor system (1 L working volume) for expanding Meg01 cells, a megakaryocytic (MK) progenitor cell line. Oxygen supply was provided by surface aeration to minimize foaming and orbital shaking was used to promote oxygen transfer. Oxygen transfer rates (k L a) of shaking speeds 50, 100, and 125 rpm were estimated to be 0.39, 1.12, and 10.45 h -1 , respectively. Shaking speed was a critical factor for optimizing cell growth. At 50 rpm, Meg01 cells exhibited restricted growth due to insufficient mixing. A negative effect occurred when the shaking speed was increased to 125 rpm, likely caused by high hydrodynamic shear stress. The bioreactor culture achieved the highest growth profile when shaken at 100 rpm, achieving a total expansion rate up to 5.7-fold with a total cell number of 1.2 ± 0.2 × 10 9 cells L -1 . In addition, cells expanded using the bioreactor system could maintain their potency to differentiate following the MK lineage, as analyzed from specific surface protein and morphological similarity with the cells grown in the conventional culturing system. Our study reports the impact of operational variables such as shaking speed for growth profile and MK differentiation potential of a progenitor cell line in a single-use bioreactor. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:362-369, 2018. © 2017 American Institute of Chemical Engineers.
Kimbacher, Christine; Paar, Christian; Freystetter, Andrea; Berg, Joerg
2018-05-01
Genotyping for clinically important single nucleotide polymorphisms (SNPs) is performed by many clinical routine laboratories. To support testing, quality controls and reference materials are needed. Those may be derived from residual patient samples, left over samples of external quality assurance schemes, plasmid DNA or DNA from cell lines. DNAs from cell lines are commutable and available in large amounts. DNA from 38 cell lines were examined for suitability as controls in 11 SNP assays that are frequently used in a clinical routine laboratory: FV (1691G>A), FII (20210G>A), PAI-1 4G/5G polymorphism, MTHFR (677C>T, 1298A>C), HFE (H63D, S65C, C282Y), APOE (E2, E3, E4), LPH (-13910C>T), UGT1A1 (*28, *36, *37), TPMT (*2, *3A, *3B, *3C), VKORC1 (-1639G>A, 1173C>T), CYP2C9 (*2, *3, *5). Genotyping was performed by real-time PCR with melting curve analysis and confirmed by bi-directional sequencing. We find an almost complete spectrum of genotypic constellations within these 38 cell lines. About 12 cell lines appear sufficient as genotypic controls for the 11 SNP assays by covering almost all of the genotypes. However, hetero- and homozygous genotypes for FII and the alleles TPMT*2, UGT1A1*37 and CYP2C9*5 were not detected in any of the cell lines. DNA from most of the examined cell lines appear suitable as quality controls for these SNP assays in the laboratory routine, as to the implementation of those assays or to prepare samples for quality assurance schemes. Our study may serve as a pilot to further characterize these cell lines to arrive at the status of reference materials.
FORMING SELF-ASSEMBLED CELL ARRAYS AND MEASURING THE OXYGEN CONSUMPTION RATE OF A SINGLE LIVE CELL.
Etzkorn, James R; McQuaide, Sarah C; Anderson, Judy B; Meldrum, Deirdre R; Parviz, Babak A
2009-06-01
We report a method for forming arrays of live single cells on a chip using polymer micro-traps made of SU8. We have studied the toxicity of the microfabricated structures and the associated environment for two cell lines. We also report a method for measuring the oxygen consumption rate of a single cell using optical interrogation of molecular oxygen sensors placed in micromachined micro-wells by temporarily sealing the cells in the micro-traps. The new techniques presented here add to the collection of tools available for performing "single-cell" biology. A single-cell self-assembly yield of 61% was achieved with oxygen draw down rates of 0.83, 0.82, and 0.71 fmol/minute on three isolated live A549 cells.
FORMING SELF-ASSEMBLED CELL ARRAYS AND MEASURING THE OXYGEN CONSUMPTION RATE OF A SINGLE LIVE CELL
Etzkorn, James R.; McQuaide, Sarah C.; Anderson, Judy B.; Meldrum, Deirdre R.; Parviz, Babak A.
2010-01-01
We report a method for forming arrays of live single cells on a chip using polymer micro-traps made of SU8. We have studied the toxicity of the microfabricated structures and the associated environment for two cell lines. We also report a method for measuring the oxygen consumption rate of a single cell using optical interrogation of molecular oxygen sensors placed in micromachined micro-wells by temporarily sealing the cells in the micro-traps. The new techniques presented here add to the collection of tools available for performing “single-cell” biology. A single-cell self-assembly yield of 61% was achieved with oxygen draw down rates of 0.83, 0.82, and 0.71 fmol/minute on three isolated live A549 cells. PMID:20694048
Clonogenic Assay: Adherent Cells
Rafehi, Haloom; Orlowski, Christian; Georgiadis, George T.; Ververis, Katherine; El-Osta, Assam; Karagiannis, Tom C.
2011-01-01
The clonogenic (or colony forming) assay has been established for more than 50 years; the original paper describing the technique was published in 19561. Apart from documenting the method, the initial landmark study generated the first radiation-dose response curve for X-ray irradiated mammalian (HeLa) cells in culture1. Basically, the clonogenic assay enables an assessment of the differences in reproductive viability (capacity of cells to produce progeny; i.e. a single cell to form a colony of 50 or more cells) between control untreated cells and cells that have undergone various treatments such as exposure to ionising radiation, various chemical compounds (e.g. cytotoxic agents) or in other cases genetic manipulation. The assay has become the most widely accepted technique in radiation biology and has been widely used for evaluating the radiation sensitivity of different cell lines. Further, the clonogenic assay is commonly used for monitoring the efficacy of radiation modifying compounds and for determining the effects of cytotoxic agents and other anti-cancer therapeutics on colony forming ability, in different cell lines. A typical clonogenic survival experiment using adherent cells lines involves three distinct components, 1) treatment of the cell monolayer in tissue culture flasks, 2) preparation of single cell suspensions and plating an appropriate number of cells in petri dishes and 3) fixing and staining colonies following a relevant incubation period, which could range from 1-3 weeks, depending on the cell line. Here we demonstrate the general procedure for performing the clonogenic assay with adherent cell lines with the use of an immortalized human keratinocyte cell line (FEP-1811)2. Also, our aims are to describe common features of clonogenic assays including calculation of the plating efficiency and survival fractions after exposure of cells to radiation, and to exemplify modification of radiation-response with the use of a natural antioxidant formulation. PMID:21445039
2015-09-01
glioblastoma . We have successfully established several patient-derived cell lines from glioblastoma tumors and further established a number of...and single-cell technologies. Although the focus of this research is glioblastoma , the proposed tools are generally applicable to all cancer-based...studies. 15. SUBJECT TERMS Human cohorts, Glioblastoma , Genomic, Proteomic, Single-cell technologies, Hypothesis-driven, integrative systems approach
Single-frequency TEA CO2 laser with a bleaching spectral intracavity filter
NASA Astrophysics Data System (ADS)
Sorochenko, V. R.
2017-02-01
The regime of single-frequency operation is realised in a TEA CO2 laser with a spectral filter inside the cavity (a cell filled with SF6) on P(12)-P(24) lines of the 10P band. The minimal scatter of the peak powers of the laser pulses in a series of ‘shots’ and the maximal ratio of the output energies in the single-frequency and free running regimes (greater than 0.84) are obtained on the P(16) line at an optimal SF6 pressure in the cell. Experimental results qualitatively agree with the absorption spectrum of SF6 calculated from the SPECTRA information-analytical system. It is shown that the high ratio of energies in two regimes is achived due to gas bleaching in the cell.
An Inducible, Isogenic Cancer Cell Line System for Targeting the State of Mismatch Repair Deficiency
Bailis, Julie M.; Gordon, Marcia L.; Gurgel, Jesse L.; Komor, Alexis C.; Barton, Jacqueline K.; Kirsch, Ilan R.
2013-01-01
The DNA mismatch repair system (MMR) maintains genome stability through recognition and repair of single-base mismatches and small insertion-deletion loops. Inactivation of the MMR pathway causes microsatellite instability and the accumulation of genomic mutations that can cause or contribute to cancer. In fact, 10-20% of certain solid and hematologic cancers are MMR-deficient. MMR-deficient cancers do not respond to some standard of care chemotherapeutics because of presumed increased tolerance of DNA damage, highlighting the need for novel therapeutic drugs. Toward this goal, we generated isogenic cancer cell lines for direct comparison of MMR-proficient and MMR-deficient cells. We engineered NCI-H23 lung adenocarcinoma cells to contain a doxycycline-inducible shRNA designed to suppress the expression of the mismatch repair gene MLH1, and compared single cell subclones that were uninduced (MLH1-proficient) versus induced for the MLH1 shRNA (MLH1-deficient). Here we present the characterization of these MMR-inducible cell lines and validate a novel class of rhodium metalloinsertor compounds that differentially inhibit the proliferation of MMR-deficient cancer cells. PMID:24205301
Scaling and automation of a high-throughput single-cell-derived tumor sphere assay chip.
Cheng, Yu-Heng; Chen, Yu-Chih; Brien, Riley; Yoon, Euisik
2016-10-07
Recent research suggests that cancer stem-like cells (CSCs) are the key subpopulation for tumor relapse and metastasis. Due to cancer plasticity in surface antigen and enzymatic activity markers, functional tumorsphere assays are promising alternatives for CSC identification. To reliably quantify rare CSCs (1-5%), thousands of single-cell suspension cultures are required. While microfluidics is a powerful tool in handling single cells, previous works provide limited throughput and lack automatic data analysis capability required for high-throughput studies. In this study, we present the scaling and automation of high-throughput single-cell-derived tumor sphere assay chips, facilitating the tracking of up to ∼10 000 cells on a chip with ∼76.5% capture rate. The presented cell capture scheme guarantees sampling a representative population from the bulk cells. To analyze thousands of single-cells with a variety of fluorescent intensities, a highly adaptable analysis program was developed for cell/sphere counting and size measurement. Using a Pluronic® F108 (poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol)) coating on polydimethylsiloxane (PDMS), a suspension culture environment was created to test a controversial hypothesis: whether larger or smaller cells are more stem-like defined by the capability to form single-cell-derived spheres. Different cell lines showed different correlations between sphere formation rate and initial cell size, suggesting heterogeneity in pathway regulation among breast cancer cell lines. More interestingly, by monitoring hundreds of spheres, we identified heterogeneity in sphere growth dynamics, indicating the cellular heterogeneity even within CSCs. These preliminary results highlight the power of unprecedented high-throughput and automation in CSC studies.
Ohtsuka, J; Fukumura, M; Tsurudome, M; Hara, K; Nishio, M; Kawano, M; Nosaka, T
2014-08-01
A stable packaging cell line (Vero/BC-F) constitutively expressing fusion (F) protein of the human parainfluenza virus type 2 (hPIV2) was established for production of the F-defective and single round-infectious hPIV2 vector in a strategy for recombinant vaccine development. The F gene expression has not evoked cytostatic or cytotoxic effects on the Vero/BC-F cells and the F protein was physiologically active to induce syncytial formation with giant polykaryocytes when transfected with a plasmid expressing hPIV2 hemagglutinin-neuraminidase (HN). Transduction of the F-defective replicon RNA into the Vero/BC-F cells led to the release of the infectious particles that packaged the replicon RNA (named as hPIV2ΔF) without detectable mutations, limiting the infectivity to a single round. The maximal titer of the hPIV2ΔF was 6.0 × 10(8) median tissue culture infections dose per ml. The influenza A virus M2 gene was inserted into hPIV2ΔF, and the M2 protein was found to be highly expressed in a human lung cancer cell line after transduction. Furthermore, in vivo airway infection experiments revealed that the hPIV2ΔF was capable of delivering transgenes to hamster tracheal cells. Thus, non-transmissible or single round-infectious hPIV2 vector will be potentially applicable to human gene therapy or recombinant vaccine development.
NASA Astrophysics Data System (ADS)
Azam, Mohammad; Khan, Azmat Ali; Al-Resayes, Saud I.; Islam, Mohammad Shahidul; Saxena, Ajit Kumar; Dwivedi, Sourabh; Musarrat, Javed; Trzesowska-Kruszynska, Agata; Kruszynski, Rafal
2015-05-01
In this work, we report a series of benzimidazole derivatives synthesized from benzene-1,2-diamine and aryl-aldehydes at room temperature. The synthesized compounds have been characterized on the basis of elemental analysis and various spectroscopic studies viz., IR, 1H- and 13C-NMR, ESI-MS as well by X-ray single X-ray crystallographic study. Interaction of these compounds with CT-DNA has been examined with fluorescence experiments and showed significant binding ability. All the synthesized compounds have been screened for their antitumor activities against various human cancer cell lines viz., Human breast adenocarcinoma cell line (MCF-7), Human leukemia cell line (THP-1), Human prostate cancer cell lines (PC-3) and adenocarcinomic human alveolar basal epithelial cell lines (A-549). Interestingly, all the compounds showed significant anticancer activity.
Dirks, Wilhelm Gerhard; Faehnrich, Silke; Estella, Isabelle Annick Janine; Drexler, Hans Guenter
2005-01-01
Cell lines have wide applications as model systems in the medical and pharmaceutical industry. Much drug and chemical testing is now first carried out exhaustively on in vitro systems, reducing the need for complicated and invasive animal experiments. The basis for any research, development or production program involving cell lines is the choice of an authentic cell line. Microsatellites in the human genome that harbour short tandem repeat (STR) DNA markers allow individualisation of established cell lines at the DNA level. Fluorescence polymerase chain reaction amplification of eight highly polymorphic microsatellite STR loci plus gender determination was found to be the best tool to screen the uniqueness of DNA profiles in a fingerprint database. Our results demonstrate that cross-contamination and misidentification remain chronic problems in the use of human continuous cell lines. The combination of rapidly generated DNA types based on single-locus STR and their authentication or individualisation by screening the fingerprint database constitutes a highly reliable and robust method for the identification and verification of cell lines.
Single-cell transcriptional analysis of normal, aberrant, and malignant hematopoiesis in zebrafish.
Moore, Finola E; Garcia, Elaine G; Lobbardi, Riadh; Jain, Esha; Tang, Qin; Moore, John C; Cortes, Mauricio; Molodtsov, Aleksey; Kasheta, Melissa; Luo, Christina C; Garcia, Amaris J; Mylvaganam, Ravi; Yoder, Jeffrey A; Blackburn, Jessica S; Sadreyev, Ruslan I; Ceol, Craig J; North, Trista E; Langenau, David M
2016-05-30
Hematopoiesis culminates in the production of functionally heterogeneous blood cell types. In zebrafish, the lack of cell surface antibodies has compelled researchers to use fluorescent transgenic reporter lines to label specific blood cell fractions. However, these approaches are limited by the availability of transgenic lines and fluorescent protein combinations that can be distinguished. Here, we have transcriptionally profiled single hematopoietic cells from zebrafish to define erythroid, myeloid, B, and T cell lineages. We also used our approach to identify hematopoietic stem and progenitor cells and a novel NK-lysin 4(+) cell type, representing a putative cytotoxic T/NK cell. Our platform also quantified hematopoietic defects in rag2(E450fs) mutant fish and showed that these fish have reduced T cells with a subsequent expansion of NK-lysin 4(+) cells and myeloid cells. These data suggest compensatory regulation of the innate immune system in rag2(E450fs) mutant zebrafish. Finally, analysis of Myc-induced T cell acute lymphoblastic leukemia showed that cells are arrested at the CD4(+)/CD8(+) cortical thymocyte stage and that a subset of leukemia cells inappropriately reexpress stem cell genes, including bmi1 and cmyb In total, our experiments provide new tools and biological insights into single-cell heterogeneity found in zebrafish blood and leukemia. © 2016 Moore et al.
Single-cell transcriptional analysis of normal, aberrant, and malignant hematopoiesis in zebrafish
Garcia, Elaine G.; Lobbardi, Riadh; Jain, Esha; Tang, Qin; Moore, John C.; Cortes, Mauricio; Molodtsov, Aleksey; Kasheta, Melissa; Luo, Christina C.; Garcia, Amaris J.; Mylvaganam, Ravi; Yoder, Jeffrey A.; Blackburn, Jessica S.; Sadreyev, Ruslan I.; Ceol, Craig J.; North, Trista E.
2016-01-01
Hematopoiesis culminates in the production of functionally heterogeneous blood cell types. In zebrafish, the lack of cell surface antibodies has compelled researchers to use fluorescent transgenic reporter lines to label specific blood cell fractions. However, these approaches are limited by the availability of transgenic lines and fluorescent protein combinations that can be distinguished. Here, we have transcriptionally profiled single hematopoietic cells from zebrafish to define erythroid, myeloid, B, and T cell lineages. We also used our approach to identify hematopoietic stem and progenitor cells and a novel NK-lysin 4+ cell type, representing a putative cytotoxic T/NK cell. Our platform also quantified hematopoietic defects in rag2E450fs mutant fish and showed that these fish have reduced T cells with a subsequent expansion of NK-lysin 4+ cells and myeloid cells. These data suggest compensatory regulation of the innate immune system in rag2E450fs mutant zebrafish. Finally, analysis of Myc-induced T cell acute lymphoblastic leukemia showed that cells are arrested at the CD4+/CD8+ cortical thymocyte stage and that a subset of leukemia cells inappropriately reexpress stem cell genes, including bmi1 and cmyb. In total, our experiments provide new tools and biological insights into single-cell heterogeneity found in zebrafish blood and leukemia. PMID:27139488
HIV integration sites in latently infected cell lines: evidence of ongoing replication.
Symons, Jori; Chopra, Abha; Malatinkova, Eva; De Spiegelaere, Ward; Leary, Shay; Cooper, Don; Abana, Chike O; Rhodes, Ajantha; Rezaei, Simin D; Vandekerckhove, Linos; Mallal, Simon; Lewin, Sharon R; Cameron, Paul U
2017-01-13
Assessing the location and frequency of HIV integration sites in latently infected cells can potentially inform our understanding of how HIV persists during combination antiretroviral therapy. We developed a novel high throughput sequencing method to evaluate HIV integration sites in latently infected cell lines to determine whether there was virus replication or clonal expansion in these cell lines observed as multiple integration events at the same position. We modified a previously reported method using random DNA shearing and PCR to allow for high throughput robotic processing to identify the site and frequency of HIV integration in latently infected cell lines. Latently infected cell lines infected with intact virus demonstrated multiple distinct HIV integration sites (28 different sites in U1, 110 in ACH-2 and 117 in J1.1 per 150,000 cells). In contrast, cell lines infected with replication-incompetent viruses (J-Lat cells) demonstrated single integration sites. Following in vitro passaging of the ACH-2 cell line, we observed a significant increase in the frequency of unique HIV integration sites and there were multiple mutations and large deletions in the proviral DNA. When the ACH-2 cell line was cultured with the integrase inhibitor raltegravir, there was a significant decrease in the number of unique HIV integration sites and a transient increase in the frequency of 2-LTR circles consistent with virus replication in these cells. Cell lines latently infected with intact HIV demonstrated multiple unique HIV integration sites indicating that these cell lines are not clonal and in the ACH-2 cell line there was evidence of low level virus replication. These findings have implications for the use of latently infected cell lines as models of HIV latency and for the use of these cells as standards.
An non-uniformity voltage model for proton exchange membrane fuel cell
NASA Astrophysics Data System (ADS)
Li, Kelei; Li, Yankun; Liu, Jiawei; Guo, Ai
2017-01-01
The fuel cell used in transportation has environmental protection, high efficiency and no line traction power system which can greatly reduce line construction investment. That makes it a huge potential. The voltage uniformity is one of the most important factors affecting the operation life of proton exchange membrane fuel cell (PEMFC). On the basis of principle and classical model of the PEMFC, single cell voltage is calculated and the location coefficients are introduced so as to establish a non-uniformity voltage model. These coefficients are estimated with the experimental datum at stack current 50 A. The model is validated respectively with datum at 60 A and 100 A. The results show that the model reflects the basic characteristics of voltage non-uniformity and provides the beneficial reference for fuel cell control and single cell voltage detection.
Singh, Ankita; Kildegaard, Helene F; Andersen, Mikael R
2018-05-15
Chinese hamster ovary (CHO) cell lines can fold, assemble and modify proteins post-translationally to produce human-like proteins; as a consequence, it is the single most common expression systems for industrial production of recombinant therapeutic proteins. A thorough knowledge of cultivation conditions of different CHO cell lines has been developed over the last decade, but comprehending gene or pathway-specific distinctions between CHO cell lines at transcriptome level remains a challenge. To address these challenges, we compiled a compendium of 23 RNA-Seq studies from public and in-house data on CHO cell lines, i.e. CHO-S, CHO-K1 and DG44. Significantly differentially expressed (DE) genes particularly related to subcellular structure and macromolecular categories were used to identify differences between the cell lines. A R-based web application was developed specifically for CHO cell lines to further visualize expression values across different cell lines, and make available the normalized full CHO data set graphically as a CHO research community resource. This study quantitatively categorizes CHO cell lines based on patterns at transcriptomic level and detects gene and pathway specific key distinctions among sibling cell lines. Studies such as this can be used to select desired characteristics across various CHO cell lines. Furthermore, the availability of the data as an internet-based application can be applied to broad range of CHO engineering applications. This article is protected by copyright. All rights reserved.
Li, Peng; Gao, Yan; Pappas, Dimitri
2012-10-02
The ability to sort and capture more than one cell type from a complex sample will enable a wide variety of studies of cell proliferation and death and the analysis of disease states. In this work, we integrated a pneumatic actuated control layer to an affinity separation layer to create different antibody-coating regions on the same fluidic channel. The comparison of different antibody capture capabilities to the same cell line was demonstrated by flowing Ramos cells through anti-CD19- and anti-CD71-coated regions in the same channel. It was determined that the cell capture density on the anti-CD19 region was 2.44 ± 0.13 times higher than that on the anti-CD71-coated region. This approach can be used to test different affinity molecules for selectivity and capture efficiency using a single cell line in one separation. Selective capture of Ramos and HuT 78 cells from a mixture was also demonstrated using two antibody regions in the same channel. Greater than 90% purity was obtained on both capture areas in both continuous flow and stop flow separation modes. A four-region antibody-coated device was then fabricated to study the simultaneous, serial capture of three different cell lines. In this case the device showed effective capture of cells in a single separation channel, opening up the possibility of multiple cell sorting. Multiparameter sequential blood sample analysis was also demonstrated with high capture specificity (>97% for both CD19+ and CD4+ leukocytes). The chip can also be used to selectively treat cells after affinity separation.
Female mice lack adult germ-line stem cells but sustain oogenesis using stable primordial follicles.
Lei, Lei; Spradling, Allan C
2013-05-21
Whether or not mammalian females generate new oocytes during adulthood from germ-line stem cells to sustain the ovarian follicle pool has recently generated controversy. We used a sensitive lineage-labeling system to determine whether stem cells are needed in female adult mice to compensate for follicular losses and to directly identify active germ-line stem cells. Primordial follicles generated during fetal life are highly stable, with a half-life during adulthood of 10 mo, and thus are sufficient to sustain adult oogenesis without a source of renewal. Moreover, in normal mice or following germ-cell depletion with Busulfan, only stable, single oocytes are lineage-labeled, rather than cell clusters indicative of new oocyte formation. Even one germ-line stem cell division per 2 wk would have been detected by our method, based on the kinetics of fetal follicle formation. Thus, adult female mice neither require nor contain active germ-line stem cells or produce new oocytes in vivo.
Kress, C; Vandormael-Pournin, S; Baldacci, P; Cohen-Tannoudji, M; Babinet, C
1998-12-01
The inbred mouse strain DDK carries a conditional early embryonic lethal mutation that is manifested when DDK females are crossed to males of other inbred strains but not in the corresponding reciprocal crosses. It has been shown that embryonic lethality could be assigned to a single genetic locus called Ovum mutant (Om), on Chromosome (Chr) 11 near Syca 1. In the course of our study of the molecular mechanisms underlying the embryonic lethality, we were interested in deriving an embryonic stem cell bearing the Om mutation in the homozygous state (Omd/Omd). However, it turned out that DDK is nonpermissive for ES cell establishment, with a standard protocol. Here we show that permissiveness could be obtained using Omd/Omd blastocysts with a 75% 129/Sv and 25% DDK genetic background. Several germline-competent Omd/Omd ES cell lines have been derived from blastocysts of this genotype. Such a scenario could be extended to the generation of ES cell lines bearing any mutation present in an otherwise nonpermissive mouse strain.
Adult Mouse Cortical Cell Taxonomy by Single Cell Transcriptomics
Tasic, Bosiljka; Menon, Vilas; Nguyen, Thuc Nghi; Kim, Tae Kyung; Jarsky, Tim; Yao, Zizhen; Levi, Boaz; Gray, Lucas T.; Sorensen, Staci A.; Dolbeare, Tim; Bertagnolli, Darren; Goldy, Jeff; Shapovalova, Nadiya; Parry, Sheana; Lee, Changkyu; Smith, Kimberly; Bernard, Amy; Madisen, Linda; Sunkin, Susan M.; Hawrylycz, Michael; Koch, Christof; Zeng, Hongkui
2016-01-01
Nervous systems are composed of various cell types, but the extent of cell type diversity is poorly understood. Here, we construct a cellular taxonomy of one cortical region, primary visual cortex, in adult mice based on single cell RNA-sequencing. We identify 49 transcriptomic cell types including 23 GABAergic, 19 glutamatergic and seven non-neuronal types. We also analyze cell-type specific mRNA processing and characterize genetic access to these transcriptomic types by many transgenic Cre lines. Finally, we show that some of our transcriptomic cell types display specific and differential electrophysiological and axon projection properties, thereby confirming that the single cell transcriptomic signatures can be associated with specific cellular properties. PMID:26727548
Matsumura, Taku; Tatsumi, Kazuya; Noda, Yuichiro; Nakanishi, Naoyuki; Okonogi, Atsuhito; Hirano, Kunio; Li, Liu; Osumi, Takashi; Tada, Takashi; Kotera, Hidetoshi
2014-10-10
The microenvironment of cells, which includes basement proteins, shear stress, and extracellular stimuli, should be taken into consideration when examining physiological cell behavior. Although microfluidic devices allow cellular responses to be analyzed with ease at the single-cell level, few have been designed to recover cells. We herein demonstrated that a newly developed microfluidic device helped to improve culture conditions and establish a clonality-validated human pluripotent stem cell line after tracing its growth at the single-cell level. The device will be a helpful tool for capturing various cell types in the human body that have not yet been established in vitro. Copyright © 2014 Elsevier Inc. All rights reserved.
Duan, Qiaonan; Wang, Zichen; Fernandez, Nicolas F; Rouillard, Andrew D; Tan, Christopher M; Benes, Cyril H; Ma'ayan, Avi
2014-11-15
Recently, several high profile studies collected cell viability data from panels of cancer cell lines treated with many drugs applied at different concentrations. Such drug sensitivity data for cancer cell lines provide suggestive treatments for different types and subtypes of cancer. Visualization of these datasets can reveal patterns that may not be obvious by examining the data without such efforts. Here we introduce Drug/Cell-line Browser (DCB), an online interactive HTML5 data visualization tool for interacting with three of the recently published datasets of cancer cell lines/drug-viability studies. DCB uses clustering and canvas visualization of the drugs and the cell lines, as well as a bar graph that summarizes drug effectiveness for the tissue of origin or the cancer subtypes for single or multiple drugs. DCB can help in understanding drug response patterns and prioritizing drug/cancer cell line interactions by tissue of origin or cancer subtype. DCB is an open source Web-based tool that is freely available at: http://www.maayanlab.net/LINCS/DCB CONTACT: avi.maayan@mssm.edu Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Azam, Mohammad; Khan, Azmat Ali; Al-Resayes, Saud I; Islam, Mohammad Shahidul; Saxena, Ajit Kumar; Dwivedi, Sourabh; Musarrat, Javed; Trzesowska-Kruszynska, Agata; Kruszynski, Rafal
2015-05-05
In this work, we report a series of benzimidazole derivatives synthesized from benzene-1,2-diamine and aryl-aldehydes at room temperature. The synthesized compounds have been characterized on the basis of elemental analysis and various spectroscopic studies viz., IR, (1)H- and (13)C-NMR, ESI-MS as well by X-ray single X-ray crystallographic study. Interaction of these compounds with CT-DNA has been examined with fluorescence experiments and showed significant binding ability. All the synthesized compounds have been screened for their antitumor activities against various human cancer cell lines viz., Human breast adenocarcinoma cell line (MCF-7), Human leukemia cell line (THP-1), Human prostate cancer cell lines (PC-3) and adenocarcinomic human alveolar basal epithelial cell lines (A-549). Interestingly, all the compounds showed significant anticancer activity. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sommani, P.; Tsuji, H.; Sato, H.; Kitamura, T.; Hattori, M.; Gotoh, Y.; Ishikawa, J.
2007-04-01
The minimum line width of the negative-ion-modified polystyrene (PS) for guidance and immobilizations of nerve-cell body and neurite extension have been investigated. Carbon negative ions were implanted into PS at fluence of 3 × 1015 ions/cm2 and energy of 5-20 keV through the various triangle apertures of the micro-pattern mask. After in vitro culture of the nerve-like cells of rat adrenal pheochromocytoma (PC12h), results showed that the minimum line widths for a single cell attachment and for neurite extension were 5-7 and 3-5 μm, respectively. While the minimum line width for attachment of cell group with long neurite was about 20 μm. The suitable widths for a large number of cells and for neurite extension were 20 and 5 μm, respectively. Therefore, the guidance for a clear separation of the attachment size of cell body and neurite extension could be achieved by the different modified line widths.
Ludlow, Andrew T.; Robin, Jerome D.; Sayed, Mohammed; Litterst, Claudia M.; Shelton, Dawne N.; Shay, Jerry W.; Wright, Woodring E.
2014-01-01
The telomere repeat amplification protocol (TRAP) for the human reverse transcriptase, telomerase, is a PCR-based assay developed two decades ago and is still used for routine determination of telomerase activity. The TRAP assay can only reproducibly detect ∼2-fold differences and is only quantitative when compared to internal standards and reference cell lines. The method generally involves laborious radioactive gel electrophoresis and is not conducive to high-throughput analyzes. Recently droplet digital PCR (ddPCR) technologies have become available that allow for absolute quantification of input deoxyribonucleic acid molecules following PCR. We describe the reproducibility and provide several examples of a droplet digital TRAP (ddTRAP) assay for telomerase activity, including quantitation of telomerase activity in single cells, telomerase activity across several common telomerase positive cancer cells lines and in human primary peripheral blood mononuclear cells following mitogen stimulation. Adaptation of the TRAP assay to digital format allows accurate and reproducible quantification of the number of telomerase-extended products (i.e. telomerase activity; 57.8 ± 7.5) in a single HeLa cell. The tools developed in this study allow changes in telomerase enzyme activity to be monitored on a single cell basis and may have utility in designing novel therapeutic approaches that target telomerase. PMID:24861623
Kasai, Fumio; Hirayama, Noriko; Ozawa, Midori; Iemura, Masashi; Kohara, Arihiro
2016-06-01
Genomic changes in tumor cell lines can occur during culture, leading to differences between cell lines carrying the same name. In this study, genome profiles between low and high passages were investigated in the Ishikawa 3-H-12 cell line (JCRB1505). Cells contained between 43 and 46 chromosomes and the modal number changed from 46 to 45 during culture. Cytogenetic analysis revealed that a translocation t(9;14), observed in all metaphases, is a robust marker for this cell line. Single-nucleotide polymorphism microarrays showed a heterogeneous copy number in the early passages and distinct profiles at late passages. These results demonstrate that cell culture can lead to elimination of ancestral clones by sequential selection, resulting in extensive replacement with a novel clone. Our observations on Ishikawa cells in vitro are different from the in vivo heterogeneity in which ancestral clones are often retained during tumor evolution and suggest a model for in vitro clonal evolution. Copyright © 2016 Elsevier Inc. All rights reserved.
Poon, S K; Peacock, L; Gibson, W; Gull, K; Kelly, S
2012-02-01
Here, we present a simple modular extendable vector system for introducing the T7 RNA polymerase and tetracycline repressor genes into Trypanosoma brucei. This novel system exploits developments in our understanding of gene expression and genome organization to produce a streamlined plasmid optimized for high levels of expression of the introduced transgenes. We demonstrate the utility of this novel system in bloodstream and procyclic forms of Trypanosoma brucei, including the genome strain TREU927/4. We validate these cell lines using a variety of inducible experiments that recapture previously published lethal and non-lethal phenotypes. We further demonstrate the utility of the single marker (SmOx) TREU927/4 cell line for in vivo experiments in the tsetse fly and provide a set of plasmids that enable both whole-fly and salivary gland-specific inducible expression of transgenes.
Poon, S. K.; Peacock, L.; Gibson, W.; Gull, K.; Kelly, S.
2012-01-01
Here, we present a simple modular extendable vector system for introducing the T7 RNA polymerase and tetracycline repressor genes into Trypanosoma brucei. This novel system exploits developments in our understanding of gene expression and genome organization to produce a streamlined plasmid optimized for high levels of expression of the introduced transgenes. We demonstrate the utility of this novel system in bloodstream and procyclic forms of Trypanosoma brucei, including the genome strain TREU927/4. We validate these cell lines using a variety of inducible experiments that recapture previously published lethal and non-lethal phenotypes. We further demonstrate the utility of the single marker (SmOx) TREU927/4 cell line for in vivo experiments in the tsetse fly and provide a set of plasmids that enable both whole-fly and salivary gland-specific inducible expression of transgenes. PMID:22645659
FogBank: a single cell segmentation across multiple cell lines and image modalities.
Chalfoun, Joe; Majurski, Michael; Dima, Alden; Stuelten, Christina; Peskin, Adele; Brady, Mary
2014-12-30
Many cell lines currently used in medical research, such as cancer cells or stem cells, grow in confluent sheets or colonies. The biology of individual cells provide valuable information, thus the separation of touching cells in these microscopy images is critical for counting, identification and measurement of individual cells. Over-segmentation of single cells continues to be a major problem for methods based on morphological watershed due to the high level of noise in microscopy cell images. There is a need for a new segmentation method that is robust over a wide variety of biological images and can accurately separate individual cells even in challenging datasets such as confluent sheets or colonies. We present a new automated segmentation method called FogBank that accurately separates cells when confluent and touching each other. This technique is successfully applied to phase contrast, bright field, fluorescence microscopy and binary images. The method is based on morphological watershed principles with two new features to improve accuracy and minimize over-segmentation. First, FogBank uses histogram binning to quantize pixel intensities which minimizes the image noise that causes over-segmentation. Second, FogBank uses a geodesic distance mask derived from raw images to detect the shapes of individual cells, in contrast to the more linear cell edges that other watershed-like algorithms produce. We evaluated the segmentation accuracy against manually segmented datasets using two metrics. FogBank achieved segmentation accuracy on the order of 0.75 (1 being a perfect match). We compared our method with other available segmentation techniques in term of achieved performance over the reference data sets. FogBank outperformed all related algorithms. The accuracy has also been visually verified on data sets with 14 cell lines across 3 imaging modalities leading to 876 segmentation evaluation images. FogBank produces single cell segmentation from confluent cell sheets with high accuracy. It can be applied to microscopy images of multiple cell lines and a variety of imaging modalities. The code for the segmentation method is available as open-source and includes a Graphical User Interface for user friendly execution.
Humbert, Martine; Castéran, Nathalie; Letard, Sébastien; Hanssens, Katia; Iovanna, Juan; Finetti, Pascal; Bertucci, François; Bader, Thomas; Mansfield, Colin D.; Moussy, Alain; Hermine, Olivier; Dubreuil, Patrice
2010-01-01
Background Tyrosine kinases are attractive targets for pancreatic cancer therapy because several are over-expressed, including PDGFRα/β, FAK, Src and Lyn. A critical role of mast cells in the development of pancreatic cancer has also been reported. Masitinib is a tyrosine kinase inhibitor that selectively targets c-Kit, PDGFRα/β, Lyn, and to a lesser extent the FAK pathway, without inhibiting kinases of known toxicities. Masitinib is particularly efficient in controlling the proliferation, differentiation and degranulation of mast cells. This study evaluates the therapeutic potential of masitinib in pancreatic cancer, as a single agent and in combination with gemcitabine. Methodology/Findings Proof-of-concept studies were performed in vitro on human pancreatic tumour cell lines and then in vivo using a mouse model of human pancreatic cancer. Molecular mechanisms were investigated via gene expression profiling. Masitinib as a single agent had no significant antiproliferative activity while the masitinib/gemcitabine combination showed synergy in vitro on proliferation of gemcitabine-refractory cell lines Mia Paca2 and Panc1, and to a lesser extent in vivo on Mia Paca2 cell tumour growth. Specifically, masitinib at 10 µM strongly sensitised Mia Paca2 cells to gemcitabine (>400-fold reduction in IC50); and moderately sensitised Panc1 cells (10-fold reduction). Transcriptional analysis identified the Wnt/β-catenin signalling pathway as down-regulated in the cell lines resensitised by the masitinib/gemcitabine combination. Conclusions These data establish proof-of-concept that masitinib can sensitise gemcitabine-refractory pancreatic cancer cell lines and warrant further in vivo investigation. Indeed, such an effect has been recently observed in a phase 2 clinical study of patients with pancreatic cancer who received a masitinib/gemcitabine combination. PMID:20209107
Pivonello, Claudia; Rousaki, Panagoula; Negri, Mariarosaria; Sarnataro, Maddalena; Napolitano, Maria; Marino, Federica Zito; Patalano, Roberta; De Martino, Maria Cristina; Sciammarella, Concetta; Faggiano, Antongiulio; Rocco, Gaetano; Franco, Renato; Kaltsas, Gregory A; Colao, Annamaria; Pivonello, Rosario
2017-06-01
Somatostatin analogues and mTOR inhibitors have been used as medical therapy in lung carcinoids with variable results. No data are available on dopamine agonists as treatment for lung carcinoids. The main aim of the current study was to evaluate the effect of the combined treatment of somatostatin analogue octreotide and the dopamine agonist cabergoline with mTOR inhibitors in an in vitro model of typical lung carcinoids: the NCI-H727 cell line. In NCI-H727 cell line, reverse transcriptase-quantitative polymerase chain reaction and immunofluorescence were assessed to characterize the expression of the somatostatin receptor 2 and 5, dopamine receptor 2 and mTOR pathway components. Fifteen typical lung carcinoids tissue samples have been used for somatostatin receptor 2, dopamine receptor 2, and the main mTOR pathway component p70S6K expression and localization by immunohistochemistry. Cell viability, fluorescence-activated cell sorting analysis and western blot have been assessed to test the pharmacological effects of octreotide, cabergoline and mTOR inhibitors, and to evaluate the activation of specific cell signaling pathways in NCI-H727 cell line. NCI-H727 cell line expressed somatostatin receptor 2, somatostatin receptor 5 and dopamine receptor 2 and all mTOR pathway components at messenger and protein levels. Somatostatin receptor 2, dopamine receptor 2, and p70S6K (non phosphorylated and phosphorylated) proteins were expressed in most typical lung carcinoids tissue samples. Octreotide and cabergoline did not reduce cell viability as single agents but, when combined with mTOR inhibitors, they potentiate mTOR inhibitors effect after long-term exposure, reducing Akt and ERK phosphorylation, mTOR escape mechanisms, and increasing the expression DNA-damage-inducible transcript 4, an mTOR suppressor. In conclusion, the single use of octreotide and cabergoline is not sufficient to block cell viability but the combined approach of these agents with mTOR inhibitors might reduce the mTOR inhibitors-induced escape mechanisms and/or activate the endogenous mTOR suppressor, potentiating the effect of the mTOR inhibitors in an in vitro model of typical lung carcinoids.
Gao, Bo; Russell, Amanda; Beesley, Jonathan; Chen, Xiao Qing; Healey, Sue; Henderson, Michelle; Wong, Mark; Emmanuel, Catherine; Galletta, Laura; Johnatty, Sharon E; Bowtell, David; Haber, Michelle; Norris, Murray; Harnett, Paul; Chenevix-Trench, Georgia; Balleine, Rosemary L; deFazio, Anna
2014-05-09
ABCB1 (adenosine triphosphate-binding cassette transporter B1) mediates cellular elimination of many chemotherapeutic agents including paclitaxel, which is commonly used to treat ovarian cancer. A significant association between common single nucleotide polymorphisms (SNPs) in ABCB1 and progression-free survival has been reported in patients with ovarian cancer. Variable paclitaxel clearance due to genotype specific differences in ABCB1 activity in cancer cells and/or normal tissues may underlie the association. Using cell-based models, we evaluated the correlations between ABCB1 expression, polymorphisms, transporter activity and paclitaxel sensitivity in ovarian cancer (n = 10) and lymphoblastoid (n = 19) cell lines. Close associations between ABCB1 expression, transporter function and paclitaxel sensitivity were found in lymphoblastoid cell lines, although we could not demonstrate an association with common SNPs. In ovarian cancer cell lines, ABCB1 expression was low and the association between expression and function was lost. These results suggest that ABCB1 related survival difference in ovarian cancer patients is more likely to be due to differential whole body paclitaxel clearance mediated by normal cells rather than a direct effect on cancer cells.
Herbert, Brittney-Shea; Grimes, Brenda R.; Xu, Wei Min; Werner, Michael; Ward, Christopher; Rossetti, Sandro; Harris, Peter; Bello-Reuss, Elsa; Ward, Heather H.; Miller, Caroline; Gattone, Vincent H.; Phillips, Carrie L.; Wandinger-Ness, Angela; Bacallao, Robert L.
2013-01-01
Autosomal dominant polycystic kidney disease (ADPKD) is associated with a variety of cellular phenotypes in renal epithelial cells. Cystic epithelia are secretory as opposed to absorptive, have higher proliferation rates in cell culture and have some characteristics of epithelial to mesenchymal transitions [1], [2]. In this communication we describe a telomerase immortalized cell line that expresses proximal tubule markers and is derived from renal cysts of an ADPKD kidney. These cells have a single detectable truncating mutation (Q4004X) in polycystin-1. These cells make normal appearing but shorter cilia and fail to assemble polycystin-1 in the cilia, and less uncleaved polycystin-1 in membrane fractions. This cell line has been maintained in continuous passage for over 35 passages without going into senescence. Nephron segment specific markers suggest a proximal tubule origin for these cells and the cell line will be useful to study mechanistic details of cyst formation in proximal tubule cells. PMID:23383103
Butler, W B
1984-08-15
A procedure is described for preparing nuclei from cells in monolayer culture so that they may be counted using an electronic particle counter. It takes only 10 to 15 min, and consists of swelling the cells in hypotonic buffer and then lysing them with the quaternary ammonium salt, ethylhexadecyldimethylammonium bromide. The cells are completely lysed, yielding a suspension of clean single nuclei which is stable, free of debris, and easily counted. The method was developed for a cell line of epithelial origin (MCF-7), which is often difficult to trypsinize to single cells. It works equally well at all cell densities up to and beyond confluence, and has been used with a variety of cells in culture, including 3T3 cells, bovine macrophages, rat mammary epithelial cells, mouse mammary tumor cell lines, and human fibroblasts. The size of the nuclei produced by this procedure is related to their DNA content, and the method is thus suitable for following cultures of synchronized cells through the cell cycle, and for performing differential counts of cells with substantial differences in DNA content.
Single-molecule optical genome mapping of a human HapMap and a colorectal cancer cell line.
Teo, Audrey S M; Verzotto, Davide; Yao, Fei; Nagarajan, Niranjan; Hillmer, Axel M
2015-01-01
Next-generation sequencing (NGS) technologies have changed our understanding of the variability of the human genome. However, the identification of genome structural variations based on NGS approaches with read lengths of 35-300 bases remains a challenge. Single-molecule optical mapping technologies allow the analysis of DNA molecules of up to 2 Mb and as such are suitable for the identification of large-scale genome structural variations, and for de novo genome assemblies when combined with short-read NGS data. Here we present optical mapping data for two human genomes: the HapMap cell line GM12878 and the colorectal cancer cell line HCT116. High molecular weight DNA was obtained by embedding GM12878 and HCT116 cells, respectively, in agarose plugs, followed by DNA extraction under mild conditions. Genomic DNA was digested with KpnI and 310,000 and 296,000 DNA molecules (≥ 150 kb and 10 restriction fragments), respectively, were analyzed per cell line using the Argus optical mapping system. Maps were aligned to the human reference by OPTIMA, a new glocal alignment method. Genome coverage of 6.8× and 5.7× was obtained, respectively; 2.9× and 1.7× more than the coverage obtained with previously available software. Optical mapping allows the resolution of large-scale structural variations of the genome, and the scaffold extension of NGS-based de novo assemblies. OPTIMA is an efficient new alignment method; our optical mapping data provide a resource for genome structure analyses of the human HapMap reference cell line GM12878, and the colorectal cancer cell line HCT116.
Cell migration through connective tissue in 3-D
NASA Astrophysics Data System (ADS)
Fabry, Ben
2008-03-01
A prerequisite for metastasis formation is the ability of tumor cells to invade and migrate through connective tissue. Four key components endow tumor cells with this ability: secretion of matrix-degrading enzymes, firm but temporary adhesion onto connective tissue fibers, contractile force generation, and rapid remodeling of cytoskeletal structures. Cell adhesion, contraction, and cytoskeletal remodeling are biomechanical parameter that can be measured on single cells using a panel of biophysical methods. We use 2-D and 3-D traction microscopy to measure contractile forces; magnetic tweezer microrheology to estimate adhesion strengths, cytoskeletal stiffness and molecular turn-over rates; and nanoscale particle tracking to measure cytoskeletal remodeling. On a wide range of tumor cell lines we could show that cell invasiveness correlates with increased expression of integrin adhesion receptors, increased contractile force generation, and increased speed of cytoskeletal reorganization. Each of those biomechanical parameters, however, varied considerably between cell lines of similar invasivity, suggesting that tumor cells employ multiple invasion strategies that cannot be unambiguously characterized using a single assay.
Kuchtey, J; Fewtrell, C
1996-03-01
Ca2+ imaging experiments have revealed that for a wide variety of cell types, including RBL-2H3 mucosal mast cells, there are considerable cell-to-cell differences of the Ca2+ responses of individual cells. This heterogeneity is evident in both the shape and latency of the responses. Mast cells within a single microscopic field of view, which have experienced identical culture conditions and experimental preparation, display a wide variety of responses upon antigen stimulation. We have subcloned the RBL-2H3 mucosal mast cell line to test the hypothesis that genetic heterogeneity within the population is the cause of the Ca2+ response heterogeneity. We found that cell-to-cell variability was significantly reduced in four of five clonal lines. The response heterogeneity remaining within the clones was not an experimental artifact caused by differences in the amount of fura-2 loaded by individual cells. Factors other than genetic heterogeneity must partly account for Ca2+ response heterogeneity. It is possible that the complex shapes and variability of the Ca2+ responses are reflections of the fact that there are multiple factors underlying the Ca2-response to antigen stimulation. Small differences from cell to cell in one or more of these factors could be a cause of the remaining Ca2+ response heterogeneity.
Probing cytoskeleton organisation of neuroblastoma cells with single-cell force spectroscopy.
Mescola, Andrea; Vella, Serena; Scotto, Marco; Gavazzo, Paola; Canale, Claudio; Diaspro, Alberto; Pagano, Aldo; Vassalli, Massimo
2012-05-01
Single-cell force spectroscopy is an emerging technique in the field of biomedicine because it has proved to be a unique tool to obtain mechanical and functional information on living cells, with force resolution up to single molecular bonds. This technique was applied to the study of the cytoskeleton organisation of neuroblastoma cells, a life-threatening cancer typically developing during childhood, and the results were interpreted on the basis of reference experiments on human embryonic kidney cell line. An intimate connection emerges among cellular state, cytoskeleton organisation and experimental outcome that can be potentially exploited towards a new method for cancer stadiation of neuroblastoma cells. Copyright © 2012 John Wiley & Sons, Ltd.
High-temperature multipass cell for infrared spectroscopy of heated gases and vapors.
Bartlome, R; Baer, M; Sigrist, M W
2007-01-01
In absorption spectroscopy, infrared spectra of heated gases or condensed samples in the vapor phase are usually recorded with a single pass heated gas cell. This device exhibits two orders of magnitude lower sensitivity than the high-temperature multipass cell presented in this article. Our device is a novel type of compact long path absorption cell that can withstand aggressive chemicals in addition to temperatures up to 723 K. The construction of the cell and its technical features are described in detail, paying special attention to the mechanisms that compensate for thermal expansion and that allow the user to vary the optical path length under any thermal or vacuum condition. The cell may be used with a laser source or implemented within a Fourier transform infrared spectrometer. Its design is compatible with optical arrangements using astigmatic mirrors or spherical mirrors in a Herriott configuration. Here we implement a homebuilt Herriott-type cell with a total optical path length of up to 35 m. In order to demonstrate the feasibility of the cell, methane and water vapor absorption lines showing dissimilar temperature effects on line intensity were recorded with the help of a mid-infrared laser source tunable between 3 and 4 microm. Emphasis is put on lines that are too weak to be recorded with a single pass cell.
Liu, Yonghong; Liu, Yuanyuan; Wu, Jiaming; Roizman, Bernard; Zhou, Grace Guoying
2018-04-03
Analyses of the levels of mRNAs encoding IFIT1, IFI16, RIG-1, MDA5, CXCL10, LGP2, PUM1, LSD1, STING, and IFNβ in cell lines from which the gene encoding LGP2, LSD1, PML, HDAC4, IFI16, PUM1, STING, MDA5, IRF3, or HDAC 1 had been knocked out, as well as the ability of these cell lines to support the replication of HSV-1, revealed the following: ( i ) Cell lines lacking the gene encoding LGP2, PML, or HDAC4 (cluster 1) exhibited increased levels of expression of partially overlapping gene networks. Concurrently, these cell lines produced from 5 fold to 12 fold lower yields of HSV-1 than the parental cells. ( ii ) Cell lines lacking the genes encoding STING, LSD1, MDA5, IRF3, or HDAC 1 (cluster 2) exhibited decreased levels of mRNAs of partially overlapping gene networks. Concurrently, these cell lines produced virus yields that did not differ from those produced by the parental cell line. The genes up-regulated in cell lines forming cluster 1, overlapped in part with genes down-regulated in cluster 2. The key conclusions are that gene knockouts and subsequent selection for growth causes changes in expression of multiple genes, and hence the phenotype of the cell lines cannot be ascribed to a single gene; the patterns of gene expression may be shared by multiple knockouts; and the enhanced immunity to viral replication by cluster 1 knockout cell lines but not by cluster 2 cell lines suggests that in parental cells, the expression of innate resistance to infection is specifically repressed.
Winnard, Paul T.; Zhang, Chi; Vesuna, Farhad; Kang, Jeon Woong; Garry, Jonah; Dasari, Ramachandra Rao; Barman, Ishan; Raman, Venu
2017-01-01
Molecular characterization of organ-specific metastatic lesions, which distinguish them from the primary tumor, will provide a better understanding of tissue specific adaptations that regulate metastatic progression. Using an orthotopic xenograft model, we have isolated isogenic metastatic human breast cancer cell lines directly from organ explants that are phenotypically distinct from the primary tumor cell line. Label-free Raman spectroscopy was used and informative spectral bands were ascertained as differentiators of organ-specific metastases as opposed to the presence of a single universal marker. Decision algorithms derived from the Raman spectra unambiguously identified these isogenic cell lines as unique biological entities – a finding reinforced through metabolomic analyses that indicated tissue of origin metabolite distinctions between the cell lines. Notably, complementarity of the metabolomics and Raman datasets was found. Our findings provide evidence that metastatic spread generates tissue-specific adaptations at the molecular level within cancer cells, which can be differentiated with Raman spectroscopy. PMID:28145887
Winnard, Paul T; Zhang, Chi; Vesuna, Farhad; Kang, Jeon Woong; Garry, Jonah; Dasari, Ramachandra Rao; Barman, Ishan; Raman, Venu
2017-03-21
Molecular characterization of organ-specific metastatic lesions, which distinguish them from the primary tumor, will provide a better understanding of tissue specific adaptations that regulate metastatic progression. Using an orthotopic xenograft model, we have isolated isogenic metastatic human breast cancer cell lines directly from organ explants that are phenotypically distinct from the primary tumor cell line. Label-free Raman spectroscopy was used and informative spectral bands were ascertained as differentiators of organ-specific metastases as opposed to the presence of a single universal marker. Decision algorithms derived from the Raman spectra unambiguously identified these isogenic cell lines as unique biological entities - a finding reinforced through metabolomic analyses that indicated tissue of origin metabolite distinctions between the cell lines. Notably, complementarity of the metabolomics and Raman datasets was found. Our findings provide evidence that metastatic spread generates tissue-specific adaptations at the molecular level within cancer cells, which can be differentiated with Raman spectroscopy.
Takasaka, N; Tajima, M; Okinaga, K; Satoh, Y; Hoshikawa, Y; Katsumoto, T; Kurata, T; Sairenji, T
1998-08-01
We characterized the expression of Epstein-Barr virus (EBV) on two epithelial cell lines, GT38 and GT39, derived from human gastric tissues. The EBV nuclear antigen (EBNA) was detected in all cells of both cell lines. The EBV immediate-early BZLF 1 protein (ZEBRA), the early antigen diffuse component (EA-D), and one of the EBV envelope proteins (gp350/220) were expressed spontaneously in small proportions in the cells. EBNA 1, EBNA2, latent membrane protein 1, ZEBRA, and EA-D molecules were then observed by Western blotting in the cells. The lytic cycle was enhanced with treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA) or n-butyrate. The virus particles were observed in the TPA treated GT38 cells by electron microscopy. Infectious EBV was detected with the transformation of cord blood lymphocytes and also with the induction of early antigen to Raji cells by the supernatants of both cells lines. A major single and minor multiple fused terminal fragments and a ladder of smaller fragments of the EBV genome were detected with a Xhol probe in both cell lines. These epithelial cells lines and viruses will be useful in studying their association with EBV in gastric epithelial cells.
Addressable droplet microarrays for single cell protein analysis.
Salehi-Reyhani, Ali; Burgin, Edward; Ces, Oscar; Willison, Keith R; Klug, David R
2014-11-07
Addressable droplet microarrays are potentially attractive as a way to achieve miniaturised, reduced volume, high sensitivity analyses without the need to fabricate microfluidic devices or small volume chambers. We report a practical method for producing oil-encapsulated addressable droplet microarrays which can be used for such analyses. To demonstrate their utility, we undertake a series of single cell analyses, to determine the variation in copy number of p53 proteins in cells of a human cancer cell line.
Molecular characterization of immortalized normal and dysplastic oral cell lines.
Dickman, Christopher T D; Towle, Rebecca; Saini, Rajan; Garnis, Cathie
2015-05-01
Cell lines have been developed for modeling cancer and cancer progression. The molecular background of these cell lines is often unknown to those using them to model disease behaviors. As molecular alterations are the ultimate drivers of cell phenotypes, having an understanding of the molecular make-up of these systems is critical for understanding the disease biology modeled. Six immortalized normal, one immortalized dysplasia, one self-immortalized dysplasia, and two primary normal cell lines derived from oral tissues were analyzed for DNA copy number changes and changes in both mRNA and miRNA expression using SMRT-v.2 genome-wide tiling comparative genomic hybridization arrays, Agilent Whole Genome 4x44k expression arrays, and Exiqon V2.M-RT-PCR microRNA Human panels. DNA copy number alterations were detected in both normal and dysplastic immortalized cell lines-as well as in the single non-immortalized dysplastic cell line. These lines were found to have changes in expression of genes related to cell cycle control as well as alterations in miRNAs that are deregulated in clinical oral squamous cell carcinoma tissues. Immortal lines-whether normal or dysplastic-had increased disruption in expression relative to primary lines. All data are available as a public resource. Molecular profiling experiments have identified DNA, mRNA, and miRNA alterations for a panel of normal and dysplastic oral tissue cell lines. These data are a valuable resource to those modeling diseases of the oral mucosa, and give insight into the selection of model cell lines and the interpretation of data from those lines. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
A gene involved in control of human cellular senescence on human chromosome 1q
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hensler, P.J.; Pereira-Smith, O.M.; Annab, L.A.
1994-04-01
Normal cells in culture exhibit limited division potential and have been used as a model for cellular senescence. In contrast, tumor-derived or carcinogen- or virus-transformed cells are capable of indefinite division. Fusion of normal human diploid fibroblasts with immortal human cells yielded hybrids having limited life spans, indicating that cellular senescence was dominant. Fusions of various immortal human cell lines with each other led to the identification of four complementation groups for indefinite division. The purpose of this study was to determine whether human chromosome 1 could complement the recessive immortal defect of human cell lines assigned to one ofmore » the four complementation groups. Using microcell fusion, the authors introduced a single normal human chromosome 1 into immortal human cell lines representing the complementation groups and determined that it caused loss of proliferative potential of an osteosarcoma-derived cell line (TE85), a cytomegalovirus-transformed lung fibroblast cell line (CMV-Mj-HEL-1), and a Ki-ras[sup +]-transformed derivative of TE85 (143B TK[sup [minus
Chen, Jieping; Yao, Kai; Li, Zaishang; Deng, Chuangzhong; Wang, Liangjiao; Yu, Xingsu; Liang, Peili; Xie, Qiankun; Chen, Peng; Qin, Zike; Ye, Yunlin; Liu, Zhuowei; Zhou, Fangjian; Zhang, Zhenfeng; Han, Hui
2016-08-09
To establish penile cancer (PeCa) cell lines for the study of molecular mechanisms of carcinogenesis and testing therapeutic reagents. We successfully established two PeCa cell lines from fresh tumor tissues from 21 cases. One cell line named Penl1 was isolated from a lymph node metastasis (LNM) of penile squamous cell carcinoma (PeSCC), usual type and comprehensively characterized here. Our in-depth characterization analysis of the Penl1 cell line included morphology, tumorigenicity, genetic characteristics, protein expression, biology, and chemosensitivity. Penl1 was authenticated by single tandem repeat (STR) DNA typing. Comparative histomorphology, genetic characteristics, and protein expression patterns revealed essential similarities between the cell line and its corresponding LNM. In-depth characterization analysis of Penl1 cell line revealed tumorigenicity in immunodeficient mice, negative human papilloma virus (HPV) and mycoplasma infection, TP53 mutations and sensitivity to cisplatin and epirubicin. STR DNA typing did not match any cell lines within three international cell banks. The limitation of this study is that one patient cannot represent the complete heterogeneity of PeCa, especially primary tumor. We established and characterized an HPV-negative and moderately differentiated PeCa cell model with a TP53 missense mutation from a PeSCC, usual type patient. A preliminarily study of carcinogenesis and chemosensitivity suggests that this cell model carries a tumor suppressor gene mutation and is sensitive to chemotherapy drugs.
Li, Zaishang; Deng, Chuangzhong; Wang, Liangjiao; Yu, Xingsu; Liang, Peili; Xie, Qiankun; Chen, Peng; Qin, Zike; Ye, Yunlin; Liu, Zhuowei; Zhou, Fangjian; Zhang, Zhenfeng; Han, Hui
2016-01-01
Purpose To establish penile cancer (PeCa) cell lines for the study of molecular mechanisms of carcinogenesis and testing therapeutic reagents. Materials and Methods We successfully established two PeCa cell lines from fresh tumor tissues from 21 cases. One cell line named Penl1 was isolated from a lymph node metastasis (LNM) of penile squamous cell carcinoma (PeSCC), usual type and comprehensively characterized here. Our in-depth characterization analysis of the Penl1 cell line included morphology, tumorigenicity, genetic characteristics, protein expression, biology, and chemosensitivity. Penl1 was authenticated by single tandem repeat (STR) DNA typing. Results Comparative histomorphology, genetic characteristics, and protein expression patterns revealed essential similarities between the cell line and its corresponding LNM. In-depth characterization analysis of Penl1 cell line revealed tumorigenicity in immunodeficient mice, negative human papilloma virus (HPV) and mycoplasma infection, TP53 mutations and sensitivity to cisplatin and epirubicin. STR DNA typing did not match any cell lines within three international cell banks. The limitation of this study is that one patient cannot represent the complete heterogeneity of PeCa, especially primary tumor. Conclusions We established and characterized an HPV-negative and moderately differentiated PeCa cell model with a TP53 missense mutation from a PeSCC, usual type patient. A preliminarily study of carcinogenesis and chemosensitivity suggests that this cell model carries a tumor suppressor gene mutation and is sensitive to chemotherapy drugs. PMID:27351128
Chitta, Kasyapa S.; Paulus, Aneel; Ailawadhi, Sikander; Foster, Barbara A.; Moser, Michael T.; Starostik, Petr; Masood, Aisha; Sher, Taimur; Miller, Kena C.; Iancu, Dan M.; Conroy, Jeffrey; Nowak, Norma J.; Sait, Sheila N.; Personett, David A.; Coleman, Morton; Furman, Richard R.; Martin, Peter; Ansell, Stephen M.; Lee, Kelvin; Chanan-Khan, Asher A.
2015-01-01
Understanding the biology of Waldenström Macroglobulinemia is hindered by a lack of preclinical models. We report a novel cell line, RPCI-WM1, from a patient treated for WM. The cell line secreted human IgM (hIgM) with k-light chain restriction identical to the primary tumor. The cell line has a modal chromosomal number of 46 and harbors chromosomal changes such as deletion of 6q21, monoallelic deletion of 9p21 (CDKN2A), 13q14 (RB1) and 18q21 (BCL-2) with a consistent amplification of 14q32 (IgH) identical to its founding tumor sample. Clonal relationship was confirmed by identical CDR3 length and single nucleotide polymorphisms as well as a matching IgH sequence of the cell line and founding tumor. Both also harbor a heterozygous, non-synonymous mutation at amino acid 265 in MYD88 gene (L265P). The cell line expresses most of the cell surface markers present on the parent cells. Over all, RPCI-WM1 represents a valuable model to study WM. PMID:22812491
Chitta, Kasyapa S; Paulus, Aneel; Ailawadhi, Sikander; Foster, Barbara A; Moser, Michael T; Starostik, Petr; Masood, Aisha; Sher, Taimur; Miller, Kena C; Iancu, Dan M; Conroy, Jeffrey; Nowak, Norma J; Sait, Sheila N; Personett, David A; Coleman, Morton; Furman, Richard R; Martin, Peter; Ansell, Stephen M; Lee, Kelvin; Chanan-Khan, Asher A
2013-02-01
Understanding the biology of Waldenström macroglobulinemia is hindered by a lack of preclinical models. We report a novel cell line, RPCI-WM1, from a patient treated for WM. The cell line secretes human immunoglobulin M (h-IgM) with κ-light chain restriction identical to the primary tumor. The cell line has a modal chromosomal number of 46 and harbors chromosomal changes such as deletion of 6q21, monoallelic deletion of 9p21 (CDKN2A), 13q14 (RB1) and 18q21 (BCL-2), with a consistent amplification of 14q32 (immunoglobulin heavy chain; IgH) identical to its founding tumor sample. The clonal relationship is confirmed by identical CDR3 length and single nucleotide polymorphisms as well as a matching IgH sequence of the cell line and founding tumor. Both also harbor a heterozygous, non-synonymous mutation at amino acid 265 in the MYD88 gene (L265P). The cell line expresses most of the cell surface markers present on the parent cells. Overall, RPCI-WM1 represents a valuable model to study Waldenström macroglobulinemia.
Computational discovery of pathway-level genetic vulnerabilities in non-small-cell lung cancer
Young, Jonathan H.; Peyton, Michael; Seok Kim, Hyun; McMillan, Elizabeth; Minna, John D.; White, Michael A.; Marcotte, Edward M.
2016-01-01
Motivation: Novel approaches are needed for discovery of targeted therapies for non-small-cell lung cancer (NSCLC) that are specific to certain patients. Whole genome RNAi screening of lung cancer cell lines provides an ideal source for determining candidate drug targets. Results: Unsupervised learning algorithms uncovered patterns of differential vulnerability across lung cancer cell lines to loss of functionally related genes. Such genetic vulnerabilities represent candidate targets for therapy and are found to be involved in splicing, translation and protein folding. In particular, many NSCLC cell lines were especially sensitive to the loss of components of the LSm2-8 protein complex or the CCT/TRiC chaperonin. Different vulnerabilities were also found for different cell line subgroups. Furthermore, the predicted vulnerability of a single adenocarcinoma cell line to loss of the Wnt pathway was experimentally validated with screening of small-molecule Wnt inhibitors against an extensive cell line panel. Availability and implementation: The clustering algorithm is implemented in Python and is freely available at https://bitbucket.org/youngjh/nsclc_paper. Contact: marcotte@icmb.utexas.edu or jon.young@utexas.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26755624
Computational discovery of pathway-level genetic vulnerabilities in non-small-cell lung cancer.
Young, Jonathan H; Peyton, Michael; Seok Kim, Hyun; McMillan, Elizabeth; Minna, John D; White, Michael A; Marcotte, Edward M
2016-05-01
Novel approaches are needed for discovery of targeted therapies for non-small-cell lung cancer (NSCLC) that are specific to certain patients. Whole genome RNAi screening of lung cancer cell lines provides an ideal source for determining candidate drug targets. Unsupervised learning algorithms uncovered patterns of differential vulnerability across lung cancer cell lines to loss of functionally related genes. Such genetic vulnerabilities represent candidate targets for therapy and are found to be involved in splicing, translation and protein folding. In particular, many NSCLC cell lines were especially sensitive to the loss of components of the LSm2-8 protein complex or the CCT/TRiC chaperonin. Different vulnerabilities were also found for different cell line subgroups. Furthermore, the predicted vulnerability of a single adenocarcinoma cell line to loss of the Wnt pathway was experimentally validated with screening of small-molecule Wnt inhibitors against an extensive cell line panel. The clustering algorithm is implemented in Python and is freely available at https://bitbucket.org/youngjh/nsclc_paper marcotte@icmb.utexas.edu or jon.young@utexas.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Beqa, Lule; Fan, Zhen; Singh, Anant Kumar; Senapati, Dulal; Ray, Paresh Chandra
2011-01-01
Breast cancer presents greatest challenge in health care in today’s world. The key to ultimately successful treatment of breast cancer disease is an early and accurate diagnosis. Current breast cancer treatments are often associated with severe side effects. Driven by the need, we report the design of novel hybrid nanomaterial using gold nano popcorn-attached single wall carbon nanotube for targeted diagnosis and selective photothermal treatment. Targeted SK-BR-3 human breast cancer cell sensing have been performed in 10 cancer cells/mL level, using surface enhanced Raman scattering of single walls carbon nanotube’s D and G bands. Our data show that S6 aptamer attached hybrid nanomaterial based SERS assay is highly sensitive to targeted human breast cancer SK-BR-3 cell line and it will be able to distinguish it from other non targeted MDA-MB breast cancer cell line and HaCaT normal skin cell line. Our results also show that 10 minutes of photothermal therapy treatment by 1.5 W/cm2 power, 785 nm laser is enough to kill cancer cells very effectively using S6 aptamer attached hybrid nanomaterials. Possible mechanisms for targeted sensing and operating principle for highly efficient photothermal therapy have been discussed. Our experimental results reported here open up a new possibility for using aptamers modified hybrid nanomaterial for reliable diagnosis and targeted therapy of cancer cell lines quickly. PMID:21842867
Beqa, Lule; Fan, Zhen; Singh, Anant Kumar; Senapati, Dulal; Ray, Paresh Chandra
2011-09-01
Breast cancer presents greatest challenge in health care in today's world. The key to ultimately successful treatment of breast cancer disease is an early and accurate diagnosis. Current breast cancer treatments are often associated with severe side effects. Driven by the need, we report the design of novel hybrid nanomaterial using gold nano popcorn-attached single wall carbon nanotube for targeted diagnosis and selective photothermal treatment. Targeted SK-BR-3 human breast cancer cell sensing have been performed in 10 cancer cells/mL level, using surface enhanced Raman scattering of single walls carbon nanotube's D and G bands. Our data show that S6 aptamer attached hybrid nanomaterial based SERS assay is highly sensitive to targeted human breast cancer SK-BR-3 cell line and it will be able to distinguish it from other non targeted MDA-MB breast cancer cell line and HaCaT normal skin cell line. Our results also show that 10 min of photothermal therapy treatment by 1.5 W/cm(2) power, 785 nm laser is enough to kill cancer cells very effectively using S6 aptamer attached hybrid nanomaterials. Possible mechanisms for targeted sensing and operating principle for highly efficient photothermal therapy have been discussed. Our experimental results reported here open up a new possibility for using aptamers modified hybrid nanomaterial for reliable diagnosis and targeted therapy of cancer cell lines quickly.
Massively parallel digital transcriptional profiling of single cells
Zheng, Grace X. Y.; Terry, Jessica M.; Belgrader, Phillip; Ryvkin, Paul; Bent, Zachary W.; Wilson, Ryan; Ziraldo, Solongo B.; Wheeler, Tobias D.; McDermott, Geoff P.; Zhu, Junjie; Gregory, Mark T.; Shuga, Joe; Montesclaros, Luz; Underwood, Jason G.; Masquelier, Donald A.; Nishimura, Stefanie Y.; Schnall-Levin, Michael; Wyatt, Paul W.; Hindson, Christopher M.; Bharadwaj, Rajiv; Wong, Alexander; Ness, Kevin D.; Beppu, Lan W.; Deeg, H. Joachim; McFarland, Christopher; Loeb, Keith R.; Valente, William J.; Ericson, Nolan G.; Stevens, Emily A.; Radich, Jerald P.; Mikkelsen, Tarjei S.; Hindson, Benjamin J.; Bielas, Jason H.
2017-01-01
Characterizing the transcriptome of individual cells is fundamental to understanding complex biological systems. We describe a droplet-based system that enables 3′ mRNA counting of tens of thousands of single cells per sample. Cell encapsulation, of up to 8 samples at a time, takes place in ∼6 min, with ∼50% cell capture efficiency. To demonstrate the system's technical performance, we collected transcriptome data from ∼250k single cells across 29 samples. We validated the sensitivity of the system and its ability to detect rare populations using cell lines and synthetic RNAs. We profiled 68k peripheral blood mononuclear cells to demonstrate the system's ability to characterize large immune populations. Finally, we used sequence variation in the transcriptome data to determine host and donor chimerism at single-cell resolution from bone marrow mononuclear cells isolated from transplant patients. PMID:28091601
Cho, Hang Joo; Kim, Sin Young; Kim, Kee Hwan; Kang, Won Kyung; Kim, Ji Il; Oh, Seong Tack; Kim, Jeong Soo; An, Chang Hyeok
2009-05-21
The overall level of chromatin compaction is an important mechanism of radiosensitivity, and modification of DNA methylation and histone deacetylation may increase radiosensitivity by altering chromatin compaction. In this study, we investigated the effect of a demethylating agent, a histone deacetylase(HDAC) inhibitor, and the two agents combined on radiosensitivity in human colon and breast cancer cell lines. In this study, we used RKO colorectal cancer cell line and MCF-7 breast cancer cell lines and normal colon cell lines. On each of the cell lines, we used three different agents: the HDAC inhibitor sodium butyrate(SB), the demethylating agent 5-Aza-2'-deoxycytidine(5-aza-DC), and radiation. We then estimated the percentage of the cell survival using the XTT method and experimented to determine if there was an augmentation in the therapeutic effect by using different combinations of the two or three of the treatment methods. After treatment of each cell lines with 5-aza-DC, SB and 6 grays of radiation, we observed that the survival fraction was lower after the treatment with 5-aza-DC or SB than with radiation alone in RKO and MCF-7 cell lines(p < 0.001). The survival fraction was lowest when the two agents, 5-aza-DC and SB were combined with radiation in both RKO and MCF-cell lines. In conclusion, 5-aza-DC and SB can enhance radiosensitivity in both MCF-7 and RKO cell lines. The combination effect of a demethylating agent and an HDAC inhibitor is more effective than that of single agent treatment in both breast and colon cancer cell lines.
Park, Sung-Jin; Kim, Myung-Jin; Kim, Yu-Kyoung; Kim, Soung-Min; Park, Ju-Yong; Myoung, Hoon
2010-06-01
The purpose of this study was to evaluate the potency of EGFR pathway inhibition achieved by combining cetuximab, an anti-EGFR monoclonal antibody, and genistein, a tyrosine kinase inhibitor, which target extracellular and intracellular domains of the receptor, respectively, in oral squamous cell carcinoma (OSCC) in vitro and in vivo. Two OSCC cell lines, HSC3 and KB, were treated with cetuximab (C, 0-400mug/ml), genistein (G, 0-80muM), or a combination of both at a range of concentrations. Downstream protein expression of EGFR, p-EGFR, and p-Akt were evaluated by Western blot. Cell proliferation and apoptosis indices were calculated to assess anti-cancer effects in vitro. The in vivo effects of cetuximab and genistein on tumor cell growth were examined using an OSCC xenografted nude mouse model and immunohistochemical analyses of proliferation (PCNA) and microvessel density (CD31). Treatment of cells with dual anti-EGFR agents reduced the expressions of p-EGFR, and p-Akt in HSC3 cell line, but there was no significant difference in downregulation between cetuximab alone and in combination with genistein in KB cells. Both HSC3 and KB cells showed a dose-dependent decrease in cell proliferation significantly with single agent treatment and combination (p<0.05). In low concentration, combined cetuximab and genistein therapy resulted in additive growth inhibition and more apoptosis compared to that achieved with single-agent exposure in both cell lines. A combination of cetuximab and genistein significantly inhibited tumor growth and caused a substantial growth delay in in vivo models of both cell lines while each single-agent exposure caused no delay of tumor growth. Immunohistochemical staining with PCNA revealed that the group receiving combined cetuximab and genistein exhibited the lowest number of proliferating cells and microvessel density (p<0.05). Combined therapy with genistein and cetuximab can add the potency of EGFR signaling inhibition. Because not all OSCC cell types appear to respond uniformly, however, selective targeting of distinct molecular pathways is required for effective clinical response. Copyright (c) 2009 Elsevier Ireland Ltd. All rights reserved.
In a recent Cancer Discovery report, CTD2 researchers at the University of California in San Francisco developed a new quantitative chemical-genetic interaction mapping approach to evaluate drug sensitivity or resistance in isogenic cell lines. Performing a high-throughput screen with isogenic cell lines allowed the researchers to explore the impact of a panel of emerging and established drugs on cells overexpressing a single cancer-associated gene in isolation.
Noh, Soo Min; Shin, Seunghyeon; Lee, Gyun Min
2018-03-29
To characterize a glutamine synthetase (GS)-based selection system, monoclonal antibody (mAb) producing recombinant CHO cell clones were generated by a single round of selection at various methionine sulfoximine (MSX) concentrations (0, 25, and 50 μM) using two different host cell lines (CHO-K1 and GS-knockout CHO). Regardless of the host cell lines used, the clones selected at 50 μM MSX had the lowest average specific growth rate and the highest average specific production rates of toxic metabolic wastes, lactate and ammonia. Unlike CHO-K1, high producing clones could be generated in the absence of MSX using GS-knockout CHO with an improved selection stringency. Regardless of the host cell lines used, the clones selected at various MSX concentrations showed no significant difference in the GS, heavy chain, and light chain gene copies (P > 0.05). Furthermore, there was no correlation between the specific mAb productivity and these three gene copies (R 2 ≤ 0.012). Taken together, GS-mediated gene amplification does not occur in a single round of selection at a MSX concentration up to 50 μM. The use of the GS-knockout CHO host cell line facilitates the rapid generation of high producing clones with reduced production of lactate and ammonia in the absence of MSX.
Single-cell PCR of genomic DNA enabled by automated single-cell printing for cell isolation.
Stumpf, F; Schoendube, J; Gross, A; Rath, C; Niekrawietz, S; Koltay, P; Roth, G
2015-07-15
Single-cell analysis has developed into a key topic in cell biology with future applications in personalized medicine, tumor identification as well as tumor discovery (Editorial, 2013). Here we employ inkjet-like printing to isolate individual living single human B cells (Raji cell line) and load them directly into standard PCR tubes. Single cells are optically detected in the nozzle of the microfluidic piezoelectric dispenser chip to ensure printing of droplets with single cells only. The printing process has been characterized by using microbeads (10µm diameter) resulting in a single bead delivery in 27 out of 28 cases and relative positional precision of ±350µm at a printing distance of 6mm between nozzle and tube lid. Process-integrated optical imaging enabled to identify the printing failure as void droplet and to exclude it from downstream processing. PCR of truly single-cell DNA was performed without pre-amplification directly from single Raji cells with 33% success rate (N=197) and Cq values of 36.3±2.5. Additionally single cell whole genome amplification (WGA) was employed to pre-amplify the single-cell DNA by a factor of >1000. This facilitated subsequent PCR for the same gene yielding a success rate of 64% (N=33) which will allow more sophisticated downstream analysis like sequencing, electrophoresis or multiplexing. Copyright © 2015 Elsevier B.V. All rights reserved.
Kuo, Wen-Ling; Ueng, Shir-Hwa; Wu, Chun-Hsing; Lee, Li-Yu; Lee, Yun-Shien; Yu, Ming-Chin; Chen, Shin-Cheh; Yu, Chi-Chang; Tsai, Chi-Neu
2018-04-01
The research of carcinogenetic mechanisms of breast cancer in different ethnic backgrounds is an interesting field, as clinical features of breast cancers vary among races. High premenopausal incidence is distinctive in East-Asian breast cancer. However, human cell lines derived from Asian primary breast tumor are rare. To provide alternative cell line models with a relevant genetic background, we aimed to establish breast cancer cell lines from Taiwanese patients of Han-Chinese ethnicity. Fresh tissue from mammary tumors were digested into organoids, plated and grown in basal serum-free medium of human mammary epithelial cells (HuMEC) with supplements. Cells were further enriched by positive selection with CD326 (epithelial cell adhesion molecule; EpCAM)-coated micro-magnetic beads. Two breast cancer cell lines derived from premenopausal women were successfully established by this method, and named Chang-Gung Breast Cancer 01 (CGBC 01) and 02 (CGBC 02). These two cell lines had a similar phenotype with weak expression of estrogen receptor (ER), progesterone receptor (PR), and without amplification of receptor tyrosine protein kinase erbB-2 (HER2/neu). Genome-wide Single Nucleotide Polymorphism (SNP) array showed multiple copy number alterations in both cell lines. Based on gene expression profiles, CGBC 01 and 02 were clustered into basal-like subtype with reference to the breast cancer cell line gene expression database. The tumorigenicity of both cell lines was extremely low in both anchorage-independence assay and transplantation into the mammary fat pads of nude mice. CGBC 01 and CGBC 02 are low tumorigenic breast cancer cell lines, established from Han-Chinese premenopausal breast cancer patients, which serve as in vitro models in studying the biological features of Asian breast cancer.
[New possibilities will open up in human gene therapy].
