Sample records for single clock cycle

  1. Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle

    PubMed Central

    Feillet, Céline; Krusche, Peter; Tamanini, Filippo; Janssens, Roel C.; Downey, Mike J.; Martin, Patrick; Teboul, Michèle; Saito, Shoko; Lévi, Francis A.; Bretschneider, Till; van der Horst, Gijsbertus T. J.; Delaunay, Franck; Rand, David A.

    2014-01-01

    Daily synchronous rhythms of cell division at the tissue or organism level are observed in many species and suggest that the circadian clock and cell cycle oscillators are coupled. For mammals, despite known mechanistic interactions, the effect of such coupling on clock and cell cycle progression, and hence its biological relevance, is not understood. In particular, we do not know how the temporal organization of cell division at the single-cell level produces this daily rhythm at the tissue level. Here we use multispectral imaging of single live cells, computational methods, and mathematical modeling to address this question in proliferating mouse fibroblasts. We show that in unsynchronized cells the cell cycle and circadian clock robustly phase lock each other in a 1:1 fashion so that in an expanding cell population the two oscillators oscillate in a synchronized way with a common frequency. Dexamethasone-induced synchronization reveals additional clock states. As well as the low-period phase-locked state there are distinct coexisting states with a significantly higher period clock. Cells transition to these states after dexamethasone synchronization. The temporal coordination of cell division by phase locking to the clock at a single-cell level has significant implications because disordered circadian function is increasingly being linked to the pathogenesis of many diseases, including cancer. PMID:24958884

  2. Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle.

    PubMed

    Feillet, Céline; Krusche, Peter; Tamanini, Filippo; Janssens, Roel C; Downey, Mike J; Martin, Patrick; Teboul, Michèle; Saito, Shoko; Lévi, Francis A; Bretschneider, Till; van der Horst, Gijsbertus T J; Delaunay, Franck; Rand, David A

    2014-07-08

    Daily synchronous rhythms of cell division at the tissue or organism level are observed in many species and suggest that the circadian clock and cell cycle oscillators are coupled. For mammals, despite known mechanistic interactions, the effect of such coupling on clock and cell cycle progression, and hence its biological relevance, is not understood. In particular, we do not know how the temporal organization of cell division at the single-cell level produces this daily rhythm at the tissue level. Here we use multispectral imaging of single live cells, computational methods, and mathematical modeling to address this question in proliferating mouse fibroblasts. We show that in unsynchronized cells the cell cycle and circadian clock robustly phase lock each other in a 1:1 fashion so that in an expanding cell population the two oscillators oscillate in a synchronized way with a common frequency. Dexamethasone-induced synchronization reveals additional clock states. As well as the low-period phase-locked state there are distinct coexisting states with a significantly higher period clock. Cells transition to these states after dexamethasone synchronization. The temporal coordination of cell division by phase locking to the clock at a single-cell level has significant implications because disordered circadian function is increasingly being linked to the pathogenesis of many diseases, including cancer.

  3. Circadian Clock Synchronization of the Cell Cycle in Zebrafish Occurs through a Gating Mechanism Rather Than a Period-phase Locking Process.

    PubMed

    Laranjeiro, Ricardo; Tamai, T Katherine; Letton, William; Hamilton, Noémie; Whitmore, David

    2018-04-01

    Studies from a number of model systems have shown that the circadian clock controls expression of key cell cycle checkpoints, thus providing permissive or inhibitory windows in which specific cell cycle events can occur. However, a major question remains: Is the clock actually regulating the cell cycle through such a gating mechanism or, alternatively, is there a coupling process that controls the speed of cell cycle progression? Using our light-responsive zebrafish cell lines, we address this issue directly by synchronizing the cell cycle in culture simply by changing the entraining light-dark (LD) cycle in the incubator without the need for pharmacological intervention. Our results show that the cell cycle rapidly reentrains to a shifted LD cycle within 36 h, with changes in p21 expression and subsequent S phase timing occurring within the first few hours of resetting. Reentrainment of mitosis appears to lag S phase resetting by 1 circadian cycle. The range of entrainment of the zebrafish clock to differing LD cycles is large, from 16 to 32 hour periods. We exploited this feature to explore cell cycle entrainment at both the population and single cell levels. At the population level, cell cycle length is shortened or lengthened under corresponding T-cycles, suggesting that a 1:1 coupling mechanism is capable of either speeding up or slowing down the cell cycle. However, analysis at the single cell level reveals that this, in fact, is not true and that a gating mechanism is the fundamental method of timed cell cycle regulation in zebrafish. Cell cycle length at the single cell level is virtually unaltered with varying T-cycles.

  4. Circadian Clock Synchronization of the Cell Cycle in Zebrafish Occurs through a Gating Mechanism Rather Than a Period-phase Locking Process

    PubMed Central

    Tamai, T. Katherine; Letton, William; Hamilton, Noémie; Whitmore, David

    2018-01-01

    Studies from a number of model systems have shown that the circadian clock controls expression of key cell cycle checkpoints, thus providing permissive or inhibitory windows in which specific cell cycle events can occur. However, a major question remains: Is the clock actually regulating the cell cycle through such a gating mechanism or, alternatively, is there a coupling process that controls the speed of cell cycle progression? Using our light-responsive zebrafish cell lines, we address this issue directly by synchronizing the cell cycle in culture simply by changing the entraining light-dark (LD) cycle in the incubator without the need for pharmacological intervention. Our results show that the cell cycle rapidly reentrains to a shifted LD cycle within 36 h, with changes in p21 expression and subsequent S phase timing occurring within the first few hours of resetting. Reentrainment of mitosis appears to lag S phase resetting by 1 circadian cycle. The range of entrainment of the zebrafish clock to differing LD cycles is large, from 16 to 32 hour periods. We exploited this feature to explore cell cycle entrainment at both the population and single cell levels. At the population level, cell cycle length is shortened or lengthened under corresponding T-cycles, suggesting that a 1:1 coupling mechanism is capable of either speeding up or slowing down the cell cycle. However, analysis at the single cell level reveals that this, in fact, is not true and that a gating mechanism is the fundamental method of timed cell cycle regulation in zebrafish. Cell cycle length at the single cell level is virtually unaltered with varying T-cycles. PMID:29444612

  5. Discrete gene replication events drive coupling between the cell cycle and circadian clocks

    PubMed Central

    Paijmans, Joris; Bosman, Mark; ten Wolde, Pieter Rein; Lubensky, David K.

    2016-01-01

    Many organisms possess both a cell cycle to control DNA replication and a circadian clock to anticipate changes between day and night. In some cases, these two rhythmic systems are known to be coupled by specific, cross-regulatory interactions. Here, we use mathematical modeling to show that, additionally, the cell cycle generically influences circadian clocks in a nonspecific fashion: The regular, discrete jumps in gene-copy number arising from DNA replication during the cell cycle cause a periodic driving of the circadian clock, which can dramatically alter its behavior and impair its function. A clock built on negative transcriptional feedback either phase-locks to the cell cycle, so that the clock period tracks the cell division time, or exhibits erratic behavior. We argue that the cyanobacterium Synechococcus elongatus has evolved two features that protect its clock from such disturbances, both of which are needed to fully insulate it from the cell cycle and give it its observed robustness: a phosphorylation-based protein modification oscillator, together with its accompanying push–pull read-out circuit that responds primarily to the ratios of different phosphoform concentrations, makes the clock less susceptible to perturbations in protein synthesis; the presence of multiple, asynchronously replicating copies of the same chromosome diminishes the effect of replicating any single copy of a gene. PMID:27035936

  6. Discrete gene replication events drive coupling between the cell cycle and circadian clocks.

    PubMed

    Paijmans, Joris; Bosman, Mark; Ten Wolde, Pieter Rein; Lubensky, David K

    2016-04-12

    Many organisms possess both a cell cycle to control DNA replication and a circadian clock to anticipate changes between day and night. In some cases, these two rhythmic systems are known to be coupled by specific, cross-regulatory interactions. Here, we use mathematical modeling to show that, additionally, the cell cycle generically influences circadian clocks in a nonspecific fashion: The regular, discrete jumps in gene-copy number arising from DNA replication during the cell cycle cause a periodic driving of the circadian clock, which can dramatically alter its behavior and impair its function. A clock built on negative transcriptional feedback either phase-locks to the cell cycle, so that the clock period tracks the cell division time, or exhibits erratic behavior. We argue that the cyanobacterium Synechococcus elongatus has evolved two features that protect its clock from such disturbances, both of which are needed to fully insulate it from the cell cycle and give it its observed robustness: a phosphorylation-based protein modification oscillator, together with its accompanying push-pull read-out circuit that responds primarily to the ratios of different phosphoform concentrations, makes the clock less susceptible to perturbations in protein synthesis; the presence of multiple, asynchronously replicating copies of the same chromosome diminishes the effect of replicating any single copy of a gene.

  7. Differences in circadian rhythmicity in CLOCK 3111T/C genetic variants in moderate obese women as assessed by thermometry, actimetry and body position

    USDA-ARS?s Scientific Manuscript database

    Genetics is behind our circadian machinery. CLOCK (Circadian Locomotor Output Cycles Kaput) 3111T/C single-nucleotide polymorphism (SNP) has been previously related to obesity and weight loss. However, phenotypic association and functionality of CLOCK 3111 locus is still unknown. The aim of this stu...

  8. Inheritance of Cell-Cycle Duration in the Presence of Periodic Forcing

    NASA Astrophysics Data System (ADS)

    Mosheiff, Noga; Martins, Bruno M. C.; Pearl-Mizrahi, Sivan; Grünberger, Alexander; Helfrich, Stefan; Mihalcescu, Irina; Kohlheyer, Dietrich; Locke, James C. W.; Glass, Leon; Balaban, Nathalie Q.

    2018-04-01

    Periodic forcing of nonlinear oscillators leads to a large number of dynamic behaviors. The coupling of the cell cycle to the circadian clock provides a biological realization of such forcing. A previous model of forcing leads to nontrivial relations between correlations along cell lineages. Here, we present a simplified two-dimensional nonlinear map for the periodic forcing of the cell cycle. Using high-throughput single-cell microscopy, we have studied the correlations between cell-cycle duration in discrete lineages of several different organisms, including those with known coupling to a circadian clock and those without known coupling to a circadian clock. The model reproduces the paradoxical correlations and predicts new features that can be compared with the experimental data. By fitting the model to the data, we extract the important parameters that govern the dynamics. Interestingly, the model reproduces bimodal distributions for cell-cycle duration, as well as the gating of cell division by the phase of the clock, without having been explicitly fed into the model. In addition, the model predicts that circadian coupling may increase cell-to-cell variability in a clonal population of cells. In agreement with this prediction, deletion of the circadian clock reduces variability. Our results show that simple correlations can identify systems under periodic forcing and that studies of nonlinear coupling of biological oscillators provide insight into basic cellular processes of growth.

  9. The circadian clock in skin: implications for adult stem cells, tissue regeneration, cancer, aging, and immunity

    PubMed Central

    Plikus, Maksim V.; Van Spyk, Elyse Noelani; Pham, Kim; Geyfman, Mikhail; Kumar, Vivek; Takahashi, Joseph S.; Andersen, Bogi

    2015-01-01

    Historically work on peripheral circadian clocks has been focused on organs and tissues that have prominent metabolic functions, such as liver, fat and muscle. In recent years, skin is emerging as a model for studying circadian clock regulation of cell proliferation, stem cell functions, tissue regeneration, aging and carcinogenesis. Morphologically skin is complex, containing multiple cell types and structures, and there is evidence for a functional circadian clock in most, if not all, of its cell types. Despite the complexity, skin stem cell populations are well defined, experimentally tractable and exhibit prominent daily cell proliferation cycles. Hair follicle stem cells also participate in recurrent, long-lasting cycles of regeneration -- the hair growth cycles. Among other advantages of skin is a broad repertoire of available genetic tools enabling the creation of cell-type specific circadian mutants. Also, due to the accessibility of the skin, in vivo imaging techniques can be readily applied to study the circadian clock and its outputs in real time, even at the single-cell level. Skin provides the first line of defense against many environmental and stress factors that exhibit dramatic diurnal variations such as solar UV radiation and temperature. Studies have already linked the circadian clock to the control of UVB-induced DNA damage and skin cancers. Due to the important role that skin plays in the defense against microorganisms, it represents a promising model system to further explore the role of the clock in the regulation of the body's immune functions. To that end, recent studies have already linked the circadian clock to psoriasis, one of the most common immune-mediated skin disorders. The skin also provides opportunities to interrogate clock regulation of tissue metabolism in the context of stem cells and regeneration. Furthermore, many animal species feature prominent seasonal hair molt cycles, offering an attractive model for investigating the role of clock in seasonal organismal behaviors. PMID:25589491

  10. Conditioned stimulus control in the rat circadian system depends on clock resetting during conditioning.

    PubMed

    Arvanitogiannis, A; Amir, S

    1999-12-01

    The authors examined the ability of a conditioned stimulus (CS; mild air disturbance) previously paired with an entraining light pulse to reset the circadian pacemaker in rats. Rats were entrained to a single 30-min light stimulus delivered every 25 hr or 24 hr (T cycle). Each daily light presentation was paired with the CS. After at least 20 days of stable entrainment to each of the T cycles, the rats were allowed to free run and were then presented with the CS at circadian time 15. CS-induced phase shifts in wheel-running activity rhythms were taken as evidence for conditioning. For the most part, conditioning occurred after CS-light pairings on the 25-hr but not 24-hr T cycle. The results suggest that CS control of the circadian clock phase depends on the effect that the entraining light pulse has on the clock during conditioning.

  11. A robust and tunable mitotic oscillator in artificial cells

    PubMed Central

    Wang, Shiyuan; Barnes, Patrick M; Liu, Xuwen; Xu, Haotian; Jin, Minjun; Liu, Allen P

    2018-01-01

    Single-cell analysis is pivotal to deciphering complex phenomena like heterogeneity, bistability, and asynchronous oscillations, where a population ensemble cannot represent individual behaviors. Bulk cell-free systems, despite having unique advantages of manipulation and characterization of biochemical networks, lack the essential single-cell information to understand a class of out-of-steady-state dynamics including cell cycles. Here, by encapsulating Xenopus egg extracts in water-in-oil microemulsions, we developed artificial cells that are adjustable in sizes and periods, sustain mitotic oscillations for over 30 cycles, and function in forms from the simplest cytoplasmic-only to the more complicated ones involving nuclear dynamics, mimicking real cells. Such innate flexibility and robustness make it key to studying clock properties like tunability and stochasticity. Our results also highlight energy as an important regulator of cell cycles. We demonstrate a simple, powerful, and likely generalizable strategy of integrating strengths of single-cell approaches into conventional in vitro systems to study complex clock functions. PMID:29620527

  12. Automatic control of clock duty cycle

    NASA Technical Reports Server (NTRS)

    Feng, Xiaoxin (Inventor); Roper, Weston (Inventor); Seefeldt, James D. (Inventor)

    2010-01-01

    In general, this disclosure is directed to a duty cycle correction (DCC) circuit that adjusts a falling edge of a clock signal to achieve a desired duty cycle. In some examples, the DCC circuit may generate a pulse in response to a falling edge of an input clock signal, delay the pulse based on a control voltage, adjust the falling edge of the input clock signal based on the delayed pulse to produce an output clock signal, and adjust the control voltage based on the difference between a duty cycle of the output clock signal and a desired duty cycle. Since the DCC circuit adjusts the falling edge of the clock cycle to achieve a desired duty cycle, the DCC may be incorporated into existing PLL control loops that adjust the rising edge of a clock signal without interfering with the operation of such PLL control loops.

  13. Associative list processing unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemmert, Karl Scott; Underwood, Keith D

    2014-04-01

    An associative list processing unit and method comprising employing a plurality of prioritized cell blocks and permitting inserts to occur in a single clock cycle if all of the cell blocks are not full.

  14. The clock gene cycle plays an important role in the circadian clock of the cricket Gryllus bimaculatus.

    PubMed

    Uryu, Outa; Karpova, Svetlana G; Tomioka, Kenji

    2013-07-01

    To dissect the molecular oscillatory mechanism of the circadian clock in the cricket Gryllus bimaculatus, we have cloned a cDNA of the clock gene cycle (Gb'cyc) and analyzed its structure and function. Gb'cyc contains four functional domains, i.e. bHLH, PAS-A, PAS-B and BCTR domains, and is expressed rhythmically in light dark cycles, peaking at mid night. The RNA interference (RNAi) of Clock (Gb'Clk) and period (Gb'per) reduced the Gb'cyc mRNA levels and abolished the rhythmic expression, suggesting that the rhythmic expression of Gb'cyc is regulated by a mechanism including Gb'Clk and Gb'per. These features are more similar to those of mammalian orthologue of cyc (Bmal1) than those of Drosophila cyc. A single treatment with double-stranded RNA (dsRNA) of Gb'cyc effectively knocked down the Gb'cyc mRNA level and abolished its rhythmic expression. The cyc RNAi failed to disrupt the locomotor rhythm, but lengthened its free-running period in constant darkness (DD). It is thus likely that Gb'cyc is involved in the circadian clock machinery of the cricket. The cyc RNAi crickets showed a rhythmic expression of Gb'per and timeless (Gb'tim) in the optic lobe in DD, explaining the persistence of the locomotor rhythm. Surprisingly, cyc RNAi revealed a rhythmic expression of Gb'Clk in DD which is otherwise rather constitutively expressed in the optic lobe. These facts suggest that the cricket might have a unique clock oscillatory mechanism in which both Gb'cyc and Gb'Clk are rhythmically controlled and that under abundant expression of Gb'cyc the rhythmic expression of Gb'Clk may be concealed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Generating clock signals for a cycle accurate, cycle reproducible FPGA based hardware accelerator

    DOEpatents

    Asaad, Sameth W.; Kapur, Mohit

    2016-01-05

    A method, system and computer program product are disclosed for generating clock signals for a cycle accurate FPGA based hardware accelerator used to simulate operations of a device-under-test (DUT). In one embodiment, the DUT includes multiple device clocks generating multiple device clock signals at multiple frequencies and at a defined frequency ratio; and the FPG hardware accelerator includes multiple accelerator clocks generating multiple accelerator clock signals to operate the FPGA hardware accelerator to simulate the operations of the DUT. In one embodiment, operations of the DUT are mapped to the FPGA hardware accelerator, and the accelerator clock signals are generated at multiple frequencies and at the defined frequency ratio of the frequencies of the multiple device clocks, to maintain cycle accuracy between the DUT and the FPGA hardware accelerator. In an embodiment, the FPGA hardware accelerator may be used to control the frequencies of the multiple device clocks.

  16. A Systolic Array-Based FPGA Parallel Architecture for the BLAST Algorithm

    PubMed Central

    Guo, Xinyu; Wang, Hong; Devabhaktuni, Vijay

    2012-01-01

    A design of systolic array-based Field Programmable Gate Array (FPGA) parallel architecture for Basic Local Alignment Search Tool (BLAST) Algorithm is proposed. BLAST is a heuristic biological sequence alignment algorithm which has been used by bioinformatics experts. In contrast to other designs that detect at most one hit in one-clock-cycle, our design applies a Multiple Hits Detection Module which is a pipelining systolic array to search multiple hits in a single-clock-cycle. Further, we designed a Hits Combination Block which combines overlapping hits from systolic array into one hit. These implementations completed the first and second step of BLAST architecture and achieved significant speedup comparing with previously published architectures. PMID:25969747

  17. Circadian Clock Gene Expression in the Coral Favia fragum over Diel and Lunar Reproductive Cycles

    PubMed Central

    Hoadley, Kenneth D.; Szmant, Alina M.; Pyott, Sonja J.

    2011-01-01

    Natural light cycles synchronize behavioral and physiological cycles over varying time periods in both plants and animals. Many scleractinian corals exhibit diel cycles of polyp expansion and contraction entrained by diel sunlight patterns, and monthly cycles of spawning or planulation that correspond to lunar moonlight cycles. The molecular mechanisms for regulating such cycles are poorly understood. In this study, we identified four molecular clock genes (cry1, cry2, clock and cycle) in the scleractinian coral, Favia fragum, and investigated patterns of gene expression hypothesized to be involved in the corals' diel polyp behavior and lunar reproductive cycles. Using quantitative PCR, we measured fluctuations in expression of these clock genes over both diel and monthly spawning timeframes. Additionally, we assayed gene expression and polyp expansion-contraction behavior in experimental corals in normal light:dark (control) or constant dark treatments. Well-defined and reproducible diel patterns in cry1, cry2, and clock expression were observed in both field-collected and the experimental colonies maintained under control light:dark conditions, but no pattern was observed for cycle. Colonies in the control light:dark treatment also displayed diel rhythms of tentacle expansion and contraction. Experimental colonies in the constant dark treatment lost diel patterns in cry1, cry2, and clock expression and displayed a diminished and less synchronous pattern of tentacle expansion and contraction. We observed no pattern in cry1, cry2, clock, or cycle expression correlated with monthly spawning events suggesting these genes are not involved in the entrainment of reproductive cycles to lunar light cycles in F. fragum. Our results suggest a molecular clock mechanism, potentially similar to that in described in fruit flies, exists within F. fragum. PMID:21573070

  18. Circadian clock regulation of the cell cycle in the zebrafish intestine.

    PubMed

    Peyric, Elodie; Moore, Helen A; Whitmore, David

    2013-01-01

    The circadian clock controls cell proliferation in a number of healthy tissues where cell renewal and regeneration are critical for normal physiological function. The intestine is an organ that typically undergoes regular cycles of cell division, differentiation and apoptosis as part of its role in digestion and nutrient absorption. The aim of this study was to explore circadian clock regulation of cell proliferation and cell cycle gene expression in the zebrafish intestine. Here we show that the zebrafish gut contains a directly light-entrainable circadian pacemaker, which regulates the daily timing of mitosis. Furthermore, this intestinal clock controls the expression of key cell cycle regulators, such as cdc2, wee1, p21, PCNA and cdk2, but only weakly influences cyclin B1, cyclin B2 and cyclin E1 expression. Interestingly, food deprivation has little impact on circadian clock function in the gut, but dramatically reduces cell proliferation, as well as cell cycle gene expression in this tissue. Timed feeding under constant dark conditions is able to drive rhythmic expression not only of circadian clock genes, but also of several cell cycle genes, suggesting that food can entrain the clock, as well as the cell cycle in the intestine. Rather surprisingly, we found that timed feeding is critical for high amplitude rhythms in cell cycle gene expression, even when zebrafish are maintained on a light-dark cycle. Together these results suggest that the intestinal clock integrates multiple rhythmic cues, including light and food, to function optimally.

  19. Circadian Clock Regulation of the Cell Cycle in the Zebrafish Intestine

    PubMed Central

    Peyric, Elodie; Moore, Helen A.; Whitmore, David

    2013-01-01

    The circadian clock controls cell proliferation in a number of healthy tissues where cell renewal and regeneration are critical for normal physiological function. The intestine is an organ that typically undergoes regular cycles of cell division, differentiation and apoptosis as part of its role in digestion and nutrient absorption. The aim of this study was to explore circadian clock regulation of cell proliferation and cell cycle gene expression in the zebrafish intestine. Here we show that the zebrafish gut contains a directly light-entrainable circadian pacemaker, which regulates the daily timing of mitosis. Furthermore, this intestinal clock controls the expression of key cell cycle regulators, such as cdc2, wee1, p21, PCNA and cdk2, but only weakly influences cyclin B1, cyclin B2 and cyclin E1 expression. Interestingly, food deprivation has little impact on circadian clock function in the gut, but dramatically reduces cell proliferation, as well as cell cycle gene expression in this tissue. Timed feeding under constant dark conditions is able to drive rhythmic expression not only of circadian clock genes, but also of several cell cycle genes, suggesting that food can entrain the clock, as well as the cell cycle in the intestine. Rather surprisingly, we found that timed feeding is critical for high amplitude rhythms in cell cycle gene expression, even when zebrafish are maintained on a light-dark cycle. Together these results suggest that the intestinal clock integrates multiple rhythmic cues, including light and food, to function optimally. PMID:24013905

  20. Diurnal rhythmicity of the clock genes Per1 and Per2 in the rat ovary.

    PubMed

    Fahrenkrug, Jan; Georg, Birgitte; Hannibal, Jens; Hindersson, Peter; Gräs, Søren

    2006-08-01

    Circadian rhythms are generated by endogenous clocks in the central brain oscillator, the suprachiasmatic nucleus, and peripheral tissues. The molecular basis for the circadian clock consists of a number of genes and proteins that form transcriptional/translational feedback loops. In the mammalian gonads, clock genes have been reported in the testes, but the expression pattern is developmental rather than circadian. Here we investigated the daily expression of the two core clock genes, Per1 and Per2, in the rat ovary using real-time RT-PCR, in situ hybridization histochemistry, and immunohistochemistry. Both Per1 and Per2 mRNA displayed a statistically significant rhythmic oscillation in the ovary with a period of 24 h in: 1) a group of rats during proestrus and estrus under 12-h light,12-h dark cycles; 2) a second group of rats representing a mixture of all 4 d of the estrous cycle under 12-h light,12-h dark conditions; and 3) a third group of rats representing a mixture of all 4 d of estrous cycle during continuous darkness. Per1 mRNA was low at Zeitgeber time 0-2 and peaked at Zeitgeber time 12-14, whereas Per2 mRNA was delayed by approximately 4 h relative to Per1. By in situ hybridization histochemistry, Per mRNAs were localized to steroidogenic cells in preantral, antral, and preovulatory follicles; corpora lutea; and interstitial glandular tissue. With newly developed antisera, we substantiated the expression of Per1 and Per2 in these cells by single/double immunohistochemistry. Furthermore, we visualized the temporal intracellular movements of PER1 and PER2 proteins. These findings suggest the existence of an ovarian circadian clock, which may play a role both locally and in the hypothalamo-pituitary-ovarian axis.

  1. Synchrony of plant cellular circadian clocks with heterogeneous properties under light/dark cycles.

    PubMed

    Okada, Masaaki; Muranaka, Tomoaki; Ito, Shogo; Oyama, Tokitaka

    2017-03-22

    Individual cells in a plant can work independently as circadian clocks, and their properties are the basis of various circadian phenomena. The behaviour of individual cellular clocks in Lemna gibba was orderly under 24-h light/dark cycles despite their heterogeneous free-running periods (FRPs). Here, we reveal the entrainment habits of heterogeneous cellular clocks using non-24-h light/dark cycles (T-cycles). The cellular rhythms of AtCCA1::LUC under T = 16 h cycles showed heterogeneous entrainment that was associated with their heterogeneous FRPs. Under T = 12 h cycles, most cells showed rhythms having ~24-h periods. This suggested that the lower limit of entrainment to the light/dark cycles of heterogeneous cellular circadian clocks is set to a period longer than 12 h, which enables them to be synchronous under ~24-h daily cycles without being perturbed by short light/dark cycles. The entrainment habits of individual cellular clocks are likely to be the basis of the circadian behaviour of plant under the natural day-night cycle with noisy environmental fluctuations. We further suggest that modifications of EARLY FLOWERING3 (ELF3) in individual cells deviate the entrainability to shorter T-cycles possibly by altering both the FRPs and light responsiveness.

  2. RNA-seq analysis of Drosophila clock and non-clock neurons reveals neuron-specific cycling and novel candidate neuropeptides.

    PubMed

    Abruzzi, Katharine C; Zadina, Abigail; Luo, Weifei; Wiyanto, Evelyn; Rahman, Reazur; Guo, Fang; Shafer, Orie; Rosbash, Michael

    2017-02-01

    Locomotor activity rhythms are controlled by a network of ~150 circadian neurons within the adult Drosophila brain. They are subdivided based on their anatomical locations and properties. We profiled transcripts "around the clock" from three key groups of circadian neurons with different functions. We also profiled a non-circadian outgroup, dopaminergic (TH) neurons. They have cycling transcripts but fewer than clock neurons as well as low expression and poor cycling of clock gene transcripts. This suggests that TH neurons do not have a canonical circadian clock and that their gene expression cycling is driven by brain systemic cues. The three circadian groups are surprisingly diverse in their cycling transcripts and overall gene expression patterns, which include known and putative novel neuropeptides. Even the overall phase distributions of cycling transcripts are distinct, indicating that different regulatory principles govern transcript oscillations. This surprising cell-type diversity parallels the functional heterogeneity of the different neurons.

  3. Association between genetic variants of the clock gene and obesity and sleep duration.

    PubMed

    Valladares, Macarena; Obregón, Ana María; Chaput, Jean-Philippe

    2015-12-01

    Obesity is a multifactorial disease caused by the interaction of genetic and environmental factors related to lifestyle aspects. It has been shown that reduced sleep is associated with increased body mass index (BMI). Circadian Locomotor Output Cycles Kaput (CLOCK) gene variants have also been associated with obesity. The objective of this mini-review was to discuss the available literature related to CLOCK gene variants associated with adiposity and sleep duration in humans. In total, 16 articles complied with the terms of the search that reported CLOCK variants associated with sleep duration, energy intake, and BMI. Overall, six CLOCK single nucleotide polymorphisms (SNPs) have been associated with sleep duration, and three variants have been associated with energy intake variables. Overall, the most studied area has been the association of CLOCK gene with obesity; close to eight common variants have been associated with obesity. The most studied CLOCK SNP in different populations is rs1801260, and most of these populations correspond to European populations. Collectively, identifying at risk CLOCK genotypes is a new area of research that may help identify individuals who are more susceptible to overeating and gaining weight when exposed to short sleep durations.

  4. MYC/MIZ1-dependent gene repression inversely coordinates the circadian clock with cell cycle and proliferation.

    PubMed

    Shostak, Anton; Ruppert, Bianca; Ha, Nati; Bruns, Philipp; Toprak, Umut H; Eils, Roland; Schlesner, Matthias; Diernfellner, Axel; Brunner, Michael

    2016-06-24

    The circadian clock and the cell cycle are major cellular systems that organize global physiology in temporal fashion. It seems conceivable that the potentially conflicting programs are coordinated. We show here that overexpression of MYC in U2OS cells attenuates the clock and conversely promotes cell proliferation while downregulation of MYC strengthens the clock and reduces proliferation. Inhibition of the circadian clock is crucially dependent on the formation of repressive complexes of MYC with MIZ1 and subsequent downregulation of the core clock genes BMAL1 (ARNTL), CLOCK and NPAS2. We show furthermore that BMAL1 expression levels correlate inversely with MYC levels in 102 human lymphomas. Our data suggest that MYC acts as a master coordinator that inversely modulates the impact of cell cycle and circadian clock on gene expression.

  5. How jet lag impairs Major League Baseball performance.

    PubMed

    Song, Alex; Severini, Thomas; Allada, Ravi

    2017-02-07

    Laboratory studies have demonstrated that circadian clocks align physiology and behavior to 24-h environmental cycles. Examination of athletic performance has been used to discern the functions of these clocks in humans outside of controlled settings. Here, we examined the effects of jet lag, that is, travel that shifts the alignment of 24-h environmental cycles relative to the endogenous circadian clock, on specific performance metrics in Major League Baseball. Accounting for potential differences in home and away performance, travel direction, and team confounding variables, we observed that jet-lag effects were largely evident after eastward travel with very limited effects after westward travel, consistent with the >24-h period length of the human circadian clock. Surprisingly, we found that jet lag impaired major parameters of home-team offensive performance, for example, slugging percentage, but did not similarly affect away-team offensive performance. On the other hand, jet lag impacted both home and away defensive performance. Remarkably, the vast majority of these effects for both home and away teams could be explained by a single measure, home runs allowed. Rather than uniform effects, these results reveal surprisingly specific effects of circadian misalignment on athletic performance under natural conditions.

  6. How jet lag impairs Major League Baseball performance

    PubMed Central

    Song, Alex; Severini, Thomas; Allada, Ravi

    2017-01-01

    Laboratory studies have demonstrated that circadian clocks align physiology and behavior to 24-h environmental cycles. Examination of athletic performance has been used to discern the functions of these clocks in humans outside of controlled settings. Here, we examined the effects of jet lag, that is, travel that shifts the alignment of 24-h environmental cycles relative to the endogenous circadian clock, on specific performance metrics in Major League Baseball. Accounting for potential differences in home and away performance, travel direction, and team confounding variables, we observed that jet-lag effects were largely evident after eastward travel with very limited effects after westward travel, consistent with the >24-h period length of the human circadian clock. Surprisingly, we found that jet lag impaired major parameters of home-team offensive performance, for example, slugging percentage, but did not similarly affect away-team offensive performance. On the other hand, jet lag impacted both home and away defensive performance. Remarkably, the vast majority of these effects for both home and away teams could be explained by a single measure, home runs allowed. Rather than uniform effects, these results reveal surprisingly specific effects of circadian misalignment on athletic performance under natural conditions. PMID:28115724

  7. Eight-Channel Continuous Timer

    NASA Technical Reports Server (NTRS)

    Cole, Steven

    2004-01-01

    A custom laboratory electronic timer circuit measures the durations of successive cycles of nominally highly stable input clock signals in as many as eight channels, for the purpose of statistically quantifying the small instabilities of these signals. The measurement data generated by this timer are sent to a personal computer running software that integrates the measurements to form a phase residual for each channel and uses the phase residuals to compute Allan variances for each channel. (The Allan variance is a standard statistical measure of instability of a clock signal.) Like other laboratory clock-cycle-measuring circuits, this timer utilizes an externally generated reference clock signal having a known frequency (100 MHz) much higher than the frequencies of the input clock signals (between 100 and 120 Hz). It counts the number of reference-clock cycles that occur between successive rising edges of each input clock signal of interest, thereby affording a measurement of the input clock-signal period to within the duration (10 ns) of one reference clock cycle. Unlike typical prior laboratory clock-cycle-measuring circuits, this timer does not skip some cycles of the input clock signals. The non-cycle-skipping feature is an important advantage because in applications that involve integration of measurements over long times for characterizing nominally highly stable clock signals, skipping cycles can degrade accuracy. The timer includes a field-programmable gate array that functions as a 20-bit counter running at the reference clock rate of 100 MHz. The timer also includes eight 20-bit latching circuits - one for each channel - at the output terminals of the counter. Each transition of an input signal from low to high causes the corresponding latching circuit to latch the count at that instant. Each such transition also sets a status flip-flop circuit to indicate the presence of the latched count. A microcontroller reads the values of all eight status flipflops and then reads the latched count for each channel for which the flip-flop indicates the presence of a count. Reading the count for each channel automatically causes the flipflop of that channel to be reset. The microcontroller places the counts in time order, identifies the channel number for each count, and transmits these data to the personal computer.

  8. Method and apparatus to debug an integrated circuit chip via synchronous clock stop and scan

    DOEpatents

    Bellofatto, Ralph E [Ridgefield, CT; Ellavsky, Matthew R [Rochester, MN; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Gooding, Thomas M [Rochester, MN; Haring, Rudolf A [Cortlandt Manor, NY; Hehenberger, Lance G [Leander, TX; Ohmacht, Martin [Yorktown Heights, NY

    2012-03-20

    An apparatus and method for evaluating a state of an electronic or integrated circuit (IC), each IC including one or more processor elements for controlling operations of IC sub-units, and each the IC supporting multiple frequency clock domains. The method comprises: generating a synchronized set of enable signals in correspondence with one or more IC sub-units for starting operation of one or more IC sub-units according to a determined timing configuration; counting, in response to one signal of the synchronized set of enable signals, a number of main processor IC clock cycles; and, upon attaining a desired clock cycle number, generating a stop signal for each unique frequency clock domain to synchronously stop a functional clock for each respective frequency clock domain; and, upon synchronously stopping all on-chip functional clocks on all frequency clock domains in a deterministic fashion, scanning out data values at a desired IC chip state. The apparatus and methodology enables construction of a cycle-by-cycle view of any part of the state of a running IC chip, using a combination of on-chip circuitry and software.

  9. Entrainment of the Mammalian Cell Cycle by the Circadian Clock: Modeling Two Coupled Cellular Rhythms

    PubMed Central

    Gérard, Claude; Goldbeter, Albert

    2012-01-01

    The cell division cycle and the circadian clock represent two major cellular rhythms. These two periodic processes are coupled in multiple ways, given that several molecular components of the cell cycle network are controlled in a circadian manner. For example, in the network of cyclin-dependent kinases (Cdks) that governs progression along the successive phases of the cell cycle, the synthesis of the kinase Wee1, which inhibits the G2/M transition, is enhanced by the complex CLOCK-BMAL1 that plays a central role in the circadian clock network. Another component of the latter network, REV-ERBα, inhibits the synthesis of the Cdk inhibitor p21. Moreover, the synthesis of the oncogene c-Myc, which promotes G1 cyclin synthesis, is repressed by CLOCK-BMAL1. Using detailed computational models for the two networks we investigate the conditions in which the mammalian cell cycle can be entrained by the circadian clock. We show that the cell cycle can be brought to oscillate at a period of 24 h or 48 h when its autonomous period prior to coupling is in an appropriate range. The model indicates that the combination of multiple modes of coupling does not necessarily facilitate entrainment of the cell cycle by the circadian clock. Entrainment can also occur as a result of circadian variations in the level of a growth factor controlling entry into G1. Outside the range of entrainment, the coupling to the circadian clock may lead to disconnected oscillations in the cell cycle and the circadian system, or to complex oscillatory dynamics of the cell cycle in the form of endoreplication, complex periodic oscillations or chaos. The model predicts that the transition from entrainment to 24 h or 48 h might occur when the strength of coupling to the circadian clock or the level of growth factor decrease below critical values. PMID:22693436

  10. [Elevated expression of CLOCK is associated with poor prognosis in hepatocellular carcinoma].

    PubMed

    Li, Bo; Yang, Xiliang; Li, Jiaqi; Yang, Yi; Yan, Zhaoyong; Zhang, Hongxin; Mu, Jiao

    2018-02-01

    Objective To evaluate the expression of circadian locomotor output cycles kaput (CLOCK) and its effects on cell growth in hepatocellular carcinoma (HCC). Methods The expression of CLOCK in 158 pairs of human HCC tissues and matched noncancerous samples was detected by immunohistochemical (IHC) staining. The expression of CLOCK in HCC patients was also verified using the data from GEO and TCGA (a total of 356 cases). The relationship between CLOCK expression and clinicopathological features of HCC patients was analyzed by single factor statistical analysis. Kaplan-Meier survival curves of HCC patients were drawn to study the relationship between the expression level of CLOCK and the survival state. The effect of CLOCK on the growth of HepG2 cells was detected by MTS assay. Results The expression of CLOCK in HCC tissues was significantly higher than that in the adjacent tissues, and the up-regulation of CLOCK expression in HCC tissue was also confirmed in the public data of HCC (356 cases). HCC patients were divided into low CLOCK expression group and high CLOCK expression group. Univariate analysis showed that the expression of CLOCK was related to tumor size, TNM stage, and portal vein invasion in HCC patients. HCC patients with low CLOCK expression had longer overall survival time and relapse-free survival time than those with high CLOCK expression. The proliferation of cells significantly decreased after the expression of CLOCK was knocked down in HepG2 cells. Conclusion The expression of CLOCK in HCC tissues was much higher than that in normal liver tissues, and the high expression of CLOCK indicated the poor prognosis. The knockdown of CLOCK in HCC cells could inhibit the proliferation of HepG2 cells.

  11. A High Performance 50% Clock Duty Cycle Regulator

    NASA Astrophysics Data System (ADS)

    Huang, Peng; Deng, Hong-Hui; Yin, Yong-Sheng

    A low-jitter clock duty cycle corrector circuit applied in high performance ADC is presented in the paper, such circuits can change low accuracy input signals with different frequencies into 50% pulse width clock. The result have show that the circuit could lock duty cycle rapidly with an accuracy of 50% ± 1% in 200ns. This circuit have 10%-90% of duty cycle input, and clock jitter could be suppressed to less than 5ps. The method used in the circuit, which provides little relationship with the noise and process mismatch, is widely used Implemented in 0.18μm CMOS process.

  12. A 2-to-48-MHz Phase-Locked Loop

    NASA Technical Reports Server (NTRS)

    Koudelka, Robert D.

    2004-01-01

    A 2-to-48-MHz phase-locked loop (PLL), developed for the U.S. space program, meets or exceeds all space shuttle clock electrical interface requirements by taking as its reference a 2-to-48-MHz clock signal and outputting a phaselocked clock signal set at the same frequency as the reference clock with transistor- transistor logic (TTL) voltage levels. Because it is more adaptable than other PLLs, the new PLL can be used in industries that employ signaling devices and as a tool in future space missions. A conventional PLL consists of a phase/frequency detector, loop filter, and voltage-controlled oscillator in which each component exists individually and is integrated into a single device. PLL components phase-lock to a single frequency or to a narrow bandwidth of frequencies. It is this design, however, that prohibits them from maintaining phase lock to a dynamically changing reference clock when a large bandwidth is required a deficiency the new PLL overcomes. Since most PLL components require their voltage-controlled oscillators to operate at greater than 2-MHz frequencies, conventional PLLs often cannot achieve the low-frequency phase lock allowed by the new PLL. The 2-to-48-MHz PLL is built on a wire-wrap board with pins wired to three position jumpers; this makes changing configurations easy. It responds to variations in voltage-controlled oscillator (VCO) ranges, duty cycle, signal-to-noise ratio (SNR), amplitude, and jitter, exceeding design specifications. A consensus state machine, implemented in a VCO range detector which assures the PLL continues to operate in the correct range, is the primary control state machine for the 2-to-48-MHz PLL circuit. By using seven overlapping frequency ranges with hysteresis, the PLL output sets the resulting phase-locked clock signal at a frequency that agrees with the reference clock with TTL voltage levels. As a space-shuttle tool, the new PLL circuit takes the noisy, degraded reference clock signals as input and outputs phase-locked clock signals of the same frequency but with a corrected wave shape. Since its configuration circuit can be easily changed, the new PLL can do the following: readily respond to variations in VCO ranges, duty cycle, SNR, amplitude, and jitter; continuously operate in the correct VCO range because of its consensus state machine; and use its range detector implements to overlap seven frequency ranges with hysteresis, thus giving the current design a flexibility that exceeds anything available at the time of this development. These features will benefit any industry in which safe and timely clock signals are vital to operation.

  13. What time is it? Deep learning approaches for circadian rhythms.

    PubMed

    Agostinelli, Forest; Ceglia, Nicholas; Shahbaba, Babak; Sassone-Corsi, Paolo; Baldi, Pierre

    2016-06-15

    Circadian rhythms date back to the origins of life, are found in virtually every species and every cell, and play fundamental roles in functions ranging from metabolism to cognition. Modern high-throughput technologies allow the measurement of concentrations of transcripts, metabolites and other species along the circadian cycle creating novel computational challenges and opportunities, including the problems of inferring whether a given species oscillate in circadian fashion or not, and inferring the time at which a set of measurements was taken. We first curate several large synthetic and biological time series datasets containing labels for both periodic and aperiodic signals. We then use deep learning methods to develop and train BIO_CYCLE, a system to robustly estimate which signals are periodic in high-throughput circadian experiments, producing estimates of amplitudes, periods, phases, as well as several statistical significance measures. Using the curated data, BIO_CYCLE is compared to other approaches and shown to achieve state-of-the-art performance across multiple metrics. We then use deep learning methods to develop and train BIO_CLOCK to robustly estimate the time at which a particular single-time-point transcriptomic experiment was carried. In most cases, BIO_CLOCK can reliably predict time, within approximately 1 h, using the expression levels of only a small number of core clock genes. BIO_CLOCK is shown to work reasonably well across tissue types, and often with only small degradation across conditions. BIO_CLOCK is used to annotate most mouse experiments found in the GEO database with an inferred time stamp. All data and software are publicly available on the CircadiOmics web portal: circadiomics.igb.uci.edu/ fagostin@uci.edu or pfbaldi@uci.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  14. What time is it? Deep learning approaches for circadian rhythms

    PubMed Central

    Agostinelli, Forest; Ceglia, Nicholas; Shahbaba, Babak; Sassone-Corsi, Paolo; Baldi, Pierre

    2016-01-01

    Motivation: Circadian rhythms date back to the origins of life, are found in virtually every species and every cell, and play fundamental roles in functions ranging from metabolism to cognition. Modern high-throughput technologies allow the measurement of concentrations of transcripts, metabolites and other species along the circadian cycle creating novel computational challenges and opportunities, including the problems of inferring whether a given species oscillate in circadian fashion or not, and inferring the time at which a set of measurements was taken. Results: We first curate several large synthetic and biological time series datasets containing labels for both periodic and aperiodic signals. We then use deep learning methods to develop and train BIO_CYCLE, a system to robustly estimate which signals are periodic in high-throughput circadian experiments, producing estimates of amplitudes, periods, phases, as well as several statistical significance measures. Using the curated data, BIO_CYCLE is compared to other approaches and shown to achieve state-of-the-art performance across multiple metrics. We then use deep learning methods to develop and train BIO_CLOCK to robustly estimate the time at which a particular single-time-point transcriptomic experiment was carried. In most cases, BIO_CLOCK can reliably predict time, within approximately 1 h, using the expression levels of only a small number of core clock genes. BIO_CLOCK is shown to work reasonably well across tissue types, and often with only small degradation across conditions. BIO_CLOCK is used to annotate most mouse experiments found in the GEO database with an inferred time stamp. Availability and Implementation: All data and software are publicly available on the CircadiOmics web portal: circadiomics.igb.uci.edu/. Contacts: fagostin@uci.edu or pfbaldi@uci.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307647

  15. Biological timing and the clock metaphor: oscillatory and hourglass mechanisms.

    PubMed

    Rensing, L; Meyer-Grahle, U; Ruoff, P

    2001-05-01

    Living organisms have developed a multitude of timing mechanisms--"biological clocks." Their mechanisms are based on either oscillations (oscillatory clocks) or unidirectional processes (hourglass clocks). Oscillatory clocks comprise circatidal, circalunidian, circadian, circalunar, and circannual oscillations--which keep time with environmental periodicities--as well as ultradian oscillations, ovarian cycles, and oscillations in development and in the brain, which keep time with biological timescales. These clocks mainly determine time points at specific phases of their oscillations. Hourglass clocks are predominantly found in development and aging and also in the brain. They determine time intervals (duration). More complex timing systems combine oscillatory and hourglass mechanisms, such as the case for cell cycle, sleep initiation, or brain clocks, whereas others combine external and internal periodicities (photoperiodism, seasonal reproduction). A definition of a biological clock may be derived from its control of functions external to its own processes and its use in determining temporal order (sequences of events) or durations. Biological and chemical oscillators are characterized by positive and negative feedback (or feedforward) mechanisms. During evolution, living organisms made use of the many existing oscillations for signal transmission, movement, and pump mechanisms, as well as for clocks. Some clocks, such as the circadian clock, that time with environmental periodicities are usually compensated (stabilized) against temperature, whereas other clocks, such as the cell cycle, that keep time with an organismic timescale are not compensated. This difference may be related to the predominance of negative feedback in the first class of clocks and a predominance of positive feedback (autocatalytic amplification) in the second class. The present knowledge of a compensated clock (the circadian oscillator) and an uncompensated clock (the cell cycle), as well as relevant models, are briefly re viewed. Hourglass clocks are based on linear or exponential unidirectional processes that trigger events mainly in the course of development and aging. An important hourglass mechanism within the aging process is the limitation of cell division capacity by the length of telomeres. The mechanism of this clock is briefly reviewed. In all clock mechanisms, thresholds at which "dependent variables" are triggered play an important role.

  16. A Blind Circadian Clock in Cavefish Reveals that Opsins Mediate Peripheral Clock Photoreception

    PubMed Central

    Cavallari, Nicola; Frigato, Elena; Vallone, Daniela; Fröhlich, Nadine; Lopez-Olmeda, Jose Fernando; Foà, Augusto; Berti, Roberto; Sánchez-Vázquez, Francisco Javier; Bertolucci, Cristiano; Foulkes, Nicholas S.

    2011-01-01

    The circadian clock is synchronized with the day-night cycle primarily by light. Fish represent fascinating models for deciphering the light input pathway to the vertebrate clock since fish cell clocks are regulated by direct light exposure. Here we have performed a comparative, functional analysis of the circadian clock involving the zebrafish that is normally exposed to the day-night cycle and a cavefish species that has evolved in perpetual darkness. Our results reveal that the cavefish retains a food-entrainable clock that oscillates with an infradian period. Importantly, however, this clock is not regulated by light. This comparative study pinpoints the two extra-retinal photoreceptors Melanopsin (Opn4m2) and TMT-opsin as essential upstream elements of the peripheral clock light input pathway. PMID:21909239

  17. Entrainment of the circadian clock by daily ambient temperature cycles in the camel (Camelus dromedarius).

    PubMed

    El Allali, Khalid; Achaâban, Mohamed R; Bothorel, Béatrice; Piro, Mohamed; Bouâouda, Hanan; El Allouchi, Morad; Ouassat, Mohammed; Malan, André; Pévet, Paul

    2013-06-01

    In mammals the light-dark (LD) cycle is known to be the major cue to synchronize the circadian clock. In arid and desert areas, the camel (Camelus dromedarius) is exposed to extreme environmental conditions. Since wide oscillations of ambient temperature (Ta) are a major factor in this environment, we wondered whether cyclic Ta fluctuations might contribute to synchronization of circadian rhythms. The rhythm of body temperature (Tb) was selected as output of the circadian clock. After having verified that Tb is synchronized by the LD and free runs in continuous darkness (DD), we submitted the animals to daily cycles of Ta in LL and in DD. In both cases, the Tb rhythm was entrained to the cycle of Ta. On a 12-h phase shift of the Ta cycle, the mean phase shift of the Tb cycle ranged from a few hours in LD (1 h by cosinor, 4 h from curve peaks) to 7-8 h in LL and 12 h in DD. These results may reflect either true synchronization of the central clock by Ta daily cycles or possibly a passive effect of Ta on Tb. To resolve the ambiguity, melatonin rhythmicity was used as another output of the clock. In DD melatonin rhythms were also entrained by the Ta cycle, proving that the daily Ta cycle is able to entrain the circadian clock of the camel similar to photoperiod. By contrast, in the presence of a LD cycle the rhythm of melatonin was modified by the Ta cycle in only 2 (or 3) of 7 camels: in these specific conditions a systematic effect of Ta on the clock could not be evidenced. In conclusion, depending on the experimental conditions (DD vs. LD), the daily Ta cycle can either act as a zeitgeber or not.

  18. The cyanobacterial circadian clock follows midday in vivo and in vitro

    PubMed Central

    Leypunskiy, Eugene; Lin, Jenny; Yoo, Haneul; Lee, UnJin; Dinner, Aaron R; Rust, Michael J

    2017-01-01

    Circadian rhythms are biological oscillations that schedule daily changes in physiology. Outside the laboratory, circadian clocks do not generally free-run but are driven by daily cues whose timing varies with the seasons. The principles that determine how circadian clocks align to these external cycles are not well understood. Here, we report experimental platforms for driving the cyanobacterial circadian clock both in vivo and in vitro. We find that the phase of the circadian rhythm follows a simple scaling law in light-dark cycles, tracking midday across conditions with variable day length. The core biochemical oscillator comprised of the Kai proteins behaves similarly when driven by metabolic pulses in vitro, indicating that such dynamics are intrinsic to these proteins. We develop a general mathematical framework based on instantaneous transformation of the clock cycle by external cues, which successfully predicts clock behavior under many cycling environments. DOI: http://dx.doi.org/10.7554/eLife.23539.001 PMID:28686160

  19. PDF as a coupling mediator between the light-entrainable and temperature-entrainable clocks in Drosophila melanogaster.

    PubMed

    Tomioka, K; Miyasako, Y; Umezaki, Y

    2008-01-01

    Drosophila shows bimodal circadian locomotor rhythms with peaks around light-on (morning peak) and before light-off (evening peak). The rhythm synchronizes to light and temperature cycles and the synchronization is achieved by two sets of clocks: one entrains to light cycles and the other to temperature cycles. The light-entrainable clock consists of the clock neurons located in the lateral protocerebrum (LNs) and the temperature-entrainable clock involves those located in the dorsal protocerebrum (DNs) and the cells located in the posterior lateral protocerebrum (LPNs). To understand the interaction between the light-entrainable and the temperature-entrainable clock neurons, locomotor rhythms of the mutant flies lacking PDF or PDF-positive clock neurons were examined. Under the light cycles, they showed altered phase of the evening peak. When exposed to temperature cycles of lower temperature levels, the onset of evening peak showed larger advance in contrast to those of wild-type flies. The termination of the peak also advanced while that of wild-type flies remained almost at the same phase as in the constant temperature. These results support our hypothesis that the PDF-positive light entrainable cells regulate the phase of the temperature entrainable cells to be synchronized to their own phase using PDF as a coupling mediator.

  20. Effects of continuous white light and 12h white-12h blue light-cycles on the expression of clock genes in diencephalon, liver, and skeletal muscle in chicks.

    PubMed

    Honda, Kazuhisa; Kondo, Makoto; Hiramoto, Daichi; Saneyasu, Takaoki; Kamisoyama, Hiroshi

    2017-05-01

    The core circadian clock mechanism relies on a feedback loop comprised of clock genes, such as the brain and muscle Arnt-like 1 (Bmal1), chriptochrome 1 (Cry1), and period 3 (Per3). Exposure to the light-dark cycle synchronizes the master circadian clock in the brain, and which then synchronizes circadian clocks in peripheral tissues. Birds have long been used as a model for the investigation of circadian rhythm in human neurobiology. In the present study, we examined the effects of continuous light and the combination of white and blue light on the expression of clock genes (Bmal1, Cry1, and Per3) in the central and peripheral tissues in chicks. Seventy two day-old male chicks were weighed, allocated to three groups and maintained under three light schedules: 12h white light-12h dark-cycles group (control); 24h white light group (WW group); 12h white light-12h blue light-cycles group (WB group). The mRNA levels of clock genes in the diencephalon were significantly different between the control and WW groups. On the other hand, the alteration in the mRNA levels of clock genes was similar between the control and WB groups. Similar phenomena were observed in the liver and skeletal muscle (biceps femoris). These results suggest that 12h white-12h blue light-cycles did not disrupt the circadian rhythm of clock gene expression in chicks. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. The circadian molecular clock regulates adult hippocampal neurogenesis by controlling the timing of cell-cycle entry and exit.

    PubMed

    Bouchard-Cannon, Pascale; Mendoza-Viveros, Lucia; Yuen, Andrew; Kærn, Mads; Cheng, Hai-Ying M

    2013-11-27

    The subgranular zone (SGZ) of the adult hippocampus contains a pool of quiescent neural progenitor cells (QNPs) that are capable of entering the cell cycle and producing newborn neurons. The mechanisms that control the timing and extent of adult neurogenesis are not well understood. Here, we show that QNPs of the adult SGZ express molecular-clock components and proliferate in a rhythmic fashion. The clock proteins PERIOD2 and BMAL1 are critical for proper control of neurogenesis. The absence of PERIOD2 abolishes the gating of cell-cycle entrance of QNPs, whereas genetic ablation of bmal1 results in constitutively high levels of proliferation and delayed cell-cycle exit. We use mathematical model simulations to show that these observations may arise from clock-driven expression of a cell-cycle inhibitor that targets the cyclin D/Cdk4-6 complex. Our findings may have broad implications for the circadian clock in timing cell-cycle events of other stem cell populations throughout the body. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Spatial Distribution of Circadian Clock Phase in Aging Cultures of Neurospora crassa1

    PubMed Central

    Dharmananda, Subhuti; Feldman, Jerry F.

    1979-01-01

    Neurospora crassa has been utilized extensively in the study of circadian clocks. Previously, the clock in this organism has been monitored by observing the morphological and biochemical changes occurring at the growing front of cultures grown on solid medium. A method has been developed for assaying the clock in regions of the culture behind the growing front, where no apparent morphological changes occur during the circadian cycle. Using this assay with Petri dish cultures that were 2 to 7 days old, the presence of a functional circadian clock not only at the growing front but in all other regions of the culture as well was demonstrated. Furthermore, the entire culture is not in the same phase, but shows a gradient of phases which is a function of the length of time the clock in a given part of the culture has been free-running. This gradient may be the result of a somewhat longer period of the oscillator behind the growing front compared to that at the growing front. The phase differences within a single culture of interconnected mycelium demonstrate the absence of total internal synchronization between adjacent regions of the hyphae under these conditions. PMID:16660855

  3. DNA Replication Is Required for Circadian Clock Function by Regulating Rhythmic Nucleosome Composition.

    PubMed

    Liu, Xiao; Dang, Yunkun; Matsu-Ura, Toru; He, Yubo; He, Qun; Hong, Christian I; Liu, Yi

    2017-07-20

    Although the coupling between circadian and cell cycles allows circadian clocks to gate cell division and DNA replication in many organisms, circadian clocks were thought to function independently of cell cycle. Here, we show that DNA replication is required for circadian clock function in Neurospora. Genetic and pharmacological inhibition of DNA replication abolished both overt and molecular rhythmicities by repressing frequency (frq) gene transcription. DNA replication is essential for the rhythmic changes of nucleosome composition at the frq promoter. The FACT complex, known to be involved in histone disassembly/reassembly, is required for clock function and is recruited to the frq promoter in a replication-dependent manner to promote replacement of histone H2A.Z by H2A. Finally, deletion of H2A.Z uncoupled the dependence of the circadian clock on DNA replication. Together, these results establish circadian clock and cell cycle as interdependent coupled oscillators and identify DNA replication as a critical process in the circadian mechanism. Published by Elsevier Inc.

  4. nocte Is Required for Integrating Light and Temperature Inputs in Circadian Clock Neurons of Drosophila.

    PubMed

    Chen, Chenghao; Xu, Min; Anantaprakorn, Yuto; Rosing, Mechthild; Stanewsky, Ralf

    2018-05-21

    Circadian clocks organize biological processes to occur at optimized times of day and thereby contribute to overall fitness. While the regular daily changes of environmental light and temperature synchronize circadian clocks, extreme external conditions can bypass the temporal constraints dictated by the clock. Despite advanced knowledge about how the daily light-dark changes synchronize the clock, relatively little is known with regard to how the daily temperature changes influence daily timing and how temperature and light signals are integrated. In Drosophila, a network of ∼150 brain clock neurons exhibit 24-hr oscillations of clock gene expression to regulate daily activity and sleep. We show here that a temperature input pathway from peripheral sensory organs, which depends on the gene nocte, targets specific subsets of these clock neurons to synchronize molecular and behavioral rhythms to temperature cycles. Strikingly, while nocte 1 mutant flies synchronize normally to light-dark cycles at constant temperatures, the combined presence of light-dark and temperature cycles inhibits synchronization. nocte 1 flies exhibit altered siesta sleep, suggesting that the sleep-regulating clock neurons are an important target for nocte-dependent temperature input, which dominates a parallel light input into these cells. In conclusion, we reveal a nocte-dependent temperature input pathway to central clock neurons and show that this pathway and its target neurons are important for the integration of sensory light and temperature information in order to temporally regulate activity and sleep during daily light and temperature cycles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Beat-to-beat control of human optokinetic nystagmus slow phase durations

    PubMed Central

    Furman, Joseph M.

    2016-01-01

    This study provides the first clear evidence that the generation of optokinetic nystagmus fast phases (FPs) is a decision process that is influenced by performance of a concurrent disjunctive reaction time task (DRT). Ten subjects performed an auditory DRT during constant velocity optokinetic stimulation. Eye movements were measured in three dimensions with a magnetic search coil. Slow phase (SP) durations were defined as the interval between FPs. There were three main findings. Firstly, human optokinetic nystagmus SP durations are consistent with a model of a Gaussian basic interval generator (a type of biological clock), such that FPs can be triggered randomly at the end of a clock cycle (mean duration: 200–250 ms). Kolmogorov-Smirnov tests could not reject the modeled cumulative distribution for any data trials. Secondly, the FP need not be triggered at the end of a clock cycle, so that individual SP durations represent single or multiple clock cycles. Thirdly, the probability of generating a FP at the end of each interval generator cycle decreases significantly during performance of a DRT. These findings indicate that the alternation between SPs and FPs of optokinetic nystagmus is not purely reflexive. Rather, the triggering of the next FP is postponed more frequently if a recently presented DRT trial is pending action when the timing cycle expires. Hence, optokinetic nystagmus FPs show dual-task interference in a manner usually attributed to voluntary movements, including saccades. NEW & NOTEWORTHY This study provides the first clear evidence that the generation of optokinetic nystagmus (OKN) fast phases is a decision process that is influenced by performance of a concurrent disjunctive reaction time task (DRT). The slow phase (SP) durations are consistent with a Gaussian basic interval generator and multiple interval SP durations occur more frequently in the presence of the DRT. Hence, OKN shows dual-task interference in a manner observed in voluntary movements, such as saccades. PMID:27760815

  6. Beat-to-beat control of human optokinetic nystagmus slow phase durations.

    PubMed

    Balaban, Carey D; Furman, Joseph M

    2017-01-01

    This study provides the first clear evidence that the generation of optokinetic nystagmus fast phases (FPs) is a decision process that is influenced by performance of a concurrent disjunctive reaction time task (DRT). Ten subjects performed an auditory DRT during constant velocity optokinetic stimulation. Eye movements were measured in three dimensions with a magnetic search coil. Slow phase (SP) durations were defined as the interval between FPs. There were three main findings. Firstly, human optokinetic nystagmus SP durations are consistent with a model of a Gaussian basic interval generator (a type of biological clock), such that FPs can be triggered randomly at the end of a clock cycle (mean duration: 200-250 ms). Kolmogorov-Smirnov tests could not reject the modeled cumulative distribution for any data trials. Secondly, the FP need not be triggered at the end of a clock cycle, so that individual SP durations represent single or multiple clock cycles. Thirdly, the probability of generating a FP at the end of each interval generator cycle decreases significantly during performance of a DRT. These findings indicate that the alternation between SPs and FPs of optokinetic nystagmus is not purely reflexive. Rather, the triggering of the next FP is postponed more frequently if a recently presented DRT trial is pending action when the timing cycle expires. Hence, optokinetic nystagmus FPs show dual-task interference in a manner usually attributed to voluntary movements, including saccades. This study provides the first clear evidence that the generation of optokinetic nystagmus (OKN) fast phases is a decision process that is influenced by performance of a concurrent disjunctive reaction time task (DRT). The slow phase (SP) durations are consistent with a Gaussian basic interval generator and multiple interval SP durations occur more frequently in the presence of the DRT. Hence, OKN shows dual-task interference in a manner observed in voluntary movements, such as saccades. Copyright © 2017 the American Physiological Society.

  7. Differential sorting of the vesicular glutamate transporter 1 into a defined vesicular pool is regulated by light signaling involving the clock gene Period2.

    PubMed

    Yelamanchili, Sowmya V; Pendyala, Gurudutt; Brunk, Irene; Darna, Mahesh; Albrecht, Urs; Ahnert-Hilger, Gudrun

    2006-06-09

    Synaptic strength depends on the amount of neurotransmitter stored in synaptic vesicles. The vesicular transmitter content has recently been shown to be directly dependent on the expression levels of vesicular neurotransmitter transporters indicating that the transport capacity of synaptic vesicles is a critical determinant for synaptic efficacy. Using synaptic vesicles prepared from whole brain at different times of the day we now show that the amount of vesicular glutamate transporter (VGLUT) 1 undergoes strong diurnal cycling. VGLUT1 protein levels are high before the start of the light period, decline at noon, increase again before start of the dark period, and decline again at midnight. Mice kept in complete darkness showed within a 24-h period only a single peak of VGLUT1 expression in the middle of the rest phase. In contrast, mice lacking the period gene Period 2, a core component of the circadian clock, did not show any light-cycle-dependent changes of VGLUT1 levels. No other of several synaptic vesicle proteins examined underwent circadian cycling. Circadian cycling of VGLUT1 was not seen when analyzing homogenate or synaptosomes, the starting fraction for vesicle preparation. Circadian cycling of VGLUT1 was also not reflected at the mRNA level. We conclude that nerve terminals are endowed with mechanisms that regulate quantal size by changing the copy number of transporters in synaptic vesicles. A reduced amount of VGLUT1 per vesicle is probably achieved by means of selective sorting controlled by clock genes.

  8. Developmental stage-specific regulation of the circadian clock by temperature in zebrafish.

    PubMed

    Lahiri, Kajori; Froehlich, Nadine; Heyd, Andreas; Foulkes, Nicholas S; Vallone, Daniela

    2014-01-01

    The circadian clock enables animals to adapt their physiology and behaviour in anticipation of the day-night cycle. Light and temperature represent two key environmental timing cues (zeitgebers) able to reset this mechanism and so maintain its synchronization with the environmental cycle. One key challenge is to unravel how the regulation of the clock by zeitgebers matures during early development. The zebrafish is an ideal model for studying circadian clock ontogeny since the process of development occurs ex utero in an optically transparent chorion and many tools are available for genetic analysis. However, the role played by temperature in regulating the clock during zebrafish development is poorly understood. Here, we have established a clock-regulated luciferase reporter transgenic zebrafish line (Tg (-3.1) per1b::luc) to study the effects of temperature on clock entrainment. We reveal that under complete darkness, from an early developmental stage onwards (48 to 72 hpf), exposure to temperature cycles is a prerequisite for the establishment of self-sustaining rhythms of zfper1b, zfaanat2, and zfirbp expression and also for circadian cell cycle rhythms. Furthermore, we show that following the 5-9 somite stage, the expression of zfper1b is regulated by acute temperature shifts.

  9. Highly parallel reconfigurable computer architecture for robotic computation having plural processor cells each having right and left ensembles of plural processors

    NASA Technical Reports Server (NTRS)

    Fijany, Amir (Inventor); Bejczy, Antal K. (Inventor)

    1994-01-01

    In a computer having a large number of single-instruction multiple data (SIMD) processors, each of the SIMD processors has two sets of three individual processor elements controlled by a master control unit and interconnected among a plurality of register file units where data is stored. The register files input and output data in synchronism with a minor cycle clock under control of two slave control units controlling the register file units connected to respective ones of the two sets of processor elements. Depending upon which ones of the register file units are enabled to store or transmit data during a particular minor clock cycle, the processor elements within an SIMD processor are connected in rings or in pipeline arrays, and may exchange data with the internal bus or with neighboring SIMD processors through interface units controlled by respective ones of the two slave control units.

  10. On the Stable Limit Cycle of a Weight-Driven Pendulum Clock

    ERIC Educational Resources Information Center

    Llibre, J; Teixeira, M. A.

    2010-01-01

    In a recent paper (Denny 2002 Eur. J. Phys. 23 449-58), entitled "The pendulum clock: a venerable dynamical system", Denny showed that in a first approximation the steady-state motion of a weight-driven pendulum clock is shown to be a stable limit cycle. He placed the problem in a historical context and obtained an approximate solution using the…

  11. Cycle Time Reduction in Trapped Mercury Ion Atomic Frequency Standards

    NASA Technical Reports Server (NTRS)

    Burt, Eric A.; Tjoelker, Robert L.; Taghavi, Shervin

    2011-01-01

    The use of the mercury ion isotope (201)Hg(+) was examined for an atomic clock. Taking advantage of the faster optical pumping time in (201)Hg(+) reduces both the state preparation and the state readout times, thereby decreasing the overall cycle time of the clock and reducing the impact of medium-term LO noise on the performance of the frequency standard. The spectral overlap between the plasma discharge lamp used for (201)Hg(+) state preparation and readout is much larger than that of the lamp used for the more conventional (199)Hg(+). There has been little study of (201)Hg(+) for clock applications (in fact, all trapped ion clock work in mercury has been with (199)Hg(+); however, recently the optical pumping time in (201)Hg(+) has been measured and found to be 0.45 second, or about three times faster than in (199)Hg(+) due largely to the better spectral overlap. This can be used to reduce the overall clock cycle time by over 2 seconds, or up to a factor of 2 improvement. The use of the (201)Hg(+) for an atomic clock is totally new. Most attempts to reduce the impact of LO noise have focused on reducing the interrogation time. In the trapped ion frequency standards built so far at JPL, the optical pumping time is already at its minimum so that no enhancement can be had by shortening it. However, by using (201)Hg(+), this is no longer the case. Furthermore, integrity monitoring, the mechanism that determines whether the clock is functioning normally, cannot happen faster than the clock cycle time. Therefore, a shorter cycle time will enable quicker detection of failure modes and recovery from them.

  12. Arbitration in crossbar interconnect for low latency

    DOEpatents

    Ohmacht, Martin; Sugavanam, Krishnan

    2013-02-05

    A system and method and computer program product for reducing the latency of signals communicated through a crossbar switch, the method including using at slave arbitration logic devices associated with Slave devices for which access is requested from one or more Master devices, two or more priority vector signals cycled among their use every clock cycle for selecting one of the requesting Master devices and updates the respective priority vector signal used every clock cycle. Similarly, each Master for which access is requested from one or more Slave devices, can have two or more priority vectors and can cycle among their use every clock cycle to further reduce latency and increase throughput performance via the crossbar.

  13. Circadian clock gene plays a key role on ovarian cycle and spontaneous abortion.

    PubMed

    Li, Ruiwen; Cheng, Shuting; Wang, Zhengrong

    2015-01-01

    Circadian locomotor output cycles protein kaput (CLOCK) plays a key role in maintaining circadian rhythms and activation of downstream elements. However, its function on human female reproductive system remains unknown. To investigate the potential role of CLOCK, CLOCK-shRNAs were transfected into mouse 129 ES cells or injected into the ovaries of adult female mice. Western blotting was utilized to analyze the protein interactions and flow cytometry was used to assess apoptosis. The expression of CLOCK peaked at the 6th week in the healthy fetuses. However, an abnormal expression of CLOCK was detected in fetuses from spontaneous miscarriage. To determine the effect of CLOCK on female fertility, a small hairpin RNA (shRNA) strategy was used to specifically knockdown the CLOCK gene expression in vitro and in vivo. Knockdown of CLOCK induced apoptosis in mouse embryonic stem (mES) cells and inhibited the proliferation in mES cells in vitro. CLOCK knockdown also led to decreased release of oocytes and smaller litter size compared with control in vivo. Collectively, theses findings indicate that CLOCK plays an important role in fertility and that the CLOCK knockdown leads to reduction in reproduction and increased miscarriage risk. © 2015 S. Karger AG, Basel.

  14. Entrainment of spontaneously hypertensive rat fibroblasts by temperature cycles.

    PubMed

    Sládek, Martin; Sumová, Alena

    2013-01-01

    The functional state of the circadian system of spontaneously hypertensive rats (SHR) differs in several characteristics from the functional state of normotensive Wistar rats. Some of these changes might be due to the compromised ability of the central pacemaker to entrain the peripheral clocks. Daily body temperature cycles represent one of the important cues responsible for the integrity of the circadian system, because these cycles are driven by the central pacemaker and are able to entrain the peripheral clocks. This study tested the hypothesis that the aberrant peripheral clock entrainment of SHR results from a compromised peripheral clock sensitivity to the daily temperature cycle resetting. Using cultured Wistar rat and SHR fibroblasts transfected with the circadian luminescence reporter Bmal1-dLuc, we demonstrated that two consecutive square-wave temperature cycles with amplitudes of 2.5 °C are necessary and sufficient to restart the dampened oscillations and entrain the circadian clocks in both Wistar rat and SHR fibroblasts. We also generated a phase response curve to temperature cycles for fibroblasts of both rat strains. Although some of the data suggested a slight resistance of SHR fibroblasts to temperature entrainment, we concluded that the overall effect it too weak to be responsible for the differences between the SHR and Wistar in vivo circadian phenotype.

  15. Entrainment of Spontaneously Hypertensive Rat Fibroblasts by Temperature Cycles

    PubMed Central

    Sládek, Martin; Sumová, Alena

    2013-01-01

    The functional state of the circadian system of spontaneously hypertensive rats (SHR) differs in several characteristics from the functional state of normotensive Wistar rats. Some of these changes might be due to the compromised ability of the central pacemaker to entrain the peripheral clocks. Daily body temperature cycles represent one of the important cues responsible for the integrity of the circadian system, because these cycles are driven by the central pacemaker and are able to entrain the peripheral clocks. This study tested the hypothesis that the aberrant peripheral clock entrainment of SHR results from a compromised peripheral clock sensitivity to the daily temperature cycle resetting. Using cultured Wistar rat and SHR fibroblasts transfected with the circadian luminescence reporter Bmal1-dLuc, we demonstrated that two consecutive square-wave temperature cycles with amplitudes of 2.5°C are necessary and sufficient to restart the dampened oscillations and entrain the circadian clocks in both Wistar rat and SHR fibroblasts. We also generated a phase response curve to temperature cycles for fibroblasts of both rat strains. Although some of the data suggested a slight resistance of SHR fibroblasts to temperature entrainment, we concluded that the overall effect it too weak to be responsible for the differences between the SHR and Wistar in vivo circadian phenotype. PMID:24116198

  16. Model-based investigation of the circadian clock and cell cycle coupling in mouse embryonic fibroblasts: Prediction of RevErb-α up-regulation during mitosis.

    PubMed

    Traynard, Pauline; Feillet, Céline; Soliman, Sylvain; Delaunay, Franck; Fages, François

    2016-11-01

    Experimental observations have put in evidence autonomous self-sustained circadian oscillators in most mammalian cells, and proved the existence of molecular links between the circadian clock and the cell cycle. Some mathematical models have also been built to assess conditions of control of the cell cycle by the circadian clock. However, recent studies in individual NIH3T3 fibroblasts have shown an unexpected acceleration of the circadian clock together with the cell cycle when the culture medium is enriched with growth factors, and the absence of such acceleration in confluent cells. In order to explain these observations, we study a possible entrainment of the circadian clock by the cell cycle through a regulation of clock genes around the mitosis phase. We develop a computational model and a formal specification of the observed behavior to investigate the conditions of entrainment in period and phase. We show that either the selective activation of RevErb-α or the selective inhibition of Bmal1 transcription during the mitosis phase, allow us to fit the experimental data on both period and phase, while a uniform inhibition of transcription during mitosis seems incompatible with the phase data. We conclude on the arguments favoring the RevErb-α up-regulation hypothesis and on some further predictions of the model. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. A Pseudo Fractional-N Clock Generator with 50% Duty Cycle Output

    NASA Astrophysics Data System (ADS)

    Yang, Wei-Bin; Lo, Yu-Lung; Chao, Ting-Sheng

    A proposed pseudo fractional-N clock generator with 50% duty cycle output is presented by using the pseudo fractional-N controller for SoC chips and the dynamic frequency scaling applications. The different clock frequencies can be generated with the particular phase combinations of a four-stage voltage-controlled oscillator (VCO). It has been fabricated in a 0.13µm CMOS technology, and work with a supply voltage of 1.2V. According to measured results, the frequency range of the proposed pseudo fractional-N clock generator is from 71.4MHz to 1GHz and the peak-to-peak jitter is less than 5% of the output period. Duty cycle error rates of the output clock frequencies are from 0.8% to 2% and the measured power dissipation of the pseudo fractional-N controller is 146µW at 304MHz.

  18. Circadian Rhythms, the Molecular Clock, and Skeletal Muscle

    PubMed Central

    Lefta, Mellani; Wolff, Gretchen; Esser, Karyn A.

    2015-01-01

    Almost all organisms ranging from single cell bacteria to humans exhibit a variety of behavioral, physiological, and biochemical rhythms. In mammals, circadian rhythms control the timing of many physiological processes over a 24-h period, including sleep-wake cycles, body temperature, feeding, and hormone production. This body of research has led to defined characteristics of circadian rhythms based on period length, phase, and amplitude. Underlying circadian behaviors is a molecular clock mechanism found in most, if not all, cell types including skeletal muscle. The mammalian molecular clock is a complex of multiple oscillating networks that are regulated through transcriptional mechanisms, timed protein turnover, and input from small molecules. At this time, very little is known about circadian aspects of skeletal muscle function/metabolism but some progress has been made on understanding the molecular clock in skeletal muscle. The goal of this chapter is to provide the basic terminology and concepts of circadian rhythms with a more detailed review of the current state of knowledge of the molecular clock, with reference to what is known in skeletal muscle. Research has demonstrated that the molecular clock is active in skeletal muscles and that the muscle-specific transcription factor, MyoD, is a direct target of the molecular clock. Skeletal muscle of clock-compromised mice, Bmal1−/− and ClockΔ19 mice, are weak and exhibit significant disruptions in expression of many genes required for adult muscle structure and metabolism. We suggest that the interaction between the molecular clock, MyoD, and metabolic factors, such as PGC-1, provide a potential system of feedback loops that may be critical for both maintenance and adaptation of skeletal muscle. PMID:21621073

  19. NONO couples the circadian clock to the cell cycle.

    PubMed

    Kowalska, Elzbieta; Ripperger, Juergen A; Hoegger, Dominik C; Bruegger, Pascal; Buch, Thorsten; Birchler, Thomas; Mueller, Anke; Albrecht, Urs; Contaldo, Claudio; Brown, Steven A

    2013-01-29

    Mammalian circadian clocks restrict cell proliferation to defined time windows, but the mechanism and consequences of this interrelationship are not fully understood. Previously we identified the multifunctional nuclear protein NONO as a partner of circadian PERIOD (PER) proteins. Here we show that it also conveys circadian gating to the cell cycle, a connection surprisingly important for wound healing in mice. Specifically, although fibroblasts from NONO-deficient mice showed approximately normal circadian cycles, they displayed elevated cell doubling and lower cellular senescence. At a molecular level, NONO bound to the p16-Ink4A cell cycle checkpoint gene and potentiated its circadian activation in a PER protein-dependent fashion. Loss of either NONO or PER abolished this activation and circadian expression of p16-Ink4A and eliminated circadian cell cycle gating. In vivo, lack of NONO resulted in defective wound repair. Because wound healing defects were also seen in multiple circadian clock-deficient mouse lines, our results therefore suggest that coupling of the cell cycle to the circadian clock via NONO may be useful to segregate in temporal fashion cell proliferation from tissue organization.

  20. Associative list processing unit

    DOEpatents

    Hemmert, Karl Scott; Underwood, Keith D.

    2013-01-29

    An associative list processing unit and method comprising employing a plurality of prioritized cell blocks and permitting inserts to occur in a single clock cycle if all of the cell blocks are not full. Also, an associative list processing unit and method comprising employing a plurality of prioritized cell blocks and using a tree of prioritized multiplexers descending from the plurality of cell blocks.

  1. All-semiconductor high-speed akinetic swept-source for OCT

    NASA Astrophysics Data System (ADS)

    Minneman, Michael P.; Ensher, Jason; Crawford, Michael; Derickson, Dennis

    2011-12-01

    A novel swept-wavelength laser for optical coherence tomography (OCT) using a monolithic semiconductor device with no moving parts is presented. The laser is a Vernier-Tuned Distributed Bragg Reflector (VT-DBR) structure exhibiting a single longitudinal mode. All-electronic wavelength tuning is achieved at a 200 kHz sweep repetition rate, 20 mW output power, over 100 nm sweep width and coherence length longer than 40 mm. OCT point-spread functions with 45- 55 dB dynamic range are demonstrated; lasers at 1550 nm, and now 1310 nm, have been developed. Because the laser's long-term tuning stability allows for electronic sample trigger generation at equal k-space intervals (electronic k-clock), the laser does not need an external optical k-clock for measurement interferometer sampling. The non-resonant, allelectronic tuning allows for continuously adjustable sweep repetition rates from mHz to 100s of kHz. Repetition rate duty cycles are continuously adjustable from single-trigger sweeps to over 99% duty cycle. The source includes a monolithically integrated power leveling feature allowing flat or Gaussian power vs. wavelength profiles. Laser fabrication is based on reliable semiconductor wafer-scale processes, leading to low and rapidly decreasing cost of manufacture.

  2. Windowed multipole for cross section Doppler broadening

    NASA Astrophysics Data System (ADS)

    Josey, C.; Ducru, P.; Forget, B.; Smith, K.

    2016-02-01

    This paper presents an in-depth analysis on the accuracy and performance of the windowed multipole Doppler broadening method. The basic theory behind cross section data is described, along with the basic multipole formalism followed by the approximations leading to windowed multipole method and the algorithm used to efficiently evaluate Doppler broadened cross sections. The method is tested by simulating the BEAVRS benchmark with a windowed multipole library composed of 70 nuclides. Accuracy of the method is demonstrated on a single assembly case where total neutron production rates and 238U capture rates compare within 0.1% to ACE format files at the same temperature. With regards to performance, clock cycle counts and cache misses were measured for single temperature ACE table lookup and for windowed multipole. The windowed multipole method was found to require 39.6% more clock cycles to evaluate, translating to a 7.9% performance loss overall. However, the algorithm has significantly better last-level cache performance, with 3 fewer misses per evaluation, or a 65% reduction in last-level misses. This is due to the small memory footprint of the windowed multipole method and better memory access pattern of the algorithm.

  3. Melanopsin resets circadian rhythms in cells by inducing clock gene Period1

    NASA Astrophysics Data System (ADS)

    Yamashita, Shuhei; Uehara, Tomoe; Matsuo, Minako; Kikuchi, Yo; Numano, Rika

    2014-02-01

    The biochemical, physiological and behavioral processes are under the control of internal clocks with the period of approximately 24 hr, circadian rhythms. The expression of clock gene Period1 (Per1) oscillates autonomously in cells and is induced immediately after a light pulse. Per1 is an indispensable member of the central clock system to maintain the autonomous oscillator and synchronize environmental light cycle. Per1 expression could be detected by Per1∷luc and Per1∷GFP plasmid DNA in which firefly luciferase and Green Fluorescence Protein were rhythmically expressed under the control of the mouse Per1 promoter in order to monitor mammalian circadian rhythms. Membrane protein, MELANOPSIN is activated by blue light in the morning on the retina and lead to signals transduction to induce Per1 expression and to reset the phase of circadian rhythms. In this report Per1 induction was measured by reporter signal assay in Per1∷luc and Per1∷GFP fibroblast cell at the input process of circadian rhythms. To the result all process to reset the rhythms by Melanopsin is completed in single cell like in the retina projected to the central clock in the brain. Moreover, the phase of circadian rhythm in Per1∷luc cells is synchronized by photo-activated Melanopsin, because the definite peak of luciferase activity in one dish was found one day after light illumination. That is an available means that physiological circadian rhythms could be real-time monitor as calculable reporter (bioluminescent and fluorescent) chronological signal in both single and groups of cells.

