Channel coding for underwater acoustic single-carrier CDMA communication system
NASA Astrophysics Data System (ADS)
Liu, Lanjun; Zhang, Yonglei; Zhang, Pengcheng; Zhou, Lin; Niu, Jiong
2017-01-01
CDMA is an effective multiple access protocol for underwater acoustic networks, and channel coding can effectively reduce the bit error rate (BER) of the underwater acoustic communication system. For the requirements of underwater acoustic mobile networks based on CDMA, an underwater acoustic single-carrier CDMA communication system (UWA/SCCDMA) based on the direct-sequence spread spectrum is proposed, and its channel coding scheme is studied based on convolution, RA, Turbo and LDPC coding respectively. The implementation steps of the Viterbi algorithm of convolutional coding, BP and minimum sum algorithms of RA coding, Log-MAP and SOVA algorithms of Turbo coding, and sum-product algorithm of LDPC coding are given. An UWA/SCCDMA simulation system based on Matlab is designed. Simulation results show that the UWA/SCCDMA based on RA, Turbo and LDPC coding have good performance such that the communication BER is all less than 10-6 in the underwater acoustic channel with low signal to noise ratio (SNR) from -12 dB to -10dB, which is about 2 orders of magnitude lower than that of the convolutional coding. The system based on Turbo coding with Log-MAP algorithm has the best performance.
Zhang, Yuqin; Lin, Fanbo; Zhang, Youyu; Li, Haitao; Zeng, Yue; Tang, Hao; Yao, Shouzhuo
2011-01-01
A new method for the detection of point mutation in DNA based on the monobase-coded cadmium tellurium nanoprobes and the quartz crystal microbalance (QCM) technique was reported. A point mutation (single-base, adenine, thymine, cytosine, and guanine, namely, A, T, C and G, mutation in DNA strand, respectively) DNA QCM sensor was fabricated by immobilizing single-base mutation DNA modified magnetic beads onto the electrode surface with an external magnetic field near the electrode. The DNA-modified magnetic beads were obtained from the biotin-avidin affinity reaction of biotinylated DNA and streptavidin-functionalized core/shell Fe(3)O(4)/Au magnetic nanoparticles, followed by a DNA hybridization reaction. Single-base coded CdTe nanoprobes (A-CdTe, T-CdTe, C-CdTe and G-CdTe, respectively) were used as the detection probes. The mutation site in DNA was distinguished by detecting the decreases of the resonance frequency of the piezoelectric quartz crystal when the coded nanoprobe was added to the test system. This proposed detection strategy for point mutation in DNA is proved to be sensitive, simple, repeatable and low-cost, consequently, it has a great potential for single nucleotide polymorphism (SNP) detection. 2011 © The Japan Society for Analytical Chemistry
Study on multiple-hops performance of MOOC sequences-based optical labels for OPS networks
NASA Astrophysics Data System (ADS)
Zhang, Chongfu; Qiu, Kun; Ma, Chunli
2009-11-01
In this paper, we utilize a new study method that is under independent case of multiple optical orthogonal codes to derive the probability function of MOOCS-OPS networks, discuss the performance characteristics for a variety of parameters, and compare some characteristics of the system employed by single optical orthogonal code or multiple optical orthogonal codes sequences-based optical labels. The performance of the system is also calculated, and our results verify that the method is effective. Additionally it is found that performance of MOOCS-OPS networks would, negatively, be worsened, compared with single optical orthogonal code-based optical label for optical packet switching (SOOC-OPS); however, MOOCS-OPS networks can greatly enlarge the scalability of optical packet switching networks.
Application of grammar-based codes for lossless compression of digital mammograms
NASA Astrophysics Data System (ADS)
Li, Xiaoli; Krishnan, Srithar; Ma, Ngok-Wah
2006-01-01
A newly developed grammar-based lossless source coding theory and its implementation was proposed in 1999 and 2000, respectively, by Yang and Kieffer. The code first transforms the original data sequence into an irreducible context-free grammar, which is then compressed using arithmetic coding. In the study of grammar-based coding for mammography applications, we encountered two issues: processing time and limited number of single-character grammar G variables. For the first issue, we discover a feature that can simplify the matching subsequence search in the irreducible grammar transform process. Using this discovery, an extended grammar code technique is proposed and the processing time of the grammar code can be significantly reduced. For the second issue, we propose to use double-character symbols to increase the number of grammar variables. Under the condition that all the G variables have the same probability of being used, our analysis shows that the double- and single-character approaches have the same compression rates. By using the methods proposed, we show that the grammar code can outperform three other schemes: Lempel-Ziv-Welch (LZW), arithmetic, and Huffman on compression ratio, and has similar error tolerance capabilities as LZW coding under similar circumstances.
Optimized scalar promotion with load and splat SIMD instructions
Eichenberger, Alexander E; Gschwind, Michael K; Gunnels, John A
2013-10-29
Mechanisms for optimizing scalar code executed on a single instruction multiple data (SIMD) engine are provided. Placement of vector operation-splat operations may be determined based on an identification of scalar and SIMD operations in an original code representation. The original code representation may be modified to insert the vector operation-splat operations based on the determined placement of vector operation-splat operations to generate a first modified code representation. Placement of separate splat operations may be determined based on identification of scalar and SIMD operations in the first modified code representation. The first modified code representation may be modified to insert or delete separate splat operations based on the determined placement of the separate splat operations to generate a second modified code representation. SIMD code may be output based on the second modified code representation for execution by the SIMD engine.
Optimized scalar promotion with load and splat SIMD instructions
Eichenberger, Alexandre E [Chappaqua, NY; Gschwind, Michael K [Chappaqua, NY; Gunnels, John A [Yorktown Heights, NY
2012-08-28
Mechanisms for optimizing scalar code executed on a single instruction multiple data (SIMD) engine are provided. Placement of vector operation-splat operations may be determined based on an identification of scalar and SIMD operations in an original code representation. The original code representation may be modified to insert the vector operation-splat operations based on the determined placement of vector operation-splat operations to generate a first modified code representation. Placement of separate splat operations may be determined based on identification of scalar and SIMD operations in the first modified code representation. The first modified code representation may be modified to insert or delete separate splat operations based on the determined placement of the separate splat operations to generate a second modified code representation. SIMD code may be output based on the second modified code representation for execution by the SIMD engine.
Analysis of hybrid subcarrier multiplexing of OCDMA based on single photodiode detection
NASA Astrophysics Data System (ADS)
Ahmad, N. A. A.; Junita, M. N.; Aljunid, S. A.; Rashidi, C. B. M.; Endut, R.
2017-11-01
This paper analyzes the performance of subcarrier multiplexing (SCM) of spectral amplitude coding optical code multiple access (SAC-OCDMA) by applying Recursive Combinatorial (RC) code based on single photodiode detection (SPD). SPD is used in the receiver part to reduce the effect of multiple access interference (MAI) which contributes as a dominant noise in incoherent SAC-OCDMA systems. Results indicate that the SCM OCDMA network performance could be improved by using lower data rates and higher number of weight. Total number of users can also be enhanced by adding lower data rates and higher number of subcarriers.
Multiplexed Detection of Cytokines Based on Dual Bar-Code Strategy and Single-Molecule Counting.
Li, Wei; Jiang, Wei; Dai, Shuang; Wang, Lei
2016-02-02
Cytokines play important roles in the immune system and have been regarded as biomarkers. While single cytokine is not specific and accurate enough to meet the strict diagnosis in practice, in this work, we constructed a multiplexed detection method for cytokines based on dual bar-code strategy and single-molecule counting. Taking interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) as model analytes, first, the magnetic nanobead was functionalized with the second antibody and primary bar-code strands, forming a magnetic nanoprobe. Then, through the specific reaction of the second antibody and the antigen that fixed by the primary antibody, sandwich-type immunocomplex was formed on the substrate. Next, the primary bar-code strands as amplification units triggered multibranched hybridization chain reaction (mHCR), producing nicked double-stranded polymers with multiple branched arms, which were served as secondary bar-code strands. Finally, the secondary bar-code strands hybridized with the multimolecule labeled fluorescence probes, generating enhanced fluorescence signals. The numbers of fluorescence dots were counted one by one for quantification with epi-fluorescence microscope. By integrating the primary and secondary bar-code-based amplification strategy and the multimolecule labeled fluorescence probes, this method displayed an excellent sensitivity with the detection limits were both 5 fM. Unlike the typical bar-code assay that the bar-code strands should be released and identified on a microarray, this method is more direct. Moreover, because of the selective immune reaction and the dual bar-code mechanism, the resulting method could detect the two targets simultaneously. Multiple analysis in human serum was also performed, suggesting that our strategy was reliable and had a great potential application in early clinical diagnosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Earl, Christopher; Might, Matthew; Bagusetty, Abhishek
This study presents Nebo, a declarative domain-specific language embedded in C++ for discretizing partial differential equations for transport phenomena on multiple architectures. Application programmers use Nebo to write code that appears sequential but can be run in parallel, without editing the code. Currently Nebo supports single-thread execution, multi-thread execution, and many-core (GPU-based) execution. With single-thread execution, Nebo performs on par with code written by domain experts. With multi-thread execution, Nebo can linearly scale (with roughly 90% efficiency) up to 12 cores, compared to its single-thread execution. Moreover, Nebo’s many-core execution can be over 140x faster than its single-thread execution.
Earl, Christopher; Might, Matthew; Bagusetty, Abhishek; ...
2016-01-26
This study presents Nebo, a declarative domain-specific language embedded in C++ for discretizing partial differential equations for transport phenomena on multiple architectures. Application programmers use Nebo to write code that appears sequential but can be run in parallel, without editing the code. Currently Nebo supports single-thread execution, multi-thread execution, and many-core (GPU-based) execution. With single-thread execution, Nebo performs on par with code written by domain experts. With multi-thread execution, Nebo can linearly scale (with roughly 90% efficiency) up to 12 cores, compared to its single-thread execution. Moreover, Nebo’s many-core execution can be over 140x faster than its single-thread execution.
Meher, J K; Meher, P K; Dash, G N; Raval, M K
2012-01-01
The first step in gene identification problem based on genomic signal processing is to convert character strings into numerical sequences. These numerical sequences are then analysed spectrally or using digital filtering techniques for the period-3 peaks, which are present in exons (coding areas) and absent in introns (non-coding areas). In this paper, we have shown that single-indicator sequences can be generated by encoding schemes based on physico-chemical properties. Two new methods are proposed for generating single-indicator sequences based on hydration energy and dipole moments. The proposed methods produce high peak at exon locations and effectively suppress false exons (intron regions having greater peak than exon regions) resulting in high discriminating factor, sensitivity and specificity.
Augmented burst-error correction for UNICON laser memory. [digital memory
NASA Technical Reports Server (NTRS)
Lim, R. S.
1974-01-01
A single-burst-error correction system is described for data stored in the UNICON laser memory. In the proposed system, a long fire code with code length n greater than 16,768 bits was used as an outer code to augment an existing inner shorter fire code for burst error corrections. The inner fire code is a (80,64) code shortened from the (630,614) code, and it is used to correct a single-burst-error on a per-word basis with burst length b less than or equal to 6. The outer code, with b less than or equal to 12, would be used to correct a single-burst-error on a per-page basis, where a page consists of 512 32-bit words. In the proposed system, the encoding and error detection processes are implemented by hardware. A minicomputer, currently used as a UNICON memory management processor, is used on a time-demanding basis for error correction. Based upon existing error statistics, this combination of an inner code and an outer code would enable the UNICON system to obtain a very low error rate in spite of flaws affecting the recorded data.
Zhang, Fangzheng; Ge, Xiaozhong; Gao, Bindong; Pan, Shilong
2015-08-24
A novel scheme for photonic generation of a phase-coded microwave signal is proposed and its application in one-dimension distance measurement is demonstrated. The proposed signal generator has a simple and compact structure based on a single dual-polarization modulator. Besides, the generated phase-coded signal is stable and free from the DC and low-frequency backgrounds. An experiment is carried out. A 2 Gb/s phase-coded signal at 20 GHz is successfully generated, and the recovered phase information agrees well with the input 13-bit Barker code. To further investigate the performance of the proposed signal generator, its application in one-dimension distance measurement is demonstrated. The measurement accuracy is less than 1.7 centimeters within a measurement range of ~2 meters. The experimental results can verify the feasibility of the proposed phase-coded microwave signal generator and also provide strong evidence to support its practical applications.
NASA Technical Reports Server (NTRS)
Rost, Martin C.; Sayood, Khalid
1991-01-01
A method for efficiently coding natural images using a vector-quantized variable-blocksized transform source coder is presented. The method, mixture block coding (MBC), incorporates variable-rate coding by using a mixture of discrete cosine transform (DCT) source coders. Which coders are selected to code any given image region is made through a threshold driven distortion criterion. In this paper, MBC is used in two different applications. The base method is concerned with single-pass low-rate image data compression. The second is a natural extension of the base method which allows for low-rate progressive transmission (PT). Since the base method adapts easily to progressive coding, it offers the aesthetic advantage of progressive coding without incorporating extensive channel overhead. Image compression rates of approximately 0.5 bit/pel are demonstrated for both monochrome and color images.
An Idealized, Single Radial Swirler, Lean-Direct-Injection (LDI) Concept Meshing Script
NASA Technical Reports Server (NTRS)
Iannetti, Anthony C.; Thompson, Daniel
2008-01-01
To easily study combustor design parameters using computational fluid dynamics codes (CFD), a Gridgen Glyph-based macro (based on the Tcl scripting language) dubbed BladeMaker has been developed for the meshing of an idealized, single radial swirler, lean-direct-injection (LDI) combustor. BladeMaker is capable of taking in a number of parameters, such as blade width, blade tilt with respect to the perpendicular, swirler cup radius, and grid densities, and producing a three-dimensional meshed radial swirler with a can-annular (canned) combustor. This complex script produces a data format suitable for but not specific to the National Combustion Code (NCC), a state-of-the-art CFD code developed for reacting flow processes.
A Computer Program for Flow-Log Analysis of Single Holes (FLASH)
Day-Lewis, F. D.; Johnson, C.D.; Paillet, Frederick L.; Halford, K.J.
2011-01-01
A new computer program, FLASH (Flow-Log Analysis of Single Holes), is presented for the analysis of borehole vertical flow logs. The code is based on an analytical solution for steady-state multilayer radial flow to a borehole. The code includes options for (1) discrete fractures and (2) multilayer aquifers. Given vertical flow profiles collected under both ambient and stressed (pumping or injection) conditions, the user can estimate fracture (or layer) transmissivities and far-field hydraulic heads. FLASH is coded in Microsoft Excel with Visual Basic for Applications routines. The code supports manual and automated model calibration. ?? 2011, The Author(s). Ground Water ?? 2011, National Ground Water Association.
Development and verification of NRC`s single-rod fuel performance codes FRAPCON-3 AND FRAPTRAN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beyer, C.E.; Cunningham, M.E.; Lanning, D.D.
1998-03-01
The FRAPCON and FRAP-T code series, developed in the 1970s and early 1980s, are used by the US Nuclear Regulatory Commission (NRC) to predict fuel performance during steady-state and transient power conditions, respectively. Both code series are now being updated by Pacific Northwest National Laboratory to improve their predictive capabilities at high burnup levels. The newest versions of the codes are called FRAPCON-3 and FRAPTRAN. The updates to fuel property and behavior models are focusing on providing best estimate predictions under steady-state and fast transient power conditions up to extended fuel burnups (> 55 GWd/MTU). Both codes will be assessedmore » against a data base independent of the data base used for code benchmarking and an estimate of code predictive uncertainties will be made based on comparisons to the benchmark and independent data bases.« less
Refactoring the Genetic Code for Increased Evolvability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pines, Gur; Winkler, James D.; Pines, Assaf
ABSTRACT The standard genetic code is robust to mutations during transcription and translation. Point mutations are likely to be synonymous or to preserve the chemical properties of the original amino acid. Saturation mutagenesis experiments suggest that in some cases the best-performing mutant requires replacement of more than a single nucleotide within a codon. These replacements are essentially inaccessible to common error-based laboratory engineering techniques that alter a single nucleotide per mutation event, due to the extreme rarity of adjacent mutations. In this theoretical study, we suggest a radical reordering of the genetic code that maximizes the mutagenic potential of singlemore » nucleotide replacements. We explore several possible genetic codes that allow a greater degree of accessibility to the mutational landscape and may result in a hyperevolvable organism that could serve as an ideal platform for directed evolution experiments. We then conclude by evaluating the challenges of constructing such recoded organisms and their potential applications within the field of synthetic biology. IMPORTANCE The conservative nature of the genetic code prevents bioengineers from efficiently accessing the full mutational landscape of a gene via common error-prone methods. Here, we present two computational approaches to generate alternative genetic codes with increased accessibility. These new codes allow mutational transitions to a larger pool of amino acids and with a greater extent of chemical differences, based on a single nucleotide replacement within the codon, thus increasing evolvability both at the single-gene and at the genome levels. Given the widespread use of these techniques for strain and protein improvement, along with more fundamental evolutionary biology questions, the use of recoded organisms that maximize evolvability should significantly improve the efficiency of directed evolution, library generation, and fitness maximization.« less
Refactoring the Genetic Code for Increased Evolvability
Pines, Gur; Winkler, James D.; Pines, Assaf; ...
2017-11-14
ABSTRACT The standard genetic code is robust to mutations during transcription and translation. Point mutations are likely to be synonymous or to preserve the chemical properties of the original amino acid. Saturation mutagenesis experiments suggest that in some cases the best-performing mutant requires replacement of more than a single nucleotide within a codon. These replacements are essentially inaccessible to common error-based laboratory engineering techniques that alter a single nucleotide per mutation event, due to the extreme rarity of adjacent mutations. In this theoretical study, we suggest a radical reordering of the genetic code that maximizes the mutagenic potential of singlemore » nucleotide replacements. We explore several possible genetic codes that allow a greater degree of accessibility to the mutational landscape and may result in a hyperevolvable organism that could serve as an ideal platform for directed evolution experiments. We then conclude by evaluating the challenges of constructing such recoded organisms and their potential applications within the field of synthetic biology. IMPORTANCE The conservative nature of the genetic code prevents bioengineers from efficiently accessing the full mutational landscape of a gene via common error-prone methods. Here, we present two computational approaches to generate alternative genetic codes with increased accessibility. These new codes allow mutational transitions to a larger pool of amino acids and with a greater extent of chemical differences, based on a single nucleotide replacement within the codon, thus increasing evolvability both at the single-gene and at the genome levels. Given the widespread use of these techniques for strain and protein improvement, along with more fundamental evolutionary biology questions, the use of recoded organisms that maximize evolvability should significantly improve the efficiency of directed evolution, library generation, and fitness maximization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simunovic, Srdjan
2015-02-16
CASL's modeling and simulation technology, the Virtual Environment for Reactor Applications (VERA), incorporates coupled physics and science-based models, state-of-the-art numerical methods, modern computational science, integrated uncertainty quantification (UQ) and validation against data from operating pressurized water reactors (PWRs), single-effect experiments, and integral tests. The computational simulation component of VERA is the VERA Core Simulator (VERA-CS). The core simulator is the specific collection of multi-physics computer codes used to model and deplete a LWR core over multiple cycles. The core simulator has a single common input file that drives all of the different physics codes. The parser code, VERAIn, converts VERAmore » Input into an XML file that is used as input to different VERA codes.« less
Parallel Subspace Subcodes of Reed-Solomon Codes for Magnetic Recording Channels
ERIC Educational Resources Information Center
Wang, Han
2010-01-01
Read channel architectures based on a single low-density parity-check (LDPC) code are being considered for the next generation of hard disk drives. However, LDPC-only solutions suffer from the error floor problem, which may compromise reliability, if not handled properly. Concatenated architectures using an LDPC code plus a Reed-Solomon (RS) code…
Biometrics encryption combining palmprint with two-layer error correction codes
NASA Astrophysics Data System (ADS)
Li, Hengjian; Qiu, Jian; Dong, Jiwen; Feng, Guang
2017-07-01
To bridge the gap between the fuzziness of biometrics and the exactitude of cryptography, based on combining palmprint with two-layer error correction codes, a novel biometrics encryption method is proposed. Firstly, the randomly generated original keys are encoded by convolutional and cyclic two-layer coding. The first layer uses a convolution code to correct burst errors. The second layer uses cyclic code to correct random errors. Then, the palmprint features are extracted from the palmprint images. Next, they are fused together by XORing operation. The information is stored in a smart card. Finally, the original keys extraction process is the information in the smart card XOR the user's palmprint features and then decoded with convolutional and cyclic two-layer code. The experimental results and security analysis show that it can recover the original keys completely. The proposed method is more secure than a single password factor, and has higher accuracy than a single biometric factor.
Clarke, John R; Ragone, Andrew V; Greenwald, Lloyd
2005-09-01
We conducted a comparison of methods for predicting survival using survival risk ratios (SRRs), including new comparisons based on International Classification of Diseases, Ninth Revision (ICD-9) versus Abbreviated Injury Scale (AIS) six-digit codes. From the Pennsylvania trauma center's registry, all direct trauma admissions were collected through June 22, 1999. Patients with no comorbid medical diagnoses and both ICD-9 and AIS injury codes were used for comparisons based on a single set of data. SRRs for ICD-9 and then for AIS diagnostic codes were each calculated two ways: from the survival rate of patients with each diagnosis and when each diagnosis was an isolated diagnosis. Probabilities of survival for the cohort were calculated using each set of SRRs by the multiplicative ICISS method and, where appropriate, the minimum SRR method. These prediction sets were then internally validated against actual survival by the Hosmer-Lemeshow goodness-of-fit statistic. The 41,364 patients had 1,224 different ICD-9 injury diagnoses in 32,261 combinations and 1,263 corresponding AIS injury diagnoses in 31,755 combinations, ranging from 1 to 27 injuries per patient. All conventional ICD-9-based combinations of SRRs and methods had better Hosmer-Lemeshow goodness-of-fit statistic fits than their AIS-based counterparts. The minimum SRR method produced better calibration than the multiplicative methods, presumably because it did not magnify inaccuracies in the SRRs that might occur with multiplication. Predictions of survival based on anatomic injury alone can be performed using ICD-9 codes, with no advantage from extra coding of AIS diagnoses. Predictions based on the single worst SRR were closer to actual outcomes than those based on multiplying SRRs.
A novel approach of an absolute coding pattern based on Hamiltonian graph
NASA Astrophysics Data System (ADS)
Wang, Ya'nan; Wang, Huawei; Hao, Fusheng; Liu, Liqiang
2017-02-01
In this paper, a novel approach of an optical type absolute rotary encoder coding pattern is presented. The concept is based on the principle of the absolute encoder to find out a unique sequence that ensures an unambiguous shaft position of any angular. We design a single-ring and a n-by-2 matrix absolute encoder coding pattern by using the variations of Hamiltonian graph principle. 12 encoding bits is used in the single-ring by a linear array CCD to achieve an 1080-position cycle encoding. Besides, a 2-by-2 matrix is used as an unit in the 2-track disk to achieve a 16-bits encoding pattern by using an area array CCD sensor (as a sample). Finally, a higher resolution can be gained by an electronic subdivision of the signals. Compared with the conventional gray or binary code pattern (for a 2n resolution), this new pattern has a higher resolution (2n*n) with less coding tracks, which means the new pattern can lead to a smaller encoder, which is essential in the industrial production.
Efficient Network Coding-Based Loss Recovery for Reliable Multicast in Wireless Networks
NASA Astrophysics Data System (ADS)
Chi, Kaikai; Jiang, Xiaohong; Ye, Baoliu; Horiguchi, Susumu
Recently, network coding has been applied to the loss recovery of reliable multicast in wireless networks [19], where multiple lost packets are XOR-ed together as one packet and forwarded via single retransmission, resulting in a significant reduction of bandwidth consumption. In this paper, we first prove that maximizing the number of lost packets for XOR-ing, which is the key part of the available network coding-based reliable multicast schemes, is actually a complex NP-complete problem. To address this limitation, we then propose an efficient heuristic algorithm for finding an approximately optimal solution of this optimization problem. Furthermore, we show that the packet coding principle of maximizing the number of lost packets for XOR-ing sometimes cannot fully exploit the potential coding opportunities, and we then further propose new heuristic-based schemes with a new coding principle. Simulation results demonstrate that the heuristic-based schemes have very low computational complexity and can achieve almost the same transmission efficiency as the current coding-based high-complexity schemes. Furthermore, the heuristic-based schemes with the new coding principle not only have very low complexity, but also slightly outperform the current high-complexity ones.
ERIC Educational Resources Information Center
Wang, Yanqing; Li, Hang; Feng, Yuqiang; Jiang, Yu; Liu, Ying
2012-01-01
The traditional assessment approach, in which one single written examination counts toward a student's total score, no longer meets new demands of programming language education. Based on a peer code review process model, we developed an online assessment system called "EduPCR" and used a novel approach to assess the learning of computer…
Taki, M; Signorini, A; Oton, C J; Nannipieri, T; Di Pasquale, F
2013-10-15
We experimentally demonstrate the use of cyclic pulse coding for distributed strain and temperature measurements in hybrid Raman/Brillouin optical time-domain analysis (BOTDA) optical fiber sensors. The highly integrated proposed solution effectively addresses the strain/temperature cross-sensitivity issue affecting standard BOTDA sensors, allowing for simultaneous meter-scale strain and temperature measurements over 10 km of standard single mode fiber using a single narrowband laser source only.
GAPD: a GPU-accelerated atom-based polychromatic diffraction simulation code.
E, J C; Wang, L; Chen, S; Zhang, Y Y; Luo, S N
2018-03-01
GAPD, a graphics-processing-unit (GPU)-accelerated atom-based polychromatic diffraction simulation code for direct, kinematics-based, simulations of X-ray/electron diffraction of large-scale atomic systems with mono-/polychromatic beams and arbitrary plane detector geometries, is presented. This code implements GPU parallel computation via both real- and reciprocal-space decompositions. With GAPD, direct simulations are performed of the reciprocal lattice node of ultralarge systems (∼5 billion atoms) and diffraction patterns of single-crystal and polycrystalline configurations with mono- and polychromatic X-ray beams (including synchrotron undulator sources), and validation, benchmark and application cases are presented.
Employing multi-GPU power for molecular dynamics simulation: an extension of GALAMOST
NASA Astrophysics Data System (ADS)
Zhu, You-Liang; Pan, Deng; Li, Zhan-Wei; Liu, Hong; Qian, Hu-Jun; Zhao, Yang; Lu, Zhong-Yuan; Sun, Zhao-Yan
2018-04-01
We describe the algorithm of employing multi-GPU power on the basis of Message Passing Interface (MPI) domain decomposition in a molecular dynamics code, GALAMOST, which is designed for the coarse-grained simulation of soft matters. The code of multi-GPU version is developed based on our previous single-GPU version. In multi-GPU runs, one GPU takes charge of one domain and runs single-GPU code path. The communication between neighbouring domains takes a similar algorithm of CPU-based code of LAMMPS, but is optimised specifically for GPUs. We employ a memory-saving design which can enlarge maximum system size at the same device condition. An optimisation algorithm is employed to prolong the update period of neighbour list. We demonstrate good performance of multi-GPU runs on the simulation of Lennard-Jones liquid, dissipative particle dynamics liquid, polymer and nanoparticle composite, and two-patch particles on workstation. A good scaling of many nodes on cluster for two-patch particles is presented.
Adaptive EAGLE dynamic solution adaptation and grid quality enhancement
NASA Technical Reports Server (NTRS)
Luong, Phu Vinh; Thompson, J. F.; Gatlin, B.; Mastin, C. W.; Kim, H. J.
1992-01-01
In the effort described here, the elliptic grid generation procedure in the EAGLE grid code was separated from the main code into a subroutine, and a new subroutine which evaluates several grid quality measures at each grid point was added. The elliptic grid routine can now be called, either by a computational fluid dynamics (CFD) code to generate a new adaptive grid based on flow variables and quality measures through multiple adaptation, or by the EAGLE main code to generate a grid based on quality measure variables through static adaptation. Arrays of flow variables can be read into the EAGLE grid code for use in static adaptation as well. These major changes in the EAGLE adaptive grid system make it easier to convert any CFD code that operates on a block-structured grid (or single-block grid) into a multiple adaptive code.
Support for Systematic Code Reviews with the SCRUB Tool
NASA Technical Reports Server (NTRS)
Holzmann, Gerald J.
2010-01-01
SCRUB is a code review tool that supports both large, team-based software development efforts (e.g., for mission software) as well as individual tasks. The tool was developed at JPL to support a new, streamlined code review process that combines human-generated review reports with program-generated review reports from a customizable range of state-of-the-art source code analyzers. The leading commercial tools include Codesonar, Coverity, and Klocwork, each of which can achieve a reasonably low rate of false-positives in the warnings that they generate. The time required to analyze code with these tools can vary greatly. In each case, however, the tools produce results that would be difficult to realize with human code inspections alone. There is little overlap in the results produced by the different analyzers, and each analyzer used generally increases the effectiveness of the overall effort. The SCRUB tool allows all reports to be accessed through a single, uniform interface (see figure) that facilitates brows ing code and reports. Improvements over existing software include significant simplification, and leveraging of a range of commercial, static source code analyzers in a single, uniform framework. The tool runs as a small stand-alone application, avoiding the security problems related to tools based on Web browsers. A developer or reviewer, for instance, must have already obtained access rights to a code base before that code can be browsed and reviewed with the SCRUB tool. The tool cannot open any files or folders to which the user does not already have access. This means that the tool does not need to enforce or administer any additional security policies. The analysis results presented through the SCRUB tool s user interface are always computed off-line, given that, especially for larger projects, this computation can take longer than appropriate for interactive tool use. The recommended code review process that is supported by the SCRUB tool consists of three phases: Code Review, Developer Response, and Closeout Resolution. In the Code Review phase, all tool-based analysis reports are generated, and specific comments from expert code reviewers are entered into the SCRUB tool. In the second phase, Developer Response, the developer is asked to respond to each comment and tool-report that was produced, either agreeing or disagreeing to provide a fix that addresses the issue that was raised. In the third phase, Closeout Resolution, all disagreements are discussed in a meeting of all parties involved, and a resolution is made for all disagreements. The first two phases generally take one week each, and the third phase is concluded in a single closeout meeting.
Superdense Coding over Optical Fiber Links with Complete Bell-State Measurements
NASA Astrophysics Data System (ADS)
Williams, Brian P.; Sadlier, Ronald J.; Humble, Travis S.
2017-02-01
Adopting quantum communication to modern networking requires transmitting quantum information through a fiber-based infrastructure. We report the first demonstration of superdense coding over optical fiber links, taking advantage of a complete Bell-state measurement enabled by time-polarization hyperentanglement, linear optics, and common single-photon detectors. We demonstrate the highest single-qubit channel capacity to date utilizing linear optics, 1.665 ±0.018 , and we provide a full experimental implementation of a hybrid, quantum-classical communication protocol for image transfer.
Nonuniform code concatenation for universal fault-tolerant quantum computing
NASA Astrophysics Data System (ADS)
Nikahd, Eesa; Sedighi, Mehdi; Saheb Zamani, Morteza
2017-09-01
Using transversal gates is a straightforward and efficient technique for fault-tolerant quantum computing. Since transversal gates alone cannot be computationally universal, they must be combined with other approaches such as magic state distillation, code switching, or code concatenation to achieve universality. In this paper we propose an alternative approach for universal fault-tolerant quantum computing, mainly based on the code concatenation approach proposed in [T. Jochym-O'Connor and R. Laflamme, Phys. Rev. Lett. 112, 010505 (2014), 10.1103/PhysRevLett.112.010505], but in a nonuniform fashion. The proposed approach is described based on nonuniform concatenation of the 7-qubit Steane code with the 15-qubit Reed-Muller code, as well as the 5-qubit code with the 15-qubit Reed-Muller code, which lead to two 49-qubit and 47-qubit codes, respectively. These codes can correct any arbitrary single physical error with the ability to perform a universal set of fault-tolerant gates, without using magic state distillation.
Production Level CFD Code Acceleration for Hybrid Many-Core Architectures
NASA Technical Reports Server (NTRS)
Duffy, Austen C.; Hammond, Dana P.; Nielsen, Eric J.
2012-01-01
In this work, a novel graphics processing unit (GPU) distributed sharing model for hybrid many-core architectures is introduced and employed in the acceleration of a production-level computational fluid dynamics (CFD) code. The latest generation graphics hardware allows multiple processor cores to simultaneously share a single GPU through concurrent kernel execution. This feature has allowed the NASA FUN3D code to be accelerated in parallel with up to four processor cores sharing a single GPU. For codes to scale and fully use resources on these and the next generation machines, codes will need to employ some type of GPU sharing model, as presented in this work. Findings include the effects of GPU sharing on overall performance. A discussion of the inherent challenges that parallel unstructured CFD codes face in accelerator-based computing environments is included, with considerations for future generation architectures. This work was completed by the author in August 2010, and reflects the analysis and results of the time.
Bar code-based pre-transfusion check in pre-operative autologous blood donation.
Ohsaka, Akimichi; Furuta, Yoshiaki; Ohsawa, Toshiya; Kobayashi, Mitsue; Abe, Katsumi; Inada, Eiichi
2010-10-01
The objective of this study was to demonstrate the feasibility of a bar code-based identification system for the pre-transfusion check at the bedside in the setting of pre-operative autologous blood donation (PABD). Between July 2003 and December 2008 we determined the compliance rate and causes of failure of electronic bedside checking for PABD transfusion. A total of 5627 (9% of all transfusions) PABD units were administered without a single mistransfusion. The overall rate of compliance with electronic checking was 99%. The bar code-based identification system was applicable to the pre-transfusion check for PABD transfusion. Copyright © 2010 Elsevier Ltd. All rights reserved.
Wang, Xiaogang; Chen, Wen; Chen, Xudong
2015-03-09
In this paper, we develop a new optical information authentication system based on compressed double-random-phase-encoded images and quick-response (QR) codes, where the parameters of optical lightwave are used as keys for optical decryption and the QR code is a key for verification. An input image attached with QR code is first optically encoded in a simplified double random phase encoding (DRPE) scheme without using interferometric setup. From the single encoded intensity pattern recorded by a CCD camera, a compressed double-random-phase-encoded image, i.e., the sparse phase distribution used for optical decryption, is generated by using an iterative phase retrieval technique with QR code. We compare this technique to the other two methods proposed in literature, i.e., Fresnel domain information authentication based on the classical DRPE with holographic technique and information authentication based on DRPE and phase retrieval algorithm. Simulation results show that QR codes are effective on improving the security and data sparsity of optical information encryption and authentication system.
Michael Frei, Dominik; Hodneland, Erlend; Rios-Mondragon, Ivan; Burtey, Anne; Neumann, Beate; Bulkescher, Jutta; Schölermann, Julia; Pepperkok, Rainer; Gerdes, Hans-Hermann; Kögel, Tanja
2015-01-01
Contact-dependent intercellular transfer (codeIT) of cellular constituents can have functional consequences for recipient cells, such as enhanced survival and drug resistance. Pathogenic viruses, prions and bacteria can also utilize this mechanism to spread to adjacent cells and potentially evade immune detection. However, little is known about the molecular mechanism underlying this intercellular transfer process. Here, we present a novel microscopy-based screening method to identify regulators and cargo of codeIT. Single donor cells, carrying fluorescently labelled endocytic organelles or proteins, are co-cultured with excess acceptor cells. CodeIT is quantified by confocal microscopy and image analysis in 3D, preserving spatial information. An siRNA-based screening using this method revealed the involvement of several myosins and small GTPases as codeIT regulators. Our data indicates that cellular protrusions and tubular recycling endosomes are important for codeIT. We automated image acquisition and analysis to facilitate large-scale chemical and genetic screening efforts to identify key regulators of codeIT. PMID:26271723
Lexical Choice and Language Selection in Bilingual Preschoolers
ERIC Educational Resources Information Center
Greene, Kai J.; Pena, Elizabeth D.; Bedore, Lisa M.
2013-01-01
This study examined single-word code-mixing produced by bilingual preschoolers in order to better understand lexical choice patterns in each language. Analysis included item-level code-mixed responses of 606 five-year-old children. Per parent report, children were separated by language dominance based on language exposure and use. Children were…
Zhou, Ming; Chang, Shoude; Grover, Chander
2004-06-28
Further to the optical coding based on fluorescent semiconductor quantum dots (QDs), a concept of using mixtures of multiple single-color QDs for creating highly secret cryptograms based on their absorption/emission properties was demonstrated. The key to readout of the optical codes is a group of excitation lights with the predetermined wavelengths programmed in a secret manner. The cryptograms can be printed on the surfaces of different objects such as valuable documents for security purposes.
NASA Astrophysics Data System (ADS)
He, Jing; Wen, Xuejie; Chen, Ming; Chen, Lin
2015-09-01
In this paper, a Golay complementary training sequence (TS)-based symbol synchronization scheme is proposed and experimentally demonstrated in multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband over fiber (UWBoF) system with a variable rate low-density parity-check (LDPC) code. Meanwhile, the coding gain and spectral efficiency in the variable rate LDPC-coded MB-OFDM UWBoF system are investigated. By utilizing the non-periodic auto-correlation property of the Golay complementary pair, the start point of LDPC-coded MB-OFDM UWB signal can be estimated accurately. After 100 km standard single-mode fiber (SSMF) transmission, at the bit error rate of 1×10-3, the experimental results show that the short block length 64QAM-LDPC coding provides a coding gain of 4.5 dB, 3.8 dB and 2.9 dB for a code rate of 62.5%, 75% and 87.5%, respectively.
Superdense Coding over Optical Fiber Links with Complete Bell-State Measurements
Williams, Brian P.; Sadlier, Ronald J.; Humble, Travis S.
2017-02-01
Adopting quantum communication to modern networking requires transmitting quantum information through a fiber-based infrastructure. In this paper, we report the first demonstration of superdense coding over optical fiber links, taking advantage of a complete Bell-state measurement enabled by time-polarization hyperentanglement, linear optics, and common single-photon detectors. Finally, we demonstrate the highest single-qubit channel capacity to date utilizing linear optics, 1.665 ± 0.018, and we provide a full experimental implementation of a hybrid, quantum-classical communication protocol for image transfer.
NASA Astrophysics Data System (ADS)
Huang, Shaowei; Baba, Ken-Ichi; Murata, Masayuki; Kitayama, Ken-Ichi
2006-12-01
In traditional lambda-based multigranularity optical networks, a lambda is always treated as the basic routing unit, resulting in low wavelength utilization. On the basis of optical code division multiplexing (OCDM) technology, a novel OCDM-based multigranularity optical cross-connect (MG-OXC) is proposed. Compared with the traditional lambda-based MG-OXC, its switching capability has been extended to support fiber switching, waveband switching, lambda switching, and OCDM switching. In a network composed of OCDM-based MG-OXCs, a single wavelength can be shared by distinct label switched paths (LSPs) called OCDM-LSPs, and OCDM-LSP switching can be implemented in the optical domain. To improve the network flexibility for an OCDM-LSP provisioning, two kinds of switches enabling hybrid optical code (OC)-wavelength conversion are designed. Simulation results indicate that a blocking probability reduction of 2 orders can be obtained by deploying only five OCs to a single wavelength. Furthermore, compared with time-division-multiplexing LSP (TDM-LSP), owing to the asynchronous accessibility and the OC conversion, OCDM-LSPs have been shown to permit a simpler switch architecture and achieve better blocking performance than TDM-LSPs.
BeiDou Geostationary Satellite Code Bias Modeling Using Fengyun-3C Onboard Measurements.
Jiang, Kecai; Li, Min; Zhao, Qile; Li, Wenwen; Guo, Xiang
2017-10-27
This study validated and investigated elevation- and frequency-dependent systematic biases observed in ground-based code measurements of the Chinese BeiDou navigation satellite system, using the onboard BeiDou code measurement data from the Chinese meteorological satellite Fengyun-3C. Particularly for geostationary earth orbit satellites, sky-view coverage can be achieved over the entire elevation and azimuth angle ranges with the available onboard tracking data, which is more favorable to modeling code biases. Apart from the BeiDou-satellite-induced biases, the onboard BeiDou code multipath effects also indicate pronounced near-field systematic biases that depend only on signal frequency and the line-of-sight directions. To correct these biases, we developed a proposed code correction model by estimating the BeiDou-satellite-induced biases as linear piece-wise functions in different satellite groups and the near-field systematic biases in a grid approach. To validate the code bias model, we carried out orbit determination using single-frequency BeiDou data with and without code bias corrections applied. Orbit precision statistics indicate that those code biases can seriously degrade single-frequency orbit determination. After the correction model was applied, the orbit position errors, 3D root mean square, were reduced from 150.6 to 56.3 cm.
BeiDou Geostationary Satellite Code Bias Modeling Using Fengyun-3C Onboard Measurements
Jiang, Kecai; Li, Min; Zhao, Qile; Li, Wenwen; Guo, Xiang
2017-01-01
This study validated and investigated elevation- and frequency-dependent systematic biases observed in ground-based code measurements of the Chinese BeiDou navigation satellite system, using the onboard BeiDou code measurement data from the Chinese meteorological satellite Fengyun-3C. Particularly for geostationary earth orbit satellites, sky-view coverage can be achieved over the entire elevation and azimuth angle ranges with the available onboard tracking data, which is more favorable to modeling code biases. Apart from the BeiDou-satellite-induced biases, the onboard BeiDou code multipath effects also indicate pronounced near-field systematic biases that depend only on signal frequency and the line-of-sight directions. To correct these biases, we developed a proposed code correction model by estimating the BeiDou-satellite-induced biases as linear piece-wise functions in different satellite groups and the near-field systematic biases in a grid approach. To validate the code bias model, we carried out orbit determination using single-frequency BeiDou data with and without code bias corrections applied. Orbit precision statistics indicate that those code biases can seriously degrade single-frequency orbit determination. After the correction model was applied, the orbit position errors, 3D root mean square, were reduced from 150.6 to 56.3 cm. PMID:29076998
MHD code using multi graphical processing units: SMAUG+
NASA Astrophysics Data System (ADS)
Gyenge, N.; Griffiths, M. K.; Erdélyi, R.
2018-01-01
This paper introduces the Sheffield Magnetohydrodynamics Algorithm Using GPUs (SMAUG+), an advanced numerical code for solving magnetohydrodynamic (MHD) problems, using multi-GPU systems. Multi-GPU systems facilitate the development of accelerated codes and enable us to investigate larger model sizes and/or more detailed computational domain resolutions. This is a significant advancement over the parent single-GPU MHD code, SMAUG (Griffiths et al., 2015). Here, we demonstrate the validity of the SMAUG + code, describe the parallelisation techniques and investigate performance benchmarks. The initial configuration of the Orszag-Tang vortex simulations are distributed among 4, 16, 64 and 100 GPUs. Furthermore, different simulation box resolutions are applied: 1000 × 1000, 2044 × 2044, 4000 × 4000 and 8000 × 8000 . We also tested the code with the Brio-Wu shock tube simulations with model size of 800 employing up to 10 GPUs. Based on the test results, we observed speed ups and slow downs, depending on the granularity and the communication overhead of certain parallel tasks. The main aim of the code development is to provide massively parallel code without the memory limitation of a single GPU. By using our code, the applied model size could be significantly increased. We demonstrate that we are able to successfully compute numerically valid and large 2D MHD problems.
A crystallographic model for nickel base single crystal alloys
NASA Technical Reports Server (NTRS)
Dame, L. T.; Stouffer, D. C.
1988-01-01
The purpose of this research is to develop a tool for the mechanical analysis of nickel-base single-crystal superalloys, specifically Rene N4, used in gas turbine engine components. This objective is achieved by developing a rate-dependent anisotropic constitutive model and implementing it in a nonlinear three-dimensional finite-element code. The constitutive model is developed from metallurgical concepts utilizing a crystallographic approach. An extension of Schmid's law is combined with the Bodner-Partom equations to model the inelastic tension/compression asymmetry and orientation-dependence in octahedral slip. Schmid's law is used to approximate the inelastic response of the material in cube slip. The constitutive equations model the tensile behavior, creep response and strain-rate sensitivity of the single-crystal superalloys. Methods for deriving the material constants from standard tests are also discussed. The model is implemented in a finite-element code, and the computed and experimental results are compared for several orientations and loading conditions.
McCoy, Thomas H; Castro, Victor M; Snapper, Leslie A; Hart, Kamber L; Perlis, Roy H
2017-08-31
Biobanks and national registries represent a powerful tool for genomic discovery, but rely on diagnostic codes that may be unreliable and fail to capture the relationship between related diagnoses. We developed an efficient means of conducting genome-wide association studies using combinations of diagnostic codes from electronic health records (EHR) for 10845 participants in a biobanking program at two large academic medical centers. Specifically, we applied latent Dirichilet allocation to fit 50 disease topics based on diagnostic codes, then conducted genome-wide common-variant association for each topic. In sensitivity analysis, these results were contrasted with those obtained from traditional single-diagnosis phenome-wide association analysis, as well as those in which only a subset of diagnostic codes are included per topic. In meta-analysis across three biobank cohorts, we identified 23 disease-associated loci with p<1e-15, including previously associated autoimmune disease loci. In all cases, observed significant associations were of greater magnitude than for single phenome-wide diagnostic codes, and incorporation of less strongly-loading diagnostic codes enhanced association. This strategy provides a more efficient means of phenome-wide association in biobanks with coded clinical data.
McCoy, Thomas H; Castro, Victor M; Snapper, Leslie A; Hart, Kamber L; Perlis, Roy H
2017-01-01
Biobanks and national registries represent a powerful tool for genomic discovery, but rely on diagnostic codes that can be unreliable and fail to capture relationships between related diagnoses. We developed an efficient means of conducting genome-wide association studies using combinations of diagnostic codes from electronic health records for 10,845 participants in a biobanking program at two large academic medical centers. Specifically, we applied latent Dirichilet allocation to fit 50 disease topics based on diagnostic codes, then conducted a genome-wide common-variant association for each topic. In sensitivity analysis, these results were contrasted with those obtained from traditional single-diagnosis phenome-wide association analysis, as well as those in which only a subset of diagnostic codes were included per topic. In meta-analysis across three biobank cohorts, we identified 23 disease-associated loci with p < 1e-15, including previously associated autoimmune disease loci. In all cases, observed significant associations were of greater magnitude than single phenome-wide diagnostic codes, and incorporation of less strongly loading diagnostic codes enhanced association. This strategy provides a more efficient means of identifying phenome-wide associations in biobanks with coded clinical data. PMID:28861588
The Effects of Single and Dual Coded Multimedia Instructional Methods on Chinese Character Learning
ERIC Educational Resources Information Center
Wang, Ling
2013-01-01
Learning Chinese characters is a difficult task for adult English native speakers due to the significant differences between the Chinese and English writing system. The visuospatial properties of Chinese characters have inspired the development of instructional methods using both verbal and visual information based on the Dual Coding Theory. This…
2006-01-01
collected, code both. Code Type of Analysis Code Type of Analysis A Physical properties I Common ions/trace elements B Common ions J Sanitary analysis and...1) A ground-water site is coded as if it is a single point, not a geographic area or property . (2) Latitude and longitude should be determined at a...terrace from an adjacent upland on one side, and a lowland coast or valley on the other. Due to the effects of erosion, the terrace surface may not be as
NASA Astrophysics Data System (ADS)
Gao, Xiatian; Wang, Xiaogang; Jiang, Binhao
2017-10-01
UPSF (Universal Plasma Simulation Framework) is a new plasma simulation code designed for maximum flexibility by using edge-cutting techniques supported by C++17 standard. Through use of metaprogramming technique, UPSF provides arbitrary dimensional data structures and methods to support various kinds of plasma simulation models, like, Vlasov, particle in cell (PIC), fluid, Fokker-Planck, and their variants and hybrid methods. Through C++ metaprogramming technique, a single code can be used to arbitrary dimensional systems with no loss of performance. UPSF can also automatically parallelize the distributed data structure and accelerate matrix and tensor operations by BLAS. A three-dimensional particle in cell code is developed based on UPSF. Two test cases, Landau damping and Weibel instability for electrostatic and electromagnetic situation respectively, are presented to show the validation and performance of the UPSF code.
Three-Dimensional Terahertz Coded-Aperture Imaging Based on Single Input Multiple Output Technology.
Chen, Shuo; Luo, Chenggao; Deng, Bin; Wang, Hongqiang; Cheng, Yongqiang; Zhuang, Zhaowen
2018-01-19
As a promising radar imaging technique, terahertz coded-aperture imaging (TCAI) can achieve high-resolution, forward-looking, and staring imaging by producing spatiotemporal independent signals with coded apertures. In this paper, we propose a three-dimensional (3D) TCAI architecture based on single input multiple output (SIMO) technology, which can reduce the coding and sampling times sharply. The coded aperture applied in the proposed TCAI architecture loads either purposive or random phase modulation factor. In the transmitting process, the purposive phase modulation factor drives the terahertz beam to scan the divided 3D imaging cells. In the receiving process, the random phase modulation factor is adopted to modulate the terahertz wave to be spatiotemporally independent for high resolution. Considering human-scale targets, images of each 3D imaging cell are reconstructed one by one to decompose the global computational complexity, and then are synthesized together to obtain the complete high-resolution image. As for each imaging cell, the multi-resolution imaging method helps to reduce the computational burden on a large-scale reference-signal matrix. The experimental results demonstrate that the proposed architecture can achieve high-resolution imaging with much less time for 3D targets and has great potential in applications such as security screening, nondestructive detection, medical diagnosis, etc.
NASA Astrophysics Data System (ADS)
Miki, Nobuhiko; Kishiyama, Yoshihisa; Higuchi, Kenichi; Sawahashi, Mamoru; Nakagawa, Masao
In the Evolved UTRA (UMTS Terrestrial Radio Access) downlink, Orthogonal Frequency Division Multiplexing (OFDM) based radio access was adopted because of its inherent immunity to multipath interference and flexible accommodation of different spectrum arrangements. This paper presents the optimum adaptive modulation and channel coding (AMC) scheme when resource blocks (RBs) is simultaneously assigned to the same user when frequency and time domain channel-dependent scheduling is assumed in the downlink OFDMA radio access with single-antenna transmission. We start by presenting selection methods for the modulation and coding scheme (MCS) employing mutual information both for RB-common and RB-dependent modulation schemes. Simulation results show that, irrespective of the application of power adaptation to RB-dependent modulation, the improvement in the achievable throughput of the RB-dependent modulation scheme compared to that for the RB-common modulation scheme is slight, i.e., 4 to 5%. In addition, the number of required control signaling bits in the RB-dependent modulation scheme becomes greater than that for the RB-common modulation scheme. Therefore, we conclude that the RB-common modulation and channel coding rate scheme is preferred, when multiple RBs of the same coded stream are assigned to one user in the case of single-antenna transmission.
Coding for Single-Line Transmission
NASA Technical Reports Server (NTRS)
Madison, L. G.
1983-01-01
Digital transmission code combines data and clock signals into single waveform. MADCODE needs four standard integrated circuits in generator and converter plus five small discrete components. MADCODE allows simple coding and decoding for transmission of digital signals over single line.
Multi-stage decoding for multi-level block modulation codes
NASA Technical Reports Server (NTRS)
Lin, Shu
1991-01-01
In this paper, we investigate various types of multi-stage decoding for multi-level block modulation codes, in which the decoding of a component code at each stage can be either soft-decision or hard-decision, maximum likelihood or bounded-distance. Error performance of codes is analyzed for a memoryless additive channel based on various types of multi-stage decoding, and upper bounds on the probability of an incorrect decoding are derived. Based on our study and computation results, we find that, if component codes of a multi-level modulation code and types of decoding at various stages are chosen properly, high spectral efficiency and large coding gain can be achieved with reduced decoding complexity. In particular, we find that the difference in performance between the suboptimum multi-stage soft-decision maximum likelihood decoding of a modulation code and the single-stage optimum decoding of the overall code is very small: only a fraction of dB loss in SNR at the probability of an incorrect decoding for a block of 10(exp -6). Multi-stage decoding of multi-level modulation codes really offers a way to achieve the best of three worlds, bandwidth efficiency, coding gain, and decoding complexity.
A dynamic code for economic object valuation in prefrontal cortex neurons
Tsutsui, Ken-Ichiro; Grabenhorst, Fabian; Kobayashi, Shunsuke; Schultz, Wolfram
2016-01-01
Neuronal reward valuations provide the physiological basis for economic behaviour. Yet, how such valuations are converted to economic decisions remains unclear. Here we show that the dorsolateral prefrontal cortex (DLPFC) implements a flexible value code based on object-specific valuations by single neurons. As monkeys perform a reward-based foraging task, individual DLPFC neurons signal the value of specific choice objects derived from recent experience. These neuronal object values satisfy principles of competitive choice mechanisms, track performance fluctuations and follow predictions of a classical behavioural model (Herrnstein’s matching law). Individual neurons dynamically encode both, the updating of object values from recently experienced rewards, and their subsequent conversion to object choices during decision-making. Decoding from unselected populations enables a read-out of motivational and decision variables not emphasized by individual neurons. These findings suggest a dynamic single-neuron and population value code in DLPFC that advances from reward experiences to economic object values and future choices. PMID:27618960
The design of an adaptive predictive coder using a single-chip digital signal processor
NASA Astrophysics Data System (ADS)
Randolph, M. A.
1985-01-01
A speech coding processor architecture design study has been performed in which Texas Instruments TMS32010 has been selected from among three commercially available digital signal processing integrated circuits and evaluated in an implementation study of real-time Adaptive Predictive Coding (APC). The TMS32010 has been compared with AR&T Bell Laboratories DSP I and Nippon Electric Co. PD7720 and was found to be most suitable for a single chip implementation of APC. A preliminary design system based on TMS32010 has been performed, and several of the hardware and software design issues are discussed. Particular attention was paid to the design of an external memory controller which permits rapid sequential access of external RAM. As a result, it has been determined that a compact hardware implementation of the APC algorithm is feasible based of the TSM32010. Originator-supplied keywords include: vocoders, speech compression, adaptive predictive coding, digital signal processing microcomputers, speech processor architectures, and special purpose processor.