Portin, Petter
2016-01-01
Gene therapy is divided into somatic and germ line therapy. The latter involves reproductive cells or their stem cells, and its results are heritable. The effects of somatic gene therapy are generally restricted to a single tissue of the patient in question. Until now, all gene therapies in the world have belonged to the regime of somatic therapy, germ line therapy having been a theoretical possibility only. Very recently, however, a method has been developed which is applicable to germ line therapy as well. In addition to technical challenges, severe ethical problems are associated with germ line therapy, demanding opinion statement.
Dorr, Casey R; Remmel, Rory P; Muthusamy, Amutha; Fisher, James; Moriarity, Branden S; Yasuda, Kazuto; Wu, Baolin; Guan, Weihua; Schuetz, Erin G; Oetting, William S; Jacobson, Pamala A; Israni, Ajay K
2017-08-01
Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 engineering of the CYP3A5 *3 locus (rs776746) in human liver cell line HuH-7 ( CYP3A5 *3/*3 ) has led to three CYP3A5 *1 cell lines by deletion of the exon 3B splice junction or point mutation. Cell lines CYP3A5 *1/*3 sd (single deletion), CYP3A5 *1/*1 dd (double deletion), or CYP3A5 *1/*3 pm (point mutation) expressed the CYP3A5 *1 mRNA and had elevated CYP3A5 mRNA ( P < 0.0005 for all engineered cell lines) and protein expression compared with HuH-7. In metabolism assays, HuH-7 had less tacrolimus (all P < 0.05) or midazolam (MDZ) (all P < 0.005) disappearance than all engineered cell lines. HuH-7 had less 1-OH MDZ (all P < 0.0005) or 4-OH (all P < 0.005) production in metabolism assays than all bioengineered cell lines. We confirmed CYP3A5 metabolic activity with the CYP3A4 selective inhibitor CYP3CIDE. This is the first report of genomic CYP3A5 bioengineering in human cell lines with drug metabolism analysis. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.
Cai, Zhongli; Pignol, Jean-Philippe; Chan, Conrad; Reilly, Raymond M
2010-03-01
Our objective was to compare Monte Carlo N-particle (MCNP) self- and cross-doses from (111)In to the nucleus of breast cancer cells with doses calculated by reported analytic methods (Goddu et al. and Farragi et al.). A further objective was to determine whether the MCNP-predicted surviving fraction (SF) of breast cancer cells exposed in vitro to (111)In-labeled diethylenetriaminepentaacetic acid human epidermal growth factor ((111)In-DTPA-hEGF) could accurately predict the experimentally determined values. MCNP was used to simulate the transport of electrons emitted by (111)In from the cell surface, cytoplasm, or nucleus. The doses to the nucleus per decay (S values) were calculated for single cells, closely packed monolayer cells, or cell clusters. The cell and nucleus dimensions of 6 breast cancer cell lines were measured, and cell line-specific S values were calculated. For self-doses, MCNP S values of nucleus to nucleus agreed very well with those of Goddu et al. (ratio of S values using analytic methods vs. MCNP = 0.962-0.995) and Faraggi et al. (ratio = 1.011-1.024). MCNP S values of cytoplasm and cell surface to nucleus compared fairly well with the reported values (ratio = 0.662-1.534 for Goddu et al.; 0.944-1.129 for Faraggi et al.). For cross doses, the S values to the nucleus were independent of (111)In subcellular distribution but increased with cluster size. S values for monolayer cells were significantly different from those of single cells and cell clusters. The MCNP-predicted SF for monolayer MDA-MB-468, MDA-MB-231, and MCF-7 cells agreed with the experimental data (relative error of 3.1%, -1.0%, and 1.7%). The single-cell and cell cluster models were less accurate in predicting the SF. For MDA-MB-468 cells, relative error was 8.1% using the single-cell model and -54% to -67% using the cell cluster model. Individual cell-line dimensions had large effects on S values and were needed to estimate doses and SF accurately. MCNP simulation compared well with the reported analytic methods in the calculation of subcellular S values for single cells and cell clusters. Application of a monolayer model was most accurate in predicting the SF of breast cancer cells exposed in vitro to (111)In-DTPA-hEGF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sak, Ali, E-mail: ali.sak@uni-due.de; Stuschke, Martin; Groneberg, Michael
2012-10-01
Purpose: The use of molecular-targeted agents during radiotherapy of non-small-cell lung cancer (NSCLC) is a promising strategy to inhibit repopulation, thereby improving therapeutic outcome. We assessed the combined effectiveness of inhibiting Aurora B kinase and irradiation on human NSCLC cell lines in vitro. Methods and Materials: NSCLC cell lines were exposed to concentrations of AZD1152-hydroxyquinazoline pyrazol anilide (AZD1152-HQPA) inhibiting colony formation by 50% (IC50{sub clone}) in combination with single dose irradiation or different fractionation schedules using multiple 2-Gy fractions per day up to total doses of 4-40 Gy. The total irradiation dose required to control growth of 50% of themore » plaque monolayers (TCD50) was determined. Apoptosis, G2/M progression, and polyploidization were also analyzed. Results: TCD50 values after single dose irradiation were similar for the H460 and H661 cell lines with 11.4 {+-} 0.2 Gy and 10.7 {+-} 0.3 Gy, respectively. Fractionated irradiation using 3 Multiplication-Sign 2 Gy/day, 2 Multiplication-Sign 2 Gy/day, and 1 Multiplication-Sign 2 Gy/day schedules significantly increased TCD50 values for both cell lines grown as plaque monolayers with increasing radiation treatment time. This could be explained by a repopulation effect per day that counteracts 75 {+-} 8% and 27 {+-} 6% of the effect of a 2-Gy fraction in H460 and H661 cells, respectively. AZD1152-HQPA treatment concomitant to radiotherapy significantly decreased the daily repopulation effect (H460: 28 {+-} 5%, H661: 10 {+-} 4% of a 2-Gy fraction per day). Treatment with IC50{sub clone} AZD1152-HPQA did not induce apoptosis, prolong radiation-induced G2 arrest, or delay cell cycle progression before the spindle check point. However, polyploidization was detected, especially in cell lines without functional p53. Conclusions: Inhibition of Aurora B kinase with low AZD1152-HQPA concentrations during irradiation of NSCLC cell lines affects repopulation during radiotherapy. Thus, concomitant Aurora B kinase inhibition and irradiation may be a promising strategy for fast repopulating tumors, which are difficult to cure by dose escalation based on conventional fractionation.« less
Takahashi, Ryoko; Mabuchi, Seiji; Kawano, Mahiru; Sasano, Tomoyuki; Matsumoto, Yuri; Kuroda, Hiromasa; Kozasa, Katsumi; Hashimoto, Kae; Sawada, Kenjiro; Kimura, Tadashi
2016-01-01
Objective The objective of this study was to evaluate the antitumor effects of lurbinectedin as a single agent or in combination with existing anticancer agents for clear cell carcinoma (CCC) of the ovary, which is regarded as an aggressive, chemoresistant, histological subtype. Methods Using human ovarian CCC cell lines, the antitumor effects of lurbinectedin, SN-38, doxorubicin, cisplatin, and paclitaxel as single agents were assessed using the MTS assay. Then, the antitumor effects of combination therapies involving lurbinectedin and 1 of the other 4 agents were evaluated using isobologram analysis to examine whether these combinations displayed synergistic effects. The antitumor activity of each treatment was also examined using cisplatin-resistant and paclitaxel-resistant CCC sublines. Finally, we determined the effects of mTORC1 inhibition on the antitumor activity of lurbinectedin-based chemotherapy. Results Lurbinectedin exhibited significant antitumor activity toward chemosensitive and chemoresistant CCC cells in vitro. An examination of mouse CCC cell xenografts revealed that lurbinectedin significantly inhibits tumor growth. Among the tested combinations, lurbinectedin plus SN-38 resulted in a significant synergistic effect. This combination also had strong synergistic effects on both the cisplatin-resistant and paclitaxel-resistant CCC cell lines. Everolimus significantly enhanced the antitumor activity of lurbinectedin-based chemotherapies. Conclusions Lurbinectedin, a new agent that targets active transcription, exhibits antitumor activity in CCC when used as a single agent and has synergistic antitumor effects when combined with irinotecan. Our results indicate that lurbinectedin is a promising agent for treating ovarian CCC, both as a first-line treatment and as a salvage treatment for recurrent lesions that develop after platinum-based or paclitaxel treatment. PMID:26986199
Ludlow, Andrew T; Robin, Jerome D; Sayed, Mohammed; Litterst, Claudia M; Shelton, Dawne N; Shay, Jerry W; Wright, Woodring E
2014-07-01
The telomere repeat amplification protocol (TRAP) for the human reverse transcriptase, telomerase, is a PCR-based assay developed two decades ago and is still used for routine determination of telomerase activity. The TRAP assay can only reproducibly detect ∼ 2-fold differences and is only quantitative when compared to internal standards and reference cell lines. The method generally involves laborious radioactive gel electrophoresis and is not conducive to high-throughput analyzes. Recently droplet digital PCR (ddPCR) technologies have become available that allow for absolute quantification of input deoxyribonucleic acid molecules following PCR. We describe the reproducibility and provide several examples of a droplet digital TRAP (ddTRAP) assay for telomerase activity, including quantitation of telomerase activity in single cells, telomerase activity across several common telomerase positive cancer cells lines and in human primary peripheral blood mononuclear cells following mitogen stimulation. Adaptation of the TRAP assay to digital format allows accurate and reproducible quantification of the number of telomerase-extended products (i.e. telomerase activity; 57.8 ± 7.5) in a single HeLa cell. The tools developed in this study allow changes in telomerase enzyme activity to be monitored on a single cell basis and may have utility in designing novel therapeutic approaches that target telomerase. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
24 CFR 3285.307 - Perimeter support piers.
Code of Federal Regulations, 2010 CFR
2010-04-01
... support piers. (a) Piers required at mate-line supports, perimeter piers, and piers at exterior wall openings are permitted to be constructed of single open-cell or closed-cell concrete blocks, with nominal...
Establishment of optimized MDCK cell lines for reliable efflux transport studies.
Gartzke, Dominik; Fricker, Gert
2014-04-01
Madin-Darby canine kidney (MDCK) cells transfected with human MDR1 gene (MDCK-MDR1) encoding for P-glycoprotein (hPgp, ABCB1) are widely used for transport studies to identify drug candidates as substrates of this efflux protein. Therefore, it is necessary to rely on constant and comparable expression levels of Pgp to avoid false negative or positive results. We generated a cell line with homogenously high and stable expression of hPgp through sorting single clones from a MDCK-MDR1 cell pool using fluorescence-activated cell sorting (FACS). To obtain control cell lines for evaluation of cross-interactions with endogenous canine Pgp (cPgp) wild-type cells were sorted with a low expression pattern of cPgp in comparison with the MDCK-MDR1. Expression of other transporters was also characterized in both cell lines by quantitative real-time PCR and Western blot. Pgp function was investigated applying the Calcein-AM assay as well as bidirectional transport assays using (3) H-Digoxin, (3) H-Vinblastine, and (3) H-Quinidine as substrates. Generated MDCK-MDR1 cell lines showed high expression of hPgp. Control MDCK-WT cells were optimized in showing a comparable expression level of cPgp in comparison with MDCK-MDR1 cell lines. Generated cell lines showed higher and more selective Pgp transport compared with parental cells. Therefore, they provide a significant improvement in the performance of efflux studies yielding more reliable results. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Johnston, H S; McGadey, J; Thompson, G G; Moore, M R; Payne, A P
1983-01-01
The Harderian gland, its secretory duct and porphyrin content were examined in the mongolian gerbil (Meriones unguiculatus). The gland consisted of tubules lined by a single layer of epithelial cells and a myoepithelial network. The tubule cells were often binucleate and possessed lipid vacuoles in the apical half of the cell, a corona of granular endoplasmic reticulum surrounding the nucleus, and cytoplasmic 'slashes'. The latter are probably derived from dense membranous couplets and may be precursors of the lipid vacuoles. Holocrine and merocrine secretion was observed. Interstitial cells included plasma cells, mast cells and (predominantly) melanocytes which render the gland black. The gland was surrounded by a collagen capsule and an outer layer of highly attenuated (possibly endothelioid) cells. Within the gland, the secretory duct was lined by a single layer of normal tubule cells. Outside the gland, the duct enlarged to form an ampulla, from which clefts led off to deep crypts. The ampulla and clefts were lined by cells with small dense apical granules and stubby microvilli; some possessed lipid vacuoles. The crypts were lined by serous cells with active Golgi regions. At the duct opening, ampullary cells became squamous and goblet cells occurred. Geometric crystalloid deposits (with a layered structure of 7.6 nm periodicity) occurred at cleft-crypt junctions. Islets of extra-glandular ductal tissue were occasionally found within the gland. Porphyrins were detectable both by chemical assay and fluorescence microscopy. There was a trend for female glands to have a higher content than males. Solid intraluminal accretions of porphyrin and/or lipid were present. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 PMID:6654750
Pan-RAF and MEK vertical inhibition enhances therapeutic response in non-V600 BRAF mutant cells.
Molnár, Eszter; Rittler, Dominika; Baranyi, Marcell; Grusch, Michael; Berger, Walter; Döme, Balázs; Tóvári, József; Aigner, Clemens; Tímár, József; Garay, Tamás; Hegedűs, Balázs
2018-05-08
Currently, there are no available targeted therapy options for non-V600 BRAF mutated tumors. The aim of this study was to investigate the effects of RAF and MEK concurrent inhibition on tumor growth, migration, signaling and apoptosis induction in preclinical models of non-V600 BRAF mutant tumor cell lines. Six BRAF mutated human tumor cell lines CRL5885 (G466 V), WM3629 (D594G), WM3670 (G469E), MDAMB231 (G464 V), CRL5922 (L597 V) and A375 (V600E as control) were investigated. Pan-RAF inhibitor (sorafenib or AZ628) and MEK inhibitor (selumetinib) or their combination were used in in vitro viability, video microscopy, immunoblot, cell cycle and TUNEL assays. The in vivo effects of the drugs were assessed in an orthotopic NSG mouse breast cancer model. All cell lines showed a significant growth inhibition with synergism in the sorafenib/AZ628 and selumetinib combination. Combination treatment resulted in higher Erk1/2 inhibition and in increased induction of apoptosis when compared to single agent treatments. However, single selumetinib treatment could cause adverse therapeutic effects, like increased cell migration in certain cells, selumetinib and sorafenib combination treatment lowered migratory capacity in all the cell lines. Importantly, combination resulted in significantly increased tumor growth inhibition in orthotropic xenografts of MDAMB231 cells when compared to sorafenib - but not to selumetinib - treatment. Our data suggests that combined blocking of RAF and MEK may achieve increased therapeutic response in non-V600 BRAF mutant tumors.
Thani, Noor Azela Abdullah; Keshavarz, Sholeh; Lwaleed, Bashir A; Cooper, Alan J; Rooprai, Harcharan K
2014-11-01
Extending work with brain tumours, the hypothesis that micronutrients may usefully augment anticancer regimens, chokeberry (Aronia melanocarpa) extract was tested to establish whether it has pro-apoptotic effects in AsPC-1, an established human pancreatic cell line, and whether it potentiates cytotoxicity in combination with gemcitabine. Pancreatic cancer was chosen as a target, as its prognosis remains dismal despite advances in therapy. An MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay was used to assess the growth of the single pancreatic cancer cell line AsPC-1, alone and in comparison or combination with gemcitabine. This was backed up by flow cytometric DRAQ7 cell viability analysis. TUNEL assays were also carried out to investigate pro-apoptotic properties as responsible for the effects of chokeberry extract. Chokeberry extract alone and its IC75 value (1 µg/mL) in combination with gemcitabine were used to assess the growth of the AsPC-1 cell line. Gemcitabine in combination with chokeberry extract was more effective than gemcitabine alone. TUNEL assays showed apoptosis to be a mechanism occurring at 1 µg/mL concentration of chokeberry, with apoptotic bodies detected by both colourimetric and fluorometric methods. The implication of this study, using single cancer cell line, is that chemotherapy (at least with gemcitabine) might be usefully augmented with the use of micronutrients such as chokeberry extract. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
The Impact of Non-Lethal Single-Dose Radiation on Tumor Invasion and Cytoskeletal Properties.
Hohmann, Tim; Grabiec, Urszula; Vogel, Carolin; Ghadban, Chalid; Ensminger, Stephan; Bache, Matthias; Vordermark, Dirk; Dehghani, Faramarz
2017-09-18
Irradiation is the standard therapy for glioblastoma multiforme. Glioblastoma are highly resistant to radiotherapy and the underlying mechanisms remain unclear. To better understand the biological effects of irradiation on glioblastoma cells, we tested whether nonlethal irradiation influences the invasiveness, cell stiffness, and actin cytoskeleton properties. Two different glioblastoma cell lines were irradiated with 2 Gy and changes in mechanical and migratory properties and alterations in the actin structure were measured. The invasiveness of cell lines was determined using a co-culture model with organotypic hippocampal slice cultures. Irradiation led to changes in motility and a less invasive phenotype in both investigated cell lines that were associated with an increase in a "generalized stiffness" and changes in the actin structure. In this study we demonstrate that irradiation can induce changes in the actin cytoskeleton and motility, which probably results in reduced invasiveness of glioblastoma cell lines. Furthermore, "generalized stiffness" was shown to be a profound marker of the invasiveness of a tumor cell population in our model.
Developing global regression models for metabolite concentration prediction regardless of cell line.
André, Silvère; Lagresle, Sylvain; Da Sliva, Anthony; Heimendinger, Pierre; Hannas, Zahia; Calvosa, Éric; Duponchel, Ludovic
2017-11-01
Following the Process Analytical Technology (PAT) of the Food and Drug Administration (FDA), drug manufacturers are encouraged to develop innovative techniques in order to monitor and understand their processes in a better way. Within this framework, it has been demonstrated that Raman spectroscopy coupled with chemometric tools allow to predict critical parameters of mammalian cell cultures in-line and in real time. However, the development of robust and predictive regression models clearly requires many batches in order to take into account inter-batch variability and enhance models accuracy. Nevertheless, this heavy procedure has to be repeated for every new line of cell culture involving many resources. This is why we propose in this paper to develop global regression models taking into account different cell lines. Such models are finally transferred to any culture of the cells involved. This article first demonstrates the feasibility of developing regression models, not only for mammalian cell lines (CHO and HeLa cell cultures), but also for insect cell lines (Sf9 cell cultures). Then global regression models are generated, based on CHO cells, HeLa cells, and Sf9 cells. Finally, these models are evaluated considering a fourth cell line(HEK cells). In addition to suitable predictions of glucose and lactate concentration of HEK cell cultures, we expose that by adding a single HEK-cell culture to the calibration set, the predictive ability of the regression models are substantially increased. In this way, we demonstrate that using global models, it is not necessary to consider many cultures of a new cell line in order to obtain accurate models. Biotechnol. Bioeng. 2017;114: 2550-2559. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Stamps, A C; Davies, S C; Burman, J; O'Hare, M J
1994-06-15
A panel of eight conditionally immortal lines derived by infection of human breast epithelial cells with an amphotropic retrovirus transducing a ts mutant of SV40 large T-antigen was analyzed with respect to individual retroviral integration patterns. Each line contained multiple integration sites which were clonal and stable over extended passage. Similar integration patterns were observed between individual lines arising separately from the same stock of pre-immortal cells, suggesting a common progenitor. Retroviral integration analysis of pre-immortal cells at different stages of pre-crisis growth showed changes indicative of a progressive transition from polyclonality to clonality as the cells approached crisis. Each of the immortal lines contained a sub-set of the integration sites of their pre-immortal progenitors, with individual combinations and copy numbers of sites. Since all the cell lines appeared to originate from single foci in separate flasks, it is likely that each set arose from a common clone of pre-immortal cells as the result of separate genetic events. There was no evidence from this analysis to suggest that specific integration sites played any part either in the selection of pre-crisis clones or in the subsequent establishment of immortal lines.
Technologies for Single-Cell Isolation
Gross, Andre; Schoendube, Jonas; Zimmermann, Stefan; Steeb, Maximilian; Zengerle, Roland; Koltay, Peter
2015-01-01
The handling of single cells is of great importance in applications such as cell line development or single-cell analysis, e.g., for cancer research or for emerging diagnostic methods. This review provides an overview of technologies that are currently used or in development to isolate single cells for subsequent single-cell analysis. Data from a dedicated online market survey conducted to identify the most relevant technologies, presented here for the first time, shows that FACS (fluorescence activated cell sorting) respectively Flow cytometry (33% usage), laser microdissection (17%), manual cell picking (17%), random seeding/dilution (15%), and microfluidics/lab-on-a-chip devices (12%) are currently the most frequently used technologies. These most prominent technologies are described in detail and key performance factors are discussed. The survey data indicates a further increasing interest in single-cell isolation tools for the coming years. Additionally, a worldwide patent search was performed to screen for emerging technologies that might become relevant in the future. In total 179 patents were found, out of which 25 were evaluated by screening the title and abstract to be relevant to the field. PMID:26213926
Technologies for Single-Cell Isolation.
Gross, Andre; Schoendube, Jonas; Zimmermann, Stefan; Steeb, Maximilian; Zengerle, Roland; Koltay, Peter
2015-07-24
The handling of single cells is of great importance in applications such as cell line development or single-cell analysis, e.g., for cancer research or for emerging diagnostic methods. This review provides an overview of technologies that are currently used or in development to isolate single cells for subsequent single-cell analysis. Data from a dedicated online market survey conducted to identify the most relevant technologies, presented here for the first time, shows that FACS (fluorescence activated cell sorting) respectively Flow cytometry (33% usage), laser microdissection (17%), manual cell picking (17%), random seeding/dilution (15%), and microfluidics/lab-on-a-chip devices (12%) are currently the most frequently used technologies. These most prominent technologies are described in detail and key performance factors are discussed. The survey data indicates a further increasing interest in single-cell isolation tools for the coming years. Additionally, a worldwide patent search was performed to screen for emerging technologies that might become relevant in the future. In total 179 patents were found, out of which 25 were evaluated by screening the title and abstract to be relevant to the field.
Zhang, Lin; Inniss, Mara C; Han, Shu; Moffat, Mark; Jones, Heather; Zhang, Baohong; Cox, Wendy L; Rance, James R; Young, Robert J
2015-01-01
To meet product quality and cost parameters for therapeutic monoclonal antibody (mAb) production, cell lines are required to have excellent growth, stability, and productivity characteristics. In particular, cell line generation stability is critical to the success of a program, especially where high cell line generation numbers are required for large in-market supply. However, a typical process for developing such cell lines is laborious, lengthy, and costly. In this study, we applied a FLP/FRT recombinase-mediated cassette exchange (RMCE) system to build a site-specific integration (SSI) system for mAb expression in the commercially relevant CHOK1SV cell line. Using a vector with a FRT-flanked mAb expression cassette, we generated a clonal cell line with good productivity, long-term production stability, and low mAb gene-copy number indicating the vector was located in a 'hot-spot.' A SSI host cell line was made by removing the mAb genes from the 'hot-spot' by RMCE, creating a 'landing pad' containing two recombination cassettes that allow targeting of one or two copies of recombinant genes. Cell lines made from this host exhibited excellent growth and productivity profiles, and stability for at least 100 generations in the absence of selection agents. Importantly, while clones containing two copies had higher productivity than single copy clones, both were stable over many generations. Taken together, this study suggests the use of FLP-based RMCE to develop SSI host cells for mAb production in CHOK1SV offers significant savings in both resources and overall cell line development time, leading to a shortened 'time-to-clinic' for therapeutic mAbs. © 2015 American Institute of Chemical Engineers.
Kashuba, Corinna M.; Benson, James D.; Critser, John K.
2014-01-01
In Part I, we documented differences in cryopreservation success measured by membrane integrity in four mouse embryonic stem cell (mESC) lines from different genetic backgrounds (BALB/c, CBA, FVB, and 129R1), and we demonstrated a potential biophysical basis for these differences through a comparative study characterizing the membrane permeability characteristics and osmotic tolerance limits of each cell line. Here we use these values to predict optimal cryoprotectants, cooling rates, warming rates, and plunge temperatures. We subsequently verified these predictions experimentally for their effects on post-thaw recovery. From this study, we determined that a cryopreservation protocol utilizing 1 M propylene glycol, a cooling rate of 1 °C/minute, and plunging into liquid nitrogen at −41 °C, combined with subsequent warming in a 22 °C water bath with agitation, significantly improved post-thaw recovery for three of the four mESC lines, and did not diminish post-thaw recovery for our single exception. It is proposed that this protocol can be successfully applied to most mESC lines beyond those included within this study once the effect of propylene glycol on mESC gene expression, growth characteristics, and germ-line transmission has been determined. Mouse ESC lines with poor survival using current standard cryopreservation protocols or our proposed protocol can be optimized on a case-by-case basis using the method we have outlined over two papers. For our single exception, the CBA cell line, a cooling rate of 5 °C/minute in the presence of 1.0 M dimethyl sulfoxide or 1.0 M propylene glycol, combined with plunge temperature of −80 °C was optimal. PMID:24560712
Kang, HyunJun; Minder, Petra; Park, Mi Ae; Mesquitta, Walatta-Tseyon; Torbett, Bruce E; Slukvin, Igor I
2015-12-15
The chemokine (C-C motif) receptor 5 (CCR5) serves as an HIV-1 co-receptor and is essential for cell infection with CCR5-tropic viruses. Loss of functional receptor protects against HIV infection. Here, we report the successful targeting of CCR5 in GFP-marked human induced pluripotent stem cells (iPSCs) using CRISPR/Cas9 with single and dual guide RNAs (gRNAs). Following CRISPER/Cas9-mediated gene editing using a single gRNA, 12.5% of cell colonies demonstrated CCR5 editing, of which 22.2% showed biallelic editing as determined by a Surveyor nuclease assay and direct sequencing. The use of dual gRNAs significantly increased the efficacy of CCR5 editing to 27% with a biallelic gene alteration frequency of 41%. To ensure the homogeneity of gene editing within cells, we used single cell sorting to establish clonal iPSC lines. Single cell-derived iPSC lines with homozygous CCR5 mutations displayed the typical characteristics of pluripotent stem cells and differentiated efficiently into hematopoietic cells, including macrophages. Although macrophages from both wild-type and CCR5-edited iPSCs supported CXCR4-tropic virus replication, macrophages from CCR5-edited iPSCs were uniquely resistant to CCR5-tropic virus challenge. This study demonstrates the feasibility of applying iPSC technology for the study of the role of CCR5 in HIV infection in vitro, and generation of HIV-resistant cells for potential therapeutic applications.
Characterization of stem-like cells in a new astroblastoma cell line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coban, Esra Aydemir; Kasikci, Ezgi; Karatas, Omer Faruk
Cell lines established from tumors are the most commonly used models in cancer research, and their use in recent years has enabled a greater understanding of the biology of cancer and the means to develop effective treatment strategies. Astroblastomas are uncommon neuroepithelial tumors of glial origin, predominantly affecting young people, mainly teenagers and children, predominantly females. To date, only a single study has reported that astroblastomas contain a large number of neural stem-like cells, which had only a partial proliferation capacity and differentiation. Our objective was to establish an astroblastoma cell line to investigate the presence of astroblastic cells andmore » cancer stem-like cells. The migratory and invasion abilities of the cells were quantified with invasion and migration assays and compared to a glioblastoma cell line. The presence of stem cells was detected with surface-marker analysis by using flow cytometry, and measuring the differentiation ability with a differentiation assay and the self-renewal capacity with a sphere-forming assay. These characteristics may determine whether this novel cell line is a model for astroblastomas that may have stem-cell characteristics. With this novel cell line, scientists can investigate the molecular pathways underlying astroblastomas and develop new therapeutic strategies for patients with these tumors. - Highlights: • An establishment of a novel astroblastoma cell line was proposed. • The presence of astroblastic cells and cancer stem-like cells was investigated. • The molecular pathways underlying astroblastomas may be investigated. • New therapeutic strategies for patients with astroblastoma may be developed.« less
Polymer encapsulated dopaminergic cell lines as "alternative neural grafts".
Jaeger, C B; Greene, L A; Tresco, P A; Winn, S R; Aebischer, P
1990-01-01
Our preliminary findings (Jaeger et al., 1988; Aebischer et al., 1989; Tresco et al., 1989) and the studies in progress show that encapsulated dopaminergic cell lines survive enclosure within a semi-permeable membrane. The encapsulated cells remained viable for extended time periods when maintained in vitro. Moreover, encapsulated PC12 and T28 cells have the potential to survive following their implantation into the forebrain of rats. Cell lines are essentially "immortal" because they continue to divide indefinitely. This property allows perpetual "self-renewal" of a given cell population. However, the capacity of continuous uncontrolled cell division may also lead to tumor formation. This in fact is the case for unencapsulated PC12 cell implants placed into the brain of young Sprague Dawley rats (Jaeger, 1985). Cell line encapsulation has the potential to prevent tumor growth (Jaeger et al., 1988). Survival for 6 months in vitro suggests that encapsulation does not preclude long-term maintenance of an homogeneous cell line like PC12 cells. The presence of mitotic figures in the capsules further supports the likelihood of propagation and self renewal of the encapsulated population. Another significant property of cell lines is that they consist of a single, genetically homogeneous cell type. They do not require specific synaptic interactions for their survival. In the case of PC12 and T28 lines, the cells synthesize and release neurotransmitters. Our data show that PC12 and T28 cells continue to release dopamine spontaneously and to express specific transmitters and enzymes following encapsulation. Thus, cell lines such as these may constitute relatively simple "neural implants" exerting their function via humoral release.(ABSTRACT TRUNCATED AT 250 WORDS)
Cartwright, Joseph F; Anderson, Karin; Longworth, Joseph; Lobb, Philip; James, David C
2018-06-01
High-fidelity replication of biologic-encoding recombinant DNA sequences by engineered mammalian cell cultures is an essential pre-requisite for the development of stable cell lines for the production of biotherapeutics. However, immortalized mammalian cells characteristically exhibit an increased point mutation frequency compared to mammalian cells in vivo, both across their genomes and at specific loci (hotspots). Thus unforeseen mutations in recombinant DNA sequences can arise and be maintained within producer cell populations. These may affect both the stability of recombinant gene expression and give rise to protein sequence variants with variable bioactivity and immunogenicity. Rigorous quantitative assessment of recombinant DNA integrity should therefore form part of the cell line development process and be an essential quality assurance metric for instances where synthetic/multi-component assemblies are utilized to engineer mammalian cells, such as the assessment of recombinant DNA fidelity or the mutability of single-site integration target loci. Based on Pacific Biosciences (Menlo Park, CA) single molecule real-time (SMRT™) circular consensus sequencing (CCS) technology we developed a rDNA sequence analysis tool to process the multi-parallel sequencing of ∼40,000 single recombinant DNA molecules. After statistical filtering of raw sequencing data, we show that this analytical method is capable of detecting single point mutations in rDNA to a minimum single mutation frequency of 0.0042% (<1/24,000 bases). Using a stable CHO transfectant pool harboring a randomly integrated 5 kB plasmid construct encoding GFP we found that 28% of recombinant plasmid copies contained at least one low frequency (<0.3%) point mutation. These mutations were predominantly found in GC base pairs (85%) and that there was no positional bias in mutation across the plasmid sequence. There was no discernable difference between the mutation frequencies of coding and non-coding DNA. The putative ratio of non-synonymous and synonymous changes within the open reading frames (ORFs) in the plasmid sequence indicates that natural selection does not impact upon the prevalence of these mutations. Here we have demonstrated the abundance of mutations that fall outside of the reported range of detection of next generation sequencing (NGS) and second generation sequencing (SGS) platforms, providing a methodology capable of being utilized in cell line development platforms to identify the fidelity of recombinant genes throughout the production process. © 2018 Wiley Periodicals, Inc.
Liang, Qiangbing; Yang, Baodong; Zhang, Tiancai; Wang, Junmin
2010-06-21
By monitoring the transmission of probe laser beam (also served as coupling laser beam) which is locked to a cycling hyperfine transition of cesium D(2) line, while pumping laser is scanned across cesium D(1) or D(2) lines, the single-resonance optical pumping (SROP) spectra are obtained with atomic vapor cell. The SROP spectra indicate the variation of the zero-velocity atoms population of one hyperfine fold of ground state, which is optically pumped into another hyperfine fold of ground state by pumping laser. With the virtue of Doppler-free linewidth, high signal-to-noise ratio (SNR), flat background and elimination of crossover resonance lines (CRLs), the SROP spectra with atomic vapor cell around room temperature can be employed to measure dressed-state splitting of ground state, which is normally detected with laser-cooled atomic sample only, even if the dressed-state splitting is much smaller than the Doppler-broaden linewidth at room temperature.
The transcriptional diversity of 25 Drosophila cell lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherbas, Lucy; Willingham, Aarron; Zhang, Dayu
2010-12-22
Drosophila melanogaster cell lines are important resources for cell biologists. In this article, we catalog the expression of exons, genes, and unannotated transcriptional signals for 25 lines. Unannotated transcription is substantial (typically 19% of euchromatic signal). Conservatively, we identify 1405 novel transcribed regions; 684 of these appear to be new exons of neighboring, often distant, genes. Sixty-four percent of genes are expressed detectably in at least one line, but only 21% are detected in all lines. Each cell line expresses, on average, 5885 genes, including a common set of 3109. Expression levels vary over several orders of magnitude. Major signalingmore » pathways are well represented: most differentiation pathways are ‘‘off’’ and survival/growth pathways ‘‘on.’’ Roughly 50% of the genes expressed by each line are not part of the common set, and these show considerable individuality. Thirty-one percent are expressed at a higher level in at least one cell line than in any single developmental stage, suggesting that each line is enriched for genes characteristic of small sets of cells. Most remarkable is that imaginal disc-derived lines can generally be assigned, on the basis of expression, to small territories within developing discs. These mappings reveal unexpected stability of even fine-grained spatial determination. No two cell lines show identical transcription factor expression. We conclude that each line has retained features of an individual founder cell superimposed on a common ‘‘cell line‘‘ gene expression pattern. We report the transcriptional profiles of 25 Drosophila melanogaster cell lines, principally by whole-genome tiling microarray analysis of total RNA, carried out as part of the modENCODE project. The data produced in this study add to our knowledge of the cell lines and of the Drosophila transcriptome in several ways. We summarize the expression of previously annotated genes in each of the 25 lines with emphasis on what those patterns reveal about the origins of the lines and the stability of spatial expression patterns. In addition, we offer an initial analysis of previously unannotated transcripts in the cell lines.« less
Droplet Microfluidic Platform for the Determination of Single-Cell Lactate Release.
Mongersun, Amy; Smeenk, Ian; Pratx, Guillem; Asuri, Prashanth; Abbyad, Paul
2016-03-15
Cancer cells release high levels of lactate that has been correlated to increased metastasis and tumor recurrence. Single-cell measurements of lactate release can identify malignant cells and help decipher metabolic cancer pathways. We present here a novel droplet microfluidic method that allows the fast and quantitative determination of lactate release in many single cells. Using passive forces, droplets encapsulated cells are positioned in an array. The single-cell lactate release rate is determined from the increase in droplet fluorescence as the lactate is enzymatically converted to a fluorescent product. The method is used to measure the cell-to-cell variance of lactate release in K562 leukemia and U87 glioblastoma cancer cell lines and under the chemical inhibition of lactate efflux. The technique can be used in the study of cancer biology, but more broadly in cell biology, to capture the full range of stochastic variations in glycolysis activity in heterogeneous cell populations in a repeatable and high-throughput manner.
Functional characterization of human pluripotent stem cell-derived arterial endothelial cells.
Zhang, Jue; Chu, Li-Fang; Hou, Zhonggang; Schwartz, Michael P; Hacker, Timothy; Vickerman, Vernella; Swanson, Scott; Leng, Ning; Nguyen, Bao Kim; Elwell, Angela; Bolin, Jennifer; Brown, Matthew E; Stewart, Ron; Burlingham, William J; Murphy, William L; Thomson, James A
2017-07-25
Here, we report the derivation of arterial endothelial cells from human pluripotent stem cells that exhibit arterial-specific functions in vitro and in vivo. We combine single-cell RNA sequencing of embryonic mouse endothelial cells with an EFNB2-tdTomato/EPHB4-EGFP dual reporter human embryonic stem cell line to identify factors that regulate arterial endothelial cell specification. The resulting xeno-free protocol produces cells with gene expression profiles, oxygen consumption rates, nitric oxide production levels, shear stress responses, and TNFα-induced leukocyte adhesion rates characteristic of arterial endothelial cells. Arterial endothelial cells were robustly generated from multiple human embryonic and induced pluripotent stem cell lines and have potential applications for both disease modeling and regenerative medicine.
V-band electronically reconfigurable metamaterial
NASA Astrophysics Data System (ADS)
Radisic, Vesna; Hester, Jimmy G.; Nguyen, Vinh N.; Caira, Nicholas W.; DiMarzio, Donald; Hilgeman, Theodore; Larouche, Stéphane; Kaneshiro, Eric; Gutierrez-Aitken, Augusto
2017-04-01
In this work, we report on a reconfigurable V-band metamaterial fabricated using an InP heterojunction bipolar transistor production process. As designed and fabricated, the implementation uses complementary split ring resonators (cSRRs) and Schottky diodes in both single unit cell and three unit cell monolithic microwave integrated circuits. Each unit cell has two diodes embedded within the gaps of the cSRRs. Reconfigurability is achieved by applying an external bias that turns the diodes on and off, which effectively controls the resonant property of the structure. In order to measure the metamaterial properties, the unit cells are fed and followed by transmission lines. Measured data show good agreement with simulations and demonstrate that the metamaterial structure exhibits resonance at around 65 GHz that can be switched on and off. The three-unit cell transmission line metamaterial shows a deeper resonance and a larger phase change than a single cell, as expected. These are the first reported reconfigurable metamaterials operating at the V-band using the InP high speed device fabrication process.
Effect of Adipose-Derived Stem Cells on Head and Neck Squamous Cell Carcinoma.
Danan, Deepa; Lehman, Christine E; Mendez, Rolando E; Langford, Brian; Koors, Paul D; Dougherty, Michael I; Peirce, Shayn M; Gioeli, Daniel G; Jameson, Mark J
2018-05-01
Objective Patients with head and neck squamous cell carcinoma (HNSCC) have significant wound-healing difficulties. While adipose-derived stem cells (ASCs) facilitate wound healing, ASCs may accelerate recurrence when applied to a cancer field. This study evaluates the impact of ASCs on HNSCC cell lines in vitro and in vivo. Study Design In vitro experiments using HNSCC cell lines and in vivo mouse experiments. Setting Basic science laboratory. Subjects and Methods Impact of ASCs on in vitro proliferation, survival, and migration was assessed using 8 HNSCC cell lines. One cell line was used in a mouse orthotopic xenograft model to evaluate in vivo tumor growth in the presence and absence of ASCs. Results Addition of ASCs did not increase the number of HNSCC cells. In clonogenic assays to assess cell survival, addition of ASCs increased colony formation only in SCC9 cells (maximal effect 2.3-fold, P < .02) but not in other HNSCC cell lines. In scratch assays to assess migration, fluorescently tagged ASCs did not migrate appreciably and did not increase the rate of wound closure in HNSCC cell lines. Addition of ASCs to HNSCC xenografts did not increase tumor growth. Conclusion Using multiple in vitro and in vivo approaches, ASCs did not significantly stimulate HNSCC cell proliferation or migration and increased survival in only a single cell line. These findings preliminarily suggest that the use of ASCs may be safe in the setting of HNSCC but that further investigation on the therapeutic use of ASCs in the setting of HNSCC is needed.
Density-based clustering analyses to identify heterogeneous cellular sub-populations
NASA Astrophysics Data System (ADS)
Heaster, Tiffany M.; Walsh, Alex J.; Landman, Bennett A.; Skala, Melissa C.
2017-02-01
Autofluorescence microscopy of NAD(P)H and FAD provides functional metabolic measurements at the single-cell level. Here, density-based clustering algorithms were applied to metabolic autofluorescence measurements to identify cell-level heterogeneity in tumor cell cultures. The performance of the density-based clustering algorithm, DENCLUE, was tested in samples with known heterogeneity (co-cultures of breast carcinoma lines). DENCLUE was found to better represent the distribution of cell clusters compared to Gaussian mixture modeling. Overall, DENCLUE is a promising approach to quantify cell-level heterogeneity, and could be used to understand single cell population dynamics in cancer progression and treatment.
Valentini, Federica; Mari, Emanuela; Zicari, Alessandra; Calcaterra, Andrea; Talamo, Maurizio; Scioli, Maria Giovanna; Orlandi, Augusto; Mardente, Stefania
2018-04-28
The in vitro biocompatibility of Graphene Oxide (GO) nanosheets, which were obtained by the electrochemical exfoliation of graphite electrodes in an electrolytic bath containing salts, was compared with the pristine Single Wall Carbon Nanotubes (p-SWCNTs) under the same experimental conditions in different human cell lines. The cells were treated with different concentrations of GO and SWCNTs for up to 48 h. GO did not induce any significant morphological or functional modifications (demonstrating a high biocompatibility), while SWNCTs were toxic at any concentration used after a few hours of treatment. The cell viability or cytotoxicity were detected by the trypan blue assay and the lactate dehydrogenase LDH quantitative enzymatic test. The Confocal Laser Scanning Microscopy (CLSM) and transmission electron microscopy (TEM) analysis demonstrated the uptake and internalization of GO sheets into cells, which was localized mainly in the cytoplasm. Different results were observed in the same cell lines treated with p-SWCNTs. TEM and CLSM (Confocal Laser Scanning Microscopy) showed that the p-SWCNTs induced vacuolization in the cytoplasm, disruption of cellular architecture and damage to the nuclei. The most important result of this study is our finding of a higher GO biocompatibility compared to the p-SWCNTs in the same cell lines. This means that GO nanosheets, which are obtained by the electrochemical exfoliation of a graphite-based electrode (carried out in saline solutions or other physiological working media) could represent an eligible nanocarrier for drug delivery, gene transfection and molecular cell imaging tests.
Ghasemi, Farhad; Black, Morgan; Sun, Ren X; Vizeacoumar, Frederick; Pinto, Nicole; Ruicci, Kara M; Yoo, John; Fung, Kevin; MacNeil, Danielle; Palma, David A; Winquist, Eric; Mymryk, Joe S; Ailles, Laurie A; Datti, Alessandro; Barrett, John W; Boutros, Paul C; Nichols, Anthony C
2018-05-25
Head and neck squamous cell carcinoma (HNSCC) is a common cancer diagnosis worldwide. Despite advances in treatment, HNSCC has very poor survival outcomes, emphasizing an ongoing need for development of improved therapeutic options. The distinct tumor characteristics of human papillomavirus (HPV)-positive vs . HPV-negative disease necessitate development of treatment strategies tailored to tumor HPV-status. High-throughput robotic screening of 1,433 biologically and pharmacologically relevant compounds at a single dose (4 μM) was carried out against 6 HPV-positive and 20 HPV-negative HNSCC cell lines for preliminary identification of therapeutically relevant compounds. Statistical analysis was further carried out to differentiate compounds with preferential activity against cell lines stratified by the HPV-status. These analyses yielded 57 compounds with higher activity in HPV-negative cell lines, and 34 with higher-activity in HPV-positive ones. Multi-point dose-response curves were generated for six of these compounds (Ryuvidine, MK-1775, SNS-032, Flavopiridol, AZD-7762 and ARP-101), confirming Ryuvidine to have preferential potency against HPV-negative cell lines, and MK-1775 to have preferential potency against HPV-positive cell lines. These data comprise a valuable resource for further investigation of compounds with therapeutic potential in the HNSCC.
NASA Astrophysics Data System (ADS)
Chen, Yu-Chih; Cheng, Yu-Heng; Ingram, Patrick; Yoon, Euisik
2016-06-01
Proteolytic degradation of the extracellular matrix (ECM) is critical in cancer invasion, and recent work suggests that heterogeneous cancer populations cooperate in this process. Despite the importance of cell heterogeneity, conventional proteolytic assays measure average activity, requiring thousands of cells and providing limited information about heterogeneity and dynamics. Here, we developed a microfluidic platform that provides high-efficiency cell loading and simple valveless isolation, so the proteolytic activity of a small sample (10-100 cells) can be easily characterized. Combined with a single cell derived (clonal) sphere formation platform, we have successfully demonstrated the importance of microenvironmental cues for proteolytic activity and also investigated the difference between clones. Furthermore, the platform allows monitoring single cells at multiple time points, unveiling different cancer cell line dynamics in proteolytic activity. The presented tool facilitates single cell proteolytic analysis using small samples, and our findings illuminate the heterogeneous and dynamic nature of proteolytic activity.
Wagner, Vivian P.; Martins, Marco A.T.; Martins, Manoela D.; Warner, Kristy A.; Webber, Liana P.; Squarize, Cristiane H.; Nör, Jacques E.; Castilho, Rogerio M.
2016-01-01
Patients with mucoepidermoid carcinoma (MEC) experience low survival rates and high morbidity following treatment, yet the intrinsic resistance of MEC cells to ionizing radiation (IR) and the mechanisms underlying acquired resistance remain unexplored. Herein, we demonstrated that low doses of IR intrinsically activated NFκB in resistant MEC cell lines. Moreover, resistance was significantly enhanced in IR-sensitive cell lines when NFκB pathway was stimulated. Pharmacological inhibition of the IKK-β/IκBα/NFκB axis, using a single dose of FDA-approved Emetine, led to a striking sensitization of MEC cells to IR and a reduction in cancer stem cells. We achieved a major step towards better understanding the basic mechanisms involved in IR-adaptive resistance in MEC cell lines and how to efficiently overcome this critical problem. PMID:27682876
Stamatkin, Christopher; Ratermann, Kelley L; Overley, Colleen W; Black, Esther P
2015-01-01
Deregulation of the phosphatidylinositol 3-kinase (PI3K) pathway is central to many human malignancies while normal cell proliferation requires pathway functionality. Although inhibitors of the PI3K pathway are in clinical trials or approved for therapy, an understanding of the functional activities of pathway members in specific malignancies is needed. In lung cancers, the PI3K pathway is often aberrantly activated by mutation of genes encoding EGFR, KRAS, and PIK3CA proteins. We sought to understand whether class IA PI3K enzymes represent rational therapeutic targets in cells of non-squamous lung cancers by exploring pharmacological and genetic inhibitors of PI3K enzymes in a non-small cell lung cancer (NSCLC) cell line system. We found that class IA PI3K enzymes were expressed in all cell lines tested, but treatment of NSCLC lines with isoform-selective inhibitors (A66, TGX-221, CAL-101 and IC488743) had little effect on cell proliferation or prolonged inhibition of AKT activity. Inhibitory pharmacokinetic and pharmacodynamic responses were observed using these agents at non-isoform selective concentrations and with the pan-class I (ZSTK474) agent. Response to pharmacological inhibition suggested that PI3K isoforms may functionally compensate for one another thus limiting efficacy of single agent treatment. However, combination of ZSTK474 and an EGFR inhibitor (erlotinib) in NSCLC resistant to each single agent reduced cellular proliferation. These studies uncovered unanticipated cellular responses to PI3K isoform inhibition in NSCLC that does not correlate with PI3K mutations, suggesting that patients bearing tumors with wildtype EGFR and KRAS are unlikely to benefit from inhibitors of single isoforms but may respond to pan-isoform inhibition.
CARDIAC-LIKE OSCILLATION IN LIVER STEM CELLS INDUCE THEIR ACQUISITION OF CARDIAC PHENOTYPE
We examined in a cardiac microenvironment the plasticity of a liver stem cell line (WB F344) generated from a cloned, single, non-parenchymal epithelial cell from a normal adult male rat. Our previous studies suggested that WB F344 cells acquire a cardiac phenotype in the absenc...
Gaudio, E; Tarantelli, C; Kwee, I; Barassi, C; Bernasconi, E; Rinaldi, A; Ponzoni, M; Cascione, L; Targa, A; Stathis, A; Goodstal, S; Zucca, E; Bertoni, F
2016-06-01
Lymphomas are among the most common human cancers and represent the cause of death for still too many patients. The B-cell receptor with its downstream signaling pathways represents an important therapeutic target for B-cell lymphomas. Here, we evaluated the activity of the MEK1/2 inhibitor pimasertib as single agent and in combination with other targeted drugs in lymphoma preclinical models. Cell lines derived mature B-cell lymphomas were exposed to increasing doses of pimasertib alone. Immunoblotting and gene expression profiling were performed. Combination of pimasertib with idelalisib or ibrutinib was assessed. Pimasertib as single agent exerted a dose-dependent antitumor activity across a panel of 23 lymphoma cell lines, although at concentrations higher than reported for solid tumors. Strong synergism was observed with pimasertib combined with the PI3K inhibitor idelalisib and the BTK inhibitor ibrutinib in cell lines derived from diffuse large B-cell lymphoma (DLBCL) and mantle cell lymphoma. The data were confirmed in an in vivo experiment treating DLBCL xenografts with pimasertib and ibrutinib. The data presented here provide the basis for further investigation of regimens including pimasertib in relapsed and refractory lymphomas. © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Yamamizu, Kohei; Sharov, Alexei A; Piao, Yulan; Amano, Misa; Yu, Hong; Nishiyama, Akira; Dudekula, Dawood B; Schlessinger, David; Ko, Minoru S H
2016-05-06
Mouse embryonic stem cells (ESCs) can differentiate into a wide range - and possibly all cell types in vitro, and thus provide an ideal platform to study systematically the action of transcription factors (TFs) in cell differentiation. Previously, we have generated and analyzed 137 TF-inducible mouse ESC lines. As an extension of this "NIA Mouse ESC Bank," we generated and characterized 48 additional mouse ESC lines, in which single TFs in each line could be induced in a doxycycline-controllable manner. Together, with the previous ESC lines, the bank now comprises 185 TF-manipulable ESC lines (>10% of all mouse TFs). Global gene expression (transcriptome) profiling revealed that the induction of individual TFs in mouse ESCs for 48 hours shifts their transcriptomes toward specific differentiation fates (e.g., neural lineages by Myt1 Isl1, and St18; mesodermal lineages by Pitx1, Pitx2, Barhl2, and Lmx1a; white blood cells by Myb, Etv2, and Tbx6, and ovary by Pitx1, Pitx2, and Dmrtc2). These data also provide and lists of inferred target genes of each TF and possible functions of these TFs. The results demonstrate the utility of mouse ESC lines and their transcriptome data for understanding the mechanism of cell differentiation and the function of TFs.
Kagami, Yoshitoyo; Uchiyama, Susumu; Kato, Harumi; Okada, Yasutaka; Seto, Masao; Kinoshita, Tomohiro
2017-07-05
Growing adult T-cell leukemia/lymphoma (ATLL) cells in vitro is difficult. Here, we examined the effects of static electricity in the culture medium on the proliferation of ATLL cells. Six out of 10 ATLL cells did not proliferate in vitro and thus had to be cultured in a medium containing negatively charged polymers. In the presence of poly-γ-glutamic acid (PGA) or chondroitin sulfate (CDR), cell lines (HKOX3-PGA, HKOX3-CDR) were established from the same single ATLL case using interleukin (IL)-2, IL-4, and feeder cells expressing OX40L (OX40L + HK). Dextran sulfate inhibited growth in both HKOX3 cell lines. Both PGA and OX40L + HK were indispensable for HKOX3-PGA growth, but HKOX3-CDR could proliferate in the presence of CDR or OX40L + HK alone. Thus, the specific action of each negatively charged polymer promoted the growth of specific ATLL cells in vitro.
NASA Technical Reports Server (NTRS)
Stowe, R. P.; Cubbage, M. L.; Sams, C. F.; Pierson, D. L.; Barrett, A. D.
1998-01-01
A rapid and highly sensitive fluorescent in situ hybridization (FISH) assay was developed to detect Epstein Barr virus (EBV)-infected cells in peripheral blood. Multiple fluorescein-labeled antisense oligonucleotide probes were designed to hybridize to the EBER1 transcript, which is highly expressed in latently infected cells. After a rapid (30 min) hybridization, the cells were analyzed by flow cytometry. EBER1 was detected in several positive control cell lines that have variable numbers of EBV genome copies. No EBER1 was detected in two known EBV-negative cell lines. Northern blot analyses confirmed the presence and quantity of EBER1 transcripts in each cell line. This method was used to quantify the number of EBV-infected cells in peripheral blood from a patient with chronic mononucleosis. These results indicate that EBV-infected cells can be detected at the single cell level, and that this assay can be used to quantify the number of EBV-infected cells in clinical samples.
Griegel, S; Hong, C; Frötschl, R; Hülser, D F; Greger, V; Horsthemke, B; Rajewsky, M F
1990-07-15
Retinoblastoma (RB), an intraocular childhood tumor occurring in a hereditary (mostly bilateral) or non-hereditary (unilateral) form, is associated with the inactivation of both alleles of a putative tumor suppressor gene (RB-I) located on chromosome 13q14. Both the process of RB development and the biological characteristics of RB cells are as yet poorly understood. We have established 7 new RBL lines (RBL13, RBL14, RBL18 and RBL30, derived from unilateral RB; and RBL7, RBL15 and RBL20, derived from bilateral RB). Southern blot analyses of restriction fragment length polymorphisms in DNA samples from 6 cell lines revealed loss of constitutional heterozygosity at one or several polymorphic loci on chromosome 13 in 4 cases. Gross deletions involving the RB-I locus and amplification of the N-myc gene were not detected in any of the RBL lines. The phenotypic properties of the RBL lines were analyzed in comparison with cells from the original RB tumors, with 4 RB lines established by others (RB383, RB355, RB247C3 and Y79) and with the adenovirus-EIA-transformed human retinoblast line HER-Xhol-CC2. It was found that RB tumors consist of phenotypically heterogeneous cell subpopulations with varying nutrient requirements and differentiation potential in vitro. All cell lines showed the typical characteristics of established ("immortalized") cells. In some cases, cells from original RB tumors or cell lines were able to form colonies when cell aggregates of 2-10 cells were suspended in semi-solid agar medium; however, anchorage-independent colonies never developed from single cells. Cell lines RBL13, RBL18, RB247C3, RB355, RB383 and Y79 were tested for invasion into embryonic chick heart fragments in vitro and found to be non-invasive. None of the RBL or RB lines were tumorigenic in nu/nu (T-) mice. Y79 cells (propagated in culture for many years) exhibited properties distinctly different from those of the other cell lines, and thus cannot be considered phenotypically representative of RB cells.
Rolland, J.B.; Bouchard, D.; Coll, J.; Winton, J.R.
2005-01-01
Infectious salmon anemia (ISA) is a severe disease primarily affecting commercially farmed Atlantic salmon (Salmo salar) in seawater. The disease has been reported in portions of Canada, the United Kingdom, the Faroe Islands, and the United States. Infectious salmon anemia virus (ISAV), the causative agent of ISA, has also been isolated from several asymptomatic marine and salmonid fish species. Diagnostic assays for the detection of ISAV include virus isolation in cell culture, a reverse transcriptase-PCR, an enzyme-linked immunosorbent assay, and an indirect fluorescent antibody test. Virus isolation is considered the gold standard, and 5 salmonid cell lines are known to support growth of ISAV. In this study, the relative performance of the salmon head kidney 1 (SHK-1), Atlantic salmon kidney (ASK), and CHSE-214 cell lines in detecting ISAV was evaluated using samples from both experimentally and naturally infected Atlantic salmon. Interlaboratory comparisons were conducted using a quality control-quality assurance ring test. Both the ASK and SHK-1 cell lines performed well in detecting ISAV, although the SHK-1 line was more variable in its sensitivity to infection and somewhat slower in the appearance of cytopathic effect. Relative to the SHK-1 and ASK lines, the CHSE-214 cell line performed poorly. Although the ASK line appeared to represent a good alternative to the more commonly used SHK-1 line, use of a single cell line for diagnostic assays may increase the potential for false-negative results. Thus, the SHK-1 and ASK cell lines can be used in combination to provide enhanced ability to detect ISAV.
Anchang, Benedict; Davis, Kara L.; Fienberg, Harris G.; Bendall, Sean C.; Karacosta, Loukia G.; Tibshirani, Robert; Nolan, Garry P.; Plevritis, Sylvia K.
2018-01-01
An individual malignant tumor is composed of a heterogeneous collection of single cells with distinct molecular and phenotypic features, a phenomenon termed intratumoral heterogeneity. Intratumoral heterogeneity poses challenges for cancer treatment, motivating the need for combination therapies. Single-cell technologies are now available to guide effective drug combinations by accounting for intratumoral heterogeneity through the analysis of the signaling perturbations of an individual tumor sample screened by a drug panel. In particular, Mass Cytometry Time-of-Flight (CyTOF) is a high-throughput single-cell technology that enables the simultaneous measurements of multiple (>40) intracellular and surface markers at the level of single cells for hundreds of thousands of cells in a sample. We developed a computational framework, entitled Drug Nested Effects Models (DRUG-NEM), to analyze CyTOF single-drug perturbation data for the purpose of individualizing drug combinations. DRUG-NEM optimizes drug combinations by choosing the minimum number of drugs that produce the maximal desired intracellular effects based on nested effects modeling. We demonstrate the performance of DRUG-NEM using single-cell drug perturbation data from tumor cell lines and primary leukemia samples. PMID:29654148
Radiation sensitivity of Merkel cell carcinoma cell lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leonard, J.H.; Ramsay, J.R.; Birrell, G.W.
1995-07-30
Merkel cell carcinoma (MCC), being a small cell carcinoma, would be expected to be sensitive to radiation. Clinical analysis of patients at our center, especially those with macroscopic disease, would suggest the response is quite variable. We have recently established a number of MCC cell lines from patients prior to radiotherapy, and for the first time are in a position to determine their sensitivity under controlled conditions. Some of the MCC lines grew as suspension cultures and could not be single cell cloned; therefore, it was not possible to use clonogenic survival for all cell lines. A tetrazolium based (MTT)more » assay was used for these lines, to estimate cell growth after {gamma} irradiation. Control experiments were conducted on lymphoblastoid cell lines (LCL) and the adherent MCC line, MCC13, to demonstrate that the two assays were comparable under the conditions used. We have examined cell lines from MCC, small cell lung cancer (SCLC), malignant melanomas, Epstein Barr virus (EBV) transformed lymphocytes (LCL), and skin fibroblasts for their sensitivity to {gamma} irradiation using both clonogenic cell survival and MTT assays. The results show that the tumor cell lines have a range of sensitivities, with melanoma being more resistant (surviving fraction at 2 Gy (SF2) 0.57 and 0.56) than the small cell carcinoma lines, MCC (SF2 range 0.21-0.45, mean SF2 0.30, n = 8) and SCLC (SF2 0.31). Fibroblasts were the most sensitive (SF2 0.13-0.20, mean 0.16, n = 5). The MTT assay, when compared to clonogenic assay for the MCC13 adherent line and the LCL, gave comparable results under the conditions used. Both assays gave a range of SF2 values for the MCC cell lines, suggesting that these cancers would give a heterogeneous response in vivo. The results with the two derivative clones of MCC14 (SF2 for MCC14/1 0.38, MCC14/2 0.45) would further suggest that some of them may develop resistance during clonogenic evolution. 25 refs., 3 figs., 1 tab.« less
A heating-superfusion platform technology for the investigation of protein function in single cells.
Xu, Shijun; Ainla, Alar; Jardemark, Kent; Jesorka, Aldo; Jeffries, Gavin D M
2015-01-06
Here, we report on a novel approach for the study of single-cell intracellular enzyme activity at various temperatures, utilizing a localized laser heating probe in combination with a freely positionable microfluidic perfusion device. Through directed exposure of individual cells to the pore-forming agent α-hemolysin, we have controlled the membrane permeability, enabling targeted delivery of the substrate. Mildly permeabilized cells were exposed to fluorogenic substrates to monitor the activity of intracellular enzymes, while adjusting the local temperature surrounding the target cells, using an infrared laser heating system. We generated quantitative estimates for the intracellular alkaline phosphatase activity at five different temperatures in different cell lines, constructing temperature-response curves of enzymatic activity at the single-cell level. Enzymatic activity was determined rapidly after cell permeation, generating five-point temperature-response curves within just 200 s.
Rectification of Acetylcholine-Elicited Currents in PC12 Pheochromocytoma Cells
NASA Astrophysics Data System (ADS)
Ifune, C. K.; Steinbach, J. H.
1990-06-01
The current-voltage (I-V) relationship for acetylcholine-elicited currents in the rat pheochromocytoma cell line PC12 is nonlinear. Two voltage-dependent processes that could account for the whole-cell current rectification were examined, receptor channel gating and single receptor channel permeation. We found that both factors are involved in the rectification of the whole-cell currents. The voltage dependence of channel gating determines the shape of the I-V curve at negative potentials. The single-channel I-V relationship is inwardly rectifying and largely responsible for the characteristic shape of the whole-cell I-V curve at positive potentials. The rectification of the single-channel currents is produced by the voltage-dependent block of outward currents by intracellular Mg2+ ions.
Antoniades, D; Epivatianos, A; Markopoulos, A; Kolokotronis, A; Zaraboukas, T
2009-01-01
To report 2 cases of coexisting mucous retention cyst and basal cell adenoma arising from the lining epithelium of the cyst. Two cases of painless swellings, well-demarcated, soft to palpation, and located in the submucosa of the upper lip were clinically examined with the provisional diagnosis of mucocele or salivary gland tumor. Histological examination showed the presence of a large unilocular cystic cavity in many parts surrounded by single or bilayered lining epithelium composed of flattened to cuboidal cells, and in other parts surrounded by projections of cells arranged in a trabecular pattern far into the cystic cavity. The trabeculae were composed of basal and low columnar cells that sometimes formed small duct-like structures. Immunohistochemistry showed that the lining epithelium of the cystic cavity and the cells of the projections expressed cytokeratin 7 and high-molecular-weight cytokeratins. The cells of the projections were weakly positive for S-100 protein and negative for vimentin and alpha-smooth muscle actin. Based on the results, a diagnosis of coexisting mucous retention cysts and basal cell adenomas arising from the lining epithelium of cysts was made. The coexistence of mucous retention cysts and basal cell adenomas arising from the lining epithelium of the cyst is reported. Copyright 2009 S. Karger AG, Basel.
Nocarova, Eva; Fischer, Lukas
2009-04-22
Phenotypic characterization of transgenic cell lines, frequently used in plant biology studies, is complicated because transgene expression in individual cells is often heterogeneous and unstable. To identify the sources and to reduce this heterogeneity, we transformed tobacco (Nicotiana tabacum L.) BY-2 cells with a gene encoding green fluorescent protein (GFP) using Agrobacterium tumefaciens, and then introduced a simple cloning procedure to generate cell lines derived from the individual transformed cells. Expression of the transgene was monitored by analysing GFP fluorescence in the cloned lines and also in lines obtained directly after transformation. The majority ( approximately 90%) of suspension culture lines derived from calli that were obtained directly from transformation consisted of cells with various levels of GFP fluorescence. In contrast, nearly 50% of lines generated by cloning cells from the primary heterogeneous suspensions consisted of cells with homogenous GFP fluorescence. The rest of the lines exhibited "permanent heterogeneity" that could not be resolved by cloning. The extent of fluorescence heterogeneity often varied, even among genetically identical clones derived from the primary transformed lines. In contrast, the offspring of subsequent cloning of the cloned lines was uniform, showing GFP fluorescence intensity and heterogeneity that corresponded to the original clone. The results demonstrate that, besides genetic heterogeneity detected in some lines, the primary lines often contained a mixture of epigenetically different cells that could be separated by cloning. This indicates that a single integration event frequently results in various heritable expression patterns, which are probably accidental and become stabilized in the offspring of the primary transformed cells early after the integration event. Because heterogeneity in transgene expression has proven to be a serious problem, it is highly advisable to use transgenes tagged with a visual marker for BY-2 transformation. The cloning procedure can be used not only for efficient reduction of expression heterogeneity of such transgenes, but also as a useful tool for studies of transgene expression and other purposes.
Sun, Zhang-Hua; Liang, Fa-Liang; Wu, Wen; Chen, Yu-Chan; Pan, Qing-Ling; Li, Hao-Hua; Ye, Wei; Liu, Hong-Xin; Li, Sai-Ni; Tan, Guo-Hui; Zhang, Wei-Min
2015-12-21
Four new meroterpenoids, guignardones P-S (1-4), and three known analogues (5-7) were isolated from the endophytic fungal strain Guignardia mangiferae A348. Their structures were elucidated on the basis of spectroscopic analysis and single crystal X-ray diffraction. All the isolated compounds were evaluated for their inhibitory effects on SF-268, MCF-7, and NCI-H460 human cancer cell lines. Compounds 2 and 4 exhibited weak inhibitions of cell proliferation against MCF-7 cell line.
NASA Astrophysics Data System (ADS)
Das, Gobind; La Rocca, Rosanna; Lakshmikanth, Tadepally; Gentile, Francesco; Tallerico, Rossana; Zambetti, Lia P.; Devitt, J.; Candeloro, Patrizio; de Angelis, Francesco; Carbone, Ennio; di Fabrizio, Enzo
2010-03-01
Human leukocyte antigen (HLA) class I molecules are formed by three immunoglobulin-like domains (α1, α2, and α3) once folded by peptide and β2-microglobulin show the presence of two α-helix streams and one β-sheet limiting the pocket for the antigenic peptide. The loss of HLA class I expression in tumors and virus-infected cells, on one hand, prevents T cell recognition, while on the other hand, it leads to natural killer (NK) cell mediated cytotoxicity. We propose the possibility of using Raman spectroscopy to measure the relative expression of HLA class I molecules at the single-cell level. Raman spectra are recorded for three cell lines (K562, T2, and T3) and monomers (HLA class I folded, unfolded and peptide+β2-microlobulin refolded) using 830 nm laser line. Our data are consistent with the hypothesis that in the Raman spectra, ranging from 1600 to 1800 cm-1, the intensity variation of cells associated with HLA class I molecules could be measured.
Assessment of Cell Line Models of Primary Human Cells by Raman Spectral Phenotyping
Swain, Robin J.; Kemp, Sarah J.; Goldstraw, Peter; Tetley, Teresa D.; Stevens, Molly M.
2010-01-01
Abstract Researchers have previously questioned the suitability of cell lines as models for primary cells. In this study, we used Raman microspectroscopy to characterize live A549 cells from a unique molecular biochemical perspective to shed light on their suitability as a model for primary human pulmonary alveolar type II (ATII) cells. We also investigated a recently developed transduced type I (TT1) cell line as a model for alveolar type I (ATI) cells. Single-cell Raman spectra provide unique biomolecular fingerprints that can be used to characterize cellular phenotypes. A multivariate statistical analysis of Raman spectra indicated that the spectra of A549 and TT1 cells are characterized by significantly lower phospholipid content compared to ATII and ATI spectra because their cytoplasm contains fewer surfactant lamellar bodies. Furthermore, we found that A549 spectra are statistically more similar to ATI spectra than to ATII spectra. The spectral variation permitted phenotypic classification of cells based on Raman spectral signatures with >99% accuracy. These results suggest that A549 cells are not a good model for ATII cells, but TT1 cells do provide a reasonable model for ATI cells. The findings have far-reaching implications for the assessment of cell lines as suitable primary cellular models in live cultures. PMID:20409492
Honma, Kyoko; Nakano, Takashi; Asao, Takayuki; Kuwahara, Ryusuke; Aoyama, Kazuhiro; Yasuda, Hidehiro; Kelly, Matthew; Kuwano, Hiroyuki
2018-01-01
Radiation therapy can result in severe side-effects, including the development of radiation resistance. The aim of this study was to validate the use of oxygen nanobubble water to overcome resistance to radiation in cancer cell lines via the suppression of the hypoxia-inducible factor 1-α (HIF-1α) subunit. Oxygen nanobubble water was created using a newly developed method to produce nanobubbles in the single-nanometer range with the ΣPM-5 device. The size and concentration of the oxygen nanobubbles in the water was examined using a cryo-transmission electron microscope. The nanobubble size was ranged from 2 to 3 nm, and the concentration of the nanobubbles was calculated at 2×1018 particles/ml. Cell viability and HIF-1α levels were evaluated in EBC-1 lung cancer and MDA-MB-231 breast cancer cells treated with or without the nanobubble water and radiation under normoxic and hypoxic conditions in vitro. The cancer cells grown in oxygen nanobubble-containing media exhibited a clear suppression of hypoxia-induced HIF-1α expression compared to the cells grown in media made with distilled water. Under hypoxic conditions, the EBC-1 and MDA-MB231 cells displayed resistance to radiation compared to the cells cultured under normoxic cells. The use of oxygen nanobubble medium significantly suppressed the hypoxia-induced resistance to radiation compared to the use of normal medium at 2, 6, 10 and 14 Gy doses. Importantly, the use of nanobubble media did not affect the viability and radiation sensitivity of the cancer cell lines, or the non-cancerous cell line, BEAS-2B, under normoxic conditions. This newly created single-nanometer range oxygen nanobubble water, without any additives, may thus prove to be a promising agent which may be used to overcome the hypoxia-induced resistance of cancer cells to radiation via the suppression of HIF-1α. PMID:29393397
Ishihara, Yukiko; Aida, Mari; Nomura, Akito; Miyahara, Hidekazu; Hokura, Akiko; Okino, Akitoshi
2015-01-01
With a view to enhance the sensitivity of analytical instruments used in the measurement of trace elements contained in a single cell, we have now equipped the previously reported micro-droplet injection system (M-DIS) with a desolvation system. This modified M-DIS was coupled to inductively coupled plasma atomic emission spectroscopy (ICP-AES) and evaluated for its ability to measure trace elements. A flow rate of 100 mL/min for the additional gas and a measurement point -7.5 mm above the load coil (ALC) have been determined to be the optimal parameters for recording the emission intensity of the Ca(II) spectral lines. To evaluate the influence of the desolvation system, we recorded the emission intensities of the Ca(I), Ca(II), and H-β spectral lines with and without inclusion of the desolvation system. The emission intensity of the H-β spectral line reduces and the magnitude of the Ca(II)/Ca(I) emission intensity ratio increases four-fold with inclusion of the desolvation system. Finally, the elements Ca, Mg, and Fe present in a single cell of Pseudococcomyxa simplex are simultaneously determined by coupling the M-DIS equipped with the desolvation system to ICP-AES.
The Impact of Non-Lethal Single-Dose Radiation on Tumor Invasion and Cytoskeletal Properties
Hohmann, Tim; Grabiec, Urszula; Vogel, Carolin; Ghadban, Chalid; Ensminger, Stephan; Bache, Matthias; Vordermark, Dirk; Dehghani, Faramarz
2017-01-01
Irradiation is the standard therapy for glioblastoma multiforme. Glioblastoma are highly resistant to radiotherapy and the underlying mechanisms remain unclear. To better understand the biological effects of irradiation on glioblastoma cells, we tested whether nonlethal irradiation influences the invasiveness, cell stiffness, and actin cytoskeleton properties. Two different glioblastoma cell lines were irradiated with 2 Gy and changes in mechanical and migratory properties and alterations in the actin structure were measured. The invasiveness of cell lines was determined using a co-culture model with organotypic hippocampal slice cultures. Irradiation led to changes in motility and a less invasive phenotype in both investigated cell lines that were associated with an increase in a ”generalized stiffness” and changes in the actin structure. In this study we demonstrate that irradiation can induce changes in the actin cytoskeleton and motility, which probably results in reduced invasiveness of glioblastoma cell lines. Furthermore, “generalized stiffness” was shown to be a profound marker of the invasiveness of a tumor cell population in our model. PMID:28926987
Development of Cell-SELEX Technology and Its Application in Cancer Diagnosis and Therapy.
Chen, Man; Yu, Yuanyuan; Jiang, Feng; Zhou, Junwei; Li, Yongshu; Liang, Chao; Dang, Lei; Lu, Aiping; Zhang, Ge
2016-12-10
SELEX (systematic evolution of ligands by exponential enrichment) is a process involving the progressive isolation of high selective ssDNA/RNA from a combinatorial single-stranded oligonucleotide library through repeated rounds of binding, partitioning and amplification. SELEX-derived single-stranded DNA/RNA molecules, called aptamers, are selected against a wide range of targets, including purified proteins, live cells, tissues, microorganisms, small molecules and so on. With the development of SELEX technology over the last two decades, various modified SELEX processes have been arisen. A majority of aptamers are selected against purified proteins through traditional SELEX. Unfortunately, more and more evidence showed aptamers selected against purified membrane proteins failed to recognize their targets in live cells. Cell-SELEX could develop aptamers against a particular target cell line to discriminate this cell line from others. Therefore, cell-SELEX has been widely used to select aptamers for the application of both diagnosis and therapy of various diseases, especially for cancer. In this review, the advantages and limitations of cell-SELEX and SELEX against purified protein will be compared. Various modified cell-SELEX techniques will be summarized, and application of cell-SELEX in cancer diagnosis and therapy will be discussed.
Development of Cell-SELEX Technology and Its Application in Cancer Diagnosis and Therapy
Chen, Man; Yu, Yuanyuan; Jiang, Feng; Zhou, Junwei; Li, Yongshu; Liang, Chao; Dang, Lei; Lu, Aiping; Zhang, Ge
2016-01-01
SELEX (systematic evolution of ligands by exponential enrichment) is a process involving the progressive isolation of high selective ssDNA/RNA from a combinatorial single-stranded oligonucleotide library through repeated rounds of binding, partitioning and amplification. SELEX-derived single-stranded DNA/RNA molecules, called aptamers, are selected against a wide range of targets, including purified proteins, live cells, tissues, microorganisms, small molecules and so on. With the development of SELEX technology over the last two decades, various modified SELEX processes have been arisen. A majority of aptamers are selected against purified proteins through traditional SELEX. Unfortunately, more and more evidence showed aptamers selected against purified membrane proteins failed to recognize their targets in live cells. Cell-SELEX could develop aptamers against a particular target cell line to discriminate this cell line from others. Therefore, cell-SELEX has been widely used to select aptamers for the application of both diagnosis and therapy of various diseases, especially for cancer. In this review, the advantages and limitations of cell-SELEX and SELEX against purified protein will be compared. Various modified cell-SELEX techniques will be summarized, and application of cell-SELEX in cancer diagnosis and therapy will be discussed. PMID:27973403
Self-digitization chip for single-cell genotyping of cancer-related mutations
Monroe, Luke D.; Kreutz, Jason E.; Schneider, Thomas; Fujimoto, Bryant S.; Chiu, Daniel T.; Radich, Jerald P.; Paguirigan, Amy L.
2018-01-01
Cancer is a heterogeneous disease, and patient-level genetic assessments can guide therapy choice and impact prognosis. However, little is known about the impact of genetic variability within a tumor, intratumoral heterogeneity (ITH), on disease progression or outcome. Current approaches using bulk tumor specimens can suggest the presence of ITH, but only single-cell genetic methods have the resolution to describe the underlying clonal structures themselves. Current techniques tend to be labor and resource intensive and challenging to characterize with respect to sources of biological and technical variability. We have developed a platform using a microfluidic self-digitization chip to partition cells in stationary volumes for cell imaging and allele-specific PCR. Genotyping data from only confirmed single-cell volumes is obtained and subject to a variety of relevant quality control assessments such as allele dropout, false positive, and false negative rates. We demonstrate single-cell genotyping of the NPM1 type A mutation, an important prognostic indicator in acute myeloid leukemia, on single cells of the cell line OCI-AML3, describing a more complex zygosity distribution than would be predicted via bulk analysis. PMID:29718986
Self-digitization chip for single-cell genotyping of cancer-related mutations.
Thompson, Alison M; Smith, Jordan L; Monroe, Luke D; Kreutz, Jason E; Schneider, Thomas; Fujimoto, Bryant S; Chiu, Daniel T; Radich, Jerald P; Paguirigan, Amy L
2018-01-01
Cancer is a heterogeneous disease, and patient-level genetic assessments can guide therapy choice and impact prognosis. However, little is known about the impact of genetic variability within a tumor, intratumoral heterogeneity (ITH), on disease progression or outcome. Current approaches using bulk tumor specimens can suggest the presence of ITH, but only single-cell genetic methods have the resolution to describe the underlying clonal structures themselves. Current techniques tend to be labor and resource intensive and challenging to characterize with respect to sources of biological and technical variability. We have developed a platform using a microfluidic self-digitization chip to partition cells in stationary volumes for cell imaging and allele-specific PCR. Genotyping data from only confirmed single-cell volumes is obtained and subject to a variety of relevant quality control assessments such as allele dropout, false positive, and false negative rates. We demonstrate single-cell genotyping of the NPM1 type A mutation, an important prognostic indicator in acute myeloid leukemia, on single cells of the cell line OCI-AML3, describing a more complex zygosity distribution than would be predicted via bulk analysis.
Mass spectrometry (LC-MS/MS) identified proteomic biosignatures of breast cancer in proximal fluid.
Whelan, Stephen A; He, Jianbo; Lu, Ming; Souda, Puneet; Saxton, Romaine E; Faull, Kym F; Whitelegge, Julian P; Chang, Helena R
2012-10-05
We have begun an early phase of biomarker discovery in three clinically important types of breast cancer using a panel of human cell lines: HER2 positive, hormone receptor positive and HER2 negative, and triple negative (HER2-, ER-, PR-). We identified and characterized the most abundant secreted, sloughed, or leaked proteins released into serum free media from these breast cancer cell lines using a combination of protein fractionation methods before LC-MS/MS mass spectrometry analysis. A total of 249 proteins were detected in the proximal fluid of 7 breast cancer cell lines. The expression of a selected group of high abundance and/or breast cancer-specific potential biomarkers including thromobospondin 1, galectin-3 binding protein, cathepsin D, vimentin, zinc-α2-glycoprotein, CD44, and EGFR from the breast cancer cell lines and in their culture media were further validated by Western blot analysis. Interestingly, mass spectrometry identified a cathepsin D protein single-nucleotide polymorphism (SNP) by alanine to valine replacement from the MCF-7 breast cancer cell line. Comparison of each cell line media proteome displayed unique and consistent biosignatures regardless of the individual group classifications, demonstrating the potential for stratification of breast cancer. On the basis of the cell line media proteome, predictive Tree software was able to categorize each cell line as HER2 positive, HER2 negative, and hormone receptor positive and triple negative based on only two proteins, muscle fructose 1,6-bisphosphate aldolase and keratin 19. In addition, the predictive Tree software clearly identified MCF-7 cell line overexpresing the HER2 receptor with the SNP cathepsin D biomarker.