  4. Cycling of clock genes entrained to the solar rhythm enables plants to tell time: data from Arabidopsis.

    PubMed

    Yeang, Hoong-Yeet

    2015-07-01

    An endogenous rhythm synchronized to dawn cannot time photosynthesis-linked genes to peak consistently at noon since the interval between sunrise and noon changes seasonally. In this study, a solar clock model that circumvents this limitation is proposed using two daily timing references synchronized to noon and midnight. Other rhythmic genes that are not directly linked to photosynthesis, and which peak at other times, also find an adaptive advantage in entrainment to the solar rhythm. Fourteen datasets extracted from three published papers were used in a meta-analysis to examine the cyclic behaviour of the Arabidopsis thaliana photosynthesis-related gene CAB2 and the clock oscillator genes TOC1 and LHY in T cycles and N-H cycles. Changes in the rhythms of CAB2, TOC1 and LHY in plants subjected to non-24-h light:dark cycles matched the hypothesized changes in their behaviour as predicted by the solar clock model, thus validating it. The analysis further showed that TOC1 expression peaked ∼5·5 h after mid-day, CAB2 peaked close to noon, while LHY peaked ∼7·5 h after midnight, regardless of the cycle period, the photoperiod or the light:dark period ratio. The solar clock model correctly predicted the zeitgeber timing of these genes under 11 different lighting regimes comprising combinations of seven light periods, nine dark periods, four cycle periods and four light:dark period ratios. In short cycles that terminated before LHY could be expressed, the solar clock correctly predicted zeitgeber timing of its expression in the following cycle. Regulation of gene phases by the solar clock enables the plant to tell the time, by which means a large number of genes are regulated. This facilitates the initiation of gene expression even before the arrival of sunrise, sunset or noon, thus allowing the plant to 'anticipate' dawn, dusk or mid-day respectively, independently of the photoperiod. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Adult Circadian Behavior in Drosophila Requires Developmental Expression of cycle, But Not period

    PubMed Central

    Kim, Min-Ho; Rao, Neethi Varadaraja; Bonilla, Gloribel; Wijnen, Herman

    2011-01-01

    Circadian clocks have evolved as internal time keeping mechanisms that allow anticipation of daily environmental changes and organization of a daily program of physiological and behavioral rhythms. To better examine the mechanisms underlying circadian clocks in animals and to ask whether clock gene expression and function during development affected subsequent daily time keeping in the adult, we used the genetic tools available in Drosophila to conditionally manipulate the function of the CYCLE component of the positive regulator CLOCK/CYCLE (CLK/CYC) or its negative feedback inhibitor PERIOD (PER). Differential manipulation of clock function during development and in adulthood indicated that there is no developmental requirement for either a running clock mechanism or expression of per. However, conditional suppression of CLK/CYC activity either via per over-expression or cyc depletion during metamorphosis resulted in persistent arrhythmic behavior in the adult. Two distinct mechanisms were identified that may contribute to this developmental function of CLK/CYC and both involve the ventral lateral clock neurons (LNvs) that are crucial to circadian control of locomotor behavior: (1) selective depletion of cyc expression in the LNvs resulted in abnormal peptidergic small-LNv dorsal projections, and (2) PER expression rhythms in the adult LNvs appeared to be affected by developmental inhibition of CLK/CYC activity. Given the conservation of clock genes and circuits among animals, this study provides a rationale for investigating a possible similar developmental role of the homologous mammalian CLOCK/BMAL1 complex. PMID:21750685

  6. Circadian CLOCK gene polymorphisms in relation to sleep patterns and obesity in African Americans: findings from the Jackson heart study.

    PubMed

    Riestra, Pia; Gebreab, Samson Y; Xu, Ruihua; Khan, Rumana J; Gaye, Amadou; Correa, Adolfo; Min, Nancy; Sims, Mario; Davis, Sharon K

    2017-06-23

    Circadian rhythms regulate key biological processes and the dysregulation of the intrinsic clock mechanism affects sleep patterns and obesity onset. The CLOCK (circadian locomotor output cycles protein kaput) gene encodes a core transcription factor of the molecular circadian clock influencing diverse metabolic pathways, including glucose and lipid homeostasis. The primary objective of this study was to evaluate the associations between CLOCK single nucleotide polymorphisms (SNPs) and body mass index (BMI). We also evaluated the association of SNPs with BMI related factors such as sleep duration and quality, adiponectin and leptin, in 2962 participants (1116 men and 1810 women) from the Jackson Heart Study. Genotype data for the selected 23 CLOCK gene SNPS was obtained by imputation with IMPUTE2 software and reference phase data from the 1000 genome project. Genetic analyses were conducted with PLINK RESULTS: We found a significant association between the CLOCK SNP rs2070062 and sleep duration, participants carriers of the T allele showed significantly shorter sleep duration compared to non-carriers after the adjustment for individual proportions of European ancestry (PEA), socio economic status (SES), body mass index (BMI), alcohol consumption and smoking status that reach the significance threshold after multiple testing correction. In addition, we found nominal associations of the CLOCK SNP rs6853192 with longer sleep duration and the rs6820823, rs3792603 and rs11726609 with BMI. However, these associations did not reach the significance threshold after correction for multiple testing. In this work, CLOCK gene variants were associated with sleep duration and BMI suggesting that the effects of these polymorphisms on circadian rhythmicity may affect sleep duration and body weight regulation in Africans Americans.

  7. Clock genes and their genomic distributions in three species of salmonid fishes: Associations with genes regulating sexual maturation and cell cycling

    PubMed Central

    2010-01-01

    Background Clock family genes encode transcription factors that regulate clock-controlled genes and thus regulate many physiological mechanisms/processes in a circadian fashion. Clock1 duplicates and copies of Clock3 and NPAS2-like genes were partially characterized (genomic sequencing) and mapped using family-based indels/SNPs in rainbow trout (RT)(Oncorhynchus mykiss), Arctic charr (AC)(Salvelinus alpinus), and Atlantic salmon (AS)(Salmo salar) mapping panels. Results Clock1 duplicates mapped to linkage groups RT-8/-24, AC-16/-13 and AS-2/-18. Clock3/NPAS2-like genes mapped to RT-9/-20, AC-20/-43, and AS-5. Most of these linkage group regions containing the Clock gene duplicates were derived from the most recent 4R whole genome duplication event specific to the salmonids. These linkage groups contain quantitative trait loci (QTL) for life history and growth traits (i.e., reproduction and cell cycling). Comparative synteny analyses with other model teleost species reveal a high degree of conservation for genes in these chromosomal regions suggesting that functionally related or co-regulated genes are clustered in syntenic blocks. For example, anti-müllerian hormone (amh), regulating sexual maturation, and ornithine decarboxylase antizymes (oaz1 and oaz2), regulating cell cycling, are contained within these syntenic blocks. Conclusions Synteny analyses indicate that regions homologous to major life-history QTL regions in salmonids contain many candidate genes that are likely to influence reproduction and cell cycling. The order of these genes is highly conserved across the vertebrate species examined, and as such, these genes may make up a functional cluster of genes that are likely co-regulated. CLOCK, as a transcription factor, is found within this block and therefore has the potential to cis-regulate the processes influenced by these genes. Additionally, clock-controlled genes (CCGs) are located in other life-history QTL regions within salmonids suggesting that at least in part, trans-regulation of these QTL regions may also occur via Clock expression. PMID:20670436

  8. Cyclin-dependent kinase inhibitor p20 controls circadian cell-cycle timing

    PubMed Central

    Laranjeiro, Ricardo; Tamai, T. Katherine; Peyric, Elodie; Krusche, Peter; Ott, Sascha; Whitmore, David

    2013-01-01

    Specific stages of the cell cycle are often restricted to particular times of day because of regulation by the circadian clock. In zebrafish, both mitosis (M phase) and DNA synthesis (S phase) are clock-controlled in cell lines and during embryo development. Despite the ubiquitousness of this phenomenon, relatively little is known about the underlying mechanism linking the clock to the cell cycle. In this study, we describe an evolutionarily conserved cell-cycle regulator, cyclin-dependent kinase inhibitor 1d (20 kDa protein, p20), which along with p21, is a strongly rhythmic gene and directly clock-controlled. Both p20 and p21 regulate the G1/S transition of the cell cycle. However, their expression patterns differ, with p20 predominant in developing brain and peak expression occurring 6 h earlier than p21. p20 expression is also p53-independent in contrast to p21 regulation. Such differences provide a unique mechanism whereby S phase is set to different times of day in a tissue-specific manner, depending on the balance of these two inhibitors. PMID:23569261

  9. Cyclin-dependent kinase inhibitor p20 controls circadian cell-cycle timing.

    PubMed

    Laranjeiro, Ricardo; Tamai, T Katherine; Peyric, Elodie; Krusche, Peter; Ott, Sascha; Whitmore, David

    2013-04-23

    Specific stages of the cell cycle are often restricted to particular times of day because of regulation by the circadian clock. In zebrafish, both mitosis (M phase) and DNA synthesis (S phase) are clock-controlled in cell lines and during embryo development. Despite the ubiquitousness of this phenomenon, relatively little is known about the underlying mechanism linking the clock to the cell cycle. In this study, we describe an evolutionarily conserved cell-cycle regulator, cyclin-dependent kinase inhibitor 1d (20 kDa protein, p20), which along with p21, is a strongly rhythmic gene and directly clock-controlled. Both p20 and p21 regulate the G1/S transition of the cell cycle. However, their expression patterns differ, with p20 predominant in developing brain and peak expression occurring 6 h earlier than p21. p20 expression is also p53-independent in contrast to p21 regulation. Such differences provide a unique mechanism whereby S phase is set to different times of day in a tissue-specific manner, depending on the balance of these two inhibitors.

  10. Single-transistor-clocked flip-flop

    DOEpatents

    Zhao, Peiyi; Darwish, Tarek; Bayoumi, Magdy

    2005-08-30

    The invention provides a low power, high performance flip-flop. The flip-flop uses only one clocked transistor. The single clocked transistor is shared by the first and second branches of the device. A pulse generator produces a clock pulse to trigger the flip-flop. In one preferred embodiment the device can be made as a static explicit pulsed flip-flop which employs only two clocked transistors.

  11. Physiological links of circadian clock and biological clock of aging.

    PubMed

    Liu, Fang; Chang, Hung-Chun

    2017-07-01

    Circadian rhythms orchestrate biochemical and physiological processes in living organisms to respond the day/night cycle. In mammals, nearly all cells hold self-sustained circadian clocks meanwhile couple the intrinsic rhythms to systemic changes in a hierarchical manner. The suprachiasmatic nucleus (SCN) of the hypothalamus functions as the master pacemaker to initiate daily synchronization according to the photoperiod, in turn determines the phase of peripheral cellular clocks through a variety of signaling relays, including endocrine rhythms and metabolic cycles. With aging, circadian desynchrony occurs at the expense of peripheral metabolic pathologies and central neurodegenerative disorders with sleep symptoms, and genetic ablation of circadian genes in model organisms resembled the aging-related features. Notably, a number of studies have linked longevity nutrient sensing pathways in modulating circadian clocks. Therapeutic strategies that bridge the nutrient sensing pathways and circadian clock might be rational designs to defy aging.

  12. PDF cycling in the dorsal protocerebrum of the Drosophila brain is not necessary for circadian clock function.

    PubMed

    Kula, Elzbieta; Levitan, Edwin S; Pyza, Elzbieta; Rosbash, Michael

    2006-04-01

    In Drosophila, the neuropeptide pigment-dispersing factor (PDF) is a likely circadian molecule, secreted by central pacemaker neurons (LNvs). PDF is expressed in both small and large LNvs (sLNvs and lLNvs), and there are striking circadian oscillations of PDF staining intensity in the small cell termini, which require a functional molecular clock. This cycling may be relevant to the proposed role of PDF as a synchronizer of the clock system or as an output signal connecting pacemaker cells to locomotor activity centers. In this study, the authors use a generic neuropeptide fusion protein (atrial natriuretic factor-green fluorescent protein [ANF-GFP]) and show that it can be expressed in the same neurons as PDF itself. Yet, ANF-GFP as well as PDF itself does not manifest any cyclical accumulation in sLNv termini in adult transgenic flies. Surprisingly, the absence of detectable PDF cycling is not accompanied by any detectable behavioral pheno-type, since these transgenic flies have normal morning and evening anticipation in a light-dark cycle (LD) and are fully rhythmic in constant darkness (DD). The molecular clock is also not compromised. The results suggest that robust PDF cycling in sLNv termini plays no more than a minor role in the Drosophila circadian system and is apparently not even necessary for clock output function.

  13. Bayesian view of single-qubit clocks, and an energy versus accuracy tradeoff

    NASA Astrophysics Data System (ADS)

    Gopalkrishnan, Manoj; Kandula, Varshith; Sriram, Praveen; Deshpande, Abhishek; Muralidharan, Bhaskaran

    2017-09-01

    We bring a Bayesian approach to the analysis of clocks. Using exponential distributions as priors for clocks, we analyze how well one can keep time with a single qubit freely precessing under a magnetic field. We find that, at least with a single qubit, quantum mechanics does not allow exact timekeeping, in contrast to classical mechanics, which does. We find the design of the single-qubit clock that leads to maximum accuracy. Further, we find an energy versus accuracy tradeoff—the energy cost is at least kBT times the improvement in accuracy as measured by the entropy reduction in going from the prior distribution to the posterior distribution. We propose a physical realization of the single-qubit clock using charge transport across a capacitively coupled quantum dot.

  14. Circadian expression of clock genes in human oral mucosa and skin: association with specific cell-cycle phases.

    PubMed

    Bjarnason, G A; Jordan, R C; Wood, P A; Li, Q; Lincoln, D W; Sothern, R B; Hrushesky, W J; Ben-David, Y

    2001-05-01

    We studied the relative RNA expression of clock genes throughout one 24-hour period in biopsies obtained from the oral mucosa and skin from eight healthy diurnally active male study participants. We found that the human clock genes hClock, hTim, hPer1, hCry1, and hBmal1 are expressed in oral mucosa and skin, with a circadian profile consistent with that found in the suprachiasmatic nuclei and the peripheral tissues of rodents. hPer1, hCry1, and hBmal1 have a rhythmic expression, peaking early in the morning, in late afternoon, and at night, respectively, whereas hClock and hTim are not rhythmic. This is the first human study to show a circadian profile of expression for all five clock genes as documented in rodents, suggesting their functional importance in man. In concurrent oral mucosa biopsies, thymidylate synthase enzyme activity, a marker for DNA synthesis, had a circadian variation with peak activity in early afternoon, coinciding with the timing of S phase in our previous study on cell-cycle timing in human oral mucosa. The major peak in hPer1 expression occurs at the same time of day as the peak in G(1) phase in oral mucosa, suggesting a possible link between the circadian clock and the mammalian cell cycle.

  15. Agile high resolution arbitrary waveform generator with jitterless frequency stepping

    DOEpatents

    Reilly, Peter T. A.; Koizumi, Hideya

    2010-05-11

    Jitterless transition of the programmable clock waveform is generated employing a set of two coupled direct digital synthesis (DDS) circuits. The first phase accumulator in the first DDS circuit runs at least one cycle of a common reference clock for the DDS circuits ahead of the second phase accumulator in the second DDS circuit. As a phase transition through the beginning of a phase cycle is detected from the first phase accumulator, a first phase offset word and a second phase offset word for the first and second phase accumulators are calculated and loaded into the first and second DDS circuits. The programmable clock waveform is employed as a clock input for the RAM address controller. A well defined jitterless transition in frequency of the arbitrary waveform is provided which coincides with the beginning of the phase cycle of the DDS output signal from the second DDS circuit.

  16. Association between the CLOCK gene 3111 T > C polymorphism and an irregular menstrual cycle in Korean adolescents.

    PubMed

    Kim, Kye-Hyun; Kim, Yunsin; Ha, Juwon; Shin, Dong-Won; Shin, Young-Chul; Oh, Kang-Seob; Woo, Hee-Yeon; Lim, Se-Won

    2015-01-01

    The menstrual cycle is an example of a human infradian rhythm, but an altered sleep-wake cycle or a disrupted circadian rhythm can change the regularity of the menstrual cycle. In this study, we investigated whether an irregular menstrual cycle is associated with polymorphisms in the CLOCK (3111T > C) and/or PER3 (variable number tandem repeat, VNTR) genes, which are known to have an impact on the circadian rhythm. One hundred ninety-seven postmenarchal, adolescent girls from two girls' high schools in Seoul, Korea, were studied. All participants were requested to complete the Perceived Stress Scale (PSS), the State-Trait Anxiety Inventory (STAI), and the Beck Depression Inventory (BDI) to assess the emotional distress that might cause menstrual irregularity. Every participant donated a blood sample from which DNA was extracted and genotyped for the CLOCK 3111T > C and PER3 VNTR polymorphisms. A significant association was found between the CLOCK 3111T > C genotype and irregular menstrual cycles. Subjects with the 3111T > C genotype had a high risk of an irregular menstrual cycle compared with 3111T/T homozygous subjects (odds ratio [OR] = 2.88; 95% confidence interval [CI]: 1.26-6.55). When multivariate logistic regression analysis was performed to adjust for age, PSS, STAI, BDI and BMI, subjects with the 3111T > C polymorphism showed a significantly increased OR for irregular menstrual cycles (OR = 3.09; 95% CI: 1.32-7.21). There was no significant association between the PER3 VNTR polymorphism and the irregularity of the menstrual cycle (p > 0.05). The results of this study suggest that the CLOCK 3111T > C polymorphism could be an independent risk factor for irregular menstrual cycles, irrespective of psychological distress and endocrine or metabolic conditions, and could be used as a molecular marker for gynecological studies on this aspect.

  17. Method and infrastructure for cycle-reproducible simulation on large scale digital circuits on a coordinated set of field-programmable gate arrays (FPGAs)

    DOEpatents

    Asaad, Sameh W; Bellofatto, Ralph E; Brezzo, Bernard; Haymes, Charles L; Kapur, Mohit; Parker, Benjamin D; Roewer, Thomas; Tierno, Jose A

    2014-01-28

    A plurality of target field programmable gate arrays are interconnected in accordance with a connection topology and map portions of a target system. A control module is coupled to the plurality of target field programmable gate arrays. A balanced clock distribution network is configured to distribute a reference clock signal, and a balanced reset distribution network is coupled to the control module and configured to distribute a reset signal to the plurality of target field programmable gate arrays. The control module and the balanced reset distribution network are cooperatively configured to initiate and control a simulation of the target system with the plurality of target field programmable gate arrays. A plurality of local clock control state machines reside in the target field programmable gate arrays. The local clock state machines are configured to generate a set of synchronized free-running and stoppable clocks to maintain cycle-accurate and cycle-reproducible execution of the simulation of the target system. A method is also provided.

  18. Manipulating the circadian and sleep cycles to protect against metabolic disease.

    PubMed

    Nohara, Kazunari; Yoo, Seung-Hee; Chen, Zheng Jake

    2015-01-01

    Modernization of human society parallels an epidemic of metabolic disorders including obesity. Apart from excess caloric intake, a 24/7 lifestyle poses another important challenge to our metabolic health. Recent research under both laboratory and epidemiological settings has indicated that abnormal temporal organization of sleep and wakeful activities including food intake is a significant risk factor for metabolic disease. The circadian clock system is our intrinsic biological timer that regulates internal rhythms such as the sleep/wake cycle and also responses to external stimuli including light and food. Initially thought to be mainly involved in the timing of sleep, the clock, and/or clock genes may also play a role in sleep architecture and homeostasis. Importantly, an extensive body of evidence has firmly established a master regulatory role of the clock in energy balance. Together, a close relationship between well-timed circadian/sleep cycles and metabolic health is emerging. Exploiting this functional connection, an important holistic strategy toward curbing the epidemic of metabolic disorders (e.g., obesity) involves corrective measures on the circadian clock and sleep. In addition to behavioral and environmental interventions including meal timing and light control, pharmacological agents targeting sleep and circadian clocks promise convenient and effective applications. Recent studies, for example, have reported small molecules targeting specific clock components and displaying robust beneficial effects on sleep and metabolism. Furthermore, a group of clock-amplitude-enhancing small molecules (CEMs) identified via high-throughput chemical screens are of particular interest for future in vivo studies of their metabolic and sleep efficacies. Elucidating the functional relationship between clock, sleep, and metabolism will also have far-reaching implications for various chronic human diseases and aging.

  19. Phosphorylation of Ribosomal Protein RPS6 Integrates Light Signals and Circadian Clock Signals

    DOE PAGES

    Enganti, Ramya; Cho, Sung Ki; Toperzer, Jody D.; ...

    2018-01-19

    The translation of mRNA into protein is tightly regulated by the light environment as well as by the circadian clock. Although changes in translational efficiency have been well documented at the level of mRNA-ribosome loading, the underlying mechanisms are unclear. The reversible phosphorylation of RIBOSOMAL PROTEIN OF THE SMALL SUBUNIT 6 (RPS6) has been known for 40 years, but the biochemical significance of this event remains unclear to this day. Here, we confirm using a clock-deficient strain of Arabidopsis thaliana that RPS6 phosphorylation (RPS6-P) is controlled by the diel light-dark cycle with a peak during the day. Strikingly, when wild-type,more » clock-enabled, seedlings that have been entrained to a light-dark cycle are placed under free-running conditions, the circadian clock drives a cycle of RPS6-P with an opposite phase, peaking during the subjective night. We show that in wild-type seedlings under a light-dark cycle, the incoherent light and clock signals are integrated by the plant to cause an oscillation in RPS6-P with a reduced amplitude with a peak during the day. Sucrose can stimulate RPS6-P, as seen when sucrose in the medium masks the light response of etiolated seedlings. However, the diel cycles of RPS6-P are observed in the presence of 1% sucrose and in its absence. Sucrose at a high concentration of 3% appears to interfere with the robust integration of light and clock signals at the level of RPS6-P. Finally, we addressed whether RPS6-P occurs uniformly in polysomes, non-polysomal ribosomes and their subunits, and non-ribosomal protein. It is the polysomal RPS6 whose phosphorylation is most highly stimulated by light and repressed by darkness. These data exemplify a striking case of contrasting biochemical regulation between clock signals and light signals. Although the physiological significance of RPS6-P remains unknown, our data provide a mechanistic basis for the future understanding of this enigmatic event.« less

  20. Phosphorylation of Ribosomal Protein RPS6 Integrates Light Signals and Circadian Clock Signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enganti, Ramya; Cho, Sung Ki; Toperzer, Jody D.

    The translation of mRNA into protein is tightly regulated by the light environment as well as by the circadian clock. Although changes in translational efficiency have been well documented at the level of mRNA-ribosome loading, the underlying mechanisms are unclear. The reversible phosphorylation of RIBOSOMAL PROTEIN OF THE SMALL SUBUNIT 6 (RPS6) has been known for 40 years, but the biochemical significance of this event remains unclear to this day. Here, we confirm using a clock-deficient strain of Arabidopsis thaliana that RPS6 phosphorylation (RPS6-P) is controlled by the diel light-dark cycle with a peak during the day. Strikingly, when wild-type,more » clock-enabled, seedlings that have been entrained to a light-dark cycle are placed under free-running conditions, the circadian clock drives a cycle of RPS6-P with an opposite phase, peaking during the subjective night. We show that in wild-type seedlings under a light-dark cycle, the incoherent light and clock signals are integrated by the plant to cause an oscillation in RPS6-P with a reduced amplitude with a peak during the day. Sucrose can stimulate RPS6-P, as seen when sucrose in the medium masks the light response of etiolated seedlings. However, the diel cycles of RPS6-P are observed in the presence of 1% sucrose and in its absence. Sucrose at a high concentration of 3% appears to interfere with the robust integration of light and clock signals at the level of RPS6-P. Finally, we addressed whether RPS6-P occurs uniformly in polysomes, non-polysomal ribosomes and their subunits, and non-ribosomal protein. It is the polysomal RPS6 whose phosphorylation is most highly stimulated by light and repressed by darkness. These data exemplify a striking case of contrasting biochemical regulation between clock signals and light signals. Although the physiological significance of RPS6-P remains unknown, our data provide a mechanistic basis for the future understanding of this enigmatic event.« less

  1. Temperature compensation and temperature sensation in the circadian clock

    PubMed Central

    Kidd, Philip B.; Young, Michael W.; Siggia, Eric D.

    2015-01-01

    All known circadian clocks have an endogenous period that is remarkably insensitive to temperature, a property known as temperature compensation, while at the same time being readily entrained by a diurnal temperature oscillation. Although temperature compensation and entrainment are defining features of circadian clocks, their mechanisms remain poorly understood. Most models presume that multiple steps in the circadian cycle are temperature-dependent, thus facilitating temperature entrainment, but then insist that the effect of changes around the cycle sums to zero to enforce temperature compensation. An alternative theory proposes that the circadian oscillator evolved from an adaptive temperature sensor: a gene circuit that responds only to temperature changes. This theory implies that temperature changes should linearly rescale the amplitudes of clock component oscillations but leave phase relationships and shapes unchanged. We show using timeless luciferase reporter measurements and Western blots against TIMELESS protein that this prediction is satisfied by the Drosophila circadian clock. We also review evidence for pathways that couple temperature to the circadian clock, and show previously unidentified evidence for coupling between the Drosophila clock and the heat-shock pathway. PMID:26578788

  2. Cost and Precision of Brownian Clocks

    NASA Astrophysics Data System (ADS)

    Barato, Andre C.; Seifert, Udo

    2016-10-01

    Brownian clocks are biomolecular networks that can count time. A paradigmatic example are proteins that go through a cycle, thus regulating some oscillatory behavior in a living system. Typically, such a cycle requires free energy often provided by ATP hydrolysis. We investigate the relation between the precision of such a clock and its thermodynamic costs. For clocks driven by a constant thermodynamic force, a given precision requires a minimal cost that diverges as the uncertainty of the clock vanishes. In marked contrast, we show that a clock driven by a periodic variation of an external protocol can achieve arbitrary precision at arbitrarily low cost. This result constitutes a fundamental difference between processes driven by a fixed thermodynamic force and those driven periodically. As a main technical tool, we map a periodically driven system with a deterministic protocol to one subject to an external protocol that changes in stochastic time intervals, which simplifies calculations significantly. In the nonequilibrium steady state of the resulting bipartite Markov process, the uncertainty of the clock can be deduced from the calculable dispersion of a corresponding current.

  3. Phase-delay in the light-dark cycle impairs clock gene expression and levels of serotonin, norepinephrine, and their metabolites in the mouse hippocampus and amygdala.

    PubMed

    Moriya, Shunpei; Tahara, Yu; Sasaki, Hiroyuki; Ishigooka, Jun; Shibata, Shigenobu

    2015-11-01

    A number of animal studies have implicated circadian clock genes in the regulation of mood, anxiety, and reward. However, the effect of misalignment of the environmental light-dark and internal circadian clock on the monoamine system is not fully understood. In the present study, we examined whether an abnormal light-dark schedule would affect behavior-, circadian clock-, and monoamine-related gene expressions, along with monoamine contents in the amygdala and hippocampus of mice. Mice were subjected to an 8-hour phase delay in the light-dark cycle (Shift) every two days for four weeks, and locomotor activity was continuously measured. We examined the circadian expression of clock genes (Per1, Per2, and Bmal1) and genes of the NE/5HT uptake transporters (Net and Sert). In addition, the levels of NE/5HT and their metabolites MHPG/5HIAA were analyzed in the amygdala and hippocampus. Locomotor activity showed a free-running phenotype with a longer period (>24 hours) and showed misalignment between the light-dark and inactive-active cycles. The amplitude of the day-night fluctuation of Bmal1 expression was reduced in the amygdala and hippocampus of light-dark-shifted mice. Net gene expression in the Shift group showed different profiles compared with the Control group. In addition, NE and 5HT levels in the amygdala of the Shift group increased during the active period. The present results suggest that misalignment of the internal and external clocks by continuous shifting of the light-dark cycle affects the circadian clocks and monoamine metabolism in the amygdala and hippocampus of mice. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Molecular Cogs: Interplay between Circadian Clock and Cell Cycle.

    PubMed

    Gaucher, Jonathan; Montellier, Emilie; Sassone-Corsi, Paolo

    2018-05-01

    The cell cycle and the circadian clock operate as biological oscillators whose timed functions are tightly regulated. Accumulating evidence illustrates the presence of molecular links between these two oscillators. This mutual interplay utilizes various coupling mechanisms, such as the use of common regulators. The connection between these two cyclic systems has unique interest in the context of aberrant cell proliferation since both of these oscillators are frequently misregulated in cancer cells. Further studies will provide deeper understanding of the detailed molecular connections between the cell cycle and the circadian clock and may also serve as a basis for the design of innovative therapeutic strategies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Circadian rhythms synchronize mitosis in Neurospora crassa.

    PubMed

    Hong, Christian I; Zámborszky, Judit; Baek, Mokryun; Labiscsak, Laszlo; Ju, Kyungsu; Lee, Hyeyeong; Larrondo, Luis F; Goity, Alejandra; Chong, Hin Siong; Belden, William J; Csikász-Nagy, Attila

    2014-01-28

    The cell cycle and the circadian clock communicate with each other, resulting in circadian-gated cell division cycles. Alterations in this network may lead to diseases such as cancer. Therefore, it is critical to identify molecular components that connect these two oscillators. However, molecular mechanisms between the clock and the cell cycle remain largely unknown. A model filamentous fungus, Neurospora crassa, is a multinucleate system used to elucidate molecular mechanisms of circadian rhythms, but not used to investigate the molecular coupling between these two oscillators. In this report, we show that a conserved coupling between the circadian clock and the cell cycle exists via serine/threonine protein kinase-29 (STK-29), the Neurospora homolog of mammalian WEE1 kinase. Based on this finding, we established a mathematical model that predicts circadian oscillations of cell cycle components and circadian clock-dependent synchronized nuclear divisions. We experimentally demonstrate that G1 and G2 cyclins, CLN-1 and CLB-1, respectively, oscillate in a circadian manner with bioluminescence reporters. The oscillations of clb-1 and stk-29 gene expression are abolished in a circadian arrhythmic frq(ko) mutant. Additionally, we show the light-induced phase shifts of a core circadian component, frq, as well as the gene expression of the cell cycle components clb-1 and stk-29, which may alter the timing of divisions. We then used a histone hH1-GFP reporter to observe nuclear divisions over time, and show that a large number of nuclear divisions occur in the evening. Our findings demonstrate the circadian clock-dependent molecular dynamics of cell cycle components that result in synchronized nuclear divisions in Neurospora.

  6. Circadian signaling in Homarus americanus: Region-specific de novo assembled transcriptomes show that both the brain and eyestalk ganglia possess the molecular components of a putative clock system.

    PubMed

    Christie, Andrew E; Yu, Andy; Pascual, Micah G; Roncalli, Vittoria; Cieslak, Matthew C; Warner, Amanda N; Lameyer, Tess J; Stanhope, Meredith E; Dickinson, Patsy S; Joe Hull, J

    2018-04-11

    Essentially all organisms exhibit recurring patterns of physiology/behavior that oscillate with a period of ~24-h and are synchronized to the solar day. Crustaceans are no exception, with robust circadian rhythms having been documented in many members of this arthropod subphylum. However, little is known about the molecular underpinnings of their circadian rhythmicity. Moreover, the location of the crustacean central clock has not been firmly established, although both the brain and eyestalk ganglia have been hypothesized as loci. The American lobster, Homarus americanus, is known to exhibit multiple circadian rhythms, and immunodetection data suggest that its central clock is located within the eyestalk ganglia rather than in the brain. Here, brain- and eyestalk ganglia-specific transcriptomes were generated and used to assess the presence/absence of transcripts encoding the commonly recognized protein components of arthropod circadian signaling systems in these two regions of the lobster central nervous system. Transcripts encoding putative homologs of the core clock proteins clock, cryptochrome 2, cycle, period and timeless were found in both the brain and eyestalk ganglia assemblies, as were transcripts encoding similar complements of putative clock-associated, clock input pathway and clock output pathway proteins. The presence and identity of transcripts encoding core clock proteins in both regions were confirmed using PCR. These findings suggest that both the brain and eyestalk ganglia possess all of the molecular components needed for the establishment of a circadian signaling system. Whether the brain and eyestalk clocks are independent of one another or represent a single timekeeping system remains to be determined. Interestingly, while most of the proteins deduced from the identified transcripts are shared by both the brain and eyestalk ganglia, assembly-specific isoforms were also identified, e.g., several period variants, suggesting the possibility of region-specific variation in clock function, especially if the brain and eyestalk clocks represent independent oscillators. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. The hamster clock phase-response curve from summerlike light:dark cycles and its role in daily and seasonal timekeeping.

    PubMed

    Alleva, John J; Alleva, Frederic R

    2002-11-01

    We address the subject of entrainment of the hamster clock by the day:night cycle in summer when the sun sets after 6 PM and rises before 6 AM (nights < 12 h). Summer day:night cycles were simulated by 6 light:dark (LD) cycles with D < 12 h (summerlike, SLD) ranging from SLD 12.5 h:11.5 h (D, 6:15 PM-5:45 AM) to 18 h:6 h (D, 9 PM-3 AM). These are the near limiting SLDs for constant PM timing (entrainment) of behavioral estrus and wheel running in hamsters. The onset of estrus was observed every 4 d in the same hamsters as a phase marker of their 24 h clock. On the day before an experimental estrus, preceded and followed by control onsets, a dark period was imposed to cover a putative 6 PM-6 AM light-sensitive period (LSP). This was scanned with a light pulse (and periodic 5 sec bell alarms) lasting 5-240 min. Shifts in onset of estrus on the next day were plotted vs. the end of the light pulse for PM times ("dusk") and its onset for AM times ("dawn"). The resulting phase shifts from the six SLDs were similar, permitting their combination into a single phase-response curve (PRC) of 1605 shifts. This SLD composite PRC rose at 10:15 PM, peaked at 2 AM (81 min advanced shift), fell linearly to 5:55 AM, and then abruptly to normal at 6 AM (no shift). Peak shift was unaffected by light pulse duration or intensity, or hamster age. The SLD composite PRC lacked the 6 PM-9 PM curve of delayed shifts present in reported PRCs from LD 12 h:12 h and DD. However, a two-pulse experiment showed that all light from 6 PM to L-off was needed to block (balance) the advancing action of a 5 min morning light pulse, thereby maintaining entrainment. A working hypothesis to explain daily entrainment and seasonal fertility in the golden hamster is illustrated. A nomenclature for labeling the phases of the hamster clock (circadian time) is proposed.

  8. The development of the time-keeping clock with TS-1 single chip microcomputer.

    NASA Astrophysics Data System (ADS)

    Zhou, Jiguang; Li, Yongan

    The authors have developed a time-keeping clock with Intel 8751 single chip microcomputer that has been successfully used in time-keeping station. The hard-soft ware design and performance of the clock are introduced.

  9. Accelerating recovery from jet lag: prediction from a multi-oscillator model and its experimental confirmation in model animals

    NASA Astrophysics Data System (ADS)

    Kori, Hiroshi; Yamaguchi, Yoshiaki; Okamura, Hitoshi

    2017-04-01

    The endogenous circadian clock drives oscillations that are completely synchronized with the environmental day-night rhythms with a period of approximately 24 hours. Temporal misalignment between one’s internal circadian clock and the external solar time often occurs in shift workers and long-distance travelers; such misalignments are accompanied by sleep disturbances and gastrointestinal distress. Repeated exposure to jet lag and rotating shift work increases the risk of lifestyle-related diseases, such as cardiovascular complaints and metabolic insufficiencies. However, the mechanism behind the disruption of one’s internal clock is not well understood. In this paper, we therefore present a new theoretical concept called “jet lag separatrix” to understand circadian clock disruption and slow recovery from jet lag based on the mathematical model describing the hierarchical structure of the circadian clock. To demonstrate the utility of our theoretical study, we applied it to predict that re-entrainment via a two-step jet lag in which a four-hour shift of the light-dark cycle is given in the span of two successive days requires fewer days than when given as a single eight-hour shift. We experimentally verified the feasibility of our theory in C57BL/6 strain mice, with results indicating that this pre-exposure of jet lag is indeed beneficial.

  10. Impaired light detection of the circadian clock in a zebrafish melanoma model

    PubMed Central

    Hamilton, Noémie; Diaz-de-Cerio, Natalia; Whitmore, David

    2015-01-01

    The circadian clock controls the timing of the cell cycle in healthy tissues and clock disruption is known to increase tumourigenesis. Melanoma is one of the most rapidly increasing forms of cancer and the precise molecular circadian changes that occur in a melanoma tumor are unknown. Using a melanoma zebrafish model, we have explored the molecular changes that occur to the circadian clock within tumors. We have found disruptions in melanoma clock gene expression due to a major impairment to the light input pathway, with a parallel loss of light-dependent activation of DNA repair genes. Furthermore, the timing of mitosis in tumors is perturbed, as well as the regulation of certain key cell cycle regulators, such that cells divide arhythmically. The inability to co-ordinate DNA damage repair and cell division is likely to promote further tumourigenesis and accelerate melanoma development. PMID:25832911

  11. Impaired light detection of the circadian clock in a zebrafish melanoma model.

    PubMed

    Hamilton, Noémie; Diaz-de-Cerio, Natalia; Whitmore, David

    2015-01-01

    The circadian clock controls the timing of the cell cycle in healthy tissues and clock disruption is known to increase tumourigenesis. Melanoma is one of the most rapidly increasing forms of cancer and the precise molecular circadian changes that occur in a melanoma tumor are unknown. Using a melanoma zebrafish model, we have explored the molecular changes that occur to the circadian clock within tumors. We have found disruptions in melanoma clock gene expression due to a major impairment to the light input pathway, with a parallel loss of light-dependent activation of DNA repair genes. Furthermore, the timing of mitosis in tumors is perturbed, as well as the regulation of certain key cell cycle regulators, such that cells divide arhythmically. The inability to co-ordinate DNA damage repair and cell division is likely to promote further tumourigenesis and accelerate melanoma development.

  12. Wire like link for cycle reproducible and cycle accurate hardware accelerator

    DOEpatents

    Asaad, Sameh; Kapur, Mohit; Parker, Benjamin D

    2015-04-07

    First and second field programmable gate arrays are provided which implement first and second blocks of a circuit design to be simulated. The field programmable gate arrays are operated at a first clock frequency and a wire like link is provided to send a plurality of signals between them. The wire like link includes a serializer, on the first field programmable gate array, to serialize the plurality of signals; a deserializer on the second field programmable gate array, to deserialize the plurality of signals; and a connection between the serializer and the deserializer. The serializer and the deserializer are operated at a second clock frequency, greater than the first clock frequency, and the second clock frequency is selected such that latency of transmission and reception of the plurality of signals is less than the period corresponding to the first clock frequency.

  13. Entanglement of quantum clocks through gravity

    NASA Astrophysics Data System (ADS)

    Castro Ruiz, Esteban; Giacomini, Flaminia; Brukner, Časlav

    2017-03-01

    In general relativity, the picture of space-time assigns an ideal clock to each world line. Being ideal, gravitational effects due to these clocks are ignored and the flow of time according to one clock is not affected by the presence of clocks along nearby world lines. However, if time is defined operationally, as a pointer position of a physical clock that obeys the principles of general relativity and quantum mechanics, such a picture is, at most, a convenient fiction. Specifically, we show that the general relativistic mass-energy equivalence implies gravitational interaction between the clocks, whereas the quantum mechanical superposition of energy eigenstates leads to a nonfixed metric background. Based only on the assumption that both principles hold in this situation, we show that the clocks necessarily get entangled through time dilation effect, which eventually leads to a loss of coherence of a single clock. Hence, the time as measured by a single clock is not well defined. However, the general relativistic notion of time is recovered in the classical limit of clocks.

  14. Entanglement of quantum clocks through gravity.

    PubMed

    Castro Ruiz, Esteban; Giacomini, Flaminia; Brukner, Časlav

    2017-03-21

    In general relativity, the picture of space-time assigns an ideal clock to each world line. Being ideal, gravitational effects due to these clocks are ignored and the flow of time according to one clock is not affected by the presence of clocks along nearby world lines. However, if time is defined operationally, as a pointer position of a physical clock that obeys the principles of general relativity and quantum mechanics, such a picture is, at most, a convenient fiction. Specifically, we show that the general relativistic mass-energy equivalence implies gravitational interaction between the clocks, whereas the quantum mechanical superposition of energy eigenstates leads to a nonfixed metric background. Based only on the assumption that both principles hold in this situation, we show that the clocks necessarily get entangled through time dilation effect, which eventually leads to a loss of coherence of a single clock. Hence, the time as measured by a single clock is not well defined. However, the general relativistic notion of time is recovered in the classical limit of clocks.

  15. Entanglement of quantum clocks through gravity

    PubMed Central

    Castro Ruiz, Esteban; Giacomini, Flaminia; Brukner, Časlav

    2017-01-01

    In general relativity, the picture of space–time assigns an ideal clock to each world line. Being ideal, gravitational effects due to these clocks are ignored and the flow of time according to one clock is not affected by the presence of clocks along nearby world lines. However, if time is defined operationally, as a pointer position of a physical clock that obeys the principles of general relativity and quantum mechanics, such a picture is, at most, a convenient fiction. Specifically, we show that the general relativistic mass–energy equivalence implies gravitational interaction between the clocks, whereas the quantum mechanical superposition of energy eigenstates leads to a nonfixed metric background. Based only on the assumption that both principles hold in this situation, we show that the clocks necessarily get entangled through time dilation effect, which eventually leads to a loss of coherence of a single clock. Hence, the time as measured by a single clock is not well defined. However, the general relativistic notion of time is recovered in the classical limit of clocks. PMID:28270623

  16. CULLIN-3 Controls TIMELESS Oscillations in the Drosophila Circadian Clock

    PubMed Central

    Lamouroux, Annie; Chélot, Elisabeth; Rouyer, François

    2012-01-01

    Eukaryotic circadian clocks rely on transcriptional feedback loops. In Drosophila, the PERIOD (PER) and TIMELESS (TIM) proteins accumulate during the night, inhibit the activity of the CLOCK (CLK)/CYCLE (CYC) transcriptional complex, and are degraded in the early morning. The control of PER and TIM oscillations largely depends on post-translational mechanisms. They involve both light-dependent and light-independent pathways that rely on the phosphorylation, ubiquitination, and proteasomal degradation of the clock proteins. SLMB, which is part of a CULLIN-1-based E3 ubiquitin ligase complex, is required for the circadian degradation of phosphorylated PER. We show here that CULLIN-3 (CUL-3) is required for the circadian control of PER and TIM oscillations. Expression of either Cul-3 RNAi or dominant negative forms of CUL-3 in the clock neurons alters locomotor behavior and dampens PER and TIM oscillations in light-dark cycles. In constant conditions, CUL-3 deregulation induces behavioral arrhythmicity and rapidly abolishes TIM cycling, with slower effects on PER. CUL-3 affects TIM accumulation more strongly in the absence of PER and forms protein complexes with hypo-phosphorylated TIM. In contrast, SLMB affects TIM more strongly in the presence of PER and preferentially associates with phosphorylated TIM. CUL-3 and SLMB show additive effects on TIM and PER, suggesting different roles for the two ubiquitination complexes on PER and TIM cycling. This work thus shows that CUL-3 is a new component of the Drosophila clock, which plays an important role in the control of TIM oscillations. PMID:22879814

  17. Detection of the CLOCK/BMAL1 heterodimer using a nucleic acid probe with cycling probe technology.

    PubMed

    Nakagawa, Kazuhiro; Yamamoto, Takuro; Yasuda, Akio

    2010-09-15

    An isothermal signal amplification technique for specific DNA sequences, known as cycling probe technology (CPT), has enabled rapid acquisition of genomic information. Here we report an analogous technique for the detection of an activated transcription factor, a transcription element-binding assay with fluorescent amplification by apurinic/apyrimidinic (AP) site lysis cycle (TEFAL). This simple amplification assay can detect activated transcription factors by using a unique nucleic acid probe containing a consensus binding sequence and an AP site, which enables the CPT reaction with AP endonuclease. In this article, we demonstrate that this method detects the functional CLOCK/BMAL1 heterodimer via the TEFAL probe containing the E-box consensus sequence to which the CLOCK/BMAL1 heterodimer binds. Using TEFAL combined with immunoassays, we measured oscillations in the amount of CLOCK/BMAL1 heterodimer in serum-stimulated HeLa cells. Furthermore, we succeeded in measuring the circadian accumulation of the functional CLOCK/BMAL1 heterodimer in human buccal mucosa cells. TEFAL contributes greatly to the study of transcription factor activation in mammalian tissues and cell extracts and is a powerful tool for less invasive investigation of human circadian rhythms. 2010 Elsevier Inc. All rights reserved.

  18. Synthesizing genetic sequential logic circuit with clock pulse generator.

    PubMed

    Chuang, Chia-Hua; Lin, Chun-Liang

    2014-05-28

    Rhythmic clock widely occurs in biological systems which controls several aspects of cell physiology. For the different cell types, it is supplied with various rhythmic frequencies. How to synthesize a specific clock signal is a preliminary but a necessary step to further development of a biological computer in the future. This paper presents a genetic sequential logic circuit with a clock pulse generator based on a synthesized genetic oscillator, which generates a consecutive clock signal whose frequency is an inverse integer multiple to that of the genetic oscillator. An analogous electronic waveform-shaping circuit is constructed by a series of genetic buffers to shape logic high/low levels of an oscillation input in a basic sinusoidal cycle and generate a pulse-width-modulated (PWM) output with various duty cycles. By controlling the threshold level of the genetic buffer, a genetic clock pulse signal with its frequency consistent to the genetic oscillator is synthesized. A synchronous genetic counter circuit based on the topology of the digital sequential logic circuit is triggered by the clock pulse to synthesize the clock signal with an inverse multiple frequency to the genetic oscillator. The function acts like a frequency divider in electronic circuits which plays a key role in the sequential logic circuit with specific operational frequency. A cascaded genetic logic circuit generating clock pulse signals is proposed. Based on analogous implement of digital sequential logic circuits, genetic sequential logic circuits can be constructed by the proposed approach to generate various clock signals from an oscillation signal.

  19. Effects of Light and Temperature on Daily Activity and Clock Gene Expression in Two Mosquito Disease Vectors.

    PubMed

    Rivas, Gustavo B S; Teles-de-Freitas, Rayane; Pavan, Márcio G; Lima, José B P; Peixoto, Alexandre A; Bruno, Rafaela Vieira

    2018-06-01

    Most organisms feature an endogenous circadian clock capable of synchronization with their environment. The most well-known synchronizing agents are light and temperature. The circadian clock of mosquitoes, vectors of many pathogens, drives important behaviors related to vectoral capacity, including oviposition, host seeking, and hematophagy. Main clock gene expression, as well as locomotor activity patterns, has been identified in Aedes aegypti and Culex quinquefasciatus under artificial light-dark cycles. Given that these mosquito species thrive in tropical areas, it is reasonable to speculate that temperature plays an important role in the circadian clock. Here, we provide data supporting a different hierarchy of light and temperature as zeitgebers of two mosquito species. We recorded their locomotor activity and quantified mRNA expression of the main clock genes in several combinations of light and temperature cycles. We observed that A. aegypti is more sensitive to temperature, while C. quinquefasciatus is more responsive to light. These variations in clock gene expression and locomotor activity may have affected the mosquito species' metabolism, energy expenditure, fitness cost, and pathogen transmission efficiency. Our findings are relevant to chronobiology studies and also have epidemiological implications.

  20. Light and the circadian clock mediate time-specific changes in sensitivity to UV-B stress under light/dark cycles

    PubMed Central

    Takeuchi, Tomomi; Newton, Linsey; Burkhardt, Alyssa; Mason, Saundra; Farré, Eva M.

    2014-01-01

    In Arabidopsis, the circadian clock regulates UV-B-mediated changes in gene expression. Here it is shown that circadian clock components are able to inhibit UV-B-induced gene expression in a gene-by-gene-specific manner and act downstream of the initial UV-B sensing by COP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1) and UVR8 (UV RESISTANCE LOCUS 8). For example, the UV-B induction of ELIP1 (EARLY LIGHT INDUCIBLE PROTEIN 1) and PRR9 (PSEUDO-RESPONSE REGULATOR 9) is directly regulated by LUX (LUX ARRYTHMO), ELF4 (EARLY FLOWERING 4), and ELF3. Moreover, time-dependent changes in plant sensitivity to UV-B damage were observed. Wild-type Arabidopsis plants, but not circadian clock mutants, were more sensitive to UV-B treatment during the night periods than during the light periods under diel cycles. Experiments performed under short cycles of 6h light and 6h darkness showed that the increased stress sensitivity of plants to UV-B in the dark only occurred during the subjective night and not during the subjective day in wild-type seedlings. In contrast, the stress sensitivity of Arabidopsis mutants with a compromised circadian clock was still influenced by the light condition during the subjective day. Taken together, the results show that the clock and light modulate plant sensitivity to UV-B stress at different times of the day. PMID:25147271

  1. Modeling temperature entrainment of circadian clocks using the Arrhenius equation and a reconstructed model from Chlamydomonas reinhardtii.

    PubMed

    Heiland, Ines; Bodenstein, Christian; Hinze, Thomas; Weisheit, Olga; Ebenhoeh, Oliver; Mittag, Maria; Schuster, Stefan

    2012-06-01

    Endogenous circadian rhythms allow living organisms to anticipate daily variations in their natural environment. Temperature regulation and entrainment mechanisms of circadian clocks are still poorly understood. To better understand the molecular basis of these processes, we built a mathematical model based on experimental data examining temperature regulation of the circadian RNA-binding protein CHLAMY1 from the unicellular green alga Chlamydomonas reinhardtii, simulating the effect of temperature on the rates by applying the Arrhenius equation. Using numerical simulations, we demonstrate that our model is temperature-compensated and can be entrained to temperature cycles of various length and amplitude. The range of periods that allow entrainment of the model depends on the shape of the temperature cycles and is larger for sinusoidal compared to rectangular temperature curves. We show that the response to temperature of protein (de)phosphorylation rates play a key role in facilitating temperature entrainment of the oscillator in Chlamydomonas reinhardtii. We systematically investigated the response of our model to single temperature pulses to explain experimentally observed phase response curves.

  2. CLOCK gene is implicated in weight reduction in obese patients participating in a dietary programme based on the Mediterranean diet

    USDA-ARS?s Scientific Manuscript database

    Introduction: The success of obesity therapy is dependent on the genetic background of the patient. Circadian Locomotor Output Cycles Kaput (CLOCK), one of the transcription factors from the positive limb of the molecular clock, is involved in metabolic alterations. Objective: To investigate whethe...

  3. Light at night alters daily patterns of cortisol and clock proteins in female Siberian hamsters.

    PubMed

    Bedrosian, T A; Galan, A; Vaughn, C A; Weil, Z M; Nelson, R J

    2013-06-01

    Humans and other organisms have adapted to a 24-h solar cycle in response to life on Earth. The rotation of the planet on its axis and its revolution around the sun cause predictable daily and seasonal patterns in day length. To successfully anticipate and adapt to these patterns in the environment, a variety of biological processes oscillate with a daily rhythm of approximately 24 h in length. These rhythms arise from hierarchally-coupled cellular clocks generated by positive and negative transcription factors of core circadian clock gene expression. From these endogenous cellular clocks, overt rhythms in activity and patterns in hormone secretion and other homeostatic processes emerge. These circadian rhythms in physiology and behaviour can be organised by a variety of cues, although they are most potently entrained by light. In recent history, there has been a major change from naturally-occurring light cycles set by the sun, to artificial and sometimes erratic light cycles determined by the use of electric lighting. Virtually every individual living in an industrialised country experiences light at night (LAN) but, despite its prevalence, the biological effects of such unnatural lighting have not been fully considered. Using female Siberian hamsters (Phodopus sungorus), we investigated the effects of chronic nightly exposure to dim light on daily rhythms in locomotor activity, serum cortisol concentrations and brain expression of circadian clock proteins (i.e. PER1, PER2, BMAL1). Although locomotor activity remained entrained to the light cycle, the diurnal fluctuation of cortisol concentrations was blunted and the expression patterns of clock proteins in the suprachiasmatic nucleus and hippocampus were altered. These results demonstrate that chronic exposure to dim LAN can dramatically affect fundamental cellular function and emergent physiology. © 2013 British Society for Neuroendocrinology.

  4. Ultralow-Power Digital Correlator for Microwave Polarimetry

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey R.; Hass, K. Joseph

    2004-01-01

    A recently developed high-speed digital correlator is especially well suited for processing readings of a passive microwave polarimeter. This circuit computes the autocorrelations of, and the cross-correlations among, data in four digital input streams representing samples of in-phase (I) and quadrature (Q) components of two intermediate-frequency (IF) signals, denoted A and B, that are generated in heterodyne reception of two microwave signals. The IF signals arriving at the correlator input terminals have been digitized to three levels (-1,0,1) at a sampling rate up to 500 MHz. Two bits (representing sign and magnitude) are needed to represent the instantaneous datum in each input channel; hence, eight bits are needed to represent the four input signals during any given cycle of the sampling clock. The accumulation (integration) time for the correlation is programmable in increments of 2(exp 8) cycles of the sampling clock, up to a maximum of 2(exp 24) cycles. The basic functionality of the correlator is embodied in 16 correlation slices, each of which contains identical logic circuits and counters (see figure). The first stage of each correlation slice is a logic gate that computes one of the desired correlations (for example, the autocorrelation of the I component of A or the negative of the cross-correlation of the I component of A and the Q component of B). The sampling of the output of the logic gate output is controlled by the sampling-clock signal, and an 8-bit counter increments in every clock cycle when the logic gate generates output. The most significant bit of the 8-bit counter is sampled by a 16-bit counter with a clock signal at 2(exp 8) the frequency of the sampling clock. The 16-bit counter is incremented every time the 8-bit counter rolls over.

  5. The Effects of Race Conditions when Implementing Single-Source Redundant Clock Trees in Triple Modular Redundant Synchronous Architectures

    NASA Technical Reports Server (NTRS)

    Berg, Melanie D.; Label, Kenneth A.; Pellish, Jonathan

    2016-01-01

    We present the challenges that arise when using redundant clock domains due to their clock-skew. Heavy-ion radiation data show that a singular clock domain (DTMR) provides an improved TMR methodology for SRAM-based FPGAs over redundant clocks.

  6. Synthesizing genetic sequential logic circuit with clock pulse generator

    PubMed Central

    2014-01-01

    Background Rhythmic clock widely occurs in biological systems which controls several aspects of cell physiology. For the different cell types, it is supplied with various rhythmic frequencies. How to synthesize a specific clock signal is a preliminary but a necessary step to further development of a biological computer in the future. Results This paper presents a genetic sequential logic circuit with a clock pulse generator based on a synthesized genetic oscillator, which generates a consecutive clock signal whose frequency is an inverse integer multiple to that of the genetic oscillator. An analogous electronic waveform-shaping circuit is constructed by a series of genetic buffers to shape logic high/low levels of an oscillation input in a basic sinusoidal cycle and generate a pulse-width-modulated (PWM) output with various duty cycles. By controlling the threshold level of the genetic buffer, a genetic clock pulse signal with its frequency consistent to the genetic oscillator is synthesized. A synchronous genetic counter circuit based on the topology of the digital sequential logic circuit is triggered by the clock pulse to synthesize the clock signal with an inverse multiple frequency to the genetic oscillator. The function acts like a frequency divider in electronic circuits which plays a key role in the sequential logic circuit with specific operational frequency. Conclusions A cascaded genetic logic circuit generating clock pulse signals is proposed. Based on analogous implement of digital sequential logic circuits, genetic sequential logic circuits can be constructed by the proposed approach to generate various clock signals from an oscillation signal. PMID:24884665

  7. Circadian factor BMAL1 in histaminergic neurons regulates sleep architecture.

    PubMed

    Yu, Xiao; Zecharia, Anna; Zhang, Zhe; Yang, Qianzi; Yustos, Raquel; Jager, Polona; Vyssotski, Alexei L; Maywood, Elizabeth S; Chesham, Johanna E; Ma, Ying; Brickley, Stephen G; Hastings, Michael H; Franks, Nicholas P; Wisden, William

    2014-12-01

    Circadian clocks allow anticipation of daily environmental changes. The suprachiasmatic nucleus (SCN) houses the master clock, but clocks are also widely expressed elsewhere in the body. Although some peripheral clocks have established roles, it is unclear what local brain clocks do. We tested the contribution of one putative local clock in mouse histaminergic neurons in the tuberomamillary nucleus to the regulation of the sleep-wake cycle. Histaminergic neurons are silent during sleep, and start firing after wake onset; the released histamine, made by the enzyme histidine decarboxylase (HDC), enhances wakefulness. We found that hdc gene expression varies with time of day. Selectively deleting the Bmal1 (also known as Arntl or Mop3) clock gene from histaminergic cells removes this variation, producing higher HDC expression and brain histamine levels during the day. The consequences include more fragmented sleep, prolonged wake at night, shallower sleep depth (lower nonrapid eye movement [NREM] δ power), increased NREM-to-REM transitions, hindered recovery sleep after sleep deprivation, and impaired memory. Removing BMAL1 from histaminergic neurons does not, however, affect circadian rhythms. We propose that for mammals with polyphasic/nonwake consolidating sleep, the local BMAL1-dependent clock directs appropriately timed declines and increases in histamine biosynthesis to produce an appropriate balance of wake and sleep within the overall daily cycle of rest and activity specified by the SCN. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Cell cycle progression is required for zebrafish somite morphogenesis but not segmentation clock function

    PubMed Central

    Zhang, Lixia; Kendrick, Christina; Jülich, Dörthe; Holley, Scott A.

    2010-01-01

    Summary Cell division, differentiation and morphogenesis are coordinated during embryonic development and frequently in disarray in pathologies such as cancer. Here, we present a zebrafish mutant that ceases mitosis at the beginning of gastrulation, but undergoes axis elongation and develops blood, muscle and a beating heart. We identify the mutation as being in early mitotic inhibitor 1 (emi1), a negative regulator of the Anaphase Promoting Complex, and utilize the mutant to examine the role of the cell cycle in somitogenesis. The mutant phenotype indicates that axis elongation during the segmentation period is substantially driven by cell migration. We find that the segmentation clock, which regulates somitogenesis, functions normally in the absence of cell cycle progression and observe that mitosis is a modest source of noise for the clock. Somite morphogenesis involves the epithelialization of the somite border cells around a core of mesenchyme. As in wild-type embryos, somite boundary cells are polarized along a Fibronectin matrix in emi1−/−. The mutants also display evidence of segment polarity. However, in the absence of a normal cell cycle, somites appear to hyper-epithelialize as the internal mesenchymal cells exit the core of the somite after initial boundary formation. Thus, cell cycle progression is not required during the segmentation period for segmentation clock function but is necessary for normal segmental arrangement of epithelial borders and internal mesenchymal cells. PMID:18480162

  9. Reciprocity Between Robustness of Period and Plasticity of Phase in Biological Clocks

    NASA Astrophysics Data System (ADS)

    Hatakeyama, Tetsuhiro S.; Kaneko, Kunihiko

    2015-11-01

    Circadian clocks exhibit the robustness of period and plasticity of phase against environmental changes such as temperature and nutrient conditions. Thus far, however, it is unclear how both are simultaneously achieved. By investigating distinct models of circadian clocks, we demonstrate reciprocity between robustness and plasticity: higher robustness in the period implies higher plasticity in the phase, where changes in period and in phase follow a linear relationship with a negative coefficient. The robustness of period is achieved by the adaptation on the limit cycle via a concentration change of a buffer molecule, whose temporal change leads to a phase shift following a shift of the limit-cycle orbit in phase space. Generality of reciprocity in clocks with the adaptation mechanism is confirmed with theoretical analysis of simple models, while biological significance is discussed.

  10. A remark on the GNSS single difference model with common clock scheme for attitude determination

    NASA Astrophysics Data System (ADS)

    Chen, Wantong

    2016-09-01

    GNSS-based attitude determination technique is an important field of study, in which two schemes can be used to construct the actual system: the common clock scheme and the non-common clock scheme. Compared with the non-common clock scheme, the common clock scheme can strongly improve both the reliability and the accuracy. However, in order to gain these advantages, specific care must be taken in the implementation. The cares are thus discussed, based on the generating technique of carrier phase measurement in GNSS receivers. A qualitative assessment of potential phase bias contributes is also carried out. Possible technical difficulties are pointed out for the development of single-board multi-antenna GNSS attitude systems with a common clock.

  11. Changes in Corticospinal and Spinal Excitability to the Biceps Brachii with a Neutral vs. Pronated Handgrip Position Differ between Arm Cycling and Tonic Elbow Flexion

    PubMed Central

    Forman, Davis A.; Richards, Mark; Forman, Garrick N.; Holmes, Michael W. R.; Power, Kevin E.

    2016-01-01

    The purpose of this study was to examine the influence of neutral and pronated handgrip positions on corticospinal excitability to the biceps brachii during arm cycling. Corticospinal and spinal excitability were assessed using motor evoked potentials (MEPs) elicited via transcranial magnetic stimulation (TMS) and cervicomedullary-evoked potentials (CMEPs) elicited via transmastoid electrical stimulation (TMES), respectively. Participants were seated upright in front on arm cycle ergometer. Responses were recorded from the biceps brachii at two different crank positions (6 and 12 o’clock positions relative to a clock face) while arm cycling with neutral and pronated handgrip positions. Responses were also elicited during tonic elbow flexion to compare/contrast the results to a non-rhythmic motor output. MEP and CMEP amplitudes were significantly larger at the 6 o’clock position while arm cycling with a neutral handgrip position compared to pronated (45.6 and 29.9%, respectively). There were no differences in MEP and CMEP amplitudes at the 12 o’clock position for either handgrip position. For the tonic contractions, MEPs were significantly larger with a neutral vs. pronated handgrip position (32.6% greater) while there were no difference in CMEPs. Corticospinal excitability was higher with a neutral handgrip position for both arm cycling and tonic elbow flexion. While spinal excitability was also higher with a neutral handgrip position during arm cycling, no difference was observed during tonic elbow flexion. These findings suggest that not only is corticospinal excitability to the biceps brachii modulated at both the supraspinal and spinal level, but that it is influenced differently between rhythmic arm cycling and tonic elbow flexion. PMID:27826236

  12. The mammalian circadian clock and its entrainment by stress and exercise.

    PubMed

    Tahara, Yu; Aoyama, Shinya; Shibata, Shigenobu

    2017-01-01

    The mammalian circadian clock regulates day-night fluctuations in various physiological processes. The circadian clock consists of the central clock in the suprachiasmatic nucleus of the hypothalamus and peripheral clocks in peripheral tissues. External environmental cues, including light/dark cycles, food intake, stress, and exercise, provide important information for adjusting clock phases. This review focuses on stress and exercise as potent entrainment signals for both central and peripheral clocks, especially in regard to the timing of stimuli, types of stressors/exercises, and differences in the responses of rodents and humans. We suggest that the common signaling pathways of clock entrainment by stress and exercise involve sympathetic nervous activation and glucocorticoid release. Furthermore, we demonstrate that physiological responses to stress and exercise depend on time of day. Therefore, using exercise to maintain the circadian clock at an appropriate phase and amplitude might be effective for preventing obesity, diabetes, and cardiovascular disease.

  13. Metabolism as an Integral Cog in the Mammalian Circadian Clockwork

    PubMed Central

    Gamble, Karen L.; Young, Martin E.

    2013-01-01

    Circadian rhythms are an integral part of life. These rhythms are apparent in virtually all biological processes studies to date, ranging from the individual cell (e.g., DNA synthesis) to the whole organism (e.g., behaviors such as physical activity). Oscillations in metabolism have been characterized extensively in various organisms, including mammals. These metabolic rhythms often parallel behaviors such as sleep/wake and fasting/feeding cycles that occur on a daily basis. What has become increasingly clear over the past several decades is that many metabolic oscillations are driven by cell autonomous circadian clocks, which orchestrate metabolic processes in a temporally appropriate manner. During the process of identifying the mechanisms by which clocks influence metabolism, molecular-based studies have revealed that metabolism should be considered an integral circadian clock component. The implications of such an interrelationship include the establishment of a vicious cycle during cardiometabolic disease states, wherein metabolism-induced perturbations in the circadian clock exacerbate metabolic dysfunction. The purpose of this review is therefore to highlight recent insights gained regarding links between cell autonomous circadian clocks and metabolism, and the implications of clock dysfunction in the pathogenesis of cardiometabolic diseases. PMID:23594144

  14. Drosophila CLOCK target gene characterization: implications for circadian tissue-specific gene expression

    PubMed Central

    Abruzzi, Katharine Compton; Rodriguez, Joseph; Menet, Jerome S.; Desrochers, Jennifer; Zadina, Abigail; Luo, Weifei; Tkachev, Sasha; Rosbash, Michael

    2011-01-01

    CLOCK (CLK) is a master transcriptional regulator of the circadian clock in Drosophila. To identify CLK direct target genes and address circadian transcriptional regulation in Drosophila, we performed chromatin immunoprecipitation (ChIP) tiling array assays (ChIP–chip) with a number of circadian proteins. CLK binding cycles on at least 800 sites with maximal binding in the early night. The CLK partner protein CYCLE (CYC) is on most of these sites. The CLK/CYC heterodimer is joined 4–6 h later by the transcriptional repressor PERIOD (PER), indicating that the majority of CLK targets are regulated similarly to core circadian genes. About 30% of target genes also show cycling RNA polymerase II (Pol II) binding. Many of these generate cycling RNAs despite not being documented in prior RNA cycling studies. This is due in part to different RNA isoforms and to fly head tissue heterogeneity. CLK has specific targets in different tissues, implying that important CLK partner proteins and/or mechanisms contribute to gene-specific and tissue-specific regulation. PMID:22085964

  15. A self-timed multipurpose delay sensor for Field Programmable Gate Arrays (FPGAs).

    PubMed

    Osuna, Carlos Gómez; Ituero, Pablo; López-Vallejo, Marisa

    2013-12-20

    This paper presents a novel self-timed multi-purpose sensor especially conceived for Field Programmable Gate Arrays (FPGAs). The aim of the sensor is to measure performance variations during the life-cycle of the device, such as process variability, critical path timing and temperature variations. The proposed topology, through the use of both combinational and sequential FPGA elements, amplifies the time of a signal traversing a delay chain to produce a pulse whose width is the sensor's measurement. The sensor is fully self-timed, avoiding the need for clock distribution networks and eliminating the limitations imposed by the system clock. One single off- or on-chip time-to-digital converter is able to perform digitization of several sensors in a single operation. These features allow for a simplified approach for designers wanting to intertwine a multi-purpose sensor network with their application logic. Employed as a temperature sensor, it has been measured to have an error of  ±0.67 °C, over the range of 20-100 °C, employing 20 logic elements with a 2-point calibration.

  16. A Self-Timed Multipurpose Delay Sensor for Field Programmable Gate Arrays (FPGAs)

    PubMed Central

    Osuna, Carlos Gómez; Ituero, Pablo; López-Vallejo, Marisa

    2014-01-01

    This paper presents a novel self-timed multi-purpose sensor especially conceived for Field Programmable Gate Arrays (FPGAs). The aim of the sensor is to measure performance variations during the life-cycle of the device, such as process variability, critical path timing and temperature variations. The proposed topology, through the use of both combinational and sequential FPGA elements, amplifies the time of a signal traversing a delay chain to produce a pulse whose width is the sensor's measurement. The sensor is fully self-timed, avoiding the need for clock distribution networks and eliminating the limitations imposed by the system clock. One single off- or on-chip time-to-digital converter is able to perform digitization of several sensors in a single operation. These features allow for a simplified approach for designers wanting to intertwine a multi-purpose sensor network with their application logic. Employed as a temperature sensor, it has been measured to have an error of ±0.67 °C, over the range of 20–100 °C, employing 20 logic elements with a 2-point calibration. PMID:24361927

  17. Generation of optical OFDM signals using 21.4 GS/s real time digital signal processing.

    PubMed

    Benlachtar, Yannis; Watts, Philip M; Bouziane, Rachid; Milder, Peter; Rangaraj, Deepak; Cartolano, Anthony; Koutsoyannis, Robert; Hoe, James C; Püschel, Markus; Glick, Madeleine; Killey, Robert I

    2009-09-28

    We demonstrate a field programmable gate array (FPGA) based optical orthogonal frequency division multiplexing (OFDM) transmitter implementing real time digital signal processing at a sample rate of 21.4 GS/s. The QPSK-OFDM signal is generated using an 8 bit, 128 point inverse fast Fourier transform (IFFT) core, performing one transform per clock cycle at a clock speed of 167.2 MHz and can be deployed with either a direct-detection or a coherent receiver. The hardware design and the main digital signal processing functions are described, and we show that the main performance limitation is due to the low (4-bit) resolution of the digital-to-analog converter (DAC) and the 8-bit resolution of the IFFT core used. We analyze the back-to-back performance of the transmitter generating an 8.36 Gb/s optical single sideband (SSB) OFDM signal using digital up-conversion, suitable for direct-detection. Additionally, we use the device to transmit 8.36 Gb/s SSB OFDM signals over 200 km of uncompensated standard single mode fiber achieving an overall BER<10(-3).

  18. An optical lattice clock with accuracy and stability at the 10(-18) level.

    PubMed

    Bloom, B J; Nicholson, T L; Williams, J R; Campbell, S L; Bishof, M; Zhang, X; Zhang, W; Bromley, S L; Ye, J

    2014-02-06

    Progress in atomic, optical and quantum science has led to rapid improvements in atomic clocks. At the same time, atomic clock research has helped to advance the frontiers of science, affecting both fundamental and applied research. The ability to control quantum states of individual atoms and photons is central to quantum information science and precision measurement, and optical clocks based on single ions have achieved the lowest systematic uncertainty of any frequency standard. Although many-atom lattice clocks have shown advantages in measurement precision over trapped-ion clocks, their accuracy has remained 16 times worse. Here we demonstrate a many-atom system that achieves an accuracy of 6.4 × 10(-18), which is not only better than a single-ion-based clock, but also reduces the required measurement time by two orders of magnitude. By systematically evaluating all known sources of uncertainty, including in situ monitoring of the blackbody radiation environment, we improve the accuracy of optical lattice clocks by a factor of 22. This single clock has simultaneously achieved the best known performance in the key characteristics necessary for consideration as a primary standard-stability and accuracy. More stable and accurate atomic clocks will benefit a wide range of fields, such as the realization and distribution of SI units, the search for time variation of fundamental constants, clock-based geodesy and other precision tests of the fundamental laws of nature. This work also connects to the development of quantum sensors and many-body quantum state engineering (such as spin squeezing) to advance measurement precision beyond the standard quantum limit.

  19. Altered dynamics in the circadian oscillation of clock genes in dermal fibroblasts of patients suffering from idiopathic hypersomnia.

    PubMed

    Lippert, Julian; Halfter, Hartmut; Heidbreder, Anna; Röhr, Dominik; Gess, Burkhard; Boentert, Mathias; Osada, Nani; Young, Peter

    2014-01-01

    From single cell organisms to the most complex life forms, the 24-hour circadian rhythm is important for numerous aspects of physiology and behavior such as daily periodic fluctuations in body temperature and sleep-wake cycles. Influenced by environmental cues - mainly by light input -, the central pacemaker in the thalamic suprachiasmatic nuclei (SCN) controls and regulates the internal clock mechanisms which are present in peripheral tissues. In order to correlate modifications in the molecular mechanisms of circadian rhythm with the pathophysiology of idiopathic hypersomnia, this study aimed to investigate the dynamics of the expression of circadian clock genes in dermal fibroblasts of idiopathic hypersomniacs (IH) in comparison to those of healthy controls (HC). Ten clinically and polysomnographically proven IH patients were recruited from the department of sleep medicine of the University Hospital of Muenster. Clinical diagnosis was done by two consecutive polysomnographies (PSG) and Multiple Sleep Latency Test (MSLT). Fourteen clinical healthy volunteers served as control group. Dermal fibroblasts were obtained via punch biopsy and grown in cell culture. The expression of circadian clock genes was investigated by semiquantitative Reverse Transcriptase-PCR qRT-PCR analysis, confirming periodical oscillation of expression of the core circadian clock genes BMAL1, PER1/2 and CRY1/2. The amplitude of the rhythmically expressed BMAL1, PER1 and PER2 was significantly dampened in dermal fibroblasts of IH compared to HC over two circadian periods whereas the overall expression of only the key transcriptional factor BMAL1 was significantly reduced in IH. Our study suggests for the first time an aberrant dynamics in the circadian clock in IH. These findings may serve to better understand some clinical features of the pathophysiology in sleep - wake rhythms in IH.

  20. Altered Dynamics in the Circadian Oscillation of Clock Genes in Dermal Fibroblasts of Patients Suffering from Idiopathic Hypersomnia

    PubMed Central

    Lippert, Julian; Halfter, Hartmut; Heidbreder, Anna; Röhr, Dominik; Gess, Burkhard; Boentert, Mathias; Osada, Nani; Young, Peter

    2014-01-01

    From single cell organisms to the most complex life forms, the 24-hour circadian rhythm is important for numerous aspects of physiology and behavior such as daily periodic fluctuations in body temperature and sleep-wake cycles. Influenced by environmental cues – mainly by light input -, the central pacemaker in the thalamic suprachiasmatic nuclei (SCN) controls and regulates the internal clock mechanisms which are present in peripheral tissues. In order to correlate modifications in the molecular mechanisms of circadian rhythm with the pathophysiology of idiopathic hypersomnia, this study aimed to investigate the dynamics of the expression of circadian clock genes in dermal fibroblasts of idiopathic hypersomniacs (IH) in comparison to those of healthy controls (HC). Ten clinically and polysomnographically proven IH patients were recruited from the department of sleep medicine of the University Hospital of Muenster. Clinical diagnosis was done by two consecutive polysomnographies (PSG) and Multiple Sleep Latency Test (MSLT). Fourteen clinical healthy volunteers served as control group. Dermal fibroblasts were obtained via punch biopsy and grown in cell culture. The expression of circadian clock genes was investigated by semiquantitative Reverse Transcriptase-PCR qRT-PCR analysis, confirming periodical oscillation of expression of the core circadian clock genes BMAL1, PER1/2 and CRY1/2. The amplitude of the rhythmically expressed BMAL1, PER1 and PER2 was significantly dampened in dermal fibroblasts of IH compared to HC over two circadian periods whereas the overall expression of only the key transcriptional factor BMAL1 was significantly reduced in IH. Our study suggests for the first time an aberrant dynamics in the circadian clock in IH. These findings may serve to better understand some clinical features of the pathophysiology in sleep – wake rhythms in IH. PMID:24454829

  1. Capacity upgrade in short-reach optical fibre networks: simultaneous 4-PAM 20 Gbps data and polarization-modulated PPS clock signal using a single VCSEL carrier

    NASA Astrophysics Data System (ADS)

    Isoe, G. M.; Wassin, S.; Gamatham, R. R. G.; Leitch, A. W. R.; Gibbon, T. B.

    2017-11-01

    In this work, a four-level pulse amplitude modulation (4-PAM) format with a polarization-modulated pulse per second (PPS) clock signal using a single vertical cavity surface emitting laser (VCSEL) carrier is for the first time experimentally demonstrated. We propose uncomplex alternative technique for increasing capacity and flexibility in short-reach optical communication links through multi-signal modulation onto a single VCSEL carrier. A 20 Gbps 4-PAM data signal is directly modulated onto a single mode 10 GHz bandwidth VCSEL carrier at 1310 nm, therefore, doubling the network bit rate. Carrier spectral efficiency is further maximized by exploiting the inherent orthogonal polarization switching of the VCSEL carrier with changing bias in transmission of a PPS clock signal. We, therefore, simultaneously transmit a 20 Gbps 4-PAM data signal and a polarization-based PPS clock signal using a single VCSEL carrier. It is the first time a signal VCSEL carrier is reported to simultaneously transmit a directly modulated 20 Gbps 4-PAM data signal and a polarization-based PPS clock signal. We further demonstrate on the design of a software-defined digital signal processing (DSP)-assisted receiver as an alternative to costly receiver hardware. Experimental results show that a 3.21 km fibre transmission with simultaneous 20 Gbps 4-PAM data signal and polarization-based PPS clock signal introduced a penalty of 3.76 dB. The contribution of polarization-based PPS clock signal to this penalty was found out to be 0.41 dB. Simultaneous distribution of data and timing clock signals over shared network infrastructure significantly increases the aggregated data rate at different optical network units (ONUs), without costly investment.

  2. Pulsed coherent population trapping with repeated queries for producing single-peaked high contrast Ramsey interference

    NASA Astrophysics Data System (ADS)

    Warren, Z.; Shahriar, M. S.; Tripathi, R.; Pati, G. S.

    2018-02-01

    A repeated query technique has been demonstrated as a new interrogation method in pulsed coherent population trapping for producing single-peaked Ramsey interference with high contrast. This technique enhances the contrast of the central Ramsey fringe by nearly 1.5 times and significantly suppresses the side fringes by using more query pulses ( >10) in the pulse cycle. Theoretical models have been developed to simulate Ramsey interference and analyze the characteristics of the Ramsey spectrum produced by the repeated query technique. Experiments have also been carried out employing a repeated query technique in a prototype rubidium clock to study its frequency stability performance.

  3. The Effects of Race Conditions When Implementing Single-Source Redundant Clock Trees in Triple Modular Redundant Synchronous Architectures

    NASA Technical Reports Server (NTRS)

    Berg, Melanie D.; Kim, Hak S.; Phan, Anthony M.; Seidleck, Christina M.; Label, Kenneth A.; Pellish, Jonathan A.; Campola, Michael J.

    2016-01-01

    We present the challenges that arise when using redundant clock domains due to their time-skew. Radiation data show that a singular clock domain provides an improved triple modular redundant (TMR) scheme over redundant clocks.

  4. All-polarization-maintaining, single-port Er:fiber comb for high-stability comparison of optical lattice clocks

    NASA Astrophysics Data System (ADS)

    Ohmae, Noriaki; Kuse, Naoya; Fermann, Martin E.; Katori, Hidetoshi

    2017-06-01

    All-polarization-maintaining, single-port Er:fiber combs offer long-term robust operation as well as high stability. We have built two such combs and evaluated the transfer noise for linking optical clocks. A uniformly broadened spectrum over 135-285 THz with a high signal-to-noise ratio enables the optical frequency measurement of the subharmonics of strontium, ytterbium, and mercury optical lattice clocks with the fractional frequency-noise power spectral density of (1-2) × 10-17 Hz-1/2 at 1 Hz. By applying a synchronous clock comparison, the comb enables clock ratio measurements with 10-17 instability at 1 s, which is one order of magnitude smaller than the best instability of the frequency ratio of optical lattice clocks.

  5. A tunable artificial circadian clock in clock-defective mice

    PubMed Central

    D'Alessandro, Matthew; Beesley, Stephen; Kim, Jae Kyoung; Chen, Rongmin; Abich, Estela; Cheng, Wayne; Yi, Paul; Takahashi, Joseph S.; Lee, Choogon

    2015-01-01

    Self-sustaining oscillations are essential for diverse physiological functions such as the cell cycle, insulin secretion and circadian rhythms. Synthetic oscillators using biochemical feedback circuits have been generated in cell culture. These synthetic systems provide important insight into design principles for biological oscillators, but have limited similarity to physiological pathways. Here we report the generation of an artificial, mammalian circadian clock in vivo, capable of generating robust, tunable circadian rhythms. In mice deficient in Per1 and Per2 genes (thus lacking circadian rhythms), we artificially generate PER2 rhythms and restore circadian sleep/wake cycles with an inducible Per2 transgene. Our artificial clock is tunable as the period and phase of the rhythms can be modulated predictably. This feature, and other design principles of our work, might enhance the study and treatment of circadian dysfunction and broader aspects of physiology involving biological oscillators. PMID:26617050

  6. Diurnal Cycling Transcription Factors of Pineapple Revealed by Genome-Wide Annotation and Global Transcriptomic Analysis

    PubMed Central

    Sharma, Anupma; Wai, Ching Man; Ming, Ray

    2017-01-01

    Abstract Circadian clock provides fitness advantage by coordinating internal metabolic and physiological processes to external cyclic environments. Core clock components exhibit daily rhythmic changes in gene expression, and the majority of them are transcription factors (TFs) and transcription coregulators (TCs). We annotated 1,398 TFs from 67 TF families and 80 TCs from 20 TC families in pineapple, and analyzed their tissue-specific and diurnal expression patterns. Approximately 42% of TFs and 45% of TCs displayed diel rhythmic expression, including 177 TF/TCs cycling only in the nonphotosynthetic leaf tissue, 247 cycling only in the photosynthetic leaf tissue, and 201 cycling in both. We identified 68 TF/TCs whose cycling expression was tightly coupled between the photosynthetic and nonphotosynthetic leaf tissues. These TF/TCs likely coordinate key biological processes in pineapple as we demonstrated that this group is enriched in homologous genes that form the core circadian clock in Arabidopsis and includes a STOP1 homolog. Two lines of evidence support the important role of the STOP1 homolog in regulating CAM photosynthesis in pineapple. First, STOP1 responds to acidic pH and regulates a malate channel in multiple plant species. Second, the cycling expression pattern of the pineapple STOP1 and the diurnal pattern of malate accumulation in pineapple leaf are correlated. We further examined duplicate-gene retention and loss in major known circadian genes and refined their evolutionary relationships between pineapple and other plants. Significant variations in duplicate-gene retention and loss were observed for most clock genes in both monocots and dicots. PMID:28922793

  7. Quantifying fluctuations in reversible enzymatic cycles and clocks

    NASA Astrophysics Data System (ADS)

    Wierenga, Harmen; ten Wolde, Pieter Rein; Becker, Nils B.

    2018-04-01

    Biochemical reactions are fundamentally noisy at a molecular scale. This limits the precision of reaction networks, but it also allows fluctuation measurements that may reveal the structure and dynamics of the underlying biochemical network. Here, we study nonequilibrium reaction cycles, such as the mechanochemical cycle of molecular motors, the phosphorylation cycle of circadian clock proteins, or the transition state cycle of enzymes. Fluctuations in such cycles may be measured using either of two classical definitions of the randomness parameter, which we show to be equivalent in general microscopically reversible cycles. We define a stochastic period for reversible cycles and present analytical solutions for its moments. Furthermore, we associate the two forms of the randomness parameter with the thermodynamic uncertainty relation, which sets limits on the timing precision of the cycle in terms of thermodynamic quantities. Our results should prove useful also for the study of temporal fluctuations in more general networks.

  8. Evolutionary divergence of core and post-translational circadian clock genes in the pitcher-plant mosquito, Wyeomyia smithii.