NASA Astrophysics Data System (ADS)
Zhang, Chongfu; Qiu, Kun; Xu, Bo; Ling, Yun
2008-05-01
This paper proposes an all-optical label processing scheme that uses the multiple optical orthogonal codes sequences (MOOCS)-based optical label for optical packet switching (OPS) (MOOCS-OPS) networks. In this scheme, each MOOCS is a permutation or combination of the multiple optical orthogonal codes (MOOC) selected from the multiple-groups optical orthogonal codes (MGOOC). Following a comparison of different optical label processing (OLP) schemes, the principles of MOOCS-OPS network are given and analyzed. Firstly, theoretical analyses are used to prove that MOOCS is able to greatly enlarge the number of available optical labels when compared to the previous single optical orthogonal code (SOOC) for OPS (SOOC-OPS) network. Then, the key units of the MOOCS-based optical label packets, including optical packet generation, optical label erasing, optical label extraction and optical label rewriting etc., are given and studied. These results are used to verify that the proposed MOOCS-OPS scheme is feasible.
Block-based scalable wavelet image codec
NASA Astrophysics Data System (ADS)
Bao, Yiliang; Kuo, C.-C. Jay
1999-10-01
This paper presents a high performance block-based wavelet image coder which is designed to be of very low implementational complexity yet with rich features. In this image coder, the Dual-Sliding Wavelet Transform (DSWT) is first applied to image data to generate wavelet coefficients in fixed-size blocks. Here, a block only consists of wavelet coefficients from a single subband. The coefficient blocks are directly coded with the Low Complexity Binary Description (LCBiD) coefficient coding algorithm. Each block is encoded using binary context-based bitplane coding. No parent-child correlation is exploited in the coding process. There is also no intermediate buffering needed in between DSWT and LCBiD. The compressed bit stream generated by the proposed coder is both SNR and resolution scalable, as well as highly resilient to transmission errors. Both DSWT and LCBiD process the data in blocks whose size is independent of the size of the original image. This gives more flexibility in the implementation. The codec has a very good coding performance even the block size is (16,16).
NASA Astrophysics Data System (ADS)
Karczewicz, Marta; Chen, Peisong; Joshi, Rajan; Wang, Xianglin; Chien, Wei-Jung; Panchal, Rahul; Coban, Muhammed; Chong, In Suk; Reznik, Yuriy A.
2011-01-01
This paper describes video coding technology proposal submitted by Qualcomm Inc. in response to a joint call for proposal (CfP) issued by ITU-T SG16 Q.6 (VCEG) and ISO/IEC JTC1/SC29/WG11 (MPEG) in January 2010. Proposed video codec follows a hybrid coding approach based on temporal prediction, followed by transform, quantization, and entropy coding of the residual. Some of its key features are extended block sizes (up to 64x64), recursive integer transforms, single pass switched interpolation filters with offsets (single pass SIFO), mode dependent directional transform (MDDT) for intra-coding, luma and chroma high precision filtering, geometry motion partitioning, adaptive motion vector resolution. It also incorporates internal bit-depth increase (IBDI), and modified quadtree based adaptive loop filtering (QALF). Simulation results are presented for a variety of bit rates, resolutions and coding configurations to demonstrate the high compression efficiency achieved by the proposed video codec at moderate level of encoding and decoding complexity. For random access hierarchical B configuration (HierB), the proposed video codec achieves an average BD-rate reduction of 30.88c/o compared to the H.264/AVC alpha anchor. For low delay hierarchical P (HierP) configuration, the proposed video codec achieves an average BD-rate reduction of 32.96c/o and 48.57c/o, compared to the H.264/AVC beta and gamma anchors, respectively.
A Measurement and Simulation Based Methodology for Cache Performance Modeling and Tuning
NASA Technical Reports Server (NTRS)
Waheed, Abdul; Yan, Jerry; Saini, Subhash (Technical Monitor)
1998-01-01
We present a cache performance modeling methodology that facilitates the tuning of uniprocessor cache performance for applications executing on shared memory multiprocessors by accurately predicting the effects of source code level modifications. Measurements on a single processor are initially used for identifying parts of code where cache utilization improvements may significantly impact the overall performance. Cache simulation based on trace-driven techniques can be carried out without gathering detailed address traces. Minimal runtime information for modeling cache performance of a selected code block includes: base virtual addresses of arrays, virtual addresses of variables, and loop bounds for that code block. Rest of the information is obtained from the source code. We show that the cache performance predictions are as reliable as those obtained through trace-driven simulations. This technique is particularly helpful to the exploration of various "what-if' scenarios regarding the cache performance impact for alternative code structures. We explain and validate this methodology using a simple matrix-matrix multiplication program. We then apply this methodology to predict and tune the cache performance of two realistic scientific applications taken from the Computational Fluid Dynamics (CFD) domain.
NASA Astrophysics Data System (ADS)
Qiu, Kun; Zhang, Chongfu; Ling, Yun; Wang, Yibo
2007-11-01
This paper proposes an all-optical label processing scheme using multiple optical orthogonal codes sequences (MOOCS) for optical packet switching (OPS) (MOOCS-OPS) networks, for the first time to the best of our knowledge. In this scheme, the multiple optical orthogonal codes (MOOC) from multiple-groups optical orthogonal codes (MGOOC) are permuted and combined to obtain the MOOCS for the optical labels, which are used to effectively enlarge the capacity of available optical codes for optical labels. The optical label processing (OLP) schemes are reviewed and analyzed, the principles of MOOCS-based optical labels for OPS networks are given, and analyzed, then the MOOCS-OPS topology and the key realization units of the MOOCS-based optical label packets are studied in detail, respectively. The performances of this novel all-optical label processing technology are analyzed, the corresponding simulation is performed. These analysis and results show that the proposed scheme can overcome the lack of available optical orthogonal codes (OOC)-based optical labels due to the limited number of single OOC for optical label with the short code length, and indicate that the MOOCS-OPS scheme is feasible.
Kim, Dong-Sun; Kwon, Jin-San
2014-01-01
Research on real-time health systems have received great attention during recent years and the needs of high-quality personal multichannel medical signal compression for personal medical product applications are increasing. The international MPEG-4 audio lossless coding (ALS) standard supports a joint channel-coding scheme for improving compression performance of multichannel signals and it is very efficient compression method for multi-channel biosignals. However, the computational complexity of such a multichannel coding scheme is significantly greater than that of other lossless audio encoders. In this paper, we present a multichannel hardware encoder based on a low-complexity joint-coding technique and shared multiplier scheme for portable devices. A joint-coding decision method and a reference channel selection scheme are modified for a low-complexity joint coder. The proposed joint coding decision method determines the optimized joint-coding operation based on the relationship between the cross correlation of residual signals and the compression ratio. The reference channel selection is designed to select a channel for the entropy coding of the joint coding. The hardware encoder operates at a 40 MHz clock frequency and supports two-channel parallel encoding for the multichannel monitoring system. Experimental results show that the compression ratio increases by 0.06%, whereas the computational complexity decreases by 20.72% compared to the MPEG-4 ALS reference software encoder. In addition, the compression ratio increases by about 11.92%, compared to the single channel based bio-signal lossless data compressor. PMID:25237900
Two-fluid 2.5D code for simulations of small scale magnetic fields in the lower solar atmosphere
NASA Astrophysics Data System (ADS)
Piantschitsch, Isabell; Amerstorfer, Ute; Thalmann, Julia Katharina; Hanslmeier, Arnold; Lemmerer, Birgit
2015-08-01
Our aim is to investigate magnetic reconnection as a result of the time evolution of magnetic flux tubes in the solar chromosphere. A new numerical two-fluid code was developed, which will perform a 2.5D simulation of the dynamics from the upper convection zone up to the transition region. The code is based on the Total Variation Diminishing Lax-Friedrichs method and includes the effects of ion-neutral collisions, ionisation/recombination, thermal/resistive diffusivity as well as collisional/resistive heating. What is innovative about our newly developed code is the inclusion of a two-fluid model in combination with the use of analytically constructed vertically open magnetic flux tubes, which are used as initial conditions for our simulation. First magnetohydrodynamic (MHD) tests have already shown good agreement with known results of numerical MHD test problems like e.g. the Orszag-Tang vortex test, the Current Sheet test or the Spherical Blast Wave test. Furthermore, the single-fluid approach will also be applied to the initial conditions, in order to compare the different rates of magnetic reconnection in both codes, the two-fluid code and the single-fluid one.
Fault-tolerant conversion between adjacent Reed-Muller quantum codes based on gauge fixing
NASA Astrophysics Data System (ADS)
Quan, Dong-Xiao; Zhu, Li-Li; Pei, Chang-Xing; Sanders, Barry C.
2018-03-01
We design forward and backward fault-tolerant conversion circuits, which convert between the Steane code and the 15-qubit Reed-Muller quantum code so as to provide a universal transversal gate set. In our method, only seven out of a total 14 code stabilizers need to be measured, and we further enhance the circuit by simplifying some stabilizers; thus, we need only to measure eight weight-4 stabilizers for one round of forward conversion and seven weight-4 stabilizers for one round of backward conversion. For conversion, we treat random single-qubit errors and their influence on syndromes of gauge operators, and our novel single-step process enables more efficient fault-tolerant conversion between these two codes. We make our method quite general by showing how to convert between any two adjacent Reed-Muller quantum codes \\overline{\\textsf{RM}}(1,m) and \\overline{\\textsf{RM}}≤ft(1,m+1\\right) , for which we need only measure stabilizers whose number scales linearly with m rather than exponentially with m obtained in previous work. We provide the explicit mathematical expression for the necessary stabilizers and the concomitant resources required.
CREME96 and Related Error Rate Prediction Methods
NASA Technical Reports Server (NTRS)
Adams, James H., Jr.
2012-01-01
Predicting the rate of occurrence of single event effects (SEEs) in space requires knowledge of the radiation environment and the response of electronic devices to that environment. Several analytical models have been developed over the past 36 years to predict SEE rates. The first error rate calculations were performed by Binder, Smith and Holman. Bradford and Pickel and Blandford, in their CRIER (Cosmic-Ray-Induced-Error-Rate) analysis code introduced the basic Rectangular ParallelePiped (RPP) method for error rate calculations. For the radiation environment at the part, both made use of the Cosmic Ray LET (Linear Energy Transfer) spectra calculated by Heinrich for various absorber Depths. A more detailed model for the space radiation environment within spacecraft was developed by Adams and co-workers. This model, together with a reformulation of the RPP method published by Pickel and Blandford, was used to create the CR ME (Cosmic Ray Effects on Micro-Electronics) code. About the same time Shapiro wrote the CRUP (Cosmic Ray Upset Program) based on the RPP method published by Bradford. It was the first code to specifically take into account charge collection from outside the depletion region due to deformation of the electric field caused by the incident cosmic ray. Other early rate prediction methods and codes include the Single Event Figure of Merit, NOVICE, the Space Radiation code and the effective flux method of Binder which is the basis of the SEFA (Scott Effective Flux Approximation) model. By the early 1990s it was becoming clear that CREME and the other early models needed Revision. This revision, CREME96, was completed and released as a WWW-based tool, one of the first of its kind. The revisions in CREME96 included improved environmental models and improved models for calculating single event effects. The need for a revision of CREME also stimulated the development of the CHIME (CRRES/SPACERAD Heavy Ion Model of the Environment) and MACREE (Modeling and Analysis of Cosmic Ray Effects in Electronics). The Single Event Figure of Merit method was also revised to use the solar minimum galactic cosmic ray spectrum and extended to circular orbits down to 200 km at any inclination. More recently a series of commercial codes was developed by TRAD (Test & Radiations) which includes the OMERE code which calculates single event effects. There are other error rate prediction methods which use Monte Carlo techniques. In this chapter the analytic methods for estimating the environment within spacecraft will be discussed.
Simple scheme for encoding and decoding a qubit in unknown state for various topological codes
Łodyga, Justyna; Mazurek, Paweł; Grudka, Andrzej; Horodecki, Michał
2015-01-01
We present a scheme for encoding and decoding an unknown state for CSS codes, based on syndrome measurements. We illustrate our method by means of Kitaev toric code, defected-lattice code, topological subsystem code and 3D Haah code. The protocol is local whenever in a given code the crossings between the logical operators consist of next neighbour pairs, which holds for the above codes. For subsystem code we also present scheme in a noisy case, where we allow for bit and phase-flip errors on qubits as well as state preparation and syndrome measurement errors. Similar scheme can be built for two other codes. We show that the fidelity of the protected qubit in the noisy scenario in a large code size limit is of , where p is a probability of error on a single qubit per time step. Regarding Haah code we provide noiseless scheme, leaving the noisy case as an open problem. PMID:25754905
Using a Euclid distance discriminant method to find protein coding genes in the yeast genome.
Zhang, Chun-Ting; Wang, Ju; Zhang, Ren
2002-02-01
The Euclid distance discriminant method is used to find protein coding genes in the yeast genome, based on the single nucleotide frequencies at three codon positions in the ORFs. The method is extremely simple and may be extended to find genes in prokaryotic genomes or eukaryotic genomes with less introns. Six-fold cross-validation tests have demonstrated that the accuracy of the algorithm is better than 93%. Based on this, it is found that the total number of protein coding genes in the yeast genome is less than or equal to 5579 only, about 3.8-7.0% less than 5800-6000, which is currently widely accepted. The base compositions at three codon positions are analyzed in details using a graphic method. The result shows that the preference codons adopted by yeast genes are of the RGW type, where R, G and W indicate the bases of purine, non-G and A/T, whereas the 'codons' in the intergenic sequences are of the form NNN, where N denotes any base. This fact constitutes the basis of the algorithm to distinguish between coding and non-coding ORFs in the yeast genome. The names of putative non-coding ORFs are listed here in detail.
Technical Support Document for Version 3.4.0 of the COMcheck Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartlett, Rosemarie; Connell, Linda M.; Gowri, Krishnan
2007-09-14
COMcheck provides an optional way to demonstrate compliance with commercial and high-rise residential building energy codes. Commercial buildings include all use groups except single family and multifamily not over three stories in height. COMcheck was originally based on ANSI/ASHRAE/IES Standard 90.1-1989 (Standard 90.1-1989) requirements and is intended for use with various codes based on Standard 90.1, including the Codification of ASHRAE/IES Standard 90.1-1989 (90.1-1989 Code) (ASHRAE 1989a, 1993b) and ASHRAE/IESNA Standard 90.1-1999 (Standard 90.1-1999). This includes jurisdictions that have adopted the 90.1-1989 Code, Standard 90.1-1989, Standard 90.1-1999, or their own code based on one of these. We view Standard 90.1-1989more » and the 90.1-1989 Code as having equivalent technical content and have used both as source documents in developing COMcheck. This technical support document (TSD) is designed to explain the technical basis for the COMcheck software as originally developed based on the ANSI/ASHRAE/IES Standard 90.1-1989 (Standard 90.1-1989). Documentation for other national model codes and standards and specific state energy codes supported in COMcheck has been added to this report as appendices. These appendices are intended to provide technical documentation for features specific to the supported codes and for any changes made for state-specific codes that differ from the standard features that support compliance with the national model codes and standards.« less
Porting plasma physics simulation codes to modern computing architectures using the
NASA Astrophysics Data System (ADS)
Germaschewski, Kai; Abbott, Stephen
2015-11-01
Available computing power has continued to grow exponentially even after single-core performance satured in the last decade. The increase has since been driven by more parallelism, both using more cores and having more parallelism in each core, e.g. in GPUs and Intel Xeon Phi. Adapting existing plasma physics codes is challenging, in particular as there is no single programming model that covers current and future architectures. We will introduce the open-source
Feasibility of coded vibration in a vibro-ultrasound system for tissue elasticity measurement.
Zhao, Jinxin; Wang, Yuanyuan; Yu, Jinhua; Li, Tianjie; Zheng, Yong-Ping
2016-07-01
The ability of various methods for elasticity measurement and imaging is hampered by the vibration amplitude on biological tissues. Based on the inference that coded excitation will improve the performance of the cross-correlation function of the tissue displacement waves, the idea of exerting encoded external vibration on tested samples for measuring its elasticity is proposed. It was implemented by integrating a programmable vibration generation function into a customized vibro-ultrasound system to generate Barker coded vibration for elasticity measurement. Experiments were conducted on silicone phantoms and porcine muscles. The results showed that coded excitation of the vibration enhanced the accuracy and robustness of the elasticity measurement especially in low signal-to-noise ratio scenarios. In the phantom study, the measured shear modulus values with coded vibration had an R(2 )= 0.993 linear correlation to that of referenced indentation, while for single-cycle pulse the R(2) decreased to 0.987. In porcine muscle study, the coded vibration also obtained a shear modulus value which is more accurate than the single-cycle pulse by 0.16 kPa and 0.33 kPa at two different depths. These results demonstrated the feasibility and potentiality of the coded vibration for enhancing the quality of elasticity measurement and imaging.
Code-Phase Clock Bias and Frequency Offset in PPP Clock Solutions.
Defraigne, Pascale; Sleewaegen, Jean-Marie
2016-07-01
Precise point positioning (PPP) is a zero-difference single-station technique that has proved to be very effective for time and frequency transfer, enabling the comparison of atomic clocks with a precision of a hundred picoseconds and a one-day stability below the 1e-15 level. It was, however, noted that for some receivers, a frequency difference is observed between the clock solution based on the code measurements and the clock solution based on the carrier-phase measurements. These observations reveal some inconsistency either between the code and carrier phases measured by the receiver or between the data analysis strategy of codes and carrier phases. One explanation for this discrepancy is the time offset that can exist for some receivers between the code and the carrier-phase latching. This paper explains how a code-phase bias in the receiver hardware can induce a frequency difference between the code and the carrier-phase clock solutions. The impact on PPP is then quantified. Finally, the possibility to determine this code-phase bias in the PPP modeling is investigated, and the first results are shown to be inappropriate due to the high level of code noise.
Braiding by Majorana tracking and long-range CNOT gates with color codes
NASA Astrophysics Data System (ADS)
Litinski, Daniel; von Oppen, Felix
2017-11-01
Color-code quantum computation seamlessly combines Majorana-based hardware with topological error correction. Specifically, as Clifford gates are transversal in two-dimensional color codes, they enable the use of the Majoranas' non-Abelian statistics for gate operations at the code level. Here, we discuss the implementation of color codes in arrays of Majorana nanowires that avoid branched networks such as T junctions, thereby simplifying their realization. We show that, in such implementations, non-Abelian statistics can be exploited without ever performing physical braiding operations. Physical braiding operations are replaced by Majorana tracking, an entirely software-based protocol which appropriately updates the Majoranas involved in the color-code stabilizer measurements. This approach minimizes the required hardware operations for single-qubit Clifford gates. For Clifford completeness, we combine color codes with surface codes, and use color-to-surface-code lattice surgery for long-range multitarget CNOT gates which have a time overhead that grows only logarithmically with the physical distance separating control and target qubits. With the addition of magic state distillation, our architecture describes a fault-tolerant universal quantum computer in systems such as networks of tetrons, hexons, or Majorana box qubits, but can also be applied to nontopological qubit platforms.
Axial and Centrifugal Compressor Mean Line Flow Analysis Method
NASA Technical Reports Server (NTRS)
Veres, Joseph P.
2009-01-01
This paper describes a method to estimate key aerodynamic parameters of single and multistage axial and centrifugal compressors. This mean-line compressor code COMDES provides the capability of sizing single and multistage compressors quickly during the conceptual design process. Based on the compressible fluid flow equations and the Euler equation, the code can estimate rotor inlet and exit blade angles when run in the design mode. The design point rotor efficiency and stator losses are inputs to the code, and are modeled at off design. When run in the off-design analysis mode, it can be used to generate performance maps based on simple models for losses due to rotor incidence and inlet guide vane reset angle. The code can provide an improved understanding of basic aerodynamic parameters such as diffusion factor, loading levels and incidence, when matching multistage compressor blade rows at design and at part-speed operation. Rotor loading levels and relative velocity ratio are correlated to the onset of compressor surge. NASA Stage 37 and the three-stage NASA 74-A axial compressors were analyzed and the results compared to test data. The code has been used to generate the performance map for the NASA 76-B three-stage axial compressor featuring variable geometry. The compressor stages were aerodynamically matched at off-design speeds by adjusting the variable inlet guide vane and variable stator geometry angles to control the rotor diffusion factor and incidence angles.
OWL: A code for the two-center shell model with spherical Woods-Saxon potentials
NASA Astrophysics Data System (ADS)
Diaz-Torres, Alexis
2018-03-01
A Fortran-90 code for solving the two-center nuclear shell model problem is presented. The model is based on two spherical Woods-Saxon potentials and the potential separable expansion method. It describes the single-particle motion in low-energy nuclear collisions, and is useful for characterizing a broad range of phenomena from fusion to nuclear molecular structures.
Multimodal Sparse Coding for Event Detection
2015-10-13
classification tasks based on single modality. We present multimodal sparse coding for learning feature representations shared across multiple modalities...The shared representa- tions are applied to multimedia event detection (MED) and evaluated in compar- ison to unimodal counterparts, as well as other...and video tracks from the same multimedia clip, we can force the two modalities to share a similar sparse representation whose benefit includes robust
A tactile-output paging communication system for the deaf-blind
NASA Technical Reports Server (NTRS)
Baer, J. A.
1979-01-01
A radio frequency paging communication system that has coded vibrotactile outputs suitable for use by deaf-blind people was developed. In concept, the system consists of a base station transmitting and receiving unit and many on-body transmitting and receiving units. The completed system has seven operating modes: fire alarm; time signal; repeated single character Morse code; manual Morse code; emergency aid request; operational status test; and message acknowledge. The on-body units can be addressed in three ways: all units; a group of units; or an individual unit. All the functions developed were integrated into a single package that can be worn on the user's wrist. The control portion of the on-body unit is implemented by a microcomputer. The microcomputer is packaged in a custom-designed hybrid circuit to reduce its physical size.
Death of a dogma: eukaryotic mRNAs can code for more than one protein
Mouilleron, Hélène; Delcourt, Vivian; Roucou, Xavier
2016-01-01
mRNAs carry the genetic information that is translated by ribosomes. The traditional view of a mature eukaryotic mRNA is a molecule with three main regions, the 5′ UTR, the protein coding open reading frame (ORF) or coding sequence (CDS), and the 3′ UTR. This concept assumes that ribosomes translate one ORF only, generally the longest one, and produce one protein. As a result, in the early days of genomics and bioinformatics, one CDS was associated with each protein-coding gene. This fundamental concept of a single CDS is being challenged by increasing experimental evidence indicating that annotated proteins are not the only proteins translated from mRNAs. In particular, mass spectrometry (MS)-based proteomics and ribosome profiling have detected productive translation of alternative open reading frames. In several cases, the alternative and annotated proteins interact. Thus, the expression of two or more proteins translated from the same mRNA may offer a mechanism to ensure the co-expression of proteins which have functional interactions. Translational mechanisms already described in eukaryotic cells indicate that the cellular machinery is able to translate different CDSs from a single viral or cellular mRNA. In addition to summarizing data showing that the protein coding potential of eukaryotic mRNAs has been underestimated, this review aims to challenge the single translated CDS dogma. PMID:26578573
NASA Astrophysics Data System (ADS)
Wang, Zhi-peng; Zhang, Shuai; Liu, Hong-zhao; Qin, Yi
2014-12-01
Based on phase retrieval algorithm and QR code, a new optical encryption technology that only needs to record one intensity distribution is proposed. In this encryption process, firstly, the QR code is generated from the information to be encrypted; and then the generated QR code is placed in the input plane of 4-f system to have a double random phase encryption. For only one intensity distribution in the output plane is recorded as the ciphertext, the encryption process is greatly simplified. In the decryption process, the corresponding QR code is retrieved using phase retrieval algorithm. A priori information about QR code is used as support constraint in the input plane, which helps solve the stagnation problem. The original information can be recovered without distortion by scanning the QR code. The encryption process can be implemented either optically or digitally, and the decryption process uses digital method. In addition, the security of the proposed optical encryption technology is analyzed. Theoretical analysis and computer simulations show that this optical encryption system is invulnerable to various attacks, and suitable for harsh transmission conditions.
FPGA implementation of high-performance QC-LDPC decoder for optical communications
NASA Astrophysics Data System (ADS)
Zou, Ding; Djordjevic, Ivan B.
2015-01-01
Forward error correction is as one of the key technologies enabling the next-generation high-speed fiber optical communications. Quasi-cyclic (QC) low-density parity-check (LDPC) codes have been considered as one of the promising candidates due to their large coding gain performance and low implementation complexity. In this paper, we present our designed QC-LDPC code with girth 10 and 25% overhead based on pairwise balanced design. By FPGAbased emulation, we demonstrate that the 5-bit soft-decision LDPC decoder can achieve 11.8dB net coding gain with no error floor at BER of 10-15 avoiding using any outer code or post-processing method. We believe that the proposed single QC-LDPC code is a promising solution for 400Gb/s optical communication systems and beyond.
Reliability analysis of single crystal NiAl turbine blades
NASA Technical Reports Server (NTRS)
Salem, Jonathan; Noebe, Ronald; Wheeler, Donald R.; Holland, Fred; Palko, Joseph; Duffy, Stephen; Wright, P. Kennard
1995-01-01
As part of a co-operative agreement with General Electric Aircraft Engines (GEAE), NASA LeRC is modifying and validating the Ceramic Analysis and Reliability Evaluation of Structures algorithm for use in design of components made of high strength NiAl based intermetallic materials. NiAl single crystal alloys are being actively investigated by GEAE as a replacement for Ni-based single crystal superalloys for use in high pressure turbine blades and vanes. The driving force for this research lies in the numerous property advantages offered by NiAl alloys over their superalloy counterparts. These include a reduction of density by as much as a third without significantly sacrificing strength, higher melting point, greater thermal conductivity, better oxidation resistance, and a better response to thermal barrier coatings. The current drawback to high strength NiAl single crystals is their limited ductility. Consequently, significant efforts including the work agreement with GEAE are underway to develop testing and design methodologies for these materials. The approach to validation and component analysis involves the following steps: determination of the statistical nature and source of fracture in a high strength, NiAl single crystal turbine blade material; measurement of the failure strength envelope of the material; coding of statistically based reliability models; verification of the code and model; and modeling of turbine blades and vanes for rig testing.
Hara, Liuichi; Guirguis, Ramy; Hummel, Keith; Villanueva, Monica
2017-12-28
The United Nations Population Fund (UNFPA) and the United States Agency for International Development (USAID) DELIVER PROJECT work together to strengthen public health commodity supply chains by standardizing bar coding under a single set of global standards. From 2015, UNFPA and USAID collaborated to pilot test how tracking and tracing of bar coded health products could be operationalized in the public health supply chains of Ethiopia and Pakistan and inform the ecosystem needed to begin full implementation. Pakistan had been using proprietary bar codes for inventory management of contraceptive supplies but transitioned to global standards-based bar codes during the pilot. The transition allowed Pakistan to leverage the original bar codes that were preprinted by global manufacturers as opposed to printing new bar codes at the central warehouse. However, barriers at lower service delivery levels prevented full realization of end-to-end data visibility. Key barriers at the district level were the lack of a digital inventory management system and absence of bar codes at the primary-level packaging level, such as single blister packs. The team in Ethiopia developed an open-sourced smartphone application that allowed the team to scan bar codes using the mobile phone's camera and to push the captured data to the country's data mart. Real-time tracking and tracing occurred from the central warehouse to the Addis Ababa distribution hub and to 2 health centers. These pilots demonstrated that standardized product identification and bar codes can significantly improve accuracy over manual stock counts while significantly streamlining the stock-taking process, resulting in efficiencies. The pilots also showed that bar coding technology by itself is not sufficient to ensure data visibility. Rather, by using global standards for identification and data capture of pharmaceuticals and medical devices, and integrating the data captured into national and global tracking systems, countries are able to lay the foundation for interoperability and ensure a harmonized language between global health stakeholders. © Hara et al.
Hara, Liuichi; Guirguis, Ramy; Hummel, Keith; Villanueva, Monica
2017-01-01
The United Nations Population Fund (UNFPA) and the United States Agency for International Development (USAID) DELIVER PROJECT work together to strengthen public health commodity supply chains by standardizing bar coding under a single set of global standards. From 2015, UNFPA and USAID collaborated to pilot test how tracking and tracing of bar coded health products could be operationalized in the public health supply chains of Ethiopia and Pakistan and inform the ecosystem needed to begin full implementation. Pakistan had been using proprietary bar codes for inventory management of contraceptive supplies but transitioned to global standards-based bar codes during the pilot. The transition allowed Pakistan to leverage the original bar codes that were preprinted by global manufacturers as opposed to printing new bar codes at the central warehouse. However, barriers at lower service delivery levels prevented full realization of end-to-end data visibility. Key barriers at the district level were the lack of a digital inventory management system and absence of bar codes at the primary-level packaging level, such as single blister packs. The team in Ethiopia developed an open-sourced smartphone application that allowed the team to scan bar codes using the mobile phone's camera and to push the captured data to the country's data mart. Real-time tracking and tracing occurred from the central warehouse to the Addis Ababa distribution hub and to 2 health centers. These pilots demonstrated that standardized product identification and bar codes can significantly improve accuracy over manual stock counts while significantly streamlining the stock-taking process, resulting in efficiencies. The pilots also showed that bar coding technology by itself is not sufficient to ensure data visibility. Rather, by using global standards for identification and data capture of pharmaceuticals and medical devices, and integrating the data captured into national and global tracking systems, countries are able to lay the foundation for interoperability and ensure a harmonized language between global health stakeholders. PMID:29284701
Technical Support Document for Version 3.9.0 of the COMcheck Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartlett, Rosemarie; Connell, Linda M.; Gowri, Krishnan
2011-09-01
COMcheck provides an optional way to demonstrate compliance with commercial and high-rise residential building energy codes. Commercial buildings include all use groups except single family and multifamily not over three stories in height. COMcheck was originally based on ANSI/ASHRAE/IES Standard 90.1-1989 (Standard 90.1-1989) requirements and is intended for use with various codes based on Standard 90.1, including the Codification of ASHRAE/IES Standard 90.1-1989 (90.1-1989 Code) (ASHRAE 1989a, 1993b) and ASHRAE/IESNA Standard 90.1-1999 (Standard 90.1-1999). This includes jurisdictions that have adopted the 90.1-1989 Code, Standard 90.1-1989, Standard 90.1-1999, or their own code based on one of these. We view Standard 90.1-1989more » and the 90.1-1989 Code as having equivalent technical content and have used both as source documents in developing COMcheck. This technical support document (TSD) is designed to explain the technical basis for the COMcheck software as originally developed based on the ANSI/ASHRAE/IES Standard 90.1-1989 (Standard 90.1-1989). Documentation for other national model codes and standards and specific state energy codes supported in COMcheck has been added to this report as appendices. These appendices are intended to provide technical documentation for features specific to the supported codes and for any changes made for state-specific codes that differ from the standard features that support compliance with the national model codes and standards. Beginning with COMcheck version 3.8.0, support for 90.1-1989, 90.1-1999, and the 1998 IECC are no longer included, but those sections remain in this document for reference purposes.« less
Technical Support Document for Version 3.9.1 of the COMcheck Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartlett, Rosemarie; Connell, Linda M.; Gowri, Krishnan
2012-09-01
COMcheck provides an optional way to demonstrate compliance with commercial and high-rise residential building energy codes. Commercial buildings include all use groups except single family and multifamily not over three stories in height. COMcheck was originally based on ANSI/ASHRAE/IES Standard 90.1-1989 (Standard 90.1-1989) requirements and is intended for use with various codes based on Standard 90.1, including the Codification of ASHRAE/IES Standard 90.1-1989 (90.1-1989 Code) (ASHRAE 1989a, 1993b) and ASHRAE/IESNA Standard 90.1-1999 (Standard 90.1-1999). This includes jurisdictions that have adopted the 90.1-1989 Code, Standard 90.1-1989, Standard 90.1-1999, or their own code based on one of these. We view Standard 90.1-1989more » and the 90.1-1989 Code as having equivalent technical content and have used both as source documents in developing COMcheck. This technical support document (TSD) is designed to explain the technical basis for the COMcheck software as originally developed based on the ANSI/ASHRAE/IES Standard 90.1-1989 (Standard 90.1-1989). Documentation for other national model codes and standards and specific state energy codes supported in COMcheck has been added to this report as appendices. These appendices are intended to provide technical documentation for features specific to the supported codes and for any changes made for state-specific codes that differ from the standard features that support compliance with the national model codes and standards. Beginning with COMcheck version 3.8.0, support for 90.1-1989, 90.1-1999, and the 1998 IECC and version 3.9.0 support for 2000 and 2001 IECC are no longer included, but those sections remain in this document for reference purposes.« less
Low Power LDPC Code Decoder Architecture Based on Intermediate Message Compression Technique
NASA Astrophysics Data System (ADS)
Shimizu, Kazunori; Togawa, Nozomu; Ikenaga, Takeshi; Goto, Satoshi
Reducing the power dissipation for LDPC code decoder is a major challenging task to apply it to the practical digital communication systems. In this paper, we propose a low power LDPC code decoder architecture based on an intermediate message-compression technique which features as follows: (i) An intermediate message compression technique enables the decoder to reduce the required memory capacity and write power dissipation. (ii) A clock gated shift register based intermediate message memory architecture enables the decoder to decompress the compressed messages in a single clock cycle while reducing the read power dissipation. The combination of the above two techniques enables the decoder to reduce the power dissipation while keeping the decoding throughput. The simulation results show that the proposed architecture improves the power efficiency up to 52% and 18% compared to that of the decoder based on the overlapped schedule and the rapid convergence schedule without the proposed techniques respectively.
A family of chaotic pure analog coding schemes based on baker's map function
NASA Astrophysics Data System (ADS)
Liu, Yang; Li, Jing; Lu, Xuanxuan; Yuen, Chau; Wu, Jun
2015-12-01
This paper considers a family of pure analog coding schemes constructed from dynamic systems which are governed by chaotic functions—baker's map function and its variants. Various decoding methods, including maximum likelihood (ML), minimum mean square error (MMSE), and mixed ML-MMSE decoding algorithms, have been developed for these novel encoding schemes. The proposed mirrored baker's and single-input baker's analog codes perform a balanced protection against the fold error (large distortion) and weak distortion and outperform the classical chaotic analog coding and analog joint source-channel coding schemes in literature. Compared to the conventional digital communication system, where quantization and digital error correction codes are used, the proposed analog coding system has graceful performance evolution, low decoding latency, and no quantization noise. Numerical results show that under the same bandwidth expansion, the proposed analog system outperforms the digital ones over a wide signal-to-noise (SNR) range.
Assessment of the Effects of Entrainment and Wind Shear on Nuclear Cloud Rise Modeling
NASA Astrophysics Data System (ADS)
Zalewski, Daniel; Jodoin, Vincent
2001-04-01
Accurate modeling of nuclear cloud rise is critical in hazard prediction following a nuclear detonation. This thesis recommends improvements to the model currently used by DOD. It considers a single-term versus a three-term entrainment equation, the value of the entrainment and eddy viscous drag parameters, as well as the effect of wind shear in the cloud rise following a nuclear detonation. It examines departures from the 1979 version of the Department of Defense Land Fallout Interpretive Code (DELFIC) with the current code used in the Hazard Prediction and Assessment Capability (HPAC) code version 3.2. The recommendation for a single-term entrainment equation, with constant value parameters, without wind shear corrections, and without cloud oscillations is based on both a statistical analysis using 67 U.S. nuclear atmospheric test shots and the physical representation of the modeling. The statistical analysis optimized the parameter values of interest for four cases: the three-term entrainment equation with wind shear and without wind shear as well as the single-term entrainment equation with and without wind shear. The thesis then examines the effect of cloud oscillations as a significant departure in the code. Modifications to user input atmospheric tables are identified as a potential problem in the calculation of stabilized cloud dimensions in HPAC.
Crespo, Alejandro C.; Dominguez, Jose M.; Barreiro, Anxo; Gómez-Gesteira, Moncho; Rogers, Benedict D.
2011-01-01
Smoothed Particle Hydrodynamics (SPH) is a numerical method commonly used in Computational Fluid Dynamics (CFD) to simulate complex free-surface flows. Simulations with this mesh-free particle method far exceed the capacity of a single processor. In this paper, as part of a dual-functioning code for either central processing units (CPUs) or Graphics Processor Units (GPUs), a parallelisation using GPUs is presented. The GPU parallelisation technique uses the Compute Unified Device Architecture (CUDA) of nVidia devices. Simulations with more than one million particles on a single GPU card exhibit speedups of up to two orders of magnitude over using a single-core CPU. It is demonstrated that the code achieves different speedups with different CUDA-enabled GPUs. The numerical behaviour of the SPH code is validated with a standard benchmark test case of dam break flow impacting on an obstacle where good agreement with the experimental results is observed. Both the achieved speed-ups and the quantitative agreement with experiments suggest that CUDA-based GPU programming can be used in SPH methods with efficiency and reliability. PMID:21695185
Comparison of FDNS liquid rocket engine plume computations with SPF/2
NASA Technical Reports Server (NTRS)
Kumar, G. N.; Griffith, D. O., II; Warsi, S. A.; Seaford, C. M.
1993-01-01
Prediction of a plume's shape and structure is essential to the evaluation of base region environments. The JANNAF standard plume flowfield analysis code SPF/2 predicts plumes well, but cannot analyze base regions. Full Navier-Stokes CFD codes can calculate both zones; however, before they can be used, they must be validated. The CFD code FDNS3D (Finite Difference Navier-Stokes Solver) was used to analyze the single plume of a Space Transportation Main Engine (STME) and comparisons were made with SPF/2 computations. Both frozen and finite rate chemistry models were employed as well as two turbulence models in SPF/2. The results indicate that FDNS3D plume computations agree well with SPF/2 predictions for liquid rocket engine plumes.
On codes with multi-level error-correction capabilities
NASA Technical Reports Server (NTRS)
Lin, Shu
1987-01-01
In conventional coding for error control, all the information symbols of a message are regarded equally significant, and hence codes are devised to provide equal protection for each information symbol against channel errors. However, in some occasions, some information symbols in a message are more significant than the other symbols. As a result, it is desired to devise codes with multilevel error-correcting capabilities. Another situation where codes with multi-level error-correcting capabilities are desired is in broadcast communication systems. An m-user broadcast channel has one input and m outputs. The single input and each output form a component channel. The component channels may have different noise levels, and hence the messages transmitted over the component channels require different levels of protection against errors. Block codes with multi-level error-correcting capabilities are also known as unequal error protection (UEP) codes. Structural properties of these codes are derived. Based on these structural properties, two classes of UEP codes are constructed.
Improving soft FEC performance for higher-order modulations via optimized bit channel mappings.
Häger, Christian; Amat, Alexandre Graell I; Brännström, Fredrik; Alvarado, Alex; Agrell, Erik
2014-06-16
Soft forward error correction with higher-order modulations is often implemented in practice via the pragmatic bit-interleaved coded modulation paradigm, where a single binary code is mapped to a nonbinary modulation. In this paper, we study the optimization of the mapping of the coded bits to the modulation bits for a polarization-multiplexed fiber-optical system without optical inline dispersion compensation. Our focus is on protograph-based low-density parity-check (LDPC) codes which allow for an efficient hardware implementation, suitable for high-speed optical communications. The optimization is applied to the AR4JA protograph family, and further extended to protograph-based spatially coupled LDPC codes assuming a windowed decoder. Full field simulations via the split-step Fourier method are used to verify the analysis. The results show performance gains of up to 0.25 dB, which translate into a possible extension of the transmission reach by roughly up to 8%, without significantly increasing the system complexity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, T; Lin, H; Xu, X
Purpose: (1) To perform phase space (PS) based source modeling for Tomotherapy and Varian TrueBeam 6 MV Linacs, (2) to examine the accuracy and performance of the ARCHER Monte Carlo code on a heterogeneous computing platform with Many Integrated Core coprocessors (MIC, aka Xeon Phi) and GPUs, and (3) to explore the software micro-optimization methods. Methods: The patient-specific source of Tomotherapy and Varian TrueBeam Linacs was modeled using the PS approach. For the helical Tomotherapy case, the PS data were calculated in our previous study (Su et al. 2014 41(7) Medical Physics). For the single-view Varian TrueBeam case, we analyticallymore » derived them from the raw patient-independent PS data in IAEA’s database, partial geometry information of the jaw and MLC as well as the fluence map. The phantom was generated from DICOM images. The Monte Carlo simulation was performed by ARCHER-MIC and GPU codes, which were benchmarked against a modified parallel DPM code. Software micro-optimization was systematically conducted, and was focused on SIMD vectorization of tight for-loops and data prefetch, with the ultimate goal of increasing 512-bit register utilization and reducing memory access latency. Results: Dose calculation was performed for two clinical cases, a Tomotherapy-based prostate cancer treatment and a TrueBeam-based left breast treatment. ARCHER was verified against the DPM code. The statistical uncertainty of the dose to the PTV was less than 1%. Using double-precision, the total wall time of the multithreaded CPU code on a X5650 CPU was 339 seconds for the Tomotherapy case and 131 seconds for the TrueBeam, while on 3 5110P MICs it was reduced to 79 and 59 seconds, respectively. The single-precision GPU code on a K40 GPU took 45 seconds for the Tomotherapy dose calculation. Conclusion: We have extended ARCHER, the MIC and GPU-based Monte Carlo dose engine to Tomotherapy and Truebeam dose calculations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Andrs; Ray Berry; Derek Gaston
The document contains the simulation results of a steady state model PWR problem with the RELAP-7 code. The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at Idaho National Laboratory (INL). The code is based on INL's modern scientific software development framework - MOOSE (Multi-Physics Object-Oriented Simulation Environment). This report summarizes the initial results of simulating a model steady-state single phase PWR problem using the current version of the RELAP-7 code. The major purpose of this demonstration simulation is to show that RELAP-7 code can be rapidly developed to simulate single-phase reactor problems. RELAP-7more » is a new project started on October 1st, 2011. It will become the main reactor systems simulation toolkit for RISMC (Risk Informed Safety Margin Characterization) and the next generation tool in the RELAP reactor safety/systems analysis application series (the replacement for RELAP5). The key to the success of RELAP-7 is the simultaneous advancement of physical models, numerical methods, and software design while maintaining a solid user perspective. Physical models include both PDEs (Partial Differential Equations) and ODEs (Ordinary Differential Equations) and experimental based closure models. RELAP-7 will eventually utilize well posed governing equations for multiphase flow, which can be strictly verified. Closure models used in RELAP5 and newly developed models will be reviewed and selected to reflect the progress made during the past three decades. RELAP-7 uses modern numerical methods, which allow implicit time integration, higher order schemes in both time and space, and strongly coupled multi-physics simulations. RELAP-7 is written with object oriented programming language C++. Its development follows modern software design paradigms. The code is easy to read, develop, maintain, and couple with other codes. Most importantly, the modern software design allows the RELAP-7 code to evolve with time. RELAP-7 is a MOOSE-based application. MOOSE (Multiphysics Object-Oriented Simulation Environment) is a framework for solving computational engineering problems in a well-planned, managed, and coordinated way. By leveraging millions of lines of open source software packages, such as PETSC (a nonlinear solver developed at Argonne National Laboratory) and LibMesh (a Finite Element Analysis package developed at University of Texas), MOOSE significantly reduces the expense and time required to develop new applications. Numerical integration methods and mesh management for parallel computation are provided by MOOSE. Therefore RELAP-7 code developers only need to focus on physics and user experiences. By using the MOOSE development environment, RELAP-7 code is developed by following the same modern software design paradigms used for other MOOSE development efforts. There are currently over 20 different MOOSE based applications ranging from 3-D transient neutron transport, detailed 3-D transient fuel performance analysis, to long-term material aging. Multi-physics and multiple dimensional analyses capabilities can be obtained by coupling RELAP-7 and other MOOSE based applications and by leveraging with capabilities developed by other DOE programs. This allows restricting the focus of RELAP-7 to systems analysis-type simulations and gives priority to retain and significantly extend RELAP5's capabilities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brinson, E.C.; Adriano, T.; Bloch, W.
1994-09-01
We have developed a rapid, single-tube, non-isotopic assay that screens a patient sample for the presence of 31 cystic fibrosis (CF) mutations. This assay can identify these mutations in a single reaction tube and a single electrophoresis run. Sample preparation is a simple, boil-and-go procedure, completed in less than an hour. The assay is composed of a 15-plex PCR, followed by a 61-plex oligonucleotide ligation assay (OLA), and incorporates a novel detection scheme, Sequence Coded Separation. Initially, the multiplex PCR amplifies 15 relevant segments of the CFTR gene, simultaneously. These PCR amplicons serve as templates for the multiplex OLA, whichmore » detects the normal or mutant allele at all loci, simultaneously. Each polymorphic site is interrogated by three oligonucleotide probes, a common probe and two allele-specific probes. Each common probe is tagged with a fluorescent dye, and the competing normal and mutant allelic probes incorporate different, non-nucleotide, mobility modifiers. These modifiers are composed of hexaethylene oxide (HEO) units, incorporated as HEO phosphoramidite monomers during automated DNA synthesis. The OLA is based on both probe hybridization and the ability of DNA ligase to discriminate single base mismatches at the junction between paired probes. Each single tube assay is electrophoresed in a single gel lane of a 4-color fluorescent DNA sequencer (Applied Biosystems, Model 373A). Each of the ligation products is identified by its unique combination of electrophoretic mobility and one of three colors. The fourth color is reserved for the in-lane size standard, used by GENESCAN{sup TM} software (Applied Biosystems) to size the OLA electrophoresis products. The Genotyper{sub TM} software (Applied Biosystems) decodes these Sequence-Coded-Separation data to create a patient summary report for all loci tested.« less
A Coded Structured Light System Based on Primary Color Stripe Projection and Monochrome Imaging
Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano
2013-01-01
Coded Structured Light techniques represent one of the most attractive research areas within the field of optical metrology. The coding procedures are typically based on projecting either a single pattern or a temporal sequence of patterns to provide 3D surface data. In this context, multi-slit or stripe colored patterns may be used with the aim of reducing the number of projected images. However, color imaging sensors require the use of calibration procedures to address crosstalk effects between different channels and to reduce the chromatic aberrations. In this paper, a Coded Structured Light system has been developed by integrating a color stripe projector and a monochrome camera. A discrete coding method, which combines spatial and temporal information, is generated by sequentially projecting and acquiring a small set of fringe patterns. The method allows the concurrent measurement of geometrical and chromatic data by exploiting the benefits of using a monochrome camera. The proposed methodology has been validated by measuring nominal primitive geometries and free-form shapes. The experimental results have been compared with those obtained by using a time-multiplexing gray code strategy. PMID:24129018
A coded structured light system based on primary color stripe projection and monochrome imaging.
Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano
2013-10-14
Coded Structured Light techniques represent one of the most attractive research areas within the field of optical metrology. The coding procedures are typically based on projecting either a single pattern or a temporal sequence of patterns to provide 3D surface data. In this context, multi-slit or stripe colored patterns may be used with the aim of reducing the number of projected images. However, color imaging sensors require the use of calibration procedures to address crosstalk effects between different channels and to reduce the chromatic aberrations. In this paper, a Coded Structured Light system has been developed by integrating a color stripe projector and a monochrome camera. A discrete coding method, which combines spatial and temporal information, is generated by sequentially projecting and acquiring a small set of fringe patterns. The method allows the concurrent measurement of geometrical and chromatic data by exploiting the benefits of using a monochrome camera. The proposed methodology has been validated by measuring nominal primitive geometries and free-form shapes. The experimental results have been compared with those obtained by using a time-multiplexing gray code strategy.
Exact diagonalization library for quantum electron models
NASA Astrophysics Data System (ADS)
Iskakov, Sergei; Danilov, Michael
2018-04-01
We present an exact diagonalization C++ template library (EDLib) for solving quantum electron models, including the single-band finite Hubbard cluster and the multi-orbital impurity Anderson model. The observables that can be computed using EDLib are single particle Green's functions and spin-spin correlation functions. This code provides three different types of Hamiltonian matrix storage that can be chosen based on the model.
Death of a dogma: eukaryotic mRNAs can code for more than one protein.
Mouilleron, Hélène; Delcourt, Vivian; Roucou, Xavier
2016-01-08
mRNAs carry the genetic information that is translated by ribosomes. The traditional view of a mature eukaryotic mRNA is a molecule with three main regions, the 5' UTR, the protein coding open reading frame (ORF) or coding sequence (CDS), and the 3' UTR. This concept assumes that ribosomes translate one ORF only, generally the longest one, and produce one protein. As a result, in the early days of genomics and bioinformatics, one CDS was associated with each protein-coding gene. This fundamental concept of a single CDS is being challenged by increasing experimental evidence indicating that annotated proteins are not the only proteins translated from mRNAs. In particular, mass spectrometry (MS)-based proteomics and ribosome profiling have detected productive translation of alternative open reading frames. In several cases, the alternative and annotated proteins interact. Thus, the expression of two or more proteins translated from the same mRNA may offer a mechanism to ensure the co-expression of proteins which have functional interactions. Translational mechanisms already described in eukaryotic cells indicate that the cellular machinery is able to translate different CDSs from a single viral or cellular mRNA. In addition to summarizing data showing that the protein coding potential of eukaryotic mRNAs has been underestimated, this review aims to challenge the single translated CDS dogma. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
A high-speed BCI based on code modulation VEP
NASA Astrophysics Data System (ADS)
Bin, Guangyu; Gao, Xiaorong; Wang, Yijun; Li, Yun; Hong, Bo; Gao, Shangkai
2011-04-01
Recently, electroencephalogram-based brain-computer interfaces (BCIs) have attracted much attention in the fields of neural engineering and rehabilitation due to their noninvasiveness. However, the low communication speed of current BCI systems greatly limits their practical application. In this paper, we present a high-speed BCI based on code modulation of visual evoked potentials (c-VEP). Thirty-two target stimuli were modulated by a time-shifted binary pseudorandom sequence. A multichannel identification method based on canonical correlation analysis (CCA) was used for target identification. The online system achieved an average information transfer rate (ITR) of 108 ± 12 bits min-1 on five subjects with a maximum ITR of 123 bits min-1 for a single subject.
Multi-stage decoding for multi-level block modulation codes
NASA Technical Reports Server (NTRS)
Lin, Shu; Kasami, Tadao
1991-01-01
Various types of multistage decoding for multilevel block modulation codes, in which the decoding of a component code at each stage can be either soft decision or hard decision, maximum likelihood or bounded distance are discussed. Error performance for codes is analyzed for a memoryless additive channel based on various types of multi-stage decoding, and upper bounds on the probability of an incorrect decoding are derived. It was found that, if component codes of a multi-level modulation code and types of decoding at various stages are chosen properly, high spectral efficiency and large coding gain can be achieved with reduced decoding complexity. It was found that the difference in performance between the suboptimum multi-stage soft decision maximum likelihood decoding of a modulation code and the single stage optimum decoding of the overall code is very small, only a fraction of dB loss in SNR at the probability of an incorrect decoding for a block of 10(exp -6). Multi-stage decoding of multi-level modulation codes really offers a way to achieve the best of three worlds, bandwidth efficiency, coding gain, and decoding complexity.
Single-pixel imaging based on compressive sensing with spectral-domain optical mixing
NASA Astrophysics Data System (ADS)
Zhu, Zhijing; Chi, Hao; Jin, Tao; Zheng, Shilie; Jin, Xiaofeng; Zhang, Xianmin
2017-11-01
In this letter a single-pixel imaging structure is proposed based on compressive sensing using a spatial light modulator (SLM)-based spectrum shaper. In the approach, an SLM-based spectrum shaper, the pattern of which is a predetermined pseudorandom bit sequence (PRBS), spectrally codes the optical pulse carrying image information. The energy of the spectrally mixed pulse is detected by a single-pixel photodiode and the measurement results are used to reconstruct the image via a sparse recovery algorithm. As the mixing of the image signal and the PRBS is performed in the spectral domain, optical pulse stretching, modulation, compression and synchronization in the time domain are avoided. Experiments are implemented to verify the feasibility of the approach.
Caregiving, single parents and cumulative stresses when caring for a child with cancer.
Granek, L; Rosenberg-Yunger, Z R S; Dix, D; Klaassen, R J; Sung, L; Cairney, J; Klassen, A F
2014-03-01
Single parents whose children have cancer are a marginalized group who report less family centred care, and therefore, less quality cancer care for their children. As such, the aims of this study were to explore how single parents of children with cancer describe their caregiving experiences and to understand their contextual life stressors. A constructivist grounded theory method was used. Qualitative interviews with 29 single parents of children with cancer who were at least 6 months post-diagnosis were recruited between November 2009 and April 2011 from four hospitals across Canada. Line-by-line coding was used to establish codes and themes and constant comparison was used to establish relationships among emerging codes and conceptual themes. The first set of findings report on caregiving duties including: emotional tasks, informational tasks and physical tasks. The second set of findings report on the contextual picture of parent's lives including their living conditions, their physical and mental health and their family histories of disruption, trauma and disease. Single parents caring for children with cancer were found to experience several cumulative stressors in addition to the current strain of caring for a child with cancer. The synergy of these cumulative stresses with the added strain of caregiving for a child with cancer may have long-term health and financial implications for parents. Broad-based policy interventions should focus on relieving the chronic strains associated with being a single parent of a child with cancer. © 2012 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Xiao, Fei; Liu, Bo; Zhang, Lijia; Xin, Xiangjun; Zhang, Qi; Tian, Qinghua; Tian, Feng; Wang, Yongjun; Rao, Lan; Ullah, Rahat; Zhao, Feng; Li, Deng'ao
2018-02-01
A rate-adaptive multilevel coded modulation (RA-MLC) scheme based on fixed code length and a corresponding decoding scheme is proposed. RA-MLC scheme combines the multilevel coded and modulation technology with the binary linear block code at the transmitter. Bits division, coding, optional interleaving, and modulation are carried out by the preset rule, then transmitted through standard single mode fiber span equal to 100 km. The receiver improves the accuracy of decoding by means of soft information passing through different layers, which enhances the performance. Simulations are carried out in an intensity modulation-direct detection optical communication system using MATLAB®. Results show that the RA-MLC scheme can achieve bit error rate of 1E-5 when optical signal-to-noise ratio is 20.7 dB. It also reduced the number of decoders by 72% and realized 22 rate adaptation without significantly increasing the computing time. The coding gain is increased by 7.3 dB at BER=1E-3.