Liu, Tao; Sims, David; Baum, Buzz
2009-01-01
In recent years RNAi screening has proven a powerful tool for dissecting gene functions in animal cells in culture. However, to date, most RNAi screens have been performed in a single cell line, and results then extrapolated across cell types and systems. Here, to dissect generic and cell type-specific mechanisms underlying cell morphology, we have performed identical kinome RNAi screens in six different Drosophila cell lines, derived from two distinct tissues of origin. This analysis identified a core set of kinases required for normal cell morphology in all lines tested, together with a number of kinases with cell type-specific functions. Most significantly, the screen identified a role for minibrain (mnb/DYRK1A), a kinase associated with Down's syndrome, in the regulation of actin-based protrusions in CNS-derived cell lines. This cell type-specific requirement was not due to the peculiarities in the morphology of CNS-derived cells and could not be attributed to differences in mnb expression. Instead, it likely reflects differences in gene expression that constitute the cell type-specific functional context in which mnb/DYRK1A acts. Using parallel RNAi screens and gene expression analyses across cell types we have identified generic and cell type-specific regulators of cell morphology, which include mnb/DYRK1A in the regulation of protrusion morphology in CNS-derived cell lines. This analysis reveals the importance of using different cell types to gain a thorough understanding of gene function across the genome and, in the case of kinases, the difficulties of using the differential gene expression to predict function.
2014-01-01
Background Cell lines are often regarded as clonal, even though this simplifies what is known about mutagenesis, transformation and other processes that destabilize them over time. Monitoring these clonal dynamics is important for multiple areas of biomedical research, including stem cell and cancer biology. Tracking the contributions of individual cells to large populations, however, has been constrained by limitations in sensitivity and complexity. Results We utilize cellular barcoding methods to simultaneously track the clonal contributions of tens of thousands of cells. We demonstrate that even with optimal culturing conditions, common cell lines including HeLa, K562 and HEK-293 T exhibit ongoing clonal dynamics. Starting a population with a single clone diminishes but does not eradicate this phenomenon. Next, we compare lentiviral and zinc-finger nuclease barcode insertion approaches, finding that the zinc-finger nuclease protocol surprisingly results in reduced clonal diversity. We also document the expected reduction in clonal complexity when cells are challenged with genotoxic stress. Finally, we demonstrate that xenografts maintain clonal diversity to a greater extent than in vitro culturing of the human non-small-cell lung cancer cell line HCC827. Conclusions We demonstrate the feasibility of tracking and quantifying the clonal dynamics of entire cell populations within multiple cultured cell lines. Our results suggest that cell heterogeneity should be considered in the design and interpretation of in vitro culture experiments. Aside from clonal cell lines, we propose that cellular barcoding could prove valuable in modeling the clonal behavior of heterogeneous cell populations over time, including tumor populations treated with chemotherapeutic agents. PMID:24886633
The FFAG return loop for the CBETA Energy Recovery Linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berg, J. S.
2017-04-28
The CBETA energy recovery linac uses a single xed eld alternating gradient (FFAG) beam line to return the beam for electron beams with four energies, ranging from 42 MeV to 150 MeV. To keep the beam line compact, the ends of the return line have a small radius of curvature, but the central part of the return line is straight. These are connected by transition lines that adiabatically change from one to the other. We rst describe the design or the arc cell. We then describe how a straight cell is created to be a good match to this arcmore » cell. We then describe the design of the transition line between them. The design process makes use of eld maps for the desired magnets. Because we switch magnet types as we move from the arc, through the transition, and into the straight, there are discrete jumps in the elds that degrade the adiabaticity of the transition, and we describe corrections to manage that.« less
Sotomatsu, M; Hayashi, Y; Kawamura, M; Yugami, S; Shitara, T
1993-10-01
A new human pre-B acute lymphoblastic leukemia cell line (KMO-90) was established from the bone marrow sample of a 12-year-old girl with acute lymphoblastic leukemia (ALL) carrying 1;19 chromosome translocation. KMO-90 cells expressed HLA-DR, CD10, CD19, and CD22 antigens. These cells had also cytoplasmic immunoglobulin lacking surface immunoglobulin, indicating that these had a pre-B phenotype. Chromosome analysis of this cell line showed 48, XX, +8, +19, t(1;19)(q23;p13). Southern blot analysis showed the same sized rearrangements of the E2A gene in KMO-90 cells as those in the original leukemic cells. By means of reverse transcriptase-polymerase chain reaction analysis, we detected E2A/PBX1 fusion transcripts in KMO-90 cells. KMO-90 is useful when studying the role of the 1;19 translocation in the etiology of pre-B ALL. Furthermore, we studied alterations of the p53 gene in this cell line by polymerase chain reaction, single-strand conformation polymorphism analysis. KMO-90 cells were identified to have a point mutation at codon 177 (CCC-->TCC) of the p53 gene, suggesting that alterations of the p53 gene may have an important role in the establishment of this cell line.
Prediction of cancer cell sensitivity to natural products based on genomic and chemical properties.
Yue, Zhenyu; Zhang, Wenna; Lu, Yongming; Yang, Qiaoyue; Ding, Qiuying; Xia, Junfeng; Chen, Yan
2015-01-01
Natural products play a significant role in cancer chemotherapy. They are likely to provide many lead structures, which can be used as templates for the construction of novel drugs with enhanced antitumor activity. Traditional research approaches studied structure-activity relationship of natural products and obtained key structural properties, such as chemical bond or group, with the purpose of ascertaining their effect on a single cell line or a single tissue type. Here, for the first time, we develop a machine learning method to comprehensively predict natural products responses against a panel of cancer cell lines based on both the gene expression and the chemical properties of natural products. The results on two datasets, training set and independent test set, show that this proposed method yields significantly better prediction accuracy. In addition, we also demonstrate the predictive power of our proposed method by modeling the cancer cell sensitivity to two natural products, Curcumin and Resveratrol, which indicate that our method can effectively predict the response of cancer cell lines to these two natural products. Taken together, the method will facilitate the identification of natural products as cancer therapies and the development of precision medicine by linking the features of patient genomes to natural product sensitivity.
Alterations in ATR in nasal NK/T-cell lymphoma and chronic active Epstein-Barr virus infection.
Liu, Angen; Takakuwa, Tetsuya; Luo, Wen-Juan; Fujita, Shigeki; Aozasa, Katsuyuki
2006-07-01
Nasal natural killer (NK)/T-cell lymphoma (NKTCL) and chronic active Epstein-Barr virus infection (CAEBV) are relatively frequent, especially in Asia, and are poor in prognosis. Both diseases are proliferative diseases of NK/T cells that show highly complicated karyotypes, suggesting the involvement of chromosomal instability. ATR is an important gene for DNA damage response and chromosomal stability. To evaluate the role of ATR gene alterations in the pathogenesis of NKTCL and CAEBV, the whole coding region of the ATR gene was examined in cell lines derived from NKTCL and CAEBV, as well as tumor samples from patients. ATR alterations were detected in two of eight NKTCL and in one of three CAEBV lines. Most aberrant transcripts observed were deletions resulting from aberrant splicing. ATR alterations were also detected in four of 10 NKTCL clinical samples. Both NKTCL and CAEBV cell lines with ATR alterations showed a delay or abrogation in repair of ionizing radiation-induced DNA double-strand breaks and ultraviolet-induced DNA single-strand breaks, and both exhibited a defect in p53 accumulation. These findings show that alterations in the ATR gene result in an abnormal response to DNA double-strand break and single-strand break repair, suggesting a role for ATR gene alterations in NKTCL lymphomagenesis.
The role of telomeres in Etoposide induced tumor cell death.
Jeyapalan, Jessie; Leake, Alan; Ahmed, Shaheda; Saretzki, Gabriele; Tilby, Michael; von Zglinicki, Thomas
2004-09-01
Etoposide, a topoisomerase II poison is used in the treatment of a number of solid tumors. Contradictory data exist on the role of the telomere/telomerase complex in etoposide induced apoptosis. Therefore we examined the effects of etoposide treatment in the neuroblastoma cell line SHSY5Y, with very short telomeres and the acute lymphoblastic T cell line 1301, which displays extremely long telomeres. Both short-term and continuous exposure to the drug were examined. Etoposide induced widespread DNA damage followed by DNA damage foci formation and ultimately growth arrest and apoptosis in a concentration-dependent manner. However, length of telomeres and of single stranded telomeric G rich overhangs did not change significantly under the treatments in any cell line. There was no significant induction of single-strand breaks in the G-rich strand of telomeres. Telomerase activity was transiently upregulated under low concentrations of etoposide, while high concentrations resulted in decreased telomerase activity only after onset of apoptosis. Telomerase overexpression protected against etoposide induced apoptosis in fibroblasts. The data suggest that telomeres are not major signal transducers towards growth arrest or apoptosis after etoposide treatment. However, upregulation of telomerase might be part of an attempted adaptative response, which protects cells by a mechanism that might be independent of telomere length maintenance.
Genetic Regulation of Charged Particle Mutagenesis in Human Cells
NASA Technical Reports Server (NTRS)
Kronenberg, Amy; Gauny, S.; Cherbonnel-Lasserre, C.; Liu, W.; Wiese, C.
1999-01-01
Our studies use a series of syngeneic, and where possible, isogenic human B-lymphoblastoid cell lines to assess the genetic factors that modulate susceptibility apoptosis and their impact on the mutagenic risks of low fluence exposures to 1 GeV Fe ions and 55 MeV protons. These ions are representative of the types of charged particle radiation that are of particular significance for human health in the space radiation environment. The model system employs cell lines derived from the male donor WIL-2. These cells have a single X chromosome and they are hemizygous for one mutation marker, hypoxanthine phosphoribosyltransferase (HPRT). TK6 and WTK1 cells were each derived from descendants of WIL-2 and were each selected as heterozygotes for a second mutation marker, the thymidine kinase (TK) gene located on chromosome 17q. The HPRT and TK loci can detect many different types of mutations, from single basepair substitutions up to large scale loss of heterozygosity (LOH). The single expressing copy of TK in the TK6 and WTKI cell lines is found on the same copy of chromosome 17, and this allele can be identified by a restriction fragment length polymorphism (RFLP) identified when high molecular weight DNA is digested by the SacI restriction endonuclease and hybridized against the cDNA probe for TK. A large series of polymorphic linked markers has been identified that span more than 60 cM of DNA (approx. 60 megabasepairs) and distinguish the copy of chromosome 17 bearing the initially active TK allele from the copy of chromosome 17 bearing the silent TK allele in both TK6 and WTKI cells. TK6 cells express normal p53 protein while WTKI cells express homozygous mutant p53. Expression of mutant p53 can increase susceptibility to x-ray-induced mutations. It's been suggested that the increased mutagenesis in p53 mutant cells might be due to reduced apoptosis.
Moon, JoonHo; Lee, Choongil; Kim, Su Jin; Choi, Ji-Yei; Lee, Byeong Chun; Kim, Jin-Soo; Jang, Goo
2014-05-27
Although noncancerous immortalized cell lines have been developed by introducing genes into human and murine somatic cells, such cell lines have not been available in large domesticated animals like pigs. For immortalizing porcine cells, primary porcine fetal fibroblasts were isolated and cultured using the human telomerase reverse transcriptase (hTERT) gene. After selecting cells with neomycin for 2 weeks, outgrowing colonized cells were picked up and subcultured for expansion. Immortalized cells were cultured for more than 9 months without changing their doubling time (~24 hours) or their diameter (< 20 µm) while control cells became replicatively senescent during the same period. Even a single cell expanded to confluence in 100 mm dishes. Furthermore, to knockout the CMAH gene, designed plasmids encoding a transcription activator-like effector nuclease (TALENs) pairs were transfected into the immortalized cells. Each single colony was analyzed by the mutation-sensitive T7 endonuclease I assay, fluorescent PCR, and dideoxy sequencing to obtain three independent clonal populations of cells that contained biallelic modifications. One CMAH knockout clone was chosen and used for somatic cell nuclear transfer. Cloned embryos developed to the blastocyst stage. In conclusion, we demonstrated that immortalized porcine fibroblasts were successfully established using the human hTERT gene, and the TALENs enabled biallelic gene disruptions in these immortalized cells.
Moon, JoonHo; Lee, Choongil; Kim, Su Jin; Choi, Ji-Yei; Lee, Byeong Chun; Kim, Jin-Soo; Jang, Goo
2014-01-01
Although noncancerous immortalized cell lines have been developed by introducing genes into human and murine somatic cells, such cell lines have not been available in large domesticated animals like pigs. For immortalizing porcine cells, primary porcine fetal fibroblasts were isolated and cultured using the human telomerase reverse transcriptase (hTERT) gene. After selecting cells with neomycin for 2 weeks, outgrowing colonized cells were picked up and subcultured for expansion. Immortalized cells were cultured for more than 9 months without changing their doubling time (~24 hours) or their diameter (< 20 µm) while control cells became replicatively senescent during the same period. Even a single cell expanded to confluence in 100 mm dishes. Furthermore, to knockout the CMAH gene, designed plasmids encoding a transcription activator-like effector nuclease (TALENs) pairs were transfected into the immortalized cells. Each single colony was analyzed by the mutation-sensitive T7 endonuclease I assay, fluorescent PCR, and dideoxy sequencing to obtain three independent clonal populations of cells that contained biallelic modifications. One CMAH knockout clone was chosen and used for somatic cell nuclear transfer. Cloned embryos developed to the blastocyst stage. In conclusion, we demonstrated that immortalized porcine fibroblasts were successfully established using the human hTERT gene, and the TALENs enabled biallelic gene disruptions in these immortalized cells. PMID:24866481
Multiplex Detection of KRAS Mutations Using Passive Droplet Fusion.
Pekin, Deniz; Taly, Valerie
2017-01-01
We describe a droplet microfluidics method to screen for multiple mutations of a same oncogene in a single experiment using passive droplet fusion. Genomic DNA from H1573 cell-line was screened for the presence of the six common mutations of the KRAS oncogene as well as wild-type sequences with a detection efficiency of 98 %. Furthermore, the mutant allelic fraction of the cell-line was also assessed correctly showing that the technique is quantitative.
Magnetic field design for selecting and aligning immunomagnetic labeled cells.
Tibbe, Arjan G J; de Grooth, Bart G; Greve, Jan; Dolan, Gerald J; Rao, Chandra; Terstappen, Leon W M M
2002-03-01
Recently we introduced the CellTracks cell analysis system, in which samples are prepared based on a combination of immunomagnetic selection, separation, and alignment of cells along ferromagnetic lines. Here we describe the underlying magnetic principles and considerations made in the magnetic field design to achieve the best possible cell selection and alignment of magnetically labeled cells. Materials and Methods Computer simulations, in combination with experimental data, were used to optimize the design of the magnets and Ni lines to obtain the optimal magnetic configuration. A homogeneous cell distribution on the upper surface of the sample chamber was obtained with a magnet where the pole faces were tilted towards each other. The spatial distribution of magnetically aligned objects in between the Ni lines was dependent on the ratio of the diameter of the aligned object and the line spacing, which was tested with magnetically and fluorescently labeled 6 microm polystyrene beads. The best result was obtained when the line spacing was equal to or smaller than the diameter of the aligned object. The magnetic gradient of the designed permanent magnet extracts magnetically labeled cells from any cell suspension to a desired plane, providing a homogeneous cell distribution. In addition, it magnetizes ferro-magnetic Ni lines in this plane whose additional local gradient adds to the gradient of the permanent magnet. The resultant gradient aligns the magnetically labeled cells first brought to this plane. This combination makes it possible, in a single step, to extract and align cells on a surface from any cell suspension. Copyright 2002 Wiley-Liss, Inc.
Overcoming IGF1R/IR Resistance Through Inhibition of MEK Signaling in Colorectal Cancer Models
Flanigan, Sara A.; Pitts, Todd M.; Newton, Timothy P.; Kulikowski, Gillian N.; Tan, Aik Choon; McManus, Martine C.; Spreafico, Anna; Kachaeva, Maria I.; Selby, Heather M.; Tentler, John J.; Eckhardt, S. Gail; Leong, Stephen
2013-01-01
Purpose Results from clinical trials involving resistance to molecularly targeted therapies have revealed the importance of rational single agent and combination treatment strategies. In this study, we tested the efficacy of a type 1 insulin-like growth factor receptor (IGF1R)/insulin receptor (IR) tyrosine kinase inhibitor (TKI), OSI-906, in combination with a MEK 1/2 inhibitor based on evidence that the MAPK pathway was upregulated in colorectal cancer (CRC) cell lines that were resistant to OSI-906. Experimental Design The antiproliferative effects of OSI-906 and the MEK 1/2 inhibitor U0126, were analyzed both as single agents and in combination in 13 CRC cell lines in vitro. Apoptosis, downstream effector proteins, and cell cycle were also assessed. Additionally, the efficacy of OSI-906 combined with the MEK 1/2 inhibitor selumetinib (AZD6244, ARRY-142886), was evaluated in vivo using human CRC xenograft models. Results The combination of OSI-906 and U0126 resulted in synergistic effects in 11 out of 13 CRC cell lines tested. This synergy was variably associated with apoptosis or cell cycle arrest in addition to molecular effects on pro-survival pathways. The synergy was also reflected in the in vivo xenograft studies following treatment with the combination of OSI-906 and selumetinib. Conclusions Results from this study demonstrate synergistic antiproliferative effects in response to the combination of OSI-906 with a MEK 1/2 inhibitor in CRC cell line models both in vitro and in vivo, which supports the rational combination of OSI-906 with a MEK inhibitor in patients with CRC. PMID:24045180
Development of an Improved Mammalian Overexpression Method for Human CD62L
Brown, Haley A.; Roth, Gwynne; Holzapfel, Genevieve; Shen, Sarek; Rahbari, Kate; Ireland, Joanna; Zou, Zhongcheng; Sun, Peter D.
2014-01-01
We have previously developed a glutamine synthetase (GS)-based mammalian recombinant protein expression system that is capable of producing 5 to 30 mg/L recombinant proteins. The over expression is based on multiple rounds of target gene amplification driven by methionine sulfoximine (MSX), an inhibitor of glutamine synthetase. However, like other stable mammalian over expression systems, a major shortcoming of the GS-based expression system is its lengthy turn-around time, typically taking 4–6 months to produce. To shorten the construction time, we replaced the muti-round target gene amplifications with single-round in situ amplifications, thereby shortening the cell line construction to 2 months. The single-round in situ amplification method resulted in highest recombinant CD62L expressing CHO cell lines producing ~5mg/L soluble CD62L, similar to those derived from the multi-round amplification and selection method. In addition, we developed a MSX resistance assay as an alternative to utilizing ELISA for evaluating the expression level of stable recombinant CHO cell lines. PMID:25286402
Leung, Kaston; Klaus, Anders; Lin, Bill K; Laks, Emma; Biele, Justina; Lai, Daniel; Bashashati, Ali; Huang, Yi-Fei; Aniba, Radhouane; Moksa, Michelle; Steif, Adi; Mes-Masson, Anne-Marie; Hirst, Martin; Shah, Sohrab P; Aparicio, Samuel; Hansen, Carl L
2016-07-26
The genomes of large numbers of single cells must be sequenced to further understanding of the biological significance of genomic heterogeneity in complex systems. Whole genome amplification (WGA) of single cells is generally the first step in such studies, but is prone to nonuniformity that can compromise genomic measurement accuracy. Despite recent advances, robust performance in high-throughput single-cell WGA remains elusive. Here, we introduce droplet multiple displacement amplification (MDA), a method that uses commercially available liquid dispensing to perform high-throughput single-cell MDA in nanoliter volumes. The performance of droplet MDA is characterized using a large dataset of 129 normal diploid cells, and is shown to exceed previously reported single-cell WGA methods in amplification uniformity, genome coverage, and/or robustness. We achieve up to 80% coverage of a single-cell genome at 5× sequencing depth, and demonstrate excellent single-nucleotide variant (SNV) detection using targeted sequencing of droplet MDA product to achieve a median allelic dropout of 15%, and using whole genome sequencing to achieve false and true positive rates of 9.66 × 10(-6) and 68.8%, respectively, in a G1-phase cell. We further show that droplet MDA allows for the detection of copy number variants (CNVs) as small as 30 kb in single cells of an ovarian cancer cell line and as small as 9 Mb in two high-grade serous ovarian cancer samples using only 0.02× depth. Droplet MDA provides an accessible and scalable method for performing robust and accurate CNV and SNV measurements on large numbers of single cells.
Rolled-up Functionalized Nanomembranes as Three-Dimensional Cavities for Single Cell Studies
2014-01-01
We use micropatterning and strain engineering to encapsulate single living mammalian cells into transparent tubular architectures consisting of three-dimensional (3D) rolled-up nanomembranes. By using optical microscopy, we demonstrate that these structures are suitable for the scrutiny of cellular dynamics within confined 3D-microenvironments. We show that spatial confinement of mitotic mammalian cells inside tubular architectures can perturb metaphase plate formation, delay mitotic progression, and cause chromosomal instability in both a transformed and nontransformed human cell line. These findings could provide important clues into how spatial constraints dictate cellular behavior and function. PMID:24598026
Kuwae, Shinobu; Miyakawa, Ichiko; Doi, Tomohiro
2018-01-11
A chemically defined platform basal medium and feed media were developed using a single Chinese hamster ovary (CHO) cell line that produces a monoclonal antibody (mAb). Cell line A, which showed a peak viable cell density of 5.9 × 10 6 cells/mL and a final mAb titer of 0.5 g/L in batch culture, was selected for the platform media development. Stoichiometrically balanced feed media were developed using glucose as an indicator of cell metabolism to determine the feed rates of all other nutrients. A fed-batch culture of cell line A using the platform fed-batch medium yielded a 6.4 g/L mAb titer, which was 12-fold higher than that of the batch culture. To examine the applicability of the platform basal medium and feed media, three other cell lines (A16, B, and C) that produce mAbs were cultured using the platform fed-batch medium, and they yielded mAb titers of 8.4, 3.3, and 6.2 g/L, respectively. The peak viable cell densities of the three cell lines ranged from 1.3 × 10 7 to 1.8 × 10 7 cells/mL. These results show that the nutritionally balanced fed-batch medium and feeds worked well for other cell lines. During the medium development, we found that choline limitation caused a lower cell viability, a lower mAb titer, a higher mAb aggregate content, and a higher mannose-5 content. The optimal choline chloride to glucose ratio for the CHO cell fed-batch culture was determined. Our platform basal medium and feed media will shorten the medium-development time for mAb-producing cell lines.
Sarkar, Saheli; Sabhachandani, Pooja; Ravi, Dashnamoorthy; Potdar, Sayalee; Purvey, Sneha; Beheshti, Afshin; Evens, Andrew M; Konry, Tania
2017-01-01
Natural killer (NK) cells are phenotypically and functionally diverse lymphocytes that recognize and kill cancer cells. The susceptibility of target cancer cells to NK cell-mediated cytotoxicity depends on the strength and balance of regulatory (activating/inhibitory) ligands expressed on target cell surface. We performed gene expression arrays to determine patterns of NK cell ligands associated with B-cell non-Hodgkin lymphoma (b-NHL). Microarray analyses revealed significant upregulation of a multitude of NK-activating and costimulatory ligands across varied b-NHL cell lines and primary lymphoma cells, including ULBP1, CD72, CD48, and SLAMF6. To correlate genetic signatures with functional anti-lymphoma activity, we developed a dynamic and quantitative cytotoxicity assay in an integrated microfluidic droplet generation and docking array. Individual NK cells and target lymphoma cells were co-encapsulated in picoliter-volume droplets to facilitate monitoring of transient cellular interactions and NK cell effector outcomes at single-cell level. We identified significant variability in NK-lymphoma cell contact duration, frequency, and subsequent cytolysis. Death of lymphoma cells undergoing single contact with NK cells occurred faster than cells that made multiple short contacts. NK cells also killed target cells in droplets via contact-independent mechanisms that partially relied on calcium-dependent processes and perforin secretion, but not on cytokines (interferon-γ or tumor necrosis factor-α). We extended this technique to characterize functional heterogeneity in cytolysis of primary cells from b-NHL patients. Tumor cells from two diffuse large B-cell lymphoma patients showed similar contact durations with NK cells; primary Burkitt lymphoma cells made longer contacts and were lysed at later times. We also tested the cytotoxic efficacy of NK-92, a continuously growing NK cell line being investigated as an antitumor therapy, using our droplet-based bioassay. NK-92 cells were found to be more efficient in killing b-NHL cells compared with primary NK cells, requiring shorter contacts for faster killing activity. Taken together, our combined genetic and microfluidic analysis demonstrate b-NHL cell sensitivity to NK cell-based cytotoxicity, which was associated with significant heterogeneity in the dynamic interaction at single-cell level.
Ait-Mohamed, Ouardia; Battisti, Valentine; Joliot, Véronique; Fritsch, Lauriane; Pontis, Julien; Medjkane, Souhila; Redeuilh, Catherine; Lamouri, Aazdine; Fahy, Christine; Rholam, Mohamed; Atmani, Djebbar; Ait-Si-Ali, Slimane
2011-01-01
Plants are an invaluable source of potential new anti-cancer drugs. Here, we investigated the cytotoxic activity of the acetonic extract of Buxus sempervirens on five breast cancer cell lines, MCF7, MCF10CA1a and T47D, three aggressive triple positive breast cancer cell lines, and BT-20 and MDA-MB-435, which are triple negative breast cancer cell lines. As a control, MCF10A, a spontaneously immortalized but non-tumoral cell line has been used. The acetonic extract of Buxus sempervirens showed cytotoxic activity towards all the five studied breast cancer cell lines with an IC50 ranging from 7.74 µg/ml to 12.5 µg/ml. Most importantly, the plant extract was less toxic towards MCF10A with an IC50 of 19.24 µg/ml. Fluorescence-activated cell sorting (FACS) analysis showed that the plant extract induced cell death and cell cycle arrest in G0/G1 phase in MCF7, T47D, MCF10CA1a and BT-20 cell lines, concomitant to cyclin D1 downregulation. Application of MCF7 and MCF10CA1a respective IC50 did not show such effects on the control cell line MCF10A. Propidium iodide/Annexin V double staining revealed a pre-apoptotic cell population with extract-treated MCF10CA1a, T47D and BT-20 cells. Transmission electron microscopy analyses indicated the occurrence of autophagy in MCF7 and MCF10CA1a cell lines. Immunofluorescence and Western blot assays confirmed the processing of microtubule-associated protein LC3 in the treated cancer cells. Moreover, we have demonstrated the upregulation of Beclin-1 in these cell lines and downregulation of Survivin and p21. Also, Caspase-3 detection in treated BT-20 and T47D confirmed the occurrence of apoptosis in these cells. Our findings indicate that Buxus sempervirens extract exhibit promising anti-cancer activity by triggering both autophagic cell death and apoptosis, suggesting that this plant may contain potential anti-cancer agents for single or combinatory cancer therapy against breast cancer. PMID:21935420
Pledgie-Tracy, Allison; Billam, Madhavi; Hacker, Amy; Sobolewski, Michele D; Woster, Patrick M.; Zhang, Zhe; Casero, Robert A.; Davidson, Nancy E
2009-01-01
Polyamine analogues have demonstrated significant activity against human breast cancer cell lines as single agents as well as in combination with other cytotoxic drugs. This study evaluates the ability of a polyamine analogue N1, N11-bis(ethyl)norspermine (BENSpm) to synergize with six standard chemotherapeutic agents, 5-fluorouracil (FU), fluorodeoxyuridine, cis- diaminechloroplatinum(II) (DDP), paclitaxel, docetaxel, and vinorelbine, in four human breast cancer cell lines and one immortalized, non-tumorigenic mammary epithelial cell line. BENSpm exhibited synergistic inhibitory effect on cell proliferation in combination with 5-FU or paclitaxel in human breast cancer cell lines (MDA-MB-231 and MCF-7) and either antagonistic or less effective in the non-tumorigenic MCF-10A cell line. Synergism was highest with 120 hour concomitant treatment or pre-treatment with BENSpm for 24 hours followed by concomitant treatment for 96 additional hours. Since the cytotoxic effects of many polyamine analogues and cytotoxic agents are believed to act, in part, through induction of the polyamine catabolic enzymes SSAT and SMO, the role of these enzymes on synergistic response was evaluated in MDA-MB-231- and MCF-7-treated with BENSpm and 5-FU or paclitaxel. Combination treatments of BENSpm with 5-FU or paclitaxel resulted in induction of SSAT mRNA and activity in both cell lines compared to either drug alone, while SMO mRNA and activity were increased only in MDA-MB-231 cells. Induction was greater with BENSpm/paclitaxel combination than BENSpm/5-FU. Further, RNAi studies demonstrated that both SSAT and SMO play a significant role in the response of MDA-MB-231 cells to treatment with BENSpm and 5-FU or paclitaxel. In MCF-7 cells, only SSAT appears to be involved in the response to these treatments. In an effort to translate combination studies from in vitro to in vivo, and to form a basis for clinical setting, the in vivo therapeutic efficacy of BENSpm alone and in combination with paclitaxel on tumor regression was evaluated in xenograft mice models generated with MDA-MB-231 cells. Intraperitoneal exposure to BENSpm or taxol singly and in combination for 4 weeks resulted in significant inhibition in tumor growth These findings help elucidate the mechanisms involved in synergistic drug response and support combinations of polyamine analogues with chemotherapeutic agents which could potentially be used in the treatment of breast cancer. PMID:19727732
2011-01-01
Background Engineered nanomaterials display unique properties that may have impact on human health, and thus require a reliable evaluation of their potential toxicity. Here, we performed a standardized in vitro screening of 23 engineered nanomaterials. We thoroughly characterized the physicochemical properties of the nanomaterials and adapted three classical in vitro toxicity assays to eliminate nanomaterial interference. Nanomaterial toxicity was assessed in ten representative cell lines. Results Six nanomaterials induced oxidative cell stress while only a single nanomaterial reduced cellular metabolic activity and none of the particles affected cell viability. Results from heterogeneous and chemically identical particles suggested that surface chemistry, surface coating and chemical composition are likely determinants of nanomaterial toxicity. Individual cell lines differed significantly in their response, dependent on the particle type and the toxicity endpoint measured. Conclusion In vitro toxicity of the analyzed engineered nanomaterials cannot be attributed to a defined physicochemical property. Therefore, the accurate identification of nanomaterial cytotoxicity requires a matrix based on a set of sensitive cell lines and in vitro assays measuring different cytotoxicity endpoints. PMID:21345205
Wu, Fayin; Zhou, Hefeng; Fan, Zhiying; Zhu, Yawen; Li, Yongye; Yao, Yukun; Ran, Dan
2014-02-01
To observe the effect of garlic oil combined with 5-FU induced apoptosis of adenoid cystic carcinoma cell line ACC-M. Human salivary in adenoid cystic carcinoma cell line AC-M was cultured, divided into the experimental group (5-FU group, garlic oil group, garlic oil + 5-FU group) and the control group, to observe the growth activity of tumor cells by MTT methods; to analyse the changes of cell cycle and apoptosis rate by flow cytometry. MTT experiments showed that 5-FU, garlic oil, garlic oil and 5-FU on ACC-M cells have inhibition in different concentration, with the increase of concentration and action time of the rise; Cell cycle analysis showed significant changes in flow cytometry. With the increase of concentration and the acting time, the G0/G1, phase of the cell ratio increased, S had no significant change, but G2/M phase cells decreased. Apoptosis rate display showed garlic oil combined with 5-FU induced apoptosis of ACC-M cells was significantly stronger than single group. Garlic oil can effectively induce the apoptosis of adenoid cystic carcinoma cell line ACC-M. The effect of garlic oil combined with 5-FU on ACC-M cells was stronger than the garlic oil, 5-FU used alone.
Cooperative Targets of Combined mTOR/HDAC Inhibition Promote MYC Degradation.
Simmons, John K; Michalowski, Aleksandra M; Gamache, Benjamin J; DuBois, Wendy; Patel, Jyoti; Zhang, Ke; Gary, Joy; Zhang, Shuling; Gaikwad, Snehal; Connors, Daniel; Watson, Nicholas; Leon, Elena; Chen, Jin-Qiu; Kuehl, W Michael; Lee, Maxwell P; Zingone, Adriana; Landgren, Ola; Ordentlich, Peter; Huang, Jing; Mock, Beverly A
2017-09-01
Cancer treatments often require combinations of molecularly targeted agents to be effective. mTORi (rapamycin) and HDACi (MS-275/entinostat) inhibitors have been shown to be effective in limiting tumor growth, and here we define part of the cooperative action of this drug combination. More than 60 human cancer cell lines responded synergistically (CI<1) when treated with this drug combination compared with single agents. In addition, a breast cancer patient-derived xenograft, and a BCL-XL plasmacytoma mouse model both showed enhanced responses to the combination compared with single agents. Mice bearing plasma cell tumors lived an average of 70 days longer on combination treatment compared with single agents. A set of 37 genes cooperatively affected (34 downregulated; 3 upregulated) by the combination responded pharmacodynamically in human myeloma cell lines, xenografts, and a P493 model, and were both enriched in tumors, and correlated with prognostic markers in myeloma patient datasets. Genes downregulated by the combination were overexpressed in several untreated cancers (breast, lung, colon, sarcoma, head and neck, myeloma) compared with normal tissues. The MYC/E2F axis, identified by upstream regulator analyses and validated by immunoblots, was significantly inhibited by the drug combination in several myeloma cell lines. Furthermore, 88% of the 34 genes downregulated have MYC-binding sites in their promoters, and the drug combination cooperatively reduced MYC half-life by 55% and increased degradation. Cells with MYC mutations were refractory to the combination. Thus, integrative approaches to understand drug synergy identified a clinically actionable strategy to inhibit MYC/E2F activity and tumor cell growth in vivo Mol Cancer Ther; 16(9); 2008-21. ©2017 AACR . ©2017 American Association for Cancer Research.
Nivolumab in squamous cell carcinoma of the head and neck.
Specenier, Pol
2018-05-01
The prognosis of recurrent/metastatic (R/M) squamous cell carcinoma of the head and neck (HNSCC) after failure of first line chemotherapy is dismal. Until the publication of the results of CheckMate 141, not a single agent provided any survival benefit as a second line treatment for R/M HNSCC. Areas covered: A comprehensive review of the literature was conducted on the role of nivolumab in HNSCC. Expert commentary: Nivolumab is approved by the Food and Drug Administration for the treatment of patients based on the results of CheckMate 141 showing an overall survival benefit as compared to standard care (single agent docetaxel, methotrexate, or cetuximab). Of particular interest are immune-related adverse events which should be managed according to published guidelines.
NASA Technical Reports Server (NTRS)
Piao, C. Q.; Willey, J. C.; Hei, T. K.; Hall, E. J. (Principal Investigator)
1999-01-01
The cellular and molecular mechanisms of radiation-induced lung cancer are not known. In the present study, alterations of p53 in tumorigenic human papillomavirus-immortalized human bronchial epithelial (BEP2D) cells induced by a single low dose of either alpha-particles or 1 GeV/nucleon (56)Fe were analyzed by PCR-single-stranded conformation polymorphism (SSCP) coupled with sequencing analysis and immunoprecipitation assay. A total of nine primary and four secondary tumor cell lines, three of which were metastatic, together with the parental BEP2D and primary human bronchial epithelial (NHBE) cells were studied. The immunoprecipitation assay showed overexpression of mutant p53 proteins in all the tumor lines but not in NHBE and BEP2D cells. PCR-SSCP and sequencing analysis found band shifts and gene mutations in all four of the secondary tumors. A G-->T transversion in codon 139 in exon 5 that replaced Lys with Asn was detected in two tumor lines. One mutation each, involving a G-->T transversion in codon 215 in exon 6 (Ser-->lle) and a G-->A transition in codon 373 in exon 8 (Arg-->His), was identified in the remaining two secondary tumors. These results suggest that p53 alterations correlate with tumorigenesis in the BEP2D cell model and that mutations in the p53 gene may be indicative of metastatic potential.
Fickweiler, S; Steinbach, P; Wörle, K; Hofstädter, F
1996-01-01
The effects of high-energy shock waves (HESW) generated by an experimental Siemens lithotripter in combination with 137Cs gamma-rays were examined in vitro. Proliferation after treatment of immobilised pellets of either single cells or multicellular spheroids of the bladder cancer cell line RT4 was determined using colony-forming assays and cell cycle analysis. Surviving and cell cycle fractions were calculated for each shock wave and radiation application mode separately, and for sequential combination in different successions for the purpose of characterizing the interaction of both treatment modalities. Combination of HESW and ionising radiation turned out to act additively or slightly supra-additively on both biologic models.
Aberrant expression of the PHF14 gene in biliary tract cancer cells
AKAZAWA, TAKAKO; YASUI, KOHICHIROH; GEN, YASUYUKI; YAMADA, NOBUHISA; TOMIE, AKIRA; DOHI, OSAMU; MITSUYOSHI, HIRONORI; YAGI, NOBUAKI; ITOH, YOSHITO; NAITO, YUJI; YOSHIKAWA, TOSHIKAZU
2013-01-01
DNA copy number aberrations in human biliary tract cancer (BTC) cell lines were investigated using a high-density oligonucleotide microarray. A novel homozygous deletion was detected at chromosomal region 7p21.3 in the OZ cell line. Further validation experiments using genomic PCR revealed a homozygous deletion of a single gene, plant homeodomain (PHD) finger protein 14 (PHF14). No PHF14 mRNA or protein expression was detected, thus demonstrating the absence of PHF14 expression in the OZ cell line. Although the PHD finger protein is considered to be involved in chromatin-mediated transcriptional regulation, little is known about the function of PHF14 in cancer. The present study observed that the knock down of PHF14 using small interfering RNA (siRNA) enhanced the growth of the BTC cells. These observations suggest that aberrant PHF14 expression may have a role in the tumorigenesis of BTC. PMID:23833654
Hiatt, Joseph B; Pritchard, Colin C; Salipante, Stephen J; O'Roak, Brian J; Shendure, Jay
2013-05-01
The detection and quantification of genetic heterogeneity in populations of cells is fundamentally important to diverse fields, ranging from microbial evolution to human cancer genetics. However, despite the cost and throughput advances associated with massively parallel sequencing, it remains challenging to reliably detect mutations that are present at a low relative abundance in a given DNA sample. Here we describe smMIP, an assay that combines single molecule tagging with multiplex targeted capture to enable practical and highly sensitive detection of low-frequency or subclonal variation. To demonstrate the potential of the method, we simultaneously resequenced 33 clinically informative cancer genes in eight cell line and 45 clinical cancer samples. Single molecule tagging facilitated extremely accurate consensus calling, with an estimated per-base error rate of 8.4 × 10(-6) in cell lines and 2.6 × 10(-5) in clinical specimens. False-positive mutations in the single molecule consensus base-calls exhibited patterns predominantly consistent with DNA damage, including 8-oxo-guanine and spontaneous deamination of cytosine. Based on mixing experiments with cell line samples, sensitivity for mutations above 1% frequency was 83% with no false positives. At clinically informative sites, we identified seven low-frequency point mutations (0.2%-4.7%), including BRAF p.V600E (melanoma, 0.2% alternate allele frequency), KRAS p.G12V (lung, 0.6%), JAK2 p.V617F (melanoma, colon, two lung, 0.3%-1.4%), and NRAS p.Q61R (colon, 4.7%). We anticipate that smMIP will be broadly adoptable as a practical and effective method for accurately detecting low-frequency mutations in both research and clinical settings.
Hiatt, Joseph B.; Pritchard, Colin C.; Salipante, Stephen J.; O'Roak, Brian J.; Shendure, Jay
2013-01-01
The detection and quantification of genetic heterogeneity in populations of cells is fundamentally important to diverse fields, ranging from microbial evolution to human cancer genetics. However, despite the cost and throughput advances associated with massively parallel sequencing, it remains challenging to reliably detect mutations that are present at a low relative abundance in a given DNA sample. Here we describe smMIP, an assay that combines single molecule tagging with multiplex targeted capture to enable practical and highly sensitive detection of low-frequency or subclonal variation. To demonstrate the potential of the method, we simultaneously resequenced 33 clinically informative cancer genes in eight cell line and 45 clinical cancer samples. Single molecule tagging facilitated extremely accurate consensus calling, with an estimated per-base error rate of 8.4 × 10−6 in cell lines and 2.6 × 10−5 in clinical specimens. False-positive mutations in the single molecule consensus base-calls exhibited patterns predominantly consistent with DNA damage, including 8-oxo-guanine and spontaneous deamination of cytosine. Based on mixing experiments with cell line samples, sensitivity for mutations above 1% frequency was 83% with no false positives. At clinically informative sites, we identified seven low-frequency point mutations (0.2%–4.7%), including BRAF p.V600E (melanoma, 0.2% alternate allele frequency), KRAS p.G12V (lung, 0.6%), JAK2 p.V617F (melanoma, colon, two lung, 0.3%–1.4%), and NRAS p.Q61R (colon, 4.7%). We anticipate that smMIP will be broadly adoptable as a practical and effective method for accurately detecting low-frequency mutations in both research and clinical settings. PMID:23382536
A microfluidic approach to parallelized transcriptional profiling of single cells.
Sun, Hao; Olsen, Timothy; Zhu, Jing; Tao, Jianguo; Ponnaiya, Brian; Amundson, Sally A; Brenner, David J; Lin, Qiao
2015-12-01
The ability to correlate single-cell genetic information with cellular phenotypes is of great importance to biology and medicine, as it holds the potential to gain insight into disease pathways that is unavailable from ensemble measurements. We present a microfluidic approach to parallelized, rapid, quantitative analysis of messenger RNA from single cells via RT-qPCR. The approach leverages an array of single-cell RT-qPCR analysis units formed by a set of parallel microchannels concurrently controlled by elastomeric pneumatic valves, thereby enabling parallelized handling and processing of single cells in a drastically simplified operation procedure using a relatively small number of microvalves. All steps for single-cell RT-qPCR, including cell isolation and immobilization, cell lysis, mRNA purification, reverse transcription and qPCR, are integrated on a single chip, eliminating the need for off-chip manual cell and reagent transfer and qPCR amplification as commonly used in existing approaches. Additionally, the approach incorporates optically transparent microfluidic components to allow monitoring of single-cell trapping without the need for molecular labeling that can potentially alter the targeted gene expression and utilizes a polycarbonate film as a barrier against evaporation to minimize the loss of reagents at elevated temperatures during the analysis. We demonstrate the utility of the approach by the transcriptional profiling for the induction of the cyclin-dependent kinase inhibitor 1a and the glyceraldehyde 3-phosphate dehydrogenase in single cells from the MCF-7 breast cancer cell line. Furthermore, the methyl methanesulfonate is employed to allow measurement of the expression of the genes in individual cells responding to a genotoxic stress.
[Effect of DOT1L gene silence on proliferation of acute monocytic leukemia cell line THP-1].
Zhang, Yu-Juan; Li, Hua-Wen; Chang, Guo-Qiang; Zhang, Hong-Ju; Wang, Jian; Lin, Ya-Ni; Zhou, Jia-Xi; Li, Qing-Hua; Pang, Tian-Xiang
2013-08-01
This study was aimed to investigate the influence of short hairpin RNA (shRNA) on proliferation of human leukemia cell line THP-1. The shRNA targeting the site 732-752 of DOT1L mRNA was designed and chemically synthesized, then a single-vector lentiviral, tet-inducible shRNA-DOT1L system (Plko-Tet-On) was generated. Thereafter, the THP-1 cells with lentivirus were infected to create stable cell line with regulatable shRNA expression. The expression of DOT1L in the THP-1 cell line was assayed by RT-PCR. Effect of shRNA-DOT1L on the proliferation of THP-1 cells was detected with MTT method,and the change of colony forming potential of THP-1 cells was analyzed by colony forming unit test. Cell cycle distribution was tested by flow cytometry. The results indicated that the expression of DOT1L was statistically lower than that in the control groups. The proliferation and colony forming capacity of THP-1 cells were significantly inhibited. The percentage of cells at G0/G1 phase increased in THP-1/shRNA cells treated with Dox while the percentage of cells at S phase significantly decreased as compared with that in the control group. It is concluded that the shRNA targeting DOT1L can effectively inhibit the proliferation of acute monocytic leukemia cell line THP-1.
Grineva, N I; Borovkova, T V; Sats, N V; Kurabekova, R M; Rozhitskaia, O S; Solov'ev, G Ia; Pantin, V I
1995-08-01
G11 mouse cells and SH2 rat cells transformed with simian adenovirus SA7 DNA showed inheritable oncogen-specific phenotypic normalization when treated with sense and antisense oligonucleotides complementary to long RNA sequences, plus or minus strands of the integrated adenovirus oncogenes E1A and E1B. Transitory treatment of the cells with the oligonucleotides in the absence of serum was shown to cause the appearance of normalized cell lines with fibroblastlike morphology, slower cell proliferation, and lack of ability to form colonies in soft agar. Proliferative activity and adhesion of the normalized cells that established cell lines were found to depend on the concentration of growth factors in the cultural medium. In some of the cell lines, an inhibition of transcription of the E1 oncogenes was observed. The normalization also produced cells that divided 2 - 5 times and died and cells that reverted to a transformed phenotype in 2 - 10 days. The latter appeared predominantly upon the action of the antisense oligonucleotides.
NASA Astrophysics Data System (ADS)
Liu, Qi; Zhang, Cheng; Ding, Xianting; Deng, Hui; Zhang, Daming; Cui, Wei; Xu, Hongwei; Wang, Yingwei; Xu, Wanhai; Lv, Lei; Zhang, Hongyu; He, Yinghua; Wu, Qiong; Szyf, Moshe; Ho, Chih-Ming; Zhu, Jingde
2015-06-01
Therapeutic outcomes of combination chemotherapy have not significantly advanced during the past decades. This has been attributed to the formidable challenges of optimizing drug combinations. Testing a matrix of all possible combinations of doses and agents in a single cell line is unfeasible due to the virtually infinite number of possibilities. We utilized the Feedback System Control (FSC) platform, a phenotype oriented approach to test 100 options among 15,625 possible combinations in four rounds of assaying to identify an optimal tri-drug combination in eight distinct chemoresistant bladder cancer cell lines. This combination killed between 82.86% and 99.52% of BCa cells, but only 47.47% of the immortalized benign bladder epithelial cells. Preclinical in vivo verification revealed its markedly enhanced anti-tumor efficacy as compared to its bi- or mono-drug components in cell line-derived tumor xenografts. The collective response of these pathways to component drugs was both cell type- and drug type specific. However, the entire spectrum of pathways triggered by the tri-drug regimen was similar in all four cancer cell lines, explaining its broad spectrum killing of BCa lines, which did not occur with its component drugs. Our findings here suggest that the FSC platform holdspromise for optimization of anti-cancer combination chemotherapy.
Lopez, Salvatore; Cocco, Emiliano; Black, Jonathan; Bellone, Stefania; Bonazzoli, Elena; Predolini, Federica; Ferrari, Francesca; Schwab, Carlton L.; English, Diana P.; Ratner, Elena; Silasi, Dan-Arin; Azodi, Masoud; Schwartz, Peter E.; Terranova, Corrado; Angioli, Roberto; Santin, Alessandro D.
2015-01-01
HER2/neu gene amplification and PIK3CA driver mutations are common in uterine serous carcinoma (USC), and may represent ideal therapeutic targets against this aggressive variant of endometrial cancer. We examined the sensitivity to neratinib, taselisib and the combination of the two compounds in in vitro and in vivo experiments using PIK3CA mutated and PIK3CA-wild type HER2/neu amplified USC cell lines. Cell viability and cell cycle distribution were assessed using flow-cytometry assays. Downstream signaling was assessed by immunoblotting. Preclinical efficacy of single versus dual inhibition was evaluated in vivo using two USC-xenografts. We found both single agent neratinib and taselisib to be active but only transiently effective in controlling the in vivo growth of USC xenografts harboring HER2/neu gene amplification with or without oncogenic PIK3CA mutations. In contrast, the combination of the two inhibitors caused a stronger and long lasting growth inhibition in both USC xenografts when compared to single agent therapy. Combined targeting of HER2 and PIK3CA was associated with a significant and dose-dependent increase in the percentage of cells in the G0/G1 phase of the cell cycle and a dose-dependent decline in the phosphorylation of S6. Importantly, dual inhibition therapy initiated after tumor progression in single agent-treated mice was still remarkably effective at inducing tumor regression in both large PIK3CA or pan-ErbB inhibitor-resistant USC xenografts. Dual HER2/PIK3CA blockade may represent a novel therapeutic option for USC patients harboring tumors with HER2/neu gene amplification and mutated or wild type PIK3CA resistant to chemotherapy. PMID:26333383
Zhao, Menglin; Wang, Jiaxian; Luo, Manyu; Luo, Han; Zhao, Meiqi; Han, Lei; Zhang, Mengxiao; Yang, Hui; Xie, Yueqing; Jiang, Hua; Feng, Lei; Lu, Huili; Zhu, Jianwei
2018-07-01
Chinese hamster ovary (CHO) cells are the most widely used mammalian hosts for recombinant protein production. However, by conventional random integration strategy, development of a high-expressing and stable recombinant CHO cell line has always been a difficult task due to the heterogenic insertion and its caused requirement of multiple rounds of selection. Site-specific integration of transgenes into CHO hot spots is an ideal strategy to overcome these challenges since it can generate isogenic cell lines with consistent productivity and stability. In this study, we investigated three sites with potential high transcriptional activities: C12orf35, HPRT, and GRIK1, to determine the possible transcriptional hot spots in CHO cells, and further construct a reliable site-specific integration strategy to develop recombinant cell lines efficiently. Genes encoding representative proteins mCherry and anti-PD1 monoclonal antibody were targeted into these three loci respectively through CRISPR/Cas9 technology. Stable cell lines were generated successfully after a single round of selection. In comparison with a random integration control, all the targeted integration cell lines showed higher productivity, among which C12orf35 locus was the most advantageous in both productivity and cell line stability. Binding affinity and N-glycan analysis of the antibody revealed that all batches of product were of similar quality independent on integrated sites. Deep sequencing demonstrated that there was low level of off-target mutations caused by CRISPR/Cas9, but none of them contributed to the development process of transgene cell lines. Our results demonstrated the feasibility of C12orf35 as the target site for exogenous gene integration, and strongly suggested that C12orf35 targeted integration mediated by CRISPR/Cas9 is a reliable strategy for the rapid development of recombinant CHO cell lines.
Wang, Hui-Yun; Greenawalt, Danielle; Cui, Xiangfeng; Tereshchenko, Irina V; Luo, Minjie; Yang, Qifeng; Azaro, Marco A; Hu, Guohong; Chu, Yi; Li, James Y; Shen, Li; Lin, Yong; Zhang, Lianjun
2009-01-01
Context: Cancer cell lines are used extensively in various research. Knowledge of genetic alterations in these lines is important for understanding mechanisms underlying their biology. However, since paired normal tissues are usually unavailable for comparison, precisely determining genetic alterations in cancer cell lines is difficult. To address this issue, a highly efficient and reliable method is developed. Aims: Establishing a highly efficient and reliable experimental system for genetic profiling of cell lines. Materials and Methods: A widely used breast cancer cell line, MCF-7, was genetically profiled with 4,396 single nucleotide polymorphisms (SNPs) spanning 11 whole chromosomes and two other small regions using a newly developed high-throughput multiplex genotyping approach. Results: The fractions of homozygous SNPs in MCF-7 (13.3%) were significantly lower than those in the control cell line and in 24 normal human individuals (25.1% and 27.4%, respectively). Homozygous SNPs in MCF-7 were found in clusters. The sizes of these clusters were significantly larger than the expected based on random allelic combination. Fourteen such regions were found on chromosomes 1p, 1q, 2q, 6q, 13, 15q, 16q, 17q and 18p in MCF-7 and two in the small regions. Conclusions: These results are generally concordant with those obtained using different approaches but are better in defining their chromosomal positions. The used approach provides a reliable way to detecting possible genetic alterations in cancer cell lines without paired normal tissues. PMID:19439911
Collaborative Model for Acceleration of Individualized Therapy of Colon Cancer
2013-10-01
Methods: The anti-proliferative effects of TAK-960 as a single agent and in combination with irinotecan (SN38) or cetuximab were assessed using an assay...following treatment with TAK-960 alone or in combination with standard agents (irinotecan or cetuximab ). Results: CRC cell lines were quite...sensitive to TAK-960 with IC50 values ranging from 0.007 to 1 umol/L. While no synergy was observed in the KRAS WT CRC cell lines in the cetuximab
A statistical framework for multiparameter analysis at the single-cell level.
Torres-García, Wandaliz; Ashili, Shashanka; Kelbauskas, Laimonas; Johnson, Roger H; Zhang, Weiwen; Runger, George C; Meldrum, Deirdre R
2012-03-01
Phenotypic characterization of individual cells provides crucial insights into intercellular heterogeneity and enables access to information that is unavailable from ensemble averaged, bulk cell analyses. Single-cell studies have attracted significant interest in recent years and spurred the development of a variety of commercially available and research-grade technologies. To quantify cell-to-cell variability of cell populations, we have developed an experimental platform for real-time measurements of oxygen consumption (OC) kinetics at the single-cell level. Unique challenges inherent to these single-cell measurements arise, and no existing data analysis methodology is available to address them. Here we present a data processing and analysis method that addresses challenges encountered with this unique type of data in order to extract biologically relevant information. We applied the method to analyze OC profiles obtained with single cells of two different cell lines derived from metaplastic and dysplastic human Barrett's esophageal epithelium. In terms of method development, three main challenges were considered for this heterogeneous dynamic system: (i) high levels of noise, (ii) the lack of a priori knowledge of single-cell dynamics, and (iii) the role of intercellular variability within and across cell types. Several strategies and solutions to address each of these three challenges are presented. The features such as slopes, intercepts, breakpoint or change-point were extracted for every OC profile and compared across individual cells and cell types. The results demonstrated that the extracted features facilitated exposition of subtle differences between individual cells and their responses to cell-cell interactions. With minor modifications, this method can be used to process and analyze data from other acquisition and experimental modalities at the single-cell level, providing a valuable statistical framework for single-cell analysis.
Cheng, Linzhao; Hansen, Nancy F.; Zhao, Ling; Du, Yutao; Zou, Chunlin; Donovan, Frank X.; Chou, Bin-Kuan; Zhou, Guangyu; Li, Shijie; Dowey, Sarah N.; Ye, Zhaohui; Chandrasekharappa, Settara C.; Yang, Huanming; Mullikin, James C.; Liu, P. Paul
2012-01-01
Summary The utility of induced pluripotent stem cells (iPSCs) as models to study diseases and as sources for cell therapy depends on the integrity of their genomes. Despite recent publications of DNA sequence variations in the iPSCs, the true scope of such changes for the entire genome is not clear. Here we report the whole-genome sequencing of three human iPSC lines derived from two cell types of an adult donor by episomal vectors. The vector sequence was undetectable in the deeply sequenced iPSC lines. We identified 1058–1808 heterozygous single nucleotide variants (SNVs), but no copy number variants, in each iPSC line. Six to twelve of these SNVs were within coding regions in each iPSC line, but ~50% of them are synonymous changes and the remaining are not selectively enriched for known genes associated with cancers. Our data thus suggest that episome-mediated reprogramming is not inherently mutagenic during integration-free iPSC induction. PMID:22385660
Effect of verteporfin-PDT on the Notch signaling pathway in cholangiocarcinoma (CCA) cell lines
NASA Astrophysics Data System (ADS)
Cerec, Virginie; Andreola, Fausto; Pereira, Stephen P.
2009-06-01
Accumulating preclinical and clinical evidence supports a pro-oncogenic function for Notch signaling in several solid tumors. Therefore, Notch inhibitory agents, such as gamma-secretase inhibitors (GSI), are being investigated as cancer therapeutic agents and a potential adjuvant to conventional chemo/radiotherapy. To date, no in vitro data are available on the cellular response and effect of either photodynamic therapy (PDT) or GSI on human cholangiocarcinoma (CCA). Consequently, we aimed to study the: (i) constitutive expression of Notch signaling pathway in CCA cell lines; (ii) response to Verteporfin-PDT and to GSI, as single agents on CCA cell lines; (iii) effect of Verteporfin-PDT on Notch signaling pathway expression. Expression of Notch signaling components was studied in two cholangiocarcinoma cell lines, HuCCT1 and TFK-1 (intra- and extrahepatic, respectively). No difference in basal expression of Notch1, 2 and Jagged1 was observed in either cell line. In contrast, Notch3 was found to be weakly and highly expressed in HuCCT1 and TFK-1 cells, respectively - supporting our recent microarray data which showed Notch3 overexpression in biliary brushings from patients with extrahepatic CCA. HuCCT1 and TFK-1 differentially responded to Verteporfin-PDT treatment; preliminary data showed no clear effect of GSI on proliferation/apoptosis in either cell line following short exposure (6 and 24h). Following Verteporfin-PDT, Notch1, 2 and Jagged-1 expression was down-regulated in both cell lines, while Notch3 expression was unaffected in HuCCT1 cells and down-regulated in TFK-1 cells. The Notch signaling pathway could represent a potential target for combination therapy in CCA treatment.
A high-content platform to characterise human induced pluripotent stem cell lines.
Leha, Andreas; Moens, Nathalie; Meleckyte, Ruta; Culley, Oliver J; Gervasio, Mia K; Kerz, Maximilian; Reimer, Andreas; Cain, Stuart A; Streeter, Ian; Folarin, Amos; Stegle, Oliver; Kielty, Cay M; Durbin, Richard; Watt, Fiona M; Danovi, Davide
2016-03-01
Induced pluripotent stem cells (iPSCs) provide invaluable opportunities for future cell therapies as well as for studying human development, modelling diseases and discovering therapeutics. In order to realise the potential of iPSCs, it is crucial to comprehensively characterise cells generated from large cohorts of healthy and diseased individuals. The human iPSC initiative (HipSci) is assessing a large panel of cell lines to define cell phenotypes, dissect inter- and intra-line and donor variability and identify its key determinant components. Here we report the establishment of a high-content platform for phenotypic analysis of human iPSC lines. In the described assay, cells are dissociated and seeded as single cells onto 96-well plates coated with fibronectin at three different concentrations. This method allows assessment of cell number, proliferation, morphology and intercellular adhesion. Altogether, our strategy delivers robust quantification of phenotypic diversity within complex cell populations facilitating future identification of the genetic, biological and technical determinants of variance. Approaches such as the one described can be used to benchmark iPSCs from multiple donors and create novel platforms that can readily be tailored for disease modelling and drug discovery. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
The influence of biomechanical properties and cannabinoids on tumor invasion.
Hohmann, Tim; Grabiec, Urszula; Ghadban, Chalid; Feese, Kerstin; Dehghani, Faramarz
2017-01-02
Cannabinoids are known to have an anti-tumorous effect, but the underlying mechanisms are only sparsely understood. Mechanical characteristics of tumor cells represent a promising marker to distinguish between tumor cells and the healthy tissue. We tested the hypothesis whether cannabinoids influence the tumor cell specific mechanical and migratory properties and if these factors are a prognostic marker for the invasiveness of tumor cells. 3 different glioblastoma cell lines were treated with cannabinoids and changes of mechanical and migratory properties of single cells were measured using atomic force microscopy and time lapse imaging. The invasiveness of cell lines was determined using a co-culture model with organotypic hippocampal slice cultures. We found that cannabinoids are capable of influencing migratory and mechanical properties in a cell line specific manner. A network analysis revealed a correlation between a "generalized stiffness" and the invasiveness for all tumor cell lines after 3 and 4 d of invasion time: r 3d = -0.88 [-0.52;-0.97]; r 4d = -0.90 [-0.59;-0.98]. Here we could show that a "generalized stiffness" is a profound marker for the invasiveness of a tumor cell population in our model and thus might be of high clinical relevance for drug testing. Additionally cannabinoids were shown to be of potential use for therapeutic approaches of glioblastoma.
A new PDAC mouse model originated from iPSCs-converted pancreatic cancer stem cells (CSCcm)
Calle, Anna Sanchez; Nair, Neha; Oo, Aung KoKo; Prieto-Vila, Marta; Koga, Megumi; Khayrani, Apriliana Cahya; Hussein, Maram; Hurley, Laura; Vaidyanath, Arun; Seno, Akimasa; Iwasaki, Yoshiaki; Calle, Malu; Kasai, Tomonari; Seno, Masaharu
2016-01-01
Pancreatic ductal adenocarcinoma (PDAC) is the most representative form of pancreatic cancers. PDAC solid tumours are constituted of heterogeneous populations of cells including cancer stem cells (CSCs), differentiated cancer cells, desmoplastic stroma and immune cells. The identification and consequent isolation of pancreatic CSCs facilitated the generation of genetically engineered murine models. Nonetheless, the current models may not be representative for the spontaneous tumour occurrence. In the present study, we show the generation of a novel pancreatic iPSC-converted cancer stem cell lines (CSCcm) as a cutting-edge model for the study of PDAC. The CSCcm lines were achieved only by the influence of pancreatic cancer cell lines conditioned medium and were not subjected to any genetic manipulation. The xenografts tumours from CSCcm lines displayed histopathological features of ADM, PanIN and PDAC lesions. Further molecular characterization from RNA-sequencing analysis highlighted primary culture cell lines (1st CSCcm) as potential candidates to represent the pancreatic CSCs and indicated the establishment of the pancreatic cancer molecular pattern in their subsequent progenies 2nd CSCcm and 3rd CSCcm. In addition, preliminary RNA-seq SNPs analysis showed that the distinct CSCcm lines did not harbour single point mutations for the oncogene Kras codon 12 or 13. Therefore, PDAC-CSCcm model may provide new insights about the actual occurrence of the pancreatic cancer leading to develop different approaches to target CSCs and abrogate the progression of this fatidic disease. PMID:28042501
Osteil, Pierre; Tapponnier, Yann; Markossian, Suzy; Godet, Murielle; Schmaltz-Panneau, Barbara; Jouneau, Luc; Cabau, Cédric; Joly, Thierry; Blachère, Thierry; Gócza, Elen; Bernat, Agnieszka; Yerle, Martine; Acloque, Hervé; Hidot, Sullivan; Bosze, Zsuzsanna; Duranthon, Véronique; Savatier, Pierre; Afanassieff, Marielle
2013-01-01
Summary Not much is known about the molecular and functional features of pluripotent stem cells (PSCs) in rabbits. To address this, we derived and characterized 2 types of rabbit PSCs from the same breed of New Zealand White rabbits: 4 lines of embryonic stem cells (rbESCs), and 3 lines of induced PSCs (rbiPSCs) that were obtained by reprogramming adult skin fibroblasts. All cell lines required fibroblast growth factor 2 for their growth and proliferation. All rbESC lines showed molecular and functional properties typically associated with primed pluripotency. The cell cycle of rbESCs had a prolonged G1 phase and a DNA damage checkpoint before entry into the S phase, which are the 2 features typically associated with the somatic cell cycle. In contrast, the rbiPSC lines exhibited some characteristics of naïve pluripotency, including resistance to single-cell dissociation by trypsin, robust activity of the distal enhancer of the mouse Oct4 gene, and expression of naïve pluripotency-specific genes, as defined in rodents. According to gene expression profiles, rbiPSCs were closer to the rabbit inner cell mass (ICM) than rbESCs. Furthermore, rbiPSCs were capable of colonizing the ICM after aggregation with morulas. Therefore, we propose that rbiPSCs self-renew in an intermediate state between naïve and primed pluripotency, which represents a key step toward the generation of bona fide naïve PSC lines in rabbits. PMID:23789112
Zhao, Xiang; He, Rong; Liu, Yu; Wu, Yongkai; Kang, Leitao
2017-07-01
Cisplatin and its analogues are widely used as anti-tumor drugs in lung cancer but many cisplatin-resistant lung cancer cases have been identified in recent years. Single-stranded DNA-binding protein 1 (SSDBP1) can effectively induce H69 cell resistance to cisplatin in our previous identification; thus, it is necessary to explore the mechanism underlying the effects of SSDBP1-induced resistance to cisplatin. First, SSDBP1-overexpressed or silent cell line was constructed and used to analyze the effects of SSDBP1 on chemoresistance of lung cancer cells to cisplatin. SSDBP1 expression was assayed by real-time PCR and Western blot. Next, the effects of SSDBP1 on cisplatin sensitivity, proliferation, and apoptosis of lung cancer cell lines were assayed by MTT and flow cytometry, respectively; ABC transporters, apoptosis-related genes, and cell cycle-related genes by real-time PCR, and DNA wound repair by comet assay. Low expression of SSDBP1 was observed in H69 cells, while increased expression in cisplatin-resistant H69 cells. Upregulated expression of SSDBP1 in H69AR cells was identified to promote proliferation and cisplatin resistance and inhibit apoptosis, while downregulation of SSDBP1 to inhibit cisplatin resistance and proliferation and promoted apoptosis. Moreover, SSDBP1 promoted the expression of P2gp, MRP1, Cyclin D1, and CDK4 and inhibited the expression of caspase 3 and caspase 9. Furthermore, SSDBP1 promoted the DNA wound repair. These results indicated that SSDBP1 may induce cell chemoresistance of cisplatin through promoting DNA repair, resistance-related gene expression, cell proliferation, and inhibiting apoptosis.
Single-cell analysis of population context advances RNAi screening at multiple levels
Snijder, Berend; Sacher, Raphael; Rämö, Pauli; Liberali, Prisca; Mench, Karin; Wolfrum, Nina; Burleigh, Laura; Scott, Cameron C; Verheije, Monique H; Mercer, Jason; Moese, Stefan; Heger, Thomas; Theusner, Kristina; Jurgeit, Andreas; Lamparter, David; Balistreri, Giuseppe; Schelhaas, Mario; De Haan, Cornelis A M; Marjomäki, Varpu; Hyypiä, Timo; Rottier, Peter J M; Sodeik, Beate; Marsh, Mark; Gruenberg, Jean; Amara, Ali; Greber, Urs; Helenius, Ari; Pelkmans, Lucas
2012-01-01
Isogenic cells in culture show strong variability, which arises from dynamic adaptations to the microenvironment of individual cells. Here we study the influence of the cell population context, which determines a single cell's microenvironment, in image-based RNAi screens. We developed a comprehensive computational approach that employs Bayesian and multivariate methods at the single-cell level. We applied these methods to 45 RNA interference screens of various sizes, including 7 druggable genome and 2 genome-wide screens, analysing 17 different mammalian virus infections and four related cell physiological processes. Analysing cell-based screens at this depth reveals widespread RNAi-induced changes in the population context of individual cells leading to indirect RNAi effects, as well as perturbations of cell-to-cell variability regulators. We find that accounting for indirect effects improves the consistency between siRNAs targeted against the same gene, and between replicate RNAi screens performed in different cell lines, in different labs, and with different siRNA libraries. In an era where large-scale RNAi screens are increasingly performed to reach a systems-level understanding of cellular processes, we show that this is often improved by analyses that account for and incorporate the single-cell microenvironment. PMID:22531119
Else, Monica; Dearden, Claire E; Matutes, Estella; Forconi, Francesco; Lauria, Francesco; Ahmad, Humayun; Kelly, Susan; Liyanage, Anandika; Ratnayake, Vijitha; Shankari, Jagadeesan; Whalley, Ioana; Catovsky, Daniel
2011-06-01
The purine analogs pentostatin and cladribine are effective treatments for hairy cell leukemia (HCL). However, alternative treatments are needed for patients with recurrent disease. We reviewed retrospectively data from 18 patients who were retreated with either pentostatin (n = 12) or cladribine (n = 6) in combination with rituximab, after 1-6 (median 2) previous treatments with either purine analog as a single agent. All 18 patients responded to therapy, with a complete response (CR) rate of 89%. This compared favorably with CR rates of 68% after second-line therapy and 47% after third-line therapy in 88 patients retreated one or more times with a purine analog alone. Toxicity with the combination treatment was minimal. At a median follow-up of 36 months (range 5-83 months) all 16 complete responders remained in CR, while one partial responder developed recurrent disease at 10 months. The estimated recurrence rate at 3 years was 7%. This compares with 21% after second-line therapy and 42% after third-line therapy in the 88 patients retreated with a purine analog alone. Furthermore, it was a marked improvement on the 55% recurrence at 3 years previously seen in these same 18 patients after their own first-line treatment with single-agent pentostatin or cladribine (p = 0.006). The combination of a purine analog with rituximab was safe and effective for patients with recurrent HCL. The results suggest an added benefit compared with single-agent purine analog therapy.
Seiler, Christoph; Gebhart, Nichole; Zhang, Yong; Shinton, Susan A; Li, Yue-sheng; Ross, Nicola L; Liu, Xingjun; Li, Qin; Bilbee, Alison N; Varshney, Gaurav K; LaFave, Matthew C; Burgess, Shawn M; Balciuniene, Jorune; Balciunas, Darius; Hardy, Richard R; Kappes, Dietmar J; Wiest, David L; Rhodes, Jennifer
2015-01-01
Genetic screens are a powerful tool to discover genes that are important in immune cell development and function. The evolutionarily conserved development of lymphoid cells paired with the genetic tractability of zebrafish make this a powerful model system for this purpose. We used a Tol2-based gene-breaking transposon to induce mutations in the zebrafish (Danio rerio, AB strain) genome, which served the dual purpose of fluorescently tagging cells and tissues that express the disrupted gene and provided a means of identifying the disrupted gene. We identified 12 lines in which hematopoietic tissues expressed green fluorescent protein (GFP) during embryonic development, as detected by microscopy. Subsequent analysis of young adult fish, using a novel approach in which single cell suspensions of whole fish were analyzed by flow cytometry, revealed that 8 of these lines also exhibited GFP expression in young adult cells. An additional 15 lines that did not have embryonic GFP+ hematopoietic tissue by microscopy, nevertheless exhibited GFP+ cells in young adults. RT-PCR analysis of purified GFP+ populations for expression of T and B cell-specific markers identified 18 lines in which T and/or B cells were fluorescently tagged at 6 weeks of age. As transposon insertion is expected to cause gene disruption, these lines can be used to assess the requirement for the disrupted genes in immune cell development. Focusing on the lines with embryonic GFP+ hematopoietic tissue, we identified three lines in which homozygous mutants exhibited impaired T cell development at 6 days of age. In two of the lines we identified the disrupted genes, agtpbp1 and eps15L1. Morpholino-mediated knockdown of these genes mimicked the T cell defects in the corresponding mutant embryos, demonstrating the previously unrecognized, essential roles of agtpbp1 and eps15L1 in T cell development.
Choi, Seon Young; Kim, Hang-Rae; Ryu, Pan Dong; Lee, So Yeong
2017-02-21
Side-population (SP) cells that exclude anti-cancer drugs have been found in various tumor cell lines. Moreover, SP cells have a higher proliferative potential and drug resistance than main population cells (Non-SP cells). Also, several ion channels are responsible for the drug resistance and proliferation of SP cells in cancer. To confirm the expression and function of voltage-gated potassium (Kv) channels of SP cells, these cells, as well as highly expressed ATP-binding cassette (ABC) transporters and stemness genes, were isolated from a gefitinib-resistant human lung adenocarcinoma cell line (NCI-H460), using Hoechst 33342 efflux. In the present study, we found that mRNA expression of Kv channels in SP cells was different compared to Non-SP cells, and the resistance of SP cells to gefitinib was weakened with a combination treatment of gefitinib and Kv channel blockers or a Kv7 opener, compared to single-treatment gefitinib, through inhibition of the Ras-Raf signaling pathway. The findings indicate that Kv channels in SP cells could be new targets for reducing the resistance to gefitinib.
Lee, Do-Hyun; Jang, Miran; Park, Je-Kyun
2014-10-01
By virtue of the biocompatibility and physical properties of hydrogel, picoliter-sized hydrogel microcapsules have been considered to be a biometric signature containing several features similar to that of encapsulated single cells, including phenotype, viability, and intracellular content. To maximize the experimental potential of encapsulating cells in hydrogel microcapsules, a method that enables efficient hydrogel microcapsule purification from oil is necessary. Current methods based on centrifugation for the conventional stepwise rinsing of oil, are slow and laborious and decrease the monodispersity and yield of the recovered hydrogel microcapsules. To remedy these shortcomings we have developed a simple one-step method to purify alginate microcapsules, containing a single live cell, from oil to aqueous phase. This method employs oil impregnation using a commercially available hydrophobic filter paper without multistep centrifugal purification and complicated microchannel networks. The oil-suspended alginate microcapsules encapsulating single cells from mammalian cancer cell lines (MCF-7, HepG2, and U937) and microorganisms (Chlorella vulgaris) were successfully exchanged to cell culture media by quick (~10 min) depletion of the surrounding oil phase without coalescence of neighboring microcapsules. Cell proliferation and high integrity of the microcapsules were also demonstrated by long-term incubation of microcapsules containing a single live cell. We expect that this method for the simple and rapid purification of encapsulated single-cell microcapsules will attain widespread adoption, assisting cell biologists and clinicians in the development of single-cell experiments. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chu, Van Trung; Graf, Robin; Wirtz, Tristan; Weber, Timm; Favret, Jeremy; Li, Xun; Petsch, Kerstin; Tran, Ngoc Tung; Sieweke, Michael H; Berek, Claudia; Kühn, Ralf; Rajewsky, Klaus
2016-11-01
Applying clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9)-mediated mutagenesis to primary mouse immune cells, we used high-fidelity single guide RNAs (sgRNAs) designed with an sgRNA design tool (CrispRGold) to target genes in primary B cells, T cells, and macrophages isolated from a Cas9 transgenic mouse line. Using this system, we achieved an average knockout efficiency of 80% in B cells. On this basis, we established a robust small-scale CRISPR-mediated screen in these cells and identified genes essential for B-cell activation and plasma cell differentiation. This screening system does not require deep sequencing and may serve as a precedent for the application of CRISPR/Cas9 to primary mouse cells.
Potentiation of antiproliferative drug activity by lonidamine in hepatocellular carcinoma cells.
Ricotti, L; Tesei, A; De Paola, F; Milandri, C; Amadori, D; Frassineti, G L; Ulivi, P; Zoli, W
2003-10-01
The ability of lonidamine (LND), a derivative of indazole-carboxylic acid, to modulate the cytotoxic activity of anticancer drugs was investigated in two human hepatocarcinoma (HCC) cell lines. The cytotoxicity of drugs used singly, in association or in sequence was evaluated using the Sulforhodamine B (SRB) assay. LND did not appreciably potentiate the effect of antitumor drugs when given before or simultaneously, in either cell line. Conversely, a synergistic interaction was observed in both cell lines when LND was given after conventional drugs. LND produced a moderate decrease in S-phase cell fraction and did not induce apoptosis. Conversely, paclitaxel (TAX) induced an important block in G2 and an increase in apoptosis. Following a 48-h TAX wash out, a progressive passage of cells from G2 to M phase was observed with a corresponding increase in apoptotic cells. Post-treatment with LND increased the cytotoxicity of some antitumor drugs, especially TAX, in hepatocarcinoma cells, possibly by preventing, as an energolytic drug, cell damage repair or by producing an additional effect on microtubule stabilization.
One- and two-photon states for quantum information
NASA Astrophysics Data System (ADS)
Peters, Nicholas A.
To find expression stability among transgenic lines, the Recombinase Mediated Transgene Integration (RMTI) technology using the Cre/ lox-mediated site-specific gene integration system was used. The objectives were to develop an efficient method of site-specific transgene integration and to test the effectiveness of this method by assaying transgene expression in the RMTI lines. The RMTI technology allows the precise integration of a transgene in a previously placed target genomic location containing a lox site. The efficiency of CRE-mediated site-specific integration in rice by particle bombardment was found to vary from 3 to 28% in nine different experiments. Some hemizygous site-specific integration plants that were derived from homozygous target locus were found to undergo CRE-mediated reversion of the integration locus. No reversion was observed in callus; however, reverting cells may have been excluded due to selection pressure. The expression of the transgene gus was studied in all 40 callus lines, 12 regenerated T0 plants and the T1 and T2 progenies of 5 lines. The isogenic SC lines had an average expression level based on the activity of beta-glucuronidase of 158 +/- 9 units/mg protein (mean +/- SEM; n=3; variance within SC lines are expressed as standard error of the mean SEM) indicating a significantly higher level of expression, as compared to MC lines that had a much lower expression level 44 +/- 8 units/mg protein (mean +/- SEM; n=3) and the imprecise lines that had 22 +/- 8 units/mg protein (mean +/- SEM; n=3). Transgene expression in the callus cells of precise single copy lines varied by ˜3 fold, whereas that in multi-copy lines varied by ˜30 fold. Furthermore, precise single copy lines, on an average, contained ˜3.5 fold higher expression than multi-copy lines. Transgene expression in the plants of precise single-copy lines was highly variable, which was found to be due to the loss of the integration because of CRE-mediated reversion in the locus. (Abstract shortened by UMI.)
Morales, Fátima; Ramírez, Alberto; Conejo-García, Ana; Morata, Cynthia; Marchal, Juan A; Campos, Joaquín M
2014-04-09
As leads we took several benzo-fused seven- and six-membered scaffolds linked to the pyrimidine or purine moieties with notable anti-proliferative activity against human breast, colon and melanoma cancerous cell lines. We then decided to maintain the double-ringed nitrogenous bases and change the other components to the ethyl acetate moiety. This way six purine and two 5-fluorouracil derivatives were obtained and evaluated against the MCF-7, HCT-116, A-375 and G-361 cancer cell lines. Two QSARs are obtained between the anti-proliferative IC₅₀ values for compounds 26-33 and the clog P against the melanoma cell lines A-375 and G-361. Our results show that two of the analogues [ethyl 2-(2,6-dichloro-9H- or 7H-purine-9- or 7-yl)acetates (30 and 33, respectively)] are potent cytotoxic agents against all the tumour cell lines assayed, showing single-digit micromolar IC₅₀ values. This exemplifies the potential of our previously reported purine compounds to qualify as lead structures for medicinal chemistry campaigns, affording simplified analogues easy to synthesize and with a noteworthy bioactivity. The selective activity of 30 and 33 against the melanoma cell line A-375, via apoptosis, supposes a great advantage for a future therapeutic use. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
A molecular scheme for improved characterization of human embryonic stem cell lines
Josephson, Richard; Sykes, Gregory; Liu, Ying; Ording, Carol; Xu, Weining; Zeng, Xianmin; Shin, Soojung; Loring, Jeanne; Maitra, Anirban; Rao, Mahendra S; Auerbach, Jonathan M
2006-01-01
Background Human embryonic stem cells (hESC) offer a renewable source of a wide range of cell types for use in research and cell-based therapies to treat disease. Inspection of protein markers provides important information about the current state of the cells and data for subsequent manipulations. However, hESC must be routinely analyzed at the genomic level to guard against deleterious changes during extensive propagation, expansion, and manipulation in vitro. Results We found that short tandem repeat (STR) analysis, human leukocyte antigen (HLA) typing, single nucleotide polymorphism (SNP) genomic analysis, mitochondrial DNA sequencing, and gene expression analysis by microarray can be used to fully describe any hESC culture in terms of its identity, stability, and undifferentiated state. Conclusion Here we describe, using molecular biology alone, a comprehensive characterization of 17 different hESC lines. The use of amplified nucleic acids means that for the first time full characterization of hESC lines can be performed with little time investment and a minimum of material. The information thus gained will facilitate comparison of lines and replication of results between laboratories. PMID:16919167
NASA Astrophysics Data System (ADS)
McGuire, Michael J.; Gray, Bethany Powell; Li, Shunzi; Cupka, Dorothy; Byers, Lauren Averett; Wu, Lei; Rezaie, Shaghayegh; Liu, Ying-Horng; Pattisapu, Naveen; Issac, James; Oyama, Tsukasa; Diao, Lixia; Heymach, John V.; Xie, Xian-Jin; Minna, John D.; Brown, Kathlynn C.