    PubMed

    Tormey, Duncan; Colbourne, John K; Mockaitis, Keithanne; Choi, Jeong-Hyeon; Lopez, Jacqueline; Burkhart, Joshua; Bradshaw, William; Holzapfel, Christina

    2015-10-06

    Internal circadian (circa, about; dies, day) clocks enable organisms to maintain adaptive timing of their daily behavioral activities and physiological functions. Eukaryotic clocks consist of core transcription-translation feedback loops that generate a cycle and post-translational modifiers that maintain that cycle at about 24 h. We use the pitcher-plant mosquito, Wyeomyia smithii (subfamily Culicini, tribe Sabethini), to test whether evolutionary divergence of the circadian clock genes in this species, relative to other insects, has involved primarily genes in the core feedback loops or the post-translational modifiers. Heretofore, there is no reference transcriptome or genome sequence for any mosquito in the tribe Sabethini, which includes over 375 mainly circumtropical species. We sequenced, assembled and annotated the transcriptome of W. smithii containing nearly 95 % of conserved single-copy orthologs in animal genomes. We used the translated contigs and singletons to determine the average rates of circadian clock-gene divergence in W. smithii relative to three other mosquito genera, to Drosophila, to the butterfly, Danaus, and to the wasp, Nasonia. Over 1.08 million cDNA sequence reads were obtained consisting of 432.5 million nucleotides. Their assembly produced 25,904 contigs and 54,418 singletons of which 62 % and 28 % are annotated as protein-coding genes, respectively, sharing homology with other animal proteomes. The W. smithii transcriptome includes all nine circadian transcription-translation feedback-loop genes and all eight post-translational modifier genes we sought to identify (Fig. 1). After aligning translated W. smithii contigs and singletons from this transcriptome with other insects, we determined that there was no significant difference in the average divergence of W. smithii from the six other taxa between the core feedback-loop genes and post-translational modifiers. The characterized transcriptome is sufficiently complete and of sufficient quality to have uncovered all of the insect circadian clock genes we sought to identify (Fig. 1). Relative divergence does not differ between core feedback-loop genes and post-translational modifiers of those genes in a Sabethine species (W. smithii) that has experienced a continual northward dispersal into temperate regions of progressively longer summer day lengths as compared with six other insect taxa. An associated microarray platform derived from this work will enable the investigation of functional genomics of circadian rhythmicity, photoperiodic time measurement, and diapause along a photic and seasonal geographic gradient.

  9. Time-of-Day Effects on Metabolic and Clock-Related Adjustments to Cold.

    PubMed

    Machado, Frederico Sander Mansur; Zhang, Zhi; Su, Yan; de Goede, Paul; Jansen, Remi; Foppen, Ewout; Coimbra, Cândido Celso; Kalsbeek, Andries

    2018-01-01

    Daily cyclic changes in environmental conditions are key signals for anticipatory and adaptive adjustments of most living species, including mammals. Lower ambient temperature stimulates the thermogenic activity of brown adipose tissue (BAT) and skeletal muscle. Given that the molecular components of the endogenous biological clock interact with thermal and metabolic mechanisms directly involved in the defense of body temperature, the present study evaluated the differential homeostatic responses to a cold stimulus at distinct time-windows of the light/dark-cycle. Male Wistar rats were subjected to a single episode of 3 h cold ambient temperature (4°C) at one of 6 time-points starting at Zeitgeber Times 3, 7, 11, 15, 19, and 23. Metabolic rate, core body temperature, locomotor activity (LA), feeding, and drinking behaviors were recorded during control and cold conditions at each time-point. Immediately after the stimulus, rats were euthanized and both the soleus and BAT were collected for real-time PCR. During the light phase (i.e., inactive phase), cold exposure resulted in a slight hyperthermia ( p  < 0.001). Light phase cold exposure also increased metabolic rate and LA ( p  < 0.001). In addition, the prevalence of fat oxidative metabolism was attenuated during the inactive phase ( p  < 0.001). These metabolic changes were accompanied by time-of-day and tissue-specific changes in core clock gene expression, such as DBP ( p  < 0.0001) and REV-ERBα ( p  < 0.01) in the BAT and CLOCK ( p  < 0.05), PER2 ( p  < 0.05), CRY1 ( p  < 0.05), CRY2 ( p  < 0.01), and REV-ERBα ( p  < 0.05) in the soleus skeletal muscle. Moreover, genes involved in substrate oxidation and thermogenesis were affected in a time-of-day and tissue-specific manner by cold exposure. The time-of-day modulation of substrate mobilization and oxidation during cold exposure provides a clear example of the circadian modulation of physiological and metabolic responses. Interestingly, after cold exposure, time-of-day mostly affected circadian clock gene expression in the soleus muscle, despite comparable changes in LA over the light-dark-cycle. The current findings add further evidence for tissue-specific actions of the internal clock in different peripheral organs such as skeletal muscle and BAT.

  10. A laboratory simulation of Arabidopsis seed dormancy cycling provides new insight into its regulation by clock genes and the dormancy-related genes DOG1, MFT, CIPK23 and PHYA.

    PubMed

    Footitt, Steven; Ölçer-Footitt, Hülya; Hambidge, Angela J; Finch-Savage, William E

    2017-08-01

    Environmental signals drive seed dormancy cycling in the soil to synchronize germination with the optimal time of year, a process essential for species' fitness and survival. Previous correlation of transcription profiles in exhumed seeds with annual environmental signals revealed the coordination of dormancy-regulating mechanisms with the soil environment. Here, we developed a rapid and robust laboratory dormancy cycling simulation. The utility of this simulation was tested in two ways: firstly, using mutants in known dormancy-related genes [DELAY OF GERMINATION 1 (DOG1), MOTHER OF FLOWERING TIME (MFT), CBL-INTERACTING PROTEIN KINASE 23 (CIPK23) and PHYTOCHROME A (PHYA)] and secondly, using further mutants, we test the hypothesis that components of the circadian clock are involved in coordination of the annual seed dormancy cycle. The rate of dormancy induction and relief differed in all lines tested. In the mutants, dog1-2 and mft2, dormancy induction was reduced but not absent. DOG1 is not absolutely required for dormancy. In cipk23 and phyA dormancy, induction was accelerated. Involvement of the clock in dormancy cycling was clear when mutants in the morning and evening loops of the clock were compared. Dormancy induction was faster when the morning loop was compromised and delayed when the evening loop was compromised. © 2017 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd.

  11. Low Power LDPC Code Decoder Architecture Based on Intermediate Message Compression Technique

    NASA Astrophysics Data System (ADS)

    Shimizu, Kazunori; Togawa, Nozomu; Ikenaga, Takeshi; Goto, Satoshi

    Reducing the power dissipation for LDPC code decoder is a major challenging task to apply it to the practical digital communication systems. In this paper, we propose a low power LDPC code decoder architecture based on an intermediate message-compression technique which features as follows: (i) An intermediate message compression technique enables the decoder to reduce the required memory capacity and write power dissipation. (ii) A clock gated shift register based intermediate message memory architecture enables the decoder to decompress the compressed messages in a single clock cycle while reducing the read power dissipation. The combination of the above two techniques enables the decoder to reduce the power dissipation while keeping the decoding throughput. The simulation results show that the proposed architecture improves the power efficiency up to 52% and 18% compared to that of the decoder based on the overlapped schedule and the rapid convergence schedule without the proposed techniques respectively.

  12. Life's Dance to the Music of Time: The Clocks within Us.

    ERIC Educational Resources Information Center

    Lloyd, David

    1988-01-01

    Describes circadian timekeeping which matches internal states with environmental changes, and the ultradian clock which coordinates intracellular processes including energy cycles, protein turnover, and cell division. Presents discussions of biological rhythms and its characteristics. (RT)

  13. A Conserved Bicycle Model for Circadian Clock Control of Membrane Excitability

    PubMed Central

    Flourakis, Matthieu; Kula-Eversole, Elzbieta; Hutchison, Alan L.; Han, Tae Hee; Aranda, Kimberly; Moose, Devon L.; White, Kevin P.; Dinner, Aaron R.; Lear, Bridget C.; Ren, Dejian; Diekman, Casey O.; Raman, Indira M.; Allada, Ravi

    2015-01-01

    Summary Circadian clocks regulate membrane excitability in master pacemaker neurons to control daily rhythms of sleep and wake. Here we find that two distinctly timed electrical drives collaborate to impose rhythmicity on Drosophila clock neurons. In the morning, a voltage-independent sodium conductance via the NA/NALCN ion channel depolarizes these neurons. This current is driven by the rhythmic expression of NCA localization factor-1, linking the molecular clock to ion channel function. In the evening, basal potassium currents peak to silence clock neurons. Remarkably, daily antiphase cycles of sodium and potassium currents also drive mouse clock neuron rhythms. Thus, we reveal an evolutionarily ancient strategy for the neural mechanisms that govern daily sleep and wake. PMID:26276633

  14. Real-Time Distributed Embedded Oscillator Operating Frequency Monitoring

    NASA Technical Reports Server (NTRS)

    Pollock, Julie; Oliver, Brett; Brickner, Christopher

    2012-01-01

    A document discusses the utilization of embedded clocks inside of operating network data links as an auxiliary clock source to satisfy local oscillator monitoring requirements. Modem network interfaces, typically serial network links, often contain embedded clocking information of very tight precision to recover data from the link. This embedded clocking data can be utilized by the receiving device to monitor the local oscillator for tolerance to required specifications, often important in high-integrity fault-tolerant applications. A device can utilize a received embedded clock to determine if the local or the remote device is out of tolerance by using a single link. The local device can determine if it is failing, assuming a single fault model, with two or more active links. Network fabric components, containing many operational links, can potentially determine faulty remote or local devices in the presence of multiple faults. Two methods of implementation are described. In one method, a recovered clock can be directly used to monitor the local clock as a direct replacement of an external local oscillator. This scheme is consistent with a general clock monitoring function whereby clock sources are clocking two counters and compared over a fixed interval of time. In another method, overflow/underflow conditions can be used to detect clock relationships for monitoring. These network interfaces often provide clock compensation circuitry to allow data to be transferred from the received (network) clock domain to the internal clock domain. This circuit could be modified to detect overflow/underflow conditions of the buffering required and report a fast or slow receive clock, respectively.

  15. Oxyntomodulin regulates resetting of the liver circadian clock by food

    PubMed Central

    Landgraf, Dominic; Tsang, Anthony H; Leliavski, Alexei; Koch, Christiane E; Barclay, Johanna L; Drucker, Daniel J; Oster, Henrik

    2015-01-01

    Circadian clocks coordinate 24-hr rhythms of behavior and physiology. In mammals, a master clock residing in the suprachiasmatic nucleus (SCN) is reset by the light–dark cycle, while timed food intake is a potent synchronizer of peripheral clocks such as the liver. Alterations in food intake rhythms can uncouple peripheral clocks from the SCN, resulting in internal desynchrony, which promotes obesity and metabolic disorders. Pancreas-derived hormones such as insulin and glucagon have been implicated in signaling mealtime to peripheral clocks. In this study, we identify a novel, more direct pathway of food-driven liver clock resetting involving oxyntomodulin (OXM). In mice, food intake stimulates OXM secretion from the gut, which resets liver transcription rhythms via induction of the core clock genes Per1 and 2. Inhibition of OXM signaling blocks food-mediated resetting of hepatocyte clocks. These data reveal a direct link between gastric filling with food and circadian rhythm phasing in metabolic tissues. DOI: http://dx.doi.org/10.7554/eLife.06253.001 PMID:25821984

  16. The metabolic sensor AKIN10 modulates the Arabidopsis circadian clock in a light-dependent manner.

    PubMed

    Shin, Jieun; Sánchez-Villarreal, Alfredo; Davis, Amanda M; Du, Shen-Xiu; Berendzen, Kenneth W; Koncz, Csaba; Ding, Zhaojun; Li, Cuiling; Davis, Seth J

    2017-07-01

    Plants generate rhythmic metabolism during the repetitive day/night cycle. The circadian clock produces internal biological rhythms to synchronize numerous metabolic processes such that they occur at the required time of day. Metabolism conversely influences clock function by controlling circadian period and phase and the expression of core-clock genes. Here, we show that AKIN10, a catalytic subunit of the evolutionarily conserved key energy sensor sucrose non-fermenting 1 (Snf1)-related kinase 1 (SnRK1) complex, plays an important role in the circadian clock. Elevated AKIN10 expression led to delayed peak expression of the circadian clock evening-element GIGANTEA (GI) under diurnal conditions. Moreover, it lengthened clock period specifically under light conditions. Genetic analysis showed that the clock regulator TIME FOR COFFEE (TIC) is required for this effect of AKIN10. Taken together, we propose that AKIN10 conditionally works in a circadian clock input pathway to the circadian oscillator. © 2017 John Wiley & Sons Ltd.

  17. Cycles of circadian illuminance are sufficient to entrain and maintain circadian locomotor rhythms in Drosophila

    NASA Astrophysics Data System (ADS)

    Cho, Eunjoo; Oh, Ji Hye; Lee, Euna; Do, Young Rag; Kim, Eun Young

    2016-11-01

    Light at night disrupts the circadian clock and causes serious health problems in the modern world. Here, we show that newly developed four-package light-emitting diodes (LEDs) can provide harmless lighting at night. To quantify the effects of light on the circadian clock, we employed the concept of circadian illuminance (CIL). CIL represents the amount of light weighted toward the wavelengths to which the circadian clock is most sensitive, whereas visual illuminance (VIL) represents the total amount of visible light. Exposure to 12 h:12 h cycles of white LED light with high and low CIL values but a constant VIL value (conditions hereafter referred to as CH/CL) can entrain behavioral and molecular circadian rhythms in flies. Moreover, flies re-entrain to phase shift in the CH/CL cycle. Core-clock proteins are required for the rhythmic behaviors seen with this LED lighting scheme. Taken together, this study provides a guide for designing healthful white LED lights for use at night, and proposes the use of the CIL value for estimating the harmful effects of any light source on organismal health.

  18. Light Stimulates the Mouse Adrenal through a Retinohypothalamic Pathway Independent of an Effect on the Clock in the Suprachiasmatic Nucleus

    PubMed Central

    Kiessling, Silke; Sollars, Patricia J.; Pickard, Gary E.

    2014-01-01

    The brain's master circadian pacemaker resides within the hypothalamic suprachiasmatic nucleus (SCN). SCN clock neurons are entrained to the day/night cycle via the retinohypothalamic tract and the SCN provides temporal information to the central nervous system and to peripheral organs that function as secondary oscillators. The SCN clock-cell network is thought to be the hypothalamic link between the retina and descending autonomic circuits to peripheral organs such as the adrenal gland, thereby entraining those organs to the day/night cycle. However, there are at least three different routes or mechanisms by which retinal signals transmitted to the hypothalamus may be conveyed to peripheral organs: 1) via retinal input to SCN clock neurons; 2) via retinal input to non-clock neurons in the SCN; or 3) via retinal input to hypothalamic regions neighboring the SCN. It is very well documented that light-induced responses of the SCN clock (i.e., clock gene expression, neural activity, and behavioral phase shifts) occur primarily during the subjective night. Thus to determine the role of the SCN clock in transmitting photic signals to descending autonomic circuits, we compared the phase dependency of light-evoked responses in the SCN and a peripheral oscillator, the adrenal gland. We observed light-evoked clock gene expression in the mouse adrenal throughout the subjective day and subjective night. Light also induced adrenal corticosterone secretion during both the subjective day and subjective night. The irradiance threshold for light-evoked adrenal responses was greater during the subjective day compared to the subjective night. These results suggest that retinohypothalamic signals may be relayed to the adrenal clock during the subjective day by a retinal pathway or cellular mechanism that is independent of an effect of light on the SCN neural clock network and thus may be important for the temporal integration of physiology and metabolism. PMID:24658072

  19. [Intercellular communication-based robust circadian oscillation of the suprachiasmatic nucleus in the brain: mechanisms beyond intracellular clock machinery].

    PubMed

    Doi, Masao

    2013-12-01

    Recent advances in circadian biology strongly suggest that there are still genes involved in the generation and maintenance of biological rhythms that remain to be identified. It has been generally appreciated that circadian rhythms are generated intracellularly through transcription/translation-based autoregulatory feedback circuits of the clock genes. However, the existence of new intracellular clock machinery that cannot be explained by existing clock genes has recently been reported. This clock manifests as oxidation-reduction cycles of peroxiredoxin proteins, implying that as-yet-undiscovered clock genes may exist within cells to regulate redox cycling. Moreover, great strides have also been made in understanding the cell-cell communication-based robust circadian oscillations of the suprachiasmatic nucleus (SCN), the central pacemaker in the brain. Thousands of neurons that constitute the SCN maintain a high degree of synchrony in a way that allows the SCN neurons to create coherent signals as a whole. Inactivation of the genes involved in the cell-cell synchronization of the SCN, which include the genes encoding VIP, VPAC2, and RGS16, leads to altered circadian rhythms in behavior and physiologies. The purpose of this review is to provide an overview of recent advances in the circadian biology, with a special emphasis on the importance of cell-cell interactions within the SCN.

  20. Moonlight controls lunar-phase-dependency and regular oscillation of clock gene expressions in a lunar-synchronized spawner fish, Goldlined spinefoot.

    PubMed

    Takeuchi, Yuki; Kabutomori, Ryo; Yamauchi, Chihiro; Miyagi, Hitomi; Takemura, Akihiro; Okano, Keiko; Okano, Toshiyuki

    2018-04-18

    Goldlined spinefoot, Siganus guttatus, inhabits tropical and subtropical waters and synchronizes its spawning around the first quarter moon likely using an hourglass-like lunar timer. In previous studies, we have found that clock genes (Cryptochrome3 and Period1) could play the role of state variable in the diencephalon when determining the lunar phase for spawning. Here, we identified three Cry, two Per, two Clock, and two Bmal genes in S. guttatus and investigated their expression patterns in the diencephalon and pituitary gland. We further evaluated the effect on their expression patterns by daily interruptions of moonlight stimuli for 1 lunar cycle beginning at the new moon. It significantly modified the expression patterns in many of the examined clock(-related) genes including Cry3 in the diencephalon and/or pituitary gland. Acute interruptions of moonlight around the waxing gibbous moon upregulated nocturnal expressions of Cry1b and Cry2 in the diencephalon and pituitary gland, respectively, but did not affect expression levels of the other clock genes. These results highlighted the importance of repetitive moonlight illumination for stable or lunar-phase-specific daily expression of clock genes in the next lunar cycle that may be important for the lunar-phase-synchronized spawning on the next first quarter moon.

  1. Quantifying the robustness of circadian oscillations at the single-cell level

    NASA Astrophysics Data System (ADS)

    Lambert, Guillaume; Rust, Michael

    2014-03-01

    Cyanobacteria are light-harvesting microorganisms that contribute to 30% of the photosynthetic activity on Earth and contain one of the simplest circadian systems in the animal kingdom. In Synechococcus elongatus , a species of freshwater cyanobacterium, circadian oscillations are regulated by the KaiABC system, a trio of interacting proteins that act as a biomolecular pacemaker of the circadian system. While the core oscillator precisely anticipates Earth's 24h light/dark cycle, it is unclear how much individual cells benefit from the expression and maintenance of a circadian clock. By studying the growth dynamics of individual S . elongatus cells under sudden light variations, we show that several aspects of cellular growth, such as a cell's division probability and its elongation rate, are tightly coupled to the circadian clock. We propose that the evolution and maintenance of a circadian clock increases the fitness of cells by allowing them to take advantage of cyclical light/dark environments by alternating between two phenotypes: expansionary, where cells grow and divide at a fast pace during the first part of the day, and conservative, where cells enter a more quiescent state to better prepare to the stresses associated with the night's prolonged darkness.

  2. Non-canonical Phototransduction Mediates Synchronization of the Drosophila melanogaster Circadian Clock and Retinal Light Responses.

    PubMed

    Ogueta, Maite; Hardie, Roger C; Stanewsky, Ralf

    2018-06-04

    The daily light-dark cycles represent a key signal for synchronizing circadian clocks. Both insects and mammals possess dedicated "circadian" photoreceptors but also utilize the visual system for clock resetting. In Drosophila, circadian clock resetting is achieved by the blue-light photoreceptor cryptochrome (CRY), which is expressed within subsets of the brain clock neurons. In addition, rhodopsin-expressing photoreceptor cells contribute to light synchronization. Light resets the molecular clock by CRY-dependent degradation of the clock protein Timeless (TIM), although in specific subsets of key circadian pacemaker neurons, including the small ventral lateral neurons (s-LNvs), TIM and Period (PER) oscillations can be synchronized by light independent of CRY and canonical visual Rhodopsin phototransduction. Here, we show that at least three of the seven Drosophila rhodopsins can utilize an alternative transduction mechanism involving the same α-subunit of the heterotrimeric G protein operating in canonical visual phototransduction (Gq). Surprisingly, in mutants lacking the canonical phospholipase C-β (PLC-β) encoded by the no receptor potential A (norpA) gene, we uncovered a novel transduction pathway using a different PLC-β encoded by the Plc21C gene. This novel pathway is important for behavioral clock resetting to semi-natural light-dark cycles and mediates light-dependent molecular synchronization within the s-LNv clock neurons. The same pathway appears to be responsible for norpA-independent light responses in the compound eye. We show that Rhodopsin 5 (Rh5) and Rh6, present in the R8 subset of retinal photoreceptor cells, drive both the long-term circadian and rapid light responses in the eye. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. BMAL1 and CLOCK proteins in regulating UVB-induced apoptosis and DNA damage responses in human keratinocytes.

    PubMed

    Sun, Yang; Wang, Peiling; Li, Hongyu; Dai, Jun

    2018-06-26

    A diverse array of biological processes are under circadian controls. In mouse skin, ultraviolet ray (UVR)-induced apoptosis and DNA damage responses are time-of-day dependent, which are controlled by core clock proteins. This study investigates the roles of clock proteins in regulating UVB responses in human keratinocytes (HKCs). We found that the messenger RNA expression of brain and muscle ARNT-like 1 (BMAL1) and circadian locomotor output cycles kaput (CLOCK) genes is altered by low doses (5 mJ/cm 2 ) of UVB in the immortalized HaCat HKCs cell line. Although depletion of BMAL1 or CLOCK has no effect on the activation of Rad3-related protein kinases-checkpoint kinase 1-p53 mediated DNA damage checkpoints, it leads to suppression of UVB-stimulated apoptotic responses, and downregulation of UVB-elevated expression of DNA damage marker γ-H2AX and cell cycle inhibitor p21. Diminished apoptotic responses are also observed in primary HKCs depleted of BMAL1 or CLOCK after UVB irradiation. While CLOCK depletion shows a suppressive effect on UVB-induced p53 protein accumulation, depletion of either clock gene triggers early keratinocyte differentiation of HKCs at their steady state. These results suggest that UVB-induced apoptosis and DNA damage responses are controlled by clock proteins, but via different mechanisms in the immortalized human adult low calcium temperature and primary HKCs. Given the implication of UVB in photoaging and photocarcinogenesis, mechanistic elucidation of circadian controls on UVB effects in human skin will be critical and beneficial for prevention and treatment of skin cancers and other skin-related diseases. © 2018 Wiley Periodicals, Inc.

  4. Chemical Reactions in Turbulent Mixing Flows.

    DTIC Science & Technology

    1987-06-01

    longer in the z-t diagrams for higher fuel flow rates (consistent with longer flame lengths ) and, further, the celerity of a structure at a given axial...clocking rate synchronized with the cycle, while the slower clocking rate data corres- pond to about seven cycles. Flame lengths [61, Z,,D, for various...heat fABlLE I releases studied here are also shown in Table I Flame Lengths and Axial Measurement Stations, These flame lengths are based on 50% intermit

  5. The Circadian Clock Modulates Global Daily Cycles of mRNA Ribosome Loading[OPEN

    PubMed Central

    Missra, Anamika; Ernest, Ben; Jia, Qidong; Ke, Kenneth

    2015-01-01

    Circadian control of gene expression is well characterized at the transcriptional level, but little is known about diel or circadian control of translation. Genome-wide translation state profiling of mRNAs in Arabidopsis thaliana seedlings grown in long day was performed to estimate ribosome loading per mRNA. The experiments revealed extensive translational regulation of key biological processes. Notably, translation of mRNAs for ribosomal proteins and mitochondrial respiration peaked at night. Central clock mRNAs are among those subject to fluctuations in ribosome loading. There was no consistent phase relationship between peak translation states and peak transcript levels. The overlay of distinct transcriptional and translational cycles can be expected to alter the waveform of the protein synthesis rate. Plants that constitutively overexpress the clock gene CCA1 showed phase shifts in peak translation, with a 6-h delay from midnight to dawn or from noon to evening being particularly common. Moreover, cycles of ribosome loading that were detected under continuous light in the wild type collapsed in the CCA1 overexpressor. Finally, at the transcript level, the CCA1-ox strain adopted a global pattern of transcript abundance that was broadly correlated with the light-dark environment. Altogether, these data demonstrate that gene-specific diel cycles of ribosome loading are controlled in part by the circadian clock. PMID:26392078

  6. Single-ion, transportable optical atomic clocks

    NASA Astrophysics Data System (ADS)

    Delehaye, Marion; Lacroûte, Clément

    2018-03-01

    For the past 15 years, tremendous progress within the fields of laser stabilization, optical frequency combs and atom cooling and trapping have allowed the realization of optical atomic clocks with unrivaled performances. These instruments can perform frequency comparisons with fractional uncertainties well below ?, finding applications in fundamental physics tests, relativistic geodesy and time and frequency metrology. Even though most optical clocks are currently laboratory setups, several proposals for using these clocks for field measurements or within an optical clock network have been published, and most of time and frequency metrology institutes have started to develop transportable optical clocks. For the purpose of this special issue, we chose to focus on trapped-ion optical clocks. Even though their short-term fractional frequency stability is impaired by a lower signal-to-noise ratio, they offer a high potential for compactness: trapped ions demand low optical powers and simple loading schemes, and can be trapped in small vacuum chambers. We review recent advances on the clock key components, including ion trap and ultra-stable optical cavity, as well as existing projects and experiments which draw the picture of what future transportable, single-ion optical clocks may resemble.

  7. Entrainment to feeding but not to light: circadian phenotype of VPAC2 receptor-null mice.

    PubMed

    Sheward, W John; Maywood, Elizabeth S; French, Karen L; Horn, Jacqueline M; Hastings, Michael H; Seckl, Jonathan R; Holmes, Megan C; Harmar, Anthony J

    2007-04-18

    The master clock driving mammalian circadian rhythms is located in the suprachiasmatic nuclei (SCN) of the hypothalamus and entrained by daily light/dark cycles. SCN lesions abolish circadian rhythms of behavior and result in a loss of synchronized circadian rhythms of clock gene expression in peripheral organs (e.g., the liver) and of hormone secretion (e.g., corticosterone). We examined rhythms of behavior, hepatic clock gene expression, and corticosterone secretion in VPAC2 receptor-null (Vipr2-/-) mice, which lack a functional SCN clock. Unexpectedly, although Vipr2-/- mice lacked robust circadian rhythms of wheel-running activity and corticosterone secretion, hepatic clock gene expression was strongly rhythmic, but advanced in phase compared with that in wild-type mice. The timing of food availability is thought to be an important entrainment signal for circadian clocks outside the SCN. Vipr2-/- mice consumed food significantly earlier in the 24 h cycle than wild-type mice, consistent with the observed timing of peripheral rhythms of circadian gene expression. When restricted to feeding only during the daytime (RF), mice develop rhythms of activity and of corticosterone secretion in anticipation of feeding time, thought to be driven by a food-entrainable circadian oscillator, located outside the SCN. Under RF, mice of both genotypes developed food-anticipatory rhythms of activity and corticosterone secretion, and hepatic gene expression rhythms also became synchronized to the RF stimulus. Thus, food intake is an effective zeitgeber capable of coordinating circadian rhythms of behavior, peripheral clock gene expression, and hormone secretion, even in the absence of a functional SCN clock.

  8. Jitter Controller Software

    NASA Technical Reports Server (NTRS)

    Lansdowne, Chatwin; Schlensinger, Adam

    2011-01-01

    Sinusoidal jitter is produced by simply modulating a clock frequency sinusoidally with a given frequency and amplitude. But this can be expressed as phase jitter, frequency jitter, or cycle-to-cycle jitter, rms or peak, absolute units, or normalized to the base clock frequency. Jitter using other waveforms requires calculating and downloading these waveforms to an arbitrary waveform generator, and helping the user manage relationships among phase jitter crest factor, frequency jitter crest factor, and cycle-to-cycle jitter (CCJ) crest factor. Software was developed for managing these relationships, automatically configuring the generator, and saving test results documentation. Tighter management of clock jitter and jitter sensitivity is required by new codes that further extend the already high performance of space communication links, completely correcting symbol error rates higher than 10 percent, and therefore typically requiring demodulation and symbol synchronization hardware to operating at signal-to-noise ratios of less than one. To accomplish this, greater demands are also made on transmitter performance, and measurement techniques are needed to confirm performance. It was discovered early that sinusoidal jitter can be stepped on a grid such that one can connect points by constant phase jitter, constant frequency jitter, or constant cycle-cycle jitter. The tool automates adherence to a grid while also allowing adjustments off-grid. Also, the jitter can be set by the user on any dimension and the others are calculated. The calculations are all recorded, allowing the data to be rapidly plotted or re-plotted against different interpretations just by changing pointers to columns. A key advantage is taking data on a carefully controlled grid, which allowed a single data set to be post-analyzed many different ways. Another innovation was building a software tool to provide very tight coupling between the generator and the recorded data product, and the operator's worksheet. Together, these allowed the operator to sweep the jitter stimulus quickly along any of three dimensions and focus on the response of the system under test (response was jitter transfer ratio, or performance degradation to the symbol or codeword error rate). Additionally, managing multi-tone and noise waveforms automated a tedious manual process, and provided almost instantaneous decision- making control over test flow. The code was written in LabVIEW, and calls Agilent instrument drivers to write to the generator hardware.

  9. The timing of the human circadian clock is accurately represented by the core body temperature rhythm following phase shifts to a three-cycle light stimulus near the critical zone

    NASA Technical Reports Server (NTRS)

    Jewett, M. E.; Duffy, J. F.; Czeisler, C. A.

    2000-01-01

    A double-stimulus experiment was conducted to evaluate the phase of the underlying circadian clock following light-induced phase shifts of the human circadian system. Circadian phase was assayed by constant routine from the rhythm in core body temperature before and after a three-cycle bright-light stimulus applied near the estimated minimum of the core body temperature rhythm. An identical, consecutive three-cycle light stimulus was then applied, and phase was reassessed. Phase shifts to these consecutive stimuli were no different from those obtained in a previous study following light stimuli applied under steady-state conditions over a range of circadian phases similar to those at which the consecutive stimuli were applied. These data suggest that circadian phase shifts of the core body temperature rhythm in response to a three-cycle stimulus occur within 24 h following the end of the 3-day light stimulus and that this poststimulus temperature rhythm accurately reflects the timing of the underlying circadian clock.

  10. Molecular Mechanisms Regulating Temperature Compensation of the Circadian Clock.

    PubMed

    Narasimamurthy, Rajesh; Virshup, David M

    2017-01-01

    An approximately 24-h biological timekeeping mechanism called the circadian clock is present in virtually all light-sensitive organisms from cyanobacteria to humans. The clock system regulates our sleep-wake cycle, feeding-fasting, hormonal secretion, body temperature, and many other physiological functions. Signals from the master circadian oscillator entrain peripheral clocks using a variety of neural and hormonal signals. Even centrally controlled internal temperature fluctuations can entrain the peripheral circadian clocks. But, unlike other chemical reactions, the output of the clock system remains nearly constant with fluctuations in ambient temperature, a phenomenon known as temperature compensation. In this brief review, we focus on recent advances in our understanding of the posttranslational modifications, especially a phosphoswitch mechanism controlling the stability of PER2 and its implications for the regulation of temperature compensation.

  11. Shift Work in Nurses: Contribution of Phenotypes and Genotypes to Adaptation

    PubMed Central

    Gamble, Karen L.; Motsinger-Reif, Alison A.; Hida, Akiko; Borsetti, Hugo M.; Servick, Stein V.; Ciarleglio, Christopher M.; Robbins, Sam; Hicks, Jennifer; Carver, Krista; Hamilton, Nalo; Wells, Nancy; Summar, Marshall L.; McMahon, Douglas G.; Johnson, Carl Hirschie

    2011-01-01

    Background Daily cycles of sleep/wake, hormones, and physiological processes are often misaligned with behavioral patterns during shift work, leading to an increased risk of developing cardiovascular/metabolic/gastrointestinal disorders, some types of cancer, and mental disorders including depression and anxiety. It is unclear how sleep timing, chronotype, and circadian clock gene variation contribute to adaptation to shift work. Methods Newly defined sleep strategies, chronotype, and genotype for polymorphisms in circadian clock genes were assessed in 388 hospital day- and night-shift nurses. Results Night-shift nurses who used sleep deprivation as a means to switch to and from diurnal sleep on work days (∼25%) were the most poorly adapted to their work schedule. Chronotype also influenced efficacy of adaptation. In addition, polymorphisms in CLOCK, NPAS2, PER2, and PER3 were significantly associated with outcomes such as alcohol/caffeine consumption and sleepiness, as well as sleep phase, inertia and duration in both single- and multi-locus models. Many of these results were specific to shift type suggesting an interaction between genotype and environment (in this case, shift work). Conclusions Sleep strategy, chronotype, and genotype contribute to the adaptation of the circadian system to an environment that switches frequently and/or irregularly between different schedules of the light-dark cycle and social/workplace time. This study of shift work nurses illustrates how an environmental “stress” to the temporal organization of physiology and metabolism can have behavioral and health-related consequences. Because nurses are a key component of health care, these findings could have important implications for health-care policy. PMID:21533241

  12. Diurnal Cycling Transcription Factors of Pineapple Revealed by Genome-Wide Annotation and Global Transcriptomic Analysis.

    PubMed

    Sharma, Anupma; Wai, Ching Man; Ming, Ray; Yu, Qingyi

    2017-09-01

    Circadian clock provides fitness advantage by coordinating internal metabolic and physiological processes to external cyclic environments. Core clock components exhibit daily rhythmic changes in gene expression, and the majority of them are transcription factors (TFs) and transcription coregulators (TCs). We annotated 1,398 TFs from 67 TF families and 80 TCs from 20 TC families in pineapple, and analyzed their tissue-specific and diurnal expression patterns. Approximately 42% of TFs and 45% of TCs displayed diel rhythmic expression, including 177 TF/TCs cycling only in the nonphotosynthetic leaf tissue, 247 cycling only in the photosynthetic leaf tissue, and 201 cycling in both. We identified 68 TF/TCs whose cycling expression was tightly coupled between the photosynthetic and nonphotosynthetic leaf tissues. These TF/TCs likely coordinate key biological processes in pineapple as we demonstrated that this group is enriched in homologous genes that form the core circadian clock in Arabidopsis and includes a STOP1 homolog. Two lines of evidence support the important role of the STOP1 homolog in regulating CAM photosynthesis in pineapple. First, STOP1 responds to acidic pH and regulates a malate channel in multiple plant species. Second, the cycling expression pattern of the pineapple STOP1 and the diurnal pattern of malate accumulation in pineapple leaf are correlated. We further examined duplicate-gene retention and loss in major known circadian genes and refined their evolutionary relationships between pineapple and other plants. Significant variations in duplicate-gene retention and loss were observed for most clock genes in both monocots and dicots. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. A Genome-Wide RNAi Screen for Modifiers of the Circadian Clock in Human Cells

    PubMed Central

    Zhang, Eric E.; Liu, Andrew C.; Hirota, Tsuyoshi; Miraglia, Loren J.; Welch, Genevieve; Pongsawakul, Pagkapol Y.; Liu, Xianzhong; Atwood, Ann; Huss, Jon W.; Janes, Jeff; Su, Andrew I.; Hogenesch, John B.; Kay, Steve A.

    2009-01-01

    Summary Two decades of research identified more than a dozen clock genes and defined a biochemical feedback mechanism of circadian oscillator function. To identify additional clock genes and modifiers, we conducted a genome-wide siRNA screen in a human cellular clock model. Knockdown of nearly a thousand genes reduced rhythm amplitude. Potent effects on period length or increased amplitude were less frequent; we found hundreds of these and confirmed them in secondary screens. Characterization of a subset of these genes demonstrated a dosage-dependent effect on oscillator function. Protein interaction network analysis showed that dozens of gene products directly or indirectly associate with known clock components. Pathway analysis revealed these genes are overrepresented for components of insulin and hedgehog signaling, the cell cycle, and the folate metabolism. Coupled with data showing many of these pathways are clock-regulated, we conclude the clock is interconnected with many aspects of cellular function. PMID:19765810

  14. A Neural Network Underlying Circadian Entrainment and Photoperiodic Adjustment of Sleep and Activity in Drosophila.

    PubMed

    Schlichting, Matthias; Menegazzi, Pamela; Lelito, Katharine R; Yao, Zepeng; Buhl, Edgar; Dalla Benetta, Elena; Bahle, Andrew; Denike, Jennifer; Hodge, James John; Helfrich-Förster, Charlotte; Shafer, Orie Thomas

    2016-08-31

    A sensitivity of the circadian clock to light/dark cycles ensures that biological rhythms maintain optimal phase relationships with the external day. In animals, the circadian clock neuron network (CCNN) driving sleep/activity rhythms receives light input from multiple photoreceptors, but how these photoreceptors modulate CCNN components is not well understood. Here we show that the Hofbauer-Buchner eyelets differentially modulate two classes of ventral lateral neurons (LNvs) within the Drosophila CCNN. The eyelets antagonize Cryptochrome (CRY)- and compound-eye-based photoreception in the large LNvs while synergizing CRY-mediated photoreception in the small LNvs. Furthermore, we show that the large LNvs interact with subsets of "evening cells" to adjust the timing of the evening peak of activity in a day length-dependent manner. Our work identifies a peptidergic connection between the large LNvs and a group of evening cells that is critical for the seasonal adjustment of circadian rhythms. In animals, circadian clocks have evolved to orchestrate the timing of behavior and metabolism. Consistent timing requires the entrainment these clocks to the solar day, a process that is critical for an organism's health. Light cycles are the most important external cue for the entrainment of circadian clocks, and the circadian system uses multiple photoreceptors to link timekeeping to the light/dark cycle. How light information from these photorecptors is integrated into the circadian clock neuron network to support entrainment is not understood. Our results establish that input from the HB eyelets differentially impacts the physiology of neuronal subgroups. This input pathway, together with input from the compound eyes, precisely times the activity of flies under long summer days. Our results provide a mechanistic model of light transduction and integration into the circadian system, identifying new and unexpected network motifs within the circadian clock neuron network. Copyright © 2016 the authors 0270-6474/16/369084-13$15.00/0.

  15. Circadian locomotor output cycles kaput affects the proliferation and migration of breast cancer cells by regulating the expression of E-cadherin via IQ motif containing GTPase activating protein 1.

    PubMed

    Li, Xiaoxue; Wang, Siyang; Yang, Shuhong; Ying, Junjie; Yu, Hang; Yang, Chunlei; Liu, Yanyou; Wang, Yuhui; Cheng, Shuting; Xiao, Jing; Guo, Huiling; Jiang, Zhou; Wang, Zhengrong

    2018-05-01

    The circadian rhythm regulates numerous physiological activities, including sleep and wakefulness, behavior, immunity and metabolism. Previous studies have demonstrated that circadian rhythm disorder is associated with the occurrence of tumors. Responsible for regulating a number of functions, the Circadian locomotor output cycles kaput ( Clock ) gene is one of the core regulatory genes of circadian rhythm. The Clock gene has also been implicated in the occurrence and development of tumors in previously studies. The present study evaluated the role of the Clock gene in the proliferation and migration of mouse breast cancer 4T1 cells, and investigated its possible regulatory pathways and mechanisms. It was reported that downregulation of Clock facilitated the proliferation and migration of breast cancer cells. Further investigation revealed the involvement of IQ motif containing GTPase activating protein 1 (IQGAP1) protein expression in the Clock regulatory pathway, further influencing the expression of E-cadherin, a known proprietor of tumor cell migration and invasion. To the best of our knowledge, the present study is the first to report that Clock , acting through the regulation of the scaffolding protein IQGAP1, regulates the downstream expression of E-cadherin, thereby affecting tumor cell structure and motility. These results confirmed the role of Clock in breast cancer tumor etiology and provide insight regarding the molecular avenues of its regulatory nature, which may translate beyond breast cancer into other known functions of the gene.

  16. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage.

    PubMed

    Dodd, Antony N; Salathia, Neeraj; Hall, Anthony; Kévei, Eva; Tóth, Réka; Nagy, Ferenc; Hibberd, Julian M; Millar, Andrew J; Webb, Alex A R

    2005-07-22

    Circadian clocks are believed to confer an advantage to plants, but the nature of that advantage has been unknown. We show that a substantial photosynthetic advantage is conferred by correct matching of the circadian clock period with that of the external light-dark cycle. In wild type and in long- and short-circadian period mutants of Arabidopsis thaliana, plants with a clock period matched to the environment contain more chlorophyll, fix more carbon, grow faster, and survive better than plants with circadian periods differing from their environment. This explains why plants gain advantage from circadian control.

  17. Robust and tunable circadian rhythms from differentially sensitive catalytic domains

    PubMed Central

    Phong, Connie; Markson, Joseph S.; Wilhoite, Crystal M.; Rust, Michael J.

    2013-01-01

    Circadian clocks are ubiquitous biological oscillators that coordinate an organism’s behavior with the daily cycling of the external environment. To ensure synchronization with the environment, the period of the clock must be maintained near 24 h even as amplitude and phase are altered by input signaling. We show that, in a reconstituted circadian system from cyanobacteria, these conflicting requirements are satisfied by distinct functions for two domains of the central clock protein KaiC: the C-terminal autokinase domain integrates input signals through the ATP/ADP ratio, and the slow N-terminal ATPase acts as an input-independent timer. We find that phosphorylation in the C-terminal domain followed by an ATPase cycle in the N-terminal domain is required to form the inhibitory KaiB•KaiC complexes that drive the dynamics of the clock. We present a mathematical model in which this ATPase-mediated delay in negative feedback gives rise to a compensatory mechanism that allows a tunable phase and amplitude while ensuring a robust circadian period. PMID:23277568

  18. A clocking discipline for two-phase digital integrated circuits

    NASA Astrophysics Data System (ADS)

    Noice, D. C.

    1983-09-01

    Sooner or later a designer of digital circuits must face the problem of timing verification so he can avoid errors caused by clock skew, critical races, and hazards. Unlike previous verification methods, such as timing simulation and timing analysis, the approach presented here guarantees correct operation despite uncertainty about delays in the circuit. The result is a clocking discipline that deals with timing abstractions only. It is not based on delay calculations; it is only concerned with the correct, synchronous operation at some clock rate. Accordingly, it may be used earlier in the design cycle, which is particularly important to integrated circuit designs. The clocking discipline consists of a notation of clocking types, and composition rules for using the types. Together, the notation and rules define a formal theory of two phase clocking. The notation defines the names and exact characteristics for different signals that are used in a two phase digital system. The notation makes it possible to develop rules for propagating the clocking types through particular circuits.

  19. RH1020 Single Event Clock Upset Summary Report

    NASA Technical Reports Server (NTRS)

    Katz, Richard B.; Wang, J. J.

    1998-01-01

    This report summarizes the testing and analysis of "single event clock upset' in the RH1020. Also included are SEU-rate predictions and design recommendations for risk analysis and reduction. The subject of "upsets" in the RH1020 is best understood by using a model consisting of a global clock buffer and a D-type flip-flop as the basic memory unit. The RH1020 is built on the ACT 1 family architecture. As such, it has one low-skew global clock buffer with a TTL-level input threshold that is accessed via a single dedicated pin. The clock signal is driven to full CMOS levels, buffered, and sent to individual row buffers with one buffer per channel. For low-skew performance, the outputs of all of the RH1020 row buffers are shorted together via metal lines, as is done in the A1020B. All storage in the RH1020 consists of routed flip-flops, constructed with multiplexors and feedback through the routing segments. A simple latch can be constructed from a single (combinatorial or C) module; an edge-triggered flip-flop is constructed using two concatenated latches. There is no storage in the I/O modules. The front end of the clock buffering circuitry, at a common point relative to the row buffer, is a sub-circuit that was determined to be the most susceptible to heavy ions. This is due, in part, to its smaller transistors compared to the rest of the circuitry. This conclusion is also supported by SPICE simulations and an analysis of the heavy ion data, described in this report. The edge triggered D flip-flop has two single-event-upset modes. Mode one, called C-module upset, is caused by a heavy ion striking the C-module's sensitive area on the silicon and produces a soft single bit error at the output of the flip-flop. Mode two, called clock upset, is caused by a heavy ion strike on the clock buffer, generating a runt pulse interpreted as a false clock signal and consequently producing errors at the flip-flop outputs. C-module upset sensitivity in the RH1020 is essentially the same as that of its ACT 1 siblings (A1020, A1020A and A1020B), which were well tested, analyzed, and documented in the literature.

  20. Critical role for CCA1 and LHY in maintaining circadian rhythmicity in Arabidopsis.

    PubMed

    Alabadí, David; Yanovsky, Marcelo J; Más, Paloma; Harmer, Stacey L; Kay, Steve A

    2002-04-30

    Circadian clocks are autoregulatory, endogenous mechanisms that allow organisms, from bacteria to humans, to advantageously time a wide range of activities within 24-hr environmental cycles. CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) are thought to be important components of the circadian clock in the model plant Arabidopsis. The similar circadian phenotypes of lines overexpressing either CCA1 or LHY have suggested that the functions of these two transcription factors are largely overlapping. cca1-1 plants, which lack CCA1 protein, show a short-period phenotype for the expression of several genes when assayed under constant light conditions. This suggests that LHY function is able to only partially compensate for the lack of CCA1 protein, resulting in a clock with a faster pace in cca1-1 plants. We have obtained plants lacking CCA1 and with LHY function strongly reduced, cca1-1 lhy-R, and show that these plants are unable to maintain sustained oscillations in both constant light and constant darkness. However, these plants exhibit some circadian function in light/dark cycles, showing that the Arabidopsis circadian clock is not entirely dependent on CCA1 and LHY activities.

  1. Synchrony and Desynchrony in Circadian Clocks: Impacts on Learning and Memory

    ERIC Educational Resources Information Center

    Krishnan, Harini C.; Lyons, Lisa C.

    2015-01-01

    Circadian clocks evolved under conditions of environmental variation, primarily alternating light dark cycles, to enable organisms to anticipate daily environmental events and coordinate metabolic, physiological, and behavioral activities. However, modern lifestyle and advances in technology have increased the percentage of individuals working in…

  2. Small heterodimer partner (NROB2) coordinates nutrient signaling and the circadian clock in mice

    USDA-ARS?s Scientific Manuscript database

    Circadian rhythm regulates multiple metabolic processes and in turn is readily entrained by feeding-fasting cycles. However, the molecular mechanisms by which the peripheral clock senses nutrition availability remain largely unknown. Bile acids are under circadian control and also increase postprand...

  3. Master/slave clock arrangement for providing reliable clock signal

    NASA Technical Reports Server (NTRS)

    Abbey, Duane L. (Inventor)

    1977-01-01

    The outputs of two like frequency oscillators are combined to form a single reliable clock signal, with one oscillator functioning as a slave under the control of the other to achieve phase coincidence when the master is operative and in a free-running mode when the master is inoperative so that failure of either oscillator produces no effect on the clock signal.

  4. Radio frequency phototube and optical clock: High resolution, high rate and highly stable single photon timing technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margaryan, Amur

    2011-10-01

    A new timing technique for single photons based on the radio frequency phototube and optical clock or femtosecond optical frequency comb generator is proposed. The technique has a 20 ps resolution for single photons, is capable of operating with MHz frequencies and achieving 10 fs instability level.

  5. Biological Rhythms in the Skin

    PubMed Central

    Matsui, Mary S.; Pelle, Edward; Dong, Kelly; Pernodet, Nadine

    2016-01-01

    Circadian rhythms, ≈24 h oscillations in behavior and physiology, are reflected in all cells of the body and function to optimize cellular functions and meet environmental challenges associated with the solar day. This multi-oscillatory network is entrained by the master pacemaker located in the suprachiasmatic nucleus (SCN) of the hypothalamus, which directs an organism’s rhythmic expression of physiological functions and behavior via a hierarchical system. This system has been highly conserved throughout evolution and uses transcriptional–translational autoregulatory loops. This master clock, following environmental cues, regulates an organism’s sleep pattern, body temperature, cardiac activity and blood pressure, hormone secretion, oxygen consumption and metabolic rate. Mammalian peripheral clocks and clock gene expression have recently been discovered and are present in all nucleated cells in our body. Like other essential organ of the body, the skin also has cycles that are informed by this master regulator. In addition, skin cells have peripheral clocks that can function autonomously. First described in 2000 for skin, this review summarizes some important aspects of a rapidly growing body of research in circadian and ultradian (an oscillation that repeats multiple times during a 24 h period) cutaneous rhythms, including clock mechanisms, functional manifestations, and stimuli that entrain or disrupt normal cycling. Some specific relationships between disrupted clock signaling and consequences to skin health are discussed in more depth in the other invited articles in this IJMS issue on Sleep, Circadian Rhythm and Skin. PMID:27231897

  6. Genetic architecture of the circadian clock and flowering time in Brassica rapa.

    PubMed

    Lou, P; Xie, Q; Xu, X; Edwards, C E; Brock, M T; Weinig, C; McClung, C R

    2011-08-01

    The circadian clock serves to coordinate physiology and behavior with the diurnal cycles derived from the daily rotation of the earth. In plants, circadian rhythms contribute to growth and yield and, hence, to both agricultural productivity and evolutionary fitness. Arabidopsis thaliana has served as a tractable model species in which to dissect clock mechanism and function, but it now becomes important to define the extent to which the Arabidopsis model can be extrapolated to other species, including crops. Accordingly, we have extended our studies to the close Arabidopsis relative and crop species, Brassica rapa. We have investigated natural variation in circadian function and flowering time among multiple B. rapa collections. There is wide variation in clock function, based on a robust rhythm in cotyledon movement, within a collection of B. rapa accessions, wild populations and recombinant inbred lines (RILs) derived from a cross between parents from two distinct subspecies, a rapid cycling Chinese cabbage (ssp. pekinensis) and a Yellow Sarson oilseed (ssp. trilocularis). We further analyzed the RILs to identify the quantitative trait loci (QTL) responsible for this natural variation in clock period and temperature compensation, as well as for flowering time under different temperature and day length settings. Most clock and flowering-time QTL mapped to overlapping chromosomal loci. We have exploited micro-synteny between the Arabidopsis and B. rapa genomes to identify candidate genes for these QTL.

  7. Autobalanced Ramsey Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sanner, Christian; Huntemann, Nils; Lange, Richard; Tamm, Christian; Peik, Ekkehard

    2018-01-01

    We devise a perturbation-immune version of Ramsey's method of separated oscillatory fields. Spectroscopy of an atomic clock transition without compromising the clock's accuracy is accomplished by actively balancing the spectroscopic responses from phase-congruent Ramsey probe cycles of unequal durations. Our simple and universal approach eliminates a wide variety of interrogation-induced line shifts often encountered in high precision spectroscopy, among them, in particular, light shifts, phase chirps, and transient Zeeman shifts. We experimentally demonstrate autobalanced Ramsey spectroscopy on the light shift prone Yb+ 171 electric octupole optical clock transition and show that interrogation defects are not turned into clock errors. This opens up frequency accuracy perspectives below the 10-18 level for the Yb+ system and for other types of optical clocks.

  8. Misalignment with the external light environment drives metabolic and cardiac dysfunction.

    PubMed

    West, Alexander C; Smith, Laura; Ray, David W; Loudon, Andrew S I; Brown, Timothy M; Bechtold, David A

    2017-09-12

    Most organisms use internal biological clocks to match behavioural and physiological processes to specific phases of the day-night cycle. Central to this is the synchronisation of internal processes across multiple organ systems. Environmental desynchrony (e.g. shift work) profoundly impacts human health, increasing cardiovascular disease and diabetes risk, yet the underlying mechanisms remain unclear. Here, we characterise the impact of desynchrony between the internal clock and the external light-dark (LD) cycle on mammalian physiology. We reveal that even under stable LD environments, phase misalignment has a profound effect, with decreased metabolic efficiency and disrupted cardiac function including prolonged QT interval duration. Importantly, physiological dysfunction is not driven by disrupted core clock function, nor by an internal desynchrony between organs, but rather the altered phase relationship between the internal clockwork and the external environment. We suggest phase misalignment as a major driver of pathologies associated with shift work, chronotype and social jetlag.The misalignment between internal circadian rhythm and the day-night cycle can be caused by genetic, behavioural and environmental factors, and may have a profound impact on human physiology. Here West et al. show that desynchrony between the internal clock and the external environment alter metabolic parameters and cardiac function in mice.

  9. Temperature-dependent resetting of the molecular circadian oscillator in Drosophila

    PubMed Central

    Goda, Tadahiro; Sharp, Brandi; Wijnen, Herman

    2014-01-01

    Circadian clocks responsible for daily time keeping in a wide range of organisms synchronize to daily temperature cycles via pathways that remain poorly understood. To address this problem from the perspective of the molecular oscillator, we monitored temperature-dependent resetting of four of its core components in the fruitfly Drosophila melanogaster: the transcripts and proteins for the clock genes period (per) and timeless (tim). The molecular circadian cycle in adult heads exhibited parallel responses to temperature-mediated resetting at the levels of per transcript, tim transcript and TIM protein. Early phase adjustment specific to per transcript rhythms was explained by clock-independent temperature-driven transcription of per. The cold-induced expression of Drosophila per contrasts with the previously reported heat-induced regulation of mammalian Period 2. An altered and more readily re-entrainable temperature-synchronized circadian oscillator that featured temperature-driven per transcript rhythms and phase-shifted TIM and PER protein rhythms was found for flies of the ‘Tim 4’ genotype, which lacked daily tim transcript oscillations but maintained post-transcriptional temperature entrainment of tim expression. The accelerated molecular and behavioural temperature entrainment observed for Tim 4 flies indicates that clock-controlled tim expression constrains the rate of temperature cycle-mediated circadian resetting. PMID:25165772

  10. Evidence Suggesting that the Cardiomyocyte Circadian Clock Modulates Responsiveness of the Heart to Hypertrophic Stimuli in Mice

    PubMed Central

    Durgan, David J.; Tsai, Ju-Yun; Grenett, Maximiliano H.; Pat, Betty M.; Ratcliffe, William F.; Villegas-Montoya, Carolina; Garvey, Merissa E.; Nagendran, Jeevan; Dyck, Jason R.B.; Bray, Molly S.; Gamble, Karen L.; Gimble, Jeffrey M.; Young, Martin E.

    2011-01-01

    Circadian dyssynchrony of an organism (at the whole body level) with its environment, either through light/dark cycle or genetic manipulation of clock genes, augments various cardiometabolic diseases. The cardiomyocyte circadian clock has recently been shown to influence multiple myocardial processes, ranging from transcriptional regulation and energy metabolism, to contractile function. We therefore reasoned that chronic dyssychrony of the cardiomyocyte circadian clock with its environment would precipitate myocardial maladaptation to a circadian challenge (simulated shift work; SSW). To test this hypothesis, 2 and 20 month old wild-type and CCM (Cardiomyocyte Clock Mutant; a model with genetic temporal suspension of the cardiomyocyte circadian clock at the active-to-sleep phase transition) mice were subjected to chronic (16-wks) bi-weekly 12-hr phase shifts in the light/dark cycle (i.e., SSW). Assessment of adaptation/maladaptation at whole body homeostatic, gravimetric, humoral, histological, transcriptional, and cardiac contractile function levels revealed essentially identical responses between wild-type and CCM littermates. However, CCM hearts exhibit increased bi-ventricular weight, cardiomyocyte size, and molecular markers of hypertrophy (anf, mcip1) independent of aging and/or SSW. Similarly, a second genetic model of selective temporal suspension of the cardiomyocyte circadian clock (Cardiomyocyte-specific BMAL1 Knockout [CBK] mice) exhibits increased bi-ventricular weight and mcip1 expression. Wild-type mice exhibit 5-fold greater cardiac hypertrophic growth (and 6-fold greater anf mRNA induction) when challenged with the hypertrophic agonist isoproterenol at the active-to-sleep phase transition, relative to isoproterenol administration at the sleep-to-active phase transition. This diurnal variation was absent in CCM mice. Collectively, these data suggest that the cardiomyocyte circadian clock likely influences responsiveness of the heart to hypertrophic stimuli. PMID:21452915

  11. Circadian gene expression regulates pulsatile gonadotropin-releasing hormone (GnRH) secretory patterns in the hypothalamic GnRH-secreting GT1-7 cell line.

    PubMed

    Chappell, Patrick E; White, Rachel S; Mellon, Pamela L

    2003-12-03

    Although it has long been established that episodic secretion of gonadotropin-releasing hormone (GnRH) from the hypothalamus is required for normal gonadotropin release, the molecular and cellular mechanisms underlying the synchronous release of GnRH are primarily unknown. We used the GT1-7 mouse hypothalamic cell line as a model for GnRH secretion, because these cells release GnRH in a pulsatile pattern similar to that observed in vivo. To explore possible molecular mechanisms governing secretory timing, we investigated the role of the molecular circadian clock in regulation of GnRH secretion. GT1-7 cells express many known core circadian clock genes, and we demonstrate that oscillations of these components can be induced by stimuli such as serum and the adenylyl cyclase activator forskolin, similar to effects observed in fibroblasts. Strikingly, perturbation of circadian clock function in GT1-7 cells by transient expression of the dominant-negative Clock-Delta19 gene disrupts normal ultradian patterns of GnRH secretion, significantly decreasing mean pulse frequency. Additionally, overexpression of the negative limb clock gene mCry1 in GT1-7 cells substantially increases GnRH pulse amplitude without a commensurate change in pulse frequency, demonstrating that an endogenous biological clock is coupled to the mechanism of neurosecretion in these cells and can regulate multiple secretory parameters. Finally, mice harboring a somatic mutation in the Clock gene are subfertile and exhibit a substantial increase in estrous cycle duration as revealed by examination of vaginal cytology. This effect persists in normal light/dark (LD) cycles, suggesting that a suprachiasmatic nucleus-independent endogenous clock in GnRH neurons is required for eliciting normal pulsatile patterns of GnRH secretion.

  12. Emerging links between the biological clock and the DNA damage response.

    PubMed

    Collis, Spencer J; Boulton, Simon J

    2007-08-01

    For life forms to survive, they must adapt to their environmental conditions. One such factor that impacts on both prokaryotic and eukaryotic organisms is the light-dark cycle, a consequence of planetary rotation in relation to our sun. In mammals, the daily light cycle has affected the regulation of many cellular processes such as sleep-wake and calorific intake activities, hormone secretion, blood pressure and immune system responses. Such rhythmic behaviour is the consequence of circadian rhythm/biological clock (BC) systems which are controlled in a light stimulus-dependent manner by a master clock called the suprachiasmatic nucleus (SCN) situated within the anterior hypothalamus. Peripheral clocks located in other organs such as the liver and kidneys relay signals from the SCN, which ultimately leads to tightly controlled expression of several protein families that in turn act on a broad range of cellular functions. Work in lower organisms has demonstrated a link between aging processes and BC factors, and studies in both animal models and clinical trials have postulated a role for certain BC-associated proteins in tumourigenesis and cancer progression. Recent exciting data reported within the last year or so have now established a molecular link between specific BC proteins and factors that control the mammalian cell cycle and DNA damage checkpoints. This mini review will focus on these discoveries and emphasise how such BC proteins may be involved, through their interplay with cell cycle/DNA damage response pathways, in the development of human disease such as cancer.

  13. Temperature oscillations drive cycles in the activity of MMP-2,9 secreted by a human trabecular meshwork cell line.

    PubMed

    Li, Stanley Ka-Lok; Banerjee, Juni; Jang, Christopher; Sehgal, Amita; Stone, Richard A; Civan, Mortimer M

    2015-02-05

    Aqueous humor inflow falls 50% during sleeping hours without proportional fall in IOP, partly reflecting reduced outflow facility. The mechanisms underlying outflow facility cycling are unknown. One outflow facility regulator is matrix metalloproteinase (MMP) release from trabecular meshwork (TM) cells. Because anterior segment temperature must oscillate due to core temperature cycling and eyelid closure during sleep, we tested whether physiologically relevant temperature oscillations drive cycles in the activity of secreted MMP. Temperature of transformed normal human TM cells (hTM5 line) was fixed or alternated 12 hours/12 hours between 33°C and 37°C. Activity of secreted MMP-2 and MMP-9 was measured by zymography, and gene expression by RT-PCR and quantitative PCR. Raising temperature to 37°C increased, and lowering to 33°C reduced, activity of secreted MMP. Switching between 37°C and 33°C altered MMP-9 by 40% ± 3% and MMP-2 by 22% ± 2%. Peripheral circadian clocks did not mediate temperature-driven cycling of MMP secretion because MMP-release oscillations did not persist at constant temperature after 3 to 6 days of alternating temperatures, and temperature cycles did not entrain clock-gene expression in these cells. Furthermore, inhibiting heat shock transcription factor 1, which links temperature and peripheral clock-gene oscillations, inhibited MMP-9 but not MMP-2 temperature-driven MMP cycling. Inhibition of heat-sensitive TRPV1 channels altered total MMP secretion but not temperature-induced modulations. Inhibiting cold-sensitive TRPM-8 channels had no effect. Physiologically relevant temperature oscillations drive fluctuations of secreted MMP-2 and MMP-9 activity in hTM5 cells independent of peripheral clock genes and temperature-sensitive TRP channels. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  14. Normal vision can compensate for the loss of the circadian clock

    PubMed Central

    Schlichting, Matthias; Menegazzi, Pamela; Helfrich-Förster, Charlotte

    2015-01-01

    Circadian clocks are thought to be essential for timing the daily activity of animals, and consequently increase fitness. This view was recently challenged for clock-less fruit flies and mice that exhibited astonishingly normal activity rhythms under outdoor conditions. Compensatory mechanisms appear to enable even clock mutants to live a normal life in nature. Here, we show that gradual daily increases/decreases of light in the laboratory suffice to provoke normally timed sharp morning (M) and evening (E) activity peaks in clock-less flies. We also show that the compound eyes, but not Cryptochrome (CRY), mediate the precise timing of M and E peaks under natural-like conditions, as CRY-less flies do and eyeless flies do not show these sharp peaks independently of a functional clock. Nevertheless, the circadian clock appears critical for anticipating dusk, as well as for inhibiting sharp activity peaks during midnight. Clock-less flies only increase E activity after dusk and not before the beginning of dusk, and respond strongly to twilight exposure in the middle of the night. Furthermore, the circadian clock responds to natural-like light cycles, by slightly broadening Timeless (TIM) abundance in the clock neurons, and this effect is mediated by CRY. PMID:26378222

  15. Ambient temperature response establishes ELF3 as a required component of the Arabidopsis core circadian clock

    USDA-ARS?s Scientific Manuscript database

    Circadian clocks synchronize internal processes with environmental cycles to ensure optimal timing of biological events on daily and seasonal timescales. External light and temperature cues set the core molecular oscillator to local conditions. In Arabidopsis, EARLY FLOWERING 3 (ELF3) is thought to ...

  16. Habitual sleep duration is associated with BMI and macronutrient intake and may be modified by CLOCK genetic variants

    USDA-ARS?s Scientific Manuscript database

    Short sleep duration has been associated with greater risks of obesity, hypertension, diabetes, and cardiovascular disease. Also, common genetic variants in the human Circadian Locomotor Output Cycles Kaput (CLOCK) show associations with ghrelin and total energy intake. We examined associations betw...

  17. Molecular targets for small-molecule modulators of circadian clocks

    PubMed Central

    He, Baokun; Chen, Zheng

    2016-01-01

    Background Circadian clocks are endogenous timing systems that regulate various aspects of mammalian metabolism, physiology and behavior. Traditional chronotherapy refers to the administration of drugs in a defined circadian time window to achieve optimal pharmacokinetic and therapeutic efficacies. In recent years, substantial efforts have been dedicated to developing novel small-molecule modulators of circadian clocks. Methods Here, we review the recent progress in the identification of molecular targets of small-molecule clock modulators and their efficacies in clock-related disorders. Specifically, we examine the clock components and regulatory factors as possible molecular targets of small molecules, and we review several key clock-related disorders as promising venues for testing the preventive/therapeutic efficacies of these small molecules. Finally, we also discuss circadian regulation of drug metabolism. Results Small molecules can modulate the period, phase and/or amplitude of the circadian cycle. Core clock proteins, nuclear hormone receptors, and clock-related kinases and other epigenetic regulators are promising molecular targets for small molecules. Through these targets small molecules exert protective effects against clock-related disorders including the metabolic syndrome, immune disorders, sleep disorders and cancer. Small molecules can also modulate circadian drug metabolism and response to existing therapeutics. Conclusion Small-molecule clock modulators target clock components or diverse cellular pathways that functionally impinge upon the clock. Target identification of new small-molecule modulators will deepen our understanding of key regulatory nodes in the circadian network. Studies of clock modulators will facilitate their therapeutic applications, alone or in combination, for clock-related diseases. PMID:26750111

  18. Relativity theory and time perception: single or multiple clocks?

    PubMed

    Buhusi, Catalin V; Meck, Warren H

    2009-07-22

    Current theories of interval timing assume that humans and other animals time as if using a single, absolute stopwatch that can be stopped or reset on command. Here we evaluate the alternative view that psychological time is represented by multiple clocks, and that these clocks create separate temporal contexts by which duration is judged in a relative manner. Two predictions of the multiple-clock hypothesis were tested. First, that the multiple clocks can be manipulated (stopped and/or reset) independently. Second, that an event of a given physical duration would be perceived as having different durations in different temporal contexts, i.e., would be judged differently by each clock. Rats were trained to time three durations (e.g., 10, 30, and 90 s). When timing was interrupted by an unexpected gap in the signal, rats reset the clock used to time the "short" duration, stopped the "medium" duration clock, and continued to run the "long" duration clock. When the duration of the gap was manipulated, the rats reset these clocks in a hierarchical order, first the "short", then the "medium", and finally the "long" clock. Quantitative modeling assuming re-allocation of cognitive resources in proportion to the relative duration of the gap to the multiple, simultaneously timed event durations was used to account for the results. These results indicate that the three event durations were effectively timed by separate clocks operated independently, and that the same gap duration was judged relative to these three temporal contexts. Results suggest that the brain processes the duration of an event in a manner similar to Einstein's special relativity theory: A given time interval is registered differently by independent clocks dependent upon the context.

  19. Non-24-Hour Sleep-Wake Disorder Revisited - A Case Study.

    PubMed

    Garbazza, Corrado; Bromundt, Vivien; Eckert, Anne; Brunner, Daniel P; Meier, Fides; Hackethal, Sandra; Cajochen, Christian

    2016-01-01

    The human sleep-wake cycle is governed by two major factors: a homeostatic hourglass process (process S), which rises linearly during the day, and a circadian process C, which determines the timing of sleep in a ~24-h rhythm in accordance to the external light-dark (LD) cycle. While both individual processes are fairly well characterized, the exact nature of their interaction remains unclear. The circadian rhythm is generated by the suprachiasmatic nucleus ("master clock") of the anterior hypothalamus, through cell-autonomous feedback loops of DNA transcription and translation. While the phase length (tau) of the cycle is relatively stable and genetically determined, the phase of the clock is reset by external stimuli ("zeitgebers"), the most important being the LD cycle. Misalignments of the internal rhythm with the LD cycle can lead to various somatic complaints and to the development of circadian rhythm sleep disorders (CRSD). Non-24-hour sleep-wake disorders (N24HSWD) is a CRSD affecting up to 50% of totally blind patients and characterized by the inability to maintain a stable entrainment of the typically long circadian rhythm (tau > 24.5 h) to the LD cycle. The disease is rare in sighted individuals and the pathophysiology less well understood. Here, we present the case of a 40-year-old sighted male, who developed a misalignment of the internal clock with the external LD cycle following the treatment for Hodgkin's lymphoma (ABVD regimen, four cycles and AVD regimen, four cycles). A thorough clinical assessment, including actigraphy, melatonin profiles and polysomnography led to the diagnosis of non-24-hour sleep-wake disorders (N24HSWD) with a free-running rhythm of tau = 25.27 h. A therapeutic intervention with bright light therapy (30 min, 10,000 lux) in the morning and melatonin administration (0.5-0.75 mg) in the evening failed to entrain the free-running rhythm, although a longer treatment duration and more intense therapy might have been successful. The sudden onset and close timely connection led us to hypothesize that the chemotherapy might have caused a mutation of the molecular clock components leading to the observed elongation of the circadian period.

  20. Characterisation of circadian rhythms of various duckweeds.

    PubMed

    Muranaka, T; Okada, M; Yomo, J; Kubota, S; Oyama, T

    2015-01-01

    The plant circadian clock controls various physiological phenomena that are important for adaptation to natural day-night cycles. Many components of the circadian clock have been identified in Arabidopsis thaliana, the model plant for molecular genetic studies. Recent studies revealed evolutionary conservation of clock components in green plants. Homologues of clock-related genes have been isolated from Lemna gibba and Lemna aequinoctialis, and it has been demonstrated that these homologues function in the clock system in a manner similar to their functioning in Arabidopsis. While clock components are widely conserved, circadian phenomena display diversity even within the Lemna genus. In order to survey the full extent of diversity in circadian rhythms among duckweed plants, we characterised the circadian rhythms of duckweed by employing a semi-transient bioluminescent reporter system. Using a particle bombardment method, circadian bioluminescent reporters were introduced into nine strains representing five duckweed species: Spirodela polyrhiza, Landoltia punctata, Lemna gibba, L. aequinoctialis and Wolffia columbiana. We then monitored luciferase (luc+) reporter activities driven by AtCCA1, ZmUBQ1 or CaMV35S promoters under entrainment and free-running conditions. Under entrainment, AtCCA1::luc+ showed similar diurnal rhythms in all strains. This suggests that the mechanism of biological timing under day-night cycles is conserved throughout the evolution of duckweeds. Under free-running conditions, we observed circadian rhythms of AtCCA1::luc+, ZmUBQ1::luc+ and CaMV35S::luc+. These circadian rhythms showed diversity in period length and sustainability, suggesting that circadian clock mechanisms are somewhat diversified among duckweeds. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  1. Circadian clock proteins regulate neuronal redox homeostasis and neurodegeneration

    PubMed Central

    Musiek, Erik S.; Lim, Miranda M.; Yang, Guangrui; Bauer, Adam Q.; Qi, Laura; Lee, Yool; Roh, Jee Hoon; Ortiz-Gonzalez, Xilma; Dearborn, Joshua T.; Culver, Joseph P.; Herzog, Erik D.; Hogenesch, John B.; Wozniak, David F.; Dikranian, Krikor; Giasson, Benoit I.; Weaver, David R.; Holtzman, David M.; FitzGerald, Garret A.

    2013-01-01

    Brain aging is associated with diminished circadian clock output and decreased expression of the core clock proteins, which regulate many aspects of cellular biochemistry and metabolism. The genes encoding clock proteins are expressed throughout the brain, though it is unknown whether these proteins modulate brain homeostasis. We observed that deletion of circadian clock transcriptional activators aryl hydrocarbon receptor nuclear translocator–like (Bmal1) alone, or circadian locomotor output cycles kaput (Clock) in combination with neuronal PAS domain protein 2 (Npas2), induced severe age-dependent astrogliosis in the cortex and hippocampus. Mice lacking the clock gene repressors period circadian clock 1 (Per1) and period circadian clock 2 (Per2) had no observed astrogliosis. Bmal1 deletion caused the degeneration of synaptic terminals and impaired cortical functional connectivity, as well as neuronal oxidative damage and impaired expression of several redox defense genes. Targeted deletion of Bmal1 in neurons and glia caused similar neuropathology, despite the retention of intact circadian behavioral and sleep-wake rhythms. Reduction of Bmal1 expression promoted neuronal death in primary cultures and in mice treated with a chemical inducer of oxidative injury and striatal neurodegeneration. Our findings indicate that BMAL1 in a complex with CLOCK or NPAS2 regulates cerebral redox homeostasis and connects impaired clock gene function to neurodegeneration. PMID:24270424

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadowski, Greg

    A circuit adapts to the occurrence of metastable states. The circuit inhibits passing of the metastable state to circuits that follow, by clock gating the output stage. In order to determine whether or not to gate the clock of the output stage, two detect circuits may be used. One circuit detects metastability and another circuit detects metastability resolved to a wrong logic level. The results from one or both detector circuits are used to gate the next clock cycle if needed, waiting for the metastable situation to be resolved.

  3. Gallium Arsenide Domino Circuit

    NASA Technical Reports Server (NTRS)

    Yang, Long; Long, Stephen I.

    1990-01-01

    Advantages include reduced power and high speed. Experimental gallium arsenide field-effect-transistor (FET) domino circuit replicated in large numbers for use in dynamic-logic systems. Name of circuit denotes mode of operation, which logic signals propagate from each stage to next when successive stages operated at slightly staggered clock cycles, in manner reminiscent of dominoes falling in a row. Building block of domino circuit includes input, inverter, and level-shifting substages. Combinational logic executed in input substage. During low half of clock cycle, result of logic operation transmitted to following stage.

  4. Central and peripheral regulation of feeding and nutrition by the mammalian circadian clock: implications for nutrition during manned space flight

    NASA Technical Reports Server (NTRS)

    Cassone, Vincent M.; Stephan, Friedrich K.

    2002-01-01

    Circadian clocks have evolved to predict and coordinate physiologic processes with the rhythmic environment on Earth. Space studies in non-human primates and humans have suggested that this clock persists in its rhythmicity in space but that its function is altered significantly in long-term space flight. Under normal circumstances, the clock is synchronized by the light-dark cycle via the retinohypothalamic tract and the suprachiasmatic nucleus. It is also entrained by restricted feeding regimes via a suprachiasmatic nucleus-independent circadian oscillator. The site of this suboscillator (or oscillators) is not known, but new evidence has suggested that peripheral tissues in the liver and viscera may express circadian clock function when forced to do so by restricted feeding schedules or other homeostatic disruptions. New research on the role of the circadian clock in the control of feeding on Earth and in space is warranted.

  5. Vasculature on the clock: Circadian rhythm and vascular dysfunction.

    PubMed

    Crnko, Sandra; Cour, Martin; Van Laake, Linda W; Lecour, Sandrine

    2018-05-17

    The master mammalian circadian clock (i.e. central clock), located in the suprachiasmatic nucleus of the hypothalamus, orchestrates the synchronization of the daily behavioural and physiological rhythms to better adapt the organism to the external environment in an anticipatory manner. This central clock is entrained by a variety of signals, the best established being light and food. However, circadian cycles are not simply the consequences of these two cues but are generated by endogenous circadian clocks. Indeed, clock machinery is found in mainly all tissues and cell types, including cells of the vascular system such as endothelial cells, fibroblasts, smooth muscle cells and stem cells. This machinery physiologically contributes to modulate the daily vascular function, and its disturbance therefore plays a major role in the pathophysiology of vascular dysfunction. Therapies targeting the circadian rhythm may therefore be of benefit against vascular disease. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Circadian expression profiles of chromatin remodeling factor genes in Arabidopsis.

    PubMed

    Lee, Hong Gil; Lee, Kyounghee; Jang, Kiyoung; Seo, Pil Joon

    2015-01-01

    The circadian clock is a biological time keeper mechanism that regulates biological rhythms to a period of approximately 24 h. The circadian clock enables organisms to anticipate environmental cycles and coordinates internal cellular physiology with external environmental cues. In plants, correct matching of the clock with the environment confers fitness advantages to plant survival and reproduction. Therefore, circadian clock components are regulated at multiple layers to fine-tune the circadian oscillation. Epigenetic regulation provides an additional layer of circadian control. However, little is known about which chromatin remodeling factors are responsible for circadian control. In this work, we analyzed circadian expression of 109 chromatin remodeling factor genes and identified 17 genes that display circadian oscillation. In addition, we also found that a candidate interacts with a core clock component, supporting that clock activity is regulated in part by chromatin modification. As an initial attempt to elucidate the relationship between chromatin modification and circadian oscillation, we identified novel regulatory candidates that provide a platform for future investigations of chromatin regulation of the circadian clock.

  7. Pacemaker-neuron–dependent disturbance of the molecular clockwork by a Drosophila CLOCK mutant homologous to the mouse Clock mutation

    PubMed Central

    Lee, Euna; Cho, Eunjoo; Kang, Doo Hyun; Jeong, Eun Hee; Chen, Zheng; Yoo, Seung-Hee; Kim, Eun Young

    2016-01-01

    Circadian clocks are composed of transcriptional/translational feedback loops (TTFLs) at the cellular level. In Drosophila TTFLs, the transcription factor dCLOCK (dCLK)/CYCLE (CYC) activates clock target gene expression, which is repressed by the physical interaction with PERIOD (PER). Here, we show that amino acids (AA) 657–707 of dCLK, a region that is homologous to the mouse Clock exon 19-encoded region, is crucial for PER binding and E-box–dependent transactivation in S2 cells. Consistently, in transgenic flies expressing dCLK with an AA657–707 deletion in the Clock (Clkout) genetic background (p{dClk-Δ};Clkout), oscillation of core clock genes’ mRNAs displayed diminished amplitude compared with control flies, and the highly abundant dCLKΔ657–707 showed significantly decreased binding to PER. Behaviorally, the p{dClk-Δ};Clkout flies exhibited arrhythmic locomotor behavior in the photic entrainment condition but showed anticipatory activities of temperature transition and improved free-running rhythms in the temperature entrainment condition. Surprisingly, p{dClk-Δ};Clkout flies showed pacemaker-neuron–dependent alterations in molecular rhythms; the abundance of dCLK target clock proteins was reduced in ventral lateral neurons (LNvs) but not in dorsal neurons (DNs) in both entrainment conditions. In p{dClk-Δ};Clkout flies, however, strong but delayed molecular oscillations in temperature cycle-sensitive pacemaker neurons, such as DN1s and DN2s, were correlated with delayed anticipatory activities of temperature transition. Taken together, our study reveals that the LNv molecular clockwork is more sensitive than the clockwork of DNs to dysregulation of dCLK by AA657–707 deletion. Therefore, we propose that the dCLK/CYC-controlled TTFL operates differently in subsets of pacemaker neurons, which may contribute to their specific functions. PMID:27489346

  8. Clock Controller For Ac Self-Timing Analysis Of Logic System

    DOEpatents

    Lo, Tinchee; Flanagan, John D.

    2004-05-18

    A clock controller and clock generating method are provided for AC self-test timing analysis of a logic system. The controller includes latch circuitry which receives a DC input signal at a data input, and a pair of continuous out-of-phase clock signals at capture and launch clock inputs thereof. The latch circuitry outputs two overlapping pulses responsive to the DC input signal going high. The two overlapping pulses are provided to waveform shaper circuitry which produces therefrom two non-overlapping pulses at clock speed of the logic system to be tested. The two non-overlapping pulses are a single pair of clock pulses which facilitate AC self-test timing analysis of the logic system.

  9. Dynamics of the slowing segmentation clock reveal alternating two-segment periodicity

    PubMed Central

    Shih, Nathan P.; François, Paul; Delaune, Emilie A.; Amacher, Sharon L.

    2015-01-01

    The formation of reiterated somites along the vertebrate body axis is controlled by the segmentation clock, a molecular oscillator expressed within presomitic mesoderm (PSM) cells. Although PSM cells oscillate autonomously, they coordinate with neighboring cells to generate a sweeping wave of cyclic gene expression through the PSM that has a periodicity equal to that of somite formation. The velocity of each wave slows as it moves anteriorly through the PSM, although the dynamics of clock slowing have not been well characterized. Here, we investigate segmentation clock dynamics in the anterior PSM in developing zebrafish embryos using an in vivo clock reporter, her1:her1-venus. The her1:her1-venus reporter has single-cell resolution, allowing us to follow segmentation clock oscillations in individual cells in real-time. By retrospectively tracking oscillations of future somite boundary cells, we find that clock reporter signal increases in anterior PSM cells and that the periodicity of reporter oscillations slows to about ∼1.5 times the periodicity in posterior PSM cells. This gradual slowing of the clock in the anterior PSM creates peaks of clock expression that are separated at a two-segment periodicity both spatially and temporally, a phenomenon we observe in single cells and in tissue-wide analyses. These results differ from previous predictions that clock oscillations stop or are stabilized in the anterior PSM. Instead, PSM cells oscillate until they incorporate into somites. Our findings suggest that the segmentation clock may signal somite formation using a phase gradient with a two-somite periodicity. PMID:25968314

  10. On-Chip AC self-test controller

    DOEpatents

    Flanagan, John D [Rhinebeck, NY; Herring, Jay R [Poughkeepsie, NY; Lo, Tin-Chee [Fishkill, NY

    2009-09-29

    A system for performing AC self-test on an integrated circuit that includes a system clock for normal operation is provided. The system includes the system clock, self-test circuitry, a first and second test register to capture and launch test data in response to a sequence of data pulses, and a logic circuit to be tested. The self-test circuitry includes an AC self-test controller and a clock splitter. The clock splitter generates the sequence of data pulses including a long data capture pulse followed by an at speed data launch pulse and an at speed data capture pulse followed by a long data launch pulse. The at speed data launch pulse and the at speed data capture pulse are generated for a common cycle of the system clock.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shepard, Kenneth L.; Sturcken, Noah Andrew

    Power controller includes an output terminal having an output voltage, at least one clock generator to generate a plurality of clock signals and a plurality of hardware phases. Each hardware phase is coupled to the at least one clock generator and the output terminal and includes a comparator. Each hardware phase is configured to receive a corresponding one of the plurality of clock signals and a reference voltage, combine the corresponding clock signal and the reference voltage to produce a reference input, generate a feedback voltage based on the output voltage, compare the reference input and the feedback voltage usingmore » the comparator and provide a comparator output to the output terminal, whereby the comparator output determines a duty cycle of the power controller. An integrated circuit including the power controller is also provided.« less

  12. Differential maturation of rhythmic clock gene expression during early development in medaka (Oryzias latipes).

    PubMed

    Cuesta, Ines H; Lahiri, Kajori; Lopez-Olmeda, Jose Fernando; Loosli, Felix; Foulkes, Nicholas S; Vallone, Daniela

    2014-05-01

    One key challenge for the field of chronobiology is to identify how circadian clock function emerges during early embryonic development. Teleosts such as the zebrafish are ideal models for studying circadian clock ontogeny since the entire process of development occurs ex utero in an optically transparent chorion. Medaka (Oryzias latipes) represents another powerful fish model for exploring early clock function with, like the zebrafish, many tools available for detailed genetic analysis. However, to date there have been no reports documenting circadian clock gene expression during medaka development. Here we have characterized the expression of key clock genes in various developmental stages and in adult tissues of medaka. As previously reported for other fish, light dark cycles are required for the emergence of clock gene expression rhythms in this species. While rhythmic expression of per and cry genes is detected very early during development and seems to be light driven, rhythmic clock and bmal expression appears much later around hatching time. Furthermore, the maturation of clock function seems to correlate with the appearance of rhythmic expression of these positive elements of the clock feedback loop. By accelerating development through elevated temperatures or by artificially removing the chorion, we show an earlier onset of rhythmicity in clock and bmal expression. Thus, differential maturation of key elements of the medaka clock mechanism depends on the developmental stage and the presence of the chorion.