Yu, Hong; Kong, Lingfeng; Li, Qi
2016-01-01
In this study, we evaluated the efficacy of 12 mitochondrial protein-coding genes from 238 mitochondrial genomes of 140 molluscan species as potential DNA barcodes for mollusks. Three barcoding methods (distance, monophyly and character-based methods) were used in species identification. The species recovery rates based on genetic distances for the 12 genes ranged from 70.83 to 83.33%. There were no significant differences in intra- or interspecific variability among the 12 genes. The monophyly and character-based methods provided higher resolution than the distance-based method in species delimitation. Especially in closely related taxa, the character-based method showed some advantages. The results suggested that besides the standard COI barcode, other 11 mitochondrial protein-coding genes could also be potentially used as a molecular diagnostic for molluscan species discrimination. Our results also showed that the combination of mitochondrial genes did not enhance the efficacy for species identification and a single mitochondrial gene would be fully competent.
Houyel, Lucile; Khoshnood, Babak; Anderson, Robert H; Lelong, Nathalie; Thieulin, Anne-Claire; Goffinet, François; Bonnet, Damien
2011-10-03
Classification of the overall spectrum of congenital heart defects (CHD) has always been challenging, in part because of the diversity of the cardiac phenotypes, but also because of the oft-complex associations. The purpose of our study was to establish a comprehensive and easy-to-use classification of CHD for clinical and epidemiological studies based on the long list of the International Paediatric and Congenital Cardiac Code (IPCCC). We coded each individual malformation using six-digit codes from the long list of IPCCC. We then regrouped all lesions into 10 categories and 23 subcategories according to a multi-dimensional approach encompassing anatomic, diagnostic and therapeutic criteria. This anatomic and clinical classification of congenital heart disease (ACC-CHD) was then applied to data acquired from a population-based cohort of patients with CHD in France, made up of 2867 cases (82% live births, 1.8% stillbirths and 16.2% pregnancy terminations). The majority of cases (79.5%) could be identified with a single IPCCC code. The category "Heterotaxy, including isomerism and mirror-imagery" was the only one that typically required more than one code for identification of cases. The two largest categories were "ventricular septal defects" (52%) and "anomalies of the outflow tracts and arterial valves" (20% of cases). Our proposed classification is not new, but rather a regrouping of the known spectrum of CHD into a manageable number of categories based on anatomic and clinical criteria. The classification is designed to use the code numbers of the long list of IPCCC but can accommodate ICD-10 codes. Its exhaustiveness, simplicity, and anatomic basis make it useful for clinical and epidemiologic studies, including those aimed at assessment of risk factors and outcomes.
NASA Astrophysics Data System (ADS)
Vu, Thang X.; Duhamel, Pierre; Chatzinotas, Symeon; Ottersten, Bjorn
2017-12-01
This work studies the performance of a cooperative network which consists of two channel-coded sources, multiple relays, and one destination. To achieve high spectral efficiency, we assume that a single time slot is dedicated to relaying. Conventional network-coded-based cooperation (NCC) selects the best relay which uses network coding to serve the two sources simultaneously. The bit error rate (BER) performance of NCC with channel coding, however, is still unknown. In this paper, we firstly study the BER of NCC via a closed-form expression and analytically show that NCC only achieves diversity of order two regardless of the number of available relays and the channel code. Secondly, we propose a novel partial relaying-based cooperation (PARC) scheme to improve the system diversity in the finite signal-to-noise ratio (SNR) regime. In particular, closed-form expressions for the system BER and diversity order of PARC are derived as a function of the operating SNR value and the minimum distance of the channel code. We analytically show that the proposed PARC achieves full (instantaneous) diversity order in the finite SNR regime, given that an appropriate channel code is used. Finally, numerical results verify our analysis and demonstrate a large SNR gain of PARC over NCC in the SNR region of interest.
2013-01-01
Background Vitis vinifera L. is one of society’s most important agricultural crops with a broad genetic variability. The difficulty in recognizing grapevine genotypes based on ampelographic traits and secondary metabolites prompted the development of molecular markers suitable for achieving variety genetic identification. Findings Here, we propose a comparison between a multi-locus barcoding approach based on six chloroplast markers and a single-copy nuclear gene sequencing method using five coding regions combined with a character-based system with the aim of reconstructing cultivar-specific haplotypes and genotypes to be exploited for the molecular characterization of 157 V. vinifera accessions. The analysis of the chloroplast target regions proved the inadequacy of the DNA barcoding approach at the subspecies level, and hence further DNA genotyping analyses were targeted on the sequences of five nuclear single-copy genes amplified across all of the accessions. The sequencing of the coding region of the UFGT nuclear gene (UDP-glucose: flavonoid 3-0-glucosyltransferase, the key enzyme for the accumulation of anthocyanins in berry skins) enabled the discovery of discriminant SNPs (1/34 bp) and the reconstruction of 130 V. vinifera distinct genotypes. Most of the genotypes proved to be cultivar-specific, and only few genotypes were shared by more, although strictly related, cultivars. Conclusion On the whole, this technique was successful for inferring SNP-based genotypes of grapevine accessions suitable for assessing the genetic identity and ancestry of international cultivars and also useful for corroborating some hypotheses regarding the origin of local varieties, suggesting several issues of misidentification (synonymy/homonymy). PMID:24298902
Code of Federal Regulations, 2010 CFR
2010-04-01
... 25 Indians 1 2010-04-01 2010-04-01 false May a tribe create and adopt a single heir rule without adopting a tribal probate code? 18.301 Section 18.301 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR PROBATE TRIBAL PROBATE CODES Approval of Single Heir Rule § 18.301 May a tribe create and adopt a...
NASA Astrophysics Data System (ADS)
Kawamura, Teruo; Kishiyama, Yoshihisa; Higuchi, Kenichi; Sawahashi, Mamoru
In the Evolved UTRA (UMTS Terrestrial Radio Access) uplink, single-carrier frequency division multiple access (SC-FDMA) radio access was adopted owing to its advantageous low peak-to-average power ratio (PAPR) feature, which leads to wide coverage area provisioning with limited peak transmission power of user equipments. This paper proposes orthogonal pilot channel generation using the combination of FDMA and CDMA in the SC-FDMA-based Evolved UTRA uplink. In the proposed method, we employ distributed FDMA transmission for simultaneous accessing users with different transmission bandwidths, and employ CDMA transmission for simultaneous accessing users with identical transmission bandwidth. Moreover, we apply a code sequence with a good auto-correlation property such as a Constant Amplitude Zero Auto-Correlation (CAZAC) sequence employing a cyclic shift to increase the number of sequences. Simulation results show that the average packet error rate performance using an orthogonal pilot channel with the combination of FDMA and CDMA in a six-user environment, i. e., four users each with a 1.25-MHz transmission bandwidth and two users each with a 5-MHz transmission bandwidth, employing turbo coding with the coding r of R=1/2 and QPSK and 16QAM data modulation coincides well with that in a single-user environment with the same transmission bandwidth. We show that the proposed orthogonal pilot channel structure using the combination of distributed FDMA and CDMA transmissions and the application of the CAZAC sequence is effective in the SC-FDMA-based Evolved UTRA uplink.
Application of a VLSI vector quantization processor to real-time speech coding
NASA Technical Reports Server (NTRS)
Davidson, G.; Gersho, A.
1986-01-01
Attention is given to a working vector quantization processor for speech coding that is based on a first-generation VLSI chip which efficiently performs the pattern-matching operation needed for the codebook search process (CPS). Using this chip, the CPS architecture has been successfully incorporated into a compact, single-board Vector PCM implementation operating at 7-18 kbits/sec. A real time Adaptive Vector Predictive Coder system using the CPS has also been implemented.
Constitutive Modeling of Superalloy Single Crystals and Directionally Solidified Materials
NASA Technical Reports Server (NTRS)
Walker, K. P.; Jordan, E. H.
1985-01-01
A unified viscoplastic constitutive relation based on crystallographic slip theory was developed for the deformation analysis of nickel base face centered cubic superalloy single crystals at elevated temperature. The single crystal theory is embedded in a self consistent method to derive a constitutive relation for a directionally solidified material comprised of a polycrystalline aggregate of columnar cylindrical grains. One of the crystallographic axes of the cylindrical crystals points in the columnar direction while the remaining crystallographic axes are oriented at random in the basal plane perpendicular to the columnar direction. These constitutive formulations are coded in FORTRAN for use in nonlinear finite element and boundary element programs.
Mu, Zhiping; Hong, Baoming; Li, Shimin; Liu, Yi-Hwa
2009-01-01
Coded aperture imaging for two-dimensional (2D) planar objects has been investigated extensively in the past, whereas little success has been achieved in imaging 3D objects using this technique. In this article, the authors present a novel method of 3D single photon emission computerized tomography (SPECT) reconstruction for near-field coded aperture imaging. Multiangular coded aperture projections are acquired and a stack of 2D images is reconstructed separately from each of the projections. Secondary projections are subsequently generated from the reconstructed image stacks based on the geometry of parallel-hole collimation and the variable magnification of near-field coded aperture imaging. Sinograms of cross-sectional slices of 3D objects are assembled from the secondary projections, and the ordered subset expectation and maximization algorithm is employed to reconstruct the cross-sectional image slices from the sinograms. Experiments were conducted using a customized capillary tube phantom and a micro hot rod phantom. Imaged at approximately 50 cm from the detector, hot rods in the phantom with diameters as small as 2.4 mm could be discerned in the reconstructed SPECT images. These results have demonstrated the feasibility of the authors’ 3D coded aperture image reconstruction algorithm for SPECT, representing an important step in their effort to develop a high sensitivity and high resolution SPECT imaging system. PMID:19544769
SequenceL: Automated Parallel Algorithms Derived from CSP-NT Computational Laws
NASA Technical Reports Server (NTRS)
Cooke, Daniel; Rushton, Nelson
2013-01-01
With the introduction of new parallel architectures like the cell and multicore chips from IBM, Intel, AMD, and ARM, as well as the petascale processing available for highend computing, a larger number of programmers will need to write parallel codes. Adding the parallel control structure to the sequence, selection, and iterative control constructs increases the complexity of code development, which often results in increased development costs and decreased reliability. SequenceL is a high-level programming language that is, a programming language that is closer to a human s way of thinking than to a machine s. Historically, high-level languages have resulted in decreased development costs and increased reliability, at the expense of performance. In recent applications at JSC and in industry, SequenceL has demonstrated the usual advantages of high-level programming in terms of low cost and high reliability. SequenceL programs, however, have run at speeds typically comparable with, and in many cases faster than, their counterparts written in C and C++ when run on single-core processors. Moreover, SequenceL is able to generate parallel executables automatically for multicore hardware, gaining parallel speedups without any extra effort from the programmer beyond what is required to write the sequen tial/singlecore code. A SequenceL-to-C++ translator has been developed that automatically renders readable multithreaded C++ from a combination of a SequenceL program and sample data input. The SequenceL language is based on two fundamental computational laws, Consume-Simplify- Produce (CSP) and Normalize-Trans - pose (NT), which enable it to automate the creation of parallel algorithms from high-level code that has no annotations of parallelism whatsoever. In our anecdotal experience, SequenceL development has been in every case less costly than development of the same algorithm in sequential (that is, single-core, single process) C or C++, and an order of magnitude less costly than development of comparable parallel code. Moreover, SequenceL not only automatically parallelizes the code, but since it is based on CSP-NT, it is provably race free, thus eliminating the largest quality challenge the parallelized software developer faces.
Liu, Shuo; Cui, Tie Jun; Zhang, Lei; Xu, Quan; Wang, Qiu; Wan, Xiang; Gu, Jian Qiang; Tang, Wen Xuan; Qing Qi, Mei; Han, Jia Guang; Zhang, Wei Li; Zhou, Xiao Yang; Cheng, Qiang
2016-10-01
The concept of coding metasurface makes a link between physically metamaterial particles and digital codes, and hence it is possible to perform digital signal processing on the coding metasurface to realize unusual physical phenomena. Here, this study presents to perform Fourier operations on coding metasurfaces and proposes a principle called as scattering-pattern shift using the convolution theorem, which allows steering of the scattering pattern to an arbitrarily predesigned direction. Owing to the constant reflection amplitude of coding particles, the required coding pattern can be simply achieved by the modulus of two coding matrices. This study demonstrates that the scattering patterns that are directly calculated from the coding pattern using the Fourier transform have excellent agreements to the numerical simulations based on realistic coding structures, providing an efficient method in optimizing coding patterns to achieve predesigned scattering beams. The most important advantage of this approach over the previous schemes in producing anomalous single-beam scattering is its flexible and continuous controls to arbitrary directions. This work opens a new route to study metamaterial from a fully digital perspective, predicting the possibility of combining conventional theorems in digital signal processing with the coding metasurface to realize more powerful manipulations of electromagnetic waves.
Research on compression performance of ultrahigh-definition videos
NASA Astrophysics Data System (ADS)
Li, Xiangqun; He, Xiaohai; Qing, Linbo; Tao, Qingchuan; Wu, Di
2017-11-01
With the popularization of high-definition (HD) images and videos (1920×1080 pixels and above), there are even 4K (3840×2160) television signals and 8 K (8192×4320) ultrahigh-definition videos. The demand for HD images and videos is increasing continuously, along with the increasing data volume. The storage and transmission cannot be properly solved only by virtue of the expansion capacity of hard disks and the update and improvement of transmission devices. Based on the full use of the coding standard high-efficiency video coding (HEVC), super-resolution reconstruction technology, and the correlation between the intra- and the interprediction, we first put forward a "division-compensation"-based strategy to further improve the compression performance of a single image and frame I. Then, by making use of the above thought and HEVC encoder and decoder, a video compression coding frame is designed. HEVC is used inside the frame. Last, with the super-resolution reconstruction technology, the reconstructed video quality is further improved. The experiment shows that by the proposed compression method for a single image (frame I) and video sequence here, the performance is superior to that of HEVC in a low bit rate environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salinger, Andrew; Phipps, Eric; Ostien, Jakob
2016-01-13
The Albany code is a general-purpose finite element code for solving partial differential equations (PDEs). Albany is a research code that demonstrates how a PDE code can be built by interfacing many of the open-source software libraries that are released under Sandia's Trilinos project. Part of the mission of Albany is to be a testbed for new Trilinos libraries, to refine their methods, usability, and interfaces. Albany includes hooks to optimization and uncertainty quantification algorithms, including those in Trilinos as well as those in the Dakota toolkit. Because of this, Albany is a desirable starting point for new code developmentmore » efforts that wish to make heavy use of Trilinos. Albany is both a framework and the host for specific finite element applications. These applications have project names, and can be controlled by configuration option when the code is compiled, but are all developed and released as part of the single Albany code base, These include LCM, QCAD, FELIX, Aeras, and ATO applications.« less
NASA Technical Reports Server (NTRS)
Baumeister, Joseph F.
1994-01-01
A non-flowing, electrically heated test rig was developed to verify computer codes that calculate radiant energy propagation from nozzle geometries that represent aircraft propulsion nozzle systems. Since there are a variety of analysis tools used to evaluate thermal radiation propagation from partially enclosed nozzle surfaces, an experimental benchmark test case was developed for code comparison. This paper briefly describes the nozzle test rig and the developed analytical nozzle geometry used to compare the experimental and predicted thermal radiation results. A major objective of this effort was to make available the experimental results and the analytical model in a format to facilitate conversion to existing computer code formats. For code validation purposes this nozzle geometry represents one validation case for one set of analysis conditions. Since each computer code has advantages and disadvantages based on scope, requirements, and desired accuracy, the usefulness of this single nozzle baseline validation case can be limited for some code comparisons.
Zhu, Shiyou; Li, Wei; Liu, Jingze; Chen, Chen-Hao; Liao, Qi; Xu, Ping; Xu, Han; Xiao, Tengfei; Cao, Zhongzheng; Peng, Jingyu; Yuan, Pengfei; Brown, Myles; Liu, Xiaole Shirley; Wei, Wensheng
2017-01-01
CRISPR/Cas9 screens have been widely adopted to analyse coding gene functions, but high throughput screening of non-coding elements using this method is more challenging, because indels caused by a single cut in non-coding regions are unlikely to produce a functional knockout. A high-throughput method to produce deletions of non-coding DNA is needed. Herein, we report a high throughput genomic deletion strategy to screen for functional long non-coding RNAs (lncRNAs) that is based on a lentiviral paired-guide RNA (pgRNA) library. Applying our screening method, we identified 51 lncRNAs that can positively or negatively regulate human cancer cell growth. We individually validated 9 lncRNAs using CRISPR/Cas9-mediated genomic deletion and functional rescue, CRISPR activation or inhibition, and gene expression profiling. Our high-throughput pgRNA genome deletion method should enable rapid identification of functional mammalian non-coding elements. PMID:27798563
Particle Hydrodynamics with Material Strength for Multi-Layer Orbital Debris Shield Design
NASA Technical Reports Server (NTRS)
Fahrenthold, Eric P.
1999-01-01
Three dimensional simulation of oblique hypervelocity impact on orbital debris shielding places extreme demands on computer resources. Research to date has shown that particle models provide the most accurate and efficient means for computer simulation of shield design problems. In order to employ a particle based modeling approach to the wall plate impact portion of the shield design problem, it is essential that particle codes be augmented to represent strength effects. This report describes augmentation of a Lagrangian particle hydrodynamics code developed by the principal investigator, to include strength effects, allowing for the entire shield impact problem to be represented using a single computer code.
Addressing the challenges of standalone multi-core simulations in molecular dynamics
NASA Astrophysics Data System (ADS)
Ocaya, R. O.; Terblans, J. J.
2017-07-01
Computational modelling in material science involves mathematical abstractions of force fields between particles with the aim to postulate, develop and understand materials by simulation. The aggregated pairwise interactions of the material's particles lead to a deduction of its macroscopic behaviours. For practically meaningful macroscopic scales, a large amount of data are generated, leading to vast execution times. Simulation times of hours, days or weeks for moderately sized problems are not uncommon. The reduction of simulation times, improved result accuracy and the associated software and hardware engineering challenges are the main motivations for many of the ongoing researches in the computational sciences. This contribution is concerned mainly with simulations that can be done on a "standalone" computer based on Message Passing Interfaces (MPI), parallel code running on hardware platforms with wide specifications, such as single/multi- processor, multi-core machines with minimal reconfiguration for upward scaling of computational power. The widely available, documented and standardized MPI library provides this functionality through the MPI_Comm_size (), MPI_Comm_rank () and MPI_Reduce () functions. A survey of the literature shows that relatively little is written with respect to the efficient extraction of the inherent computational power in a cluster. In this work, we discuss the main avenues available to tap into this extra power without compromising computational accuracy. We also present methods to overcome the high inertia encountered in single-node-based computational molecular dynamics. We begin by surveying the current state of the art and discuss what it takes to achieve parallelism, efficiency and enhanced computational accuracy through program threads and message passing interfaces. Several code illustrations are given. The pros and cons of writing raw code as opposed to using heuristic, third-party code are also discussed. The growing trend towards graphical processor units and virtual computing clouds for high-performance computing is also discussed. Finally, we present the comparative results of vacancy formation energy calculations using our own parallelized standalone code called Verlet-Stormer velocity (VSV) operating on 30,000 copper atoms. The code is based on the Sutton-Chen implementation of the Finnis-Sinclair pairwise embedded atom potential. A link to the code is also given.
Janjua, Naveed Zafar; Islam, Nazrul; Kuo, Margot; Yu, Amanda; Wong, Stanley; Butt, Zahid A; Gilbert, Mark; Buxton, Jane; Chapinal, Nuria; Samji, Hasina; Chong, Mei; Alvarez, Maria; Wong, Jason; Tyndall, Mark W; Krajden, Mel
2018-05-01
Large linked healthcare administrative datasets could be used to monitor programs providing prevention and treatment services to people who inject drugs (PWID). However, diagnostic codes in administrative datasets do not differentiate non-injection from injection drug use (IDU). We validated algorithms based on diagnostic codes and prescription records representing IDU in administrative datasets against interview-based IDU data. The British Columbia Hepatitis Testers Cohort (BC-HTC) includes ∼1.7 million individuals tested for HCV/HIV or reported HBV/HCV/HIV/tuberculosis cases in BC from 1990 to 2015, linked to administrative datasets including physician visit, hospitalization and prescription drug records. IDU, assessed through interviews as part of enhanced surveillance at the time of HIV or HCV/HBV diagnosis from a subset of cases included in the BC-HTC (n = 6559), was used as the gold standard. ICD-9/ICD-10 codes for IDU and injecting-related infections (IRI) were grouped with records of opioid substitution therapy (OST) into multiple IDU algorithms in administrative datasets. We assessed the performance of IDU algorithms through calculation of sensitivity, specificity, positive predictive, and negative predictive values. Sensitivity was highest (90-94%), and specificity was lowest (42-73%) for algorithms based either on IDU or IRI and drug misuse codes. Algorithms requiring both drug misuse and IRI had lower sensitivity (57-60%) and higher specificity (90-92%). An optimal sensitivity and specificity combination was found with two medical visits or a single hospitalization for injectable drugs with (83%/82%) and without OST (78%/83%), respectively. Based on algorithms that included two medical visits, a single hospitalization or OST records, there were 41,358 (1.2% of 11-65 years individuals in BC) recent PWID in BC based on health encounters during 3- year period (2013-2015). Algorithms for identifying PWID using diagnostic codes in linked administrative data could be used for tracking the progress of programing aimed at PWID. With population-based datasets, this tool can be used to inform much needed estimates of PWID population size. Copyright © 2018 Elsevier B.V. All rights reserved.
Electromagnetic reprogrammable coding-metasurface holograms.
Li, Lianlin; Jun Cui, Tie; Ji, Wei; Liu, Shuo; Ding, Jun; Wan, Xiang; Bo Li, Yun; Jiang, Menghua; Qiu, Cheng-Wei; Zhang, Shuang
2017-08-04
Metasurfaces have enabled a plethora of emerging functions within an ultrathin dimension, paving way towards flat and highly integrated photonic devices. Despite the rapid progress in this area, simultaneous realization of reconfigurability, high efficiency, and full control over the phase and amplitude of scattered light is posing a great challenge. Here, we try to tackle this challenge by introducing the concept of a reprogrammable hologram based on 1-bit coding metasurfaces. The state of each unit cell of the coding metasurface can be switched between '1' and '0' by electrically controlling the loaded diodes. Our proof-of-concept experiments show that multiple desired holographic images can be realized in real time with only a single coding metasurface. The proposed reprogrammable hologram may be a key in enabling future intelligent devices with reconfigurable and programmable functionalities that may lead to advances in a variety of applications such as microscopy, display, security, data storage, and information processing.Realizing metasurfaces with reconfigurability, high efficiency, and control over phase and amplitude is a challenge. Here, Li et al. introduce a reprogrammable hologram based on a 1-bit coding metasurface, where the state of each unit cell of the coding metasurface can be switched electrically.
Minimizing embedding impact in steganography using trellis-coded quantization
NASA Astrophysics Data System (ADS)
Filler, Tomáš; Judas, Jan; Fridrich, Jessica
2010-01-01
In this paper, we propose a practical approach to minimizing embedding impact in steganography based on syndrome coding and trellis-coded quantization and contrast its performance with bounds derived from appropriate rate-distortion bounds. We assume that each cover element can be assigned a positive scalar expressing the impact of making an embedding change at that element (single-letter distortion). The problem is to embed a given payload with minimal possible average embedding impact. This task, which can be viewed as a generalization of matrix embedding or writing on wet paper, has been approached using heuristic and suboptimal tools in the past. Here, we propose a fast and very versatile solution to this problem that can theoretically achieve performance arbitrarily close to the bound. It is based on syndrome coding using linear convolutional codes with the optimal binary quantizer implemented using the Viterbi algorithm run in the dual domain. The complexity and memory requirements of the embedding algorithm are linear w.r.t. the number of cover elements. For practitioners, we include detailed algorithms for finding good codes and their implementation. Finally, we report extensive experimental results for a large set of relative payloads and for different distortion profiles, including the wet paper channel.
NASA Technical Reports Server (NTRS)
Hall, Edward J.; Heidegger, Nathan J.; Delaney, Robert A.
1999-01-01
The overall objective of this study was to evaluate the effects of turbulence models in a 3-D numerical analysis on the wake prediction capability. The current version of the computer code resulting from this study is referred to as ADPAC v7 (Advanced Ducted Propfan Analysis Codes -Version 7). This report is intended to serve as a computer program user's manual for the ADPAC code used and modified under Task 15 of NASA Contract NAS3-27394. The ADPAC program is based on a flexible multiple-block and discretization scheme permitting coupled 2-D/3-D mesh block solutions with application to a wide variety of geometries. Aerodynamic calculations are based on a four-stage Runge-Kutta time-marching finite volume solution technique with added numerical dissipation. Steady flow predictions are accelerated by a multigrid procedure. Turbulence models now available in the ADPAC code are: a simple mixing-length model, the algebraic Baldwin-Lomax model with user defined coefficients, the one-equation Spalart-Allmaras model, and a two-equation k-R model. The consolidated ADPAC code is capable of executing in either a serial or parallel computing mode from a single source code.
Simulation of 2D Kinetic Effects in Plasmas using the Grid Based Continuum Code LOKI
NASA Astrophysics Data System (ADS)
Banks, Jeffrey; Berger, Richard; Chapman, Tom; Brunner, Stephan
2016-10-01
Kinetic simulation of multi-dimensional plasma waves through direct discretization of the Vlasov equation is a useful tool to study many physical interactions and is particularly attractive for situations where minimal fluctuation levels are desired, for instance, when measuring growth rates of plasma wave instabilities. However, direct discretization of phase space can be computationally expensive, and as a result there are few examples of published results using Vlasov codes in more than a single configuration space dimension. In an effort to fill this gap we have developed the Eulerian-based kinetic code LOKI that evolves the Vlasov-Poisson system in 2+2-dimensional phase space. The code is designed to reduce the cost of phase-space computation by using fully 4th order accurate conservative finite differencing, while retaining excellent parallel scalability that efficiently uses large scale computing resources. In this poster I will discuss the algorithms used in the code as well as some aspects of their parallel implementation using MPI. I will also overview simulation results of basic plasma wave instabilities relevant to laser plasma interaction, which have been obtained using the code.
Coding stimulus amplitude by correlated neural activity
NASA Astrophysics Data System (ADS)
Metzen, Michael G.; Ávila-Åkerberg, Oscar; Chacron, Maurice J.
2015-04-01
While correlated activity is observed ubiquitously in the brain, its role in neural coding has remained controversial. Recent experimental results have demonstrated that correlated but not single-neuron activity can encode the detailed time course of the instantaneous amplitude (i.e., envelope) of a stimulus. These have furthermore demonstrated that such coding required and was optimal for a nonzero level of neural variability. However, a theoretical understanding of these results is still lacking. Here we provide a comprehensive theoretical framework explaining these experimental findings. Specifically, we use linear response theory to derive an expression relating the correlation coefficient to the instantaneous stimulus amplitude, which takes into account key single-neuron properties such as firing rate and variability as quantified by the coefficient of variation. The theoretical prediction was in excellent agreement with numerical simulations of various integrate-and-fire type neuron models for various parameter values. Further, we demonstrate a form of stochastic resonance as optimal coding of stimulus variance by correlated activity occurs for a nonzero value of noise intensity. Thus, our results provide a theoretical explanation of the phenomenon by which correlated but not single-neuron activity can code for stimulus amplitude and how key single-neuron properties such as firing rate and variability influence such coding. Correlation coding by correlated but not single-neuron activity is thus predicted to be a ubiquitous feature of sensory processing for neurons responding to weak input.
NASA Astrophysics Data System (ADS)
Lin, Chao; Shen, Xueju; Hua, Binbin; Wang, Zhisong
2015-10-01
We demonstrate the feasibility of three dimensional (3D) polarization multiplexing by optimizing a single vectorial beam using a multiple-signal window multiple-plane (MSW-MP) phase retrieval algorithm. Original messages represented with multiple quick response (QR) codes are first partitioned into a series of subblocks. Then, each subblock is marked with a specific polarization state and randomly distributed in 3D space with both longitudinal and transversal adjustable freedoms. A generalized 3D polarization mapping protocol is established to generate a 3D polarization key. Finally, multiple-QR code is encrypted into one phase only mask and one polarization only mask based on the modified Gerchberg-Saxton (GS) algorithm. We take the polarization mask as the cyphertext and the phase only mask as additional dimension of key. Only when both the phase key and 3D polarization key are correct, original messages can be recovered. We verify our proposal with both simulation and experiment evidences.
Moats and Drawbridges: An Isolation Primitive for Reconfigurable Hardware Based Systems
2007-05-01
these systems, and after being run through an optimizing CAD tool the resulting circuit is a single entangled mess of gates and wires. To prevent the...translates MATLAB [48] algorithms into HDL, logic synthesis translates this HDL into a netlist, a synthesis tool uses a place-and-route algorithm to...Core Soft Core µ Soft P Core µP Core Hard Soft Algorithms MATLAB gcc ExecutableC Code HDL C Code Bitstream Place and Route NetlistLogic Synthesis EDK µP
Development of an Aeroelastic Analysis Including a Viscous Flow Model
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Bakhle, Milind A.
2001-01-01
Under this grant, Version 4 of the three-dimensional Navier-Stokes aeroelastic code (TURBO-AE) has been developed and verified. The TURBO-AE Version 4 aeroelastic code allows flutter calculations for a fan, compressor, or turbine blade row. This code models a vibrating three-dimensional bladed disk configuration and the associated unsteady flow (including shocks, and viscous effects) to calculate the aeroelastic instability using a work-per-cycle approach. Phase-lagged (time-shift) periodic boundary conditions are used to model the phase lag between adjacent vibrating blades. The direct-store approach is used for this purpose to reduce the computational domain to a single interblade passage. A disk storage option, implemented using direct access files, is available to reduce the large memory requirements of the direct-store approach. Other researchers have implemented 3D inlet/exit boundary conditions based on eigen-analysis. Appendix A: Aeroelastic calculations based on three-dimensional euler analysis. Appendix B: Unsteady aerodynamic modeling of blade vibration using the turbo-V3.1 code.
New Class of Quantum Error-Correcting Codes for a Bosonic Mode
NASA Astrophysics Data System (ADS)
Michael, Marios H.; Silveri, Matti; Brierley, R. T.; Albert, Victor V.; Salmilehto, Juha; Jiang, Liang; Girvin, S. M.
2016-07-01
We construct a new class of quantum error-correcting codes for a bosonic mode, which are advantageous for applications in quantum memories, communication, and scalable computation. These "binomial quantum codes" are formed from a finite superposition of Fock states weighted with binomial coefficients. The binomial codes can exactly correct errors that are polynomial up to a specific degree in bosonic creation and annihilation operators, including amplitude damping and displacement noise as well as boson addition and dephasing errors. For realistic continuous-time dissipative evolution, the codes can perform approximate quantum error correction to any given order in the time step between error detection measurements. We present an explicit approximate quantum error recovery operation based on projective measurements and unitary operations. The binomial codes are tailored for detecting boson loss and gain errors by means of measurements of the generalized number parity. We discuss optimization of the binomial codes and demonstrate that by relaxing the parity structure, codes with even lower unrecoverable error rates can be achieved. The binomial codes are related to existing two-mode bosonic codes, but offer the advantage of requiring only a single bosonic mode to correct amplitude damping as well as the ability to correct other errors. Our codes are similar in spirit to "cat codes" based on superpositions of the coherent states but offer several advantages such as smaller mean boson number, exact rather than approximate orthonormality of the code words, and an explicit unitary operation for repumping energy into the bosonic mode. The binomial quantum codes are realizable with current superconducting circuit technology, and they should prove useful in other quantum technologies, including bosonic quantum memories, photonic quantum communication, and optical-to-microwave up- and down-conversion.
NASA Technical Reports Server (NTRS)
Newman, P. A.; Hou, G. J.-W.; Jones, H. E.; Taylor, A. C., III; Korivi, V. M.
1992-01-01
How a combination of various computational methodologies could reduce the enormous computational costs envisioned in using advanced CFD codes in gradient based optimized multidisciplinary design (MdD) procedures is briefly outlined. Implications of these MdD requirements upon advanced CFD codes are somewhat different than those imposed by a single discipline design. A means for satisfying these MdD requirements for gradient information is presented which appear to permit: (1) some leeway in the CFD solution algorithms which can be used; (2) an extension to 3-D problems; and (3) straightforward use of other computational methodologies. Many of these observations have previously been discussed as possibilities for doing parts of the problem more efficiently; the contribution here is observing how they fit together in a mutually beneficial way.
NASA Technical Reports Server (NTRS)
Stahara, S. S.; Klenke, D.; Trudinger, B. C.; Spreiter, J. R.
1980-01-01
Computational procedures are developed and applied to the prediction of solar wind interaction with nonmagnetic terrestrial planet atmospheres, with particular emphasis to Venus. The theoretical method is based on a single fluid, steady, dissipationless, magnetohydrodynamic continuum model, and is appropriate for the calculation of axisymmetric, supersonic, super-Alfvenic solar wind flow past terrestrial planets. The procedures, which consist of finite difference codes to determine the gasdynamic properties and a variety of special purpose codes to determine the frozen magnetic field, streamlines, contours, plots, etc. of the flow, are organized into one computational program. Theoretical results based upon these procedures are reported for a wide variety of solar wind conditions and ionopause obstacle shapes. Plasma and magnetic field comparisons in the ionosheath are also provided with actual spacecraft data obtained by the Pioneer Venus Orbiter.
Weighted bi-prediction for light field image coding
NASA Astrophysics Data System (ADS)
Conti, Caroline; Nunes, Paulo; Ducla Soares, Luís.
2017-09-01
Light field imaging based on a single-tier camera equipped with a microlens array - also known as integral, holoscopic, and plenoptic imaging - has currently risen up as a practical and prospective approach for future visual applications and services. However, successfully deploying actual light field imaging applications and services will require developing adequate coding solutions to efficiently handle the massive amount of data involved in these systems. In this context, self-similarity compensated prediction is a non-local spatial prediction scheme based on block matching that has been shown to achieve high efficiency for light field image coding based on the High Efficiency Video Coding (HEVC) standard. As previously shown by the authors, this is possible by simply averaging two predictor blocks that are jointly estimated from a causal search window in the current frame itself, referred to as self-similarity bi-prediction. However, theoretical analyses for motion compensated bi-prediction have suggested that it is still possible to achieve further rate-distortion performance improvements by adaptively estimating the weighting coefficients of the two predictor blocks. Therefore, this paper presents a comprehensive study of the rate-distortion performance for HEVC-based light field image coding when using different sets of weighting coefficients for self-similarity bi-prediction. Experimental results demonstrate that it is possible to extend the previous theoretical conclusions to light field image coding and show that the proposed adaptive weighting coefficient selection leads to up to 5 % of bit savings compared to the previous self-similarity bi-prediction scheme.
Single stock dynamics on high-frequency data: from a compressed coding perspective.
Fushing, Hsieh; Chen, Shu-Chun; Hwang, Chii-Ruey
2014-01-01
High-frequency return, trading volume and transaction number are digitally coded via a nonparametric computing algorithm, called hierarchical factor segmentation (HFS), and then are coupled together to reveal a single stock dynamics without global state-space structural assumptions. The base-8 digital coding sequence, which is capable of revealing contrasting aggregation against sparsity of extreme events, is further compressed into a shortened sequence of state transitions. This compressed digital code sequence vividly demonstrates that the aggregation of large absolute returns is the primary driving force for stimulating both the aggregations of large trading volumes and transaction numbers. The state of system-wise synchrony is manifested with very frequent recurrence in the stock dynamics. And this data-driven dynamic mechanism is seen to correspondingly vary as the global market transiting in and out of contraction-expansion cycles. These results not only elaborate the stock dynamics of interest to a fuller extent, but also contradict some classical theories in finance. Overall this version of stock dynamics is potentially more coherent and realistic, especially when the current financial market is increasingly powered by high-frequency trading via computer algorithms, rather than by individual investors.
Single Stock Dynamics on High-Frequency Data: From a Compressed Coding Perspective
Fushing, Hsieh; Chen, Shu-Chun; Hwang, Chii-Ruey
2014-01-01
High-frequency return, trading volume and transaction number are digitally coded via a nonparametric computing algorithm, called hierarchical factor segmentation (HFS), and then are coupled together to reveal a single stock dynamics without global state-space structural assumptions. The base-8 digital coding sequence, which is capable of revealing contrasting aggregation against sparsity of extreme events, is further compressed into a shortened sequence of state transitions. This compressed digital code sequence vividly demonstrates that the aggregation of large absolute returns is the primary driving force for stimulating both the aggregations of large trading volumes and transaction numbers. The state of system-wise synchrony is manifested with very frequent recurrence in the stock dynamics. And this data-driven dynamic mechanism is seen to correspondingly vary as the global market transiting in and out of contraction-expansion cycles. These results not only elaborate the stock dynamics of interest to a fuller extent, but also contradict some classical theories in finance. Overall this version of stock dynamics is potentially more coherent and realistic, especially when the current financial market is increasingly powered by high-frequency trading via computer algorithms, rather than by individual investors. PMID:24586235
Incorporation of Dynamic SSI Effects in the Design Response Spectra
NASA Astrophysics Data System (ADS)
Manjula, N. K.; Pillai, T. M. Madhavan; Nagarajan, Praveen; Reshma, K. K.
2018-05-01
Many studies in the past on dynamic soil-structure interactions have revealed the detrimental and advantageous effects of soil flexibility. Based on such studies, the design response spectra of international seismic codes are being improved worldwide. The improvements required for the short period range of the design response spectra in the Indian seismic code (IS 1893:2002) are presented in this paper. As the recent code revisions has not incorporated the short period amplifications, proposals given in this paper are equally applicable for the latest code also (IS 1893:2016). Analyses of single degree of freedom systems are performed to predict the required improvements. The proposed modifications to the constant acceleration portion of the spectra are evaluated with respect to the current design spectra in Eurocode 8.
Group delay variations of GPS transmitting and receiving antennas
NASA Astrophysics Data System (ADS)
Wanninger, Lambert; Sumaya, Hael; Beer, Susanne
2017-09-01
GPS code pseudorange measurements exhibit group delay variations at the transmitting and the receiving antenna. We calibrated C1 and P2 delay variations with respect to dual-frequency carrier phase observations and obtained nadir-dependent corrections for 32 satellites of the GPS constellation in early 2015 as well as elevation-dependent corrections for 13 receiving antenna models. The combined delay variations reach up to 1.0 m (3.3 ns) in the ionosphere-free linear combination for specific pairs of satellite and receiving antennas. Applying these corrections to the code measurements improves code/carrier single-frequency precise point positioning, ambiguity fixing based on the Melbourne-Wübbena linear combination, and determination of ionospheric total electron content. It also affects fractional cycle biases and differential code biases.
NASA Astrophysics Data System (ADS)
He, Jing; Wen, Xuejie; Chen, Ming; Chen, Lin; Su, Jinshu
2015-01-01
To improve the transmission performance of multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband (UWB) over optical fiber, a pre-coding scheme based on low-density parity-check (LDPC) is adopted and experimentally demonstrated in the intensity-modulation and direct-detection MB-OFDM UWB over fiber system. Meanwhile, a symbol synchronization and pilot-aided channel estimation scheme is implemented on the receiver of the MB-OFDM UWB over fiber system. The experimental results show that the LDPC pre-coding scheme can work effectively in the MB-OFDM UWB over fiber system. After 70 km standard single-mode fiber (SSMF) transmission, at the bit error rate of 1 × 10-3, the receiver sensitivities are improved about 4 dB when the LDPC code rate is 75%.
A Short Review of Ablative-Material Response Models and Simulation Tools
NASA Technical Reports Server (NTRS)
Lachaud, Jean; Magin, Thierry E.; Cozmuta, Ioana; Mansour, Nagi N.
2011-01-01
A review of the governing equations and boundary conditions used to model the response of ablative materials submitted to a high-enthalpy flow is proposed. The heritage of model-development efforts undertaken in the 1960s is extremely clear: the bases of the models used in the community are mathematically equivalent. Most of the material-response codes implement a single model in which the equation parameters may be modified to model different materials or conditions. The level of fidelity of the models implemented in design tools only slightly varies. Research and development codes are generally more advanced but often not as robust. The capabilities of each of these codes are summarized in a color-coded table along with research and development efforts currently in progress.
Unsteady Cascade Aerodynamic Response Using a Multiphysics Simulation Code
NASA Technical Reports Server (NTRS)
Lawrence, C.; Reddy, T. S. R.; Spyropoulos, E.
2000-01-01
The multiphysics code Spectrum(TM) is applied to calculate the unsteady aerodynamic pressures of oscillating cascade of airfoils representing a blade row of a turbomachinery component. Multiphysics simulation is based on a single computational framework for the modeling of multiple interacting physical phenomena, in the present case being between fluids and structures. Interaction constraints are enforced in a fully coupled manner using the augmented-Lagrangian method. The arbitrary Lagrangian-Eulerian method is utilized to account for deformable fluid domains resulting from blade motions. Unsteady pressures are calculated for a cascade designated as the tenth standard, and undergoing plunging and pitching oscillations. The predicted unsteady pressures are compared with those obtained from an unsteady Euler co-de refer-red in the literature. The Spectrum(TM) code predictions showed good correlation for the cases considered.
Comparison Between Simulated and Experimentally Measured Performance of a Four Port Wave Rotor
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.; Wilson, Jack; Welch, Gerard E.
2007-01-01
Performance and operability testing has been completed on a laboratory-scale, four-port wave rotor, of the type suitable for use as a topping cycle on a gas turbine engine. Many design aspects, and performance estimates for the wave rotor were determined using a time-accurate, one-dimensional, computational fluid dynamics-based simulation code developed specifically for wave rotors. The code follows a single rotor passage as it moves past the various ports, which in this reference frame become boundary conditions. This paper compares wave rotor performance predicted with the code to that measured during laboratory testing. Both on and off-design operating conditions were examined. Overall, the match between code and rig was found to be quite good. At operating points where there were disparities, the assumption of larger than expected internal leakage rates successfully realigned code predictions and laboratory measurements. Possible mechanisms for such leakage rates are discussed.
Toward performance portability of the Albany finite element analysis code using the Kokkos library
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demeshko, Irina; Watkins, Jerry; Tezaur, Irina K.
Performance portability on heterogeneous high-performance computing (HPC) systems is a major challenge faced today by code developers: parallel code needs to be executed correctly as well as with high performance on machines with different architectures, operating systems, and software libraries. The finite element method (FEM) is a popular and flexible method for discretizing partial differential equations arising in a wide variety of scientific, engineering, and industrial applications that require HPC. This paper presents some preliminary results pertaining to our development of a performance portable implementation of the FEM-based Albany code. Performance portability is achieved using the Kokkos library. We presentmore » performance results for the Aeras global atmosphere dynamical core module in Albany. Finally, numerical experiments show that our single code implementation gives reasonable performance across three multicore/many-core architectures: NVIDIA General Processing Units (GPU’s), Intel Xeon Phis, and multicore CPUs.« less
Toward performance portability of the Albany finite element analysis code using the Kokkos library
Demeshko, Irina; Watkins, Jerry; Tezaur, Irina K.; ...
2018-02-05
Performance portability on heterogeneous high-performance computing (HPC) systems is a major challenge faced today by code developers: parallel code needs to be executed correctly as well as with high performance on machines with different architectures, operating systems, and software libraries. The finite element method (FEM) is a popular and flexible method for discretizing partial differential equations arising in a wide variety of scientific, engineering, and industrial applications that require HPC. This paper presents some preliminary results pertaining to our development of a performance portable implementation of the FEM-based Albany code. Performance portability is achieved using the Kokkos library. We presentmore » performance results for the Aeras global atmosphere dynamical core module in Albany. Finally, numerical experiments show that our single code implementation gives reasonable performance across three multicore/many-core architectures: NVIDIA General Processing Units (GPU’s), Intel Xeon Phis, and multicore CPUs.« less
Execution of a parallel edge-based Navier-Stokes solver on commodity graphics processor units
NASA Astrophysics Data System (ADS)
Corral, Roque; Gisbert, Fernando; Pueblas, Jesus
2017-02-01
The implementation of an edge-based three-dimensional Reynolds Average Navier-Stokes solver for unstructured grids able to run on multiple graphics processing units (GPUs) is presented. Loops over edges, which are the most time-consuming part of the solver, have been written to exploit the massively parallel capabilities of GPUs. Non-blocking communications between parallel processes and between the GPU and the central processor unit (CPU) have been used to enhance code scalability. The code is written using a mixture of C++ and OpenCL, to allow the execution of the source code on GPUs. The Message Passage Interface (MPI) library is used to allow the parallel execution of the solver on multiple GPUs. A comparative study of the solver parallel performance is carried out using a cluster of CPUs and another of GPUs. It is shown that a single GPU is up to 64 times faster than a single CPU core. The parallel scalability of the solver is mainly degraded due to the loss of computing efficiency of the GPU when the size of the case decreases. However, for large enough grid sizes, the scalability is strongly improved. A cluster featuring commodity GPUs and a high bandwidth network is ten times less costly and consumes 33% less energy than a CPU-based cluster with an equivalent computational power.
NASA Astrophysics Data System (ADS)
Yang, Guang; Ye, Xujiong; Slabaugh, Greg; Keegan, Jennifer; Mohiaddin, Raad; Firmin, David
2016-03-01
In this paper, we propose a novel self-learning based single-image super-resolution (SR) method, which is coupled with dual-tree complex wavelet transform (DTCWT) based denoising to better recover high-resolution (HR) medical images. Unlike previous methods, this self-learning based SR approach enables us to reconstruct HR medical images from a single low-resolution (LR) image without extra training on HR image datasets in advance. The relationships between the given image and its scaled down versions are modeled using support vector regression with sparse coding and dictionary learning, without explicitly assuming reoccurrence or self-similarity across image scales. In addition, we perform DTCWT based denoising to initialize the HR images at each scale instead of simple bicubic interpolation. We evaluate our method on a variety of medical images. Both quantitative and qualitative results show that the proposed approach outperforms bicubic interpolation and state-of-the-art single-image SR methods while effectively removing noise.
The solvability of quantum k-pair network in a measurement-based way.
Li, Jing; Xu, Gang; Chen, Xiu-Bo; Qu, Zhiguo; Niu, Xin-Xin; Yang, Yi-Xian
2017-12-01
Network coding is an effective means to enhance the communication efficiency. The characterization of network solvability is one of the most important topic in this field. However, for general network, the solvability conditions are still a challenge. In this paper, we consider the solvability of general quantum k-pair network in measurement-based framework. For the first time, a detailed account of measurement-based quantum network coding(MB-QNC) is specified systematically. Differing from existing coding schemes, single qubit measurements on a pre-shared graph state are the only allowed coding operations. Since no control operations are concluded, it makes MB-QNC schemes more feasible. Further, the sufficient conditions formulating by eigenvalue equations and stabilizer matrix are presented, which build an unambiguous relation among the solvability and the general network. And this result can also analyze the feasibility of sharing k EPR pairs task in large-scale networks. Finally, in the presence of noise, we analyze the advantage of MB-QNC in contrast to gate-based way. By an instance network [Formula: see text], we show that MB-QNC allows higher error thresholds. Specially, for X error, the error threshold is about 30% higher than 10% in gate-based way. In addition, the specific expressions of fidelity subject to some constraint conditions are given.
Momeni, Ali; Rouhi, Kasra; Rajabalipanah, Hamid; Abdolali, Ali
2018-04-18
Inspired by the information theory, a new concept of re-programmable encrypted graphene-based coding metasurfaces was investigated at terahertz frequencies. A channel-coding function was proposed to convolutionally record an arbitrary information message onto unrecognizable but recoverable parity beams generated by a phase-encrypted coding metasurface. A single graphene-based reflective cell with dual-mode biasing voltages was designed to act as "0" and "1" meta-atoms, providing broadband opposite reflection phases. By exploiting graphene tunability, the proposed scheme enabled an unprecedented degree of freedom in the real-time mapping of information messages onto multiple parity beams which could not be damaged, altered, and reverse-engineered. Various encryption types such as mirroring, anomalous reflection, multi-beam generation, and scattering diffusion can be dynamically attained via our multifunctional metasurface. Besides, contrary to conventional time-consuming and optimization-based methods, this paper convincingly offers a fast, straightforward, and efficient design of diffusion metasurfaces of arbitrarily large size. Rigorous full-wave simulations corroborated the results where the phase-encrypted metasurfaces exhibited a polarization-insensitive reflectivity less than -10 dB over a broadband frequency range from 1 THz to 1.7 THz. This work reveals new opportunities for the extension of re-programmable THz-coding metasurfaces and may be of interest for reflection-type security systems, computational imaging, and camouflage technology.
George, Jaiben; Newman, Jared M; Ramanathan, Deepak; Klika, Alison K; Higuera, Carlos A; Barsoum, Wael K
2017-09-01
Research using large administrative databases has substantially increased in recent years. Accuracy with which comorbidities are represented in these databases has been questioned. The purpose of this study was to evaluate the extent of errors in obesity coding and its impact on arthroplasty research. Eighteen thousand thirty primary total knee arthroplasties (TKAs) and 10,475 total hip arthroplasties (THAs) performed at a single healthcare system from 2004-2014 were included. Patients were classified as obese or nonobese using 2 methods: (1) body mass index (BMI) ≥30 kg/m 2 and (2) international classification of disease, 9th edition codes. Length of stay, operative time, and 90-day complications were collected. Effect of obesity on various outcomes was analyzed separately for both BMI- and coding-based obesity. From 2004 to 2014, the prevalence of BMI-based obesity increased from 54% to 63% and 40% to 45% in TKA and THA, respectively. The prevalence of coding-based obesity increased from 15% to 28% and 8% to 17% in TKA and THA, respectively. Coding overestimated the growth of obesity in TKA and THA by 5.6 and 8.4 times, respectively. When obesity was defined by coding, obesity was falsely shown to be a significant risk factor for deep vein thrombosis (TKA), pulmonary embolism (THA), and longer hospital stay (TKA and THA). The growth in obesity observed in administrative databases may be an artifact because of improvements in coding over the years. Obesity defined by coding can overestimate the actual effect of obesity on complications after arthroplasty. Therefore, studies using large databases should be interpreted with caution, especially when variables prone to coding errors are involved. Copyright © 2017 Elsevier Inc. All rights reserved.
Khan, Waqasuddin; Saripella, Ganapathi Varma-; Ludwig, Thomas; Cuppens, Tania; Thibord, Florian; Génin, Emmanuelle; Deleuze, Jean-Francois; Trégouët, David-Alexandre
2018-05-03
Predicted deleteriousness of coding variants is a frequently used criterion to filter out variants detected in next-generation sequencing projects and to select candidates impacting on the risk of human diseases. Most available dedicated tools implement a base-to-base annotation approach that could be biased in presence of several variants in the same genetic codon. We here proposed the MACARON program that, from a standard VCF file, identifies, re-annotates and predicts the amino acid change resulting from multiple single nucleotide variants (SNVs) within the same genetic codon. Applied to the whole exome dataset of 573 individuals, MACARON identifies 114 situations where multiple SNVs within a genetic codon induce an amino acid change that is different from those predicted by standard single SNV annotation tool. Such events are not uncommon and deserve to be studied in sequencing projects with inconclusive findings. MACARON is written in python with codes available on the GENMED website (www.genmed.fr). david-alexandre.tregouet@inserm.fr. Supplementary data are available at Bioinformatics online.
Stop Codon Reassignment in the Wild
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanova, Natalia; Schwientek, Patrick; Tripp, H. James
Since the discovery of the genetic code and protein translation mechanisms (1), a limited number of variations of the standard assignment between unique base triplets (codons) and their encoded amino acids and translational stop signals have been found in bacteria and phages (2-3). Given the apparent ubiquity of the canonical genetic code, the design of genomically recoded organisms with non-canonical codes has been suggested as a means to prevent horizontal gene transfer between laboratory and environmental organisms (4). It is also predicted that genomically recoded organisms are immune to infection by viruses, under the assumption that phages and their hostsmore » must share a common genetic code (5). This paradigm is supported by the observation of increased resistance of genomically recoded bacteria to phages with a canonical code (4). Despite these assumptions and accompanying lines of evidence, it remains unclear whether differential and non-canonical codon usage represents an absolute barrier to phage infection and genetic exchange between organisms. Our knowledge of the diversity of genetic codes and their use by viruses and their hosts is primarily derived from the analysis of cultivated organisms. Advances in single-cell sequencing and metagenome assembly technologies have enabled the reconstruction of genomes of uncultivated bacterial and archaeal lineages (6). These initial findings suggest that large scale systematic studies of uncultivated microorganisms and viruses may reveal the extent and modes of divergence from the canonical genetic code operating in nature. To explore alternative genetic codes, we carried out a systematic analysis of stop codon reassignments from the canonical TAG amber, TGA opal, and TAA ochre codons in assembled metagenomes from environmental and host-associated samples, single-cell genomes of uncultivated bacteria and archaea, and a collection of phage sequences« less
Integrated modelling framework for short pulse high energy density physics experiments
NASA Astrophysics Data System (ADS)
Sircombe, N. J.; Hughes, S. J.; Ramsay, M. G.