2014-03-01
Tumor targeting ligands are emerging components in cancer therapies. Widespread use of targeted therapies and molecular imaging is dependent on increasing the number of high affinity, tumor-specific ligands. Towards this goal, we biopanned three phage-displayed peptide libraries on a series of well-defined human non-small cell lung cancer (NSCLC) cell lines, isolating 11 novel peptides. The peptides show distinct binding profiles across 40 NSCLC cell lines and do not bind normal bronchial epithelial cell lines. Binding of specific peptides correlates with onco-genotypes and activation of particular pathways, such as EGFR signaling, suggesting the peptides may serve as surrogate markers. Multimerization of the peptides results in cell binding affinities between 0.0071-40 nM. The peptides home to tumors in vivo and bind to patient tumor samples. This is the first comprehensive biopanning for isolation of high affinity peptidic ligands for a single cancer type and expands the diversity of NSCLC targeting ligands.
Generation of ΔF508-CFTR T84 cell lines by CRISPR/Cas9-mediated genome editing.
Chung, Woo Young; Song, Myungjae; Park, Jinhong; Namkung, Wan; Lee, Jinu; Kim, Hyongbum; Lee, Min Goo; Kim, Joo Young
2016-12-01
To provide a simple method to make a stable ΔF508-CFTR-expressing T84 cell line that can be used as an efficient screening model system for ΔF508-CFTR rescue. CFTR knockout cell lines were generated by Cas9 with a single-guide RNA (sgRNA) targeting exon 1 of the CFTR genome, which produced indels that abolished CFTR protein expressions. Next, stable ΔF508-CFTR expression was achieved by genome integration of ΔF508-CFTR via the lentivirus infection system. Finally, we showed functional rescue of ΔF508-CFTR not only by growing the cells at a low temperature, but also incubating with VX-809, a ΔF508-CFTR corrector, in the established T84 cells expressing ΔF508-CFTR. This cell system provides an appropriate screening platform for rescue of ΔF508-CFTR, especially related to protein folding, escaped from endoplasmic-reticulum-associated protein degradation, and membrane transport.
McGuire, Michael J.; Gray, Bethany Powell; Li, Shunzi; Cupka, Dorothy; Byers, Lauren Averett; Wu, Lei; Rezaie, Shaghayegh; Liu, Ying-Horng; Pattisapu, Naveen; Issac, James; Oyama, Tsukasa; Diao, Lixia; Heymach, John V.; Xie, Xian-Jin; Minna, John D.; Brown, Kathlynn C.
2014-01-01
Tumor targeting ligands are emerging components in cancer therapies. Widespread use of targeted therapies and molecular imaging is dependent on increasing the number of high affinity, tumor-specific ligands. Towards this goal, we biopanned three phage-displayed peptide libraries on a series of well-defined human non-small cell lung cancer (NSCLC) cell lines, isolating 11 novel peptides. The peptides show distinct binding profiles across 40 NSCLC cell lines and do not bind normal bronchial epithelial cell lines. Binding of specific peptides correlates with onco-genotypes and activation of particular pathways, such as EGFR signaling, suggesting the peptides may serve as surrogate markers. Multimerization of the peptides results in cell binding affinities between 0.0071–40 nM. The peptides home to tumors in vivo and bind to patient tumor samples. This is the first comprehensive biopanning for isolation of high affinity peptidic ligands for a single cancer type and expands the diversity of NSCLC targeting ligands. PMID:24670678
Faklaris, Orestis; Garrot, Damien; Joshi, Vandana; Druon, Frédéric; Boudou, Jean-Paul; Sauvage, Thierry; Georges, Patrick; Curmi, Patrick A; Treussart, François
2008-12-01
Diamond nanoparticles are promising photoluminescent probes for tracking intracellular processes, due to embedded, perfectly photostable color centers. In this work, the spontaneous internalization of such nanoparticles (diameter 25 nm) in HeLa cancer cells is investigated by confocal microscopy and time-resolved techniques. Nanoparticles are observed inside the cell cytoplasm at the single-particle and single-color-center level, assessed by time-correlation intensity measurements. Improvement of the nanoparticle signal-to-noise ratio inside the cell is achieved using a pulsed-excitation laser and time-resolved detection taking advantage of the long radiative lifetime of the color-center excited state as compared to cell autofluorescence. The internalization pathways are also investigated, with endosomal marking and colocalization analyses. The low colocalization ratio observed proves that nanodiamonds are not trapped in endosomes, a promising result in prospect of drug delivery by these nanoparticles. Low cytotoxicity of these nanoparticles in this cell line is also shown.
Fritzsche, Marco; Fernandes, Ricardo A; Colin-York, Huw; Santos, Ana M; Lee, Steven F; Lagerholm, B Christoffer; Davis, Simon J; Eggeling, Christian
2015-11-13
Detecting intracellular calcium signaling with fluorescent calcium indicator dyes is often coupled with microscopy techniques to follow the activation state of non-excitable cells, including lymphocytes. However, the analysis of global intracellular calcium responses both at the single-cell level and in large ensembles simultaneously has yet to be automated. Here, we present a new software package, CalQuo (Calcium Quantification), which allows the automated analysis and simultaneous monitoring of global fluorescent calcium reporter-based signaling responses in up to 1000 single cells per experiment, at temporal resolutions of sub-seconds to seconds. CalQuo quantifies the number and fraction of responding cells, the temporal dependence of calcium signaling and provides global and individual calcium-reporter fluorescence intensity profiles. We demonstrate the utility of the new method by comparing the calcium-based signaling responses of genetically manipulated human lymphocytic cell lines.
Li, Hongyu; Hu, Jing; Wu, Shuhong; Wang, Li; Cao, Xiaobo; Zhang, Xiaoshan; Dai, Bingbing; Cao, Mengru; Shao, Ruping; Zhang, Ran; Majidi, Mourad; Ji, Lin; Heymach, John V.; Wang, Michael; Pan, Shiyang; Minna, John; Mehran, Reza J.; Swisher, Stephen G.; Roth, Jack A.; Fang, Bingliang
2016-01-01
Auranofin, a gold complex that has been used to treat rheumatoid arthritis in clinics and has documented pharmacokinetic and safety profiles in humans, has recently been investigated for its anticancer activity in leukemia and some solid cancers. However, auranofin's single agent activity in lung cancer is not well characterized. To determine whether auranofin has single agent activity in lung cancer, we evaluated auranofin's activity in a panel of 10 non-small cell lung cancer (NSCLC) cell lines. Cell viability analysis revealed that auranofin induced growth inhibition in a subset of NSCLC cell lines with a half maximal inhibitory concentration (IC50) below 1.0 μM. Treatment with auranofin elicited apoptosis and necroptosis in auranofin-sensitive cell lines. Moreover, the susceptibility of NSCLC cells to auranofin was inversely correlated with TXNRD1 expression in the cells. Transient transfection of the TXNRD1-expressing plasmid in auranofin-sensitive Calu3 cells resulted in partial resistance, indicating that high TXNRD level is one of causal factors for resistance to auranofin. Further mechanistic characterization with proteomic analysis revealed that auranofin inhibits expression and/or phosphorylation of multiple key nodes in the PI3K/AKT/mTOR pathway, including S6, 4EBP1, Rictor, p70S6K, mTOR, TSC2, AKT and GSK3. Ectopic expression of TXNRD1 partially reversed auranofin-mediated PI3K/AKT/mTOR inhibition, suggesting that TXNRD1 may participate in the regulation of PI3K/AKT/mTOR pathway. Administration of auranofin to mice with xenograft tumors derived from NSCLC cells significantly suppressed tumor growth without inducing obvious toxic effects. Our results demonstrated feasibility of repurposing auranofin for treatment of lung cancer. PMID:26657290
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patsalis, P.C.
1993-01-01
Transformation of human diploid fibroblasts (HF) with SV40 can result in extension of life span beyond the normal limit of senescence and in a minority of cases, immortalization. This study used comparison of matched parental (diploid) and immortalized cell lines to determine if any single genetic factor could be related to the immortalization phenomena. The integration site of SV40 was shown to be at chromosome 5q21 by cytologic hybridization. A comparison of mortal and immortal cells showed no alterations involving the integrated SV40 genome per se. Karyotypic analysis of matched cell lines identified a specific chromosomal breakpoint (6q21) in immortalizedmore » cells that was not present in the parental line. Hybridization analysis confirmed that sequences on the distal portion of 6q are lost in immortalized cells. Two single copy DNAs which flank the breakpoint were identified and used to further define the exact breakpoint on 6q13. FISH analysis demonstrated the region 6q13 [yields] 21 as belonging to another chromosome and confirmed the 6q13 breakpoint. A survey of random translocations and other anomalies occurring in the immortalized lines was also made. Some of these are regions known to contain oncogenes and transforming proteins. The MCC tumor suppressor gene was rearranged and deregulated. The genes DCC, Bel-2, APC were also found to be deregulated. The authors propose that deletion of specific sequences due to breakage of chromosome 6q represent one of the mutational events responsible for immortalization of SV40 transformed HF. In addition, the MCC and possibly other genes are involved in the progression of immortalization.« less
Feddersen, R M; Van Ness, B G
1990-01-01
Previous characterization of mouse immunoglobulin kappa gene rearrangement products cloned from murine plasmacytomas has indicated that two recombination events can take place on a single kappa allele (R. M. Feddersen and B. G. Van Ness, Proc. Natl. Acad. Sci. USA 82:4792-4797, 1985; M. A. Shapiro and M. Weigert, J. Immunol. 139:3834-3839, 1987). To determine whether multiple recombinations on a single kappa allele can contribute to the formation of productive V-J genes through corrective recombinations, we have examined several Abelson murine leukemia virus-transformed pre-B-cell clones which rearrange the kappa locus during cell culture. Clonal cell lines which had rearranged one kappa allele nonproductively while maintaining the other allele in the germ line configuration were grown, and secondary subclones, which subsequently expressed kappa protein, were isolated and examined for further kappa rearrangement. A full spectrum of rearrangement patterns was observed in this sequential cloning, including productive and nonproductive recombinations of the germ line allele and secondary recombinations of the nonproductive allele. The results show that corrective V-J recombinations, with displacement of the nonproductive kappa gene, occur with a significant frequency (6 of 17 kappa-producing subclones). Both deletion and maintenance of the primary (nonfunctional) V-J join, as a reciprocal product, were observed. Images PMID:2153918
Haverkos, Bradley M.; Huang, Ying; Elder, Patrick; O’Donnell, Lynn; Scholl, Diane; Whittaker, Becky; Vasu, Sumi; Penza, Sam; Andritsos, Leslie A.; Devine, Steven M.; Jaglowski, Samantha M.
2016-01-01
In an otherwise eligible patient with relapsed lymphoma, inadequate mobilization of peripheral blood stem cells is a limiting factor to proceeding with an autologous hematopoietic cell transplantation (auto-HCT). Multiple strategies have been used to mobilize an adequate number of hematopoietic stem cells (HSCs) with no obvious front-line strategy. We report a single institutional experience mobilizing HSCs using four different approaches in lymphoma patients. We prospectively collected mobilization outcomes on patients planning to undergo auto-HCT at Ohio State University. We report results of first mobilization attempt for all relapsed or refractory lymphoma patients between 2008–2014. We identified 255 lymphoma patients who underwent mobilization for planned auto-HCT. The 255 lymphoma patients underwent the following front line mobilization strategies: 95 (37%) GCSF alone, 38 (15%) chemomobilization (GCSF+chemotherapy), 97 (38%) preemptive day 4 plerixafor, and 25 (10%) rescue day 5 plerixafor. As expected, there were significant differences between cohorts including age, comorbid indices, histology, and amount of prior chemotherapy. After controlling for differences between groups, the odds of collecting 2×106/kg HSCs on the first day of collection and 5×106/kg HSCs in total was highest in the cohort undergoing chemomobilization. In conclusion, our experience highlights the effectiveness of chemomobilization. PMID:28067870
Campton, Daniel E; Ramirez, Arturo B; Nordberg, Joshua J; Drovetto, Nick; Clein, Alisa C; Varshavskaya, Paulina; Friemel, Barry H; Quarre, Steve; Breman, Amy; Dorschner, Michael; Blau, Sibel; Blau, C Anthony; Sabath, Daniel E; Stilwell, Jackie L; Kaldjian, Eric P
2015-05-06
Circulating tumor cells (CTCs) are malignant cells that have migrated from solid cancers into the blood, where they are typically present in rare numbers. There is great interest in using CTCs to monitor response to therapies, to identify clinically actionable biomarkers, and to provide a non-invasive window on the molecular state of a tumor. Here we characterize the performance of the AccuCyte®--CyteFinder® system, a comprehensive, reproducible and highly sensitive platform for collecting, identifying and retrieving individual CTCs from microscopic slides for molecular analysis after automated immunofluorescence staining for epithelial markers. All experiments employed a density-based cell separation apparatus (AccuCyte) to separate nucleated cells from the blood and transfer them to microscopic slides. After staining, the slides were imaged using a digital scanning microscope (CyteFinder). Precisely counted model CTCs (mCTCs) from four cancer cell lines were spiked into whole blood to determine recovery rates. Individual mCTCs were removed from slides using a single-cell retrieval device (CytePicker™) for whole genome amplification and subsequent analysis by PCR and Sanger sequencing, whole exome sequencing, or array-based comparative genomic hybridization. Clinical CTCs were evaluated in blood samples from patients with different cancers in comparison with the CellSearch® system. AccuCyte--CyteFinder presented high-resolution images that allowed identification of mCTCs by morphologic and phenotypic features. Spike-in mCTC recoveries were between 90 and 91%. More than 80% of single-digit spike-in mCTCs were identified and even a single cell in 7.5 mL could be found. Analysis of single SKBR3 mCTCs identified presence of a known TP53 mutation by both PCR and whole exome sequencing, and confirmed the reported karyotype of this cell line. Patient sample CTC counts matched or exceeded CellSearch CTC counts in a small feasibility cohort. The AccuCyte--CyteFinder system is a comprehensive and sensitive platform for identification and characterization of CTCs that has been applied to the assessment of CTCs in cancer patient samples as well as the isolation of single cells for genomic analysis. It thus enables accurate non-invasive monitoring of CTCs and evolving cancer biology for personalized, molecularly-guided cancer treatment.
Xiao, Mei; An, LiLong; Yang, XueYi; Ge, Xin; Qiao, Hai; Zhao, Ting; Ma, XiaoFei; Fan, JingZhuang; Zhu, MengYang; Dou, ZhongYing
2008-09-01
The major obstacle in using pancreatic islet transplantation to cure type I and some type II diabetes is the shortage of the donors. One of ways to overcome such obstacle is to isolate and clone pancreatic stem cells as "seed cells" and induce their differentiation into functional islets as an abundant transplantation source. In this study, a monoclonal human pancreatic stem cell (mhPSC) line was obtained from abortive fetal pancreatic tissues. Pancreatic tissues were taken from abortive fetus by sterile procedures, and digested into single cells and cell clusters with 0.1% type IV collagenase. Cultured in modified glucose-low DMEM with 10% fetal bovine serum (FBS), these single cells and cell clusters adhered to culture dishes, and then primary epidermal-like pancreatic stem cells started to clone. After digesting with 0.25% trypsin and 0.04% EDTA, fibroblasts and other cells were gradually eliminated and epithelioid pancreatic stem cells were gradually purified during generations. Using clone-ring selection, the mhPSCs were obtained. After addition of 10 ng/mL epidermal growth factor (EGF) in cell culture medium, the mhPSCs quickly grew and formed a gravelstone-like monolayer. Continuously proliferated, a mhPSC line, which was derived from a male abortive fetus of 4 months old, has been passed through 50 generations. More than 1 x 10(9) mhPSCs were cryo-preserved in liquid nitrogen. Karyotype analysis showed that the chromosome set of the mhPSC line was normal diploid. Immunocytochemistry results demonstrated that the mhPSC line was positive for the pdx1, glucagon, nestin and CK19, and negative for the insulin, CD34, CD44 and CD45 protein expression. RT-PCR revealed further that the mhPSCs expressed transcription factors of the pdx1, glucagon, nestin and CK19. Also, in vitro induced with beta-mercaptoethanol, the mhPSCs differentiated into nerve cells that expressed the NF protein. Induced with nicotinamide, the mhPSCs differentiated into functional islet-like clusters, as identified by dithizone staining, which expressed the transcription factor of the insulin and secreted the insulin and C-peptide. Furthermore, the transplantation of mhPSCs-induced pancreatic islets into the subcapsular region of the kidney in streptozotocin-induced diabetic rats could reduce blood glucose levels and prolong the life time.
Shiao, Yih-Horng; Lupascu, Sorin T; Gu, Yuhan D; Kasprzak, Wojciech; Hwang, Christopher J; Fields, Janet R; Leighty, Robert M; Quiñones, Octavio; Shapiro, Bruce A; Alvord, W Gregory; Anderson, Lucy M
2009-10-19
Ribosomal RNA (rRNA) is a central regulator of cell growth and may control cancer development. A cis noncoding rRNA (nc-rRNA) upstream from the 45S rRNA transcription start site has recently been implicated in control of rRNA transcription in mouse fibroblasts. We investigated whether a similar nc-rRNA might be expressed in human cancer epithelial cells, and related to any genomic characteristics. Using quantitative rRNA measurement, we demonstrated that a nc-rRNA is transcribed in human lung epithelial and lung cancer cells, starting from approximately -1000 nucleotides upstream of the rRNA transcription start site (+1) and extending at least to +203. This nc-rRNA was significantly more abundant in the majority of lung cancer cell lines, relative to a nontransformed lung epithelial cell line. Its abundance correlated negatively with total 45S rRNA in 12 of 13 cell lines (P = 0.014). During sequence analysis from -388 to +306, we observed diverse, frequent intercopy single nucleotide polymorphisms (SNPs) in rRNA, with a frequency greater than predicted by chance at 12 sites. A SNP at +139 (U/C) in the 5' leader sequence varied among the cell lines and correlated negatively with level of the nc-rRNA (P = 0.014). Modelling of the secondary structure of the rRNA 5'-leader sequence indicated a small increase in structural stability due to the +139 U/C SNP and a minor shift in local configuration occurrences. The results demonstrate occurrence of a sense nc-rRNA in human lung epithelial and cancer cells, and imply a role in regulation of the rRNA gene, which may be affected by a +139 SNP in the 5' leader sequence of the primary rRNA transcript.
Single-Cell Western Blotting after Whole-Cell Imaging to Assess Cancer Chemotherapeutic Response
2015-01-01
Intratumor heterogeneity remains a major obstacle to effective cancer therapy and personalized medicine. Current understanding points to differential therapeutic response among subpopulations of tumor cells as a key challenge to successful treatment. To advance our understanding of how this heterogeneity is reflected in cell-to-cell variations in chemosensitivity and expression of drug-resistance proteins, we optimize and apply a new targeted proteomics modality, single-cell western blotting (scWestern), to a human glioblastoma cell line. To acquire both phenotypic and proteomic data on the same, single glioblastoma cells, we integrate high-content imaging prior to the scWestern assays. The scWestern technique supports thousands of concurrent single-cell western blots, with each assay comprised of chemical lysis of single cells seated in microwells, protein electrophoresis from those microwells into a supporting polyacrylamide (PA) gel layer, and in-gel antibody probing. We systematically optimize chemical lysis and subsequent polyacrylamide gel electrophoresis (PAGE) of the single-cell lysate. The scWestern slides are stored for months then reprobed, thus allowing archiving and later analysis as relevant to sparingly limited, longitudinal cell specimens. Imaging and scWestern analysis of single glioblastoma cells dosed with the chemotherapeutic daunomycin showed both apoptotic (cleaved caspase 8- and annexin V-positive) and living cells. Intriguingly, living glioblastoma subpopulations show up-regulation of a multidrug resistant protein, P-glycoprotein (P-gp), suggesting an active drug efflux pump as a potential mechanism of drug resistance. Accordingly, linking of phenotype with targeted protein analysis with single-cell resolution may advance our understanding of drug response in inherently heterogeneous cell populations, such as those anticipated in tumors. PMID:25226230
Time-Lapse Monitoring of DNA Damage Colocalized With Particle Tracks in Single Living Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
McFadden, Conor H.; Hallacy, Timothy M.; Department of Physics and Astronomy, Rice University, Houston, Texas
2016-09-01
Purpose: Understanding the DNA damage and repair induced by hadron therapy (HT) beams is crucial for developing novel strategies to maximize the use of HT beams to treat cancer patients. However, spatiotemporal studies of DNA damage and repair for beam energies relevant to HT have been challenging. We report a technique that enables spatiotemporal measurement of radiation-induced damage in live cells and colocalization of this damage with charged particle tracks over a broad range of clinically relevant beam energies. The technique uses novel fluorescence nuclear track detectors with fluorescence confocal laser scanning microscopy in the beam line to visualize particlemore » track traversals within the subcellular compartments of live cells within seconds after injury. Methods and Materials: We designed and built a portable fluorescence confocal laser scanning microscope for use in the beam path, coated fluorescence nuclear track detectors with fluorescent-tagged live cells (HT1080 expressing enhanced green fluorescent protein tagged to XRCC1, a single-strand break repair protein), placed the entire assembly into a proton therapy beam line, and irradiated the cells with a fluence of ∼1 × 10{sup 6} protons/cm{sup 2}. Results: We successfully obtained confocal images of proton tracks and foci of DNA single-strand breaks immediately after irradiation. Conclusions: This technique represents an innovative method for analyzing biological responses in any HT beam line at energies and dose rates relevant to therapy. It allows precise determination of the number of tracks traversing a subcellular compartment and monitoring the cellular damage therein, and has the potential to measure the linear energy transfer of each track from therapeutic beams.« less
Wilke, Sonja; Krausze, Joern; Gossen, Manfred; Groebe, Lothar; Jäger, Volker; Gherardi, Ermanno; van den Heuvel, Joop; Büssow, Konrad
2010-06-01
Stable mammalian cell lines are excellent tools for the expression of secreted and membrane glycoproteins. However, structural analysis of these molecules is generally hampered by the complexity of N-linked carbohydrate side chains. Cell lines with mutations are available that result in shorter and more homogenous carbohydrate chains. Here, we use preparative fluorescence-activated cell sorting (FACS) and site-specific gene excision to establish high-yield glycoprotein expression for structural studies with stable clones derived from the well-established Lec3.2.8.1 glycosylation mutant of the Chinese hamster ovary (CHO) cell line. We exemplify the strategy by describing novel clones expressing single-chain hepatocyte growth factor/scatter factor (HGF/SF, a secreted glycoprotein) and a domain of lysosome-associated membrane protein 3 (LAMP3d). In both cases, stable GFP-expressing cell lines were established by transfection with a genetic construct including a GFP marker and two rounds of cell sorting after 1 and 2 weeks. The GFP marker was subsequently removed by heterologous expression of Flp recombinase. Production of HGF/SF and LAMP3d was stable over several months. 1.2 mg HGF/SF and 0.9 mg LAMP3d were purified per litre of culture, respectively. Homogenous glycoprotein preparations were amenable to enzymatic deglycosylation under native conditions. Purified and deglycosylated LAMP3d protein was readily crystallized. The combination of FACS and gene excision described here constitutes a robust and fast procedure for maximizing the yield of glycoproteins for structural analysis from glycosylation mutant cell lines.
Morimoto, Atsushi; Mogami, Toshifumi; Watanabe, Masaru; Iijima, Kazuki; Akiyama, Yasuyuki; Katayama, Koji; Futami, Toru; Yamamoto, Nobuyuki; Sawada, Takeshi; Koizumi, Fumiaki; Koh, Yasuhiro
2015-01-01
Development of a reliable platform and workflow to detect and capture a small number of mutation-bearing circulating tumor cells (CTCs) from a blood sample is necessary for the development of noninvasive cancer diagnosis. In this preclinical study, we aimed to develop a capture system for molecular characterization of single CTCs based on high-density dielectrophoretic microwell array technology. Spike-in experiments using lung cancer cell lines were conducted. The microwell array was used to capture spiked cancer cells, and captured single cells were subjected to whole genome amplification followed by sequencing. A high detection rate (70.2%-90.0%) and excellent linear performance (R2 = 0.8189-0.9999) were noted between the observed and expected numbers of tumor cells. The detection rate was markedly higher than that obtained using the CellSearch system in a blinded manner, suggesting the superior sensitivity of our system in detecting EpCAM- tumor cells. Isolation of single captured tumor cells, followed by detection of EGFR mutations, was achieved using Sanger sequencing. Using a microwell array, we established an efficient and convenient platform for the capture and characterization of single CTCs. The results of a proof-of-principle preclinical study indicated that this platform has potential for the molecular characterization of captured CTCs from patients.
Phillips, D C; Xiao, Y; Lam, L T; Litvinovich, E; Roberts-Rapp, L; Souers, A J; Leverson, J D
2015-01-01
As a population, non-Hodgkin's lymphoma (NHL) cell lines positive for the t(14;18) translocation and/or possessing elevated BCL2 copy number (CN; BCL2High) are exquisitely sensitive to navitoclax or the B-cell lymphoma protein-2 (BCL-2)-selective inhibitor venetoclax. Despite this, some BCL2High cell lines remain resistant to either agent. Here we show that the MCL-1-specific inhibitor A-1210477 sensitizes these cell lines to navitoclax. Chemical segregation of this synergy with the BCL-2-selective inhibitor venetoclax or BCL-XL-selective inhibitor A-1155463 indicated that MCL-1 and BCL-2 are the two key anti-apoptotic targets for sensitization. Similarly, the CDK inhibitor flavopiridol downregulated MCL-1 expression and synergized with venetoclax in BCL2High NHL cell lines to a similar extent as A-1210477. A-1210477 also synergized with navitoclax in the majority of BCL2Low NHL cell lines. However, chemical segregation with venetoclax or A-1155463 revealed that synergy was driven by BCL-XL inhibition in this population. Collectively these data emphasize that BCL2 status is predictive of venetoclax potency in NHL not only as a single agent, but also in the adjuvant setting with anti-tumorigenic agents that inhibit MCL-1 function. These studies also potentially identify a patient population (BCL2Low) that could benefit from BCL-XL (navitoclax)-driven combination therapy. PMID:26565405
Phillips, D C; Xiao, Y; Lam, L T; Litvinovich, E; Roberts-Rapp, L; Souers, A J; Leverson, J D
2015-11-13
As a population, non-Hodgkin's lymphoma (NHL) cell lines positive for the t(14;18) translocation and/or possessing elevated BCL2 copy number (CN; BCL2(High)) are exquisitely sensitive to navitoclax or the B-cell lymphoma protein-2 (BCL-2)-selective inhibitor venetoclax. Despite this, some BCL2(High) cell lines remain resistant to either agent. Here we show that the MCL-1-specific inhibitor A-1210477 sensitizes these cell lines to navitoclax. Chemical segregation of this synergy with the BCL-2-selective inhibitor venetoclax or BCL-XL-selective inhibitor A-1155463 indicated that MCL-1 and BCL-2 are the two key anti-apoptotic targets for sensitization. Similarly, the CDK inhibitor flavopiridol downregulated MCL-1 expression and synergized with venetoclax in BCL2(High) NHL cell lines to a similar extent as A-1210477. A-1210477 also synergized with navitoclax in the majority of BCL2(Low) NHL cell lines. However, chemical segregation with venetoclax or A-1155463 revealed that synergy was driven by BCL-XL inhibition in this population. Collectively these data emphasize that BCL2 status is predictive of venetoclax potency in NHL not only as a single agent, but also in the adjuvant setting with anti-tumorigenic agents that inhibit MCL-1 function. These studies also potentially identify a patient population (BCL2(Low)) that could benefit from BCL-XL (navitoclax)-driven combination therapy.
Abdi-Ali, A; Worobec, E A; Deezagi, A; Malekzadeh, F
2004-05-01
Pyocin typing of 82 Pseudomonas aeruginosa strains, collected from different Iranian clinical sources, revealed that one isolate, P. aeruginosa 42A, produced pyocin S2, a protease-sensitive bacteriocin. Pyocin S2 production was induced by mitomycin C (2 micro g/mL) in the pyocin S2 producer P. aeruginosa 42A. Pyocin S2 was purified using ion exchange chromatography with CM-Sepharose CL-6B and sodium phosphate buffer (pH 8) from an 80% ammonium sulfate precipitate of whole-cell lysates. Pyocin activity of the fractions was detected using the Govan spot testing method. The purity of the active fraction was confirmed by SDS-PAGE, where a single band with a molecular mass of 74 kDa was detected. Cytotoxic effects of purified pyocin S2 and partially purified pyocin from P. aeruginosa 42A on the human tumor cell lines HepG2 and Im9 and the normal human cell line HFFF (Human Foetal Foreskin Fibroblast) were studied by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The results demonstrated that partially purified pyocin and pyocin S2 exhibited substantial inhibitory effects on the growth of the tumor cell lines HepG2 and Im9, while no inhibitory effects were observed on the normal cell line HFFF. Pure lipopolysaccharide was used as a control and was found to have no inhibitory effect on any of the cell lines tested.
USDA-ARS?s Scientific Manuscript database
Deoxynivalenol (DON)is a mycotoxin produced by certain fungi that infest cereal grains worldwide. A hybridoma cell line producing a monoclonal antibody (Mab) recognizing DON was used as the starting point in the development of a recombinant single chain variable fragment (scFv) antibody. The scFv wa...
Allison, Thomas F; Smith, Andrew J H; Anastassiadis, Konstantinos; Sloane-Stanley, Jackie; Biga, Veronica; Stavish, Dylan; Hackland, James; Sabri, Shan; Langerman, Justin; Jones, Mark; Plath, Kathrin; Coca, Daniel; Barbaric, Ivana; Gokhale, Paul; Andrews, Peter W
2018-05-09
Human embryonic stem cells (hESCs) display substantial heterogeneity in gene expression, implying the existence of discrete substates within the stem cell compartment. To determine whether these substates impact fate decisions of hESCs we used a GFP reporter line to investigate the properties of fractions of putative undifferentiated cells defined by their differential expression of the endoderm transcription factor, GATA6, together with the hESC surface marker, SSEA3. By single-cell cloning, we confirmed that substates characterized by expression of GATA6 and SSEA3 include pluripotent stem cells capable of long-term self-renewal. When clonal stem cell colonies were formed from GATA6-positive and GATA6-negative cells, more of those derived from GATA6-positive cells contained spontaneously differentiated endoderm cells than similar colonies derived from the GATA6-negative cells. We characterized these discrete cellular states using single-cell transcriptomic analysis, identifying a potential role for SOX17 in the establishment of the endoderm-biased stem cell state. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Tomographic flow cytometry assisted by intelligent wavefronts analysis
NASA Astrophysics Data System (ADS)
Merola, F.; Memmolo, P.; Miccio, L.; Mugnano, M.; Ferraro, P.
2017-06-01
High-throughput single-cell analysis is a challenging target for implementing advanced biomedical applications. An excellent candidate for this aim is label-free tomographic phase microscopy. However, in-line tomography is very difficult to be implemented in practice, as it requires complex setup for rotating the sample and/or illuminate the cell along numerous directions [1]. We exploit random rolling of cells while they are flowing along a microfluidic channel demonstrating that it is possible to obtain in-line phase-contrast tomography by adopting strategies for intelligent wavefronts analysis thus obtaining complete retrieval of both 3D-position and orientation of rotating cells [2]. Thus, by numerical wavefront analysis a-priori knowledge of such information is no longer needed. This approach makes continuos-flow cyto-tomography suitable for practical operation in real-world, single-cell analysis and with substantial simplification of the optical system avoiding any mechanical/optical scanning of light source. Demonstration is given for different classes of biosamples, red-blood-cells (RBCs), diatom algae and fibroblast cells [3]. Accurate characterization of each type of cells is reported despite their very different nature and materials content, thus showing the proposed method can be extended, by adopting two alternate strategies of wavefront-analysis, to many classes of cells. In particular, for RBCs we furnish important parameters as 3D morphology, Corpuscular Hemoglobin (CH), Volume (V), and refractive index (RI) for each single cell in the total population [3]. This could open a new route in blood disease diagnosis, for example for the isolation and characterization of "foreign" cells in the blood stream, the so called Circulating Tumor Cells (CTC), early manifestation of metastasis.
NASA Astrophysics Data System (ADS)
Smith, Zachary J.; Lee, Changwon; Rojalin, Tatu; Carney, Randy P.; Hazari, Sidhartha; Knudson, Alisha; Lam, Kit S.; Saari, Heikki; Lazaro Ibañez, Elisa; Viitala, Tapani; Laaksonen, Timo; Yliperttula, Marjo; Wachsmann-Hogiu, Sebastian
2016-03-01
Exosomes are small (~100nm) membrane bound vesicles excreted by cells as part of their normal biological processes. These extracellular vesicles are currently an area of intense research, since they were recently found to carry functional mRNA that allows transfer of proteins and other cellular instructions between cells. Exosomes have been implicated in a wide range of diseases, including cancer. Cancer cells are known to have increased exosome production, and may use those exosomes to prepare remote environments for metastasis. Therefore, there is a strong need to develop characterization methods to help understand the structure and function of these vesicles. However, current techniques, such as proteomics and genomics technologies, rely on aggregating a large amount of exosome material and reporting on chemical content that is averaged over many millions of exosomes. Here we report on the use of laser-tweezers Raman spectroscopy (LTRS) to probe individual vesicles, discovering distinct heterogeneity among exosomes both within a cell line, as well as between different cell lines. Through principal components analysis followed by hierarchical clustering, we have identified four "subpopulations" of exosomes shared across seven cell lines. The key chemical differences between these subpopulations, as determined by spectral analysis of the principal component loadings, are primarily related to membrane composition. Specifically, the differences can be ascribed to cholesterol content, cholesterol to phospholipid ratio, and surface protein expression. Thus, we have shown LTRS to be a powerful method to probe the chemical content of single extracellular vesicles.
Mollet, Mike; Godoy-Silva, Ruben; Berdugo, Claudia; Chalmers, Jeffrey J
2008-06-01
Fluorescence activated cell sorting, FACS, is a widely used method to sort subpopulations of cells to high purities. To achieve relatively high sorting speeds, FACS instruments operate by forcing suspended cells to flow in a single file line through a laser(s) beam(s). Subsequently, this flow stream breaks up into individual drops which can be charged and deflected into multiple collection streams. Previous work by Ma et al. (2002) and Mollet et al. (2007; Biotechnol Bioeng 98:772-788) indicates that subjecting cells to hydrodynamic forces consisting of both high extensional and shear components in micro-channels results in significant cell damage. Using the fluid dynamics software FLUENT, computer simulations of typical fluid flow through the nozzle of a BD FACSVantage indicate that hydrodynamic forces, quantified using the scalar parameter energy dissipation rate, are similar in the FACS nozzle to levels reported to create significant cell damage in micro-channels. Experimental studies in the FACSVantage, operated under the same conditions as the simulations confirmed significant cell damage in two cell lines, Chinese Hamster Ovary cells (CHO) and THP1, a human acute monocytic leukemia cell line.
Choi, Hyeongwon; Choi, Eun Ha; Kim, Kyung Sook
2017-10-01
Mechanical properties of a single cell are closely related to the fate and functions of the cell. Changes in mechanical properties may cause diseases or cell apoptosis. Selective cytotoxic effects of nonthermal atmospheric pressure micro-dielectric barrier discharge (DBD) plasma have been demonstrated on cancer cells. In this work, changes in the mechanical properties of a single cell induced by nonthermal atmospheric pressure micro-DBD plasma were investigated using atomic force microscopy (AFM). Two cervical cancer cell lines (HeLa and SiHa) and normal human fibroblast cells (HFBs) were exposed to micro-DBD plasma for various exposure times. The elasticity of a single cell was determined by force-distance curve measurement using AFM. Young's modulus was decreased by plasma treatment for all cells. The Young's modulus of plasma-treated HeLa cells was decreased by 75% compared to nontreated HeLa cells. In SiHa cells and HFBs, elasticity was decreased slightly. Chemical changes induced by the plasma treatment, which were observed by Raman spectroscopy, were also significant in HeLa cells compared to SiHa cells and HFBs. These results suggested that the molecular changes induced by micro-DBD plasma were related to cell mechanical changes. © 2017 Wiley Periodicals, Inc.
Stepp, Marcus W; Doll, Mark A; Carlisle, Samantha M; States, J Christopher; Hein, David W
2018-04-01
Arylamine N-acetyltransferase 1 (NAT1) expression is reported to affect proliferation, invasiveness, and growth of cancer cells. MDA-MB-231 breast cancer cells were engineered such that NAT1 expression was elevated or suppressed, or treated with a small molecule inhibitor of NAT1. The MDA-MB-231 human breast cancer cell lines were engineered with a scrambled shRNA, a NAT1 specific shRNA or a NAT1 overexpression cassette stably integrated into a single flippase recognition target (FRT) site facilitating incorporation of these different genetic elements into the same genomic location. NAT1-specific shRNA reduced NAT1 activity in vitro by 39%, increased endogenous acetyl coenzyme A levels by 35%, and reduced anchorage-independent growth (sevenfold) without significant effects on cell morphology, growth rates, anchorage-dependent colony formation, or invasiveness compared to the scrambled shRNA cell line. Despite 12-fold overexpression of NAT1 activity in the NAT1 overexpression cassette transfected MDA-MB-231 cell line, doubling time, anchorage-dependent cell growth, anchorage-independent cell growth, and relative invasiveness were not changed significantly when compared to the scrambled shRNA cell line. A small molecule (5E)-[5-(4-hydroxy-3,5-diiodobenzylidene)-2-thioxo-1,3-thiazolidin-4-one (5-HDST) was 25-fold more selective towards the inhibition of recombinant human NAT1 than N-acetyltransferase 2. Incubation of MDA-MB-231 cell line with 5-HDST resulted in 60% reduction in NAT1 activity and significant decreases in cell growth, anchorage-dependent growth, and anchorage-independent growth. In summary, inhibition of NAT1 activity by either shRNA or 5-HDST reduced anchorage-independent growth in the MDA-MB-231 human breast cancer cell line. These findings suggest that human NAT1 could serve as a target for the prevention and/or treatment of breast cancer. © 2018 Wiley Periodicals, Inc.
Steichen, Clara; Maluenda, Jérôme; Tosca, Lucie; Luce, Eléanor; Pineau, Dominique; Dianat, Noushin; Hannoun, Zara; Tachdjian, Gérard; Melki, Judith
2015-01-01
Human induced pluripotent stem cells (hiPSCs) hold great promise for cell therapy through their use as vital tools for regenerative and personalized medicine. However, the genomic integrity of hiPSCs still raises some concern and is one of the barriers limiting their use in clinical applications. Numerous articles have reported the occurrence of aneuploidies, copy number variations, or single point mutations in hiPSCs, and nonintegrative reprogramming strategies have been developed to minimize the impact of the reprogramming process on the hiPSC genome. Here, we report the characterization of an hiPSC line generated by daily transfections of modified messenger RNAs, displaying several genomic abnormalities. Karyotype analysis showed a complex genomic rearrangement, which remained stable during long-term culture. Fluorescent in situ hybridization analyses were performed on the hiPSC line showing that this karyotype is balanced. Interestingly, single-nucleotide polymorphism analysis revealed the presence of a large 1q region of uniparental disomy (UPD), demonstrating for the first time that UPD can occur in a noncompensatory context during nonintegrative reprogramming of normal fibroblasts. PMID:25650439
A HeLa cell line stably expressing the Enhanced Green Fluorescence Protein (EGFP) gene, interrupted by the IVS2-654 intron, was studied without treatment and after treatment with a single standard dose of 15 ?M of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). This assay was done ...
Kukula-Koch, Wirginia; Grabarska, Aneta; Łuszczki, Jarogniew; Czernicka, Lidia; Nowosadzka, Ewa; Gumbarewicz, Ewelina; Jarząb, Agata; Audo, Gregoire; Upadhyay, Shakti; Głowniak, Kazimierz; Stepulak, Andrzej
2018-05-01
Three curcuminoids: bisdemethoxycurcumin, demethoxycurcumin, and curcumin from turmeric were successfully separated by a high capacity solvent system composed of heptane: chloroform: methanol: water mixture (5: 6: 3: 2 v/v/v/v) tailored for centrifugal partition chromatographs at K-values of 0.504, 1.057, 1.644, respectively. These three ferulic acid derivatives obtained at a purity rate exceeding 95% were analysed by an HPLC-MS spectrometer. Turmeric extract inhibited the proliferation/viability of A549 human lung cancer, HT29 colon cancer, and T98G glioblastoma cell lines in (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) tetrazolium reduction assay (MTT). Single curcuminoids significantly decreased the viability/proliferation of lung cancer cells in a dose-dependent manner. However, total extract displayed the superior anticancer activity in the investigated cell lines. Crude extract in combination with cisplatin augmented the decrease in the viability of cancer cells compared with single compound treatment in A549 lung cancer cells. Total extract of Curcuma longa could be regarded as being more effective against lung cancer cells in vitro than its separated compounds. Copyright © 2018 John Wiley & Sons, Ltd.
Fiber-optic control and thermometry of single-cell thermosensation logic.
Fedotov, I V; Safronov, N A; Ermakova, Yu G; Matlashov, M E; Sidorov-Biryukov, D A; Fedotov, A B; Belousov, V V; Zheltikov, A M
2015-11-13
Thermal activation of transient receptor potential (TRP) cation channels is one of the most striking examples of temperature-controlled processes in cell biology. As the evidence indicating the fundamental role of such processes in thermosensation builds at a fast pace, adequately accurate tools that would allow heat receptor logic behind thermosensation to be examined on a single-cell level are in great demand. Here, we demonstrate a specifically designed fiber-optic probe that enables thermal activation with simultaneous online thermometry of individual cells expressing genetically encoded TRP channels. This probe integrates a fiber-optic tract for the delivery of laser light with a two-wire microwave transmission line. A diamond microcrystal fixed on the fiber tip is heated by laser radiation transmitted through the fiber, providing a local heating of a cell culture, enabling a well-controlled TRP-assisted thermal activation of cells. Online local temperature measurements are performed by using the temperature-dependent frequency shift of optically detected magnetic resonance, induced by coupling the microwave field, delivered by the microwave transmission line, to nitrogen--vacancy centers in the diamond microcrystal. Activation of TRP channels is verified by using genetically encoded fluorescence indicators, visualizing an increase in the calcium flow through activated TRP channels.
Avian germplasm preservation: embryonic stem cells or primordial germ cells?
Petitte, J N
2006-02-01
Presently, avian genetic resources are best maintained as living collections of birds. Unfortunately, these stocks have been under constant pressure to be destroyed because of the decline in the number of Poultry Science Departments and pressures to cut costs at land grant institutions. Cryopreservation of semen is often suggested as a means to bank avian germplasm. However, this is only applicable for single-gene traits and does not allow for full reconstitution of the genetics of the original line. Over the last 15 yr, advances in the manipulation of the early chick embryo, manipulation of primordial germ cells (PGC), and the culture of embryonic stem cells (ESC) suggests that cryopreservation of blastodermal cells, ESC, or PGC might offer a means to preserve the entire genome of highly selected, specialized stocks of poultry. Freezing each of these cell types is possible with varying degrees of efficiency. Similarly, the effectiveness of generating germ line chimeras using blastodermal cells, ESC, or PGC also varies greatly. Other factors that must be considered include the choice of the recipient lines to develop the germ line chimeras and the number of individuals needed to reconstitute the line. Finally, the low efficiency rate of reconstitution and the high cost associated with current technologies makes these approaches prohibitive. Significant challenges remain to be overcome before the entire genome of poultry stocks can be routinely cryoperserved and reconstituted.
Mahal, Katharina; Resch, Marcus; Ficner, Ralf; Schobert, Rainer; Biersack, Bernhard; Mueller, Thomas
2014-04-01
Two analogues of the discontinued tumor vascular-disrupting agent verubulin (Azixa®, MPC-6827, 1) featuring benzo-1,4-dioxan-6-yl (compound 5 a) and N-methylindol-5-yl (compound 10) residues instead of the para-anisyl group on the 4-(methylamino)-2-methylquinazoline pharmacophore, were prepared and found to exceed the antitumor efficacy of the lead compound. They were antiproliferative with single-digit nanomolar IC50 values against a panel of nine tumor cell lines, while not affecting nonmalignant fibroblasts. Indole 10 surpassed verubulin in seven tumor cell lines including colon, breast, ovarian, and germ cell cancer cell lines. In line with docking studies indicating that compound 10 may bind the colchicine binding site of tubulin more tightly (Ebind =-9.8 kcal mol(-1) ) than verubulin (Ebind =-8.3 kcal mol(-1) ), 10 suppressed the formation of vessel-like tubes in endothelial cells and destroyed the blood vessels in the chorioallantoic membrane of fertilized chicken eggs at nanomolar concentrations. When applied to nude mice bearing a highly vascularized 1411HP germ cell xenograft tumor, compound 10 displayed pronounced vascular-disrupting effects that led to hemorrhages and extensive central necrosis in the tumor. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rocha, Cristina S J; Lundin, Karin E; Behlke, Mark A; Zain, Rula; El Andaloussi, Samir; Smith, C I Edvard
2016-12-01
New advances in oligonucleotide (ON) chemistry emerge continuously, and over the last few years, several aspects of ON delivery have been improved. However, clear knowledge regarding how certain chemistries behave alone, or in combination with various delivery vectors, is limited. Moreover, characterization is frequently limited to a single reporter cell line and, when different cell types are studied, experiments are commonly not carried out under similar conditions, hampering comparative analysis. To address this, we have developed a small "tissue" library of new, stable, pLuc/705 splice-switching reporter cell lines (named HuH7_705, U-2 OS_705, C2C12_705, and Neuro-2a_705). Our data show that, indeed, the cell type used in activity screenings influences the efficiency of ONs of different chemistry (phosphorothioate with locked nucleic acid or 2'-O-methyl with or without N,N-diethyl-4-(4-nitronaphthalen-1-ylazo)-phenylamine). Likewise, the delivery method, Lipofectamine ® 2000, PepFect14 nanoparticles, or "naked" uptake, also demonstrates cell-type-dependent outcomes. Taken together, these cell lines can potentially become useful tools for future in vitro evaluation of new nucleic acid-based oligomers as well as delivery compounds for splice-switching approaches and cell-specific therapies.
Hannes, Tobias; Wolff, Marie; Doss, Michael Xavier; Pfannkuche, Kurt; Haustein, Moritz; Müller-Ehmsen, Jochen; Sachinidis, Agapios; Hescheler, Jürgen; Khalil, Markus; Halbach, Marcel
2015-01-01
Modelling of cardiac development, physiology and pharmacology by differentiation of embryonic stem cells (ESCs) requires comparability of cardiac differentiation between different ESC lines. To investigate whether the outcome of cardiac differentiation is consistent between different ESC lines, we compared electrophysiological properties of ESC-derived cardiomyocytes (ESC-CMs) of different murine ESC lines. Two wild-type (D3 and R1) and two transgenic ESC lines (D3/aPIG44 and CGR8/AMPIGX-7) were differentiated under identical culture conditions. The transgenic cell lines expressed enhanced green fluorescent protein (eGFP) and puromycin-N-acetyltransferase under control of the cardiac specific α-myosin heavy chain (αMHC) promoter. Action potentials (APs) were recorded using sharp electrodes and multielectrode arrays in beating clusters of ESC-CMs. Spontaneous AP frequency and AP duration (APD) as well as maximal upstroke velocity differed markedly between unpurified CMs of the four ESC lines. APD heterogeneity was negligible in D3/aPIG44, moderate in D3 and R1 and extensive in CGR8/AMPIGX-7. Interspike intervals calculated from long-term recordings showed a high degree of variability within and between recordings in CGR8/AMPIGX-7, but not in D3/aPIG44. Purification of the αMHC+ population by puromycin treatment posed only minor changes to APD in D3/aPIG44, but significantly shortened APD in CGR8/AMPIGX-7. Electrophysiological properties of ESC-CMs are strongly cell line-dependent and can be influenced by purification of cardiomyocytes by antibiotic selection. Thus, conclusions on cardiac development, physiology and pharmacology derived from single stem cell lines have to be interpreted carefully. © 2015 S. Karger AG, Basel.
Sciamanna, Ilaria; Gualtieri, Alberto; Cossetti, Cristina; Osimo, Emanuele Felice; Ferracin, Manuela; Macchia, Gianfranco; Aricò, Eleonora; Prosseda, Gianni; Vitullo, Patrizia; Misteli, Tom; Spadafora, Corrado
2013-01-01
LINE-1 elements make up the most abundant retrotransposon family in the human genome. Full-length LINE-1 elements encode a reverse transcriptase (RT) activity required for their own retrotranpsosition as well as that of non-autonomous Alu elements. LINE-1 are poorly expressed in normal cells and abundantly in cancer cells. Decreasing RT activity in cancer cells, by either LINE-1-specific RNA interference, or by RT inhibitory drugs, was previously found to reduce proliferation and promote differentiation and to antagonize tumor growth in animal models. Here we have investigated how RT exerts these global regulatory functions. We report that the RT inhibitor efavirenz (EFV) selectively downregulates proliferation of transformed cell lines, while exerting only mild effects on non-transformed cells; this differential sensitivity matches a differential RT abundance, which is high in the former and undetectable in the latter. Using CsCl density gradients, we selectively identify Alu and LINE-1 containing DNA:RNA hybrid molecules in cancer but not in normal cells. Remarkably, hybrid molecules fail to form in tumor cells treated with EFV under the same conditions that repress proliferation and induce the reprogramming of expression profiles of coding genes, microRNAs (miRNAs) and ultraconserved regions (UCRs). The RT-sensitive miRNAs and UCRs are significantly associated with Alu sequences. The results suggest that LINE-1-encoded RT governs the balance between single-stranded and double-stranded RNA production. In cancer cells the abundant RT reverse-transcribes retroelement-derived mRNAs forming RNA:DNA hybrids. We propose that this impairs the formation of double-stranded RNAs and the ensuing production of small regulatory RNAs, with a direct impact on gene expression. RT inhibition restores the ‘normal’ small RNA profile and the regulatory networks that depend on them. Thus, the retrotransposon-encoded RT drives a previously unrecognized mechanism crucial to the transformed state in tumor cells. PMID:24345856
Induced Pluripotent Stem Cells: A novel frontier in the study of human primary immunodeficiencies
Pessach, Itai M.; Ordovas-Montanes, Jose; Zhang, Shen-Ying; Casanova, Jean-Laurent; Giliani, Silvia; Gennery, Andrew R.; Al-Herz, Waleed; Manos, Philip D.; Schlaeger, Thorsten M.; Park, In-Hyun; Rucci, Francesca; Agarwal, Suneet; Mostoslavsky, Gustavo; Daley, George Q.; Notarangelo, Luigi D.
2010-01-01
Background The novel ability to epigenetically reprogram somatic cells into induced pluripotent stem cells through the exogenous expression of transcription promises to revolutionize the study of human diseases. Objective Here we report on the generation of 25 induced pluripotent stem cell lines from 6 patients with various forms of Primary Immunodeficiencies, affecting adaptive and/or innate immunity. Methods Patients’ dermal fibroblasts were reprogrammed by expression of four transcription factors, OCT4, SOX2, KLF4, and c-MYC using a single excisable polycistronic lentiviral vector. Results Induced pluripotent stem cells derived from patients with primary immunodeficiencies show a stemness profile that is comparable to that observed in human embryonic stem cells. Following in vitro differentiation into embryoid bodies, pluripotency of the patient-derived indiced pluripotent stem cells lines was demonstrated by expression of genes characteristic of each of the three embryonic layers. We have confirmed the patient-specific origin of the induced pluripotent stem cell lines, and ascertained maintenance of karyotypic integrity. Conclusion By providing a limitless source of diseased stem cells that can be differentiated into various cell types in vitro, the repository of induced pluripotent stem cell lines from patients with primary immunodeficiencies represents a unique resource to investigate the pathophysiology of hematopoietic and extra-hematopoietic manifestations of these diseases, and may assist in the development of novel therapeutic approaches based on gene correction. PMID:21185069
Validation of high-throughput single cell analysis methodology.
Devonshire, Alison S; Baradez, Marc-Olivier; Morley, Gary; Marshall, Damian; Foy, Carole A
2014-05-01
High-throughput quantitative polymerase chain reaction (qPCR) approaches enable profiling of multiple genes in single cells, bringing new insights to complex biological processes and offering opportunities for single cell-based monitoring of cancer cells and stem cell-based therapies. However, workflows with well-defined sources of variation are required for clinical diagnostics and testing of tissue-engineered products. In a study of neural stem cell lines, we investigated the performance of lysis, reverse transcription (RT), preamplification (PA), and nanofluidic qPCR steps at the single cell level in terms of efficiency, precision, and limit of detection. We compared protocols using a separate lysis buffer with cell capture directly in RT-PA reagent. The two methods were found to have similar lysis efficiencies, whereas the direct RT-PA approach showed improved precision. Digital PCR was used to relate preamplified template copy numbers to Cq values and reveal where low-quality signals may affect the analysis. We investigated the impact of calibration and data normalization strategies as a means of minimizing the impact of inter-experimental variation on gene expression values and found that both approaches can improve data comparability. This study provides validation and guidance for the application of high-throughput qPCR workflows for gene expression profiling of single cells. Copyright © 2014 Elsevier Inc. All rights reserved.
Insulin activates single amiloride-blockable Na channels in a distal nephron cell line (A6).
Marunaka, Y; Hagiwara, N; Tohda, H
1992-09-01
Using the patch-clamp technique, we studied the effect of insulin on an amiloride-blockable Na channel in the apical membrane of a distal nephron cell line (A6) cultured on permeable collagen films for 10-14 days. NPo (N, number of channels per patch membrane; Po, average value of open probability of individual channels in the patch) under baseline conditions was 0.88 +/- 0.12 (SE)(n = 17). After making cell-attached patches on the apical membrane which contained Na channels, insulin (1 mU/ml) was applied to the serosal bath. While maintaining the cell-attached patch, NPo significantly increased to 1.48 +/- 0.19 (n = 17; P less than 0.001) after 5-10 min of insulin application. The open probability of Na channels was 0.39 +/- 0.01 (n = 38) under baseline condition, and increased to 0.66 +/- 0.03 (n = 38, P less than 0.001) after addition of insulin. The baseline single-channel conductance was 4pS, and neither the single-channel conductance nor the current-voltage relationship was significantly changed by insulin. These results indicate that insulin increases Na absorption in the distal nephron by increasing the open probability of the amiloride-blockable Na channel.
Tracking the Invasion of Small Numbers of Cells in Paper-Based Assays with Quantitative PCR.
Truong, Andrew S; Lochbaum, Christian A; Boyce, Matthew W; Lockett, Matthew R
2015-11-17
Paper-based scaffolds are an attractive material for culturing mammalian cells in a three-dimensional environment. There are a number of previously published studies, which utilize these scaffolds to generate models of aortic valves, cardiac ischemia and reperfusion, and solid tumors. These models have largely relied on fluorescence imaging and microscopy to quantify cells in the scaffolds. We present here a polymerase chain reaction (PCR)-based method, capable of quantifying multiple cell types in a single culture with the aid of DNA barcodes: unique sequences of DNA introduced to the genome of individual cells or cell types through lentiviral transduction. PCR-based methods are highly specific and are amenable to high-throughput and multiplexed analyses. To validate this method, we engineered two different breast cancer lines to constitutively express either a green or red fluorescent protein. These cells lines allowed us to directly compare the ability of fluorescence imaging (of the fluorescent proteins) and qPCR (of the unique DNA sequences of the fluorescent proteins) to quantify known numbers of cells in the paper based-scaffolds. We also used both methods to quantify the distribution of these breast cell lines in homotypic and heterotypic invasion assays. In the paper-based invasion assays, a single sheet of paper containing cells suspended in a hydrogel was sandwiched between sheets of paper containing only hydrogel. The stack was incubated, and the cells invaded the adjacent layers. The individual sheets of the invasion assay were then destacked and the number of cells in each layer quantified. Our results show both methods can accurately detect cell populations of greater than 500 cells. The qPCR method can repeatedly and accurately detect as few as 50 cells, allowing small populations of highly invasive cells to be detected and differentiated from other cell types.
Anti-tumour potential of a gallic acid-containing phenolic fraction from Oenothera biennis.
Pellegrina, Chiara Dalla; Padovani, Giorgia; Mainente, Federica; Zoccatelli, Gianni; Bissoli, Gaetano; Mosconi, Silvia; Veneri, Gianluca; Peruffo, Angelo; Andrighetto, Giancarlo; Rizzi, Corrado; Chignola, Roberto
2005-08-08
A phenolic fraction purified form defatted seeds of Oenothera biennis promoted selective apoptosis of human and mouse bone marrow-derived cell lines following first-order kinetics through a caspase-dependent pathway. In non-leukemia tumour cell lines, such as human colon carcinoma CaCo(2) cells and mouse fibrosarcoma WEHI164 cells, this fraction inhibited (3)H-thymidine incorporation but not cell death or cell cycle arrest. Human peripheral blood mononuclear cells showed low sensitivity to treatment. Single bolus injection of the phenolic fraction could delay the growth of established myeloma tumours in syngeneic animals. HPLC and mass spectrometry analysis revealed that the fraction contains gallic acid. However, the biological activity of the fraction differs from the activity of this phenol and hence it should be attributed to other co-purified molecules which remain still unidentified.
Conservative site-specific and single-copy transgenesis in human LINE-1 elements
Vijaya Chandra, Shree Harsha; Makhija, Harshyaa; Peter, Sabrina; Myint Wai, Cho Mar; Li, Jinming; Zhu, Jindong; Ren, Zhonglu; D'Alcontres, Martina Stagno; Siau, Jia Wei; Chee, Sharon; Ghadessy, Farid John; Dröge, Peter
2016-01-01
Genome engineering of human cells plays an important role in biotechnology and molecular medicine. In particular, insertions of functional multi-transgene cassettes into suitable endogenous sequences will lead to novel applications. Although several tools have been exploited in this context, safety issues such as cytotoxicity, insertional mutagenesis and off-target cleavage together with limitations in cargo size/expression often compromise utility. Phage λ integrase (Int) is a transgenesis tool that mediates conservative site-specific integration of 48 kb DNA into a safe harbor site of the bacterial genome. Here, we show that an Int variant precisely recombines large episomes into a sequence, termed attH4X, found in 1000 human Long INterspersed Elements-1 (LINE-1). We demonstrate single-copy transgenesis through attH4X-targeting in various cell lines including hESCs, with the flexibility of selecting clones according to transgene performance and downstream applications. This is exemplified with pluripotency reporter cassettes and constitutively expressed payloads that remain functional in LINE1-targeted hESCs and differentiated progenies. Furthermore, LINE-1 targeting does not induce DNA damage-response or chromosomal aberrations, and neither global nor localized endogenous gene expression is substantially affected. Hence, this simple transgene addition tool should become particularly useful for applications that require engineering of the human genome with multi-transgenes. PMID:26673710
Absolute Configuration of Andrographolide and Its Proliferation of Osteoblast Cell Lines
NASA Astrophysics Data System (ADS)
Chantrapromma, S.; Boonnak, N.; Pitakpornpreecha, T.; Yordthong, T.; Chidan Kumar, C. S.; Fun, H. K.
2018-05-01
Andrographolide, C20H30O5, is a labdane diterpenoid which was isolated from the leave of Andrographis paniculata. Its crystal structure is determined by single crystal X-ray diffraction: monoclinic, sp. gr. P21, Z = 2. Absolute configuration is determined by the refinement of the Flack parameter to 0.21(19). In the crystal, molecules are linked by O-H···O hydrogen bonds and C-H···O interactions into two dimensional network parallel to the (001) plane. Its proliferation of osteoblast cell lines is reported.
Single-cell intracellular nano-pH probes.
Özel, Rıfat Emrah; Lohith, Akshar; Mak, Wai Han; Pourmand, Nader
2015-01-01
Within a large clonal population, such as cancerous tumor entities, cells are not identical, and the differences between intracellular pH levels of individual cells may be important indicators of heterogeneity that could be relevant in clinical practice, especially in personalized medicine. Therefore, the detection of the intracellular pH at the single-cell level is of great importance to identify and study outlier cells. However, quantitative and real-time measurements of the intracellular pH of individual cells within a cell population is challenging with existing technologies, and there is a need to engineer new methodologies. In this paper, we discuss the use of nanopipette technology to overcome the limitations of intracellular pH measurements at the single-cell level. We have developed a nano-pH probe through physisorption of chitosan onto hydroxylated quartz nanopipettes with extremely small pore sizes (~100 nm). The dynamic pH range of the nano-pH probe was from 2.6 to 10.7 with a sensitivity of 0.09 units. We have performed single-cell intracellular pH measurements using non-cancerous and cancerous cell lines, including human fibroblasts, HeLa, MDA-MB-231 and MCF-7, with the pH nanoprobe. We have further demonstrated the real-time continuous single-cell pH measurement capability of the sensor, showing the cellular pH response to pharmaceutical manipulations. These findings suggest that the chitosan-functionalized nanopore is a powerful nano-tool for pH sensing at the single-cell level with high temporal and spatial resolution.
NASA Astrophysics Data System (ADS)
Mushtaque, Md.; Avecilla, Fernando; Hafeez, Zubair Bin; Jahan, Meriyam; Khan, Md. Shahzad; Rizvi, M. Moshahid A.; Khan, Mohd. Shahid; Srivastava, Anurag; Mallik, Anwesha; Verma, Saurabh
2017-01-01
A new compound (3) bisthaizolidinone derivative was synthesized by Knoevenagel condensation reaction. The structure of synthesized compound was elucidated by different spectral techniques and X-ray diffraction studies. The stereochemistry of the compound (3) was determined by 1Hsbnd 1H NOESY, 1Hsbnd 1H NMR COSY and single crystal X-ray diffraction studies as (Z, Z)-configuration. The computational quantum chemical studies of compound(3) like, IR, UV, NBO analysis were performed by DFT with Becke-3-Lee-Yang-Parr (B3LYP) exchange-correlation functional in combination with 6-311++G(d,p) basis sets. The DNA-binding of compound (3) exhibited a moderate binding constant (Kb = 1 × 105 Lmol-1) with hypochromic shift. The molecular docking displayed good binding affinity -7.18 kcal/mol. The MTT assay of compound (3) was screened against different cancerous cell lines, HepG2, Siha, Hela and MCF-7. Studies against these cell lines depicted that the screened compound (3) showed potent inhibitory activity against HepG2 cell (IC50 = 7.5 μM) followed by MCF-7 (IC50 = 52.0 μM), Siha (IC50 = 66.98 μM), Hela (IC50 = 74.83 μM) cell lines, and non-toxic effect against non-cancerous HEK-293 cells (IC50 = 287.89 μM) at the concentration range (0-300) μM. Furthermore, cell cycle perturbation was performed on HepG2 & Siha cell lines and observed that cells were arrested in G2/M in HepG2, and G0/G1 in Siha cell lines with respect to untreated control. Hence, compound (3) possesses potent anti-cancerous activity against HepG2 cell line.
Corte Rodríguez, M; Álvarez-Fernández García, R; Blanco, E; Bettmer, J; Montes-Bayón, M
2017-11-07
One of the main limitations to the Pt-therapy in cancer is the development of associated drug resistance that can be associated with a significant reduction of the intracellular platinum concentration. Thus, intracellular Pt concentration could be considered as a biomarker of cisplatin resistance. In this work, an alternative method to address intracellular Pt concentration in individual cells is explored to permit the evaluation of different cell models and alternative therapies in a relatively fast way. For this aim, total Pt analysis in single cells has been implemented using a total consumption nebulizer coupled to inductively coupled plasma mass spectrometric detection (ICP-MS). The efficiency of the proposed device has been evaluated in combination with flow cytometry and turned out to be around 25% (cells entering the ICP-MS from the cells in suspension). Quantitative uptake studies of a nontoxic Tb-containing compound by individual cells were conducted and the results compared to those obtained by bulk analysis of the same cells. Both sets of data were statistically comparable. Thus, final application of the developed methodology to the comparative uptake of Pt-species in cisplatin resistant and sensitive cell lines (A2780cis and A2780) was conducted. The results obtained revealed the potential of this analytical strategy to differentiate between different cell lines of different sensitivity to the drug which might be of high medical interest.
Muchima, Kaname; Todaka, Taro; Shinchi, Hiroyuki; Sato, Ayaka; Tazoe, Arisa; Aramaki, Rikiya; Kakitsubata, Yuhei; Yokoyama, Risa; Arima, Naomichi; Baba, Masanori; Wakao, Masahiro; Ito, Yuji; Suda, Yasuo
2018-04-01
Adult T-cell leukemia (ATL) is an intractable blood cancer caused by the infection of human T-cell leukemia virus type-1, and effective medical treatment is required. It is known that the structure and expression levels of cell surface sugar chains vary depending on cell states such as inflammation and cancer. Thus, it is expected that the antibody specific for ATL cell surface sugar chain would be an effective diagnostic tool and a strong candidate for the development of an anti-ATL drug. Here, we developed a stable sugar chain-binding single-chain variable fragment antibody (scFv) that can bind to ATL cells using a fibre-type Sugar Chip and phage display method. The fiber-type Sugar Chips were prepared using O-glycans released from ATL cell lines. The scFv-displaying phages derived from human B cells (diversity: 1.04 × 108) were then screened using the fiber-type Sugar Chips, and an O-glycan-binding scFv was obtained. The flow cytometry analysis revealed that the scFv predominantly bound to ATL cell lines. The sugar chain-binding properties of the scFv was evaluated by array-type Sugar Chip immobilized with a library of synthetic glycosaminoglycan disaccharide structures. Highly sulphated disaccharide structures were found to have high affinity to scFv.
Combination of Pim kinase inhibitor SGI-1776 and bendamustine in B-cell lymphoma.
Yang, Qingshan; Chen, Lisa S; Neelapu, Sattva S; Gandhi, Varsha
2013-09-01
SGI-1776 is a small-molecule Pim kinase inhibitor that primarily targets c-MYC-driven transcription and cap-dependent translation in mantle cell lymphoma (MCL) cells. Bendamustine is an alkylating chemotherapeutic agent approved for use in B-cell lymphoma that is known to induce DNA damage and initiate response to repair. Our studies were conducted in MCL cell lines JeKo-1 and Mino, as well as primary B-cell lymphoma samples of MCL and splenic marginal zone lymphoma (SMZL), where we treated cells with SGI-1776 and bendamustine. We measured levels of cellular apoptosis, macromolecule synthesis inhibition, and DNA damage induced by drug treatments. Both SGI-1776 and bendamustine effectively induced apoptosis as single agents, and when used in combination, an additive effect in cell killing was observed in MCL cell lines JeKo-1 and Mino, as well as in MCL and SMZL primary cells. As expected, SGI-1776 was effective in inducing a decrease of global RNA and protein synthesis, and bendamustine significantly inhibited DNA synthesis and generated a DNA damage response. When used in combination, the effects were intensified in DNA, RNA, and protein synthesis inhibition compared with single-agent treatments. These data provide a foundation and suggest the feasibility of using Pim kinase inhibitors in combination with chemotherapeutic agents such as bendamustine in B-cell lymphoma. Copyright © 2013 Elsevier Inc. All rights reserved.
Lee, Jinwoo; Miyanaga, Yukihiro; Ueda, Masahiro; Hohng, Sungchul
2012-01-01
There is no confocal microscope optimized for single-molecule imaging in live cells and superresolution fluorescence imaging. By combining the swiftness of the line-scanning method and the high sensitivity of wide-field detection, we have developed a, to our knowledge, novel confocal fluorescence microscope with a good optical-sectioning capability (1.0 μm), fast frame rates (<33 fps), and superior fluorescence detection efficiency. Full compatibility of the microscope with conventional cell-imaging techniques allowed us to do single-molecule imaging with a great ease at arbitrary depths of live cells. With the new microscope, we monitored diffusion motion of fluorescently labeled cAMP receptors of Dictyostelium discoideum at both the basal and apical surfaces and obtained superresolution fluorescence images of microtubules of COS-7 cells at depths in the range 0–85 μm from the surface of a coverglass. PMID:23083712
Calcium influences sensitivity to growth inhibition induced by a cell surface sialoglycopeptide
NASA Technical Reports Server (NTRS)
Betz, N. A.; Fattaey, H. K.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)
1994-01-01
While studies concerning mitogenic factors have been an important area of research for many years, much less is understood about the mechanisms of action of cell surface growth inhibitors. We have purified an 18 kDa cell surface sialoglycopeptide growth inhibitor (CeReS-18) which can reversibly inhibit the proliferation of diverse cell types. The studies discussed in this article show that three mouse keratinocyte cell lines exhibit sixty-fold greater sensitivity than other fibroblasts and epithelial-like cells to CeReS-18-induced growth inhibition. Growth inhibition induced by CeReS-18 treatment is a reversible process, and the three mouse keratinocyte cell lines exhibited either single or multiple cell cycle arrest points, although a predominantly G0/G1 cell cycle arrest point was exhibited in Swiss 3T3 fibroblasts. The sensitivity of the mouse keratinocyte cell lines to CeReS-18-induced growth inhibition was not affected by the degree of tumorigenic progression in the cell lines and was not due to differences in CeReS-18 binding affinity or number of cell surface receptors per cell. However, the sensitivity of both murine fibroblasts and keratinocytes could be altered by changing the extracellular calcium concentration, such that increased extracellular calcium concentrations resulted in decreased sensitivity to CeReS-18-induced proliferation inhibition. Thus the increased sensitivity of the murine keratinocyte cell lines to CeReS-18 could be ascribed to the low calcium concentration used in their propagation. Studies are currently under way investigating the role of calcium in CeReS-18-induced growth arrest. The CeReS-18 may serve as a very useful tool to study negative growth control and the signal transduction events associated with cell cycling.
Tan, Nguyen; Wong, Maureen; Nannini, Michelle A; Hong, Rebecca; Lee, Leslie B; Price, Stephen; Williams, Karen; Savy, Pierre Pascal; Yue, Peng; Sampath, Deepak; Settleman, Jeffrey; Fairbrother, Wayne J; Belmont, Lisa D
2013-06-01
Although mitogen-activated protein (MAP)-extracellular signal-regulated kinase (ERK) kinase (MEK) inhibition is predicted to cause cell death by stabilization of the proapoptotic BH3-only protein BIM, the induction of apoptosis is often modest. To determine if addition of a Bcl-2 family inhibitor could increase the efficacy of a MEK inhibitor, we evaluated a panel of 53 non-small cell lung cancer and pancreatic cancer cell lines with the combination of navitoclax (ABT-263), a Bcl-2/Bcl-xL (BCL2/BCL2L1) antagonist, and a novel MAP kinase (MEK) inhibitor, G-963. The combination is synergistic in the majority of lines, with an enrichment of cell lines harboring KRAS mutations in the high synergy group. Cells exposed to G-963 arrest in G1 and a small fraction undergo apoptosis. The addition of navitoclax to G-963 does not alter the kinetics of cell-cycle arrest, but greatly increases the percentage of cells that undergo apoptosis. The G-963/navitoclax combination was more effective than either single agent in the KRAS mutant H2122 xenograft model; BIM stabilization and PARP cleavage were observed in tumors, consistent with the mechanism of action observed in cell culture. Addition of the phosphatidylinositol 3-kinase (PI3K, PIK3CA) inhibitor GDC-0941 to this treatment combination increases cell killing compared with double- or single-agent treatment. Taken together, these data suggest the efficacy of agents that target the MAPK and PI3K pathways can be improved by combination with a Bcl-2 family inhibitor. ©2013 AACR
Generation of WNK1 knockout cell lines by CRISPR/Cas-mediated genome editing.
Roy, Ankita; Goodman, Joshua H; Begum, Gulnaz; Donnelly, Bridget F; Pittman, Gabrielle; Weinman, Edward J; Sun, Dandan; Subramanya, Arohan R
2015-02-15
Sodium-coupled SLC12 cation chloride cotransporters play important roles in cell volume and chloride homeostasis, epithelial fluid secretion, and renal tubular salt reabsorption. These cotransporters are phosphorylated and activated indirectly by With-No-Lysine (WNK) kinases through their downstream effector kinases, Ste20- and SPS1-related proline alanine-rich kinase (SPAK) and oxidative stress-responsive kinase 1 (OSR1). Multiple WNK kinases can coexist within a single cell type, although their relative contributions to SPAK/OSR1 activation and salt transport remain incompletely understood. Deletion of specific WNKs from cells that natively express a functional WNK-SPAK/OSR1 network will help resolve these knowledge gaps. Here, we outline a simple method to selectively knock out full-length WNK1 expression from mammalian cells using RNA-guided clustered regularly interspaced short palindromic repeats/Cas9 endonucleases. Two clonal cell lines were generated by using a single-guide RNA (sgRNA) targeting exon 1 of the WNK1 gene, which produced indels that abolished WNK1 protein expression. Both cell lines exhibited reduced endogenous WNK4 protein abundance, indicating that WNK1 is required for WNK4 stability. Consistent with an on-target effect, the reduced WNK4 abundance was associated with increased expression of the KLHL3/cullin-3 E3 ubiquitin ligase complex and was rescued by exogenous WNK1 overexpression. Although the morphology of the knockout cells was indistinguishable from control, they exhibited low baseline SPAK/OSR1 activity and failed to trigger regulatory volume increase after hypertonic stress, confirming an essential role for WNK1 in cell volume regulation. Collectively, our data show how this new, powerful, and accessible gene-editing technology can be used to dissect and analyze WNK signaling networks.
NASA Astrophysics Data System (ADS)
Nikolić, Miloš V.; Mijajlović, Marina Ž.; Jevtić, Verica V.; Ratković, Zoran R.; Novaković, Slađana B.; Bogdanović, Goran A.; Milovanović, Jelena; Arsenijević, Aleksandar; Stojanović, Bojana; Trifunović, Srećko R.; Radić, Gordana P.
2016-07-01
The spectroscopically predicted structure of the obtained copper(II)-complex with S-ethyl derivative of thiosalicylic acid was confirmed by X-ray structural study and compared to previously reported crystal structure of the Cu complex with S-methyl derivative. Single crystals suitable for X-ray measurements were obtained by slow crystallization from a water solution. Cytotoxic effects of S-alkyl (R = benzyl (L1), methyl (L2), ethyl (L3), propyl (L4) and butyl (L5)) derivatives of thiosalicylic acid and the corresponding binuclear copper(II)-complexes on murine colon carcinoma cell lines, CT26 and CT26.CL25 and human colon carcinoma cell line HCT-116 were reported here. The analysis of cancer cell viability showed that all the tested complexes had low cytotoxic effect on murine colon carcinoma cell lines, but several times higher cytotoxicity on normal human colon carcinoma cells.
Chang, S E; Foster, S; Betts, D; Marnock, W E
1992-12-02
There are many reports of cell lines being established from human oral squamous-cell carcinomas but apparently none of cell lines from dysplastic or "pre-malignant" oral mucosa. We describe here the isolation and characterization of a cell line, DOK (dysplastic oral keratinocyte), from a piece of dorsal tongue showing epithelial dysplasia. The tissue was obtained from a 57-year-old man who was a heavy smoker prior to the appearance of a white patch on his tongue. Eleven years later a squamous-cell carcinoma developed at the site and was excised. Subsequently the remaining dysplasia was removed, and it was from a piece of this that the primary cell cultures which eventually gave rise to DOK were initiated. The DOK line has been single-cell cloned and is apparently immortal. It grows in the absence of 3T3 feeder cells, is anchorage-dependent for growth and is non-tumorigenic in nude mice. The keratin profile of the cells shows a striking similarity to that of the original tongue dysplasia. The karyotype of DOK is aneuploid and complex. By PCR and oligonucleotide hybridization on dot blots, codons 12, 13 and 61 of Ha-ras, Ki-ras and N-ras in DNA extracted from DOK cells were shown to be normal. Immunohistochemistry showed no abnormal, i.e., elevated expression of the onco-suppressor protein p53. Because of its origin and partially transformed phenotype, DOK presents an opportunity to study whether specific carcinogens associated with tobacco and areca nut can cause malignant transformation of oral keratinocytes in vitro.
The influence of biomechanical properties and cannabinoids on tumor invasion
Hohmann, Tim; Grabiec, Urszula; Ghadban, Chalid; Feese, Kerstin; Dehghani, Faramarz
2017-01-01
ABSTRACT Background: Cannabinoids are known to have an anti-tumorous effect, but the underlying mechanisms are only sparsely understood. Mechanical characteristics of tumor cells represent a promising marker to distinguish between tumor cells and the healthy tissue. We tested the hypothesis whether cannabinoids influence the tumor cell specific mechanical and migratory properties and if these factors are a prognostic marker for the invasiveness of tumor cells. Methods: 3 different glioblastoma cell lines were treated with cannabinoids and changes of mechanical and migratory properties of single cells were measured using atomic force microscopy and time lapse imaging. The invasiveness of cell lines was determined using a co-culture model with organotypic hippocampal slice cultures. Results: We found that cannabinoids are capable of influencing migratory and mechanical properties in a cell line specific manner. A network analysis revealed a correlation between a “generalized stiffness” and the invasiveness for all tumor cell lines after 3 and 4 d of invasion time: r3d = −0.88 [−0.52;−0.97]; r4d = −0.90 [−0.59;−0.98]. Conclusions: Here we could show that a “generalized stiffness” is a profound marker for the invasiveness of a tumor cell population in our model and thus might be of high clinical relevance for drug testing. Additionally cannabinoids were shown to be of potential use for therapeutic approaches of glioblastoma. PMID:27149140
Lee, Youngjoo; Choi, Yu-Ra; Kim, Kyoung-Yeon; Shin, Dong Hoon
2016-01-01
Drug-resistant cell lines are essential tools for investigating the mechanisms of resistance to molecular-targeted anti-cancer drugs. However, little is known about how to establish clinically relevant drug-resistant cell lines. Our study examined the impact of a drug-free period on the establishment of a cell line with clinically relevant resistance to molecular-targeted drugs. We used PC9 cells, a lung cancer cell line carrying EGFR mutation, because this is a validated target for EGFR tyrosine kinase inhibitors (TKI). PC9 cells were intermittently or continuously exposed to increasing concentrations of gefitinib (0.01 μM to 1.0 μM) and the emergence of the most common acquired resistance mutation in EGFR, T790M, was determined. T790M was detected at a 25-fold lower drug concentration in cells continuously exposed to gefitinib (PC9/GRc) than in cells intermittently exposed to gefitinib (PC9/GRi) (0.04 μM vs 1.0 μM, respectively). The mutation frequencies at those drug concentrations were 19.8% and 8.0% in PC9/GRc and PC9/GRi cells, respectively. After drug-free culture for 8 weeks, resistance to gefitinib decreased in the PC9/GRi cells but not in the PC9/GRc cells. In the PC9/GRc cells, the frequency of the T790M mutation was consistently about 20% from 0.04 μM to 1.0 μM of gefitinib. In the PC9/GRc cells, the T790M mutation was detected in all single-cell clones, at frequencies ranging from 7.0% to 37.0%, with a median of 19.5% (95% confidence interval, 17.3%–20.9%). In conclusion, compared with intermittent drug exposure, continuous exposure might select better minor drug-resistant clones when creating cell lines resistant to molecular-targeted drugs. PMID:27270313
Lee, Youngjoo; Choi, Yu-Ra; Kim, Kyoung-Yeon; Shin, Dong Hoon
2016-07-12
Drug-resistant cell lines are essential tools for investigating the mechanisms of resistance to molecular-targeted anti-cancer drugs. However, little is known about how to establish clinically relevant drug-resistant cell lines. Our study examined the impact of a drug-free period on the establishment of a cell line with clinically relevant resistance to molecular-targeted drugs. We used PC9 cells, a lung cancer cell line carrying EGFR mutation, because this is a validated target for EGFR tyrosine kinase inhibitors (TKI). PC9 cells were intermittently or continuously exposed to increasing concentrations of gefitinib (0.01 μM to 1.0 μM) and the emergence of the most common acquired resistance mutation in EGFR, T790M, was determined. T790M was detected at a 25-fold lower drug concentration in cells continuously exposed to gefitinib (PC9/GRc) than in cells intermittently exposed to gefitinib (PC9/GRi) (0.04 μM vs 1.0 μM, respectively). The mutation frequencies at those drug concentrations were 19.8% and 8.0% in PC9/GRc and PC9/GRi cells, respectively. After drug-free culture for 8 weeks, resistance to gefitinib decreased in the PC9/GRi cells but not in the PC9/GRc cells. In the PC9/GRc cells, the frequency of the T790M mutation was consistently about 20% from 0.04 μM to 1.0 μM of gefitinib. In the PC9/GRc cells, the T790M mutation was detected in all single-cell clones, at frequencies ranging from 7.0% to 37.0%, with a median of 19.5% (95% confidence interval, 17.3%-20.9%). In conclusion, compared with intermittent drug exposure, continuous exposure might select better minor drug-resistant clones when creating cell lines resistant to molecular-targeted drugs.