  13. Seeing the forest and trees: whole-body and whole-brain imaging for circadian biology.

    PubMed

    Ode, K L; Ueda, H R

    2015-09-01

    Recent advances in methods for making mammalian organs translucent have made possible whole-body fluorescent imaging with single-cell resolution. Because organ-clearing methods can be used to image the heterogeneous nature of cell populations, they are powerful tools to investigate the hierarchical organization of the cellular circadian clock, and how the clock synchronizes a variety of physiological activities. In particular, methods compatible with genetically encoded fluorescent reporters have the potential to detect circadian activity in different brain regions and the circadian-phase distribution across the whole body. In this review, we summarize the current methods and strategy for making organs translucent (removal of lipids, decolourization of haemoglobin and adjusting the refractive index of the specimen). We then discuss possible applications to circadian biology. For example, the coupling of circadian rhythms among different brain regions, brain activity in sleep-wake cycles and the role of migrating cells such as immune cells and cancer cells in chronopharmacology. © 2015 John Wiley & Sons Ltd.

  14. A fluorescence spotlight on the clockwork development and metabolism of bone.

    PubMed

    Iimura, Tadahiro; Nakane, Ayako; Sugiyama, Mayu; Sato, Hiroki; Makino, Yuji; Watanabe, Takashi; Takagi, Yuzo; Numano, Rika; Yamaguchi, Akira

    2012-05-01

    Biological phenomena that exhibit periodic activity are often referred as biorhythms or biological clocks. Among these, circadian rhythms, cyclic patterns reflecting a 24-h cycle, are the most obvious in many physiological activities including bone growth and metabolism. In the late 1990s, several clock genes were isolated and their primary structures and functions were identified. The feedback loop model of transcriptional factors was proposed to work as a circadian core oscillator not only in the suprachiasmatic nuclei of the anterior hypothalamus, which is recognized as the mammalian central clock, but also in various peripheral tissues including cartilage and bone. Looking back to embryonic development, the fundamental architecture of skeletal patterning is regulated by ultradian clocks that are defined as biorhythms that cycle more than once every 24 h. As post-genomic approaches, transcriptome analysis by micro-array and bioimaging assays to detect luminescent and fluorescent signals have been exploited to uncover a more comprehensive set of genes and spatio-temporal regulation of the clockwork machinery in animal models. In this review paper, we provide an overview of topics related to these molecular clocks in skeletal biology and medicine, and discuss how fluorescence imaging approaches can contribute to widening our views of this realm of biomedical science.

  15. The AGS Ggamma Meter and Calibrating the Gauss Clock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahrens, Leif

    2014-03-31

    During AGS Polarized Proton acceleration periods, one output from the AGS Ggamma Meter, namely the energy (or Ggamma) calculated from the magnetic field in the AGS main magnets and the beam radius- both measured in particular instant, is used to figure out the times in the AGS magnet acceleration cycle when the beam passes through a particular set of depolarizing resonances. The resonance set occur whenever a particle’s Ggamma (energy*(G/m) becomes nearly equal to n*Qx (i.e. any integer multiplied by the horizontal betatron tune). This deliverable is why the machinery is referred to as the ''Ggamma Meter'' rather than themore » AGS energy meter. The Ggamma Meter takes as inputs a set of measurements of frequency (F(t)), radius (r(t)), and gauss clock counts (GCC(t)). The other energy (GgammaBr) assumes the field when the gauss clock starts counting is known. The change in field to time t is given by the measured accumulated gauss clock counts multiplied by the gauss clock calibration (gauss/GCC). In order to deal with experimental data, this calibration factor gets an added ad hoc complication, namely a correction dependent on the rate of change the counting rate. The Ggamma meter takes GCC(t) and together with the past history for this cycle calculates B(t).« less

  16. Development of a drive system for a sequential space camera

    NASA Technical Reports Server (NTRS)

    Sharpsteen, J. T.; Solheim, C. D.; Stoap, L. J.

    1976-01-01

    Breadboard models of single and dual motor drives for the shutter, claw and magazine of a space camera system were designed and tested. The single motor technique utilizes a single electronically commutated motor to drive the claw and shutter without resorting to a solenoid actuated clutch for pulse operation. Shutter speed is established by a combination of the cinemode speed and the opening of the conventional DAC two piece shutter. Pulse mode operation is obtained by applying power at a fixed clock rate and removing power at an appropriate point in the mechanical cycle such that the motor comes to rest by system friction. The dual motor approach utilizes a stepper motor to drive the shutter and an electronically commutated dc motor to drive the claw and magazine functions. The motors are synchronized electronically.

  17. An algorithm for the Italian atomic time scale

    NASA Technical Reports Server (NTRS)

    Cordara, F.; Vizio, G.; Tavella, P.; Pettiti, V.

    1994-01-01

    During the past twenty years, the time scale at the IEN has been realized by a commercial cesium clock, selected from an ensemble of five, whose rate has been continuously steered towards UTC to maintain a long term agreement within 3 x 10(exp -13). A time scale algorithm, suitable for a small clock ensemble and capable of improving the medium and long term stability of the IEN time scale, has been recently designed taking care of reducing the effects of the seasonal variations and the sudden frequency anomalies of the single cesium clocks. The new time scale, TA(IEN), is obtained as a weighted average of the clock ensemble computed once a day from the time comparisons between the local reference UTC(IEN) and the single clocks. It is foreseen to include in the computation also ten cesium clocks maintained in other Italian laboratories to further improve its reliability and its long term stability. To implement this algorithm, a personal computer program in Quick Basic has been prepared and it has been tested at the IEN time and frequency laboratory. Results obtained using this algorithm on the real clocks data relative to a period of about two years are presented.

  18. Rod electrical coupling is controlled by a circadian clock and dopamine in mouse retina

    PubMed Central

    Jin, Nan Ge; Chuang, Alice Z; Masson, Philippe J; Ribelayga, Christophe P

    2015-01-01

    Key points Rod photoreceptors play a key role in vision in dim light; in the mammalian retina, although rods are anatomically connected or coupled by gap junctions, a type of electrical synapse, the functional importance and regulation of rod coupling has remained elusive. We have developed a new technique in the mouse: perforated patch-clamp recording of rod inner segments in isolated intact retinae maintained by superfusion. We find that rod electrical coupling is controlled by a circadian clock and dopamine, and is weak during the day and stronger at night. The results also indicate that the signal-to-noise ratio for a dim light response is increased at night because of coupling. Our observations will provide a framework for understanding the daily variations in human vision as well as the basis of specific retinal malfunctions. Abstract Rod single-photon responses are critical for vision in dim light. Electrical coupling via gap junction channels shapes the light response properties of vertebrate photoreceptors, but the regulation of rod coupling and its impact on the single-photon response have remained unclear. To directly address these questions, we developed a perforated patch-clamp recording technique and recorded from single rod inner segments in isolated intact neural mouse retinae, maintained by superfusion. Experiments were conducted at different times of the day or under constant environmental conditions, at different times across the circadian cycle. We show that rod electrical coupling is regulated by a circadian clock and dopamine, so that coupling is weak during the day and strong at night. Altogether, patch-clamp recordings of single-photon responses in mouse rods, tracer coupling, receptive field measurements and pharmacological manipulations of gap junction and dopamine receptor activity provide compelling evidence that rod coupling is modulated in a circadian manner. These data are consistent with computer modelling. At night, single-photon responses are smaller due to coupling, but the signal-to-noise ratio for a dim (multiphoton) light response is increased at night because of signal averaging between coupled rods. PMID:25616058

  19. CLOCK phosphorylation by AKT regulates its nuclear accumulation and circadian gene expression in peripheral tissues.

    PubMed

    Luciano, Amelia K; Zhou, Wenping; Santana, Jeans M; Kyriakides, Cleo; Velazquez, Heino; Sessa, William C

    2018-06-08

    C ircadian l ocomotor o utput c ycles k aput (CLOCK) is a transcription factor that activates transcription of clock-controlled genes by heterodimerizing with BMAL1 and binding to E-box elements on DNA. Although several phosphorylation sites on CLOCK have already been identified, this study characterizes a novel phosphorylation site at serine 845 (Ser-836 in humans). Here, we show that CLOCK is a novel AKT substrate in vitro and in cells, and this phosphorylation site is a negative regulator of CLOCK nuclear localization by acting as a binding site for 14-3-3 proteins. To examine the role of CLOCK phosphorylation in vivo , Clock S845A knockin mice were generated using CRISPR/Cas9 technology. Clock S845A mice are essentially normal with normal central circadian rhythms and hemodynamics. However, examination of core circadian gene expression from peripheral tissues demonstrated that Clock S845A mice have diminished expression of Per2, Reverba, Dbp, and Npas2 in skeletal muscle and Per2, Reverba, Dbp, Per1 , Rora, and Npas2 in the liver during the circadian cycle. The reduction in Dbp levels is associated with reduced H3K9ac at E-boxes where CLOCK binds despite no change in total CLOCK levels. Thus, CLOCK phosphorylation by AKT on Ser-845 regulates its nuclear translocation and the expression levels of certain core circadian genes in insulin-sensitive tissues.

  20. Drosophila Ionotropic Receptor 25a mediates circadian clock resetting by temperature.

    PubMed

    Chen, Chenghao; Buhl, Edgar; Xu, Min; Croset, Vincent; Rees, Johanna S; Lilley, Kathryn S; Benton, Richard; Hodge, James J L; Stanewsky, Ralf

    2015-11-26

    Circadian clocks are endogenous timers adjusting behaviour and physiology with the solar day. Synchronized circadian clocks improve fitness and are crucial for our physical and mental well-being. Visual and non-visual photoreceptors are responsible for synchronizing circadian clocks to light, but clock-resetting is also achieved by alternating day and night temperatures with only 2-4 °C difference. This temperature sensitivity is remarkable considering that the circadian clock period (~24 h) is largely independent of surrounding ambient temperatures. Here we show that Drosophila Ionotropic Receptor 25a (IR25a) is required for behavioural synchronization to low-amplitude temperature cycles. This channel is expressed in sensory neurons of internal stretch receptors previously implicated in temperature synchronization of the circadian clock. IR25a is required for temperature-synchronized clock protein oscillations in subsets of central clock neurons. Extracellular leg nerve recordings reveal temperature- and IR25a-dependent sensory responses, and IR25a misexpression confers temperature-dependent firing of heterologous neurons. We propose that IR25a is part of an input pathway to the circadian clock that detects small temperature differences. This pathway operates in the absence of known 'hot' and 'cold' sensors in the Drosophila antenna, revealing the existence of novel periphery-to-brain temperature signalling channels.

  1. A Circadian Clock in Antarctic Krill: An Endogenous Timing System Governs Metabolic Output Rhythms in the Euphausid Species Euphausia superba

    PubMed Central

    Teschke, Mathias; Wendt, Sabrina; Kawaguchi, So; Kramer, Achim; Meyer, Bettina

    2011-01-01

    Antarctic krill, Euphausia superba, shapes the structure of the Southern Ocean ecosystem. Its central position in the food web, the ongoing environmental changes due to climatic warming, and increasing commercial interest on this species emphasize the urgency of understanding the adaptability of krill to its environment. Krill has evolved rhythmic physiological and behavioral functions which are synchronized with the daily and seasonal cycles of the complex Southern Ocean ecosystem. The mechanisms, however, leading to these rhythms are essentially unknown. Here, we show that krill possesses an endogenous circadian clock that governs metabolic and physiological output rhythms. We found that expression of the canonical clock gene cry2 was highly rhythmic both in a light-dark cycle and in constant darkness. We detected a remarkable short circadian period, which we interpret as a special feature of the krill's circadian clock that helps to entrain the circadian system to the extreme range of photoperiods krill is exposed to throughout the year. Furthermore, we found that important key metabolic enzymes of krill showed bimodal circadian oscillations (∼9–12 h period) in transcript abundance and enzymatic activity. Oxygen consumption of krill showed ∼9–12 h oscillations that correlated with the temporal activity profile of key enzymes of aerobic energy metabolism. Our results demonstrate the first report of an endogenous circadian timing system in Antarctic krill and its likely link to metabolic key processes. Krill's circadian clock may not only be critical for synchronization to the solar day but also for the control of seasonal events. This study provides a powerful basis for the investigation into the mechanisms of temporal synchronization in this marine key species and will also lead to the first comprehensive analyses of the circadian clock of a polar marine organism through the entire photoperiodic cycle. PMID:22022521

  2. A circadian clock in Antarctic krill: an endogenous timing system governs metabolic output rhythms in the euphausid species Euphausia superba.

    PubMed

    Teschke, Mathias; Wendt, Sabrina; Kawaguchi, So; Kramer, Achim; Meyer, Bettina

    2011-01-01

    Antarctic krill, Euphausia superba, shapes the structure of the Southern Ocean ecosystem. Its central position in the food web, the ongoing environmental changes due to climatic warming, and increasing commercial interest on this species emphasize the urgency of understanding the adaptability of krill to its environment. Krill has evolved rhythmic physiological and behavioral functions which are synchronized with the daily and seasonal cycles of the complex Southern Ocean ecosystem. The mechanisms, however, leading to these rhythms are essentially unknown. Here, we show that krill possesses an endogenous circadian clock that governs metabolic and physiological output rhythms. We found that expression of the canonical clock gene cry2 was highly rhythmic both in a light-dark cycle and in constant darkness. We detected a remarkable short circadian period, which we interpret as a special feature of the krill's circadian clock that helps to entrain the circadian system to the extreme range of photoperiods krill is exposed to throughout the year. Furthermore, we found that important key metabolic enzymes of krill showed bimodal circadian oscillations (∼9-12 h period) in transcript abundance and enzymatic activity. Oxygen consumption of krill showed ∼9-12 h oscillations that correlated with the temporal activity profile of key enzymes of aerobic energy metabolism. Our results demonstrate the first report of an endogenous circadian timing system in Antarctic krill and its likely link to metabolic key processes. Krill's circadian clock may not only be critical for synchronization to the solar day but also for the control of seasonal events. This study provides a powerful basis for the investigation into the mechanisms of temporal synchronization in this marine key species and will also lead to the first comprehensive analyses of the circadian clock of a polar marine organism through the entire photoperiodic cycle.

  3. Intrinsic near-24-h pacemaker period determines limits of circadian entrainment to a weak synchronizer in humans

    NASA Technical Reports Server (NTRS)

    Wright, K. P. Jr; Hughes, R. J.; Kronauer, R. E.; Dijk, D. J.; Czeisler, C. A.

    2001-01-01

    Endogenous circadian clocks are robust regulators of physiology and behavior. Synchronization or entrainment of biological clocks to environmental time is adaptive and important for physiological homeostasis and for the proper timing of species-specific behaviors. We studied subjects in the laboratory for up to 55 days each to determine the ability to entrain the human clock to a weak circadian synchronizing stimulus [scheduled activity-rest cycle in very dim (approximately 1.5 lux in the angle of gaze) light-dark cycle] at three approximately 24-h periods: 23.5, 24.0, and 24.6 h. These studies allowed us to test two competing hypotheses as to whether the period of the human circadian pacemaker is near to or much longer than 24 h. We report here that imposition of a sleep-wake schedule with exposure to the equivalent of candle light during wakefulness and darkness during sleep is usually sufficient to maintain circadian entrainment to the 24-h day but not to a 23.5- or 24.6-h day. Our results demonstrate functionally that, in normally entrained sighted adults, the average intrinsic circadian period of the human biological clock is very close to 24 h. Either exposure to very dim light and/or the scheduled sleep-wake cycle itself can entrain this near-24-h intrinsic period of the human circadian pacemaker to the 24-h day.

  4. Time-related dynamics of variation in core clock gene expression levels in tissues relevant to the immune system.

    PubMed

    Mazzoccoli, G; Sothern, R B; Greco, A; Pazienza, V; Vinciguerra, M; Liu, S; Cai, Y

    2011-01-01

    Immune parameters show rhythmic changes with a 24-h periodicity driven by an internal circadian timing system that relies on clock genes (CGs). CGs form interlocked transcription-translation feedback loops to generate and maintain 24-h mRNA and protein oscillations. In this study we evaluate and compare the profiles and the dynamics of variation of CG expression in peripheral blood, and two lymphoid tissues of mice. Expression levels of seven recognized key CGs (mBmal1, mClock, mPer1, mPer2, mCry1, mCry2, and Rev-erbalpha) were evaluated by quantitative RT- PCR in spleen, thymus and peripheral blood of C57BL/6 male mice housed on a 12-h light (L)-dark (D) cycle and sacrificed every 4 h for 24 h (3-4 mice/time point). We found a statistically significant time-effect in spleen (S), thymus (T) and blood (B) for the original values of expression level of mBmal1 (S), mClock (T, B), mPer1 (S, B), mPer2 (S), mCry1 (S), mCry2 (B) and mRev-Erbalpha (S, T, B) and for the fractional variation calculated between single time-point expression value of mBmal1 (B), mPer2 (T), mCry2 (B) and mRev-Erbalpha (S). A significant 24-h rhythm was validated for five CGs in blood (mClock, mPer1, mPer2, mCry2, mRev-Erbalpha), for four CGs in the spleen (mBmal1, mPer1, mPer2, mRev-Erbalpha), and for three CGs in the thymus (mClock, mPer2, mRev-Erbalpha). The original values of acrophases for mBmal1, mClock, mPer1, mPer2, mCry1 and mCry2 were very similar for spleen and thymus and advanced by several hours for peripheral blood compared to the lymphoid tissues, whereas the phases of mRev-Erbalpha were coincident for all three tissues. In conclusion, central and peripheral lymphoid tissues in the mouse show different sequences of activation of clock gene expression compared to peripheral blood. These differences may underlie the compartmental pattern of web functioning in the immune system.

  5. Dim Light at Night Disrupts Molecular Circadian Rhythms and Affects Metabolism

    PubMed Central

    Fonken, Laura K.; Aubrecht, Taryn G.; Meléndez-Fernández, O. Hecmarie; Weil, Zachary M.; Nelson, Randy J.

    2014-01-01

    With the exception of high latitudes, life has evolved under bright days and dark nights. Most organisms have developed endogenously driven circadian rhythms which are synchronized to this daily light/dark cycle. In recent years, humans have shifted away from the naturally occurring solar light cycle in favor of artificial and sometimes irregular light schedules produced by electrical lighting. Exposure to unnatural light cycles is increasingly associated with obesity and metabolic syndrome; however the means by which environmental lighting alters metabolism are poorly understood. Thus, we exposed mice to nighttime light and investigated changes in the circadian system and body weight. Here we report that exposure to ecologically relevant levels of dim (5 lux) light at night attenuate core circadian clock rhythms in the SCN at both the gene and protein level. Moreover, circadian clock rhythms were perturbed in the liver by nighttime light exposure. Changes in the circadian clock were associated with temporal alterations in feeding behavior and increased weight gain. These results are significant because they provide mechanistic evidence for how mild changes in environmental lighting can alter circadian and metabolic function. PMID:23929553

  6. Molecular clock of HIV-1 envelope genes under early immune selection

    DOE PAGES

    Park, Sung Yong; Love, Tanzy M. T.; Perelson, Alan S.; ...

    2016-06-01

    Here, the molecular clock hypothesis that genes or proteins evolve at a constant rate is a key tool to reveal phylogenetic relationships among species. Using the molecular clock, we can trace an infection back to transmission using HIV-1 sequences from a single time point. Whether or not a strict molecular clock applies to HIV-1’s early evolution in the presence of immune selection has not yet been fully examined.

  7. Molecular clock of HIV-1 envelope genes under early immune selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Sung Yong; Love, Tanzy M. T.; Perelson, Alan S.

    Here, the molecular clock hypothesis that genes or proteins evolve at a constant rate is a key tool to reveal phylogenetic relationships among species. Using the molecular clock, we can trace an infection back to transmission using HIV-1 sequences from a single time point. Whether or not a strict molecular clock applies to HIV-1’s early evolution in the presence of immune selection has not yet been fully examined.

  8. Keeping the right time in space: importance of circadian clock and sleep for physiology and performance of astronauts.

    PubMed

    Guo, Jin-Hu; Qu, Wei-Min; Chen, Shan-Guang; Chen, Xiao-Ping; Lv, Ke; Huang, Zhi-Li; Wu, Yi-Lan

    2014-01-01

    The circadian clock and sleep are essential for human physiology and behavior; deregulation of circadian rhythms impairs health and performance. Circadian clocks and sleep evolved to adapt to Earth's environment, which is characterized by a 24-hour light-dark cycle. Changes in gravity load, lighting and work schedules during spaceflight missions can impact circadian clocks and disrupt sleep, in turn jeopardizing the mood, cognition and performance of orbiting astronauts. In this review, we summarize our understanding of both the influence of the space environment on the circadian timing system and sleep and the impact of these changes on astronaut physiology and performance.

  9. CLOCK gene variation is associated with incidence of type-2 diabetes and cardiovascular diseases in type-2 diabetic subjects: dietary modulation in the PREDIMED randomized trial.

    PubMed

    Corella, Dolores; Asensio, Eva M; Coltell, Oscar; Sorlí, José V; Estruch, Ramón; Martínez-González, Miguel Ángel; Salas-Salvadó, Jordi; Castañer, Olga; Arós, Fernando; Lapetra, José; Serra-Majem, Lluís; Gómez-Gracia, Enrique; Ortega-Azorín, Carolina; Fiol, Miquel; Espino, Javier Díez; Díaz-López, Andrés; Fitó, Montserrat; Ros, Emilio; Ordovás, José M

    2016-01-07

    Circadian rhythms regulate key biological processes influencing metabolic pathways. Disregulation is associated with type 2 diabetes (T2D) and cardiovascular diseases (CVD). Circadian rhythms are generated by a transcriptional autoregulatory feedback loop involving core clock genes. CLOCK (circadian locomotor output cycles protein kaput), one of those core genes, is known to regulate glucose metabolism in rodent models. Cross-sectional studies in humans have reported associations between this locus and obesity, plasma glucose, hypertension and T2D prevalence, supporting its role in cardiovascular risk. However, no longitudinal study has investigated the association between CLOCK gene variation and T2D or CVD incidence. Moreover, although in a previous work we detected a gene-diet interaction between the CLOCK-rs4580704 (C > G) single nucleotide polymorphism (SNP) and monounsaturated (MUFA) intake on insulin resistance, no interventional study has analyzed gene-diet interactions on T2D or CVD outcomes. We analyzed the association between the CLOCK-rs4580704 SNP and incidence of T2D and CVD longitudinally in 7098 PREDIMED trial (ISRCTN35739639) participants after a median 4.8-year follow-up. We also examined modulation by Mediterranean diet (MedDiet) intervention (high in MUFA) on these associations. We observed a significant association between the CLOCK-rs4580704 SNP and T2D incidence in n = 3671 non-T2D PREDIMED participants, with variant allele (G) carriers showing decreased incidence (dominant model) compared with CC homozygotes (HR: 0.69; 95 % CI 0.54-0.87; P = 0.002). This protection was more significant in the MedDiet intervention group (HR: 0.58; 95 % CI 0.43-0.78; P < 0.001) than in the control group (HR: 0.95; 95 % CI 0.63-1.44; P = 0.818). Moreover, we detected a statistically significant interaction (P = 0.018) between CLOCK-rs4580704 SNP and T2D status on stroke. Thus, only in T2D subjects was CLOCK-rs4580704 SNP associated with stroke risk, G-carriers having decreased risk (HR: 0.61; 95 % CI 0.40-0.94; P = 0.024 versus CC) in the multivariable-adjusted model. In agreement with our previous results showing a protective effect of the G-allele against hyperglycemia, we extended our findings by reporting a novel association with lower T2D incidence and also suggesting a dietary modulation. Moreover, we report for the first time an association between a CLOCK polymorphism and stroke in T2D subjects, suggesting that core clock genes may significantly contribute to increased CVD risk in T2D.

  10. Organ specificity in the plant circadian system is explained by different light inputs to the shoot and root clocks.

    PubMed

    Bordage, Simon; Sullivan, Stuart; Laird, Janet; Millar, Andrew J; Nimmo, Hugh G

    2016-10-01

    Circadian clocks allow the temporal compartmentalization of biological processes. In Arabidopsis, circadian rhythms display organ specificity but the underlying molecular causes have not been identified. We investigated the mechanisms responsible for the similarities and differences between the clocks of mature shoots and roots in constant conditions and in light : dark cycles. We developed an imaging system to monitor clock gene expression in shoots and light- or dark-grown roots, modified a recent mathematical model of the Arabidopsis clock and used this to simulate our new data. We showed that the shoot and root circadian clocks have different rhythmic properties (period and amplitude) and respond differently to light quality. The root clock was entrained by direct exposure to low-intensity light, even in antiphase to the illumination of shoots. Differences between the clocks were more pronounced in conditions where light was present than in constant darkness, and persisted in the presence of sucrose. We simulated the data successfully by modifying those parameters of a clock model that are related to light inputs. We conclude that differences and similarities between the shoot and root clocks can largely be explained by organ-specific light inputs. This provides mechanistic insight into the developing field of organ-specific clocks. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  11. Melatonin promotes circadian rhythm-induced proliferation through Clock/histone deacetylase 3/c-Myc interaction in mouse adipose tissue.

    PubMed

    Liu, Zhenjiang; Gan, Lu; Luo, Dan; Sun, Chao

    2017-05-01

    Melatonin is synthesized in the pineal gland and controls circadian rhythm of peripheral adipose tissue, resulting in changes in body weight. Although core regulatory components of clock rhythmicity have been defined, insight into the mechanisms of circadian rhythm-mediated proliferation in adipose tissue is still limited. Here, we showed that melatonin (20 mg/kg/d) promoted circadian and proliferation processes in white adipose tissue. The circadian amplitudes of brain and muscle aryl hydrocarbon receptor nuclear translocator-like 1 (Bmal1, P<.05) and circadian locomotor output cycles kaput (Clock, P<.05), period 2 (Per2, P<.05), cyclin E (P<.05), and c-Myc (P<.05) were directly increased by melatonin in adipose tissue. Melatonin also promoted cell cycle and increased cell numbers (P<.05), which was correlated with the Clock expression (P<.05). Further analysis demonstrated that Clock bound to the E-box elements in the promoter region of c-Myc and then directly stimulated c-Myc transcription. Moreover, Clock physically interacted with histone deacetylase 3 (HDAC3) and formed a complex with c-Myc to promote adipocyte proliferation. Melatonin also attenuated circadian disruption and promoted adipocyte proliferation in chronic jet-lagged mice and obese mice. Thus, our study found that melatonin promoted adipocyte proliferation by forming a Clock/HDAC3/c-Myc complex and subsequently driving the circadian amplitudes of proliferation genes. Our data reveal a novel mechanism that links circadian rhythm to cell proliferation in adipose tissue. These findings also identify a new potential means for melatonin to prevent and treat sleep deprivation-caused obesity. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Existence of a photoinducible phase for ovarian development and photoperiod-related alteration of clock gene expression in a damselfish.

    PubMed

    Takeuchi, Yuki; Hada, Noriko; Imamura, Satoshi; Hur, Sung-Pyo; Bouchekioua, Selma; Takemura, Akihiro

    2015-10-01

    The sapphire devil, Chrysiptera cyanea, is a reef-associated damselfish and their ovarian development can be induced by a long photoperiod. In this study, we demonstrated the existence of a photoinducible phase for the photoperiodic ovarian development in the sapphire devil. Induction of ovarian development under night-interruption light schedules and Nanda-Hamner cycles revealed that the photoinducible phase appeared in a circadian manner between ZT12 and ZT13. To characterize the effect of photoperiod on clock gene expression in the brain of this species, we determined the expression levels of the sdPer1, sdPer2, sdCry1, and sdCry2 clock genes under constant light and dark conditions (LL and DD) and photoperiodic (short and long photoperiods). The expression of sdPer1 exhibited clear circadian oscillation under both LL and DD conditions, while sdPer2 and sdCry1 expression levels were lower under DD than under LL conditions and sdCry2 expression was lower under LL than under DD conditions. These results suggest a key role for sdPer1 in circadian clock cycling and that sdPer2, sdCry1, and sdCry2 are light-responsive clock genes in the sapphire devil. After 1 week under a long photoperiod, we observed photoperiod-related changes in sdPer1, sdPer2, and sdCry2 expression, but not in sdCry1 expression. These results suggest that the expression patterns of some clock genes exhibit seasonal variation according to seasonal changes in day length and that such seasonal alteration of clock gene expression may contribute to seasonal recognition by the sapphire devil. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Circadian aspects of adipokine regulation in rodents.

    PubMed

    Challet, Etienne

    2017-12-01

    Most hormones display daily fluctuations of secretion during the 24-h cycle. This is also the case for adipokines, in particular the anorexigenic hormone, leptin. The temporal organization of the endocrine system is principally controlled by a network of circadian clocks. The circadian network comprises a master circadian clock, located in the suprachiasmatic nucleus of the hypothalamus, synchronized to the ambient light, and secondary circadian clocks found in various peripheral organs, such as the adipose tissues. Besides circadian clocks, other factors such as meals and metabolic status impact daily profiles of hormonal levels. In turn, the precise daily pattern of hormonal release provides temporal signaling information. This review will describe the reciprocal links between the circadian clocks and rhythmic secretion of leptin, and discuss the metabolic impact of circadian desynchronization and altered rhythmic leptin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The Drosophila Receptor Protein Tyrosine Phosphatase LAR Is Required for Development of Circadian Pacemaker Neuron Processes That Support Rhythmic Activity in Constant Darkness But Not during Light/Dark Cycles

    PubMed Central

    Agrawal, Parul

    2016-01-01

    In Drosophila, a transcriptional feedback loop that is activated by CLOCK-CYCLE (CLK-CYC) complexes and repressed by PERIOD-TIMELESS (PER-TIM) complexes keeps circadian time. The timing of CLK-CYC activation and PER-TIM repression is regulated post-translationally, in part through rhythmic phosphorylation of CLK, PER, and TIM. Although kinases that control PER, TIM, and CLK levels, activity, and/or subcellular localization have been identified, less is known about phosphatases that control clock protein dephosphorylation. To identify clock-relevant phosphatases, clock-cell-specific RNAi knockdowns of Drosophila phosphatases were screened for altered activity rhythms. One phosphatase that was identified, the receptor protein tyrosine phosphatase leukocyte-antigen-related (LAR), abolished activity rhythms in constant darkness (DD) without disrupting the timekeeping mechanism in brain pacemaker neurons. However, expression of the neuropeptide pigment-dispersing factor (PDF), which mediates pacemaker neuron synchrony and output, is eliminated in the dorsal projections from small ventral lateral (sLNv) pacemaker neurons when Lar expression is knocked down during development, but not in adults. Loss of Lar function eliminates sLNv dorsal projections, but PDF expression persists in sLNv and large ventral lateral neuron cell bodies and their remaining projections. In contrast to the defects in lights-on and lights-off anticipatory activity seen in flies that lack PDF, Lar RNAi knockdown flies anticipate the lights-on and lights-off transition normally. Our results demonstrate that Lar is required for sLNv dorsal projection development and suggest that PDF expression in LNv cell bodies and their remaining projections mediate anticipation of the lights-on and lights-off transitions during a light/dark cycle. SIGNIFICANCE STATEMENT In animals, circadian clocks drive daily rhythms in physiology, metabolism, and behavior via transcriptional feedback loops. Because key circadian transcriptional activators and repressors are regulated by phosphorylation, we screened for phosphatases that alter activity rhythms when their expression was reduced. One such phosphatase, leukocyte-antigen-related (LAR), abolishes activity rhythms, but does not disrupt feedback loop function. Rather, Lar disrupts clock output by eliminating axonal processes from clock neurons that release pigment-dispersing factor (PDF) neuropeptide into the dorsal brain, but PDF expression persists in their cell bodies and remaining projections. In contrast to flies that lack PDF, flies that lack Lar anticipate lights-on and lights-off transitions normally, which suggests that the remaining PDF expression mediates activity during light/dark cycles. PMID:27030770

  15. The expression of the clock gene cycle has rhythmic pattern and is affected by photoperiod in the moth Sesamia nonagrioides.

    PubMed

    Kontogiannatos, Dimitrios; Gkouvitsas, Theodoros; Kourti, Anna

    2017-06-01

    To obtain clues to the link between the molecular mechanism of circadian and photoperiod clocks, we have cloned the circadian clock gene cycle (Sncyc) in the corn stalk borer, Sesamia nonagrioides, which undergoes facultative diapause controlled by photoperiod. Sequence analysis revealed a high degree of conservation among insects for this gene. SnCYC consists of 667 amino acids and structural analysis showed that it contains a BCTR domain in its C-terminal in addition to the common domains found in Drosophila CYC, i.e. bHLH, PAS-A, PAS-B domains. The results revealed that the sequence of Sncyc showed a similarity to that of its mammalian orthologue, Bmal1. We also investigated the expression patterns of Sncyc in the brain of larvae growing under long-day 16L: 8D (LD), constant darkness (DD) and short-day 10L: 14D (SD) conditions using qRT-PCR assays. The mRNAs of Sncyc expression was rhythmic in LD, DD and SD cycles. Also, it is remarkable that the photoperiodic conditions affect the expression patterns and/or amplitudes of circadian clock gene Sncyc. This gene is associated with diapause in S. nonagrioides, because under SD (diapause conditions) the photoperiodic signal altered mRNA accumulation. Sequence and expression analysis of cyc in S. nonagrioides shows interesting differences compared to Drosophila where this gene does not oscillate or change in expression patterns in response to photoperiod, suggesting that this species is an interesting new model to study the molecular control of insect circadian and photoperiodic clocks. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. High-speed optical phase-shifting apparatus

    DOEpatents

    Zortman, William A.

    2016-11-08

    An optical phase shifter includes an optical waveguide, a plurality of partial phase shifting elements arranged sequentially, and control circuitry electrically coupled to the partial phase shifting elements. The control circuitry is adapted to provide an activating signal to each of the N partial phase shifting elements such that the signal is delayed by a clock cycle between adjacent partial phase shifting elements in the sequence. The transit time for a guided optical pulse train between the input edges of consecutive partial phase shifting elements in the sequence is arranged to be equal to a clock cycle, thereby enabling pipelined processing of the optical pulses.

  17. Circadian Clock genes Per2 and clock regulate steroid production, cell proliferation, and luteinizing hormone receptor transcription in ovarian granulosa cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimizu, Takashi, E-mail: shimizut@obihiro.ac.jp; Hirai, Yuko; Murayama, Chiaki

    2011-08-19

    Highlights: {yields} Treatment with Per2 and Clock siRNAs decreased the number of granulosa cells and LHr expression. {yields}Per2 siRNA treatment did not stimulate the production of estradiol and expression of P450arom. {yields} Clock siRNA treatment inhibited the production of estradiol and expression of P450arom mRNA. {yields}Per2 and Clock siRNA treatment increased and unchanged, respectively, progesterone production in FSH-treated granulosa cells. {yields} The expression of StAR mRNA was increased by Per2 siRNA and unchanged by Clock siRNA. -- Abstract: Circadian Clock genes are associated with the estrous cycle in female animals. Treatment with Per2 and Clock siRNAs decreased the number ofmore » granulosa cells and LHr expression in follicle-stimulating hormone FSH-treated granulosa cells. Per2 siRNA treatment did not stimulate the production of estradiol and expression of P450arom, whereas Clock siRNA treatment inhibited the production of estradiol and expression of P450arom mRNA. Per2 and Clock siRNA treatment increased and unchanged, respectively, progesterone production in FSH-treated granulosa cells. Similarly, expression of StAR mRNA was increased by Per2 siRNA and unchanged by Clock siRNA. Our data provide a new insight that Per2 and Clock have different action on ovarian granulosa cell functions.« less

  18. Frequency Dependence of Single-event Upset in Advanced Commerical PowerPC Microprocessors

    NASA Technical Reports Server (NTRS)

    Irom, Frokh; Farmanesh, Farhad F.; Swift, Gary M.; Johnston, Allen H.

    2004-01-01

    This paper examines single-event upsets in advanced commercial SOI microprocessors in a dynamic mode, studying SEU sensitivity of General Purpose Registers (GPRs) with clock frequency. Results are presented for SOI processors with feature sizes of 0.18 microns and two different core voltages. Single-event upset from heavy ions is measured for advanced commercial microprocessors in a dynamic mode with clock frequency up to 1GHz. Frequency and core voltage dependence of single-event upsets in registers is discussed.

  19. Upset due to a single particle caused propagated transients in a bulk CMOS microprocessor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leavy, J.F.; Hoffmann, L.F.; Shoran, R.W.

    1991-12-01

    This paper reports on data pattern advances observed in preset, single event upset (SEU) hardened clocked flip-flops, during static Cf-252 exposures on a bulk CMOS microprocessor, that were attributable to particle caused anomalous clock signals, or propagated transients. SPICE simulations established that particle strikes in the output nodes of a clock control logic flip-flop could produce transients of sufficient amplitude and duration to be accepted as legitimate pulses by clock buffers fed by the flip-flop's output nodes. The buffers would then output false clock pulses, thereby advancing the state of the present flip-flops. Masking the clock logic on one ofmore » the test chips made the flip-flop data advance cease, confirming the clock logic as the source of the SEU. By introducing N{sub 2} gas, at reduced pressures, into the SEU test chamber to attenuate Cf-252 particle LET's, a 24-26 MeV-cm{sup 2}/mg LET threshold was deduced. Subsequent tests, at the 88-inch cyclotron at Berkeley, established an LET threshold of 30 MeV-cm{sup 2}/mg (283 MeV Cu at 0{degrees}) for the generation of false clocks. Cyclotron SEU tests are considered definitive, while Cf-252 data usually is not. However, in this instance Cf-252 tests proved analytically useful, providing SEU characterization data that was both timely and inexpensive.« less

  20. Expression of Clock genes in the pineal glands of newborn rats with hypoxic-ischemic encephalopathy☆

    PubMed Central

    Sun, Bin; Feng, Xing; Ding, Xin; Bao, Li; Li, Yongfu; He, Jun; Jin, Meifang

    2012-01-01

    Clock genes are involved in circadian rhythm regulation, and surviving newborns with hypoxic-ischemic encephalopathy may present with sleep-wake cycle reversal. This study aimed to determine the expression of the clock genes Clock and Bmal1, in the pineal gland of rats with hypoxic-ischemic brain damage. Results showed that levels of Clock mRNA were not significantly changed within 48 hours after cerebral hypoxia and ischemia. Expression levels of CLOCK and BMAL1 protein were significantly higher after 48 hours. The levels of Bmal1 mRNA reached a peak at 36 hours, but were significantly reduced at 48 hours. Experimental findings indicate that Clock and Bmal1 genes were indeed expressed in the pineal glands of neonatal rats. At the initial stage (within 36 hours) of hypoxic-ischemic brain damage, only slight changes in the expression levels of these two genes were detected, followed by significant changes at 36–48 hours. These changes may be associated with circadian rhythm disorder induced by hypoxic-ischemic brain damage. PMID:25538743

  1. Transcriptional Control of Antioxidant Defense by the Circadian Clock

    PubMed Central

    Patel, Sonal A.; Velingkaar, Nikkhil S.

    2014-01-01

    Abstract Significance: The circadian clock, an internal timekeeping system, is implicated in the regulation of metabolism and physiology, and circadian dysfunctions are associated with pathological changes in model organisms and increased risk of some diseases in humans. Recent Advances: Data obtained in different organisms, including humans, have established a tight connection between the clock and cellular redox signaling making it among the major candidates for a link between the circadian system and physiological processes. Critical Issues: In spite of the recent progress in understanding the importance of the circadian clock in the regulation of reactive oxygen species homeostasis, molecular mechanisms and key regulators are mostly unknown. Future Directions: Here we review, with an emphasis on transcriptional control, the circadian-clock-dependent control of oxidative stress response system as a potential mechanism in age-associated diseases. We will discuss the roles of the core clock components such as brain and muscle ARNT-like 1, Circadian Locomotor Output Cycles Kaput, the circadian-clock-controlled transcriptional factors such as nuclear factor erythroid-2-related factor, and peroxisome proliferator-activated receptor and circadian clock control chromatin modifying enzymes from sirtuin family in the regulation of cellular and organism antioxidant defense. Antioxid. Redox Signal. 20, 2997–3006. PMID:24111970

  2. A polarization converting device for an interfering enhanced CPT atomic clock.

    PubMed

    Wang, Kewei; Tian, Yuan; Yin, Yi; Wang, Yuanchao; Gu, Sihong

    2017-11-01

    With interfering enhanced coherent population trapping (CPT) signals, a CPT atomic clock with improved frequency stability performance can be realized. We explore an optical device that converts single-polarized bichromatic light to left and right circularly polarized superposed bichromatic light to generate interfering enhanced CPT resonance with atoms. We have experimentally studied a tabletop CPT atomic clock apparatus with a microfabricated 87 Rb atomic chip-scale cell, and the study results show that it is promising to realize a compact CPT atomic clock, even a chip-scale CPT atomic clock through microfabrication, with improved frequency stability performance.

  3. A polarization converting device for an interfering enhanced CPT atomic clock

    NASA Astrophysics Data System (ADS)

    Wang, Kewei; Tian, Yuan; Yin, Yi; Wang, Yuanchao; Gu, Sihong

    2017-11-01

    With interfering enhanced coherent population trapping (CPT) signals, a CPT atomic clock with improved frequency stability performance can be realized. We explore an optical device that converts single-polarized bichromatic light to left and right circularly polarized superposed bichromatic light to generate interfering enhanced CPT resonance with atoms. We have experimentally studied a tabletop CPT atomic clock apparatus with a microfabricated 87Rb atomic chip-scale cell, and the study results show that it is promising to realize a compact CPT atomic clock, even a chip-scale CPT atomic clock through microfabrication, with improved frequency stability performance.

  4. FAD Regulates CRYPTOCHROME Protein Stability and Circadian Clock in Mice.

    PubMed

    Hirano, Arisa; Braas, Daniel; Fu, Ying-Hui; Ptáček, Louis J

    2017-04-11

    The circadian clock generates biological rhythms of metabolic and physiological processes, including the sleep-wake cycle. We previously identified a missense mutation in the flavin adenine dinucleotide (FAD) binding pocket of CRYPTOCHROME2 (CRY2), a clock protein that causes human advanced sleep phase. This prompted us to examine the role of FAD as a mediator of the clock and metabolism. FAD stabilized CRY proteins, leading to increased protein levels. In contrast, knockdown of Riboflavin kinase (Rfk), an FAD biosynthetic enzyme, enhanced CRY degradation. RFK protein levels and FAD concentrations oscillate in the nucleus, suggesting that they are subject to circadian control. Knockdown of Rfk combined with a riboflavin-deficient diet altered the CRY levels in mouse liver and the expression profiles of clock and clock-controlled genes (especially those related to metabolism including glucose homeostasis). We conclude that light-independent mechanisms of FAD regulate CRY and contribute to proper circadian oscillation of metabolic genes in mammals. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Unsuppressed primordial standard clocks in warm quasi-single field inflation

    NASA Astrophysics Data System (ADS)

    Tong, Xi; Wang, Yi; Zhou, Siyi

    2018-06-01

    We study the non-Gaussianities in quasi-single field inflation with a warm inflation background. The thermal effects at small scales can sufficiently enhance the magnitude of the primordial standard clock signal. This scenario offers us the possibility of probing the UV physics of the very early universe without the exponentially small Boltzmann factor when the mass of the isocurvaton is much heavier than Hubble. The thermal effects at small scales can be studied using the flat space thermal field theory, connected to an effective description using non-Bunch-Davies vacuum at large scales, with large clock signal.

  6. An RNAi Screen To Identify Protein Phosphatases That Function Within the Drosophila Circadian Clock.

    PubMed

    Agrawal, Parul; Hardin, Paul E

    2016-12-07

    Circadian clocks in eukaryotes keep time via cell-autonomous transcriptional feedback loops. A well-characterized example of such a transcriptional feedback loop is in Drosophila, where CLOCK-CYCLE (CLK-CYC) complexes activate transcription of period (per) and timeless (tim) genes, rising levels of PER-TIM complexes feed-back to repress CLK-CYC activity, and degradation of PER and TIM permits the next cycle of CLK-CYC transcription. The timing of CLK-CYC activation and PER-TIM repression is regulated posttranslationally, in part through rhythmic phosphorylation of CLK, PER, and TIM. Previous behavioral screens identified several kinases that control CLK, PER, and TIM levels, subcellular localization, and/or activity, but two phosphatases that function within the clock were identified through the analysis of candidate genes from other pathways or model systems. To identify phosphatases that play a role in the clock, we screened clock cell-specific RNA interference (RNAi) knockdowns of all annotated protein phosphatases and protein phosphatase regulators in Drosophila for altered activity rhythms. This screen identified 19 protein phosphatases that lengthened or shortened the circadian period by ≥1 hr (p ≤ 0.05 compared to controls) or were arrhythmic. Additional RNAi lines, transposon inserts, overexpression, and loss-of-function mutants were tested to independently confirm these RNAi phenotypes. Based on genetic validation and molecular analysis, 15 viable protein phosphatases remain for future studies. These candidates are expected to reveal novel features of the circadian timekeeping mechanism in Drosophila that are likely to be conserved in all animals including humans. Copyright © 2016 Agrawal and Hardin.

  7. The Clock gene clone and its circadian rhythms in Pelteobagrus vachelli

    NASA Astrophysics Data System (ADS)

    Qin, Chuanjie; Shao, Ting

    2015-05-01

    The Clock gene, a key molecule in circadian systems, is widely distributed in the animal kingdom. We isolated a 936-bp partial cDNA sequence of the Clock gene ( Pva-clock) from the darkbarbel catfish Pelteobagrus vachelli that exhibited high identity with Clock genes of other species of fish and animals (65%-88%). The putative domains included a basic helix-loop-helix (bHLH) domain and two period-ARNT-single-minded (PAS) domains, which were also similar to those in other species of fish and animals. Pva-Clock was primarily expressed in the brain, and was detected in all of the peripheral tissues sampled. Additionally, the pattern of Pva-Clock expression over a 24-h period exhibited a circadian rhythm in the brain, liver and intestine, with the acrophase at zeitgeber time 21:35, 23:00, and 23:23, respectively. Our results provide insight into the function of the molecular Clock of P. vachelli.

  8. Chromatin landscape and circadian dynamics: Spatial and temporal organization of clock transcription

    PubMed Central

    Aguilar-Arnal, Lorena; Sassone-Corsi, Paolo

    2015-01-01

    Circadian rhythms drive the temporal organization of a wide variety of physiological and behavioral functions in ∼24-h cycles. This control is achieved through a complex program of gene expression. In mammals, the molecular clock machinery consists of interconnected transcriptional–translational feedback loops that ultimately ensure the proper oscillation of thousands of genes in a tissue-specific manner. To achieve circadian transcriptional control, chromatin remodelers serve the clock machinery by providing appropriate oscillations to the epigenome. Recent findings have revealed the presence of circadian interactomes, nuclear “hubs” of genome topology where coordinately expressed circadian genes physically interact in a spatial and temporal-specific manner. Thus, a circadian nuclear landscape seems to exist, whose interplay with metabolic pathways and clock regulators translates into specific transcriptional programs. Deciphering the molecular mechanisms that connect the circadian clock machinery with the nuclear landscape will reveal yet unexplored pathways that link cellular metabolism to epigenetic control. PMID:25378702

  9. Beneficial effect of CLOCK gene polymorphism rs1801260 in combination with low-fat diet on insulin metabolism in the patients with metabolic syndrome

    USDA-ARS?s Scientific Manuscript database

    Genetic variation at the Circadian Locomotor Output Cycles Kaput (CLOCK) locus has been associated with lifestyle-related conditions such as obesity, metabolic syndrome (MetS) and cardiovascular diseases. In fact, it has been suggested that the disruption of the circadian system may play a causal ro...

  10. Suppressing the Neurospora crassa circadian clock while maintaining light responsiveness in continuous stirred tank reactors

    PubMed Central

    Cockrell, Allison L.; Pirlo, Russell K.; Babson, David M.; Cusick, Kathleen D.; Soto, Carissa M.; Petersen, Emily R.; Davis, Miah J.; Hong, Christian I.; Lee, Kwangwon; Fitzgerald, Lisa A.; Biffinger, Justin C.

    2015-01-01

    Neurospora crassa has been utilized as a model organism for studying biological, regulatory, and circadian rhythms for over 50 years. These circadian cycles are driven at the molecular level by gene transcription events to prepare for environmental changes. N. crassa is typically found on woody biomass and is commonly studied on agar-containing medium which mimics its natural environment. We report a novel method for disrupting circadian gene transcription while maintaining light responsiveness in N. crassa when held in a steady metabolic state using bioreactors. The arrhythmic transcription of core circadian genes and downstream clock-controlled genes was observed in constant darkness (DD) as determined by reverse transcription-quantitative PCR (RT-qPCR). Nearly all core circadian clock genes were up-regulated upon exposure to light during 11hr light/dark cycle experiments under identical conditions. Our results demonstrate that the natural timing of the robust circadian clock in N. crassa can be disrupted in the dark when maintained in a consistent metabolic state. Thus, these data lead to a path for the production of industrial scale enzymes in the model system, N. crassa, by removing the endogenous negative feedback regulation by the circadian oscillator. PMID:26031221

  11. Solid-state Image Sensor with Focal-plane Digital Photon-counting Pixel Array

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.; Pain, Bedabrata

    1997-01-01

    A solid-state focal-plane imaging system comprises an NxN array of high gain. low-noise unit cells. each unit cell being connected to a different one of photovoltaic detector diodes, one for each unit cell, interspersed in the array for ultra low level image detection and a plurality of digital counters coupled to the outputs of the unit cell by a multiplexer(either a separate counter for each unit cell or a row of N of counters time shared with N rows of digital counters). Each unit cell includes two self-biasing cascode amplifiers in cascade for a high charge-to-voltage conversion gain (greater than 1mV/e(-)) and an electronic switch to reset input capacitance to a reference potential in order to be able to discriminate detection of an incident photon by the photoelectron (e(-))generated in the detector diode at the input of the first cascode amplifier in order to count incident photons individually in a digital counter connected to the output of the second cascade amplifier. Reseting the input capacitance and initiating self-biasing of the amplifiers occurs every clock cycle of an integratng period to enable ultralow light level image detection by the may of photovoltaic detector diodes under such ultralow light level conditions that the photon flux will statistically provide only a single photon at a time incident on anyone detector diode during any clock cycle.

  12. Cross‐talk between circadian clocks, sleep‐wake cycles, and metabolic networks: Dispelling the darkness

    PubMed Central

    Ray, Sandipan

    2016-01-01

    Integration of knowledge concerning circadian rhythms, metabolic networks, and sleep‐wake cycles is imperative for unraveling the mysteries of biological cycles and their underlying mechanisms. During the last decade, enormous progress in circadian biology research has provided a plethora of new insights into the molecular architecture of circadian clocks. However, the recent identification of autonomous redox oscillations in cells has expanded our view of the clockwork beyond conventional transcription/translation feedback loop models, which have been dominant since the first circadian period mutants were identified in fruit fly. Consequently, non‐transcriptional timekeeping mechanisms have been proposed, and the antioxidant peroxiredoxin proteins have been identified as conserved markers for 24‐hour rhythms. Here, we review recent advances in our understanding of interdependencies amongst circadian rhythms, sleep homeostasis, redox cycles, and other cellular metabolic networks. We speculate that systems‐level investigations implementing integrated multi‐omics approaches could provide novel mechanistic insights into the connectivity between daily cycles and metabolic systems. PMID:26866932

  13. Cross-talk between circadian clocks, sleep-wake cycles, and metabolic networks: Dispelling the darkness.

    PubMed

    Ray, Sandipan; Reddy, Akhilesh B

    2016-04-01

    Integration of knowledge concerning circadian rhythms, metabolic networks, and sleep-wake cycles is imperative for unraveling the mysteries of biological cycles and their underlying mechanisms. During the last decade, enormous progress in circadian biology research has provided a plethora of new insights into the molecular architecture of circadian clocks. However, the recent identification of autonomous redox oscillations in cells has expanded our view of the clockwork beyond conventional transcription/translation feedback loop models, which have been dominant since the first circadian period mutants were identified in fruit fly. Consequently, non-transcriptional timekeeping mechanisms have been proposed, and the antioxidant peroxiredoxin proteins have been identified as conserved markers for 24-hour rhythms. Here, we review recent advances in our understanding of interdependencies amongst circadian rhythms, sleep homeostasis, redox cycles, and other cellular metabolic networks. We speculate that systems-level investigations implementing integrated multi-omics approaches could provide novel mechanistic insights into the connectivity between daily cycles and metabolic systems. © 2016 The Authors. Bioessays published by WILEY Periodicals, Inc.

  14. Circuit design and simulation of a transmit beamforming ASIC for high-frequency ultrasonic imaging systems.

    PubMed

    Athanasopoulos, Georgios I; Carey, Stephen J; Hatfield, John V

    2011-07-01

    This paper describes the design of a programmable transmit beamformer application-specific integrated circuit (ASIC) with 8 channels for ultrasound imaging systems. The system uses a 20-MHz reference clock. A digital delay-locked loop (DLL) was designed with 50 variable delay elements, each of which provides a clock with different phase from a single reference. Two phase detectors compare the phase difference of the reference clock with the feedback clock, adjusting the delay of the delay elements to bring the feedback clock signal in phase with the reference clock signal. Two independent control voltages for the delay elements ensure that the mark space ratio of the pulses remain at 50%. By combining a 10- bit asynchronous counter with the delays from the DLL, each channel can be programmed to give a maximum time delay of 51 μs with 1 ns resolution. It can also give bursts of up to 64 pulses. Finally, for a single pulse, it can adjust the pulse width between 9 ns and 100 ns by controlling the current flowing through a capacitor in a one-shot circuit, for use with 40-MHz and 5-MHz transducers, respectively.

  15. Circadian Entrainment to the Natural Light-Dark Cycle Across Seasons and the Weekend

    PubMed Central

    Stothard, Ellen R.; McHill, Andrew W.; Depner, Christopher M.; Birks, Brian R.; Moehlman, Thomas M.; Ritchie, Hannah K.; Guzzetti, Jacob R.; Chinoy, Evan D.; LeBourgeois, Monique K.; Axelsson, John; Wright, Kenneth P.

    2017-01-01

    Summary Reduced exposure to daytime sunlight and increased exposure to electrical lighting at night leads to late circadian and sleep timing [1–3]. We have previously shown that exposure to a natural summer 14 hr 40 min:9 hr 20 min light-dark cycle entrains the human circadian clock to solar time, such that the internal biological night begins near sunset and ends near sunrise [1]. Here we show the beginning of the biological night and sleep occur earlier after a week exposure to a natural winter 9 hr 20 min:14 hr 40 min light-dark cycle as compared to the modern electrical lighting environment. Further, we find the human circadian clock is sensitive to seasonal changes in the natural light-dark cycle showing an expansion of the biological night in winter compared to summer—akin to that seen in non-humans [4–8]. We also show circadian and sleep timing occur earlier after spending a weekend camping in a summer 14 hr 39 min:9 hr 21 min natural light-dark cycle compared to a typical weekend in the modern environment. Weekend exposure to natural light was sufficient to achieve ~69% of the shift in circadian timing we previously reported after one week exposure to natural light [1]. These findings provide evidence that the human circadian clock adapts to seasonal changes in the natural light-dark cycle and is timed later in the modern environment in both winter and summer. Further, we demonstrate earlier circadian timing can be rapidly achieved through natural light exposure during a weekend spent camping. PMID:28162893

  16. Lunar Phase Modulates Circadian Gene Expression Cycles in the Broadcast Spawning Coral Acropora millepora.

    PubMed

    Brady, Aisling K; Willis, Bette L; Harder, Lawrence D; Vize, Peter D

    2016-04-01

    Many broadcast spawning corals in multiple reef regions release their gametes with incredible temporal precision just once per year, using the lunar cycle to set the night of spawning. Moonlight, rather than tides or other lunar-regulated processes, is thought to be the proximate factor responsible for linking the night of spawning to the phase of the Moon. We compared patterns of gene expression among colonies of the broadcast spawning coral Acropora millepora at different phases of the lunar cycle, and when they were maintained under one of three experimentally simulated lunar lighting treatments: i) lunar lighting conditions matching those on the reef, or lunar patterns mimicking either ii) constant full Moon conditions, or iii) constant new Moon conditions. Normal lunar illumination was found to shift both the level and timing of clock gene transcription cycles between new and full moons, with the peak hour of expression for a number of genes occurring earlier in the evening under a new Moon when compared to a full Moon. When the normal lunar cycle is replaced with nighttime patterns equivalent to either a full Moon or a new Moon every evening, the normal monthlong changes in the level of expression are destroyed for most genes. In combination, these results indicate that daily changes in moonlight that occur over the lunar cycle are essential for maintaining normal lunar periodicity of clock gene transcription, and this may play a role in regulating spawn timing. These data also show that low levels of light pollution may have an impact on coral biological clocks. © 2016 Marine Biological Laboratory.

  17. Feedback repression is required for mammalian circadian clock function.

    PubMed

    Sato, Trey K; Yamada, Rikuhiro G; Ukai, Hideki; Baggs, Julie E; Miraglia, Loren J; Kobayashi, Tetsuya J; Welsh, David K; Kay, Steve A; Ueda, Hiroki R; Hogenesch, John B

    2006-03-01

    Direct evidence for the requirement of transcriptional feedback repression in circadian clock function has been elusive. Here, we developed a molecular genetic screen in mammalian cells to identify mutants of the circadian transcriptional activators CLOCK and BMAL1, which were uncoupled from CRYPTOCHROME (CRY)-mediated transcriptional repression. Notably, mutations in the PER-ARNT-SIM domain of CLOCK and the C terminus of BMAL1 resulted in synergistic insensitivity through reduced physical interactions with CRY. Coexpression of these mutant proteins in cultured fibroblasts caused arrhythmic phenotypes in population and single-cell assays. These data demonstrate that CRY-mediated repression of the CLOCK/BMAL1 complex activity is required for maintenance of circadian rhythmicity and provide formal proof that transcriptional feedback is required for mammalian clock function.

  18. Resetting Biological Clocks

    ERIC Educational Resources Information Center

    Winfree, Arthur T.

    1975-01-01

    Reports on experiments conducted on two biological clocks, in organisms in the plant and animal kingdoms, which indicate that biological oscillation can be arrested by a single stimulus of a definite strength delivered at the proper time. (GS)

  19. 5-Gb/s 0.18-μm CMOS 2:1 multiplexer with integrated clock extraction

    NASA Astrophysics Data System (ADS)

    Changchun, Zhang; Zhigong, Wang; Si, Shi; Peng, Miao; Ling, Tian

    2009-09-01

    A 5-Gb/s 2:1 MUX (multiplexer) with an on-chip integrated clock extraction circuit which possesses the function of automatic phase alignment (APA), has been designed and fabricated in SMIC's 0.18 μm CMOS technology. The chip area is 670 × 780 μm2. At a single supply voltage of 1.8 V, the total power consumption is 112 mW with an input sensitivity of less than 50 mV and an output single-ended swing of above 300 mV. The measurement results show that the IC can work reliably at any input data rate between 1.8 and 2.6 Gb/s with no need for external components, reference clock, or phase alignment between data and clock. It can be used in a parallel optic-fiber data interconnecting system.

  20. Diurnal cycling of rhizosphere bacterial communities is associated with shifts in carbon metabolism

    DOE PAGES

    Staley, Christopher; Ferrieri, Abigail P.; Tfaily, Malak M.; ...

    2017-06-24

    The circadian clock regulates plant metabolic functions and is an important component in plant health and productivity. Rhizosphere bacteria play critical roles in plant growth, health, and development and are shaped primarily by soil communities. Using Illumina next-generation sequencing and high-resolution mass spectrometry, we characterized bacterial communities of wild-type (Col-0) Arabidopsis thaliana and an acyclic line (OX34) ectopically expressing the circadian clock-associated cca1 transcription factor, relative to a soil control, to determine how cycling dynamics affected the microbial community. Microbial communities associated with Brachypodium distachyon (BD21) were also evaluated.Significantly different bacterial community structures ( P = 0.031) were observed inmore » the rhizosphere of wild-type plants between light and dark cycle samples. Furthermore, 13% of the community showed cycling, with abundances of several families, including Burkholderiaceae, Rhodospirillaceae, Planctomycetaceae, and Gaiellaceae, exhibiting fluctuation in abundances relative to the light cycle. However, limited-to-no cycling was observed in the acyclic CCAox34 line or in soil controls. Significant cycling was also observed, to a lesser extent, in Brachypodium. Functional gene inference revealed that genes involved in carbohydrate metabolism were likely more abundant in near-dawn, dark samples. Additionally, the composition of organic matter in the rhizosphere showed a significant variation between dark and light cycles.The results of this study suggest that the rhizosphere bacterial community is regulated, to some extent, by the circadian clock and is likely influenced by, and exerts influences, on plant metabolism and productivity. The timing of bacterial cycling in relation to that of Arabidopsis further suggests that diurnal dynamics influence plant-microbe carbon metabolism and exchange. Equally important, our results suggest that previous studies done without relevance to time of day may need to be reevaluated with regard to the impact of diurnal cycles on the rhizosphere microbial community.« less

  1. Diurnal cycling of rhizosphere bacterial communities is associated with shifts in carbon metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staley, Christopher; Ferrieri, Abigail P.; Tfaily, Malak M.

    The circadian clock regulates plant metabolic functions and is an important component in plant health and productivity. Rhizosphere bacteria play critical roles in plant growth, health, and development and are shaped primarily by soil communities. Using Illumina next-generation sequencing and high-resolution mass spectrometry, we characterized bacterial communities of wild-type (Col-0) Arabidopsis thaliana and an acyclic line (OX34) ectopically expressing the circadian clock-associated cca1 transcription factor, relative to a soil control, to determine how cycling dynamics affected the microbial community. Microbial communities associated with Brachypodium distachyon (BD21) were also evaluated.Significantly different bacterial community structures ( P = 0.031) were observed inmore » the rhizosphere of wild-type plants between light and dark cycle samples. Furthermore, 13% of the community showed cycling, with abundances of several families, including Burkholderiaceae, Rhodospirillaceae, Planctomycetaceae, and Gaiellaceae, exhibiting fluctuation in abundances relative to the light cycle. However, limited-to-no cycling was observed in the acyclic CCAox34 line or in soil controls. Significant cycling was also observed, to a lesser extent, in Brachypodium. Functional gene inference revealed that genes involved in carbohydrate metabolism were likely more abundant in near-dawn, dark samples. Additionally, the composition of organic matter in the rhizosphere showed a significant variation between dark and light cycles.The results of this study suggest that the rhizosphere bacterial community is regulated, to some extent, by the circadian clock and is likely influenced by, and exerts influences, on plant metabolism and productivity. The timing of bacterial cycling in relation to that of Arabidopsis further suggests that diurnal dynamics influence plant-microbe carbon metabolism and exchange. Equally important, our results suggest that previous studies done without relevance to time of day may need to be reevaluated with regard to the impact of diurnal cycles on the rhizosphere microbial community.« less

  2. Quantum Clock Synchronization with a Single Qudit

    NASA Astrophysics Data System (ADS)

    Tavakoli, Armin; Cabello, Adán; Żukowski, Marek; Bourennane, Mohamed

    2015-01-01

    Clock synchronization for nonfaulty processes in multiprocess networks is indispensable for a variety of technologies. A reliable system must be able to resynchronize the nonfaulty processes upon some components failing causing the distribution of incorrect or conflicting information in the network. The task of synchronizing such networks is related to Byzantine agreement (BA), which can classically be solved using recursive algorithms if and only if less than one-third of the processes are faulty. Here we introduce a nonrecursive quantum algorithm, based on a quantum solution of the detectable BA, which achieves clock synchronization in the presence of arbitrary many faulty processes by using only a single quantum system.

  3. Global Profiling of Rice and Poplar Transcriptomes Highlights Key Conserved Circadian-Controlled Pathways and cis-Regulatory Modules

    PubMed Central

    Filichkin, Sergei A.; Breton, Ghislain; Priest, Henry D.; Dharmawardhana, Palitha; Jaiswal, Pankaj; Fox, Samuel E.; Michael, Todd P.; Chory, Joanne; Kay, Steve A.; Mockler, Todd C.

    2011-01-01

    Background Circadian clocks provide an adaptive advantage through anticipation of daily and seasonal environmental changes. In plants, the central clock oscillator is regulated by several interlocking feedback loops. It was shown that a substantial proportion of the Arabidopsis genome cycles with phases of peak expression covering the entire day. Synchronized transcriptome cycling is driven through an extensive network of diurnal and clock-regulated transcription factors and their target cis-regulatory elements. Study of the cycling transcriptome in other plant species could thus help elucidate the similarities and differences and identify hubs of regulation common to monocot and dicot plants. Methodology/Principal Findings Using a combination of oligonucleotide microarrays and data mining pipelines, we examined daily rhythms in gene expression in one monocotyledonous and one dicotyledonous plant, rice and poplar, respectively. Cycling transcriptomes were interrogated under different diurnal (driven) and circadian (free running) light and temperature conditions. Collectively, photocycles and thermocycles regulated about 60% of the expressed nuclear genes in rice and poplar. Depending on the condition tested, up to one third of oscillating Arabidopsis-poplar-rice orthologs were phased within three hours of each other suggesting a high degree of conservation in terms of rhythmic gene expression. We identified clusters of rhythmically co-expressed genes and searched their promoter sequences to identify phase-specific cis-elements, including elements that were conserved in the promoters of Arabidopsis, poplar, and rice. Conclusions/Significance Our results show that the cycling patterns of many circadian clock genes are highly conserved across poplar, rice, and Arabidopsis. The expression of many orthologous genes in key metabolic and regulatory pathways is diurnal and/or circadian regulated and phased to similar times of day. Our results confirm previous findings in Arabidopsis of three major classes of cis-regulatory modules within the plant circadian network: the morning (ME, GBOX), evening (EE, GATA), and midnight (PBX/TBX/SBX) modules. Identification of identical overrepresented motifs in the promoters of cycling genes from different species suggests that the core diurnal/circadian cis-regulatory network is deeply conserved between mono- and dicotyledonous species. PMID:21694767

  4. Experimental verification of clock noise transfer and components for space based gravitational wave detectors.

    PubMed

    Sweeney, Dylan; Mueller, Guido

    2012-11-05

    The Laser Interferometer Space Antenna (LISA) and other space based gravitational wave detector designs require a laser communication subsystem to, among other things, transfer clock signals between spacecraft (SC) in order to cancel clock noise in post-processing. The original LISA baseline design requires frequency synthesizers to convert each SC clock into a 2 GHz signal, and electro-optic modulators (EOMs) to modulate this 2 GHz clock signal onto the laser light. Both the frequency synthesizers and the EOMs must operate with a phase fidelity of 2×10(-4)cycles/√Hz. In this paper we present measurements of the phase fidelity of frequency synthesizers and EOMs. We found that both the frequency synthesizers and the EOMs meet the requirement when tested independently and together. We also performed an electronic test of the clock noise transfer using frequency synthesizers and the University of Florida LISA Interferometry (UFLIS) phasemeter. We found that by applying a time varying fractional delay filter we could suppress the clock noise to a level below our measurement limit, which is currently determined by timing jitter and is less than an order of magnitude above the LISA requirement for phase measurements.

  5. Chronobiology of crickets: a review.

    PubMed

    Tomioka, Kenji

    2014-10-01

    Crickets provide a good model for the study of mechanisms underlying circadian rhythms and photoperiodic responses. They show clear circadian rhythms in their overt behavior and the sensitivity of the visual system. Classical neurobiological studies revealed that a pair of optic lobes is the locus of the circadian clock controlling these rhythms and that the compound eye is the major photoreceptor necessary for synchronization to environmental light cycles. The two optic lobe clocks are mutually coupled through a neural pathway and the coupling regulates an output circadian waveform and a free-running period. Recent molecular studies revealed that the cricket's clock consists of cyclic expression of so-called clock genes and that the clock mechanism is featured by both Drosophila-like and mammalian-like traits. Molecular oscillation is also observed in some extra-optic lobe tissues and depends on the optic lobe clock in a tissue dependent manner. Interestingly, the clock is also involved in adaptation to seasonally changing environment. It fits its waveform to a given photoperiod and may be an indispensable part of a photoperiodic time-measurement mechanism. With adoption of modern molecular technologies, the cricket becomes a much more important and promising model animal for the study of circadian and photoperiodic biology.

  6. Identification of the Molecular Clockwork of the Oyster Crassostrea gigas

    PubMed Central

    Perrigault, Mickael; Tran, Damien

    2017-01-01

    Molecular clock system constitutes the origin of biological rhythms that allow organisms to anticipate cyclic environmental changes and adapt their behavior and physiology. Components of the molecular clock are largely conserved across a broad range of species but appreciable diversity in clock structure and function is also present especially in invertebrates. The present work aimed at identify and characterize molecular clockwork components in relationship with the monitoring of valve activity behavior in the oyster Crassostrea gigas. Results provided the characterization of most of canonical clock gene including clock, bmal/cycle, period, timeless, vertebrate-type cry, rev-erb, ror as well as other members of the cryptochrome/photolyase family (plant-like cry, 6–4 photolyase). Analyses of transcriptional variations of clock candidates in oysters exposed to light / dark regime and to constant darkness led to the generation of a putative and original clockwork model in C. gigas, intermediate of described systems in vertebrates and insects. This study is the first characterization of a mollusk clockwork. It constitutes essential bases to understand interactions of the different components of the molecular clock in C. gigas as well as the global mechanisms associated to the generation and the synchronization of biological rhythms in oysters. PMID:28072861

  7. Assessing the short-term clock drift of early broadband stations with burst events of the 26 s persistent and localized microseism

    NASA Astrophysics Data System (ADS)

    Xie, J.; Ni, S.; Chu, R.; Xia, Y.

    2017-12-01

    Accurate seismometer clock plays an important role in seismological studies including earthquake location and tomography. However, some seismic stations may have clock drift larger than 1 second, especially in early days of global seismic network. The 26 s Persistent Localized (PL) microseism event in the Gulf of Guinea sometime excites strong and coherent signals, and can be used as repeating source for assessing stability of seismometer clocks. Taking station GSC/TS in southern California, USA as an example, the 26 s PL signal can be easily observed in the ambient Noise Cross-correlation Function (NCF) between GSC/TS and a remote station. The variation of travel-time of this 26 s signal in the NCF is used to infer clock error. A drastic clock error is detected during June, 1992. This short-term clock error is confirmed by both teleseismic and local earthquake records with a magnitude of ±25 s. Using 26 s PL source, the clock can be validated for historical records of sparsely distributed stations, where usual NCF of short period microseism (<20 s) might be less effective due to its attenuation over long interstation distances. However, this method suffers from cycling problem, and should be verified by teleseismic/local P waves. The location change of the 26 s PL source may influence the measured clock drift, using regional stations with stable clock, we estimate the possible location change of the source.

  8. Measuring circadian and acute light responses in mice using wheel running activity.

    PubMed

    LeGates, Tara A; Altimus, Cara M

    2011-02-04

    Circadian rhythms are physiological functions that cycle over a period of approximately 24 hours (circadian- circa: approximate and diem: day). They are responsible for timing our sleep/wake cycles and hormone secretion. Since this timing is not precisely 24-hours, it is synchronized to the solar day by light input. This is accomplished via photic input from the retina to the suprachiasmatic nucleus (SCN) which serves as the master pacemaker synchronizing peripheral clocks in other regions of the brain and peripheral tissues to the environmental light dark cycle. The alignment of rhythms to this environmental light dark cycle organizes particular physiological events to the correct temporal niche, which is crucial for survival. For example, mice sleep during the day and are active at night. This ability to consolidate activity to either the light or dark portion of the day is referred to as circadian photoentrainment and requires light input to the circadian clock. Activity of mice at night is robust particularly in the presence of a running wheel. Measuring this behavior is a minimally invasive method that can be used to evaluate the functionality of the circadian system as well as light input to this system. Methods that will covered here are used to examine the circadian clock, light input to this system, as well as the direct influence of light on wheel running behavior.

  9. Irradiation with X-rays phase-advances the molecular clockwork in liver, adrenal gland and pancreas.

    PubMed

    Müller, Mareike Hildegard; Rödel, Franz; Rüb, Udo; Korf, Horst-Werner

    2015-02-01

    The circadian clock of man and mammals shows a hierarchic organization. The master clock, located in the suprachiasmatic nuclei (SCN), controls peripheral oscillators distributed throughout the body. Rhythm generation depends on molecular clockworks based on transcriptional/translational interaction of clock genes. Numerous studies have shown that the clockwork in peripheral oscillators is capable to maintain circadian rhythms for several cycles in vitro, i.e. in the absence of signals from the SCN. The aim of the present study is to analyze the effects of irradiation with X-rays on the clockwork of liver, adrenal and pancreas. To this end organotypic slice cultures of liver (OLSC) and organotypic explant cultures of adrenal glands (OAEC) and pancreas (OPEC) were prepared from transgenic mPer2(luc) mice which express luciferase under the control of the promoter of an important clock gene, Per2, and allow to study the dynamics of the molecular clockwork by bioluminometry. The preparations were cultured in a membrane-based liquid-air interface culturing system and irradiated with X-rays at doses of 10 Gy and 50 Gy or left untreated. Bioluminometric real-time recordings show a stable oscillation of all OLSC, OAEC and OPEC for up to 12 days in vitro. Oscillations persist after irradiation with X-rays. However, a dose of 50 Gy caused a phase advance in the rhythm of the OLSC by 5 h, in the OPEC by 7 h and in the OAEC by 6 h. Our study shows that X-rays affect the molecular clockwork in liver, pancreas and adrenal leading to phase advances. Our results confirm and extend previous studies showing a phase-advancing effect of X-rays at the level of the whole animal and single cells.

  10. An ultra low energy biomedical signal processing system operating at near-threshold.

    PubMed

    Hulzink, J; Konijnenburg, M; Ashouei, M; Breeschoten, A; Berset, T; Huisken, J; Stuyt, J; de Groot, H; Barat, F; David, J; Van Ginderdeuren, J

    2011-12-01

    This paper presents a voltage-scalable digital signal processing system designed for the use in a wireless sensor node (WSN) for ambulatory monitoring of biomedical signals. To fulfill the requirements of ambulatory monitoring, power consumption, which directly translates to the WSN battery lifetime and size, must be kept as low as possible. The proposed processing platform is an event-driven system with resources to run applications with different degrees of complexity in an energy-aware way. The architecture uses effective system partitioning to enable duty cycling, single instruction multiple data (SIMD) instructions, power gating, voltage scaling, multiple clock domains, multiple voltage domains, and extensive clock gating. It provides an alternative processing platform where the power and performance can be scaled to adapt to the application need. A case study on a continuous wavelet transform (CWT)-based heart-beat detection shows that the platform not only preserves the sensitivity and positive predictivity of the algorithm but also achieves the lowest energy/sample for ElectroCardioGram (ECG) heart-beat detection publicly reported today.

  11. Alternative splicing and nonsense-mediated decay of circadian clock genes under environmental stress conditions in Arabidopsis

    PubMed Central

    2014-01-01

    Background The circadian clock enables living organisms to anticipate recurring daily and seasonal fluctuations in their growth habitats and synchronize their biology to the environmental cycle. The plant circadian clock consists of multiple transcription-translation feedback loops that are entrained by environmental signals, such as light and temperature. In recent years, alternative splicing emerges as an important molecular mechanism that modulates the clock function in plants. Several clock genes are known to undergo alternative splicing in response to changes in environmental conditions, suggesting that the clock function is intimately associated with environmental responses via the alternative splicing of the clock genes. However, the alternative splicing events of the clock genes have not been studied at the molecular level. Results We systematically examined whether major clock genes undergo alternative splicing under various environmental conditions in Arabidopsis. We also investigated the fates of the RNA splice variants of the clock genes. It was found that the clock genes, including EARLY FLOWERING 3 (ELF3) and ZEITLUPE (ZTL) that have not been studied in terms of alternative splicing, undergo extensive alternative splicing through diverse modes of splicing events, such as intron retention, exon skipping, and selection of alternative 5′ splice site. Their alternative splicing patterns were differentially influenced by changes in photoperiod, temperature extremes, and salt stress. Notably, the RNA splice variants of TIMING OF CAB EXPRESSION 1 (TOC1) and ELF3 were degraded through the nonsense-mediated decay (NMD) pathway, whereas those of other clock genes were insensitive to NMD. Conclusion Taken together, our observations demonstrate that the major clock genes examined undergo extensive alternative splicing under various environmental conditions, suggesting that alternative splicing is a molecular scheme that underlies the linkage between the clock and environmental stress adaptation in plants. It is also envisioned that alternative splicing of the clock genes plays more complex roles than previously expected. PMID:24885185

  12. Quantum Algorithmic Readout in Multi-Ion Clocks.

    PubMed

    Schulte, M; Lörch, N; Leroux, I D; Schmidt, P O; Hammerer, K

    2016-01-08

    Optical clocks based on ensembles of trapped ions promise record frequency accuracy with good short-term stability. Most suitable ion species lack closed transitions, so the clock signal must be read out indirectly by transferring the quantum state of the clock ions to cotrapped logic ions of a different species. Existing methods of quantum logic readout require a linear overhead in either time or the number of logic ions. Here we describe a quantum algorithmic readout whose overhead scales logarithmically with the number of clock ions in both of these respects. The scheme allows a quantum nondemolition readout of the number of excited clock ions using a single multispecies gate operation which can also be used in other areas of ion trap technology such as quantum information processing, quantum simulations, metrology, and precision spectroscopy.

  13. Logical synchronization: how evidence and hypotheses steer atomic clocks

    NASA Astrophysics Data System (ADS)

    Myers, John M.; Madjid, F. Hadi

    2014-05-01

    A clock steps a computer through a cycle of phases. For the propagation of logical symbols from one computer to another, each computer must mesh its phases with arrivals of symbols from other computers. Even the best atomic clocks drift unforeseeably in frequency and phase; feedback steers them toward aiming points that depend on a chosen wave function and on hypotheses about signal propagation. A wave function, always under-determined by evidence, requires a guess. Guessed wave functions are coded into computers that steer atomic clocks in frequency and position—clocks that step computers through their phases of computations, as well as clocks, some on space vehicles, that supply evidence of the propagation of signals. Recognizing the dependence of the phasing of symbol arrivals on guesses about signal propagation elevates `logical synchronization.' from its practice in computer engineering to a dicipline essential to physics. Within this discipline we begin to explore questions invisible under any concept of time that fails to acknowledge the unforeseeable. In particular, variation of spacetime curvature is shown to limit the bit rate of logical communication.

  14. Automated analysis of long-term grooming behavior in Drosophila using a k-nearest neighbors classifier

    PubMed Central

    Allen, Victoria W; Shirasu-Hiza, Mimi

    2018-01-01

    Despite being pervasive, the control of programmed grooming is poorly understood. We addressed this gap by developing a high-throughput platform that allows long-term detection of grooming in Drosophila melanogaster. In our method, a k-nearest neighbors algorithm automatically classifies fly behavior and finds grooming events with over 90% accuracy in diverse genotypes. Our data show that flies spend ~13% of their waking time grooming, driven largely by two major internal programs. One of these programs regulates the timing of grooming and involves the core circadian clock components cycle, clock, and period. The second program regulates the duration of grooming and, while dependent on cycle and clock, appears to be independent of period. This emerging dual control model in which one program controls timing and another controls duration, resembles the two-process regulatory model of sleep. Together, our quantitative approach presents the opportunity for further dissection of mechanisms controlling long-term grooming in Drosophila. PMID:29485401

  15. The genomic basis of circadian and circalunar timing adaptations in a midge.

    PubMed

    Kaiser, Tobias S; Poehn, Birgit; Szkiba, David; Preussner, Marco; Sedlazeck, Fritz J; Zrim, Alexander; Neumann, Tobias; Nguyen, Lam-Tung; Betancourt, Andrea J; Hummel, Thomas; Vogel, Heiko; Dorner, Silke; Heyd, Florian; von Haeseler, Arndt; Tessmar-Raible, Kristin

    2016-12-01

    Organisms use endogenous clocks to anticipate regular environmental cycles, such as days and tides. Natural variants resulting in differently timed behaviour or physiology, known as chronotypes in humans, have not been well characterized at the molecular level. We sequenced the genome of Clunio marinus, a marine midge whose reproduction is timed by circadian and circalunar clocks. Midges from different locations show strain-specific genetic timing adaptations. We examined genetic variation in five C. marinus strains from different locations and mapped quantitative trait loci for circalunar and circadian chronotypes. The region most strongly associated with circadian chronotypes generates strain-specific differences in the abundance of calcium/calmodulin-dependent kinase II.1 (CaMKII.1) splice variants. As equivalent variants were shown to alter CaMKII activity in Drosophila melanogaster, and C. marinus (Cma)-CaMKII.1 increases the transcriptional activity of the dimer of the circadian proteins Cma-CLOCK and Cma-CYCLE, we suggest that modulation of alternative splicing is a mechanism for natural adaptation in circadian timing.

  16. Dissociation of Circadian and Circatidal Timekeeping in the Marine Crustacean Eurydice pulchra

    PubMed Central

    Zhang, Lin; Hastings, Michael H.; Green, Edward W.; Tauber, Eran; Sladek, Martin; Webster, Simon G.; Kyriacou, Charalambos P.; Wilcockson, David C.