2016-03-01
Modelling experimental campaigns on the Orion laser at AWE, and developing a viable point-design for fast ignition (FI), calls for a multi-scale approach; a complete description of the problem would require an extensive range of physics which cannot realistically be included in a single code. For modelling the laser-plasma interaction (LPI) we need a fine mesh which can capture the dispersion of electromagnetic waves, and a kinetic model for each plasma species. In the dense material of the bulk target, away from the LPI region, collisional physics dominates. The transport of hot particles generated by the action of the laser is dependent on their slowing and stopping in the dense material and their need to draw a return current. These effects will heat the target, which in turn influences transport. On longer timescales, the hydrodynamic response of the target will begin to play a role as the pressure generated from isochoric heating begins to take effect. Recent effort at AWE [1] has focussed on the development of an integrated code suite based on: the particle in cell code EPOCH, to model LPI; the Monte-Carlo electron transport code THOR, to model the onward transport of hot electrons; and the radiation hydrodynamics code CORVUS, to model the hydrodynamic response of the target. We outline the methodology adopted, elucidate on the advantages of a robustly integrated code suite compared to a single code approach, demonstrate the integrated code suite's application to modelling the heating of buried layers on Orion, and assess the potential of such experiments for the validation of modelling capability in advance of more ambitious HEDP experiments, as a step towards a predictive modelling capability for FI.
Lee, Hwan Young; Yoo, Ji-Eun; Park, Myung Jin; Chung, Ukhee; Kim, Chong-Youl; Shin, Kyoung-Jin
2006-11-01
The present study analyzed 21 coding region SNP markers and one deletion motif for the determination of East Asian mitochondrial DNA (mtDNA) haplogroups by designing three multiplex systems which apply single base extension methods. Using two multiplex systems, all 593 Korean mtDNAs were allocated into 15 haplogroups: M, D, D4, D5, G, M7, M8, M9, M10, M11, R, R9, B, A, and N9. As the D4 haplotypes occurred most frequently in Koreans, the third multiplex system was used to further define D4 subhaplogroups: D4a, D4b, D4e, D4g, D4h, and D4j. This method allowed the complementation of coding region information with control region mutation motifs and the resultant findings also suggest reliable control region mutation motifs for the assignment of East Asian mtDNA haplogroups. These three multiplex systems produce good results in degraded samples as they contain small PCR products (101-154 bp) for single base extension reactions. SNP scoring was performed in 101 old skeletal remains using these three systems to prove their utility in degraded samples. The sequence analysis of mtDNA control region with high incidence of haplogroup-specific mutations and the selective scoring of highly informative coding region SNPs using the three multiplex systems are useful tools for most applications involving East Asian mtDNA haplogroup determination and haplogroup-directed stringent quality control.
Ekinci, Yunus Levent
2016-01-01
This paper presents an easy-to-use open source computer algorithm (code) for estimating the depths of isolated single thin dike-like source bodies by using numerical second-, third-, and fourth-order horizontal derivatives computed from observed magnetic anomalies. The approach does not require a priori information and uses some filters of successive graticule spacings. The computed higher-order horizontal derivative datasets are used to solve nonlinear equations for depth determination. The solutions are independent from the magnetization and ambient field directions. The practical usability of the developed code, designed in MATLAB R2012b (MathWorks Inc.), was successfully examined using some synthetic simulations with and without noise. The algorithm was then used to estimate the depths of some ore bodies buried in different regions (USA, Sweden, and Canada). Real data tests clearly indicated that the obtained depths are in good agreement with those of previous studies and drilling information. Additionally, a state-of-the-art inversion scheme based on particle swarm optimization produced comparable results to those of the higher-order horizontal derivative analyses in both synthetic and real anomaly cases. Accordingly, the proposed code is verified to be useful in interpreting isolated single thin dike-like magnetized bodies and may be an alternative processing technique. The open source code can be easily modified and adapted to suit the benefits of other researchers.
Recent Progress in the Development of a Multi-Layer Green's Function Code for Ion Beam Transport
NASA Technical Reports Server (NTRS)
Tweed, John; Walker, Steven A.; Wilson, John W.; Tripathi, Ram K.
2008-01-01
To meet the challenge of future deep space programs, an accurate and efficient engineering code for analyzing the shielding requirements against high-energy galactic heavy radiation is needed. To address this need, a new Green's function code capable of simulating high charge and energy ions with either laboratory or space boundary conditions is currently under development. The computational model consists of combinations of physical perturbation expansions based on the scales of atomic interaction, multiple scattering, and nuclear reactive processes with use of the Neumann-asymptotic expansions with non-perturbative corrections. The code contains energy loss due to straggling, nuclear attenuation, nuclear fragmentation with energy dispersion and downshifts. Previous reports show that the new code accurately models the transport of ion beams through a single slab of material. Current research efforts are focused on enabling the code to handle multiple layers of material and the present paper reports on progress made towards that end.
2013-01-01
Based Micropolar Single Crystal Plasticity: Comparison of Multi - and Single Criterion Theories. J. Mech. Phys. Solids 2011, 59, 398–422. ALE3D ...element boundaries in a multi -step constitutive evaluation (Becker, 2011). The results showed the desired effects of smoothing the deformation field...Implementation The model was implemented in the large-scale parallel, explicit finite element code ALE3D (2012). The crystal plasticity
Monte Carlo event generators in atomic collisions: A new tool to tackle the few-body dynamics
NASA Astrophysics Data System (ADS)
Ciappina, M. F.; Kirchner, T.; Schulz, M.
2010-04-01
We present a set of routines to produce theoretical event files, for both single and double ionization of atoms by ion impact, based on a Monte Carlo event generator (MCEG) scheme. Such event files are the theoretical counterpart of the data obtained from a kinematically complete experiment; i.e. they contain the momentum components of all collision fragments for a large number of ionization events. Among the advantages of working with theoretical event files is the possibility to incorporate the conditions present in a real experiment, such as the uncertainties in the measured quantities. Additionally, by manipulating them it is possible to generate any type of cross sections, specially those that are usually too complicated to compute with conventional methods due to a lack of symmetry. Consequently, the numerical effort of such calculations is dramatically reduced. We show examples for both single and double ionization, with special emphasis on a new data analysis tool, called four-body Dalitz plots, developed very recently. Program summaryProgram title: MCEG Catalogue identifier: AEFV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2695 No. of bytes in distributed program, including test data, etc.: 18 501 Distribution format: tar.gz Programming language: FORTRAN 77 with parallelization directives using scripting Computer: Single machines using Linux and Linux servers/clusters (with cores with any clock speed, cache memory and bits in a word) Operating system: Linux (any version and flavor) and FORTRAN 77 compilers Has the code been vectorised or parallelized?: Yes RAM: 64-128 kBytes (the codes are very cpu intensive) Classification: 2.6 Nature of problem: The code deals with single and double ionization of atoms by ion impact. Conventional theoretical approaches aim at a direct calculation of the corresponding cross sections. This has the important shortcoming that it is difficult to account for the experimental conditions when comparing results to measured data. In contrast, the present code generates theoretical event files of the same type as are obtained in a real experiment. From these event files any type of cross sections can be easily extracted. The theoretical schemes are based on distorted wave formalisms for both processes of interest. Solution method: The codes employ a Monte Carlo Event Generator based on theoretical formalisms to generate event files for both single and double ionization. One of the main advantages of having access to theoretical event files is the possibility of adding the conditions present in real experiments (parameter uncertainties, environmental conditions, etc.) and to incorporate additional physics in the resulting event files (e.g. elastic scattering or other interactions absent in the underlying calculations). Additional comments: The computational time can be dramatically reduced if a large number of processors is used. Since the codes has no communication between processes it is possible to achieve an efficiency of a 100% (this number certainly will be penalized by the queuing waiting time). Running time: Times vary according to the process, single or double ionization, to be simulated, the number of processors and the type of theoretical model. The typical running time is between several hours and up to a few weeks.
Kapeller, Christoph; Kamada, Kyousuke; Ogawa, Hiroshi; Prueckl, Robert; Scharinger, Josef; Guger, Christoph
2014-01-01
A brain-computer-interface (BCI) allows the user to control a device or software with brain activity. Many BCIs rely on visual stimuli with constant stimulation cycles that elicit steady-state visual evoked potentials (SSVEP) in the electroencephalogram (EEG). This EEG response can be generated with a LED or a computer screen flashing at a constant frequency, and similar EEG activity can be elicited with pseudo-random stimulation sequences on a screen (code-based BCI). Using electrocorticography (ECoG) instead of EEG promises higher spatial and temporal resolution and leads to more dominant evoked potentials due to visual stimulation. This work is focused on BCIs based on visual evoked potentials (VEP) and its capability as a continuous control interface for augmentation of video applications. One 35 year old female subject with implanted subdural grids participated in the study. The task was to select one out of four visual targets, while each was flickering with a code sequence. After a calibration run including 200 code sequences, a linear classifier was used during an evaluation run to identify the selected visual target based on the generated code-based VEPs over 20 trials. Multiple ECoG buffer lengths were tested and the subject reached a mean online classification accuracy of 99.21% for a window length of 3.15 s. Finally, the subject performed an unsupervised free run in combination with visual feedback of the current selection. Additionally, an algorithm was implemented that allowed to suppress false positive selections and this allowed the subject to start and stop the BCI at any time. The code-based BCI system attained very high online accuracy, which makes this approach very promising for control applications where a continuous control signal is needed. PMID:25147509
Duellman, Tyler; Warren, Christopher; Yang, Jay
2014-01-01
Microribonucleic acids (miRNAs) work with exquisite specificity and are able to distinguish a target from a non-target based on a single nucleotide mismatch in the core nucleotide domain. We questioned whether miRNA regulation of gene expression could occur in a single nucleotide polymorphism (SNP)-specific manner, manifesting as a post-transcriptional control of expression of genetic polymorphisms. In our recent study of the functional consequences of matrix metalloproteinase (MMP)-9 SNPs, we discovered that expression of a coding exon SNP in the pro-domain of the protein resulted in a profound decrease in the secreted protein. This missense SNP results in the N38S amino acid change and a loss of an N-glycosylation site. A systematic study demonstrated that the loss of secreted protein was due not to the loss of an N-glycosylation site, but rather an SNP-specific targeting by miR-671-3p and miR-657. Bioinformatics analysis identified 41 SNP-specific miRNA targeting MMP-9 SNPs, mostly in the coding exon and an extension of the analysis to chromosome 20, where the MMP-9 gene is located, suggesting that SNP-specific miRNAs targeting the coding exon are prevalent. This selective post-transcriptional regulation of a target messenger RNA harboring genetic polymorphisms by miRNAs offers an SNP-dependent post-transcriptional regulatory mechanism, allowing for polymorphic-specific differential gene regulation. PMID:24627221
ERIC Educational Resources Information Center
Allegheny County Community Coll., Pittsburgh, PA.
Instructional objectives and performance requirements are outlined in this course guide for Welding IV, a competency-based course in advanced arc welding offered at the Community College of Allegheny County to provide students with proficiency in: (1) single vee groove welding using code specifications established by the American Welding Society…
Zhou, Wen; Li, Xinying; Yu, Jianjun
2017-10-30
We propose QPSK millimeter-wave (mm-wave) vector signal generation for D-band based on balanced precoding-assisted photonic frequency quadrupling technology employing a single intensity modulator without an optical filter. The intensity MZM is driven by a balanced pre-coding 37-GHz QPSK RF signal. The modulated optical subcarriers are directly sent into the single ended photodiode to generate 148-GHz QPSK vector signal. We experimentally demonstrate 1-Gbaud 148-GHz QPSK mm-wave vector signal generation, and investigate the bit-error-rate (BER) performance of the vector signals at 148-GHz. The experimental results show that the BER value can be achieved as low as 1.448 × 10 -3 when the optical power into photodiode is 8.8dBm. To the best of our knowledge, it is the first time to realize the frequency-quadrupling vector mm-wave signal generation at D-band based on only one MZM without an optical filter.
Biosemiotics: a new understanding of life.
Barbieri, Marcello
2008-07-01
Biosemiotics is the idea that life is based on semiosis, i.e., on signs and codes. This idea has been strongly suggested by the discovery of the genetic code, but so far it has made little impact in the scientific world and is largely regarded as a philosophy rather than a science. The main reason for this is that modern biology assumes that signs and meanings do not exist at the molecular level, and that the genetic code was not followed by any other organic code for almost four billion years, which implies that it was an utterly isolated exception in the history of life. These ideas have effectively ruled out the existence of semiosis in the organic world, and yet there are experimental facts against all of them. If we look at the evidence of life without the preconditions of the present paradigm, we discover that semiosis is there, in every single cell, and that it has been there since the very beginning. This is what biosemiotics is really about. It is not a philosophy. It is a new scientific paradigm that is rigorously based on experimental facts. Biosemiotics claims that the genetic code (1) is a real code and (2) has been the first of a long series of organic codes that have shaped the history of life on our planet. The reality of the genetic code and the existence of other organic codes imply that life is based on two fundamental processes--copying and coding--and this in turn implies that evolution took place by two distinct mechanisms, i.e., by natural selection (based on copying) and by natural conventions (based on coding). It also implies that the copying of genes works on individual molecules, whereas the coding of proteins operates on collections of molecules, which means that different mechanisms of evolution exist at different levels of organization. This review intends to underline the scientific nature of biosemiotics, and to this purpose, it aims to prove (1) that the cell is a real semiotic system, (2) that the genetic code is a real code, (3) that evolution took place by natural selection and by natural conventions, and (4) that it was natural conventions, i.e., organic codes, that gave origin to the great novelties of macroevolution. Biological semiosis, in other words, is a scientific reality because the codes of life are experimental realities. The time has come, therefore, to acknowledge this fact of life, even if that means abandoning the present theoretical framework in favor of a more general one where biology and semiotics finally come together and become biosemiotics.
Accelerating calculations of RNA secondary structure partition functions using GPUs
2013-01-01
Background RNA performs many diverse functions in the cell in addition to its role as a messenger of genetic information. These functions depend on its ability to fold to a unique three-dimensional structure determined by the sequence. The conformation of RNA is in part determined by its secondary structure, or the particular set of contacts between pairs of complementary bases. Prediction of the secondary structure of RNA from its sequence is therefore of great interest, but can be computationally expensive. In this work we accelerate computations of base-pair probababilities using parallel graphics processing units (GPUs). Results Calculation of the probabilities of base pairs in RNA secondary structures using nearest-neighbor standard free energy change parameters has been implemented using CUDA to run on hardware with multiprocessor GPUs. A modified set of recursions was introduced, which reduces memory usage by about 25%. GPUs are fastest in single precision, and for some hardware, restricted to single precision. This may introduce significant roundoff error. However, deviations in base-pair probabilities calculated using single precision were found to be negligible compared to those resulting from shifting the nearest-neighbor parameters by a random amount of magnitude similar to their experimental uncertainties. For large sequences running on our particular hardware, the GPU implementation reduces execution time by a factor of close to 60 compared with an optimized serial implementation, and by a factor of 116 compared with the original code. Conclusions Using GPUs can greatly accelerate computation of RNA secondary structure partition functions, allowing calculation of base-pair probabilities for large sequences in a reasonable amount of time, with a negligible compromise in accuracy due to working in single precision. The source code is integrated into the RNAstructure software package and available for download at http://rna.urmc.rochester.edu. PMID:24180434
Tsang, Hin-Fung; Xue, Vivian Weiwen; Koh, Su-Pin; Chiu, Ya-Ming; Ng, Lawrence Po-Wah; Wong, Sze-Chuen Cesar
2017-01-01
Formalin-fixed, paraffin-embedded (FFPE) tissue sample is a gold mine of resources for molecular diagnosis and retrospective clinical studies. Although molecular technologies have expanded the range of mutations identified in FFPE samples, the applications of existing technologies are limited by the low nucleic acids yield and poor extraction quality. As a result, the routine clinical applications of molecular diagnosis using FFPE samples has been associated with many practical challenges. NanoString technologies utilize a novel digital color-coded barcode technology based on direct multiplexed measurement of gene expression and offer high levels of precision and sensitivity. Each color-coded barcode is attached to a single target-specific probe corresponding to a single gene which can be individually counted without amplification. Therefore, NanoString is especially useful for measuring gene expression in degraded clinical specimens. Areas covered: This article describes the applications of NanoString technologies in molecular diagnostics and challenges associated with its applications and the future development. Expert commentary: Although NanoString technology is still in the early stages of clinical use, it is expected that NanoString-based cancer expression panels would play more important roles in the future in classifying cancer patients and in predicting the response to therapy for better personal therapeutic care.
NASA Technical Reports Server (NTRS)
Dame, L. T.; Stouffer, D. C.
1986-01-01
A tool for the mechanical analysis of nickel base single crystal superalloys, specifically Rene N4, used in gas turbine engine components is developed. This is achieved by a rate dependent anisotropic constitutive model implemented in a nonlinear three dimensional finite element code. The constitutive model is developed from metallurigical concepts utilizing a crystallographic approach. A non Schmid's law formulation is used to model the tension/compression asymmetry and orientation dependence in octahedral slip. Schmid's law is a good approximation to the inelastic response of the material in cube slip. The constitutive equations model the tensile behavior, creep response, and strain rate sensitivity of these alloys. Methods for deriving the material constants from standard tests are presented. The finite element implementation utilizes an initial strain method and twenty noded isoparametric solid elements. The ability to model piecewise linear load histories is included in the finite element code. The constitutive equations are accurately and economically integrated using a second order Adams-Moulton predictor-corrector method with a dynamic time incrementing procedure. Computed results from the finite element code are compared with experimental data for tensile, creep and cyclic tests at 760 deg C. The strain rate sensitivity and stress relaxation capabilities of the model are evaluated.
Pitchiaya, Sethuramasundaram; Krishnan, Vishalakshi; Custer, Thomas C.; Walter, Nils G.
2013-01-01
Non-coding RNAs (ncRNAs) recently were discovered to outnumber their protein-coding counterparts, yet their diverse functions are still poorly understood. Here we report on a method for the intracellular Single-molecule High Resolution Localization and Counting (iSHiRLoC) of microRNAs (miRNAs), a conserved, ubiquitous class of regulatory ncRNAs that controls the expression of over 60% of all mammalian protein coding genes post-transcriptionally, by a mechanism shrouded by seemingly contradictory observations. We present protocols to execute single particle tracking (SPT) and single-molecule counting of functional microinjected, fluorophore-labeled miRNAs and thereby extract diffusion coefficients and molecular stoichiometries of micro-ribonucleoprotein (miRNP) complexes from living and fixed cells, respectively. This probing of miRNAs at the single molecule level sheds new light on the intracellular assembly/disassembly of miRNPs, thus beginning to unravel the dynamic nature of this important gene regulatory pathway and facilitating the development of a parsimonious model for their obscured mechanism of action. PMID:23820309
Wang, Andong; Zhu, Long; Chen, Shi; Du, Cheng; Mo, Qi; Wang, Jian
2016-05-30
Mode-division multiplexing over fibers has attracted increasing attention over the last few years as a potential solution to further increase fiber transmission capacity. In this paper, we demonstrate the viability of orbital angular momentum (OAM) modes transmission over a 50-km few-mode fiber (FMF). By analyzing mode properties of eigen modes in an FMF, we study the inner mode group differential modal delay (DMD) in FMF, which may influence the transmission capacity in long-distance OAM modes transmission and multiplexing. To mitigate the impact of large inner mode group DMD in long-distance fiber-based OAM modes transmission, we use low-density parity-check (LDPC) codes to increase the system reliability. By evaluating the performance of LDPC-coded single OAM mode transmission over 50-km fiber, significant coding gains of >4 dB, 8 dB and 14 dB are demonstrated for 1-Gbaud, 2-Gbaud and 5-Gbaud quadrature phase-shift keying (QPSK) signals, respectively. Furthermore, in order to verify and compare the influence of DMD in long-distance fiber transmission, single OAM mode transmission over 10-km FMF is also demonstrated in the experiment. Finally, we experimentally demonstrate OAM multiplexing and transmission over a 50-km FMF using LDPC-coded 1-Gbaud QPSK signals to compensate the influence of mode crosstalk and DMD in the 50 km FMF.
Mosleh-Shirazi, Mohammad Amin; Zarrini-Monfared, Zinat; Karbasi, Sareh; Zamani, Ali
2014-01-01
Two-dimensional (2D) arrays of thick segmented scintillators are of interest as X-ray detectors for both 2D and 3D image-guided radiotherapy (IGRT). Their detection process involves ionizing radiation energy deposition followed by production and transport of optical photons. Only a very limited number of optical Monte Carlo simulation models exist, which has limited the number of modeling studies that have considered both stages of the detection process. We present ScintSim1, an in-house optical Monte Carlo simulation code for 2D arrays of scintillation crystals, developed in the MATLAB programming environment. The code was rewritten and revised based on an existing program for single-element detectors, with the additional capability to model 2D arrays of elements with configurable dimensions, material, etc., The code generates and follows each optical photon history through the detector element (and, in case of cross-talk, the surrounding ones) until it reaches a configurable receptor, or is attenuated. The new model was verified by testing against relevant theoretically known behaviors or quantities and the results of a validated single-element model. For both sets of comparisons, the discrepancies in the calculated quantities were all <1%. The results validate the accuracy of the new code, which is a useful tool in scintillation detector optimization. PMID:24600168
Mosleh-Shirazi, Mohammad Amin; Zarrini-Monfared, Zinat; Karbasi, Sareh; Zamani, Ali
2014-01-01
Two-dimensional (2D) arrays of thick segmented scintillators are of interest as X-ray detectors for both 2D and 3D image-guided radiotherapy (IGRT). Their detection process involves ionizing radiation energy deposition followed by production and transport of optical photons. Only a very limited number of optical Monte Carlo simulation models exist, which has limited the number of modeling studies that have considered both stages of the detection process. We present ScintSim1, an in-house optical Monte Carlo simulation code for 2D arrays of scintillation crystals, developed in the MATLAB programming environment. The code was rewritten and revised based on an existing program for single-element detectors, with the additional capability to model 2D arrays of elements with configurable dimensions, material, etc., The code generates and follows each optical photon history through the detector element (and, in case of cross-talk, the surrounding ones) until it reaches a configurable receptor, or is attenuated. The new model was verified by testing against relevant theoretically known behaviors or quantities and the results of a validated single-element model. For both sets of comparisons, the discrepancies in the calculated quantities were all <1%. The results validate the accuracy of the new code, which is a useful tool in scintillation detector optimization.
FPGA acceleration of rigid-molecule docking codes
Sukhwani, B.; Herbordt, M.C.
2011-01-01
Modelling the interactions of biological molecules, or docking, is critical both to understanding basic life processes and to designing new drugs. The field programmable gate array (FPGA) based acceleration of a recently developed, complex, production docking code is described. The authors found that it is necessary to extend their previous three-dimensional (3D) correlation structure in several ways, most significantly to support simultaneous computation of several correlation functions. The result for small-molecule docking is a 100-fold speed-up of a section of the code that represents over 95% of the original run-time. An additional 2% is accelerated through a previously described method, yielding a total acceleration of 36× over a single core and 10× over a quad-core. This approach is found to be an ideal complement to graphics processing unit (GPU) based docking, which excels in the protein–protein domain. PMID:21857870
NASA Astrophysics Data System (ADS)
Vattré, A.; Devincre, B.; Feyel, F.; Gatti, R.; Groh, S.; Jamond, O.; Roos, A.
2014-02-01
A unified model coupling 3D dislocation dynamics (DD) simulations with the finite element (FE) method is revisited. The so-called Discrete-Continuous Model (DCM) aims to predict plastic flow at the (sub-)micron length scale of materials with complex boundary conditions. The evolution of the dislocation microstructure and the short-range dislocation-dislocation interactions are calculated with a DD code. The long-range mechanical fields due to the dislocations are calculated by a FE code, taking into account the boundary conditions. The coupling procedure is based on eigenstrain theory, and the precise manner in which the plastic slip, i.e. the dislocation glide as calculated by the DD code, is transferred to the integration points of the FE mesh is described in full detail. Several test cases are presented, and the DCM is applied to plastic flow in a single-crystal Nickel-based superalloy.
An approach enabling adaptive FEC for OFDM in fiber-VLLC system
NASA Astrophysics Data System (ADS)
Wei, Yiran; He, Jing; Deng, Rui; Shi, Jin; Chen, Shenghai; Chen, Lin
2017-12-01
In this paper, we propose an orthogonal circulant matrix transform (OCT)-based adaptive frame-level-forward error correction (FEC) scheme for fiber-visible laser light communication (VLLC) system and experimentally demonstrate by Reed-Solomon (RS) Code. In this method, no extra bits are spent for adaptive message, except training sequence (TS), which is simultaneously used for synchronization and channel estimation. Therefore, RS-coding can be adaptively performed frames by frames via the last received codeword-error-rate (CER) feedback estimated by the TSs of the previous few OFDM frames. In addition, the experimental results exhibit that over 20 km standard single-mode fiber (SSMF) and 8 m visible light transmission, the costs of RS codewords are at most 14.12% lower than those of conventional adaptive subcarrier-RS-code based 16-QAM OFDM at bit error rate (BER) of 10-5.
Yang, Qi; Al Amin, Abdullah; Chen, Xi; Ma, Yiran; Chen, Simin; Shieh, William
2010-08-02
High-order modulation formats and advanced error correcting codes (ECC) are two promising techniques for improving the performance of ultrahigh-speed optical transport networks. In this paper, we present record receiver sensitivity for 107 Gb/s CO-OFDM transmission via constellation expansion to 16-QAM and rate-1/2 LDPC coding. We also show the single-channel transmission of a 428-Gb/s CO-OFDM signal over 960-km standard-single-mode-fiber (SSMF) without Raman amplification.
Aerothermo-Structural Analysis of Low Cost Composite Nozzle/Inlet Components
NASA Technical Reports Server (NTRS)
Shivakumar, Kuwigai; Challa, Preeli; Sree, Dave; Reddy, D.
1999-01-01
This research is a cooperative effort among the Turbomachinery and Propulsion Division of NASA Glenn, CCMR of NC A&T State University, and the Tuskegee University. The NC A&T is the lead center and Tuskegee University is the participating institution. Objectives of the research were to develop an integrated aerodynamic, thermal and structural analysis code for design of aircraft engine components, such as, nozzles and inlets made of textile composites; conduct design studies on typical inlets for hypersonic transportation vehicles and setup standards test examples and finally manufacture a scaled down composite inlet. These objectives are accomplished through the following seven tasks: (1) identify the relevant public domain codes for all three types of analysis; (2) evaluate the codes for the accuracy of results and computational efficiency; (3) develop aero-thermal and thermal structural mapping algorithms; (4) integrate all the codes into one single code; (5) write a graphical user interface to improve the user friendliness of the code; (6) conduct test studies for rocket based combined-cycle engine inlet; and finally (7) fabricate a demonstration inlet model using textile preform composites. Tasks one, two and six are being pursued. Selected and evaluated NPARC for flow field analysis, CSTEM for in-depth thermal analysis of inlets and nozzles and FRAC3D for stress analysis. These codes have been independently verified for accuracy and performance. In addition, graphical user interface based on micromechanics analysis for laminated as well as textile composites was developed. Demonstration of this code will be made at the conference. A rocket based combined cycle engine was selected for test studies. Flow field analysis of various inlet geometries were studied. Integration of codes is being continued. The codes developed are being applied to a candidate example of trailblazer engine proposed for space transportation. A successful development of the code will provide a simpler, faster and user-friendly tool for conducting design studies of aircraft and spacecraft engines, applicable in high speed civil transport and space missions.
What Information is Stored in DNA: Does it Contain Digital Error Correcting Codes?
NASA Astrophysics Data System (ADS)
Liebovitch, Larry
1998-03-01
The longest term correlations in living systems are the information stored in DNA which reflects the evolutionary history of an organism. The 4 bases (A,T,G,C) encode sequences of amino acids as well as locations of binding sites for proteins that regulate DNA. The fidelity of this important information is maintained by ANALOG error check mechanisms. When a single strand of DNA is replicated the complementary base is inserted in the new strand. Sometimes the wrong base is inserted that sticks out disrupting the phosphate backbone. The new base is not yet methylated, so repair enzymes, that slide along the DNA, can tear out the wrong base and replace it with the right one. The bases in DNA form a sequence of 4 different symbols and so the information is encoded in a DIGITAL form. All the digital codes in our society (ISBN book numbers, UPC product codes, bank account numbers, airline ticket numbers) use error checking code, where some digits are functions of other digits to maintain the fidelity of transmitted informaiton. Does DNA also utitlize a DIGITAL error chekcing code to maintain the fidelity of its information and increase the accuracy of replication? That is, are some bases in DNA functions of other bases upstream or downstream? This raises the interesting mathematical problem: How does one determine whether some symbols in a sequence of symbols are a function of other symbols. It also bears on the issue of determining algorithmic complexity: What is the function that generates the shortest algorithm for reproducing the symbol sequence. The error checking codes most used in our technology are linear block codes. We developed an efficient method to test for the presence of such codes in DNA. We coded the 4 bases as (0,1,2,3) and used Gaussian elimination, modified for modulus 4, to test if some bases are linear combinations of other bases. We used this method to analyze the base sequence in the genes from the lac operon and cytochrome C. We did not find evidence for such error correcting codes in these genes. However, we analyzed only a small amount of DNA and if digitial error correcting schemes are present in DNA, they may be more subtle than such simple linear block codes. The basic issue we raise here, is how information is stored in DNA and an appreciation that digital symbol sequences, such as DNA, admit of interesting schemes to store and protect the fidelity of their information content. Liebovitch, Tao, Todorov, Levine. 1996. Biophys. J. 71:1539-1544. Supported by NIH grant EY6234.
Inkjet-compatible single-component polydiacetylene precursors for thermochromic paper sensors.
Yoon, Bora; Shin, Hyora; Kang, Eun-Mi; Cho, Dae Won; Shin, Kayeong; Chung, Hoeil; Lee, Chan Woo; Kim, Jong-Man
2013-06-12
Inkjet-printable diacetylene (DA) supramolecules, which can be dispersed in water without using additional surfactants, have been developed. The supramolecules are generated from DA monomers that contain bisurea groups, which are capable of forming hydrogen-bonding networks, and hydrophilic oligoethylene oxide moieties. Because of suitable size distribution and stability characteristics, the single DA component ink can be readily transferred to paper substrates by utilizing a common office inkjet printer. UV irradiation of the DA-printed paper results in generation of blue-colored polydiacetylene (PDA) images, which show reversible thermochromic transitions in specific temperature ranges. Inkjet-printed PDAs, in the format of a two-dimensional (2D) quick response (QR) code on a real parking ticket, serve as a dual anticounterfeiting system that combines easy decoding of the QR code and colorimetric PDA reversibility for validating the authenticity of the tickets. This single-component ink system has great potential for use in paper-based devices, temperature sensors, and anticounterfeiting barcodes.
Single-exposure quantitative phase imaging in color-coded LED microscopy.
Lee, Wonchan; Jung, Daeseong; Ryu, Suho; Joo, Chulmin
2017-04-03
We demonstrate single-shot quantitative phase imaging (QPI) in a platform of color-coded LED microscopy (cLEDscope). The light source in a conventional microscope is replaced by a circular LED pattern that is trisected into subregions with equal area, assigned to red, green, and blue colors. Image acquisition with a color image sensor and subsequent computation based on weak object transfer functions allow for the QPI of a transparent specimen. We also provide a correction method for color-leakage, which may be encountered in implementing our method with consumer-grade LEDs and image sensors. Most commercially available LEDs and image sensors do not provide spectrally isolated emissions and pixel responses, generating significant error in phase estimation in our method. We describe the correction scheme for this color-leakage issue, and demonstrate improved phase measurement accuracy. The computational model and single-exposure QPI capability of our method are presented by showing images of calibrated phase samples and cellular specimens.
Hybrid Parallel Contour Trees, Version 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sewell, Christopher; Fasel, Patricia; Carr, Hamish
A common operation in scientific visualization is to compute and render a contour of a data set. Given a function of the form f : R^d -> R, a level set is defined as an inverse image f^-1(h) for an isovalue h, and a contour is a single connected component of a level set. The Reeb graph can then be defined to be the result of contracting each contour to a single point, and is well defined for Euclidean spaces or for general manifolds. For simple domains, the graph is guaranteed to be a tree, and is called the contourmore » tree. Analysis can then be performed on the contour tree in order to identify isovalues of particular interest, based on various metrics, and render the corresponding contours, without having to know such isovalues a priori. This code is intended to be the first data-parallel algorithm for computing contour trees. Our implementation will use the portable data-parallel primitives provided by Nvidia’s Thrust library, allowing us to compile our same code for both GPUs and multi-core CPUs. Native OpenMP and purely serial versions of the code will likely also be included. It will also be extended to provide a hybrid data-parallel / distributed algorithm, allowing scaling beyond a single GPU or CPU.« less
Biosemiotics: a new understanding of life
NASA Astrophysics Data System (ADS)
Barbieri, Marcello
2008-07-01
Biosemiotics is the idea that life is based on semiosis, i.e., on signs and codes. This idea has been strongly suggested by the discovery of the genetic code, but so far it has made little impact in the scientific world and is largely regarded as a philosophy rather than a science. The main reason for this is that modern biology assumes that signs and meanings do not exist at the molecular level, and that the genetic code was not followed by any other organic code for almost four billion years, which implies that it was an utterly isolated exception in the history of life. These ideas have effectively ruled out the existence of semiosis in the organic world, and yet there are experimental facts against all of them. If we look at the evidence of life without the preconditions of the present paradigm, we discover that semiosis is there, in every single cell, and that it has been there since the very beginning. This is what biosemiotics is really about. It is not a philosophy. It is a new scientific paradigm that is rigorously based on experimental facts. Biosemiotics claims that the genetic code (1) is a real code and (2) has been the first of a long series of organic codes that have shaped the history of life on our planet. The reality of the genetic code and the existence of other organic codes imply that life is based on two fundamental processes—copying and coding—and this in turn implies that evolution took place by two distinct mechanisms, i.e., by natural selection (based on copying) and by natural conventions (based on coding). It also implies that the copying of genes works on individual molecules, whereas the coding of proteins operates on collections of molecules, which means that different mechanisms of evolution exist at different levels of organization. This review intends to underline the scientific nature of biosemiotics, and to this purpose, it aims to prove (1) that the cell is a real semiotic system, (2) that the genetic code is a real code, (3) that evolution took place by natural selection and by natural conventions, and (4) that it was natural conventions, i.e., organic codes, that gave origin to the great novelties of macroevolution. Biological semiosis, in other words, is a scientific reality because the codes of life are experimental realities. The time has come, therefore, to acknowledge this fact of life, even if that means abandoning the present theoretical framework in favor of a more general one where biology and semiotics finally come together and become biosemiotics.
NASA Technical Reports Server (NTRS)
Hall, E. J.; Topp, D. A.; Delaney, R. A.
1996-01-01
The overall objective of this study was to develop a 3-D numerical analysis for compressor casing treatment flowfields. The current version of the computer code resulting from this study is referred to as ADPAC (Advanced Ducted Propfan Analysis Codes-Version 7). This report is intended to serve as a computer program user's manual for the ADPAC code developed under Tasks 6 and 7 of the NASA Contract. The ADPAC program is based on a flexible multiple- block grid discretization scheme permitting coupled 2-D/3-D mesh block solutions with application to a wide variety of geometries. Aerodynamic calculations are based on a four-stage Runge-Kutta time-marching finite volume solution technique with added numerical dissipation. Steady flow predictions are accelerated by a multigrid procedure. An iterative implicit algorithm is available for rapid time-dependent flow calculations, and an advanced two equation turbulence model is incorporated to predict complex turbulent flows. The consolidated code generated during this study is capable of executing in either a serial or parallel computing mode from a single source code. Numerous examples are given in the form of test cases to demonstrate the utility of this approach for predicting the aerodynamics of modem turbomachinery configurations.
Chen, Chia-Yen; Lee, Phil H; Castro, Victor M; Minnier, Jessica; Charney, Alexander W; Stahl, Eli A; Ruderfer, Douglas M; Murphy, Shawn N; Gainer, Vivian; Cai, Tianxi; Jones, Ian; Pato, Carlos N; Pato, Michele T; Landén, Mikael; Sklar, Pamela; Perlis, Roy H; Smoller, Jordan W
2018-04-18
Bipolar disorder (BD) is a heritable mood disorder characterized by episodes of mania and depression. Although genomewide association studies (GWAS) have successfully identified genetic loci contributing to BD risk, sample size has become a rate-limiting obstacle to genetic discovery. Electronic health records (EHRs) represent a vast but relatively untapped resource for high-throughput phenotyping. As part of the International Cohort Collection for Bipolar Disorder (ICCBD), we previously validated automated EHR-based phenotyping algorithms for BD against in-person diagnostic interviews (Castro et al. Am J Psychiatry 172:363-372, 2015). Here, we establish the genetic validity of these phenotypes by determining their genetic correlation with traditionally ascertained samples. Case and control algorithms were derived from structured and narrative text in the Partners Healthcare system comprising more than 4.6 million patients over 20 years. Genomewide genotype data for 3330 BD cases and 3952 controls of European ancestry were used to estimate SNP-based heritability (h 2 g ) and genetic correlation (r g ) between EHR-based phenotype definitions and traditionally ascertained BD cases in GWAS by the ICCBD and Psychiatric Genomics Consortium (PGC) using LD score regression. We evaluated BD cases identified using 4 EHR-based algorithms: an NLP-based algorithm (95-NLP) and three rule-based algorithms using codified EHR with decreasing levels of stringency-"coded-strict", "coded-broad", and "coded-broad based on a single clinical encounter" (coded-broad-SV). The analytic sample comprised 862 95-NLP, 1968 coded-strict, 2581 coded-broad, 408 coded-broad-SV BD cases, and 3 952 controls. The estimated h 2 g were 0.24 (p = 0.015), 0.09 (p = 0.064), 0.13 (p = 0.003), 0.00 (p = 0.591) for 95-NLP, coded-strict, coded-broad and coded-broad-SV BD, respectively. The h 2 g for all EHR-based cases combined except coded-broad-SV (excluded due to 0 h 2 g ) was 0.12 (p = 0.004). These h 2 g were lower or similar to the h 2 g observed by the ICCBD + PGCBD (0.23, p = 3.17E-80, total N = 33,181). However, the r g between ICCBD + PGCBD and the EHR-based cases were high for 95-NLP (0.66, p = 3.69 × 10 -5 ), coded-strict (1.00, p = 2.40 × 10 -4 ), and coded-broad (0.74, p = 8.11 × 10 -7 ). The r g between EHR-based BD definitions ranged from 0.90 to 0.98. These results provide the first genetic validation of automated EHR-based phenotyping for BD and suggest that this approach identifies cases that are highly genetically correlated with those ascertained through conventional methods. High throughput phenotyping using the large data resources available in EHRs represents a viable method for accelerating psychiatric genetic research.
Development of Unsteady Aerodynamic and Aeroelastic Reduced-Order Models Using the FUN3D Code
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Vatsa, Veer N.; Biedron, Robert T.
2009-01-01
Recent significant improvements to the development of CFD-based unsteady aerodynamic reduced-order models (ROMs) are implemented into the FUN3D unstructured flow solver. These improvements include the simultaneous excitation of the structural modes of the CFD-based unsteady aerodynamic system via a single CFD solution, minimization of the error between the full CFD and the ROM unsteady aero- dynamic solution, and computation of a root locus plot of the aeroelastic ROM. Results are presented for a viscous version of the two-dimensional Benchmark Active Controls Technology (BACT) model and an inviscid version of the AGARD 445.6 aeroelastic wing using the FUN3D code.
MPI-Defrost: Extension of Defrost to MPI-based Cluster Environment
NASA Astrophysics Data System (ADS)
Amin, Mustafa A.; Easther, Richard; Finkel, Hal
2011-06-01
MPI-Defrost extends Frolov’s Defrost to an MPI-based cluster environment. This version has been restricted to a single field. Restoring two-field support should be straightforward, but will require some code changes. Some output options may also not be fully supported under MPI. This code was produced to support our own work, and has been made available for the benefit of anyone interested in either oscillon simulations or an MPI capable version of Defrost, and it is provided on an "as-is" basis. Andrei Frolov is the primary developer of Defrost and we thank him for placing his work under the GPL (GNU Public License), and thus allowing us to distribute this modified version.
A Fault-Tolerant Radiation-Robust Mass Storage Concept for Highly Scaled Flash Memory
NASA Astrophysics Data System (ADS)
Fuchs, Cristian M.; Trinitis, Carsten; Appel, Nicolas; Langer, Martin
2015-09-01
Future spacemissions will require vast amounts of data to be stored and processed aboard spacecraft. While satisfying operational mission requirements, storage systems must guarantee data integrity and recover damaged data throughout the mission. NAND-flash memories have become popular for space-borne high performance mass memory scenarios, though future storage concepts will rely upon highly scaled flash or other memory technologies. With modern flash memory, single bit erasure coding and RAID based concepts are insufficient. Thus, a fully run-time configurable, high performance, dependable storage concept, requiring a minimal set of logic or software. The solution is based on composite erasure coding and can be adjusted for altered mission duration or changing environmental conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Brian P.; Sadlier, Ronald J.; Humble, Travis S.
Adopting quantum communication to modern networking requires transmitting quantum information through a fiber-based infrastructure. In this paper, we report the first demonstration of superdense coding over optical fiber links, taking advantage of a complete Bell-state measurement enabled by time-polarization hyperentanglement, linear optics, and common single-photon detectors. Finally, we demonstrate the highest single-qubit channel capacity to date utilizing linear optics, 1.665 ± 0.018, and we provide a full experimental implementation of a hybrid, quantum-classical communication protocol for image transfer.
Greiver, Michelle; Wintemute, Kimberly; Aliarzadeh, Babak; Martin, Ken; Khan, Shahriar; Jackson, Dave; Leggett, Jannet; Lambert-Lanning, Anita; Siu, Maggie
2016-10-12
Consistent and standardized coding for chronic conditions is associated with better care; however, coding may currently be limited in electronic medical records (EMRs) used in Canadian primary care.Objectives To implement data management activities in a community-based primary care organisation and to evaluate the effects on coding for chronic conditions. Fifty-nine family physicians in Toronto, Ontario, belonging to a single primary care organisation, participated in the study. The organisation implemented a central analytical data repository containing their EMR data extracted, cleaned, standardized and returned by the Canadian Primary Care Sentinel Surveillance Network (CPCSSN), a large validated primary care EMR-based database. They used reporting software provided by CPCSSN to identify selected chronic conditions and standardized codes were then added back to the EMR. We studied four chronic conditions (diabetes, hypertension, chronic obstructive pulmonary disease and dementia). We compared changes in coding over six months for physicians in the organisation with changes for 315 primary care physicians participating in CPCSSN across Canada. Chronic disease coding within the organisation increased significantly more than in other primary care sites. The adjusted difference in the increase of coding was 7.7% (95% confidence interval 7.1%-8.2%, p < 0.01). The use of standard codes, consisting of the most common diagnostic codes for each condition in the CPCSSN database, increased by 8.9% more (95% CI 8.3%-9.5%, p < 0.01). Data management activities were associated with an increase in standardized coding for chronic conditions. Exploring requirements to scale and spread this approach in Canadian primary care organisations may be worthwhile.
Kawano, Tomonori
2013-03-01
There have been a wide variety of approaches for handling the pieces of DNA as the "unplugged" tools for digital information storage and processing, including a series of studies applied to the security-related area, such as DNA-based digital barcodes, water marks and cryptography. In the present article, novel designs of artificial genes as the media for storing the digitally compressed data for images are proposed for bio-computing purpose while natural genes principally encode for proteins. Furthermore, the proposed system allows cryptographical application of DNA through biochemically editable designs with capacity for steganographical numeric data embedment. As a model case of image-coding DNA technique application, numerically and biochemically combined protocols are employed for ciphering the given "passwords" and/or secret numbers using DNA sequences. The "passwords" of interest were decomposed into single letters and translated into the font image coded on the separate DNA chains with both the coding regions in which the images are encoded based on the novel run-length encoding rule, and the non-coding regions designed for biochemical editing and the remodeling processes revealing the hidden orientation of letters composing the original "passwords." The latter processes require the molecular biological tools for digestion and ligation of the fragmented DNA molecules targeting at the polymerase chain reaction-engineered termini of the chains. Lastly, additional protocols for steganographical overwriting of the numeric data of interests over the image-coding DNA are also discussed.
Summary statistics in the attentional blink.
McNair, Nicolas A; Goodbourn, Patrick T; Shone, Lauren T; Harris, Irina M
2017-01-01
We used the attentional blink (AB) paradigm to investigate the processing stage at which extraction of summary statistics from visual stimuli ("ensemble coding") occurs. Experiment 1 examined whether ensemble coding requires attentional engagement with the items in the ensemble. Participants performed two sequential tasks on each trial: gender discrimination of a single face (T1) and estimating the average emotional expression of an ensemble of four faces (or of a single face, as a control condition) as T2. Ensemble coding was affected by the AB when the tasks were separated by a short temporal lag. In Experiment 2, the order of the tasks was reversed to test whether ensemble coding requires more working-memory resources, and therefore induces a larger AB, than estimating the expression of a single face. Each condition produced a similar magnitude AB in the subsequent gender-discrimination T2 task. Experiment 3 additionally investigated whether the previous results were due to participants adopting a subsampling strategy during the ensemble-coding task. Contrary to this explanation, we found different patterns of performance in the ensemble-coding condition and a condition in which participants were instructed to focus on only a single face within an ensemble. Taken together, these findings suggest that ensemble coding emerges automatically as a result of the deployment of attentional resources across the ensemble of stimuli, prior to information being consolidated in working memory.
NASA Astrophysics Data System (ADS)
Zhang, Miao; Tong, Xiaojun
2017-07-01
This paper proposes a joint image encryption and compression scheme based on a new hyperchaotic system and curvelet transform. A new five-dimensional hyperchaotic system based on the Rabinovich system is presented. By means of the proposed hyperchaotic system, a new pseudorandom key stream generator is constructed. The algorithm adopts diffusion and confusion structure to perform encryption, which is based on the key stream generator and the proposed hyperchaotic system. The key sequence used for image encryption is relation to plain text. By means of the second generation curvelet transform, run-length coding, and Huffman coding, the image data are compressed. The joint operation of compression and encryption in a single process is performed. The security test results indicate the proposed methods have high security and good compression effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wasserman, H.J.
1996-02-01
The second generation of the Digital Equipment Corp. (DEC) DECchip Alpha AXP microprocessor is referred to as the 21164. From the viewpoint of numerically-intensive computing, the primary difference between it and its predecessor, the 21064, is that the 21164 has twice the multiply/add throughput per clock period (CP), a maximum of two floating point operations (FLOPS) per CP vs. one for 21064. The AlphaServer 8400 is a shared-memory multiprocessor server system that can accommodate up to 12 CPUs and up to 14 GB of memory. In this report we will compare single processor performance of the 8400 system with thatmore » of the International Business Machines Corp. (IBM) RISC System/6000 POWER-2 microprocessor running at 66 MHz, the Silicon Graphics, Inc. (SGI) MIPS R8000 microprocessor running at 75 MHz, and the Cray Research, Inc. CRAY J90. The performance comparison is based on a set of Fortran benchmark codes that represent a portion of the Los Alamos National Laboratory supercomputer workload. The advantage of using these codes, is that the codes also span a wide range of computational characteristics, such as vectorizability, problem size, and memory access pattern. The primary disadvantage of using them is that detailed, quantitative analysis of performance behavior of all codes on all machines is difficult. One important addition to the benchmark set appears for the first time in this report. Whereas the older version was written for a vector processor, the newer version is more optimized for microprocessor architectures. Therefore, we have for the first time, an opportunity to measure performance on a single application using implementations that expose the respective strengths of vector and superscalar architecture. All results in this report are from single processors. A subsequent article will explore shared-memory multiprocessing performance of the 8400 system.« less
Flyer Target Acceleration and Energy Transfer at its Collision with Massive Targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borodziuk, S.; Kasperczuk, A.; Pisarczyk, T.
2006-01-15
Numerical modelling was aimed at simulation of successive events resulting from interaction of laser beam-single and double targets. It was performed by means of the 2D Lagrangian hydrodynamics code ATLANT-HE. This code is based on one-fluid and two-temperature model of plasma with electron and ion heat conductivity considerations. The code has an advanced treatment of laser light propagation and absorption. This numerical modelling corresponds to the experiment, which was carried out with the use of the PALS facility. Two types of planar solid targets, i.e. single massive Al slabs and double targets consisting of 6 {mu}m thick Al foil andmore » Al slab were applied. The targets were irradiated by the iodine laser pulses of two wavelengths: 1.315 and 0.438 {mu}m. A pulse duration of 0.4 ns and a focal spot diameter of 250 {mu}m at a laser energy of 130 J were used. The numerical modelling allowed us to obtain a more detailed description of shock wave propagation and crater formation.« less
Brain cDNA clone for human cholinesterase
DOE Office of Scientific and Technical Information (OSTI.GOV)
McTiernan, C.; Adkins, S.; Chatonnet, A.
1987-10-01
A cDNA library from human basal ganglia was screened with oligonucleotide probes corresponding to portions of the amino acid sequence of human serum cholinesterase. Five overlapping clones, representing 2.4 kilobases, were isolated. The sequenced cDNA contained 207 base pairs of coding sequence 5' to the amino terminus of the mature protein in which there were four ATG translation start sites in the same reading frame as the protein. Only the ATG coding for Met-(-28) lay within a favorable consensus sequence for functional initiators. There were 1722 base pairs of coding sequence corresponding to the protein found circulating in human serum.more » The amino acid sequence deduced from the cDNA exactly matched the 574 amino acid sequence of human serum cholinesterase, as previously determined by Edman degradation. Therefore, our clones represented cholinesterase rather than acetylcholinesterase. It was concluded that the amino acid sequences of cholinesterase from two different tissues, human brain and human serum, were identical. Hybridization of genomic DNA blots suggested that a single gene, or very few genes coded for cholinesterase.« less
Phonemes: Lexical access and beyond.
Kazanina, Nina; Bowers, Jeffrey S; Idsardi, William
2018-04-01
Phonemes play a central role in traditional theories as units of speech perception and access codes to lexical representations. Phonemes have two essential properties: they are 'segment-sized' (the size of a consonant or vowel) and abstract (a single phoneme may be have different acoustic realisations). Nevertheless, there is a long history of challenging the phoneme hypothesis, with some theorists arguing for differently sized phonological units (e.g. features or syllables) and others rejecting abstract codes in favour of representations that encode detailed acoustic properties of the stimulus. The phoneme hypothesis is the minority view today. We defend the phoneme hypothesis in two complementary ways. First, we show that rejection of phonemes is based on a flawed interpretation of empirical findings. For example, it is commonly argued that the failure to find acoustic invariances for phonemes rules out phonemes. However, the lack of invariance is only a problem on the assumption that speech perception is a bottom-up process. If learned sublexical codes are modified by top-down constraints (which they are), then this argument loses all force. Second, we provide strong positive evidence for phonemes on the basis of linguistic data. Almost all findings that are taken (incorrectly) as evidence against phonemes are based on psycholinguistic studies of single words. However, phonemes were first introduced in linguistics, and the best evidence for phonemes comes from linguistic analyses of complex word forms and sentences. In short, the rejection of phonemes is based on a false analysis and a too-narrow consideration of the relevant data.
Directed educational training improves coding and billing skills for residents.
Benke, James R; Lin, Sandra Y; Ishman, Stacey L
2013-03-01
To determine if coding and billing acumen improves after a single directed educational training session. Case-control series. Fourteen otolaryngology practitioners including trainees each completed two clinical scenarios before and after a directed educational session covering basic skills and common mistakes in otolaryngology billing and coding. Ten practitioners had never coded before; while, four regularly billed and coded in a clinical setting. Individuals with no previous billing experience had a mean score of 54% (median 55%) before the educational session which was significantly lower than that of the experienced billers who averaged 82% (median 83%, p=0.002). After the educational billing and coding session, the inexperienced billers mean score improved to 62% (median, 67%) which was still statistically lower than that of the experienced billers who averaged 76% (median 75%, p=0.039). The inexperienced billers demonstrated a significant improvement in their total score after the intervention (P=0.019); however, the change observed in experienced billers before and after the educational intervention was not significant (P=0.469). Billing and coding skill was improved after a single directed education session. Residents, who are not responsible for regular billing and coding, were found to have the greatest improvement in skill. However, providers who regularly bill and code had no significant improvement after this session. These data suggest that a single 90min billing and coding education session is effective in preparing those with limited experience to competently bill and code. Copyright © 2012. Published by Elsevier Ireland Ltd.
Fast decoding techniques for extended single-and-double-error-correcting Reed Solomon codes
NASA Technical Reports Server (NTRS)
Costello, D. J., Jr.; Deng, H.; Lin, S.
1984-01-01
A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. For example, some 256K-bit dynamic random access memories are organized as 32K x 8 bit-bytes. Byte-oriented codes such as Reed Solomon (RS) codes provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. Some special high speed decoding techniques for extended single and double error correcting RS codes. These techniques are designed to find the error locations and the error values directly from the syndrome without having to form the error locator polynomial and solve for its roots.