Characterization of fibroblast-free CWR-R1ca castration-recurrent prostate cancer cell line.
Shourideh, Mojgan; DePriest, Adam; Mohler, James L; Wilson, Elizabeth M; Koochekpour, Shahriar
2016-09-01
The previously established CWR-R1 cell line has been used as an in vitro model representing castration-recurrent prostate cancer. Microscopic observation of subconfluent cells demonstrated two distinct cellular morphologies: polygonal closely aggregated epithelial cells surrounded by bipolar fibroblastic cells with long processes. This study sought to establish and characterize a fibroblast-free derivative of the CWR-R1 cell line. The CWR-R1ca cell line was established from CWR-R1 cells by removing fibroblasts using multiple cycles of short-term trypsinization, cloning, and pooling single-cell colonies. Authentication of fibroblast-free CWR-R1ca cells was demonstrated by analyzing the expression of cytodifferentiation and prostate-associated markers, DNA and cytogenetic profiling, and growth pattern in the absence or presence of androgen. CWR-R1ca is an androgen-sensitive cell line that expresses the androgen receptor (AR) and its splice variant 7 and the luminal epithelia markers, CK-8, CK-18, and c-Met. CWR-R1fb fibroblasts isolated from CWR-R1 cells express AR, hepatocyte growth factor-α, and mouse β-actin but not AR-V7 or epithelial markers. Cytogenetic analysis of CWR-R1ca cells revealed a hyperdiploid male with numerical gains in chromosomes 1, 7, 8, 10, 11, and 12, deletion of one chromosome 2 allele, structural abnormalities that include der(1)t(1:4), der(4)t(2:4), der(10)t(4:10), and an unbalanced reciprocal translocation between chromosome 6 and 14. DNA-profiling revealed that CWR-R1ca cells had significant short-tandem repeat marker homology with CWR22Pc and CWR22Rv1 cell lines, which indicated lineage derivation from CWR22 prostate cancer xenografts. CWR-R1ca cells were responsive to the growth stimulatory effects of dihydrotestosterone (DHT) in the femtomolar range. This study establishes CWR-R1ca cells as a fibroblast-free derivative of the castration-recurrent CWR-R1 cell line. Prostate 76:1067-1077, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Adalsteinsson, Viktor A; Tahirova, Narmin; Tallapragada, Naren; Yao, Xiaosai; Campion, Liam; Angelini, Alessandro; Douce, Thomas B; Huang, Cindy; Bowman, Brittany; Williamson, Christina A; Kwon, Douglas S; Wittrup, K Dane; Love, J Christopher
2013-10-01
Cancer is an inflammatory disease of tissue that is largely influenced by the interactions between multiple cell types, secreted factors, and signal transduction pathways. While single-cell sequencing continues to refine our understanding of the clonotypic heterogeneity within tumors, the complex interplay between genetic variations and non-genetic factors ultimately affects therapeutic outcome. Much has been learned through bulk studies of secreted factors in the tumor microenvironment, but the secretory behavior of single cells has been largely uncharacterized. Here we directly profiled the secretions of ELR+ CXC chemokines from thousands of single colorectal tumor and stromal cells, using an array of subnanoliter wells and a technique called microengraving to characterize both the rates of secretion of several factors at once and the numbers of cells secreting each chemokine. The ELR+ CXC chemokines are highly redundant, pro-angiogenic cytokines that signal via the CXCR1 and CXCR2 receptors, influencing tumor growth and progression. We find that human primary colorectal tumor and stromal cells exhibit polyfunctional heterogeneity in the combinations and magnitudes of secretions for these chemokines. In cell lines, we observe similar variance: phenotypes observed in bulk can be largely absent among the majority of single cells, and discordances exist between secretory states measured and gene expression for these chemokines among single cells. Together, these measures suggest secretory states among tumor cells are complex and can evolve dynamically. Most importantly, this study reveals new insight into the intratumoral phenotypic heterogeneity of human primary tumors.
Efficient PRNP deletion in bovine genome using gene-editing technologies in bovine cells
Choi, WooJae; Kim, Eunji; Yum, Soo-Young; Lee, ChoongIl; Lee, JiHyun; Moon, JoonHo; Ramachandra, Sisitha; Malaweera, Buddika Oshadi; Cho, JongKi; Kim, Jin-Soo; Kim, SeokJoong; Jang, Goo
2015-01-01
abstract Even though prion (encoded by the PRNP gene) diseases like bovine spongiform encephalopathy (BSE) are fatal neurodegenerative diseases in cattle, their study via gene deletion has been limited due to the absence of cell lines or mutant models. In this study, we aim to develop an immortalized fibroblast cell line in which genome-engineering technology can be readily applied to create gene-modified clones for studies. To this end, this study is designed to 1) investigate the induction of primary fibroblasts to immortalization by introducing Bmi-1 and hTert genes; 2) investigate the disruption of the PRNP in those cells; and 3) evaluate the gene expression and embryonic development using knockout (KO) cell lines. Primary cells from a male neonate were immortalized with Bmi-1and hTert. Immortalized cells were cultured for more than 180 days without any changes in their doubling time and morphology. Furthermore, to knockout the PRNP gene, plasmids that encode transcription activator-like effector nuclease (TALEN) pairs were transfected into the cells, and transfected single cells were propagated. Mutated clonal cell lines were confirmed by T7 endonuclease I assay and sequencing. Four knockout cell lines were used for somatic cell nuclear transfer (SCNT), and the resulting embryos were developed to the blastocyst stage. The genes (CSNK2A1, FAM64A, MPG and PRND) were affected after PRNP disruption in immortalized cells. In conclusion, we established immortalized cattle fibroblasts using Bmi-1 and hTert genes, and used TALENs to knockout the PRNP gene in these immortalized cells. The efficient PRNP KO is expected to be a useful technology to develop our understanding of in vitro prion protein functions in cattle. PMID:26217959
USDA-ARS?s Scientific Manuscript database
Bovine viral diarrhea virus (BVDV) infections, whether as acute, persistent or contributing to co-infections, result in significant losses for cattle producers. BVDV can be identified by real-time PCR and ELISA, detection and quantification of viral infection at the single cell level is extremely di...
USDA-ARS?s Scientific Manuscript database
Bovine viral diarrhea virus (BVDV) infections, whether as acute, persistent or contributing to co-infections, result in significant losses for cattle producers. BVDV can be identified by real-time PCR and ELISA, detection and quantification of viral infection at the single cell level is extremely di...
Introduction of new genetic markers on human chromosomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satoh, Hitoshi; Barrett, J.C.; Oshimura, Mitsuo
1991-03-01
The purpose of this study was to use DNA transfection and microcell chromosome transfer techniques to engineer a human chromosome containing multiple biochemical markers for which selectable growth conditions exist. The starting chromosome was a t(X;3)(3pter{yields}3p12::Xq26{yields}Xpter) chromosome from a reciprocal translocation in the normal human fibroblast cell line GM0439. This chromosome was transferred to a HPRT (hypoxanthine phosphoribosyltransferase)-deficient mouse A9 cell line by microcell fusion and selected under growth conditions for the HPRT gene on the human t(X;3) chromosome. A resultant HAT-resistant cell line (A9(GM0439)-1) contained a single human t(X;3) chromosome. These results demonstrate that microcell chromosome transfer can bemore » used to select chromosomes containing multiple markers.« less
NASA Astrophysics Data System (ADS)
Zordan, M. D.; Leary, James F.
2011-02-01
The clonal isolation of rare cells, especially cancer and stem cells, in a population is important to the development of improved medical treatment. We have demonstrated that the Laser-Enabled Analysis and Processing (LEAP, Cyntellect Inc., San Diego, CA) instrument can be used to efficiently produce single cell clones by photoablative dilution. Additionally, we have also shown that cells present at low frequencies can be cloned by photoablative dilution after they are pre-enriched by flow cytometry based cell sorting. Circulating tumor cells were modeled by spiking isolated peripheral blood cells with cells from the lung carcinoma cell line A549. Flow cytometry based cell sorting was used to perform an enrichment sort of A549 cells directly into a 384 well plate. Photoablative dilution was performed with the LEAPTM instrument to remove any contaminating cells, and clonally isolate 1 side population cell per well. We were able to isolate and grow single clones of side population cells using this method at greater than 90% efficiency. We have developed a 2 step method that is able to perform the clonal isolation of rare cells based on a medically relevant functional phenotype.
T-cell differentiation of multipotent hematopoietic cell line EML in the OP9-DL1 coculture system
Kutleša, Snježana; Zayas, Jennifer; Valle, Alexandra; Levy, Robert B.; Jurecic, Roland
2011-01-01
Objective Multipotent hematopoietic cell line EML can differentiate into myeloid, erythroid, megakaryocytic, and B-lymphoid lineages, but it remained unknown whether EML cells have T-cell developmental potential as well. The goal of this study was to determine whether the coculture with OP9 stromal cells expressing Notch ligand Delta-like 1 (OP9-DL1) could induce differentiation of EML cells into T-cell lineage. Materials and Methods EML cells were cocultured with control OP9 or OP9-DL1 stromal cells in the presence of cytokines (stem cell factor, interleukin-7, and Fms-like tyrosine kinase 3 ligand). Their T-cell lineage differentiation was assessed through flow cytometry and reverse transcription polymerase chain reaction expression analysis of cell surface markers and genes characterizing and associated with specific stages of T-cell development. Results The phenotypic, molecular, and functional analysis has revealed that in EML/OP9-DL1 cocultures with cytokines, but not in control EML/OP9 cocultures, EML cell line undergoes T-cell lineage commitment and differentiation. In OP9-DL1 cocultures, EML cell line has differentiated into cells that 1) resembled double-negative, double-positive, and single-positive stages of T-cell development; 2) initiated expression of GATA-3, Pre-Tα, RAG-1, and T-cell receptor – Vβ genes; and 3) produced interferon-γ in response to T-cell receptor stimulation. Conclusions These results support the notion that EML cell line has the capacity for T-cell differentiation. Remarkably, induction of T-lineage gene expression and differentiation of EML cells into distinct stages of T-cell development were very similar to previously described T-cell differentiation of adult hematopoietic stem cells and progenitors in OP9-DL1 cocultures. Thus, EML/OP9-DL1 coculture could be a useful experimental system to study the role of particular genes in T-cell lineage specification, commitment, and differentiation. PMID:19447159
T-cell differentiation of multipotent hematopoietic cell line EML in the OP9-DL1 coculture system.
Kutlesa, Snjezana; Zayas, Jennifer; Valle, Alexandra; Levy, Robert B; Jurecic, Roland
2009-08-01
Multipotent hematopoietic cell line EML can differentiate into myeloid, erythroid, megakaryocytic, and B-lymphoid lineages, but it remained unknown whether EML cells have T-cell developmental potential as well. The goal of this study was to determine whether the coculture with OP9 stromal cells expressing Notch ligand Delta-like 1 (OP9-DL1) could induce differentiation of EML cells into T-cell lineage. EML cells were cocultured with control OP9 or OP9-DL1 stromal cells in the presence of cytokines (stem cell factor, interleukin-7, and Fms-like tyrosine kinase 3 ligand). Their T-cell lineage differentiation was assessed through flow cytometry and reverse transcription polymerase chain reaction expression analysis of cell surface markers and genes characterizing and associated with specific stages of T-cell development. The phenotypic, molecular, and functional analysis has revealed that in EML/OP9-DL1 cocultures with cytokines, but not in control EML/OP9 cocultures, EML cell line undergoes T-cell lineage commitment and differentiation. In OP9-DL1 cocultures, EML cell line has differentiated into cells that 1) resembled double-negative, double-positive, and single-positive stages of T-cell development; 2) initiated expression of GATA-3, Pre-Talpha, RAG-1, and T-cell receptor-Vbeta genes; and 3) produced interferon-gamma in response to T-cell receptor stimulation. These results support the notion that EML cell line has the capacity for T-cell differentiation. Remarkably, induction of T-lineage gene expression and differentiation of EML cells into distinct stages of T-cell development were very similar to previously described T-cell differentiation of adult hematopoietic stem cells and progenitors in OP9-DL1 cocultures. Thus, EML/OP9-DL1 coculture could be a useful experimental system to study the role of particular genes in T-cell lineage specification, commitment, and differentiation.
Wang, Ye; Yu, Fei; Liu, Ming-Yue; Zhao, Yi-Kai; Wang, Dong-Ming; Hao, Qing-Hong; Wang, Xiu-Ling
2017-05-24
Arctiin is the most abundant bioactive compound contained in the Arctium lappa plant. In our previous study, we isolated one single bacterium capable of bioconverting arctigenin, an aglycone of arctiin, to 3'-desmethylarctigenin (3'-DMAG) solely. However, to date, a specific bacterium capable of producing other arctiin metabolites has not been reported. In this study, we isolated one single bacterium, which we named Eggerthella sp. AUH-JLD49s, capable of bioconverting 3'-DMAG under anaerobic conditions. The metabolite of 3'-DMAG by strain AUH-JLD49s was identified as 3'-desmethyl-4'-dehydroxyarctigenin (DMDH-AG) based on electrospray ionization mass spectrometry (ESI-MS) and 1 H and 13 C nuclear magnetic resonance spectroscopy. The bioconversion kinetics and bioconversion capacity of strain AUH-JLD49s were investigated. In addition, the metabolite DMDH-AG showed an inhibitory effect on cell growth of human colon cancer cell line HCT116 and human breast cancer cell line MDA-MB-231.
Watanabe, Manabu; Kusano, Junko; Ohtaki, Shinsaku; Ishikura, Takashi; Katayama, Jin; Koguchi, Akira; Paumen, Michael; Hayashi, Yoshiharu
2014-09-01
Combining single-cell methods and next-generation sequencing should provide a powerful means to understand single-cell biology and obviate the effects of sample heterogeneity. Here we report a single-cell identification method and seamless cancer gene profiling using semiconductor-based massively parallel sequencing. A549 cells (adenocarcinomic human alveolar basal epithelial cell line) were used as a model. Single-cell capture was performed using laser capture microdissection (LCM) with an Arcturus® XT system, and a captured single cell and a bulk population of A549 cells (≈ 10(6) cells) were subjected to whole genome amplification (WGA). For cell identification, a multiplex PCR method (AmpliSeq™ SNP HID panel) was used to enrich 136 highly discriminatory SNPs with a genotype concordance probability of 10(31-35). For cancer gene profiling, we used mutation profiling that was performed in parallel using a hotspot panel for 50 cancer-related genes. Sequencing was performed using a semiconductor-based bench top sequencer. The distribution of sequence reads for both HID and Cancer panel amplicons was consistent across these samples. For the bulk population of cells, the percentages of sequence covered at coverage of more than 100 × were 99.04% for the HID panel and 98.83% for the Cancer panel, while for the single cell percentages of sequence covered at coverage of more than 100 × were 55.93% for the HID panel and 65.96% for the Cancer panel. Partial amplification failure or randomly distributed non-amplified regions across samples from single cells during the WGA procedures or random allele drop out probably caused these differences. However, comparative analyses showed that this method successfully discriminated a single A549 cancer cell from a bulk population of A549 cells. Thus, our approach provides a powerful means to overcome tumor sample heterogeneity when searching for somatic mutations.
EFA6 proteins regulate lumen formation through α-actinin 1.
Milanini, Julie; Fayad, Racha; Partisani, Mariagrazia; Lecine, Patrick; Borg, Jean-Paul; Franco, Michel; Luton, Frédéric
2018-02-08
A key step of epithelial morphogenesis is the creation of the lumen. Luminogenesis by hollowing proceeds through the fusion of apical vesicles at cell-cell contacts. The small nascent lumens grow through extension, coalescence and enlargement, coordinated with cell division, to give rise to a single central lumen. Here, by using MDCK cells grown in 3D-culture, we show that EFA6A (also known as PSD) participates in luminogenesis. EFA6A recruits α-actinin 1 (ACTN1) through direct binding. In polarized cells, ACTN1 was found to be enriched at the tight junction where it acts as a primary effector of EFA6A for normal luminogenesis. Both proteins are essential for the lumen extension and enlargement, where they mediate their effect by regulating the cortical acto-myosin contractility. Finally, ACTN1 was also found to act as an effector for the isoform EFA6B (also known as PSD4) in the human mammary tumoral MCF7 cell line. EFA6B restored the glandular morphology of this tumoral cell line in an ACTN1-dependent manner. Thus, we identified new regulators of cyst luminogenesis essential for the proper maturation of a newly-formed lumen into a single central lumen. © 2018. Published by The Company of Biologists Ltd.
Rapid high-throughput cloning and stable expression of antibodies in HEK293 cells.
Spidel, Jared L; Vaessen, Benjamin; Chan, Yin Yin; Grasso, Luigi; Kline, J Bradford
2016-12-01
Single-cell based amplification of immunoglobulin variable regions is a rapid and powerful technique for cloning antigen-specific monoclonal antibodies (mAbs) for purposes ranging from general laboratory reagents to therapeutic drugs. From the initial screening process involving small quantities of hundreds or thousands of mAbs through in vitro characterization and subsequent in vivo experiments requiring large quantities of only a few, having a robust system for generating mAbs from cloning through stable cell line generation is essential. A protocol was developed to decrease the time, cost, and effort required by traditional cloning and expression methods by eliminating bottlenecks in these processes. Removing the clonal selection steps from the cloning process using a highly efficient ligation-independent protocol and from the stable cell line process by utilizing bicistronic plasmids to generate stable semi-clonal cell pools facilitated an increased throughput of the entire process from plasmid assembly through transient transfections and selection of stable semi-clonal cell pools. Furthermore, the time required by a single individual to clone, express, and select stable cell pools in a high-throughput format was reduced from 4 to 6months to only 4 to 6weeks. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
A dual V t disturb-free subthreshold SRAM with write-assist and read isolation
NASA Astrophysics Data System (ADS)
Bhatnagar, Vipul; Kumar, Pradeep; Pandey, Neeta; Pandey, Sujata
2018-02-01
This paper presents a new dual V t 8T SRAM cell having single bit-line read and write, in addition to Write Assist and Read Isolation (WARI). Also a faster write back scheme is proposed for the half selected cells. A high V t device is used for interrupting the supply to one of the inverters for weakening the feedback loop for assisted write. The proposed cell provides an improved read static noise margin (RSNM) due to the bit-line isolation during the read. Static noise margins for data read (RSNM), write (WSNM), read delay, write delay, data retention voltage (DRV), leakage and average powers have been calculated. The proposed cell was found to operate properly at a supply voltage as small as 0.41 V. A new write back scheme has been suggested for half-selected cells, which uses a single NMOS access device and provides reduced delay, pulse timing hardware requirements and power consumption. The proposed new WARI 8T cell shows better performance in terms of easier write, improved read noise margin, reduced leakage power, and less delay as compared to the existing schemes that have been available so far. It was also observed that with proper adjustment of the cell ratio the supply voltage can further be reduced to 0.2 V.
Lara, Matthew S.; Holland, William S.; Chinn, Danielle; Burich, Rebekah A.; Lara, Primo N.; Gandara, David R.; Kelly, Karen; Mack, Philip C.
2018-01-01
The MET inhibitor INC-280 restored sensitivity to erlotinib and promoted apoptosis in non–small-cell lung cancer models rendered resistant to erlotinib by hepatocyte growth factor. Background Although the epidermal growth factor receptor (EGFR) inhibitor erlotinib is initially effective in non–small-cell lung cancer (NSCLC) patients with tumors harboring activating mutations of EGFR, most subsequently develop acquired resistance. One recognized resistance mechanism occurs through activation of bypass signaling via the hepatocyte growth factor (HGF)-MET pathway. INC-280 is a small molecule kinase inhibitor of MET. We sought to demonstrate the activity of INC-280 on select NSCLC cell lines both as a single agent and in combination with erlotinib using exogenous HGF to simulate MET up-regulation. Methods Four NSCLC cell lines (HCC827, PC9, H1666, and H358) were treated with either single-agent INC-280 or in combination with erlotinib with or without HGF. The activity of the drug treatments was measured by cell viability assays. Immunoblotting was used to monitor expression of EGFR/pEGFR, MET/pMET, GAB1/pGAB1, AKT/pAKT, and ERK/pERK as well as markers of apoptosis (PARP and capase-3 cleavage) in H1666, HCC827, and PC9. Results As a single agent, INC-280 showed minimal cytotoxicity despite potent inhibition of MET kinase activity at concentrations as low as 10 nM. Addition of HGF prevented erlotinib-induced cell death. The addition of INC280 to HGF-mediated erlotinib-resistant models restored erlotinib sensitivity for all cell lines tested, associated with cleavage of both PARP and caspase-3. In these models, INC-280 treatment was sufficient to restore erlotinib-induced inhibition of MET, GAB1, AKT, and ERK in the presence of HGF. Conclusion Although the MET inhibitor INC-280 alone had no discernible effect on cell growth, it was able to restore sensitivity to erlotinib and promote apoptosis in NSCLC models rendered erlotinib resistant by HGF. These data provide a preclinical rationale for an ongoing phase 1 clinical trial of erlotinib plus INC-280 in EGFR-mutated NSCLC. PMID:28038979
Heindl, Stefan; Eggenstein, Evelyn; Keller, Simone; Kneissl, Julia; Keller, Gisela; Mutze, Kathrin; Rauser, Sandra; Gasteiger, Georg; Drexler, Ingo; Hapfelmeier, Alexander; Höfler, Heinz; Luber, Birgit
2012-05-01
The therapeutic activity of the epidermal growth factor receptor (EGFR)-directed monoclonal antibody cetuximab in gastric cancer is currently being investigated. Reliable biomarkers for the identification of patients who are likely to benefit from the treatment are not available. The aim of the study was to examine the drug sensitivity of five gastric cancer cell lines towards cetuximab as a single agent and to establish predictive markers for chemosensitivity in this cell culture model. The effect of a combination of cetuximab with chemotherapy was compared between a sensitive and a nonsensitive cell line. EGFR expression, activation and localisation, the presence and subcellular localisation of the cell adhesion molecule E-cadherin as well as MET activation were examined by Western blot analysis, flow cytometry and immunofluorescence staining. Cells were treated with varying concentrations of cetuximab and cisplatin and 5-fluorouracil in tumour-relevant concentrations. The biological endpoint was cell viability, which was measured by XTT cell proliferation assay. Response to treatment was evaluated using statistical methods. We assessed the activity of cetuximab in five gastric cancer cell lines (AGS, KATOIII, MKN1, MKN28 and MKN45). The viability of two cell lines, MKN1 and MKN28, was significantly reduced by cetuximab treatment. High EGFR expression and low levels of receptor activation were associated with cetuximab responsiveness. MET activation as well as mutations of KRAS and CDH1 (gene encoding E-cadherin) was associated with cetuximab resistance. These data indicate that our examinations may be clinically relevant, and the candidate markers should therefore be tested in clinical studies.
Graphene Oxide Nanoribbons Induce Autophagic Vacuoles in Neuroblastoma Cell Lines
Mari, Emanuela; Mardente, Stefania; Morgante, Emanuela; Tafani, Marco; Lococo, Emanuela; Fico, Flavia; Valentini, Federica; Zicari, Alessandra
2016-01-01
Since graphene nanoparticles are attracting increasing interest in relation to medical applications, it is important to understand their potential effects on humans. In the present study, we prepared graphene oxide (GO) nanoribbons by oxidative unzipping of single-wall carbon nanotubes (SWCNTs) and analyzed their toxicity in two human neuroblastoma cell lines. Neuroblastoma is the most common solid neoplasia in children. The hallmark of these tumors is the high number of different clinical variables, ranging from highly metastatic, rapid progression and resistance to therapy to spontaneous regression or change into benign ganglioneuromas. Patients with neuroblastoma are grouped into different risk groups that are characterized by different prognosis and different clinical behavior. Relapse and mortality in high risk patients is very high in spite of new advances in chemotherapy. Cell lines, obtained from neuroblastomas have different genotypic and phenotypic features. The cell lines SK-N-BE(2) and SH-SY5Y have different genetic mutations and tumorigenicity. Cells were exposed to low doses of GO for different times in order to investigate whether GO was a good vehicle for biological molecules delivering individualized therapy. Cytotoxicity in both cell lines was studied by measuring cellular oxidative stress (ROS), mitochondria membrane potential, expression of lysosomial proteins and cell growth. GO uptake and cytoplasmic distribution of particles were studied by Transmission Electron Microscopy (TEM) for up to 72 h. The results show that GO at low concentrations increased ROS production and induced autophagy in both neuroblastoma cell lines within a few hours of exposure, events that, however, are not followed by growth arrest or death. For this reason, we suggest that the GO nanoparticle can be used for therapeutic delivery to the brain tissue with minimal effects on healthy cells. PMID:27916824
A p53-dependent response limits the viability of mammalian haploid cells
Olbrich, Teresa; Mayor-Ruiz, Cristina; Vega-Sendino, Maria; Gomez, Carmen; Ortega, Sagrario; Ruiz, Sergio; Fernandez-Capetillo, Oscar
2017-01-01
The recent development of haploid cell lines has facilitated forward genetic screenings in mammalian cells. These lines include near-haploid human cell lines isolated from a patient with chronic myelogenous leukemia (KBM7 and HAP1), as well as haploid embryonic stem cells derived from several organisms. In all cases, haploidy was shown to be an unstable state, so that cultures of mammalian haploid cells rapidly become enriched in diploids. Here we show that the observed diploidization is due to a proliferative disadvantage of haploid cells compared with diploid cells. Accordingly, single-cell–sorted haploid mammalian cells maintain the haploid state for prolonged periods, owing to the absence of competing diploids. Although the duration of interphase is similar in haploid and diploid cells, haploid cells spend longer in mitosis, indicative of problems in chromosome segregation. In agreement with this, a substantial proportion of the haploids die at or shortly after the last mitosis through activation of a p53-dependent cytotoxic response. Finally, we show that p53 deletion stabilizes haploidy in human HAP1 cells and haploid mouse embryonic stem cells. We propose that, similar to aneuploidy or tetraploidy, haploidy triggers a p53-dependent response that limits the fitness of mammalian cells. PMID:28808015
NASA Astrophysics Data System (ADS)
Shimizu, Takashi; Eguchi, Kentaro; Nishida, Ikuo; Laukens, Kris; Witters, Erwin; van Onckelen, Harry; Nagata, Toshiyuki
2006-06-01
Effects of auxin as plant hormones are widespread; in fact in almost all aspects of plant growth and development auxin plays a pivotal role. Although auxin is required for propagating cell division in plant cells, its effect upon cell division is least understood. If auxin is depleted from the culture medium, cultured cells cease to divide. It has been demonstrated in this context that the addition of auxin to auxin-starved nondividing tobacco BY-2 cells induced semisynchronous cell division. On the other hand, there are some cell lines, named habituated cells, that can grow without auxin. The cause and reason for the habituated cells have not been clarified. A habituated cell line named 2B-13 is derived from the tobacco BY-2 cell line, which has been most intensively studied among plant cell lines. When we tried to find the difference between two cell lines of BY-2 and 2B-13 cells, we found that the addition of culture filtrated from the auxin-habituated 2B-13 cells induced semisynchronous cell division in auxin-starved BY-2 cells. The cell division factor (CDF) that is responsible for inducing cell division in auxin-starved BY-2 cells was purified to near-homogeneity by sequential passage through a hydroxyapatite column, a ConA Sepharose column and a Sephadex gel filtration column. The resulting purified fraction appeared as a single band of high molecular weight on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels by silver staining and was able to induce cell division in auxin-starved BY-2 cells. Identification of the protein by MALD-TOF-MS/MS revealed that it is structurally related to P-glycoprotein from Gossypioides kirkii, which belongs to ATP-binding cassette (ABC)-transporters. The significance of CDF as a possible ABC-transporter is discussed in relationship to auxin-autotrophic growth and auxin-signaling pathway.
2013-01-01
Background As the multipotent progenitor population of the airway epithelium, human airway basal cells (BC) replenish the specialized differentiated cell populations of the mucociliated airway epithelium during physiological turnover and repair. Cultured primary BC divide a limited number of times before entering a state of replicative senescence, preventing the establishment of long-term replicating cultures of airway BC that maintain their original phenotype. Methods To generate an immortalized human airway BC cell line, primary human airway BC obtained by brushing the airway epithelium of healthy nonsmokers were infected with a retrovirus expressing human telomerase (hTERT). The resulting immortalized cell line was then characterized under non-differentiating and differentiating air-liquid interface (ALI) culture conditions using ELISA, TaqMan quantitative PCR, Western analysis, and immunofluorescent and immunohistochemical staining analysis for cell type specific markers. In addition, the ability of the cell line to respond to environmental stimuli under differentiating ALI culture was assessed. Results We successfully generated an immortalized human airway BC cell line termed BCi-NS1 via expression of hTERT. A single cell derived clone from the parental BCi-NS1 cells, BCi-NS1.1, retains characteristics of the original primary cells for over 40 passages and demonstrates a multipotent differentiation capacity into secretory (MUC5AC, MUC5B), goblet (TFF3), Clara (CC10) and ciliated (DNAI1, FOXJ1) cells on ALI culture. The cells can respond to external stimuli such as IL-13, resulting in alteration of the normal differentiation process. Conclusion Development of immortalized human airway BC that retain multipotent differentiation capacity over long-term culture should be useful in understanding the biology of BC, the response of BC to environmental stress, and as a target for assessment of pharmacologic agents. PMID:24298994
Hong, Cheol-Hwa; Sohn, Hyun-Jung; Lee, Hyun-Joo; Cho, Hyun-Il; Kim, Tai-Gyu
Human leukocyte antigens (HLAs) are essential immune molecules that affect transplantation and adoptive immunotherapy. When hematopoietic stem cells or organs are transplanted with HLA-mismatched recipients, graft-versus-host disease or graft rejection can be induced by allogeneic immune responses. The function of each HLA allele has been studied using HLA-deficient cells generated from mutant cell lines or by RNA interference, zinc finger nuclease, and the CRISPR/Cas9 system. To improve HLA gene editing, we attempted to generate an HLA class I null cell line using the multiplex CRISPR/Cas9 system by targeting exons 2 and 3 of HLA-A, HLA-B, and HLA-C genes simultaneously. Multiplex HLA editing could induce the complete elimination of HLA class I genes by bi-allelic gene disruption on target sites which was defined by flow cytometry and target-specific polymerase chain reaction. Furthermore, artificial antigen-presenting cells were generated by transfer of a single HLA class I allele and co-stimulatory molecules into this novel HLA class I null cell line. Artificial antigen-presenting cells showed HLA-restricted antigen presentation following antigen processing and were successfully used for the efficient generation of tumor antigen-specific cytotoxic T cells in vitro. The efficient editing of HLA genes may provide a basis for universal cellular therapies and transplantation.
Ikaros promotes rearrangement of TCR alpha genes in an Ikaros null thymoma cell line
Collins, Bernard; Clambey, Eric T.; Scott-Browne, James; White, Janice; Marrack, Philippa; Hagman, James; Kappler, John W.
2014-01-01
Summary Ikaros is important in the development and maintenance of the lymphoid system, functioning in part by associating with chromatin-remodeling complexes. We have studied the functions of Ikaros in the transition from pre-T cell to the CD4+CD8+ thymocyte using an Ikaros null CD4−CD8− mouse thymoma cell line (JE131). We demonstrate that this cell line carries a single functional TCR β gene rearrangement and expresses a surface pre-TCR. JE131 cells also carry non-functional rearrangements on both alleles of their TCR α loci. Retroviral re-introduction of Ikaros dramatically increased the rate of transcription in the α locus and TCR Vα/Jα recombination resulting in the appearance of many new αβTCR+ cells. The process is RAG dependent, requires SWI/SNF chromatin-remodeling complexes and is coincident with the binding of Ikaros to the TCR α enhancer. Furthermore, knockdown of Mi2/NuRD complexes increased the frequency of TCR α rearrangement. Our data suggest that Ikaros controls Vα/Jα recombination in T cells by controlling access of the transcription and recombination machinery to the TCR α loci. The JE131 cell line should prove to be a very useful tool for studying the molecular details of this and other processes involved in the pre-T cell to αβTCR+ CD4+CD8+ thymocyte transition. PMID:23172374
Yang, Hong Wei; Chen, Ying Zhang; Piao, Hui Ying; Takita, Junko; Soeda, Eiichi; Hayashi, Yasuhide
2001-01-01
Abstract Recently, loss of heterozygosity (LOH) studies suggest that more than two tumor suppressor genes lie on the short arm of chromosome 1 (1p) in neuroblastoma (NB). To identify candidate tumor suppressor genes in NB, we searched for homozygous deletions in 20 NB cell lines using a high-density STS map spanning chromosome 1p36, a common LOH region in NB. We found that the 45-kDa subunit of the DNA fragmentation factor (DFF45) gene was homozygously deleted in an NB cell line, NB-1. DFF45 is the chaperon of DFF40, and both molecules are necessary for caspase 3 to induce apoptosis. DFF35, a splicing variant of DFF45, is an inhibitor of DFF40. We examined 20 NB cell lines for expression and mutation of DFF45 gene by reverse transcription (RT)-polymerase chain reaction (PCR) and RT-PCR-single-strand conformation polymorphism. Some novel variant transcripts of the DFF45 gene were found in NB cell lines, but not in normal adrenal gland and peripheral blood. These variants may not serve as chaperons of DFF40, but as inhibitors like DFF35, thus disrupting the balance between DFF45 and DFF40. No mutations of the DFF45 gene were found in any NB cell line, suggesting that the DFF45 is not a tumor suppressor gene for NB. However, homozygous deletion of the DFF45 gene in the NB-1 cell line may imply the presence of unknown tumor suppressor genes in this region. PMID:11420752
Raman spectroscopy differentiates between sensitive and resistant multiple myeloma cell lines
NASA Astrophysics Data System (ADS)
Franco, Domenico; Trusso, Sebastiano; Fazio, Enza; Allegra, Alessandro; Musolino, Caterina; Speciale, Antonio; Cimino, Francesco; Saija, Antonella; Neri, Fortunato; Nicolò, Marco S.; Guglielmino, Salvatore P. P.
2017-12-01
Current methods for identifying neoplastic cells and discerning them from their normal counterparts are often nonspecific and biologically perturbing. Here, we show that single-cell micro-Raman spectroscopy can be used to discriminate between resistant and sensitive multiple myeloma cell lines based on their highly reproducible biomolecular spectral signatures. In order to demonstrate robustness of the proposed approach, we used two different cell lines of multiple myeloma, namely MM.1S and U266B1, and their counterparts MM.1R and U266/BTZ-R subtypes, resistant to dexamethasone and bortezomib, respectively. Then, micro-Raman spectroscopy provides an easily accurate and noninvasive method for cancer detection for both research and clinical environments. Characteristic peaks, mostly due to different DNA/RNA ratio, nucleic acids, lipids and protein concentrations, allow for discerning the sensitive and resistant subtypes. We also explored principal component analysis (PCA) for resistant cell identification and classification. Sensitive and resistant cells form distinct clusters that can be defined using just two principal components. The identification of drug-resistant cells by confocal micro-Raman spectroscopy is thus proposed as a clinical tool to assess the development of resistance to glucocorticoids and proteasome inhibitors in myeloma cells.
Roskopf, Claudia C.; Schiller, Christian B.; Braciak, Todd A.; Kobold, Sebastian; Schubert, Ingo A.; Fey, Georg H.; Hopfner, Karl-Peter; Oduncu, Fuat S.
2014-01-01
Triplebody 19-3-19, an antibody-derived protein, carries three single chain fragment variable domains in tandem in a single polypeptide chain. 19-3-19 binds CD19-bearing lymphoid cells via its two distal domains and primary T cells via its CD3-targeting central domain in an antigen-specific manner. Here, malignant B-lymphoid cell lines and primary cells from patients with B cell malignancies were used as targets in cytotoxicity tests with pre-stimulated allogeneic T cells as effectors. 19-3-19 mediated up to 95% specific lysis of CD19-positive tumor cells and, at picomolar EC50 doses, had similar cytolytic potency as the clinically successful agent BlinatumomabTM. 19-3-19 activated resting T cells from healthy unrelated donors and mediated specific lysis of both autologous and allogeneic CD19-positive cells. 19-3-19 led to the elimination of 70% of CD19-positive target cells even with resting T cells as effectors at an effector-to-target cell ratio of 1 : 10. The molecule is therefore capable of mediating serial lysis of target cells by a single T cell. These results highlight that central domains capable of engaging different immune effectors can be incorporated into the triplebody format to provide more individualized therapy tailored to a patient’s specific immune status. PMID:25115385
Karri, Venkatanaidu; Kumar, Vikas; Ramos, David; Oliveira, Eliandre; Schuhmacher, Marta
2018-01-05
Humans are exposed to a cocktail of heavy metal toxicants in the environment. Though heavy metals are deleterious, there is a paucity of information on the toxicity of mixtures. In this study, four common neurotoxicity heavy metals lead (Pb) cadmium (Cd), arsenic (As), and methylmercury (MeHg) were exposed individually and as mixtures to HT-22 cell line for 8days. The study established that low dose exposures induced toxicity to the HT-22 cell line during 8days. The results indicates potency dependent response, the toxicity of single metals on the HT-22 cells; MeHg > As > Cd > Pb. The cytotoxicity data of single metals were used to determine the mixtures interaction profile by using the dose additivity and effect additivity method. Metal mixtures showed higher toxicities compared to individual metals. Synergistic, antagonistic or additive effects of the toxicity were observed in different mixtures in low dose exposure. The interactive responses of mixtures depend on the co-exposure metal and their respective concentration. We concluded that the combined effects should be considered in the risk assessment of heavy metal co-exposure and potency. In future, comprehensive mechanistic based investigations needed for understanding the real interactive mixtures effects at molecular level. Copyright © 2017 Elsevier B.V. All rights reserved.
Valproic acid treatment response in vitro is determined by TP53 status in medulloblastoma.
Mascaro-Cordeiro, Bruna; Oliveira, Indhira Dias; Tesser-Gamba, Francine; Pavon, Lorena Favaro; Saba-Silva, Nasjla; Cavalheiro, Sergio; Dastoli, Patrícia; Toledo, Silvia Regina Caminada
2018-05-22
Histone deacetylate inhibitors (HDACi), as valproic acid (VA), have been reported to enhance efficacy and to prevent drug resistance in some tumors, including medulloblastoma (MB). In the present study, we investigated VA role, combined to cisplatin (CDDP) in cell viability and gene expression of MB cell lines. Dose-response curve determined IC 50 values for each treatment: (1) VA single, (2) CDDP single, and (3) VA and CDDP combined. Cytotoxicity and flow cytometry evaluated cell viability after exposure to treatments. Quantitative PCR evaluated gene expression levels of AKT, CTNNB1, GLI1, KDM6A, KDM6B, NOTCH2, PTCH1, and TERT, before and after treatment. Besides, we performed next-generation sequencing (NGS) for PTCH1, TERT, and TP53 genes. The most effective treatment to reduce viability was combined for D283MED and ONS-76; and CDDP single for DAOY cells (p < 0.0001). TERT, GLI1, and AKT genes were overexpressed after treatments with VA. D283MED and ONS-76 cells presented variants in TERT and PTCH1, respectively and DAOY cell line presented a TP53 mutation. MB tumors belonging to SHH molecular subgroup, with TP53 MUT , would be the ones that present high risk in relation to VA use during the treatment, while TP53 WT MBs can benefit from VA therapy, both SHH and groups 3 and 4. Our study shows a new perspective about VA action in medulloblastoma cells, raising the possibility that VA may act in different patterns. According to the genetic background of MB cell, VA can stimulate cell cycle arrest and apoptosis or induce resistance to treatment via signaling pathways activation.
English, Diana P; Bellone, Stefania; Schwab, Carlton L; Roque, Dana M; Lopez, Salvatore; Bortolomai, Ileana; Cocco, Emiliano; Bonazzoli, Elena; Chatterjee, Sudeshna; Ratner, Elena; Silasi, Dan-Arin; Azodi, Masoud; Schwartz, Peter E; Rutherford, Thomas J; Santin, Alessandro D
2015-02-01
Solitomab is a novel, bispecific, single-chain antibody that targets epithelial cell adhesion molecule (EpCAM) on tumor cells and also contains a cluster of differentiation 3 (CD3) (T-cell coreceptor) binding region. The authors evaluated the in vitro activity of solitomab against primary chemotherapy-resistant epithelial ovarian carcinoma cell lines as well as malignant cells in ascites. EpCAM expression was evaluated by flow cytometry in 5 primary ovarian cancer cell lines and in 42 fresh ovarian tumor cell cultures in ascites from patients with mainly advanced or recurrent, chemotherapy-resistant disease. The potential activity of solitomab against EpCAM-positive tumor cells was evaluated by flow cytometry, proliferation, and 4-hour chromium-release, cell-mediated cytotoxicity assays. EpCAM expression was detected by flow cytometry in approximately 80% of the fresh ovarian tumors and primary ovarian tumor cell lines tested. EpCAM-positive, chemotherapy-resistant cell lines were identified as resistant to natural killer cell-mediated or T-cell-mediated killing after exposure to peripheral blood lymphocytes in 4-hour chromium-release assays (mean±standard error of the mean, 3.6%±0.7% of cells killed after incubation of EpCAM-positive cell lines with control bispecific antibody). In contrast, after incubation with solitomab, EpCAM-positive, chemotherapy-resistant cells became highly sensitive to T-cell cytotoxicity (mean±standard error of the mean, 28.2%±2.05% of cells killed; P<.0001) after exposure to peripheral blood lymphocytes. Ex vivo incubation of autologous tumor-associated lymphocytes with EpCAM-expressing malignant cells in ascites with solitomab resulted in a significant increase in T-cell activation markers and a reduction in the number of viable ovarian tumor cells in ascites (P<.001). Solitomab may represent a novel, potentially effective agent for the treatment of chemotherapy-resistant ovarian cancers that overexpress EpCAM. © 2014 American Cancer Society.
Ferrarini, Alberto; Forcato, Claudio; Buson, Genny; Tononi, Paola; Del Monaco, Valentina; Terracciano, Mario; Bolognesi, Chiara; Fontana, Francesca; Medoro, Gianni; Neves, Rui; Möhlendick, Birte; Rihawi, Karim; Ardizzoni, Andrea; Sumanasuriya, Semini; Flohr, Penny; Lambros, Maryou; de Bono, Johann; Stoecklein, Nikolas H; Manaresi, Nicolò
2018-01-01
Chromosomal instability and associated chromosomal aberrations are hallmarks of cancer and play a critical role in disease progression and development of resistance to drugs. Single-cell genome analysis has gained interest in latest years as a source of biomarkers for targeted-therapy selection and drug resistance, and several methods have been developed to amplify the genomic DNA and to produce libraries suitable for Whole Genome Sequencing (WGS). However, most protocols require several enzymatic and cleanup steps, thus increasing the complexity and length of protocols, while robustness and speed are key factors for clinical applications. To tackle this issue, we developed a single-tube, single-step, streamlined protocol, exploiting ligation mediated PCR (LM-PCR) Whole Genome Amplification (WGA) method, for low-pass genome sequencing with the Ion Torrent™ platform and copy number alterations (CNAs) calling from single cells. The method was evaluated on single cells isolated from 6 aberrant cell lines of the NCI-H series. In addition, to demonstrate the feasibility of the workflow on clinical samples, we analyzed single circulating tumor cells (CTCs) and white blood cells (WBCs) isolated from the blood of patients affected by prostate cancer or lung adenocarcinoma. The results obtained show that the developed workflow generates data accurately representing whole genome absolute copy number profiles of single cell and allows alterations calling at resolutions down to 100 Kbp with as few as 200,000 reads. The presented data demonstrate the feasibility of the Ampli1™ WGA-based low-pass workflow for detection of CNAs in single tumor cells which would be of particular interest for genome-driven targeted therapy selection and for monitoring of disease progression.
Lopez, Salvatore; Cocco, Emiliano; Black, Jonathan; Bellone, Stefania; Bonazzoli, Elena; Predolini, Federica; Ferrari, Francesca; Schwab, Carlton L; English, Diana P; Ratner, Elena; Silasi, Dan-Arin; Azodi, Masoud; Schwartz, Peter E; Terranova, Corrado; Angioli, Roberto; Santin, Alessandro D
2015-11-01
HER2/neu gene amplification and PIK3CA driver mutations are common in uterine serous carcinoma (USC) and may represent ideal therapeutic targets against this aggressive variant of endometrial cancer. We examined the sensitivity to neratinib, taselisib, and the combination of the two compounds in in vitro and in vivo experiments using PIK3CA-mutated and PIK3CA wild-type HER2/neu-amplified USC cell lines. Cell viability and cell-cycle distribution were assessed using flow-cytometry assays. Downstream signaling was assessed by immunoblotting. Preclinical efficacy of single versus dual inhibition was evaluated in vivo using two USC xenografts. We found both single-agent neratinib and taselisib to be active but only transiently effective in controlling the in vivo growth of USC xenografts harboring HER2/neu gene amplification with or without oncogenic PIK3CA mutations. In contrast, the combination of the two inhibitors caused a stronger and long-lasting growth inhibition in both USC xenografts when compared with single-agent therapy. Combined targeting of HER2 and PIK3CA was associated with a significant and dose-dependent increase in the percentage of cells in the G0-G1 phase of the cell cycle and a dose-dependent decline in the phosphorylation of S6. Importantly, dual inhibition therapy initiated after tumor progression in single-agent-treated mice was still remarkably effective at inducing tumor regression in both large PIK3CA and pan-ErbB inhibitor-resistant USC xenografts. Dual HER2/PIK3CA blockade may represent a novel therapeutic option for USC patients harboring tumors with HER2/neu gene amplification and mutated or wild-type PIK3CA resistant to chemotherapy. ©2015 American Association for Cancer Research.
Semianalytical computation of path lines for finite-difference models
Pollock, D.W.
1988-01-01
A semianalytical particle tracking method was developed for use with velocities generated from block-centered finite-difference ground-water flow models. Based on the assumption that each directional velocity component varies linearly within a grid cell in its own coordinate directions, the method allows an analytical expression to be obtained describing the flow path within an individual grid cell. Given the intitial position of a particle anywhere in a cell, the coordinates of any other point along its path line within the cell, and the time of travel between them, can be computed directly. For steady-state systems, the exit point for a particle entering a cell at any arbitrary location can be computed in a single step. By following the particle as it moves from cell to cell, this method can be used to trace the path of a particle through any multidimensional flow field generated from a block-centered finite-difference flow model. -Author
Kampmann, Martin; Bassik, Michael C.; Weissman, Jonathan S.
2013-01-01
A major challenge of the postgenomic era is to understand how human genes function together in normal and disease states. In microorganisms, high-density genetic interaction (GI) maps are a powerful tool to elucidate gene functions and pathways. We have developed an integrated methodology based on pooled shRNA screening in mammalian cells for genome-wide identification of genes with relevant phenotypes and systematic mapping of all GIs among them. We recently demonstrated the potential of this approach in an application to pathways controlling the susceptibility of human cells to the toxin ricin. Here we present the complete quantitative framework underlying our strategy, including experimental design, derivation of quantitative phenotypes from pooled screens, robust identification of hit genes using ultra-complex shRNA libraries, parallel measurement of tens of thousands of GIs from a single double-shRNA experiment, and construction of GI maps. We describe the general applicability of our strategy. Our pooled approach enables rapid screening of the same shRNA library in different cell lines and under different conditions to determine a range of different phenotypes. We illustrate this strategy here for single- and double-shRNA libraries. We compare the roles of genes for susceptibility to ricin and Shiga toxin in different human cell lines and reveal both toxin-specific and cell line-specific pathways. We also present GI maps based on growth and ricin-resistance phenotypes, and we demonstrate how such a comparative GI mapping strategy enables functional dissection of physical complexes and context-dependent pathways. PMID:23739767
He, Fei; Zhou, Wanjun; Cai, Ren; Yan, Tizhen; Xu, Xiangmin
2018-04-01
In this study, we aimed to assess the performance of two whole-genome amplification methods, multiple displacement amplification (MDA), and multiple annealing and looping-based amplification cycle (MALBAC), for β-thalassemia genotyping and single-nucleotide polymorphism (SNP)/copy-number variant (CNV) detection using two DNA sequencing assays. We collected peripheral blood, cell lines, and discarded embryos, and carried out MALBAC and MDA on single-cell and five-cell samples. We detected and statistically analyzed differences in the amplification efficiency, positive predictive value, sensitivity, allele dropout (ADO) rate, SNPs, and CV values between the two methods. Through Sanger sequencing at the single-cell and five-cell levels, we showed that both the amplification rate and ADO rate of MDA were better than those using MALBAC, and the sensitivity and positive predictive value obtained from MDA were higher than those from MALBAC for β-thalassemia genotyping. Using next-generation sequencing (NGS) at the single-cell level, we confirmed that MDA has better properties than MALBAC for SNP detection. However, MALBAC was more stable and homogeneous than MDA using low-depth NGS at the single-cell level for CNV detection. We conclude that MALBAC is the better option for CNV detection, while MDA is better suited for SNV detection.
Microbeam mapping of single event latchups and single event upsets in CMOS SRAMs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barak, J.; Adler, E.; Fischer, B.E.
1998-06-01
The first simultaneous microbeam mapping of single event upset (SEU) and latchup (SEL) in the CMOS RAM HM65162 is presented. The authors found that the shapes of the sensitive areas depend on V{sub DD}, on the ions being used and on the site on the chip being hit by the ion. In particular, they found SEL sensitive sites close to the main power supply lines between the memory-bit-arrays by detecting the accompanying current surge. All these SELs were also accompanied by bit-flips elsewhere in the memory (which they call indirect SEUs in contrast to the well known SEUs induced inmore » the hit memory cell only). When identical SEL sensitive sites were hit farther away from the supply lines only indirect SEL sensitive sites could be detected. They interpret these events as latent latchups in contrast to the classical ones detected by their induced current surge. These latent SELs were probably decoupled from the main supply lines by the high resistivity of the local supply lines.« less
Tripathi, Kumar Parijat; Granata, Ilaria; Guarracino, Mario Rosario
2017-10-01
Immortalized cell lines are widely used to study the effectiveness and toxicity of anti cancer drugs as well as to assess the phenotypic characteristics of cancer cells, such as proliferation and migration ability. Unfortunately, cell lines often show extremely different properties than tumor tissues. Also the primary cells, that are deprived of the in vivo environment, might adapt to artificial conditions, and differ from the tissue they should represent. Despite these considerations, cell lines are still one of the most used cancer models due to their availability and capability to expand without limitation, but the clinical relevance of their use is still a big issue in cancer research. Many studies tried to overcome this task, comparing cell lines and tumor samples through the definition of the genomic and transcriptomic differences. To this aim, most of them used nucleotide variation or gene expression data. Here we introduce a different strategy based on alternative splicing detection and integration of DNA and RNA sequencing data, to explore the differences between immortalized and tissue-derived cells at isoforms level. Furthermore, in order to better investigate the heterogeneity of both cell populations, we took advantage of a public available dataset obtained with a new simultaneous omics single cell sequencing methodology. The proposed pipeline allowed us to identify, through a computational and prediction approach, putative mutated and alternative spliced transcripts responsible for the dissimilarity between immortalized and primary hepato carcinoma cells. Copyright © 2017 Elsevier Ltd. All rights reserved.
Optical modeling of fiber organic photovoltaic structures using a transmission line method.
Moshonas, N; Stathopoulos, N A; O'Connor, B T; Bedeloglu, A Celik; Savaidis, S P; Vasiliadis, S
2017-12-01
An optical model has been developed and evaluated for the calculation of the external quantum efficiency of cylindrical fiber photovoltaic structures. The model is based on the transmission line theory and has been applied on single and bulk heterojunction fiber-photovoltaic cells. Using this model, optimum design characteristics have been proposed for both configurations, and comparison with experimental results has been assessed.
Dual-Anode Nickel/Hydrogen Cell
NASA Technical Reports Server (NTRS)
Gahn, Randall F.; Ryan, Timothy P.
1994-01-01
Use of two hydrogen anodes in nickel/hydrogen cell reduces ohmic and concentration polarizations contributing to internal resistance, yielding cell with improved discharging performance compared to single-anode cell. Dual-anode concept incorporated into nickel/hydrogen cells of individual pressure-vessel type (for use aboard spacecraft) and common pressure-vessel type, for use on Earth to store electrical energy from photovoltaic sources, "uninterruptible" power supplies of computer and telephone systems, electric vehicles, and load leveling on power lines. Also applicable to silver/hydrogen and other metal/gas batteries.
Single-cell intracellular nano-pH probes†
Özel, Rıfat Emrah; Lohith, Akshar; Mak, Wai Han; Pourmand, Nader
2016-01-01
Within a large clonal population, such as cancerous tumor entities, cells are not identical, and the differences between intracellular pH levels of individual cells may be important indicators of heterogeneity that could be relevant in clinical practice, especially in personalized medicine. Therefore, the detection of the intracellular pH at the single-cell level is of great importance to identify and study outlier cells. However, quantitative and real-time measurements of the intracellular pH of individual cells within a cell population is challenging with existing technologies, and there is a need to engineer new methodologies. In this paper, we discuss the use of nanopipette technology to overcome the limitations of intracellular pH measurements at the single-cell level. We have developed a nano-pH probe through physisorption of chitosan onto hydroxylated quartz nanopipettes with extremely small pore sizes (~100 nm). The dynamic pH range of the nano-pH probe was from 2.6 to 10.7 with a sensitivity of 0.09 units. We have performed single-cell intracellular pH measurements using non-cancerous and cancerous cell lines, including human fibroblasts, HeLa, MDA-MB-231 and MCF-7, with the pH nanoprobe. We have further demonstrated the real-time continuous single-cell pH measurement capability of the sensor, showing the cellular pH response to pharmaceutical manipulations. These findings suggest that the chitosan-functionalized nanopore is a powerful nano-tool for pH sensing at the single-cell level with high temporal and spatial resolution. PMID:27708772
Mansard, Sandrine; Papon, Janine; Moreau, Marie-France; Miot-Noirault, Elisabeth; Labarre, Pierre; Bayle, Martine; Veyre, Annie; Madelmont, Jean-Claude; Moins, Nicole
2005-07-01
N-(2-diethylaminoethyl)-2-iodobenzamide (BZA(2)) has been singled out as the most efficacious melanoma scintigraphy imaging agent. Our work was designed to assess the mechanisms of the specific affinity of the radioiodinated iodobenzamide for melanoma tissue. We studied the cellular uptake and retention of [(125)I]-BZA(2) on various cell lines. In vitro, cellular [(125)I]-BZA(2) uptake was related to the pigmentation status of the cells: higher in pigmented melanoma cell lines (M4 Beu, IPC 227, B 16) than in a nonpigmented one (M3 Dau) and nonmelanoma cell lines (MCF 7 and L 929). Two mechanisms were assessed: binding of the tracer to melanin or to sigma receptors of melanoma cells. First, the uptake of [(125)I]-BZA(2) after melanogenesis stimulation by alpha-melanocyte-stimulating hormone and l-tyrosine increased in the B 16 melanoma cell line both in vitro and in vivo according to melanin concentration. Moreover, the binding of [(125)I]-BZA(2) to synthetic melanin was dependent on melanin concentration and could be saturated. Second, no competition was evidenced on M4 Beu cells between [(125)I]-BZA(2) and haloperidol, a sigma ligand, at concentrations < or =10(-6) M. We show that the specificity and sensibility of BZA(2) as a melanoma scintigraphic imaging agent are mostly due to interactions with melanic pigments.
Walther, Christa G; Whitfield, Robert; James, David C
2016-04-01
The biopharmaceutical production process relies upon mammalian cell technology where single cells proliferate in suspension in a chemically defined synthetic environment. This environment lacks exogenous growth factors, usually contributing to proliferation of fibroblastic cell types such as Chinese hamster ovary (CHO) cells. Use of CHO cells for production hence requires a lengthy 'adaptation' process to select clones capable of proliferation as single cells in suspension. The underlying molecular changes permitting proliferation in suspension are not known. Comparison of the non-suspension-adapted clone CHO-AD and a suspension-adapted propriety cell line CHO-SA by flow cytometric analysis revealed a highly variable bi-modal expression pattern for cell-to-cell contact proteins in contrast to the expression pattern seen for integrins. Those have a uni-modal expression on suspension and adherent cells. Integrins showed a conformation distinguished by regularly distributed clusters forming a sphere on the cell membrane of suspension-adapted cells. Actin cytoskeleton analysis revealed reorganisation from the typical fibrillar morphology found in adherent cells to an enforced spherical subcortical actin sheath in suspension cells. The uni-modal expression and specific clustering of integrins could be confirmed for CHO-S, another suspension cell line. Cytochalasin D treatment resulted in breakdown of the actin sheath and the sphere-like integrin conformation demonstrating the link between integrins and actin in suspension-adapted CHO cells. The data demonstrates the importance of signalling changes, leading to an integrin rearrangement on the cell surface, and the necessity of the reinforcement of the actin cytoskeleton for proliferation in suspension conditions.
Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping
Augustsson, Per; Karlsen, Jonas T.; Su, Hao-Wei; Bruus, Henrik; Voldman, Joel
2016-01-01
Mechanical phenotyping of single cells is an emerging tool for cell classification, enabling assessment of effective parameters relating to cells' interior molecular content and structure. Here, we present iso-acoustic focusing, an equilibrium method to analyze the effective acoustic impedance of single cells in continuous flow. While flowing through a microchannel, cells migrate sideways, influenced by an acoustic field, into streams of increasing acoustic impedance, until reaching their cell-type specific point of zero acoustic contrast. We establish an experimental procedure and provide theoretical justifications and models for iso-acoustic focusing. We describe a method for providing a suitable acoustic contrast gradient in a cell-friendly medium, and use acoustic forces to maintain that gradient in the presence of destabilizing forces. Applying this method we demonstrate iso-acoustic focusing of cell lines and leukocytes, showing that acoustic properties provide phenotypic information independent of size. PMID:27180912
Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping.
Augustsson, Per; Karlsen, Jonas T; Su, Hao-Wei; Bruus, Henrik; Voldman, Joel
2016-05-16
Mechanical phenotyping of single cells is an emerging tool for cell classification, enabling assessment of effective parameters relating to cells' interior molecular content and structure. Here, we present iso-acoustic focusing, an equilibrium method to analyze the effective acoustic impedance of single cells in continuous flow. While flowing through a microchannel, cells migrate sideways, influenced by an acoustic field, into streams of increasing acoustic impedance, until reaching their cell-type specific point of zero acoustic contrast. We establish an experimental procedure and provide theoretical justifications and models for iso-acoustic focusing. We describe a method for providing a suitable acoustic contrast gradient in a cell-friendly medium, and use acoustic forces to maintain that gradient in the presence of destabilizing forces. Applying this method we demonstrate iso-acoustic focusing of cell lines and leukocytes, showing that acoustic properties provide phenotypic information independent of size.
Atomic force microscopy studies on cellular elastic and viscoelastic properties.
Li, Mi; Liu, Lianqing; Xi, Ning; Wang, Yuechao
2018-01-01
In this work, a method based on atomic force microscopy (AFM) approach-reside-retract experiments was established to simultaneously quantify the elastic and viscoelastic properties of single cells. First, the elastic and viscoelastic properties of normal breast cells and cancerous breast cells were measured, showing significant differences in Young's modulus and relaxation times between normal and cancerous breast cells. Remarkable differences in cellular topography between normal and cancerous breast cells were also revealed by AFM imaging. Next, the elastic and viscoelasitc properties of three other types of cell lines and primary normal B lymphocytes were measured; results demonstrated the potential of cellular viscoelastic properties in complementing cellular Young's modulus for discerning different states of cells. This research provides a novel way to quantify the mechanical properties of cells by AFM, which allows investigation of the biomechanical behaviors of single cells from multiple aspects.
Isolation and characterization of an anticancer catechol compound from Semecarpus anacardium.
Nair, P K Raveedran; Melnick, Steven J; Wnuk, Stanislaw F; Rapp, Magdalena; Escalon, Enrique; Ramachandran, Cheppail
2009-04-21
The fruits and seeds of Semecarpus anacardium are used widely for the treatment of human cancers and other diseases in the Ayurvedic and Sidda systems of medicine in India. The principal aim of this investigation was to isolate and characterize the anticancer compound from the kernel of Semecarpus anacardium nut. The bioactivity-tailored isolation and detailed chemical characterization were used to identify the active compound. Cytotoxicity, apoptosis, cell cycle arrest as well as synergism between the identified anticancer compound and doxorubicin in human tumor cell lines were analyzed. GC/MS, IR, proton NMR, carbon NMR and collisionally induced dissociation (CID) spectra analysis showed that the isolated active compound is 3-(8'(Z),11'(Z)-pentadecadienyl) catechol (SA-3C). SA-3C is cytotoxic to tumor cell lines with IC(50) values lower than doxorubicin and even multidrug resistant tumor cell lines were equally sensitive to SA-3C. SA-3C induced apoptosis in human leukemia cell lines in a dose-dependent manner and showed synergistic cytotoxicity with doxorubicin. The cell cycle arrest induced by SA-3C at S- and G(2)/M-phases correlated with inhibition of checkpoint kinases. SA-3C isolated from the kernel of Semecarpus anacardium can be developed as an important anticancer agent for single agent and/or multiagent cancer therapy.
Sakai, Kazuko; Takeda, Masayuki; Okamoto, Isamu; Nakagawa, Kazuhiko; Nishio, Kazuto
2015-01-01
Hepatocyte growth factor (HGF) expression is a poor prognostic factor in various types of cancer. Expression levels of HGF have been reported to be regulated by shorter poly(dA) sequences in the promoter region. In the present study, the poly(dA) mononucleotide tract in various types of human cancer cell lines was examined and compared with the HGF expression levels in those cells. Short deoxyadenosine repeat sequences were detected in five of the 55 cell lines used in the present study. The H69, IM95, CCK-81, Sui73 and H28 cells exhibited a truncated poly(dA) sequence in which the number of poly(dA) repeats was reduced by ≥5 bp. Two of the cell lines exhibited high HGF expression, determined by reverse transcription quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. The CCK-81, Sui73 and H28 cells with shorter poly(dA) sequences exhibited low HGF expression. The cause of the suppression of HGF expression in the CCK-81, Sui73 and H28 cells was clarified by two approaches, suppression by methylation and single nucleotide polymorphisms in the HGF gene. Exposure to 5-Aza-dC, an inhibitor of DNA methyltransferase 1, induced an increased expression of HGF in the CCK-81 cells, but not in the other cells. Single-nucleotide polymorphism (SNP) rs72525097 in intron 1 was detected in the Sui73 and H28 cells. Taken together, it was found that the defect of poly(dA) in the HGF promoter was present in various types of cancer, including lung, stomach, colorectal, pancreas and mesothelioma. The present study proposes the negative regulation mechanisms by methylation and SNP in intron 1 of HGF for HGF expression in cancer cells with short poly(dA).
Ji, Xiaonan; Shen, Yanli; Sun, Hao; Gao, Xiangdong
2016-08-01
Human hepatocellular carcinoma (HCC) has a high rate of tumor recurrence and metastasis, resulting in shortened survival time. The function of alpha-fetoprotein (AFP) as a regulatory factor in the growth of HCC cells has been well defined. The aim of this study was to investigate the use of a novel AFP-specific single-chain variable fragment that blocked AFP and inhibited HCC cell growth. The results indicated that the anti-AFP single-chain variable fragment (scFv) induced growth inhibition of AFP-expressing HCC cell lines in vitro through induction of G1 cell cycle arrest and apoptosis. The mechanism of apoptosis probably involved with blocking AFP internalization and regulation of the PTEN/PI3K/Akt signaling network. Moreover, the anti-AFP-scFv also effectively sensitized the HepG2 cells to paclitaxel (PTX) at a lower concentration. The combination effect of PTX and anti-AFP-scFv displayed a synergistic effect on HepG2 cells both in vitro and in vivo. Our results demonstrated that targeting AFP by specific antibodies has potential immunotherapeutic efficacy in human HCC.
Isoform-level gene expression patterns in single-cell RNA-sequencing data.
Vu, Trung Nghia; Wills, Quin F; Kalari, Krishna R; Niu, Nifang; Wang, Liewei; Pawitan, Yudi; Rantalainen, Mattias
2018-02-27
RNA sequencing of single cells enables characterization of transcriptional heterogeneity in seemingly homogeneous cell populations. Single-cell sequencing has been applied in a wide range of researches fields. However, few studies have focus on characterization of isoform-level expression patterns at the single-cell level. In this study we propose and apply a novel method, ISOform-Patterns (ISOP), based on mixture modeling, to characterize the expression patterns of isoform pairs from the same gene in single-cell isoform-level expression data. We define six principal patterns of isoform expression relationships and describe a method for differential-pattern analysis. We demonstrate ISOP through analysis of single-cell RNA-sequencing data from a breast cancer cell line, with replication in three independent datasets. We assigned the pattern types to each of 16,562 isoform-pairs from 4,929 genes. Among those, 26% of the discovered patterns were significant (p<0.05), while remaining patterns are possibly effects of transcriptional bursting, drop-out and stochastic biological heterogeneity. Furthermore, 32% of genes discovered through differential-pattern analysis were not detected by differential-expression analysis. The effect of drop-out events, mean expression level, and properties of the expression distribution on the performances of ISOP were also investigated through simulated datasets. To conclude, ISOP provides a novel approach for characterization of isoformlevel preference, commitment and heterogeneity in single-cell RNA-sequencing data. The ISOP method has been implemented as a R package and is available at https://github.com/nghiavtr/ISOP under a GPL-3 license. mattias.rantalainen@ki.se. Supplementary data are available at Bioinformatics online.
Miao, Xin; Koch, Gilbert; Ait-Oudhia, Sihem; Straubinger, Robert M.; Jusko, William J.
2016-01-01
Combinations of gemcitabine and trabectedin exert modest synergistic cytotoxic effects on two pancreatic cancer cell lines. Here, systems pharmacodynamic (PD) models that integrate cellular response data and extend a prototype model framework were developed to characterize dynamic changes in cell cycle phases of cancer cell subpopulations in response to gemcitabine and trabectedin as single agents and in combination. Extensive experimental data were obtained for two pancreatic cancer cell lines (MiaPaCa-2 and BxPC-3), including cell proliferation rates over 0–120 h of drug exposure, and the fraction of cells in different cell cycle phases or apoptosis. Cell cycle analysis demonstrated that gemcitabine induced cell cycle arrest in S phase, and trabectedin induced transient cell cycle arrest in S phase that progressed to G2/M phase. Over time, cells in the control group accumulated in G0/G1 phase. Systems cell cycle models were developed based on observed mechanisms and were used to characterize both cell proliferation and cell numbers in the sub G1, G0/G1, S, and G2/M phases in the control and drug-treated groups. The proposed mathematical models captured well both single and joint effects of gemcitabine and trabectedin. Interaction parameters were applied to quantify unexplainable drug-drug interaction effects on cell cycle arrest in S phase and in inducing apoptosis. The developed models were able to identify and quantify the different underlying interactions between gemcitabine and trabectedin, and captured well our large datasets in the dimensions of time, drug concentrations, and cellular subpopulations. PMID:27895579
Robust measurement of telomere length in single cells
Wang, Fang; Pan, Xinghua; Kalmbach, Keri; Seth-Smith, Michelle L.; Ye, Xiaoying; Antumes, Danielle M. F.; Yin, Yu; Liu, Lin; Keefe, David L.; Weissman, Sherman M.
2013-01-01
Measurement of telomere length currently requires a large population of cells, which masks telomere length heterogeneity in single cells, or requires FISH in metaphase arrested cells, posing technical challenges. A practical method for measuring telomere length in single cells has been lacking. We established a simple and robust approach for single-cell telomere length measurement (SCT-pqPCR). We first optimized a multiplex preamplification specific for telomeres and reference genes from individual cells, such that the amplicon provides a consistent ratio (T/R) of telomeres (T) to the reference genes (R) by quantitative PCR (qPCR). The average T/R ratio of multiple single cells corresponded closely to that of a given cell population measured by regular qPCR, and correlated with those of telomere restriction fragments (TRF) and quantitative FISH measurements. Furthermore, SCT-pqPCR detected the telomere length for quiescent cells that are inaccessible by quantitative FISH. The reliability of SCT-pqPCR also was confirmed using sister cells from two cell embryos. Telomere length heterogeneity was identified by SCT-pqPCR among cells of various human and mouse cell types. We found that the T/R values of human fibroblasts at later passages and from old donors were lower and more heterogeneous than those of early passages and from young donors, that cancer cell lines show heterogeneous telomere lengths, that human oocytes and polar bodies have nearly identical telomere lengths, and that the telomere lengths progressively increase from the zygote, two-cell to four-cell embryo. This method will facilitate understanding of telomere heterogeneity and its role in tumorigenesis, aging, and associated diseases. PMID:23661059
NASA Astrophysics Data System (ADS)
Nedosekin, D. A.; Sarimollaoglu, M.; Foster, S.; Galanzha, E. I.; Zharov, V. P.
2013-03-01
Fluorescence flow cytometry is a well-established analytical tool that provides quantification of multiple biological parameters of cells at molecular levels, including their functional states, morphology, composition, proliferation, and protein expression. However, only the fluorescence and scattering parameters of the cells or labels are available for detection. Cell pigmentation, presence of non-fluorescent dyes or nanoparticles cannot be reliably quantified. Herewith, we present a novel photoacoustic (PA) flow cytometry design for simple integration of absorbance measurements into schematics of conventional in vitro flow cytometers. The integrated system allow simultaneous measurements of light absorbance, scattering and of multicolor fluorescence from single cells in the flow at rates up to 2 m/s. We compared various combinations of excitation laser sources for multicolor detection, including simultaneous excitation of PA and fluorescence using a single 500 kHz pulsed nanosecond laser. Multichannel detection scheme allows simultaneous detection of up to 8 labels, including 4 fluorescent tags and 4 PA colors. In vitro PA-fluorescence flow cytometer was used for studies of nanoparticles uptake and for the analysis of cell line pigmentation, including genetically encoded melanin expression in breast cancer cell line. We demonstrate that this system can be used for direct nanotoxicity studies with simultaneous quantification of nanoparticles content and assessment of cell viability using a conventional fluorescent apoptosis assays.
High-throughput full-length single-cell mRNA-seq of rare cells.
Ooi, Chin Chun; Mantalas, Gary L; Koh, Winston; Neff, Norma F; Fuchigami, Teruaki; Wong, Dawson J; Wilson, Robert J; Park, Seung-Min; Gambhir, Sanjiv S; Quake, Stephen R; Wang, Shan X
2017-01-01
Single-cell characterization techniques, such as mRNA-seq, have been applied to a diverse range of applications in cancer biology, yielding great insight into mechanisms leading to therapy resistance and tumor clonality. While single-cell techniques can yield a wealth of information, a common bottleneck is the lack of throughput, with many current processing methods being limited to the analysis of small volumes of single cell suspensions with cell densities on the order of 107 per mL. In this work, we present a high-throughput full-length mRNA-seq protocol incorporating a magnetic sifter and magnetic nanoparticle-antibody conjugates for rare cell enrichment, and Smart-seq2 chemistry for sequencing. We evaluate the efficiency and quality of this protocol with a simulated circulating tumor cell system, whereby non-small-cell lung cancer cell lines (NCI-H1650 and NCI-H1975) are spiked into whole blood, before being enriched for single-cell mRNA-seq by EpCAM-functionalized magnetic nanoparticles and the magnetic sifter. We obtain high efficiency (> 90%) capture and release of these simulated rare cells via the magnetic sifter, with reproducible transcriptome data. In addition, while mRNA-seq data is typically only used for gene expression analysis of transcriptomic data, we demonstrate the use of full-length mRNA-seq chemistries like Smart-seq2 to facilitate variant analysis of expressed genes. This enables the use of mRNA-seq data for differentiating cells in a heterogeneous population by both their phenotypic and variant profile. In a simulated heterogeneous mixture of circulating tumor cells in whole blood, we utilize this high-throughput protocol to differentiate these heterogeneous cells by both their phenotype (lung cancer versus white blood cells), and mutational profile (H1650 versus H1975 cells), in a single sequencing run. This high-throughput method can help facilitate single-cell analysis of rare cell populations, such as circulating tumor or endothelial cells, with demonstrably high-quality transcriptomic data.
Granatum: a graphical single-cell RNA-Seq analysis pipeline for genomics scientists.
Zhu, Xun; Wolfgruber, Thomas K; Tasato, Austin; Arisdakessian, Cédric; Garmire, David G; Garmire, Lana X
2017-12-05
Single-cell RNA sequencing (scRNA-Seq) is an increasingly popular platform to study heterogeneity at the single-cell level. Computational methods to process scRNA-Seq data are not very accessible to bench scientists as they require a significant amount of bioinformatic skills. We have developed Granatum, a web-based scRNA-Seq analysis pipeline to make analysis more broadly accessible to researchers. Without a single line of programming code, users can click through the pipeline, setting parameters and visualizing results via the interactive graphical interface. Granatum conveniently walks users through various steps of scRNA-Seq analysis. It has a comprehensive list of modules, including plate merging and batch-effect removal, outlier-sample removal, gene-expression normalization, imputation, gene filtering, cell clustering, differential gene expression analysis, pathway/ontology enrichment analysis, protein network interaction visualization, and pseudo-time cell series construction. Granatum enables broad adoption of scRNA-Seq technology by empowering bench scientists with an easy-to-use graphical interface for scRNA-Seq data analysis. The package is freely available for research use at http://garmiregroup.org/granatum/app.
Biflorin induces cytotoxicity by DNA interaction in genetically different human melanoma cell lines.
Ralph, Ana Carolina Lima; Calcagno, Danielle Queiroz; da Silva Souza, Luciana Gregório; de Lemos, Telma Leda Gomes; Montenegro, Raquel Carvalho; de Arruda Cardoso Smith, Marília; de Vasconcellos, Marne Carvalho
2016-08-01
Cancer is a public health problem and the second leading cause of death worldwide. The incidence of cutaneous melanoma has been notably increasing, resulting in high aggressiveness and poor survival rates. Taking into account the antitumor activity of biflorin, a substance isolated from Capraria biflora L. roots that is cytotoxic in vitro and in vivo, this study aimed to demonstrate the action of biflorin against three established human melanoma cell lines that recapitulate the molecular landscape of the disease in terms of genetic alterations and mutations, such as the TP53, NRAS and BRAF genes. The results presented here indicate that biflorin reduces the viability of melanoma cell lines by DNA interactions. Biflorin causes single and double DNA strand breaks, consequently inhibiting cell cycle progression, replication and DNA repair and promoting apoptosis. Our data suggest that biflorin could be considered as a future therapeutic option for managing melanoma. Copyright © 2016 Elsevier Ltd. All rights reserved.
Quang, Tara; Marquez, Maribel; Blanco, Giselle; Zhao, Yuanxiang
2014-01-01
Many different culture systems have been developed for expanding human pluripotent stem cells (hESCs and hiPSCs). In general, 4-10 ng/ml of bFGF is supplemented in culture media in feeder-dependent systems regardless of feeder cell types, whereas in feeder-free systems, up to 100 ng/ml of bFGF is required for maintaining long-term culture on various substrates. The amount of bFGF required in native hESCs growth niche is unclear. Here we report using inactivated adipose-derived human mesenchymal stem cells as feeder cells to examine long-term parallel cultures of two hESCs lines (H1 and H9) and one hiPSCs line (DF19-9-7T) in media supplemented with 0, 0.4 or 4 ng/ml of bFGF for up to 23 passages, as well as parallel cultures of H9 and DF19 in media supplemented with 4, 20 or 100 ng/ml bFGF for up to 13 passages for comparison. Across all cell lines tested, bFGF supplement demonstrated inhibitory effect over growth expansion, single cell colonization and recovery from freezing in a dosage dependent manner. In addition, bFGF exerted differential effects on different cell lines, inducing H1 and DF19 differentiation at 4 ng/ml or higher, while permitting long-term culture of H9 at the same concentrations with no apparent dosage effect. Pluripotency was confirmed for all cell lines cultured in 0, 0.4 or 4 ng/ml bFGF excluding H1-4 ng, as well as H9 cultured in 4, 20 and 100 ng/ml bFGF. However, DF19 demonstrated similar karyotypic abnormality in both 0 and 4 ng/ml bFGF media while H1 and H9 were karyotypically normal in 0 ng/ml bFGF after long-term culture. Our results indicate that exogenous bFGF exerts dosage and cell line dependent effect on human pluripotent stem cells cultured on mesenchymal stem cells, and implies optimal use of bFGF in hESCs/hiPSCs culture should be based on specific cell line and its culture system.