    2013-01-01

    Summary Background Tidal (12.4 hr) cycles of behavior and physiology adapt intertidal organisms to temporally complex coastal environments, yet their underlying mechanism is unknown. However, the very existence of an independent “circatidal” clock has been disputed, and it has been argued that tidal rhythms arise as a submultiple of a circadian clock, operating in dual oscillators whose outputs are held in antiphase i.e., ∼12.4 hr apart. Results We demonstrate that the intertidal crustacean Eurydice pulchra (Leach) exhibits robust tidal cycles of swimming in parallel to circadian (24 hr) rhythms in behavioral, physiological and molecular phenotypes. Importantly, ∼12.4 hr cycles of swimming are sustained in constant conditions, they can be entrained by suitable stimuli, and they are temperature compensated, thereby meeting the three criteria that define a biological clock. Unexpectedly, tidal rhythms (like circadian rhythms) are sensitive to pharmacological inhibition of Casein kinase 1, suggesting the possibility of shared clock substrates. However, cloning the canonical circadian genes of E. pulchra to provide molecular markers of circadian timing and also reagents to disrupt it by RNAi revealed that environmental and molecular manipulations that confound circadian timing do not affect tidal timing. Thus, competent circadian timing is neither an inevitable nor necessary element of tidal timekeeping. Conclusions We demonstrate that tidal rhythms are driven by a dedicated circatidal pacemaker that is distinct from the circadian system of E. pulchra, thereby resolving a long-standing debate regarding the nature of the circatidal mechanism. PMID:24076244

  17. Oscillating PDF in termini of circadian pacemaker neurons and synchronous molecular clocks in downstream neurons are not sufficient for sustenance of activity rhythms in constant darkness.

    PubMed

    Prakash, Pavitra; Nambiar, Aishwarya; Sheeba, Vasu

    2017-01-01

    In Drosophila, neuropeptide Pigment Dispersing Factor (PDF) is expressed in small and large ventral Lateral Neurons (sLNv and lLNv), among which sLNv are critical for activity rhythms in constant darkness. Studies show that this is mediated by rhythmic accumulation and likely secretion of PDF from sLNv dorsal projections, which in turn synchronises molecular oscillations in downstream circadian neurons. Using targeted expression of a neurodegenerative protein Huntingtin in LNv, we evoke a selective loss of neuropeptide PDF and clock protein PERIOD from sLNv soma. However, PDF is not lost from sLNv dorsal projections and lLNv. These flies are behaviourally arrhythmic in constant darkness despite persistence of PDF oscillations in sLNv dorsal projections and synchronous PERIOD oscillations in downstream circadian neurons. We find that PDF oscillations in sLNv dorsal projections are not sufficient for sustenance of activity rhythms in constant darkness and this is suggestive of an additional component that is possibly dependent on sLNv molecular clock and PDF in sLNv soma. Additionally, despite loss of PERIOD in sLNv, their activity rhythms entrain to light/dark cycles indicating that sLNv molecular clocks are not necessary for entrainment. Under constant light, these flies lack PDF from both soma and dorsal projections of sLNv, and when subjected to light/dark cycles, show morning and evening anticipation and accurately phased morning and evening peaks. Thus, under light/dark cycles, PDF in sLNv is not necessary for morning anticipation.

  18. Oscillating PDF in termini of circadian pacemaker neurons and synchronous molecular clocks in downstream neurons are not sufficient for sustenance of activity rhythms in constant darkness

    PubMed Central

    Prakash, Pavitra; Nambiar, Aishwarya; Sheeba, Vasu

    2017-01-01

    In Drosophila, neuropeptide Pigment Dispersing Factor (PDF) is expressed in small and large ventral Lateral Neurons (sLNv and lLNv), among which sLNv are critical for activity rhythms in constant darkness. Studies show that this is mediated by rhythmic accumulation and likely secretion of PDF from sLNv dorsal projections, which in turn synchronises molecular oscillations in downstream circadian neurons. Using targeted expression of a neurodegenerative protein Huntingtin in LNv, we evoke a selective loss of neuropeptide PDF and clock protein PERIOD from sLNv soma. However, PDF is not lost from sLNv dorsal projections and lLNv. These flies are behaviourally arrhythmic in constant darkness despite persistence of PDF oscillations in sLNv dorsal projections and synchronous PERIOD oscillations in downstream circadian neurons. We find that PDF oscillations in sLNv dorsal projections are not sufficient for sustenance of activity rhythms in constant darkness and this is suggestive of an additional component that is possibly dependent on sLNv molecular clock and PDF in sLNv soma. Additionally, despite loss of PERIOD in sLNv, their activity rhythms entrain to light/dark cycles indicating that sLNv molecular clocks are not necessary for entrainment. Under constant light, these flies lack PDF from both soma and dorsal projections of sLNv, and when subjected to light/dark cycles, show morning and evening anticipation and accurately phased morning and evening peaks. Thus, under light/dark cycles, PDF in sLNv is not necessary for morning anticipation. PMID:28558035

  19. Circadian, Carbon, and Light Control of Expansion Growth and Leaf Movement1[OPEN

    PubMed Central

    Flis, Anna

    2017-01-01

    We used Phytotyping4D to investigate the contribution of clock and light signaling to the diurnal regulation of rosette expansion growth and leaf movement in Arabidopsis (Arabidopsis thaliana). Wild-type plants and clock mutants with a short (lhycca1) and long (prr7prr9) period were analyzed in a T24 cycle and in T-cycles that were closer to the mutants’ period. Wild types also were analyzed in various photoperiods and after transfer to free-running light or darkness. Rosette expansion and leaf movement exhibited a circadian oscillation, with superimposed transients after dawn and dusk. Diurnal responses were modified in clock mutants. lhycca1 exhibited an inhibition of growth at the end of night and growth rose earlier after dawn, whereas prr7prr9 showed decreased growth for the first part of the light period. Some features were partly rescued by a matching T-cycle, like the inhibition in lhycca1 at the end of the night, indicating that it is due to premature exhaustion of starch. Other features were not rescued, revealing that the clock also regulates expansion growth more directly. Expansion growth was faster at night than in the daytime, whereas published work has shown that the synthesis of cellular components is faster in the day than at nighttime. This temporal uncoupling became larger in short photoperiods and may reflect the differing dependence of expansion and biosynthesis on energy, carbon, and water. While it has been proposed that leaf expansion and movement are causally linked, we did not observe a consistent temporal relationship between expansion and leaf movement. PMID:28559360

  20. ECL gate array with integrated PLL-based clock recovery and synthesis for high-speed data and telecom applications

    NASA Astrophysics Data System (ADS)

    Rosky, David S.; Coy, Bruce H.; Friedmann, Marc D.

    1992-03-01

    A 2500 gate mixed signal gate array has been developed that integrates custom PLL-based clock recovery and clock synthesis functions with 2500 gates of configurable logic cells to provide a single chip solution for 200 - 1244 MHz fiber based digital interface applications. By customizing the digital logic cells, any of the popular telecom and datacom standards may be implemented.

  1. Investigations of the CLOCK and BMAL1 Proteins Binding to DNA: A Molecular Dynamics Simulation Study.

    PubMed

    Xue, Tuo; Song, Chunnian; Wang, Qing; Wang, Yan; Chen, Guangju

    2016-01-01

    The circadian locomotor output cycles kaput (CLOCK), and brain and muscle ARNT-like 1 (BMAL1) proteins are important transcriptional factors of the endogenous circadian clock. The CLOCK and BMAL1 proteins can regulate the transcription-translation activities of the clock-related genes through the DNA binding. The hetero-/homo-dimerization and DNA combination of the CLOCK and BMAL1 proteins play a key role in the positive and negative transcriptional feedback processes. In the present work, we constructed a series of binary and ternary models for the bHLH/bHLH-PAS domains of the CLOCK and BMAL1 proteins, and the DNA molecule, and carried out molecular dynamics simulations, free energy calculations and conformational analysis to explore the interaction properties of the CLOCK and BMAL1 proteins with DNA. The results show that the bHLH domains of CLOCK and BMAL1 can favorably form the heterodimer of the bHLH domains of CLOCK and BMAL1 and the homodimer of the bHLH domains of BMAL1. And both dimers could respectively bind to DNA at its H1-H1 interface. The DNA bindings of the H1 helices in the hetero- and homo-bHLH dimers present the rectangular and diagonal binding modes, respectively. Due to the function of the α-helical forceps in these dimers, the tight gripping of the H1 helices to the major groove of DNA would cause the decrease of interactions at the H1-H2 interfaces in the CLOCK and BMAL1 proteins. The additional PAS domains in the CLOCK and BMAL1 proteins affect insignificantly the interactions of the CLOCK and BMAL1 proteins with the DNA molecule due to the flexible and long loop linkers located at the middle of the PAS and bHLH domains. The present work theoretically explains the interaction mechanisms of the bHLH domains of the CLOCK and BMAL1 proteins with DNA.

  2. Tales around the clock: Poly(A) tails in circadian gene expression.

    PubMed

    Beta, Rafailia A A; Balatsos, Nikolaos A A

    2018-06-17

    Circadian rhythms are ubiquitous time-keeping processes in eukaryotes with a period of ~24 hr. Light is perhaps the main environmental cue (zeitgeber) that affects several aspects of physiology and behaviour, such as sleep/wake cycles, orientation of birds and bees, and leaf movements in plants. Temperature can serve as the main zeitgeber in the absence of light cycles, even though it does not lead to rhythmicity through the same mechanism as light. Additional cues include feeding patterns, humidity, and social rhythms. At the molecular level, a master oscillator orchestrates circadian rhythms and organizes molecular clocks located in most cells. The generation of the 24 hr molecular clock is based on transcriptional regulation, as it drives intrinsic rhythmic changes based on interlocked transcription/translation feedback loops that synchronize expression of genes. Thus, processes and factors that determine rhythmic gene expression are important to understand circadian rhythms. Among these, the poly(A) tails of RNAs play key roles in their stability, translational efficiency and degradation. In this article, we summarize current knowledge and discuss perspectives on the role and significance of poly(A) tails and associating factors in the context of the circadian clock. This article is categorized under: RNA Turnover and Surveillance > Regulation of RNA Stability RNA Processing > 3' End Processing. © 2018 Wiley Periodicals, Inc.

  3. Robust Entrainment of Circadian Oscillators Requires Specific Phase Response Curves

    PubMed Central

    Pfeuty, Benjamin; Thommen, Quentin; Lefranc, Marc

    2011-01-01

    The circadian clocks keeping time in many living organisms rely on self-sustained biochemical oscillations entrained by external cues, such as light, to the 24-h cycle induced by Earth's rotation. However, environmental cues are unreliable due to the variability of habitats, weather conditions, or cue-sensing mechanisms among individuals. A tempting hypothesis is that circadian clocks have evolved so as to be robust to fluctuations in the signal that entrains them. To support this hypothesis, we analyze the synchronization behavior of weakly and periodically forced oscillators in terms of their phase response curve (PRC), which measures phase changes induced by a perturbation applied at different times of the cycle. We establish a general relationship between the robustness of key entrainment properties, such as stability and oscillator phase, on the one hand, and the shape of the PRC as characterized by a specific curvature or the existence of a dead zone, on the other hand. The criteria obtained are applied to computational models of circadian clocks and account for the disparate robustness properties of various forcing schemes. Finally, the analysis of PRCs measured experimentally in several organisms strongly suggests a case of convergent evolution toward an optimal strategy for maintaining a clock that is accurate and robust to environmental fluctuations. PMID:21641300

  4. Telomeres and replicative senescence: Is it only length that counts?

    PubMed

    von Zglinicki, T

    2001-07-26

    Telomeres are well established as a major 'replicometer', counting the population doublings in primary human cell cultures and ultimately triggering replicative senescence. However, neither is the pace of this biological clock inert, nor is there a fixed threshold telomere length acting as the universal trigger of replicative senescence. The available data suggest that opening of the telomeric loop and unscheduled exposure of the single-stranded G-rich telomeric overhang might act like a semaphore to signal senescent cell cycle arrest. Short telomere length, telomeric single-strand breaks, low levels of loop-stabilizing proteins, or other factors may trigger this opening of the loop. Thus, both telomere shortening and the ultimate signalling into senescence are able to integrate different environmental and genetic factors, especially oxidative stress-mediated damage, which might otherwise become a thread to genomic stability.

  5. Versatile function of the circadian protein CIPC as a regulator of Erk activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsunaga, Ryota; Nishino, Tasuku; Yokoyama, Atsushi

    2016-01-15

    The CLOCK-interacting protein, Circadian (CIPC), has been identified as an additional negative-feedback regulator of the circadian clock. However, recent study on CIPC knockout mice has shown that CIPC is not critically required for basic circadian clock function, suggesting other unknown biological roles for CIPC. In this study, we focused on the cell cycle dependent nuclear-cytoplasmic shuttling function of CIPC and on identifying its binding proteins. Lys186 and 187 were identified as the essential amino acid residues within the nuclear localization signal (NLS) of CIPC. We identified CIPC-binding proteins such as the multifunctional enzyme CAD protein (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase,more » and dihydroorotase), which is a key enzyme for de novo pyrimidine synthesis. Compared to control cells, HEK293 cells overexpressing wild-type CIPC showed suppressed cell proliferation and retardation of cell cycle. We also found that PMA-induced Erk activation was inhibited with expression of wild-type CIPC. In contrast, the NLS mutant of CIPC, which reduced the ability of CIPC to translocate into the nucleus, did not exhibit these biological effects. Since CAD and Erk have significant roles in cell proliferation and cell cycle, CIPC may work as a cell cycle regulator by interacting with these binding proteins. - Highlights: • CIPC is a cell cycle dependent nuclear-cytoplasmic shuttling protein. • K186 and 187are the essential amino acid residues within the NLS of CIPC. • CAD was identified as a novel CIPC-binding protein. • CIPC might regulate the activity and translocation of CAD in the cells.« less

  6. Kruppel-like factor KLF10 is a link between the circadian clock and metabolism in liver.

    PubMed

    Guillaumond, Fabienne; Gréchez-Cassiau, Aline; Subramaniam, Malayannan; Brangolo, Sophie; Peteri-Brünback, Brigitta; Staels, Bart; Fiévet, Catherine; Spelsberg, Thomas C; Delaunay, Franck; Teboul, Michèle

    2010-06-01

    The circadian timing system coordinates many aspects of mammalian physiology and behavior in synchrony with the external light/dark cycle. These rhythms are driven by endogenous molecular clocks present in most body cells. Many clock outputs are transcriptional regulators, suggesting that clock genes primarily control physiology through indirect pathways. Here, we show that Krüppel-like factor 10 (KLF10) displays a robust circadian expression pattern in wild-type mouse liver but not in clock-deficient Bmal1 knockout mice. Consistently, the Klf10 promoter recruited the BMAL1 core clock protein and was transactivated by the CLOCK-BMAL1 heterodimer through a conserved E-box response element. Profiling the liver transcriptome from Klf10(-/-) mice identified 158 regulated genes with significant enrichment for transcripts involved in lipid and carbohydrate metabolism. Importantly, approximately 56% of these metabolic genes are clock controlled. Male Klf10(-/-) mice displayed postprandial and fasting hyperglycemia, a phenotype accompanied by a significant time-of-day-dependent upregulation of the gluconeogenic gene Pepck and increased hepatic glucose production. Consistently, functional data showed that the proximal Pepck promoter is repressed directly by KLF10. Klf10(-/-) females were normoglycemic but displayed higher plasma triglycerides. Correspondingly, rhythmic gene expression of components of the lipogenic pathway, including Srebp1c, Fas, and Elovl6, was altered in females. Collectively, these data establish KLF10 as a required circadian transcriptional regulator that links the molecular clock to energy metabolism in the liver.

  7. Design of a delay-locked-loop-based time-to-digital converter

    NASA Astrophysics Data System (ADS)

    Zhaoxin, Ma; Xuefei, Bai; Lu, Huang

    2013-09-01

    A time-to-digital converter (TDC) based on a reset-free and anti-harmonic delay-locked loop (DLL) circuit for wireless positioning systems is discussed and described. The DLL that generates 32-phase clocks and a cycle period detector is employed to avoid “false locking". Driven by multiphase clocks, an encoder detects pulses and outputs the phase of the clock when the pulse arrives. The proposed TDC was implemented in SMIC 0.18 μm CMOS technology, and its core area occupies 0.7 × 0.55 mm2. The reference frequency ranges from 20 to 150 MHz. An LSB resolution of 521 ps can be achieved by using a reference clock of 60 MHz and the DNL is less than ±0.75 LSB. It dissipates 31.5 mW at 1.8 V supply voltage.

  8. The "fourth dimension" of gene transcription.

    PubMed

    O'Malley, Bert W

    2009-05-01

    The three dimensions of space provide our relationship to position on the earth, but the fourth dimension of time has an equally profound influence on our lives. Everything from light and sound to weather and biology operate on the principle of measurable temporal periodicity. Consequently, a wide variety of time clocks affect all aspects of our existence. The annual (and biannual) cycles of activity, metabolism, and mating, the monthly physiological clocks of women and men, and the 24-h diurnal rhythms of humans are prime examples. Should it be surprising to us that the fourth dimension also impinges upon gene expression and that the genome itself is regulated by the fastest running of all biological clocks? Recent evidence substantiates the existence of such a ubiquitin-dependent transcriptional clock that is based upon the activation and destruction of transcriptional coactivators.

  9. The “Fourth Dimension” of Gene Transcription

    PubMed Central

    O'Malley, Bert W.

    2009-01-01

    The three dimensions of space provide our relationship to position on the earth, but the fourth dimension of time has an equally profound influence on our lives. Everything from light and sound to weather and biology operate on the principle of measurable temporal periodicity. Consequently, a wide variety of time clocks affect all aspects of our existence. The annual (and biannual) cycles of activity, metabolism, and mating, the monthly physiological clocks of women and men, and the 24-h diurnal rhythms of humans are prime examples. Should it be surprising to us that the fourth dimension also impinges upon gene expression and that the genome itself is regulated by the fastest running of all biological clocks? Recent evidence substantiates the existence of such a ubiquitin-dependent transcriptional clock that is based upon the activation and destruction of transcriptional coactivators. PMID:19221049

  10. Rapid resetting of human peripheral clocks by phototherapy during simulated night shift work.

    PubMed

    Cuesta, Marc; Boudreau, Philippe; Cermakian, Nicolas; Boivin, Diane B

    2017-11-24

    A majority of night shift workers have their circadian rhythms misaligned to their atypical schedule. While bright light exposure at night is known to reset the human central circadian clock, the behavior of peripheral clocks under conditions of shift work is more elusive. The aim of the present study was to quantify the resetting effects of bright light exposure on both central (plasma cortisol and melatonin) and peripheral clocks markers (clock gene expression in peripheral blood mononuclear cells, PBMCs) in subjects living at night. Eighteen healthy subjects were enrolled to either a control (dim light) or a bright light group. Blood was sampled at baseline and on the 4 th day of simulated night shift. In response to a night-oriented schedule, the phase of PER1 and BMAL1 rhythms in PBMCs was delayed by ~2.5-3 h (P < 0.05), while no shift was observed for the other clock genes and the central markers. Three cycles of 8-h bright light induced significant phase delays (P < 0.05) of ~7-9 h for central and peripheral markers, except BMAL1 (advanced by +5h29; P < 0.05). Here, we demonstrate in humans a lack of peripheral clock adaptation under a night-oriented schedule and a rapid resetting effect of nocturnal bright light exposure on peripheral clocks.

  11. Consequences of Exposure to Light at Night on the Pancreatic Islet Circadian Clock and Function in Rats

    PubMed Central

    Qian, Jingyi; Block, Gene D.; Colwell, Christopher S.; Matveyenko, Aleksey V.

    2013-01-01

    There is a correlation between circadian disruption, type 2 diabetes mellitus (T2DM), and islet failure. However, the mechanisms underlying this association are largely unknown. Pancreatic islets express self-sustained circadian clocks essential for proper β-cell function and survival. We hypothesized that exposure to environmental conditions associated with disruption of circadian rhythms and susceptibility to T2DM in humans disrupts islet clock and β-cell function. To address this hypothesis, we validated the use of Per-1:LUC transgenic rats for continuous longitudinal assessment of islet circadian clock function ex vivo. Using this methodology, we subsequently examined effects of the continuous exposure to light at night (LL) on islet circadian clock and insulin secretion in vitro in rat islets. Our data show that changes in the light–dark cycle in vivo entrain the phase of islet clock transcriptional oscillations, whereas prolonged exposure (10 weeks) to LL disrupts islet circadian clock function through impairment in the amplitude, phase, and interislet synchrony of clock transcriptional oscillations. We also report that exposure to LL leads to diminished glucose-stimulated insulin secretion due to a decrease in insulin secretory pulse mass. Our studies identify potential mechanisms by which disturbances in circadian rhythms common to modern life can predispose to islet failure in T2DM. PMID:23775768

  12. Thyroxine differentially modulates the peripheral clock: lessons from the human hair follicle.

    PubMed

    Hardman, Jonathan A; Haslam, Iain S; Farjo, Nilofer; Farjo, Bessam; Paus, Ralf

    2015-01-01

    The human hair follicle (HF) exhibits peripheral clock activity, with knock-down of clock genes (BMAL1 and PER1) prolonging active hair growth (anagen) and increasing pigmentation. Similarly, thyroid hormones prolong anagen and stimulate pigmentation in cultured human HFs. In addition they are recognized as key regulators of the central clock that controls circadian rhythmicity. Therefore, we asked whether thyroxine (T4) also influences peripheral clock activity in the human HF. Over 24 hours we found a significant reduction in protein levels of BMAL1 and PER1, with their transcript levels also decreasing significantly. Furthermore, while all clock genes maintained their rhythmicity in both the control and T4 treated HFs, there was a significant reduction in the amplitude of BMAL1 and PER1 in T4 (100 nM) treated HFs. Accompanying this, cell-cycle progression marker Cyclin D1 was also assessed appearing to show an induced circadian rhythmicity by T4 however, this was not significant. Contrary to short term cultures, after 6 days, transcript and/or protein levels of all core clock genes (BMAL1, PER1, clock, CRY1, CRY2) were up-regulated in T4 treated HFs. BMAL1 and PER1 mRNA was also up-regulated in the HF bulge, the location of HF epithelial stem cells. Together this provides the first direct evidence that T4 modulates the expression of the peripheral molecular clock. Thus, patients with thyroid dysfunction may also show a disordered peripheral clock, which raises the possibility that short term, pulsatile treatment with T4 might permit one to modulate circadian activity in peripheral tissues as a target to treat clock-related disease.

  13. Association of Per1 and Npas2 with autistic disorder: support for the clock genes/social timing hypothesis.

    PubMed

    Nicholas, B; Rudrasingham, V; Nash, S; Kirov, G; Owen, M J; Wimpory, D C

    2007-06-01

    Clock gene anomalies have been suggested as causative factors in autism. We screened eleven clock/clock-related genes in a predominantly high-functioning Autism Genetic Resource Exchange sample of strictly diagnosed autistic disorder progeny and their parents (110 trios) for association of clock gene variants with autistic disorder. We found significant association (P<0.05) for two single-nucleotide polymorphisms in per1 and two in npas2. Analysis of all possible combinations of two-marker haplotypes for each gene showed that in npas2 40 out of the 136 possible two-marker combinations were significant at the P<0.05 level, with the best result between markers rs1811399 and rs2117714, P=0.001. Haplotype analysis within per1 gave a single significant result: a global P=0.027 for the markers rs2253820-rs885747. No two-marker haplotype was significant in any of the other genes, despite the large number of tests performed. Our findings support the hypothesis that these epistatic clock genes may be involved in the etiology of autistic disorder. Problems in sleep, memory and timing are all characteristics of autistic disorder and aspects of sleep, memory and timing are each clock-gene-regulated in other species. We identify how our findings may be relevant to theories of autism that focus on the amygdala, cerebellum, memory and temporal deficits. We outline possible implications of these findings for developmental models of autism involving temporal synchrony/social timing.

  14. The Cell Cycle: An Activity Using Paper Plates to Represent Time Spent in Phases of the Cell Cycle

    ERIC Educational Resources Information Center

    Scherer, Yvette D.

    2014-01-01

    In this activity, students are given the opportunity to combine skills in math and geometry for a biology lesson in the cell cycle. Students utilize the data they collect and analyze from an online onion-root-tip activity to create a paper-plate time clock representing a 24-hour cell cycle. By dividing the paper plate into appropriate phases of…

  15. Circadian clocks in the cnidaria: environmental entrainment, molecular regulation, and organismal outputs.

    PubMed

    Reitzel, Adam M; Tarrant, Ann M; Levy, Oren

    2013-07-01

    The circadian clock is a molecular network that translates predictable environmental signals, such as light levels, into organismal responses, including behavior and physiology. Regular oscillations of the molecular components of the clock enable individuals to anticipate regularly fluctuating environmental conditions. Cnidarians play important roles in benthic and pelagic marine environments and also occupy a key evolutionary position as the likely sister group to the bilaterians. Together, these attributes make members of this phylum attractive as models for testing hypotheses on roles for circadian clocks in regulating behavior, physiology, and reproduction as well as those regarding the deep evolutionary conservation of circadian regulatory pathways in animal evolution. Here, we review and synthesize the field of cnidarian circadian biology by discussing the diverse effects of daily light cycles on cnidarians, summarizing the molecular evidence for the conservation of a bilaterian-like circadian clock in anthozoan cnidarians, and presenting new empirical data supporting the presence of a conserved feed-forward loop in the starlet sea anemone, Nematostella vectensis. Furthermore, we discuss critical gaps in our current knowledge about the cnidarian clock, including the functions directly regulated by the clock and the precise molecular interactions that drive the oscillating gene-expression patterns. We conclude that the field of cnidarian circadian biology is moving rapidly toward linking molecular mechanisms with physiology and behavior.

  16. Seasonality in a temperate zone bird can be entrained by near equatorial photoperiods.

    PubMed

    Dawson, Alistair

    2007-03-07

    Birds use photoperiod to control the time of breeding and moult. However, it is unclear whether responses are dependent on absolute photoperiod, the direction and rate of change in photoperiod, or if photoperiod entrains a circannual clock. If starlings (Sturnus vulgaris) are kept on a constant photoperiod of 12h light:12h darkness per day (12L:12D), then they can show repeated cycles of gonadal maturation, regression and moult, which is evidence for a circannual clock. In this study, starlings kept on constant 11.5L:12.5D for 4 years or 12.5L:11.5D for 3 years showed no circannual cycles in gonadal maturation or moult. So, if there is a circannual clock, it is overridden by a modest deviation in photoperiod from 12L:12D. The responses to 11.5L:12.5D and 12.5L:11.5D were very different, the former perceived as a short photoperiod (birds were photosensitive for most of the time) and the latter as a long photoperiod (birds remained permanently photorefractory). Starlings were then kept on a schedule which ranged from 11.5L:12.5D in mid-winter to 12.5L:11.5D in mid-summer (simulating the annual cycle at 9 degrees N) for 3 years. These birds entrained precisely to calendar time and changes in testicular size and moult were similar to those of birds under a simulated cycle at 52 degrees N. These data show that birds are very sensitive to changes in photoperiod but that they do not simply respond to absolute photoperiod nor can they rely on a circannual clock. Instead, birds appear to respond to the shape of the annual change in photoperiod. This proximate control could operate from near equatorial latitudes and would account for similar seasonal timing in individuals of a species over a wide range of latitudes.

  17. Sensitivity of housekeeping genes in the suprachiasmatic nucleus of the mouse brain to diet and the daily light-dark cycle.

    PubMed

    Cleal, Jane K; Shepherd, James N; Shearer, Jasmine L; Bruce, Kimberley D; Cagampang, Felino R

    2014-08-05

    The endogenous timing system within the suprachiasmatic nuclei (SCN) of the hypothalamus drives the cyclic expression of the clock molecules across the 24h day-night cycle controlling downstream molecular pathways and physiological processes. The developing fetal clock system is sensitive to the environment and physiology of the pregnant mother and as such disruption of this system could lead to altered physiology in the offspring. Characterizing the gene profiles of the endogenous molecular clock system by quantitative reverse transcription polymerase chain reaction is dependent on normalization by appropriate housekeeping genes (HKGs). However, many HKGs commonly used as internal controls, although stably expressed under control conditions, can vary significantly in their expression under certain experimental conditions. Here we analyzed the expression of 10 classic HKG across the 24h light-dark cycle in the SCN of mouse offspring exposed to normal chow or a high fat diet during early development and in postnatal life. We found that the HKGs glyceraldehyde-3-phosphate dehydrogenase, beta actin and adenosine triphosphate synthase subunit to be the most stably expressed genes in the SCN regardless of diet or time within the 24h light-dark cycle, and are therefore suitable to be used as internal controls. However SCN samples collected during the light and dark periods did show differences in expression and as such the timing of collection should be considered when carrying out gene expression studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Recent Developments in Microwave Ion Clocks

    NASA Astrophysics Data System (ADS)

    Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute

    We review the development of microwave-frequency standards based on trapped ions. Following two distinct paths, microwave ion clocks have evolved greatly in the last twenty years since the earliest Paul-trap-based units. Laser-cooled ion frequency standards reduce the second-order Doppler shift from ion micromotion and thermal secular motion achieving good signal-to-noise ratios via cycling transitions where as many as ~10^8 photons per second per ion may be scattered. Today, laser-cooled ion standards are based on linear Paul traps which hold ions near the node line of the trapping electric field, minimizing micromotion at the trapping-field frequency and the consequent second-order Doppler frequency shift. These quadrupole (radial) field traps tightly confine tens of ions to a crystalline single-line structure. As more ions are trapped, space charge forces some ions away from the node-line axis and the second-order Doppler effect grows larger, even at negligibly small secular temperatures. Buffer-gas-cooled clocks rely on large numbers of ions, typically ~10^7, optically pumped by a discharge lamp at a scattering rate of a few photons per second per ion. To reduce the second-order Doppler shift from space charge repulsion of ions from the trap node line, novel multipole ion traps are now being developed where ions are weakly bound with confining fields that are effectively zero through the trap interior and grow rapidly near the trap electrode ``walls''.

  19. Melatonin and pineal gland peptides are able to correct the impairment of reproductive cycles in rats.

    PubMed

    Arutjunyan, Alexander; Kozina, Ljudmila; Milyutina, Yulia; Korenevsky, Andrew; Stepanov, Michael; Arutyunov, Vladimir

    2012-12-01

    Catecholamines play an important role in the hypothalamic regulation of the synthesis and secretion of gonadotropin- releasing hormone, or gonadoliberin. We have shown that melatonin and the pineal gland peptides (epithalamine and epitalon) exert a correcting influence on the diurnal dynamics of norepinephrine (NE) in the medial preoptic area (MPA) and of dopamine (DA) in the median eminence with arcuate nuclei (ME-Arc) disturbed by single administration of the neurotoxic xenobiotic 1,2-dimethylhydrazine (DMH) in female rats. It has been found that experiments with DMH administration can be used as an animal model of female reproductive system premature aging. The investigation of epithalamine (a polypeptide preparation from the bovine pineal gland) effect on circadian rhythms disturbed by the neurotoxic compound DMH has shown a recovery of the diurnal dynamics of NE in MPA. In addition, NE was found to decrease from 9:30 till 11 o'clock, Circadian Time (CT), which was typical of control animals. Epitalon (Ala-Glu-Asp-Gly) proved to be more effective in ME-Arc. This peptide prevents the xenobiotic caused disturbance of DA diurnal rhythm, keeping this metabolite low at 5 o'clock (CT) with it having increased by 11 o'clock (CT). The data obtained suggest that the pineal gland is important for the circadian signal normalization needed for gonadoliberin surge on the day of proestrus. Melatonin and peptides of the pineal gland can be considered as effective protectors of female reproductive system from xenobiotics and premature aging.

  20. period -1 encodes an ATP-dependent RNA helicase that influences nutritional compensation of the Neurospora circadian clock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emerson, Jillian M.; Bartholomai, Bradley M.; Ringelberg, Carol S.

    Mutants in the period-1 (prd-1) gene, characterized by a recessive allele, display a reduced growth rate and period lengthening of the developmental cycle controlled by the circadian clock. We refined the genetic location of prd-1 and used whole genome sequencing to find the mutation defining it, confirming the identity of prd-1 by rescuing the mutant circadian phenotype via transformation. PRD-1 is an RNA helicase whose orthologs, DDX5 and DDX17 in humans and Dbp2p in yeast, are implicated in various processes including transcriptional regulation, elongation, and termination, 23 ribosome biogenesis, and RNA decay. Although prdi-1smutantssiois an ATP-dependent RNA helicase, member ofmore » a sub-family display a long period (~25 hrs) circadian developmental cycle, they interestingly display a wild type period when the core circadian oscillator is tracked using a frq-luciferase transcriptional fusion under conditions of limiting nutritional carbon; the core oscillator runs with a long period under glucose-sufficient conditions. Thus PRD-1 clearly impacts the circadian oscillator and is not only part of a metabolic oscillator ancillary to the core clock. PRD-1 is an essential protein and its expression is neither light-regulated nor clock-regulated. However, it is transiently induced by glucose; in the presence of sufficient glucose PRD-1 is in the nucleus until glucose runs out which elicits its disappearance from the nucleus. Because circadian period length is carbon concentration-dependent, prd­-1 may be formally viewed as clock mutant with defective nutritional compensation of circadian period length.« less

  1. period -1 encodes an ATP-dependent RNA helicase that influences nutritional compensation of the Neurospora circadian clock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emerson, Jillian M.; Bartholomai, Bradley M.; Ringelberg, Carol S.

    2015-12-08

    Mutants in the period-1 (prd-1) gene, characterized by a recessive allele, display a reduced growth rate and period lengthening of the developmental cycle controlled by the circadian clock. We refined the genetic location of prd-1 and used whole genome sequencing to find the mutation defining it, confirming the identity of prd-1 by rescuing the mutant circadian phenotype via transformation. PRD-1 is an RNA helicase whose orthologs, DDX5 and DDX17 in humans and Dbp2p in yeast, are implicated in various processes including transcriptional regulation, elongation, and termination, 23 ribosome biogenesis, and RNA decay. Although prdi-1smutantssiois an ATP-dependent RNA helicase, member ofmore » a sub-family display a long period (~25 hrs) circadian developmental cycle, they interestingly display a wild type period when the core circadian oscillator is tracked using a frq-luciferase transcriptional fusion under conditions of limiting nutritional carbon; the core oscillator runs with a long period under glucose-sufficient conditions. Thus PRD-1 clearly impacts the circadian oscillator and is not only part of a metabolic oscillator ancillary to the core clock. PRD-1 is an essential protein and its expression is neither light-regulated nor clock-regulated. However, it is transiently induced by glucose; in the presence of sufficient glucose PRD-1 is in the nucleus until glucose runs out which elicits its disappearance from the nucleus. Because circadian period length is carbon concentration-dependent, prd­-1 may be formally viewed as clock mutant with defective nutritional compensation of circadian period length.« less

  2. An Overview of Monthly Rhythms and Clocks

    PubMed Central

    Raible, Florian; Takekata, Hiroki; Tessmar-Raible, Kristin

    2017-01-01

    Organisms have evolved to cope with geophysical cycles of different period lengths. In this review, we focus on the adaptations of animals to the lunar cycle, specifically, on the occurrence of biological rhythms with monthly (circalunar) or semi-monthly (circasemilunar) period lengths. Systematic experimental investigation, starting in the early twentieth century, has allowed scientists to distinguish between mythological belief and scientific facts concerning the influence of the lunar cycle on animals. These studies revealed that marine animals of various taxa exhibit circalunar or circasemilunar reproductive rhythms. Some of these rely on endogenous oscillators (circalunar or circasemilunar clocks), whereas others are directly driven by external cues, such as the changes in nocturnal illuminance. We review current insight in the molecular and cellular mechanisms involved in circalunar rhythms, focusing on recent work in corals, annelid worms, midges, and fishes. In several of these model systems, the transcript levels of some core circadian clock genes are affected by both light and endogenous circalunar oscillations. How these and other molecular changes relate to the changes in physiology or behavior over the lunar cycle remains to be determined. We further review the possible relevance of circalunar rhythms for terrestrial species, with a particular focus on mammalian reproduction. Studies on circalunar rhythms of conception or birth rates extend to humans, where the lunar cycle was suggested to also affect sleep and mental health. While these reports remain controversial, factors like the increase in “light pollution” by artificial light might contribute to discrepancies between studies. We finally discuss the existence of circalunar oscillations in mammalian physiology. We speculate that these oscillations could be the remnant of ancient circalunar oscillators that were secondarily uncoupled from a natural entrainment mechanism, but still maintained relevance for structuring the timing of reproduction or physiology. The analysis and comparison of circalunar rhythms and clocks are currently challenging due to the heterogeneity of samples concerning species diversity, environmental conditions, and chronobiological conditions. We suggest that future research will benefit from the development of standardized experimental paradigms, and common principles for recording and reporting environmental conditions, especially light spectra and intensities. PMID:28553258

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael, Alicia K.; Fribourgh, Jennifer L.; Chelliah, Yogarany

    The basic helix-loop-helix PAS domain (bHLH-PAS) transcription factor CLOCK:BMAL1 (brain and muscle Arnt-like protein 1) sits at the core of the mammalian circadian transcription/translation feedback loop. Precise control of CLOCK:BMAL1 activity by coactivators and repressors establishes the ~24-h periodicity of gene expression. Formation of a repressive complex, defined by the core clock proteins cryptochrome 1 (CRY1):CLOCK:BMAL1, plays an important role controlling the switch from repression to activation each day. Here in this paper, we show that CRY1 binds directly to the PAS domain core of CLOCK: BMAL1, driven primarily by interaction with the CLOCK PAS-B domain. Integrative modeling and solutionmore » X-ray scattering studies unambiguously position a key loop of the CLOCK PAS-B domain in the secondary pocket of CRY1, analogous to the antenna chromophore-binding pocket of photolyase. CRY1 docks onto the transcription factor alongside the PAS domains, extending above the DNA-binding bHLH domain. Single point mutations at the interface on either CRY1 or CLOCK disrupt formation of the ternary complex, highlighting the importance of this interface for direct regulation of CLOCK:BMAL1 activity by CRY1.« less

  4. Frequency Standards and Metrology

    NASA Astrophysics Data System (ADS)

    Maleki, Lute

    2009-04-01

    Preface / Lute Maleki -- Symposium history / Jacques Vanier -- Symposium photos -- pt. I. Fundamental physics. Variation of fundamental constants from the big bang to atomic clocks: theory and observations (Invited) / V. V. Flambaum and J. C. Berengut. Alpha-dot or not: comparison of two single atom optical clocks (Invited) / T. Rosenband ... [et al.]. Variation of the fine-structure constant and laser cooling of atomic dysprosium (Invited) / N. A. Leefer ... [et al.]. Measurement of short range forces using cold atoms (Invited) / F. Pereira Dos Santos ... [et al.]. Atom interferometry experiments in fundamental physics (Invited) / S. W. Chiow ... [et al.]. Space science applications of frequency standards and metrology (Invited) / M. Tinto -- pt. II. Frequency & metrology. Quantum metrology with lattice-confined ultracold Sr atoms (Invited) / A. D. Ludlow ... [et al.]. LNE-SYRTE clock ensemble: new [symbol]Rb hyperfine frequency measurement - spectroscopy of [symbol]Hg optical clock transition (Invited) / M. Petersen ... [et al.]. Precise measurements of S-wave scattering phase shifts with a juggling atomic clock (Invited) / S. Gensemer ... [et al.]. Absolute frequency measurement of the [symbol] clock transition (Invited) / M. Chwalla ... [et al.]. The semiclassical stochastic-field/atom interaction problem (Invited) / J. Camparo. Phase and frequency noise metrology (Invited) / E. Rubiola ... [et al.]. Optical spectroscopy of atomic hydrogen for an improved determination of the Rydberg constant / J. L. Flowers ... [et al.] -- pt. III. Clock applications in space. Recent progress on the ACES mission (Invited) / L. Cacciapuoti and C. Salomon. The SAGAS mission (Invited) / P. Wolf. Small mercury microwave ion clock for navigation and radioScience (Invited) / J. D. Prestage ... [et al.]. Astro-comb: revolutionizing precision spectroscopy in astrophysics (Invited) / C. E. Kramer ... [et al.]. High frequency very long baseline interferometry: frequency standards and imaging an event horizon (Invited) / S. Doeleman. Optically-pumped space cesium clock for Galileo: results of the breadboard / R. Ruffieux ... [et al.] -- pt. IV. Optical clocks I: lattice clocks. Optical lattice clock: seven years of progress and next steps (Invited) / H. Katori, M. Takamoto and T. Akatsuka. The Yb optical lattice clock (Invited) / N. D. Demke ... [et al.]. Optical Lattice clock with Sr atoms (Invited) / P. G. Westergaard ... [et al.]. Development of an optical clock based on neutral strontium atoms held in a lattice trap / E. A. Curtis ... [et al.]. Decoherence and losses by collisions in a [symbol]Sr lattice clock / J. S. R. Vellore Winfred ... [et al.]. Lattice Yb optical clock and cryogenic Cs fountain at INRIM / F. Levi ... [et al.] -- pt. V. Optical clocks II: ion clocks. [Symbol]Yb+ single-ion optical frequency standards (Invited) / Chr. Tamm ... [et al.]. An optical clock based on a single trapped [symbol]Sr+ ion (Invited) / H. S. Margolis ... [et al.]. A trapped [symbol]Yb+ ion optical frequency standard based on the [symbol] transition (Invited) / P. Gill ... [et al.]. Overview of highly accurate RF and optical frequency standards at the National Research Council of Canada (Invited) / A. A. Madej ... [et al.] -- pt. VI. Optical frequency combs. Extreme ultraviolet frequency combs for spectroscopy (Invited) / A. Ozawa ... [et al.]. Development of an optical clockwork for the single trapped strontium ion standard at 445 THz / J. E. Bernard ... [et al.]. A phase-coherent link between the visible and infrared spectral ranges using a combination of CW OPO and femtosecond laser frequency comb / E. V. Kovalchuk and A. Peters. Improvements to the robustness of a TI: sapphire-based femtosecond comb at NPL / V. Tsatourian ... [et al.] -- pt. VII. Atomic microwave standards. NIST FI and F2 (Invited) / T. P. Heavner ... [et al.]. Atomic fountains for the USNO master clock (Invited) / C. Ekstrom ... [et al.]. The transportable cesium fountain clock NIM5: its construction and performance (Invited) / T. Li ... [et al.].Compensated multi-pole mercury trapped ion frequency standard and stability evaluation of systematic effects (Invited) / E. A. Burt ... [et al.]. Research of frequency standards in SIOM - atomic frequency standards based on coherent storage (Invited) / B. Yan ... [et al.]. The PTB fountain clock ensemble preliminary characterization of the new fountain CSF2 / N. Nemitz ... [et al.]. The pulsed optically pumped clock: microwave and optical detection / S. Micalizio ... [et al.]. Research on characteristics of pulsed optically pumped rubidium frequency standard / J. Deng ... [et al.]. Status of the continuous cold fountain clocks at METAS-LTF / A. Joyet ... [et al.]. Experiments with a new [symbol]Hg+ ion clock / E. A. Burt ... [et al.]. Optimising a high-stability CW laser-pumped rubidium gas-cell frequency standard / C. Affolderbach ... [et al.]. Raman-Ramsey Cs cell atomic clock / R. Boudot ... [et al.] -- pt. VIII. Microwave resonators & oscillators. Solutions and ultimate limits in temperature compensation of metallic cylindrical microwave resonators (Invited) / A. De Marchi. Cryogenic sapphire oscillators (Invited) / J. G. Hartnett, E. N. Ivanov and M. E. Tobar. Ultra-stable optical cavity: design and experiments / J. Millo ... [et al.]. New results for whispering gallery mode cryogenic sapphire maser oscillators / K. Benmessai ... [et al.] -- pt. IX. Advanced techniques. Fundamental noise-limited optical phase locking at Femtowatt light levels (Invited) / J. Dick ... [et al.]. Microwave and optical frequency transfer via optical fibre / G. Marra ... [et al.]. Ultra-stable laser source for the [symbol]Sr+ single-ion optical frequency standard at NRC / P. Dubé, A. A. Madej and J. E. Bernard. Clock laser system for a strontium lattice clock / T. Legero ... [et al.]. Measurement noise floor for a long-distance optical carrier transmission via fiber / G. Grosche ... [et al.]. Optical frequency transfer over 172 KM of installed fiber / S. Crane -- pt. X. Miniature systems. Chip-scale atomic devices: precision atomic instruments based on MEMS (Invited) / J. Kitching ... [et al.]. CSAC - the chip-scale atomic clock (Invited) / R. Lutwak ... [et al.]. Reaching a few 10[symbol] stability level with a compact cold atom clock / F. X. Esnault ... [et al.]. Evaluation of Lin||Lin CPT for compact and high performance frequency standard / E. Breschi ... [et al.] -- pt. XI. Time scales. Atomic time scales TAI and TI(BIPM): present status and prospects (Invited) / G. Petit. Weight functions for biases in atomic frequency standards / J. H. Shirley -- pt. XII. Interferometers. Definition and construction of noise budget in atom interferometry (Invited) / E. D'Ambriosio. Characterization of a cold atom gyroscope (Invited) / A. Landragin ... [et al.]. A mobile atom interferometer for high precision measurements of local gravity / M. Schmidt ... [et al.]. Demonstration of atom interferometer comprised of geometric beam splitters / Hiromitsu Imai and Atsuo Morinaga -- pt. XIII. New directions. Active optical clocks (Invited) / J. Chen. Prospects for a nuclear optical frequency standard based on Thorium-229 (Invited) / E. Peik ... [et al.]. Whispering gallery mode oscillators and optical comb generators (Invited) / A. B. Matsko ... [et al.]. Frequency comparison using energy-time entangled photons / A. Stefanov -- List of participants.

  5. CSL encodes a leucine-rich-repeat protein implicated in red/violet light signaling to the circadian clock in Chlamydomonas

    PubMed Central

    Kinoshita, Ayumi; Niwa, Yoshimi; Onai, Kiyoshi; Fukuzawa, Hideya; Ishiura, Masahiro

    2017-01-01

    The green alga Chlamydomonas reinhardtii shows various light responses in behavior and physiology. One such photoresponse is the circadian clock, which can be reset by external light signals to entrain its oscillation to daily environmental cycles. In a previous report, we suggested that a light-induced degradation of the clock protein ROC15 is a trigger to reset the circadian clock in Chlamydomonas. However, light signaling pathways of this process remained unclear. Here, we screened for mutants that show abnormal ROC15 diurnal rhythms, including the light-induced protein degradation at dawn, using a luciferase fusion reporter. In one mutant, ROC15 degradation and phase resetting of the circadian clock by light were impaired. Interestingly, the impairments were observed in response to red and violet light, but not to blue light. We revealed that an uncharacterized gene encoding a protein similar to RAS-signaling-related leucine-rich repeat (LRR) proteins is responsible for the mutant phenotypes. Our results indicate that a previously uncharacterized red/violet light signaling pathway is involved in the phase resetting of circadian clock in Chlamydomonas. PMID:28333924

  6. Formation of a repressive complex in the mammalian circadian clock is mediated by the secondary pocket of CRY1

    DOE PAGES

    Michael, Alicia K.; Fribourgh, Jennifer L.; Chelliah, Yogarany; ...

    2017-01-31

    The basic helix-loop-helix PAS domain (bHLH-PAS) transcription factor CLOCK:BMAL1 (brain and muscle Arnt-like protein 1) sits at the core of the mammalian circadian transcription/translation feedback loop. Precise control of CLOCK:BMAL1 activity by coactivators and repressors establishes the ~24-h periodicity of gene expression. Formation of a repressive complex, defined by the core clock proteins cryptochrome 1 (CRY1):CLOCK:BMAL1, plays an important role controlling the switch from repression to activation each day. Here in this paper, we show that CRY1 binds directly to the PAS domain core of CLOCK: BMAL1, driven primarily by interaction with the CLOCK PAS-B domain. Integrative modeling and solutionmore » X-ray scattering studies unambiguously position a key loop of the CLOCK PAS-B domain in the secondary pocket of CRY1, analogous to the antenna chromophore-binding pocket of photolyase. CRY1 docks onto the transcription factor alongside the PAS domains, extending above the DNA-binding bHLH domain. Single point mutations at the interface on either CRY1 or CLOCK disrupt formation of the ternary complex, highlighting the importance of this interface for direct regulation of CLOCK:BMAL1 activity by CRY1.« less

  7. Dim Light at Night Prior to Adolescence Increases Adult Anxiety-like Behaviors

    PubMed Central

    Cissé, Yasmine M.; Peng, Juan; Nelson, Randy J.

    2017-01-01

    Dim light at night (dLAN) disrupts circadian organization and influences adult behavior. We examined early dLAN exposure on adult affective responses. Beginning 3 (juvenile) or 5 weeks (adolescent) of age, mice were maintained in standard light-dark cycles or exposed to nightly dLAN (5 lux) for 5 weeks, then anxiety-like and fear responses were assessed. Hypothalami were collected around the clock to assess core clock genes. Exposure to dLAN at either age increased anxiety-like responses in adults. Clock and Rev-ERB expression were altered by exposure to dLAN. In contrast to adults, dLAN exposure during early life increases anxiety and fear behavior. PMID:27592634

  8. Dim light at night prior to adolescence increases adult anxiety-like behaviors.

    PubMed

    Cissé, Yasmine M; Peng, Juan; Nelson, Randy J

    2016-01-01

    Dim light at night (dLAN) disrupts circadian organization and influences adult behavior. We examined early dLAN exposure on adult affective responses. Beginning 3 (juvenile) or 5 weeks (adolescent) of age, mice were maintained in standard light-dark cycles or exposed to nightly dLAN (5 lx) for 5 weeks, then anxiety-like and fear responses were assessed. Hypothalami were collected around the clock to assess core clock genes. Exposure to dLAN at either age increased anxiety-like responses in adults. Clock and Rev-ERB expression were altered by exposure to dLAN. In contrast to adults, dLAN exposure during early life increases anxiety and fear behavior.

  9. Persistence, period and precision of autonomous cellular oscillators from the zebrafish segmentation clock

    PubMed Central

    Webb, Alexis B; Lengyel, Iván M; Jörg, David J; Valentin, Guillaume; Jülicher, Frank; Morelli, Luis G; Oates, Andrew C

    2016-01-01

    In vertebrate development, the sequential and rhythmic segmentation of the body axis is regulated by a “segmentation clock”. This clock is comprised of a population of coordinated oscillating cells that together produce rhythmic gene expression patterns in the embryo. Whether individual cells autonomously maintain oscillations, or whether oscillations depend on signals from neighboring cells is unknown. Using a transgenic zebrafish reporter line for the cyclic transcription factor Her1, we recorded single tailbud cells in vitro. We demonstrate that individual cells can behave as autonomous cellular oscillators. We described the observed variability in cell behavior using a theory of generic oscillators with correlated noise. Single cells have longer periods and lower precision than the tissue, highlighting the role of collective processes in the segmentation clock. Our work reveals a population of cells from the zebrafish segmentation clock that behave as self-sustained, autonomous oscillators with distinctive noisy dynamics. DOI: http://dx.doi.org/10.7554/eLife.08438.001 PMID:26880542

  10. Dim light at night disrupts molecular circadian rhythms and increases body weight.

    PubMed

    Fonken, Laura K; Aubrecht, Taryn G; Meléndez-Fernández, O Hecmarie; Weil, Zachary M; Nelson, Randy J

    2013-08-01

    With the exception of high latitudes, life has evolved under bright days and dark nights. Most organisms have developed endogenously driven circadian rhythms that are synchronized to this daily light/dark cycle. In recent years, humans have shifted away from the naturally occurring solar light cycle in favor of artificial and sometimes irregular light schedules produced by electric lighting. Exposure to unnatural light cycles is increasingly associated with obesity and metabolic syndrome; however, the means by which environmental lighting alters metabolism are poorly understood. Thus, we exposed mice to dim light at night and investigated changes in the circadian system and metabolism. Here we report that exposure to ecologically relevant levels of dim (5 lux) light at night altered core circadian clock rhythms in the hypothalamus at both the gene and protein level. Circadian rhythms in clock expression persisted during light at night; however, the amplitude of Per1 and Per2 rhythms was attenuated in the hypothalamus. Circadian oscillations were also altered in peripheral tissues critical for metabolic regulation. Exposure to dimly illuminated, as compared to dark, nights decreased the rhythmic expression in all but one of the core circadian clock genes assessed in the liver. Additionally, mice exposed to dim light at night attenuated Rev-Erb expression in the liver and adipose tissue. Changes in the circadian clock were associated with temporal alterations in feeding behavior and increased weight gain. These results are significant because they provide evidence that mild changes in environmental lighting can alter circadian and metabolic function. Detailed analysis of temporal changes induced by nighttime light exposure may provide insight into the onset and progression of obesity and metabolic syndrome, as well as other disorders involving sleep and circadian rhythm disruption.

  11. Molecular oscillation behind the clockface.

    PubMed

    Fukada, Yoshitaka

    2003-12-01

    The earth rotates on its own axis while orbiting around the sun. This regular movement of the solar system results in cyclic changes of the light condition of the earth with a period of 24 h, although the lengths of daytime and nighttime depend on the latitude. The organisms living on the earth have evolved an internal time-measuring system called the "circadian clock," which ticks with a period of approximately 24 h in order to adapt to the environment and to anticipate the next cycle. The fact that most of existing organisms retain the circadian clock suggests that the clock-ownership must have been advantageous over non-ownership during their evolution. Here I will introduce the background of the research field of circadian rhythm and present an outline of this Special Review series, which is composed of three articles that review recent research into the molecular mechanisms of the three types of circadian clock systems in vertebrates.

  12. Synchronous clock stopper for microprocessor

    NASA Technical Reports Server (NTRS)

    Kitchin, David A. (Inventor)

    1985-01-01

    A synchronous clock stopper circuit for inhibiting clock pulses to a microprocessor in response to a stop request signal, and for reinstating the clock pulses in response to a start request signal thereby to conserve power consumption of the microprocessor when used in an environment of limited power. The stopping and starting of the microprocessor is synchronized, by a phase tracker, with the occurrences of a predetermined phase in the instruction cycle of the microprocessor in which the I/O data and address lines of the microprocessor are of high impedance so that a shared memory connected to the I/O lines may be accessed by other peripheral devices. The starting and stopping occur when the microprocessor initiates and completes, respectively, an instruction, as well as before and after transferring data with a memory. Also, the phase tracker transmits phase information signals over a bus to other peripheral devices which signals identify the current operational phase of the microprocessor.

  13. Hericium erinaceus extracts alter behavioral rhythm in mice.

    PubMed

    Furuta, Shoko; Kuwahara, Rika; Hiraki, Eri; Ohnuki, Koichiro; Yasuo, Shinobu; Shimizu, Kuniyoshi

    2016-01-01

    Hericium erinaceus (HE), an edible mushroom, has been used as a herbal medicine in several Asian countries since ancient times. HE has potential as a medicine for the treatment and prevention of dementia, a disorder closely linked with circadian rhythm. This study investigated the effects of the intake of HE extracts on behavioral rhythm, photosensitivity of the circadian clock, and clock gene mRNA expression in the suprachiasmatic nucleus (SCN), a central clock, in mice. Although the HE ethanol extract only affected the offset time of activity, the HE water extract advanced the sleep-wake cycle without affecting the free-running period, photosensitivity, or the clock gene mRNA expression in SCN. In addition, both extracts decreased wakefulness around end of active phase. The findings of the present study suggest that HE may serve as a functional food in the prevention and treatment of Alzheimer's disease and delayed sleep phase syndrome.

  14. All-optical clocked delay flip-flop using a single terahertz optical asymmetric demultiplexer-based switch: a theoretical study.

    PubMed

    Chattopadhyay, Tanay

    2010-10-01

    A flip-flop (FF) is a kind of latch and the simplest form of memory device, which stores various values either temporarily or permanently. Optical FF memories form a fundamental building block for all-optical packet switches in next-generation communication networks. An all-optical clocked delay FF using a single terahertz optical asymmetric demultiplexer-based interferometric switch is proposed and described. Numerical simulation results are also reported.

  15. Evaluating the Autonomy of the Drosophila Circadian Clock in Dissociated Neuronal Culture.

    PubMed

    Sabado, Virginie; Vienne, Ludovic; Nagoshi, Emi

    2017-01-01

    Circadian behavioral rhythms offer an excellent model to study intricate interactions between the molecular and neuronal mechanisms of behavior. In mammals, pacemaker neurons in the suprachiasmatic nucleus (SCN) generate rhythms cell-autonomously, which are synchronized by the network interactions within the circadian circuit to drive behavioral rhythms. However, whether this principle is universal to circadian systems in animals remains unanswered. Here, we examined the autonomy of the Drosophila circadian clock by monitoring transcriptional and post-transcriptional rhythms of individual clock neurons in dispersed culture with time-lapse microscopy. Expression patterns of the transcriptional reporter show that CLOCK/CYCLE (CLK/CYC)-mediated transcription is constantly active in dissociated clock neurons. In contrast, the expression profile of the post-transcriptional reporter indicates that PERIOD (PER) protein levels fluctuate and ~10% of cells display rhythms in PER levels with periods in the circadian range. Nevertheless, PER and TIM are enriched in the cytoplasm and no periodic PER nuclear accumulation was observed. These results suggest that repression of CLK/CYC-mediated transcription by nuclear PER is impaired, and thus the negative feedback loop of the molecular clock is incomplete in isolated clock neurons. We further demonstrate that, by pharmacological assays using the non-amidated form of neuropeptide pigment-dispersing factor (PDF), which could be specifically secreted from larval LNvs and adult s-LNvs, downstream events of the PDF signaling are partly impaired in dissociated larval clock neurons. Although non-amidated PDF is likely to be less active than the amidated one, these results point out the possibility that alteration in PDF downstream signaling may play a role in dampening of molecular rhythms in isolated clock neurons. Taken together, our results suggest that Drosophila clocks are weak oscillators that need to be in the intact circadian circuit to generate robust 24-h rhythms.

  16. All-optical pulse data generation in a semiconductor optical amplifier gain controlled by a reshaped optical clock injection

    NASA Astrophysics Data System (ADS)

    Lin, Gong-Ru; Chang, Yung-Cheng; Yu, Kun-Chieh

    2006-05-01

    Wavelength-maintained all-optical pulse data pattern transformation based on a modified cross-gain-modulation architecture in a strongly gain-depleted semiconductor optical amplifier (SOA) is investigated. Under a backward dark-optical-comb injection with 70% duty-cycle reshaping from the received data clock at 10GHz, the incoming optical data stream is transformed into a pulse data stream with duty cycle, rms timing jitter, and conversion gain of 15%, 4ps, and 3dB, respectively. The high-pass filtering effect of the gain-saturated SOA greatly improves the extinction ratio of data stream by 8dB and reduces its bit error rate to 10-12 at -18dBm.

  17. Micro ion frequency standard

    NASA Astrophysics Data System (ADS)

    Schwindt, Peter D. D.; Jau, Yuan-Yu; Partner, Heather; Serkland, Darwin K.; Boye, Robert; Fang, Lu; Casias, Adrian; Manginell, Ronald P.; Moorman, Matthew; Prestage, John; Yu, Nan

    2011-06-01

    We are developing a highly miniaturized trapped ion clock to probe the 12.6 GHz hyperfine transition in the 171Yb+ ion. The clock development is being funded by the Integrated Micro Primary Atomic Clock Technology (IMPACT) program from DARPA where the stated goals are to develop a clock that consumes 50 mW of power, has a size of 5 cm3, and has a long-term frequency stability of 10-14 at one month. One of the significant challenges will be to develop miniature single-frequency lasers at 369 nm and 935 nm and the optical systems to deliver light to the ions and to collect ion fluorescence on a detector.

  18. Sensitivity to Pigment-Dispersing Factor (PDF) Is Cell-Type Specific among PDF-Expressing Circadian Clock Neurons in the Madeira Cockroach.

    PubMed

    Gestrich, Julia; Giese, Maria; Shen, Wen; Zhang, Yi; Voss, Alexandra; Popov, Cyril; Stengl, Monika; Wei, HongYing

    2018-02-01

    Transplantation studies have pinpointed the circadian clock of the Madeira cockroach to the accessory medulla (AME) of the brain's optic lobes. The AME is innervated by approximately 240 adjacent neuropeptidergic neurons, including 12 pigment-dispersing factor (PDF)-expressing neurons anterior to the AME (aPDFMEs). Four of the aPDFMEs project contralaterally, controlling locomotor activity rhythms of the night-active cockroach. The present in vitro Ca 2+ imaging analysis focuses on contralaterally projecting AME neurons and their responses to PDF, GABA, and acetylcholine (ACh). First, rhodamine-dextran backfills from the contralateral optic stalk identified contralaterally projecting AME neurons, which were then dispersed in primary cell cultures. After characterization of PDF, GABA, and ACh responses, PDF immunocytochemistry identified ipsilaterally and contralaterally projecting PDFMEs. All PDF-sensitive clock neurons, PDF-immunoreactive clock neurons, and the majority of ipsilaterally and contralaterally projecting cells were excited by ACh. GABA inhibited all PDF-expressing clock neurons, and about half of other ipsilaterally projecting and most contralaterally projecting clock neurons. For the first time, we identified PDF autoreceptors in PDF-secreting cockroach circadian pacemakers. The medium-sized aPDFMEs and all other contralaterally projecting PDF-sensitive clock cells were inhibited by PDF. The ipsilaterally remaining small PDF-sensitive clock cells were activated by PDF. Only the largest aPDFME did not express PDF autoreceptors. We hypothesize that opposing PDF signaling generates 2 different ensembles of clock cells with antiphasic activity, regulating and maintaining a constant phase relationship between rest and activity cycles of the night-active cockroach.

  19. Drosophila: An Emergent Model for Delineating Interactions between the Circadian Clock and Drugs of Abuse

    PubMed Central

    De Nobrega, Aliza K.

    2017-01-01

    Endogenous circadian oscillators orchestrate rhythms at the cellular, physiological, and behavioral levels across species to coordinate activity, for example, sleep/wake cycles, metabolism, and learning and memory, with predictable environmental cycles. The 21st century has seen a dramatic rise in the incidence of circadian and sleep disorders with globalization, technological advances, and the use of personal electronics. The circadian clock modulates alcohol- and drug-induced behaviors with circadian misalignment contributing to increased substance use and abuse. Invertebrate models, such as Drosophila melanogaster, have proven invaluable for the identification of genetic and molecular mechanisms underlying highly conserved processes including the circadian clock, drug tolerance, and reward systems. In this review, we highlight the contributions of Drosophila as a model system for understanding the bidirectional interactions between the circadian system and the drugs of abuse, alcohol and cocaine, and illustrate the highly conserved nature of these interactions between Drosophila and mammalian systems. Research in Drosophila provides mechanistic insights into the corresponding behaviors in higher organisms and can be used as a guide for targeted inquiries in mammals. PMID:29391952

  20. Signals from the brainstem sleep/wake centers regulate behavioral timing via the circadian clock.

    PubMed

    Abbott, Sabra M; Arnold, Jennifer M; Chang, Qing; Miao, Hai; Ota, Nobutoshi; Cecala, Christine; Gold, Paul E; Sweedler, Jonathan V; Gillette, Martha U

    2013-01-01

    Sleep-wake cycling is controlled by the complex interplay between two brain systems, one which controls vigilance state, regulating the transition between sleep and wake, and the other circadian, which communicates time-of-day. Together, they align sleep appropriately with energetic need and the day-night cycle. Neural circuits connect brain stem sites that regulate vigilance state with the suprachiasmatic nucleus (SCN), the master circadian clock, but the function of these connections has been unknown. Coupling discrete stimulation of pontine nuclei controlling vigilance state with analytical chemical measurements of intra-SCN microdialysates in mouse, we found significant neurotransmitter release at the SCN and, concomitantly, resetting of behavioral circadian rhythms. Depending upon stimulus conditions and time-of-day, SCN acetylcholine and/or glutamate levels were augmented and generated shifts of behavioral rhythms. These results establish modes of neurochemical communication from brain regions controlling vigilance state to the central circadian clock, with behavioral consequences. They suggest a basis for dynamic integration across brain systems that regulate vigilance states, and a potential vulnerability to altered communication in sleep disorders.

  1. Circadian and Metabolic Effects of Light: Implications in Weight Homeostasis and Health

    PubMed Central

    Plano, Santiago A.; Casiraghi, Leandro P.; García Moro, Paula; Paladino, Natalia; Golombek, Diego A.; Chiesa, Juan J.

    2017-01-01

    Daily interactions between the hypothalamic circadian clock at the suprachiasmatic nucleus (SCN) and peripheral circadian oscillators regulate physiology and metabolism to set temporal variations in homeostatic regulation. Phase coherence of these circadian oscillators is achieved by the entrainment of the SCN to the environmental 24-h light:dark (LD) cycle, coupled through downstream neural, neuroendocrine, and autonomic outputs. The SCN coordinate activity and feeding rhythms, thus setting the timing of food intake, energy expenditure, thermogenesis, and active and basal metabolism. In this work, we will discuss evidences exploring the impact of different photic entrainment conditions on energy metabolism. The steady-state interaction between the LD cycle and the SCN is essential for health and wellbeing, as its chronic misalignment disrupts the circadian organization at different levels. For instance, in nocturnal rodents, non-24 h protocols (i.e., LD cycles of different durations, or chronic jet-lag simulations) might generate forced desynchronization of oscillators from the behavioral to the metabolic level. Even seemingly subtle photic manipulations, as the exposure to a “dim light” scotophase, might lead to similar alterations. The daily amount of light integrated by the clock (i.e., the photophase duration) strongly regulates energy metabolism in photoperiodic species. Removing LD cycles under either constant light or darkness, which are routine protocols in chronobiology, can also affect metabolism, and the same happens with disrupted LD cycles (like shiftwork of jetlag) and artificial light at night in humans. A profound knowledge of the photic and metabolic inputs to the clock, as well as its endocrine and autonomic outputs to peripheral oscillators driving energy metabolism, will help us to understand and alleviate circadian health alterations including cardiometabolic diseases, diabetes, and obesity. PMID:29097992

  2. SKIP Is a Component of the Spliceosome Linking Alternative Splicing and the Circadian Clock in Arabidopsis[W

    PubMed Central

    Wang, Xiaoxue; Wu, Fangming; Xie, Qiguang; Wang, Huamei; Wang, Ying; Yue, Yanling; Gahura, Ondrej; Ma, Shuangshuang; Liu, Lei; Cao, Ying; Jiao, Yuling; Puta, Frantisek; McClung, C. Robertson; Xu, Xiaodong; Ma, Ligeng

    2012-01-01

    Circadian clocks generate endogenous rhythms in most organisms from cyanobacteria to humans and facilitate entrainment to environmental diurnal cycles, thus conferring a fitness advantage. Both transcriptional and posttranslational mechanisms are prominent in the basic network architecture of circadian systems. Posttranscriptional regulation, including mRNA processing, is emerging as a critical step for clock function. However, little is known about the molecular mechanisms linking RNA metabolism to the circadian clock network. Here, we report that a conserved SNW/Ski-interacting protein (SKIP) domain protein, SKIP, a splicing factor and component of the spliceosome, is involved in posttranscriptional regulation of circadian clock genes in Arabidopsis thaliana. Mutation in SKIP lengthens the circadian period in a temperature-sensitive manner and affects light input and the sensitivity of the clock to light resetting. SKIP physically interacts with the spliceosomal splicing factor Ser/Arg-rich protein45 and associates with the pre-mRNA of clock genes, such as PSEUDORESPONSE REGULATOR7 (PRR7) and PRR9, and is necessary for the regulation of their alternative splicing and mRNA maturation. Genome-wide investigations reveal that SKIP functions in regulating alternative splicing of many genes, presumably through modulating recognition or cleavage of 5′ and 3′ splice donor and acceptor sites. Our study addresses a fundamental question on how the mRNA splicing machinery contributes to circadian clock function at a posttranscriptional level. PMID:22942380

  3. Metabolic and reward feeding synchronises the rhythmic brain.

    PubMed

    Challet, Etienne; Mendoza, Jorge

    2010-07-01

    Daily brain rhythmicity, which controls the sleep-wake cycle and neuroendocrine functions, is generated by an endogenous circadian timing system. Within the multi-oscillatory circadian network, a master clock is located in the suprachiasmatic nuclei of the hypothalamus, whose main synchroniser (Zeitgeber) is light. In contrast, imposed meal times and temporally restricted feeding are potent synchronisers for secondary clocks in peripheral organs such as the liver and in brain regions, although not for the suprachiasmatic nuclei. Even when animals are exposed to a light-dark cycle, timed calorie restriction (i.e. when only a hypocaloric diet is given every day) is a synchroniser powerful enough to modify the suprachiasmatic clockwork and increase the synchronising effects of light. A daily chocolate snack in animals fed ad libitum with chow diet entrains the suprachiasmatic clockwork only under the conditions of constant darkness and decreases the synchronising effects of light. Secondary clocks in the brain outside the suprachiasmatic nuclei are differentially influenced by meal timing. Circadian oscillations can either be highly sensitive to food-related metabolic or reward cues (i.e. their phase is shifted according to the timed meal schedule) in some structures or hardly affected by meal timing (palatable or not) in others. Furthermore, animals will manifest food-anticipatory activity prior to their expected meal time. Anticipation of a palatable or regular meal may rely on a network of brain clocks, involving metabolic and reward systems and the cerebellum.

  4. Expanding the view of Clock and cycle gene evolution in Diptera.

    PubMed

    Chahad-Ehlers, S; Arthur, L P; Lima, A L A; Gesto, J S M; Torres, F R; Peixoto, A A; de Brito, R A

    2017-06-01

    We expanded the view of Clock (Clk) and cycle (cyc) gene evolution in Diptera by studying the fruit fly Anastrepha fraterculus (Afra), a Brachycera. Despite the high conservation of clock genes amongst insect groups, striking structural and functional differences of some clocks have appeared throughout evolution. Clk and cyc nucleotide sequences and corresponding proteins were characterized, along with their mRNA expression data, to provide an evolutionary overview in the two major groups of Diptera: Lower Diptera and Higher Brachycera. We found that AfraCYC lacks the BMAL (Brain and muscle ARNT-like) C-terminus region (BCTR) domain and is constitutively expressed, suggesting that AfraCLK has the main transactivation function, which is corroborated by the presence of poly-Q repeats and an oscillatory pattern. Our analysis suggests that the loss of BCTR in CYC is not exclusive of drosophilids, as it also occurs in other Acalyptratae flies such as tephritids and drosophilids, however, but it is also present in some Calyptratae, such as Muscidae, Calliphoridae and Sarcophagidae. This indicates that BCTR is missing from CYC of all higher-level Brachycera and that it was lost during the evolution of Lower Brachycera. Thus, we can infer that CLK protein may play the main role in the CLK\\CYC transcription complex in these flies, like in its Drosophila orthologues. © 2017 The Royal Entomological Society.

  5. Expression conservation within the circadian clock of a monocot: natural variation at barley Ppd-H1 affects circadian expression of flowering time genes, but not clock orthologs.

    PubMed

    Campoli, Chiara; Shtaya, Munqez; Davis, Seth J; von Korff, Maria

    2012-06-21

    The circadian clock is an endogenous mechanism that coordinates biological processes with daily changes in the environment. In plants, circadian rhythms contribute to both agricultural productivity and evolutionary fitness. In barley, the photoperiod response regulator and flowering-time gene Ppd-H1 is orthologous to the Arabidopsis core-clock gene PRR7. However, relatively little is known about the role of Ppd-H1 and other components of the circadian clock in temperate crop species. In this study, we identified barley clock orthologs and tested the effects of natural genetic variation at Ppd-H1 on diurnal and circadian expression of clock and output genes from the photoperiod-response pathway. Barley clock orthologs HvCCA1, HvGI, HvPRR1, HvPRR37 (Ppd-H1), HvPRR73, HvPRR59 and HvPRR95 showed a high level of sequence similarity and conservation of diurnal and circadian expression patterns, when compared to Arabidopsis. The natural mutation at Ppd-H1 did not affect diurnal or circadian cycling of barley clock genes. However, the Ppd-H1 mutant was found to be arrhythmic under free-running conditions for the photoperiod-response genes HvCO1, HvCO2, and the MADS-box transcription factor and vernalization responsive gene Vrn-H1. We suggest that the described eudicot clock is largely conserved in the monocot barley. However, genetic differentiation within gene families and differences in the function of Ppd-H1 suggest evolutionary modification in the angiosperm clock. Our data indicates that natural variation at Ppd-H1 does not affect the expression level of clock genes, but controls photoperiodic output genes. Circadian control of Vrn-H1 in barley suggests that this vernalization responsive gene is also controlled by the photoperiod-response pathway. Structural and functional characterization of the barley circadian clock will set the basis for future studies of the adaptive significance of the circadian clock in Triticeae species.

  6. Roles of PACAP-containing retinal ganglion cells in circadian timing.

    PubMed

    Hannibal, Jens

    2006-01-01

    The brain's biological clock located in the suprachiasmatic nucleus (SCN) generates circadian rhythms in physiology and behavior. The clock-driven rhythms need daily adjustment (entrainment) to be synchronized with the astronomical day of 24 h. The most important stimulus for entrainment of the clock is the light-dark (LD) cycle. In this review functional elements of the light entrainment pathway will be considered with special focus on the neurotransmitter pituitary adenylate cyclase-activating polypeptide (PACAP), which is found exclusively in the monosynaptic neuronal pathway mediating light information to the SCN, the retinohypothalamic tract (RHT). The retinal ganglion cells of the RHT are intrinsically photosensitive due to the expression of melanopsin and seem to constitute a non-image forming photosensitive system in the mammalian eye regulating circadian timing, masking behavior, light-regulated melatonin secretion, and the pupillary light reflex. Evidence from in vitro and in vivo studies and studies of mice lacking PACAP and the specific PACAP receptor (PAC1) indicate that PACAP and glutamate are neurotransmitters in the RHT which in a clock and concentration-dependent manner interact during light entrainment of the clock.

  7. Computer Program Recognizes Patterns in Time-Series Data

    NASA Technical Reports Server (NTRS)

    Hand, Charles

    2003-01-01

    A computer program recognizes selected patterns in time-series data like digitized samples of seismic or electrophysiological signals. The program implements an artificial neural network (ANN) and a set of N clocks for the purpose of determining whether N or more instances of a certain waveform, W, occur within a given time interval, T. The ANN must be trained to recognize W in the incoming stream of data. The first time the ANN recognizes W, it sets clock 1 to count down from T to zero; the second time it recognizes W, it sets clock 2 to count down from T to zero, and so forth through the Nth instance. On the N + 1st instance, the cycle is repeated, starting with clock 1. If any clock has not reached zero when it is reset, then N instances of W have been detected within time T, and the program so indicates. The program can readily be encoded in a field-programmable gate array or an application-specific integrated circuit that could be used, for example, to detect electroencephalographic or electrocardiographic waveforms indicative of epileptic seizures or heart attacks, respectively.

  8. Influence of temperature on the liver circadian clock in the ruin lizard Podarcis sicula.

    PubMed

    Malatesta, Manuela; Frigato, Elena; Baldelli, Beatrice; Battistelli, Serafina; Foà, Augusto; Bertolucci, Cristiano

    2007-07-01

    Reptiles represent an interesting animal model to investigate the influence of temperature on molecular circadian clocks. The ruin lizard Podarcis sicula lives in a continental climate and it is subjected to wide range of environmental temperatures during the course of the year. As consequence, ruin lizard daily activity pattern includes either the hibernation or periods of inactivity determined by hypothermia. Here we showed the rhythmic expression of two clock genes, lPer2 and lClock, in the liver of active lizards exposed to summer photo-thermoperiodic conditions. Interestingly, the exposition of lizards to hypothermic conditions, typical of winter season, induced a strong dampening of clock genes mRNA rhythmicity with a coincident decrease of levels. We also examined the qualitative and quantitative distribution of lPER2 and lCLOCK protein in different cellular compartments during the 24-h cycle. In the liver of active lizards both proteins showed a rhythmic expression profile in all cellular compartments. After 3 days at 6 degrees C, some temporal fluctuations of the lCLOCK and lPER2 are still detectable, although, with some marked modifications in respect to the values detected in the liver of active lizards. Besides demonstrating the influence of low temperature on the lizard liver circadian oscillators, present results could provide new essential information for comparative studies on the influence of temperature on the circadian system across vertebrate classes.

  9. Circadian Clocks in the Cnidaria: Environmental Entrainment, Molecular Regulation, and Organismal Outputs

    PubMed Central

    Reitzel, Adam M.; Tarrant, Ann M.; Levy, Oren

    2013-01-01

    The circadian clock is a molecular network that translates predictable environmental signals, such as light levels, into organismal responses, including behavior and physiology. Regular oscillations of the molecular components of the clock enable individuals to anticipate regularly fluctuating environmental conditions. Cnidarians play important roles in benthic and pelagic marine environments and also occupy a key evolutionary position as the likely sister group to the bilaterians. Together, these attributes make members of this phylum attractive as models for testing hypotheses on roles for circadian clocks in regulating behavior, physiology, and reproduction as well as those regarding the deep evolutionary conservation of circadian regulatory pathways in animal evolution. Here, we review and synthesize the field of cnidarian circadian biology by discussing the diverse effects of daily light cycles on cnidarians, summarizing the molecular evidence for the conservation of a bilaterian-like circadian clock in anthozoan cnidarians, and presenting new empirical data supporting the presence of a conserved feed-forward loop in the starlet sea anemone, Nematostella vectensis. Furthermore, we discuss critical gaps in our current knowledge about the cnidarian clock, including the functions directly regulated by the clock and the precise molecular interactions that drive the oscillating gene-expression patterns. We conclude that the field of cnidarian circadian biology is moving rapidly toward linking molecular mechanisms with physiology and behavior. PMID:23620252

  10. Single electron relativistic clock interferometer

    NASA Astrophysics Data System (ADS)

    Bushev, P. A.; Cole, J. H.; Sholokhov, D.; Kukharchyk, N.; Zych, M.

    2016-09-01

    Although time is one of the fundamental notions in physics, it does not have a unique description. In quantum theory time is a parameter ordering the succession of the probability amplitudes of a quantum system, while according to relativity theory each system experiences in general a different proper time, depending on the system's world line, due to time dilation. It is therefore of fundamental interest to test the notion of time in the regime where both quantum and relativistic effects play a role, for example, when different amplitudes of a single quantum clock experience different magnitudes of time dilation. Here we propose a realization of such an experiment with a single electron in a Penning trap. The clock can be implemented in the electronic spin precession and its time dilation then depends on the radial (cyclotron) state of the electron. We show that coherent manipulation and detection of the electron can be achieved already with present day technology. A single electron in a Penning trap is a technologically ready platform where the notion of time can be probed in a hitherto untested regime, where it requires a relativistic as well as quantum description.

  11. Food-anticipatory activity and liver per1-luc activity in diabetic transgenic rats

    NASA Technical Reports Server (NTRS)

    Davidson, Alec J.; Stokkan, Karl-Arne; Yamazaki, Shin; Menaker, Michael

    2002-01-01

    The mammalian Per1 gene is an important component of the core cellular clock mechanism responsible for circadian rhythms. The rodent liver and other tissues rhythmically express Per1 in vitro but typically damp out within a few cycles. In the liver, the peak of this rhythm occurs in the late subjective night in an ad lib-fed rat, but will show a large phase advance in response to restricted availability of food during the day. The relationship between this shift in the liver clock and food-anticipatory activity (FAA), the circadian behavior entrained by daily feeding, is currently unknown. Insulin is released during feeding in mammals and could serve as an entraining signal to the liver. To test the role of insulin in the shift in liver Per1 expression and the generation of FAA, per-luciferase transgenic rats were made diabetic with a single injection of streptozotocine. Following 1 week of restricted feeding and locomotor activity monitoring, liver was collected for per-luc recording. In two separate experiments, FAA emerged and liver Per1 phase-shifted in response to daytime 8-h food restriction. The results rule out insulin as a necessary component of this system.

  12. Frequency stability of on-orbit GPS Block-I and Block-II Navstar clocks

    NASA Astrophysics Data System (ADS)

    McCaskill, Thomas B.; Reid, Wilson G.; Buisson, James A.

    On-orbit analysis of the Global Positioning System (GPS) Block-I and Block-II Navstar clocks has been performed by the Naval Research Laboratory using a multi-year database. The Navstar clock phase-offset measurements were computed from pseudorange measurements made by the five GPS monitor sites and from the U.S. Naval Observatory precise-time site using single or dual frequency GPS receivers. Orbital data was obtained from the Navstar broadcast ephemeris and from the best-fit, postprocessed orbital ephemerides supplied by the Naval Surface Weapons Center or by the Defense Mapping Agency. Clock performance in the time domain is characterized using frequency-stability profiles with sample times that vary from 1 to 100 days. Composite plots of Navstar frequency stability and time-prediction uncertainty are included as a summary of clock analysis results. The analysis includes plots of the clock phase offset and frequency offset histories with the eclipse seasons superimposed on selected plots to demonstrate the temperature sensitivity of one of the Block-I Navstar rubidium clocks. The potential impact on navigation and on transferring precise time of the degradation in the long-term frequency stability of the rubidium clocks is discussed.

  13. The clock is ticking. Ageing of the circadian system: From physiology to cell cycle.

    PubMed

    Terzibasi-Tozzini, Eva; Martinez-Nicolas, Antonio; Lucas-Sánchez, Alejandro

    2017-10-01

    The circadian system is the responsible to organise the internal temporal order in relation to the environment of every process of the organisms producing the circadian rhythms. These rhythms have a fixed phase relationship among them and with the environment in order to optimise the available energy and resources. From a cellular level, circadian rhythms are controlled by genetic positive and negative auto-regulated transcriptional and translational feedback loops, which generate 24h rhythms in mRNA and protein levels of the clock components. It has been described about 10% of the genome is controlled by clock genes, with special relevance, due to its implications, to the cell cycle. Ageing is a deleterious process which affects all the organisms' structures including circadian system. The circadian system's ageing may produce a disorganisation among the circadian rhythms, arrhythmicity and, even, disconnection from the environment, resulting in a detrimental situation to the organism. In addition, some environmental conditions can produce circadian disruption, also called chronodisruption, which may produce many pathologies including accelerated ageing. Finally, some strategies to prevent, palliate or counteract chronodisruption effects have been proposed to enhance the circadian system, also called chronoenhancement. This review tries to gather recent advances in the chronobiology of the ageing process, including cell cycle, neurogenesis process and physiology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. [Melatonin, synthetic analogs, and the sleep/wake rhythm].

    PubMed

    Escames, G; Acuña-Castroviejo, D

    Melatonin, a widespread hormone in the animal kingdom, is produced by several organs and tissues besides the pineal gland. Whilst extrapineal melatonin behaves as a cytoprotective molecule, the pineal produces the hormone in a rhythmic manner. The discovery of melatonin in 1958, and the characterization of its synthesis somewhat later, let to the description of its photoperiodic regulation and its relationship with the biological rhythms such as the sleep/wake rhythm. The suprachiasmatic nuclei are the anatomical seat of the biological clock, represented by the clock genes, which code for the period and frequency of the rhythms. The photoperiod synchronizes the activity of the auprachiasmatic biological clock, which in turn induces the melatonin's rhythm. The rhythm of melatonin, peaking at 2-3 am, acts as an endogenous synchronizer that translates the environmental photoperiodic signal in chemical information for the cells. The sleep/wake cycle is a typical biological rhythm synchronized by melatonin, and the sleep/wake cycle alterations of chronobiological origin, are very sensitive to melatonin treatment. Taking advantage of the chronobiotic and antidepressive properties of melatonin, a series of synthetic analogs of this hormone, with high interest in insomnia, are now available. Melatonin is a highly effective chronobiotic in the treatment of chronobiological alterations of the sleep/wake cycle. From a pharmacokinetic point of view, the synthetic drugs derived from melatonin are interesting tools in the therapy of these alterations.