Ge, Yulong; Zhou, Feng; Sun, Baoqi; Wang, Shengli; Shi, Bo
2017-01-01
We present quad-constellation (namely, GPS, GLONASS, BeiDou and Galileo) time group delay (TGD) and differential code bias (DCB) correction models to fully exploit the code observations of all the four global navigation satellite systems (GNSSs) for navigation and positioning. The relationship between TGDs and DCBs for multi-GNSS is clearly figured out, and the equivalence of TGD and DCB correction models combining theory with practice is demonstrated. Meanwhile, the TGD/DCB correction models have been extended to various standard point positioning (SPP) and precise point positioning (PPP) scenarios in a multi-GNSS and multi-frequency context. To evaluate the effectiveness and practicability of broadcast TGDs in the navigation message and DCBs provided by the Multi-GNSS Experiment (MGEX), both single-frequency GNSS ionosphere-corrected SPP and dual-frequency GNSS ionosphere-free SPP/PPP tests are carried out with quad-constellation signals. Furthermore, the author investigates the influence of differential code biases on GNSS positioning estimates. The experiments show that multi-constellation combination SPP performs better after DCB/TGD correction, for example, for GPS-only b1-based SPP, the positioning accuracies can be improved by 25.0%, 30.6% and 26.7%, respectively, in the N, E, and U components, after the differential code biases correction, while GPS/GLONASS/BDS b1-based SPP can be improved by 16.1%, 26.1% and 9.9%. For GPS/BDS/Galileo the 3rd frequency based SPP, the positioning accuracies are improved by 2.0%, 2.0% and 0.4%, respectively, in the N, E, and U components, after Galileo satellites DCB correction. The accuracy of Galileo-only b1-based SPP are improved about 48.6%, 34.7% and 40.6% with DCB correction, respectively, in the N, E, and U components. The estimates of multi-constellation PPP are subject to different degrees of influence. For multi-constellation combination SPP, the accuracy of single-frequency is slightly better than that of dual-frequency combinations. Dual-frequency combinations are more sensitive to the differential code biases, especially for the 2nd and 3rd frequency combination, such as for GPS/BDS SPP, accuracy improvements of 60.9%, 26.5% and 58.8% in the three coordinate components is achieved after DCB parameters correction. For multi-constellation PPP, the convergence time can be reduced significantly with differential code biases correction. And the accuracy of positioning is slightly better with TGD/DCB correction. PMID:28300787
Ge, Yulong; Zhou, Feng; Sun, Baoqi; Wang, Shengli; Shi, Bo
2017-03-16
We present quad-constellation (namely, GPS, GLONASS, BeiDou and Galileo) time group delay (TGD) and differential code bias (DCB) correction models to fully exploit the code observations of all the four global navigation satellite systems (GNSSs) for navigation and positioning. The relationship between TGDs and DCBs for multi-GNSS is clearly figured out, and the equivalence of TGD and DCB correction models combining theory with practice is demonstrated. Meanwhile, the TGD/DCB correction models have been extended to various standard point positioning (SPP) and precise point positioning (PPP) scenarios in a multi-GNSS and multi-frequency context. To evaluate the effectiveness and practicability of broadcast TGDs in the navigation message and DCBs provided by the Multi-GNSS Experiment (MGEX), both single-frequency GNSS ionosphere-corrected SPP and dual-frequency GNSS ionosphere-free SPP/PPP tests are carried out with quad-constellation signals. Furthermore, the author investigates the influence of differential code biases on GNSS positioning estimates. The experiments show that multi-constellation combination SPP performs better after DCB/TGD correction, for example, for GPS-only b1-based SPP, the positioning accuracies can be improved by 25.0%, 30.6% and 26.7%, respectively, in the N, E, and U components, after the differential code biases correction, while GPS/GLONASS/BDS b1-based SPP can be improved by 16.1%, 26.1% and 9.9%. For GPS/BDS/Galileo the 3rd frequency based SPP, the positioning accuracies are improved by 2.0%, 2.0% and 0.4%, respectively, in the N, E, and U components, after Galileo satellites DCB correction. The accuracy of Galileo-only b1-based SPP are improved about 48.6%, 34.7% and 40.6% with DCB correction, respectively, in the N, E, and U components. The estimates of multi-constellation PPP are subject to different degrees of influence. For multi-constellation combination SPP, the accuracy of single-frequency is slightly better than that of dual-frequency combinations. Dual-frequency combinations are more sensitive to the differential code biases, especially for the 2nd and 3rd frequency combination, such as for GPS/BDS SPP, accuracy improvements of 60.9%, 26.5% and 58.8% in the three coordinate components is achieved after DCB parameters correction. For multi-constellation PPP, the convergence time can be reduced significantly with differential code biases correction. And the accuracy of positioning is slightly better with TGD/DCB correction.
ALCBEAM - Neutral beam formation and propagation code for beam-based plasma diagnostics
NASA Astrophysics Data System (ADS)
Bespamyatnov, I. O.; Rowan, W. L.; Liao, K. T.
2012-03-01
ALCBEAM is a new three-dimensional neutral beam formation and propagation code. It was developed to support the beam-based diagnostics installed on the Alcator C-Mod tokamak. The purpose of the code is to provide reliable estimates of the local beam equilibrium parameters: such as beam energy fractions, density profiles and excitation populations. The code effectively unifies the ion beam formation, extraction and neutralization processes with beam attenuation and excitation in plasma and neutral gas and beam stopping by the beam apertures. This paper describes the physical processes interpreted and utilized by the code, along with exploited computational methods. The description is concluded by an example simulation of beam penetration into plasma of Alcator C-Mod. The code is successfully being used in Alcator C-Mod tokamak and expected to be valuable in the support of beam-based diagnostics in most other tokamak environments. Program summaryProgram title: ALCBEAM Catalogue identifier: AEKU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 66 459 No. of bytes in distributed program, including test data, etc.: 7 841 051 Distribution format: tar.gz Programming language: IDL Computer: Workstation, PC Operating system: Linux RAM: 1 GB Classification: 19.2 Nature of problem: Neutral beams are commonly used to heat and/or diagnose high-temperature magnetically-confined laboratory plasmas. An accurate neutral beam characterization is required for beam-based measurements of plasma properties. Beam parameters such as density distribution, energy composition, and atomic excited populations of the beam atoms need to be known. Solution method: A neutral beam is initially formed as an ion beam which is extracted from the ion source by high voltage applied to the extraction and accelerating grids. The current distribution of a single beamlet emitted from a single pore of IOS depends on the shape of the plasma boundary in the emission region. Total beam extracted by IOS is calculated at every point of 3D mesh as sum of all contributions from each grid pore. The code effectively unifies the ion beam formation, extraction and neutralization processes with neutral beam attenuation and excitation in plasma and neutral gas and beam stopping by the beam apertures. Running time: 10 min for a standard run.
Single-channel voice-response-system program documentation volume I : system description
DOT National Transportation Integrated Search
1977-01-01
This report documents the design and implementation of a Voice Response System (VRS) using Adaptive Differential Pulse Code Modulation (ADPCM) voice coding. Implemented on a Digital Equipment Corporation PDP-11/20,R this VRS system supports a single ...
Computational techniques for solar wind flows past terrestrial planets: Theory and computer programs
NASA Technical Reports Server (NTRS)
Stahara, S. S.; Chaussee, D. S.; Trudinger, B. C.; Spreiter, J. R.
1977-01-01
The interaction of the solar wind with terrestrial planets can be predicted using a computer program based on a single fluid, steady, dissipationless, magnetohydrodynamic model to calculate the axisymmetric, supersonic, super-Alfvenic solar wind flow past both magnetic and nonmagnetic planets. The actual calculations are implemented by an assemblage of computer codes organized into one program. These include finite difference codes which determine the gas-dynamic solution, together with a variety of special purpose output codes for determining and automatically plotting both flow field and magnetic field results. Comparisons are made with previous results, and results are presented for a number of solar wind flows. The computational programs developed are documented and are presented in a general user's manual which is included.
LEGO: A modular accelerator design code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Y.; Donald, M.; Irwin, J.
1997-08-01
An object-oriented accelerator design code has been designed and implemented in a simple and modular fashion. It contains all major features of its predecessors: TRACY and DESPOT. All physics of single-particle dynamics is implemented based on the Hamiltonian in the local frame of the component. Components can be moved arbitrarily in the three dimensional space. Several symplectic integrators are used to approximate the integration of the Hamiltonian. A differential algebra class is introduced to extract a Taylor map up to arbitrary order. Analysis of optics is done in the same way both for the linear and nonlinear case. Currently, themore » code is used to design and simulate the lattices of the PEP-II. It will also be used for the commissioning.« less
Sensory Afferents Use Different Coding Strategies for Heat and Cold.
Wang, Feng; Bélanger, Erik; Côté, Sylvain L; Desrosiers, Patrick; Prescott, Steven A; Côté, Daniel C; De Koninck, Yves
2018-05-15
Primary afferents transduce environmental stimuli into electrical activity that is transmitted centrally to be decoded into corresponding sensations. However, it remains unknown how afferent populations encode different somatosensory inputs. To address this, we performed two-photon Ca 2+ imaging from thousands of dorsal root ganglion (DRG) neurons in anesthetized mice while applying mechanical and thermal stimuli to hind paws. We found that approximately half of all neurons are polymodal and that heat and cold are encoded very differently. As temperature increases, more heating-sensitive neurons are activated, and most individual neurons respond more strongly, consistent with graded coding at population and single-neuron levels, respectively. In contrast, most cooling-sensitive neurons respond in an ungraded fashion, inconsistent with graded coding and suggesting combinatorial coding, based on which neurons are co-activated. Although individual neurons may respond to multiple stimuli, our results show that different stimuli activate distinct combinations of diversely tuned neurons, enabling rich population-level coding. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Information coding with frequency of oscillations in Belousov-Zhabotinsky encapsulated disks
NASA Astrophysics Data System (ADS)
Gorecki, J.; Gorecka, J. N.; Adamatzky, Andrew
2014-04-01
Information processing with an excitable chemical medium, like the Belousov-Zhabotinsky (BZ) reaction, is typically based on information coding in the presence or absence of excitation pulses. Here we present a new concept of Boolean coding that can be applied to an oscillatory medium. A medium represents the logical TRUE state if a selected region oscillates with a high frequency. If the frequency fails below a specified value, it represents the logical FALSE state. We consider a medium composed of disks encapsulating an oscillatory mixture of reagents, as related to our recent experiments with lipid-coated BZ droplets. We demonstrate that by using specific geometrical arrangements of disks containing the oscillatory medium one can perform logical operations on variables coded in oscillation frequency. Realizations of a chemical signal diode and of a single-bit memory with oscillatory disks are also discussed.
NASA Astrophysics Data System (ADS)
Tsilanizara, A.; Gilardi, N.; Huynh, T. D.; Jouanne, C.; Lahaye, S.; Martinez, J. M.; Diop, C. M.
2014-06-01
The knowledge of the decay heat quantity and the associated uncertainties are important issues for the safety of nuclear facilities. Many codes are available to estimate the decay heat. ORIGEN, FISPACT, DARWIN/PEPIN2 are part of them. MENDEL is a new depletion code developed at CEA, with new software architecture, devoted to the calculation of physical quantities related to fuel cycle studies, in particular decay heat. The purpose of this paper is to present a probabilistic approach to assess decay heat uncertainty due to the decay data uncertainties from nuclear data evaluation like JEFF-3.1.1 or ENDF/B-VII.1. This probabilistic approach is based both on MENDEL code and URANIE software which is a CEA uncertainty analysis platform. As preliminary applications, single thermal fission of uranium 235, plutonium 239 and PWR UOx spent fuel cell are investigated.
NASA Astrophysics Data System (ADS)
Kurceren, Ragip; Modestino, James W.
1998-12-01
The use of forward error-control (FEC) coding, possibly in conjunction with ARQ techniques, has emerged as a promising approach for video transport over ATM networks for cell-loss recovery and/or bit error correction, such as might be required for wireless links. Although FEC provides cell-loss recovery capabilities it also introduces transmission overhead which can possibly cause additional cell losses. A methodology is described to maximize the number of video sources multiplexed at a given quality of service (QoS), measured in terms of decoded cell loss probability, using interlaced FEC codes. The transport channel is modelled as a block interference channel (BIC) and the multiplexer as single server, deterministic service, finite buffer supporting N users. Based upon an information-theoretic characterization of the BIC and large deviation bounds on the buffer overflow probability, the described methodology provides theoretically achievable upper limits on the number of sources multiplexed. Performance of specific coding techniques using interlaced nonbinary Reed-Solomon (RS) codes and binary rate-compatible punctured convolutional (RCPC) codes is illustrated.
NASA Astrophysics Data System (ADS)
Maher, Robert; Alvarado, Alex; Lavery, Domaniç; Bayvel, Polina
2016-02-01
Optical fibre underpins the global communications infrastructure and has experienced an astonishing evolution over the past four decades, with current commercial systems transmitting data rates in excess of 10 Tb/s over a single fibre core. The continuation of this dramatic growth in throughput has become constrained due to a power dependent nonlinear distortion arising from a phenomenon known as the Kerr effect. The mitigation of fibre nonlinearities is an area of intense research. However, even in the absence of nonlinear distortion, the practical limit on the transmission throughput of a single fibre core is dominated by the finite signal-to-noise ratio (SNR) afforded by current state-of-the-art coherent optical transceivers. Therefore, the key to maximising the number of information bits that can be reliably transmitted over a fibre channel hinges on the simultaneous optimisation of the modulation format and code rate, based on the SNR achieved at the receiver. In this work, we use an information theoretic approach based on the mutual information and the generalised mutual information to characterise a state-of-the-art dual polarisation m-ary quadrature amplitude modulation transceiver and subsequently apply this methodology to a 15-carrier super-channel to achieve the highest throughput (1.125 Tb/s) ever recorded using a single coherent receiver.
Maher, Robert; Alvarado, Alex; Lavery, Domaniç; Bayvel, Polina
2016-01-01
Optical fibre underpins the global communications infrastructure and has experienced an astonishing evolution over the past four decades, with current commercial systems transmitting data rates in excess of 10 Tb/s over a single fibre core. The continuation of this dramatic growth in throughput has become constrained due to a power dependent nonlinear distortion arising from a phenomenon known as the Kerr effect. The mitigation of fibre nonlinearities is an area of intense research. However, even in the absence of nonlinear distortion, the practical limit on the transmission throughput of a single fibre core is dominated by the finite signal-to-noise ratio (SNR) afforded by current state-of-the-art coherent optical transceivers. Therefore, the key to maximising the number of information bits that can be reliably transmitted over a fibre channel hinges on the simultaneous optimisation of the modulation format and code rate, based on the SNR achieved at the receiver. In this work, we use an information theoretic approach based on the mutual information and the generalised mutual information to characterise a state-of-the-art dual polarisation m-ary quadrature amplitude modulation transceiver and subsequently apply this methodology to a 15-carrier super-channel to achieve the highest throughput (1.125 Tb/s) ever recorded using a single coherent receiver. PMID:26864633
NASA Astrophysics Data System (ADS)
Cai, Changsheng; Gao, Yang; Pan, Lin; Dai, Wujiao
2014-09-01
With the rapid development of the COMPASS system, it is currently capable of providing regional navigation services. In order to test its data quality and performance for single point positioning (SPP), experiments have been conducted under different observing conditions including open sky, under trees, nearby a glass wall, nearby a large area of water, under high-voltage lines and under a signal transmitting tower. To assess the COMPASS data quality, the code multipath, cycle slip occurrence rate and data availability were analyzed and compared to GPS data. The datasets obtained from the experiments have also been utilized to perform combined GPS/COMPASS SPP on an epoch-by-epoch basis using unsmoothed single-frequency code observations. The investigation on the regional navigation performance aims at low-accuracy applications and all tests are made in Changsha, China, using the “SOUTH S82-C” GPS/COMPASS receivers. The results show that adding COMPASS observations can significantly improve the positioning accuracy of single-frequency GPS-only SPP in environments with limited satellite visibility. Since the COMPASS system is still in an initial operational stage, all results are obtained based on a fairly limited amount of data.
Optical aberration correction for simple lenses via sparse representation
NASA Astrophysics Data System (ADS)
Cui, Jinlin; Huang, Wei
2018-04-01
Simple lenses with spherical surfaces are lightweight, inexpensive, highly flexible, and can be easily processed. However, they suffer from optical aberrations that lead to limitations in high-quality photography. In this study, we propose a set of computational photography techniques based on sparse signal representation to remove optical aberrations, thereby allowing the recovery of images captured through a single-lens camera. The primary advantage of the proposed method is that many prior point spread functions calibrated at different depths are successfully used for restoring visual images in a short time, which can be generally applied to nonblind deconvolution methods for solving the problem of the excessive processing time caused by the number of point spread functions. The optical software CODE V is applied for examining the reliability of the proposed method by simulation. The simulation results reveal that the suggested method outperforms the traditional methods. Moreover, the performance of a single-lens camera is significantly enhanced both qualitatively and perceptually. Particularly, the prior information obtained by CODE V can be used for processing the real images of a single-lens camera, which provides an alternative approach to conveniently and accurately obtain point spread functions of single-lens cameras.
Edge Simulation Laboratory Progress and Plans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, R
The Edge Simulation Laboratory (ESL) is a project to develop a gyrokinetic code for MFE edge plasmas based on continuum (Eulerian) techniques. ESL is a base-program activity of OFES, with an allied algorithm research activity funded by the OASCR base math program. ESL OFES funds directly support about 0.8 FTE of career staff at LLNL, a postdoc and a small fraction of an FTE at GA, and a graduate student at UCSD. In addition the allied OASCR program funds about 1/2 FTE each in the computations directorates at LBNL and LLNL. OFES ESL funding for LLNL and UCSD began inmore » fall 2005, while funding for GA and the math team began about a year ago. ESL's continuum approach is a complement to the PIC-based methods of the CPES Project, and was selected (1) because of concerns about noise issues associated with PIC in the high-density-contrast environment of the edge pedestal, (2) to be able to exploit advanced numerical methods developed for fluid codes, and (3) to build upon the successes of core continuum gyrokinetic codes such as GYRO, GS2 and GENE. The ESL project presently has three components: TEMPEST, a full-f, full-geometry (single-null divertor, or arbitrary-shape closed flux surfaces) code in E, {mu} (energy, magnetic-moment) coordinates; EGK, a simple-geometry rapid-prototype code, presently of; and the math component, which is developing and implementing algorithms for a next-generation code. Progress would be accelerated if we could find funding for a fourth, computer science, component, which would develop software infrastructure, provide user support, and address needs for data handing and analysis. We summarize the status and plans for the three funded activities.« less
Quantum steganography and quantum error-correction
NASA Astrophysics Data System (ADS)
Shaw, Bilal A.
Quantum error-correcting codes have been the cornerstone of research in quantum information science (QIS) for more than a decade. Without their conception, quantum computers would be a footnote in the history of science. When researchers embraced the idea that we live in a world where the effects of a noisy environment cannot completely be stripped away from the operations of a quantum computer, the natural way forward was to think about importing classical coding theory into the quantum arena to give birth to quantum error-correcting codes which could help in mitigating the debilitating effects of decoherence on quantum data. We first talk about the six-qubit quantum error-correcting code and show its connections to entanglement-assisted error-correcting coding theory and then to subsystem codes. This code bridges the gap between the five-qubit (perfect) and Steane codes. We discuss two methods to encode one qubit into six physical qubits. Each of the two examples corrects an arbitrary single-qubit error. The first example is a degenerate six-qubit quantum error-correcting code. We explicitly provide the stabilizer generators, encoding circuits, codewords, logical Pauli operators, and logical CNOT operator for this code. We also show how to convert this code into a non-trivial subsystem code that saturates the subsystem Singleton bound. We then prove that a six-qubit code without entanglement assistance cannot simultaneously possess a Calderbank-Shor-Steane (CSS) stabilizer and correct an arbitrary single-qubit error. A corollary of this result is that the Steane seven-qubit code is the smallest single-error correcting CSS code. Our second example is the construction of a non-degenerate six-qubit CSS entanglement-assisted code. This code uses one bit of entanglement (an ebit) shared between the sender (Alice) and the receiver (Bob) and corrects an arbitrary single-qubit error. The code we obtain is globally equivalent to the Steane seven-qubit code and thus corrects an arbitrary error on the receiver's half of the ebit as well. We prove that this code is the smallest code with a CSS structure that uses only one ebit and corrects an arbitrary single-qubit error on the sender's side. We discuss the advantages and disadvantages for each of the two codes. In the second half of this thesis we explore the yet uncharted and relatively undiscovered area of quantum steganography. Steganography is the process of hiding secret information by embedding it in an "innocent" message. We present protocols for hiding quantum information in a codeword of a quantum error-correcting code passing through a channel. Using either a shared classical secret key or shared entanglement Alice disguises her information as errors in the channel. Bob can retrieve the hidden information, but an eavesdropper (Eve) with the power to monitor the channel, but without the secret key, cannot distinguish the message from channel noise. We analyze how difficult it is for Eve to detect the presence of secret messages, and estimate rates of steganographic communication and secret key consumption for certain protocols. We also provide an example of how Alice hides quantum information in the perfect code when the underlying channel between Bob and her is the depolarizing channel. Using this scheme Alice can hide up to four stego-qubits.
NASA Technical Reports Server (NTRS)
White, P. R.; Little, R. R.
1985-01-01
A research effort was undertaken to develop personal computer based software for vibrational analysis. The software was developed to analytically determine the natural frequencies and mode shapes for the uncoupled lateral vibrations of the blade and counterweight assemblies used in a single bladed wind turbine. The uncoupled vibration analysis was performed in both the flapwise and chordwise directions for static rotor conditions. The effects of rotation on the uncoupled flapwise vibration of the blade and counterweight assemblies were evaluated for various rotor speeds up to 90 rpm. The theory, used in the vibration analysis codes, is based on a lumped mass formulation for the blade and counterweight assemblies. The codes are general so that other designs can be readily analyzed. The input for the codes is generally interactive to facilitate usage. The output of the codes is both tabular and graphical. Listings of the codes are provided. Predicted natural frequencies of the first several modes show reasonable agreement with experimental results. The analysis codes were originally developed on a DEC PDP 11/34 minicomputer and then downloaded and modified to run on an ITT XTRA personal computer. Studies conducted to evaluate the efficiency of running the programs on a personal computer as compared with the minicomputer indicated that, with the proper combination of hardware and software options, the efficiency of using a personal computer exceeds that of a minicomputer.
Mensi, Skander; Hagens, Olivier; Gerstner, Wulfram; Pozzorini, Christian
2016-02-01
The way in which single neurons transform input into output spike trains has fundamental consequences for network coding. Theories and modeling studies based on standard Integrate-and-Fire models implicitly assume that, in response to increasingly strong inputs, neurons modify their coding strategy by progressively reducing their selective sensitivity to rapid input fluctuations. Combining mathematical modeling with in vitro experiments, we demonstrate that, in L5 pyramidal neurons, the firing threshold dynamics adaptively adjust the effective timescale of somatic integration in order to preserve sensitivity to rapid signals over a broad range of input statistics. For that, a new Generalized Integrate-and-Fire model featuring nonlinear firing threshold dynamics and conductance-based adaptation is introduced that outperforms state-of-the-art neuron models in predicting the spiking activity of neurons responding to a variety of in vivo-like fluctuating currents. Our model allows for efficient parameter extraction and can be analytically mapped to a Generalized Linear Model in which both the input filter--describing somatic integration--and the spike-history filter--accounting for spike-frequency adaptation--dynamically adapt to the input statistics, as experimentally observed. Overall, our results provide new insights on the computational role of different biophysical processes known to underlie adaptive coding in single neurons and support previous theoretical findings indicating that the nonlinear dynamics of the firing threshold due to Na+-channel inactivation regulate the sensitivity to rapid input fluctuations.
Shared Memory Parallelization of an Implicit ADI-type CFD Code
NASA Technical Reports Server (NTRS)
Hauser, Th.; Huang, P. G.
1999-01-01
A parallelization study designed for ADI-type algorithms is presented using the OpenMP specification for shared-memory multiprocessor programming. Details of optimizations specifically addressed to cache-based computer architectures are described and performance measurements for the single and multiprocessor implementation are summarized. The paper demonstrates that optimization of memory access on a cache-based computer architecture controls the performance of the computational algorithm. A hybrid MPI/OpenMP approach is proposed for clusters of shared memory machines to further enhance the parallel performance. The method is applied to develop a new LES/DNS code, named LESTool. A preliminary DNS calculation of a fully developed channel flow at a Reynolds number of 180, Re(sub tau) = 180, has shown good agreement with existing data.
An approach for coupled-code multiphysics core simulations from a common input
Schmidt, Rodney; Belcourt, Kenneth; Hooper, Russell; ...
2014-12-10
This study describes an approach for coupled-code multiphysics reactor core simulations that is being developed by the Virtual Environment for Reactor Applications (VERA) project in the Consortium for Advanced Simulation of Light-Water Reactors (CASL). In this approach a user creates a single problem description, called the “VERAIn” common input file, to define and setup the desired coupled-code reactor core simulation. A preprocessing step accepts the VERAIn file and generates a set of fully consistent input files for the different physics codes being coupled. The problem is then solved using a single-executable coupled-code simulation tool applicable to the problem, which ismore » built using VERA infrastructure software tools and the set of physics codes required for the problem of interest. The approach is demonstrated by performing an eigenvalue and power distribution calculation of a typical three-dimensional 17 × 17 assembly with thermal–hydraulic and fuel temperature feedback. All neutronics aspects of the problem (cross-section calculation, neutron transport, power release) are solved using the Insilico code suite and are fully coupled to a thermal–hydraulic analysis calculated by the Cobra-TF (CTF) code. The single-executable coupled-code (Insilico-CTF) simulation tool is created using several VERA tools, including LIME (Lightweight Integrating Multiphysics Environment for coupling codes), DTK (Data Transfer Kit), Trilinos, and TriBITS. Parallel calculations are performed on the Titan supercomputer at Oak Ridge National Laboratory using 1156 cores, and a synopsis of the solution results and code performance is presented. Finally, ongoing development of this approach is also briefly described.« less
SU-E-T-493: Accelerated Monte Carlo Methods for Photon Dosimetry Using a Dual-GPU System and CUDA.
Liu, T; Ding, A; Xu, X
2012-06-01
To develop a Graphics Processing Unit (GPU) based Monte Carlo (MC) code that accelerates dose calculations on a dual-GPU system. We simulated a clinical case of prostate cancer treatment. A voxelized abdomen phantom derived from 120 CT slices was used containing 218×126×60 voxels, and a GE LightSpeed 16-MDCT scanner was modeled. A CPU version of the MC code was first developed in C++ and tested on Intel Xeon X5660 2.8GHz CPU, then it was translated into GPU version using CUDA C 4.1 and run on a dual Tesla m 2 090 GPU system. The code was featured with automatic assignment of simulation task to multiple GPUs, as well as accurate calculation of energy- and material- dependent cross-sections. Double-precision floating point format was used for accuracy. Doses to the rectum, prostate, bladder and femoral heads were calculated. When running on a single GPU, the MC GPU code was found to be ×19 times faster than the CPU code and ×42 times faster than MCNPX. These speedup factors were doubled on the dual-GPU system. The dose Result was benchmarked against MCNPX and a maximum difference of 1% was observed when the relative error is kept below 0.1%. A GPU-based MC code was developed for dose calculations using detailed patient and CT scanner models. Efficiency and accuracy were both guaranteed in this code. Scalability of the code was confirmed on the dual-GPU system. © 2012 American Association of Physicists in Medicine.
Kozak, M; Karaman, M
2001-07-01
Digital beamforming based on oversampled delta-sigma (delta sigma) analog-to-digital (A/D) conversion can reduce the overall cost, size, and power consumption of phased array front-end processing. The signal resampling involved in dynamic delta sigma beamforming, however, disrupts synchronization between the modulators and demodulator, causing significant degradation in the signal-to-noise ratio. As a solution to this, we have explored a new digital beamforming approach based on non-uniform oversampling delta sigma A/D conversion. Using this approach, the echo signals received by the transducer array are sampled at time instants determined by the beamforming timing and then digitized by single-bit delta sigma A/D conversion prior to the coherent beam summation. The timing information involves a non-uniform sampling scheme employing different clocks at each array channel. The delta sigma coded beamsums obtained by adding the delayed 1-bit coded RF echo signals are then processed through a decimation filter to produce final beamforming outputs. The performance and validity of the proposed beamforming approach are assessed by means of emulations using experimental raw RF data.
Automatic single-image-based rain streaks removal via image decomposition.
Kang, Li-Wei; Lin, Chia-Wen; Fu, Yu-Hsiang
2012-04-01
Rain removal from a video is a challenging problem and has been recently investigated extensively. Nevertheless, the problem of rain removal from a single image was rarely studied in the literature, where no temporal information among successive images can be exploited, making the problem very challenging. In this paper, we propose a single-image-based rain removal framework via properly formulating rain removal as an image decomposition problem based on morphological component analysis. Instead of directly applying a conventional image decomposition technique, the proposed method first decomposes an image into the low- and high-frequency (HF) parts using a bilateral filter. The HF part is then decomposed into a "rain component" and a "nonrain component" by performing dictionary learning and sparse coding. As a result, the rain component can be successfully removed from the image while preserving most original image details. Experimental results demonstrate the efficacy of the proposed algorithm.
Single neuron firing properties impact correlation-based population coding
Hong, Sungho; Ratté, Stéphanie; Prescott, Steven A.; De Schutter, Erik
2012-01-01
Correlated spiking has been widely observed but its impact on neural coding remains controversial. Correlation arising from co-modulation of rates across neurons has been shown to vary with the firing rates of individual neurons. This translates into rate and correlation being equivalently tuned to the stimulus; under those conditions, correlated spiking does not provide information beyond that already available from individual neuron firing rates. Such correlations are irrelevant and can reduce coding efficiency by introducing redundancy. Using simulations and experiments in rat hippocampal neurons, we show here that pairs of neurons receiving correlated input also exhibit correlations arising from precise spike-time synchronization. Contrary to rate co-modulation, spike-time synchronization is unaffected by firing rate, thus enabling synchrony- and rate-based coding to operate independently. The type of output correlation depends on whether intrinsic neuron properties promote integration or coincidence detection: “ideal” integrators (with spike generation sensitive to stimulus mean) exhibit rate co-modulation whereas “ideal” coincidence detectors (with spike generation sensitive to stimulus variance) exhibit precise spike-time synchronization. Pyramidal neurons are sensitive to both stimulus mean and variance, and thus exhibit both types of output correlation proportioned according to which operating mode is dominant. Our results explain how different types of correlations arise based on how individual neurons generate spikes, and why spike-time synchronization and rate co-modulation can encode different stimulus properties. Our results also highlight the importance of neuronal properties for population-level coding insofar as neural networks can employ different coding schemes depending on the dominant operating mode of their constituent neurons. PMID:22279226
Kawano, Tomonori
2013-01-01
There have been a wide variety of approaches for handling the pieces of DNA as the “unplugged” tools for digital information storage and processing, including a series of studies applied to the security-related area, such as DNA-based digital barcodes, water marks and cryptography. In the present article, novel designs of artificial genes as the media for storing the digitally compressed data for images are proposed for bio-computing purpose while natural genes principally encode for proteins. Furthermore, the proposed system allows cryptographical application of DNA through biochemically editable designs with capacity for steganographical numeric data embedment. As a model case of image-coding DNA technique application, numerically and biochemically combined protocols are employed for ciphering the given “passwords” and/or secret numbers using DNA sequences. The “passwords” of interest were decomposed into single letters and translated into the font image coded on the separate DNA chains with both the coding regions in which the images are encoded based on the novel run-length encoding rule, and the non-coding regions designed for biochemical editing and the remodeling processes revealing the hidden orientation of letters composing the original “passwords.” The latter processes require the molecular biological tools for digestion and ligation of the fragmented DNA molecules targeting at the polymerase chain reaction-engineered termini of the chains. Lastly, additional protocols for steganographical overwriting of the numeric data of interests over the image-coding DNA are also discussed. PMID:23750303
Wittevrongel, Benjamin; Van Wolputte, Elia; Van Hulle, Marc M
2017-11-08
When encoding visual targets using various lagged versions of a pseudorandom binary sequence of luminance changes, the EEG signal recorded over the viewer's occipital pole exhibits so-called code-modulated visual evoked potentials (cVEPs), the phase lags of which can be tied to these targets. The cVEP paradigm has enjoyed interest in the brain-computer interfacing (BCI) community for the reported high information transfer rates (ITR, in bits/min). In this study, we introduce a novel decoding algorithm based on spatiotemporal beamforming, and show that this algorithm is able to accurately identify the gazed target. Especially for a small number of repetitions of the coding sequence, our beamforming approach significantly outperforms an optimised support vector machine (SVM)-based classifier, which is considered state-of-the-art in cVEP-based BCI. In addition to the traditional 60 Hz stimulus presentation rate for the coding sequence, we also explore the 120 Hz rate, and show that the latter enables faster communication, with a maximal median ITR of 172.87 bits/min. Finally, we also report on a transition effect in the EEG signal following the onset of the stimulus sequence, and recommend to exclude the first 150 ms of the trials from decoding when relying on a single presentation of the stimulus sequence.
Fabrication and evaluation of cold/formed/weldbrazed beta-titanium skin-stiffened compression panels
NASA Technical Reports Server (NTRS)
Royster, D. M.; Bales, T. T.; Davis, R. C.; Wiant, H. R.
1983-01-01
The room temperature and elevated temperature buckling behavior of cold formed beta titanium hat shaped stiffeners joined by weld brazing to alpha-beta titanium skins was determined. A preliminary set of single stiffener compression panels were used to develop a data base for material and panel properties. These panels were tested at room temperature and 316 C (600 F). A final set of multistiffener compression panels were fabricated for room temperature tests by the process developed in making the single stiffener panels. The overall geometrical dimensions for the multistiffener panels were determined by the structural sizing computer code PASCO. The data presented from the panel tests include load shortening curves, local buckling strengths, and failure loads. Experimental buckling loads are compared with the buckling loads predicted by the PASCO code. Material property data obtained from tests of ASTM standard dogbone specimens are also presented.
Ducted-Fan Engine Acoustic Predictions using a Navier-Stokes Code
NASA Technical Reports Server (NTRS)
Rumsey, C. L.; Biedron, R. T.; Farassat, F.; Spence, P. L.
1998-01-01
A Navier-Stokes computer code is used to predict one of the ducted-fan engine acoustic modes that results from rotor-wake/stator-blade interaction. A patched sliding-zone interface is employed to pass information between the moving rotor row and the stationary stator row. The code produces averaged aerodynamic results downstream of the rotor that agree well with a widely used average-passage code. The acoustic mode of interest is generated successfully by the code and is propagated well upstream of the rotor; temporal and spatial numerical resolution are fine enough such that attenuation of the signal is small. Two acoustic codes are used to find the far-field noise. Near-field propagation is computed by using Eversman's wave envelope code, which is based on a finite-element model. Propagation to the far field is accomplished by using the Kirchhoff formula for moving surfaces with the results of the wave envelope code as input data. Comparison of measured and computed far-field noise levels show fair agreement in the range of directivity angles where the peak radiation lobes from the inlet are observed. Although only a single acoustic mode is targeted in this study, the main conclusion is a proof-of-concept: Navier-Stokes codes can be used both to generate and propagate rotor/stator acoustic modes forward through an engine, where the results can be coupled to other far-field noise prediction codes.
NASA Astrophysics Data System (ADS)
Korneta, Wojciech; Gomes, Iacyel
2017-11-01
Traditional bistable sensors use external bias signal to drive its response between states and their detection strategy is based on the output power spectral density or the residence time difference (RTD) in two sensor states. Recently, the noise activated nonlinear dynamic sensors driven only by noise based on RTD technique have been proposed. Here, we present experimental results of dc voltage measurements by noise-driven bistable sensor based on electronic Chua's circuit operating in a chaotic regime where two single scroll attractors coexist. The output of the sensor is quantified by the proportion of the time the sensor stays in one state to the total observation time and by the spike-count rate with spikes defined by crossings between attractors. The relationship between the stimuli and particular observable for different noise intensities is obtained, the usefulness of each coding scheme is discussed, and the optimal noise intensity for detection is indicated. It is shown that the obtained relationship is the same for any observation time when population coding is used. The optimal time window for both detection and the number of units in population coding is found. Our results may be useful for analyses and understanding of the neural activity and in designing bistable storage elements at length scales where thermal fluctuations drastically increase and the effect of noise must be taken into consideration.
Accuracy of Digital Impressions and Fitness of Single Crowns Based on Digital Impressions
Yang, Xin; Lv, Pin; Liu, Yihong; Si, Wenjie; Feng, Hailan
2015-01-01
In this study, the accuracy (precision and trueness) of digital impressions and the fitness of single crowns manufactured based on digital impressions were evaluated. #14-17 epoxy resin dentitions were made, while full-crown preparations of extracted natural teeth were embedded at #16. (1) To assess precision, deviations among repeated scan models made by intraoral scanner TRIOS and MHT and model scanner D700 and inEos were calculated through best-fit algorithm and three-dimensional (3D) comparison. Root mean square (RMS) and color-coded difference images were offered. (2) To assess trueness, micro computed tomography (micro-CT) was used to get the reference model (REF). Deviations between REF and repeated scan models (from (1)) were calculated. (3) To assess fitness, single crowns were manufactured based on TRIOS, MHT, D700 and inEos scan models. The adhesive gaps were evaluated under stereomicroscope after cross-sectioned. Digital impressions showed lower precision and better trueness. Except for MHT, the means of RMS for precision were lower than 10 μm. Digital impressions showed better internal fitness. Fitness of single crowns based on digital impressions was up to clinical standard. Digital impressions could be an alternative method for single crowns manufacturing. PMID:28793417
NASA Astrophysics Data System (ADS)
Nitadori, Keigo; Makino, Junichiro; Hut, Piet
2006-12-01
The main performance bottleneck of gravitational N-body codes is the force calculation between two particles. We have succeeded in speeding up this pair-wise force calculation by factors between 2 and 10, depending on the code and the processor on which the code is run. These speed-ups were obtained by writing highly fine-tuned code for x86_64 microprocessors. Any existing N-body code, running on these chips, can easily incorporate our assembly code programs. In the current paper, we present an outline of our overall approach, which we illustrate with one specific example: the use of a Hermite scheme for a direct N2 type integration on a single 2.0 GHz Athlon 64 processor, for which we obtain an effective performance of 4.05 Gflops, for double-precision accuracy. In subsequent papers, we will discuss other variations, including the combinations of N log N codes, single-precision implementations, and performance on other microprocessors.
Heat transfer in rocket engine combustion chambers and regeneratively cooled nozzles
NASA Technical Reports Server (NTRS)
1993-01-01
A conjugate heat transfer computational fluid dynamics (CFD) model to describe regenerative cooling in the main combustion chamber and nozzle and in the injector faceplate region for a launch vehicle class liquid rocket engine was developed. An injector model for sprays which treats the fluid as a variable density, single-phase media was formulated, incorporated into a version of the FDNS code, and used to simulate the injector flow typical of that in the Space Shuttle Main Engine (SSME). Various chamber related heat transfer analyses were made to verify the predictive capability of the conjugate heat transfer analysis provided by the FDNS code. The density based version of the FDNS code with the real fluid property models developed was successful in predicting the streamtube combustion of individual injector elements.
NASA Astrophysics Data System (ADS)
Cassan, Arnaud
2017-07-01
The exoplanet detection rate from gravitational microlensing has grown significantly in recent years thanks to a great enhancement of resources and improved observational strategy. Current observatories include ground-based wide-field and/or robotic world-wide networks of telescopes, as well as space-based observatories such as satellites Spitzer or Kepler/K2. This results in a large quantity of data to be processed and analysed, which is a challenge for modelling codes because of the complexity of the parameter space to be explored and the intensive computations required to evaluate the models. In this work, I present a method that allows to compute the quadrupole and hexadecapole approximations of the finite-source magnification with more efficiency than previously available codes, with routines about six times and four times faster, respectively. The quadrupole takes just about twice the time of a point-source evaluation, which advocates for generalizing its use to large portions of the light curves. The corresponding routines are available as open-source python codes.
Distributed single source coding with side information
NASA Astrophysics Data System (ADS)
Vila-Forcen, Jose E.; Koval, Oleksiy; Voloshynovskiy, Sviatoslav V.
2004-01-01
In the paper we advocate image compression technique in the scope of distributed source coding framework. The novelty of the proposed approach is twofold: classical image compression is considered from the positions of source coding with side information and, contrarily to the existing scenarios, where side information is given explicitly, side information is created based on deterministic approximation of local image features. We consider an image in the transform domain as a realization of a source with a bounded codebook of symbols where each symbol represents a particular edge shape. The codebook is image independent and plays the role of auxiliary source. Due to the partial availability of side information at both encoder and decoder we treat our problem as a modification of Berger-Flynn-Gray problem and investigate a possible gain over the solutions when side information is either unavailable or available only at decoder. Finally, we present a practical compression algorithm for passport photo images based on our concept that demonstrates the superior performance in very low bit rate regime.
Multiple channel optical data acquisition system
Fasching, G.E.; Goff, D.R.
1985-02-22
A multiple channel optical data acquisition system is provided in which a plurality of remote sensors monitoring specific process variable are interrogated by means of a single optical fiber connecting the remote station/sensors to a base station. The remote station/sensors derive all power from light transmitted through the fiber from the base station. Each station/sensor is individually accessed by means of a light modulated address code sent over the fiber. The remote station/sensors use a single light emitting diode to both send and receive light signals to communicate with the base station and provide power for the remote station. The system described can power at least 100 remote station/sensors over an optical fiber one mile in length.
Experimental implementation of the Bacon-Shor code with 10 entangled photons
NASA Astrophysics Data System (ADS)
Gimeno-Segovia, Mercedes; Sanders, Barry C.
The number of qubits that can be effectively controlled in quantum experiments is growing, reaching a regime where small quantum error-correcting codes can be tested. The Bacon-Shor code is a simple quantum code that protects against the effect of an arbitrary single-qubit error. In this work, we propose an experimental implementation of said code in a post-selected linear optical setup, similar to the recently reported 10-photon GHZ generation experiment. In the procedure we propose, an arbitrary state is encoded into the protected Shor code subspace, and after undergoing a controlled single-qubit error, is successfully decoded. BCS appreciates financial support from Alberta Innovates, NSERC, China's 1000 Talent Plan and the Institute for Quantum Information and Matter, which is an NSF Physics Frontiers Center(NSF Grant PHY-1125565) with support of the Moore Foundation(GBMF-2644).
Pattani, Reena; Marquez, Christine; Dinyarian, Camellia; Sharma, Malika; Bain, Julie; Moore, Julia E; Straus, Sharon E
2018-04-10
Despite the gender parity existing in medical schools for over three decades, women remain underrepresented in academic medical centers, particularly in senior ranks and in leadership roles. This has consequences for patient care, education, research, and workplace culture within healthcare organizations. This study was undertaken to explore the perspectives of faculty members at a single department of medicine on the impact of the existing gender gap on organizational effectiveness and workplace culture, and to identify systems-based strategies to mitigate the gap. The study took place at a large university department of medicine in Toronto, Canada, with six affiliated hospitals. In this qualitative study, semi-structured individual interviews were conducted between May and September 2016 with full-time faculty members who held clinical and university-based appointments. Transcripts of the interviews were analyzed using thematic analysis. Three authors independently reviewed the transcripts to determine a preliminary list of codes and establish a coding framework. A modified audit consensus coding approach was applied; a single analyst reviewed all the transcripts and a second analyst audited 20% of the transcripts in each round of coding. Following each round, inter-rater reliability was determined, discrepancies were resolved through discussion, and modifications were made as needed to the coding framework. The analysis revealed faculty members' perceptions of the gender gap, potential contributing factors, organizational impacts, and possible solutions to bridge the gap. Of the 43 full-time faculty members who participated in the survey (29 of whom self-identified as female), most participants were aware of the existing gender gap within academic medicine. Participants described social exclusion, reinforced stereotypes, and unprofessional behaviors as consequences of the gap on organizational effectiveness and culture. They suggested improvements in (1) the processes for recruitment, hiring, and promotion; (2) inclusiveness of the work environment; (3) structures for mentorship; and (4) ongoing monitoring of the gap. The existing gender gap in academic medicine may have negative consequences for organizational effectiveness and workplace culture but many systems-based strategies to mitigate the gap exist. Although these solutions warrant rigorous evaluation, they are feasible to institute within most healthcare organizations immediately.
Silicon CMOS architecture for a spin-based quantum computer.
Veldhorst, M; Eenink, H G J; Yang, C H; Dzurak, A S
2017-12-15
Recent advances in quantum error correction codes for fault-tolerant quantum computing and physical realizations of high-fidelity qubits in multiple platforms give promise for the construction of a quantum computer based on millions of interacting qubits. However, the classical-quantum interface remains a nascent field of exploration. Here, we propose an architecture for a silicon-based quantum computer processor based on complementary metal-oxide-semiconductor (CMOS) technology. We show how a transistor-based control circuit together with charge-storage electrodes can be used to operate a dense and scalable two-dimensional qubit system. The qubits are defined by the spin state of a single electron confined in quantum dots, coupled via exchange interactions, controlled using a microwave cavity, and measured via gate-based dispersive readout. We implement a spin qubit surface code, showing the prospects for universal quantum computation. We discuss the challenges and focus areas that need to be addressed, providing a path for large-scale quantum computing.
Elastic response of (001)-oriented PWA 1480 single crystal - The influence of secondary orientation
NASA Technical Reports Server (NTRS)
Kalluri, Sreeramesh; Abdul-Azis, Ali; Mcgaw, Michael
1991-01-01
The influence of secondary orientation on the elastic response of a zone axis (001)-oriented nickel-base single-crystal superalloy, PWA 1480, was investigated under mechanical loading conditions by applying finite element techniques. Elastic stress analyses were performed with a commercially available finite element code. Secondary orientation of the single-crystal superalloy was offset with respect to the global coordinate system in increments from 0 to 90 deg and stresses developed within the single crystal were determined for each loading condition. The results indicated that the stresses were strongly influenced by the angular offset between the secondary crystal orientation and the global coordinate system. The degree of influence was found to vary with the type of loading condition (mechanical, thermal, or combined) imposed on the single-crystal superalloy.
NASA Astrophysics Data System (ADS)
Trejos, Sorayda; Fredy Barrera, John; Torroba, Roberto
2015-08-01
We present for the first time an optical encrypting-decrypting protocol for recovering messages without speckle noise. This is a digital holographic technique using a 2f scheme to process QR codes entries. In the procedure, letters used to compose eventual messages are individually converted into a QR code, and then each QR code is divided into portions. Through a holographic technique, we store each processed portion. After filtering and repositioning, we add all processed data to create a single pack, thus simplifying the handling and recovery of multiple QR code images, representing the first multiplexing procedure applied to processed QR codes. All QR codes are recovered in a single step and in the same plane, showing neither cross-talk nor noise problems as in other methods. Experiments have been conducted using an interferometric configuration and comparisons between unprocessed and recovered QR codes have been performed, showing differences between them due to the involved processing. Recovered QR codes can be successfully scanned, thanks to their noise tolerance. Finally, the appropriate sequence in the scanning of the recovered QR codes brings a noiseless retrieved message. Additionally, to procure maximum security, the multiplexed pack could be multiplied by a digital diffuser as to encrypt it. The encrypted pack is easily decoded by multiplying the multiplexing with the complex conjugate of the diffuser. As it is a digital operation, no noise is added. Therefore, this technique is threefold robust, involving multiplexing, encryption, and the need of a sequence to retrieve the outcome.
Validation of hydrogen gas stratification and mixing models
Wu, Hsingtzu; Zhao, Haihua
2015-05-26
Two validation benchmarks confirm that the BMIX++ code is capable of simulating unintended hydrogen release scenarios efficiently. The BMIX++ (UC Berkeley mechanistic MIXing code in C++) code has been developed to accurately and efficiently predict the fluid mixture distribution and heat transfer in large stratified enclosures for accident analyses and design optimizations. The BMIX++ code uses a scaling based one-dimensional method to achieve large reduction in computational effort compared to a 3-D computational fluid dynamics (CFD) simulation. Two BMIX++ benchmark models have been developed. One is for a single buoyant jet in an open space and another is for amore » large sealed enclosure with both a jet source and a vent near the floor. Both of them have been validated by comparisons with experimental data. Excellent agreements are observed. The entrainment coefficients of 0.09 and 0.08 are found to fit the experimental data for hydrogen leaks with the Froude number of 99 and 268 best, respectively. In addition, the BIX++ simulation results of the average helium concentration for an enclosure with a vent and a single jet agree with the experimental data within a margin of about 10% for jet flow rates ranging from 1.21 × 10⁻⁴ to 3.29 × 10⁻⁴ m³/s. In conclusion, computing time for each BMIX++ model with a normal desktop computer is less than 5 min.« less
Reduction of PAPR in coded OFDM using fast Reed-Solomon codes over prime Galois fields
NASA Astrophysics Data System (ADS)
Motazedi, Mohammad Reza; Dianat, Reza
2017-02-01
In this work, two new techniques using Reed-Solomon (RS) codes over GF(257) and GF(65,537) are proposed for peak-to-average power ratio (PAPR) reduction in coded orthogonal frequency division multiplexing (OFDM) systems. The lengths of these codes are well-matched to the length of OFDM frames. Over these fields, the block lengths of codes are powers of two and we fully exploit the radix-2 fast Fourier transform algorithms. Multiplications and additions are simple modulus operations. These codes provide desirable randomness with a small perturbation in information symbols that is essential for generation of different statistically independent candidates. Our simulations show that the PAPR reduction ability of RS codes is the same as that of conventional selected mapping (SLM), but contrary to SLM, we can get error correction capability. Also for the second proposed technique, the transmission of side information is not needed. To the best of our knowledge, this is the first work using RS codes for PAPR reduction in single-input single-output systems.
A coded tracking telemetry system
Howey, P.W.; Seegar, W.S.; Fuller, M.R.; Titus, K.; Amlaner, Charles J.
1989-01-01
We describe the general characteristics of an automated radio telemetry system designed to operate for prolonged periods on a single frequency. Each transmitter sends a unique coded signal to a receiving system that encodes and records only the appropriater, pre-programmed codes. A record of the time of each reception is stored on diskettes in a micro-computer. This system enables continuous monitoring of infrequent signals (e.g. one per minute or one per hour), thus extending operation life or allowing size reduction of the transmitter, compared to conventional wildlife telemetry. Furthermore, when using unique codes transmitted on a single frequency, biologists can monitor many individuals without exceeding the radio frequency allocations for wildlife.
Tang, Clara S; Zhang, He; Cheung, Chloe Y Y; Xu, Ming; Ho, Jenny C Y; Zhou, Wei; Cherny, Stacey S; Zhang, Yan; Holmen, Oddgeir; Au, Ka-Wing; Yu, Haiyi; Xu, Lin; Jia, Jia; Porsch, Robert M; Sun, Lijie; Xu, Weixian; Zheng, Huiping; Wong, Lai-Yung; Mu, Yiming; Dou, Jingtao; Fong, Carol H Y; Wang, Shuyu; Hong, Xueyu; Dong, Liguang; Liao, Yanhua; Wang, Jiansong; Lam, Levina S M; Su, Xi; Yan, Hua; Yang, Min-Lee; Chen, Jin; Siu, Chung-Wah; Xie, Gaoqiang; Woo, Yu-Cho; Wu, Yangfeng; Tan, Kathryn C B; Hveem, Kristian; Cheung, Bernard M Y; Zöllner, Sebastian; Xu, Aimin; Eugene Chen, Y; Jiang, Chao Qiang; Zhang, Youyi; Lam, Tai-Hing; Ganesh, Santhi K; Huo, Yong; Sham, Pak C; Lam, Karen S L; Willer, Cristen J; Tse, Hung-Fat; Gao, Wei
2015-12-22
Blood lipids are important risk factors for coronary artery disease (CAD). Here we perform an exome-wide association study by genotyping 12,685 Chinese, using a custom Illumina HumanExome BeadChip, to identify additional loci influencing lipid levels. Single-variant association analysis on 65,671 single nucleotide polymorphisms reveals 19 loci associated with lipids at exome-wide significance (P<2.69 × 10(-7)), including three Asian-specific coding variants in known genes (CETP p.Asp459Gly, PCSK9 p.Arg93Cys and LDLR p.Arg257Trp). Furthermore, missense variants at two novel loci-PNPLA3 p.Ile148Met and PKD1L3 p.Thr429Ser-also influence levels of triglycerides and low-density lipoprotein cholesterol, respectively. Another novel gene, TEAD2, is found to be associated with high-density lipoprotein cholesterol through gene-based association analysis. Most of these newly identified coding variants show suggestive association (P<0.05) with CAD. These findings demonstrate that exome-wide genotyping on samples of non-European ancestry can identify additional population-specific possible causal variants, shedding light on novel lipid biology and CAD.
Biophysics: Breaking the Nanometer Barrier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Block, Steven
2006-03-20
A new field of scientific exploration – single molecule biophysics – is currently reshaping and redefining our understanding of the mechanochemistry of life. The development of laser-based optical traps, or ‘optical tweezers,’ has allowed for physiological assessments of such precision that bio-molecules can now be measured and studied one at a time. In this colloquium, Professor Block will present findings based on his group’s construction of optical trapping instrumentation that has broken the nanometer barrier, allowing researchers to study single-molecule displacements on the Angstrom level. Focusing on RNA polymerase, the motor enzyme responsible for transcribing the genetic code contained inmore » DNA, Block’s group has been able to measure, in real time, the motion of a single molecule of RNA polymerase as it moves from base to base along the DNA template. A remarkable opportunity to gain insight into one of the most fundamental biological processes of life, this colloquium can not be missed!« less
Li, Yun Bo; Li, Lian Lin; Xu, Bai Bing; Wu, Wei; Wu, Rui Yuan; Wan, Xiang; Cheng, Qiang; Cui, Tie Jun
2016-01-01
The programmable and digital metamaterials or metasurfaces presented recently have huge potentials in designing real-time-controlled electromagnetic devices. Here, we propose the first transmission-type 2-bit programmable coding metasurface for single-sensor and single- frequency imaging in the microwave frequency. Compared with the existing single-sensor imagers composed of active spatial modulators with their units controlled independently, we introduce randomly programmable metasurface to transform the masks of modulators, in which their rows and columns are controlled simultaneously so that the complexity and cost of the imaging system can be reduced drastically. Different from the single-sensor approach using the frequency agility, the proposed imaging system makes use of variable modulators under single frequency, which can avoid the object dispersion. In order to realize the transmission-type 2-bit programmable metasurface, we propose a two-layer binary coding unit, which is convenient for changing the voltages in rows and columns to switch the diodes in the top and bottom layers, respectively. In our imaging measurements, we generate the random codes by computer to achieve different transmission patterns, which can support enough multiple modes to solve the inverse-scattering problem in the single-sensor imaging. Simple experimental results are presented in the microwave frequency, validating our new single-sensor and single-frequency imaging system. PMID:27025907
Li, Yun Bo; Li, Lian Lin; Xu, Bai Bing; Wu, Wei; Wu, Rui Yuan; Wan, Xiang; Cheng, Qiang; Cui, Tie Jun
2016-03-30
The programmable and digital metamaterials or metasurfaces presented recently have huge potentials in designing real-time-controlled electromagnetic devices. Here, we propose the first transmission-type 2-bit programmable coding metasurface for single-sensor and single- frequency imaging in the microwave frequency. Compared with the existing single-sensor imagers composed of active spatial modulators with their units controlled independently, we introduce randomly programmable metasurface to transform the masks of modulators, in which their rows and columns are controlled simultaneously so that the complexity and cost of the imaging system can be reduced drastically. Different from the single-sensor approach using the frequency agility, the proposed imaging system makes use of variable modulators under single frequency, which can avoid the object dispersion. In order to realize the transmission-type 2-bit programmable metasurface, we propose a two-layer binary coding unit, which is convenient for changing the voltages in rows and columns to switch the diodes in the top and bottom layers, respectively. In our imaging measurements, we generate the random codes by computer to achieve different transmission patterns, which can support enough multiple modes to solve the inverse-scattering problem in the single-sensor imaging. Simple experimental results are presented in the microwave frequency, validating our new single-sensor and single-frequency imaging system.