Quang, Tara; Marquez, Maribel; Blanco, Giselle; Zhao, Yuanxiang
2014-01-01
Many different culture systems have been developed for expanding human pluripotent stem cells (hESCs and hiPSCs). In general, 4–10 ng/ml of bFGF is supplemented in culture media in feeder-dependent systems regardless of feeder cell types, whereas in feeder-free systems, up to 100 ng/ml of bFGF is required for maintaining long-term culture on various substrates. The amount of bFGF required in native hESCs growth niche is unclear. Here we report using inactivated adipose-derived human mesenchymal stem cells as feeder cells to examine long-term parallel cultures of two hESCs lines (H1 and H9) and one hiPSCs line (DF19-9-7T) in media supplemented with 0, 0.4 or 4 ng/ml of bFGF for up to 23 passages, as well as parallel cultures of H9 and DF19 in media supplemented with 4, 20 or 100 ng/ml bFGF for up to 13 passages for comparison. Across all cell lines tested, bFGF supplement demonstrated inhibitory effect over growth expansion, single cell colonization and recovery from freezing in a dosage dependent manner. In addition, bFGF exerted differential effects on different cell lines, inducing H1 and DF19 differentiation at 4 ng/ml or higher, while permitting long-term culture of H9 at the same concentrations with no apparent dosage effect. Pluripotency was confirmed for all cell lines cultured in 0, 0.4 or 4 ng/ml bFGF excluding H1-4 ng, as well as H9 cultured in 4, 20 and 100 ng/ml bFGF. However, DF19 demonstrated similar karyotypic abnormality in both 0 and 4 ng/ml bFGF media while H1 and H9 were karyotypically normal in 0 ng/ml bFGF after long-term culture. Our results indicate that exogenous bFGF exerts dosage and cell line dependent effect on human pluripotent stem cells cultured on mesenchymal stem cells, and implies optimal use of bFGF in hESCs/hiPSCs culture should be based on specific cell line and its culture system. PMID:24465853
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohara-Imaizumi, Mica; Aoyagi, Kyota; Akimoto, Yoshihiro
To analyze the exocytosis of glucagon-like peptide-1 (GLP-1) granules, we imaged the motion of GLP-1 granules labeled with enhanced yellow fluorescent protein (Venus) fused to human growth hormone (hGH-Venus) in an enteroendocrine cell line, STC-1 cells, by total internal reflection fluorescent (TIRF) microscopy. We found glucose stimulation caused biphasic GLP-1 granule exocytosis: during the first phase, fusion events occurred from two types of granules (previously docked granules and newcomers), and thereafter continuous fusion was observed mostly from newcomers during the second phase. Closely similar to the insulin granule fusion from pancreatic {beta} cells, the regulated biphasic exocytosis from two typesmore » of granules may be a common mechanism in glucose-evoked hormone release from endocrine cells.« less
The role of BST2/tetherin in infection with the feline retroviruses
Dietrich, Isabelle; Hosie, Margaret J.; Willett, Brian J.
2014-01-01
The recently identified host restriction factor tetherin (BST-2, CD317) potently inhibits the release of nascent retrovirus particles from infected cells. Recently, we reported the identification and characterization of tetherin as a novel feline retroviral restriction factor. Based on homology to human tetherin we identified a putative tetherin gene in the genome of the domestic cat (Felis catus) which was found to be expressed in different feline cell lines both prior to and post treatment with either type I or type II interferon (IFN). The predicted structure of feline tetherin (feTHN) was that of a type II single-pass transmembrane protein encoding an N-terminal transmembrane anchor, central predicted coiled-coil bearing extracellular domain to promote dimerization, and a C-terminal GPI-anchor, consistent with conservation of structure between human and feline tetherin. FeTHN displayed potent inhibition of feline immunodeficiency virus (FIV) and human immunodeficiency virus type 1 (HIV-1) particle release in single-cycle replication assays. Notably, feTHN activity was resistant to antagonism by HIV-1 Vpu. However, stable ectopic expression of feTHN mRNA in different feline cell lines had no inhibitory effect on the growth of diverse primary or cell culture-adapted strains of FIV. Hence, whereas feline tetherin efficiently blocks viral particle release in single-cycle replication assays, it might not prevent dissemination of feline retroviruses in vivo. PMID:21715020
Realization of compact tractor beams using acoustic delay-lines
NASA Astrophysics Data System (ADS)
Marzo, A.; Ghobrial, A.; Cox, L.; Caleap, M.; Croxford, A.; Drinkwater, B. W.
2017-01-01
A method for generating stable ultrasonic levitation of physical matter in air using single beams (also known as tractor beams) is demonstrated. The method encodes the required phase modulation in passive unit cells into which the ultrasonic sources are mounted. These unit cells use waveguides such as straight and coiled tubes to act as delay-lines. It is shown that a static tractor beam can be generated using a single electrical driving signal, and a tractor beam with one-dimensional movement along the propagation direction can be created with two signals. Acoustic tractor beams capable of holding millimeter-sized polymer particles of density 1.25 g/cm3 and fruit-flies (Drosophila) are demonstrated. Based on these design concepts, we show that portable tractor beams can be constructed with simple components that are readily available and easily assembled, enabling applications in industrial contactless manipulation and biophysics.
Durgo, Ksenija; Koncar, Mladen; Komes, Drazenka; Belscak-Cvitanovic, Ana; Franekic, Jasna; Jakopovich, Ivan; Jakopovich, Neven; Jakopovich, Boris
2013-01-01
The use of mushrooms contributes to human nutrition by providing low lipid content of lipids and high dietary fiber content, as well as significant content of other biologically active compounds such as polysaccharides, minerals, vitamins, and polyphenolic antioxidants. This study aimed to determine the content of polyphenols and polysaccharides, as well as the cytotoxic and antioxidative properties of several medicinal mushroom preparations. The content of total phenols and flavonoids of preparations of blended mushroom extracts (Lentifom, Super Polyporin, Agarikon, Agarikon Plus, Agarikon.1, and Mykoprotect.1) was evaluated quantitatively by using ultraviolet-visible spectroscopy spectrophotometric methods. The antioxidant capacity of the preparations was evaluated using the ABTS (2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) and ferric reducing/antioxidant power assays. The content of water-soluble polysaccharides was determined using a specific gravimetric method, based on ethanol precipitation. To determine cytotoxic effects of single and blended mushroom extracts, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and neutral red assays were conducted using human small cell lung cancer, lung adenocarcinoma, colon cancer, and brain astrocytoma cancer cells. The obtained results suggest that due to the significant content of beneficial polyphenolic antioxidants and soluble polysaccharides, use of these mushroom preparations is beneficial in maintaining good health, as well as in the prevention and adjuvant biotherapy of various human pathological aberrations. These results reveal that these extracts exhibit different cytotoxic effects on tumor cells originating from different tissues. In addition, the comparison of investigated blended mushroom extracts with three well-known commercial mushroom products derived from single mushroom species or single mushroom compounds shows that blended mushroom extracts exhibit significantly stronger cytotoxic effects on human tumor cell lines.
Metuzumab enhanced chemosensitivity and apoptosis in non-small cell lung carcinoma
Feng, Fei; Wang, Bin; Sun, Xiuxuan; Zhu, Yumeng; Tang, Hao; Nan, Gang; Wang, Lijuan; Wu, Bo; Huhe, Muren; Liu, Shuangshuang; Diao, Tengyue; Hou, Rong; Zhang, Yang; Zhang, Zheng
2017-01-01
ABSTRACT Targeted therapeutics is used as an alternative treatment of non-small cell lung cancer (NSCLC); however, treatment effect is far from being satisfactory, and therefore identification of new targets is needed. We have previously shown that metuzumab inhibit tumor growth in vivo. The present study was performed to investigate the anti-tumor efficacy of metuzumab combined with gemcitabine and cisplatin (GP), paclitaxel and cisplatin (TP) or navelbine and cisplatin (NP) regimens in multiple NSCLC cell lines. Our results demonstrate that, in comparison to single agent metuzumab or GP treated cells, metuzumab combined with GP display inhibitory effects on tumor growth. Furthermore, we found that metuzumab elevated the sensitivity of cell lines to gemcitabine, which was identified by MTT assay. Flow cytometric analysis showed that metuzumab combined with gemcitabine (GEM) treatment led to an obvious G1 arrest and an elevated apoptosis in A549, NCI-H460 and NCI-H520 cells. Western blot analysis also demonstrated a significantly reduced level of cyclin D1, Bcl-2, and an obviously increase level of Bax and full-length caspase-3 in A549, NCI-H460 and NCI-H520 cells treated with metuzumab/gemcitabine combination in comparison with single agent treated cells. In addition, metuzumab/gemcitabine treated A549, NCI-H460 and NCI-H520 cells also demonstrated a significantly increase in deoxycytidine kinase (dCK) protein level compared with single agent metuzumab or gemcitabine treated cells. Xenograft models also demonstrated that this metuzumab/gemcitabine combination led to upregulation of dCK. Taken together, the mechanisms of metuzumab combined with GP repress tumor growth were that the combined treatment significantly inhibited the tumor cell proliferation, apoptosis and cell cycle in vitro and in vivo and at least partially by induction of dCK expression. Our results suggested that metuzumab could significantly enhance chemosensitivity of human NSCLC cells to gemcitabine. Metuzumab/gemcitabine combination treatment may be a potentially useful therapeutic regimen for NSCLC patients. PMID:28055291
Establishment of mouse expanded potential stem cells
Gao, Xuefei; Antunes, Liliana; Yu, Yong; Zhu, Zhexin; Wang, Juexuan; Kolodziejczyk, Aleksandra A.; Campos, Lia S.; Wang, Cui; Yang, Fengtang; Zhong, Zhen; Fu, Beiyuan; Eckersley-Maslin, Melanie A.; Woods, Michael; Tanaka, Yosuke; Chen, Xi; Wilkinson, Adam C.; Bussell, James; White, Jacqui; Ramirez-Solis, Ramiro; Reik, Wolf; Göttgens, Berthold; Teichmann, Sarah A.; Tam, Patrick P. L.; Nakauchi, Hiromitsu; Zou, Xiangang; Lu, Liming; Liu, Pentao
2018-01-01
Mouse embryonic stem cells derived from the epiblast1 contribute to the somatic lineages and the germline but are excluded from the extra-embryonic tissues that are derived from the trophectoderm and the primitive endoderm2 upon reintroduction to the blastocyst. Here we report that cultures of expanded potential stem cells can be established from individual eight-cell blastomeres, and by direct conversion of mouse embryonic stem cells and induced pluripotent stem cells. Remarkably, a single expanded potential stem cell can contribute both to the embryo proper and to the trophectoderm lineages in a chimaera assay. Bona fide trophoblast stem cell lines and extra-embryonic endoderm stem cells can be directly derived from expanded potential stem cells in vitro. Molecular analyses of the epigenome and single-cell transcriptome reveal enrichment for blastomere-specific signature and a dynamic DNA methylome in expanded potential stem cells. The generation of mouse expanded potential stem cells highlights the feasibility of establishing expanded potential stem cells for other mammalian species. PMID:29019987
Evans, Robert; Naber, Claudia; Steffler, Tara; Checkland, Tamara; Keats, Jonathan; Maxwell, Christopher; Perry, Troy; Chau, Heidi; Belch, Andrew; Pilarski, Linda; Reiman, Tony
2008-03-01
The expression of RHAMM and other centrosome-associated genes are known to correlate with the extent of centrosome amplification in multiple myeloma, and with poor prognosis. RHAMM has a significant interaction with TPX2, a protein which regulates the localization and action of Aurora A kinase (AURKA) at the spindle poles. AURKA is known to be a central determinant of centrosome and spindle function and is a target for cancer therapy. Given these observations, we investigated the role of Aurora kinases as therapeutic targets in myeloma. Here we report that AURKA is expressed ubiquitously in myeloma, to varying degrees, in both cell lines and patients' bone marrow plasma cells. siRNA targeting AURKA induces apoptotic cell death in myeloma cell lines. The Aurora kinase inhibitor VE-465 also induces apoptosis and death in myeloma cell lines and primary myeloma plasma cells. The combination of VE-465 and dexamethasone improves cell killing compared with the use of either agent alone, even in cells resistant to the single agents. The phenotype of myeloma cells treated with VE-465 is consistent with published reports on the effects of Aurora kinase inhibition. Aurora kinase inhibitors should be pursued as potential treatments for myeloma.
A Medium-Throughput Single Cell CRISPR-Cas9 Assay to Assess Gene Essentiality.
Grassian, A R; Scales, T M E; Knutson, S K; Kuntz, K W; McCarthy, N J; Lowe, C E; Moore, J D; Copeland, R A; Keilhack, H; Smith, J J; Wickenden, J A; Ribich, S
2015-01-01
Target selection for oncology is a crucial step in the successful development of therapeutics. Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 editing of specific loci offers an alternative method to RNA interference and small molecule inhibitors for determining whether a cell line is dependent on a specific gene product for proliferation or survival. In our initial studies using CRISPR-Cas9 to verify the dependence on EZH2 activity for proliferation of a SMARCB1/SNF5/INI1 mutant malignant rhabdoid tumor (MRT) cell line, we noted that the initial reduction in proliferation was lost over time. We hypothesized that in the few cells that retain proliferative capacity, at least one allele of EZH2 remains functional. To verify this, we developed an assay to analyze 10s-100s of clonal cell populations for target gene disruption using restriction digest and fluorescent fragment length analyses. Our results clearly show that in cell lines in which EZH2 is essential for proliferation, at least one potentially functional allele of EZH2 is retained in the clones that survive. This assay clearly indicates whether or not a specific gene is essential for survival and/or proliferation in a given cell line. Such data can aid the development of more robust therapeutics by increasing confidence in target selection.
Generation of a stable cell line for constitutive miRNA expression.
Lieber, Diana
2013-01-01
miRNAs have in recent years emerged as novel players in virus-host interactions. While individual miRNAs are capable of regulating many targets simultaneously, not much is known about the role of distinct host or viral miRNAs in the context of infection. Analysis of the function of a miRNA is often hampered by the complexity of virus-host interactions and the enormous changes in the host cell during infection. Many viral miRNAs as for example from Kaposi sarcoma-associated Herpesvirus (KSHV) are probably exclusively expressed in latent infection. This might lead to a steady-state situation with offense and defense mechanisms counteracting each other. Cellular miRNAs involved in defense against pathogens on the other hand might be suppressed in infection. A cell culture system allowing for constitutive expression of individual miRNAs at high levels is a useful tool to enhance miRNA-specific functions and to uncouple viral miRNA function from other infection-related mechanisms. Here, a protocol is described to generate stable cell lines for constitutive expression of single cellular or viral miRNA precursors in absence of infection. The procedure comprises cloning of the precursor sequence, generation of the lentiviral expression vector, transduction of the cells of interest, selection for polyclonal cell lines, and isolation of monoclonal cell lines by limiting dilution.
Ta1, a novel 105 KD human T cell activation antigen defined by a monoclonal antibody.
Fox, D A; Hussey, R E; Fitzgerald, K A; Acuto, O; Poole, C; Palley, L; Daley, J F; Schlossman, S F; Reinherz, E L
1984-09-01
By using a murine monoclonal antibody produced against an IL 2-dependent human T cell line, we defined a T lineage-specific molecule, termed Ta1, that is expressed strongly on activated T lymphocytes of both the T4 and T8 subsets, as well as on T cell lines and clones, but only weakly on a fraction of resting T cells. SDS-PAGE analysis of immunoprecipitates from 125I-labeled, activated T cells demonstrates a single major band of apparent m.w. 105 KD under both reducing and nonreducing conditions. Unlike anti-IL 2 receptor antibodies, anti-Ta1 does not inhibit T cell proliferative responses to mitogen, antigen, or IL 2-containing medium. Moreover, anti-Ta1 has no effect on T cell-mediated cytotoxicity. Ta1 appears to be a novel human T cell-specific activation antigen that may serve as a useful marker of T cell activation in human disease.
Cell cloning-on-the-spot by using an attachable silicone cylinder.
Park, Hong Bum; Son, Wonseok; Chae, Dong Han; Lee, Jisu; Kim, Il-Woung; Yang, Woomi; Sung, Jae Kyu; Lim, Kyu; Lee, Jun Hee; Kim, Kyung-Hee; Park, Jong-Il
2016-06-10
Cell cloning is a laboratory routine to isolate and keep particular properties of cultured cells. Transfected or other genetically modified cells can be selected by the traditional microbiological cloning. In addition, common laboratory cell lines are prone to genotypic drift during their continual culture, so that supplementary cloning steps are often required to maintain correct lineage phenotypes. Here, we designed a silicone-made attachable cloning cylinder, which facilitated an easy and bona fide cloning of interested cells. This silicone cylinder was easy to make, showed competent stickiness to laboratory plastics including culture dishes, and hence enabled secure isolation and culture for days of selected single cells, especially, on the spots of preceding cell-plating dishes under microscopic examination of visible cellular phenotypes. We tested the silicone cylinder in the monoclonal subcloning from a heterogeneous population of a breast cancer cell line, MDA-MB-231, and readily established independent MDA-MB-231 subclones showing different sublineage phenotypes. Copyright © 2016 Elsevier Inc. All rights reserved.
APOBEC3A deaminates transiently exposed single-strand DNA during LINE-1 retrotransposition
Richardson, Sandra R; Narvaiza, Iñigo; Planegger, Randy A; Weitzman, Matthew D; Moran, John V
2014-01-01
Long INterspersed Element-1 (LINE-1 or L1) retrotransposition poses a mutagenic threat to human genomes. Human cells have therefore evolved strategies to regulate L1 retrotransposition. The APOBEC3 (A3) gene family consists of seven enzymes that catalyze deamination of cytidine nucleotides to uridine nucleotides (C-to-U) in single-strand DNA substrates. Among these enzymes, APOBEC3A (A3A) is the most potent inhibitor of L1 retrotransposition in cultured cell assays. However, previous characterization of L1 retrotransposition events generated in the presence of A3A did not yield evidence of deamination. Thus, the molecular mechanism by which A3A inhibits L1 retrotransposition has remained enigmatic. Here, we have used in vitro and in vivo assays to demonstrate that A3A can inhibit L1 retrotransposition by deaminating transiently exposed single-strand DNA that arises during the process of L1 integration. These data provide a mechanistic explanation of how the A3A cytidine deaminase protein can inhibit L1 retrotransposition. DOI: http://dx.doi.org/10.7554/eLife.02008.001 PMID:24843014
Palmirotta, Raffaele; Lovero, Domenica; Silvestris, Erica; Felici, Claudia; Quaresmini, Davide; Cafforio, Paola; Silvestris, Franco
2017-01-01
Isolation and genotyping of circulating tumor cells (CTCs) is gaining an increasing interest by clinical researchers in oncology not only for investigative purposes, but also for concrete application in clinical practice in terms of diagnosis, prognosis and decision treatment with targeted therapies. For the mutational analysis of single CTCs, the most advanced biotechnology methodology currently available includes the combination of whole genome amplification (WGA) followed by next-generation sequencing (NGS). However, the sequence of these molecular techniques is time-consuming and may also favor operator-dependent errors, related to the procedures themselves that, as in the case of the WGA technique, might affect downstream molecular analyses. A preliminary approach of molecular analysis by NGS on a model of CTCs without previous WGA procedural step was performed. We set-up an artificial sample obtained by spiking the SK-MEL-28 melanoma cell line in normal donor peripheral whole blood. Melanoma cells were first enriched using an AutoMACS® (Miltenyi) cell separator and then isolated as single and pooled CTCs by DEPArray™ System (Silicon Biosystems). NGS analysis, using the Ion AmpliSeq™ Cancer Hotspot Panel v2 (Life Technologies) with the Ion Torrent PGM™ system (Life Technologies), was performed on the SK-MEL-28 cell pellet, a single CTC previously processed with WGA and on 1, 2, 4 and 8 recovered CTCs without WGA pre-amplification. NGS directly carried out on CTCs without WGA showed the same mutations identified in SK-MEL-28 cell line pellet, with a considerable efficiency and avoiding the errors induced by the WGA procedure. We identified a cost-effective, time-saving and reliable methodological approach that could improve the analytical accuracy of the liquid biopsy and appears promising in studying CTCs from cancer patients for both research and clinical purposes. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Soft fibrin gels promote selection and growth of tumorigenic cells
NASA Astrophysics Data System (ADS)
Liu, Jing; Tan, Youhua; Zhang, Huafeng; Zhang, Yi; Xu, Pingwei; Chen, Junwei; Poh, Yeh-Chuin; Tang, Ke; Wang, Ning; Huang, Bo
2012-08-01
The identification of stem-cell-like cancer cells through conventional methods that depend on stem cell markers is often unreliable. We developed a mechanical method for selecting tumorigenic cells by culturing single cancer cells in fibrin matrices of ~100 Pa in stiffness. When cultured within these gels, primary human cancer cells or single cancer cells from mouse or human cancer cell lines grew within a few days into individual round colonies that resembled embryonic stem cell colonies. Subcutaneous or intravenous injection of 10 or 100 fibrin-cultured cells in syngeneic or severe combined immunodeficiency mice led to the formation of solid tumours at the site of injection or at the distant lung organ much more efficiently than control cancer cells selected using conventional surface marker methods or cultured on conventional rigid dishes or on soft gels. Remarkably, as few as ten such cells were able to survive and form tumours in the lungs of wild-type non-syngeneic mice.
Al-Ansary, Ghada H; Eldehna, Wagdy M; Ghabbour, Hazem A; Al-Rashood, Sara T A; Al-Rashood, Khalid A; Eladwy, Radwa A; Al-Dhfyan, Abdullah; Kabil, Maha M; Abdel-Aziz, Hatem A
2017-12-01
Cancer stem cells (CSCs) have been objects of intensive study since their identification in 1994. Adopting a structural rigidification approach, a novel series of 3-phenylthiazolo[3,2-a]benzimidazoles 4a-d was designed and synthesised, in an attempt to develop potent anticancer agent that can target the bulk of tumour cells and CSCs. The anti-proliferative activity of the synthesised compounds was evaluated against two cell lines, namely; colon cancer HT-29 and triple negative breast cancer MDA-MB-468 cell lines. Also, their inhibitory activity against the cell surface expression of CD133 was examined. In particular, compound 4b emerged as a promising hit molecule as it manifested good antineoplastic potency against both tested cell lines (IC 50 = 9 and 12 μM, respectively), beside its ability to inhibit the cell surface expression of CD133 by 50% suggesting a promising potential of effectively controlling the tumour by eradicating the tumour bulk and inhibiting the proliferation of the CSCs. Moreover, compounds 4a and 4c showed moderate activity against HT-29 (IC 50 = 21 and 29 μM, respectively) and MDA-MB-468 (IC 50 = 23 and 24 μM, respectively) cell lines, while they inhibited the CD133 expression by 14% and 48%, respectively. Finally, a single crystal X-ray diffraction was recorded for compound 4d.
Human T-lymphotropic virus type I tax regulates the expression of the human lymphotoxin gene.
Tschachler, E; Böhnlein, E; Felzmann, S; Reitz, M S
1993-01-01
Human T-lymphotropic virus type-I (HTLV-I)-infected T-cell lines constitutively produce high levels of lymphotoxin (LT). To analyze the mechanisms that lead to the expression of LT in HTLV-I-infected cell lines, we studied regulatory regions of the human LT promoter involved in the activation of the human LT gene. As determined by deletional analysis, sequences between +137 and -116 (relative to the transcription initiation site) are sufficient to direct expression of a reporter gene in the HTLV-I-infected cell line MT-2. Site-directed mutation of a of the single kappa B-like motif present in the LT promoter region (positions -99 to -89) completely abrogated LT promoter activity in MT-2 cells, suggesting that this site plays a critical role in the activation of the human LT gene. Transfection of LT constructs into HTLV-I-uninfected and -unstimulated Jurkat and U937 cell lines showed little to no activity of the LT promoter. Cotransfection of the same constructs with a tax expression plasmid into Jurkat cells led to detectable promoter activity, which could be significantly increased by stimulation of the cells with phorbol myristate acetate (PMA). Similarly, cotransfection of the LT promoter constructs and the tax expression plasmid into U937 cells led to significant promoter activity upon stimulation with PMA. These data suggest that HTLV-I tax is involved in the upregulation of LT gene expression in HTLV-I-infected cells.
Ikaros promotes rearrangement of TCR α genes in an Ikaros null thymoma cell line.
Collins, Bernard; Clambey, Eric T; Scott-Browne, James; White, Janice; Marrack, Philippa; Hagman, James; Kappler, John W
2013-02-01
Ikaros is important in the development and maintenance of the lymphoid system, functioning in part by associating with chromatin-remodeling complexes. We have studied the functions of Ikaros in the transition from pre-T cell to the CD4(+) CD8(+) thymocyte using an Ikaros null CD4(-) CD8(-) mouse thymoma cell line (JE131). We demonstrate that this cell line carries a single functional TCR β gene rearrangement and expresses a surface pre-TCR. JE131 cells also carry nonfunctional rearrangements on both alleles of their TCR α loci. Retroviral reintroduction of Ikaros dramatically increased the rate of transcription in the α locus and TCR Vα/Jα recombination resulting in the appearance of many new αβTCR(+) cells. The process is RAG dependent, requires switch/sucrose nonfermentable chromatin-remodeling complexes and is coincident with the binding of Ikaros to the TCR α enhancer. Furthermore, knockdown of Mi2/nucleosome remodeling and deacetylase complexes increased the frequency of TCR α rearrangement. Our data suggest that Ikaros controls Vα/Jα recombination in T cells by controlling access of the transcription and recombination machinery to the TCR α loci. The JE131 cell line should prove to be a very useful tool for studying the molecular details of this and other processes involved in the pre-T cell to αβTCR(+) CD4(+) CD8(+) thymocyte transition. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mi Li; Lianqing Liu; Xiubin Xiao; Ning Xi; Yuechao Wang
2016-07-01
Cell mechanics has been proved to be an effective biomarker for indicating cellular states. The advent of atomic force microscopy (AFM) provides an exciting instrument for measuring the mechanical properties of single cells. However, current AFM single-cell mechanical measurements are commonly performed on cell lines cultured in vitro which are quite different from the primary cells in the human body. Investigating the mechanical properties of primary cells from clinical environments can help us to better understand cell behaviors. Here, by combining AFM with magnetic beads cell isolation, the viscoelastic properties of human primary B lymphocytes were quantitatively measured. B lymphocytes were isolated from the peripheral blood of healthy volunteers by density gradient centrifugation and CD19 magnetic beads cell isolation. The activity and specificity of the isolated cells were confirmed by fluorescence microscopy. AFM imaging revealed the surface topography and geometric parameters of B lymphocytes. The instantaneous modulus and relaxation time of living B lymphocytes were measured by AFM indenting technique, showing that the instantaneous modulus of human normal B lymphocytes was 2-3 kPa and the relaxation times were 0.03-0.06 s and 0.35-0.55 s. The differences in cellular visocoelastic properties between primary B lymphocytes and cell lines cultured in vitro were analyzed. The study proves the capability of AFM in quantifying the viscoelastic properties of individual specific primary cells from the blood sample of clinical patients, which will improve our understanding of the behaviors of cells in the human body.
Khorramizadeh, Maryam; Saberi, Alihossein; Tahmasebi-Birgani, Mohammadjavad; Shokrani, Parvaneh; Amouhedari, Alireza
The existence of a hypersensitive radiation response to doses below 1 Gy is well established for many normal and tumor cell lines. The aim of this study was to ascertain the impact of temporal pattern modeling IMRT on survival, cell cycle and apoptosis of human RCC cell line ACHN, so as to provide radiobiological basis for optimizing IMRT plans for this disease. The ACHN renal cell carcinoma cell line was used in this study. Impact of the triangle, V, small-large or large-small temporal patterns in the presence and absence of threshold dose of hyper-radiosensitivity at the beginning of patterns were studied using soft agarclonogenic assays. Cell cycle and apoptosis analysis were performed after irradiation with the temporal patterns. For triangle and small-large dose sequences, survival fraction was significantly reduced after irradiation with or without threshold dose of hyper-radiosensitivity at the beginning of the patterns. In all of the dose patterns, cell cycle distributions and the percentage of apoptotic cells at 24 h after irradiation with or without priming dose of hyper-radiosensitivity showed no significant difference. However, apoptotic cells were increased when beams with the smallest dose applied at the beginning of dose pattern like triangle and small-large dose sequence. These data show that the biologic effects of single fraction may differ in clinical settings depending on the size and sequence of the partial fractions. Doses at the beginning but not at the end of sequences may change cytotoxicity effects of radiation.
Biological effects of induced MYCN hyper-expression in MYCN-amplified neuroblastomas.
Torres, Jaime; Regan, Paul L; Edo, Robby; Leonhardt, Payton; Jeng, Eric I; Rappaport, Eric F; Ikegaki, Naohiko; Tang, Xao X
2010-10-01
Neuroblastoma is a childhood malignancy of the sympathetic nervous system. The tumor exhibits two different phenotypes: favorable and unfavorable. MYCN amplification is associated with rapid tumor progression and the worst neuroblastoma disease outcome. We have previously reported that inhibitors of histone deacetylase (HDAC) and proteasome enhance favorable neuroblastoma gene expression in neuroblastoma cell lines and inhibit growth of these cells. In this study, we investigated the effect of trichostatin A or TSA (an HDAC inhibitor), and epoxomycin (a proteasome inhibitor) on MYCN and p53 expression in MYCN-amplified neuroblastoma cells. It was found that TSA down-regulated MYCN expression, but Epoxomycin and the TSA/Epoxomycin combination led to MYCN hyper-expression in MYCN-amplified neuroblastoma cell lines. Despite their contrasting effects on MYCN expression, TSA and Epoxomycin caused growth suppression and cell death of the MYCN-amplified cell lines examined. Consistent with these data, forced hyper-expression of MYCN in MYCN-amplified IMR5 cells via transfection resulted in growth suppression and the increased expression of several genes known to suppress growth or induce cell death. Furthermore, Epoxomycin as a single agent and its combination with TSA enhance p53 expression in the MYCN-amplified neuroblastoma cell lines. Unexpectedly, co-transfection of TP53 and MYCN in IMR5 cells resulted in high p53 expression but a reduction of MYCN expression. Together our data suggest that either down regulation or hyper-expression of MYCN results in growth inhibition and/or apoptosis of MYCN-amplified neuroblastoma cells. In addition, elevated p53 expression has a suppressive effect on MYCN expression in these cells.
Single-hit mechanism of tumour cell killing by radiation.
Chapman, J D
2003-02-01
To review the relative importance of the single-hit mechanism of radiation killing for tumour response to 1.8-2.0 Gy day(-1) fractions and to low dose-rate brachytherapy. Tumour cell killing by ionizing radiation is well described by the linear-quadratic equation that contains two independent components distinguished by dose kinetics. Analyses of tumour cell survival curves that contain six or more dose points usually provide good estimates of the alpha- and beta-inactivation coefficients. Superior estimates of tumour cell intrinsic radiosensitivity are obtained when synchronized populations are employed. The characteristics of single-hit inactivation of tumour cells are reviewed and compared with the characteristics of beta-inactivation. Potential molecular targets associated with single-hit inactivation are discussed along with strategies for potentiating cell killing by this mechanism. The single-hit mechanism of tumour cell killing shows no dependence on dose-rate and, consequently, no evidence of sublethal damage repair. It is uniquely potentiated by high linear-energy-transfer radiation, exhibits a smaller oxygen enhancement ratio and exhibits a larger indirect effect by hydroxyl radicals than the beta-mechanism. alpha-inactivation coefficients vary slightly throughout interphase but mitotic cells exhibit extremely high alpha-coefficients in the range of those observed for lymphocytes and some repair-deficient cells. Evidence is accumulating to suggest that chromatin in compacted form could be a radiation-hypersensitive target associated with single-hit radiation killing. Analyses of tumour cell survival curves demonstrate that it is the single-hit mechanism (alpha) that determines the majority of cell killing after doses of 2Gy and that this mechanism is highly variable between tumour cell lines. The characteristics of single-hit inactivation are qualitatively and quantitatively distinct from those of beta-inactivation. Compacted chromatin in tumour cells should be further investigated as a radiation-hypersensitive target that could be modulated for therapeutic advantage.
Schlüter, Daniela K; Ramis-Conde, Ignacio; Chaplain, Mark A J
2015-02-06
Studying the biophysical interactions between cells is crucial to understanding how normal tissue develops, how it is structured and also when malfunctions occur. Traditional experiments try to infer events at the tissue level after observing the behaviour of and interactions between individual cells. This approach assumes that cells behave in the same biophysical manner in isolated experiments as they do within colonies and tissues. In this paper, we develop a multi-scale multi-compartment mathematical model that accounts for the principal biophysical interactions and adhesion pathways not only at a cell-cell level but also at the level of cell colonies (in contrast to the traditional approach). Our results suggest that adhesion/separation forces between cells may be lower in cell colonies than traditional isolated single-cell experiments infer. As a consequence, isolated single-cell experiments may be insufficient to deduce important biological processes such as single-cell invasion after detachment from a solid tumour. The simulations further show that kinetic rates and cell biophysical characteristics such as pressure-related cell-cycle arrest have a major influence on cell colony patterns and can allow for the development of protrusive cellular structures as seen in invasive cancer cell lines independent of expression levels of pro-invasion molecules.
Lee, Jinwoo; Miyanaga, Yukihiro; Ueda, Masahiro; Hohng, Sungchul
2012-10-17
There is no confocal microscope optimized for single-molecule imaging in live cells and superresolution fluorescence imaging. By combining the swiftness of the line-scanning method and the high sensitivity of wide-field detection, we have developed a, to our knowledge, novel confocal fluorescence microscope with a good optical-sectioning capability (1.0 μm), fast frame rates (<33 fps), and superior fluorescence detection efficiency. Full compatibility of the microscope with conventional cell-imaging techniques allowed us to do single-molecule imaging with a great ease at arbitrary depths of live cells. With the new microscope, we monitored diffusion motion of fluorescently labeled cAMP receptors of Dictyostelium discoideum at both the basal and apical surfaces and obtained superresolution fluorescence images of microtubules of COS-7 cells at depths in the range 0-85 μm from the surface of a coverglass. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Imaging tumor microscopic viscosity in vivo using molecular rotors
Shimolina, Lyubov’ E.; Izquierdo, Maria Angeles; López-Duarte, Ismael; Bull, James A.; Shirmanova, Marina V.; Klapshina, Larisa G.; Zagaynova, Elena V.; Kuimova, Marina K.
2017-01-01
The microscopic viscosity plays an essential role in cellular biophysics by controlling the rates of diffusion and bimolecular reactions within the cell interior. While several approaches have emerged that have allowed the measurement of viscosity and diffusion on a single cell level in vitro, the in vivo viscosity monitoring has not yet been realized. Here we report the use of fluorescent molecular rotors in combination with Fluorescence Lifetime Imaging Microscopy (FLIM) to image microscopic viscosity in vivo, both on a single cell level and in connecting tissues of subcutaneous tumors in mice. We find that viscosities recorded from single tumor cells in vivo correlate well with the in vitro values from the same cancer cell line. Importantly, our new method allows both imaging and dynamic monitoring of viscosity changes in real time in live animals and thus it is particularly suitable for diagnostics and monitoring of the progress of treatments that might be accompanied by changes in microscopic viscosity. PMID:28134273
Schaaf, Marcel J M; Koopmans, Wiepke J A; Meckel, Tobias; van Noort, John; Snaar-Jagalska, B Ewa; Schmidt, Thomas S; Spaink, Herman P
2009-08-19
It has been possible for several years to study the dynamics of fluorescently labeled proteins by single-molecule microscopy, but until now this technology has been applied only to individual cells in culture. In this study, it was extended to stem cells and living vertebrate organisms. As a molecule of interest we used yellow fluorescent protein fused to the human H-Ras membrane anchor, which has been shown to serve as a model for proteins anchored in the plasma membrane. We used a wide-field fluorescence microscopy setup to visualize individual molecules in a zebrafish cell line (ZF4) and in primary embryonic stem cells. A total-internal-reflection microscopy setup was used for imaging in living organisms, in particular in epidermal cells in the skin of 2-day-old zebrafish embryos. Our results demonstrate the occurrence of membrane microdomains in which the diffusion of membrane proteins in a living organism is confined. This membrane organization differed significantly from that observed in cultured cells, illustrating the relevance of performing single-molecule microscopy in living organisms.
Zakaria, Z; Tivnan, A; Flanagan, L; Murray, D W; Salvucci, M; Stringer, B W; Day, B W; Boyd, A W; Kögel, D; Rehm, M; O'Brien, D F; Byrne, A T; Prehn, J H M
2016-01-01
Background: Resistance to temozolomide (TMZ) greatly limits chemotherapeutic effectiveness in glioblastoma (GBM). Here we analysed the ability of the Inhibitor-of-apoptosis-protein (IAP) antagonist birinapant to enhance treatment responses to TMZ in both commercially available and patient-derived GBM cells. Methods: Responses to TMZ and birinapant were analysed in a panel of commercial and patient-derived GBM cell lines using colorimetric viability assays, flow cytometry, morphological analysis and protein expression profiling of pro- and antiapoptotic proteins. Responses in vivo were analysed in an orthotopic xenograft GBM model. Results: Single-agent treatment experiments categorised GBM cells into TMZ-sensitive cells, birinapant-sensitive cells, and cells that were insensitive to either treatment. Combination treatment allowed sensitisation to therapy in only a subset of resistant GBM cells. Cell death analysis identified three principal response patterns: Type A cells that readily activated caspase-8 and cell death in response to TMZ while addition of birinapant further sensitised the cells to TMZ-induced cell death; Type B cells that readily activated caspase-8 and cell death in response to birinapant but did not show further sensitisation with TMZ; and Type C cells that showed no significant cell death or moderately enhanced cell death in the combined treatment paradigm. Furthermore, in vivo, a Type C patient-derived cell line that was TMZ-insensitive in vitro and showed a strong sensitivity to TMZ and TMZ plus birinapant treatments. Conclusions: Our results demonstrate remarkable differences in responses of patient-derived GBM cells to birinapant single and combination treatments, and suggest that therapeutic responses in vivo may be greatly affected by the tumour microenvironment. PMID:26657652
Schlüter, Daniela K.; Ramis-Conde, Ignacio; Chaplain, Mark A. J.
2015-01-01
Studying the biophysical interactions between cells is crucial to understanding how normal tissue develops, how it is structured and also when malfunctions occur. Traditional experiments try to infer events at the tissue level after observing the behaviour of and interactions between individual cells. This approach assumes that cells behave in the same biophysical manner in isolated experiments as they do within colonies and tissues. In this paper, we develop a multi-scale multi-compartment mathematical model that accounts for the principal biophysical interactions and adhesion pathways not only at a cell–cell level but also at the level of cell colonies (in contrast to the traditional approach). Our results suggest that adhesion/separation forces between cells may be lower in cell colonies than traditional isolated single-cell experiments infer. As a consequence, isolated single-cell experiments may be insufficient to deduce important biological processes such as single-cell invasion after detachment from a solid tumour. The simulations further show that kinetic rates and cell biophysical characteristics such as pressure-related cell-cycle arrest have a major influence on cell colony patterns and can allow for the development of protrusive cellular structures as seen in invasive cancer cell lines independent of expression levels of pro-invasion molecules. PMID:25519994
Bazl, M Rajabi; Rasaee, M J; Foruzandeh, M; Rahimpour, A; Kiani, J; Rahbarizadeh, F; Alirezapour, B; Mohammadi, M
2007-02-01
There is an increasing interest in the application of nanobodies such as VHH in the field of therapy and imaging. In the present study a stable genetically engineered cell line of Chinese hamster ovary (CHO) origin transfected using two sets of expression vectors was constructed in order to permit the cytoplasmic and extracellular expression of single domain antibody along with green fluorescent protein (GFP) as reporter gene. The quality of the constructs were examined both by the restriction map as well as sequence analysis. The gene transfection and protein expression was further examined by reverse transcription-polymerase chain reaction (RT-PCR). The transfected cells were grown in 200 microg/mL hygromycin containing media and the stable cell line obtained showed fluorescent activity for more than a period of 180 days. The production of fusion protein was also detected by fluorescent microscopy, fluorescent spectroscopy as well as by enzyme-linked immunosorbent assay (ELISA) analysis. This strategy allows a rapid production of recombinant fluobodies involving VHH, which can be used in various experiments such as imaging and detection in which a primary labeled antibody is required.
Cytotoxic Compounds from Aerial Organs of Xanthium strumarium.
Ferrer, Janet Piloto; Zampini, Iris Catiana; Cuello, Ana Soledad; Francisco, Marbelis; Romero, Aylema; Valdivia, Dayana; Gonzalez, Maria; Carlos Salas; Lamar, Angel Sanchez; Isla, Maria Inés
2016-03-01
Xanthium strumarium L., the main species of the genus Xanthium, is ubiquitously distributed. The aim of this study was to determine the cytotoxic effect of aerial organs of X strumarium, grown in Cuba, against cancer cell lines and the isolation of compounds potentially responsible for this activity. Initially, an ethanol partitioning procedure yielded the XSE extract that was subsequently fractionated with chloroform resulting in a XSCF fraction. Both, XSE and XSCF fractions exhibited cytotoxic effects on MDA MB-23 1, MCF7, A549 and CT26 cell lines by using the MTT assay. Above all, the XSCF fraction was more active than XSE. For this reason, XSCF was subsequently fractionated by silica gel chromatography and the active fractions submitted to semi-preparative HPLC for isolation of bioactive compounds. Six sub-fractions (SF1 to SF6) were recovered. Sub-fractions 3 and 6 were the most active on each assayed cell line, while sub-fractions 4 and 5 were only active against A549 and CT26 cell lines. In each case, sub-fraction 6 showed the strongest inhibitory effect. The HPLC-DAD fingerprint of sub-fraction 6 showed a single peak that was identified by GC-MS as (-) spathulenol, a sesquiterpene with reported antitumor activity.
Buriani, Alessandro; Fortinguerra, Stefano; Sorrenti, Vincenzo; Dall'Acqua, Stefano; Innocenti, Gabbriella; Montopoli, Monica; Gabbia, Daniela; Carrara, Maria
2017-08-11
Principal component analysis (PCA) multivariate analysis was applied to study the cytotoxic activity of essential oils from various species of the Pistacia genus on human tumor cell lines. In particular, the cytotoxic activity of essential oils obtained from P. lentiscus , P. lentiscus var. chia (mastic gum), P. terebinthus , P. vera , and P. integerrima , was screened on three human adenocarcinoma cell lines: MCF-7 (breast), 2008 (ovarian), and LoVo (colon). The results indicate that all the Pistacia phytocomplexes, with the exception of mastic gum oil, induce cytotoxic effects on one or more of the three cell lines. PCA highlighted the presence of different cooperating clusters of bioactive molecules. Cluster variability among species, and even within the same species, could explain some of the differences seen among samples suggesting the presence of both common and species-specific mechanisms. Single molecules from one of the most significant clusters were tested, but only bornyl-acetate presented cytotoxic activity, although at much higher concentrations (IC 50 = 138.5 µg/mL) than those present in the essential oils, indicating that understanding of the full biological effect requires a holistic vision of the phytocomplexes with all its constituents.
Effects of antioxidants on the quality and genomic stability of induced pluripotent stem cells
Luo, Lan; Kawakatsu, Miho; Guo, Chao-Wan; Urata, Yoshishige; Huang, Wen-Jing; Ali, Haytham; Doi, Hanako; Kitajima, Yuriko; Tanaka, Takayuki; Goto, Shinji; Ono, Yusuke; Xin, Hong-Bo; Hamano, Kimikazu; Li, Tao-Sheng
2014-01-01
Effects of antioxidants on the quality and genomic stability of induced pluripotent stem (iPS) cells were investigated with two human iPS cell lines (201B7 and 253G1). Cells used in this study were expanded from a single colony of each cell line with the addition of proprietary antioxidant supplement or homemade antioxidant cocktail in medium, and maintained in parallel for 2 months. The cells grew well in all culture conditions and kept “stemness”. Although antioxidants modestly decreased the levels of intracellular reactive oxygen species, there were no differences in the expression of 53BP1 and pATM, two critical molecules related with DNA damage and repair, under various culture conditions. CGH analysis showed that the events of genetic aberrations were decreased only in the 253G1 iPS cells with the addition of homemade antioxidant cocktail. Long-term culture will be necessary to confirm whether low dose antioxidants improve the quality and genomic stability of iPS cells. PMID:24445363
Kong, Desheng; Wang, Yan; Ji, Ping; Li, Wei; Ying, Tianlei; Huang, Jinghe; Wang, Chen; Wu, Yanling; Wang, Yanping; Chen, Weizao; Hao, Yanling; Hong, Kunxue; Shao, Yiming; Dimitrov, Dimiter S; Jiang, Shibo; Ma, Liying
2018-05-11
Current treatments cannot completely eradicate HIV-1 owing to the presence of latently infected cells which harbor transcriptionally silent HIV-1. However, defucosylated antibodies can readily kill latently infected cells after their activation to express envelope glycoprotein (Env) through antibody-dependent cellular cytotoxicity (ADCC). We herein aimed to test a defucosylated bispecific multivalent molecule consisting of domain-antibody and single-domain CD4, LSEVh-LS-F, for its HIV-1 neutralizing activity and ADCC against the reactivated latently infected cells, compared with the non-defucosylated molecule LSEVh-LS. LSEVh-LS-F's neutralizing activity against a panel of newly characterized Chinese HIV-1 clinical isolates was assessed by using TZM-bl- and PBMC-based assays. LSEVh-LS-F-mediated ADCC in the presence of NK cells against cell lines that stably express Env proteins, HIV-1-infected cells and LRA-reactivated HIV-1 latent cells, was measured using a lactate dehydrogenase (LDH) cytotoxicity assay or flow cytometry. LSEVh-LS-F and LSEVh-LS were equally effective in neutralized infection of all HIV-1 isolates tested with IC50 and IC90 values 3∼4-fold lower than those of VRC01. LSEVh-LS-F was more effective in NK-mediated killing of HIV-1 Env-expressing cell lines, HIV-1-infected cells, latency reactivation agents-reactivated ACH2 cells, and reactivated latently infected resting CD4 T cell line as well as resting CD4 T lymphocytes isolated from patients receiving highly active anti-retroviral therapy (HAART). LSEVh-LS-F exhibits broad HIV-1 neutralizing activity and enhanced ADCC against HIV-1-infected cells, reactivated latently infected cell lines and primary CD4 T cells, thus being a promising candidate therapeutic for eradicating the HIV-1 reservoir.
Asgar, Md Ali; Senawong, Gulsiri; Sripa, Banchob; Senawong, Thanaset
2016-01-01
Clinical application of cisplatin against cholangiocarcinoma is often associated with resistance and toxicity posing urgent demand for combination therapy. In this study, we evaluated the combined anticancer effect of cisplatin and histone deacetylase inhibitors (HDACIs), suberoylanilide hydroxamic acid (SAHA) and trichostatin A (TSA), on the cholangiocarcinoma KKU-100 and KKU-M214 cell lines. Antiproliferative activity was evaluated using MTT assay. Apoptosis induction and cell cycle arrest were analyzed by flow cytometry. Cell cycle and apoptosis regulating proteins were evaluated by western blot analysis. MTT assay showed that cisplatin, SAHA and TSA dose-dependently reduced the viability of KKU-100 and KKU-M214 cells. The combination of cisplatin and HDACIs exerted significantly more cytotoxicity than the single drugs. Combination indices below 1.0 reflect synergism between cisplatin and HDACIs, leading to positive dose reductions of cisplatin and HDACIs. Cisplatin and HDACIs alone induced G0/G1 phase arrest in KKU-100 cells, but the drug combinations increased sub-G1 percent more than either drug. However, cisplatin and HDACIs alone or in combination increased only the sub-G1 percent in KKU-M214 cells. Annexin V-FITC staining revealed that cisplatin and HDACIs combinations induced more apoptotic cell death of both KKU-100 and KKU-M214 cells than the single drug. In KKU-100 cells, growth inhibition was accompanied by upregulation of p53 and p21 and downregulation of CDK4 and Bcl-2 due to exposure to cisplatin, SAHA and TSA alone or in combination. Moreover, combination of agents exerted higher impacts on protein expression. Single agents or combination did not affect p53 expression, however, combination of cisplatin and HDACIs increased the expression of p21 in KKU-M214 cells. Taken together, cisplatin and HDACIs combination may improve the therapeutic outcome in cholangiocarcinoma patients.
Integrated microfluidic devices for combinatorial cell-based assays.
Yu, Zeta Tak For; Kamei, Ken-ichiro; Takahashi, Hiroko; Shu, Chengyi Jenny; Wang, Xiaopu; He, George Wenfu; Silverman, Robert; Radu, Caius G; Witte, Owen N; Lee, Ki-Bum; Tseng, Hsian-Rong
2009-06-01
The development of miniaturized cell culture platforms for performing parallel cultures and combinatorial assays is important in cell biology from the single-cell level to the system level. In this paper we developed an integrated microfluidic cell-culture platform, Cell-microChip (Cell-microChip), for parallel analyses of the effects of microenvironmental cues (i.e., culture scaffolds) on different mammalian cells and their cellular responses to external stimuli. As a model study, we demonstrated the ability of culturing and assaying several mammalian cells, such as NIH 3T3 fibroblast, B16 melanoma and HeLa cell lines, in a parallel way. For functional assays, first we tested drug-induced apoptotic responses from different cell lines. As a second functional assay, we performed "on-chip" transfection of a reporter gene encoding an enhanced green fluorescent protein (EGFP) followed by live-cell imaging of transcriptional activation of cyclooxygenase 2 (Cox-2) expression. Collectively, our Cell-microChip approach demonstrated the capability to carry out parallel operations and the potential to further integrate advanced functions and applications in the broader space of combinatorial chemistry and biology.
Integrated microfluidic devices for combinatorial cell-based assays
Yu, Zeta Tak For; Kamei, Ken-ichiro; Takahashi, Hiroko; Shu, Chengyi Jenny; Wang, Xiaopu; He, George Wenfu; Silverman, Robert
2010-01-01
The development of miniaturized cell culture platforms for performing parallel cultures and combinatorial assays is important in cell biology from the single-cell level to the system level. In this paper we developed an integrated microfluidic cell-culture platform, Cell-microChip (Cell-μChip), for parallel analyses of the effects of microenvir-onmental cues (i.e., culture scaffolds) on different mammalian cells and their cellular responses to external stimuli. As a model study, we demonstrated the ability of culturing and assaying several mammalian cells, such as NIH 3T3 fibro-blast, B16 melanoma and HeLa cell lines, in a parallel way. For functional assays, first we tested drug-induced apoptotic responses from different cell lines. As a second functional assay, we performed "on-chip" transfection of a reporter gene encoding an enhanced green fluorescent protein (EGFP) followed by live-cell imaging of transcriptional activation of cyclooxygenase 2 (Cox-2) expression. Collectively, our Cell-μChip approach demonstrated the capability to carry out parallel operations and the potential to further integrate advanced functions and applications in the broader space of combinatorial chemistry and biology. PMID:19130244
Lipowska-Bhalla, Grazyna; Gilham, David E; Hawkins, Robert E; Rothwell, Dominic G
2013-12-01
The clinical potential of chimeric antigen receptors in adoptive cellular therapy is beginning to be realized with several recent clinical trials targeting CD19 showing promising results in advanced B cell malignancies. This increased efficacy corresponds with improved engineering of the chimeric receptors with the latest-generation receptors eliciting greater signaling and proliferation potential. However, the antigen-binding single-chain variable fragment (scFv) domain of the receptors is critical in determining the activity of the chimeric receptor-expressing T cells, as this determines specificity and affinity to the tumor antigen. In this study, we describe a mammalian T cell line screening protocol employing a 2A-based bicistronic retroviral vector to isolate functional scFvs. This approach involves expression of the scFv library in a chimeric antigen receptor, and is based on selection of clones capable of stimulating CD69 upregulation in a T cell line and has a number of advantages over previously described methods in that the use of a 2A cassette ensures the exclusion of nonexpressing scFvs and the screening using a chimeric receptor in a mammalian T cell line ensures selection in the optimum context for therapeutic use. Proof-of-principle experiments show that the protocol was capable of a 10(5)-fold enrichment of positive clones after three rounds of selection. Furthermore, an antigen-specific clone was successfully isolated from a partially enriched scFv library, confirming the strength of the protocol. This approach has the potential to identify novel scFvs of use in adoptive T cell therapy and, potentially, wider antibody-based applications.
Fedr, Radek; Pernicová, Zuzana; Slabáková, Eva; Straková, Nicol; Bouchal, Jan; Grepl, Michal; Kozubík, Alois; Souček, Karel
2013-05-01
The clonogenic assay is a well-established in vitro method for testing the survival and proliferative capability of cells. It can be used to determine the cytotoxic effects of various treatments including chemotherapeutics and ionizing radiation. However, this approach can also characterize cells with different phenotypes and biological properties, such as stem cells or cancer stem cells. In this study, we implemented a faster and more precise method for assessing the cloning efficiency of cancer stem-like cells that were characterized and separated using a high-speed cell sorter. Cell plating onto a microplate using an automatic cell deposition unit was performed in a single-cell or dilution rank mode by the fluorescence-activated cell sorting method. We tested the new automatic cell-cloning assay (ACCA) on selected cancer cell lines and compared it with the manual approach. The obtained results were also compared with the results of the limiting dilution assay for different cell lines. We applied the ACCA to analyze the cloning capacity of different subpopulations of prostate and colon cancer cells based on the expression of the characteristic markers of stem (CD44 and CD133) and cancer stem cells (TROP-2, CD49f, and CD44). Our results revealed that the novel ACCA is a straightforward approach for determining the clonogenic capacity of cancer stem-like cells identified in both cell lines and patient samples. Copyright © 2013 International Society for Advancement of Cytometry.
In vitro analysis of low-level laser irradiation on human osteoblast-like cells proliferation
NASA Astrophysics Data System (ADS)
Bloise, Nora; Saino, Enrica; Bragheri, Francesca; Minzioni, Paolo; Cristiani, Ilaria; Imbriani, Marcello; Visai, Livia
2011-07-01
The objective of this study was to examine the in vitro effect of a single or a multiple doses of low-level laser irradiation (LLLI) on proliferation of the human osteosarcoma cell line, SAOS-2. SAOS-2 cells were divided in five groups and exposed to LLLI (659 nm diode laser; 11 mW power output): group I as a control (dark), group II exposed to a single laser dose of 1 J/cm2, group III irradiated with a single dose of 3 J/cm2, and group IV and V exposed for three consecutive days to 1 or 3 J/cm², respectively. Cellular proliferation was assessed daily up to 7 days of culturing. The obtained results showed an increase in proliferative capacity of SAOS-2 cells during the first 96 h of culturing time in once-irradiated cells, as compared to control cells. Furthermore, a significantly higher proliferation in the group IV and V was detected if compared to a single dose or to control group after 96 h and 7 days. In conclusion, the effect of the single dose on cell proliferation was transitory and repeated irradiations were necessary to observe a strong enhancement of SAOS-2 growth. As a future perspective, we would like to determine the potential of LLLI as a new approach for promoting bone regeneration onto biomaterials.
Fahrmayr, C; König, J; Auge, D; Mieth, M; Fromm, MF
2012-01-01
BACKGROUND AND PURPOSE The coordinate activity of hepatic uptake transporters [e.g. organic anion transporting polypeptide 1B1 (OATP1B1)], drug-metabolizing enzymes [e.g. UDP-glucuronosyltransferase 1A1 (UGT1A1)] and efflux pumps (e.g. MRP2) is a crucial determinant of drug disposition. However, limited data are available on transport of drugs (e.g. ezetimibe, etoposide) and their glucuronidated metabolites by human MRP2 in intact cell systems. EXPERIMENTAL APPROACH Using monolayers of newly established triple-transfected MDCK-OATP1B1-UGT1A1-MRP2 cells as well as MDCK control cells, single- (OATP1B1) and double-transfected (OATP1B1-UGT1A1, OATP1B1-MRP2) MDCK cells, we therefore studied intracellular concentrations and transcellular transport after administration of ezetimibe or etoposide to the basal compartment. KEY RESULTS Intracellular accumulation of ezetimibe was significantly lower in MDCK-OATP1B1-UGT1A1-MRP2 triple-transfected cells compared with all other cell lines. Considerably higher amounts of ezetimibe glucuronide were found in the apical compartment of MDCK-OATP1B1-UGT1A1-MRP2 monolayers compared with all other cell lines. Using HEK cells, etoposide was identified as a substrate of OATP1B1. Intracellular concentrations of etoposide equivalents (i.e. parent compound plus metabolites) were affected only to a minor extent by the absence or presence of OATP1B1/UGT1A1/MRP2. In contrast, apical accumulation of etoposide equivalents was significantly higher in monolayers of both cell lines expressing MRP2 (MDCK-OATP1B1-MRP2, MDCK-OATP1B1-UGT1A1-MRP2) compared with the single-transfected (OATP1B1) and the control cell line. CONCLUSIONS AND IMPLICATIONS Ezetimibe glucuronide is a substrate of human MRP2. Moreover, etoposide and possibly also its glucuronide are substrates of MRP2. These data demonstrate the functional interplay between transporter-mediated uptake, phase II metabolism and export by hepatic proteins involved in drug disposition. PMID:21923755
Kaminota, Teppei; Yano, Hajime; Shiota, Kohei; Nomura, Noriko; Yaguchi, Haruna; Kirino, Yui; Ohara, Kentaro; Tetsumura, Issei; Sanada, Tomoyoshi; Ugumori, Toru; Tanaka, Junya; Hato, Naohito
2017-04-22
Cancer cells can migrate as collectives during invasion and/or metastasis; however, the precise molecular mechanisms of this form of migration are less clear compared with single cell migration following epithelial-mesenchymal transition. Elevated Na + /H + exchanger1 (NHE1) expression has been suggested to have malignant roles in a number of cancer cell lines and in vivo tumor models. Furthermore, a metastatic human head and neck squamous cell carcinoma (HNSCC) cell line (SASL1m) that was isolated based on its increased metastatic potential also exhibited higher NHE1 expression than its parental line SAS. Time-lapse video recordings indicated that both cell lines migrate as collectives, although with different features, e.g., SASL1m was much more active and changed the direction of migration more frequently than SAS cells, whereas locomotive activities were comparable. SASL1m cells also exhibited higher invasive activity than SAS in Matrigel invasion assays. shRNA-mediated NHE1 knockdown in SASL1m led to reduced locomotive and invasive activities, suggesting a critical role for NHE1 in the collective migration of SASL1m cells. SASL1m cells also exhibited a higher metastatic rate than SAS cells in a mouse lymph node metastasis model, while NHE1 knockdown suppressed in vivo SASL1m metastasis. Finally, elevated NHE1 expression was observed in human HNSCC tissue, and Cariporide, a specific NHE1 inhibitor, reduced the invasive activity of SASL1m cells, implying NHE1 could be a target for anti-invasion/metastasis therapy. Copyright © 2017 Elsevier Inc. All rights reserved.
Chukkapalli, Vineela; Gordon, Leo I; Venugopal, Parameswaran; Borgia, Jeffrey A; Karmali, Reem
2018-04-20
Metformin exerts direct anti-tumor effects by activating AMP-activated protein kinase (AMPK), a major sensor of cellular metabolism in cancer cells. This, in turn, inhibits pro-survival mTOR signaling. Metformin has also been shown to disrupt complex 1 of the mitochondrial electron transport chain. Here, we explored the lymphoma specific anti-tumor effects of metformin using Daudi (Burkitt), SUDHL-4 (germinal center diffuse large B-cell lymphoma; GC DLBCL), Jeko-1 (Mantle-cell lymphoma; MCL) and KPUM-UH1 (double hit DLBCL) cell lines. We demonstrated that metformin as a single agent, especially at high concentrations produced significant reductions in viability and proliferation only in Daudi and SUDHL-4 cell lines with associated alterations in mitochondrial oxidative and glycolytic metabolism. As bcl-2 proteins, cyclin dependent kinases (CDK) and phosphoinositol-3- kinase (PI3K) also influence mitochondrial physiology and metabolism with clear relevance to the pathogenesis of lymphoma, we investigated the potentiating effects of metformin when combined with novel agents Venetoclax (bcl-2 inhibitor), BAY-1143572 (CDK9 inhibitor) and Idelalisib (p110δ- PI3K inhibitor). Co-treating KPUM-UH1 and SUDHL-4 cells with 10 mM of metformin resulted in 1.4 fold and 8.8 fold decreases, respectively, in IC-50 values of Venetoclax. By contrast, 3-fold and 10 fold reduction in IC-50 values of BAY-1143572 in Daudi and Jeko-1 cells respectively was seen in the presence of 10 mM of metformin. No change in IC-50 value for Idelalisib was observed across cell lines. These data suggest that although metformin is not a potent single agent, targeting cancer metabolism with similar but more effective drugs in novel combination with either bcl-2 or CDK9 inhibitors warrants further exploration.
The slow cell death response when screening chemotherapeutic agents.
Blois, Joseph; Smith, Adam; Josephson, Lee
2011-09-01
To examine the correlation between cell death and a common surrogate of death used in screening assays, we compared cell death responses to those obtained with the sulforhodamine B (SRB) cell protein-based "cytotoxicity" assay. With the SRB assay, the Hill equation was used to obtain an IC50 and final cell mass, or cell mass present at infinite agent concentrations, with eight adherent cell lines and four agents (32 agent/cell combinations). Cells were treated with high agent concentrations (well above the SRB IC50) and the death response determined as the time-dependent decrease in cells failing to bind both annexin V and vital fluorochromes by flow cytometry. Death kinetics were categorized as fast (5/32) (similar to the reference nonadherent Jurkat line), slow (17/32), or none (10/32), despite positive responses in the SRB assay in all cases. With slow cell death, a single exposure to a chemotherapeutic agent caused a slow, progressive increase in dead (necrotic) and dying (apoptotic) cells for at least 72 h. Cell death (defined by annexin and/or fluorochrome binding) did not correlate with the standard SRB "cytotoxicity" assay. With the slow cell death response, a single exposure to an agent caused a slow conversion from vital to apoptotic and necrotic cells over at least 72 h (the longest time point examined). Here, increasing the time of exposure to agent concentrations modestly above the SRB IC50 provides a method of maximizing cell kill. If tumors respond similarly, sustained low doses of chemotherapeutic agents, rather than a log-kill, maximum tolerated dose strategy may be an optimal strategy of maximizing tumor cell death.
Vargas, Ana Cristina; Keith, Patricia; Reid, Lynne; Wockner, Leesa; Amiri, Marjan Askarian; Sarkar, Debina; Simpson, Peter T.; Clarke, Catherine; Schmidt, Chris W.; Reynolds, Brent A.
2013-01-01
Mammosphere and breast tumoursphere culture have gained popularity as in vitro assays for propagating and analysing normal and cancer stem cells. Whether the spheres derived from different sources or parent cultures themselves are indeed single entities enriched in stem/progenitor cells compared to other culture formats has not been fully determined. We surveyed sphere-forming capacity across 26 breast cell lines, immunophenotyped spheres from six luminal- and basal-like lines by immunohistochemistry and flow cytometry and compared clonogenicity between sphere, adherent and matrigel culture formats using in vitro functional assays. Analyses revealed morphological and molecular intra- and inter-sphere heterogeneity, consistent with adherent parental cell line phenotypes. Flow cytometry showed sphere culture does not universally enrich for markers previously associated with stem cell phenotypes, although we found some cell-line specific changes between sphere and adherent formats. Sphere-forming efficiency was significantly lower than adherent or matrigel clonogenicity and constant over serial passage. Surprisingly, self-renewal capacity of sphere-derived cells was similar/lower than other culture formats. We observed significant correlation between long-term-proliferating-cell symmetric division rates in sphere and adherent cultures, suggesting functional overlap between the compartments sustaining them. Experiments with normal primary human mammary epithelia, including sorted luminal (MUC1+) and basal/myoepithelial (CD10+) cells revealed distinct luminal-like, basal-like and mesenchymal entities amongst primary mammospheres. Morphological and colony-forming-cell assay data suggested mammosphere culture may enrich for a luminal progenitor phenotype, or induce reversion/relaxation of the basal/mesenchymal in vitro selection occurring with adherent culture. Overall, cell line tumourspheres and primary mammospheres are not homogenous entities enriched for stem cells, suggesting a more cautious approach to interpreting data from these assays and careful consideration of its limitations. Sphere culture may represent an alternative 3-dimensional culture system which rather than universally ‘enriching’ for stem cells, has utility as one of a suite of functional assays that provide a read-out of progenitor activity. PMID:23750209
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, V.L.; Corcoran, P.; Droemer, D.
Recent experiments (1) have adapted existing magne-tically insulated induction voltage adders (Sabre, Hermes III) to drive a 10 MV diode immersed in magnetic fields as high as 50 T. In such a diode, an electron beam of tens of kA can be confined by the magnetic field to a diameter of about 1 mm, and when it strikes a high-Z anode it can create a bremsstrahlung x-ray source intense enough to radiograph massive objects with high resolution. RITS is an adder system designed specially to drive such diodes, and it will be used to develop and exploit them. As inmore » other adder-based pulsers such as Sabre, Hermes III, and Kalif-Heliq the induction cells have amorphous- iron cores, and the pulse-forming system consists of water dielectric pulse lines and self-closing water switches that are pulse-charged from Marx-charged intermediate water capacitors through laser-triggered Rimfire switches. An oil prepulse switch in series with each pulse line is designed to reduce cathode prepulse to less than ± 5 kV, and a means is provided to bias the cathode and avoid negative prepulse entirely. The RITS pulse-forming system consists of two modules. Each module has one Marx that charges two 3 MV intermediate stores, each of which charges three 7.8 ohm pulselines, making six pulselines per module. The two modules in concert can supply 1.35 MV, 50 ns pulses to a twelve-cell adder and thus drive a 16 MV diode with a single pulse. The 1.35 MV induction cells each have a single-point feed, from which a single, slotted azimuthal oil transmission line distributes energy uniformly around the cell. The modules can also be pulsed separately at different times, either to power two 8 MV adders that each drive one of two closely-spaced cathodes immersed in a common magnetic field, or to provide two separate pulses to a common six- cell adder and a single 8 NIV diode; in these two-pulse modes, the spacing of the two 50 ns pulses may be chosen to be anything from a few hundred ns upward. The use of only one pulse line per cell has been shown to increase the extent to which the cell voltages can vary with the timing of closure of the water switches. This and all other functions of RITS have been simulated in detail, and a conservative electrical design has been developed. This will be illustrated, along with the conceptual design of a pulse-sorting network that can couple two pulselines efilciently to one cell when the two RITS modules drive a common adder in two-pulse mode.« less
Fast Raman single bacteria identification: toward a routine in-vitro diagnostic
NASA Astrophysics Data System (ADS)
Douet, Alice; Josso, Quentin; Marchant, Adrien; Dutertre, Bertrand; Filiputti, Delphine; Novelli-Rousseau, Armelle; Espagnon, Isabelle; Kloster-Landsberg, Meike; Mallard, Frédéric; Perraut, Francois
2016-04-01
Timely microbiological results are essential to allow clinicians to optimize the prescribed treatment, ideally at the initial stage of the therapeutic process. Several approaches have been proposed to solve this issue and to provide the microbiological result in a few hours directly from the sample such as molecular biology. However fast and sensitive those methods are not based on single phenotypic information which presents several drawbacks and limitations. Optical methods have the advantage to allow single-cell sensitivity and to probe the phenotype of measured cells. Here we present a process and a prototype that allow automated single-bacteria phenotypic analysis. This prototype is based on the use of Digital In-line Holography techniques combined with a specially designed Raman spectrometer using a dedicated device to capture bacteria. The localization of single-cell is finely determined by using holograms and a proper propagation kernel. Holographic images are also used to analyze bacteria in the sample to sort potential pathogens from flora dwelling species or other biological particles. This accurate localization enables the use of a small confocal volume adapted to the measurement of single-cell. Along with the confocal volume adaptation, we also have modified every components of the spectrometer to optimize single-bacteria Raman measurements. This optimization allowed us to acquire informative single-cell spectra using an integration time of 0.5s only. Identification results obtained with this prototype are presented based on a 65144 Raman spectra database acquired automatically on 48 bacteria strains belonging to 8 species.
Crispr-mediated Gene Targeting of Human Induced Pluripotent Stem Cells.
Byrne, Susan M; Church, George M
2015-01-01
CRISPR/Cas9 nuclease systems can create double-stranded DNA breaks at specific sequences to efficiently and precisely disrupt, excise, mutate, insert, or replace genes. However, human embryonic stem or induced pluripotent stem cells (iPSCs) are more difficult to transfect and less resilient to DNA damage than immortalized tumor cell lines. Here, we describe an optimized protocol for genome engineering of human iPSCs using a simple transient transfection of plasmids and/or single-stranded oligonucleotides. With this protocol, we achieve transfection efficiencies greater than 60%, with gene disruption efficiencies from 1-25% and gene insertion/replacement efficiencies from 0.5-10% without any further selection or enrichment steps. We also describe how to design and assess optimal sgRNA target sites and donor targeting vectors; cloning individual iPSC by single cell FACS sorting, and genotyping successfully edited cells.
Tidball, Andrew M; Dang, Louis T; Glenn, Trevor W; Kilbane, Emma G; Klarr, Daniel J; Margolis, Joshua L; Uhler, Michael D; Parent, Jack M
2017-09-12
Specifically ablating genes in human induced pluripotent stem cells (iPSCs) allows for studies of gene function as well as disease mechanisms in disorders caused by loss-of-function (LOF) mutations. While techniques exist for engineering such lines, we have developed and rigorously validated a method of simultaneous iPSC reprogramming while generating CRISPR/Cas9-dependent insertions/deletions (indels). This approach allows for the efficient and rapid formation of genetic LOF human disease cell models with isogenic controls. The rate of mutagenized lines was strikingly consistent across experiments targeting four different human epileptic encephalopathy genes and a metabolic enzyme-encoding gene, and was more efficient and consistent than using CRISPR gene editing of established iPSC lines. The ability of our streamlined method to reproducibly generate heterozygous and homozygous LOF iPSC lines with passage-matched isogenic controls in a single step provides for the rapid development of LOF disease models with ideal control lines, even in the absence of patient tissue. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Cloning of an osteoblastic cell line involved in the formation of osteoclast-like cells.
Yamashita, T; Asano, K; Takahashi, N; Akatsu, T; Udagawa, N; Sasaki, T; Martin, T J; Suda, T
1990-12-01
Experiments have been carried out to determine the mechanisms involved in the formation of osteoclast-like cells from spleen cells in mice. Osteoclasts were defined as tartrate-resistant acid phosphatase-positive multinucleated cells (TRACP-positive MNCs) in which specific calcitonin receptors were identified by autoradiography with labeled salmon calcitonin. Furthermore, cultures rich in these cells produced resorption pits when grown on dentine slices. Several clonal cell lines were obtained from fetal mouse calvariae and screened for their ability to induce TRACP-positive MNCs in response to 1 alpha, 25-dihydroxyvitamin D3 [1 alpha, 25(OH)2D3] in co-cultures with spleen cells. A cell line, KS-4, was identified with the greatest potency in inducing osteoclast-like cell formation in co-culture with spleen cells. The capacity of KS-4 cells to produce this effect was much greater than that of two bone marrow-derived stromal cell lines (MC3T3-G2/PA6 and ST2 cells), which we have previously shown to be effective in this system but to require treatment with dexamethasone in addition to 1 alpha, 25(OH)2D3 (Udagawa et al.: Endocrinology 125:1805-1813, 1989). Parathyroid hormone (PTH) increased cAMP production in KS-4 cells, and PTH and interleukin-1 alpha also induced TRACP-positive MNCs in co-cultures with spleen cells. Contact between living KS-4 and spleen cells was necessary for osteoclast formation to take place, since this did not occur when the two populations were separated by a membrane filter, or when the KS-4 cells were killed by fixation. Separate cultures of either spleen cells or KS-4 cells formed no TRACP-positive MNCs. KS-4 cells synthesized predominantly type I collagen, formed bone nodules without added of beta-glycerophosphate in a long-term culture, and expressed increasing alkaline phosphatase activity after confluence in culture. These results indicate that the KS-4 cells have properties consistent with progression toward the osteoblast phenotype and represent a single cell line with the ability to promote osteoclast formation by a contact-requiring process.
An integrated single- and two-photon non-diffracting light-sheet microscope
NASA Astrophysics Data System (ADS)
Lau, Sze Cheung; Chiu, Hoi Chun; Zhao, Luwei; Zhao, Teng; Loy, M. M. T.; Du, Shengwang
2018-04-01
We describe a fluorescence optical microscope with both single-photon and two-photon non-diffracting light-sheet excitations for large volume imaging. With a special design to accommodate two different wavelength ranges (visible: 400-700 nm and near infrared: 800-1200 nm), we combine the line-Bessel sheet (LBS, for single-photon excitation) and the scanning Bessel beam (SBB, for two-photon excitation) light sheet together in a single microscope setup. For a transparent thin sample where the scattering can be ignored, the LBS single-photon excitation is the optimal imaging solution. When the light scattering becomes significant for a deep-cell or deep-tissue imaging, we use SBB light-sheet two-photon excitation with a longer wavelength. We achieved nearly identical lateral/axial resolution of about 350/270 nm for both imagings. This integrated light-sheet microscope may have a wide application for live-cell and live-tissue three-dimensional high-speed imaging.
Kilian, A; Bowtell, D D; Abud, H E; Hime, G R; Venter, D J; Keese, P K; Duncan, E L; Reddel, R R; Jefferson, R A
1997-11-01
Telomerase is a multicomponent reverse transcriptase enzyme that adds DNA repeats to the ends of chromosomes using its RNA component as a template for synthesis. Telomerase activity is detected in the germline as well as the majority of tumors and immortal cell lines, and at low levels in several types of normal cells. We have cloned a human gene homologous to a protein from Saccharomyces cerevisiae and Euplotes aediculatus that has reverse transcriptase motifs and is thought to be the catalytic subunit of telomerase in those species. This gene is present in the human genome as a single copy sequence with a dominant transcript of approximately 4 kb in a human colon cancer cell line, LIM1215. The cDNA sequence was determined using clones from a LIM1215 cDNA library and by RT-PCR, cRACE and 3'RACE on mRNA from the same source. We show that the gene is expressed in several normal tissues, telomerase-positive post-crisis (immortal) cell lines and various tumors but is not expressed in the majority of normal tissues analyzed, pre-crisis (non-immortal) cells and telomerase-negative immortal (ALT) cell lines. Multiple products were identified by RT-PCR using primers within the reverse transcriptase domain. Sequencing of these products suggests that they arise by alternative splicing. Strikingly, various tumors, cell lines and even normal tissues (colonic crypt and testis) showed considerable differences in the splicing patterns. Alternative splicing of the telomerase catalytic subunit transcript may be important for the regulation of telomerase activity and may give rise to proteins with different biochemical functions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xi, Wenjun
2008-01-01
A capillary electrophoresis (CE) method is developed to determine both NAD + and NADH levels in a single cell, based on an enzymatic cycling reaction. The detection limit can reach down to 0.2 amol NAD + and 1 amol NADH on a home-made CE-LIF setup. The method showed good reproducibility and specificity. After an intact cell was injected into the inlet of a capillary and lysed using a Tesla coil, intracellular NAD + and NADH were separated, incubated with the cycling buffer, and quantified by the amount of fluorescent product generated. NADH and NAD + levels of single cells ofmore » three cell lines and primary astrocyte culture were determined using this method. Comparing cellular NAD + and NADH levels with and without exposure to oxidative stress induced by H 2O 2, it was found that H9c2 cells respond to the stress by reducing both cellular NAD + and NADH levels, while astrocytes respond by increasing cellular NADH/NAD + ratio.« less
Resolving rates of mutation in the brain using single-neuron genomics
Evrony, Gilad D; Lee, Eunjung; Park, Peter J; Walsh, Christopher A
2016-01-01
Whether somatic mutations contribute functional diversity to brain cells is a long-standing question. Single-neuron genomics enables direct measurement of somatic mutation rates in human brain and promises to answer this question. A recent study (Upton et al., 2015) reported high rates of somatic LINE-1 element (L1) retrotransposition in the hippocampus and cerebral cortex that would have major implications for normal brain function, and suggested that these events preferentially impact genes important for neuronal function. We identify aspects of the single-cell sequencing approach, bioinformatic analysis, and validation methods that led to thousands of artifacts being interpreted as somatic mutation events. Our reanalysis supports a mutation frequency of approximately 0.2 events per cell, which is about fifty-fold lower than reported, confirming that L1 elements mobilize in some human neurons but indicating that L1 mosaicism is not ubiquitous. Through consideration of the challenges identified, we provide a foundation and framework for designing single-cell genomics studies. DOI: http://dx.doi.org/10.7554/eLife.12966.001 PMID:26901440
Fujii, Masato; Ohya, Susumu; Yamamura, Hisao; Imaizumi, Yuji
2012-07-01
To provide a high-throughput screening method for human ether-a-go-go-gene-related gene (hERG) K(+) channel inhibition, a new recombinant cell line, in which single action potential (AP)-induced cell death was produced by gene transfection. Mutated human cardiac Na(+) channel Nav1.5 (IFM/Q3), which shows extremely slow inactivation, and wild-type inward rectifier K(+) channel, Kir2.1, were stably co-expressed in HEK293 cells (IFM/Q3+Kir2.1). In IFM/Q3+Kir2.1, application of single electrical stimulation (ES) elicited a long AP lasting more than 30 s and led cells to die by more than 70%, whereas HEK293 co-transfected with wild-type Nav1.5 and Kir2.1 fully survived. The additional expression of hERG K(+) channels in IFM/Q3+Kir2.1 shortened the duration of evoked AP and thereby markedly reduced the cell death. The treatment of the cells with hERG channel inhibitors such as nifekalant, E-4031, cisapride, terfenadine, and verapamil, recovered the prolonged AP and dose-dependently facilitated cell death upon ES. The EC(50) values to induce the cell death were 3 µM, 19 nM, 17 nM, 74 nM, and 3 µM, respectively, whereas 10 µM nifedipine did not induce cell death. Results indicate the high utility of this cell system for hERG K(+) channel safety assay.