  15. Cyclin B in mouse oocytes and embryos: importance for human reproduction and aneuploidy.

    PubMed

    Polański, Zbigniew; Homer, Hayden; Kubiak, Jacek Z

    2012-01-01

    Oocyte maturation and early embryo development require precise coordination between cell cycle progression and the developmental programme. Cyclin B plays a major role in this process: its accumulation and degradation is critical for driving the cell cycle through activation and inactivation of the major cell cycle kinase, CDK1. CDK1 activation is required for M-phase entry whereas its inactivation leads to exit from M-phase. The tempo of oocyte meiotic and embryonic mitotic divisions is set by the rate of cyclin B accumulation and the timing of its destruction. By controlling when cyclin B destruction is triggered and by co-ordinating this with the completion of chromosome alignment, the spindle assembly checkpoint (SAC) is a critical quality control system important for averting aneuploidy and for building in the flexibility required to better integrate cell cycle progression with development. In this review we focus on cyclin B metabolism in mouse oocytes and embryos and illustrate how the cell cycle-powered clock (in fact cyclin B-powered clock) controls oocyte maturation and early embryo development, thereby providing important insight into human reproduction and potential causes of Down syndrome.

  16. period -1 encodes an ATP-dependent RNA helicase that influences nutritional compensation of the Neurospora circadian clock

    DOE PAGES

    Emerson, Jillian M.; Bartholomai, Bradley M.; Ringelberg, Carol S.; ...

    2015-12-08

    Mutants in the period-1 ( prd­-1) gene, characterized by a recessive allele, display a reduced growth rate and period lengthening of the developmental cycle controlled by the circadian clock. We refined the genetic location of prd­-1 and used whole genome sequencing to find the mutation defining it, confirming the identity of prd­-1 by rescuing the mutant circadian phenotype via transformation. PRD-1 is an RNA helicase whose orthologs, DDX5 and DDX17 in humans and Dbp2p in yeast, are implicated in various processes including transcriptional regulation, elongation, and termination, 23 ribosome biogenesis, and RNA decay. Although prd­-1smutantssiois an ATP-dependent RNA helicase, membermore » of a sub-family display a long period (~25 hrs) circadian developmental cycle, they interestingly display a wild type period when the core circadian oscillator is tracked using a frq-luciferase transcriptional fusion under conditions of limiting nutritional carbon; the core oscillator runs with a long period under glucose-sufficient conditions. Furthermore PRD-1 clearly impacts the circadian oscillator and is not only part of a metabolic oscillator ancillary to the core clock. PRD-1 is an essential protein and its expression is neither light-regulated nor clock-regulated. However, it is transiently induced by glucose; in the presence of sufficient glucose PRD-1 is in the nucleus until glucose runs out which elicits its disappearance from the nucleus. Because circadian period length is carbon concentration-dependent, prd­-1 may be formally viewed as clock mutant with defective nutritional compensation of circadian period length.« less

  17. Role of light and the circadian clock in the rhythmic oscillation of intraocular pressure: Studies in VPAC2 receptor and PACAP deficient mice.

    PubMed

    Fahrenkrug, Jan; Georg, Birgitte; Hannibal, Jens; Jørgensen, Henrik Løvendahl

    2018-04-01

    The intraocular pressure of mice displays a daily rhythmicity being highest during the dark period. The present study was performed to elucidate the role of the circadian clock and light in the diurnal and the circadian variations in intraocular pressure in mice, by using animals with disrupted clock function (VPAC2 receptor knockout mice) or impaired light information to the clock (PACAP knockout mice). In wildtype mice, intraocular pressure measured under light/dark conditions showed a statistically significant 24 h sinusoidal rhythm with nadir during the light phase and peak during the dark phase. After transfer of the wildtype mice into constant darkness, the intraocular pressure increased, but the rhythmic changes in intraocular pressure continued with a pattern identical to that obtained during the light/dark cycle. The intraocular pressure in VPAC2 receptor deficient mice during light/dark conditions also showed a sinusoidal pattern with significant changes as a function of a 24 h cycle. However, transfer of the VPAC2 receptor knockout mice into constant darkness completely abolished the rhythmic changes in intraocular pressure. The intraocular pressure in PACAP deficient mice oscillated significantly during both 24 h light and darkness and during constant darkness. During LD conditions, the amplitude of PACAP deficient was significantly lower compared to wildtype mice, resulting in higher daytime and lower nighttime values. In conclusion, by studying the VPAC2 receptor knockout mouse which lacks circadian control and the PACAP knockout mouse which displays impaired light signaling, we provided evidence that the daily intraocular pressure rhythms are primarily generated by the circadian master clock and to a lesser extent by environmental light and darkness. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. cGMP-Phosphodiesterase Inhibition Enhances Photic Responses and Synchronization of the Biological Circadian Clock in Rodents

    PubMed Central

    Plano, Santiago A.; Agostino, Patricia V.; de la Iglesia, Horacio O.; Golombek, Diego A.

    2012-01-01

    The master circadian clock in mammals is located in the hypothalamic suprachiasmatic nuclei (SCN) and is synchronized by several environmental stimuli, mainly the light-dark (LD) cycle. Light pulses in the late subjective night induce phase advances in locomotor circadian rhythms and the expression of clock genes (such as Per1-2). The mechanism responsible for light-induced phase advances involves the activation of guanylyl cyclase (GC), cGMP and its related protein kinase (PKG). Pharmacological manipulation of cGMP by phosphodiesterase (PDE) inhibition (e.g., sildenafil) increases low-intensity light-induced circadian responses, which could reflect the ability of the cGMP-dependent pathway to directly affect the photic sensitivity of the master circadian clock within the SCN. Indeed, sildenafil is also able to increase the phase-shifting effect of saturating (1200 lux) light pulses leading to phase advances of about 9 hours, as well as in C57 a mouse strain that shows reduced phase advances. In addition, sildenafil was effective in both male and female hamsters, as well as after oral administration. Other PDE inhibitors (such as vardenafil and tadalafil) also increased light-induced phase advances of locomotor activity rhythms and accelerated reentrainment after a phase advance in the LD cycle. Pharmacological inhibition of the main downstream target of cGMP, PKG, blocked light-induced expression of Per1. Our results indicate that the cGMP-dependent pathway can directly modulate the light-induced expression of clock-genes within the SCN and the magnitude of light-induced phase advances of overt rhythms, and provide promising tools to design treatments for human circadian disruptions. PMID:22590651

  19. A quantum network of clocks

    NASA Astrophysics Data System (ADS)

    Kómár, P.; Kessler, E. M.; Bishof, M.; Jiang, L.; Sørensen, A. S.; Ye, J.; Lukin, M. D.

    2014-08-01

    The development of precise atomic clocks plays an increasingly important role in modern society. Shared timing information constitutes a key resource for navigation with a direct correspondence between timing accuracy and precision in applications such as the Global Positioning System. By combining precision metrology and quantum networks, we propose a quantum, cooperative protocol for operating a network of geographically remote optical atomic clocks. Using nonlocal entangled states, we demonstrate an optimal utilization of global resources, and show that such a network can be operated near the fundamental precision limit set by quantum theory. Furthermore, the internal structure of the network, combined with quantum communication techniques, guarantees security both from internal and external threats. Realization of such a global quantum network of clocks may allow construction of a real-time single international time scale (world clock) with unprecedented stability and accuracy.

  20. Aspects of Clock Resetting in Flowering of Xanthium 1

    PubMed Central

    Papenfuss, Herbert D.; Salisbury, Frank B.

    1967-01-01

    Flowering is induced in Xanthium strumarium by a single dark period exceeding about 8.3 hours in length (the critical night). To study the mechanism which measures this dark period, plants were placed in growth chambers for about 2 days under constant light and temperature, given a phasing dark period terminated by an intervening light period (1 min to several hrs in duration), and finally a test dark period long enough normally to induce flowering. In some experiments, light interruptions during the test dark period were given to establish the time of maximum sensitivity. If the phasing dark period was less than 5 hours long, its termination by a light flash only broadened the subsequent time of maximum sensitivity to a light flash, but the critical night was delayed. In causing the delay, the end of the intervening light period was acting like the dusk signal which initiated time measurement at the beginning of the phasing dark period. If the phasing dark period was 6 hours or longer, time of maximum sensitivity during the subsequent test dark period was shifted by as much as 10 to 14 hours. In this case the light terminating the phasing dark period acted as a rephaser or a dawn signal. Following a 7.5-hour phasing dark period, intervening light periods of 1 minute to 5 hours did not shift the subsequent time of maximum sensitivity, but with intervening light periods longer than 5 hours, termination of the light acts clearly like a dusk signal. The clock appears to be suspended during intervening light periods longer than 5 to 15 hours. It is restarted by a dusk signal. There is an anomaly with intervening light periods of 10 to 13 hours, following which time of maximum sensitivity is actually less than the usual 8 hours after dusk. Ability of the clock in Xanthium to be rephased, suspended, restarted, or delayed, depending always upon conditions of the experiment, is characteristic of an oscillating timer and may confer upon this plant its ability to respond to a single inductive cycle. It is suggested that phytochrome may influence only the phase of the clock and not other aspects of flowering such as synthesis of flowering hormone. PMID:16656693

  1. Circadian rhythms and reproduction.

    PubMed

    Boden, Michael J; Kennaway, David J

    2006-09-01

    There is a growing recognition that the circadian timing system, in particular recently discovered clock genes, plays a major role in a wide range of physiological systems. Microarray studies, for example, have shown that the expression of hundreds of genes changes many fold in the suprachiasmatic nucleus, liver heart and kidney. In this review, we discuss the role of circadian rhythmicity in the control of reproductive function in animals and humans. Circadian rhythms and clock genes appear to be involved in optimal reproductive performance, but there are sufficient redundancies in their function that many of the knockout mice produced do not show overt reproductive failure. Furthermore, important strain differences have emerged from the studies especially between the various Clock (Circadian Locomotor Output Cycle Kaput) mutant strains. Nevertheless, there is emerging evidence that the primary clock genes, Clock and Bmal1 (Brain and Muscle ARNT-like protein 1, also known as Mop3), strongly influence reproductive competency. The extent to which the circadian timing system affects human reproductive performance is not known, in part, because many of the appropriate studies have not been done. With the role of Clock and Bmal1 in fertility becoming clearer, it may be time to pursue the effect of polymorphisms in these genes in relation to the various types of infertility in humans.

  2. Design and implementation of fast bipolar clock drivers for CCD imaging systems in space applications

    NASA Astrophysics Data System (ADS)

    Jayarajan, Jayesh; Kumar, Nishant; Verma, Amarnath; Thaker, Ramkrishna

    2016-05-01

    Drive electronics for generating fast, bipolar clocks, which can drive capacitive loads of the order of 5-10nF are indispensable for present day Charge Coupled Devices (CCDs). Design of these high speed bipolar clocks is challenging because of the capacitive loads that have to be driven and a strict constraint on the rise and fall times. Designing drive electronics circuits for space applications becomes even more challenging due to limited number of available discrete devices, which can survive in the harsh radiation prone space environment. This paper presents the design, simulations and test results of a set of such high speed, bipolar clock drivers. The design has been tested under a thermal cycle of -15 deg C to +55 deg C under vacuum conditions and has been designed using radiation hardened components. The test results show that the design meets the stringent rise/fall time requirements of 50+/-10ns for Multiple Vertical CCD (VCCD) clocks and 20+/-5ns for Horizontal CCD (HCCD) clocks with sufficient design margins across full temperature range, with a pixel readout rate of 6.6MHz. The full design has been realized in flexi-rigid PCB with package volume of 140x160x50 mm3.

  3. Evolution of circadian rhythms in Drosophila melanogaster populations reared in constant light and dark regimes for over 330 generations.

    PubMed

    Shindey, Radhika; Varma, Vishwanath; Nikhil, K L; Sharma, Vijay Kumar

    2017-01-01

    Organisms are believed to have evolved circadian clocks as adaptations to deal with cyclic environmental changes, and therefore it has been hypothesized that evolution in constant environments would lead to regression of such clocks. However, previous studies have yielded mixed results, and evolution of circadian clocks under constant conditions has remained an unsettled topic of debate in circadian biology. In continuation of our previous studies, which reported persistence of circadian rhythms in Drosophila melanogaster populations evolving under constant light, here we intended to examine whether circadian clocks and the associated properties evolve differently under constant light and constant darkness. In this regard, we assayed activity-rest, adult emergence and oviposition rhythms of D. melanogaster populations which have been maintained for over 19 years (~330 generations) under three different light regimes - constant light (LL), light-dark cycles of 12:12 h (LD) and constant darkness (DD). We observed that while circadian rhythms in all the three behaviors persist in both LL and DD stocks with no differences in circadian period, they differed in certain aspects of the entrained rhythms when compared to controls reared in rhythmic environment (LD). Interestingly, we also observed that DD stocks have evolved significantly higher robustness or power of free-running activity-rest and adult emergence rhythms compared to LL stocks. Thus, our study, in addition to corroborating previous results of circadian clock evolution in constant light, also highlights that, contrary to the expected regression of circadian clocks, rearing in constant darkness leads to the evolution of more robust circadian clocks which may be attributed to an intrinsic adaptive advantage of circadian clocks and/or pleiotropic functions of clock genes in other traits.

  4. Assessing the short-term clock drift of early broadband stations with burst events of the 26 s persistent and localized microseism

    NASA Astrophysics Data System (ADS)

    Xie, Jun; Ni, Sidao; Chu, Risheng; Xia, Yingjie

    2018-01-01

    Accurate seismometer clock plays an important role in seismological studies including earthquake location and tomography. However, some seismic stations may have clock drift larger than 1 s (e.g. GSC in 1992), especially in early days of global seismic networks. The 26 s Persistent Localized (PL) microseism event in the Gulf of Guinea sometime excites strong and coherent signals, and can be used as repeating source for assessing stability of seismometer clocks. Taking station GSC, PAS and PFO in the TERRAscope network as an example, the 26 s PL signal can be easily observed in the ambient noise cross-correlation function between these stations and a remote station OBN with interstation distance about 9700 km. The travel-time variation of this 26 s signal in the ambient noise cross-correlation function is used to infer clock error. A drastic clock error is detected during June 1992 for station GSC, but not found for station PAS and PFO. This short-term clock error is confirmed by both teleseismic and local earthquake records with a magnitude of 25 s. Averaged over the three stations, the accuracy of the ambient noise cross-correlation function method with the 26 s source is about 0.3-0.5 s. Using this PL source, the clock can be validated for historical records of sparsely distributed stations, where the usual ambient noise cross-correlation function of short-period (<20 s) ambient noise might be less effective due to its attenuation over long interstation distances. However, this method suffers from cycling problem, and should be verified by teleseismic/local P waves. Further studies are also needed to investigate whether the 26 s source moves spatially and its effects on clock drift detection.

  5. External and internal controls of lunar-related reproductive rhythms in fishes.

    PubMed

    Takemura, A; Rahman, M S; Park, Y J

    2010-01-01

    Reproductive activities of many fish species are, to some extent, entrained to cues from the moon. During the spawning season, synchronous spawning is repeated at intervals of c. 1 month (lunar spawning cycle) and 2 weeks (semi-lunar spawning cycle) or daily according to tidal changes (tidal spawning cycle). In species showing lunar-related spawning cycles, oocytes in the ovary develop towards and mature around a specific moon phase for lunar spawners, around spring tides for semi-lunar spawners and at daytime high tides for tidal spawners. The production of sex steroid hormones also changes in accordance with synchronous oocyte development. Since the production of the steroid hormones with lunar-related reproductive periodicity is regulated by gonadotropins, it is considered that the higher parts of the hypothalamus-pituitary-gonad axis play important roles in the perception and regulation of lunar-related periodicity. It is likely that fishes perceive cues from the moon by sensory organs; however, it is still unknown how lunar cues are transduced as an endogenous rhythm exerting lunar-related spawning rhythmicity. Recent research has revealed that melatonin fluctuated according to the brightness at night, magnetic fields and the tidal cycle. In addition, cyclic changes in hydrostatic pressure had an effect on monoamine contents in the brain. These factors may be indirectly related to the exertion of lunar-related periodicity. Molecular approaches have revealed that mRNA expressions of light-sensitive clock genes change with moonlight, suggesting that brightness at night plays a role in phase-shifting or resetting of biological clocks. Some species may have evolved biological clocks in relation to lunar cycles, although it is still not known how lunar periodicities are endogenously regulated in fishes. This review demonstrates that lunar-related periodicity is utilized and incorporated by ecological and physiological mechanisms governing the reproductive success of fishes.

  6. A low jitter PLL clock used for phase change memory

    NASA Astrophysics Data System (ADS)

    Xiao, Hong; Houpeng, Chen; Zhitang, Song; Daolin, Cai; Xi, Li

    2013-02-01

    A fully integrated low-jitter, precise frequency CMOS phase-locked loop (PLL) clock for the phase change memory (PCM) drive circuit is presented. The design consists of a dynamic dual-reset phase frequency detector (PFD) with high frequency acquisition, a novel low jitter charge pump, a CMOS ring oscillator based voltage-controlled oscillator (VCO), a 2nd order passive loop filter, and a digital frequency divider. The design is fabricated in 0.35 μm CMOS technology and consumes 20 mW from a supply voltage of 5 V. In terms of the PCM's program operation requirement, the output frequency range is from 1 to 140 MHz. For the 140 MHz output frequency, the circuit features a cycle-to-cycle jitter of 28 ps RMS and 250 ps peak-to-peak.

  7. Characterisation, analysis of expression and localisation of circadian clock genes from the perspective of photoperiodism in the aphid Acyrthosiphon pisum.

    PubMed

    Barberà, Miquel; Collantes-Alegre, Jorge Mariano; Martínez-Torres, David

    2017-04-01

    Aphids are typical photoperiodic insects that switch from viviparous parthenogenetic reproduction typical of long day seasons to oviparous sexual reproduction triggered by the shortening of photoperiod in autumn yielding an overwintering egg in which an embryonic diapause takes place. While the involvement of the circadian clock genes in photoperiodism in mammals is well established, there is still some controversy on their participation in insects. The availability of the genome of the pea aphid Acyrthosiphon pisum places this species as an excellent model to investigate the involvement of the circadian system in the aphid seasonal response. In the present report, we have advanced in the characterisation of the circadian clock genes and showed that these genes display extensive alternative splicing. Moreover, the expression of circadian clock genes, analysed at different moments of the day, showed a robust cycling of central clock genes period and timeless. Furthermore, the rhythmic expression of these genes was shown to be rapidly dampened under DD (continuous darkness conditions), thus supporting the model of a seasonal response based on a heavily dampened circadian oscillator. Additionally, increased expression of some of the circadian clock genes under short-day conditions suggest their involvement in the induction of the aphid seasonal response. Finally, in situ localisation of transcripts of genes period and timeless in the aphid brain revealed the site of clock neurons for the first time in aphids. Two groups of clock cells were identified: the Dorsal Neurons (DN) and the Lateral Neurons (LN), both in the protocerebrum. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Mechanisms of animal diapause: recent developments from nematodes, crustaceans, insects, and fish

    PubMed Central

    Denlinger, David L.; Podrabsky, Jason E.; Roy, Richard

    2016-01-01

    Life cycle delays are beneficial for opportunistic species encountering suboptimal environments. Many animals display a programmed arrest of development (diapause) at some stage(s) of their development, and the diapause state may or may not be associated with some degree of metabolic depression. In this review, we will evaluate current advancements in our understanding of the mechanisms responsible for the remarkable phenotype, as well as environmental cues that signal entry and termination of the state. The developmental stage at which diapause occurs dictates and constrains the mechanisms governing diapause. Considerable progress has been made in clarifying proximal mechanisms of metabolic arrest and the signaling pathways like insulin/Foxo that control gene expression patterns. Overlapping themes are also seen in mechanisms that control cell cycle arrest. Evidence is emerging for epigenetic contributions to diapause regulation via small RNAs in nematodes, crustaceans, insects, and fish. Knockdown of circadian clock genes in selected insect species supports the importance of clock genes in the photoperiodic response that cues diapause. A large suite of chaperone-like proteins, expressed during diapause, protects biological structures during long periods of energy-limited stasis. More information is needed to paint a complete picture of how environmental cues are coupled to the signal transduction that initiates the complex diapause phenotype, as well as molecular explanations for how the state is terminated. Excellent examples of molecular memory in post-dauer animals have been documented in Caenorhabditis elegans. It is clear that a single suite of mechanisms does not regulate diapause across all species and developmental stages. PMID:27053646

  9. Mechanisms of animal diapause: recent developments from nematodes, crustaceans, insects, and fish.

    PubMed

    Hand, Steven C; Denlinger, David L; Podrabsky, Jason E; Roy, Richard

    2016-06-01

    Life cycle delays are beneficial for opportunistic species encountering suboptimal environments. Many animals display a programmed arrest of development (diapause) at some stage(s) of their development, and the diapause state may or may not be associated with some degree of metabolic depression. In this review, we will evaluate current advancements in our understanding of the mechanisms responsible for the remarkable phenotype, as well as environmental cues that signal entry and termination of the state. The developmental stage at which diapause occurs dictates and constrains the mechanisms governing diapause. Considerable progress has been made in clarifying proximal mechanisms of metabolic arrest and the signaling pathways like insulin/Foxo that control gene expression patterns. Overlapping themes are also seen in mechanisms that control cell cycle arrest. Evidence is emerging for epigenetic contributions to diapause regulation via small RNAs in nematodes, crustaceans, insects, and fish. Knockdown of circadian clock genes in selected insect species supports the importance of clock genes in the photoperiodic response that cues diapause. A large suite of chaperone-like proteins, expressed during diapause, protects biological structures during long periods of energy-limited stasis. More information is needed to paint a complete picture of how environmental cues are coupled to the signal transduction that initiates the complex diapause phenotype, as well as molecular explanations for how the state is terminated. Excellent examples of molecular memory in post-dauer animals have been documented in Caenorhabditis elegans It is clear that a single suite of mechanisms does not regulate diapause across all species and developmental stages. Copyright © 2016 the American Physiological Society.

  10. Light Evokes Rapid Circadian Network Oscillator Desynchrony Followed by Gradual Phase Retuning of Synchrony

    PubMed Central

    Roberts, Logan; Leise, Tanya L.; Noguchi, Takako; Galschiodt, Alexis M.; Houl, Jerry H.; Welsh, David K.; Holmes, Todd C.

    2015-01-01

    Summary Background Circadian neural circuits generate near 24 hr physiological rhythms that can be entrained by light to coordinate animal physiology with daily solar cycles. To examine how a circadian circuit reorganizes its activity in response to light, we imaged period (per) clock gene cycling for up to 6 days at single neuron resolution in whole brain explant cultures prepared from per-luciferase transgenic flies. We compared cultures subjected to a phase-advancing light pulse (LP) to cultures maintained in darkness (DD). Results In DD, individual neuronal oscillators in all circadian subgroups are initially well synchronized, then show monotonic decrease in oscillator rhythm amplitude and synchrony with time. The s-LNvs and LNds exhibit this decrease at a slower relative rate. In contrast, the LP evokes a rapid loss of oscillator synchrony between and within most circadian neuronal subgroups followed by gradual phase retuning of whole circuit oscillator synchrony. The LNds maintain high rhythmic amplitude and synchrony following the LP along with the most rapid coherent phase advance. Immunocytochemical analysis of PER show these dynamics in DD and LP are recapitulated in vivo. Anatomically distinct circadian neuronal subgroups vary in their response to the LP, showing differences in the degree and kinetics of their loss, recovery and/or strengthening of synchrony and rhythmicity. Conclusions Transient desynchrony appears to be an integral feature of light response of the Drosophila multicellular circadian clock. Individual oscillators in different neuronal subgroups of the circadian circuit show distinct kinetic signatures of light response and phase retuning. PMID:25754644

  11. Device for modular input high-speed multi-channel digitizing of electrical data

    DOEpatents

    VanDeusen, Alan L.; Crist, Charles E.

    1995-09-26

    A multi-channel high-speed digitizer module converts a plurality of analog signals to digital signals (digitizing) and stores the signals in a memory device. The analog input channels are digitized simultaneously at high speed with a relatively large number of on-board memory data points per channel. The module provides an automated calibration based upon a single voltage reference source. Low signal noise at such a high density and sample rate is accomplished by ensuring the A/D converters are clocked at the same point in the noise cycle each time so that synchronous noise sampling occurs. This sampling process, in conjunction with an automated calibration, yields signal noise levels well below the noise level present on the analog reference voltages.

  12. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging

    PubMed Central

    Yu, Ping; Repp, Jascha; Huber, Rupert

    2017-01-01

    Watching a single molecule move on its intrinsic time scale—one of the central goals of modern nanoscience—calls for measurements that combine ultrafast temporal resolution1–8 with atomic spatial resolution9–30. Steady-state experiments achieve the requisite spatial resolution, as illustrated by direct imaging of individual molecular orbitals using scanning tunnelling microscopy9–11 or the acquisition of tip-enhanced Raman and luminescence spectra with sub-molecular resolution27–29. But tracking the dynamics of a single molecule directly in the time domain faces the challenge that single-molecule excitations need to be confined to an ultrashort time window. A first step towards overcoming this challenge has combined scanning tunnelling microscopy with so-called ‘lightwave electronics”1–8, which uses the oscillating carrier wave of tailored light pulses to directly manipulate electronic motion on time scales faster even than that of a single cycle of light. Here we use such ultrafast terahertz scanning tunnelling microscopy to access a state-selective tunnelling regime, where the peak of a terahertz electric-field waveform transiently opens an otherwise forbidden tunnelling channel through a single molecular state and thereby removes a single electron from an individual pentacene molecule’s highest occupied molecular orbital within a time window shorter than one oscillation cycle of the terahertz wave. We exploit this effect to record ~100 fs snapshot images of the structure of the orbital involved, and to reveal through pump-probe measurements coherent molecular vibrations at terahertz frequencies directly in the time domain and with sub-angstrom spatial resolution. We anticipate that the combination of lightwave electronics1–8 and atomic resolution of our approach will open the door to controlling electronic motion inside individual molecules at optical clock rates. PMID:27830788

  13. Single-pass incremental force updates for adaptively restrained molecular dynamics.

    PubMed

    Singh, Krishna Kant; Redon, Stephane

    2018-03-30

    Adaptively restrained molecular dynamics (ARMD) allows users to perform more integration steps in wall-clock time by switching on and off positional degrees of freedoms. This article presents new, single-pass incremental force updates algorithms to efficiently simulate a system using ARMD. We assessed different algorithms for speedup measurements and implemented them in the LAMMPS MD package. We validated the single-pass incremental force update algorithm on four different benchmarks using diverse pair potentials. The proposed algorithm allows us to perform simulation of a system faster than traditional MD in both NVE and NVT ensembles. Moreover, ARMD using the new single-pass algorithm speeds up the convergence of observables in wall-clock time. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Seasonality in a temperate zone bird can be entrained by near equatorial photoperiods

    PubMed Central

    Dawson, Alistair

    2006-01-01

    Birds use photoperiod to control the time of breeding and moult. However, it is unclear whether responses are dependent on absolute photoperiod, the direction and rate of change in photoperiod, or if photoperiod entrains a circannual clock. If starlings (Sturnus vulgaris) are kept on a constant photoperiod of 12 h light : 12 h darkness per day (12 L : 12 D), then they can show repeated cycles of gonadal maturation, regression and moult, which is evidence for a circannual clock. In this study, starlings kept on constant 11.5 L : 12.5 D for 4 years or 12.5 L : 11.5 D for 3 years showed no circannual cycles in gonadal maturation or moult. So, if there is a circannual clock, it is overridden by a modest deviation in photoperiod from 12 L : 12 D. The responses to 11.5 L : 12.5 D and 12.5 L : 11.5 D were very different, the former perceived as a short photoperiod (birds were photosensitive for most of the time) and the latter as a long photoperiod (birds remained permanently photorefractory). Starlings were then kept on a schedule which ranged from 11.5 L : 12.5 D in mid-winter to 12.5 L : 11.5 D in mid-summer (simulating the annual cycle at 9 °N) for 3 years. These birds entrained precisely to calendar time and changes in testicular size and moult were similar to those of birds under a simulated cycle at 52 °N. These data show that birds are very sensitive to changes in photoperiod but that they do not simply respond to absolute photoperiod nor can they rely on a circannual clock. Instead, birds appear to respond to the shape of the annual change in photoperiod. This proximate control could operate from near equatorial latitudes and would account for similar seasonal timing in individuals of a species over a wide range of latitudes. PMID:17254997

  15. A quantum network of clocks

    NASA Astrophysics Data System (ADS)

    Komar, Peter; Kessler, Eric; Bishof, Michael; Jiang, Liang; Sorensen, Anders; Ye, Jun; Lukin, Mikhail

    2014-05-01

    Shared timing information constitutes a key resource for positioning and navigation with a direct correspondence between timing accuracy and precision in applications such as the Global Positioning System (GPS). By combining precision metrology and quantum networks, we propose here a quantum, cooperative protocol for the operation of a network consisting of geographically remote optical atomic clocks. Using non-local entangled states, we demonstrate an optimal utilization of the global network resources, and show that such a network can be operated near the fundamental limit set by quantum theory yielding an ultra-precise clock signal. Furthermore, the internal structure of the network, combined with basic techniques from quantum communication, guarantees security both from internal and external threats. Realization of such a global quantum network of clocks may allow construction of a real-time single international time scale (world clock) with unprecedented stability and accuracy. See also: Komar et al. arXiv:1310.6045 (2013) and Kessler et al. arXiv:1310.6043 (2013).

  16. Clocks in Feynman's computer and Kitaev's local Hamiltonian: Bias, gaps, idling, and pulse tuning

    NASA Astrophysics Data System (ADS)

    Caha, Libor; Landau, Zeph; Nagaj, Daniel

    2018-06-01

    We present a collection of results about the clock in Feynman's computer construction and Kitaev's local Hamiltonian problem. First, by analyzing the spectra of quantum walks on a line with varying end-point terms, we find a better lower bound on the gap of the Feynman Hamiltonian, which translates into a less strict promise gap requirement for the quantum-Merlin-Arthur-complete local Hamiltonian problem. We also translate this result into the language of adiabatic quantum computation. Second, introducing an idling clock construction with a large state space but fast Cesaro mixing, we provide a way for achieving an arbitrarily high success probability of computation with Feynman's computer with only a logarithmic increase in the number of clock qubits. Finally, we tune and thus improve the costs (locality and gap scaling) of implementing a (pulse) clock with a single excitation.

  17. Ribosome profiling reveals the rhythmic liver translatome and circadian clock regulation by upstream open reading frames

    PubMed Central

    Janich, Peggy; Arpat, Alaaddin Bulak; Castelo-Szekely, Violeta; Lopes, Maykel; Gatfield, David

    2015-01-01

    Mammalian gene expression displays widespread circadian oscillations. Rhythmic transcription underlies the core clock mechanism, but it cannot explain numerous observations made at the level of protein rhythmicity. We have used ribosome profiling in mouse liver to measure the translation of mRNAs into protein around the clock and at high temporal and nucleotide resolution. We discovered, transcriptome-wide, extensive rhythms in ribosome occupancy and identified a core set of approximately 150 mRNAs subject to particularly robust daily changes in translation efficiency. Cycling proteins produced from nonoscillating transcripts revealed thus-far-unknown rhythmic regulation associated with specific pathways (notably in iron metabolism, through the rhythmic translation of transcripts containing iron responsive elements), and indicated feedback to the rhythmic transcriptome through novel rhythmic transcription factors. Moreover, estimates of relative levels of core clock protein biosynthesis that we deduced from the data explained known features of the circadian clock better than did mRNA expression alone. Finally, we identified uORF translation as a novel regulatory mechanism within the clock circuitry. Consistent with the occurrence of translated uORFs in several core clock transcripts, loss-of-function of Denr, a known regulator of reinitiation after uORF usage and of ribosome recycling, led to circadian period shortening in cells. In summary, our data offer a framework for understanding the dynamics of translational regulation, circadian gene expression, and metabolic control in a solid mammalian organ. PMID:26486724

  18. Circadian Clock Regulates Response to Pesticides in Drosophila via Conserved Pdp1 Pathway

    PubMed Central

    Beaver, Laura Michelle; Hooven, Louisa Ada; Butcher, Shawn Michael; Krishnan, Natraj; Sherman, Katherine Alice; Chow, Eileen Shin-Yeu; Giebultowicz, Jadwiga Maria

    2010-01-01

    Daily rhythms generated by the circadian clock regulate many life functions, including responses to xenobiotic compounds. In Drosophila melanogaster, the circadian clock consists of positive elements encoded by cycle (cyc) and Clock (Clk) and negative elements encoded by period (per) and timeless (tim) genes. The ϵ-isoform of the PAR-domain protein 1 (Pdp1ε) transcription factor is controlled by positive clock elements and regulates daily locomotor activity rhythms. Pdp1 target genes have not been identified, and its involvement in other clock output pathways is not known. Mammalian orthologs of Pdp1 have been implicated in the regulation of xenobiotic metabolism; therefore, we asked whether Pdp1 has a similar role in the fly. Using pesticides as model toxicants, we determined that disruption of Pdp1ε increased pesticide-induced mortality in flies. Flies deficient for cyc also showed increased mortality, while disruption of per and tim had no effect. Day/night and Pdp1-dependent differences in the expression of xenobiotic-metabolizing enzymes Cyp6a2, Cyp6g1, and α-Esterase-7 were observed and likely contribute to impaired detoxification. DHR96, a homolog of constitutive androstane receptor and pregnane X receptor, is involved in pesticide response, and DHR96 expression decreased when Pdp1 was suppressed. Taken together, our data uncover a pathway from the positive arm of the circadian clock through Pdp1 to detoxification effector genes, demonstrating a conserved role of the circadian system in modulating xenobiotic toxicity. PMID:20348229

  19. Atomic clock ensemble in space (ACES) data analysis

    NASA Astrophysics Data System (ADS)

    Meynadier, F.; Delva, P.; le Poncin-Lafitte, C.; Guerlin, C.; Wolf, P.

    2018-02-01

    The Atomic Clocks Ensemble in Space (ACES/PHARAO mission, ESA & CNES) will be installed on board the International Space Station (ISS) next year. A crucial part of this experiment is its two-way microwave link (MWL), which will compare the timescale generated on board with those provided by several ground stations disseminated on the Earth. A dedicated data analysis center is being implemented at SYRTE—Observatoire de Paris, where our team currently develops theoretical modelling, numerical simulations and the data analysis software itself. In this paper, we present some key aspects of the MWL measurement method and the associated algorithms for simulations and data analysis. We show the results of tests using simulated data with fully realistic effects such as fundamental measurement noise, Doppler, atmospheric delays, or cycle ambiguities. We demonstrate satisfactory performance of the software with respect to the specifications of the ACES mission. The main scientific product of our analysis is the clock desynchronisation between ground and space clocks, i.e. the difference of proper times between the space clocks and ground clocks at participating institutes. While in flight, this measurement will allow for tests of general relativity and Lorentz invariance at unprecedented levels, e.g. measurement of the gravitational redshift at the 3×10-6 level. As a specific example, we use real ISS orbit data with estimated errors at the 10 m level to study the effect of such errors on the clock desynchronisation obtained from MWL data. We demonstrate that the resulting effects are totally negligible.

  20. Circadian rhythms in insect disease vectors

    PubMed Central

    Meireles-Filho, Antonio Carlos Alves; Kyriacou, Charalambos Panayiotis

    2013-01-01

    Organisms from bacteria to humans have evolved under predictable daily environmental cycles owing to the Earth’s rotation. This strong selection pressure has generated endogenous circadian clocks that regulate many aspects of behaviour, physiology and metabolism, anticipating and synchronising internal time-keeping to changes in the cyclical environment. In haematophagous insect vectors the circadian clock coordinates feeding activity, which is important for the dynamics of pathogen transmission. We have recently witnessed a substantial advance in molecular studies of circadian clocks in insect vector species that has consolidated behavioural data collected over many years, which provided insights into the regulation of the clock in the wild. Next generation sequencing technologies will facilitate the study of vector genomes/transcriptomes both among and within species and illuminate some of the species-specific patterns of adaptive circadian phenotypes that are observed in the field and in the laboratory. In this review we will explore these recent findings and attempt to identify potential areas for further investigation. PMID:24473802

  1. Abiotic stress and the plant circadian clock

    PubMed Central

    Sanchez, Alfredo; Shin, Jieun

    2011-01-01

    In this review, we focus on the interaction between the circadian clock of higher plants to that of metabolic and physiological processes that coordinate growth and performance under a predictable, albeit changing environment. In this, the phytochrome and cryptochrome photoreceptors have shown to be important, but not essential for oscillator control under diurnal cycles of light and dark. From this foundation, we will examine how emerging findings have firmly linked the circadian clock, as a central mediator in the coordination of metabolism, to maintain homeostasis. This occurs by oscillator synchronization of global transcription, which leads to a dynamic control of a host of physiological processes. These include the determination of the levels of primary and secondary metabolites, and the anticipation of future environmental stresses, such as mid-day drought and midnight coldness. Interestingly, metabolic and stress cues themselves appear to feedback on oscillator function. In such a way, the circadian clock of plants and abiotic-stress tolerance appear to be firmly interconnected processes. PMID:21325898

  2. Systems Chronobiology: Global Analysis of Gene Regulation in a 24-Hour Periodic World.

    PubMed

    Mermet, Jérôme; Yeung, Jake; Naef, Felix

    2017-03-01

    Mammals have evolved an internal timing system, the circadian clock, which synchronizes physiology and behavior to the daily light and dark cycles of the Earth. The master clock, located in the suprachiasmatic nucleus (SCN) of the brain, takes fluctuating light input from the retina and synchronizes other tissues to the same internal rhythm. The molecular clocks that drive these circadian rhythms are ticking in nearly all cells in the body. Efforts in systems chronobiology are now being directed at understanding, on a comprehensive scale, how the circadian clock controls different layers of gene regulation to provide robust timing cues at the cellular and tissue level. In this review, we introduce some basic concepts underlying periodicity of gene regulation, and then highlight recent genome-wide investigations on the propagation of rhythms across multiple regulatory layers in mammals, all the way from chromatin conformation to protein accumulation. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  3. Agile Blocker and Clock Jitter Tolerant Low-Power Frequency Selective Receiver with Energy Harvesting Capability.

    PubMed

    Hasan, Abul; Helaoui, Mohamed; Ghannouchi, Fadhel M

    2017-08-29

    In this article, a novel tunable, blocker and clock jitter tolerant, low power, quadrature phase shift frequency selective (QPS-FS) receiver with energy harvesting capability is proposed. The receiver's design embraces and integrates (i) the baseband to radio frequency (RF) impedance translation concept to improve selectivity over that of conventional homodyne receiver topologies and (ii) broadband quadrature phase shift circuitry in the RF path to remove an active multi-phase clock generation circuit in passive mixer (PM) receivers. The use of a single local oscillator clock signal with a passive clock division network improves the receiver's robustness against clock jitter and reduces the source clock frequency by a factor of N, compared to PM receivers using N switches (N≥4). As a consequence, the frequency coverage of the QPS-FS receiver is improved by a factor of N, given a clock source of maximum frequency; and, the power consumption of the whole receiver system can eventually be reduced. The tunable QPS-FS receiver separates the wanted RF band signal from the unwanted blockers/interferers. The desired RF signal is frequency down-converted to baseband, while the undesired blocker/interferer signals are reflected by the receiver, collected and could be energy recycled using an auxiliary energy harvesting device.

  4. Evaluating the Autonomy of the Drosophila Circadian Clock in Dissociated Neuronal Culture

    PubMed Central

    Sabado, Virginie; Vienne, Ludovic; Nagoshi, Emi

    2017-01-01

    Circadian behavioral rhythms offer an excellent model to study intricate interactions between the molecular and neuronal mechanisms of behavior. In mammals, pacemaker neurons in the suprachiasmatic nucleus (SCN) generate rhythms cell-autonomously, which are synchronized by the network interactions within the circadian circuit to drive behavioral rhythms. However, whether this principle is universal to circadian systems in animals remains unanswered. Here, we examined the autonomy of the Drosophila circadian clock by monitoring transcriptional and post-transcriptional rhythms of individual clock neurons in dispersed culture with time-lapse microscopy. Expression patterns of the transcriptional reporter show that CLOCK/CYCLE (CLK/CYC)-mediated transcription is constantly active in dissociated clock neurons. In contrast, the expression profile of the post-transcriptional reporter indicates that PERIOD (PER) protein levels fluctuate and ~10% of cells display rhythms in PER levels with periods in the circadian range. Nevertheless, PER and TIM are enriched in the cytoplasm and no periodic PER nuclear accumulation was observed. These results suggest that repression of CLK/CYC-mediated transcription by nuclear PER is impaired, and thus the negative feedback loop of the molecular clock is incomplete in isolated clock neurons. We further demonstrate that, by pharmacological assays using the non-amidated form of neuropeptide pigment-dispersing factor (PDF), which could be specifically secreted from larval LNvs and adult s-LNvs, downstream events of the PDF signaling are partly impaired in dissociated larval clock neurons. Although non-amidated PDF is likely to be less active than the amidated one, these results point out the possibility that alteration in PDF downstream signaling may play a role in dampening of molecular rhythms in isolated clock neurons. Taken together, our results suggest that Drosophila clocks are weak oscillators that need to be in the intact circadian circuit to generate robust 24-h rhythms. PMID:29075180

  5. A high capacity data centre network: simultaneous 4-PAM data at 20 Gbps and 2 GHz phase modulated RF clock signal over a single VCSEL carrier

    NASA Astrophysics Data System (ADS)

    Isoe, G. M.; Wassin, S.; Gamatham, R. R. G.; Leitch, A. W. R.; Gibbon, T. B.

    2017-11-01

    Optical fibre communication technologies are playing important roles in data centre networks (DCNs). Techniques for increasing capacity and flexibility for the inter-rack/pod communications in data centres have drawn remarkable attention in recent years. In this work, we propose a low complexity, reliable, alternative technique for increasing DCN capacity and flexibility through multi-signal modulation onto a single mode VCSEL carrier. A 20 Gbps 4-PAM data signal is directly modulated on a single mode 10 GHz bandwidth VCSEL carrier at 1310 nm, therefore, doubling the network bit rate. Carrier spectral efficiency is further maximized by modulating its phase attribute with a 2 GHz reference frequency (RF) clock signal. We, therefore, simultaneously transmit a 20 Gbps 4-PAM data signal and a phase modulated 2 GHz RF signal using a single mode 10 GHz bandwidth VCSEL carrier. It is the first time a single mode 10 GHz bandwidth VCSEL carrier is reported to simultaneously transmit a directly modulated 4-PAM data signal and a phase modulated RF clock signal. A receiver sensitivity of -10. 52 dBm was attained for a 20 Gbps 4-PAM VCSEL transmission. The 2 GHz phase modulated RF clock signal introduced a power budget penalty of 0.21 dB. Simultaneous distribution of both data and timing signals over shared infrastructure significantly increases the aggregated data rate at different optical network units within the DCN, without expensive optics investment. We further demonstrate on the design of a software-defined digital signal processing assisted receiver to efficiently recover the transmitted signal without employing costly receiver hardware.

  6. Glial Cells in the Genesis and Regulation of Circadian Rhythms

    PubMed Central

    Chi-Castañeda, Donají; Ortega, Arturo

    2018-01-01

    Circadian rhythms are biological oscillations with a period of ~24 h. These rhythms are orchestrated by a circadian timekeeper in the suprachiasmatic nucleus of the hypothalamus, the circadian “master clock,” which exactly adjusts clock outputs to solar time via photic synchronization. At the molecular level, circadian rhythms are generated by the interaction of positive and negative feedback loops of transcriptional and translational processes of the so-called “clock genes.” A large number of clock genes encode numerous proteins that regulate their own transcription and that of other genes, collectively known as “clock-controlled genes.” In addition to the sleep/wake cycle, many cellular processes are regulated by circadian rhythms, including synaptic plasticity in which an exquisite interplay between neurons and glial cells takes place. In particular, there is compelling evidence suggesting that glial cells participate in and regulate synaptic plasticity in a circadian fashion, possibly representing the missing cellular and physiological link between circadian rhythms with learning and cognition processes. Here we review recent studies in support of this hypothesis, focusing on the interplay between glial cells, synaptic plasticity, and circadian rhythmogenesis. PMID:29483880

  7. Circadian and feeding cues integrate to drive rhythms of physiology in Drosophila insulin-producing cells.

    PubMed

    Barber, Annika F; Erion, Renske; Holmes, Todd C; Sehgal, Amita

    2016-12-01

    Circadian clocks regulate much of behavior and physiology, but the mechanisms by which they do so remain poorly understood. While cyclic gene expression is thought to underlie metabolic rhythms, little is known about cycles in cellular physiology. We found that Drosophila insulin-producing cells (IPCs), which are located in the pars intercerebralis and lack an autonomous circadian clock, are functionally connected to the central circadian clock circuit via DN1 neurons. Insulin mediates circadian output by regulating the rhythmic expression of a metabolic gene (sxe2) in the fat body. Patch clamp electrophysiology reveals that IPCs display circadian clock-regulated daily rhythms in firing event frequency and bursting proportion under light:dark conditions. The activity of IPCs and the rhythmic expression of sxe2 are additionally regulated by feeding, as demonstrated by night feeding-induced changes in IPC firing characteristics and sxe2 levels in the fat body. These findings indicate circuit-level regulation of metabolism by clock cells in Drosophila and support a role for the pars intercerebralis in integrating circadian control of behavior and physiology. © 2016 Barber et al.; Published by Cold Spring Harbor Laboratory Press.

  8. Altered Stra13 and Dec2 circadian gene expression in hypoxic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guillaumond, Fabienne; Lacoche, Samuel; Dulong, Sandrine

    2008-05-16

    The circadian system regulates rhythmically most of the mammalian physiology in synchrony with the environmental light/dark cycle. Alteration of circadian clock gene expression has been associated with tumour progression but the molecular links between the two mechanisms remain poorly defined. Here we show that Stra13 and Dec2, two circadian transcriptional regulators which play a crucial role in cell proliferation and apoptosis are overexpressed and no longer rhythmic in serum shocked fibroblasts treated with CoCl{sub 2,} a substitute of hypoxia. This effect is associated with a loss of circadian expression of the clock genes Rev-erb{alpha} and Bmal1, and the clock-controlled genemore » Dbp. Consistently, cotransfection assays demonstrate that STRA13 and DEC2 both antagonize CLOCK:BMAL1 dependent transactivation of the Rev-erb{alpha} and Dbp promoters. Using a transplantable osteosarcoma tumour model, we show that hypoxia is associated with altered circadian expression of Stra13, Dec2, Rev-erb{alpha}, Bmal1 and Dbp in vivo. These observations collectively support the notion that overexpression of Stra13 and Dec2 links hypoxia signalling to altered circadian clock gene expression.« less

  9. A bi-directional fixed-latency clock distribution system

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Ó Murchadha, A.; Meures, T.; Korntheuer, M.; Hanson, K.

    2013-12-01

    The Askar'yan Radio Array (ARA) Collaboration is constructing a giant array of radio-frequency antennas deployed in the ice near the geographic South Pole. This experiment aims at detecting the extremely weak signal of neutrinos with energies in excess of 100 PeV from ultrahigh-energy cosmic ray interactions with the cosmic microwave background radiation. The antennas are located in shallow holes drilled to depths of 200 m and need high fidelity RF signal transmission over extended lengths to the data acquisition logic at the surface. We report on a transmission scheme whereby signals are digitized in the ice and the waveforms are digitally sent via high-speed serial links. Reconstruction algorithms require distribution of a low-jitter clock from the surface down to the digitization boards in the holes with knowledge of the overall time delay between the two clock domains. Previously, we designed a clock synchronization system using electrical signaling over CAT5. This year we have updated our solution to optical fibers using high speed transceiver blocks in Spartan-6 FPGAs. This note describes our improvements on the latter solution: technical details as well as methods of maintaining a fixed phase between two clocks after power cycles and resets.

  10. The Logic of Circadian Organization in Drosophila

    PubMed Central

    Dissel, Stephane; Hansen, Celia N.; Özkaya, Özge; Hemsley, Matthew; Kyriacou, Charalambos P.; Rosato, Ezio

    2014-01-01

    Summary Background In the fruit fly Drosophila melanogaster, interlocked negative transcription/translation feedback loops provide the core of the circadian clock that generates rhythmic phenotypes. Although the current molecular model portrays the oscillator as cell autonomous, cross-talk among clock neurons is essential for robust cycling behavior. Nevertheless, the functional organization of the neuronal network remains obscure. Results Here we show that shortening or lengthening of the circadian period of locomotor activity can be obtained either by targeting different groups of clock cells with the same genetic manipulation or by challenging the same group of cells with activators and repressors of neuronal excitability. Conclusions Based on these observations we interpret circadian rhythmicity as an emerging property of the circadian network and we propose an initial model for its architectural design. PMID:25220056

  11. Location, location, location: does early cancer in Barrett's esophagus have a preference?

    PubMed

    Enestvedt, Brintha K; Lugo, Ricardo; Guarner-Argente, Carlos; Shah, Pari; Falk, Gary W; Furth, Emma; Ginsberg, Gregory G

    2013-09-01

    Early cancer (high-grade dysplasia [HGD] and intramucosal carcinoma [ImCa]) associated with Barrett's esophagus (BE) may have a circumferential spatial predilection. To describe the esophageal circumferential location of early cancer in BE. Retrospective study, single tertiary referral center. One hundred nineteen patients were referred for endoscopic eradication therapy for early cancer associated with BE. Endoscopic images and reports and pathology were reviewed. Circumferential location designation of early cancer in BE by using a clock-face orientation. One hundred nineteen of 131 patients referred for endoscopic eradication therapy had a location designation for their advanced histology (91.9%). There were a total of 57 patients (47.9%) with HGD and 62 patients (52.1%) with ImCa. There was a significantly higher rate of early cancer (HGD or ImCa) in the right hemisphere (12 to 6 o'clock location) compared with the left hemisphere (84.9% vs 15.1%, P < .0001). The highest percentage of early cancer was found in the 12 to 3 o'clock quadrant (64.7%); 71.9% of HGD and 58.1% of ImCa lesions were located in the 12 to 3 o'clock quadrant. Retrospective design, single center. Early cancer associated with BE is far more commonly found in the right hemisphere of the esophagus (12 to 6 o'clock) with the highest rate in the 12 to 3 o'clock quadrant. These findings support enhanced scrutiny of the right hemisphere of the esophagus during surveillance and endoscopic treatment of patients with BE. Copyright © 2013 American Society for Gastrointestinal Endoscopy. Published by Mosby, Inc. All rights reserved.

  12. Coding for Single-Line Transmission

    NASA Technical Reports Server (NTRS)

    Madison, L. G.

    1983-01-01

    Digital transmission code combines data and clock signals into single waveform. MADCODE needs four standard integrated circuits in generator and converter plus five small discrete components. MADCODE allows simple coding and decoding for transmission of digital signals over single line.

  13. Absolute frequency measurement of the 88Sr+ clock transition using a GPS link to the SI second

    NASA Astrophysics Data System (ADS)

    Dubé, Pierre; E Bernard, John; Gertsvolf, Marina

    2017-06-01

    We report the results of a recent measurement of the absolute frequency of the 5s{{ }2}{{S}1/2} - 4d{{ }2}{{D}5/2} transition of the {{}88}\\text{Sr}{{}+} ion. The optical frequency was measured against the international atomic time realization of the SI second on the geoid as obtained by frequency transfer using a global positioning system link and the precise point positioning technique. The measurement campaign yielded more than 100 h of frequency data. It was performed with improvements to the stability and accuracy of the single-ion clock compared to the last measurement made in 2012. The single ion clock uncertainty is evaluated at 1.5× {{10}-17} when contributions from acousto-optic modulator frequency chirps and servo errors are taken into account. The stability of the ion clock is 3× {{10}-15} at 1 s averaging, a factor of three better than in the previous measurement. The results from the two measurement campaigns are in good agreement. The uncertainty of the measurement, primarily from the link to the SI second, is 0.75 Hz (1.7× {{10}-15} ). The frequency measured for the S-D clock transition of {{}88}\\text{S}{{\\text{r}}+} is {ν0}= 444 779 044 095 485.27(75) Hz.

  14. Evolution of a multi-agent system in a cyclical environment.

    PubMed

    Baptista, Tiago; Costa, Ernesto

    2008-06-01

    The synchronisation phenomena in biological systems is a current and recurring subject of scientific study. This topic, namely that of circadian clocks, served as inspiration to develop an agent-based simulation that serves the main purpose of being a proof-of-concept of the model used in the BitBang framework, that implements a modern autonomous agent model. Despite having been extensively studied, circadian clocks still have much to be investigated. Rather than wanting to learn more about the internals of this biological process, we look to study the emergence of this kind of adaptation to a daily cycle. To that end we implemented a world with a day/night cycle, and analyse the ways the agents adapt to that cycle. The results show the evolution of the agents' ability to gather food. If we look at the total number of agents over the course of an experiment, we can pinpoint the time when reproductive technology emerges. We also show that the agents adapt to the daily cycle. This circadian rhythm can be shown by analysing the variation on the agents metabolic rate, which is affected by the variation of their movement patterns. In the experiments conducted we can observe that the metabolic rate of the agents varies according to the daily cycle.

  15. VRILLE Controls PDF Neuropeptide Accumulation and Arborization Rhythms in Small Ventrolateral Neurons to Drive Rhythmic Behavior in Drosophila.

    PubMed

    Gunawardhana, Kushan L; Hardin, Paul E

    2017-11-20

    In Drosophila, the circadian clock is comprised of transcriptional feedback loops that control rhythmic gene expression responsible for daily rhythms in physiology, metabolism, and behavior. The core feedback loop, which employs CLOCK-CYCLE (CLK-CYC) activators and PERIOD-TIMELESS (PER-TIM) repressors to drive rhythmic transcription peaking at dusk, is required for circadian timekeeping and overt behavioral rhythms. CLK-CYC also activates an interlocked feedback loop, which uses the PAR DOMAIN PROTEIN 1ε (PDP1ε) activator and the VRILLE (VRI) repressor to drive rhythmic transcription peaking at dawn. Although Pdp1ε mutants disrupt activity rhythms without eliminating clock function, whether vri is required for clock function and/or output is not known. Using a conditionally inactivatable transgene to rescue vri developmental lethality, we show that clock function persists after vri inactivation but that activity rhythms are abolished. The inactivation of vri disrupts multiple output pathways thought to be important for activity rhythms, including PDF accumulation and arborization rhythms in the small ventrolateral neuron (sLN v ) dorsal projection. These results demonstrate that vri acts as a key regulator of clock output and suggest that the primary function of the interlocked feedback loop in Drosophila is to drive rhythmic transcription required for overt rhythms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Circadian Clock-Regulated Expression of Phytochrome and Cryptochrome Genes in Arabidopsis1

    PubMed Central

    Tóth, Réka; Kevei, Éva; Hall, Anthony; Millar, Andrew J.; Nagy, Ferenc; Kozma-Bognár, László

    2001-01-01

    Many physiological and biochemical processes in plants exhibit endogenous rhythms with a period of about 24 h. Endogenous oscillators called circadian clocks regulate these rhythms. The circadian clocks are synchronized to the periodic environmental changes (e.g. day/night cycles) by specific stimuli; among these, the most important is the light. Photoreceptors, phytochromes, and cryptochromes are involved in setting the clock by transducing the light signal to the central oscillator. In this work, we analyzed the spatial, temporal, and long-term light-regulated expression patterns of the Arabidopsis phytochrome (PHYA to PHYE) and cryptochrome (CRY1 and CRY2) promoters fused to the luciferase (LUC+) reporter gene. The results revealed new details of the tissue-specific expression and light regulation of the PHYC and CRY1 and 2 promoters. More importantly, the data obtained demonstrate that the activities of the promoter::LUC+ constructs, with the exception of PHYC::LUC+, display circadian oscillations under constant conditions. In addition, it is shown by measuring the mRNA abundance of PHY and CRY genes under constant light conditions that the circadian control is also maintained at the level of mRNA accumulation. These observations indicate that the plant circadian clock controls the expression of these photoreceptors, revealing the formation of a new regulatory loop that could modulate gating and resetting of the circadian clock. PMID:11743105

  17. Circadian rhythmicity of active GSK3 isoforms modulates molecular clock gene rhythms in the suprachiasmatic nucleus.

    PubMed

    Besing, Rachel C; Paul, Jodi R; Hablitz, Lauren M; Rogers, Courtney O; Johnson, Russell L; Young, Martin E; Gamble, Karen L

    2015-04-01

    The suprachiasmatic nucleus (SCN) drives and synchronizes daily rhythms at the cellular level via transcriptional-translational feedback loops comprising clock genes such as Bmal1 and Period (Per). Glycogen synthase kinase 3 (GSK3), a serine/threonine kinase, phosphorylates at least 5 core clock proteins and shows diurnal variation in phosphorylation state (inactivation) of the GSK3β isoform. Whether phosphorylation of the other primary isoform (GSK3α) varies across the subjective day-night cycle is unknown. The purpose of this study was to determine if the endogenous rhythm of GSK3 (α and β) phosphorylation is critical for rhythmic BMAL1 expression and normal amplitude and periodicity of the molecular clock in the SCN. Significant circadian rhythmicity of phosphorylated GSK3 (α and β) was observed in the SCN from wild-type mice housed in constant darkness for 2 weeks. Importantly, chronic activation of both GSK3 isoforms impaired rhythmicity of the GSK3 target BMAL1. Furthermore, chronic pharmacological inhibition of GSK3 with 20 µM CHIR-99021 enhanced the amplitude and shortened the period of PER2::luciferase rhythms in organotypic SCN slice cultures. These results support the model that GSK3 activity status is regulated by the circadian clock and that GSK3 feeds back to regulate the molecular clock amplitude in the SCN. © 2015 The Author(s).

  18. IgE-dependent activation of human mast cells and fMLP-mediated activation of human eosinophils is controlled by the circadian clock.

    PubMed

    Baumann, Anja; Feilhauer, Katharina; Bischoff, Stephan C; Froy, Oren; Lorentz, Axel

    2015-03-01

    Symptoms of allergic attacks frequently exhibit diurnal variations. Accordingly, we could recently demonstrate that mast cells and eosinophils - known as major effector cells of allergic diseases - showed an intact circadian clock. Here, we analyzed the role of the circadian clock in the functionality of mast cells and eosinophils. Human intestinal mast cells (hiMC) were isolated from intestinal mucosa; human eosinophils were isolated from peripheral blood. HiMC and eosinophils were synchronized by dexamethasone before stimulation every 4h around the circadian cycle by FcɛRI crosslinking or fMLP, respectively. Signaling molecule activation was examined using Western blot, mRNA expression by real-time RT-PCR, and mediator release by multiplex analysis. CXCL8 and CCL2 were expressed and released in a circadian manner by both hiMC and eosinophils in response to activation. Moreover, phosphorylation of ERK1/2, known to be involved in activation of hiMC and eosinophils, showed circadian rhythms in both cell types. Interestingly, all clock genes hPer1, hPer2, hCry1, hBmal1, and hClock were expressed in a similar circadian pattern in activated and unstimulated cells indicating that the local clock controls hiMC and eosinophils and subsequently allergic reactions but not vice versa. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Regulation of circadian blood pressure: from mice to astronauts.

    PubMed

    Agarwal, Rajiv

    2010-01-01

    Circadian variation is commonly seen in healthy people; aberration in these biological rhythms is an early sign of disease. Impaired circadian variation of blood pressure (BP) has been shown to be associated with greater target organ damage and with an elevated risk of cardiovascular events independent of the BP load. The purpose of this review is to examine the physiology of circadian BP variation and propose a tripartite model that explains the regulation of circadian BP. The time-keeper in mammals resides centrally in the suprachiasmatic nucleus. Apart from this central clock, molecular clocks exist in most peripheral tissues including vascular tissue and the kidney. These molecular clocks regulate sodium balance, sympathetic function and vascular tone. A physiological model is proposed that integrates our understanding of molecular clocks in mice with the circadian BP variation among humans. The master regulator in this proposed model is the sleep-activity cycle. The equivalents of peripheral clocks are endothelial and adrenergic functions. Thus, in the proposed model, the variation in circadian BP is dependent upon three major factors: physical activity, autonomic function, and sodium sensitivity. The integrated consideration of physical activity, autonomic function, and sodium sensitivity appears to explain the physiology of circadian BP variation and the pathophysiology of disrupted BP rhythms in various conditions and disease states. Our understanding of molecular clocks in mice may help to explain the provenance of blunted circadian BP variation even among astronauts.

  20. Core clock, SUB1, and ABAR genes mediate flooding and drought responses via alternative splicing in soybean.

    PubMed

    Syed, Naeem H; Prince, Silvas J; Mutava, Raymond N; Patil, Gunvant; Li, Song; Chen, Wei; Babu, Valliyodan; Joshi, Trupti; Khan, Saad; Nguyen, Henry T

    2015-12-01

    Circadian clocks are a great evolutionary innovation and provide competitive advantage during the day/night cycle and under changing environmental conditions. The circadian clock mediates expression of a large proportion of genes in plants, achieving a harmonious relationship between energy metabolism, photosynthesis, and biotic and abiotic stress responses. Here it is shown that multiple paralogues of clock genes are present in soybean (Glycine max) and mediate flooding and drought responses. Differential expression of many clock and SUB1 genes was found under flooding and drought conditions. Furthermore, natural variation in the amplitude and phase shifts in PRR7 and TOC1 genes was also discovered under drought and flooding conditions, respectively. PRR3 exhibited flooding- and drought-specific splicing patterns and may work in concert with PRR7 and TOC1 to achieve energy homeostasis under flooding and drought conditions. Higher expression of TOC1 also coincides with elevated levels of abscisic acid (ABA) and variation in glucose levels in the morning and afternoon, indicating that this response to abiotic stress is mediated by ABA, endogenous sugar levels, and the circadian clock to fine-tune photosynthesis and energy utilization under stress conditions. It is proposed that the presence of multiple clock gene paralogues with variation in DNA sequence, phase, and period could be used to screen exotic germplasm to find sources for drought and flooding tolerance. Furthermore, fine tuning of multiple clock gene paralogues (via a genetic engineering approach) should also facilitate the development of flooding- and drought-tolerant soybean varieties. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Adrenal-dependent and -independent stress-induced Per1 mRNA in hypothalamic paraventricular nucleus and prefrontal cortex of male and female rats.

    PubMed

    Chun, Lauren E; Christensen, Jenny; Woodruff, Elizabeth R; Morton, Sarah J; Hinds, Laura R; Spencer, Robert L

    2018-01-01

    Oscillating clock gene expression gives rise to a molecular clock that is present not only in the body's master circadian pacemaker, the hypothalamic suprachiasmatic nucleus (SCN), but also in extra-SCN brain regions. These extra-SCN molecular clocks depend on the SCN for entrainment to a light:dark cycle. The SCN has limited neural efferents, so it may entrain extra-SCN molecular clocks through its well-established circadian control of glucocorticoid hormone secretion. Glucocorticoids can regulate the normal rhythmic expression of clock genes in some extra-SCN tissues. Untimely stress-induced glucocorticoid secretion may compromise extra-SCN molecular clock function. We examined whether acute restraint stress during the rat's inactive phase can rapidly (within 30 min) alter clock gene (Per1, Per2, Bmal1) and cFos mRNA (in situ hybridization) in the SCN, hypothalamic paraventricular nucleus (PVN), and prefrontal cortex (PFC) of male and female rats (6 rats per treatment group). Restraint stress increased Per1 and cFos mRNA in the PVN and PFC of both sexes. Stress also increased cFos mRNA in the SCN of male rats, but not when subsequently tested during their active phase. We also examined in male rats whether endogenous glucocorticoids are necessary for stress-induced Per1 mRNA (6-7 rats per treatment group). Adrenalectomy attenuated stress-induced Per1 mRNA in the PVN and ventral orbital cortex, but not in the medial PFC. These data indicate that increased Per1 mRNA may be a means by which extra-SCN molecular clocks adapt to environmental stimuli (e.g. stress), and in the PFC this effect is largely independent of glucocorticoids.

  2. Resveratrol restores the circadian rhythmic disorder of lipid metabolism induced by high-fat diet in mice.

    PubMed

    Sun, Linjie; Wang, Yan; Song, Yu; Cheng, Xiang-Rong; Xia, Shufang; Rahman, Md Ramim Tanver; Shi, Yonghui; Le, Guowei

    2015-02-27

    Circadian rhythmic disorders induced by high-fat diet are associated with metabolic diseases. Resveratrol could improve metabolic disorder, but few reports focused on its effects on circadian rhythm disorders in a variety of studies. The aim of the present study was to analyze the potential effects of resveratrol on high-fat diet-induced disorders about the rhythmic expression of clock genes and clock-controlled lipid metabolism. Male C57BL/6 mice were divided into three groups: a standard diet control group (CON), a high-fat diet (HFD) group and HFD supplemented with 0.1% (w/w) resveratrol (RES). The body weight, fasting blood glucose and insulin, plasma lipids and leptin, whole body metabolic status and the expression of clock genes and clock-controlled lipogenic genes were analyzed at four different time points throughout a 24-h cycle (8:00, 14:00, 20:00, 2:00). Resveratrol, being associated with rhythmic restoration of fasting blood glucose and plasma insulin, significantly decreased the body weight in HFD mice after 11 weeks of feeding, as well as ameliorated the rhythmities of plasma leptin, lipid profiles and whole body metabolic status (respiratory exchange ratio, locomotor activity, and heat production). Meanwhile, resveratrol modified the rhythmic expression of clock genes (Clock, Bmal1 and Per2) and clock-controlled lipid metabolism related genes (Sirt1, Pparα, Srebp-1c, Acc1 and Fas). The response pattern of mRNA expression for Acc1 was similar to the plasma triglyceride. All these results indicated that resveratrol reduced lipogenesis and ultimately normalized rhythmic expression of plasma lipids, possibly via its action on clock machinery. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Hypothalamic expression and moonlight-independent changes of Cry3 and Per4 implicate their roles in lunar clock oscillators of the lunar-responsive Goldlined spinefoot.

    PubMed

    Toda, Riko; Okano, Keiko; Takeuchi, Yuki; Yamauchi, Chihiro; Fukushiro, Masato; Takemura, Akihiro; Okano, Toshiyuki

    2014-01-01

    Lunar cycle-associated physiology has been found in a wide variety of organisms. Studies suggest the presence of a circalunar clock in some animals, but the location of the lunar clock is unclear. We previously found lunar-associated expression of transcripts for Cryptochrome3 gene (SgCry3) in the brain of a lunar phase-responsive fish, the Goldlined spinefoot (Siganus guttatus). Then we proposed a photoperiodic model for the lunar phase response, in which SgCry3 might function as a phase-specific light response gene and/or an oscillatory factor in unidentified circalunar clock. In this study, we have developed an anti-SgCRY3 antibody to identify SgCRY3-immunoreactive cells in the brain. We found immunoreactions in the subependymal cells located in the mediobasal region of the diencephalon, a crucial site for photoperiodic seasonal responses in birds. For further assessment of the lunar-responding mechanism and the circalunar clock, we investigated mRNA levels of Cry3 as well as those of the other clock(-related) genes, Period (Per2 and Per4), in S. guttatus reared under nocturnal moonlight interruption or natural conditions. Not only SgCry3 but SgPer4 mRNA levels showed lunar phase-dependent variations in the diencephalon without depending on light condition during the night. These results suggest that the expressions of SgCry3 and SgPer4 are not directly regulated by moonlight stimulation but endogenously mediated in the brain, and implicate that circadian clock(-related) genes may be involved in the circalunar clock locating within the mediobasal region of the diencephalon.

  4. Age-Related Changes in the Expression of the Circadian Clock Protein PERIOD in Drosophila Glial Cells

    PubMed Central

    Long, Dani M.; Giebultowicz, Jadwiga M.

    2018-01-01

    Circadian clocks consist of molecular negative feedback loops that coordinate physiological, neurological, and behavioral variables into “circa” 24-h rhythms. Rhythms in behavioral and other circadian outputs tend to weaken during aging, as evident in progressive disruptions of sleep-wake cycles in aging organisms. However, less is known about the molecular changes in the expression of clock genes and proteins that may lead to the weakening of circadian outputs. Western blot studies have demonstrated that the expression of the core clock protein PERIOD (PER) declines in the heads of aged Drosophila melanogaster flies. This age-related decline in PER does not occur in the central pacemaker neurons but has been demonstrated so far in retinal photoreceptors. Besides photoreceptors, clock proteins are also expressed in fly glia, which play important roles in neuronal homeostasis and are further categorized into subtypes based on morphology and function. While previous studies of mammalian glial cells have demonstrated the presence of functional clocks in astrocytes and microglia, it is not known which glial cell types in Drosophila express clock proteins and how their expression may change in aged individuals. Here, we conducted immunocytochemistry experiments to identify which glial subtypes express PER protein suggestive of functional circadian clocks. Glial cell subtypes that showed night-time accumulation and day-time absence in PER consistent with oscillations reported in the pacemaker neurons were selected to compare the level of PER protein between young and old flies. Our data demonstrate that some glial subtypes show rhythmic PER expression and the relative PER levels become dampened with advanced age. Identification of glial cell types that display age-related dampening of PER levels may help to understand the cellular changes that contribute to the loss of homeostasis in the aging brain. PMID:29375400

  5. Light-dark cycle memory in the mammalian suprachiasmatic nucleus.

    PubMed

    Ospeck, Mark C; Coffey, Ben; Freeman, Dave

    2009-09-16

    The mammalian circadian oscillator, or suprachiasmatic nucleus (SCN), contains several thousand clock neurons in its ventrolateral division, many of which are spontaneous oscillators with period lengths that range from 22 to 28 h. In complete darkness, this network synchronizes through the exchange of action potentials that release vasoactive intestinal polypeptide, striking a compromise, free-running period close to 24 h long. We entrained Siberian hamsters to various light-dark cycles and then tracked their activity into constant darkness to show that they retain a memory of the previous light-dark cycle before returning to their own free-running period. Employing Leloup-Goldbeter mammalian clock neurons we model the ventrolateral SCN network and show that light acting weakly upon a strongly rhythmic vasoactive intestinal polypeptide oscillation can explain the observed light-dark cycle memory. In addition, light is known to initiate a mitogen-activated protein kinase signaling cascade that induces transcription of both per and mkp1 phosphatase. We show that the ensuing phosphatase-kinase interaction can account for the dead zone in the mammalian phase response curve and hypothesize that the SCN behaves like a lock-in amplifier to entrain to the light edges of the circadian day.

  6. Cycle affects imidacloprid efficiency by mediating cytochrome P450 expression in the brown planthopper Nilaparvata lugens.

    PubMed

    Kang, K; Yang, P; Pang, R; Yue, L; Zhang, W

    2017-10-01

    Circadian clocks influence most behaviours and physiological activities in animals, including daily fluctuations in metabolism. However, how the clock gene cycle influences insects' responses to pesticides has rarely been reported. Here, we provide evidence that cycle affects imidacloprid efficacy by mediating the expression of cytochrome P450 genes in the brown planthopper (BPH) Nilaparvata lugens, a serious insect pest of rice. Survival bioassays showed that the susceptibility of BPH adults to imidacloprid differed significantly between the two time points tested [Zeitgeber Time 8 (ZT8) and ZT4]. After cloning the cycle gene in the BPH (Nlcycle), we found that Nlcycle was expressed at higher levels in the fat body and midgut, and its expression was rhythmic with two peaks. Knockdown of Nlcycle affected the expression levels and rhythms of cytochrome P450 genes as well as susceptibility to imidacloprid. The survival rates of BPH adults after treatment with imidacloprid did not significantly differ between ZT4 and ZT8 after double-stranded Nlcycle treatment. These findings can be used to improve pesticide use and increase pesticide efficiency in the field. © 2017 The Royal Entomological Society.

  7. Temporal Ordering of Dynamic Expression Data from Detailed Spatial Expression Maps.

    PubMed

    Bailey, Charlotte S L; Bone, Robert A; Murray, Philip J; Dale, J Kim

    2017-02-09

    During somitogenesis, pairs of epithelial somites form in a progressive manner, budding off from the anterior end of the pre-somitic mesoderm (PSM) with a strict species-specific periodicity. The periodicity of the process is regulated by a molecular oscillator, known as the "segmentation clock," acting in the PSM cells. This clock drives the oscillatory patterns of gene expression across the PSM in a posterior-anterior direction. These so-called clock genes are key components of three signaling pathways: Wnt, Notch, and fibroblast growth factor (FGF). In addition, Notch signaling is essential for synchronizing intracellular oscillations in neighboring cells. We recently gained insight into how this may be mechanistically regulated. Upon ligand activation, the Notch receptor is cleaved, releasing the intracellular domain (NICD), which moves to the nucleus and regulates gene expression. NICD is highly labile, and its phosphorylation-dependent turnover acts to restrict Notch signaling. The profile of NICD production (and degradation) in the PSM is known to be oscillatory and to resemble that of a clock gene. We recently reported that both the Notch receptor and the Delta ligand, which mediate intercellular coupling, themselves exhibit dynamic expression at both the mRNA and protein levels. In this article, we describe the sensitive detection methods and detailed image analysis tools that we used, in combination with the computational modeling that we designed, to extract and overlay expression data from distinct points in the expression cycle. This allowed us to construct a spatio-temporal picture of the dynamic expression profile for the receptor, the ligand, and the Notch target clock genes throughout an oscillation cycle. Here, we describe the protocols used to generate and culture the PSM explants, as well as the procedure to stain for the mRNA or protein. We also explain how the confocal images were subsequently analyzed and temporally ordered computationally to generate ordered sequences of clock expression snapshots, hereafter defined as "kymographs," for the visualization of the spatiotemporal expression of Delta-like1 (Dll1) and Notch1 throughout the PSM.

  8. Simultaneous 10 Gbps data and polarization-based pulse-per-second clock transmission using a single VCSEL for high-speed optical fibre access networks

    NASA Astrophysics Data System (ADS)

    Isoe, G. M.; Wassin, S.; Gamatham, R. R. G.; Leitch, A. W. R.; Gibbon, T. B.

    2017-01-01

    Access networks based on vertical cavity surface emitting laser (VCSEL) transmitters offer alternative solution in delivering different high bandwidth, cost effective services to the customer premises. Clock and reference frequency distribution is critical for applications such as Coordinated Universal Time (UTC), GPS, banking and big data science projects. Simultaneous distribution of both data and timing signals over shared infrastructure is thus desirable. In this paper, we propose and experimentally demonstrate a novel, cost-effective technique for multi-signal modulation on a single VCSEL transmitter. Two signal types, an intensity modulated 10 Gbps data signal and a polarization-based pulse per second (PPS) clock signal are directly modulated onto a single VCSEL carrier at 1310 nm. Spectral efficiency is maximized by exploiting inherent orthogonal polarization switching of the VCSEL with changing bias in transmission of the PPS signal. A 10 Gbps VCSEL transmission with PPS over 11 km of G.652 fibre introduced a transmission penalty of 0.52 dB. The contribution of PPS to this penalty was found to be 0.08 dB.

  9. Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comandar, L. C.; Engineering Department, Cambridge University, 9 J J Thomson Ave, Cambridge CB3 0FA; Fröhlich, B.

    We report on a gated single-photon detector based on InGaAs/InP avalanche photodiodes (APDs) with a single-photon detection efficiency exceeding 55% at 1550 nm. Our detector is gated at 1 GHz and employs the self-differencing technique for gate transient suppression. It can operate nearly dead time free, except for the one clock cycle dead time intrinsic to self-differencing, and we demonstrate a count rate of 500 Mcps. We present a careful analysis of the optimal driving conditions of the APD measured with a dead time free detector characterization setup. It is found that a shortened gate width of 360 ps together with anmore » increased driving signal amplitude and operation at higher temperatures leads to improved performance of the detector. We achieve an afterpulse probability of 7% at 50% detection efficiency with dead time free measurement and a record efficiency for InGaAs/InP APDs of 55% at an afterpulse probability of only 10.2% with a moderate dead time of 10 ns.« less

  10. Transcriptome dynamics over a lunar month in a broadcast spawning acroporid coral.

    PubMed

    Oldach, Matthew J; Workentine, Matthew; Matz, Mikhail V; Fan, Tung-Yung; Vize, Peter D

    2017-05-01

    On one night per year, at a specific point in the lunar cycle, one of the most extraordinary reproductive events on the planet unfolds as hundreds of millions of broadcast spawning corals release their trillions of gametes into the waters of the tropical seas. Each species spawns on a specific night within the lunar cycle, typically from full moon to third quarter moon, and in a specific time window after sunset. This accuracy is essential to achieve efficient fertilization in the vastness of the oceans. In this report, we use transcriptome sequencing at noon and midnight across an entire lunar cycle to explore how acroporid corals interpret lunar signals. The data were interrogated by both time-of-day-dependent and time-of-day-independent methods to identify different types of lunar cycles. Time-of-day methods found that genes associated with biological clocks and circadian processes change their diurnal cycles over the course of a synodic lunar cycle. Some genes have large differences between day and night at some lunar phases, but little or no diurnal differences at other phases. Many clock genes display an oscillation pattern indicative of phase shifts linked to the lunar cycle. Time-independent methods found that signal transduction, protein secretion and modification, cell cycle and ion transport change over the lunar timescale and peak at various phases of the moon. Together these data provide unique insights into how the moon impinges on coral transcription cycles and how lunar light may regulate circalunar timing systems and coral biology. © 2017 John Wiley & Sons Ltd.

  11. Teen Sleep: Why Is Your Teen So Tired?

    MedlinePlus

    ... Everyone has an internal clock that influences body temperature, sleep cycles, appetite and hormonal changes. The biological ... factors such as part-time jobs, early-morning classes, homework, extracurricular activities, social demands, and use of ...

  12. Accelerated re-entrainment to advanced light cycles in BALB/cJ mice.

    PubMed

    Legates, Tara A; Dunn, Danielle; Weber, E Todd

    2009-10-19

    Circadian rhythms in mammals are coordinated by the suprachiasmatic nuclei (SCN) of the hypothalamus, which are most potently synchronized to environmental light-dark cycles. Large advances in the light-dark cycle typically yield gradual advances in activity rhythms on the order of 1-2h per day until re-entrainment is complete due to limitations on the circadian system which are not yet understood. In humans, this delay until re-entrainment is accomplished is experienced as jetlag, with accompanying symptoms of malaise, decreased cognitive performance, sleep problems and gastrointestinal distress. In these experiments, locomotor rhythms of BALB/cJ mice monitored by running wheels were shown to re-entrain to large 6- or 8-hour shifts of the light-dark cycle within 1-2 days, as opposed to the 5-7 days required for C57BL/6J mice. A single-day 6-hour advance of the LD cycle followed by release to constant darkness yielded similar phase shifts, demonstrating that exaggerated re-entrainment is not explained by masking of activity by the light-dark cycle. Responses in BALB/cJ mice were similar when monitored instead by motion detectors, indicating that wheel-running exercise does not influence the magnitude of responses. Neither brief (15 min) light exposure late during subjective nighttime nor 6-hour delays of the light-dark cycle produced exaggerated locomotor phase shifts, indicating that BALB/cJ mice do not merely experience enhanced sensitivity to light. Fos protein was expressed in cells of the SCN following acute light exposure at ZT10 of their previous light-dark cycle, a normally non-responsive time in the circadian cycle, but only in BALB/cJ (and not C57BL/6J) mice that had been subjected two days earlier to a single-day 6-hour advance of the light-dark cycle, indicating that their SCN had been advanced by that treatment. BALB/cJ mice may thus serve as a useful comparative model for studying molecular and physiological processes that limit responsiveness of circadian clocks to photic input.

  13. Digital-data receiver synchronization

    DOEpatents

    Smith, Stephen F.; Turner, Gary W.

    2005-08-02

    Digital-data receiver synchronization is provided with composite phase-frequency detectors, mutually cross-connected comparison feedback or both to provide robust reception of digital data signals. A single master clock can be used to provide frequency signals. Advantages can include fast lock-up time in moderately to severely noisy conditions, greater tolerance to noise and jitter when locked, and improved tolerance to clock asymmetries.

  14. Digital-data receiver synchronization method and apparatus

    DOEpatents

    Smith, Stephen F.; Turner, Gary W.

    2005-12-06

    Digital-data receiver synchronization is provided with composite phase-frequency detectors, mutually cross-connected comparison feedback or both to provide robust reception of digital data signals. A single master clock may be used to provide frequency signals. Advantages can include fast lock-up time in moderately to severely noisy conditions, greater tolerance to noise and jitter when locked, and improved tolerance to clock asymmetries.

  15. Digital-data receiver synchronization method and apparatus

    DOEpatents

    Smith, Stephen F [Loudon, TN; Turner, Gary W [Clinton, TN

    2009-09-08

    Digital data receiver synchronization is provided with composite phase-frequency detectors, mutually cross-connected comparison feedback or both to provide robust reception of digital data signals. A single master clock can be used to provide frequency signals. Advantages can include fast lock-up time in moderately to severely noisy conditions, greater tolerance to noise and jitter when locked, and improved tolerance to clock asymmetries.