Users manual for the NASA Lewis three-dimensional ice accretion code (LEWICE 3D)
NASA Technical Reports Server (NTRS)
Bidwell, Colin S.; Potapczuk, Mark G.
1993-01-01
A description of the methodology, the algorithms, and the input and output data along with an example case for the NASA Lewis 3D ice accretion code (LEWICE3D) has been produced. The manual has been designed to help the user understand the capabilities, the methodologies, and the use of the code. The LEWICE3D code is a conglomeration of several codes for the purpose of calculating ice shapes on three-dimensional external surfaces. A three-dimensional external flow panel code is incorporated which has the capability of calculating flow about arbitrary 3D lifting and nonlifting bodies with external flow. A fourth order Runge-Kutta integration scheme is used to calculate arbitrary streamlines. An Adams type predictor-corrector trajectory integration scheme has been included to calculate arbitrary trajectories. Schemes for calculating tangent trajectories, collection efficiencies, and concentration factors for arbitrary regions of interest for single droplets or droplet distributions have been incorporated. A LEWICE 2D based heat transfer algorithm can be used to calculate ice accretions along surface streamlines. A geometry modification scheme is incorporated which calculates the new geometry based on the ice accretions generated at each section of interest. The three-dimensional ice accretion calculation is based on the LEWICE 2D calculation. Both codes calculate the flow, pressure distribution, and collection efficiency distribution along surface streamlines. For both codes the heat transfer calculation is divided into two regions, one above the stagnation point and one below the stagnation point, and solved for each region assuming a flat plate with pressure distribution. Water is assumed to follow the surface streamlines, hence starting at the stagnation zone any water that is not frozen out at a control volume is assumed to run back into the next control volume. After the amount of frozen water at each control volume has been calculated the geometry is modified by adding the ice at each control volume in the surface normal direction.
42 CFR 414.906 - Competitive acquisition program as the basis for payment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... section, payment for CAP drugs is based on bids submitted as a result of the bidding process as described... established. (d) Adjustments. There is an established process for adjustments to payments to account for drugs... of— (A) One or more newly issued HCPCS codes; or (B) One of the following single indication orphan...
Simulated single molecule microscopy with SMeagol.
Lindén, Martin; Ćurić, Vladimir; Boucharin, Alexis; Fange, David; Elf, Johan
2016-08-01
SMeagol is a software tool to simulate highly realistic microscopy data based on spatial systems biology models, in order to facilitate development, validation and optimization of advanced analysis methods for live cell single molecule microscopy data. SMeagol runs on Matlab R2014 and later, and uses compiled binaries in C for reaction-diffusion simulations. Documentation, source code and binaries for Mac OS, Windows and Ubuntu Linux can be downloaded from http://smeagol.sourceforge.net johan.elf@icm.uu.se Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Lim, Kwang Soo; Baldoví, José J; Jiang, ShangDa; Koo, Bong Ho; Kang, Dong Won; Lee, Woo Ram; Koh, Eui Kwan; Gaita-Ariño, Alejandro; Coronado, Eugenio; Slota, Michael; Bogani, Lapo; Hong, Chang Seop
2017-05-01
Controlling the coordination sphere of lanthanoid complexes is a challenging critical step toward controlling their relaxation properties. Here we present the synthesis of hexacoordinated dysprosium single-molecule magnets, where tripodal ligands achieve a near-perfect octahedral coordination. We perform a complete experimental and theoretical investigation of their magnetic properties, including a full single-crystal magnetic anisotropy analysis. The combination of electrostatic and crystal-field computational tools (SIMPRE and CONDON codes) allows us to explain the static behavior of these systems in detail.
2017-01-01
Selective visual attention enables organisms to enhance the representation of behaviorally relevant stimuli by altering the encoding properties of single receptive fields (RFs). Yet we know little about how the attentional modulations of single RFs contribute to the encoding of an entire visual scene. Addressing this issue requires (1) measuring a group of RFs that tile a continuous portion of visual space, (2) constructing a population-level measurement of spatial representations based on these RFs, and (3) linking how different types of RF attentional modulations change the population-level representation. To accomplish these aims, we used fMRI to characterize the responses of thousands of voxels in retinotopically organized human cortex. First, we found that the response modulations of voxel RFs (vRFs) depend on the spatial relationship between the RF center and the visual location of the attended target. Second, we used two analyses to assess the spatial encoding quality of a population of voxels. We found that attention increased fine spatial discriminability and representational fidelity near the attended target. Third, we linked these findings by manipulating the observed vRF attentional modulations and recomputing our measures of the fidelity of population codes. Surprisingly, we discovered that attentional enhancements of population-level representations largely depend on position shifts of vRFs, rather than changes in size or gain. Our data suggest that position shifts of single RFs are a principal mechanism by which attention enhances population-level representations in visual cortex. SIGNIFICANCE STATEMENT Although changes in the gain and size of RFs have dominated our view of how attention modulates visual information codes, such hypotheses have largely relied on the extrapolation of single-cell responses to population responses. Here we use fMRI to relate changes in single voxel receptive fields (vRFs) to changes in population-level representations. We find that vRF position shifts contribute more to population-level enhancements of visual information than changes in vRF size or gain. This finding suggests that position shifts are a principal mechanism by which spatial attention enhances population codes for relevant visual information. This poses challenges for labeled line theories of information processing, suggesting that downstream regions likely rely on distributed inputs rather than single neuron-to-neuron mappings. PMID:28242794
NASA Astrophysics Data System (ADS)
Maeda, Takuto; Takemura, Shunsuke; Furumura, Takashi
2017-07-01
We have developed an open-source software package, Open-source Seismic Wave Propagation Code (OpenSWPC), for parallel numerical simulations of seismic wave propagation in 3D and 2D (P-SV and SH) viscoelastic media based on the finite difference method in local-to-regional scales. This code is equipped with a frequency-independent attenuation model based on the generalized Zener body and an efficient perfectly matched layer for absorbing boundary condition. A hybrid-style programming using OpenMP and the Message Passing Interface (MPI) is adopted for efficient parallel computation. OpenSWPC has wide applicability for seismological studies and great portability to allowing excellent performance from PC clusters to supercomputers. Without modifying the code, users can conduct seismic wave propagation simulations using their own velocity structure models and the necessary source representations by specifying them in an input parameter file. The code has various modes for different types of velocity structure model input and different source representations such as single force, moment tensor and plane-wave incidence, which can easily be selected via the input parameters. Widely used binary data formats, the Network Common Data Form (NetCDF) and the Seismic Analysis Code (SAC) are adopted for the input of the heterogeneous structure model and the outputs of the simulation results, so users can easily handle the input/output datasets. All codes are written in Fortran 2003 and are available with detailed documents in a public repository.[Figure not available: see fulltext.
OPAL: An Open-Source MPI-IO Library over Cray XT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Weikuan; Vetter, Jeffrey S; Canon, Richard Shane
Parallel IO over Cray XT is supported by a vendor-supplied MPI-IO package. This package contains a proprietary ADIO implementation built on top of the sysio library. While it is reasonable to maintain a stable code base for application scientists' convenience, it is also very important to the system developers and researchers to analyze and assess the effectiveness of parallel IO software, and accordingly, tune and optimize the MPI-IO implementation. A proprietary parallel IO code base relinquishes such flexibilities. On the other hand, a generic UFS-based MPI-IO implementation is typically used on many Linux-based platforms. We have developed an open-source MPI-IOmore » package over Lustre, referred to as OPAL (OPportunistic and Adaptive MPI-IO Library over Lustre). OPAL provides a single source-code base for MPI-IO over Lustre on Cray XT and Linux platforms. Compared to Cray implementation, OPAL provides a number of good features, including arbitrary specification of striping patterns and Lustre-stripe aligned file domain partitioning. This paper presents the performance comparisons between OPAL and Cray's proprietary implementation. Our evaluation demonstrates that OPAL achieves the performance comparable to the Cray implementation. We also exemplify the benefits of an open source package in revealing the underpinning of the parallel IO performance.« less
Continuous-variable quantum network coding for coherent states
NASA Astrophysics Data System (ADS)
Shang, Tao; Li, Ke; Liu, Jian-wei
2017-04-01
As far as the spectral characteristic of quantum information is concerned, the existing quantum network coding schemes can be looked on as the discrete-variable quantum network coding schemes. Considering the practical advantage of continuous variables, in this paper, we explore two feasible continuous-variable quantum network coding (CVQNC) schemes. Basic operations and CVQNC schemes are both provided. The first scheme is based on Gaussian cloning and ADD/SUB operators and can transmit two coherent states across with a fidelity of 1/2, while the second scheme utilizes continuous-variable quantum teleportation and can transmit two coherent states perfectly. By encoding classical information on quantum states, quantum network coding schemes can be utilized to transmit classical information. Scheme analysis shows that compared with the discrete-variable paradigms, the proposed CVQNC schemes provide better network throughput from the viewpoint of classical information transmission. By modulating the amplitude and phase quadratures of coherent states with classical characters, the first scheme and the second scheme can transmit 4{log _2}N and 2{log _2}N bits of information by a single network use, respectively.
CASL VMA FY16 Milestone Report (L3:VMA.VUQ.P13.07) Westinghouse Mixing with COBRA-TF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon, Natalie
2016-09-30
COBRA-TF (CTF) is a low-resolution code currently maintained as CASL's subchannel analysis tool. CTF operates as a two-phase, compressible code over a mesh comprised of subchannels and axial discretized nodes. In part because CTF is a low-resolution code, simulation run time is not computationally expensive, only on the order of minutes. Hi-resolution codes such as STAR-CCM+ can be used to train lower-fidelity codes such as CTF. Unlike STAR-CCM+, CTF has no turbulence model, only a two-phase turbulent mixing coefficient, β. β can be set to a constant value or calculated in terms of Reynolds number using an empirical correlation. Resultsmore » from STAR-CCM+ can be used to inform the appropriate value of β. Once β is calibrated, CTF runs can be an inexpensive alternative to costly STAR-CCM+ runs for scoping analyses. Based on the results of CTF runs, STAR-CCM+ can be run for specific parameters of interest. CASL areas of application are CIPS for single phase analysis and DNB-CTF for two-phase analysis.« less
Deploying electromagnetic particle-in-cell (EM-PIC) codes on Xeon Phi accelerators boards
NASA Astrophysics Data System (ADS)
Fonseca, Ricardo
2014-10-01
The complexity of the phenomena involved in several relevant plasma physics scenarios, where highly nonlinear and kinetic processes dominate, makes purely theoretical descriptions impossible. Further understanding of these scenarios requires detailed numerical modeling, but fully relativistic particle-in-cell codes such as OSIRIS are computationally intensive. The quest towards Exaflop computer systems has lead to the development of HPC systems based on add-on accelerator cards, such as GPGPUs and more recently the Xeon Phi accelerators that power the current number 1 system in the world. These cards, also referred to as Intel Many Integrated Core Architecture (MIC) offer peak theoretical performances of >1 TFlop/s for general purpose calculations in a single board, and are receiving significant attention as an attractive alternative to CPUs for plasma modeling. In this work we report on our efforts towards the deployment of an EM-PIC code on a Xeon Phi architecture system. We will focus on the parallelization and vectorization strategies followed, and present a detailed performance evaluation of code performance in comparison with the CPU code.
A Multiphysics and Multiscale Software Environment for Modeling Astrophysical Systems
NASA Astrophysics Data System (ADS)
Portegies Zwart, Simon; McMillan, Steve; O'Nualláin, Breanndán; Heggie, Douglas; Lombardi, James; Hut, Piet; Banerjee, Sambaran; Belkus, Houria; Fragos, Tassos; Fregeau, John; Fuji, Michiko; Gaburov, Evghenii; Glebbeek, Evert; Groen, Derek; Harfst, Stefan; Izzard, Rob; Jurić, Mario; Justham, Stephen; Teuben, Peter; van Bever, Joris; Yaron, Ofer; Zemp, Marcel
We present MUSE, a software framework for tying together existing computational tools for different astrophysical domains into a single multiphysics, multiscale workload. MUSE facilitates the coupling of existing codes written in different languages by providing inter-language tools and by specifying an interface between each module and the framework that represents a balance between generality and computational efficiency. This approach allows scientists to use combinations of codes to solve highly-coupled problems without the need to write new codes for other domains or significantly alter their existing codes. MUSE currently incorporates the domains of stellar dynamics, stellar evolution and stellar hydrodynamics for a generalized stellar systems workload. MUSE has now reached a "Noah's Ark" milestone, with two available numerical solvers for each domain. MUSE can treat small stellar associations, galaxies and everything in between, including planetary systems, dense stellar clusters and galactic nuclei. Here we demonstrate an examples calculated with MUSE: the merger of two galaxies. In addition we demonstrate the working of MUSE on a distributed computer. The current MUSE code base is publicly available as open source at http://muse.li.
Shielding from space radiations
NASA Technical Reports Server (NTRS)
Chang, C. Ken; Badavi, Forooz F.; Tripathi, Ram K.
1993-01-01
This Progress Report covering the period of December 1, 1992 to June 1, 1993 presents the development of an analytical solution to the heavy ion transport equation in terms of Green's function formalism. The mathematical development results are recasted into a highly efficient computer code for space applications. The efficiency of this algorithm is accomplished by a nonperturbative technique of extending the Green's function over the solution domain. The code may also be applied to accelerator boundary conditions to allow code validation in laboratory experiments. Results from the isotopic version of the code with 59 isotopes present for a single layer target material, for the case of an iron beam projectile at 600 MeV/nucleon in water is presented. A listing of the single layer isotopic version of the code is included.
Concurrent error detecting codes for arithmetic processors
NASA Technical Reports Server (NTRS)
Lim, R. S.
1979-01-01
A method of concurrent error detection for arithmetic processors is described. Low-cost residue codes with check-length l and checkbase m = 2 to the l power - 1 are described for checking arithmetic operations of addition, subtraction, multiplication, division complement, shift, and rotate. Of the three number representations, the signed-magnitude representation is preferred for residue checking. Two methods of residue generation are described: the standard method of using modulo m adders and the method of using a self-testing residue tree. A simple single-bit parity-check code is described for checking the logical operations of XOR, OR, and AND, and also the arithmetic operations of complement, shift, and rotate. For checking complement, shift, and rotate, the single-bit parity-check code is simpler to implement than the residue codes.
Liu, Ruxiu; Wang, Ningquan; Kamili, Farhan; Sarioglu, A Fatih
2016-04-21
Numerous biophysical and biochemical assays rely on spatial manipulation of particles/cells as they are processed on lab-on-a-chip devices. Analysis of spatially distributed particles on these devices typically requires microscopy negating the cost and size advantages of microfluidic assays. In this paper, we introduce a scalable electronic sensor technology, called microfluidic CODES, that utilizes resistive pulse sensing to orthogonally detect particles in multiple microfluidic channels from a single electrical output. Combining the techniques from telecommunications and microfluidics, we route three coplanar electrodes on a glass substrate to create multiple Coulter counters producing distinct orthogonal digital codes when they detect particles. We specifically design a digital code set using the mathematical principles of Code Division Multiple Access (CDMA) telecommunication networks and can decode signals from different microfluidic channels with >90% accuracy through computation even if these signals overlap. As a proof of principle, we use this technology to detect human ovarian cancer cells in four different microfluidic channels fabricated using soft lithography. Microfluidic CODES offers a simple, all-electronic interface that is well suited to create integrated, low-cost lab-on-a-chip devices for cell- or particle-based assays in resource-limited settings.
Nakata, Akinori; Irie, Masahiro; Takahashi, Masaya
2013-01-01
Although a single-item job satisfaction measure has been shown to be reliable and inclusive as multiple-item scales in relation to health, studies including immunological data are few. The purpose of this study was to evaluate the validity of single-item job and family life satisfaction based on its association with immune indices. A total of 189 white-collar employees (70% men) underwent a blood draw for the measurement of natural killer (NK), total T, and B cell counts as well as plasma immunoglobulin (Ig) G concentrations and completed single-item job and family life satisfaction measures, respectively. The response options for satisfaction measures were 'dissatisfied' (coded 1) to 'satisfied' (coded 4). Spearman's partial correlations controlling for cofactors revealed that increased job satisfaction was positively associated with NK cells (rsp=0.201, p=0.007) and IgG (rsp=0.178, p=0.018), while family life satisfaction was unrelated to immune indices. Those who reported a combination of low job/low family life satisfaction had significantly lower NK and higher B cell counts than those with a high job/high family life satisfaction. Our study suggests that the single-item summary measure of job satisfaction, but not family life satisfaction, may be a valid tool to evaluate immune status in healthy white-collar employees.
Nakata, Akinori; Irie, Masahiro; Takahashi, Masaya
2015-01-01
Although a single-item job satisfaction measure has been shown to be reliable and inclusive as multiple-item scales in relation to health, studies including immunological data are few. The purpose of this study was to evaluate the validity of single-item job and family life satisfaction based on its association with immune indices. A total of 189 white-collar employees (70% men) underwent a blood draw for the measurement of natural killer (NK), total T, and B cell counts as well as plasma immunoglobulin (Ig) G concentrations and completed single-item job and family life satisfaction measures, respectively. The response options for satisfaction measures were ‘dissatisfied’ (coded 1) to ‘satisfied’ (coded 4). Spearman’s partial correlations controlling for cofactors revealed that increased job satisfaction was positively associated with NK cells (rsp=0.201, p=0.007) and IgG (rsp=0.178, p=0.018), while family life satisfaction was unrelated to immune indices. Those who reported a combination of low job/low family life satisfaction had significantly lower NK and higher B cell counts than those with a high job/high family life satisfaction. Our study suggests that the single-item summary measure of job satisfaction, but not family life satisfaction, may be a valid tool to evaluate immune status in healthy white-collar employees. PMID:23196390
Joseph, S; Schmidt, L M; Danquah, W B; Timper, P; Mekete, T
2017-02-01
To generate single spore lines of a population of bacterial parasite of root-knot nematode (RKN), Pasteuria penetrans, isolated from Florida and examine genotypic variation and virulence characteristics exist within the population. Six single spore lines (SSP), 16SSP, 17SSP, 18SSP, 25SSP, 26SSP and 30SSP were generated. Genetic variability was evaluated by comparing single-nucleotide polymorphisms (SNPs) in six protein-coding genes and the 16S rRNA gene. An average of one SNP was observed for every 69 bp in the 16S rRNA, whereas no SNPs were observed in the protein-coding sequences. Hierarchical cluster analysis of 16S rRNA sequences placed the clones into three distinct clades. Bio-efficacy analysis revealed significant heterogeneity in the level virulence and host specificity between the individual clones. The SNP markers developed to the 5' hypervariable region of the 16S rRNA gene may be useful in biotype differentiation within a population of P. penetrans. This study demonstrates an efficient method for generating single spore lines of P. penetrans and gives a deep insight into genetic heterogeneity and varying level of virulence exists within a population parasitizing a specific Meloidogyne sp. host. The results also suggest that the application of generalist spore lines in nematode management may achieve broad RKN control. © 2016 The Society for Applied Microbiology.
Learning to BREATHE: A Pilot Study of a Mindfulness-Based Intervention to Support Marginalized Youth
Eva, Amy L.; Thayer, Natalie M.
2017-01-01
Mindfulness-based curricular interventions can support adolescents who are at risk of school failure as they negotiate the transition from high school into young adulthood. Researchers hypothesized that a 6-week mindfulness-based intervention would lower participants’ perceived stress while increasing their reported levels of self-esteem. Participants (N = 23) ranged in age from 17 to 20 years while the majority were male students of color. Pre- and postintervention survey mean responses revealed statistically significant differences on the Single-Item Self-Esteem Scale and 3 items on the Perceived Stress Scale (with small to moderate effect sizes). Postintervention focus group (n = 8) data indicated that the most valued daily practice was the body scan technique. Open coding of the focus group data also revealed several key themes in the form of overarching codes as participants discussed intervention benefits. These included (a) self-regulation, (b) attention-awareness, and (c) positive thinking. PMID:29228794
Kwag, Jeehyun; Jang, Hyun Jae; Kim, Mincheol; Lee, Sujeong
2014-01-01
Rate and phase codes are believed to be important in neural information processing. Hippocampal place cells provide a good example where both coding schemes coexist during spatial information processing. Spike rate increases in the place field, whereas spike phase precesses relative to the ongoing theta oscillation. However, what intrinsic mechanism allows for a single neuron to generate spike output patterns that contain both neural codes is unknown. Using dynamic clamp, we simulate an in vivo-like subthreshold dynamics of place cells to in vitro CA1 pyramidal neurons to establish an in vitro model of spike phase precession. Using this in vitro model, we show that membrane potential oscillation (MPO) dynamics is important in the emergence of spike phase codes: blocking the slowly activating, non-inactivating K+ current (IM), which is known to control subthreshold MPO, disrupts MPO and abolishes spike phase precession. We verify the importance of adaptive IM in the generation of phase codes using both an adaptive integrate-and-fire and a Hodgkin–Huxley (HH) neuron model. Especially, using the HH model, we further show that it is the perisomatically located IM with slow activation kinetics that is crucial for the generation of phase codes. These results suggest an important functional role of IM in single neuron computation, where IM serves as an intrinsic mechanism allowing for dual rate and phase coding in single neurons. PMID:25100320
NASA Technical Reports Server (NTRS)
Westra, Douglas G.; Lin, Jeff; West, Jeff; Tucker, Kevin
2006-01-01
This document is a viewgraph presentation of a paper that documents a continuing effort at Marshall Space Flight Center (MSFC) to use, assess, and continually improve CFD codes to the point of material utility in the design of rocket engine combustion devices. This paper describes how the code is presently being used to simulate combustion in a single element combustion chamber with shear coaxial injectors using gaseous oxygen and gaseous hydrogen propellants. The ultimate purpose of the efforts documented is to assess and further improve the Loci-CHEM code and the implementation of it. Single element shear coaxial injectors were tested as part of the Staged Combustion Injector Technology (SCIT) program, where detailed chamber wall heat fluxes were measured. Data was taken over a range of chamber pressures for propellants injected at both ambient and elevated temperatures. Several test cases are simulated as part of the effort to demonstrate use of the Loci-CHEM CFD code and to enable us to make improvements in the code as needed. The simulations presented also include a grid independence study on hybrid grids. Several two-equation eddy viscosity low Reynolds number turbulence models are also evaluated as part of the study. All calculations are presented with a comparison to the experimental data. Weaknesses of the code relative to test data are discussed and continuing efforts to improve the code are presented.
Porting ONETEP to graphical processing unit-based coprocessors. 1. FFT box operations.
Wilkinson, Karl; Skylaris, Chris-Kriton
2013-10-30
We present the first graphical processing unit (GPU) coprocessor-enabled version of the Order-N Electronic Total Energy Package (ONETEP) code for linear-scaling first principles quantum mechanical calculations on materials. This work focuses on porting to the GPU the parts of the code that involve atom-localized fast Fourier transform (FFT) operations. These are among the most computationally intensive parts of the code and are used in core algorithms such as the calculation of the charge density, the local potential integrals, the kinetic energy integrals, and the nonorthogonal generalized Wannier function gradient. We have found that direct porting of the isolated FFT operations did not provide any benefit. Instead, it was necessary to tailor the port to each of the aforementioned algorithms to optimize data transfer to and from the GPU. A detailed discussion of the methods used and tests of the resulting performance are presented, which show that individual steps in the relevant algorithms are accelerated by a significant amount. However, the transfer of data between the GPU and host machine is a significant bottleneck in the reported version of the code. In addition, an initial investigation into a dynamic precision scheme for the ONETEP energy calculation has been performed to take advantage of the enhanced single precision capabilities of GPUs. The methods used here result in no disruption to the existing code base. Furthermore, as the developments reported here concern the core algorithms, they will benefit the full range of ONETEP functionality. Our use of a directive-based programming model ensures portability to other forms of coprocessors and will allow this work to form the basis of future developments to the code designed to support emerging high-performance computing platforms. Copyright © 2013 Wiley Periodicals, Inc.
Zhao, Zheng; Bai, Jing; Wu, Aiwei; Wang, Yuan; Zhang, Jinwen; Wang, Zishan; Li, Yongsheng; Xu, Juan; Li, Xia
2015-01-01
Long non-coding RNAs (lncRNAs) are emerging as key regulators of diverse biological processes and diseases. However, the combinatorial effects of these molecules in a specific biological function are poorly understood. Identifying co-expressed protein-coding genes of lncRNAs would provide ample insight into lncRNA functions. To facilitate such an effort, we have developed Co-LncRNA, which is a web-based computational tool that allows users to identify GO annotations and KEGG pathways that may be affected by co-expressed protein-coding genes of a single or multiple lncRNAs. LncRNA co-expressed protein-coding genes were first identified in publicly available human RNA-Seq datasets, including 241 datasets across 6560 total individuals representing 28 tissue types/cell lines. Then, the lncRNA combinatorial effects in a given GO annotations or KEGG pathways are taken into account by the simultaneous analysis of multiple lncRNAs in user-selected individual or multiple datasets, which is realized by enrichment analysis. In addition, this software provides a graphical overview of pathways that are modulated by lncRNAs, as well as a specific tool to display the relevant networks between lncRNAs and their co-expressed protein-coding genes. Co-LncRNA also supports users in uploading their own lncRNA and protein-coding gene expression profiles to investigate the lncRNA combinatorial effects. It will be continuously updated with more human RNA-Seq datasets on an annual basis. Taken together, Co-LncRNA provides a web-based application for investigating lncRNA combinatorial effects, which could shed light on their biological roles and could be a valuable resource for this community. Database URL: http://www.bio-bigdata.com/Co-LncRNA/ PMID:26363020
Jheng, Cheng-Fong; Chen, Tien-Chih; Lin, Jhong-Yi; Chen, Ting-Chieh; Wu, Wen-Luan; Chang, Ching-Chun
2012-07-01
The chloroplast genome of Phalaenopsis equestris was determined and compared to those of Phalaenopsis aphrodite and Oncidium Gower Ramsey in Orchidaceae. The chloroplast genome of P. equestris is 148,959 bp, and a pair of inverted repeats (25,846 bp) separates the genome into large single-copy (85,967 bp) and small single-copy (11,300 bp) regions. The genome encodes 109 genes, including 4 rRNA, 30 tRNA and 75 protein-coding genes, but loses four ndh genes (ndhA, E, F and H) and seven other ndh genes are pseudogenes. The rate of inter-species variation between the two moth orchids was 0.74% (1107 sites) for single nucleotide substitution and 0.24% for insertions (161 sites; 1388 bp) and deletions (189 sites; 1393 bp). The IR regions have a lower rate of nucleotide substitution (3.5-5.8-fold) and indels (4.3-7.1-fold) than single-copy regions. The intergenic spacers are the most divergent, and based on the length variation of the three intergenic spacers, 11 native Phalaenopsis orchids could be successfully distinguished. The coding genes, IR junction and RNA editing sites are relatively more conserved between the two moth orchids than between those of Phalaenopsis and Oncidium spp. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
GRay: A Massively Parallel GPU-based Code for Ray Tracing in Relativistic Spacetimes
NASA Astrophysics Data System (ADS)
Chan, Chi-kwan; Psaltis, Dimitrios; Özel, Feryal
2013-11-01
We introduce GRay, a massively parallel integrator designed to trace the trajectories of billions of photons in a curved spacetime. This graphics-processing-unit (GPU)-based integrator employs the stream processing paradigm, is implemented in CUDA C/C++, and runs on nVidia graphics cards. The peak performance of GRay using single-precision floating-point arithmetic on a single GPU exceeds 300 GFLOP (or 1 ns per photon per time step). For a realistic problem, where the peak performance cannot be reached, GRay is two orders of magnitude faster than existing central-processing-unit-based ray-tracing codes. This performance enhancement allows more effective searches of large parameter spaces when comparing theoretical predictions of images, spectra, and light curves from the vicinities of compact objects to observations. GRay can also perform on-the-fly ray tracing within general relativistic magnetohydrodynamic algorithms that simulate accretion flows around compact objects. Making use of this algorithm, we calculate the properties of the shadows of Kerr black holes and the photon rings that surround them. We also provide accurate fitting formulae of their dependencies on black hole spin and observer inclination, which can be used to interpret upcoming observations of the black holes at the center of the Milky Way, as well as M87, with the Event Horizon Telescope.
Towards a high performance geometry library for particle-detector simulations
Apostolakis, J.; Bandieramonte, M.; Bitzes, G.; ...
2015-05-22
Thread-parallelization and single-instruction multiple data (SIMD) ”vectorisation” of software components in HEP computing has become a necessity to fully benefit from current and future computing hardware. In this context, the Geant-Vector/GPU simulation project aims to re-engineer current software for the simulation of the passage of particles through detectors in order to increase the overall event throughput. As one of the core modules in this area, the geometry library plays a central role and vectorising its algorithms will be one of the cornerstones towards achieving good CPU performance. Here, we report on the progress made in vectorising the shape primitives, asmore » well as in applying new C++ template based optimizations of existing code available in the Geant4, ROOT or USolids geometry libraries. We will focus on a presentation of our software development approach that aims to provide optimized code for all use cases of the library (e.g., single particle and many-particle APIs) and to support different architectures (CPU and GPU) while keeping the code base small, manageable and maintainable. We report on a generic and templated C++ geometry library as a continuation of the AIDA USolids project. As a result, the experience gained with these developments will be beneficial to other parts of the simulation software, such as for the optimization of the physics library, and possibly to other parts of the experiment software stack, such as reconstruction and analysis.« less
Towards a high performance geometry library for particle-detector simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apostolakis, J.; Bandieramonte, M.; Bitzes, G.
Thread-parallelization and single-instruction multiple data (SIMD) ”vectorisation” of software components in HEP computing has become a necessity to fully benefit from current and future computing hardware. In this context, the Geant-Vector/GPU simulation project aims to re-engineer current software for the simulation of the passage of particles through detectors in order to increase the overall event throughput. As one of the core modules in this area, the geometry library plays a central role and vectorising its algorithms will be one of the cornerstones towards achieving good CPU performance. Here, we report on the progress made in vectorising the shape primitives, asmore » well as in applying new C++ template based optimizations of existing code available in the Geant4, ROOT or USolids geometry libraries. We will focus on a presentation of our software development approach that aims to provide optimized code for all use cases of the library (e.g., single particle and many-particle APIs) and to support different architectures (CPU and GPU) while keeping the code base small, manageable and maintainable. We report on a generic and templated C++ geometry library as a continuation of the AIDA USolids project. As a result, the experience gained with these developments will be beneficial to other parts of the simulation software, such as for the optimization of the physics library, and possibly to other parts of the experiment software stack, such as reconstruction and analysis.« less
NASA Astrophysics Data System (ADS)
Medland, A. J.; Zhu, Guowang; Gao, Jian; Sun, Jian
1996-03-01
Feature conversion, also called feature transformation and feature mapping, is defined as the process of converting features from one view of an object to another view of the object. In a relatively simple implementation, for each application the design features are automatically converted into features specific for that application. All modifications have to be made via the design features. This is the approach that has attracted most attention until now. In the ideal situation, however, conversions directly from application views to the design view, and to other applications views, are also possible. In this paper, some difficulties faced in feature conversion are discussed. A new representation scheme of feature-based parts models has been proposed for the purpose of one-way feature conversion. The parts models consist of five different levels of abstraction, extending from an assembly level and its attributes, single parts and their attributes, single features and their attributes, one containing the geometric reference element and finally one for detailed geometry. One implementation of feature conversion for rotational components within GT (Group Technology) has already been undertaken using an automated coding procedure operating on a design-feature database. This database has been generated by a feature-based design system, and the GT coding scheme used in this paper is a specific scheme created for a textile machine manufacturing plant. Such feature conversion techniques presented here are only in their early stages of development and further research is underway.
Mensi, Skander; Hagens, Olivier; Gerstner, Wulfram; Pozzorini, Christian
2016-01-01
The way in which single neurons transform input into output spike trains has fundamental consequences for network coding. Theories and modeling studies based on standard Integrate-and-Fire models implicitly assume that, in response to increasingly strong inputs, neurons modify their coding strategy by progressively reducing their selective sensitivity to rapid input fluctuations. Combining mathematical modeling with in vitro experiments, we demonstrate that, in L5 pyramidal neurons, the firing threshold dynamics adaptively adjust the effective timescale of somatic integration in order to preserve sensitivity to rapid signals over a broad range of input statistics. For that, a new Generalized Integrate-and-Fire model featuring nonlinear firing threshold dynamics and conductance-based adaptation is introduced that outperforms state-of-the-art neuron models in predicting the spiking activity of neurons responding to a variety of in vivo-like fluctuating currents. Our model allows for efficient parameter extraction and can be analytically mapped to a Generalized Linear Model in which both the input filter—describing somatic integration—and the spike-history filter—accounting for spike-frequency adaptation—dynamically adapt to the input statistics, as experimentally observed. Overall, our results provide new insights on the computational role of different biophysical processes known to underlie adaptive coding in single neurons and support previous theoretical findings indicating that the nonlinear dynamics of the firing threshold due to Na+-channel inactivation regulate the sensitivity to rapid input fluctuations. PMID:26907675
Error control for reliable digital data transmission and storage systems
NASA Technical Reports Server (NTRS)
Costello, D. J., Jr.; Deng, R. H.
1985-01-01
A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. In LSI and VLSI technology, memories are often organized on a multiple bit (or byte) per chip basis. For example, some 256K-bit DRAM's are organized in 32Kx8 bit-bytes. Byte oriented codes such as Reed Solomon (RS) codes can provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. In this paper we present some special decoding techniques for extended single-and-double-error-correcting RS codes which are capable of high speed operation. These techniques are designed to find the error locations and the error values directly from the syndrome without having to use the iterative alorithm to find the error locator polynomial. Two codes are considered: (1) a d sub min = 4 single-byte-error-correcting (SBEC), double-byte-error-detecting (DBED) RS code; and (2) a d sub min = 6 double-byte-error-correcting (DBEC), triple-byte-error-detecting (TBED) RS code.
Composite blade structural analyzer (COBSTRAN) user's manual
NASA Technical Reports Server (NTRS)
Aiello, Robert A.
1989-01-01
The installation and use of a computer code, COBSTRAN (COmposite Blade STRuctrual ANalyzer), developed for the design and analysis of composite turbofan and turboprop blades and also for composite wind turbine blades was described. This code combines composite mechanics and laminate theory with an internal data base of fiber and matrix properties. Inputs to the code are constituent fiber and matrix material properties, factors reflecting the fabrication process, composite geometry and blade geometry. COBSTRAN performs the micromechanics, macromechanics and laminate analyses of these fiber composites. COBSTRAN generates a NASTRAN model with equivalent anisotropic homogeneous material properties. Stress output from NASTRAN is used to calculate individual ply stresses, strains, interply stresses, thru-the-thickness stresses and failure margins. Curved panel structures may be modeled providing the curvature of a cross-section is defined by a single value function. COBSTRAN is written in FORTRAN 77.
NASA Astrophysics Data System (ADS)
Shoemaker, Deirdre; Smith, Kenneth; Schnetter, Erik; Fiske, David; Laguna, Pablo; Pullin, Jorge
2002-04-01
Recently, stationary black holes have been successfully simulated for up to times of approximately 600-1000M, where M is the mass of the black hole. Considering that the expected burst of gravitational radiation from a binary black hole merger would last approximately 200-500M, black hole codes are approaching the point where simulations of mergers may be feasible. We will present two types of simulations of single black holes obtained with a code based on the Baumgarte-Shapiro-Shibata-Nakamura formulation of the Einstein evolution equations. One type of simulations addresses the stability properties of stationary black hole evolutions. The second type of simulations demonstrates the ability of our code to move a black hole through the computational domain. This is accomplished by shifting the stationary black hole solution to a coordinate system in which the location of the black hole is time dependent.
ANNA: A Convolutional Neural Network Code for Spectroscopic Analysis
NASA Astrophysics Data System (ADS)
Lee-Brown, Donald; Anthony-Twarog, Barbara J.; Twarog, Bruce A.
2018-01-01
We present ANNA, a Python-based convolutional neural network code for the automated analysis of stellar spectra. ANNA provides a flexible framework that allows atmospheric parameters such as temperature and metallicity to be determined with accuracies comparable to those of established but less efficient techniques. ANNA performs its parameterization extremely quickly; typically several thousand spectra can be analyzed in less than a second. Additionally, the code incorporates features which greatly speed up the training process necessary for the neural network to measure spectra accurately, resulting in a tool that can easily be run on a single desktop or laptop computer. Thus, ANNA is useful in an era when spectrographs increasingly have the capability to collect dozens to hundreds of spectra each night. This talk will cover the basic features included in ANNA and demonstrate its performance in two use cases: an open cluster abundance analysis involving several hundred spectra, and a metal-rich field star study. Applicability of the code to large survey datasets will also be discussed.
Electron Thermalization in the Solar Wind and Planetary Plasma Boundaries
NASA Technical Reports Server (NTRS)
Krauss-Varban, Dietmar
1998-01-01
The work carried out under this contract attempts a better understanding of whistler wave generation and associated scattering of electrons in the solar wind. This task is accomplished through simulations using a particle-in-cell code and a Vlasov code. In addition, the work is supported by the utilization of a linear kinetic dispersion solver. Previously, we have concentrated on gaining a better understanding of the linear mode properties, and have tested the simulation codes within a known parameter regime. We are now in a new phase in which we implement, execute, and analyze production simulations. This phase is projected to last over several reporting periods, with this being the second cycle. In addition, we have started to research to what extent the evolution of the pertinent instabilities is two-dimensional. We are also continuing our work on the visualization aspects of the simulation results, and on a code version that runs on single-user Alpha-processor based workstations.
Multi-phase SPH modelling of violent hydrodynamics on GPUs
NASA Astrophysics Data System (ADS)
Mokos, Athanasios; Rogers, Benedict D.; Stansby, Peter K.; Domínguez, José M.
2015-11-01
This paper presents the acceleration of multi-phase smoothed particle hydrodynamics (SPH) using a graphics processing unit (GPU) enabling large numbers of particles (10-20 million) to be simulated on just a single GPU card. With novel hardware architectures such as a GPU, the optimum approach to implement a multi-phase scheme presents some new challenges. Many more particles must be included in the calculation and there are very different speeds of sound in each phase with the largest speed of sound determining the time step. This requires efficient computation. To take full advantage of the hardware acceleration provided by a single GPU for a multi-phase simulation, four different algorithms are investigated: conditional statements, binary operators, separate particle lists and an intermediate global function. Runtime results show that the optimum approach needs to employ separate cell and neighbour lists for each phase. The profiler shows that this approach leads to a reduction in both memory transactions and arithmetic operations giving significant runtime gains. The four different algorithms are compared to the efficiency of the optimised single-phase GPU code, DualSPHysics, for 2-D and 3-D simulations which indicate that the multi-phase functionality has a significant computational overhead. A comparison with an optimised CPU code shows a speed up of an order of magnitude over an OpenMP simulation with 8 threads and two orders of magnitude over a single thread simulation. A demonstration of the multi-phase SPH GPU code is provided by a 3-D dam break case impacting an obstacle. This shows better agreement with experimental results than an equivalent single-phase code. The multi-phase GPU code enables a convergence study to be undertaken on a single GPU with a large number of particles that otherwise would have required large high performance computing resources.
Information quality measurement of medical encoding support based on usability.
Puentes, John; Montagner, Julien; Lecornu, Laurent; Cauvin, Jean-Michel
2013-12-01
Medical encoding support systems for diagnoses and medical procedures are an emerging technology that begins to play a key role in billing, reimbursement, and health policies decisions. A significant problem to exploit these systems is how to measure the appropriateness of any automatically generated list of codes, in terms of fitness for use, i.e. their quality. Until now, only information retrieval performance measurements have been applied to estimate the accuracy of codes lists as quality indicator. Such measurements do not give the value of codes lists for practical medical encoding, and cannot be used to globally compare the quality of multiple codes lists. This paper defines and validates a new encoding information quality measure that addresses the problem of measuring medical codes lists quality. It is based on a usability study of how expert coders and physicians apply computer-assisted medical encoding. The proposed measure, named ADN, evaluates codes Accuracy, Dispersion and Noise, and is adapted to the variable length and content of generated codes lists, coping with limitations of previous measures. According to the ADN measure, the information quality of a codes list is fully represented by a single point, within a suitably constrained feature space. Using one scheme, our approach is reliable to measure and compare the information quality of hundreds of codes lists, showing their practical value for medical encoding. Its pertinence is demonstrated by simulation and application to real data corresponding to 502 inpatient stays in four clinic departments. Results are compared to the consensus of three expert coders who also coded this anonymized database of discharge summaries, and to five information retrieval measures. Information quality assessment applying the ADN measure showed the degree of encoding-support system variability from one clinic department to another, providing a global evaluation of quality measurement trends. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
GAMERA - The New Magnetospheric Code
NASA Astrophysics Data System (ADS)
Lyon, J.; Sorathia, K.; Zhang, B.; Merkin, V. G.; Wiltberger, M. J.; Daldorff, L. K. S.
2017-12-01
The Lyon-Fedder-Mobarry (LFM) code has been a main-line magnetospheric simulation code for 30 years. The code base, designed in the age of memory to memory vector ma- chines,is still in wide use for science production but needs upgrading to ensure the long term sustainability. In this presentation, we will discuss our recent efforts to update and improve that code base and also highlight some recent results. The new project GAM- ERA, Grid Agnostic MHD for Extended Research Applications, has kept the original design characteristics of the LFM and made significant improvements. The original de- sign included high order numerical differencing with very aggressive limiting, the ability to use arbitrary, but logically rectangular, grids, and maintenance of div B = 0 through the use of the Yee grid. Significant improvements include high-order upwinding and a non-clipping limiter. One other improvement with wider applicability is an im- proved averaging technique for the singularities in polar and spherical grids. The new code adopts a hybrid structure - multi-threaded OpenMP with an overarching MPI layer for large scale and coupled applications. The MPI layer uses a combination of standard MPI and the Global Array Toolkit from PNL to provide a lightweight mechanism for coupling codes together concurrently. The single processor code is highly efficient and can run magnetospheric simulations at the default CCMC resolution faster than real time on a MacBook pro. We have run the new code through the Athena suite of tests, and the results compare favorably with the codes available to the astrophysics community. LFM/GAMERA has been applied to many different situations ranging from the inner and outer heliosphere and magnetospheres of Venus, the Earth, Jupiter and Saturn. We present example results the Earth's magnetosphere including a coupled ring current (RCM), the magnetospheres of Jupiter and Saturn, and the inner heliosphere.
NASA Technical Reports Server (NTRS)
Beers, B. L.; Pine, V. W.; Hwang, H. C.; Bloomberg, H. W.; Lin, D. L.; Schmidt, M. J.; Strickland, D. J.
1979-01-01
The model consists of four phases: single electron dynamics, single electron avalanche, negative streamer development, and tree formation. Numerical algorithms and computer code implementations are presented for the first three phases. An approach to developing a code description of fourth phase is discussed. Numerical results are presented for a crude material model of Teflon.
USDA-ARS?s Scientific Manuscript database
Single-nucleotide Polymorphism (SNP) markers are by far the most common form of DNA polymorphism in a genome. The objectives of this study were to discover SNPs in common bean comparing sequences from coding and non-coding regions obtained from Genbank and genomic DNA and to compare sequencing resu...
NASA Technical Reports Server (NTRS)
Kalluri, Sreeramesh; Abdul-Aziz, Ali; Mcgaw, Michael A.
1991-01-01
The influence of secondary orientation on the elastic response of a zone axis (001)-oriented nickel-base single-crystal superalloy, PWA 1480, was investigated under mechanical loading conditions by applying finite element techniques. Elastic stress analyses were performed with a commercially available finite element code. Secondary orientation of the single-crystal superalloy was offset with respect to the global coordinate system in increments from 0 to 90 deg and stresses developed within the single crystal were determined for each loading condition. The results indicated that the stresses were strongly influenced by the angular offset between the secondary crystal orientation and the global coordinate system. The degree of influence was found to vary with the type of loading condition (mechanical, thermal, or combined) imposed on the single-crystal superalloy.
NASA Astrophysics Data System (ADS)
Peng, Dong-ju; Wu, Bin
2012-10-01
With the precise GPS ephemeris and clock error available, the iono- spheric delay is left as the dominant error source in the single-frequency GPS data. Thus, the removal of ionospheric effects is a ma jor prerequisite for an improved orbit reconstruction of LEO satellites based on the single-frequency GPS data. In this paper, the use of Global Ionospheric Maps (GIM) in kine- matic and dynamic orbit determinations for LEO satellites with single-frequency GPS pseudorange measurements is discussed first, and then, estimating the iono- spheric scale factor to remove the ionospheric effects from the C/A-code pseu- dorange measurements for both kinematic and dynamic orbit determinations is addressed. As it is known that the ionospheric delay of space-borne GPS sig- nals is strongly dependent on the orbit altitudes of LEO satellites, we select the real C/A-code pseudorange measurement data of the CHAMP, GRACE, TerraSAR-X and SAC-C satellites with altitudes between 300 km and 800 km as sample data in this paper. It is demonstrated that the approach to eliminating ionospheric effects in C/A-code pseudorange measurements by estimating the ionospheric scale factor is highly effective. Employing this approach, the accu- racy of both kinematic and dynamic orbits can be improved notably. Among those five LEO satellites, CHAMP with the lowest orbit altitude has the most remarkable improvements in orbit accuracy, which are 55.6% and 47.6% for kine- matic and dynamic orbits, respectively. SAC-C with the highest orbit altitude has the least improvements in orbit accuracy accordingly, which are 47.8% and 38.2%, respectively.
Error-Transparent Quantum Gates for Small Logical Qubit Architectures
NASA Astrophysics Data System (ADS)
Kapit, Eliot
2018-02-01
One of the largest obstacles to building a quantum computer is gate error, where the physical evolution of the state of a qubit or group of qubits during a gate operation does not match the intended unitary transformation. Gate error stems from a combination of control errors and random single qubit errors from interaction with the environment. While great strides have been made in mitigating control errors, intrinsic qubit error remains a serious problem that limits gate fidelity in modern qubit architectures. Simultaneously, recent developments of small error-corrected logical qubit devices promise significant increases in logical state lifetime, but translating those improvements into increases in gate fidelity is a complex challenge. In this Letter, we construct protocols for gates on and between small logical qubit devices which inherit the parent device's tolerance to single qubit errors which occur at any time before or during the gate. We consider two such devices, a passive implementation of the three-qubit bit flip code, and the author's own [E. Kapit, Phys. Rev. Lett. 116, 150501 (2016), 10.1103/PhysRevLett.116.150501] very small logical qubit (VSLQ) design, and propose error-tolerant gate sets for both. The effective logical gate error rate in these models displays superlinear error reduction with linear increases in single qubit lifetime, proving that passive error correction is capable of increasing gate fidelity. Using a standard phenomenological noise model for superconducting qubits, we demonstrate a realistic, universal one- and two-qubit gate set for the VSLQ, with error rates an order of magnitude lower than those for same-duration operations on single qubits or pairs of qubits. These developments further suggest that incorporating small logical qubits into a measurement based code could substantially improve code performance.
Michel, Christian J
2017-04-18
In 1996, a set X of 20 trinucleotides was identified in genes of both prokaryotes and eukaryotes which has on average the highest occurrence in reading frame compared to its two shifted frames. Furthermore, this set X has an interesting mathematical property as X is a maximal C 3 self-complementary trinucleotide circular code. In 2015, by quantifying the inspection approach used in 1996, the circular code X was confirmed in the genes of bacteria and eukaryotes and was also identified in the genes of plasmids and viruses. The method was based on the preferential occurrence of trinucleotides among the three frames at the gene population level. We extend here this definition at the gene level. This new statistical approach considers all the genes, i.e., of large and small lengths, with the same weight for searching the circular code X . As a consequence, the concept of circular code, in particular the reading frame retrieval, is directly associated to each gene. At the gene level, the circular code X is strengthened in the genes of bacteria, eukaryotes, plasmids, and viruses, and is now also identified in the genes of archaea. The genes of mitochondria and chloroplasts contain a subset of the circular code X . Finally, by studying viral genes, the circular code X was found in DNA genomes, RNA genomes, double-stranded genomes, and single-stranded genomes.
Optimizing fusion PIC code performance at scale on Cori Phase 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koskela, T. S.; Deslippe, J.
In this paper we present the results of optimizing the performance of the gyrokinetic full-f fusion PIC code XGC1 on the Cori Phase Two Knights Landing system. The code has undergone substantial development to enable the use of vector instructions in its most expensive kernels within the NERSC Exascale Science Applications Program. We study the single-node performance of the code on an absolute scale using the roofline methodology to guide optimization efforts. We have obtained 2x speedups in single node performance due to enabling vectorization and performing memory layout optimizations. On multiple nodes, the code is shown to scale wellmore » up to 4000 nodes, near half the size of the machine. We discuss some communication bottlenecks that were identified and resolved during the work.« less
Real-time range acquisition by adaptive structured light.
Koninckx, Thomas P; Van Gool, Luc
2006-03-01
The goal of this paper is to provide a "self-adaptive" system for real-time range acquisition. Reconstructions are based on a single frame structured light illumination. Instead of using generic, static coding that is supposed to work under all circumstances, system adaptation is proposed. This occurs on-the-fly and renders the system more robust against instant scene variability and creates suitable patterns at startup. A continuous trade-off between speed and quality is made. A weighted combination of different coding cues--based upon pattern color, geometry, and tracking--yields a robust way to solve the correspondence problem. The individual coding cues are automatically adapted within a considered family of patterns. The weights to combine them are based on the average consistency with the result within a small time-window. The integration itself is done by reformulating the problem as a graph cut. Also, the camera-projector configuration is taken into account for generating the projection patterns. The correctness of the range maps is not guaranteed, but an estimation of the uncertainty is provided for each part of the reconstruction. Our prototype is implemented using unmodified consumer hardware only and, therefore, is cheap. Frame rates vary between 10 and 25 fps, dependent on scene complexity.
LDPC decoder with a limited-precision FPGA-based floating-point multiplication coprocessor
NASA Astrophysics Data System (ADS)
Moberly, Raymond; O'Sullivan, Michael; Waheed, Khurram
2007-09-01
Implementing the sum-product algorithm, in an FPGA with an embedded processor, invites us to consider a tradeoff between computational precision and computational speed. The algorithm, known outside of the signal processing community as Pearl's belief propagation, is used for iterative soft-decision decoding of LDPC codes. We determined the feasibility of a coprocessor that will perform product computations. Our FPGA-based coprocessor (design) performs computer algebra with significantly less precision than the standard (e.g. integer, floating-point) operations of general purpose processors. Using synthesis, targeting a 3,168 LUT Xilinx FPGA, we show that key components of a decoder are feasible and that the full single-precision decoder could be constructed using a larger part. Soft-decision decoding by the iterative belief propagation algorithm is impacted both positively and negatively by a reduction in the precision of the computation. Reducing precision reduces the coding gain, but the limited-precision computation can operate faster. A proposed solution offers custom logic to perform computations with less precision, yet uses the floating-point format to interface with the software. Simulation results show the achievable coding gain. Synthesis results help theorize the the full capacity and performance of an FPGA-based coprocessor.
Multiframe video coding for improved performance over wireless channels.
Budagavi, M; Gibson, J D
2001-01-01
We propose and evaluate a multi-frame extension to block motion compensation (BMC) coding of videoconferencing-type video signals for wireless channels. The multi-frame BMC (MF-BMC) coder makes use of the redundancy that exists across multiple frames in typical videoconferencing sequences to achieve additional compression over that obtained by using the single frame BMC (SF-BMC) approach, such as in the base-level H.263 codec. The MF-BMC approach also has an inherent ability of overcoming some transmission errors and is thus more robust when compared to the SF-BMC approach. We model the error propagation process in MF-BMC coding as a multiple Markov chain and use Markov chain analysis to infer that the use of multiple frames in motion compensation increases robustness. The Markov chain analysis is also used to devise a simple scheme which randomizes the selection of the frame (amongst the multiple previous frames) used in BMC to achieve additional robustness. The MF-BMC coders proposed are a multi-frame extension of the base level H.263 coder and are found to be more robust than the base level H.263 coder when subjected to simulated errors commonly encountered on wireless channels.