Lobastova, Liudmila; Kraus, Dominik; Glassmann, Alexander; Khan, Dilaware; Steinhäuser, Christian; Wolff, Christina; Veit, Nadine; Winter, Jochen; Probstmeier, Rainer
2017-02-01
Tumor cell invasion and metastasis are life threatening events. Invasive tumor cells tend to migrate as collective sheets. In the present in vitro study we aimed to (i) assess whether collective tumor cells gain benefits in their migratory potential compared to single cells and (ii) to identify its putative underlying molecular mechanisms. The migratory potential of single and collective carcinoma cells was assessed using video time lapse microscopy and cell migration assays in the absence and presence of seven potential gap junction inhibitors or the Rac1 inhibitor Z62954982. The perturbation of gap junctions was assessed using a dye diffusion assay. In addition, LDH-based cytotoxicity and RT-PCR-based expression analyses were performed. Whereas single breast, cervix and thyroid carcinoma cells were virtually immobile on unfavourable plastic surfaces, we found that they gained pronounced migratory capacities as collectives under comparable conditions. Thyroid carcinoma cells, that were studied in more detail, were found to express specific subsets of connexins and to form active gap junctions as revealed by dye diffusion analysis. Although all potential gap junction blockers suppressed intercellular dye diffusion in at least one of the cell lines tested, only two of them were found to inhibit collective cell migration and none of them to inhibit single cell migration. In the presence of the Rac1 inhibitor Z62954982 collective migration, but not single cell migration, was found to be reduced up to 20 %. Our data indicate that collective migration enables tumor cells to cross otherwise unfavourable substrate areas. This capacity seems to be independent of intercellular communication via gap junctions, whereas Rac1-dependent intracellular signalling seems to be essential.
Plasma membrane microorganization of LR73 multidrug-resistant cells revealed by FCS
NASA Astrophysics Data System (ADS)
Winckler, Pascale; Jaffiol, Rodolphe; Cailler, Aurélie; Morjani, Hamid; Jeannesson, Pierre; Deturche, Régis
2011-03-01
Tumoral cells could present a multidrug resistance (MDR) to chemotherapeutic treatments. This drug resistance would be associated to biomechanisms occurring at the plasma membrane level, involving modification of membrane fluidity, drug permeability, presence of microdomains (rafts, caveolae...), and membrane proteins overexpression such as Pglycoprotein. Fluorescence correlation spectroscopy (FCS) is the relevant method to investigate locally the fluidity of biological membranes through the lateral diffusion of a fluorescent membrane probe. Thus, we use FCS to monitor the plasma membrane local organization of LR73 carcinoma cells and three derived multidrug-resistant cancer cells lines. Measurements were conducted at the single cell level, which enabled us to get a detailed overview of the plasma membrane microviscosity distribution of each cell line studied. Moreover, we propose 2D diffusion simulation based on a Monte Carlo model to investigate the membrane organisation in terms of microdomains. This simulation allows us to relate the differences in the fluidity distributions with microorganization changes in plasma membrane of MDR cells.
NASA Astrophysics Data System (ADS)
Landry, Markita Patricia; Ando, Hiroki; Chen, Allen Y.; Cao, Jicong; Kottadiel, Vishal Isaac; Chio, Linda; Yang, Darwin; Dong, Juyao; Lu, Timothy K.; Strano, Michael S.
2017-05-01
A distinct advantage of nanosensor arrays is their ability to achieve ultralow detection limits in solution by proximity placement to an analyte. Here, we demonstrate label-free detection of individual proteins from Escherichia coli (bacteria) and Pichia pastoris (yeast) immobilized in a microfluidic chamber, measuring protein efflux from single organisms in real time. The array is fabricated using non-covalent conjugation of an aptamer-anchor polynucleotide sequence to near-infrared emissive single-walled carbon nanotubes, using a variable chemical spacer shown to optimize sensor response. Unlabelled RAP1 GTPase and HIV integrase proteins were selectively detected from various cell lines, via large near-infrared fluorescent turn-on responses. We show that the process of E. coli induction, protein synthesis and protein export is highly stochastic, yielding variability in protein secretion, with E. coli cells undergoing division under starved conditions producing 66% fewer secreted protein products than their non-dividing counterparts. We further demonstrate the detection of a unique protein product resulting from T7 bacteriophage infection of E. coli, illustrating that nanosensor arrays can enable real-time, single-cell analysis of a broad range of protein products from various cell types.
Accumulation of True Single Strand Breaks and AP sites in Base Excision Repair Deficient Cells
Luke, April M.; Chastain, Paul D.; Pachkowski, Brian F.; Afonin, Valeriy; Takeda, Shunichi; Kaufman, David G.; Swenberg, James A.; Nakamura, Jun
2010-01-01
Single strand breaks (SSBs) are one of the most frequent DNA lesions caused by endogenous and exogenous agents. The most utilized alkaline-based assays for SSB detection frequently give false positive results due to the presence of alkali-labile sites that are converted to SSBs. Methoxyamine, an acidic O-hydroxylamine, has been utilized to measure DNA damage in cells. However, the neutralization of methoxyamine is required prior to usage. Here we developed a convenient, specific SSB assay using alkaline gel electrophoresis (AGE) coupled with a neutral O-hydroxylamine, O-(tetrahydro-2H-pyran-2-yl)hydroxylamine (OTX). OTX stabilizes abasic sites (AP sites) to prevent their alkaline incision while still allowing for strong alkaline DNA denaturation. DNA from DT40 and isogenic polymerase β null cells exposed to methyl methanesulfonate were applied to the OTX-coupled AGE (OTX-AGE) assay. Time-dependent increases in SSBs were detected in each cell line with more extensive SSB formation in the null cells. These findings were supported by an assay that indirectly detects SSBs through measuring NAD(P)H depletion. An ARP-slot blot assay demonstrated a significant time-dependent increase in AP sites in both cell lines by 1 mM MMS compared to control. Furthermore, the Pol β-null cells displayed greater AP site formation than the parental DT40 cells. OTX use represents a facile approach for assessing SSB formation, whose benefits can also be applied to other established SSB assays. PMID:20851134
2014-01-01
Background PTEN inactivation is the most frequent genetic aberration in endometrial cancer. One of the phosphatase-independent roles of PTEN is associated with homologous recombination (HR) in nucleus. Poly (ADP-ribose) polymerase (PARP) plays key roles in the repair of DNA single-strand breaks, and a PARP inhibitor induces synthetic lethality in cancer cells with HR deficiency. We examined the anti-tumor activity of olaparib, a PARP inhibitor, and its correlation between the sensitivity and status of PTEN in endometrial cancer cell lines. Methods The response to olaparib was evaluated using a clonogenic assay with SF50 values (concentration to inhibit cell survival to 50%) in 16 endometrial cancer cell lines. The effects of PTEN on the sensitivity to olaparib and ionizing radiation (IR) exposure were compared between parental HEC-6 (PTEN-null) and HEC-6 PTEN + (stably expressing wild-type PTEN) cells by clonogenic assay, foci formation of RAD51 and γH2AX, and induction of cleaved PARP. The effects of siRNA to PTEN were analyzed in cells with wild-type PTEN. Results The SF50 values were 100 nM or less in four (25%: sensitive) cell lines; whereas, SF50 values were 1,000 nM or more in four (25%: resistant) cell lines. PTEN mutations were not associated with sensitivity to olaparib (Mutant [n = 12]: 746 ± 838 nM; Wild-type [n = 4]: 215 ± 85 nM, p = 0.26 by Student’s t test). RAD51 expression was observed broadly and was not associated with PTEN status in the 16 cell lines. The number of colonies in the clonogenic assay, the foci formation of RAD51 and γH2AX, and the induction of apoptosis were not affected by PTEN introduction in the HEC-6 PTEN + cells. The expression level of nuclear PTEN was not elevated within 24 h following IR in the HEC-6-PTEN + cells. In addition, knocking down PTEN by siRNA did not alter the sensitivity to olaparib in 2 cell lines with wild-type PTEN. Conclusions Our results suggest that olaparib, a PARP inhibitor, is effective on certain endometrial cancer cell lines. Inactivation of PTEN might not affect the DNA repair function. Predictive biomarkers are warranted to utilize olaparib in endometrial cancer. PMID:24625059
Using Public Data for Comparative Proteome Analysis in Precision Medicine Programs.
Hughes, Christopher S; Morin, Gregg B
2018-03-01
Maximizing the clinical utility of information obtained in longitudinal precision medicine programs would benefit from robust comparative analyses to known information to assess biological features of patient material toward identifying the underlying features driving their disease phenotype. Herein, the potential for utilizing publically deposited mass-spectrometry-based proteomics data to perform inter-study comparisons of cell-line or tumor-tissue materials is investigated. To investigate the robustness of comparison between MS-based proteomics studies carried out with different methodologies, deposited data representative of label-free (MS1) and isobaric tagging (MS2 and MS3 quantification) are utilized. In-depth quantitative proteomics data acquired from analysis of ovarian cancer cell lines revealed the robust recapitulation of observable gene expression dynamics between individual studies carried out using significantly different methodologies. The observed signatures enable robust inter-study clustering of cell line samples. In addition, the ability to classify and cluster tumor samples based on observed gene expression trends when using a single patient sample is established. With this analysis, relevant gene expression dynamics are obtained from a single patient tumor, in the context of a precision medicine analysis, by leveraging a large cohort of repository data as a comparator. Together, these data establish the potential for state-of-the-art MS-based proteomics data to serve as resources for robust comparative analyses in precision medicine applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rapid acquisition of mean Raman spectra of eukaryotic cells for a robust single cell classification.
Schie, Iwan W; Kiselev, Roman; Krafft, Christoph; Popp, Jürgen
2016-11-14
Raman spectroscopy has previously been used to identify eukaryotic and prokaryotic cells. While prokaryotic cells are small in size and can be assessed by a single Raman spectrum, the larger size of eukaryotic cells and their complex organization requires the acquisition of multiple Raman spectra to properly characterize them. A Raman spectrum from a diffraction-limited spot at an arbitrary location within a cell results in spectral variations that affect classification approaches. To probe whole cells with Raman imaging at high spatial resolution is time consuming, because a large number of Raman spectra need to be collected, resulting in low cell throughput and impairing statistical analysis due to low cell numbers. Here we propose a method to overcome the effects of cellular heterogeneity by acquiring integrated Raman spectra covering a large portion of a cell. The acquired spectrum represents the mean macromolecular composition of a cell with an exposure time that is comparable to acquisition of a single Raman spectrum. Data sets were collected from T lymphocyte Jurkat cells, and pancreatic cell lines Capan1 and MiaPaca2. Cell classification by support vector machines was compared for single spectra, spectra of images and integrated Raman spectra of cells. The integrated approach provides better and more stable prediction for individual cells, and in the current implementation, the mean macromolecular information of a cell can be acquired faster than with the acquisition of individual spectra from a comparable region. It is expected that this approach will have a major impact on the implementation of Raman based cell classification.
A Carbon Nanotube Optical Reporter Maps Endolysosomal Lipid Flux
2017-01-01
Lipid accumulation within the lumen of endolysosomal vesicles is observed in various pathologies including atherosclerosis, liver disease, neurological disorders, lysosomal storage disorders, and cancer. Current methods cannot measure lipid flux specifically within the lysosomal lumen of live cells. We developed an optical reporter, composed of a photoluminescent carbon nanotube of a single chirality, that responds to lipid accumulation via modulation of the nanotube’s optical band gap. The engineered nanomaterial, composed of short, single-stranded DNA and a single nanotube chirality, localizes exclusively to the lumen of endolysosomal organelles without adversely affecting cell viability or proliferation or organelle morphology, integrity, or function. The emission wavelength of the reporter can be spatially resolved from within the endolysosomal lumen to generate quantitative maps of lipid content in live cells. Endolysosomal lipid accumulation in cell lines, an example of drug-induced phospholipidosis, was observed for multiple drugs in macrophages, and measurements of patient-derived Niemann–Pick type C fibroblasts identified lipid accumulation and phenotypic reversal of this lysosomal storage disease. Single-cell measurements using the reporter discerned subcellular differences in equilibrium lipid content, illuminating significant intracellular heterogeneity among endolysosomal organelles of differentiating bone-marrow-derived monocytes. Single-cell kinetics of lipoprotein-derived cholesterol accumulation within macrophages revealed rates that differed among cells by an order of magnitude. This carbon nanotube optical reporter of endolysosomal lipid content in live cells confers additional capabilities for drug development processes and the investigation of lipid-linked diseases. PMID:28898055
Rajendra, Yashas; Hougland, Maria D; Alam, Riazul; Morehead, Teresa A; Barnard, Gavin C
2015-05-01
Transient gene expression (TGE) is a rapid method for the production of recombinant proteins in mammalian cells. While the volumetric productivity of TGE has improved significantly over the past decade, most methods involve extensive cell line engineering and plasmid vector optimization in addition to long fed batch cultures lasting up to 21 days. Our colleagues have recently reported the development of a CHO K1SV GS-KO host cell line. By creating a bi-allelic glutamine synthetase knock out of the original CHOK1SV host cell line, they were able to improve the efficiency of generating high producing stable CHO lines for drug product manufacturing. We developed a TGE method using the same CHO K1SV GS-KO host cell line without any further cell line engineering. We also refrained from performing plasmid vector engineering. Our objective was to setup a TGE process to mimic protein quality attributes obtained from stable CHO cell line. Polyethyleneimine (PEI)-mediated transfections were performed at high cell density (4 × 10(6) cells/mL) followed by immediate growth arrest at 32 °C for 7 days. Optimizing DNA and PEI concentrations proved to be important. Interestingly, found the direct transfection method (where DNA and PEI were added sequentially) to be superior to the more common indirect method (where DNA and PEI are first pre-complexed). Moreover, the addition of a single feed solution and a polar solvent (N,N dimethylacetamide) significantly increased product titers. The scalability of process from 2 mL to 2 L was demonstrated using multiple proteins and multiple expression volumes. Using this simple, short, 7-day TGE process, we were able to successfully produce 54 unique proteins in a fraction of the time that would have been required to produce the respective stable CHO cell lines. The list of 54 unique proteins includes mAbs, bispecific antibodies, and Fc-fusion proteins. Antibody titers of up to 350 mg/L were achieved with the simple 7-day process. Titers were increased to 1 g/L by extending the culture to 16 days. We also present two case studies comparing product quality of material generated by transient HEK293, transient CHO K1SV GS-KO, and stable CHO K1SV KO pool. Protein from transient CHO was more representative of stable CHO protein compared to protein produced from HEK293. © 2014 Wiley Periodicals, Inc.
Martín-Sánchez, Esperanza; Rodríguez-Pinilla, Socorro M; Sánchez-Beato, Margarita; Lombardía, Luis; Domínguez-González, Beatriz; Romero, Diana; Odqvist, Lina; García-Sanz, Pablo; Wozniak, Magdalena B; Kurz, Guido; Blanco-Aparicio, Carmen; Mollejo, Manuela; Alves, F Javier; Menárguez, Javier; González-Palacios, Fernando; Rodríguez-Peralto, José Luis; Ortiz-Romero, Pablo L; García, Juan F; Bischoff, James R; Piris, Miguel A
2013-01-01
Peripheral T-cell lymphomas are very aggressive hematologic malignancies for which there is no targeted therapy. New, rational approaches are necessary to improve the very poor outcome in these patients. Phosphatidylinositol-3-kinase is one of the most important pathways in cell survival and proliferation. We hypothesized that phosphatidylinositol-3-kinase inhibitors could be rationally selected drugs for treating peripheral T-cell lymphomas. Several phosphatidylinositol-3-kinase isoforms were inhibited genetically (using small interfering RNA) and pharmacologically (with CAL-101 and GDC-0941 compounds) in a panel of six peripheral and cutaneous T-cell lymphoma cell lines. Cell viability was measured by intracellular ATP content; apoptosis and cell cycle changes were checked by flow cytometry. Pharmacodynamic biomarkers were assessed by western blot. The PIK3CD gene, which encodes the δ isoform of phosphatidylinositol-3-kinase, was overexpressed in cell lines and primary samples, and correlated with survival pathways. However, neither genetic nor specific pharmacological inhibition of phosphatidylinositol-3-kinase δ affected cell survival. In contrast, the pan-phosphatidylinositol-3-kinase inhibitor GDC-0941 arrested all T-cell lymphoma cell lines in the G1 phase and induced apoptosis in a subset of them. We identified phospho-GSK3β and phospho-p70S6K as potential biomarkers of phosphatidylinositol-3-kinase inhibitors. Interestingly, an increase in ERK phosphorylation was observed in some GDC -0941-treated T-cell lymphoma cell lines, suggesting the presence of a combination of phosphatidylinositol-3-kinase and MEK inhibitors. A highly synergistic effect was found between the two inhibitors, with the combination enhancing cell cycle arrest at G0/G1 in all T-cell lymphoma cell lines, and reducing cell viability in primary tumor T cells ex vivo. These results suggest that the combined treatment of pan-phosphatidylinositol-3-kinase + MEK inhibitors could be more effective than single phosphatidylinositol-3-kinase inhibitor treatment, and therefore, that this combination could be of therapeutic value for treating peripheral and cutaneous T-cell lymphomas.
Young, Susan M; Curry, Mark S; Ransom, John T; Ballesteros, Juan A; Prossnitz, Eric R; Sklar, Larry A; Edwards, Bruce S
2004-03-01
HyperCyt, an automated sample handling system for flow cytometry that uses air bubbles to separate samples sequentially introduced from multiwell plates by an autosampler. In a previously documented HyperCyt configuration, air bubble separated compounds in one sample line and a continuous stream of cells in another are mixed in-line for serial flow cytometric cell response analysis. To expand capabilities for high-throughput bioactive compound screening, the authors investigated using this system configuration in combination with automated cell sorting. Peptide ligands were sampled from a 96-well plate, mixed in-line with fluo-4-loaded, formyl peptide receptor-transfected U937 cells, and screened at a rate of 3 peptide reactions per minute with approximately 10,000 cells analyzed per reaction. Cell Ca(2+) responses were detected to as little as 10(-11) M peptide with no detectable carryover between samples at up to 10(-7) M peptide. After expansion in culture, cells sort-purified from the 10% highest responders exhibited enhanced sensitivity and more sustained responses to peptide. Thus, a highly responsive cell subset was isolated under high-throughput mixing and sorting conditions in which response detection capability spanned a 1000-fold range of peptide concentration. With single-cell readout systems for protein expression libraries, this technology offers the promise of screening millions of discrete compound interactions per day.
Generation and validation of PAX7 reporter lines from human iPS cells using CRISPR/Cas9 technology.
Wu, Jianbo; Hunt, Samuel D; Xue, Haipeng; Liu, Ying; Darabi, Radbod
2016-03-01
Directed differentiation of iPS cells toward various tissue progenitors has been the focus of recent research. Therefore, generation of tissue-specific reporter iPS cell lines provides better understanding of developmental stages in iPS cells. This technical report describes an efficient strategy for generation and validation of knock-in reporter lines in human iPS cells using the Cas9-nickase system. Here, we have generated a knock-in human iPS cell line for the early myogenic lineage specification gene of PAX7. By introduction of site-specific double-stranded breaks (DSB) in the genomic locus of PAX7 using CRISPR/Cas9 nickase pairs, a 2A-GFP reporter with selection markers has been incorporated before the stop codon of the PAX7 gene at the last exon. After positive and negative selection, single cell-derived human iPS clones have been isolated and sequenced for in-frame positioning of the reporter construct. Finally, by using a nuclease-dead Cas9 activator (dCas9-VP160) system, the promoter region of PAX7 has been targeted for transient gene induction to validate the GFP reporter activity. This was confirmed by flow cytometry analysis and immunostaining for PAX7 and GFP. This technical report provides a practical guideline for generation and validation of knock-in reporters using CRISPR/Cas9 system. Published by Elsevier B.V.
Hwang, Jae-Ho; Parton, Angela; Czechanski, Anne; Ballatori, Nazzareno; Barnes, David
2008-01-01
The organic solute and steroid transporter (OST/Ost) is a unique membrane transport protein heterodimer composed of subunits designated alpha and beta, that transports conjugated steroids and prostaglandin E2 across the plasma membrane. Ost was first identified in the liver of the cartilaginous fish Leucoraja erinacea, the little skate, and subsequently was found in many other species, including humans and rodents. The present study describes the isolation of a new cell line, LEE-1, derived from an early embryo of L. erinacea, and characterizes the expression of Ost in these cells. The mRNA size and amino acid sequence of Ost-beta in LEE-1 was identical to that previously reported for Ost-beta from skate liver, and the primary structure was identical to that of the spiny dogfish shark (Squalus acanthias) with the exception of a single amino acid. Ost-beta was found both on the plasma membrane and intracellularly in LEE-1 cells, consistent with its localization in other cell types. Interestingly, arachidonic acid, the precursor to eiconsanoids, strongly induced Ost-beta expression in LEE-1 cells and a lipid mixture containing arachidonic acid also induced Ost-alpha. Overall, the present study describes the isolation of a novel marine cell line, and shows that this cell line expresses relatively high levels of Ost when cultured in the presence of arachidonic acid. Although the function of this transport protein in embryo-derived cells is unknown, it may play a role in the disposition of eicosanoids or steroid-derived molecules. PMID:18407792
NASA Astrophysics Data System (ADS)
Astolfo, Alberto; Arfelli, Fulvia; Schültke, Elisabeth; James, Simon; Mancini, Lucia; Menk, Ralf-Hendrik
2013-03-01
In the present study complementary high-resolution imaging techniques on different length scales are applied to elucidate a cellular loading protocol of gold nanoparticles and subsequently its impact on long term and high-resolution cell-tracking utilizing X-ray technology. Although demonstrated for malignant cell lines the results can be applied to non-malignant cell lines as well. In particular the accumulation of the gold marker per cell has been assessed quantitatively by virtue of electron microscopy, two-dimensional X-ray fluorescence imaging techniques and X-ray CT with micrometric and sub-micrometric resolution. Moreover, utilizing these techniques the three dimensional distribution of the incorporated nanoparticles, which are sequestered in lysosomes as a permanent marker, could be determined. The latter allowed elucidation of the gold partition during mitosis and the cell size, which subsequently enabled us to define the optimal instrument settings of a compact microCT system to visualize gold loaded cells. The results obtained demonstrate the feasibility of cell-tracking using X-ray CT with compact sources.
Prabhakaran, R; Kalaivani, P; Huang, R; Poornima, P; Vijaya Padma, V; Dallemer, F; Natarajan, K
2013-02-01
Three new nickel(II) thiosemicarbazone complexes have been synthesized and characterized by analytical, spectral, and single-crystal X-ray diffraction studies. In complex 1, the ligand 2-hydroxy-1-naphthaldehydethiosemicarbazone coordinated as a monobasic tridentate donor, whereas in complexes 2 and 3, the ligands salicylaldehyde-4(N)-ethylthiosemicarbazone and 2-hydroxy-1-naphthaldehyde-4(N)-ethylthiosemicarbazone coordinated as a dibasic tridentate donor. The DNA binding ability of the complexes in calf thymus DNA was explored by absorption and emission titration experiments. The antioxidant property of the new complexes was evaluated to test their free-radical scavenging ability. In vitro cytotoxicity assays were performed for the new complexes in A549 and HepG2 cell lines. The new compounds overcome cisplatin resistance in the A549 cell line and they were also active in the HepG2 cell line. The cellular uptake study showed the accumulation of the complexes in tumor cells depended on the nature of the ligand attached to the nickel ion.
Dietlein, Felix; Thelen, Lisa; Jokic, Mladen; Jachimowicz, Ron D; Ivan, Laura; Knittel, Gero; Leeser, Uschi; van Oers, Johanna; Edelmann, Winfried; Heukamp, Lukas C; Reinhardt, H Christian
2014-05-01
Here, we use a large-scale cell line-based approach to identify cancer cell-specific mutations that are associated with DNA-dependent protein kinase catalytic subunit (DNA-PKcs) dependence. For this purpose, we profiled the mutational landscape across 1,319 cancer-associated genes of 67 distinct cell lines and identified numerous genes involved in homologous recombination-mediated DNA repair, including BRCA1, BRCA2, ATM, PAXIP, and RAD50, as being associated with non-oncogene addiction to DNA-PKcs. Mutations in the mismatch repair gene MSH3, which have been reported to occur recurrently in numerous human cancer entities, emerged as the most significant predictors of DNA-PKcs addiction. Concordantly, DNA-PKcs inhibition robustly induced apoptosis in MSH3-mutant cell lines in vitro and displayed remarkable single-agent efficacy against MSH3-mutant tumors in vivo. Thus, we here identify a therapeutically actionable synthetic lethal interaction between MSH3 and the non-homologous end joining kinase DNA-PKcs. Our observations recommend DNA-PKcs inhibition as a therapeutic concept for the treatment of human cancers displaying homologous recombination defects.
Gusev, Alexander; Shi, Huwenbo; Kichaev, Gleb; Pomerantz, Mark; Li, Fugen; Long, Henry W; Ingles, Sue A; Kittles, Rick A; Strom, Sara S; Rybicki, Benjamin A; Nemesure, Barbara; Isaacs, William B; Zheng, Wei; Pettaway, Curtis A; Yeboah, Edward D; Tettey, Yao; Biritwum, Richard B; Adjei, Andrew A; Tay, Evelyn; Truelove, Ann; Niwa, Shelley; Chokkalingam, Anand P; John, Esther M; Murphy, Adam B; Signorello, Lisa B; Carpten, John; Leske, M Cristina; Wu, Suh-Yuh; Hennis, Anslem J M; Neslund-Dudas, Christine; Hsing, Ann W; Chu, Lisa; Goodman, Phyllis J; Klein, Eric A; Witte, John S; Casey, Graham; Kaggwa, Sam; Cook, Michael B; Stram, Daniel O; Blot, William J; Eeles, Rosalind A; Easton, Douglas; Kote-Jarai, Zsofia; Al Olama, Ali Amin; Benlloch, Sara; Muir, Kenneth; Giles, Graham G; Southey, Melissa C; Fitzgerald, Liesel M; Gronberg, Henrik; Wiklund, Fredrik; Aly, Markus; Henderson, Brian E; Schleutker, Johanna; Wahlfors, Tiina; Tammela, Teuvo L J; Nordestgaard, Børge G; Key, Tim J; Travis, Ruth C; Neal, David E; Donovan, Jenny L; Hamdy, Freddie C; Pharoah, Paul; Pashayan, Nora; Khaw, Kay-Tee; Stanford, Janet L; Thibodeau, Stephen N; McDonnell, Shannon K; Schaid, Daniel J; Maier, Christiane; Vogel, Walther; Luedeke, Manuel; Herkommer, Kathleen; Kibel, Adam S; Cybulski, Cezary; Wokolorczyk, Dominika; Kluzniak, Wojciech; Cannon-Albright, Lisa; Teerlink, Craig; Brenner, Hermann; Dieffenbach, Aida K; Arndt, Volker; Park, Jong Y; Sellers, Thomas A; Lin, Hui-Yi; Slavov, Chavdar; Kaneva, Radka; Mitev, Vanio; Batra, Jyotsna; Spurdle, Amanda; Clements, Judith A; Teixeira, Manuel R; Pandha, Hardev; Michael, Agnieszka; Paulo, Paula; Maia, Sofia; Kierzek, Andrzej; Conti, David V; Albanes, Demetrius; Berg, Christine; Berndt, Sonja I; Campa, Daniele; Crawford, E David; Diver, W Ryan; Gapstur, Susan M; Gaziano, J Michael; Giovannucci, Edward; Hoover, Robert; Hunter, David J; Johansson, Mattias; Kraft, Peter; Le Marchand, Loic; Lindström, Sara; Navarro, Carmen; Overvad, Kim; Riboli, Elio; Siddiq, Afshan; Stevens, Victoria L; Trichopoulos, Dimitrios; Vineis, Paolo; Yeager, Meredith; Trynka, Gosia; Raychaudhuri, Soumya; Schumacher, Frederick R; Price, Alkes L; Freedman, Matthew L; Haiman, Christopher A; Pasaniuc, Bogdan
2016-04-07
Although genome-wide association studies have identified over 100 risk loci that explain ∼33% of familial risk for prostate cancer (PrCa), their functional effects on risk remain largely unknown. Here we use genotype data from 59,089 men of European and African American ancestries combined with cell-type-specific epigenetic data to build a genomic atlas of single-nucleotide polymorphism (SNP) heritability in PrCa. We find significant differences in heritability between variants in prostate-relevant epigenetic marks defined in normal versus tumour tissue as well as between tissue and cell lines. The majority of SNP heritability lies in regions marked by H3k27 acetylation in prostate adenoc7arcinoma cell line (LNCaP) or by DNaseI hypersensitive sites in cancer cell lines. We find a high degree of similarity between European and African American ancestries suggesting a similar genetic architecture from common variation underlying PrCa risk. Our findings showcase the power of integrating functional annotation with genetic data to understand the genetic basis of PrCa.
Integrated Solar Concentrator and Shielded Radiator
NASA Technical Reports Server (NTRS)
Clark, David Larry
2010-01-01
A shielded radiator is integrated within a solar concentrator for applications that require protection from high ambient temperatures with little convective heat transfer. This innovation uses a reflective surface to deflect ambient thermal radiation, shielding the radiator. The interior of the shield is also reflective to provide a view factor to deep space. A key feature of the shield is the parabolic shape that focuses incoming solar radiation to a line above the radiator along the length of the trough. This keeps the solar energy from adding to the radiator load. By placing solar cells along this focal line, the concentration of solar energy reduces the number and mass of required cells. By shielding the radiator, the effective reject temperature is much lower, allowing lower radiator temperatures. This is particularly important for lower-temperature processes, like habitat heat rejection and fuel cell operations where a high radiator temperature is not feasible. Adding the solar cells in the focal line uses the concentrating effect of the shield to advantage to accomplish two processes with a single device. This shield can be a deployable, lightweight Mylar structure for compact transport.
FANTOM5 CAGE profiles of human and mouse samples.
Noguchi, Shuhei; Arakawa, Takahiro; Fukuda, Shiro; Furuno, Masaaki; Hasegawa, Akira; Hori, Fumi; Ishikawa-Kato, Sachi; Kaida, Kaoru; Kaiho, Ai; Kanamori-Katayama, Mutsumi; Kawashima, Tsugumi; Kojima, Miki; Kubosaki, Atsutaka; Manabe, Ri-Ichiroh; Murata, Mitsuyoshi; Nagao-Sato, Sayaka; Nakazato, Kenichi; Ninomiya, Noriko; Nishiyori-Sueki, Hiromi; Noma, Shohei; Saijyo, Eri; Saka, Akiko; Sakai, Mizuho; Simon, Christophe; Suzuki, Naoko; Tagami, Michihira; Watanabe, Shoko; Yoshida, Shigehiro; Arner, Peter; Axton, Richard A; Babina, Magda; Baillie, J Kenneth; Barnett, Timothy C; Beckhouse, Anthony G; Blumenthal, Antje; Bodega, Beatrice; Bonetti, Alessandro; Briggs, James; Brombacher, Frank; Carlisle, Ailsa J; Clevers, Hans C; Davis, Carrie A; Detmar, Michael; Dohi, Taeko; Edge, Albert S B; Edinger, Matthias; Ehrlund, Anna; Ekwall, Karl; Endoh, Mitsuhiro; Enomoto, Hideki; Eslami, Afsaneh; Fagiolini, Michela; Fairbairn, Lynsey; Farach-Carson, Mary C; Faulkner, Geoffrey J; Ferrai, Carmelo; Fisher, Malcolm E; Forrester, Lesley M; Fujita, Rie; Furusawa, Jun-Ichi; Geijtenbeek, Teunis B; Gingeras, Thomas; Goldowitz, Daniel; Guhl, Sven; Guler, Reto; Gustincich, Stefano; Ha, Thomas J; Hamaguchi, Masahide; Hara, Mitsuko; Hasegawa, Yuki; Herlyn, Meenhard; Heutink, Peter; Hitchens, Kelly J; Hume, David A; Ikawa, Tomokatsu; Ishizu, Yuri; Kai, Chieko; Kawamoto, Hiroshi; Kawamura, Yuki I; Kempfle, Judith S; Kenna, Tony J; Kere, Juha; Khachigian, Levon M; Kitamura, Toshio; Klein, Sarah; Klinken, S Peter; Knox, Alan J; Kojima, Soichi; Koseki, Haruhiko; Koyasu, Shigeo; Lee, Weonju; Lennartsson, Andreas; Mackay-Sim, Alan; Mejhert, Niklas; Mizuno, Yosuke; Morikawa, Hiromasa; Morimoto, Mitsuru; Moro, Kazuyo; Morris, Kelly J; Motohashi, Hozumi; Mummery, Christine L; Nakachi, Yutaka; Nakahara, Fumio; Nakamura, Toshiyuki; Nakamura, Yukio; Nozaki, Tadasuke; Ogishima, Soichi; Ohkura, Naganari; Ohno, Hiroshi; Ohshima, Mitsuhiro; Okada-Hatakeyama, Mariko; Okazaki, Yasushi; Orlando, Valerio; Ovchinnikov, Dmitry A; Passier, Robert; Patrikakis, Margaret; Pombo, Ana; Pradhan-Bhatt, Swati; Qin, Xian-Yang; Rehli, Michael; Rizzu, Patrizia; Roy, Sugata; Sajantila, Antti; Sakaguchi, Shimon; Sato, Hiroki; Satoh, Hironori; Savvi, Suzana; Saxena, Alka; Schmidl, Christian; Schneider, Claudio; Schulze-Tanzil, Gundula G; Schwegmann, Anita; Sheng, Guojun; Shin, Jay W; Sugiyama, Daisuke; Sugiyama, Takaaki; Summers, Kim M; Takahashi, Naoko; Takai, Jun; Tanaka, Hiroshi; Tatsukawa, Hideki; Tomoiu, Andru; Toyoda, Hiroo; van de Wetering, Marc; van den Berg, Linda M; Verardo, Roberto; Vijayan, Dipti; Wells, Christine A; Winteringham, Louise N; Wolvetang, Ernst; Yamaguchi, Yoko; Yamamoto, Masayuki; Yanagi-Mizuochi, Chiyo; Yoneda, Misako; Yonekura, Yohei; Zhang, Peter G; Zucchelli, Silvia; Abugessaisa, Imad; Arner, Erik; Harshbarger, Jayson; Kondo, Atsushi; Lassmann, Timo; Lizio, Marina; Sahin, Serkan; Sengstag, Thierry; Severin, Jessica; Shimoji, Hisashi; Suzuki, Masanori; Suzuki, Harukazu; Kawai, Jun; Kondo, Naoto; Itoh, Masayoshi; Daub, Carsten O; Kasukawa, Takeya; Kawaji, Hideya; Carninci, Piero; Forrest, Alistair R R; Hayashizaki, Yoshihide
2017-08-29
In the FANTOM5 project, transcription initiation events across the human and mouse genomes were mapped at a single base-pair resolution and their frequencies were monitored by CAGE (Cap Analysis of Gene Expression) coupled with single-molecule sequencing. Approximately three thousands of samples, consisting of a variety of primary cells, tissues, cell lines, and time series samples during cell activation and development, were subjected to a uniform pipeline of CAGE data production. The analysis pipeline started by measuring RNA extracts to assess their quality, and continued to CAGE library production by using a robotic or a manual workflow, single molecule sequencing, and computational processing to generate frequencies of transcription initiation. Resulting data represents the consequence of transcriptional regulation in each analyzed state of mammalian cells. Non-overlapping peaks over the CAGE profiles, approximately 200,000 and 150,000 peaks for the human and mouse genomes, were identified and annotated to provide precise location of known promoters as well as novel ones, and to quantify their activities.
FANTOM5 CAGE profiles of human and mouse samples
Noguchi, Shuhei; Arakawa, Takahiro; Fukuda, Shiro; Furuno, Masaaki; Hasegawa, Akira; Hori, Fumi; Ishikawa-Kato, Sachi; Kaida, Kaoru; Kaiho, Ai; Kanamori-Katayama, Mutsumi; Kawashima, Tsugumi; Kojima, Miki; Kubosaki, Atsutaka; Manabe, Ri-ichiroh; Murata, Mitsuyoshi; Nagao-Sato, Sayaka; Nakazato, Kenichi; Ninomiya, Noriko; Nishiyori-Sueki, Hiromi; Noma, Shohei; Saijyo, Eri; Saka, Akiko; Sakai, Mizuho; Simon, Christophe; Suzuki, Naoko; Tagami, Michihira; Watanabe, Shoko; Yoshida, Shigehiro; Arner, Peter; Axton, Richard A.; Babina, Magda; Baillie, J. Kenneth; Barnett, Timothy C.; Beckhouse, Anthony G.; Blumenthal, Antje; Bodega, Beatrice; Bonetti, Alessandro; Briggs, James; Brombacher, Frank; Carlisle, Ailsa J.; Clevers, Hans C.; Davis, Carrie A.; Detmar, Michael; Dohi, Taeko; Edge, Albert S.B.; Edinger, Matthias; Ehrlund, Anna; Ekwall, Karl; Endoh, Mitsuhiro; Enomoto, Hideki; Eslami, Afsaneh; Fagiolini, Michela; Fairbairn, Lynsey; Farach-Carson, Mary C.; Faulkner, Geoffrey J.; Ferrai, Carmelo; Fisher, Malcolm E.; Forrester, Lesley M.; Fujita, Rie; Furusawa, Jun-ichi; Geijtenbeek, Teunis B.; Gingeras, Thomas; Goldowitz, Daniel; Guhl, Sven; Guler, Reto; Gustincich, Stefano; Ha, Thomas J.; Hamaguchi, Masahide; Hara, Mitsuko; Hasegawa, Yuki; Herlyn, Meenhard; Heutink, Peter; Hitchens, Kelly J.; Hume, David A.; Ikawa, Tomokatsu; Ishizu, Yuri; Kai, Chieko; Kawamoto, Hiroshi; Kawamura, Yuki I.; Kempfle, Judith S.; Kenna, Tony J.; Kere, Juha; Khachigian, Levon M.; Kitamura, Toshio; Klein, Sarah; Klinken, S. Peter; Knox, Alan J.; Kojima, Soichi; Koseki, Haruhiko; Koyasu, Shigeo; Lee, Weonju; Lennartsson, Andreas; Mackay-sim, Alan; Mejhert, Niklas; Mizuno, Yosuke; Morikawa, Hiromasa; Morimoto, Mitsuru; Moro, Kazuyo; Morris, Kelly J.; Motohashi, Hozumi; Mummery, Christine L.; Nakachi, Yutaka; Nakahara, Fumio; Nakamura, Toshiyuki; Nakamura, Yukio; Nozaki, Tadasuke; Ogishima, Soichi; Ohkura, Naganari; Ohno, Hiroshi; Ohshima, Mitsuhiro; Okada-Hatakeyama, Mariko; Okazaki, Yasushi; Orlando, Valerio; Ovchinnikov, Dmitry A.; Passier, Robert; Patrikakis, Margaret; Pombo, Ana; Pradhan-Bhatt, Swati; Qin, Xian-Yang; Rehli, Michael; Rizzu, Patrizia; Roy, Sugata; Sajantila, Antti; Sakaguchi, Shimon; Sato, Hiroki; Satoh, Hironori; Savvi, Suzana; Saxena, Alka; Schmidl, Christian; Schneider, Claudio; Schulze-Tanzil, Gundula G.; Schwegmann, Anita; Sheng, Guojun; Shin, Jay W.; Sugiyama, Daisuke; Sugiyama, Takaaki; Summers, Kim M.; Takahashi, Naoko; Takai, Jun; Tanaka, Hiroshi; Tatsukawa, Hideki; Tomoiu, Andru; Toyoda, Hiroo; van de Wetering, Marc; van den Berg, Linda M.; Verardo, Roberto; Vijayan, Dipti; Wells, Christine A.; Winteringham, Louise N.; Wolvetang, Ernst; Yamaguchi, Yoko; Yamamoto, Masayuki; Yanagi-Mizuochi, Chiyo; Yoneda, Misako; Yonekura, Yohei; Zhang, Peter G.; Zucchelli, Silvia; Abugessaisa, Imad; Arner, Erik; Harshbarger, Jayson; Kondo, Atsushi; Lassmann, Timo; Lizio, Marina; Sahin, Serkan; Sengstag, Thierry; Severin, Jessica; Shimoji, Hisashi; Suzuki, Masanori; Suzuki, Harukazu; Kawai, Jun; Kondo, Naoto; Itoh, Masayoshi; Daub, Carsten O.; Kasukawa, Takeya; Kawaji, Hideya; Carninci, Piero; Forrest, Alistair R.R.; Hayashizaki, Yoshihide
2017-01-01
In the FANTOM5 project, transcription initiation events across the human and mouse genomes were mapped at a single base-pair resolution and their frequencies were monitored by CAGE (Cap Analysis of Gene Expression) coupled with single-molecule sequencing. Approximately three thousands of samples, consisting of a variety of primary cells, tissues, cell lines, and time series samples during cell activation and development, were subjected to a uniform pipeline of CAGE data production. The analysis pipeline started by measuring RNA extracts to assess their quality, and continued to CAGE library production by using a robotic or a manual workflow, single molecule sequencing, and computational processing to generate frequencies of transcription initiation. Resulting data represents the consequence of transcriptional regulation in each analyzed state of mammalian cells. Non-overlapping peaks over the CAGE profiles, approximately 200,000 and 150,000 peaks for the human and mouse genomes, were identified and annotated to provide precise location of known promoters as well as novel ones, and to quantify their activities. PMID:28850106
Baghbaderani, Behnam Ahmadian; Syama, Adhikarla; Sivapatham, Renuka; Pei, Ying; Mukherjee, Odity; Fellner, Thomas; Zeng, Xianmin; Rao, Mahendra S
2016-08-01
We have recently described manufacturing of human induced pluripotent stem cells (iPSC) master cell banks (MCB) generated by a clinically compliant process using cord blood as a starting material (Baghbaderani et al. in Stem Cell Reports, 5(4), 647-659, 2015). In this manuscript, we describe the detailed characterization of the two iPSC clones generated using this process, including whole genome sequencing (WGS), microarray, and comparative genomic hybridization (aCGH) single nucleotide polymorphism (SNP) analysis. We compare their profiles with a proposed calibration material and with a reporter subclone and lines made by a similar process from different donors. We believe that iPSCs are likely to be used to make multiple clinical products. We further believe that the lines used as input material will be used at different sites and, given their immortal status, will be used for many years or even decades. Therefore, it will be important to develop assays to monitor the state of the cells and their drift in culture. We suggest that a detailed characterization of the initial status of the cells, a comparison with some calibration material and the development of reporter sublcones will help determine which set of tests will be most useful in monitoring the cells and establishing criteria for discarding a line.
A dual reporter cell assay for identifying serotype and drug susceptibility of herpes simplex virus.
Lu, Wen-Wen; Sun, Jun-Ren; Wu, Szu-Sian; Lin, Wan-Hsuan; Kung, Szu-Hao
2011-08-15
A dual reporter cell assay (DRCA) that allows real-time detection of herpes simplex virus (HSV) infection was developed. This was achieved by stable transfection of cells with an expression cassette that contains the dual reporter genes, secreted alkaline phosphatase (SEAP) and enhanced green fluorescent protein (EGFP), under the control of an HSV early gene promoter. Baby hamster kidney (BHK) and Chinese hamster ovary (CHO) cell lines were used as parental cell lines because the former is permissive for both HSV serotypes, HSV-1 and HSV-2, whereas the latter is susceptible to infection only by HSV-2. The DRCA permitted differential detection of HSV-1 and HSV-2 by observation of EGFP-positive cells, as substantiated by screening a total of 35 samples. The BHK-based cell line is sensitive to a viral titer as low as a single plaque-forming unit with a robust assay window as measured by a chemiluminescent assay. Evaluations of the DRCA with representative acyclovir-sensitive and acyclovir-resistant HSV strains demonstrated that their drug susceptibilities were accurately determined by a 48-h format. In summary, this novel DRCA is a useful means for serotyping of HSV in real time as well as a rapid screening method for determining anti-HSV susceptibilities. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yamagishi, Tsukasa; Maharjan, Laxman; Akagi, Hirofumi
This paper focuses on a battery energy storage system that can be installed in a 6.6-kV power distribution system. This system comprises a combination of a modular multilevel cascade converter based on single-star bridge-cells (MMCC-SSBC) and multiple battery modules. Each battery module is connected to the dc side of each bridge-cell, where the battery modules are galvanically isolated from each other. Three-phase multilevel line-to-line voltages with extremely low voltage steps on the ac side of the converter help in solving problems related to line harmonic currents and electromagnetic interference (EMI) issues. This paper proposes a control method that allows each bridge-cell to independently adjust the battery power flowing into or out of each battery module. A three-phase energy storage system using nine nickel-metal-hydride (NiMH) battery modules, each rated at 72V and 5.5Ah, is designed, constructed, and tested to verify the viability and effectiveness of the proposed control method.
Zhou, Jian; Alvarez-Elizondo, Martha B.; Botvinick, Elliot
2012-01-01
Small airway epithelial cells form a continuous sheet lining the conducting airways, which serves many functions including a physical barrier to protect the underlying tissue. In asthma, injury to epithelial cells can occur during bronchoconstriction, which may exacerbate airway hyperreactivity. To investigate the role of epithelial cell rupture in airway constriction, laser ablation was used to precisely rupture individual airway epithelial cells of small airways (<300-μm diameter) in rat lung slices (∼250-μm thick). Laser ablation of single epithelial cells using a femtosecond laser reproducibly induced airway contraction to ∼70% of the original cross-sectional area within several seconds, and the contraction lasted for up to 40 s. The airway constriction could be mimicked by mechanical rupture of a single epithelial cell using a sharp glass micropipette but not with a blunt glass pipette. These results suggest that soluble mediators released from the wounded epithelial cell induce global airway contraction. To confirm this hypothesis, the lysate of primary human small airway epithelial cells stimulated a similar airway contraction. Laser ablation of single epithelial cells triggered a single instantaneous Ca2+ wave in the epithelium, and multiple Ca2+ waves in smooth muscle cells, which were delayed by several seconds. Removal of extracellular Ca2+ or decreasing intracellular Ca2+ both blocked laser-induced airway contraction. We conclude that local epithelial cell rupture induces rapid and global airway constriction through release of soluble mediators and subsequent Ca2+-dependent smooth muscle shortening. PMID:22114176
Zhou, Jian; Alvarez-Elizondo, Martha B; Botvinick, Elliot; George, Steven C
2012-02-01
Small airway epithelial cells form a continuous sheet lining the conducting airways, which serves many functions including a physical barrier to protect the underlying tissue. In asthma, injury to epithelial cells can occur during bronchoconstriction, which may exacerbate airway hyperreactivity. To investigate the role of epithelial cell rupture in airway constriction, laser ablation was used to precisely rupture individual airway epithelial cells of small airways (<300-μm diameter) in rat lung slices (∼250-μm thick). Laser ablation of single epithelial cells using a femtosecond laser reproducibly induced airway contraction to ∼70% of the original cross-sectional area within several seconds, and the contraction lasted for up to 40 s. The airway constriction could be mimicked by mechanical rupture of a single epithelial cell using a sharp glass micropipette but not with a blunt glass pipette. These results suggest that soluble mediators released from the wounded epithelial cell induce global airway contraction. To confirm this hypothesis, the lysate of primary human small airway epithelial cells stimulated a similar airway contraction. Laser ablation of single epithelial cells triggered a single instantaneous Ca(2+) wave in the epithelium, and multiple Ca(2+) waves in smooth muscle cells, which were delayed by several seconds. Removal of extracellular Ca(2+) or decreasing intracellular Ca(2+) both blocked laser-induced airway contraction. We conclude that local epithelial cell rupture induces rapid and global airway constriction through release of soluble mediators and subsequent Ca(2+)-dependent smooth muscle shortening.
Cell micro-irradiation with MeV protons counted by an ultra-thin diamond membrane
NASA Astrophysics Data System (ADS)
Barberet, Philippe; Pomorski, Michal; Muggiolu, Giovanna; Torfeh, Eva; Claverie, Gérard; Huss, Cédric; Saada, Samuel; Devès, Guillaume; Simon, Marina; Seznec, Hervé
2017-12-01
We report the development of thin single crystal diamond membranes suitable for dose control in targeted cell irradiation experiments with a proton microbeam. A specific design was achieved to deliver single protons with a hit detection efficiency approaching 100%. The membranes have thicknesses between 1.8 and 3 μm and are used as vacuum windows on the microbeam line. The impact of these transmission detectors on the microbeam spot size is estimated by Monte-Carlo simulations, indicating that a beam lateral resolution below 2 μm is achieved. This is confirmed by experiments showing the accumulation online of X-ray Repair Cross-Complementing protein 1 (XRCC1)-Green Fluorescent Protein (GFP) at DNA damaged sites in living cells.
From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing.
Marinov, Georgi K; Williams, Brian A; McCue, Ken; Schroth, Gary P; Gertz, Jason; Myers, Richard M; Wold, Barbara J
2014-03-01
Single-cell RNA-seq mammalian transcriptome studies are at an early stage in uncovering cell-to-cell variation in gene expression, transcript processing and editing, and regulatory module activity. Despite great progress recently, substantial challenges remain, including discriminating biological variation from technical noise. Here we apply the SMART-seq single-cell RNA-seq protocol to study the reference lymphoblastoid cell line GM12878. By using spike-in quantification standards, we estimate the absolute number of RNA molecules per cell for each gene and find significant variation in total mRNA content: between 50,000 and 300,000 transcripts per cell. We directly measure technical stochasticity by a pool/split design and find that there are significant differences in expression between individual cells, over and above technical variation. Specific gene coexpression modules were preferentially expressed in subsets of individual cells, including one enriched for mRNA processing and splicing factors. We assess cell-to-cell variation in alternative splicing and allelic bias and report evidence of significant differences in splice site usage that exceed splice variation in the pool/split comparison. Finally, we show that transcriptomes from small pools of 30-100 cells approach the information content and reproducibility of contemporary RNA-seq from large amounts of input material. Together, our results define an experimental and computational path forward for analyzing gene expression in rare cell types and cell states.
NASA Technical Reports Server (NTRS)
Cotton, W. R.; George, R. L.; Knupp, K. R.
1982-01-01
The evolution of mesoscale systems that eventually lead to the formation of large quasi-steady storm systems is investigated. The morphological and turbulent structure of the quasi-steady storm is described. Data obtained during the South Park Area Cumulus Experiment from surface meteorological stations, rawinsondes and tethered balloons, conventional and Doppler radars, powered aircraft, and satellites, indicate that on July 19, 1977, a north-south oriented line of intense convective cells formed and remained within South Park. Elevated surface heating created a region of low-level convergence, importing Pacific moisture from west of the Rockies. The mesoscale thunderstorm line formed over this convergence zone, and a single large convective cell was observed to grow on the southern end of the mesoscale line, exhibiting supercell characteristics and substantial modifications of the environmental flow.
Webb, Alexis B; Lengyel, Iván M; Jörg, David J; Valentin, Guillaume; Jülicher, Frank; Morelli, Luis G; Oates, Andrew C
2016-01-01
In vertebrate development, the sequential and rhythmic segmentation of the body axis is regulated by a “segmentation clock”. This clock is comprised of a population of coordinated oscillating cells that together produce rhythmic gene expression patterns in the embryo. Whether individual cells autonomously maintain oscillations, or whether oscillations depend on signals from neighboring cells is unknown. Using a transgenic zebrafish reporter line for the cyclic transcription factor Her1, we recorded single tailbud cells in vitro. We demonstrate that individual cells can behave as autonomous cellular oscillators. We described the observed variability in cell behavior using a theory of generic oscillators with correlated noise. Single cells have longer periods and lower precision than the tissue, highlighting the role of collective processes in the segmentation clock. Our work reveals a population of cells from the zebrafish segmentation clock that behave as self-sustained, autonomous oscillators with distinctive noisy dynamics. DOI: http://dx.doi.org/10.7554/eLife.08438.001 PMID:26880542
[Construction of Rev-erbβ gene knockout HEK293 cell line with CRISPR/Cas9 system].
Chen, Fang; Zhang, Weifeng; Zhao, Junli; Yang, Peiyan; Ma, Rui; Xia, Haibin
2016-11-01
Objective To prepare Rev-erbβ knockout HEK293 cells using clustered regularly interspaced short palindromic repeats/Cas 9 nuclease (CRISPR/Cas9) gene editing technology. Methods The knock-in or knockout of Rev-erbβ gene could be realized by single-guide RNA (sgRNA)-mediated Cas9 cutting of target DNA, and followed by DNA homologous recombination or non-homologous end joining-mediated DNA repair. Firstly, four sgRNAs were designed for Rev-erbβ gene. The sgRNA1 and sgRNA2 with the higher activity were respectively used to construct pCMV-hCas9-U6-Rev-erbβ sgRNA1 and pCMV-hCas9-U6-Rev-erbβ sgRNA2. Then, pCMV-hCas9-U6-Rev-erbβ sgRNA1, pCMV-hCas9-U6-Rev-erbβ sgRNA2 and pAd5-E1/hRev-erbβ donor plasmid vectors were co-transfected into HEK293 cells. Through drug screening, cloning and sequencing, the Rev-erbβ gene-knockout HEK293 (Rev-erbβ -/- ) cell lines were obtained with one chain integrated with exogenous gene fragment and the other chain for deletion mutants. Finally, the HEK293 (Rev-erbβ -/- ) cell lines (C3-6) was detected with real-time quantitative PCR and Western blotting. Results Expression of Rev-erbβ mRNA and protein was undetectable in HEK293 Rev-erbβ -/- cell line. Conclusion Using CRISPR/Cas9 technology, the HEK293 Rev-erbβ -/- cell line has been successfully constructed, which would provide an effective tool for the study on the function of Rev-erbβ.
NASA Astrophysics Data System (ADS)
Andreola, Fausto; Cerec, Virginie; Pereira, Stephen P.
2009-06-01
EGFR, a member of the ERBB family, plays a pivotal role in carcinogenesis. EGFR overexpression is implicated in DNA repair and synergistic interactions between EGFR-targeting drugs and conventional chemo/radiotherapy have been reported in preclinical studies for different cancers but not cholangiocarcinoma (CCA). To date there are no in vitro data available on the cellular response and effect of either photodynamic therapy (PDT) or EGFR-targeting drugs on CCA. Therefore, we aimed to study the: (i) response to Verteporfin PDT and to EGFR-targeting drugs, as single agents; (ii) effect of PDT on ERBBs expression, phosporylation status and activation of its signaling pathways; (iii) response to combination of PDT and EGFR-targeting agents. We showed that two cholangiocarcinoma cell lines (HuCCT1 and TFK1 cells, intra- and extrahepatic, respectively) differentially respond to verteporfin-PDT treatment and are resistant to EGFR-targeting agents. A constitutive activation of EGFR in both cell lines was also observed, which could partly account for the observed resistance to EGFR-targeting drugs. In addition, verteporfin-PDT induced further phosphorylation of both EGFR and other Receptor Tyrosine Kinases. Mitochondria-independent apoptosis was induced by PDT in both CCA cell lines; in particular, PDT modulated the expression of members of the Inhibitor of Apoptosis (IAP) family of proteins. Interestingly, there was a PDT-induced EGFR nuclear translocation in both cell lines; co-treatment with either an EGFR-inhibitor (Cetuximab) or a nuclear import blocking agent (Wheat Germ Agglutinin) had an additive effect on PDT cell killing, thus implying a role of EGFR in repairing the potential PDT-induced DNA damage.
Sakaguchi, H; Ashikaga, T; Miyazawa, M; Yoshida, Y; Ito, Y; Yoneyama, K; Hirota, M; Itagaki, H; Toyoda, H; Suzuki, H
2006-08-01
Recent regulatory changes have placed a major emphasis on in vitro safety testing and alternative models. In regard to skin sensitization tests, dendritic cells (DCs) derived from human peripheral blood have been considered in the development of new in vitro alternatives. Human cell lines have been also reported recently. In our previous study, we suggested that measuring CD86 and/or CD54 expression on THP-1 cells (human monocytic leukemia cell line) could be used as an in vitro skin sensitization method. An inter-laboratory study among two laboratories was undertaken in Japan in order to further develop an in vitro skin sensitization model. In the present study, we used two human cell lines: THP-1 and U-937 (human histiocytic lymphoma cell line). First we optimized our test protocol (refer to the related paper entitled "optimization of the h-CLAT protocol" within this journal) and then we did an inter-laboratory validation with nine chemicals using the optimized protocol. We measured the expression of CD86 and CD54 on the above cells using flow cytometry after a 24h and 48h exposure to six known allergens (e.g., DNCB, pPD, NiSO(4)) and three non-allergens (e.g., SLS, tween 80). For the sample test concentration, four doses (0.1x, 0.5x, 1x, and 2x of the 50% inhibitory concentration (IC(50))) were evaluated. IC(50) was calculated using MTT assay. We found that allergens/non-allergens were better predicted using THP-1 cells compared to U-937 cells following a 24 h and a 48 h exposure. We also found that the 24h treatment time tended to have a better accuracy than the 48 h treatment time for THP-1 cells. Expression of CD86 and CD54 were good predictive markers for THP-1 cells, but for U-937 cells, expression of CD86 was a better predictor than CD54, at the 24h and the 48 h treatment time. The accuracy also improved when both markers (CD86 and CD54) were used as compared with a single marker for THP-1 cells. Both laboratories gave a good prediction of allergen/non-allergen, especially using THP-1 cells. These results suggest that our method, human Cell Line Activation Test (h-CLAT), using human cell lines THP-1 and U-937, but especially THP-1 cells at 24h treatment, may be a useful in vitro skin sensitization model to predict various contact allergens.
NASA Technical Reports Server (NTRS)
Ducas, T. W.; Feld, M. S.; Ryan, L. W., Jr.; Skribanowitz, N.; Javan, A.
1972-01-01
Observation results are presented on the optical hyperfine structure in Ne-21 obtained with the aid of laser-induced line-narrowing techniques. The output from a long stabilized single-mode 1.15-micron He-Ne laser focused into an external sample cell containing Ne-21 was used in implementing these techniques. Their applicability is demonstrated for optical hyperfine structure observation in systems whose features are ordinarily masked by Doppler broadening.
Characterisation of cytoplasmic DNA complementary to non-retroviral RNA viruses in human cells
Shimizu, Akira; Nakatani, Yoko; Nakamura, Takako; Jinno-Oue, Atsushi; Ishikawa, Osamu; Boeke, Jef D.; Takeuchi, Yasuhiro; Hoshino, Hiroo
2014-01-01
The synthesis and subsequent genomic integration of DNA that is complementary to the genomes of non-retroviral RNA viruses are rarely observed. However, upon infection of various human cell lines and primary fibroblasts with the vesicular stomatitis virus (VSV), we detected DNA complementary to the VSV RNA. The VSV DNA was detected in the cytoplasm as single-stranded DNA fully complementary to the viral mRNA from the poly(A) region to the 7-methyl guanosine cap. The formation of this DNA was cell-dependent. Experimentally, we found that the transduction of cells that do not produce VSV DNA with the long interspersed nuclear element 1 and their infection with VSV could lead to the formation of VSV DNA. Viral DNA complementary to other RNA viruses was also detected in the respective infected human cells. Thus, the genetic information of the non-retroviral RNA virus genome can flow into the DNA of mammalian cells expressing LINE-1-like elements. PMID:24875540
Canine osteosarcoma cells exhibit resistance to aurora kinase inhibitors.
Cannon, C M; Pozniak, J; Scott, M C; Ito, D; Gorden, B H; Graef, A J; Modiano, J F
2015-03-01
We evaluated the effect of Aurora kinase inhibitors AZD1152 and VX680 on canine osteosarcoma cells. Cytotoxicity was seen in all four cell lines; however, half-maximal inhibitory concentrations were significantly higher than in human leukaemia and canine lymphoma cells. AZD1152 reduced Aurora kinase B phosphorylation, indicating resistance was not because of failure of target recognition. Efflux mediated by ABCB1 and ABCG2 transporters is one known mechanism of resistance against these drugs and verapamil enhanced AZD1152-induced apoptosis; however, these transporters were only expressed by a small percentage of cells in each line and the effects of verapamil were modest, suggesting other mechanisms contribute to resistance. Our results indicate that canine osteosarcoma cells are resistant to Aurora kinase inhibitors and suggest that these compounds are unlikely to be useful as single agents for this disease. Further investigation of these resistance mechanisms and the potential utility of Aurora kinase inhibitors in multi-agent protocols is warranted. © 2013 Blackwell Publishing Ltd.
Ramos, Patrícia; Schmitz, Marcos; Filgueira, Daza; Votto, Ana Paula; Durruthy, Michael; Gelesky, Marcos; Ruas, Caroline; Yunes, João; Tonel, Mariana; Fagan, Solange; Monserrat, José
2017-07-01
Saxitoxins (STXs) are potent neurotoxins that also induce cytotoxicity through the generation of reactive oxygen species. Carbon nanotubes (CNTs) are nanomaterials that can promote a Trojan horse effect, facilitating the entry of toxic molecules to cells when adsorbed to nanomaterials. The interaction of pristine single-walled (SW)CNTs and carboxylated (SWCNT-COOH) nanotubes with STX was evaluated by ab initio simulation and bioassays using the cell line HT-22. Cells (5 × 10 4 cells/mL) were exposed to SWCNT and SWCNT-COOH (5 μg mL -1 ), STX (200 μg L -1 ), SWCNT+STX, and SWCNT-COOH+STX for 30 min or 24 h. Results of ab initio simulation showed that the interaction between SWCNT and SWCNT-COOH with STX occurs in a physisorption. The interaction of SWCNT+STX induced a decrease in cell viability. Cell proliferation was not affected in any treatment after 30 min or 24 h of exposure (p > 0.05). Treatment with SWCNT-COOH induced high reactive oxygen species levels, an effect attenuated in SWCNT-COOH+STX treatment. In terms of cellular oxygen consumption, both CNTs when coexposed with STX antagonize the toxin effect. Based on these results, it can be concluded that the results obtained in vitro corroborate the semiempirical evidence found using density functional theory ab initio simulation. Environ Toxicol Chem 2017;36:1728-1737. © 2016 SETAC. © 2016 SETAC.
NASA Astrophysics Data System (ADS)
Chang, Chi K.; Kong, Pak-Wing; Liu, Hai-Yang; Yeung, Lam-Lung; Koon, Ho-Kee; Mak, Nai-Ki
2006-02-01
Ten trans-A2B and A3-type corrole photosensitizers carrying functional groups were synthesized and screened for PDT activities. Photocytotoxicity was measured by the MTT cell reduction assay on a cultured human nasopharyngeal carcinoma (NPC) cell line (HONE-1). Experimental results indicated that corroles containing a single hydroxyphenyl substituent (3, 4 and 5) exhibit the highest activity among the corrole derivatives investigated. Confocal microscopy revealed that the site of cellular localization of the photosensitizers is predominantly at mitochondria. Also, nuclear staining detected apoptotic cell death.
Acousto-Optic Applications for Multichannel Adaptive Optical Processor
1992-06-01
AO cell and the two- channel line-scan camera system described in Subsection 4.1. The AO material for this IntraAction AOD-70 device was flint glass (n...Single-Channel 1.68 (flint glass ) 60,.0 AO Cell Multichannel 2.26 (TeO 2) 20.0 AO Cell Beam splitter 1.515 ( glass ) 50.8 Multichannel correlation was...Tone Intermodulation Dynamic Ranges of Longitudinal TeO2 Bragg Cells for Several Acoustic Power Densities 4-92 f f2 f 3 1 t SOURCE: Reference 21 TR-92
NASA Astrophysics Data System (ADS)
Gobin, Bruno; Rüppell, Olav; Hartmann, Annegret; Jungnickel, Harald; Morgan, David; Billen, Johan
2001-08-01
Workers of the ant Cylindromyrmex whymperi display mass trail recruitment. Bioassays show that the trail pheromone originates from a unique gland between abdominal sternites 6 and 7. The gland has a hitherto unknown structural organization. Upon leaving the secretory cell, the duct cell widens to form a sclerotized pear-shaped reservoir chamber, lined with multiple duct cells. Each duct thus forms a miniature reservoir for the secretions of each single secretory cell, a novel structural arrangement in exocrine glands of social Hymenoptera.
Genetically Targeted All-Optical Electrophysiology with a Transgenic Cre-Dependent Optopatch Mouse
Lou, Shan; Adam, Yoav; Weinstein, Eli N.; Williams, Erika; Williams, Katherine; Parot, Vicente; Kavokine, Nikita; Liberles, Stephen; Madisen, Linda; Zeng, Hongkui
2016-01-01
Recent advances in optogenetics have enabled simultaneous optical perturbation and optical readout of membrane potential in diverse cell types. Here, we develop and characterize a Cre-dependent transgenic Optopatch2 mouse line that we call Floxopatch. The animals expressed a blue-shifted channelrhodopsin, CheRiff, and a near infrared Archaerhodopsin-derived voltage indicator, QuasAr2, via targeted knock-in at the rosa26 locus. In Optopatch-expressing animals, we tested for overall health, genetically targeted expression, and function of the optogenetic components. In offspring of Floxopatch mice crossed with a variety of Cre driver lines, we observed spontaneous and optically evoked activity in vitro in acute brain slices and in vivo in somatosensory ganglia. Cell-type-specific expression allowed classification and characterization of neuronal subtypes based on their firing patterns. The Floxopatch mouse line is a useful tool for fast and sensitive characterization of neural activity in genetically specified cell types in intact tissue. SIGNIFICANCE STATEMENT Optical recordings of neural activity offer the promise of rapid and spatially resolved mapping of neural function. Calcium imaging has been widely applied in this mode, but is insensitive to the details of action potential waveforms and subthreshold events. Simultaneous optical perturbation and optical readout of single-cell electrical activity (“Optopatch”) has been demonstrated in cultured neurons and in organotypic brain slices, but not in acute brain slices or in vivo. Here, we describe a transgenic mouse in which expression of Optopatch constructs is controlled by the Cre-recombinase enzyme. This animal enables fast and robust optical measurements of single-cell electrical excitability in acute brain slices and in somatosensory ganglia in vivo, opening the door to rapid optical mapping of neuronal excitability. PMID:27798186
Wild-type rabies virus induces autophagy in human and mouse neuroblastoma cell lines.
Peng, Jiaojiao; Zhu, Shenghe; Hu, Lili; Ye, Pingping; Wang, Yifei; Tian, Qin; Mei, Mingzhu; Chen, Hao; Guo, Xiaofeng
2016-10-02
Different rabies virus (RABV) strains have their own biological characteristics, but little is known about their respective impact on autophagy. Therefore, we evaluated whether attenuated RABV HEP-Flury and wild-type RABV GD-SH-01 strains triggered autophagy. We found that GD-SH-01 infection significantly increased the number of autophagy-like vesicles, the accumulation of enhanced green fluorescent protein (EGFP)-LC3 fluorescence puncta and the conversion of LC3-I to LC3-II, while HEP-Flury was not able to induce this phenomenon. When evaluating autophagic flux, we found that GD-SH-01 infection triggers a complete autophagic response in the human neuroblastoma cell line (SK), while autophagosome fusion with lysosomes was inhibited in a mouse neuroblastoma cell line (NA). In these cells, GD-SH-01 led to apoptosis and mitochondrial dysfunction while triggering autophagy, and apoptosis could be decreased by enhancing autophagy. To further identify the virus constituent causing autophagy, 5 chimeric recombinant viruses carrying single genes of HEP-Flury instead of those of GD-SH-01 were rescued. While the HEP-Flury virus carrying the wild-type matrix protein (M) gene of RABV triggered LC3-I to LC3-II conversion in SK and NA cells, replacement of genes of nucleoprotein (N), phosphoprotein (P) and glycoprotein (G) produced only minor autophagy. But no one single structural protein of GD-SH-01 induced autophagy. Moreover, the AMPK signaling pathway was activated by GD-SH-01 in SK. Therefore, our data provide strong evidence that autophagy is induced by GD-SH-01 and can decrease apoptosis in vitro. Furthermore, the M gene of GD-SH-01 may cooperatively induce autophagy.
Al-Serori, Halh; Ferk, Franziska; Kundi, Michael; Bileck, Andrea; Gerner, Christopher; Mišík, Miroslav; Nersesyan, Armen; Waldherr, Monika; Murbach, Manuel; Lah, Tamara T; Herold-Mende, Christel; Collins, Andrew R; Knasmüller, Siegfried
2018-01-01
Some epidemiological studies indicate that the use of mobile phones causes cancer in humans (in particular glioblastomas). It is known that DNA damage plays a key role in malignant transformation; therefore, we investigated the impact of the UMTS signal which is widely used in mobile telecommunications, on DNA stability in ten different human cell lines (six brain derived cell lines, lymphocytes, fibroblasts, liver and buccal tissue derived cells) under conditions relevant for users (SAR 0.25 to 1.00 W/kg). We found no evidence for induction of damage in single cell gel electrophoresis assays when the cells were cultivated with serum. However, clear positive effects were seen in a p53 proficient glioblastoma line (U87) when the cells were grown under serum free conditions, while no effects were found in p53 deficient glioblastoma cells (U251). Further experiments showed that the damage disappears rapidly in U87 and that exposure induced nucleotide excision repair (NER) and does not cause double strand breaks (DSBs). The observation of NER induction is supported by results of a proteome analysis indicating that several proteins involved in NER are up-regulated after exposure to UMTS; additionally, we found limited evidence for the activation of the γ-interferon pathway. The present findings show that the signal causes transient genetic instability in glioma derived cells and activates cellular defense systems.
Wang, Yuanyuan; Lin, Xiangde; Fu, Xinghao; Yan, Wei; Lin, Fusheng; Kuang, Penghao; Luo, Yezhe; Lin, Ende; Hong, Xiaoquan; Wu, Guoyang
2018-06-18
Thyroid cancer is one of the most common malignant tumors of the endocrine system. Among all thyroid cancers, papillary thyroid carcinoma (PTC) is the most common type. The BRAF-activated non-coding RNA (BANCR) is a 693-bp nucleotide transcript which was first identified in melanoma. However, the role of BANCR in the development of thyroid cancer remains unclear. Therefore, the present study investigated the potential involvement of BANCR in the development of thyroid cancer in vitro using patient tissue samples and a panel of thyroid cancer cell lines, and in vivo using a xenograft mouse model. We observed that BANCR was expressed at a higher level in human thyroid tumor tissues than that noted in the adjacent normal tissues. The expression level of BANCR differed between cultured thyroid cancer cell lines; BANCR expression was lower in the BCPAP cell line than that observed in the CAL-62, WRO and FTC-133 cell lines. Western blot analysis and flow cytometry revealed that overexpression of BANCR in the BCPAP cell line resulted in increased expression of the cancer stem cell markers, LGR5 and EpCAM. Single-clone formation experiments showed that upregulated expression of BANCR in the BCPAP cell line promoted an increase in the number of clones formed. Similarly, in microsphere formation experiments, overexpression of BANCR resulted in increased number and size of microspheres compared with the control cell line. Western blotting experiments showed that BANCR overexpression in BCPAP upregulated the expression of phosphorylated c-Raf, MEK1/2 and ERK1/2. Inhibition of c-Raf via U0126 decreased the expression of LGR5 and EpCAM, as well as phosphorylated levels of c-Raf, MEK1/2 and ERK1/2 in the BCPAP cells, compared to levels in the DMSO controls. In the xenograft mouse model, BANCR overexpression in the thyroid cancer cells significantly increased tumor growth. Taken together, these results suggest that BANCR plays a role in PTC development by regulating the expression of cancer stem cell markers LGR5 and EpCAM via the c-Raf/MEK/ERK signaling pathway. Therefore, BANCR may be used as a novel prognostic marker for PTC.
Myeloid cell leukemia-1 is an important apoptotic survival factor in triple-negative breast cancer.
Goodwin, C M; Rossanese, O W; Olejniczak, E T; Fesik, S W
2015-12-01
Breast cancer is the second-most frequently diagnosed malignancy in US women. The triple-negative breast cancer (TNBC) subtype, which lacks expression of the estrogen receptor, progesterone receptor and human epidermal growth factor receptor-2, afflicts 15% of patients and is refractory to current targeted therapies. Like many cancers, TNBC cells often deregulate programmed cell death by upregulating anti-apoptotic proteins of the B-cell CLL/lymphoma 2 (Bcl-2) family. One family member, myeloid cell leukemia-1 (Mcl-1), is commonly amplified in TNBC and correlates with a poor clinical prognosis. Here we show the effect of silencing Mcl-1 and Bcl-2-like protein 1 isoform 1 (Bcl-xL) expression on viability in a panel of seventeen TNBC cell lines. Cell death was observed in a subset upon Mcl-1 knockdown. In contrast, Bcl-xL knockdown only modestly reduced viability, indicating that Mcl-1 is a more important survival factor. However, dual silencing of both Mcl-1 and Bcl-xL reduced viability in most cell lines tested. These proliferation results were recapitulated by BH3 profiling experiments. Treatment with a Bcl-xL and Bcl-2 peptide had only a moderate effect on any of the TNBC cell lines, however, co-dosing an Mcl-1-selective peptide with a peptide that inhibits Bcl-xL and Bcl-2 was effective in each line tested. Similarly, the selective Bcl-xL inhibitor WEHI-539 was only weakly cytotoxic across the panel, but sensitization by Mcl-1 knockdown markedly improved its EC50. ABT-199, which selectively inhibits Bcl-2, did not synergize with Mcl-1 knockdown, indicating the relatively low importance of Bcl-2 in these lines. Mcl-1 sensitivity is not predicted by mRNA or protein levels of a single Bcl-2 family member, except for only a weak correlation for Bak and Bax protein expression. However, a more comprehensive index composed of Mcl-1, Bcl-xL, Bim, Bak and Noxa protein or mRNA expression correlates well with Mcl-1 sensitivity in TNBC and can also predict Mcl-1 dependency in non-small cell lung cancer cell lines.
NASA Astrophysics Data System (ADS)
Su, L.; Chen, Y.; Zhang, G. N.; Wang, L. H.; Shen, A. G.; Zhou, X. D.; Wang, X. H.; Hu, J. M.
2013-04-01
Raman spectroscopy is capable of studying time-resolved information of selected biomolecular distributions inside individual cells without labeling. In this study, Raman spectroscopy was for the first time utilized to in vivo and in situ monitor the cellular response to nitric oxide (NO) in single oral squamous cell carcinoma (OSCC) cells over a period of 24 h. Sodium nitroprusside (SNP) was chosen as a NO donor to be incubated with the OSCC cell line (TCA8113) for certain time intervals. In vivo and in situ Raman analysis revealed that the degradation and conformational changes of nucleic acids, lipids and proteins could be directly observed by changes in the characteristic Raman bands. In comparison with conventional flow cytometric analysis, Raman spectroscopy not only detected more subtle NO-induced chemical changes of cells, where the SNP concentration could be even less than 1 mM, but also provided a full view of the whole chemical components of single cells. Raman spectroscopy therefore is an important candidate for label-free, nondestructive and in situ monitoring of cellular changes in response to chemotherapeutic agents, which could potentially be used in rapid screening of novel drugs.
An Injectable Method for Posterior Lateral Spine Fusion
2014-09-01
icasp psossessing a dsRED reporter 24 hours after exposure to (A) vehicle (B) CID and (C) polyethylenimine (PEI) cytotoxin. that the single dose...streptomycin (100µg/mL) and amphotericin B (25 µg/mL) (Invitrogen Life Technologies, Gaithersburg, MD). The cell line was grown at 37°C and 5% CO2 in...and 5% CO2 . The transduced cells were resuspended at a concentration of 5x106 cells per 100µL of PBS and delivered by intramuscular injection into
Adelfinger, Marion; Bessler, Simon; Frentzen, Alexa; Cecil, Alexander; Langbein-Laugwitz, Johanna; Gentschev, Ivaylo; Szalay, Aladar A.
2015-01-01
Virotherapy on the basis of oncolytic vaccinia virus (VACV) strains is a novel approach for canine cancer therapy. Here we describe, for the first time, the characterization and the use of VACV strain GLV-5b451 expressing the anti-vascular endothelial growth factor (VEGF) single-chain antibody (scAb) GLAF-2 as therapeutic agent against different canine cancers. Cell culture data demonstrated that GLV-5b451 efficiently infected and destroyed all four tested canine cancer cell lines including: mammary carcinoma (MTH52c), mammary adenoma (ZMTH3), prostate carcinoma (CT1258), and soft tissue sarcoma (STSA-1). The GLV-5b451 virus-mediated production of GLAF-2 antibody was observed in all four cancer cell lines. In addition, this antibody specifically recognized canine VEGF. Finally, in canine soft tissue sarcoma (CSTS) xenografted mice, a single systemic administration of GLV-5b451 was found to be safe and led to anti-tumor effects resulting in the significant reduction and substantial long-term inhibition of tumor growth. A CD31-based immuno-staining showed significantly decreased neo-angiogenesis in GLV-5b451-treated tumors compared to the controls. In summary, these findings indicate that GLV-5b451 has potential for use as a therapeutic agent in the treatment of CSTS. PMID:26205404
Nanotube antibody biosensor arrays for the detection of circulating breast cancer cells
NASA Astrophysics Data System (ADS)
Shao, Ning; Wickstrom, Eric; Panchapakesan, Balaji
2008-11-01
Recent reports have shown that nanoscale electronic devices can be used to detect a change in electrical properties when receptor proteins bind to their corresponding antibodies functionalized on the surface of the device, in extracts from as few as ten lysed tumor cells. We hypothesized that nanotube-antibody devices could sensitively and specifically detect entire live cancer cells. We report for the first time a single nanotube field effect transistor array, functionalized with IGF1R-specific and Her2-specific antibodies, which exhibits highly sensitive and selective sensing of live, intact MCF7 and BT474 human breast cancer cells in human blood. Those two cell lines both overexpress IGF1R and Her2, at different levels. Single or small bundle of nanotube devices that were functionalized with IGF1R-specific or Her2-specific antibodies showed 60% decreases in conductivity upon interaction with BT474 or MCF7 breast cancer cells in two µl drops of blood. Control experiments with non-specific antibodies or with MCF10A control breast cells produced a less than 5% decrease in electrical conductivity, illustrating the high sensitivity for whole cell binding by these single nanotube-antibody devices. We postulate that the free energy change due to multiple simultaneous cell-antibody binding events exerted stress along the nanotube surface, decreasing its electrical conductivity due to an increase in band gap. Because the free energy change upon cell-antibody binding, the stress exerted on the nanotube, and the change in conductivity are specific to a specific antigen-antibody interaction; these properties might be used as a fingerprint for the molecular sensing of circulating cancer cells. From optical microscopy observations during sensing, it appears that the binding of a single cell to a single nanotube field effect transistor produced the change in electrical conductivity. Thus we report a nanoscale oncometer with single cell sensitivity with a diameter 1000 times smaller than a cancer cell that functions in a drop of fresh blood.
APOBEC3A deaminates transiently exposed single-strand DNA during LINE-1 retrotransposition.