  16. Strong resetting of the mammalian clock by constant light followed by constant darkness

    PubMed Central

    Chen, Rongmin; Seo, Dong-oh; Bell, Elijah; von Gall, Charlotte; Lee, Choogon

    2008-01-01

    The mammalian molecular circadian clock in the suprachiasmatic nuclei (SCN) regulates locomotor activity rhythms as well as clocks in peripheral tissues (Reppert and Weaver, 2002; Ko and Takahashi, 2006). Constant light (LL) can induce behavioral and physiological arrhythmicity, by desynchronizing clock cells in the SCN (Ohta et al., 2005). We examined how the disordered clock cells resynchronize by probing the molecular clock and measuring behavior in mice transferred from LL to constant darkness (DD). The circadian locomotor activity rhythms disrupted in LL become robustly rhythmic again from the beginning of DD, and the starting phase of the rhythm in DD is specific, not random, suggesting that the desynchronized clock cells are quickly reset in an unconventional manner by the L:D transition. By measuring mPERIOD protein rhythms, we showed that the SCN and peripheral tissue clocks quickly become rhythmic again in phase with the behavioral rhythms. We propose that this resetting mechanism may be different from conventional phase shifting, which involves light-induction of Period genes (Albrecht et al., 1997; Shearman et al., 1997; Shigeyoshi et al., 1997). Using our functional insights, we could shift the circadian phase of locomotor activity rhythms by 12 hours using a 15-hour LL treatment: essentially producing phase reversal by a single light pulse, a feat that has not been reported previously in wild-type mice and that has potential clinical utility. PMID:19005049

  17. Enhanced extinction of contextual fear conditioning in ClockΔ19 mutant mice.

    PubMed

    Bernardi, Rick E; Spanagel, Rainer

    2014-08-01

    Clock genes have been implicated in several disorders, such as schizophrenia, bipolar disorder, autism spectrum disorders, and drug dependence. However, few studies to date have examined the role of clock genes in fear-related behaviors. The authors used mice with the ClockΔ19 mutation to assess the involvement of this gene in contextual fear conditioning. Male wild-type (WT) and ClockΔ19 mutant mice underwent a single session of contextual fear conditioning (12 min, 4 unsignaled shocks), followed by daily 12-min retention trials. There were no differences between mutant and WT mice in the acquisition of contextual fear, and WT and mutant mice demonstrated similar freezing during the first retention session. However, extinction of contextual fear was accelerated in mutant mice across the remaining retention sessions, as compared to WT mice, suggesting a role for Clock in extinction following aversive learning. Because the ClockΔ19 mutation has previously been demonstrated to result in an increase in dopamine signaling, the authors confirmed the role of dopamine in extinction learning using preretention session administration of a low dose of the dopamine transport reuptake inhibitor modafinil (0.75 mg/kg), which resulted in decreased freezing across retention sessions. These findings are consistent with an emerging portrayal of the importance of Clock genes in noncircadian functions, as well as the important role of dopamine in extinction learning.

  18. Atom Interferometry with the Sr Optical Clock Transition.

    PubMed

    Hu, Liang; Poli, Nicola; Salvi, Leonardo; Tino, Guglielmo M

    2017-12-29

    We report on the realization of a matter-wave interferometer based on single-photon interaction on the ultranarrow optical clock transition of strontium atoms. We experimentally demonstrate its operation as a gravimeter and as a gravity gradiometer. No reduction of interferometric contrast was observed for a total interferometer time up to ∼10  ms, limited by geometric constraints of the apparatus. Single-photon interferometers represent a new class of high-precision sensors that could be used for the detection of gravitational waves in so far unexplored frequency ranges and to enlighten the boundary between quantum mechanics and general relativity.

  19. Soft theorems for shift-symmetric cosmologies

    NASA Astrophysics Data System (ADS)

    Finelli, Bernardo; Goon, Garrett; Pajer, Enrico; Santoni, Luca

    2018-03-01

    We derive soft theorems for single-clock cosmologies that enjoy a shift symmetry. These so-called consistency conditions arise from a combination of a large diffeomorphism and the internal shift symmetry and fix the squeezed limit of all correlators with a soft scalar mode. As an application, we show that our results reproduce the squeezed bispectrum for ultra-slow-roll inflation, a particular shift-symmetric, nonattractor model which is known to violate Maldacena's consistency relation. Similar results have been previously obtained by Mooij and Palma using background-wave methods. Our results shed new light on the infrared structure of single-clock cosmological spacetimes.

  20. Does exercise training impact clock genes in patients with coronary artery disease and type 2 diabetes mellitus?

    PubMed

    Steidle-Kloc, Eva; Schönfelder, Martin; Müller, Edith; Sixt, Sebastian; Schuler, Gerhard; Patsch, Wolfgang; Niebauer, Josef

    2016-09-01

    Recent findings revealed negative effects of deregulated molecular circadian rhythm in coronary artery disease (CAD) and type 2 diabetes mellitus (T2DM). Physical exercise training (ET) has been shown to promote anti-diabetic and anti-atherogenic responses in skeletal muscle of these patients, but the role of the circadian clock-machinery remains unknown. This study investigated whether mRNA expression of clock genes in skeletal muscle of CAD and T2DM patients is influenced by physical ET intervention. Nineteen patients with CAD and T2DM (age 64 ± 5 years) were randomised to either six months of ET (four weeks of in-hospital ET followed by a five-month ambulatory programme) or usual care. At the beginning of the study, after four weeks and after six months parameters of metabolic and cardiovascular risk factors, and physical exercise capacity were assessed. Gene expression was measured in skeletal muscle biopsies by quantitative real-time polymerase chain reaction (PCR). A selection of clock genes and associated components (circadian locomoter output cycle kaput protein (CLOCK), period (PER) 1, cryptochrome (CRY) 2 and aminolevulinate-deltA-synthase-1 (ALAS1)) was reliably measured and used for further analysis. A time-dependent effect in gene expression was observed in CLOCK (p = 0.013) and a significant interaction between time and intervention was observed for ALAS1 (p = 0.032; p = 0.014) as a result of ET. This is the first study to analyse clock gene expression in skeletal muscles of patients with CAD and T2DM participating in a long-lasting exercise intervention. ET, as one of the cornerstones in prevention and rehabilitation of CAD and T2DM, exerts no effects on CLOCK genes but meaningful effects on the clock-associated gene ALAS1. © The European Society of Cardiology 2016.

  1. Circadian Rhythms in Diet-Induced Obesity.

    PubMed

    Engin, Atilla

    2017-01-01

    The biological clocks of the circadian timing system coordinate cellular and physiological processes and synchronizes these with daily cycles, feeding patterns also regulates circadian clocks. The clock genes and adipocytokines show circadian rhythmicity. Dysfunction of these genes are involved in the alteration of these adipokines during the development of obesity. Food availability promotes the stimuli associated with food intake which is a circadian oscillator outside of the suprachiasmatic nucleus (SCN). Its circadian rhythm is arranged with the predictable daily mealtimes. Food anticipatory activity is mediated by a self-sustained circadian timing and its principal component is food entrained oscillator. However, the hypothalamus has a crucial role in the regulation of energy balance rather than food intake. Fatty acids or their metabolites can modulate neuronal activity by brain nutrient-sensing neurons involved in the regulation of energy and glucose homeostasis. The timing of three-meal schedules indicates close association with the plasma levels of insulin and preceding food availability. Desynchronization between the central and peripheral clocks by altered timing of food intake and diet composition can lead to uncoupling of peripheral clocks from the central pacemaker and to the development of metabolic disorders. Metabolic dysfunction is associated with circadian disturbances at both central and peripheral levels and, eventual disruption of circadian clock functioning can lead to obesity. While CLOCK expression levels are increased with high fat diet-induced obesity, peroxisome proliferator-activated receptor (PPAR) alpha increases the transcriptional level of brain and muscle ARNT-like 1 (BMAL1) in obese subjects. Consequently, disruption of clock genes results in dyslipidemia, insulin resistance and obesity. Modifying the time of feeding alone can greatly affect body weight. Changes in the circadian clock are associated with temporal alterations in feeding behavior and increased weight gain. Thus, shift work is associated with increased risk for obesity, diabetes and cardio-vascular diseases as a result of unusual eating time and disruption of circadian rhythm.

  2. Influence of night-shift and napping at work on urinary melatonin, 17-β-estradiol and clock gene expression in pre-menopausal nurses.

    PubMed

    Bracci, M; Copertaro, A; Manzella, N; Staffolani, S; Strafella, E; Nocchi, L; Barbaresi, M; Copertaro, B; Rapisarda, V; Valentino, M; Santarelli, L

    2013-01-01

    Night-workers experience disruption of the sleep-wake cycle and light at night which may increase breast cancer risk by suppressing the nocturnal melatonin surge, resulting in higher levels of circulating estrogens. Night-work may also deregulate peripheral clock genes which have been found to be altered in breast cancer. This study investigated urinary 6-sulfatoxymelatonin (aMT6s), serum 17-beta-estradiol levels in premenopausal shift nurses at the end of the night-shift compared to a control group of daytime nurses. Peripheral clock gene expression in lymphocytes were also investigated. All participants were sampled in the follicular phase of the menstrual cycle. The effect of nurses’ ability to take a short nap during the night-shift was also explored. The shift-work group had significantly lower aMT6s levels than daytime nurses independently of a nap. Night-shift napping significantly influences 17-beta-estradiol levels resulting in higher outcomes in nurses who do not take a nap compared to napping group and daytime workers. Peripheral clock genes expression investigated was not significantly different among the groups. Our findings suggest that shift nurses experience changes in aMT6s levels after a night-shift. Napping habits influence 17-beta-estradiol levels at the end of a night-shift. These findings might be related to the increased cancer risk reported in night-shift workers and suggest that a short nap during night-shifts may exert a positive effect.

  3. Photic Resetting and Entrainment in CLOCK-Deficient Mice

    PubMed Central

    Dallmann, Robert; DeBruyne, Jason P.; Weaver, David R.

    2012-01-01

    Mice lacking CLOCK protein have a relatively subtle circadian phenotype, including a slightly shorter period in constant darkness, differences in phase resetting after 4-hr light pulses in the early and late night, and a variably advanced phase angle of entrainment in a light-dark (LD) cycle (DeBruyne et al., Neuron 50:465–477, 2006). The present series of experiments was conducted to more fully characterize the circadian phenotype of Clock−/− mice under various lighting conditions. A phase-response curve (PRC) to 4-hour light pulses in free-running mice was conducted; the results confirm that Clock−/− mice exhibit very large phase advances after 4 hrs light pulses in the late subjective night, but have relatively normal responses to light at other phases. The abnormal shape of the PRC to light may explain the tendency of CLOCK-deficient mice to begin activity before lights-out when housed in a 12 hrs light: 12 hrs dark lighting schedule. To assess this relationship further, Clock−/− and wild-type control mice were entrained to skeleton lighting cycles (1L:23D, and 1L:10D:1L:12D). Comparing entrainment under the two types of skeleton photoperiods revealed that exposure to 1 hr light in the morning leads to a phase advance of activity onset (expressed the following afternoon) in Clock−/− mice, but not in the controls. Constant light typically causes an intensity-dependent increase in circadian period in mice, but this did not occur in CLOCK-deficient mice. The failure of Clock−/− mice to respond to the period-lengthening effect of constant light likely results from the increased functional impact of light falling in the phase advance zone of the PRC. Collectively, these experiments reveal that alterations in the response of CLOCK-deficient mice to light in several paradigms are likely due to an imbalance in the shape of the PRC to light. PMID:21921293

  4. Biochemical basis for the biological clock

    NASA Technical Reports Server (NTRS)

    Morre, D. James; Chueh, Pin-Ju; Pletcher, Jake; Tang, Xiaoyu; Wu, Lian-Ying; Morre, Dorothy M.

    2002-01-01

    NADH oxidases at the external surface of plant and animal cells (ECTO-NOX proteins) exhibit stable and recurring patterns of oscillations with potentially clock-related, entrainable, and temperature-compensated period lengths of 24 min. To determine if ECTO-NOX proteins might represent the ultradian time keepers (pacemakers) of the biological clock, COS cells were transfected with cDNAs encoding tNOX proteins having a period length of 22 min or with C575A or C558A cysteine to alanine replacements having period lengths of 36 or 42 min. Here we demonstrate that such transfectants exhibited 22, 36, or 40 to 42 h circadian patterns in the activity of glyceraldehyde-3-phosphate dehydrogenase, a common clock-regulated protein, in addition to the endogenous 24 h circadian period length. The fact that the expression of a single oscillatory ECTO-NOX protein determines the period length of a circadian biochemical marker (60 X the ECTO-NOX period length) provides compelling evidence that ECTO-NOX proteins are the biochemical ultradian drivers of the cellular biological clock.

  5. Circadian expression of clock and putative clock-controlled genes in skeletal muscle of the zebrafish.

    PubMed

    Amaral, Ian P G; Johnston, Ian A

    2012-01-01

    To identify circadian patterns of gene expression in skeletal muscle, adult male zebrafish were acclimated for 2 wk to a 12:12-h light-dark photoperiod and then exposed to continuous darkness for 86 h with ad libitum feeding. The increase in gut food content associated with the subjective light period was much diminished by the third cycle, enabling feeding and circadian rhythms to be distinguished. Expression of zebrafish paralogs of mammalian transcriptional activators of the circadian mechanism (bmal1, clock1, and rora) followed a rhythmic pattern with a ∼24-h periodicity. Peak expression of rora paralogs occurred at the beginning of the subjective light period [Zeitgeber time (ZT)07 and ZT02 for roraa and rorab], whereas the highest expression of bmal1 and clock paralogs occurred 12 h later (ZT13-15 and ZT16 for bmal and clock paralogs). Expression of the transcriptional repressors cry1a, per1a/1b, per2, per3, nr1d2a/2b, and nr1d1 also followed a circadian pattern with peak expression at ZT0-02. Expression of the two paralogs of cry2 occurred in phase with clock1a/1b. Duplicated genes had a high correlation of expression except for paralogs of clock1, nr1d2, and per1, with cry1b showing no circadian pattern. The highest expression difference was 9.2-fold for the activator bmal1b and 51.7-fold for the repressor per1a. Out of 32 candidate clock-controlled genes, only myf6, igfbp3, igfbp5b, and hsf2 showed circadian expression patterns. Igfbp3, igfbp5b, and myf6 were expressed in phase with clock1a/1b and had an average of twofold change in expression from peak to trough, whereas hsf2 transcripts were expressed in phase with cry1a and had a 7.2-fold-change in expression. The changes in expression of clock and clock-controlled genes observed during continuous darkness were also observed at similar ZTs in fish exposed to a normal photoperiod in a separate control experiment. The role of circadian clocks in regulating muscle maintenance and growth are discussed.

  6. Device for modular input high-speed multi-channel digitizing of electrical data

    DOEpatents

    VanDeusen, A.L.; Crist, C.E.

    1995-09-26

    A multi-channel high-speed digitizer module converts a plurality of analog signals to digital signals (digitizing) and stores the signals in a memory device. The analog input channels are digitized simultaneously at high speed with a relatively large number of on-board memory data points per channel. The module provides an automated calibration based upon a single voltage reference source. Low signal noise at such a high density and sample rate is accomplished by ensuring the A/D converters are clocked at the same point in the noise cycle each time so that synchronous noise sampling occurs. This sampling process, in conjunction with an automated calibration, yields signal noise levels well below the noise level present on the analog reference voltages. 1 fig.

  7. Short-term stability improvements of an optical frequency standard based on free Ca atoms

    NASA Astrophysics Data System (ADS)

    Sherman, Jeff; Oates, Chris

    2010-03-01

    Compared to optical frequency standards featuring trapped ions or atoms in optical lattices, the strength of a standard using freely expanding neutral calcium atoms is not ultimate accuracy but rather short-term stability and experimental simplicity. Recently, a fractional frequency instability of 4 x10-15 at 1 second was demonstrated for the Ca standard at 657 nm [1]. The short cycle time (˜2 ms) combined with only a moderate interrogation duty cycle (˜15 %) is thought to introduce excess, and potentially critically limiting technical noise due to the Dick effect---high-frequency noise on the laser oscillator is not averaged away but is instead down-sampled by aliasing. We will present results of two strategies employed to minimize this effect: the reduction of clock laser noise by filtering the master clock oscillator through a high-finesse optical cavity [2], and an optimization of the interrogation cycle to match our laser's noise spectrum.[4pt] [1] Oates et al., Optics Letters, 25(21), 1603--5 (2000)[0pt] [2] Nazarova et al., J. Opt. Soc. Am. B, 5(10), 1632--8 (2008)

  8. Body Temperature Cycles Control Rhythmic Alternative Splicing in Mammals.

    PubMed

    Preußner, Marco; Goldammer, Gesine; Neumann, Alexander; Haltenhof, Tom; Rautenstrauch, Pia; Müller-McNicoll, Michaela; Heyd, Florian

    2017-08-03

    The core body temperature of all mammals oscillates with the time of the day. However, direct molecular consequences of small, physiological changes in body temperature remain largely elusive. Here we show that body temperature cycles drive rhythmic SR protein phosphorylation to control an alternative splicing (AS) program. A temperature change of 1°C is sufficient to induce a concerted splicing switch in a large group of functionally related genes, rendering this splicing-based thermometer much more sensitive than previously described temperature-sensing mechanisms. AS of two exons in the 5' UTR of the TATA-box binding protein (Tbp) highlights the general impact of this mechanism, as it results in rhythmic TBP protein levels with implications for global gene expression in vivo. Together our data establish body temperature-driven AS as a core clock-independent oscillator in mammalian peripheral clocks. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. The peripheral clock regulates human pigmentation.

    PubMed

    Hardman, Jonathan A; Tobin, Desmond J; Haslam, Iain S; Farjo, Nilofer; Farjo, Bessam; Al-Nuaimi, Yusur; Grimaldi, Benedetto; Paus, Ralf

    2015-04-01

    Although the regulation of pigmentation is well characterized, it remains unclear whether cell-autonomous controls regulate the cyclic on-off switching of pigmentation in the hair follicle (HF). As human HFs and epidermal melanocytes express clock genes and proteins, and given that core clock genes (PER1, BMAL1) modulate human HF cycling, we investigated whether peripheral clock activity influences human HF pigmentation. We found that silencing BMAL1 or PER1 in human HFs increased HF melanin content. Furthermore, tyrosinase expression and activity, as well as TYRP1 and TYRP2 mRNA levels, gp100 protein expression, melanocyte dendricity, and the number gp100+ HF melanocytes, were all significantly increased in BMAL1 and/or PER1-silenced HFs. BMAL1 or PER1 silencing also increased epidermal melanin content, gp100 protein expression, and tyrosinase activity in human skin. These effects reflect direct modulation of melanocytes, as BMAL1 and/or PER1 silencing in isolated melanocytes increased tyrosinase activity and TYRP1/2 expression. Mechanistically, BMAL1 knockdown reduces PER1 transcription, and PER1 silencing induces phosphorylation of the master regulator of melanogenesis, microphthalmia-associated transcription factor, thus stimulating human melanogenesis and melanocyte activity in situ and in vitro. Therefore, the molecular clock operates as a cell-autonomous modulator of human pigmentation and may be targeted for future therapeutic strategies.

  10. The Arabidopsis SRR1 gene mediates phyB signaling and is required for normal circadian clock function

    PubMed Central

    Staiger, Dorothee; Allenbach, Laure; Salathia, Neeraj; Fiechter, Vincent; Davis, Seth J.; Millar, Andrew J.; Chory, Joanne; Fankhauser, Christian

    2003-01-01

    Plants possess several photoreceptors to sense the light environment. In Arabidopsis cryptochromes and phytochromes play roles in photomorphogenesis and in the light input pathways that synchronize the circadian clock with the external world. We have identified SRR1 (sensitivity to red light reduced), a gene that plays an important role in phytochrome B (phyB)-mediated light signaling. The recessive srr1 null allele and phyB mutants display a number of similar phenotypes indicating that SRR1 is required for normal phyB signaling. Genetic analysis suggests that SRR1 works both in the phyB pathway but also independently of phyB. srr1 mutants are affected in multiple outputs of the circadian clock in continuous light conditions, including leaf movement and expression of the clock components, CCA1 and TOC1. Clock-regulated gene expression is also impaired during day–night cycles and in constant darkness. The circadian phenotypes of srr1 mutants in all three conditions suggest that SRR1 activity is required for normal oscillator function. The SRR1 gene was identified and shown to code for a protein conserved in numerous eukaryotes including mammals and flies, implicating a conserved role for this protein in both the animal and plant kingdoms. PMID:12533513

  11. A sense of time: how molecular clocks organize metabolism.

    PubMed

    Kohsaka, Akira; Bass, Joseph

    2007-01-01

    The discovery of an internal temporal clockwork that coordinates behavior and metabolism according to the rising and setting of the sun was first revealed in flies and plants. However, in the past decade, a molecular transcription-translation feedback loop with similar properties has also been identified in mammals. In mammals, this transcriptional oscillator programs 24-hour cycles in sleep, activity and feeding within the master pacemaker neurons of the suprachiasmatic nucleus of the hypothalamus. More recent studies have shown that the core transcription mechanism is also present in other locations within the brain, in addition to many peripheral tissues. Processes ranging from glucose transport to gluconeogenesis, lipolysis, adipogenesis and mitochondrial oxidative phosphorylation are controlled through overlapping transcription networks that are tied to the clock and are thus time sensitive. Because disruption of tissue timing occurs when food intake, activity and sleep are altered, understanding how these many tissue clocks are synchronized to tick at the same time each day, and determining how each tissue 'senses time' set by these molecular clocks might open new insight into human disease, including disorders of sleep, circadian disruption, diabetes and obesity.

  12. Post-transcriptional control of the mammalian circadian clock: implications for health and disease.

    PubMed

    Preußner, Marco; Heyd, Florian

    2016-06-01

    Many aspects of human physiology and behavior display rhythmicity with a period of approximately 24 h. Rhythmic changes are controlled by an endogenous time keeper, the circadian clock, and include sleep-wake cycles, physical and mental performance capability, blood pressure, and body temperature. Consequently, many diseases, such as metabolic, sleep, autoimmune and mental disorders and cancer, are connected to the circadian rhythm. The development of therapies that take circadian biology into account is thus a promising strategy to improve treatments of diverse disorders, ranging from allergic syndromes to cancer. Circadian alteration of body functions and behavior are, at the molecular level, controlled and mediated by widespread changes in gene expression that happen in anticipation of predictably changing requirements during the day. At the core of the molecular clockwork is a well-studied transcription-translation negative feedback loop. However, evidence is emerging that additional post-transcriptional, RNA-based mechanisms are required to maintain proper clock function. Here, we will discuss recent work implicating regulated mRNA stability, translation and alternative splicing in the control of the mammalian circadian clock, and its role in health and disease.

  13. Multiple layers of posttranslational regulation refine circadian clock activity in Arabidopsis.

    PubMed

    Seo, Pil Joon; Mas, Paloma

    2014-01-01

    The circadian clock is a cellular time-keeper mechanism that regulates biological rhythms with a period of ~24 h. The circadian rhythms in metabolism, physiology, and development are synchronized by environmental cues such as light and temperature. In plants, proper matching of the internal circadian time with the external environment confers fitness advantages on plant survival and propagation. Accordingly, plants have evolved elaborated regulatory mechanisms that precisely control the circadian oscillations. Transcriptional feedback regulation of several clock components has been well characterized over the past years. However, the importance of additional regulatory mechanisms such as chromatin remodeling, protein complexes, protein phosphorylation, and stability is only starting to emerge. The multiple layers of circadian regulation enable plants to properly synchronize with the environmental cycles and to fine-tune the circadian oscillations. This review focuses on the diverse posttranslational events that regulate circadian clock function. We discuss the mechanistic insights explaining how plants articulate a high degree of complexity in their regulatory networks to maintain circadian homeostasis and to generate highly precise waveforms of circadian expression and activity.

  14. Circadian clocks, rhythmic synaptic plasticity and the sleep-wake cycle in zebrafish.

    PubMed

    Elbaz, Idan; Foulkes, Nicholas S; Gothilf, Yoav; Appelbaum, Lior

    2013-01-01

    The circadian clock and homeostatic processes are fundamental mechanisms that regulate sleep. Surprisingly, despite decades of research, we still do not know why we sleep. Intriguing hypotheses suggest that sleep regulates synaptic plasticity and consequently has a beneficial role in learning and memory. However, direct evidence is still limited and the molecular regulatory mechanisms remain unclear. The zebrafish provides a powerful vertebrate model system that enables simple genetic manipulation, imaging of neuronal circuits and synapses in living animals, and the monitoring of behavioral performance during day and night. Thus, the zebrafish has become an attractive model to study circadian and homeostatic processes that regulate sleep. Zebrafish clock- and sleep-related genes have been cloned, neuronal circuits that exhibit circadian rhythms of activity and synaptic plasticity have been studied, and rhythmic behavioral outputs have been characterized. Integration of this data could lead to a better understanding of sleep regulation. Here, we review the progress of circadian clock and sleep studies in zebrafish with special emphasis on the genetic and neuroendocrine mechanisms that regulate rhythms of melatonin secretion, structural synaptic plasticity, locomotor activity and sleep.

  15. Loss of circadian clock accelerates aging in neurodegeneration-prone mutants

    PubMed Central

    Krishnan, Natraj; Rakshit, Kuntol; Chow, Eileen S.; Wentzell, Jill S.; Kretzschmar, Doris; Giebultowicz, Jadwiga M.

    2012-01-01

    Circadian clocks generate rhythms in molecular, cellular, physiological, and behavioral processes. Recent studies suggest that disruption of the clock mechanism accelerates organismal senescence and age-related pathologies in mammals. Impaired circadian rhythms are observed in many neurological diseases; however, it is not clear whether loss of rhythms is the cause or result of neurodegeneration, or both. To address this important question, we examined the effects of circadian disruption in Drosophila melanogaster mutants that display clock-unrelated neurodegenerative phenotypes. We combined a null mutation in the clock gene period (per01) that abolishes circadian rhythms, with a hypomorphic mutation in the carbonyl reductase gene sniffer (sni1), which displays oxidative stress induced neurodegeneration. We report that disruption of circadian rhythms in sni1 mutants significantly reduces their lifespan compared to single mutants. Shortened lifespan in double mutants was coupled with accelerated neuronal degeneration evidenced by vacuolization in the adult brain. In addition, per01 sni1 flies showed drastically impaired vertical mobility and increased accumulation of carbonylated proteins compared to age-matched single mutant flies. Loss of per function does not affect sni mRNA expression, suggesting that these genes act via independent pathways producing additive effects. Finally, we show that per01 mutation accelerates the onset of brain pathologies when combined with neurodegeneration-prone mutation in another gene, swiss cheese (sws1), which does not operate through the oxidative stress pathway. Taken together, our data suggest that the period gene may be causally involved in neuroprotective pathways in aging Drosophila. PMID:22227001

  16. Reproducibility in a multiprocessor system

    DOEpatents

    Bellofatto, Ralph A; Chen, Dong; Coteus, Paul W; Eisley, Noel A; Gara, Alan; Gooding, Thomas M; Haring, Rudolf A; Heidelberger, Philip; Kopcsay, Gerard V; Liebsch, Thomas A; Ohmacht, Martin; Reed, Don D; Senger, Robert M; Steinmacher-Burow, Burkhard; Sugawara, Yutaka

    2013-11-26

    Fixing a problem is usually greatly aided if the problem is reproducible. To ensure reproducibility of a multiprocessor system, the following aspects are proposed; a deterministic system start state, a single system clock, phase alignment of clocks in the system, system-wide synchronization events, reproducible execution of system components, deterministic chip interfaces, zero-impact communication with the system, precise stop of the system and a scan of the system state.

  17. Reciprocal Control of the Circadian Clock and Cellular Redox State - a Critical Appraisal.

    PubMed

    Putker, Marrit; O'Neill, John Stuart

    2016-01-01

    Redox signalling comprises the biology of molecular signal transduction mediated by reactive oxygen (or nitrogen) species. By specific and reversible oxidation of redox-sensitive cysteines, many biological processes sense and respond to signals from the intracellular redox environment. Redox signals are therefore important regulators of cellular homeostasis. Recently, it has become apparent that the cellular redox state oscillates in vivo and in vitro, with a period of about one day (circadian). Circadian time-keeping allows cells and organisms to adapt their biology to resonate with the 24-hour cycle of day/night. The importance of this innate biological time-keeping is illustrated by the association of clock disruption with the early onset of several diseases (e.g. type II diabetes, stroke and several forms of cancer). Circadian regulation of cellular redox balance suggests potentially two distinct roles for redox signalling in relation to the cellular clock: one where it is regulated by the clock, and one where it regulates the clock. Here, we introduce the concepts of redox signalling and cellular timekeeping, and then critically appraise the evidence for the reciprocal regulation between cellular redox state and the circadian clock. We conclude there is a substantial body of evidence supporting circadian regulation of cellular redox state, but that it would be premature to conclude that the converse is also true. We therefore propose some approaches that might yield more insight into redox control of cellular timekeeping.

  18. Reciprocal Control of the Circadian Clock and Cellular Redox State - a Critical Appraisal

    PubMed Central

    Putker, Marrit; O’Neill, John Stuart

    2016-01-01

    Redox signalling comprises the biology of molecular signal transduction mediated by reactive oxygen (or nitrogen) species. By specific and reversible oxidation of redox-sensitive cysteines, many biological processes sense and respond to signals from the intracellular redox environment. Redox signals are therefore important regulators of cellular homeostasis. Recently, it has become apparent that the cellular redox state oscillates in vivo and in vitro, with a period of about one day (circadian). Circadian time-keeping allows cells and organisms to adapt their biology to resonate with the 24-hour cycle of day/night. The importance of this innate biological time-keeping is illustrated by the association of clock disruption with the early onset of several diseases (e.g. type II diabetes, stroke and several forms of cancer). Circadian regulation of cellular redox balance suggests potentially two distinct roles for redox signalling in relation to the cellular clock: one where it is regulated by the clock, and one where it regulates the clock. Here, we introduce the concepts of redox signalling and cellular timekeeping, and then critically appraise the evidence for the reciprocal regulation between cellular redox state and the circadian clock. We conclude there is a substantial body of evidence supporting circadian regulation of cellular redox state, but that it would be premature to conclude that the converse is also true. We therefore propose some approaches that might yield more insight into redox control of cellular timekeeping. PMID:26810072

  19. Circadian processes in the RNA life cycle.

    PubMed

    Torres, Manon; Becquet, Denis; Franc, Jean-Louis; François-Bellan, Anne-Marie

    2018-05-01

    The circadian clock drives daily rhythms of multiple physiological processes, allowing organisms to anticipate and adjust to periodic changes in environmental conditions. These physiological rhythms are associated with robust oscillations in the expression of at least 30% of expressed genes. While the ability for the endogenous timekeeping system to generate a 24-hr cycle is a cell-autonomous mechanism based on negative autoregulatory feedback loops of transcription and translation involving core-clock genes and their protein products, it is now increasingly evident that additional mechanisms also govern the circadian oscillations of clock-controlled genes. Such mechanisms can take place post-transcriptionally during the course of the RNA life cycle. It has been shown that many steps during RNA processing are regulated in a circadian manner, thus contributing to circadian gene expression. These steps include mRNA capping, alternative splicing, changes in splicing efficiency, and changes in RNA stability controlled by the tail length of polyadenylation or the use of alternative polyadenylation sites. RNA transport can also follow a circadian pattern, with a circadian nuclear retention driven by rhythmic expression within the nucleus of particular bodies (the paraspeckles) and circadian export to the cytoplasm driven by rhythmic proteins acting like cargo. Finally, RNA degradation may also follow a circadian pattern through the rhythmic involvement of miRNAs. In this review, we summarize the current knowledge of the post-transcriptional circadian mechanisms known to play a prominent role in shaping circadian gene expression in mammals. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Processing > RNA Editing and Modification RNA Export and Localization > Nuclear Export/Import. © 2018 Wiley Periodicals, Inc.

  20. Interdependence of nutrient metabolism and the circadian clock system: Importance for metabolic health.

    PubMed

    Ribas-Latre, Aleix; Eckel-Mahan, Kristin

    2016-03-01

    While additional research is needed, a number of large epidemiological studies show an association between circadian disruption and metabolic disorders. Specifically, obesity, insulin resistance, cardiovascular disease, and other signs of metabolic syndrome all have been linked to circadian disruption in humans. Studies in other species support this association and generally reveal that feeding that is not in phase with the external light/dark cycle, as often occurs with night or rotating shift workers, is disadvantageous in terms of energy balance. As food is a strong driver of circadian rhythms in the periphery, understanding how nutrient metabolism drives clocks across the body is important for dissecting out why circadian misalignment may produce such metabolic effects. A number of circadian clock proteins as well as their accessory proteins (such as nuclear receptors) are highly sensitive to nutrient metabolism. Macronutrients and micronutrients can function as zeitgebers for the clock in a tissue-specific way and can thus impair synchrony between clocks across the body, or potentially restore synchrony in the case of circadian misalignment. Circadian nuclear receptors are particularly sensitive to nutrient metabolism and can alter tissue-specific rhythms in response to changes in the diet. Finally, SNPs in human clock genes appear to be correlated with diet-specific responses and along with chronotype eventually may provide valuable information from a clinical perspective on how to use diet and nutrition to treat metabolic disorders. This article presents a background of the circadian clock components and their interrelated metabolic and transcriptional feedback loops, followed by a review of some recent studies in humans and rodents that address the effects of nutrient metabolism on the circadian clock and vice versa. We focus on studies in which results suggest that nutrients provide an opportunity to restore or, alternatively, can destroy synchrony between peripheral clocks and the central pacemaker in the brain as well as between peripheral clocks themselves. In addition, we review several studies looking at clock gene SNPs in humans and the metabolic phenotypes or tendencies associated with particular clock gene mutations. Targeted use of specific nutrients based on chronotype has the potential for immense clinical utility in the future. Macronutrients and micronutrients have the ability to function as zeitgebers for the clock by activating or modulating specific clock proteins or accessory proteins (such as nuclear receptors). Circadian clock control by nutrients can be tissue-specific. With a better understanding of the mechanisms that support nutrient-induced circadian control in specific tissues, human chronotype and SNP information might eventually be used to tailor nutritional regimens for metabolic disease treatment and thus be an important part of personalized medicine's future.

  1. Code-Phase Clock Bias and Frequency Offset in PPP Clock Solutions.

    PubMed

    Defraigne, Pascale; Sleewaegen, Jean-Marie

    2016-07-01

    Precise point positioning (PPP) is a zero-difference single-station technique that has proved to be very effective for time and frequency transfer, enabling the comparison of atomic clocks with a precision of a hundred picoseconds and a one-day stability below the 1e-15 level. It was, however, noted that for some receivers, a frequency difference is observed between the clock solution based on the code measurements and the clock solution based on the carrier-phase measurements. These observations reveal some inconsistency either between the code and carrier phases measured by the receiver or between the data analysis strategy of codes and carrier phases. One explanation for this discrepancy is the time offset that can exist for some receivers between the code and the carrier-phase latching. This paper explains how a code-phase bias in the receiver hardware can induce a frequency difference between the code and the carrier-phase clock solutions. The impact on PPP is then quantified. Finally, the possibility to determine this code-phase bias in the PPP modeling is investigated, and the first results are shown to be inappropriate due to the high level of code noise.

  2. Data and clock transmission interface for the WCDA in LHAASO

    NASA Astrophysics Data System (ADS)

    Chu, S. P.; Zhao, L.; Jiang, Z. Y.; Ma, C.; Gao, X. S.; Yang, Y. F.; Liu, S. B.; An, Q.

    2016-12-01

    The Water Cherenkov Detector Array (WCDA) is one of the major components of the Large High Altitude Air Shower Observatory (LHAASO). In the WCDA, 3600 Photomultiplier Tubes (PMTs) and the Front End Electronics (FEEs) are scattered over a 90000 m2 area, while high precision time measurements (0.5 ns RMS) are required in the readout electronics. To meet this requirement, the clock has to be distributed to the FEEs with high precision. Due to the ``triggerless'' architecture, high speed data transfer is required based on the TCP/IP protocol. To simplify the readout electronics architecture and be consistent with the whole LHAASO readout electronics, the White Rabbit (WR) switches are used to transfer clock, data, and commands via a single fiber of about 400 meters. In this paper, a prototype of data and clock transmission interface for LHAASO WCDA is developed. The performance tests are conducted and the results indicate that the clock synchronization precision of the data and clock transmission is better than 50 ps. The data transmission throughput can reach 400 Mbps for one FEE board and 180 Mbps for 4 FEE boards sharing one up link port in WR switch, which is better than the requirement of the LHAASO WCDA.

  3. Tasimelteon

    MedlinePlus

    ... clock is out of sync with the normal day-night cycle and causes a disrupted sleep schedule.) Tasimelteon ... It is usually taken without food once a day before bedtime. Take tasimelteon at the same time every night. If you are unable to take tasimelteon at ...

  4. Circadian Rhythms and Sleep in Drosophila melanogaster

    PubMed Central

    Dubowy, Christine; Sehgal, Amita

    2017-01-01

    The advantages of the model organism Drosophila melanogaster, including low genetic redundancy, functional simplicity, and the ability to conduct large-scale genetic screens, have been essential for understanding the molecular nature of circadian (∼24 hr) rhythms, and continue to be valuable in discovering novel regulators of circadian rhythms and sleep. In this review, we discuss the current understanding of these interrelated biological processes in Drosophila and the wider implications of this research. Clock genes period and timeless were first discovered in large-scale Drosophila genetic screens developed in the 1970s. Feedback of period and timeless on their own transcription forms the core of the molecular clock, and accurately timed expression, localization, post-transcriptional modification, and function of these genes is thought to be critical for maintaining the circadian cycle. Regulators, including several phosphatases and kinases, act on different steps of this feedback loop to ensure strong and accurately timed rhythms. Approximately 150 neurons in the fly brain that contain the core components of the molecular clock act together to translate this intracellular cycling into rhythmic behavior. We discuss how different groups of clock neurons serve different functions in allowing clocks to entrain to environmental cues, driving behavioral outputs at different times of day, and allowing flexible behavioral responses in different environmental conditions. The neuropeptide PDF provides an important signal thought to synchronize clock neurons, although the details of how PDF accomplishes this function are still being explored. Secreted signals from clock neurons also influence rhythms in other tissues. SLEEP is, in part, regulated by the circadian clock, which ensures appropriate timing of sleep, but the amount and quality of sleep are also determined by other mechanisms that ensure a homeostatic balance between sleep and wake. Flies have been useful for identifying a large set of genes, molecules, and neuroanatomic loci important for regulating sleep amount. Conserved aspects of sleep regulation in flies and mammals include wake-promoting roles for catecholamine neurotransmitters and involvement of hypothalamus-like regions, although other neuroanatomic regions implicated in sleep in flies have less clear parallels. Sleep is also subject to regulation by factors such as food availability, stress, and social environment. We are beginning to understand how the identified molecules and neurons interact with each other, and with the environment, to regulate sleep. Drosophila researchers can also take advantage of increasing mechanistic understanding of other behaviors, such as learning and memory, courtship, and aggression, to understand how sleep loss impacts these behaviors. Flies thus remain a valuable tool for both discovery of novel molecules and deep mechanistic understanding of sleep and circadian rhythms. PMID:28360128

  5. Effects of circadian clock genes and environmental factors on cognitive aging in old adults in a Taiwanese population.

    PubMed

    Lin, Eugene; Kuo, Po-Hsiu; Liu, Yu-Li; Yang, Albert C; Kao, Chung-Feng; Tsai, Shih-Jen

    2017-04-11

    Previous animal studies have indicated associations between circadian clock genes and cognitive impairment . In this study, we assessed whether 11 circadian clockgenes are associated with cognitive aging independently and/or through complex interactions in an old Taiwanese population. We also analyzed the interactions between environmental factors and these genes in influencing cognitive aging. A total of 634 Taiwanese subjects aged over 60 years from the Taiwan Biobank were analyzed. Mini-Mental State Examinations (MMSE) were administered to all subjects, and MMSE scores were used to evaluate cognitive function. Our data showed associations between cognitive aging and single nucleotide polymorphisms (SNPs) in 4 key circadian clock genes, CLOCK rs3749473 (p = 0.0017), NPAS2 rs17655330 (p = 0.0013), RORA rs13329238 (p = 0.0009), and RORB rs10781247 (p = 7.9 x 10-5). We also found that interactions between CLOCK rs3749473, NPAS2 rs17655330, RORA rs13329238, and RORB rs10781247 affected cognitive aging (p = 0.007). Finally, we investigated the influence of interactions between CLOCK rs3749473, RORA rs13329238, and RORB rs10781247 with environmental factors such as alcohol consumption, smoking status, physical activity, and social support on cognitive aging (p = 0.002 ~ 0.01). Our study indicates that circadian clock genes such as the CLOCK, NPAS2, RORA, and RORB genes may contribute to the risk of cognitive aging independently as well as through gene-gene and gene-environment interactions.

  6. Identification, Characterization, and Diel Pattern of Expression of Canonical Clock Genes in Nephrops norvegicus (Crustacea: Decapoda) Eyestalk

    PubMed Central

    Sbragaglia, Valerio; Lamanna, Francesco; M. Mat, Audrey; Rotllant, Guiomar; Joly, Silvia; Ketmaier, Valerio; de la Iglesia, Horacio O.; Aguzzi, Jacopo

    2015-01-01

    The Norway lobster, Nephrops norvegicus, is a burrowing decapod with a rhythmic burrow emergence (24 h) governed by the circadian system. It is an important resource for European fisheries and its behavior deeply affects its availability. The current knowledge of Nephrops circadian biology is phenomenological as it is currently the case for almost all crustaceans. In attempt to elucidate the putative molecular mechanisms underlying circadian gene regulation in Nephrops, we used a transcriptomics approach on cDNA extracted from the eyestalk, a structure playing a crucial role in controlling behavior of decapods. We studied 14 male lobsters under 12–12 light-darkness blue light cycle. We used the Hiseq 2000 Illumina platform to sequence two eyestalk libraries (under light and darkness conditions) obtaining about 90 millions 100-bp paired-end reads. Trinity was used for the de novo reconstruction of transcriptomes; the size at which half of all assembled bases reside in contigs (N50) was equal to 1796 (light) and 2055 (darkness). We found a list of candidate clock genes and focused our attention on canonical ones: timeless, period, clock and bmal1. The cloning of assembled fragments validated Trinity outputs. The putative Nephrops clock genes showed high levels of identity (blastx on NCBI) with known crustacean clock gene homologs such as Eurydice pulchra (period: 47%, timeless: 59%, bmal1: 79%) and Macrobrachium rosenbergii (clock: 100%). We also found a vertebrate-like cryptochrome 2. RT-qPCR showed that only timeless had a robust diel pattern of expression. Our data are in accordance with the current knowledge of the crustacean circadian clock, reinforcing the idea that the molecular clockwork of this group shows some differences with the established model in Drosophila melanogaster. PMID:26524198

  7. Anabolic Heterogeneity Following Resistance Training: A Role for Circadian Rhythm?

    PubMed

    Camera, Donny M

    2018-01-01

    It is now well established that resistance exercise stimulates muscle protein synthesis and promotes gains in muscle mass and strength. However, considerable variability exists following standardized resistance training programs in the magnitude of muscle cross-sectional area and strength responses from one individual to another. Several studies have recently posited that alterations in satellite cell population, myogenic gene expression and microRNAs may contribute to individual variability in anabolic adaptation. One emerging factor that may also explain the variability in responses to resistance exercise is circadian rhythms and underlying molecular clock signals. The molecular clock is found in most cells within the body, including skeletal muscle, and principally functions to optimize the timing of specific cellular events around a 24 h cycle. Accumulating evidence investigating the skeletal muscle molecular clock indicates that exercise-induced contraction and its timing may regulate gene expression and protein synthesis responses which, over time, can influence and modulate key physiological responses such as muscle hypertrophy and increased strength. Therefore, the circadian clock may play a key role in the heterogeneous anabolic responses with resistance exercise. The central aim of this Hypothesis and Theory is to discuss and propose the potential interplay between the circadian molecular clock and established molecular mechanisms mediating muscle anabolic responses with resistance training. This article begins with a current review of the mechanisms associated with the heterogeneity in muscle anabolism with resistance training before introducing the molecular pathways regulating circadian function in skeletal muscle. Recent work showing members of the core molecular clock system can regulate myogenic and translational signaling pathways is also discussed, forming the basis for a possible role of the circadian clock in the variable anabolic responses with resistance exercise.

  8. Ghrelin, Sleep Reduction and Evening Preference: Relationships to CLOCK 3111 T/C SNP and Weight Loss

    PubMed Central

    Garaulet, Marta; Sánchez-Moreno, Carmen; Smith, Caren E.; Lee, Yu-Chi; Nicolás, Francisco; Ordovás, Jose M.

    2011-01-01

    Background Circadian Locomotor Output Cycles Kaput (CLOCK), an essential element of the positive regulatory arm in the human biological clock, is involved in metabolic regulation. The aim was to investigate the behavioral (sleep duration, eating patterns and chronobiological characteristics) and hormonal (plasma ghrelin and leptin concentrations) factors which could explain the previously reported association between the CLOCK 3111T/C SNP and weight loss. Methodology/Principal Findings We recruited 1495 overweight/obese subjects (BMI: 25–40 kg/m2) of 20–65 y. who attended outpatient obesity clinics in Murcia, in southeastern Spain. We detected an association between the CLOCK 3111T/C SNP and weight loss, which was particularly evident after 12–14 weeks of treatment (P = 0.038). Specifically, carriers of the minor C allele were more resistant to weight loss than TT individuals (Mean±SEM) (8.71±0.59 kg vs 10.4±0.57 kg) C and TT respectively. In addition, our data show that minor C allele carriers had: 1. shorter sleep duration Mean ± SEM (7.0±0.05 vs 7.3±0.05) C and TT respectively (P = 0.039), 2. higher plasma ghrelin concentrations Mean ± SEM (pg/ml) (1108±49 vs 976±47)(P = 0.034); 3. delayed breakfast time; 4. evening preference and 5. less compliance with a Mediterranean Diet pattern, as compared with TT homozygotes. Conclusions/Significance Sleep reduction, changes in ghrelin values, alterations of eating behaviors and evening preference that characterized CLOCK 3111C carriers could be affecting weight loss. Our results support the hypothesis that the influence of the CLOCK gene may extend to a broad range of variables linked with human behaviors. PMID:21386998

  9. Ghrelin, sleep reduction and evening preference: relationships to CLOCK 3111 T/C SNP and weight loss.

    PubMed

    Garaulet, Marta; Sánchez-Moreno, Carmen; Smith, Caren E; Lee, Yu-Chi; Nicolás, Francisco; Ordovás, Jose M

    2011-02-28

    Circadian Locomotor Output Cycles Kaput (CLOCK), an essential element of the positive regulatory arm in the human biological clock, is involved in metabolic regulation. The aim was to investigate the behavioral (sleep duration, eating patterns and chronobiological characteristics) and hormonal (plasma ghrelin and leptin concentrations) factors which could explain the previously reported association between the CLOCK 3111T/C SNP and weight loss. We recruited 1495 overweight/obese subjects (BMI: 25-40 kg/m(2)) of 20-65 y. who attended outpatient obesity clinics in Murcia, in southeastern Spain. We detected an association between the CLOCK 3111T/C SNP and weight loss, which was particularly evident after 12-14 weeks of treatment (P = 0.038). Specifically, carriers of the minor C allele were more resistant to weight loss than TT individuals (Mean±SEM) (8.71±0.59 kg vs 10.4±0.57 kg) C and TT respectively. In addition, our data show that minor C allele carriers had: 1. shorter sleep duration Mean ± SEM (7.0±0.05 vs 7.3±0.05) C and TT respectively (P = 0.039), 2. higher plasma ghrelin concentrations Mean ± SEM (pg/ml) (1108±49 vs 976±47)(P = 0.034); 3. delayed breakfast time; 4. evening preference and 5. less compliance with a Mediterranean Diet pattern, as compared with TT homozygotes. Sleep reduction, changes in ghrelin values, alterations of eating behaviors and evening preference that characterized CLOCK 3111C carriers could be affecting weight loss. Our results support the hypothesis that the influence of the CLOCK gene may extend to a broad range of variables linked with human behaviors.

  10. Aberrant temporal growth pattern and morphology of root and shoot caused by a defective circadian clock in Arabidopsis thaliana.

    PubMed

    Ruts, Tom; Matsubara, Shizue; Wiese-Klinkenberg, Anika; Walter, Achim

    2012-10-01

    Circadian clocks synchronized with the environment allow plants to anticipate recurring daily changes and give a fitness advantage. Here, we mapped the dynamic growth phenotype of leaves and roots in two lines of Arabidopsis thaliana with a disrupted circadian clock: the CCA1 over-expressing line (CCA1ox) and the prr9 prr7 prr5 (prr975) mutant. We demonstrate leaf growth defects due to a disrupted circadian clock over a 24 h time scale. Both lines showed enhanced leaf growth compared with the wild-type during the diurnal period, suggesting increased partitioning of photosynthates for leaf growth. Nocturnal leaf growth was reduced and growth inhibition occurred by dawn, which may be explained by ineffective starch degradation in the leaves of the mutants. However, this growth inhibition was not caused by starch exhaustion. Overall, these results are consistent with the notion that the defective clock affects carbon and energy allocation, thereby reducing growth capacity during the night. Furthermore, rosette morphology and size as well as root architecture were strikingly altered by the defective clock control. Separate analysis of the primary root and lateral roots revealed strong suppression of lateral root formation in both CCA1ox and prr975, accompanied by unusual changes in lateral root growth direction under light-dark cycles and increased lateral extension of the root system. We conclude that growth of the whole plant is severely affected by improper clock regulation in A. thaliana, resulting not only in altered timing and capacity for growth but also aberrant development of shoot and root architecture. © 2012 Forschungszentrum Jülich. The Plant Journal © 2012 Blackwell Publishing Ltd.

  11. Metabolism and the Circadian Clock Converge

    PubMed Central

    Eckel-Mahan, Kristin

    2013-01-01

    Circadian rhythms occur in almost all species and control vital aspects of our physiology, from sleeping and waking to neurotransmitter secretion and cellular metabolism. Epidemiological studies from recent decades have supported a unique role for circadian rhythm in metabolism. As evidenced by individuals working night or rotating shifts, but also by rodent models of circadian arrhythmia, disruption of the circadian cycle is strongly associated with metabolic imbalance. Some genetically engineered mouse models of circadian rhythmicity are obese and show hallmark signs of the metabolic syndrome. Whether these phenotypes are due to the loss of distinct circadian clock genes within a specific tissue versus the disruption of rhythmic physiological activities (such as eating and sleeping) remains a cynosure within the fields of chronobiology and metabolism. Becoming more apparent is that from metabolites to transcription factors, the circadian clock interfaces with metabolism in numerous ways that are essential for maintaining metabolic homeostasis. PMID:23303907

  12. Brain clock driven by neuropeptides and second messengers

    NASA Astrophysics Data System (ADS)

    Miro-Bueno, Jesus; Sosík, Petr

    2014-09-01

    The master circadian pacemaker in mammals is localized in a small portion of the brain called the suprachiasmatic nucleus (SCN). It is unclear how the SCN produces circadian rhythms. A common interpretation is that the SCN produces oscillations through the coupling of genetic oscillators in the neurons. The coupling is effected by a network of neuropeptides and second messengers. This network is crucial for the correct function of the SCN. However, models that study a possible oscillatory behavior of the network itself have received little attention. Here we propose and analyze a model to examine this oscillatory potential. We show that an intercellular oscillator emerges in the SCN as a result of the neuropeptide and second messenger dynamics. We find that this intercellular clock can produce circadian rhythms by itself with and without genetic clocks. We also found that the model is robust to perturbation of parameters and can be entrained by light-dark cycles.

  13. Optimal Implementations for Reliable Circadian Clocks

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yoshihiko; Arita, Masanori

    2014-09-01

    Circadian rhythms are acquired through evolution to increase the chances for survival through synchronizing with the daylight cycle. Reliable synchronization is realized through two trade-off properties: regularity to keep time precisely, and entrainability to synchronize the internal time with daylight. We find by using a phase model with multiple inputs that achieving the maximal limit of regularity and entrainability entails many inherent features of the circadian mechanism. At the molecular level, we demonstrate the role sharing of two light inputs, phase advance and delay, as is well observed in mammals. At the behavioral level, the optimal phase-response curve inevitably contains a dead zone, a time during which light pulses neither advance nor delay the clock. We reproduce the results of phase-controlling experiments entrained by two types of periodic light pulses. Our results indicate that circadian clocks are designed optimally for reliable clockwork through evolution.

  14. Brain clock driven by neuropeptides and second messengers.

    PubMed

    Miro-Bueno, Jesus; Sosík, Petr

    2014-09-01

    The master circadian pacemaker in mammals is localized in a small portion of the brain called the suprachiasmatic nucleus (SCN). It is unclear how the SCN produces circadian rhythms. A common interpretation is that the SCN produces oscillations through the coupling of genetic oscillators in the neurons. The coupling is effected by a network of neuropeptides and second messengers. This network is crucial for the correct function of the SCN. However, models that study a possible oscillatory behavior of the network itself have received little attention. Here we propose and analyze a model to examine this oscillatory potential. We show that an intercellular oscillator emerges in the SCN as a result of the neuropeptide and second messenger dynamics. We find that this intercellular clock can produce circadian rhythms by itself with and without genetic clocks. We also found that the model is robust to perturbation of parameters and can be entrained by light-dark cycles.

  15. Melatonin as a chemical indicator of environmental light-dark cycle.

    PubMed

    Zawilska, J B

    1996-01-01

    Melatonin (N-acetyl-5-methoxytryptamine) is an evolutionary highly conserved molecule that plays an important role in conveying the clock and calendar information to all living organisms, including man. Melatonin is synthesized in the rhythmic fashion, primarily by the pineal gland, and, to a lesser degree, by extrapineal tissues-namely the retina, the Harderian gland, and the gastrointestinal tract. The rhythm of the hormone production, with maximal levels occurring at night in darkness, is generated by an endogenous circadian clock(s) and is synchronized with the photoperiodic environment to which animals are exposed. This brief outline surveys data on the regulation of rhythmic melatonin biosynthesis by a circadian pacemaker and light (full spectrum white light and monochromatic lights with wavelengths both in the visible and invisible range). Additionally, possible applications of this chronobiotic compound in agriculture and in medicine in the treatment of circadian rhythm sleep disorders are discussed.

  16. Lung Adenocarcinoma Distally Rewires Hepatic Circadian Homeostasis

    PubMed Central

    Masri, Selma; Papagiannakopoulos, Thales; Kinouchi, Kenichiro; Liu, Yu; Cervantes, Marlene; Baldi, Pierre; Jacks, Tyler; Sassone-Corsi, Paolo

    2016-01-01

    SUMMARY The circadian clock controls metabolic and physiological processes through finely tuned molecular mechanisms. The clock is remarkably plastic and adapts to exogenous zeitgebers, such as light and nutrition. How a pathological condition in a given tissue influences systemic circadian homeostasis in other tissues remains an unanswered question of conceptual and biomedical importance. Here we show that lung adenocarcinoma operates as an endogenous reorganizer of circadian metabolism. High-throughput transcriptomics and metabolomics revealed unique signatures of transcripts and metabolites cycling exclusively in livers of tumor-bearing mice. Remarkably, lung cancer has no effect on the core clock, but rather reprograms hepatic metabolism through altered pro-inflammatory response via the STAT3-Socs3 pathway. This results in disruption of AKT, AMPK and SREBP signaling, leading to altered insulin, glucose and lipid metabolism. Thus, lung adenocarcinoma functions as a potent endogenous circadian organizer (ECO), which rewires the pathophysiological dimension of a distal tissue such as the liver. PMID:27153497

  17. Chronobiology in mammalian health.

    PubMed

    Liu, Zhihua; Chu, Guiyan

    2013-03-01

    Circadian rhythms are daily cycles of physiology and behavior that are driven by an endogenous oscillator with a period of approximately one day. In mammals, the hypothalamic suprachiasmatic nuclei are our principal circadian oscillators which influences peripheral tissue clocks via endocrine, autonomic and behavioral cues, and other brain regions and most peripheral tissues contain circadian clocks as well. The circadian molecular machinery comprises a group of circadian genes, namely Clock, Bmal1, Per1, Per2, Per3, Cry1 and Cry2. These circadian genes drive endogenous oscillations which promote rhythmically expression of downstream genes and thereby physiological and behavioral processes. Disruptions in circadian homeostasis have pronounced impact on physiological functioning, overall health and disease susceptibility. This review introduces the general profile of circadian gene expression and tissue-specific circadian regulation, highlights the connection between the circadian rhythms and physiological processes, and discusses the role of circadian rhythms in human disease.

  18. Dancing in the dark: darkness as a signal in plants.

    PubMed

    Seluzicki, Adam; Burko, Yogev; Chory, Joanne

    2017-11-01

    Daily cycles of light and dark provide an organizing principle and temporal constraints under which life on Earth evolved. While light is often the focus of plant studies, it is only half the story. Plants continuously adjust to their surroundings, taking both dawn and dusk as cues to organize their growth, development and metabolism to appropriate times of day. In this review, we examine the effects of darkness on plant physiology and growth. We describe the similarities and differences between seedlings grown in the dark versus those grown in light-dark cycles, and the evolution of etiolated growth. We discuss the integration of the circadian clock into other processes, looking carefully at the points of contact between clock genes and growth-promoting gene-regulatory networks in temporal gating of growth. We also examine daily starch accumulation and degradation, and the possible contribution of dark-specific metabolic controls in regulating energy and growth. Examining these studies together reveals a complex and continuous balancing act, with many signals, dark included, contributing information and guiding the plant through its life cycle. The extraordinary interconnection between light and dark is manifest during cycles of day and night and during seedling emergence above versus below the soil surface. © 2017 John Wiley & Sons Ltd.

  19. Decadal Cycles in the Human Cardiovascular System

    PubMed Central

    Halberg, Franz; Cornelissen, Germaine; Sothern, Robert B.; Hillman, Dewayne; Watanabe, Yoshihiko; Haus, Erhard; Schwartzkopff, Othild; Best, William R.

    2013-01-01

    Seven of the eight authors of this report each performed physiologic self-surveillance, some around the clock for decades. We here document the presence of long cycles (decadals, including circaundecennians) in the time structure of systolic (S) and diastolic (D) blood pressure (BP) and heart rate (HR). Because of the non-stationary nature in time and space of these and other physiologic and environmental periodic components that, like the wind, can appear and disappear in a given or other geographic location at one or another time, they have been called “Aeolian”. The nonlinear estimation of the uncertainties of the periods (τs) of two or more variables being compared has been used to determine whether these components are congruent or not, depending on whether their CIs (95% confidence intervals) overlap or not. Among others, congruence has been found for components with τs clustering around 10 years in us and around us. There is a selective assortment among individuals, variables and cycle characteristics (mean and circadian amplitude and acrophase). Apart from basic interest, like other nonphotic solar signatures such as transyears with periods slightly longer than one year or about 33-year Brückner-Egeson-Lockyer (BEL) cycles, about 10-year and longer cycles present in 7 of 7 self-monitoring individuals are of interest in the diagnosis of Vascular Variability Anomalies (VVAs), including MESOR-hypertension, and others. Some of the other VVAs, such as a circadian overswing, i.e., CHAT (Circadian Hyper-Aplitude-Tension), or an excessive pulse pressure, based on repeated 7-day around-the-clock records, can represent a risk of severe cardiovascular events, greater than that of a high BP. The differential diagnosis of physiologic cycles, infradians (components with a τ longer than 28 hours) as well as circadians awaits the collection of reference values for the infradian parameters of the cycles described herein. Just as in stroke-prone spontaneously hypertensive rats during the weeks after weaning CHAT precedes an elevation of the BP MESOR, a decadal overswing seems to precede the occurrence of high BP in two of the subjects here examined. Only around-the-clock monitoring in health for the collection of reference values will allow on their basis the differential diagnosis of the onsets of a circadian versus a circadecadal overswing in BP and the specification whether, and if so, when to initiate hypotensive non-drug or drug treatment. PMID:24860279

  20. Design of reliable universal QCA logic in the presence of cell deposition defect

    NASA Astrophysics Data System (ADS)

    Sen, Bibhash; Mukherjee, Rijoy; Mohit, Kumar; Sikdar, Biplab K.

    2017-08-01

    The emergence of Quantum-dot Cellular Automata (QCA) has resulted in being identified as a promising alternative to the currently prevailing techniques of very large scale integration. QCA can provide low-power nanocircuit with high device density. Keeping aside the profound acceptance of QCA, the challenge that it is facing can be quoted as susceptibility to high error rate. The work produced in this article aims towards the design of a reliable universal logic gate (r-ULG) in QCA (r-ULG along with the single clock zone and r-ULG-II along with multiple clock zones). The design would include hybrid orientation of cells that would realise majority and minority, functions and high fault tolerance simultaneously. The characterisation of the defective behaviour of r-ULGs under different kinds of cell deposition defects is investigated. The outcomes of the investigation provide an indication that the proposed r-ULG provides a fault tolerance of 75% under single clock zone and a fault tolerance of 100% under dual clock zones. The high functional aspects of r-ULGs in the implementation of different logic functions successfully under cell deposition defects are affirmed by the experimental results. The high-level logic around the multiplexer is synthesised, which helps to extend the design capability to the higher-level circuit synthesis.

  1. ACES microwave link requirements.

    PubMed

    Uhrich, P M; Guillernot, P; Aubry, P; Gonzalez, F; Salomon, C

    2000-01-01

    Atomic Clock Ensemble in Space (ACES) is a project of the European Space Agency on-board the future International Space Station (ISS). The payload consists mainly of two atomic frequency standards, one space hydrogen maser (SHM) prepared by the Observatoire de Neuchatel (Switzerland), and one cold atom caesium clock called PHARAO prepared by the CNES (France), with the participation of the BNM-LPTF, the ENS-LKB, and the CNRS-LHA. Because of the anticipated performances of these clocks on-board the ISS, the requirements of the links between the payload and the clocks on the Earth are at the limits of the known potential of the optical or microwave techniques. The microwave link (MWL) requirements are described in this paper. Taking into account the characteristics of the ISS orbit, and fixing an arbitrary limit to the additional noise brought to the clock readings by the MWL, the computation of the required stability leads to two kinds of requirements: the first one at the subpicosecond level over each single continuous pass of the ISS above any Earth station, and the second one at the level of one part in 10(16) and below over a one day or more averaging period. Moreover, the ISS orbit parameters should lead to a knowledge of the ACES clock position at the m level, and of the ACES clock speed at the mm/s level.

  2. Irradiation setup at the U-120M cyclotron facility

    NASA Astrophysics Data System (ADS)

    Křížek, F.; Ferencei, J.; Matlocha, T.; Pospíšil, J.; Príbeli, P.; Raskina, V.; Isakov, A.; Štursa, J.; Vaňát, T.; Vysoká, K.

    2018-06-01

    This paper describes parameters of the proton beams provided by the U-120M cyclotron and the related irradiation setup at the open access irradiation facility at the Nuclear Physics Institute of the Czech Academy of Sciences. The facility is suitable for testing radiation hardness of various electronic components. The use of the setup is illustrated by a measurement of an error rate for errors caused by Single Event Transients in an SRAM-based Xilinx XC3S200 FPGA. This measurement provides an estimate of a possible occurrence of Single Event Transients. Data suggest that the variation of error rate of the Single Event Effects for different clock phase shifts is not significant enough to use clock phase alignment with the beam as a fault mitigation technique.

  3. The Inner Clock: A New Timepiece for Learning.

    ERIC Educational Resources Information Center

    Brooks, Andree

    1980-01-01

    The author suggests the use of chronobiology--the body's 24-hour cycle rhythms--to chart children's physical, emotional, and mental reactions in order to more realistically and productively structure learning activities. This exercise also involves math and science skills. (KC)

  4. Mistimed food intake and sleep alters 24-hour time-of-day patterns of the human plasma proteome.

    PubMed

    Depner, Christopher M; Melanson, Edward L; McHill, Andrew W; Wright, Kenneth P

    2018-06-05

    Proteomics holds great promise for understanding human physiology, developing health biomarkers, and precision medicine. However, how much the plasma proteome varies with time of day and is regulated by the master circadian suprachiasmatic nucleus brain clock, assessed here by the melatonin rhythm, is largely unknown. Here, we assessed 24-h time-of-day patterns of human plasma proteins in six healthy men during daytime food intake and nighttime sleep in phase with the endogenous circadian clock (i.e., circadian alignment) versus daytime sleep and nighttime food intake out of phase with the endogenous circadian clock (i.e., circadian misalignment induced by simulated nightshift work). We identified 24-h time-of-day patterns in 573 of 1,129 proteins analyzed, with 30 proteins showing strong regulation by the circadian cycle. Relative to circadian alignment, the average abundance and/or 24-h time-of-day patterns of 127 proteins were altered during circadian misalignment. Altered proteins were associated with biological pathways involved in immune function, metabolism, and cancer. Of the 30 circadian-regulated proteins, the majority peaked between 1400 hours and 2100 hours, and these 30 proteins were associated with basic pathways involved in extracellular matrix organization, tyrosine kinase signaling, and signaling by receptor tyrosine-protein kinase erbB-2. Furthermore, circadian misalignment altered multiple proteins known to regulate glucose homeostasis and/or energy metabolism, with implications for altered metabolic physiology. Our findings demonstrate the circadian clock, the behavioral wake-sleep/food intake-fasting cycle, and interactions between these processes regulate 24-h time-of-day patterns of human plasma proteins and help identify mechanisms of circadian misalignment that may contribute to metabolic dysregulation.

  5. Setting the pace: host rhythmic behaviour and gene expression patterns in the facultatively symbiotic cnidarian Aiptasia are determined largely by Symbiodinium.

    PubMed

    Sorek, Michal; Schnytzer, Yisrael; Ben-Asher, Hiba Waldman; Caspi, Vered Chalifa; Chen, Chii-Shiarng; Miller, David J; Levy, Oren

    2018-05-09

    All organisms employ biological clocks to anticipate physical changes in the environment; however, the integration of biological clocks in symbiotic systems has received limited attention. In corals, the interpretation of rhythmic behaviours is complicated by the daily oscillations in tissue oxygen tension resulting from the photosynthetic and respiratory activities of the associated algal endosymbiont Symbiodinium. In order to better understand the integration of biological clocks in cnidarian hosts of Symbiodinium, daily rhythms of behaviour and gene expression were studied in symbiotic and aposymbiotic morphs of the sea-anemone Aiptasia diaphana. The results showed that whereas circatidal (approx. 12-h) cycles of activity and gene expression predominated in aposymbiotic morphs, circadian (approx. 24-h) patterns were the more common in symbiotic morphs, where the expression of a significant number of genes shifted from a 12- to 24-h rhythm. The behavioural experiments on symbiotic A. diaphana displayed diel (24-h) rhythmicity in body and tentacle contraction under the light/dark cycles, whereas aposymbiotic morphs showed approximately 12-h (circatidal) rhythmicity. Reinfection experiments represent an important step in understanding the hierarchy of endogenous clocks in symbiotic associations, where the aposymbiotic Aiptasia morphs returned to a 24-h behavioural rhythm after repopulation with algae. Whilst some modification of host metabolism is to be expected, the extent to which the presence of the algae modified host endogenous behavioural and transcriptional rhythms implies that it is the symbionts that influence the pace. Our results clearly demonstrate the importance of the endosymbiotic algae in determining the timing and the duration of the extension and contraction of the body and tentacles and temporal gene expression.

  6. NAMPT-Mediated NAD Biosynthesis as the Internal Timing Mechanism: In NAD+ World, Time Is Running in Its Own Way.

    PubMed

    Poljsak, Borut

    2017-09-08

    The biological age of organisms differs from the chronological age and is determined by internal aging clock(s). How cells estimate time on a scale of 24 hours is relatively well studied; however, how biological time is measured by cells, tissues, organs, or organisms in longer time periods (years and decades) is largely unknown. What is clear and widely agreed upon is that the link to age and age-related diseases is not chronological, as it does not depend on a fixed passage of time. Rather, this link depends on the biological age of an individual cell, tissue, organ, or organism and not on time in a strictly chronological sense. Biological evolution does not invent new methods as often as improving upon already existing ones. It should be easier to evolve and remodel the existing (circadian) time clock mechanism to use it for measurement or regulation of longer time periods than to invent a new time mechanism/clock. Specifically, it will be demonstrated that the circadian clock can also be used to regulate circannual or even longer time periods. Nicotinamide phosphoribosyltransferase (NAMPT)-mediated nicotinamide adenine dinucleotide (NAD+) levels, being regulated by the circadian clock, might be the missing link between aging, cell cycle control, DNA damage repair, cellular metabolism and the aging clock, which is responsible for the biological age of an organism. The hypothesis that NAMPT/NAD+/SIRT1 might represent the time regulator that determines the organismal biological age will be presented. The biological age of tissues and organs might be regulated and synchronized through eNAMPT blood secretion. The "NAD World 2.0" concept will be upgraded with detailed insights into mechanisms that regulate NAD + -mediated aging clock ticking, the duration and amplitude of which are responsible for the aging rate of humans.

  7. Molecular Mechanisms of Circadian Regulation During Spaceflight

    NASA Technical Reports Server (NTRS)

    Zanello, S. B.; Boyle, R.

    2012-01-01

    The physiology of both vertebrates and invertebrates follows internal rhythms coordinated in phase with the 24-hour daily light cycle. This circadian clock is governed by a central pacemaker, the suprachiasmatic nucleus (SCN) in the brain. However, peripheral circadian clocks or oscillators have been identified in most tissues. How the central and peripheral oscillators are synchronized is still being elucidated. Light is the main environmental cue that entrains the circadian clock. Under the absence of a light stimulus, the clock continues its oscillation in a free-running condition. In general, three functional compartments of the circadian clock are defined. The vertebrate retina contains endogenous clocks that control many aspects of retinal physiology, including retinal sensitivity to light, neurohormone synthesis (melatonin and dopamine), rod disk shedding, signalling pathways and gene expression. Neurons with putative local circadian rhythm generation are found among all the major neuron populations in the mammalian retina. In the mouse, clock genes and function are more localized to the inner retinal and ganglion cell layers. The photoreceptor, however, secrete melatonin which may still serve a an important circadian signal. The reception and transmission of the non-visual photic stimulus resides in a small subpopulation (1-3%) or retinal ganglion cells (RGC) that express the pigment melanopsin (Opn4) and are called intrisically photoreceptive RGC (ipRGC). Melanopsin peak absorption is at 420 nm and all the axons of the ipRGC reach the SCN. A common countermeasure for circadian re-entrainment utilizes blue-green light to entrain the circadian clock and mitigate the risk of fatigue and health and performance decrement due to circadian rhythm disruption. However, an effective countermeasure targeting the photoreceptor system requires that the basic circadian molecular machinery remains intact during spaceflight. We hypothesize that spaceflight may affect ipRGC and melanopsin expression, which may be a contributing cause of circadian disruption during spaceflight.

  8. The Deep Space Atomic Clock Mission

    NASA Technical Reports Server (NTRS)

    Ely, Todd A.; Koch, Timothy; Kuang, Da; Lee, Karen; Murphy, David; Prestage, John; Tjoelker, Robert; Seubert, Jill

    2012-01-01

    The Deep Space Atomic Clock (DSAC) mission will demonstrate the space flight performance of a small, low-mass, high-stability mercury-ion atomic clock with long term stability and accuracy on par with that of the Deep Space Network. The timing stability introduced by DSAC allows for a 1-Way radiometric tracking paradigm for deep space navigation, with benefits including increased tracking via utilization of the DSN's Multiple Spacecraft Per Aperture (MSPA) capability and full ground station-spacecraft view periods, more accurate radio occultation signals, decreased single-frequency measurement noise, and the possibility for fully autonomous on-board navigation. Specific examples of navigation and radio science benefits to deep space missions are highlighted through simulations of Mars orbiter and Europa flyby missions. Additionally, this paper provides an overview of the mercury-ion trap technology behind DSAC, details of and options for the upcoming 2015/2016 space demonstration, and expected on-orbit clock performance.

  9. Optical Atomic Clock for Fundamental Physics and Precision Metrology in Space

    NASA Astrophysics Data System (ADS)

    Williams, Jason; Le, Thanh; Kulas, Sascha; Yu, Nan

    2017-04-01

    The maturity of optical atomic clocks (OC), which operate at optical frequencies for higher quality-factor as compared to their microwave counterparts, has rapidly progressed to the point where lab-based systems now outperform the record cesium clocks by orders of magnitude in both accuracy and stability. We will present our efforts to develop a strontium optical clock testbed at JPL, aimed towards extending the exceptional performance demonstrated by OCs from state-of-the-art laboratory designs to a transportable instrument that can fit within the space and power constraints of e.g. a single express rack onboard the International Space Station. The overall technology will find applications for future fundamental physics research, both on ground and in space, precision time keeping, and NASA/JPL time and frequency test capabilities. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  10. Advances in time-scale algorithms

    NASA Technical Reports Server (NTRS)

    Stein, S. R.

    1993-01-01

    The term clock is usually used to refer to a device that counts a nearly periodic signal. A group of clocks, called an ensemble, is often used for time keeping in mission critical applications that cannot tolerate loss of time due to the failure of a single clock. The time generated by the ensemble of clocks is called a time scale. The question arises how to combine the times of the individual clocks to form the time scale. One might naively be tempted to suggest the expedient of averaging the times of the individual clocks, but a simple thought experiment demonstrates the inadequacy of this approach. Suppose a time scale is composed of two noiseless clocks having equal and opposite frequencies. The mean time scale has zero frequency. However if either clock fails, the time-scale frequency immediately changes to the frequency of the remaining clock. This performance is generally unacceptable and simple mean time scales are not used. First, previous time-scale developments are reviewed and then some new methods that result in enhanced performance are presented. The historical perspective is based upon several time scales: the AT1 and TA time scales of the National Institute of Standards and Technology (NIST), the A.1(MEAN) time scale of the US Naval observatory (USNO), the TAI time scale of the Bureau International des Poids et Measures (BIPM), and the KAS-1 time scale of the Naval Research laboratory (NRL). The new method was incorporated in the KAS-2 time scale recently developed by Timing Solutions Corporation. The goal is to present time-scale concepts in a nonmathematical form with as few equations as possible. Many other papers and texts discuss the details of the optimal estimation techniques that may be used to implement these concepts.

  11. Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms

    PubMed Central

    Zhang, S. Y.; Wu, J. T.; Zhang, Y. L.; Leng, J. X.; Yang, W. P.; Zhang, Z. G.; Zhao, J. Y.

    2015-01-01

    Optical clocks have been the focus of science and technology research areas due to their capability to provide highest frequency accuracy and stability to date. Their superior frequency performance promises significant advances in the fields of fundamental research as well as practical applications including satellite-based navigation and ranging. In traditional optical clocks, ultrastable optical cavities, laser cooling and particle (atoms or a single ion) trapping techniques are employed to guarantee high stability and accuracy. However, on the other hand, they make optical clocks an entire optical tableful of equipment, and cannot work continuously for a long time; as a result, they restrict optical clocks used as very convenient and compact time-keeping clocks. In this article, we proposed, and experimentally demonstrated, a novel scheme of optical frequency standard based on comb-directly-excited atomic two-photon transitions. By taking advantage of the natural properties of the comb and two-photon transitions, this frequency standard achieves a simplified structure, high robustness as well as decent frequency stability, which promise widespread applications in various scenarios. PMID:26459877

  12. Molecular Clock of Neutral Mutations in a Fitness-Increasing Evolutionary Process

    PubMed Central

    Iijima, Leo; Suzuki, Shingo; Hashimoto, Tomomi; Oyake, Ayana; Kobayashi, Hisaka; Someya, Yuki; Narisawa, Dai; Yomo, Tetsuya

    2015-01-01

    The molecular clock of neutral mutations, which represents linear mutation fixation over generations, is theoretically explained by genetic drift in fitness-steady evolution or hitchhiking in adaptive evolution. The present study is the first experimental demonstration for the molecular clock of neutral mutations in a fitness-increasing evolutionary process. The dynamics of genome mutation fixation in the thermal adaptive evolution of Escherichia coli were evaluated in a prolonged evolution experiment in duplicated lineages. The cells from the continuously fitness-increasing evolutionary process were subjected to genome sequencing and analyzed at both the population and single-colony levels. Although the dynamics of genome mutation fixation were complicated by the combination of the stochastic appearance of adaptive mutations and clonal interference, the mutation fixation in the population was simply linear over generations. Each genome in the population accumulated 1.6 synonymous and 3.1 non-synonymous neutral mutations, on average, by the spontaneous mutation accumulation rate, while only a single genome in the population occasionally acquired an adaptive mutation. The neutral mutations that preexisted on the single genome hitchhiked on the domination of the adaptive mutation. The successive fixation processes of the 128 mutations demonstrated that hitchhiking and not genetic drift were responsible for the coincidence of the spontaneous mutation accumulation rate in the genome with the fixation rate of neutral mutations in the population. The molecular clock of neutral mutations to the fitness-increasing evolution suggests that the numerous neutral mutations observed in molecular phylogenetic trees may not always have been fixed in fitness-steady evolution but in adaptive evolution. PMID:26177190

  13. Molecular Clock of Neutral Mutations in a Fitness-Increasing Evolutionary Process.

    PubMed

    Kishimoto, Toshihiko; Ying, Bei-Wen; Tsuru, Saburo; Iijima, Leo; Suzuki, Shingo; Hashimoto, Tomomi; Oyake, Ayana; Kobayashi, Hisaka; Someya, Yuki; Narisawa, Dai; Yomo, Tetsuya

    2015-07-01

    The molecular clock of neutral mutations, which represents linear mutation fixation over generations, is theoretically explained by genetic drift in fitness-steady evolution or hitchhiking in adaptive evolution. The present study is the first experimental demonstration for the molecular clock of neutral mutations in a fitness-increasing evolutionary process. The dynamics of genome mutation fixation in the thermal adaptive evolution of Escherichia coli were evaluated in a prolonged evolution experiment in duplicated lineages. The cells from the continuously fitness-increasing evolutionary process were subjected to genome sequencing and analyzed at both the population and single-colony levels. Although the dynamics of genome mutation fixation were complicated by the combination of the stochastic appearance of adaptive mutations and clonal interference, the mutation fixation in the population was simply linear over generations. Each genome in the population accumulated 1.6 synonymous and 3.1 non-synonymous neutral mutations, on average, by the spontaneous mutation accumulation rate, while only a single genome in the population occasionally acquired an adaptive mutation. The neutral mutations that preexisted on the single genome hitchhiked on the domination of the adaptive mutation. The successive fixation processes of the 128 mutations demonstrated that hitchhiking and not genetic drift were responsible for the coincidence of the spontaneous mutation accumulation rate in the genome with the fixation rate of neutral mutations in the population. The molecular clock of neutral mutations to the fitness-increasing evolution suggests that the numerous neutral mutations observed in molecular phylogenetic trees may not always have been fixed in fitness-steady evolution but in adaptive evolution.

  14. Development of the Astyanax mexicanus circadian clock and non-visual light responses.

    PubMed

    Frøland Steindal, Inga A; Beale, Andrew D; Yamamoto, Yoshiyuki; Whitmore, David

    2018-06-23

    Most animals and plants live on the planet exposed to periods of rhythmic light and dark. As such, they have evolved endogenous circadian clocks to regulate their physiology rhythmically, and non-visual light detection mechanisms to set the clock to the environmental light-dark cycle. In the case of fish, circadian pacemakers are not only present in the majority of tissues and cells, but these tissues are themselves directly light-sensitive, expressing a wide range of opsin photopigments. This broad non-visual light sensitivity exists to set the clock, but also impacts a wide range of fundamental cell biological processes, such as DNA repair regulation. In this context, Astyanax mexicanus is a very intriguing model system with which to explore non-visual light detection and circadian clock function. Previous work has shown that surface fish possess the same directly light entrainable circadian clocks, described above. The same is true for cave strains of Astyanax in the laboratory, though no daily rhythms have been observed under natural dark conditions in Mexico. There are, however, clear alterations in the cave strain light response and changes to the circadian clock, with a difference in phase of peak gene expression and a reduction in amplitude. In this study, we expand these early observations by exploring the development of non-visual light sensitivity and clock function between surface and cave populations. When does the circadian pacemaker begin to oscillate during development, and are there differences between the various strains? Is the difference in acute light sensitivity, seen in adults, apparent from the earliest stages of development? Our results show that both cave and surface populations must experience daily light exposure to establish a larval gene expression rhythm. These oscillations begin early, around the third day of development in all strains, but gene expression rhythms show a significantly higher amplitude in surface fish larvae. In addition, the light induction of clock genes is developmentally delayed in cave populations. Zebrafish embryonic light sensitivity has been shown to be critical not only for clock entrainment, but also for transcriptional activation of DNA repair processes. Similar downstream transcriptional responses to light also occur in Astyanax. Interestingly, the establishment of the adult timing profile of clock gene expression takes several days to become apparent. This fact may provide mechanistic insight into the key differences between the cave and surface fish clock mechanisms. Copyright © 2018. Published by Elsevier Inc.

  15. Loss of circadian clock accelerates aging in neurodegeneration-prone mutants.

    PubMed

    Krishnan, Natraj; Rakshit, Kuntol; Chow, Eileen S; Wentzell, Jill S; Kretzschmar, Doris; Giebultowicz, Jadwiga M

    2012-03-01

    Circadian clocks generate rhythms in molecular, cellular, physiological, and behavioral processes. Recent studies suggest that disruption of the clock mechanism accelerates organismal senescence and age-related pathologies in mammals. Impaired circadian rhythms are observed in many neurological diseases; however, it is not clear whether loss of rhythms is the cause or result of neurodegeneration, or both. To address this important question, we examined the effects of circadian disruption in Drosophila melanogaster mutants that display clock-unrelated neurodegenerative phenotypes. We combined a null mutation in the clock gene period (per(01)) that abolishes circadian rhythms, with a hypomorphic mutation in the carbonyl reductase gene sniffer (sni(1)), which displays oxidative stress induced neurodegeneration. We report that disruption of circadian rhythms in sni(1) mutants significantly reduces their lifespan compared to single mutants. Shortened lifespan in double mutants was coupled with accelerated neuronal degeneration evidenced by vacuolization in the adult brain. In addition, per(01)sni(1) flies showed drastically impaired vertical mobility and increased accumulation of carbonylated proteins compared to age-matched single mutant flies. Loss of per function does not affect sni mRNA expression, suggesting that these genes act via independent pathways producing additive effects. Finally, we show that per(01) mutation accelerates the onset of brain pathologies when combined with neurodegeneration-prone mutation in another gene, swiss cheese (sws(1)), which does not operate through the oxidative stress pathway. Taken together, our data suggest that the period gene may be causally involved in neuroprotective pathways in aging Drosophila. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Hormones and the autonomic nervous system are involved in suprachiasmatic nucleus modulation of glucose homeostasis.