Multicore Considerations for Legacy Flight Software Migration
NASA Technical Reports Server (NTRS)
Vines, Kenneth; Day, Len
2013-01-01
In this paper we will discuss potential benefits and pitfalls when considering a migration from an existing single core code base to a multicore processor implementation. The results of this study present options that should be considered before migrating fault managers, device handlers and tasks with time-constrained requirements to a multicore flight software environment. Possible future multicore test bed demonstrations are also discussed.
GRADSPMHD: A parallel MHD code based on the SPH formalism
NASA Astrophysics Data System (ADS)
Vanaverbeke, S.; Keppens, R.; Poedts, S.
2014-03-01
We present GRADSPMHD, a completely Lagrangian parallel magnetohydrodynamics code based on the SPH formalism. The implementation of the equations of SPMHD in the “GRAD-h” formalism assembles known results, including the derivation of the discretized MHD equations from a variational principle, the inclusion of time-dependent artificial viscosity, resistivity and conductivity terms, as well as the inclusion of a mixed hyperbolic/parabolic correction scheme for satisfying the ∇ṡB→ constraint on the magnetic field. The code uses a tree-based formalism for neighbor finding and can optionally use the tree code for computing the self-gravity of the plasma. The structure of the code closely follows the framework of our parallel GRADSPH FORTRAN 90 code which we added previously to the CPC program library. We demonstrate the capabilities of GRADSPMHD by running 1, 2, and 3 dimensional standard benchmark tests and we find good agreement with previous work done by other researchers. The code is also applied to the problem of simulating the magnetorotational instability in 2.5D shearing box tests as well as in global simulations of magnetized accretion disks. We find good agreement with available results on this subject in the literature. Finally, we discuss the performance of the code on a parallel supercomputer with distributed memory architecture. Catalogue identifier: AERP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERP_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 620503 No. of bytes in distributed program, including test data, etc.: 19837671 Distribution format: tar.gz Programming language: FORTRAN 90/MPI. Computer: HPC cluster. Operating system: Unix. Has the code been vectorized or parallelized?: Yes, parallelized using MPI. RAM: ˜30 MB for a Sedov test including 15625 particles on a single CPU. Classification: 12. Nature of problem: Evolution of a plasma in the ideal MHD approximation. Solution method: The equations of magnetohydrodynamics are solved using the SPH method. Running time: The test provided takes approximately 20 min using 4 processors.
Evaluation of RAPID for a UNF cask benchmark problem
NASA Astrophysics Data System (ADS)
Mascolino, Valerio; Haghighat, Alireza; Roskoff, Nathan J.
2017-09-01
This paper examines the accuracy and performance of the RAPID (Real-time Analysis for Particle transport and In-situ Detection) code system for the simulation of a used nuclear fuel (UNF) cask. RAPID is capable of determining eigenvalue, subcritical multiplication, and pin-wise, axially-dependent fission density throughout a UNF cask. We study the source convergence based on the analysis of the different parameters used in an eigenvalue calculation in the MCNP Monte Carlo code. For this study, we consider a single assembly surrounded by absorbing plates with reflective boundary conditions. Based on the best combination of eigenvalue parameters, a reference MCNP solution for the single assembly is obtained. RAPID results are in excellent agreement with the reference MCNP solutions, while requiring significantly less computation time (i.e., minutes vs. days). A similar set of eigenvalue parameters is used to obtain a reference MCNP solution for the whole UNF cask. Because of time limitation, the MCNP results near the cask boundaries have significant uncertainties. Except for these, the RAPID results are in excellent agreement with the MCNP predictions, and its computation time is significantly lower, 35 second on 1 core versus 9.5 days on 16 cores.
Ito, M; Mori, Y; Oiso, Y; Saito, H
1991-01-01
To elucidate the molecular mechanism of familial central diabetes insipidus (FDI), we sequenced the arginine vasopressin-neurophysin II (AVP-NPII) gene in 2 patients belonging to a pedigree that is consistent with an autosomal dominant mode of inheritance. 10 patients with idiopathic central diabetes insipidus (IDI) and 5 normals were also studied. The AVP-NPII gene, locating on chromosome 20, consists of three exons that encode putative signal peptide, AVP, NPII, and glycoprotein. Using polymerase chain reaction, fragments including the promoter region and all coding regions were amplified from genomic DNA and subjected to direct sequencing. Sequences of 10 patients with IDI were identical with those of normals, while in 2 patients with FDI, a single base substitution was detected in one of two alleles of the AVP-NPII gene, indicating they were heterozygotes for this mutation. It was a G----A transition at nucleotide position 1859 in the second exon, resulting in a substitution of Gly for Ser at amino acid position 57 in the NPII moiety. It was speculated that the mutated AVP-NPII precursor or the mutated NPII molecule, through their conformational changes, might be responsible for AVP deficiency. Images PMID:1840604
Basic concepts of quantum interference and electron transport in single-molecule electronics.
Lambert, C J
2015-02-21
This tutorial outlines the basic theoretical concepts and tools which underpin the fundamentals of phase-coherent electron transport through single molecules. The key quantity of interest is the transmission coefficient T(E), which yields the electrical conductance, current-voltage relations, the thermopower S and the thermoelectric figure of merit ZT of single-molecule devices. Since T(E) is strongly affected by quantum interference (QI), three manifestations of QI in single-molecules are discussed, namely Mach-Zehnder interferometry, Breit-Wigner resonances and Fano resonances. A simple MATLAB code is provided, which allows the novice reader to explore QI in multi-branched structures described by a tight-binding (Hückel) Hamiltonian. More generally, the strengths and limitations of materials-specific transport modelling based on density functional theory are discussed.
NASA Astrophysics Data System (ADS)
Datta, Jinia; Chowdhuri, Sumana; Bera, Jitendranath
2016-12-01
This paper presents a novel scheme of remote condition monitoring of multi machine system where a secured and coded data of induction machine with different parameters is communicated between a state-of-the-art dedicated hardware Units (DHU) installed at the machine terminal and a centralized PC based machine data management (MDM) software. The DHUs are built for acquisition of different parameters from the respective machines, and hence are placed at their nearby panels in order to acquire different parameters cost effectively during their running condition. The MDM software collects these data through a communication channel where all the DHUs are networked using RS485 protocol. Before transmitting, the parameter's related data is modified with the adoption of differential pulse coded modulation (DPCM) and Huffman coding technique. It is further encrypted with a private key where different keys are used for different DHUs. In this way a data security scheme is adopted during its passage through the communication channel in order to avoid any third party attack into the channel. The hybrid mode of DPCM and Huffman coding is chosen to reduce the data packet length. A MATLAB based simulation and its practical implementation using DHUs at three machine terminals (one healthy three phase, one healthy single phase and one faulty three phase machine) proves its efficacy and usefulness for condition based maintenance of multi machine system. The data at the central control room are decrypted and decoded using MDM software. In this work it is observed that Chanel efficiency with respect to different parameter measurements has been increased very much.
Pellicano, Antonello; Koch, Iring; Binkofski, Ferdinand
2017-09-01
An increasing number of studies have shown a close link between perception and action, which is supposed to be responsible for the automatic activation of actions compatible with objects' properties, such as the orientation of their graspable parts. It has been observed that left and right hand responses to objects (e.g., cups) are faster and more accurate if the handle orientation corresponds to the response location than when it does not. Two alternative explanations have been proposed for this handle-to-hand correspondence effect : location coding and affordance activation. The aim of the present study was to provide disambiguating evidence on the origin of this effect by employing object sets for which the visually salient portion was separated from, and opposite to the graspable 1, and vice versa. Seven experiments were conducted employing both single objects and object pairs as visual stimuli to enhance the contextual information about objects' graspability and usability. Notwithstanding these manipulations intended to favor affordance activation, results fully supported the location-coding account displaying significant Simon-like effects that involved the orientation of the visually salient portion of the object stimulus and the location of the response. Crucially, we provided evidence of Simon-like effects based on higher-level cognitive, iconic representations of action directions rather than based on lower-level spatial coding of the pure position of protruding portions of the visual stimuli. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Deepak Condenser Model (DeCoM)
NASA Technical Reports Server (NTRS)
Patel, Deepak
2013-01-01
Development of the DeCoM comes from the requirement of analyzing the performance of a condenser. A component of a loop heat pipe (LHP), the condenser, is interfaced with the radiator in order to reject heat. DeCoM simulates the condenser, with certain input parameters. Systems Improved Numerical Differencing Analyzer (SINDA), a thermal analysis software, calculates the adjoining component temperatures, based on the DeCoM parameters and interface temperatures to the radiator. Application of DeCoM is (at the time of this reporting) restricted to small-scale analysis, without the need for in-depth LHP component integrations. To efficiently develop a model to simulate the LHP condenser, DeCoM was developed to meet this purpose with least complexity. DeCoM is a single-condenser, single-pass simulator for analyzing its behavior. The analysis is done based on the interactions between condenser fluid, the wall, and the interface between the wall and the radiator. DeCoM is based on conservation of energy, two-phase equations, and flow equations. For two-phase, the Lockhart- Martinelli correlation has been used in order to calculate the convection value between fluid and wall. Software such as SINDA (for thermal analysis analysis) and Thermal Desktop (for modeling) are required. DeCoM also includes the ability to implement a condenser into a thermal model with the capability of understanding the code process and being edited to user-specific needs. DeCoM requires no license, and is an open-source code. Advantages to DeCoM include time dependency, reliability, and the ability for the user to view the code process and edit to their needs.
Wei, Qingguo; Liu, Yonghui; Gao, Xiaorong; Wang, Yijun; Yang, Chen; Lu, Zongwu; Gong, Huayuan
2018-06-01
In an existing brain-computer interface (BCI) based on code modulated visual evoked potentials (c-VEP), a method with which to increase the number of targets without increasing code length has not yet been established. In this paper, a novel c-VEP BCI paradigm, namely, grouping modulation with different codes that have good autocorrelation and crosscorrelation properties, is presented to increase the number of targets and information transfer rate (ITR). All stimulus targets are divided into several groups and each group of targets are modulated by a distinct pseudorandom binary code and its circularly shifting codes. Canonical correlation analysis is applied to each group for yielding a spatial filter and templates for all targets in a group are constructed based on spatially filtered signals. Template matching is applied to each group and the attended target is recognized by finding the maximal correlation coefficients of all groups. Based on the paradigm, a BCI with a total of 48 targets divided into three groups was implemented; 12 and 10 subjects participated in an off-line and a simulated online experiments, respectively. Data analysis of the offline experiment showed that the paradigm can massively increase the number of targets from 16 to 48 at the cost of slight compromise in accuracy (95.49% vs. 92.85%). Results of the simulated online experiment suggested that although the averaged accuracy across subjects of all three groups of targets was lower than that of a single group of targets (91.67% vs. 94.9%), the average ITR of the former was substantially higher than that of the later (181 bits/min vs. 135.6 bit/min) due to the large increase of the number of targets. The proposed paradigm significantly improves the performance of the c-VEP BCI, and thereby facilitates its practical applications such as high-speed spelling.
Fiorini, Francesca; Schreuder, Niek; Van den Heuvel, Frank
2018-02-01
Cyclotron-based pencil beam scanning (PBS) proton machines represent nowadays the majority and most affordable choice for proton therapy facilities, however, their representation in Monte Carlo (MC) codes is more complex than passively scattered proton system- or synchrotron-based PBS machines. This is because degraders are used to decrease the energy from the cyclotron maximum energy to the desired energy, resulting in a unique spot size, divergence, and energy spread depending on the amount of degradation. This manuscript outlines a generalized methodology to characterize a cyclotron-based PBS machine in a general-purpose MC code. The code can then be used to generate clinically relevant plans starting from commercial TPS plans. The described beam is produced at the Provision Proton Therapy Center (Knoxville, TN, USA) using a cyclotron-based IBA Proteus Plus equipment. We characterized the Provision beam in the MC FLUKA using the experimental commissioning data. The code was then validated using experimental data in water phantoms for single pencil beams and larger irregular fields. Comparisons with RayStation TPS plans are also presented. Comparisons of experimental, simulated, and planned dose depositions in water plans show that same doses are calculated by both programs inside the target areas, while penumbrae differences are found at the field edges. These differences are lower for the MC, with a γ(3%-3 mm) index never below 95%. Extensive explanations on how MC codes can be adapted to simulate cyclotron-based scanning proton machines are given with the aim of using the MC as a TPS verification tool to check and improve clinical plans. For all the tested cases, we showed that dose differences with experimental data are lower for the MC than TPS, implying that the created FLUKA beam model is better able to describe the experimental beam. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Eye coding mechanisms in early human face event-related potentials.
Rousselet, Guillaume A; Ince, Robin A A; van Rijsbergen, Nicola J; Schyns, Philippe G
2014-11-10
In humans, the N170 event-related potential (ERP) is an integrated measure of cortical activity that varies in amplitude and latency across trials. Researchers often conjecture that N170 variations reflect cortical mechanisms of stimulus coding for recognition. Here, to settle the conjecture and understand cortical information processing mechanisms, we unraveled the coding function of N170 latency and amplitude variations in possibly the simplest socially important natural visual task: face detection. On each experimental trial, 16 observers saw face and noise pictures sparsely sampled with small Gaussian apertures. Reverse-correlation methods coupled with information theory revealed that the presence of the eye specifically covaries with behavioral and neural measurements: the left eye strongly modulates reaction times and lateral electrodes represent mainly the presence of the contralateral eye during the rising part of the N170, with maximum sensitivity before the N170 peak. Furthermore, single-trial N170 latencies code more about the presence of the contralateral eye than N170 amplitudes and early latencies are associated with faster reaction times. The absence of these effects in control images that did not contain a face refutes alternative accounts based on retinal biases or allocation of attention to the eye location on the face. We conclude that the rising part of the N170, roughly 120-170 ms post-stimulus, is a critical time-window in human face processing mechanisms, reflecting predominantly, in a face detection task, the encoding of a single feature: the contralateral eye. © 2014 ARVO.
NASA Technical Reports Server (NTRS)
Rojdev, Kristina; Koontz, Steve; Reddell, Brandon; Atwell, William; Boeder, Paul
2015-01-01
An accurate prediction of spacecraft avionics single event effect (SEE) radiation susceptibility is key to ensuring a safe and reliable vehicle. This is particularly important for long-duration deep space missions for human exploration where there is little or no chance for a quick emergency return to Earth. Monte Carlo nuclear reaction and transport codes such as FLUKA can be used to generate very accurate models of the expected in-flight radiation environment for SEE analyses. A major downside to using a Monte Carlo-based code is that the run times can be very long (on the order of days). A more popular choice for SEE calculations is the CREME96 deterministic code, which offers significantly shorter run times (on the order of seconds). However, CREME96, though fast and easy to use, has not been updated in several years and underestimates secondary particle shower effects in spacecraft structural shielding mass. Another modeling option to consider is the deterministic code HZETRN 20104, which includes updates to address secondary particle shower effects more accurately. This paper builds on previous work by Rojdev, et al. to compare the use of HZETRN 2010 against CREME96 as a tool to verify spacecraft avionics system reliability in a space flight SEE environment. This paper will discuss modifications made to HZETRN 2010 to improve its performance for calculating SEE rates and compare results with both in-flight SEE rates and other calculation methods.
A novel shape-based coding-decoding technique for an industrial visual inspection system.
Mukherjee, Anirban; Chaudhuri, Subhasis; Dutta, Pranab K; Sen, Siddhartha; Patra, Amit
2004-01-01
This paper describes a unique single camera-based dimension storage method for image-based measurement. The system has been designed and implemented in one of the integrated steel plants of India. The purpose of the system is to encode the frontal cross-sectional area of an ingot. The encoded data will be stored in a database to facilitate the future manufacturing diagnostic process. The compression efficiency and reconstruction error of the lossy encoding technique have been reported and found to be quite encouraging.
Nontangent, Developed Contour Bulkheads for a Single-Stage Launch Vehicle
NASA Technical Reports Server (NTRS)
Wu, K. Chauncey; Lepsch, Roger A., Jr.
2000-01-01
Dry weights for single-stage launch vehicles that incorporate nontangent, developed contour bulkheads are estimated and compared to a baseline vehicle with 1.414 aspect ratio ellipsoidal bulkheads. Weights, volumes, and heights of optimized bulkhead designs are computed using a preliminary design bulkhead analysis code. The dry weights of vehicles that incorporate the optimized bulkheads are predicted using a vehicle weights and sizing code. Two optimization approaches are employed. A structural-level method, where the vehicle's three major bulkhead regions are optimized separately and then incorporated into a model for computation of the vehicle dry weight, predicts a reduction of4365 lb (2.2 %) from the 200,679-lb baseline vehicle dry weight. In the second, vehicle-level, approach, the vehicle dry weight is the objective function for the optimization. For the vehicle-level analysis, modified bulkhead designs are analyzed and incorporated into the weights model for computation of a dry weight. The optimizer simultaneously manipulates design variables for all three bulkheads to reduce the dry weight. The vehicle-level analysis predicts a dry weight reduction of 5129 lb, a 2.6% reduction from the baseline weight. Based on these results, nontangent, developed contour bulkheads may provide substantial weight savings for single stage vehicles.
Segmentation, dynamic storage, and variable loading on CDC equipment
NASA Technical Reports Server (NTRS)
Tiffany, S. H.
1980-01-01
Techniques for varying the segmented load structure of a program and for varying the dynamic storage allocation, depending upon whether a batch type or interactive type run is desired, are explained and demonstrated. All changes are based on a single data input to the program. The techniques involve: code within the program to suppress scratch pad input/output (I/O) for a batch run or translate the in-core data storage area from blank common to the end-of-code+1 address of a particular segment for an interactive run; automatic editing of the segload directives prior to loading, based upon data input to the program, to vary the structure of the load for interactive and batch runs; and automatic editing of the load map to determine the initial addresses for in core data storage for an interactive run.
Segmentation-driven compound document coding based on H.264/AVC-INTRA.
Zaghetto, Alexandre; de Queiroz, Ricardo L
2007-07-01
In this paper, we explore H.264/AVC operating in intraframe mode to compress a mixed image, i.e., composed of text, graphics, and pictures. Even though mixed contents (compound) documents usually require the use of multiple compressors, we apply a single compressor for both text and pictures. For that, distortion is taken into account differently between text and picture regions. Our approach is to use a segmentation-driven adaptation strategy to change the H.264/AVC quantization parameter on a macroblock by macroblock basis, i.e., we deviate bits from pictorial regions to text in order to keep text edges sharp. We show results of a segmentation driven quantizer adaptation method applied to compress documents. Our reconstructed images have better text sharpness compared to straight unadapted coding, at negligible visual losses on pictorial regions. Our results also highlight the fact that H.264/AVC-INTRA outperforms coders such as JPEG-2000 as a single coder for compound images.
Lougovski, P.; Uskov, D. B.
2015-08-04
Entanglement can effectively increase communication channel capacity as evidenced by dense coding that predicts a capacity gain of 1 bit when compared to entanglement-free protocols. However, dense coding relies on Bell states and when implemented using photons the capacity gain is bounded by 0.585 bits due to one's inability to discriminate between the four optically encoded Bell states. In this research we study the following question: Are there alternative entanglement-assisted protocols that rely only on linear optics, coincidence photon counting, and separable single-photon input states and at the same time provide a greater capacity gain than 0.585 bits? In thismore » study, we show that besides the Bell states there is a class of bipartite four-mode two-photon entangled states that facilitate an increase in channel capacity. We also discuss how the proposed scheme can be generalized to the case of two-photon N-mode entangled states for N=6,8.« less
The Fermilab lattice supercomputer project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischler, M.; Atac, R.; Cook, A.
1989-02-01
The ACPMAPS system is a highly cost effective, local memory MIMD computer targeted at algorithm development and production running for gauge theory on the lattice. The machine consists of a compound hypercube of crates, each of which is a full crossbar switch containing several processors. The processing nodes are single board array processors based on the Weitek XL chip set, each with a peak power of 20 MFLOPS and supported by 8 MBytes of data memory. The system currently being assembled has a peak power of 5 GFLOPS, delivering performance at approximately $250/MFLOP. The system is programmable in C andmore » Fortran. An underpinning of software routines (CANOPY) provides an easy and natural way of coding lattice problems, such that the details of parallelism, and communication and system architecture are transparent to the user. CANOPY can easily be ported to any single CPU or MIMD system which supports C, and allows the coding of typical applications with very little effort. 3 refs., 1 fig.« less
NASA Technical Reports Server (NTRS)
Becker, Jeffrey C.
1995-01-01
The Thinking Machines CM-5 platform was designed to run single program, multiple data (SPMD) applications, i.e., to run a single binary across all nodes of a partition, with each node possibly operating on different data. Certain classes of applications, such as multi-disciplinary computational fluid dynamics codes, are facilitated by the ability to have subsets of the partition nodes running different binaries. In order to extend the CM-5 system software to permit such applications, a multi-program loader was developed. This system is based on the dld loader which was originally developed for workstations. This paper provides a high level description of dld, and describes how it was ported to the CM-5 to provide support for multi-binary applications. Finally, it elaborates how the loader has been used to implement the CM-5 version of MPIRUN, a portable facility for running multi-disciplinary/multi-zonal MPI (Message-Passing Interface Standard) codes.
Oligo/Polynucleotide-Based Gene Modification: Strategies and Therapeutic Potential
Sargent, R. Geoffrey; Kim, Soya
2011-01-01
Oligonucleotide- and polynucleotide-based gene modification strategies were developed as an alternative to transgene-based and classical gene targeting-based gene therapy approaches for treatment of genetic disorders. Unlike the transgene-based strategies, oligo/polynucleotide gene targeting approaches maintain gene integrity and the relationship between the protein coding and gene-specific regulatory sequences. Oligo/polynucleotide-based gene modification also has several advantages over classical vector-based homologous recombination approaches. These include essentially complete homology to the target sequence and the potential to rapidly engineer patient-specific oligo/polynucleotide gene modification reagents. Several oligo/polynucleotide-based approaches have been shown to successfully mediate sequence-specific modification of genomic DNA in mammalian cells. The strategies involve the use of polynucleotide small DNA fragments, triplex-forming oligonucleotides, and single-stranded oligodeoxynucleotides to mediate homologous exchange. The primary focus of this review will be on the mechanistic aspects of the small fragment homologous replacement, triplex-forming oligonucleotide-mediated, and single-stranded oligodeoxynucleotide-mediated gene modification strategies as it relates to their therapeutic potential. PMID:21417933
NASA Astrophysics Data System (ADS)
Lis, M.; Gómez-Ros, J. M.; Bedogni, R.; Delgado, A.
2008-01-01
The design of a neutron detector with spectrometric capability based on thermoluminescent (TL) 6LiF:Ti,Mg (TLD-600) dosimeters located along three perpendicular axis within a single polyethylene (PE) sphere has been analyzed. The neutron response functions have been calculated in the energy range from 10 -8 to 100 MeV with the Monte Carlo (MC) code MCNPX 2.5 and their shape and behaviour have been used to discuss a suitable configuration for an actual instrument. The feasibility of such a device has been preliminary evaluated by the simulation of exposure to 241Am-Be, bare 252Cf and Fe-PE moderated 252Cf sources. The expected accuracy in the evaluation of energy quantities has been evaluated using the unfolding code FRUIT. The obtained results together with additional calculations performed using MAXED and GRAVEL codes show the spectrometric capability of the proposed design for radiation protection applications, especially in the range 1 keV-20 MeV.
Design optimization of beta- and photovoltaic conversion devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wichner, R.; Blum, A.; Fischer-Colbrie, E.
1976-01-08
This report presents the theoretical and experimental results of an LLL Electronics Engineering research program aimed at optimizing the design and electronic-material parameters of beta- and photovoltaic p-n junction conversion devices. To meet this objective, a comprehensive computer code has been developed that can handle a broad range of practical conditions. The physical model upon which the code is based is described first. Then, an example is given of a set of optimization calculations along with the resulting optimized efficiencies for silicon (Si) and gallium-arsenide (GaAs) devices. The model we have developed, however, is not limited to these materials. Itmore » can handle any appropriate material--single or polycrystalline-- provided energy absorption and electron-transport data are available. To check code validity, the performance of experimental silicon p-n junction devices (produced in-house) were measured under various light intensities and spectra as well as under tritium beta irradiation. The results of these tests were then compared with predicted results based on the known or best estimated device parameters. The comparison showed very good agreement between the calculated and the measured results.« less
Deep generative learning of location-invariant visual word recognition.
Di Bono, Maria Grazia; Zorzi, Marco
2013-01-01
It is widely believed that orthographic processing implies an approximate, flexible coding of letter position, as shown by relative-position and transposition priming effects in visual word recognition. These findings have inspired alternative proposals about the representation of letter position, ranging from noisy coding across the ordinal positions to relative position coding based on open bigrams. This debate can be cast within the broader problem of learning location-invariant representations of written words, that is, a coding scheme abstracting the identity and position of letters (and combinations of letters) from their eye-centered (i.e., retinal) locations. We asked whether location-invariance would emerge from deep unsupervised learning on letter strings and what type of intermediate coding would emerge in the resulting hierarchical generative model. We trained a deep network with three hidden layers on an artificial dataset of letter strings presented at five possible retinal locations. Though word-level information (i.e., word identity) was never provided to the network during training, linear decoding from the activity of the deepest hidden layer yielded near-perfect accuracy in location-invariant word recognition. Conversely, decoding from lower layers yielded a large number of transposition errors. Analyses of emergent internal representations showed that word selectivity and location invariance increased as a function of layer depth. Word-tuning and location-invariance were found at the level of single neurons, but there was no evidence for bigram coding. Finally, the distributed internal representation of words at the deepest layer showed higher similarity to the representation elicited by the two exterior letters than by other combinations of two contiguous letters, in agreement with the hypothesis that word edges have special status. These results reveal that the efficient coding of written words-which was the model's learning objective-is largely based on letter-level information.
egs_brachy: a versatile and fast Monte Carlo code for brachytherapy
NASA Astrophysics Data System (ADS)
Chamberland, Marc J. P.; Taylor, Randle E. P.; Rogers, D. W. O.; Thomson, Rowan M.
2016-12-01
egs_brachy is a versatile and fast Monte Carlo (MC) code for brachytherapy applications. It is based on the EGSnrc code system, enabling simulation of photons and electrons. Complex geometries are modelled using the EGSnrc C++ class library and egs_brachy includes a library of geometry models for many brachytherapy sources, in addition to eye plaques and applicators. Several simulation efficiency enhancing features are implemented in the code. egs_brachy is benchmarked by comparing TG-43 source parameters of three source models to previously published values. 3D dose distributions calculated with egs_brachy are also compared to ones obtained with the BrachyDose code. Well-defined simulations are used to characterize the effectiveness of many efficiency improving techniques, both as an indication of the usefulness of each technique and to find optimal strategies. Efficiencies and calculation times are characterized through single source simulations and simulations of idealized and typical treatments using various efficiency improving techniques. In general, egs_brachy shows agreement within uncertainties with previously published TG-43 source parameter values. 3D dose distributions from egs_brachy and BrachyDose agree at the sub-percent level. Efficiencies vary with radionuclide and source type, number of sources, phantom media, and voxel size. The combined effects of efficiency-improving techniques in egs_brachy lead to short calculation times: simulations approximating prostate and breast permanent implant (both with (2 mm)3 voxels) and eye plaque (with (1 mm)3 voxels) treatments take between 13 and 39 s, on a single 2.5 GHz Intel Xeon E5-2680 v3 processor core, to achieve 2% average statistical uncertainty on doses within the PTV. egs_brachy will be released as free and open source software to the research community.
Revisiting Molecular Dynamics on a CPU/GPU system: Water Kernel and SHAKE Parallelization.
Ruymgaart, A Peter; Elber, Ron
2012-11-13
We report Graphics Processing Unit (GPU) and Open-MP parallel implementations of water-specific force calculations and of bond constraints for use in Molecular Dynamics simulations. We focus on a typical laboratory computing-environment in which a CPU with a few cores is attached to a GPU. We discuss in detail the design of the code and we illustrate performance comparable to highly optimized codes such as GROMACS. Beside speed our code shows excellent energy conservation. Utilization of water-specific lists allows the efficient calculations of non-bonded interactions that include water molecules and results in a speed-up factor of more than 40 on the GPU compared to code optimized on a single CPU core for systems larger than 20,000 atoms. This is up four-fold from a factor of 10 reported in our initial GPU implementation that did not include a water-specific code. Another optimization is the implementation of constrained dynamics entirely on the GPU. The routine, which enforces constraints of all bonds, runs in parallel on multiple Open-MP cores or entirely on the GPU. It is based on Conjugate Gradient solution of the Lagrange multipliers (CG SHAKE). The GPU implementation is partially in double precision and requires no communication with the CPU during the execution of the SHAKE algorithm. The (parallel) implementation of SHAKE allows an increase of the time step to 2.0fs while maintaining excellent energy conservation. Interestingly, CG SHAKE is faster than the usual bond relaxation algorithm even on a single core if high accuracy is expected. The significant speedup of the optimized components transfers the computational bottleneck of the MD calculation to the reciprocal part of Particle Mesh Ewald (PME).
egs_brachy: a versatile and fast Monte Carlo code for brachytherapy.
Chamberland, Marc J P; Taylor, Randle E P; Rogers, D W O; Thomson, Rowan M
2016-12-07
egs_brachy is a versatile and fast Monte Carlo (MC) code for brachytherapy applications. It is based on the EGSnrc code system, enabling simulation of photons and electrons. Complex geometries are modelled using the EGSnrc C++ class library and egs_brachy includes a library of geometry models for many brachytherapy sources, in addition to eye plaques and applicators. Several simulation efficiency enhancing features are implemented in the code. egs_brachy is benchmarked by comparing TG-43 source parameters of three source models to previously published values. 3D dose distributions calculated with egs_brachy are also compared to ones obtained with the BrachyDose code. Well-defined simulations are used to characterize the effectiveness of many efficiency improving techniques, both as an indication of the usefulness of each technique and to find optimal strategies. Efficiencies and calculation times are characterized through single source simulations and simulations of idealized and typical treatments using various efficiency improving techniques. In general, egs_brachy shows agreement within uncertainties with previously published TG-43 source parameter values. 3D dose distributions from egs_brachy and BrachyDose agree at the sub-percent level. Efficiencies vary with radionuclide and source type, number of sources, phantom media, and voxel size. The combined effects of efficiency-improving techniques in egs_brachy lead to short calculation times: simulations approximating prostate and breast permanent implant (both with (2 mm) 3 voxels) and eye plaque (with (1 mm) 3 voxels) treatments take between 13 and 39 s, on a single 2.5 GHz Intel Xeon E5-2680 v3 processor core, to achieve 2% average statistical uncertainty on doses within the PTV. egs_brachy will be released as free and open source software to the research community.
NASA Astrophysics Data System (ADS)
Suwansukho, Kajpanya; Sumriddetchkajorn, Sarun; Buranasiri, Prathan
2012-11-01
Instead of considering only the amount of fluorescent signal spatially distributed on the image of milled rice grains this paper shows how our single-wavelength spectral-imaging-based Thai jasmine (KDML105) rice identification system can be improved by analyzing the shape and size of the image of each milled rice variety especially during the image threshold operation. The image of each milled rice variety is expressed as chain codes and elliptic Fourier coefficients. After that, a feed-forward back-propagation neural network model is applied, resulting in an improved average FAR of 11.0% and FRR of 19.0% in identifying KDML105 milled rice from the unwanted four milled rice varieties.
25 Tb/s transmission over 5,530 km using 16QAM at 5.2 b/s/Hz spectral efficiency.
Cai, J-X; Batshon, H G; Zhang, H; Davidson, C R; Sun, Y; Mazurczyk, M; Foursa, D G; Sinkin, O; Pilipetskii, A; Mohs, G; Bergano, Neal S
2013-01-28
We transmit 250x100G PDM RZ-16QAM channels with 5.2 b/s/Hz spectral efficiency over 5,530 km using single-stage C-band EDFAs equalized to 40 nm. We use single parity check coded modulation and all channels are decoded with no errors after iterative decoding between a MAP decoder and an LDPC based FEC algorithm. We also observe that the optimum power spectral density is nearly independent of SE, signal baud rate or modulation format in a dispersion uncompensated system.
Hierarchical parallelisation of functional renormalisation group calculations - hp-fRG
NASA Astrophysics Data System (ADS)
Rohe, Daniel
2016-10-01
The functional renormalisation group (fRG) has evolved into a versatile tool in condensed matter theory for studying important aspects of correlated electron systems. Practical applications of the method often involve a high numerical effort, motivating the question in how far High Performance Computing (HPC) can leverage the approach. In this work we report on a multi-level parallelisation of the underlying computational machinery and show that this can speed up the code by several orders of magnitude. This in turn can extend the applicability of the method to otherwise inaccessible cases. We exploit three levels of parallelisation: Distributed computing by means of Message Passing (MPI), shared-memory computing using OpenMP, and vectorisation by means of SIMD units (single-instruction-multiple-data). Results are provided for two distinct High Performance Computing (HPC) platforms, namely the IBM-based BlueGene/Q system JUQUEEN and an Intel Sandy-Bridge-based development cluster. We discuss how certain issues and obstacles were overcome in the course of adapting the code. Most importantly, we conclude that this vast improvement can actually be accomplished by introducing only moderate changes to the code, such that this strategy may serve as a guideline for other researcher to likewise improve the efficiency of their codes.
Shannon information entropy in the canonical genetic code.
Nemzer, Louis R
2017-02-21
The Shannon entropy measures the expected information value of messages. As with thermodynamic entropy, the Shannon entropy is only defined within a system that identifies at the outset the collections of possible messages, analogous to microstates, that will be considered indistinguishable macrostates. This fundamental insight is applied here for the first time to amino acid alphabets, which group the twenty common amino acids into families based on chemical and physical similarities. To evaluate these schemas objectively, a novel quantitative method is introduced based the inherent redundancy in the canonical genetic code. Each alphabet is taken as a separate system that partitions the 64 possible RNA codons, the microstates, into families, the macrostates. By calculating the normalized mutual information, which measures the reduction in Shannon entropy, conveyed by single nucleotide messages, groupings that best leverage this aspect of fault tolerance in the code are identified. The relative importance of properties related to protein folding - like hydropathy and size - and function, including side-chain acidity, can also be estimated. This approach allows the quantification of the average information value of nucleotide positions, which can shed light on the coevolution of the canonical genetic code with the tRNA-protein translation mechanism. Copyright © 2016 Elsevier Ltd. All rights reserved.
Integrated Modeling of Optical Systems (IMOS): An Assessment and Future Directions
NASA Technical Reports Server (NTRS)
Moore, Gregory; Broduer, Steve (Technical Monitor)
2001-01-01
Integrated Modeling of Optical Systems (IMOS) is a finite element-based code combining structural, thermal, and optical ray-tracing capabilities in a single environment for analysis of space-based optical systems. We'll present some recent examples of IMOS usage and discuss future development directions. Due to increasing model sizes and a greater emphasis on multidisciplinary analysis and design, much of the anticipated future work will be in the areas of improved architecture, numerics, and overall performance and analysis integration.
NASA Technical Reports Server (NTRS)
Chen, Y. S.; Farmer, R. C.
1992-01-01
A particulate two-phase flow CFD model was developed based on the FDNS code which is a pressure based predictor plus multi-corrector Navier-Stokes flow solver. Turbulence models with compressibility correction and the wall function models were employed as submodels. A finite-rate chemistry model was used for reacting flow simulation. For particulate two-phase flow simulations, a Eulerian-Lagrangian solution method using an efficient implicit particle trajectory integration scheme was developed in this study. Effects of particle-gas reaction and particle size change to agglomeration or fragmentation were not considered in this investigation. At the onset of the present study, a two-dimensional version of FDNS which had been modified to treat Lagrangian tracking of particles (FDNS-2DEL) had already been written and was operational. The FDNS-2DEL code was too slow for practical use, mainly because it had not been written in a form amenable to vectorization on the Cray, nor was the full three-dimensional form of FDNS utilized. The specific objective of this study was to reorder to calculations into long single arrays for automatic vectorization on the Cray and to implement the full three-dimensional version of FDNS to produce the FDNS-3DEL code. Since the FDNS-2DEL code was slow, a very limited number of test cases had been run with it. This study was also intended to increase the number of cases simulated to verify and improve, as necessary, the particle tracking methodology coded in FDNS.
Validation of Carotid Artery Revascularization Coding in Ontario Health Administrative Databases.
Hussain, Mohamad A; Mamdani, Muhammad; Saposnik, Gustavo; Tu, Jack V; Turkel-Parrella, David; Spears, Julian; Al-Omran, Mohammed
2016-04-02
The positive predictive value (PPV) of carotid endarterectomy (CEA) and carotid artery stenting (CAS) procedure and post-operative complication coding were assessed in Ontario health administrative databases. Between 1 April 2002 and 31 March 2014, a random sample of 428 patients were identified using Canadian Classification of Health Intervention (CCI) procedure codes and Ontario Health Insurance Plan (OHIP) billing codes from administrative data. A blinded chart review was conducted at two high-volume vascular centers to assess the level of agreement between the administrative records and the corresponding patients' hospital charts. PPV was calculated with 95% confidence intervals (CIs) to estimate the validity of CEA and CAS coding, utilizing hospital charts as the gold standard. Sensitivity of CEA and CAS coding were also assessed by linking two independent databases of 540 CEA-treated patients (Ontario Stroke Registry) and 140 CAS-treated patients (single-center CAS database) to administrative records. PPV for CEA ranged from 99% to 100% and sensitivity ranged from 81.5% to 89.6% using CCI and OHIP codes. A CCI code with a PPV of 87% (95% CI, 78.8-92.9) and sensitivity of 92.9% (95% CI, 87.4-96.1) in identifying CAS was also identified. PPV for post-admission complication diagnosis coding was 71.4% (95% CI, 53.7-85.4) for stroke/transient ischemic attack, and 82.4% (95% CI, 56.6-96.2) for myocardial infarction. Our analysis demonstrated that the codes used in administrative databases accurately identify CEA and CAS-treated patients. Researchers can confidently use administrative data to conduct population-based studies of CEA and CAS.
Gigaflop performance on a CRAY-2: Multitasking a computational fluid dynamics application
NASA Technical Reports Server (NTRS)
Tennille, Geoffrey M.; Overman, Andrea L.; Lambiotte, Jules J.; Streett, Craig L.
1991-01-01
The methodology is described for converting a large, long-running applications code that executed on a single processor of a CRAY-2 supercomputer to a version that executed efficiently on multiple processors. Although the conversion of every application is different, a discussion of the types of modification used to achieve gigaflop performance is included to assist others in the parallelization of applications for CRAY computers, especially those that were developed for other computers. An existing application, from the discipline of computational fluid dynamics, that had utilized over 2000 hrs of CPU time on CRAY-2 during the previous year was chosen as a test case to study the effectiveness of multitasking on a CRAY-2. The nature of dominant calculations within the application indicated that a sustained computational rate of 1 billion floating-point operations per second, or 1 gigaflop, might be achieved. The code was first analyzed and modified for optimal performance on a single processor in a batch environment. After optimal performance on a single CPU was achieved, the code was modified to use multiple processors in a dedicated environment. The results of these two efforts were merged into a single code that had a sustained computational rate of over 1 gigaflop on a CRAY-2. Timings and analysis of performance are given for both single- and multiple-processor runs.
Kim, Kyung Lock; Park, Kyeng Min; Murray, James; Kim, Kimoon; Ryu, Sung Ho
2018-05-23
Combinatorial post-translational modifications (PTMs), which can serve as dynamic "molecular barcodes", have been proposed to regulate distinct protein functions. However, studies of combinatorial PTMs on single protein molecules have been hindered by a lack of suitable analytical methods. Here, we describe erasable single-molecule blotting (eSiMBlot) for combinatorial PTM profiling. This assay is performed in a highly multiplexed manner and leverages the benefits of covalent protein immobilization, cyclic probing with different antibodies, and single molecule fluorescence imaging. Especially, facile and efficient covalent immobilization on a surface using Cu-free click chemistry permits multiple rounds (>10) of antibody erasing/reprobing without loss of antigenicity. Moreover, cumulative detection of coregistered multiple data sets for immobilized single-epitope molecules, such as HA peptide, can be used to increase the antibody detection rate. Finally, eSiMBlot enables direct visualization and quantitative profiling of combinatorial PTM codes at the single-molecule level, as we demonstrate by revealing the novel phospho-codes of ligand-induced epidermal growth factor receptor. Thus, eSiMBlot provides an unprecedentedly simple, rapid, and versatile platform for analyzing the vast number of combinatorial PTMs in biological pathways.
2018-01-01
Combinatorial post-translational modifications (PTMs), which can serve as dynamic “molecular barcodes”, have been proposed to regulate distinct protein functions. However, studies of combinatorial PTMs on single protein molecules have been hindered by a lack of suitable analytical methods. Here, we describe erasable single-molecule blotting (eSiMBlot) for combinatorial PTM profiling. This assay is performed in a highly multiplexed manner and leverages the benefits of covalent protein immobilization, cyclic probing with different antibodies, and single molecule fluorescence imaging. Especially, facile and efficient covalent immobilization on a surface using Cu-free click chemistry permits multiple rounds (>10) of antibody erasing/reprobing without loss of antigenicity. Moreover, cumulative detection of coregistered multiple data sets for immobilized single-epitope molecules, such as HA peptide, can be used to increase the antibody detection rate. Finally, eSiMBlot enables direct visualization and quantitative profiling of combinatorial PTM codes at the single-molecule level, as we demonstrate by revealing the novel phospho-codes of ligand-induced epidermal growth factor receptor. Thus, eSiMBlot provides an unprecedentedly simple, rapid, and versatile platform for analyzing the vast number of combinatorial PTMs in biological pathways.
A Data Parallel Multizone Navier-Stokes Code
NASA Technical Reports Server (NTRS)
Jespersen, Dennis C.; Levit, Creon; Kwak, Dochan (Technical Monitor)
1995-01-01
We have developed a data parallel multizone compressible Navier-Stokes code on the Connection Machine CM-5. The code is set up for implicit time-stepping on single or multiple structured grids. For multiple grids and geometrically complex problems, we follow the "chimera" approach, where flow data on one zone is interpolated onto another in the region of overlap. We will describe our design philosophy and give some timing results for the current code. The design choices can be summarized as: 1. finite differences on structured grids; 2. implicit time-stepping with either distributed solves or data motion and local solves; 3. sequential stepping through multiple zones with interzone data transfer via a distributed data structure. We have implemented these ideas on the CM-5 using CMF (Connection Machine Fortran), a data parallel language which combines elements of Fortran 90 and certain extensions, and which bears a strong similarity to High Performance Fortran (HPF). One interesting feature is the issue of turbulence modeling, where the architecture of a parallel machine makes the use of an algebraic turbulence model awkward, whereas models based on transport equations are more natural. We will present some performance figures for the code on the CM-5, and consider the issues involved in transitioning the code to HPF for portability to other parallel platforms.
Encoding of Spatial Attention by Primate Prefrontal Cortex Neuronal Ensembles
Treue, Stefan
2018-01-01
Abstract Single neurons in the primate lateral prefrontal cortex (LPFC) encode information about the allocation of visual attention and the features of visual stimuli. However, how this compares to the performance of neuronal ensembles at encoding the same information is poorly understood. Here, we recorded the responses of neuronal ensembles in the LPFC of two macaque monkeys while they performed a task that required attending to one of two moving random dot patterns positioned in different hemifields and ignoring the other pattern. We found single units selective for the location of the attended stimulus as well as for its motion direction. To determine the coding of both variables in the population of recorded units, we used a linear classifier and progressively built neuronal ensembles by iteratively adding units according to their individual performance (best single units), or by iteratively adding units based on their contribution to the ensemble performance (best ensemble). For both methods, ensembles of relatively small sizes (n < 60) yielded substantially higher decoding performance relative to individual single units. However, the decoder reached similar performance using fewer neurons with the best ensemble building method compared with the best single units method. Our results indicate that neuronal ensembles within the LPFC encode more information about the attended spatial and nonspatial features of visual stimuli than individual neurons. They further suggest that efficient coding of attention can be achieved by relatively small neuronal ensembles characterized by a certain relationship between signal and noise correlation structures. PMID:29568798
Algorithm Building and Learning Programming Languages Using a New Educational Paradigm
NASA Astrophysics Data System (ADS)
Jain, Anshul K.; Singhal, Manik; Gupta, Manu Sheel
2011-08-01
This research paper presents a new concept of using a single tool to associate syntax of various programming languages, algorithms and basic coding techniques. A simple framework has been programmed in Python that helps students learn skills to develop algorithms, and implement them in various programming languages. The tool provides an innovative and a unified graphical user interface for development of multimedia objects, educational games and applications. It also aids collaborative learning amongst students and teachers through an integrated mechanism based on Remote Procedure Calls. The paper also elucidates an innovative method for code generation to enable students to learn the basics of programming languages using drag-n-drop methods for image objects.
Ftmp-Based Simulation of Twin Nucleation and Substructure Evolution Under Hypervelocity Impact
NASA Astrophysics Data System (ADS)
Okuda, Tatsuya; Imiya, Kazuhiro; Hasebe, Tadashi
2013-01-01
The deformation twinning model based on Field Theory of Multiscale Plasticity (FTMP) represents the twin degrees of freedom with the incompatibility tensor, which is incorporated into the hardening law of the FTMP-based crystalline plasticity framework. The model is further implemented into a finite element code. In the present study, the model is adapted to a single slip-oriented FCC single crystal sample, and preliminary simulations are conducted under static conditions to confirm the model's basic capabilities. The simulation results exhibit nucleation and growth of twinned regions, accompanied by serrated stress response and overall softening. Simulations under hypervelocity impact conditions are also conducted to investigate the model's descriptive capabilities of induced complex substructures composing of both twins and dislocations. The simulated nucleation of twins is examined in detail by using duality diagrams in terms of the flow-evolutionary hypothesis.
NASA Astrophysics Data System (ADS)
Sanna, N.; Baccarelli, I.; Morelli, G.
2009-12-01
SCELib is a computer program which implements the Single Center Expansion (SCE) method to describe molecular electronic densities and the interaction potentials between a charged projectile (electron or positron) and a target molecular system. The first version (CPC Catalog identifier ADMG_v1_0) was submitted to the CPC Program Library in 2000, and version 2.0 (ADMG_v2_0) was submitted in 2004. We here announce the new release 3.0 which presents additional features with respect to the previous versions aiming at a significative enhance of its capabilities to deal with larger molecular systems. SCELib 3.0 allows for ab initio effective core potential (ECP) calculations of the molecular wavefunctions to be used in the SCE method in addition to the standard all-electron description of the molecule. The list of supported architectures has been updated and the code has been ported to platforms based on accelerating coprocessors, such as the NVIDIA GPGPU and the new parallel model adopted is able to efficiently run on a mixed many-core computing system. Program summaryProgram title: SCELib3.0 Catalogue identifier: ADMG_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADMG_v3_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2 018 862 No. of bytes in distributed program, including test data, etc.: 4 955 014 Distribution format: tar.gz Programming language: C Compilers used: xlc V8.x, Intel C V10.x, Portland Group V7.x, nvcc V2.x Computer: All SMP platforms based on AIX, Linux and SUNOS operating systems over SPARC, POWER, Intel Itanium2, X86, em64t and Opteron processors Operating system: SUNOS, IBM AIX, Linux RedHat (Enterprise), Linux SuSE (SLES) Has the code been vectorized or parallelized?: Yes. 1 to 32 (CPU or GPU) used RAM: Up to 32 GB depending on the molecular system and runtime parameters Classification: 16.5 Catalogue identifier of previous version: ADMG_v2_0 Journal reference of previous version: Comput. Phys. Comm. 162 (2004) 51 External routines: CUDA libraries (SDK V2.x). Does the new version supersede the previous version?: Yes Nature of problem: In this set of codes an efficient procedure is implemented to describe the wavefunction and related molecular properties of a polyatomic molecular system within the Single Center of Expansion (SCE) approximation. The resulting SCE wavefunction, electron density, electrostatic and correlation/polarization potentials can then be used in a wide variety of applications, such as electron-molecule scattering calculations, quantum chemistry studies, biomodelling and drug design. Solution method: The polycentre Hartree-Fock solution for a molecule of arbitrary geometry, based on linear combination of Gaussian-Type Orbital (GTO), is expanded over a single center, typically the Center Of Mass (C.O.M.), by means of a Gauss Legendre/Chebyschev quadrature over the θ,φ angular coordinates. The resulting SCE numerical wavefunction is then used to calculate the one-particle electron density, the electrostatic potential and two different models for the correlation/polarization potentials induced by the impinging electron, which have the correct asymptotic behavior for the leading dipole molecular polarizabilities. Reasons for new version: The present release of SCELib allows the study of larger molecular systems with respect to the previous versions by means of theoretical and technological advances, with the first implementation of the code over a many-core computing system. Summary of revisions: The major features added with respect to SCELib Version 2.0 are molecular wavefunctions obtained via the Los Alamos (Hay and Wadt) LAN ECP plus DZ description of the inner-shell electrons (on Na-La, Hf-Bi elements) [1] can now be single-center-expanded; the addition required modifications of: (i) the filtering code readgau, (ii) the main reading function setinp, (iii) the sphint code (including changes to the CalcMO code), (iv) the densty code, (v) the vst code; the classes of platforms supported now include two more architectures based on accelerated coprocessors (Nvidia GSeries GPGPU and ClearSpeed e720 (ClearSpeed version, experimental; initial preliminary porting of the sphint() function not for production runs - see the code documentation for additional detail). A single-precision representation for real numbers in the SCE mapping of the GTOs ( sphint code), has been implemented into the new code; the I h symmetry point group for the molecular systems has been added to those already allowed in the SCE procedure; the orientation of the molecular axis system for the Cs (planar) symmetry has been changed in accord with the standard orientation adopted by the latest version of the quantum chemistry code (Gaussian C03 [2]), which is used to generate the input multi-centre molecular wavefunctions ( z-axis perpendicular to the symmetry plane); the abelian subgroup for the Cs point group has been changed from C 1 to Cs; atomic basis functions including g-type GTOs can now be single-center-expanded. Restrictions: Depending on the molecular system under study and on the operating conditions the program may or may not fit into available RAM memory. In this case a feature of the program is to memory map a disk file in order to efficiently access the memory data through a disk device. The parallel GP-GPU implementation limits the number of CPU threads to the number of GPU cores present. Running time: The execution time strongly depends on the molecular target description and on the hardware/OS chosen, it is directly proportional to the ( r,θ,φ) grid size and to the number of angular basis functions used. Thus, from the program printout of the main arrays memory occupancy, the user can approximately derive the expected computer time needed for a given calculation executed in serial mode. For parallel executions the overall efficiency must be further taken into account, and this depends on the no. of processors used as well as on the parallel architecture chosen, so a simple general law is at present not determinable. References:[1] P.J. Hay, W.R. Wadt, J. Chem. Phys. 82 (1985) 270; W.R. Wadt, P.J. Hay, J. Chem. Phys. 284 (1985);P.J. Hay, W.R. Wadt, J. Chem. Phys. 299 (1985). [2] M.J. Frisch et al., Gaussian 03, revision C.02, Gaussian, Inc., Wallingford, CT, 2004.
Information retrieval based on single-pixel optical imaging with quick-response code
NASA Astrophysics Data System (ADS)
Xiao, Yin; Chen, Wen
2018-04-01
Quick-response (QR) code technique is combined with ghost imaging (GI) to recover original information with high quality. An image is first transformed into a QR code. Then the QR code is treated as an input image in the input plane of a ghost imaging setup. After measurements, traditional correlation algorithm of ghost imaging is utilized to reconstruct an image (QR code form) with low quality. With this low-quality image as an initial guess, a Gerchberg-Saxton-like algorithm is used to improve its contrast, which is actually a post processing. Taking advantage of high error correction capability of QR code, original information can be recovered with high quality. Compared to the previous method, our method can obtain a high-quality image with comparatively fewer measurements, which means that the time-consuming postprocessing procedure can be avoided to some extent. In addition, for conventional ghost imaging, the larger the image size is, the more measurements are needed. However, for our method, images with different sizes can be converted into QR code with the same small size by using a QR generator. Hence, for the larger-size images, the time required to recover original information with high quality will be dramatically reduced. Our method makes it easy to recover a color image in a ghost imaging setup, because it is not necessary to divide the color image into three channels and respectively recover them.
Development of 3D electromagnetic modeling tools for airborne vehicles
NASA Technical Reports Server (NTRS)
Volakis, John L.
1992-01-01
The main goal of this project is to develop methodologies for scattering by airborne composite vehicles. Although our primary focus continues to be the development of a general purpose code for analyzing the entire structure as a single unit, a number of other tasks are also pursued in parallel with this effort. These tasks are important in testing the overall approach and in developing suitable models for materials coatings, junctions and, more generally, in assessing the effectiveness of the various parts comprising the final code. Here, we briefly discuss our progress on the five different tasks which were pursued during this period. Our progress on each of these tasks is described in the detailed reports (listed at the end of this report) and the memoranda included. The first task described below is, of course, the core of this project and deals with the development of the overall code. Undoubtedly, it is the outcome of the research which was funded by NASA-Ames and the Navy over the past three years. During this year we developed the first finite element code for scattering by structures of arbitrary shape and composition. The code employs a new absorbing boundary condition which allows termination of the finite element mesh only 0.3 lambda from the outer surface of the target. This leads to a remarkable reduction of the mesh size and is a unique feature of the code. Other unique features of this code include capabilities to model resistive sheets, impedance sheets and anisotropic materials. This last capability is the latest feature of the code and is still under development. The code has been extensively validated for a number of composite geometries and some examples are given. The validation of the code is still in progress for anisotropic and larger non-metallic geometries and cavities. The developed finite element code is based on a Galerkin's formulation and employs edge-based tetrahedral elements for discretizing the dielectric sections and the region between the target and the outer mesh termination boundary (ATB). This boundary is placed in conformity with the target's outer surface, thus resulting in additional reduction of the unknown count.