Richardson, Sandra R; Narvaiza, Iñigo; Planegger, Randy A; Weitzman, Matthew D; Moran, John V
2014-04-24
Long INterspersed Element-1 (LINE-1 or L1) retrotransposition poses a mutagenic threat to human genomes. Human cells have therefore evolved strategies to regulate L1 retrotransposition. The APOBEC3 (A3) gene family consists of seven enzymes that catalyze deamination of cytidine nucleotides to uridine nucleotides (C-to-U) in single-strand DNA substrates. Among these enzymes, APOBEC3A (A3A) is the most potent inhibitor of L1 retrotransposition in cultured cell assays. However, previous characterization of L1 retrotransposition events generated in the presence of A3A did not yield evidence of deamination. Thus, the molecular mechanism by which A3A inhibits L1 retrotransposition has remained enigmatic. Here, we have used in vitro and in vivo assays to demonstrate that A3A can inhibit L1 retrotransposition by deaminating transiently exposed single-strand DNA that arises during the process of L1 integration. These data provide a mechanistic explanation of how the A3A cytidine deaminase protein can inhibit L1 retrotransposition.DOI: http://dx.doi.org/10.7554/eLife.02008.001. Copyright © 2014, Richardson et al.
de Oliveira Georges, Juliana Andrea; Vergani, Naja; Fonseca, Simone Aparecida Siqueira; Fraga, Ana Maria; de Mello, Joana Carvalho Moreira; Albuquerque, Maria Cecília R Maciel; Fujihara, Litsuko Shimabukuro; Pereira, Lygia Veiga
2014-08-01
One of the differences between murine and human embryonic stem cells (ESCs) is the epigenetic state of the X chromosomes in female lines. Murine ESCs (mESCs) present two transcriptionally active Xs that will undergo the dosage compensation process of XCI upon differentiation, whereas most human ESCs (hESCs) spontaneously inactivate one X while keeping their pluripotency. Whether this reflects differences in embryonic development of mice and humans, or distinct culture requirements for the two kinds of pluripotent cells is not known. Recently it has been shown that hESCs established in physiological oxygen levels are in a stable pre-XCI state equivalent to that of mESCs, suggesting that culture in low oxygen concentration is enough to preserve that epigenetic state of the X chromosomes. Here we describe the establishment of two new lines of hESCs under physiological oxygen level and the characterization of the XCI state in the 46,XX line BR-5. We show that a fraction of undifferentiated cells present XIST RNA accumulation and single H3K27me foci, characteristic of the inactive X. Moreover, analysis of allele specific gene expression suggests that pluripotent BR-5 cells present completely skewed XCI. Our data indicate that physiological levels of oxygen are not sufficient for the stabilization of the pre-XCI state in hESCs.
Naderi, Naghmeh; Madani, Seyed Y.; Mosahebi, Afshin; Seifalian, Alexander M.
2015-01-01
Background Carbon nanotubes (CNTs) have unique physical and chemical properties. Furthermore, novel properties can be developed by attachment or encapsulation of functional groups. These unique properties facilitate the use of CNTs in drug delivery. We developed a new nanomedicine consisting of a nanocarrier, cell-targeting molecule, and chemotherapeutic drug and assessed its efficacy in vitro. Methods The efficacy of a single-walled carbon nanotubes (SWCNTs)-based nanoconjugate system is assessed in the targeted delivery of paclitaxel (PTX) to cancer cells. SWCNTs were oxidized and reacted with octa-ammonium polyhedral oligomeric silsesquioxanes (octa-ammonium POSS) to render them biocompatible and water dispersable. The functionalized SWCNTs were loaded with PTX, a chemotherapeutic agent toxic to cancer cells, and Tn218 antibodies for cancer cell targeting. The nanohybrid composites were characterized with transmission electron microscopy (TEM), Fourier transform infrared (FTIR), and ultraviolet–visible–near-infrared (UV–Vis–NIR). Additionally, their cytotoxic effects on Colon cancer cell (HT-29) and Breast cancer cell (MCF-7) lines were assessed in vitro. Results TEM, FTIR, and UV–Vis–NIR studies confirmed side-wall functionalization of SWCNT with COOH-groups, PTX, POSS, and antibodies. Increased cell death was observed with PTX–POSS–SWCNT, PTX–POSS–Ab–SWCNT, and free PTX compared to functionalized-SWCNT (f-SWCNT), POSS–SWCNT, and cell-only controls at 48 and 72 h time intervals in both cell lines. At all time intervals, there was no significant cell death in the POSS–SWCNT samples compared to cell-only controls. Conclusion The PTX-based nanocomposites were shown to be as cytotoxic as free PTX. This important finding indicates successful release of PTX from the nanocomposites and further reiterates the potential of SWCNTs to deliver drugs directly to targeted cells and tissues. PMID:26356347
Generation of an immortalized mouse embryonic palatal mesenchyme cell line
Soriano, Philippe
2017-01-01
Palatogenesis is a complex morphogenetic process, disruptions in which result in highly prevalent birth defects in humans. In recent decades, the use of model systems such as genetically-modified mice, mouse palatal organ cultures and primary mouse embryonic palatal mesenchyme (MEPM) cultures has provided significant insight into the molecular and cellular defects underlying cleft palate. However, drawbacks in each of these systems have prevented high-throughput, large-scale studies of palatogenesis in vitro. Here, we report the generation of an immortalized MEPM cell line that maintains the morphology, migration ability, transcript expression and responsiveness to exogenous growth factors of primary MEPM cells, with increased proliferative potential over primary cultures. The immortalization method described in this study will facilitate the generation of palatal mesenchyme cells with an unlimited capacity for expansion from a single genetically-modified mouse embryo and enable mechanistic studies of palatogenesis that have not been possible using primary culture. PMID:28582446
Cyclin-Dependent Kinase Inhibitor AT7519 as a Potential Drug for MYCN-Dependent Neuroblastoma.
Dolman, M Emmy M; Poon, Evon; Ebus, Marli E; den Hartog, Ilona J M; van Noesel, Carel J M; Jamin, Yann; Hallsworth, Albert; Robinson, Simon P; Petrie, Kevin; Sparidans, Rolf W; Kok, Robbert J; Versteeg, Rogier; Caron, Huib N; Chesler, Louis; Molenaar, Jan J
2015-11-15
MYCN-dependent neuroblastomas have low cure rates with current multimodal treatment regimens and novel therapeutic drugs are therefore urgently needed. In previous preclinical studies, we have shown that targeted inhibition of cyclin-dependent kinase 2 (CDK2) resulted in specific killing of MYCN-amplified neuroblastoma cells. This study describes the in vivo preclinical evaluation of the CDK inhibitor AT7519. Preclinical drug testing was performed using a panel of MYCN-amplified and MYCN single copy neuroblastoma cell lines and different MYCN-dependent mouse models of neuroblastoma. AT7519 killed MYCN-amplified neuroblastoma cell lines more potently than MYCN single copy cell lines with a median LC50 value of 1.7 compared to 8.1 μmol/L (P = 0.0053) and a significantly stronger induction of apoptosis. Preclinical studies in female NMRI homozygous (nu/nu) mice with neuroblastoma patient-derived MYCN-amplified AMC711T xenografts revealed dose-dependent growth inhibition, which correlated with intratumoral AT7519 levels. CDK2 target inhibition by AT7519 was confirmed by significant reductions in levels of phosphorylated retinoblastoma (p-Rb) and nucleophosmin (p-NPM). AT7519 treatment of Th-MYCN transgenic mice resulted in improved survival and clinically significant tumor regression (average tumor size reduction of 86% at day 7 after treatment initiation). The improved efficacy of AT7519 observed in Th-MYCN mice correlated with higher tumor exposure to the drug. This study strongly suggests that AT7519 is a promising drug for the treatment of high-risk neuroblastoma patients with MYCN amplification. ©2015 American Association for Cancer Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iseki, Sachiko; Tanaka, Hiromasa; Kondo, Hiroki
2012-03-12
Two independent ovarian cancer cell lines and fibroblast controls were treated with nonequilibrium atmospheric pressure plasma (NEAPP). Most ovarian cancer cells were detached from the culture dish by continuous plasma treatment to a single spot on the dish. Next, the plasma source was applied over the whole dish using a robot arm. In vitro cell proliferation assays showed that plasma treatments significantly decreased proliferation rates of ovarian cancer cells compared to fibroblast cells. Flow cytometry and western blot analysis showed that plasma treatment of ovarian cancer cells induced apoptosis. NEAPP could be a promising tool for therapy for ovarian cancers.
BAHARUDDIN, PUTERI; SATAR, NAZILAH; FAKIRUDDIN, KAMAL SHAIK; ZAKARIA, NORASHIKIN; LIM, MOON NIAN; YUSOFF, NARAZAH MOHD; ZAKARIA, ZUBAIDAH; YAHAYA, BADRUL HISHAM
2016-01-01
Natural compounds such as curcumin have the ability to enhance the therapeutic effectiveness of common chemotherapy agents through cancer stem-like cell (CSC) sensitisation. In the present study, we showed that curcumin enhanced the sensitivity of the double-positive (CD166+/EpCAM+) CSC subpopulation in non-small cell lung cancer (NSCLC) cell lines (A549 and H2170) to cisplatin-induced apoptosis and inhibition of metastasis. Our results revealed that initial exposure of NSCLC cell lines to curcumin (10–40 µM) markedly reduced the percentage of viability to an average of ~51 and ~54% compared to treatment with low dose cisplatin (3 µM) with only 94 and 86% in both the A549 and H2170 cells. Moreover, sensitisation of NSCLC cell lines to curcumin through combined treatment enhanced the single effect induced by low dose cisplatin on the apoptosis of the double-positive CSC subpopulation by 18 and 20% in the A549 and H2170 cells, respectively. Furthermore, we found that curcumin enhanced the inhibitory effects of cisplatin on the highly migratory CD166+/EpCAM+ subpopulation, marked by a reduction in cell migration to 9 and 21% in the A549 and H2170 cells, respectively, indicating that curcumin may increase the sensitivity of CSCs to cisplatin-induced migratory inhibition. We also observed that the mRNA expression of cyclin D1 was downregulated, while a substantial increased in p21 expression was noted, followed by Apaf1 and caspase-9 activation in the double-positive (CD166+/EpCAM+) CSC subpopulation of A549 cells, suggested that the combined treatments induced cell cycle arrest, therefore triggering CSC growth inhibition via the intrinsic apoptotic pathway. In conclusion, we provided novel evidence of the previously unknown therapeutic effects of curcumin, either alone or in combination with cisplatin on the inhibition of the CD166+/EpCAM+ subpopulation of NSCLC cell lines. This finding demonstrated the potential therapeutic approach of using curcumin that may enhance the effects of cisplatin by targeting the CSC subpopulation in NSCLC. PMID:26531053
Emmons, Michael F; Gebhard, Anthony W; Nair, Rajesh R; Baz, Rachid; McLaughlin, Mark L; Cress, Anne E; Hazlehurst, Lori A
2011-12-01
We recently reported that the β1 integrin antagonist, referred to as HYD1, induces necrotic cell death in myeloma cell lines as a single agent using in vitro and in vivo models. In this article, we sought to delineate the determinants of sensitivity and resistance toward HYD1-induced cell death. To this end, we developed an HYD1 isogenic resistant myeloma cell line by chronically exposing H929 myeloma cells to increasing concentrations of HYD1. Our data indicate that the acquisition of resistance toward HYD1 correlates with reduced levels of the cleaved α4 integrin subunit. Consistent with reduced VLA-4 (α4β1) expression, the resistant variant showed ablated functional binding to fibronectin, VCAM-1, and the bone marrow stroma cell line HS-5. The reduction in binding of the resistant cell line to HS-5 cells translated to a compromised cell adhesion-mediated drug resistant phenotype as shown by increased sensitivity to melphalan- and bortezomib-induced cell death in the bone marrow stroma coculture model of drug resistance. Importantly, we show that HYD1 is more potent in relapsed myeloma specimens than newly diagnosed patients, a finding that correlated with α4 integrin expression. Collectively, these data indicate that this novel d-amino acid peptide may represent a good candidate for pursuing clinical trials in relapsed myeloma and in particular patients with high levels of α4 integrin. Moreover, our data provide further rationale for continued preclinical development of HYD1 and analogues of HYD1 for the treatment of multiple myeloma and potentially other tumors that home and/or metastasize to the bone.
Effects of cholera toxin on human colon carcinoma cell lines.
Barkla, D H; Whitehead, R H; Hayward, I P
1992-10-01
This study reports on changes in morphology and membrane transport in 5 human colon carcinoma cell lines treated with cholera toxin (CT). Three of the cell lines that grew as monolayers (LIM 1215, LIM 1899, LIM 2099) and 1 that grew as floating clumps (LIM 2408) did not show morphological changes after CT treatment. However, cell line LIM 1863 that grows as floating "crypt-like" organoids showed rapid and distinctive changes in morphology and membrane transport after CT treatment. At 1 and 6 hrs after CT treatment, light and transmission electron microscopy revealed rapid dilatation of the central lumen of organoids and the appearance of 2 populations of apical vesicular inclusions. The first population was unusual in being non-membrane bound and limited by fuzzy filamentous material. The second population was membrane bound. Scanning electron microscopy at 1-6 hr after CT treatment showed swelling and loss of surface microvilli on some, but not all, cells. At 24 hr after CT treatment the majority of organoids showed evidence of fluid accumulation and small apical vesicles coalesced to form large single vacuoles that obliterated normal cell morphology. By 48 hr, continued swelling produced extreme attenuation of the plasma membrane with cells taking on an "endothelial cell-like" appearance. The response to CT was dose-dependent. Uptake studies using 86Rubidium and blocking studies using ouabain and amiloride indicated that CT is acting on the Na+/K+ ATPase membrane pump to cause the increased fluid uptake by LIM 1863 cells. This study is the first to report specific morphological changes in intestine-derived cells in response to CT.(ABSTRACT TRUNCATED AT 250 WORDS)
Ding, Jiule; Xing, Wei; Chen, Jie; Dai, Yongming; Sun, Jun; Li, Dengfa
2014-01-21
To explore the influence of signal noise ratio (SNR) on analysis of clear cell renal cell carcinoma (CCRCC) using DWI with multi-b values. The images of 17 cases with CCRCC were analyzed, including 17 masses and 9 pure cysts. The signal intensity of the cysts and masses was measured separately on DWI for each b value. The minimal SNR, as the threshold, was recorded when the signal curve manifest as the single exponential line. The SNR of the CCRCC was calculated on DWI for each b value, and compared with the threshold by independent Two-sample t Test. The signal decreased on DWI with increased b factors for both pure cysts and CCRCC. The threshold is 1.29 ± 0.17, and the signal intensity of the cysts on DWI with multi-b values shown as a single exponential line when b ≤ 800 s/mm(2). For the CCRCC, the SNR is similar to the threshold when b = 1 000 s/mm(2) (t = 0.40, P = 0.69), and is lower when b = 1 200 s/mm(2) (t = -2.38, P = 0.03). The SNR should be sufficient for quantitative analysis of DWI, and the maximal b value is 1000 s/mm(2) for CCRCC.
Stress Modulus of Cancer Cells
NASA Astrophysics Data System (ADS)
Bonin, Keith; Guthold, Martin; Guo, Xinyi; Sigley, Justin
2012-02-01
Our main goal is to study the different physical and mechanical properties of cells as they advance through different stages of neoplastic transformation from normal to the metastatic state. Since recent reports indicate there is significant ambiguity about how these properties change for different cancer cells, we plan to measure these properties for a single line of cells, and to determine whether the changes vary for different cellular components: i.e. whether the change in physical properties is due to a change in the cytoskeleton, the cell membrane, the cytoplasm, or a combination of these elements. Here we expect to present data on the stress modulus of cancer cells at different stages: normal, mortal cancerous, immortal cancerous, and tumorigenic. The cells are Weinberg cell line Human Mammary Epithelial (HME) cells. Atomic force microscope (AFM) probes with different diameters are used to push on the cell membrane to measure the local, regional and global cell stress modulus. Preliminary results on normal HME cells suggests a stress modulus of 1.5 ± 0.8 kPa when pushing with 7 μm spherical probes. We anticipate reporting an improved value for the modulus as well as results for some of the Weinberg cancer cells.
Whole-genome expression analysis of mammalian-wide interspersed repeat elements in human cell lines.
Carnevali, Davide; Conti, Anastasia; Pellegrini, Matteo; Dieci, Giorgio
2017-02-01
With more than 500,000 copies, mammalian-wide interspersed repeats (MIRs), a sub-group of SINEs, represent ∼2.5% of the human genome and one of the most numerous family of potential targets for the RNA polymerase (Pol) III transcription machinery. Since MIR elements ceased to amplify ∼130 myr ago, previous studies primarily focused on their genomic impact, while the issue of their expression has not been extensively addressed. We applied a dedicated bioinformatic pipeline to ENCODE RNA-Seq datasets of seven human cell lines and, for the first time, we were able to define the Pol III-driven MIR transcriptome at single-locus resolution. While the majority of Pol III-transcribed MIR elements are cell-specific, we discovered a small set of ubiquitously transcribed MIRs mapping within Pol II-transcribed genes in antisense orientation that could influence the expression of the overlapping gene. We also identified novel Pol III-transcribed ncRNAs, deriving from transcription of annotated MIR fragments flanked by unique MIR-unrelated sequences, and confirmed the role of Pol III-specific internal promoter elements in MIR transcription. Besides demonstrating widespread transcription at these retrotranspositionally inactive elements in human cells, the ability to profile MIR expression at single-locus resolution will facilitate their study in different cell types and states including pathological alterations. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
Anaka, Matthew; Hudson, Christopher; Lo, Pu-Han; Do, Hongdo; Caballero, Otavia L; Davis, Ian D; Dobrovic, Alexander; Cebon, Jonathan; Behren, Andreas
2013-10-11
Intratumoral heterogeneity is a major obstacle for the treatment of cancer, as the presence of even minor populations that are insensitive to therapy can lead to disease relapse. Increased clonal diversity has been correlated with a poor prognosis for cancer patients, and we therefore examined genetic, transcriptional, and functional diversity in metastatic melanoma. Amplicon sequencing and SNP microarrays were used to profile somatic mutations and DNA copy number changes in multiple regions from metastatic lesions. Clonal genetic and transcriptional heterogeneity was also assessed in single cell clones from early passage cell lines, which were then subjected to clonogenicity and drug sensitivity assays. MAPK pathway and tumor suppressor mutations were identified in all regions of the melanoma metastases analyzed. In contrast, we identified copy number abnormalities present in only some regions in addition to homogeneously present changes, suggesting ongoing genetic evolution following metastatic spread. Copy number heterogeneity from a tumor was represented in matched cell line clones, which also varied in their clonogenicity and drug sensitivity. Minor clones were identified based on dissimilarity to the parental cell line, and these clones were the most clonogenic and least sensitive to drugs. Finally, treatment of a polyclonal cell line with paclitaxel to enrich for drug-resistant cells resulted in the adoption of a gene expression profile with features of one of the minor clones, supporting the idea that these populations can mediate disease relapse. Our results support the hypothesis that minor clones might have major consequences for patient outcomes in melanoma.
Cell lineage analysis in human brain using endogenous retroelements
Evrony, Gilad D.; Lee, Eunjung; Mehta, Bhaven K.; Benjamini, Yuval; Johnson, Robert M.; Cai, Xuyu; Yang, Lixing; Haseley, Psalm; Lehmann, Hillel S.; Park, Peter J.; Walsh, Christopher A.
2015-01-01
Summary Somatic mutations occur during brain development and are increasingly implicated as a cause of neurogenetic disease. However, the patterns in which somatic mutations distribute in the human brain are unknown. We used high-coverage whole-genome sequencing of single neurons from a normal individual to identify spontaneous somatic mutations as clonal marks to track cell lineages in human brain. Somatic mutation analyses in >30 locations throughout the nervous system identified multiple lineages and sub-lineages of cells marked by different LINE-1 (L1) retrotransposition events and subsequent mutation of poly-A microsatellites within L1. One clone contained thousands of cells limited to the left middle frontal gyrus, whereas a second distinct clone contained millions of cells distributed over the entire left hemisphere. These patterns mirror known somatic mutation disorders of brain development, and suggest that focally distributed mutations are also prevalent in normal brains. Single-cell analysis of somatic mutation enables tracing of cell lineage clones in human brain. PMID:25569347
NASA Astrophysics Data System (ADS)
Estrela-Lopis, I.; Romero, G.; Rojas, E.; Moya, S. E.; Donath, E.
2011-07-01
Confocal Raman Microscopy, a non-invasive, non-destructive and label-free technique, was employed to study the uptake and localization of nanoparticles (NPs) in the Hepatocarcinoma human cell line HepG2 at the level of single cells. Cells were exposed to carbon nanotubes (CNTs) the surface of which was engineered with polyelectrolytes and lipid layers, aluminium oxide and cerium dioxide nanoparticles. Raman spectra deconvolution was applied to obtain the spatial distributions of NPs together with lipids/proteins in cells. The colocalization of the NPs with different intracellular environments, lipid bodies, protein and DNA, was inferred. Lipid coated CNTs associated preferentially with lipid rich regions, whereas polyelectrolyte coated CNTs were excluded from lipid rich regions. Al2O3 NPs were found in the cytoplasm. CeO2 NPs were readily taken up and have been observed all over the cell. Raman z-scans proved the intracellular distribution of the respective NPs.
Li, Jinhua; Franek, Karl J; Patterson, Andrea L; Holmes, Lillia M; Burgin, Kelly E; Ji, Jianfei; Yu, Xianzhong; Wagner, Thomas E; Wei, Yanzhang
2003-11-01
Down-regulation of the major histocompatibility complex (MHC) is one of the major mechanisms that tumor cells adopted to escape immunosurveillance. Therefore, specifically coating tumor cells with foreign MHC may make tumor cells a better target for immune recognition and surveillance. In this study, we designed and generated a fusion protein, H2Kd/scPSMA, consisting of a single chain antibody against human prostate specific membrane antigen (PSMA) and the extracellular domain of mouse H-2Kd. The expression of this fusion protein in B16F0 mouse melanoma cells was confirmed by RT-PCR and fluorescent activated cell sorting (FACS). Our animal study showed that the expression of H2Kd/scPSMA in B16F0/PSMA5, a B16F0 cell line expressing human PSMA, significantly inhibited tumor growth as demonstrated in the pulmonary metastasis assay and tumor growth study and improved overall survival.
Flow analysis of human chromosome sets by means of mixing-stirring device
NASA Astrophysics Data System (ADS)
Zenin, Valeri V.; Aksenov, Nicolay D.; Shatrova, Alla N.; Klopov, Nicolay V.; Cram, L. Scott; Poletaev, Andrey I.
1997-05-01
A new mixing and stirring device (MSD) was used to perform flow karyotype analysis of single human mitotic chromosomes analyzed so as to maintain the identity of chromosomes derived from the same cell. An improved method for cell preparation and intracellular staining of chromosomes was developed. The method includes enzyme treatment, incubation with saponin and separation of prestained cells from debris on a sucrose gradient. Mitotic cells are injected one by one in the MSD which is located inside the flow chamber where cells are ruptured, thereby releasing chromosomes. The set of chromosomes proceeds to flow in single file fashion to the point of analysis. The device works in a stepwise manner. The concentration of cells in the sample must be kept low to ensure that only one cell at a time enters the breaking chamber. Time-gated accumulation of data in listmode files makes it possible to separate chromosome sets comprising of single cells. The software that was developed classifies chromosome sets according to different criteria: total number of chromosomes, overall DNA content in the set, and the number of chromosomes of certain types. This approach combines the high performance of flow cytometry with the advantages of image analysis. Examples obtained with different human cell lines are presented.
Roy, Gargi; Martin, Tom; Barnes, Arnita; Wang, Jihong; Jimenez, Rod Brian; Rice, Megan; Li, Lina; Feng, Hui; Zhang, Shu; Chaerkady, Raghothama; Wu, Herren; Marelli, Marcello; Hatton, Diane; Zhu, Jie; Bowen, Michael A
2018-04-01
The conserved glycosylation site Asn 297 of a monoclonal antibody (mAb) can be decorated with a variety of sugars that can alter mAb pharmacokinetics and recruitment of effector proteins. Antibodies lacking the core fucose at Asn 297 (afucosylated mAbs) show enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) and increased efficacy. Here, we describe the development of a robust platform for the manufacture of afucosylated therapeutic mAbs by engineering a Chinese hamster ovary (CHO) host cell line to co-express a mAb with GDP-6-deoxy-D-lyxo-4-hexulose reductase (RMD), a prokaryotic enzyme that deflects an intermediate in the de novo synthesis of fucose to a dead-end product, resulting in the production of afucosylated mAb (GlymaxX™ Technology, ProBioGen). Expression of the mAb and RMD genes was coordinated by co-transfection of separate mAb and RMD vectors or use of an internal ribosome entry site (IRES) element to link the translation of RMD with either the glutamine synthase selection marker or the mAb light chain. The GS-IRES-RMD vector format was more suitable for the rapid generation of high yielding cell lines, secreting afucosylated mAb with titers exceeding 6.0 g/L. These cell lines maintained production of afucosylated mAb over 60 generations, ensuring their suitability for use in large-scale manufacturing. The afucosylated mAbs purified from these RMD-engineered cell lines showed increased binding in a CD16 cellular assay, demonstrating enhancement of ADCC compared to fucosylated control mAb. Furthermore, the afucosylation in these mAbs could be controlled by simple addition of L-fucose in the culture medium, thereby allowing the use of a single cell line for production of the same mAb in fucosylated and afucosylated formats for multiple therapeutic indications.
NASA Astrophysics Data System (ADS)
Aires, Antonio; Ocampo, Sandra M.; Simões, Bruno M.; Josefa Rodríguez, María; Cadenas, Jael F.; Couleaud, Pierre; Spence, Katherine; Latorre, Alfonso; Miranda, Rodolfo; Somoza, Álvaro; Clarke, Robert B.; Carrascosa, José L.; Cortajarena, Aitziber L.
2016-02-01
Nanomedicine nowadays offers novel solutions in cancer therapy and diagnosis by introducing multimodal treatments and imaging tools in one single formulation. Nanoparticles acting as nanocarriers change the solubility, biodistribution and efficiency of therapeutic molecules, reducing their side effects. In order to successfully apply these novel therapeutic approaches, efforts are focused on the biological functionalization of the nanoparticles to improve the selectivity towards cancer cells. In this work, we present the synthesis and characterization of novel multifunctionalized iron oxide magnetic nanoparticles (MNPs) with antiCD44 antibody and gemcitabine derivatives, and their application for the selective treatment of CD44-positive cancer cells. The lymphocyte homing receptor CD44 is overexpressed in a large variety of cancer cells, but also in cancer stem cells (CSCs) and circulating tumor cells (CTCs). Therefore, targeting CD44-overexpressing cells is a challenging and promising anticancer strategy. Firstly, we demonstrate the targeting of antiCD44 functionalized MNPs to different CD44-positive cancer cell lines using a CD44-negative non-tumorigenic cell line as a control, and verify the specificity by ultrastructural characterization and downregulation of CD44 expression. Finally, we show the selective drug delivery potential of the MNPs by the killing of CD44-positive cancer cells using a CD44-negative non-tumorigenic cell line as a control. In conclusion, the proposed multifunctionalized MNPs represent an excellent biocompatible nanoplatform for selective CD44-positive cancer therapy in vitro.
Takeuchi, Masao; Takeuchi, Kikuko; Ozawa, Yutaka; Kohara, Akihiro; Mizusawa, Hiroshi
2009-01-01
Aneuploidy (an abnormal number of chromosomes) is commonly observed in most human cancer cells, highlighting the need to examine chromosomal instability in tumorigenesis. Previously, the immortalized human mesenchymal stem cell line UE6E7T-3 was shown to undergo a preferential loss of one copy of chromosome 13 after prolonged culture. Here, the loss of chromosome 13 was found to be caused by chromosome missegregation during mitosis, which involved unequal segregation, exclusion of the misaligned chromosome 13 on the metaphase plate, and trapping of chromosome 13 in the midbody region, as observed by fluorescence in situ hybridization. Near-diploid aneuploidy, not tetraploidy, was the direct result. The loss of chromosome 13 was non-random, and was detected by analysis of microsatellites and single nucleotide polymorphism-based loss of heterozygosity (LOH). Of the five microsatellite loci on chromosome 13, four loci showed microsatellite instability at an early stage in culture, and LOH was apparent at a late stage in culture. These results suggest that the microsatellite mutations cause changes in centromere integrity provoking loss of this chromosome in the UE6E7T-3 cell line. Thus, these results support the use of this cell line as a useful model for understanding the mechanism of aneuploid formation in cell cultures.
Piezo1 forms mechanosensitive ion channels in the human MCF-7 breast cancer cell line
NASA Astrophysics Data System (ADS)
Li, Chouyang; Rezania, Simin; Kammerer, Sarah; Sokolowski, Armin; Devaney, Trevor; Gorischek, Astrid; Jahn, Stephan; Hackl, Hubert; Groschner, Klaus; Windpassinger, Christian; Malle, Ernst; Bauernhofer, Thomas; Schreibmayer, Wolfgang
2015-02-01
Mechanical interaction between cells - specifically distortion of tensional homeostasis-emerged as an important aspect of breast cancer genesis and progression. We investigated the biophysical characteristics of mechanosensitive ion channels (MSCs) in the malignant MCF-7 breast cancer cell line. MSCs turned out to be the most abundant ion channel species and could be activated by negative pressure at the outer side of the cell membrane in a saturable manner. Assessing single channel conductance (GΛ) for different monovalent cations revealed an increase in the succession: Li+ < Na+ < K+ ~Rb+ ~ Cs+. Divalent cations permeated also with the order: Ca2+ < Ba2+. Comparison of biophysical properties enabled us to identify MSCs in MCF-7 as ion channels formed by the Piezo1 protein. Using patch clamp technique no functional MSCs were observed in the benign MCF-10A mammary epithelial cell line. Blocking of MSCs by GsMTx-4 resulted in decreased motility of MCF-7, but not of MCF-10A cells, underscoring a possible role of Piezo1 in invasion and metastatic propagation. The role of Piezo1 in biology and progression of breast cancer is further substantiated by markedly reduced overall survival in patients with increased Piezo1 mRNA levels in the primary tumor.
DNA Mismatch Binding and Antiproliferative Activity of Rhodium Metalloinsertors
Ernst, Russell J.; Song, Hang; Barton, Jacqueline K.
2009-01-01
Deficiencies in mismatch repair (MMR) are associated with carcinogenesis. Rhodium metalloinsertors bind to DNA base mismatches with high specificity and inhibit cellular proliferation preferentially in MMR-deficient cells versus MMR-proficient cells. A family of chrysenequinone diimine complexes of rhodium with varying ancillary ligands that serve as DNA metalloinsertors has been synthesized, and both DNA mismatch binding affinities and antiproliferative activities against the human colorectal carcinoma cell lines HCT116N and HCT116O, an isogenic model system for MMR deficiency, have been determined. DNA photocleavage experiments reveal that all complexes bind to the mismatch sites with high specificities; DNA binding affinities to oligonucleotides containing single base CA and CC mismatches, obtained through photocleavage titration or competition, vary from 104 to 108 M−1 for the series of complexes. Significantly, binding affinities are found to be inversely related to ancillary ligand size and directly related to differential inhibition of the HCT116 cell lines. The observed trend in binding affinity is consistent with the metalloinsertion mode where the complex binds from the minor groove with ejection of mismatched base pairs. The correlation between binding affinity and targeting of the MMR-deficient cell line suggests that rhodium metalloinsertors exert their selective biological effects on MMR-deficient cells through mismatch binding in vivo. PMID:19175313
Thy-1+ dendritic epidermal cells express T3 antigen and the T-cell receptor gamma chain.
Stingl, G; Koning, F; Yamada, H; Yokoyama, W M; Tschachler, E; Bluestone, J A; Steiner, G; Samelson, L E; Lew, A M; Coligan, J E
1987-01-01
The murine epidermis is a heterogeneous epithelium composed of keratinocytes, melanocytes, Langerhans cells, and a recently described subpopulation (2-3%) of bone-marrow-derived leukocytes with a dendritic morphology and the cell surface phenotype Thy-1+, L3T4-, Lyt-2-. Previous studies have demonstrated that cell lines derived from freshly explanted Thy-1+ dendritic epidermal cells (DEC) have abundant mRNA for rearranged T-cell receptor (TCR) gamma-chain genes. Analysis of Thy-1+ DEC in situ, freshly isolated cell suspensions of Thy-1+ DEC, and long-term Thy-1+ DEC lines demonstrated that 100% of the Thy-1+ DEC reacted with a monoclonal antibody to the epsilon chain of the murine T3 complex and that 40-60% of resident Thy-1+ DEC were also reactive with an antiserum to the TCR gamma chain. Two Thy-1+ DEC lines expressed a disulfide-linked 70-kDa molecule that could be precipitated with an anti-gamma-chain antiserum and could be coprecipitated with an antiserum to the T3 delta chain; the molecule appeared as a single 34-kDa band under reducing conditions. The phenotype of Thy-1+ DEC (T3+, L3T4-, Lyt-2-, TCR gamma chain+) thus resembles that of the recently described subpopulation of murine and human lymphocytes that have been identified in the thymus, peripheral blood, and fetal blood. Images PMID:2885839
Friedman, Kevin M; Garrett, Tracy E; Evans, John W; Horton, Holly M; Latimer, Howard J; Seidel, Stacie L; Horvath, Christopher J; Morgan, Richard A
2018-05-01
B-cell maturation antigen (BCMA) expression has been proposed as a marker for the identification of malignant plasma cells in patients with multiple myeloma (MM). Nearly all MM tumor cells express BCMA, while normal tissue expression is restricted to plasma cells and a subset of mature B cells. Consistent BCMA expression was confirmed on MM biopsies (29/29 BCMA+), and it was further demonstrated that BCMA is expressed in a substantial number of lymphoma samples, as well as primary chronic lymphocytic leukemia B cells. To target BCMA using redirected autologous T cells, lentiviral vectors (LVV) encoding chimeric antigen receptors (CARs) were constructed with four unique anti-BCMA single-chain variable fragments, fused to the CD137 (4-1BB) co-stimulatory and CD3ζ signaling domains. One LVV, BB2121, was studied in detail, and BB2121 CAR-transduced T cells (bb2121) exhibited a high frequency of CAR + T cells and robust in vitro activity against MM cell lines, lymphoma cell lines, and primary chronic lymphocytic leukemia peripheral blood. Based on receptor quantification, bb2121 recognized tumor cells expressing as little as 222 BCMA molecules per cell. The in vivo pharmacology of anti-BCMA CAR T cells was studied in NSG mouse models of human MM, Burkitt lymphoma, and mantle cell lymphoma, where mice received a single intravenous administration of vehicle, control vector-transduced T cells, or anti-BCMA CAR-transduced T cells. In all models, the vehicle and control CAR T cells failed to inhibit tumor growth. In contrast, treatment with bb2121 resulted in rapid and sustained elimination of the tumors and 100% survival in all treatment models. Together, these data support the further development of anti-BCMA CAR T cells as a potential treatment for not only MM but also some lymphomas.
High power VCSEL devices for atomic clock applications
NASA Astrophysics Data System (ADS)
Watkins, L. S.; Ghosh, C.; Seurin, J.-F.; Zhou, D.; Xu, G.; Xu, B.; Miglo, A.
2015-09-01
We are developing VCSEL technology producing >100mW in single frequency at wavelengths 780nm, 795nm and 850nm. Small aperture VCSELs with few mW output have found major applications in atomic clock experiments. Using an external cavity three-mirror configuration we have been able to operate larger aperture VCSELs and obtain >70mW power in single frequency operation. The VCSEL has been mounted in a fiber pigtailed package with the external mirror mounted on a shear piezo. The package incorporates a miniature Rb cell locker to lock the VCSEL wavelength. This VCSEL operates in single frequency and is tuned by a combination of piezo actuator, temperature and current. Mode-hop free tuning over >30GHz frequency span is obtained. The VCSEL has been locked to the Rb D2 line and feedback control used to obtain line-widths of <100kHz.
In-line drivetrain and four wheel drive work machine using same
Hoff, Brian
2008-08-05
A four wheel drive articulated mine loader is powered by a fuel cell and propelled by a single electric motor. The drivetrain has the first axle, second axle, and motor arranged in series on the work machine chassis. Torque is carried from the electric motor to the back differential via a pinion meshed with the ring gear of the back differential. A second pinion oriented in an opposite direction away from the ring gear is coupled to a drive shaft to transfer torque from the ring gear to the differential of the front axle. Thus, the ring gear of the back differential acts both to receive torque from the motor and to transfer torque to the forward axle. The in-line drive configuration includes a single electric motor and a single reduction gear to power the four wheel drive mine loader.
Akt mediated ROS-dependent selective targeting of mutant KRAS tumors.
Iskandar, Kartini; Rezlan, Majidah; Pervaiz, Shazib
2014-10-01
Reactive oxygen species (ROS) play a critical role in a variety of cellular processes, ranging from cell survival and proliferation to cell death. Previously, we reported the ability of a small molecule compound, C1, to induce ROS dependent autophagy associated apoptosis in human cancer cell lines and primary tumor cells (Wong C. et al. 2010). Our ongoing investigations have unraveled a hitherto undefined novel signaling network involving hyper-phosphorylation of Akt and Akt-mediated ROS production in cancer cell lines. Interestingly, drug-induced Akt activation is selectively seen in cell lines that carry mutant KRAS; HCT116 cells that carry the V13D KRAS mutation respond favorably to C1 while HT29 cells expressing wild type KRAS are relatively resistant. Of note, not only does the compound target mutant KRAS expressing cells but also induces RAS activation as evidenced by the PAK pull down assay. Corroborating this, pharmacological inhibition as well as siRNA mediated silencing of KRAS or Akt, blocked C1-induced ROS production and rescued tumor colony forming ability in HCT116 cells. To further confirm the involvement of KRAS, we made use of mutant KRAS transformed RWPE-1 prostate epithelial cells. Notably, drug-induced ROS generation and death sensitivity was significantly higher in RWPE-1-KRAS cells than the RWPE-1-vector cells, thus confirming the results obtained with mutant KRAS colorectal carcinoma cell line. Lastly, we made use of HCT116 mutant KRAS knockout cells (KO) where the mutant KRAS allele had been deleted, thus expressing a single wild-type KRAS allele. Exposure of the KO cells to C1 failed to induce Akt activation and mitochondrial ROS production. Taken together, results show the involvement of activated Akt in ROS-mediated selective targeting of mutant KRAS expressing tumors, which could have therapeutic implications given the paucity of chemotherapeutic strategies specifically targeting KRAS mutant cancers. Copyright © 2014. Published by Elsevier Inc.
Expression of Ca2+-permeable two-pore channels rescues NAADP signalling in TPC-deficient cells
Ruas, Margarida; Davis, Lianne C; Chen, Cheng-Chang; Morgan, Anthony J; Chuang, Kai-Ting; Walseth, Timothy F; Grimm, Christian; Garnham, Clive; Powell, Trevor; Platt, Nick; Platt, Frances M; Biel, Martin; Wahl-Schott, Christian; Parrington, John; Galione, Antony
2015-01-01
The second messenger NAADP triggers Ca2+ release from endo-lysosomes. Although two-pore channels (TPCs) have been proposed to be regulated by NAADP, recent studies have challenged this. By generating the first mouse line with demonstrable absence of both Tpcn1 and Tpcn2 expression (Tpcn1/2−/−), we show that the loss of endogenous TPCs abolished NAADP-dependent Ca2+ responses as assessed by single-cell Ca2+ imaging or patch-clamp of single endo-lysosomes. In contrast, currents stimulated by PI(3,5)P2 were only partially dependent on TPCs. In Tpcn1/2−/− cells, NAADP sensitivity was restored by re-expressing wild-type TPCs, but not by mutant versions with impaired Ca2+-permeability, nor by TRPML1. Another mouse line formerly reported as TPC-null likely expresses truncated TPCs, but we now show that these truncated proteins still support NAADP-induced Ca2+ release. High-affinity [32P]NAADP binding still occurs in Tpcn1/2−/− tissue, suggesting that NAADP regulation is conferred by an accessory protein. Altogether, our data establish TPCs as Ca2+-permeable channels indispensable for NAADP signalling. PMID:25872774
Sena-Esteves, Miguel; Saeki, Yoshinaga; Camp, Sara M.; Chiocca, E. Antonio; Breakefield, Xandra O.
1999-01-01
We report here on the development and characterization of a novel herpes simplex virus type 1 (HSV-1) amplicon-based vector system which takes advantage of the host range and retention properties of HSV–Epstein-Barr virus (EBV) hybrid amplicons to efficiently convert cells to retrovirus vector producer cells after single-step transduction. The retrovirus genes gag-pol and env (GPE) and retroviral vector sequences were modified to minimize sequence overlap and cloned into an HSV-EBV hybrid amplicon. Retrovirus expression cassettes were used to generate the HSV-EBV-retrovirus hybrid vectors, HERE and HERA, which code for the ecotropic and the amphotropic envelopes, respectively. Retrovirus vector sequences encoding lacZ were cloned downstream from the GPE expression unit. Transfection of 293T/17 cells with amplicon plasmids yielded retrovirus titers between 106 and 107 transducing units/ml, while infection of the same cells with amplicon vectors generated maximum titers 1 order of magnitude lower. Retrovirus titers were dependent on the extent of transduction by amplicon vectors for the same cell line, but different cell lines displayed varying capacities to produce retrovirus vectors even at the same transduction efficiencies. Infection of human and dog primary gliomas with this system resulted in the production of retrovirus vectors for more than 1 week and the long-term retention and increase in transgene activity over time in these cell populations. Although the efficiency of this system still has to be determined in vivo, many applications are foreseeable for this approach to gene delivery. PMID:10559361
Zilla, P; Fasol, R; Dudeck, U; Siedler, S; Preiss, P; Fischlein, T; Müller-Glauser, W; Baitella, G; Sanan, D; Odell, J
1990-08-01
A rapid and reliable harvest and culture technique was developed to provide a sufficient number of autologous endothelial cells for the confluent in vitro lining of cardiovascular prostheses. Enzymatic endothelial cell detachment was achieved by the in situ application of collagenase to short vessel segments. This harvest technique resulted in a complete lack of contaminating smooth muscle cells in all of 124 cultures from nonhuman primates and 13 cultures from human adults. The use of a microgrid technique enabled the daily in situ quantification of available endothelial cells. To assess ideal plating densities after passage the population doubling time was continuously related to the cell density. Surprisingly, a low plating density of 1.5 X 10(3) endothelial cells/cm2 achieved 43% shorter cell cycles than the usual plating density of 1.0 X 10(4) endothelial cells/cm2. Moreover, low density plating enabled mass cultures after one single cell passage, thereby reducing the cell damaging effect of trypsin. When the growth characteristics of endothelial cells from five anatomically different vessel sites were compared, the external jugular vein--which would be easily accessible and dispensable in each patient--proved to be an excellent source for endothelial cell cultures. By applying in situ administration of collagenase, low density plating and microgrid follow-up to adult human saphenous vein endothelial cells, 14,000,000 first passage endothelial cells--sufficient for the in vitro lining of long vascular prostheses--were obtained 26.2 days after harvest. (95% confidence interval:22.3 to 32.2 days).
Chang, Chia-Wei; Lai, Yi-Shin; Pawlik, Kevin M; Liu, Kaimao; Sun, Chiao-Wang; Li, Chao; Schoeb, Trenton R; Townes, Tim M
2009-05-01
We report the derivation of induced pluripotent stem (iPS) cells from adult skin fibroblasts using a single, polycistronic lentiviral vector encoding the reprogramming factors Oct4, Sox2, and Klf4. Porcine teschovirus-1 2A sequences that trigger ribosome skipping were inserted between human cDNAs for these factors, and the polycistron was subcloned downstream of the elongation factor 1 alpha promoter in a self-inactivating (SIN) lentiviral vector containing a loxP site in the truncated 3' long terminal repeat (LTR). Adult skin fibroblasts from a humanized mouse model of sickle cell disease were transduced with this single lentiviral vector, and iPS cell colonies were picked within 30 days. These cells expressed endogenous Oct4, Sox2, Nanog, alkaline phosphatase, stage-specific embryonic antigen-1, and other markers of pluripotency. The iPS cells produced teratomas containing tissue derived from all three germ layers after injection into immunocompromised mice and formed high-level chimeras after injection into murine blastocysts. iPS cell lines with as few as three lentiviral insertions were obtained. Expression of Cre recombinase in these iPS cells resulted in deletion of the lentiviral vector, and sequencing of insertion sites demonstrated that remnant 291-bp SIN LTRs containing a single loxP site did not interrupt coding sequences, promoters, or known regulatory elements. These results suggest that a single, polycistronic "hit and run" vector can safely and effectively reprogram adult dermal fibroblasts into iPS cells.
NASA Astrophysics Data System (ADS)
Sorolla, A.; Ho, D.; Wang, E.; Evans, C. W.; Ormonde, C. F. G.; Rashwan, R.; Singh, R.; Iyer, K. Swaminathan; Blancafort, P.
2016-04-01
Basal-like breast cancers are highly aggressive malignancies associated with very poor prognosis. Although these cancers may initially respond to first-line treatment, they become highly resistant to standard chemotherapy in the metastatic setting. Chemotherapy resistance in basal-like breast cancers is associated with highly selective overexpression of the homeobox transcription factor Engrailed 1 (EN1). Herein, we propose a novel therapeutic strategy using poly(glycidyl methacrylate) nanoparticles decorated with poly(acrylic acid) that enable dual delivery of docetaxel and interference peptides designed to block or inhibit EN1 (EN1-iPep). We demonstrate that EN1-iPep is highly selective in inducing apoptotic cell death in basal-like cancer cells with negligible effects in a non-neoplastic human mammary epithelial cell line. Furthermore, we show that treatment with EN1-iPep results in a highly synergistic pharmacological interaction with docetaxel in inhibiting cancer cell growth. The incorporation of these two agents in a single nanoformulation results in greater anticancer efficacy than current nanoparticle-based treatments used in the clinical setting.Basal-like breast cancers are highly aggressive malignancies associated with very poor prognosis. Although these cancers may initially respond to first-line treatment, they become highly resistant to standard chemotherapy in the metastatic setting. Chemotherapy resistance in basal-like breast cancers is associated with highly selective overexpression of the homeobox transcription factor Engrailed 1 (EN1). Herein, we propose a novel therapeutic strategy using poly(glycidyl methacrylate) nanoparticles decorated with poly(acrylic acid) that enable dual delivery of docetaxel and interference peptides designed to block or inhibit EN1 (EN1-iPep). We demonstrate that EN1-iPep is highly selective in inducing apoptotic cell death in basal-like cancer cells with negligible effects in a non-neoplastic human mammary epithelial cell line. Furthermore, we show that treatment with EN1-iPep results in a highly synergistic pharmacological interaction with docetaxel in inhibiting cancer cell growth. The incorporation of these two agents in a single nanoformulation results in greater anticancer efficacy than current nanoparticle-based treatments used in the clinical setting. Electronic supplementary information (ESI) available. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c6ob00583g
Single diode laser sensor for wide-range H2O temperature measurements.
Gharavi, Mohammadreza; Buckley, Steven G
2004-04-01
A single diode laser absorption sensor (near 1477 nm) useful for simultaneous temperature and H2O concentration measurements is developed. The diode laser tunes approximately 1.2 cm(-1) over three H2O absorption transitions in each measurement. The line strengths of the transitions are measured over a temperature range from 468 to 977 K, based on high-resolution absorption measurements in a heated static cell. The results indicate that the selected transitions are suitable for sensitive temperature measurements in atmospheric pressure combustion systems using absorption line ratios. Comparing the results with HITRAN 96 data, it appears that these transitions will be sensitive over a wide range of temperatures (450-2000 K), suggesting applicability for combustion measurements.
Single Cell "Glucose Nanosensor" Verifies Elevated Glucose Levels in Individual Cancer Cells.
Nascimento, Raphael A S; Özel, Rıfat Emrah; Mak, Wai Han; Mulato, Marcelo; Singaram, Bakthan; Pourmand, Nader
2016-02-10
Because the transition from oxidative phosphorylation to anaerobic glycolytic metabolism is a hallmark of cancer progression, approaches to identify single living cancer cells by their unique glucose metabolic signature would be useful. Here, we present nanopipettes specifically developed to measure glucose levels in single cells with temporal and spatial resolution, and we use this technology to verify the hypothesis that individual cancer cells can indeed display higher intracellular glucose levels. The nanopipettes were functionalized as glucose nanosensors by immobilizing glucose oxidase (GOx) covalently to the tip so that the interaction of glucose with GOx resulted in a catalytic oxidation of β-d-glucose to d-gluconic acid, which was measured as a change in impedance due to drop in pH of the medium at the nanopipette tip. Calibration studies showed a direct relationship between impedance changes at the tip and glucose concentration in solution. The glucose nanosensor quantified single cell intracellular glucose levels in human fibroblasts and the metastatic breast cancer lines MDA-MB-231 and MCF7 and revealed that the cancer cells expressed reproducible and reliable increases in glucose levels compared to the nonmalignant cells. Nanopipettes allow repeated sampling of the same cell, as cells remain viable during and after measurements. Therefore, nanopipette-based glucose sensors provide an approach to compare changes in glucose levels with changes in proliferative or metastatic state. The platform has great promise for mechanistic investigations, as a diagnostic tool to distinguish cancer cells from nonmalignant cells in heterogeneous tissue biopsies, as well as a tool for monitoring cancer progression in situ.
MicroRNA-218 inhibits the proliferation of human choriocarcinoma JEG-3 cell line by targeting Fbxw8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Dazun; Tan, Zhihui; Lu, Rong
2014-08-08
Highlights: • The miR-218 expression was decreased in choriocarcinoma cell lines. • The Fbxw8 protein expression was increased in choriocarcinoma cell lines. • We show that Fbxw8 is bona-fide target of miR-218 in JEG-3. • Ectopic miR-218 expression inhibits the proliferation of JEG-3 via Fbxw8. • Overexpression of miR-218 affected cyclin A and p27 expression via Fbxw8. - Abstract: MicroRNAs (miRNAs) are endogenous 19–25 nucleotide noncoding single-stranded RNAs that regulate gene expression by blocking the translation or decreasing the stability of mRNAs. In this study, we showed that miR-218 expression levels were decreased while Fbxw8 expression levels were increased inmore » human choriocarcinoma cell lines, and identified Fbxw8 as a novel direct target of miR-218. Overexpression of miR-218 inhibited cell growth arrest at G2/M phase, suppressed the protein levels of cyclin A and up-regulated the expression levels of p27 through decreasing the levels of Fbxw8. On the other hand, forced expression of Fbxw8 partly rescued the effect of miR-218 in the cells, attenuated cell proliferation decrease the percentage of cells at G2/M phase, induced cyclin A protein expression and suppressed the protein level of p27 through up-regulating the levels of Fbxw8. Taken together, these findings will shed light the role to mechanism of miR-218 in regulating JEG-3 cells proliferation via miR-218/Fbxw8 axis, and miR-218 may serve as a novel potential therapeutic target in human choriocarcinoma in the future.« less
Shimizu, Nobuaki; Soda, Yasushi; Kanbe, Katsuaki; Liu, Hui-Yu; Jinno, Atsushi; Kitamura, Toshio; Hoshino, Hiroo
1999-01-01
Twelve G protein-coupled receptors, including chemokine receptors, act as coreceptors and determinants for the cell tropisms of human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus (SIV). We isolated HIV-1 variants from T-cell-line (T)- and macrophage (M)-tropic (i.e., dualtropic) (R5-R3-X4) HIV-1 strains and also produced six HIV-1 mutants carrying single-point amino acid substitutions at the tip of the V3 region of the Env protein of HIV-1. These variants and three mutants infected brain-derived CD4-positive cells that are resistant to M-, T-, or dualtropic (R5, X4, or R5-X4) HIV-1 strains. However, a factor that determines this cell tropism has not been identified. This study shows that primary brain-derived fibroblast-like cell strains, BT-3 and BT-20/N, as well as a CD4-transduced glioma cell line, U87/CD4, which were susceptible to these HIV-1 variants and mutants and the HIV-2ROD strain, expressed mRNA of an orphan G protein-coupled receptor (GPCR), GPR1. When a CD4-positive cell line which was strictly resistant to infection with diverse HIV-1 and HIV-2 strains was transduced with GPR1, the cell line became susceptible to these HIV-1 variants and mutants and to an HIV-2 strain but not to T- or dualtropic HIV-1 strains, and numerous syncytia formed after infection. These results indicate that GPR1 functions as a coreceptor for the HIV-1 variants and mutants and for the HIV-2ROD strain in vitro. PMID:10233994
Dorsch-Häsler, Karoline; Fisher, Paul B.; Weinstein, I. Bernard; Ginsberg, Harold S.
1980-01-01
The integration pattern of viral DNA was studied in a number of cell lines transformed by wild-type adenovirus type 5 (Ad5 WT) and two mutants of the DNA-binding protein gene, H5ts125 and H5ts107. The effect of chemical carcinogens on the integration of viral DNA was also investigated. Liquid hybridization (C0t) analyses showed that rat embryo cells transformed by Ad5 WT usually contained only the left-hand end of the viral genome, whereas cell lines transformed by H5ts125 or H5ts107 at either the semipermissive (36°C) or nonpermissive (39.5°C) temperature often contained one to five copies of all or most of the entire adenovirus genome. The arrangement of the integrated adenovirus DNA sequences was determined by cleavage of transformed cell DNA with restriction endonucleases XbaI, EcoRI, or HindIII followed by transfer of separated fragments to nitrocellulose paper and hybridization according to the technique of E. M. Southern (J. Mol. Biol. 98: 503-517, 1975). It was found that the adenovirus genome is integrated as a linear sequence covalently linked to host cell DNA; that the viral DNA is integrated into different host DNA sequences in each cell line studied; that in cell lines that contain multiple copies of the Ad5 genome the viral DNA sequences can be integrated in a single set of host cell DNA sequences and not as concatemers; and that chemical carcinogens do not alter the extent or pattern of viral DNA integration. Images PMID:6246266
Tansriratanawong, Kallapat; Ishikawa, Hiroshi; Toyomura, Junko; Sato, Soh
2017-10-01
In this study, novel human-derived epithelial-like cells (hEPLCs) lines were established from periodontal ligament (PDL) tissues, which were composed of a variety of cell types and exhibited complex cellular activities. To elucidate the putative features distinguishing these from epithelial rest of Malassez (ERM), we characterized hEPLCs based on cell lineage markers and tight junction protein expression. The aim of this study was, therefore, to establish and characterize hEPLCs lines from PDL tissues. The hEPLCs were isolated from PDL of third molar teeth. Cellular morphology and cell organelles were observed thoroughly. The characteristics of epithelial-endothelial-mesenchymal-like cells were compared in several markers by gene expression and immunofluorescence, to ERM and human umbilical-vein endothelial cells (HUVECs). The resistance between cellular junctions was assessed by transepithelial electron resistance, and inflammatory cytokines were detected by ELISA after infecting hEPLCs with periodontopathic bacteria. The hEPLCs developed into small epithelial-like cells in pavement appearance similar to ERM. However, gene expression patterns and immunofluorescence results were different from ERM and HUVECs, especially in tight junction markers (Claudin, ZO-1, and Occludins), and endothelial markers (vWF, CD34). The transepithelial electron resistance indicated higher resistance in hEPLCs, as compared to ERM. Periodontopathic bacteria were phagocytosed with upregulation of inflammatory cytokine secretion within 24 h. In conclusion, hEPLCs that were derived using the single cell isolation method formed tight multilayers colonies, as well as strongly expressed tight junction markers in gene expression and immunofluorescence. Novel hEPLCs lines exhibited differently from ERM, which might provide some specific functions such as metabolic exchange and defense mechanism against bacterial invasion in periodontal tissue.
Biological evaluation of water soluble arene Ru(II) enantiomers with amino-oxime ligands.
de la Cueva-Alique, Isabel; Sierra, Sara; Muñoz-Moreno, Laura; Pérez-Redondo, Adrián; Bajo, Ana M; Marzo, Isabel; Gude, Lourdes; Cuenca, Tomás; Royo, Eva
2018-06-01
New water soluble, enantiopure arene ruthenium compound S Ru S N -(1R,4S)-[(η 6 -p-cymene)Ru{ĸNH(Bn),ĸNOH}Cl]Cl (Bn = benzyl, 1a') has been synthesized. The novel compound along with that previously described R Ru R N -(1S,4R)-[(η 6 -p-cymene)Ru{ĸNH(Bn),ĸNOH}Cl]Cl (1a) was evaluated by polarimetry, ultra-violet and circular dichroism spectroscopy. The structure of novel ruthenium derivative 1a' was determined by single crystal X-ray crystallography. Both enantiomers have been tested against several cancer cell lines in vitro: prostate PC-3, lung A-549, pancreas MIA PaCa-2, colorectal HCT-116, leukemia Jurkat and cervical HeLa. Both enantiomers are active and versatile cytotoxic agents, showing IC 50 values from 2 to 12 times lower than those found for cisplatin in the different cell lines evaluated. The mechanism of cell death induced by the metal compounds was analyzed in A-549 and Jurkat cell lines. Derivatives 1a and 1a' induced apoptotic cell death of A-549 cells while dose-dependent cell death mechanisms have been found in the Jurkat cell line. Compound-DNA interactions have been investigated by equilibrium dialysis, Fluorescence Resonance Energy Transfer (FRET) melting assays and viscometric titrations, revealing moderate binding affinity of 1a and 1a' towards duplex DNA. Finally, the efficacy of 1a in a preliminary in vivo assay of PC-3 xenografts in nude mice has been evaluated, resulting in a promising inhibition of tumor growth by 45%. Analysis of tumor tissue also showed a significant decrease of levels of crucial molecules in the invasive phenotype of PC-3 cells. Copyright © 2018 Elsevier Inc. All rights reserved.
Ortiz, Carmen; Morales, Luisa; Sastre, Miguel; Haskins, William E; Matta, Jaime
2016-01-01
Sandalwood essential oil (SEO) is extracted from Santalum trees. Although α-santalol, a main constituent of SEO, has been studied as a chemopreventive agent, the genotoxic activity of the whole oil in human breast cell lines is still unknown. The main objective of this study was to assess the cytotoxic and genotoxic effects of SEO in breast adenocarcinoma (MCF-7) and nontumorigenic breast epithelial (MCF-10A) cells. Proteins associated with SEO genotoxicity were identified using a proteomics approach. Commercially available, high-purity, GC/MS characterized SEO was used to perform the experiments. The main constituents reported in the oil were (Z)-α-santalol (25.34%), (Z)-nuciferol (18.34%), (E)-β-santalol (10.97%), and (E)-nuciferol (10.46%). Upon exposure to SEO (2-8 μg/mL) for 24 hours, cell proliferation was determined by the MTT assay. Alkaline and neutral comet assays were used to assess genotoxicity. SEO exposure induced single- and double-strand breaks selectively in the DNA of MCF-7 cells. Quantitative LC/MS-based proteomics allowed identification of candidate proteins involved in this response: Ku70 (p = 1.37E - 2), Ku80 (p = 5.8E - 3), EPHX1 (p = 3.3E - 3), and 14-3-3ζ (p = 4.0E - 4). These results provide the first evidence that SEO is genotoxic and capable of inducing DNA single- and double-strand breaks in MCF-7 cells.
Ortiz, Carmen; Morales, Luisa; Sastre, Miguel; Haskins, William E.; Matta, Jaime
2016-01-01
Sandalwood essential oil (SEO) is extracted from Santalum trees. Although α-santalol, a main constituent of SEO, has been studied as a chemopreventive agent, the genotoxic activity of the whole oil in human breast cell lines is still unknown. The main objective of this study was to assess the cytotoxic and genotoxic effects of SEO in breast adenocarcinoma (MCF-7) and nontumorigenic breast epithelial (MCF-10A) cells. Proteins associated with SEO genotoxicity were identified using a proteomics approach. Commercially available, high-purity, GC/MS characterized SEO was used to perform the experiments. The main constituents reported in the oil were (Z)-α-santalol (25.34%), (Z)-nuciferol (18.34%), (E)-β-santalol (10.97%), and (E)-nuciferol (10.46%). Upon exposure to SEO (2–8 μg/mL) for 24 hours, cell proliferation was determined by the MTT assay. Alkaline and neutral comet assays were used to assess genotoxicity. SEO exposure induced single- and double-strand breaks selectively in the DNA of MCF-7 cells. Quantitative LC/MS-based proteomics allowed identification of candidate proteins involved in this response: Ku70 (p = 1.37E − 2), Ku80 (p = 5.8E − 3), EPHX1 (p = 3.3E − 3), and 14-3-3ζ (p = 4.0E − 4). These results provide the first evidence that SEO is genotoxic and capable of inducing DNA single- and double-strand breaks in MCF-7 cells. PMID:27293457
NASA Astrophysics Data System (ADS)
Perdelwitz, V.; Huke, P.
2018-06-01
Absorption cells filled with diatomic iodine are frequently employed as wavelength reference for high-precision stellar radial velocity determination due their long-term stability and low cost. Despite their wide-spread usage in the community, there is little documentation on how to determine the ideal operating temperature of an individual cell. We have developed a new approach to measuring the effective molecular temperature inside a gas absorption cell and searching for effects detrimental to a high precision wavelength reference, utilizing the Boltzmann distribution of relative line depths within absorption bands of single vibrational transitions. With a high resolution Fourier transform spectrometer, we took a series of 632 spectra at temperatures between 23 °C and 66 °C. These spectra provide a sufficient basis to test the algorithm and demonstrate the stability and repeatability of the temperature determination via molecular lines on a single iodine absorption cell. The achievable radial velocity precision σRV is found to be independent of the cell temperature and a detailed analysis shows a wavelength dependency, which originates in the resolving power of the spectrometer in use and the signal-to-noise ratio. Two effects were found to cause apparent absolute shifts in radial velocity, a temperature-induced shift of the order of ˜1 ms-1K-1 and a more significant effect resulting in abrupt jumps of ≥50 ms-1 is determined to be caused by the temperature crossing the dew point of the molecular iodine.
Isolation and characterization of anti c-met single chain fragment variable (scFv) antibodies.
Qamsari, Elmira Safaie; Sharifzadeh, Zahra; Bagheri, Salman; Riazi-Rad, Farhad; Younesi, Vahid; Abolhassani, Mohsen; Ghaderi, Sepideh Safaei; Baradaran, Behzad; Somi, Mohammad Hossein; Yousefi, Mehdi
2017-12-01
The receptor tyrosine kinase (RTK) Met is the cell surface receptor for hepatocyte growth factor (HGF) involved in invasive growth programs during embryogenesis and tumorgenesis. There is compelling evidence suggesting important roles for c-Met in colorectal cancer proliferation, migration, invasion, angiogenesis, and survival. Hence, a molecular inhibitor of an extracellular domain of c-Met receptor that blocks c-Met-cell surface interactions could be of great thera-peutic importance. In an attempt to develop molecular inhibitors of c-Met, single chain variable fragment (scFv) phage display libraries Tomlinson I + J against a specific synthetic oligopeptide from the extracellular domain of c-Met receptor were screened; selected scFv were then characterized using various immune techniques. Three c-Met specific scFv (ES1, ES2, and ES3) were selected following five rounds of panning procedures. The scFv showed specific binding to c-Met receptor, and significantly inhibited proliferation responses of a human colorectal carcinoma cell line (HCT-116). Moreover, anti- apoptotic effects of selected scFv antibodies on the HCT-116 cell line were also evaluated using Annexin V/PI assays. The results demonstrated rates of apoptotic cell death of 46.0, 25.5, and 37.8% among these cells were induced by use of ES1, ES2, and ES3, respectively. The results demonstrated ability to successfully isolate/char-acterize specific c-Met scFv that could ultimately have a great therapeutic potential in immuno-therapies against (colorectal) cancers.
Xie, Jing; Shen, Shanshan; Chen, Ruhua; Xu, Jun; Dong, Kun; Huang, Jiancui; Lu, Qin; Zhu, Wenjiao; Ma, Tieliang; Jia, Lei; Cai, Hongxin; Zhu, Taofeng
2017-01-01
In the present study, two isostructural lanthanide (Ln)(III) complexes, namely Ln(HL)2(NO3)(CH3OH)2)·CH3OH, where Ln = La in complex 1 and Ce in complex 2, and hydrogen ligand (HL) = (E)-N'-[1-(2-pyridinyl)ethylidene]isonicotinohydrazone, have been isolated and characterized by elemental analysis, infrared spectra and single-crystal X-ray diffraction analysis. The results revealed that the acylhydrazone ligand HL in each complex was deprotonated as an anionic ligand and coordinated to the central La(III) ion via enolization of oxygen and nitrogen atoms. Furthermore, the antitumor effects and potential mechanisms of the two complexes were explored in the human lung cancer cell line A549 and in the human gastric cancer cell lines BGC823 and SGC7901. In the present study, the roles the two complexes on the proliferation and apoptosis of the above tumor cell lines were determined by MTT assay and Annexin V/propidium iodide flow cytometry, respectively. Furthermore, various apoptosis-associated key genes, including caspase 3, B cell lymphoma (Bcl)-2-associated X protein (Bax) and Bcl-2, were detected by western blotting to explore the possible antitumor mechanisms of the two complexes. The results revealed that the two complexes had comparable antitumor activities in terms of inhibiting proliferation and inducing apoptosis in tumor cell lines. The changes in the protein expression levels of caspase 3, Bax and Bcl-2 further verified the apoptosis-promoting mechanisms of the two complexes in tumor cell lines. These findings have a great potential in biomedical applications of novel Ln(III) complexes. PMID:28599443
Yoshimoto, K; Tanaka, C; Moritani, M; Shimizu, E; Yamaoka, T; Yamada, S; Sano, T; Itakura, M
1999-02-01
RET is a receptor tyrosine kinase expressed in neuroendocrine cells and tumors. RET is activated by a ligand complex comprising glial cell line-derived neurotrophic factor (GDNF) and GDNF receptor-alpha (GDNFR-alpha). Activating mutations of the RET proto-oncogene were found in multiple endocrine neoplasia (MEN) 2 and in sporadic medullary thyroid carcinoma and pheochromocytoma of neuroendocrine origin. Mutations of the RET proto-oncogene and the glial cell line-derived neurotrophic factor (GDNF) gene were examined in human pituitary tumors. No mutations of the RET proto-oncogene including the cysteine-rich region or codon 768 and 918 in the tyrosine kinase domain were detected in 172 human pituitary adenomas either by polymerase chain reaction (PCR)-single strand conformation polymorphism (SSCP) or by PCR-restriction fragment length polymorphism (RFLP). Further, somatic mutations of the GDNF gene in 33 human pituitary adenomas were not detected by PCR-SSCP. One polymorphism of the GDNF gene at codon 145 of TGC or TGT was observed in a prolactinoma. The RET proto-oncogene message was detected in a normal human pituitary gland or 4 of 4 human pituitary adenomas with reverse transcription (RT)-PCR, and in rodent pituitary tumor cell lines with Western blotting. The expression of GDNF gene was detected in 1 of 4 human somatotroph adenomas, 1 of 2 corticotroph adenomas, and 2 of 6 rodent pituitary tumor cell lines with RT-PCR. Based on these, it is concluded that somatic mutations of the RET proto-oncogene or the GDNF gene do not appear to play a major role in the pituitary tumorigenesis in examined tumors.
Goodrich, David; Tao, Xin; Bohrer, Chelsea; Lonczak, Agnieszka; Xing, Tongji; Zimmerman, Rebekah; Zhan, Yiping; Scott, Richard T; Treff, Nathan R
2016-11-01
A subset of preimplantation stage embryos may possess mosaicism of chromosomal constitution, representing a possible limitation to the clinical predictive value of comprehensive chromosome screening (CCS) from a single biopsy. However, contemporary methods of CCS may be capable of predicting mosaicism in the blastocyst by detecting intermediate levels of aneuploidy within a trophectoderm biopsy. This study evaluates the sensitivity and specificity of aneuploidy detection by two CCS platforms using a cell line mixture model of a mosaic trophectoderm biopsy. Four cell lines with known karyotypes were obtained and mixed together at specific ratios of six total cells (0:6, 1:5, 2:4, 3:3, 4:2, 5:1, and 6:0). A female euploid and a male trisomy 18 cell line were used for one set, and a male trisomy 13 and a male trisomy 15 cell line were used for another. Replicates of each mixture were prepared, randomized, and blinded for analysis by one of two CCS platforms (quantitative polymerase chain reaction (qPCR) or VeriSeq next-generation sequencing (NGS)). Sensitivity and specificity of aneuploidy detection at each level of mosaicism was determined and compared between platforms. With the default settings for each platform, the sensitivity of qPCR and NGS were not statistically different, and 100 % specificity was observed (no false positives) at all levels of mosaicism. However, the use of previously published custom criteria for NGS increased sensitivity but also significantly decreased specificity (33 % false-positive prediction of aneuploidy). By demonstrating increased false-positive diagnoses when reducing the stringency of predicting an abnormality, these data illustrate the importance of preclinical evaluation of new testing paradigms before clinical implementation.
Schipler, Agnes; Mladenova, Veronika; Soni, Aashish; Nikolov, Vladimir; Saha, Janapriya; Mladenov, Emil; Iliakis, George
2016-01-01
Chromosome translocations are hallmark of cancer and of radiation-induced cell killing, reflecting joining of incongruent DNA-ends that alter the genome. Translocation-formation requires DNA end-joining mechanisms and incompletely characterized, permissive chromatin conditions. We show that chromatin destabilization by clusters of DNA double-strand-breaks (DSBs) generated by the I-SceI meganuclease at multiple, appropriately engineered genomic sites, compromises c-NHEJ and markedly increases cell killing and translocation-formation compared to single-DSBs. Translocation-formation from DSB-clusters utilizes Parp1 activity, implicating alt-EJ in their formation. Immunofluorescence experiments show that single-DSBs and DSB-clusters uniformly provoke the formation of single γ-H2AX foci, suggesting similar activation of early DNA damage response (DDR). Live-cell imaging also shows similar single-focus recruitment of the early-response protein MDC1, to single-DSBs and DSB-clusters. Notably, the late DDR protein, 53BP1 shows in live-cell imaging strikingly stronger recruitment to DSB-clusters as compared to single-DSBs. This is the first report that chromatin thripsis, in the form of engineered DSB-clusters, compromises first-line DSB-repair pathways, allowing alt-EJ to function as rescuing-backup. DSB-cluster-formation is indirectly linked to the increased biological effectiveness of high ionization-density radiations, such as the alpha-particles emitted by radon gas or the heavy-ions utilized in cancer therapy. Our observations provide the first direct mechanistic explanation for this long-known effect. PMID:27257076
Establishment and characterization of an angiosarcoma-derived cell line, AS-M.
Krump-Konvalinkova, Vera; Bittinger, Fernando; Olert, Jürgen; Bräuninger, Wolfgang; Brunner, Joachim; Kirkpatrick, C James
2003-01-01
A novel human endothelial cell line, AS-M, has been established from a cutaneous angiosarcoma on the scalp. The cells expressing platelet endothelial cell adhesion molecule-1 (CD31) were isolated using magnetic beads and subsequently cultured for a year. To date, the cells have undergone more than 100 population doublings (PDs). The AS-M cells manifested endothelial characteristics, such as active uptake of acetylated low-density lipoprotein labeled with 1,1'-dioctadecyl 3,3,3',3'-tetramethylindocarbocyanine perchlorate (Dil-Ac-LDL), capacity to bind the Ulex europeaus agglutin-I (UEA-I), and expression of von Willebrand factor (vWF) and CD31. The single cell-derived clone, AS-M.5, showed a constitutive expression of CD31, vWF, angiotensin-converting enzyme (ACE), endoglin (CD105), and the endothelial cell receptor tyrosine kinases KDR and Tie-1. Similarly to freshly isolated endothelial cells, the AS-M.5 responded to induction by bacterial lipopolysaccharide (LPS) by increased transcription of cell adhesion molecules and cytokines. The AS-M.5 cultures required endothelial growth supplements for optimal growth and long-term propagation in vitro. However, in contrast to normal endothelial cells, p53 gene products were detected in nuclei of AS-M.5 cells. Cytogenetic analyses consistently revealed a hypodiploid karyotype with complete loss of one homologue of several chromosomes and a homogeneous pattern of distinct karyotypic changes. Although the AS-M.5 presented characteristics suggestive of tumor cells, they did not develop into tumors when inoculated subcutaneously into nude mice. The cell line AS-M.5 could be a useful model system to study endothelial pathobiology in vitro.
Transportan 10 improves the anticancer activity of cisplatin.
Izabela, Rusiecka; Jarosław, Ruczyński; Magdalena, Alenowicz; Piotr, Rekowski; Ivan, Kocić
2016-05-01
The aim of this paper was to examine whether cell-penetrating peptides (CPPs) such as transportan 10 (TP10) or protein transduction domain (PTD4) may improve the anticancer activity of cisplatin (cPt). The complexes of TP10 or PTD4 with cPt were used in the experiments. They were carried out on two non-cancer (HEK293 (human embryonic kidney) and HEL299 (human embryo lung)) and two cancer (HeLa (human cervical cancer) and OS143B (human osteosarcoma 143B)) cell lines. Both complexes were tested (MTT assay) with respect to their anticancer or cytotoxic actions. TAMRA (fluorescent dye)-stained preparations were visualized in a fluorescence microscope. The long-term effect of TP10 + cPt and its components on non-cancer and cancer cell lines was observed in inverted phase contrast microscopy. In the MTT test (cell viability assay), the complex of TP10 + cPt produced a more potent effect on the cancer cell lines (HeLa, OS143B) in comparison to that observed after separate treatment with TP10 or cPt. At the same time, the action of the complex and its components was rather small on non-cancer cell lines. On the other hand, a complex of another CPP with cPt, i.e., PTD4 + cPt, was without a significant effect on the cancer cell line (OS143B). The images of the fluorescent microscopy showed TAMRA-TP10 or TAMRA-TP10 + cPt in the interior of the HeLa cells. In the case of TAMRA-PTD4 or TAMRA-PTD4 + cPt, only the first compound was found inside the cancer cell line. In contrast, none of the tested compounds gained access to the interior of the non-cancer cells (HEK293, HEL299). Long-term incubation with the TP10 + cPt (estimated by inverted phase contrast microscopy) lead to an enhanced action of the complex on cell viability (decrease in the number of cells and change in their morphology) as compared with that produced by each single agent. With regard to the tested CPPs, only TP10 improved the anticancer activity of cisplatin if both compounds were used in the form of a complex. Additionally, the complex was relatively safe for non-cancer cells. What is more, TP10 also produced an anticancer effect on HeLa and OS143B cell lines.
Chen, Evan C.; Karl, Taylor A.; Kalisky, Tomer; Gupta, Santosh K.; O’Brien, Catherine A.; Longacre, Teri A.; van de Rijn, Matt; Quake, Stephen R.; Clarke, Michael F.; Rothenberg, Michael E.
2015-01-01
Background & Aims Receptor tyrosine kinase (RTK) inhibitors have advanced colon cancer treatment. We investigated the role of the RTK KIT in development of human colon cancer. Methods An array of 137 patient-derived colon tumors and their associated xenografts were analyzed by immunohistochemistry to measure levels of KIT and its ligand KITLG. KIT and/or KITLG was stably knocked down by expression of small hairpin RNAs from lentiviral vectors in DLD1, HT29, LS174T, and COLO320 colon cancer cell lines, and in UM-COLON#8 and POP77 xenografts; cells transduced with only vector were used as controls. Cells were analyzed by real-time quantitative reverse transcription PCR, single-cell gene expression analysis, flow cytometry, and immunohistochemical, immunoblot, and functional assays. Xenograft tumors were grown from control and KIT-knockdown DLD1 and UM-COLON#8 cells in immunocompromised mice and compared. Some mice were given the RTK inhibitor imatinib following injection of cancer cells; tumor growth was measured based on bioluminescence. We assessed tumorigenicity using limiting dilution analysis. Results KIT and KITLG were expressed heterogeneously by a subset of human colon tumors. Knockdown of KIT decreased proliferation of colon cancer cell lines and growth of xenograft tumors in mice, compared with control cells. KIT knockdown cells had increased expression of enterocyte markers, decreased expression of cycling genes, and, unexpectedly, increased expression of LGR5-associated genes. No activating mutations in KIT were detected in DLD1, POP77, or UM-COLON#8 cell lines. However, KITLG-knockdown DLD1 cells formed smaller xenograft tumors than control cells. Gene expression analysis of single CD44+ cells indicated that KIT may promote growth via KITLG autocrine and/or paracrine signaling. Imatinib inhibited growth of KIT+ colon cancer organoids in culture and growth of xenograft tumors in mice. Cancer cells with endogenous KIT expression were more tumorigenic in mice. Conclusions KIT and KITLG are expressed by a subset of human colon tumors. KIT signaling promotes growth of colon cancer cells and organoids in culture and xenograft tumors in mice via its ligand, KITLG, in an autocrine or paracrine manner. Patients with KIT-expressing colon tumors may benefit from KIT RTK inhibitors. PMID:26026391
Reinhold, William C
2015-12-10
There is currently a split within the cancer research community between traditional molecular biological hypothesis-driven and the more recent "omic" forms or research. While the molecular biological approach employs the tried and true single alteration-single response formulations of experimentation, the omic employs broad-based assay or sample collection approaches that generate large volumes of data. How to integrate the benefits of these two approaches in an efficient and productive fashion remains an outstanding issue. Ideally, one would merge the understandability, exactness, simplicity, and testability of the molecular biological approach, with the larger amounts of data, simultaneous consideration of multiple alterations, consideration of genes both of known interest along with the novel, cross-sample comparisons among cell lines and patient samples, and consideration of directed questions while simultaneously gaining exposure to the novel provided by the omic approach. While at the current time integration of the two disciplines remains problematic, attempts to do so are ongoing, and will be necessary for the understanding of the large cell line screens including the Developmental Therapeutics Program's NCI-60, the Broad Institute's Cancer Cell Line Encyclopedia, and the Wellcome Trust Sanger Institute's Cancer Genome Project, as well as the the Cancer Genome Atlas clinical samples project. Going forward there is significant benefit to be had from the integration of the molecular biological and the omic forms or research, with the desired goal being improved translational understanding and application.
Spontaneous rat nephroblastoma: ultrastructure of a transplant line.
Hard, G C; Noble, R L
1982-08-01
Tumor tissue derived from a nephroblastoma arising spontaneously in an Nb hooded rat and carried for 56 generations as a subcutaneous syngeneic transplant was examined by electron microscopy. Histologically, the transplant showed the typical pattern of dense clusters or sheets of basophilic epithelioid cells set within ramifying tracts of fibrous mesenchyme. At the ultrastructural level, the tumor cells within dense clusters were arranged in anastomotic cords that circumscribed clear intervening spaces. The tumor cells were a monomorphic population possessing the morphologic characteristics of blast cells, including polyribosomes as the predominant cytoplasmic organelle. Furthermore, the close contiguity of cells within the cords, their polyhedral form, and their connection by intercellular junctions established the tumor cell type as epithelial. Consistent with benign stroma, mesenchymal tracts contained highly differentiated, mature fibroblasts, collagen, phagocytes, cells of the lymphoid series, and normal blood vessels. No transitional forms between epithelium and mesenchyme suggestive of bipotential differentiation were seen. Although the data represent only a single transplantation line, the observations support the contention (based on light microscopic appraisal of a number of primary tumors) that nephroblastoma in te rat can be a purely epithelial neoplasm.