    PubMed

    Ruiter, Marieke; Buijs, Ruud M; Kalsbeek, Andries

    2006-05-01

    Glucose is one of the most important energy sources for the body in general, and the brain in particular. It is essential for survival to keep glucose levels within strict boundaries. Acute disturbances of glucose homeostasis are rapidly corrected by hormonal and neuronal mechanisms. Furthermore, changes in energy expenditure associated with the light-dark cycle induce variations in the plasma glucose concentration that are more gradual. Organisms take advantage of adapting their internal physiology to the predictable daily changes in energy expenditure, because it enables them to anticipate these changes and to prevent unnecessary disturbance of homeostasis. The hypothalamic biological clock, located in the suprachiasmatic nucleus (SCN), receives light information from the eyes and transmits this information to the rest of the body to synchronize physiology to the environment. Here we review several studies providing evidence for biological clock control of the daily variation in several aspects of glucose metabolism. Although both hormones and the autonomic nervous system can stimulate glucose uptake or production by organs in the periphery, we have shown that the biological clock control of glucose metabolism mostly occurs through the autonomic nervous system. The critical involvement of the biological clock is also indicated by several studies, indicating that disturbance of the biological clock is often associated with metabolic diseases, such as obesity, diabetes mellitus and hypertension.

  17. Reconfiguration of a Multi-oscillator Network by Light in the Drosophila Circadian Clock.

    PubMed

    Chatterjee, Abhishek; Lamaze, Angélique; De, Joydeep; Mena, Wilson; Chélot, Elisabeth; Martin, Béatrice; Hardin, Paul; Kadener, Sebastian; Emery, Patrick; Rouyer, François

    2018-06-07

    The brain clock that drives circadian rhythms of locomotor activity relies on a multi-oscillator neuronal network. In addition to synchronizing the clock with day-night cycles, light also reformats the clock-driven daily activity pattern. How changes in lighting conditions modify the contribution of the different oscillators to remodel the daily activity pattern remains largely unknown. Our data in Drosophila indicate that light readjusts the interactions between oscillators through two different modes. We show that a morning s-LNv > DN1p circuit works in series, whereas two parallel evening circuits are contributed by LNds and other DN1ps. Based on the photic context, the master pacemaker in the s-LNv neurons swaps its enslaved partner-oscillator-LNd in the presence of light or DN1p in the absence of light-to always link up with the most influential phase-determining oscillator. When exposure to light further increases, the light-activated LNd pacemaker becomes independent by decoupling from the s-LNvs. The calibration of coupling by light is layered on a clock-independent network interaction wherein light upregulates the expression of the PDF neuropeptide in the s-LNvs, which inhibits the behavioral output of the DN1p evening oscillator. Thus, light modifies inter-oscillator coupling and clock-independent output-gating to achieve flexibility in the network. It is likely that the light-induced changes in the Drosophila brain circadian network could reveal general principles of adapting to varying environmental cues in any neuronal multi-oscillator system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Blocking synaptic transmission with tetanus toxin light chain reveals modes of neurotransmission in the PDF-positive circadian clock neurons of Drosophila melanogaster.

    PubMed

    Umezaki, Yujiro; Yasuyama, Kouji; Nakagoshi, Hideki; Tomioka, Kenji

    2011-09-01

    Circadian locomotor rhythms of Drosophila melanogaster are controlled by a neuronal circuit composed of approximately 150 clock neurons that are roughly classified into seven groups. In the circuit, a group of neurons expressing pigment-dispersing factor (PDF) play an important role in organizing the pacemaking system. Recent studies imply that unknown chemical neurotransmitter(s) (UNT) other than PDF is also expressed in the PDF-positive neurons. To explore its role in the circadian pacemaker, we examined the circadian locomotor rhythms of pdf-Gal4/UAS-TNT transgenic flies in which chemical synaptic transmission in PDF-positive neurons was blocked by expressed tetanus toxin light chain (TNT). In constant darkness (DD), the flies showed a free-running rhythm, which was similar to that of wild-type flies but significantly different from pdf null mutants. Under constant light conditions (LL), however, they often showed complex rhythms with a short period and a long period component. The UNT is thus likely involved in the synaptic transmission in the clock network and its release caused by LL leads to arrhythmicity. Immunocytochemistry revealed that LL induced phase separation in TIMELESS (TIM) cycling among some of the PDF-positive and PDF-negative clock neurons in the transgenic flies. These results suggest that both PDF and UNT play important roles in the Drosophila circadian clock, and activation of PDF pathway alone by LL leads to the complex locomotor rhythm through desynchronized oscillation among some of the clock neurons. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Circadian Rhythms and Clock Genes in Reproduction: Insights From Behavior and the Female Rabbit’s Brain

    PubMed Central

    Caba, Mario; González-Mariscal, Gabriela; Meza, Enrique

    2018-01-01

    Clock gene oscillations are necessary for a successful pregnancy and parturition, but little is known about their function during lactation, a period demanding from the mother multiple physiological and behavioral adaptations to fulfill the requirements of the offspring. First, we will focus on circadian rhythms and clock genes in reproductive tissues mainly in rodents. Disruption of circadian rhythms or proper rhythmic oscillations of clock genes provoke reproductive problems, as found in clock gene knockout mice. Then, we will focus mainly on the rabbit doe as this mammal nurses the young just once a day with circadian periodicity. This daily event synchronizes the behavior and the activity of specific brain regions critical for reproductive neuroendocrinology and maternal behavior, like the preoptic area. This region shows strong rhythms of the PER1 protein (product of the Per1 clock gene) associated with circadian nursing. Additionally, neuroendocrine cells related to milk production and ejections are also synchronized to daily nursing. A threshold of suckling is necessary to entrain once a day nursing; this process is independent of milk output as even virgin does (behaving maternally following anosmia) can display circadian nursing behavior. A timing motivational mechanism may regulate such behavior as mesolimbic dopaminergic cells are entrained by daily nursing. Finally, we will explore about the clinical importance of circadian rhythms. Indeed, women in chronic shift-work schedules show problems in their menstrual cycles and pregnancies and also have a high risk of preterm delivery, making this an important field of translational research. PMID:29599751

  20. Prediction of the protein components of a putative Calanus finmarchicus (Crustacea, Copepoda) circadian signaling system using a de novo assembled transcriptome

    PubMed Central

    Christie, Andrew E.; Fontanilla, Tiana M.; Nesbit, Katherine T.; Lenz, Petra H.

    2013-01-01

    Diel vertical migration and seasonal diapause are critical life history events for the copepod Calanus finmarchicus. While much is known about these behaviors phenomenologically, little is known about their molecular underpinnings. Recent studies in insects suggest that some circadian genes/proteins also contribute to the establishment of seasonal diapause. Thus, it is possible that in Calanus these distinct timing regimes share some genetic components. To begin to address this possibility, we used the well-established Drosophila melanogaster circadian system as a reference for mining clock transcripts from a 200,000+ sequence Calanus transcriptome; the proteins encoded by the identified transcripts were also deduced and characterized. Sequences encoding homologs of the Drosophila core clock proteins CLOCK, CYCLE, PERIOD and TIMELESS were identified, as was one encoding CRYPTOCHROME 2, a core clock protein in ancestral insect systems, but absent in Drosophila. Calanus transcripts encoding proteins known to modulate the Drosophila core clock were also identified and characterized, e.g. CLOCKWORK ORANGE, DOUBLETIME, SHAGGY and VRILLE. Alignment and structural analyses of the deduced Calanus proteins with their Drosophila counterparts revealed extensive sequence conservation, particularly in functional domains. Interestingly, reverse BLAST analyses of these sequences against all arthropod proteins typically revealed non-Drosophila isoforms to be most similar to the Calanus queries. This, in combination with the presence of both CRYPTOCHROME 1 (a clock input pathway protein) and CRYPTOCHROME 2 in Calanus, suggests that the organization of the copepod circadian system is an ancestral one, more similar to that of insects like Danaus plexippus than to that of Drosophila. PMID:23727418

  1. The light-induced transcriptome of the zebrafish pineal gland reveals complex regulation of the circadian clockwork by light

    PubMed Central

    Ben-Moshe, Zohar; Alon, Shahar; Mracek, Philipp; Faigenbloom, Lior; Tovin, Adi; Vatine, Gad D.; Eisenberg, Eli; Foulkes, Nicholas S.; Gothilf, Yoav

    2014-01-01

    Light constitutes a primary signal whereby endogenous circadian clocks are synchronized (‘entrained’) with the day/night cycle. The molecular mechanisms underlying this vital process are known to require gene activation, yet are incompletely understood. Here, the light-induced transcriptome in the zebrafish central clock organ, the pineal gland, was characterized by messenger RNA (mRNA) sequencing (mRNA-seq) and microarray analyses, resulting in the identification of multiple light-induced mRNAs. Interestingly, a considerable portion of the molecular clock (14 genes) is light-induced in the pineal gland. Four of these genes, encoding the transcription factors dec1, reverbb1, e4bp4-5 and e4bp4-6, differentially affected clock- and light-regulated promoter activation, suggesting that light-input is conveyed to the core clock machinery via diverse mechanisms. Moreover, we show that dec1, as well as the core clock gene per2, is essential for light-entrainment of rhythmic locomotor activity in zebrafish larvae. Additionally, we used microRNA (miRNA) sequencing (miR-seq) and identified pineal-enhanced and light-induced miRNAs. One such miRNA, miR-183, is shown to downregulate e4bp4-6 mRNA through a 3′UTR target site, and importantly, to regulate the rhythmic mRNA levels of aanat2, the key enzyme in melatonin synthesis. Together, this genome-wide approach and functional characterization of light-induced factors indicate a multi-level regulation of the circadian clockwork by light. PMID:24423866

  2. Design, testing, and economics of a 430 W sub p photovoltaic concentrator array for non grid-connected applications

    NASA Astrophysics Data System (ADS)

    Maish, A. B.; Rios, M., Jr.; Togami, H.

    A stand-alone 430 W/sub p/ photovoltaic (PV) concentrating system for low power, non grid-connected applications has been designed, fabricated, and tested at Sandia National Laboratories. The array consists of four passively cooled Fresnel lens concentrating modules on a newly developed polar axis tracking structure. Two axis tracking is provided using a self powered clock drive unit mounted on a single post foundation. Test results of tracking accuracy, array output power, parasitic power, performance in winds and array reliability are discussed. using a range of estimated production costs for small production volumes, the life-cycle energy costs have been calculated and compared to the equivalent energy costs of a 3 kW diesel electric generator set and of an equivalent flat panel PV system.

  3. Diffuse chorioretinal atrophy after a single standard low- dose intravitreal melphalan injection in a child with retinoblastoma: a case report.

    PubMed

    Chao, An- Ning; Kao, Ling-Yuh; Liu, Laura; Wang, Nan-Kai

    2016-03-15

    Controlling retinoblastoma with seeding is challenging despite advances in treatment modalities. Intravitreal melphalan is an alternative to external beam radiation or enucleation for recurrent or refractory vitreous seeds. Significant ocular side effects following intravitreal melphalan injections are uncommon. Complications have been reported in eyes receiving higher concentrations of melphalan and repetitive injections. We report a case in which diffuse chorioretinal atrophy was developed at the injection site after a single, standard low-dose intravitreal melphalan injection. A 12-month-old female child without a family history of retinoblastoma presented with unilateral group C retinoblastoma in her right eye. A solitary tumour with retinal breaks on the tumour surface, and vitreous seeds overlying the tumour were observed at the 8 o'clock position of the retina. After two cycles of intra-arterial chemotherapy with melphalan, the main tumour displayed significant regression, but the vitreous seeds overlying the main tumour were still active. Because of the persistence of vitreous seeds and the inadequate response to intra-arterial melphalan treatment, intravitreal melphalan (8 μg in 0.05 mL) was injected using a 32-gauge needle 2.5 mm from the 5 o'clock position of the limbus, the meridian opposite to the vitreous seeds. After 1 month, the retina around the injection site demonstrated diffuse retinal pigment epithelium alterations with dense hard exudates. Although the main retinal mass, and vitreous seeds resolved, the hard exudates persisted for more than 2 years after the single low-dose melphalan injection. Intravitreal melphalan injections should be cautiously used for eyes with refractory seeds, particularly when multiple injections are required to control retinoblastoma seeds. Dose- related retinal toxicity could occur in pre-treated eyes even when a relatively low standard dose is used. Such patients should be followed up closely to monitor the treatment response and to assess potential delayed toxicity.

  4. A direct repeat of E-box-like elements is required for cell-autonomous circadian rhythm of clock genes

    PubMed Central

    Nakahata, Yasukazu; Yoshida, Mayumi; Takano, Atsuko; Soma, Haruhiko; Yamamoto, Takuro; Yasuda, Akio; Nakatsu, Toru; Takumi, Toru

    2008-01-01

    Background The circadian expression of the mammalian clock genes is based on transcriptional feedback loops. Two basic helix-loop-helix (bHLH) PAS (for Period-Arnt-Sim) domain-containing transcriptional activators, CLOCK and BMAL1, are known to regulate gene expression by interacting with a promoter element termed the E-box (CACGTG). The non-canonical E-boxes or E-box-like sequences have also been reported to be necessary for circadian oscillation. Results We report a new cis-element required for cell-autonomous circadian transcription of clock genes. This new element consists of a canonical E-box or a non-canonical E-box and an E-box-like sequence in tandem with the latter with a short interval, 6 base pairs, between them. We demonstrate that both E-box or E-box-like sequences are needed to generate cell-autonomous oscillation. We also verify that the spacing nucleotides with constant length between these 2 E-elements are crucial for robust oscillation. Furthermore, by in silico analysis we conclude that several clock and clock-controlled genes possess a direct repeat of the E-box-like elements in their promoter region. Conclusion We propose a novel possible mechanism regulated by double E-box-like elements, not to a single E-box, for circadian transcriptional oscillation. The direct repeat of the E-box-like elements identified in this study is the minimal required element for the generation of cell-autonomous transcriptional oscillation of clock and clock-controlled genes. PMID:18177499

  5. Subpicosecond X rotations of atomic clock states

    NASA Astrophysics Data System (ADS)

    Song, Yunheung; Lee, Han-gyeol; Kim, Hyosub; Jo, Hanlae; Ahn, Jaewook

    2018-05-01

    We demonstrate subpicosecond-timescale population transfer between the pair of hyperfine ground states of atomic rubidium using a single laser-pulse. Our scheme utilizes the geometric and dynamic phases induced during Rabi oscillation through the fine-structure excited state to construct an X rotation gate for the hyperfine-state qubit system. The experiment performed with a femtosecond laser and cold rubidium atoms, in a magnetooptical trap, shows over 98% maximal population transfer between the clock states.

  6. SEU/SET Tolerant Phase-Locked Loops

    NASA Technical Reports Server (NTRS)

    Shuler, Robert L., Jr.

    2010-01-01

    The phase-locked loop (PLL) is an old and widely used circuit for frequency and phase demodulation, carrier and clock recovery, and frequency synthesis [1]. Its implementations range from discrete components to fully integrated circuits and even to firmware or software. Often the PLL is a highly critical component of a system, as for example when it is used to derive the on-chip clock, but as of this writing no definitive single-event upset (SET)/single-event transient (SET) tolerant PLL circuit has been described. This chapter hopes to rectify that situation, at least in regard to PLLs that are used to generate clocks. Older literature on fault-tolerant PLLs deals with detection of a hard failure, which is recovered by replacement, repair, or manual restart of discrete component systems. Several patents exist along these lines (6349391, 6272647, and 7089442). A newer approach is to harden the parts of a PLL system, to one degree or another, such as by using a voltage-based charge pump or a triple modular redundant (TMR) voted voltage-controlled oscillator (VCO). A more comprehensive approach is to harden by triplication and voting (TMR) all the digital pieces (primarily the divider) of a frequency synthesis PLL, but this still leaves room for errors in the VCO and the loop filter. Instead of hardening or voting pieces of a system, such as a frequency synthesis system (i.e., clock multiplier), we will show how the entire system can be voted. There are two main ways of doing this, each with advantages and drawbacks. We will show how each has advantages in certain areas, depending on the lock acquisition and tracking characteristics of the PLL. Because of this dependency on PLL characteristics, we will briefly revisit the theory of PLLs. But first we will describe the characteristics of voters and their correct application, as some literature does not follow the voting procedure that guarantees elimination of errors. Additionally, we will find that voting clocks is a bit trickier than voting data where an infallible clock is assumed. It is our job here to produce (or recover) that assumed infallible clock!

  7. An organization of a digital subsystem for generating spacecraft timing and control signals

    NASA Technical Reports Server (NTRS)

    Perlman, M.

    1972-01-01

    A modulo-M counter (of clock pulses) is decomposed into parallel modulo-m sub i counters, where each m sub i is a prime power divisor of M. The modulo-p sub i counters are feedback shift registers which cycle through p sub i distinct states. By this organization, every possible nontrivial data frame subperiod and delayed subperiod may be derived. The number of clock pulses required to bring every modulo-p sub i counter to a respective designated state or count is determined by the Chinese remainder theorem. This corresponds to the solution of simultaneous congruences over relatively prime moduli.

  8. Circadian Clock Protein Content and Daily Rhythm of Locomotor Activity Are Altered after Chronic Exposure to Lead in Rat

    PubMed Central

    Sabbar, Mariam; Dkhissi-Benyahya, Ouria; Benazzouz, Abdelhamid; Lakhdar-Ghazal, Nouria

    2017-01-01

    Lead exposure has been reported to produce many clinical features, including parkinsonism. However, its consequences on the circadian rhythms are still unknown. Here we aimed to examine the circadian rhythms of locomotor activity following lead intoxication and investigate the mechanisms by which lead may induce alterations of circadian rhythms in rats. Male Wistar rats were injected with lead or sodium acetate (10 mg/kg/day, i.p.) during 4 weeks. Both groups were tested in the “open field” to quantify the exploratory activity and in the rotarod to evaluate motor coordination. Then, animals were submitted to continuous 24 h recordings of locomotor activity under 14/10 Light/dark (14/10 LD) cycle and in complete darkness (DD). At the end of experiments, the clock proteins BMAL1, PER1-2, and CRY1-2 were assayed in the suprachiasmatic nucleus (SCN) using immunohistochemistry. We showed that lead significantly reduced the number of crossing in the open field, impaired motor coordination and altered the daily locomotor activity rhythm. When the LD cycle was advanced by 6 h, both groups adjusted their daily locomotor activity to the new LD cycle with high onset variability in lead-intoxicated rats compared to controls. Lead also led to a decrease in the number of immunoreactive cells (ir-) of BMAL1, PER1, and PER2 without affecting the number of ir-CRY1 and ir-CRY2 cells in the SCN. Our data provide strong evidence that lead intoxication disturbs the rhythm of locomotor activity and alters clock proteins expression in the SCN. They contribute to the understanding of the mechanism by which lead induce circadian rhythms disturbances. PMID:28970786

  9. Molecular genetic analysis of circadian timekeeping in Drosophila

    PubMed Central

    Hardin, Paul E.

    2014-01-01

    A genetic screen for mutants that alter circadian rhythms in Drosophila identified the first clock gene - the period (per) gene. The per gene is a central player within a transcriptional feedback loop that represents the core mechanism for keeping circadian time in Drosophila and other animals. The per feedback loop, or core loop, is interlocked with the Clock (Clk) feedback loop, but whether the Clk feedback loop contributes to circadian timekeeping is not known. A series of distinct molecular events are thought to control transcriptional feedback in the core loop. The time it takes to complete these events should take much less than 24h, thus delays must be imposed at different steps within the core loop. As new clock genes are identified, the molecular mechanisms responsible for these delays have been revealed in ever-increasing detail, and provide an in depth accounting of how transcriptional feedback loops keep circadian time. The phase of these feedback loops shift to maintain synchrony with environmental cycles, the most reliable of which is light. Although a great deal is known about cell-autonomous mechanisms of light-induced phase shifting by CRYPTOCHROME (CRY), much less is known about non-cell autonomous mechanisms. CRY mediates phase shifts through an uncharacterized mechanism in certain brain oscillator neurons, and carries out a dual role as a photoreceptor and transcription factor in other tissues. Here I will review how transcriptional feedback loops function to keep time in Drosophila, how they impose delays to maintain a 24h cycle, and how they maintain synchrony with environmental light:dark cycles. The transcriptional feedback loops that keep time in Drosophila are well conserved in other animals, thus what we learn about these loops in Drosophila should continue to provide insight into the operation of analogous transcriptional feedback loops in other animals. PMID:21924977

  10. Ultradian metabolic rhythm in the diazotrophic cyanobacterium Cyanothece sp. ATCC 51142.

    PubMed

    Červený, Jan; Sinetova, Maria A; Valledor, Luis; Sherman, Louis A; Nedbal, Ladislav

    2013-08-06

    The unicellular cyanobacterium Cyanothece sp. American Type Culture Collection (ATCC) 51142 is capable of performing oxygenic photosynthesis during the day and microoxic nitrogen fixation at night. These mutually exclusive processes are possible only by temporal separation by circadian clock or another cellular program. We report identification of a temperature-dependent ultradian metabolic rhythm that controls the alternating oxygenic and microoxic processes of Cyanothece sp. ATCC 51142 under continuous high irradiance and in high CO2 concentration. During the oxygenic photosynthesis phase, nitrate deficiency limited protein synthesis and CO2 assimilation was directed toward glycogen synthesis. The carbohydrate accumulation reduced overexcitation of the photosynthetic reactions until a respiration burst initiated a transition to microoxic N2 fixation. In contrast to the circadian clock, this ultradian period is strongly temperature-dependent: 17 h at 27 °C, which continuously decreased to 10 h at 39 °C. The cycle was expressed by an oscillatory modulation of net O2 evolution, CO2 uptake, pH, fluorescence emission, glycogen content, cell division, and culture optical density. The corresponding ultradian modulation was also observed in the transcription of nitrogenase-related nifB and nifH genes and in nitrogenase activities. We propose that the control by the newly identified metabolic cycle adds another rhythmic component to the circadian clock that reflects the true metabolic state depending on the actual temperature, irradiance, and CO2 availability.

  11. Distinguishing between stochasticity and determinism: Examples from cell cycle duration variability.

    PubMed

    Pearl Mizrahi, Sivan; Sandler, Oded; Lande-Diner, Laura; Balaban, Nathalie Q; Simon, Itamar

    2016-01-01

    We describe a recent approach for distinguishing between stochastic and deterministic sources of variability, focusing on the mammalian cell cycle. Variability between cells is often attributed to stochastic noise, although it may be generated by deterministic components. Interestingly, lineage information can be used to distinguish between variability and determinism. Analysis of correlations within a lineage of the mammalian cell cycle duration revealed its deterministic nature. Here, we discuss the sources of such variability and the possibility that the underlying deterministic process is due to the circadian clock. Finally, we discuss the "kicked cell cycle" model and its implication on the study of the cell cycle in healthy and cancerous tissues. © 2015 WILEY Periodicals, Inc.

  12. Colour As a Signal for Entraining the Mammalian Circadian Clock

    PubMed Central

    Walmsley, Lauren; Hanna, Lydia; Mouland, Josh; Martial, Franck; West, Alexander; Smedley, Andrew R.; Bechtold, David A.; Webb, Ann R.; Lucas, Robert J.; Brown, Timothy M.

    2015-01-01

    Twilight is characterised by changes in both quantity (“irradiance”) and quality (“colour”) of light. Animals use the variation in irradiance to adjust their internal circadian clocks, aligning their behaviour and physiology with the solar cycle. However, it is currently unknown whether changes in colour also contribute to this entrainment process. Using environmental measurements, we show here that mammalian blue–yellow colour discrimination provides a more reliable method of tracking twilight progression than simply measuring irradiance. We next use electrophysiological recordings to demonstrate that neurons in the mouse suprachiasmatic circadian clock display the cone-dependent spectral opponency required to make use of this information. Thus, our data show that some clock neurons are highly sensitive to changes in spectral composition occurring over twilight and that this input dictates their response to changes in irradiance. Finally, using mice housed under photoperiods with simulated dawn/dusk transitions, we confirm that spectral changes occurring during twilight are required for appropriate circadian alignment under natural conditions. Together, these data reveal a new sensory mechanism for telling time of day that would be available to any mammalian species capable of chromatic vision. PMID:25884537

  13. Time Analyzer for Time Synchronization and Monitor of the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Cole, Steven; Gonzalez, Jorge, Jr.; Calhoun, Malcolm; Tjoelker, Robert

    2003-01-01

    A software package has been developed to measure, monitor, and archive the performance of timing signals distributed in the NASA Deep Space Network. Timing signals are generated from a central master clock and distributed to over 100 users at distances up to 30 kilometers. The time offset due to internal distribution delays and time jitter with respect to the central master clock are critical for successful spacecraft navigation, radio science, and very long baseline interferometry (VLBI) applications. The instrument controller and operator interface software is written in LabView and runs on the Linux operating system. The software controls a commercial multiplexer to switch 120 separate timing signals to measure offset and jitter with a time-interval counter referenced to the master clock. The offset of each channel is displayed in histogram form, and "out of specification" alarms are sent to a central complex monitor and control system. At any time, the measurement cycle of 120 signals can be interrupted for diagnostic tests on an individual channel. The instrument also routinely monitors and archives the long-term stability of all frequency standards or any other 1-pps source compared against the master clock. All data is stored and made available for

  14. Spontaneous circadian rhythms in a cold-adapted natural isolate of Aureobasidium pullulans.

    PubMed

    Franco, Diana L; Canessa, Paulo; Bellora, Nicolás; Risau-Gusman, Sebastián; Olivares-Yañez, Consuelo; Pérez-Lara, Rodrigo; Libkind, Diego; Larrondo, Luis F; Marpegan, Luciano

    2017-10-23

    Circadian systems enable organisms to synchronize their physiology to daily and seasonal environmental changes relying on endogenous pacemakers that oscillate with a period close to 24 h even in the absence of external timing cues. The oscillations are achieved by intracellular transcriptional/translational feedback loops thoroughly characterized for many organisms, but still little is known about the presence and characteristics of circadian clocks in fungi other than Neurospora crassa. We sought to characterize the circadian system of a natural isolate of Aureobasidium pullulans, a cold-adapted yeast bearing great biotechnological potential. A. pullulans formed daily concentric rings that were synchronized by light/dark cycles and were also formed in constant darkness with a period of 24.5 h. Moreover, these rhythms were temperature compensated, as evidenced by experiments conducted at temperatures as low as 10 °C. Finally, the expression of clock-essential genes, frequency, white collar-1, white collar-2 and vivid was confirmed. In summary, our results indicate the existence of a functional circadian clock in A. pullulans, capable of sustaining rhythms at very low temperatures and, based on the presence of conserved clock-gene homologues, suggest a molecular and functional relationship to well-described circadian systems.

  15. A Computational Method to Quantify Fly Circadian Activity.

    PubMed

    Lazopulo, Andrey; Syed, Sheyum

    2017-10-28

    In most animals and plants, circadian clocks orchestrate behavioral and molecular processes and synchronize them to the daily light-dark cycle. Fundamental mechanisms that underlie this temporal control are widely studied using the fruit fly Drosophila melanogaster as a model organism. In flies, the clock is typically studied by analyzing multiday locomotor recording. Such a recording shows a complex bimodal pattern with two peaks of activity: a morning peak that happens around dawn, and an evening peak that happens around dusk. These two peaks together form a waveform that is very different from sinusoidal oscillations observed in clock genes, suggesting that mechanisms in addition to the clock have profound effects in producing the observed patterns in behavioral data. Here we provide instructions on using a recently developed computational method that mathematically describes temporal patterns in fly activity. The method fits activity data with a model waveform that consists of four exponential terms and nine independent parameters that fully describe the shape and size of the morning and evening peaks of activity. The extracted parameters can help elucidate the kinetic mechanisms of substrates that underlie the commonly observed bimodal activity patterns in fly locomotor rhythms.

  16. Circadian redox signaling in plant immunity and abiotic stress.

    PubMed

    Spoel, Steven H; van Ooijen, Gerben

    2014-06-20

    Plant crops are critically important to provide quality food and bio-energy to sustain a growing human population. Circadian clocks have been shown to deliver an adaptive advantage to plants, vastly increasing biomass production by efficient anticipation to the solar cycle. Plant stress, on the other hand, whether biotic or abiotic, prevents crops from reaching maximum productivity. Stress is associated with fluctuations in cellular redox and increased phytohormone signaling. Recently, direct links between circadian timekeeping, redox fluctuations, and hormone signaling have been identified. A direct implication is that circadian control of cellular redox homeostasis influences how plants negate stress to ensure growth and reproduction. Complex cellular biochemistry leads from perception of stress via hormone signals and formation of reactive oxygen intermediates to a physiological response. Circadian clocks and metabolic pathways intertwine to form a confusing biochemical labyrinth. Here, we aim to find order in this complex matter by reviewing current advances in our understanding of the interface between these networks. Although the link is now clearly defined, at present a key question remains as to what extent the circadian clock modulates redox, and vice versa. Furthermore, the mechanistic basis by which the circadian clock gates redox- and hormone-mediated stress responses remains largely elusive.

  17. Tidal, daily, and lunar-day activity cycles in the marine polychaete Nereis virens.

    PubMed

    Last, Kim S; Bailhache, Thierry; Kramer, Cas; Kyriacou, Charalambos P; Rosato, Ezio; Olive, Peter J W

    2009-02-01

    The burrow emergence activity of the wild caught ragworm Nereis virens Sars associated with food prospecting was investigated under various photoperiodic (LD) and simulated tidal cycles (STC) using a laboratory based actograph. Just over half (57%) of the animals under LD with STC displayed significant tidal (approximately 12.4 h) and/or lunar-day (approximately 24.8 h) activity patterns. Under constant light (LL) plus a STC, 25% of all animals were tidal, while one animal responded with a circadian (24.2 h) activity rhythm suggestive of cross-modal entrainment where the environmental stimulus of one period entrains rhythmic behavior of a different period. All peaks of activity under a STC, apart from that of the individual cross-modal entrainment case, coincided with the period of tank flooding. Under only LD without a STC, 49% of the animals showed nocturnal (approximately 24 h) activity. When animals were maintained under free-running LL conditions, 15% displayed significant rhythmicity with circatidal and circadian/circalunidian periodicities. Although activity cycles in N. virens at the population level are robust, at the individual level they are particularly labile, suggesting complex biological clock-control with multiple clock output pathways.

  18. Collective behaviors of suprachiasm nucleus neurons under different light—dark cycles

    NASA Astrophysics Data System (ADS)

    Gu, Chang-Gui; Zhang, Xin-Hua; Liu, Zong-Hua

    2014-07-01

    The principal circadian clock in the suprachiasm nucleus (SCN) regulates the circadian rhythm of physiological and behavioral activities of mammals. Except for the normal function of the circadian rhythm, the ensemble of SCN neurons may show two collective behaviors, i.e., a free running period in the absence of a light—dark cycle and an entrainment ability to an external T cycle. Experiments show that both the free running periods and the entrainment ranges may vary from one species to another and can be seriously influenced by the coupling among the SCN neurons. We here review the recent progress on how the heterogeneous couplings influence these two collective behaviors. We will show that in the case of homogeneous coupling, the free running period increases monotonically while the entrainment range decreases monotonically with the increase of the coupling strength. While in the case of heterogenous coupling, the dispersion of the coupling strength plays a crucial role. It has been found that the free running period decreases with the increase of the dispersion while the entrainment ability is enhanced by the dispersion. These findings provide new insights into the mechanism of the circadian clock in the SCN.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garriga, Jaume; Institute of Cosmology, Department of Physics and Astronomy, Tufts University,Medford, MA 02155; Urakawa, Yuko

    It is well known that, in single clock inflation, the curvature perturbation ζ is constant in time on superhorizon scales. In the standard bulk description this follows quite simply from the local conservation of the energy momentum tensor in the bulk. On the other hand, in a holographic description, the constancy of the curvature perturbation must be related to the properties of the RG flow in the boundary theory. Here, we show that, in single clock holographic inflation, the time independence of correlators of ζ follows from the absence of the anomolous dimension of the energy momentum tensor in themore » boundary theory, and from the so-called consistency relations for vertex functions with a soft leg.« less

  20. Stability and Noise in the Cyanobacterial Circadian Clock

    NASA Astrophysics Data System (ADS)

    Mihalcescu, Irina

    2008-03-01

    Accuracy in cellular function has to be achieved despite random fluctuations (noise) in the concentrations of different molecular constituents inside and outside the cell. Single cell in vivo monitoring reveals that individual cells generate autonomous circadian rhythms in protein abundance. In multi-cellular organisms, the individual cell rhythms appear to be noisy with drifting phases and frequencies. However, the whole organism is significantly more accurate, the temporal precision being achieved most probably via intercellular coupling of the individual noisy oscillators. In cyanobacteria, we have shown that single cell oscillators are impressively stable and a first estimation rules out strong intercellular coupling. Interestingly, these prokaryotes also have the simplest molecular mechanism at the heart of their circadian clock. In the absence of transcriptional activity in vivo, as well alone in vitro, the three clock proteins KaiA, KaiB and KaiC generate a self-sustained circadian oscillation of autophosphorylation and dephosphorylation. Recent chemical kinetics models provide a possible understanding of the three-protein oscillator, but the measured in vivo stability remains yet unexplained. Is the clock stability a built-in property for each bacterium or does a weak intercellular coupling, make them appear like that? To address this question we first theoretically designed our experiment to be able to distinguish coupling, even weak, from phase diffusion. As the precision of our evaluation increases with the length of the experiments, we continuously monitor, for a couple of weeks, mixtures of cell populations with different initial phases. The inherent experimental noise contribution, initially dominant, is reduced by enhanced statistics. In addition, in situ entrainment experiments confirm our ability to detect a coupling of the circadian oscillator to an external force and to describe explicitly the dynamic change of the mean phase. We report a value of the coupling constant that is small compared to the diffusion constant. These results therefore confirm that the cyanobacterial clock stability is a built-in property: the cyanobacterian clock mechanism is not only the simplest but also the most robust.

  1. Selection and amplification of a single optical frequency comb mode for laser cooling of the strontium atoms in an optical clock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hui; School of Physics, University of Chinese Academy of Sciences, Beijing 100049; Yin, Mojuan

    2015-10-12

    In this paper, we report on the active filtering and amplification of a single mode from an optical femtosecond laser comb with mode spacing of 250 MHz by optical injection of two external-cavity diode lasers operating in cascade to build a narrow linewidth laser for laser cooling of the strontium atoms in an optical lattice clock. Despite the low injection of individual comb mode of approximately 50 nW, a single comb line at 689 nm could be filtered and amplified to reach as high as 10 mW with 37 dB side mode suppression and a linewidth of 240 Hz. This method could be appliedmore » over a broad spectral band to build narrow linewidth lasers for various applications.« less

  2. The bipolarity of light and dark: A review on Bipolar Disorder and circadian cycles.

    PubMed

    Abreu, T; Bragança, M

    2015-10-01

    Bipolar Disorder is characterized by episodes running the full mood spectrum, from mania to depression. Between mood episodes, residual symptoms remain, as sleep alterations, circadian cycle disturbances, emotional deregulation, cognitive impairment and increased risk for comorbidities. The present review intends to reflect about the most recent and relevant information concerning the biunivocal relation between bipolar disorder and circadian cycles. It was conducted a literature search on PubMed database using the search terms "bipolar", "circadian", "melatonin", "cortisol", "body temperature", "Clock gene", "Bmal1 gene", "Per gene", "Cry gene", "GSK3β", "chronotype", "light therapy", "dark therapy", "sleep deprivation", "lithum" and "agomelatine". Search results were manually reviewed, and pertinent studies were selected for inclusion as appropriate. Several studies support the relationship between bipolar disorder and circadian cycles, discussing alterations in melatonin, body temperature and cortisol rhythms; disruption of sleep/wake cycle; variations of clock genes; and chronotype. Some therapeutics for bipolar disorder directed to the circadian cycles disturbances are also discussed, including lithium carbonate, agomelatine, light therapy, dark therapy, sleep deprivation and interpersonal and social rhythm therapy. This review provides a summary of an extensive research for the relevant literature on this theme, not a patient-wise meta-analysis. In the future, it is essential to achieve a better understanding of the relation between bipolar disorder and the circadian system. It is required to establish new treatment protocols, combining psychotherapy, therapies targeting the circadian rhythms and the latest drugs, in order to reduce the risk of relapse and improve affective behaviour. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Efficient high-rate satellite clock estimation for PPP ambiguity resolution using carrier-ranges.

    PubMed

    Chen, Hua; Jiang, Weiping; Ge, Maorong; Wickert, Jens; Schuh, Harald

    2014-11-25

    In order to catch up the short-term clock variation of GNSS satellites, clock corrections must be estimated and updated at a high-rate for Precise Point Positioning (PPP). This estimation is already very time-consuming for the GPS constellation only as a great number of ambiguities need to be simultaneously estimated. However, on the one hand better estimates are expected by including more stations, and on the other hand satellites from different GNSS systems must be processed integratively for a reliable multi-GNSS positioning service. To alleviate the heavy computational burden, epoch-differenced observations are always employed where ambiguities are eliminated. As the epoch-differenced method can only derive temporal clock changes which have to be aligned to the absolute clocks but always in a rather complicated way, in this paper, an efficient method for high-rate clock estimation is proposed using the concept of "carrier-range" realized by means of PPP with integer ambiguity resolution. Processing procedures for both post- and real-time processing are developed, respectively. The experimental validation shows that the computation time could be reduced to about one sixth of that of the existing methods for post-processing and less than 1 s for processing a single epoch of a network with about 200 stations in real-time mode after all ambiguities are fixed. This confirms that the proposed processing strategy will enable the high-rate clock estimation for future multi-GNSS networks in post-processing and possibly also in real-time mode.

  4. A single chip 2 Gbit/s clock recovery subsystem for digital communications

    NASA Astrophysics Data System (ADS)

    Hickling, Ronald M.

    A self-contained clock recovery/data resynchronizer phase locked loop (PLL) for use in microwave and fiber optic digital communications has been fabricated using GaAs integrated circuit technology. The IC contains the analog and digital components for the PLL: an edge-triggered phase detector based on a 1.2 GHz phase/frequency comparator, an op amp for creating the loop filter, and a VCO based on a differential source-coupled pair amplifier.

  5. High-Performance Clock Synchronization Algorithms for Distributed Wireless Airborne Computer Networks with Applications to Localization and Tracking of Targets

    DTIC Science & Technology

    2010-06-01

    GMKPF represents a better and more flexible alternative to the Gaussian Maximum Likelihood (GML), and Exponential Maximum Likelihood ( EML ...accurate results relative to GML and EML when the network delays are modeled in terms of a single non-Gaussian/non-exponential distribution or as a...to the Gaussian Maximum Likelihood (GML), and Exponential Maximum Likelihood ( EML ) estimators for clock offset estimation in non-Gaussian or non

  6. Quantum standard clocks in the primordial trispectrum

    NASA Astrophysics Data System (ADS)

    Chen, Xingang; Zhen Chua, Wan; Guo, Yuxun; Wang, Yi; Xianyu, Zhong-Zhi; Xie, Tianyou

    2018-05-01

    We calculate the primordial trispectrum of curvature perturbation in quasi-single field inflation, with general sound speeds for both the inflaton and the massive scalar. Special attention is paid to various soft limits of the trispectrum, where the shape function shows characteristic oscillatory pattern (known as the quantum primordial standard clock signal) as a function of the momentum ratio. Our calculation is greatly simplified by using the "mixed propagator" developed under a diagrammatic representation of the in-in formalism.

  7. Hyper-Ramsey spectroscopy of optical clock transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yudin, V. I.; Taichenachev, A. V.; Oates, C. W.

    2010-07-15

    We present nonstandard optical Ramsey schemes that use pulses individually tailored in duration, phase, and frequency to cancel spurious frequency shifts related to the excitation itself. In particular, the field shifts and their uncertainties can be radically suppressed (by two to four orders of magnitude) in comparison with the usual Ramsey method (using two equal pulses) as well as with single-pulse Rabi spectroscopy. Atom interferometers and optical clocks based on two-photon transitions, heavily forbidden transitions, or magnetically induced spectroscopy could significantly benefit from this method. In the latter case, these frequency shifts can be suppressed considerably below a fractional levelmore » of 10{sup -17}. Moreover, our approach opens the door for high-precision optical clocks based on direct frequency comb spectroscopy.« less

  8. Electromagnetic Basis of Metabolism and Heredity

    NASA Technical Reports Server (NTRS)

    Freund, Friedemann; Stolc, Viktor

    2016-01-01

    Living organisms control their cellular biological clocks to maintain functional oscillation of the redox cycle, also called the "metabolic cycle" or "respiratory cycle". Organization of cellular processes requires parallel processing on a synchronized time-base. These clocks coordinate the timing of all biochemical processes in the cell, including energy production, DNA replication, and RNA transcription. When this universal time keeping function is perturbed by exogenous induction of reactive oxygen species (ROS), the rate of metabolism changes. This causes oxidative stress, aging and mutations. Therefore, good temporal coordination of the redox cycle not only actively prevents chemical conflict between the reductive and oxidative partial reactions; it also maintains genome integrity and lifespan. Moreover, this universal biochemical rhythm can be disrupted by ROS induction in vivo. This in turn can be achieved by blocking the electron transport chain either endogenously or exogenously by various metabolites, e.g. hydrogen sulfide (H2S), highly diffusible drugs, and carbon monoxide (CO). Alternatively, the electron transport in vivo can be attenuated via a coherent or interfering transfer of energy from exogenous ultralow frequency (ULF) and extremely low frequency (ELF) electromagnetic (EM) fields, suggesting that-on Earth-such ambient fields are an omnipresent (and probably crucially important) factor for the time-setting basis of universal biochemical reactions in living cells. Our work demonstrated previously un-described evidence for quantum effects in biology by electromagnetic coupling below thermal noise at the universal electron transport chain (ETC) in vivo.

  9. Performance Analysis of Several GPS/Galileo Precise Point Positioning Models

    PubMed Central

    Afifi, Akram; El-Rabbany, Ahmed

    2015-01-01

    This paper examines the performance of several precise point positioning (PPP) models, which combine dual-frequency GPS/Galileo observations in the un-differenced and between-satellite single-difference (BSSD) modes. These include the traditional un-differenced model, the decoupled clock model, the semi-decoupled clock model, and the between-satellite single-difference model. We take advantage of the IGS-MGEX network products to correct for the satellite differential code biases and the orbital and satellite clock errors. Natural Resources Canada’s GPSPace PPP software is modified to handle the various GPS/Galileo PPP models. A total of six data sets of GPS and Galileo observations at six IGS stations are processed to examine the performance of the various PPP models. It is shown that the traditional un-differenced GPS/Galileo PPP model, the GPS decoupled clock model, and the semi-decoupled clock GPS/Galileo PPP model improve the convergence time by about 25% in comparison with the un-differenced GPS-only model. In addition, the semi-decoupled GPS/Galileo PPP model improves the solution precision by about 25% compared to the traditional un-differenced GPS/Galileo PPP model. Moreover, the BSSD GPS/Galileo PPP model improves the solution convergence time by about 50%, in comparison with the un-differenced GPS PPP model, regardless of the type of BSSD combination used. As well, the BSSD model improves the precision of the estimated parameters by about 50% and 25% when the loose and the tight combinations are used, respectively, in comparison with the un-differenced GPS-only model. Comparable results are obtained through the tight combination when either a GPS or a Galileo satellite is selected as a reference. PMID:26102495

  10. Performance Analysis of Several GPS/Galileo Precise Point Positioning Models.

    PubMed

    Afifi, Akram; El-Rabbany, Ahmed

    2015-06-19

    This paper examines the performance of several precise point positioning (PPP) models, which combine dual-frequency GPS/Galileo observations in the un-differenced and between-satellite single-difference (BSSD) modes. These include the traditional un-differenced model, the decoupled clock model, the semi-decoupled clock model, and the between-satellite single-difference model. We take advantage of the IGS-MGEX network products to correct for the satellite differential code biases and the orbital and satellite clock errors. Natural Resources Canada's GPSPace PPP software is modified to handle the various GPS/Galileo PPP models. A total of six data sets of GPS and Galileo observations at six IGS stations are processed to examine the performance of the various PPP models. It is shown that the traditional un-differenced GPS/Galileo PPP model, the GPS decoupled clock model, and the semi-decoupled clock GPS/Galileo PPP model improve the convergence time by about 25% in comparison with the un-differenced GPS-only model. In addition, the semi-decoupled GPS/Galileo PPP model improves the solution precision by about 25% compared to the traditional un-differenced GPS/Galileo PPP model. Moreover, the BSSD GPS/Galileo PPP model improves the solution convergence time by about 50%, in comparison with the un-differenced GPS PPP model, regardless of the type of BSSD combination used. As well, the BSSD model improves the precision of the estimated parameters by about 50% and 25% when the loose and the tight combinations are used, respectively, in comparison with the un-differenced GPS-only model. Comparable results are obtained through the tight combination when either a GPS or a Galileo satellite is selected as a reference.

  11. High-power Al-free active region (λ= 852nm) DFB laser diodes for atomic clocks and interferometry applications

    NASA Astrophysics Data System (ADS)

    Ligeret, V.; Vermersch, F.-J.; Bansropun, S.; Lecomte, M.; Calligaro, M.; Parillaud, O.; Krakowski, M.

    2017-11-01

    Atomic clocks will be used in the future European positioning system Galileo. Among them, the optically pumped clocks provide a better alternative with comparable accuracy for a more compact system. For these systems, diode lasers emitting at 852nm are strategic components. The laser in a conventional bench for atomic clocks presents disadvantages for spatial applications. A better approach would be to realise a system based on a distributed-feedback laser (DFB). We have developed the technological foundations of such lasers operating at 852nm. These include an Al free active region, a single spatial mode ridge waveguide and a DFB structure. The device is a separate confinement heterostructure with a GaInP large optical cavity and a single compressive strained GaInAsP quantum well. The broad area laser diodes are characterised by low internal losses (<3cm -1 ), a high internal efficiency (94%) and a low transparency current density (100A/cm2). For an AR-HR coated ridge Fabry Perot laser, we obtain a power of 230mW with M2=1.3. An optical power of 150mW was obtained at 854nm wavelength, 20°C for AR-HR coated devices. We obtain a single spatial mode emission with M2=1.21 and a SMSR over 30dB, both at 150mW. DFB Lasers at 852.12nm, corresponding to the D2 caesium transition, were then realised with a power of 40mW, 37°C for uncoated devices. The SMSR is over 30dB and the M2=1.33 at 40mW. Furthermore, the preliminary results of the linewidth obtained with a Fabry Perot interferometer give a value of less than 2MHz.

  12. Calibration of Multiple Poliovirus Molecular Clocks Covering an Extended Evolutionary Range▿ †

    PubMed Central

    Jorba, Jaume; Campagnoli, Ray; De, Lina; Kew, Olen

    2008-01-01

    We have calibrated five different molecular clocks for circulating poliovirus based upon the rates of fixation of total substitutions (Kt), synonymous substitutions (Ks), synonymous transitions (As), synonymous transversions (Bs), and nonsynonymous substitutions (Ka) into the P1/capsid region (2,643 nucleotides). Rates were determined over a 10-year period by analysis of sequences of 31 wild poliovirus type 1 isolates representing a well-defined phylogeny derived from a common imported ancestor. Similar rates were obtained by linear regression, the maximum likelihood/single-rate dated-tip method, and Bayesian inference. The very rapid Kt [(1.03 ± 0.10) × 10−2 substitutions/site/year] and Ks [(1.00 ± 0.08) × 10−2] clocks were driven primarily by the As clock [(0.96 ± 0.09) × 10−2], the Bs clock was ∼10-fold slower [(0.10 ± 0.03) × 10−2], and the more stochastic Ka clock was ∼30-fold slower [(0.03 ± 0.01) × 10−2]. Nonsynonymous substitutions at all P1/capsid sites, including the neutralizing antigenic sites, appeared to be constrained by purifying selection. Simulation of the evolution of third-codon positions suggested that saturation of synonymous transitions would be evident at 10 years and complete at ∼65 years of independent transmission. Saturation of synonymous transversions was predicted to be minimal at 20 years and incomplete at 100 years. The rapid evolution of the Kt, Ks, and As clocks can be used to estimate the dates of divergence of closely related viruses, whereas the slower Bs and Ka clocks may be used to explore deeper evolutionary relationships within and across poliovirus genotypes. PMID:18287242

  13. Acute Sleep Loss Induces Tissue-Specific Epigenetic and Transcriptional Alterations to Circadian Clock Genes in Men.

    PubMed

    Cedernaes, Jonathan; Osler, Megan E; Voisin, Sarah; Broman, Jan-Erik; Vogel, Heike; Dickson, Suzanne L; Zierath, Juleen R; Schiöth, Helgi B; Benedict, Christian

    2015-09-01

    Shift workers are at increased risk of metabolic morbidities. Clock genes are known to regulate metabolic processes in peripheral tissues, eg, glucose oxidation. This study aimed to investigate how clock genes are affected at the epigenetic and transcriptional level in peripheral human tissues following acute total sleep deprivation (TSD), mimicking shift work with extended wakefulness. In a randomized, two-period, two-condition, crossover clinical study, 15 healthy men underwent two experimental sessions: x sleep (2230-0700 h) and overnight wakefulness. On the subsequent morning, serum cortisol was measured, followed by skeletal muscle and subcutaneous adipose tissue biopsies for DNA methylation and gene expression analyses of core clock genes (BMAL1, CLOCK, CRY1, PER1). Finally, baseline and 2-h post-oral glucose load plasma glucose concentrations were determined. In adipose tissue, acute sleep deprivation vs sleep increased methylation in the promoter of CRY1 (+4%; P = .026) and in two promoter-interacting enhancer regions of PER1 (+15%; P = .036; +9%; P = .026). In skeletal muscle, TSD vs sleep decreased gene expression of BMAL1 (-18%; P = .033) and CRY1 (-22%; P = .047). Concentrations of serum cortisol, which can reset peripheral tissue clocks, were decreased (2449 ± 932 vs 3178 ± 723 nmol/L; P = .039), whereas postprandial plasma glucose concentrations were elevated after TSD (7.77 ± 1.63 vs 6.59 ± 1.32 mmol/L; P = .011). Our findings demonstrate that a single night of wakefulness can alter the epigenetic and transcriptional profile of core circadian clock genes in key metabolic tissues. Tissue-specific clock alterations could explain why shift work may disrupt metabolic integrity as observed herein.

  14. Direct-detection Free-space Laser Transceiver Test-bed

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Chen, Jeffrey R.; Dabney, Philip W.; Ferrara, Jeffrey F.; Fong, Wai H.; Martino, Anthony J.; McGarry Jan. F.; Merkowitz, Stephen M.; Principe, Caleb M.; Sun, Siaoli; hide

    2008-01-01

    NASA Goddard Space Flight Center is developing a direct-detection free-space laser communications transceiver test bed. The laser transmitter is a master-oscillator power amplifier (MOPA) configuration using a 1060 nm wavelength laser-diode with a two-stage multi-watt Ytterbium fiber amplifier. Dual Mach-Zehnder electro-optic modulators provide an extinction ratio greater than 40 dB. The MOPA design delivered 10-W average power with low-duty-cycle PPM waveforms and achieved 1.7 kW peak power. We use pulse-position modulation format with a pseudo-noise code header to assist clock recovery and frame boundary identification. We are examining the use of low-density-parity-check (LDPC) codes for forward error correction. Our receiver uses an InGaAsP 1 mm diameter photocathode hybrid photomultiplier tube (HPMT) cooled with a thermo-electric cooler. The HPMT has 25% single-photon detection efficiency at 1064 nm wavelength with a dark count rate of 60,000/s at -22 degrees Celsius and a single-photon impulse response of 0.9 ns. We report on progress toward demonstrating a combined laser communications and ranging field experiment.

  15. Design and implementation of a reconfigurable mixed-signal SoC based on field programmable analog arrays

    NASA Astrophysics Data System (ADS)

    Liu, Lintao; Gao, Yuhan; Deng, Jun

    2017-11-01

    This work presents a reconfigurable mixed-signal system-on-chip (SoC), which integrates switched-capacitor-based field programmable analog arrays (FPAA), analog-to-digital converter (ADC), digital-to-analog converter, digital down converter , digital up converter, 32-bit reduced instruction-set computer central processing unit (CPU) and other digital IPs on a single chip with 0.18 μm CMOS technology. The FPAA intellectual property could be reconfigured as different function circuits, such as gain amplifier, divider, sine generator, and so on. This single-chip integrated mixed-signal system is a complete modern signal processing system, occupying a die area of 7 × 8 mm 2 and consuming 719 mW with a clock frequency of 150 MHz for CPU and 200 MHz for ADC/DAC. This SoC chip can help customers to shorten design cycles, save board area, reduce the system power consumption and depress the system integration risk, which would afford a big prospect of application for wireless communication. Project supported by the National High Technology and Development Program of China (No. 2012AA012303).

  16. Transcriptional regulation of arylalkylamine-N-acetyltransferase-2 gene in the pineal gland of the gilthead seabream.

    PubMed

    Zilberman-Peled, B; Appelbaum, L; Vallone, D; Foulkes, N S; Anava, S; Anzulovich, A; Coon, S L; Klein, D C; Falcón, J; Ron, B; Gothilf, Y

    2007-01-01

    Pineal serotonin-N-acetyltransferase (arylalkylamine-N-acetyltransferase; AANAT) is considered the key enzyme in the generation of circulating melatonin rhythms; the rate of melatonin production is determined by AANAT activity. In all the examined species, AANAT activity is regulated at the post-translational level and, to a variable degree, also at the transcriptional level. Here, the transcriptional regulation of pineal aanat (aanat2) of the gilthead seabream (Sparus aurata) was investigated. Real-time polymerase chain reaction quantification of aanat2 mRNA levels in the pineal gland collected throughout the 24-h cycle revealed a rhythmic expression pattern. In cultured pineal glands, the amplitude was reduced, but the daily rhythmic expression pattern was maintained under constant illumination, indicating a circadian clock-controlled regulation of seabream aanat2. DNA constructs were prepared in which green fluorescent protein was driven by the aanat2 promoters of seabream and Northern pike. In vivo transient expression analyses in zebrafish embryos indicated that these promoters contain the necessary elements to drive enhanced expression in the pineal gland. In the light-entrainable clock-containing PAC-2 zebrafish cell line, a stably transfected seabream aanat2 promoter-luciferase DNA construct exhibited a clock-controlled circadian rhythm of luciferase activity, characteristic for an E-box-driven expression. In NIH-3T3 cells, the seabream aanat2 promoter was activated by a synergistic action of BMAL/CLOCK and orthodenticle homeobox 5 (OTX5). Promoter sequence analyses revealed the presence of the photoreceptor conserved element and an extended E-box (i.e. the binding sites for BMAL/CLOCK and OTX5 that have been previously associated with pineal-specific and rhythmic gene expression). These results suggest that seabream aanat2 is a clock-controlled gene that is regulated by conserved mechanisms.

  17. Genetic Disruption of Circadian Rhythms in the Suprachiasmatic Nucleus Causes Helplessness, Behavioral Despair, and Anxiety-like Behavior in Mice.

    PubMed

    Landgraf, Dominic; Long, Jaimie E; Proulx, Christophe D; Barandas, Rita; Malinow, Roberto; Welsh, David K

    2016-12-01

    Major depressive disorder is associated with disturbed circadian rhythms. To investigate the causal relationship between mood disorders and circadian clock disruption, previous studies in animal models have employed light/dark manipulations, global mutations of clock genes, or brain area lesions. However, light can impact mood by noncircadian mechanisms; clock genes have pleiotropic, clock-independent functions; and brain lesions not only disrupt cellular circadian rhythms but also destroy cells and eliminate important neuronal connections, including light reception pathways. Thus, a definitive causal role for functioning circadian clocks in mood regulation has not been established. We stereotactically injected viral vectors encoding short hairpin RNA to knock down expression of the essential clock gene Bmal1 into the brain's master circadian pacemaker, the suprachiasmatic nucleus (SCN). In these SCN-specific Bmal1-knockdown (SCN-Bmal1-KD) mice, circadian rhythms were greatly attenuated in the SCN, while the mice were maintained in a standard light/dark cycle, SCN neurons remained intact, and neuronal connections were undisturbed, including photic inputs. In the learned helplessness paradigm, the SCN-Bmal1-KD mice were slower to escape, even before exposure to inescapable stress. They also spent more time immobile in the tail suspension test and less time in the lighted section of a light/dark box. The SCN-Bmal1-KD mice also showed greater weight gain, an abnormal circadian pattern of corticosterone, and an attenuated increase of corticosterone in response to stress. Disrupting SCN circadian rhythms is sufficient to cause helplessness, behavioral despair, and anxiety-like behavior in mice, establishing SCN-Bmal1-KD mice as a new animal model of depression. Copyright © 2016 Society of Biological Psychiatry. All rights reserved.

  18. Genetic Disruption of Circadian Rhythms in the Suprachiasmatic Nucleus Causes Helplessness, Behavioral Despair, and Anxiety-like Behavior in Mice

    PubMed Central

    Landgraf, Dominic; Long, Jaimie E.; Proulx, Christophe D.; Barandas, Rita; Malinow, Roberto; Welsh, David K.

    2016-01-01

    Background Major depressive disorder is associated with disturbed circadian rhythms. To investigate the causal relationship between mood disorders and circadian clock disruption, previous studies in animal models have employed light/dark manipulations, global mutations of clock genes, or brain area lesions. However, light can impact mood by noncircadian mechanisms; clock genes have pleiotropic, clock-independent functions; and brain lesions not only disrupt cellular circadian rhythms but also destroy cells and eliminate important neuronal connections, including light reception pathways. Thus, a definitive causal role for functioning circadian clocks in mood regulation has not been established. Methods We stereotactically injected viral vectors encoding short hairpin RNA to knock down expression of the essential clock gene Bmal1 into the brain's master circadian pacemaker, the suprachiasmatic nucleus (SCN). Results In these SCN-specific Bmal1-knockdown (SCN-Bmal1-KD) mice, circadian rhythms were greatly attenuated in the SCN, while the mice were maintained in a standard light/dark cycle, SCN neurons remained intact, and neuronal connections were undisturbed, including photic inputs. In the learned helplessness paradigm, the SCN-Bmal1-KD mice were slower to escape, even before exposure to inescapable stress. They also spent more time immobile in the tail suspension test and less time in the lighted section of a light/dark box. The SCN-Bmal1-KD mice also showed greater weight gain, an abnormal circadian pattern of corticosterone, and an attenuated increase of corticosterone in response to stress. Conclusions Disrupting SCN circadian rhythms is sufficient to cause helplessness, behavioral despair, and anxiety-like behavior in mice, establishing SCN-Bmal1-KD mice as a new animal model of depression. PMID:27113500

  19. Clock Genes and Altered Sleep–Wake Rhythms: Their Role in the Development of Psychiatric Disorders

    PubMed Central

    Charrier, Annaëlle; Olliac, Bertrand; Roubertoux, Pierre; Tordjman, Sylvie

    2017-01-01

    In mammals, the circadian clocks network (central and peripheral oscillators) controls circadian rhythms and orchestrates the expression of a range of downstream genes, allowing the organism to anticipate and adapt to environmental changes. Beyond their role in circadian rhythms, several studies have highlighted that circadian clock genes may have a more widespread physiological effect on cognition, mood, and reward-related behaviors. Furthermore, single nucleotide polymorphisms in core circadian clock genes have been associated with psychiatric disorders (such as autism spectrum disorder, schizophrenia, anxiety disorders, major depressive disorder, bipolar disorder, and attention deficit hyperactivity disorder). However, the underlying mechanisms of these associations remain to be ascertained and the cause–effect relationships are not clearly established. The objective of this article is to clarify the role of clock genes and altered sleep–wake rhythms in the development of psychiatric disorders (sleep problems are often observed at early onset of psychiatric disorders). First, the molecular mechanisms of circadian rhythms are described. Then, the relationships between disrupted circadian rhythms, including sleep–wake rhythms, and psychiatric disorders are discussed. Further research may open interesting perspectives with promising avenues for early detection and therapeutic intervention in psychiatric disorders. PMID:28468274

  20. Clock Genes and Altered Sleep-Wake Rhythms: Their Role in the Development of Psychiatric Disorders.

    PubMed

    Charrier, Annaëlle; Olliac, Bertrand; Roubertoux, Pierre; Tordjman, Sylvie

    2017-04-29

    In mammals, the circadian clocks network (central and peripheral oscillators) controls circadian rhythms and orchestrates the expression of a range of downstream genes, allowing the organism to anticipate and adapt to environmental changes. Beyond their role in circadian rhythms, several studies have highlighted that circadian clock genes may have a more widespread physiological effect on cognition, mood, and reward-related behaviors. Furthermore, single nucleotide polymorphisms in core circadian clock genes have been associated with psychiatric disorders (such as autism spectrum disorder, schizophrenia, anxiety disorders, major depressive disorder, bipolar disorder, and attention deficit hyperactivity disorder). However, the underlying mechanisms of these associations remain to be ascertained and the cause-effect relationships are not clearly established. The objective of this article is to clarify the role of clock genes and altered sleep-wake rhythms in the development of psychiatric disorders (sleep problems are often observed at early onset of psychiatric disorders). First, the molecular mechanisms of circadian rhythms are described. Then, the relationships between disrupted circadian rhythms, including sleep-wake rhythms, and psychiatric disorders are discussed. Further research may open interesting perspectives with promising avenues for early detection and therapeutic intervention in psychiatric disorders.

  1. Migration phenology and breeding success are predicted by methylation of a photoperiodic gene in the barn swallow

    PubMed Central

    Saino, Nicola; Ambrosini, Roberto; Albetti, Benedetta; Caprioli, Manuela; De Giorgio, Barbara; Gatti, Emanuele; Liechti, Felix; Parolini, Marco; Romano, Andrea; Romano, Maria; Scandolara, Chiara; Gianfranceschi, Luca; Bollati, Valentina; Rubolini, Diego

    2017-01-01

    Individuals often considerably differ in the timing of their life-cycle events, with major consequences for individual fitness, and, ultimately, for population dynamics. Phenological variation can arise from genetic effects but also from epigenetic modifications in DNA expression and translation. Here, we tested if CpG methylation at the poly-Q and 5′-UTR loci of the photoperiodic Clock gene predicted migration and breeding phenology of long-distance migratory barn swallows (Hirundo rustica) that were tracked year-round using light-level geolocators. Increasing methylation at Clock poly-Q was associated with earlier spring departure from the African wintering area, arrival date at the European breeding site, and breeding date. Higher methylation levels also predicted increased breeding success. Thus, we showed for the first time in any species that CpG methylation at a candidate gene may affect phenology and breeding performance. Methylation at Clock may be a candidate mechanism mediating phenological responses of migratory birds to ongoing climate change. PMID:28361883

  2. Circadian Clock Control of Endocrine Factors

    PubMed Central

    Gamble, Karen L.; Berry, Ryan; Frank, Stuart J.; Young, Martin E.

    2015-01-01

    Organisms experience dramatic fluctuations in demands/stresses over the course of the day. In order to maintain biological processes within physiologic boundaries, it is imperative that mechanisms have evolved for anticipation of, and adaptation to, these daily fluctuations. Endocrine factors undoubtedly play an integral role in homeostasis. Not only do circulating levels of various endocrine factors oscillate over the 24 period, but so too does responsiveness of target tissues to these signals/stimuli. Emerging evidence suggests that these daily oscillations do not occur solely in response to behavioral fluctuations associated with sleep/wake and feeding/fasting cycles, but are orchestrated in part by an intrinsic timekeeping mechanism known as the circadian clock. Disruption of circadian clocks, through genetic and/or environmental means, appears to precipitate numerous common disorders, including cardiometabolic diseases and cancer. Collectively, these observations, which are reviewed within the current article, have led to suggestion that strategies designed to realign normal circadian rhythmicities hold a therapeutic potential for the treatment of various endocrine-related disorders. PMID:24863387

  3. A High-Speed Design of Montgomery Multiplier

    NASA Astrophysics Data System (ADS)

    Fan, Yibo; Ikenaga, Takeshi; Goto, Satoshi

    With the increase of key length used in public cryptographic algorithms such as RSA and ECC, the speed of Montgomery multiplication becomes a bottleneck. This paper proposes a high speed design of Montgomery multiplier. Firstly, a modified scalable high-radix Montgomery algorithm is proposed to reduce critical path. Secondly, a high-radix clock-saving dataflow is proposed to support high-radix operation and one clock cycle delay in dataflow. Finally, a hardware-reused architecture is proposed to reduce the hardware cost and a parallel radix-16 design of data path is proposed to accelerate the speed. By using HHNEC 0.25μm standard cell library, the implementation results show that the total cost of Montgomery multiplier is 130 KGates, the clock frequency is 180MHz and the throughput of 1024-bit RSA encryption is 352kbps. This design is suitable to be used in high speed RSA or ECC encryption/decryption. As a scalable design, it supports any key-length encryption/decryption up to the size of on-chip memory.

  4. Synchrony and desynchrony in circadian clocks: impacts on learning and memory

    PubMed Central

    Krishnan, Harini C.

    2015-01-01

    Circadian clocks evolved under conditions of environmental variation, primarily alternating light dark cycles, to enable organisms to anticipate daily environmental events and coordinate metabolic, physiological, and behavioral activities. However, modern lifestyle and advances in technology have increased the percentage of individuals working in phases misaligned with natural circadian activity rhythms. Endogenous circadian oscillators modulate alertness, the acquisition of learning, memory formation, and the recall of memory with examples of circadian modulation of memory observed across phyla from invertebrates to humans. Cognitive performance and memory are significantly diminished when occurring out of phase with natural circadian rhythms. Disruptions in circadian regulation can lead to impairment in the formation of memories and manifestation of other cognitive deficits. This review explores the types of interactions through which the circadian clock modulates cognition, highlights recent progress in identifying mechanistic interactions between the circadian system and the processes involved in memory formation, and outlines methods used to remediate circadian perturbations and reinforce circadian adaptation. PMID:26286653

  5. How to fix a broken clock

    PubMed Central

    Schroeder, Analyne M.; Colwell, Christopher S.

    2013-01-01

    Fortunate are those who rise out of bed to greet the morning light well rested with the energy and enthusiasm to drive a productive day. Others however, depend on hypnotics for sleep and require stimulants to awaken lethargic bodies. Sleep/wake disruption is a common occurrence in healthy individuals throughout their lifespan and is also a comorbid condition to many diseases (neurodegenerative) and psychiatric disorders (depression and bipolar). There is growing concern that chronic disruption of the sleep/wake cycle contributes to more serious conditions including diabetes (type 2), cardiovascular disease and cancer. A poorly functioning circadian system resulting in misalignments in the timing of clocks throughout the body may be at the root of the problem for many people. In this article, we discuss environmental (light therapy) and lifestyle changes (scheduled meals, exercise and sleep) as interventions to help fix a broken clock. We also discuss the challenges and potential for future development of pharmacological treatments to manipulate this key biological system. PMID:24120229

  6. Migration phenology and breeding success are predicted by methylation of a photoperiodic gene in the barn swallow.

    PubMed

    Saino, Nicola; Ambrosini, Roberto; Albetti, Benedetta; Caprioli, Manuela; De Giorgio, Barbara; Gatti, Emanuele; Liechti, Felix; Parolini, Marco; Romano, Andrea; Romano, Maria; Scandolara, Chiara; Gianfranceschi, Luca; Bollati, Valentina; Rubolini, Diego

    2017-03-31

    Individuals often considerably differ in the timing of their life-cycle events, with major consequences for individual fitness, and, ultimately, for population dynamics. Phenological variation can arise from genetic effects but also from epigenetic modifications in DNA expression and translation. Here, we tested if CpG methylation at the poly-Q and 5'-UTR loci of the photoperiodic Clock gene predicted migration and breeding phenology of long-distance migratory barn swallows (Hirundo rustica) that were tracked year-round using light-level geolocators. Increasing methylation at Clock poly-Q was associated with earlier spring departure from the African wintering area, arrival date at the European breeding site, and breeding date. Higher methylation levels also predicted increased breeding success. Thus, we showed for the first time in any species that CpG methylation at a candidate gene may affect phenology and breeding performance. Methylation at Clock may be a candidate mechanism mediating phenological responses of migratory birds to ongoing climate change.

  7. Pigment-Dispersing Factor Modulates Pheromone Production in Clock Cells that Influence Mating in Drosophila

    PubMed Central

    Krupp, Joshua J.; Billeter, Jean-Christophe; Wong, Amy; Choi, Charles; Nitabach, Michael N.; Levine, Joel D.

    2014-01-01

    Summary Social cues contribute to the circadian entrainment of physiological and behavioral rhythms. These cues supplement the influence of daily and seasonal cycles in light and temperature. In Drosophila, the social environment modulates circadian mechanisms that regulate sex pheromone production and mating behavior. Here we demonstrate that a neuroendocrine pathway, defined by the neuropeptide Pigment-Dispersing Factor (PDF), couples the central nervous system (CNS) to the physiological output of peripheral clock cells that produce pheromones, the oenocytes. PDF signaling from the CNS modulates the phase of the oenocyte clock. Despite its requirement for sustaining free-running locomoter activity rhythms, PDF is not necessary to sustain molecular rhythms in the oenocytes. Interestingly, disruption of the PDF signaling pathway reduces male sex pheromones and results in sex-specific differences in mating behavior. Our findings highlight the role of neuropeptide signaling and the circadian system in synchronizing the physiological and behavioral processes which govern social interactions. PMID:23849197

  8. Discordant timing between antennae disrupts sun compass orientation in migratory monarch butterflies

    PubMed Central

    Guerra, Patrick A; Merlin, Christine; Gegear, Robert J; Reppert, Steven M

    2014-01-01

    To navigate during their long-distance migration, monarch butterflies (Danaus plexippus) use a time-compensated sun compass. The sun compass timing elements reside in light-entrained circadian clocks in the antennae. Here we show that either antenna is sufficient for proper time compensation. However, migrants with either antenna painted black (to block light entrainment) and the other painted clear (to permit light entrainment) display disoriented group flight. Remarkably, when the black-painted antenna is removed, re-flown migrants with a single, clear-painted antenna exhibit proper orientation behaviour. Molecular correlates of clock function reveal that period and timeless expression is highly rhythmic in brains and clear-painted antennae, while rhythmic clock gene expression is disrupted in black-painted antennae. Our work shows that clock outputs from each antenna are processed and integrated together in the monarch time-compensated sun compass circuit. This dual timing system is a novel example of the regulation of a brain-driven behaviour by paired organs. PMID:22805565

  9. Testing general relativity and alternative theories of gravity with space-based atomic clocks and atom interferometers

    NASA Astrophysics Data System (ADS)

    Bondarescu, Ruxandra; Schärer, Andreas; Jetzer, Philippe; Angélil, Raymond; Saha, Prasenjit; Lundgren, Andrew

    2015-05-01

    The successful miniaturisation of extremely accurate atomic clocks and atom interferometers invites prospects for satellite missions to perform precision experiments. We discuss the effects predicted by general relativity and alternative theories of gravity that can be detected by a clock, which orbits the Earth. Our experiment relies on the precise tracking of the spacecraft using its observed tick-rate. The spacecraft's reconstructed four-dimensional trajectory will reveal the nature of gravitational perturbations in Earth's gravitational field, potentially differentiating between different theories of gravity. This mission can measure multiple relativistic effects all during the course of a single experiment, and constrain the Parametrized Post-Newtonian Parameters around the Earth. A satellite carrying a clock of fractional timing inaccuracy of Δ f / f ˜ 10-16 in an elliptic orbit around the Earth would constrain the PPN parameters |β - 1|, |γ - 1| ≲ 10-6. We also briefly review potential constraints by atom interferometers on scalar tensor theories and in particular on Chameleon and dilaton models.

  10. An open-source, extensible system for laboratory timing and control

    NASA Astrophysics Data System (ADS)

    Gaskell, Peter E.; Thorn, Jeremy J.; Alba, Sequoia; Steck, Daniel A.

    2009-11-01

    We describe a simple system for timing and control, which provides control of analog, digital, and radio-frequency signals. Our system differs from most common laboratory setups in that it is open source, built from off-the-shelf components, synchronized to a common and accurate clock, and connected over an Ethernet network. A simple bus architecture facilitates creating new and specialized devices with only moderate experience in circuit design. Each device operates independently, requiring only an Ethernet network connection to the controlling computer, a clock signal, and a trigger signal. This makes the system highly robust and scalable. The devices can all be connected to a single external clock, allowing synchronous operation of a large number of devices for situations requiring precise timing of many parallel control and acquisition channels. Provided an accurate enough clock, these devices are capable of triggering events separated by one day with near-microsecond precision. We have achieved precisions of ˜0.1 ppb (parts per 109) over 16 s.

  11. Light and the human circadian clock.

    PubMed

    Roenneberg, Till; Kantermann, Thomas; Juda, Myriam; Vetter, Céline; Allebrandt, Karla V

    2013-01-01

    The circadian clock can only reliably fulfil its function if it is stably entrained. Most clocks use the light-dark cycle as environmental signal (zeitgeber) for this active synchronisation. How we think about clock function and entrainment has been strongly influenced by the early concepts of the field's pioneers, and the astonishing finding that circadian rhythms continue a self-sustained oscillation in constant conditions has become central to our understanding of entrainment.Here, we argue that we have to rethink these initial circadian dogmas to fully understand the circadian programme and how it entrains. Light is also the prominent zeitgeber for the human clock, as has been shown experimentally in the laboratory and in large-scale epidemiological studies in real life, and we hypothesise that social zeitgebers act through light entrainment via behavioural feedback loops (zeitnehmer). We show that human entrainment can be investigated in detail outside of the laboratory, by using the many 'experimental' conditions provided by the real world, such as daylight savings time, the 'forced synchrony' imposed by the introduction of time zones, or the fact that humans increasingly create their own light environment. The conditions of human entrainment have changed drastically over the past 100 years and have led to an increasing discrepancy between biological and social time (social jetlag). The increasing evidence that social jetlag has detrimental consequences for health suggests that shift-work is only an extreme form of circadian misalignment, and that the majority of the population in the industrialised world suffers from a similarly 'forced synchrony'.

  12. The Circadian Clock of the Ant Camponotus floridanus Is Localized in Dorsal and Lateral Neurons of the Brain.

    PubMed

    Kay, Janina; Menegazzi, Pamela; Mildner, Stephanie; Roces, Flavio; Helfrich-Förster, Charlotte

    2018-06-01

    The circadian clock of social insects has become a focal point of interest for research, as social insects show complex forms of timed behavior and organization within their colonies. These behaviors include brood care, nest maintenance, foraging, swarming, defense, and many other tasks, of which several require social synchronization and accurate timing. Ants of the genus Camponotus have been shown to display a variety of daily timed behaviors such as the emergence of males from the nest, foraging, and relocation of brood. Nevertheless, circadian rhythms of isolated individuals have been studied in few ant species, and the circadian clock network in the brain that governs such behaviors remains completely uncharacterized. Here we show that isolated minor workers of Camponotus floridanus exhibit temperature overcompensated free-running locomotor activity rhythms under constant darkness. Under light-dark cycles, most animals are active during day and night, with a slight preference for the night. On the neurobiological level, we show that distinct cell groups in the lateral and dorsal brain of minor workers of C. floridanus are immunostained with an antibody against the clock protein Period (PER) and a lateral group additionally with an antibody against the neuropeptide pigment-dispersing factor (PDF). PER abundance oscillates in a daily manner, and PDF-positive neurites invade most parts of the brain, suggesting that the PER/PDF-positive neurons are bona fide clock neurons that transfer rhythmic signals into the relevant brain areas controlling rhythmic behavior.

  13. The Biological Clock: A Pivotal Hub in Non-alcoholic Fatty Liver Disease Pathogenesis

    PubMed Central

    Mazzoccoli, Gianluigi; De Cosmo, Salvatore; Mazza, Tommaso

    2018-01-01

    Non-alcoholic fatty liver disease (NAFLD) is the most frequent hepatic pathology in the Western world and may evolve into steatohepatitis (NASH), increasing the risk of cirrhosis, portal hypertension and hepatocellular carcinoma. NAFLD derives from the accumulation of hepatic fat due to discrepant free fatty acid metabolism. Other factors contributing to this are deranged nutrients and bile acids fluxes as well as alterations in nuclear receptors, hormones, and intermediary metabolites, which impact on signaling pathways involved in metabolism and inflammation. Autophagy and host gut-microbiota interplay are also relevant to NAFLD pathogenesis. Notably, liver metabolic pathways and bile acid synthesis as well as autophagic and immune/inflammatory processes all show circadian patterns driven by the biological clock. Gut microbiota impacts on the biological clock, at the same time as the appropriate timing of metabolic fluxes, hormone secretion, bile acid turnover, autophagy and inflammation with behavioural cycles of fasting/feeding and sleeping/waking is required to circumvent hepatosteatosis, indicating significant interactions of the gut and circadian processes in NAFLD pathophysiology. Several time-related factors and processes interplay in NAFLD development, with the biological clock proposed to act as a network level hub. Deranged physiological rhythms (chronodisruption) may also play a role in liver steatosis pathogenesis. The current article reviews how the circadian clock circuitry intimately interacts with several mechanisms involved in the onset of hepatosteatosis and its progression to NASH, thereby contributing to the global NAFLD epidemic. PMID:29662454

  14. Einstein’s Clocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, Don

    One of the most non-intuitive physics theories ever devised is Einstein’s Theory of Special Relativity, which claim such crazy-sounding things as two people disagreeing on such familiar concepts as length and time. In this video, Fermilab’s Dr. Don Lincoln shows that every single day particle physicists prove that moving clocks tick more slowly than stationary ones. He uses an easy to understand example of particles that move for far longer distances than you would expect from combining their velocity and stationary lifetime.

  15. High power VCSEL devices for atomic clock applications

    NASA Astrophysics Data System (ADS)

    Watkins, L. S.; Ghosh, C.; Seurin, J.-F.; Zhou, D.; Xu, G.; Xu, B.; Miglo, A.

    2015-09-01

    We are developing VCSEL technology producing >100mW in single frequency at wavelengths 780nm, 795nm and 850nm. Small aperture VCSELs with few mW output have found major applications in atomic clock experiments. Using an external cavity three-mirror configuration we have been able to operate larger aperture VCSELs and obtain >70mW power in single frequency operation. The VCSEL has been mounted in a fiber pigtailed package with the external mirror mounted on a shear piezo. The package incorporates a miniature Rb cell locker to lock the VCSEL wavelength. This VCSEL operates in single frequency and is tuned by a combination of piezo actuator, temperature and current. Mode-hop free tuning over >30GHz frequency span is obtained. The VCSEL has been locked to the Rb D2 line and feedback control used to obtain line-widths of <100kHz.

  16. Centering a DDR Strobe in the Middle of a Data Packet

    NASA Technical Reports Server (NTRS)

    Johnson, Michael; Nelson, Dave; Seefeldt, James; Roper, Weston; Passow, Craig

    2014-01-01

    The Orion CEV Northstar ASIC (application- specific integrated circuit) project required a DDR (double data rate) memory bus driver/receiver (DDR PHY block) to interface with external DDR memory. The DDR interface (JESD79C) is based on a source synchronous strobe (DQS\\) that is sent along with each packet of data (DQ). New data is provided concurrently with each edge of strobe and is sent irregularly. In order to capture this data, the strobe needs to be delayed and used to latch the data into a register. A circuit solves the need for training a DDR PRY block by incorporating a PVT-compensated delay element in the strobe path. This circuit takes an external reference clock signal and uses the regular clock to calibrate a known delay through a data path. The compensated delay DQS signal is then used to capture the DQ data in a normal register. This register structure can be configured as a FIFO (first in first out), in order to transfer data from the DDR domain to the system clock domain. This design is different in that it does not rely upon the need for training the system response, nor does it use a PLL (phase locked loop) or a DLL (delay locked loop) to provide an offset of the strobe signal. The circuit is created using standard ASIC building blocks, plus the PVT (process, voltage, and temperature) compensated delay line. The design uses a globally available system clock as a reference, alleviating the need to operate synchronously with the remote memory. The reference clock conditions the PVT compensated delay line to provide a pre-determined amount of delay to any data signal that passes through this delay line. The delay line is programmed in degrees of offset, so that one could think of the clock period representing 360deg of delay. In an ideal environment, delaying the strobe 1/4 of a clock cycle (90deg) would place the strobe in the middle of the data packet. This delayed strobe can then be used to clock the data into a register, satisfying setup and hold requirements of the system.

  17. Synchrony and entrainment properties of robust circadian oscillators

    PubMed Central

    Bagheri, Neda; Taylor, Stephanie R.; Meeker, Kirsten; Petzold, Linda R.; Doyle, Francis J.

    2008-01-01

    Systems theoretic tools (i.e. mathematical modelling, control, and feedback design) advance the understanding of robust performance in complex biological networks. We highlight phase entrainment as a key performance measure used to investigate dynamics of a single deterministic circadian oscillator for the purpose of generating insight into the behaviour of a population of (synchronized) oscillators. More specifically, the analysis of phase characteristics may facilitate the identification of appropriate coupling mechanisms for the ensemble of noisy (stochastic) circadian clocks. Phase also serves as a critical control objective to correct mismatch between the biological clock and its environment. Thus, we introduce methods of investigating synchrony and entrainment in both stochastic and deterministic frameworks, and as a property of a single oscillator or population of coupled oscillators. PMID:18426774

  18. Influence of Reproductive Aging of the Cow on Luteal Function and Period 1 mRNA Expression

    USDA-ARS?s Scientific Manuscript database

    In rodents, disruption of the circadian clock genes results in increased incidence of anovulation, irregular estrous cycles, decreased luteal function, and accelerated reproductive ageing. In cattle, reproductive ageing is associated with decreased numbers of follicles in the ovary, decreased lutea...

  19. Lactation biology symposium: Circadian clocks and photoperiod in mammary gland development and lactation

    USDA-ARS?s Scientific Manuscript database

    Life on earth evolved with light-dark cycles. As a result there arose in all organisms, though probably first in photosynthetic archaebacteria, oscillatory mechanisms to time processes that were necessary for survival and reproduction. The first known account of these oscillations was given for plan...

  20. Mathematical modeling in chronobiology.

    PubMed

    Bordyugov, G; Westermark, P O; Korenčič, A; Bernard, S; Herzel, H

    2013-01-01

    Circadian clocks are autonomous oscillators entrained by external Zeitgebers such as light-dark and temperature cycles. On the cellular level, rhythms are generated by negative transcriptional feedback loops. In mammals, the suprachiasmatic nucleus (SCN) in the anterior part of the hypothalamus plays the role of the central circadian pacemaker. Coupling between individual neurons in the SCN leads to precise self-sustained oscillations even in the absence of external signals. These neuronal rhythms orchestrate the phasing of circadian oscillations in peripheral organs. Altogether, the mammalian circadian system can be regarded as a network of coupled oscillators. In order to understand the dynamic complexity of these rhythms, mathematical models successfully complement experimental investigations. Here we discuss basic ideas of modeling on three different levels (1) rhythm generation in single cells by delayed negative feedbacks, (2) synchronization of cells via external stimuli or cell-cell coupling, and (3) optimization of chronotherapy.

Top