A Comparison of Three Navier-Stokes Solvers for Exhaust Nozzle Flowfields
NASA Technical Reports Server (NTRS)
Georgiadis, Nicholas J.; Yoder, Dennis A.; Debonis, James R.
1999-01-01
A comparison of the NPARC, PAB, and WIND (previously known as NASTD) Navier-Stokes solvers is made for two flow cases with turbulent mixing as the dominant flow characteristic, a two-dimensional ejector nozzle and a Mach 1.5 elliptic jet. The objective of the work is to determine if comparable predictions of nozzle flows can be obtained from different Navier-Stokes codes employed in a multiple site research program. A single computational grid was constructed for each of the two flows and used for all of the Navier-Stokes solvers. In addition, similar k-e based turbulence models were employed in each code, and boundary conditions were specified as similarly as possible across the codes. Comparisons of mass flow rates, velocity profiles, and turbulence model quantities are made between the computations and experimental data. The computational cost of obtaining converged solutions with each of the codes is also documented. Results indicate that all of the codes provided similar predictions for the two nozzle flows. Agreement of the Navier-Stokes calculations with experimental data was good for the ejector nozzle. However, for the Mach 1.5 elliptic jet, the calculations were unable to accurately capture the development of the three dimensional elliptic mixing layer.
The historical biogeography of Mammalia
Springer, Mark S.; Meredith, Robert W.; Janecka, Jan E.; Murphy, William J.
2011-01-01
Palaeobiogeographic reconstructions are underpinned by phylogenies, divergence times and ancestral area reconstructions, which together yield ancestral area chronograms that provide a basis for proposing and testing hypotheses of dispersal and vicariance. Methods for area coding include multi-state coding with a single character, binary coding with multiple characters and string coding. Ancestral reconstruction methods are divided into parsimony versus Bayesian/likelihood approaches. We compared nine methods for reconstructing ancestral areas for placental mammals. Ambiguous reconstructions were a problem for all methods. Important differences resulted from coding areas based on the geographical ranges of extant species versus the geographical provenance of the oldest fossil for each lineage. Africa and South America were reconstructed as the ancestral areas for Afrotheria and Xenarthra, respectively. Most methods reconstructed Eurasia as the ancestral area for Boreoeutheria, Euarchontoglires and Laurasiatheria. The coincidence of molecular dates for the separation of Afrotheria and Xenarthra at approximately 100 Ma with the plate tectonic sundering of Africa and South America hints at the importance of vicariance in the early history of Placentalia. Dispersal has also been important including the origins of Madagascar's endemic mammal fauna. Further studies will benefit from increased taxon sampling and the application of new ancestral area reconstruction methods. PMID:21807730
Software for Better Documentation of Other Software
NASA Technical Reports Server (NTRS)
Pinedo, John
2003-01-01
The Literate Programming Extraction Engine is a Practical Extraction and Reporting Language- (PERL-)based computer program that facilitates and simplifies the implementation of a concept of self-documented literate programming in a fashion tailored to the typical needs of scientists. The advantage for the programmer is that documentation and source code are written side-by-side in the same file, reducing the likelihood that the documentation will be inconsistent with the code and improving the verification that the code performs its intended functions. The advantage for the user is the knowledge that the documentation matches the software because they come from the same file. This program unifies the documentation process for a variety of programming languages, including C, C++, and several versions of FORTRAN. This program can process the documentation in any markup language, and incorporates the LaTeX typesetting software. The program includes sample Makefile scripts for automating both the code-compilation (when appropriate) and documentation-generation processes into a single command-line statement. Also included are macro instructions for the Emacs display-editor software, making it easy for a programmer to toggle between editing in a code or a documentation mode.
76 FR 3927 - Ameren Missouri; Combined License Application for Callaway Plant Unit 2; Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-21
... for a single unit of AREVA NP's U.S. EPR in accordance with the requirements of Title 10 of the Code... application is based upon and linked to the U.S. EPR reference COL (RCOL) application for UniStar's Calvert... U.S. EPR. 2.0 Request/Action The regulations specified in 10 CFR 50.71(e)(3)(iii) require that an...
Webber, C J
2001-05-01
This article shows analytically that single-cell learning rules that give rise to oriented and localized receptive fields, when their synaptic weights are randomly and independently initialized according to a plausible assumption of zero prior information, will generate visual codes that are invariant under two-dimensional translations, rotations, and scale magnifications, provided that the statistics of their training images are sufficiently invariant under these transformations. Such codes span different image locations, orientations, and size scales with equal economy. Thus, single-cell rules could account for the spatial scaling property of the cortical simple-cell code. This prediction is tested computationally by training with natural scenes; it is demonstrated that a single-cell learning rule can give rise to simple-cell receptive fields spanning the full range of orientations, image locations, and spatial frequencies (except at the extreme high and low frequencies at which the scale invariance of the statistics of digitally sampled images must ultimately break down, because of the image boundary and the finite pixel resolution). Thus, no constraint on completeness, or any other coupling between cells, is necessary to induce the visual code to span wide ranges of locations, orientations, and size scales. This prediction is made using the theory of spontaneous symmetry breaking, which we have previously shown can also explain the data-driven self-organization of a wide variety of transformation invariances in neurons' responses, such as the translation invariance of complex cell response.
Chen, Chien P; Braunstein, Steve; Mourad, Michelle; Hsu, I-Chow J; Haas-Kogan, Daphne; Roach, Mack; Fogh, Shannon E
2015-01-01
Accurate International Classification of Diseases (ICD) diagnosis coding is critical for patient care, billing purposes, and research endeavors. In this single-institution study, we evaluated our baseline ICD-9 (9th revision) diagnosis coding accuracy, identified the most common errors contributing to inaccurate coding, and implemented a multimodality strategy to improve radiation oncology coding. We prospectively studied ICD-9 coding accuracy in our radiation therapy--specific electronic medical record system. Baseline ICD-9 coding accuracy was obtained from chart review targeting ICD-9 coding accuracy of all patients treated at our institution between March and June of 2010. To improve performance an educational session highlighted common coding errors, and a user-friendly software tool, RadOnc ICD Search, version 1.0, for coding radiation oncology specific diagnoses was implemented. We then prospectively analyzed ICD-9 coding accuracy for all patients treated from July 2010 to June 2011, with the goal of maintaining 80% or higher coding accuracy. Data on coding accuracy were analyzed and fed back monthly to individual providers. Baseline coding accuracy for physicians was 463 of 661 (70%) cases. Only 46% of physicians had coding accuracy above 80%. The most common errors involved metastatic cases, whereby primary or secondary site ICD-9 codes were either incorrect or missing, and special procedures such as stereotactic radiosurgery cases. After implementing our project, overall coding accuracy rose to 92% (range, 86%-96%). The median accuracy for all physicians was 93% (range, 77%-100%) with only 1 attending having accuracy below 80%. Incorrect primary and secondary ICD-9 codes in metastatic cases showed the most significant improvement (10% vs 2% after intervention). Identifying common coding errors and implementing both education and systems changes led to significantly improved coding accuracy. This quality assurance project highlights the potential problem of ICD-9 coding accuracy by physicians and offers an approach to effectively address this shortcoming. Copyright © 2015. Published by Elsevier Inc.
Michel, Christian J.
2017-01-01
In 1996, a set X of 20 trinucleotides was identified in genes of both prokaryotes and eukaryotes which has on average the highest occurrence in reading frame compared to its two shifted frames. Furthermore, this set X has an interesting mathematical property as X is a maximal C3 self-complementary trinucleotide circular code. In 2015, by quantifying the inspection approach used in 1996, the circular code X was confirmed in the genes of bacteria and eukaryotes and was also identified in the genes of plasmids and viruses. The method was based on the preferential occurrence of trinucleotides among the three frames at the gene population level. We extend here this definition at the gene level. This new statistical approach considers all the genes, i.e., of large and small lengths, with the same weight for searching the circular code X. As a consequence, the concept of circular code, in particular the reading frame retrieval, is directly associated to each gene. At the gene level, the circular code X is strengthened in the genes of bacteria, eukaryotes, plasmids, and viruses, and is now also identified in the genes of archaea. The genes of mitochondria and chloroplasts contain a subset of the circular code X. Finally, by studying viral genes, the circular code X was found in DNA genomes, RNA genomes, double-stranded genomes, and single-stranded genomes. PMID:28420220
Finite Element Analysis of a Copper Single Crystal Shape Memory Alloy-Based Endodontic Instruments
NASA Astrophysics Data System (ADS)
Vincent, Marin; Thiebaud, Frédéric; Bel Haj Khalifa, Saifeddine; Engels-Deutsch, Marc; Ben Zineb, Tarak
2015-10-01
The aim of the present paper is the development of endodontic Cu-based single crystal Shape Memory Alloy (SMA) instruments in order to eliminate the antimicrobial and mechanical deficiencies observed with the conventional Nickel-Titane (NiTi) SMA files. A thermomechanical constitutive law, already developed and implemented in a finite element code by our research group, is adopted for the simulation of the single crystal SMA behavior. The corresponding material parameters were identified starting from experimental results for a tensile test at room temperature. A computer-aided design geometry has been achieved and considered for a finite element structural analysis of the endodontic Cu-based single crystal SMA files. They are meshed with tetrahedral continuum elements to improve the computation time and the accuracy of results. The geometric parameters tested in this study are the length of the active blade, the rod length, the pitch, the taper, the tip diameter, and the rod diameter. For each set of adopted parameters, a finite element model is built and tested in a combined bending-torsion loading in accordance with ISO 3630-1 norm. The numerical analysis based on finite element procedure allowed purposing an optimal geometry suitable for Cu-based single crystal SMA endodontic files. The same analysis was carried out for the classical NiTi SMA files and a comparison was made between the two kinds of files. It showed that Cu-based single crystal SMA files are less stiff than the NiTi files. The Cu-based endodontic files could be used to improve the root canal treatments. However, the finite element analysis brought out the need for further investigation based on experiments.
Automatic removal of cosmic ray signatures in Deep Impact images
NASA Astrophysics Data System (ADS)
Ipatov, S. I.; A'Hearn, M. F.; Klaasen, K. P.
The results of recognition of cosmic ray (CR) signatures on single images made during the Deep Impact mission were analyzed for several codes written by several authors. For automatic removal of CR signatures on many images, we suggest using the code imgclean ( http://pdssbn.astro.umd.edu/volume/didoc_0001/document/calibration_software/dical_v5/) written by E. Deutsch as other codes considered do not work properly automatically with a large number of images and do not run to completion for some images; however, other codes can be better for analysis of certain specific images. Sometimes imgclean detects false CR signatures near the edge of a comet nucleus, and it often does not recognize all pixels of long CR signatures. Our code rmcr is the only code among those considered that allows one to work with raw images. For most visual images made during low solar activity at exposure time t > 4 s, the number of clusters of bright pixels on an image per second per sq. cm of CCD was about 2-4, both for dark and normal sky images. At high solar activity, it sometimes exceeded 10. The ratio of the number of CR signatures consisting of n pixels obtained at high solar activity to that at low solar activity was greater for greater n. The number of clusters detected as CR signatures on a single infrared image is by at least a factor of several greater than the actual number of CR signatures; the number of clusters based on analysis of two successive dark infrared frames is in agreement with an expected number of CR signatures. Some glitches of false CR signatures include bright pixels repeatedly present on different infrared images. Our interactive code imr allows a user to choose the regions on a considered image where glitches detected by imgclean as CR signatures are ignored. In other regions chosen by the user, the brightness of some pixels is replaced by the local median brightness if the brightness of these pixels is greater by some factor than the median brightness. The interactive code allows one to delete long CR signatures and prevents removal of false CR signatures near the edge of the nucleus of the comet. The interactive code can be applied to editing any digital images. Results obtained can be used for other missions to comets.
Comparison of SPHC Hydrocode Results with Penetration Equations and Results of Other Codes
NASA Technical Reports Server (NTRS)
Evans, Steven W.; Stallworth, Roderick; Stellingwerf, Robert F.
2004-01-01
The SPHC hydrodynamic code was used to simulate impacts of spherical aluminum projectiles on a single-wall aluminum plate and on a generic Whipple shield. Simulations were carried out in two and three dimensions. Projectile speeds ranged from 2 kilometers per second to 10 kilometers per second for the single-wall runs, and from 3 kilometers per second to 40 kilometers per second for the Whipple shield runs. Spallation limit results of the single-wall simulations are compared with predictions from five standard penetration equations, and are shown to fall comfortably within the envelope of these analytical relations. Ballistic limit results of the Whipple shield simulations are compared with results from the AUTODYN-2D and PAM-SHOCK-3D codes presented in a paper at the Hypervelocity Impact Symposium 2000 and the Christiansen formulation of 2003.
GRay: A MASSIVELY PARALLEL GPU-BASED CODE FOR RAY TRACING IN RELATIVISTIC SPACETIMES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, Chi-kwan; Psaltis, Dimitrios; Özel, Feryal
We introduce GRay, a massively parallel integrator designed to trace the trajectories of billions of photons in a curved spacetime. This graphics-processing-unit (GPU)-based integrator employs the stream processing paradigm, is implemented in CUDA C/C++, and runs on nVidia graphics cards. The peak performance of GRay using single-precision floating-point arithmetic on a single GPU exceeds 300 GFLOP (or 1 ns per photon per time step). For a realistic problem, where the peak performance cannot be reached, GRay is two orders of magnitude faster than existing central-processing-unit-based ray-tracing codes. This performance enhancement allows more effective searches of large parameter spaces when comparingmore » theoretical predictions of images, spectra, and light curves from the vicinities of compact objects to observations. GRay can also perform on-the-fly ray tracing within general relativistic magnetohydrodynamic algorithms that simulate accretion flows around compact objects. Making use of this algorithm, we calculate the properties of the shadows of Kerr black holes and the photon rings that surround them. We also provide accurate fitting formulae of their dependencies on black hole spin and observer inclination, which can be used to interpret upcoming observations of the black holes at the center of the Milky Way, as well as M87, with the Event Horizon Telescope.« less
Mistranslation: from adaptations to applications.
Hoffman, Kyle S; O'Donoghue, Patrick; Brandl, Christopher J
2017-11-01
The conservation of the genetic code indicates that there was a single origin, but like all genetic material, the cell's interpretation of the code is subject to evolutionary pressure. Single nucleotide variations in tRNA sequences can modulate codon assignments by altering codon-anticodon pairing or tRNA charging. Either can increase translation errors and even change the code. The frozen accident hypothesis argued that changes to the code would destabilize the proteome and reduce fitness. In studies of model organisms, mistranslation often acts as an adaptive response. These studies reveal evolutionary conserved mechanisms to maintain proteostasis even during high rates of mistranslation. This review discusses the evolutionary basis of altered genetic codes, how mistranslation is identified, and how deviations to the genetic code are exploited. We revisit early discoveries of genetic code deviations and provide examples of adaptive mistranslation events in nature. Lastly, we highlight innovations in synthetic biology to expand the genetic code. The genetic code is still evolving. Mistranslation increases proteomic diversity that enables cells to survive stress conditions or suppress a deleterious allele. Genetic code variants have been identified by genome and metagenome sequence analyses, suppressor genetics, and biochemical characterization. Understanding the mechanisms of translation and genetic code deviations enables the design of new codes to produce novel proteins. Engineering the translation machinery and expanding the genetic code to incorporate non-canonical amino acids are valuable tools in synthetic biology that are impacting biomedical research. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.
LDPC coded OFDM over the atmospheric turbulence channel.
Djordjevic, Ivan B; Vasic, Bane; Neifeld, Mark A
2007-05-14
Low-density parity-check (LDPC) coded optical orthogonal frequency division multiplexing (OFDM) is shown to significantly outperform LDPC coded on-off keying (OOK) over the atmospheric turbulence channel in terms of both coding gain and spectral efficiency. In the regime of strong turbulence at a bit-error rate of 10(-5), the coding gain improvement of the LDPC coded single-side band unclipped-OFDM system with 64 sub-carriers is larger than the coding gain of the LDPC coded OOK system by 20.2 dB for quadrature-phase-shift keying (QPSK) and by 23.4 dB for binary-phase-shift keying (BPSK).
New double-byte error-correcting codes for memory systems
NASA Technical Reports Server (NTRS)
Feng, Gui-Liang; Wu, Xinen; Rao, T. R. N.
1996-01-01
Error-correcting or error-detecting codes have been used in the computer industry to increase reliability, reduce service costs, and maintain data integrity. The single-byte error-correcting and double-byte error-detecting (SbEC-DbED) codes have been successfully used in computer memory subsystems. There are many methods to construct double-byte error-correcting (DBEC) codes. In the present paper we construct a class of double-byte error-correcting codes, which are more efficient than those known to be optimum, and a decoding procedure for our codes is also considered.
NASA Astrophysics Data System (ADS)
Zhang, Baocheng; Teunissen, Peter J. G.; Yuan, Yunbin; Zhang, Hongxing; Li, Min
2018-04-01
Vertical total electron content (VTEC) parameters estimated using global navigation satellite system (GNSS) data are of great interest for ionosphere sensing. Satellite differential code biases (SDCBs) account for one source of error which, if left uncorrected, can deteriorate performance of positioning, timing and other applications. The customary approach to estimate VTEC along with SDCBs from dual-frequency GNSS data, hereinafter referred to as DF approach, consists of two sequential steps. The first step seeks to retrieve ionospheric observables through the carrier-to-code leveling technique. This observable, related to the slant total electron content (STEC) along the satellite-receiver line-of-sight, is biased also by the SDCBs and the receiver differential code biases (RDCBs). By means of thin-layer ionospheric model, in the second step one is able to isolate the VTEC, the SDCBs and the RDCBs from the ionospheric observables. In this work, we present a single-frequency (SF) approach, enabling the joint estimation of VTEC and SDCBs using low-cost receivers; this approach is also based on two steps and it differs from the DF approach only in the first step, where we turn to the precise point positioning technique to retrieve from the single-frequency GNSS data the ionospheric observables, interpreted as the combination of the STEC, the SDCBs and the biased receiver clocks at the pivot epoch. Our numerical analyses clarify how SF approach performs when being applied to GPS L1 data collected by a single receiver under both calm and disturbed ionospheric conditions. The daily time series of zenith VTEC estimates has an accuracy ranging from a few tenths of a TEC unit (TECU) to approximately 2 TECU. For 73-96% of GPS satellites in view, the daily estimates of SDCBs do not deviate, in absolute value, more than 1 ns from their ground truth values published by the Centre for Orbit Determination in Europe.
Geospace simulations using modern accelerator processor technology
NASA Astrophysics Data System (ADS)
Germaschewski, K.; Raeder, J.; Larson, D. J.
2009-12-01
OpenGGCM (Open Geospace General Circulation Model) is a well-established numerical code simulating the Earth's space environment. The most computing intensive part is the MHD (magnetohydrodynamics) solver that models the plasma surrounding Earth and its interaction with Earth's magnetic field and the solar wind flowing in from the sun. Like other global magnetosphere codes, OpenGGCM's realism is currently limited by computational constraints on grid resolution. OpenGGCM has been ported to make use of the added computational powerof modern accelerator based processor architectures, in particular the Cell processor. The Cell architecture is a novel inhomogeneous multicore architecture capable of achieving up to 230 GFLops on a single chip. The University of New Hampshire recently acquired a PowerXCell 8i based computing cluster, and here we will report initial performance results of OpenGGCM. Realizing the high theoretical performance of the Cell processor is a programming challenge, though. We implemented the MHD solver using a multi-level parallelization approach: On the coarsest level, the problem is distributed to processors based upon the usual domain decomposition approach. Then, on each processor, the problem is divided into 3D columns, each of which is handled by the memory limited SPEs (synergistic processing elements) slice by slice. Finally, SIMD instructions are used to fully exploit the SIMD FPUs in each SPE. Memory management needs to be handled explicitly by the code, using DMA to move data from main memory to the per-SPE local store and vice versa. We use a modern technique, automatic code generation, which shields the application programmer from having to deal with all of the implementation details just described, keeping the code much more easily maintainable. Our preliminary results indicate excellent performance, a speed-up of a factor of 30 compared to the unoptimized version.
Chen, Ke; Feng, Yijun; Yang, Zhongjie; Cui, Li; Zhao, Junming; Zhu, Bo; Jiang, Tian
2016-10-24
Ultrathin metasurface compromising various sub-wavelength meta-particles offers promising advantages in controlling electromagnetic wave by spatially manipulating the wavefront characteristics across the interface. The recently proposed digital coding metasurface could even simplify the design and optimization procedures due to the digitalization of the meta-particle geometry. However, current attempts to implement the digital metasurface still utilize several structural meta-particles to obtain certain electromagnetic responses, and requiring time-consuming optimization especially in multi-bits coding designs. In this regard, we present herein utilizing geometric phase based single structured meta-particle with various orientations to achieve either 1-bit or multi-bits digital metasurface. Particular electromagnetic wave scattering patterns dependent on the incident polarizations can be tailored by the encoded metasurfaces with regular sequences. On the contrast, polarization insensitive diffusion-like scattering can also been successfully achieved by digital metasurface encoded with randomly distributed coding sequences leading to substantial suppression of backward scattering in a broadband microwave frequency. The proposed digital metasurfaces provide simple designs and reveal new opportunities for controlling electromagnetic wave scattering with or without polarization dependence.
Chen, Ke; Feng, Yijun; Yang, Zhongjie; Cui, Li; Zhao, Junming; Zhu, Bo; Jiang, Tian
2016-01-01
Ultrathin metasurface compromising various sub-wavelength meta-particles offers promising advantages in controlling electromagnetic wave by spatially manipulating the wavefront characteristics across the interface. The recently proposed digital coding metasurface could even simplify the design and optimization procedures due to the digitalization of the meta-particle geometry. However, current attempts to implement the digital metasurface still utilize several structural meta-particles to obtain certain electromagnetic responses, and requiring time-consuming optimization especially in multi-bits coding designs. In this regard, we present herein utilizing geometric phase based single structured meta-particle with various orientations to achieve either 1-bit or multi-bits digital metasurface. Particular electromagnetic wave scattering patterns dependent on the incident polarizations can be tailored by the encoded metasurfaces with regular sequences. On the contrast, polarization insensitive diffusion-like scattering can also been successfully achieved by digital metasurface encoded with randomly distributed coding sequences leading to substantial suppression of backward scattering in a broadband microwave frequency. The proposed digital metasurfaces provide simple designs and reveal new opportunities for controlling electromagnetic wave scattering with or without polarization dependence. PMID:27775064
Planet-disc interactions with Discontinuous Galerkin Methods using GPUs
NASA Astrophysics Data System (ADS)
Velasco Romero, David A.; Veiga, Maria Han; Teyssier, Romain; Masset, Frédéric S.
2018-05-01
We present a two-dimensional Cartesian code based on high order discontinuous Galerkin methods, implemented to run in parallel over multiple GPUs. A simple planet-disc setup is used to compare the behaviour of our code against the behaviour found using the FARGO3D code with a polar mesh. We make use of the time dependence of the torque exerted by the disc on the planet as a mean to quantify the numerical viscosity of the code. We find that the numerical viscosity of the Keplerian flow can be as low as a few 10-8r2Ω, r and Ω being respectively the local orbital radius and frequency, for fifth order schemes and resolution of ˜10-2r. Although for a single disc problem a solution of low numerical viscosity can be obtained at lower computational cost with FARGO3D (which is nearly an order of magnitude faster than a fifth order method), discontinuous Galerkin methods appear promising to obtain solutions of low numerical viscosity in more complex situations where the flow cannot be captured on a polar or spherical mesh concentric with the disc.
High-speed reacting flow simulation using USA-series codes
NASA Astrophysics Data System (ADS)
Chakravarthy, S. R.; Palaniswamy, S.
In this paper, the finite-rate chemistry (FRC) formulation for the USA-series of codes and three sets of validations are presented. USA-series computational fluid dynamics (CFD) codes are based on Unified Solution Algorithms including explicity and implicit formulations, factorization and relaxation approaches, time marching and space marching methodolgies, etc., in order to be able to solve a very wide class of CDF problems using a single framework. Euler or Navier-Stokes equations are solved using a finite-volume treatment with upwind Total Variation Diminishing discretization for the inviscid terms. Perfect and real gas options are available including equilibrium and nonequilibrium chemistry. This capability has been widely used to study various problems including Space Shuttle exhaust plumes, National Aerospace Plane (NASP) designs, etc. (1) Numerical solutions are presented showing the full range of possible solutions to steady detonation wave problems. (2) Comparison between the solution obtained by the USA code and Generalized Kinetics Analysis Program (GKAP) is shown for supersonic combustion in a duct. (3) Simulation of combustion in a supersonic shear layer is shown to have reasonable agreement with experimental observations.
New t-gap insertion-deletion-like metrics for DNA hybridization thermodynamic modeling.
D'yachkov, Arkadii G; Macula, Anthony J; Pogozelski, Wendy K; Renz, Thomas E; Rykov, Vyacheslav V; Torney, David C
2006-05-01
We discuss the concept of t-gap block isomorphic subsequences and use it to describe new abstract string metrics that are similar to the Levenshtein insertion-deletion metric. Some of the metrics that we define can be used to model a thermodynamic distance function on single-stranded DNA sequences. Our model captures a key aspect of the nearest neighbor thermodynamic model for hybridized DNA duplexes. One version of our metric gives the maximum number of stacked pairs of hydrogen bonded nucleotide base pairs that can be present in any secondary structure in a hybridized DNA duplex without pseudoknots. Thermodynamic distance functions are important components in the construction of DNA codes, and DNA codes are important components in biomolecular computing, nanotechnology, and other biotechnical applications that employ DNA hybridization assays. We show how our new distances can be calculated by using a dynamic programming method, and we derive a Varshamov-Gilbert-like lower bound on the size of some of codes using these distance functions as constraints. We also discuss software implementation of our DNA code design methods.
Experimental Evaluation of Adaptive Modulation and Coding in MIMO WiMAX with Limited Feedback
NASA Astrophysics Data System (ADS)
Mehlführer, Christian; Caban, Sebastian; Rupp, Markus
2007-12-01
We evaluate the throughput performance of an OFDM WiMAX (IEEE 802.16-2004, Section 8.3) transmission system with adaptive modulation and coding (AMC) by outdoor measurements. The standard compliant AMC utilizes a 3-bit feedback for SISO and Alamouti coded MIMO transmissions. By applying a 6-bit feedback and spatial multiplexing with individual AMC on the two transmit antennas, the data throughput can be increased significantly for large SNR values. Our measurements show that at small SNR values, a single antenna transmission often outperforms an Alamouti transmission. We found that this effect is caused by the asymmetric behavior of the wireless channel and by poor channel knowledge in the two-transmit-antenna case. Our performance evaluation is based on a measurement campaign employing the Vienna MIMO testbed. The measurement scenarios include typical outdoor-to-indoor NLOS, outdoor-to-outdoor NLOS, as well as outdoor-to-indoor LOS connections. We found that in all these scenarios, the measured throughput is far from its achievable maximum; the loss is mainly caused by a too simple convolutional coding.
Constructing LDPC Codes from Loop-Free Encoding Modules
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Dolinar, Samuel; Jones, Christopher; Thorpe, Jeremy; Andrews, Kenneth
2009-01-01
A method of constructing certain low-density parity-check (LDPC) codes by use of relatively simple loop-free coding modules has been developed. The subclasses of LDPC codes to which the method applies includes accumulate-repeat-accumulate (ARA) codes, accumulate-repeat-check-accumulate codes, and the codes described in Accumulate-Repeat-Accumulate-Accumulate Codes (NPO-41305), NASA Tech Briefs, Vol. 31, No. 9 (September 2007), page 90. All of the affected codes can be characterized as serial/parallel (hybrid) concatenations of such relatively simple modules as accumulators, repetition codes, differentiators, and punctured single-parity check codes. These are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. These codes can also be characterized as hybrid turbolike codes that have projected graph or protograph representations (for example see figure); these characteristics make it possible to design high-speed iterative decoders that utilize belief-propagation algorithms. The present method comprises two related submethods for constructing LDPC codes from simple loop-free modules with circulant permutations. The first submethod is an iterative encoding method based on the erasure-decoding algorithm. The computations required by this method are well organized because they involve a parity-check matrix having a block-circulant structure. The second submethod involves the use of block-circulant generator matrices. The encoders of this method are very similar to those of recursive convolutional codes. Some encoders according to this second submethod have been implemented in a small field-programmable gate array that operates at a speed of 100 megasymbols per second. By use of density evolution (a computational- simulation technique for analyzing performances of LDPC codes), it has been shown through some examples that as the block size goes to infinity, low iterative decoding thresholds close to channel capacity limits can be achieved for the codes of the type in question having low maximum variable node degrees. The decoding thresholds in these examples are lower than those of the best-known unstructured irregular LDPC codes constrained to have the same maximum node degrees. Furthermore, the present method enables the construction of codes of any desired rate with thresholds that stay uniformly close to their respective channel capacity thresholds.
NASA Technical Reports Server (NTRS)
Lin, Shu; Rhee, Dojun
1996-01-01
This paper is concerned with construction of multilevel concatenated block modulation codes using a multi-level concatenation scheme for the frequency non-selective Rayleigh fading channel. In the construction of multilevel concatenated modulation code, block modulation codes are used as the inner codes. Various types of codes (block or convolutional, binary or nonbinary) are being considered as the outer codes. In particular, we focus on the special case for which Reed-Solomon (RS) codes are used as the outer codes. For this special case, a systematic algebraic technique for constructing q-level concatenated block modulation codes is proposed. Codes have been constructed for certain specific values of q and compared with the single-level concatenated block modulation codes using the same inner codes. A multilevel closest coset decoding scheme for these codes is proposed.
Aerodynamic and heat transfer analysis of the low aspect ratio turbine using a 3D Navier-Stokes code
NASA Astrophysics Data System (ADS)
Choi, D.; Knight, C. J.
1991-06-01
The single-stage, high-pressure ratio Garrett Low Aspect Ratio Turbine (LART) test data obtained in a shock tunnel are employed as a basis for evaluating a new three-dimensional Navier Stokes code based on the O-H grid system. It uses Coakley's two-equation turbulence modeling with viscous sublayer resolution. For the nozzle guide vanes, calculations were made based on two grid zones: an O-grid zone wrapping around airfoil and an H-grid zone outside of the O-grid zone, including the regions upstream of the leadig edge and downstream of the trailing edge. For the rotor blade row, a third O-grid zone was added for the tip-gap region leakage flow. The computational results compare well with experiment. These comparisons include heat transfer distributions on the airfoils and end-walls. The leakage flow through the tip-gap clearance is well resolved.
Applang - A DSL for specification of mobile applications for android platform based on textX
NASA Astrophysics Data System (ADS)
Kosanović, Milan; Dejanović, Igor; Milosavljević, Gordana
2016-06-01
Mobile platforms become a ubiquitous part of our daily lives thus making more pressure to software developers to develop more applications faster and with the support for different mobile operating systems. To foster the faster development of mobile services and applications and to support various mobile operating systems a new software development approaches must be undertaken. Domain-Specific Languages (DSL) are a viable approach that promise to solve a problem of target platform diversity as well as to facilitate rapid application development and shorter time-to-market. This paper presents Applang, a DSL for the specification of mobile applications for the Android platform, based on textX meta-language. The application is described using Applang DSL and the source code for a target platform is automatically generated by the provided code generator. The same application defined using single Applang source can be transformed to various targets with little or no manual modifications.
Large CMOS imager using hadamard transform based multiplexing
NASA Technical Reports Server (NTRS)
Karasik, Boris S.; Wadsworth, Mark V.
2005-01-01
We have developed a concept design for a large (10k x 10k) CMOS imaging array whose elements are grouped in small subarrays with N pixels in each. The subarrays are code-division multiplexed using the Hadamard Transform (HT) based encoding. The Hadamard code improves the signal-to-noise (SNR) ratio to the reference of the read-out amplifier by a factor of N^1/2. This way of grouping pixels reduces the number of hybridization bumps by N. A single chip layout has been designed and the architecture of the imager has been developed to accommodate the HT base multiplexing into the existing CMOS technology. The imager architecture allows for a trade-off between the speed and the sensitivity. The envisioned imager would operate at a speed >100 fps with the pixel noise < 20 e-. The power dissipation would be 100 pW/pixe1. The combination of the large format, high speed, high sensitivity and low power dissipation can be very attractive for space reconnaissance applications.
Ka-Band ARM Zenith Radar Corrections Value-Added Product
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Karen; Toto, Tami; Giangrande, Scott
The KAZRCOR Value -added Product (VAP) performs several corrections to the ingested KAZR moments and also creates a significant detection mask for each radar mode. The VAP computes gaseous attenuation as a function of time and radial distance from the radar antenna, based on ambient meteorological observations, and corrects observed reflectivities for that effect. KAZRCOR also dealiases mean Doppler velocities to correct velocities whose magnitudes exceed the radar’s Nyquist velocity. Input KAZR data fields are passed through into the KAZRCOR output files, in their native time and range coordinates. Complementary corrected reflectivity and velocity fields are provided, along with amore » mask of significant detections and a number of data quality flags. This report covers the KAZRCOR VAP as applied to the original KAZR radars and the upgraded KAZR2 radars. Currently there are two separate code bases for the different radar versions, but once KAZR and KAZR2 data formats are harmonized, only a single code base will be required.« less
NASA Astrophysics Data System (ADS)
Wei, Chengying; Xiong, Cuilian; Liu, Huanlin
2017-12-01
Maximal multicast stream algorithm based on network coding (NC) can improve the network's throughput for wavelength-division multiplexing (WDM) networks, which however is far less than the network's maximal throughput in terms of theory. And the existing multicast stream algorithms do not give the information distribution pattern and routing in the meantime. In the paper, an improved genetic algorithm is brought forward to maximize the optical multicast throughput by NC and to determine the multicast stream distribution by hybrid chromosomes construction for multicast with single source and multiple destinations. The proposed hybrid chromosomes are constructed by the binary chromosomes and integer chromosomes, while the binary chromosomes represent optical multicast routing and the integer chromosomes indicate the multicast stream distribution. A fitness function is designed to guarantee that each destination can receive the maximum number of decoding multicast streams. The simulation results showed that the proposed method is far superior over the typical maximal multicast stream algorithms based on NC in terms of network throughput in WDM networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Andrew; Lawrence, Earl
The Response Surface Modeling (RSM) Tool Suite is a collection of three codes used to generate an empirical interpolation function for a collection of drag coefficient calculations computed with Test Particle Monte Carlo (TPMC) simulations. The first code, "Automated RSM", automates the generation of a drag coefficient RSM for a particular object to a single command. "Automated RSM" first creates a Latin Hypercube Sample (LHS) of 1,000 ensemble members to explore the global parameter space. For each ensemble member, a TPMC simulation is performed and the object drag coefficient is computed. In the next step of the "Automated RSM" code,more » a Gaussian process is used to fit the TPMC simulations. In the final step, Markov Chain Monte Carlo (MCMC) is used to evaluate the non-analytic probability distribution function from the Gaussian process. The second code, "RSM Area", creates a look-up table for the projected area of the object based on input limits on the minimum and maximum allowed pitch and yaw angles and pitch and yaw angle intervals. The projected area from the look-up table is used to compute the ballistic coefficient of the object based on its pitch and yaw angle. An accurate ballistic coefficient is crucial in accurately computing the drag on an object. The third code, "RSM Cd", uses the RSM generated by the "Automated RSM" code and the projected area look-up table generated by the "RSM Area" code to accurately compute the drag coefficient and ballistic coefficient of the object. The user can modify the object velocity, object surface temperature, the translational temperature of the gas, the species concentrations of the gas, and the pitch and yaw angles of the object. Together, these codes allow for the accurate derivation of an object's drag coefficient and ballistic coefficient under any conditions with only knowledge of the object's geometry and mass.« less
Timofeeva, Maria N.; Kinnersley, Ben; Farrington, Susan M.; Whiffin, Nicola; Palles, Claire; Svinti, Victoria; Lloyd, Amy; Gorman, Maggie; Ooi, Li-Yin; Hosking, Fay; Barclay, Ella; Zgaga, Lina; Dobbins, Sara; Martin, Lynn; Theodoratou, Evropi; Broderick, Peter; Tenesa, Albert; Smillie, Claire; Grimes, Graeme; Hayward, Caroline; Campbell, Archie; Porteous, David; Deary, Ian J.; Harris, Sarah E.; Northwood, Emma L.; Barrett, Jennifer H.; Smith, Gillian; Wolf, Roland; Forman, David; Morreau, Hans; Ruano, Dina; Tops, Carli; Wijnen, Juul; Schrumpf, Melanie; Boot, Arnoud; Vasen, Hans F A; Hes, Frederik J.; van Wezel, Tom; Franke, Andre; Lieb, Wolgang; Schafmayer, Clemens; Hampe, Jochen; Buch, Stephan; Propping, Peter; Hemminki, Kari; Försti, Asta; Westers, Helga; Hofstra, Robert; Pinheiro, Manuela; Pinto, Carla; Teixeira, Manuel; Ruiz-Ponte, Clara; Fernández-Rozadilla, Ceres; Carracedo, Angel; Castells, Antoni; Castellví-Bel, Sergi; Campbell, Harry; Bishop, D. Timothy; Tomlinson, Ian P M; Dunlop, Malcolm G.; Houlston, Richard S.
2015-01-01
Whilst common genetic variation in many non-coding genomic regulatory regions are known to impart risk of colorectal cancer (CRC), much of the heritability of CRC remains unexplained. To examine the role of recurrent coding sequence variation in CRC aetiology, we genotyped 12,638 CRCs cases and 29,045 controls from six European populations. Single-variant analysis identified a coding variant (rs3184504) in SH2B3 (12q24) associated with CRC risk (OR = 1.08, P = 3.9 × 10−7), and novel damaging coding variants in 3 genes previously tagged by GWAS efforts; rs16888728 (8q24) in UTP23 (OR = 1.15, P = 1.4 × 10−7); rs6580742 and rs12303082 (12q13) in FAM186A (OR = 1.11, P = 1.2 × 10−7 and OR = 1.09, P = 7.4 × 10−8); rs1129406 (12q13) in ATF1 (OR = 1.11, P = 8.3 × 10−9), all reaching exome-wide significance levels. Gene based tests identified associations between CRC and PCDHGA genes (P < 2.90 × 10−6). We found an excess of rare, damaging variants in base-excision (P = 2.4 × 10−4) and DNA mismatch repair genes (P = 6.1 × 10−4) consistent with a recessive mode of inheritance. This study comprehensively explores the contribution of coding sequence variation to CRC risk, identifying associations with coding variation in 4 genes and PCDHG gene cluster and several candidate recessive alleles. However, these findings suggest that recurrent, low-frequency coding variants account for a minority of the unexplained heritability of CRC. PMID:26553438
Single-shot secure quantum network coding on butterfly network with free public communication
NASA Astrophysics Data System (ADS)
Owari, Masaki; Kato, Go; Hayashi, Masahito
2018-01-01
Quantum network coding on the butterfly network has been studied as a typical example of quantum multiple cast network. We propose a secure quantum network code for the butterfly network with free public classical communication in the multiple unicast setting under restricted eavesdropper’s power. This protocol certainly transmits quantum states when there is no attack. We also show the secrecy with shared randomness as additional resource when the eavesdropper wiretaps one of the channels in the butterfly network and also derives the information sending through public classical communication. Our protocol does not require verification process, which ensures single-shot security.
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Srivastava, R.
1996-01-01
This guide describes the input data required for using MSAP2D (Multi Stage Aeroelastic analysis Program - Two Dimensional) computer code. MSAP2D can be used for steady, unsteady aerodynamic, and aeroelastic (flutter and forced response) analysis of bladed disks arranged in multiple blade rows such as those found in compressors, turbines, counter rotating propellers or propfans. The code can also be run for single blade row. MSAP2D code is an extension of the original NPHASE code for multiblade row aerodynamic and aeroelastic analysis. Euler equations are used to obtain aerodynamic forces. The structural dynamic equations are written for a rigid typical section undergoing pitching (torsion) and plunging (bending) motion. The aeroelastic equations are solved in time domain. For single blade row analysis, frequency domain analysis is also provided to obtain unsteady aerodynamic coefficients required in an eigen analysis for flutter. In this manual, sample input and output are provided for a single blade row example, two blade row example with equal and unequal number of blades in the blade rows.
Patch-based Adaptive Mesh Refinement for Multimaterial Hydrodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lomov, I; Pember, R; Greenough, J
2005-10-18
We present a patch-based direct Eulerian adaptive mesh refinement (AMR) algorithm for modeling real equation-of-state, multimaterial compressible flow with strength. Our approach to AMR uses a hierarchical, structured grid approach first developed by (Berger and Oliger 1984), (Berger and Oliger 1984). The grid structure is dynamic in time and is composed of nested uniform rectangular grids of varying resolution. The integration scheme on the grid hierarchy is a recursive procedure in which the coarse grids are advanced, then the fine grids are advanced multiple steps to reach the same time, and finally the coarse and fine grids are synchronized tomore » remove conservation errors during the separate advances. The methodology presented here is based on a single grid algorithm developed for multimaterial gas dynamics by (Colella et al. 1993), refined by(Greenough et al. 1995), and extended to the solution of solid mechanics problems with significant strength by (Lomov and Rubin 2003). The single grid algorithm uses a second-order Godunov scheme with an approximate single fluid Riemann solver and a volume-of-fluid treatment of material interfaces. The method also uses a non-conservative treatment of the deformation tensor and an acoustic approximation for shear waves in the Riemann solver. This departure from a strict application of the higher-order Godunov methodology to the equation of solid mechanics is justified due to the fact that highly nonlinear behavior of shear stresses is rare. This algorithm is implemented in two codes, Geodyn and Raptor, the latter of which is a coupled rad-hydro code. The present discussion will be solely concerned with hydrodynamics modeling. Results from a number of simulations for flows with and without strength will be presented.« less
ALEGRA -- A massively parallel h-adaptive code for solid dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Summers, R.M.; Wong, M.K.; Boucheron, E.A.
1997-12-31
ALEGRA is a multi-material, arbitrary-Lagrangian-Eulerian (ALE) code for solid dynamics designed to run on massively parallel (MP) computers. It combines the features of modern Eulerian shock codes, such as CTH, with modern Lagrangian structural analysis codes using an unstructured grid. ALEGRA is being developed for use on the teraflop supercomputers to conduct advanced three-dimensional (3D) simulations of shock phenomena important to a variety of systems. ALEGRA was designed with the Single Program Multiple Data (SPMD) paradigm, in which the mesh is decomposed into sub-meshes so that each processor gets a single sub-mesh with approximately the same number of elements. Usingmore » this approach the authors have been able to produce a single code that can scale from one processor to thousands of processors. A current major effort is to develop efficient, high precision simulation capabilities for ALEGRA, without the computational cost of using a global highly resolved mesh, through flexible, robust h-adaptivity of finite elements. H-adaptivity is the dynamic refinement of the mesh by subdividing elements, thus changing the characteristic element size and reducing numerical error. The authors are working on several major technical challenges that must be met to make effective use of HAMMER on MP computers.« less
Deep Hashing for Scalable Image Search.
Lu, Jiwen; Liong, Venice Erin; Zhou, Jie
2017-05-01
In this paper, we propose a new deep hashing (DH) approach to learn compact binary codes for scalable image search. Unlike most existing binary codes learning methods, which usually seek a single linear projection to map each sample into a binary feature vector, we develop a deep neural network to seek multiple hierarchical non-linear transformations to learn these binary codes, so that the non-linear relationship of samples can be well exploited. Our model is learned under three constraints at the top layer of the developed deep network: 1) the loss between the compact real-valued code and the learned binary vector is minimized, 2) the binary codes distribute evenly on each bit, and 3) different bits are as independent as possible. To further improve the discriminative power of the learned binary codes, we extend DH into supervised DH (SDH) and multi-label SDH by including a discriminative term into the objective function of DH, which simultaneously maximizes the inter-class variations and minimizes the intra-class variations of the learned binary codes with the single-label and multi-label settings, respectively. Extensive experimental results on eight widely used image search data sets show that our proposed methods achieve very competitive results with the state-of-the-arts.
Code-Switching and Competition: An Examination of a Situational Response
ERIC Educational Resources Information Center
Bernstein, Eve; Herman, Ariela
2014-01-01
Code switching is primarily a linguistic term that refers to the use of two or more languages within the same conversation, or same sentence, to convey a single message. One field of linguistics, sociocultural linguistics, is broad and interdisciplinary, a mixture of language, culture, and society. In sociocultural linguistics, the code, or…
Single Pass Streaming BLAST on FPGAs*†
Herbordt, Martin C.; Model, Josh; Sukhwani, Bharat; Gu, Yongfeng; VanCourt, Tom
2008-01-01
Approximate string matching is fundamental to bioinformatics and has been the subject of numerous FPGA acceleration studies. We address issues with respect to FPGA implementations of both BLAST- and dynamic-programming- (DP) based methods. Our primary contribution is a new algorithm for emulating the seeding and extension phases of BLAST. This operates in a single pass through a database at streaming rate, and with no preprocessing other than loading the query string. Moreover, it emulates parameters turned to maximum possible sensitivity with no slowdown. While current DP-based methods also operate at streaming rate, generating results can be cumbersome. We address this with a new structure for data extraction. We present results from several implementations showing order of magnitude acceleration over serial reference code. A simple extension assures compatibility with NCBI BLAST. PMID:19081828
Simultaneous Excitation of Multiple-Input Multiple-Output CFD-Based Unsteady Aerodynamic Systems
NASA Technical Reports Server (NTRS)
Silva, Walter A.
2008-01-01
A significant improvement to the development of CFD-based unsteady aerodynamic reduced-order models (ROMs) is presented. This improvement involves the simultaneous excitation of the structural modes of the CFD-based unsteady aerodynamic system that enables the computation of the unsteady aerodynamic state-space model using a single CFD execution, independent of the number of structural modes. Four different types of inputs are presented that can be used for the simultaneous excitation of the structural modes. Results are presented for a flexible, supersonic semi-span configuration using the CFL3Dv6.4 code.
Simultaneous Excitation of Multiple-Input Multiple-Output CFD-Based Unsteady Aerodynamic Systems
NASA Technical Reports Server (NTRS)
Silva, Walter A.
2007-01-01
A significant improvement to the development of CFD-based unsteady aerodynamic reduced-order models (ROMs) is presented. This improvement involves the simultaneous excitation of the structural modes of the CFD-based unsteady aerodynamic system that enables the computation of the unsteady aerodynamic state-space model using a single CFD execution, independent of the number of structural modes. Four different types of inputs are presented that can be used for the simultaneous excitation of the structural modes. Results are presented for a flexible, supersonic semi-span configuration using the CFL3Dv6.4 code.
Arthur, Jennifer; Bahran, Rian; Hutchinson, Jesson; ...
2018-06-14
Historically, radiation transport codes have uncorrelated fission emissions. In reality, the particles emitted by both spontaneous and induced fissions are correlated in time, energy, angle, and multiplicity. This work validates the performance of various current Monte Carlo codes that take into account the underlying correlated physics of fission neutrons, specifically neutron multiplicity distributions. The performance of 4 Monte Carlo codes - MCNP®6.2, MCNP®6.2/FREYA, MCNP®6.2/CGMF, and PoliMi - was assessed using neutron multiplicity benchmark experiments. In addition, MCNP®6.2 simulations were run using JEFF-3.2 and JENDL-4.0, rather than ENDF/B-VII.1, data for 239Pu and 240Pu. The sensitive benchmark parameters that in this workmore » represent the performance of each correlated fission multiplicity Monte Carlo code include the singles rate, the doubles rate, leakage multiplication, and Feynman histograms. Although it is difficult to determine which radiation transport code shows the best overall performance in simulating subcritical neutron multiplication inference benchmark measurements, it is clear that correlations exist between the underlying nuclear data utilized by (or generated by) the various codes, and the correlated neutron observables of interest. This could prove useful in nuclear data validation and evaluation applications, in which a particular moment of the neutron multiplicity distribution is of more interest than the other moments. It is also quite clear that, because transport is handled by MCNP®6.2 in 3 of the 4 codes, with the 4th code (PoliMi) being based on an older version of MCNP®, the differences in correlated neutron observables of interest are most likely due to the treatment of fission event generation in each of the different codes, as opposed to the radiation transport.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arthur, Jennifer; Bahran, Rian; Hutchinson, Jesson
Historically, radiation transport codes have uncorrelated fission emissions. In reality, the particles emitted by both spontaneous and induced fissions are correlated in time, energy, angle, and multiplicity. This work validates the performance of various current Monte Carlo codes that take into account the underlying correlated physics of fission neutrons, specifically neutron multiplicity distributions. The performance of 4 Monte Carlo codes - MCNP®6.2, MCNP®6.2/FREYA, MCNP®6.2/CGMF, and PoliMi - was assessed using neutron multiplicity benchmark experiments. In addition, MCNP®6.2 simulations were run using JEFF-3.2 and JENDL-4.0, rather than ENDF/B-VII.1, data for 239Pu and 240Pu. The sensitive benchmark parameters that in this workmore » represent the performance of each correlated fission multiplicity Monte Carlo code include the singles rate, the doubles rate, leakage multiplication, and Feynman histograms. Although it is difficult to determine which radiation transport code shows the best overall performance in simulating subcritical neutron multiplication inference benchmark measurements, it is clear that correlations exist between the underlying nuclear data utilized by (or generated by) the various codes, and the correlated neutron observables of interest. This could prove useful in nuclear data validation and evaluation applications, in which a particular moment of the neutron multiplicity distribution is of more interest than the other moments. It is also quite clear that, because transport is handled by MCNP®6.2 in 3 of the 4 codes, with the 4th code (PoliMi) being based on an older version of MCNP®, the differences in correlated neutron observables of interest are most likely due to the treatment of fission event generation in each of the different codes, as opposed to the radiation transport.« less
Zhao, Zheng; Bai, Jing; Wu, Aiwei; Wang, Yuan; Zhang, Jinwen; Wang, Zishan; Li, Yongsheng; Xu, Juan; Li, Xia
2015-01-01
Long non-coding RNAs (lncRNAs) are emerging as key regulators of diverse biological processes and diseases. However, the combinatorial effects of these molecules in a specific biological function are poorly understood. Identifying co-expressed protein-coding genes of lncRNAs would provide ample insight into lncRNA functions. To facilitate such an effort, we have developed Co-LncRNA, which is a web-based computational tool that allows users to identify GO annotations and KEGG pathways that may be affected by co-expressed protein-coding genes of a single or multiple lncRNAs. LncRNA co-expressed protein-coding genes were first identified in publicly available human RNA-Seq datasets, including 241 datasets across 6560 total individuals representing 28 tissue types/cell lines. Then, the lncRNA combinatorial effects in a given GO annotations or KEGG pathways are taken into account by the simultaneous analysis of multiple lncRNAs in user-selected individual or multiple datasets, which is realized by enrichment analysis. In addition, this software provides a graphical overview of pathways that are modulated by lncRNAs, as well as a specific tool to display the relevant networks between lncRNAs and their co-expressed protein-coding genes. Co-LncRNA also supports users in uploading their own lncRNA and protein-coding gene expression profiles to investigate the lncRNA combinatorial effects. It will be continuously updated with more human RNA-Seq datasets on an annual basis. Taken together, Co-LncRNA provides a web-based application for investigating lncRNA combinatorial effects, which could shed light on their biological roles and could be a valuable resource for this community. Database URL: http://www.bio-bigdata.com/Co-LncRNA/. © The Author(s) 2015. Published by Oxford University Press.
A Data Warehouse to Support Condition Based Maintenance (CBM)
2005-05-01
Application ( VBA ) code sequence to import the original MAST-generated CSV and then create a single output table in DBASE IV format. The DBASE IV format...database architecture (Oracle, Sybase, MS- SQL , etc). This design includes table definitions, comments, specification of table attributes, primary and foreign...built queries and applications. Needs the application developers to construct data views. No SQL programming experience. b. Power Database User - knows
NASA Technical Reports Server (NTRS)
VanZante, Dale; Envia, Edmane
2008-01-01
A CFD-based simulation of single-stage turbine was done using the TURBO code to assess its viability for determining acoustic transmission through blade rows. Temporal and spectral analysis of the unsteady pressure data from the numerical simulations showed the allowable Tyler-Sofrin modes that are consistent with expectations. This indicated that high-fidelity acoustic transmission calculations are feasible with TURBO.
Agent-Based Framework for Discrete Entity Simulations
2006-11-01
Postgres database server for environment queries of neighbors and continuum data. As expected for raw database queries (no database optimizations in...form. Eventually the code was ported to GNU C++ on the same single Intel Pentium 4 CPU running RedHat Linux 9.0 and Postgres database server...Again Postgres was used for environmental queries, and the tool remained relatively slow because of the immense number of queries necessary to assess
Qiu, Jia-jun; Ren, Zhao-rui; Yan, Jing-bin
2016-01-01
Epigenetics regulations have an important role in fertilization and proper embryonic development, and several human diseases are associated with epigenetic modification disorders, such as Rett syndrome, Beckwith-Wiedemann syndrome and Angelman syndrome. However, the dynamics and functions of long non-coding RNAs (lncRNAs), one type of epigenetic regulators, in human pre-implantation development have not yet been demonstrated. In this study, a comprehensive analysis of human and mouse early-stage embryonic lncRNAs was performed based on public single-cell RNA sequencing data. Expression profile analysis revealed that lncRNAs are expressed in a developmental stage–specific manner during human early-stage embryonic development, whereas a more temporal-specific expression pattern was identified in mouse embryos. Weighted gene co-expression network analysis suggested that lncRNAs involved in human early-stage embryonic development are associated with several important functions and processes, such as oocyte maturation, zygotic genome activation and mitochondrial functions. We also found that the network of lncRNAs involved in zygotic genome activation was highly preservative between human and mouse embryos, whereas in other stages no strong correlation between human and mouse embryo was observed. This study provides insight into the molecular mechanism underlying lncRNA involvement in human pre-implantation embryonic development. PMID:27542205
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuppuswamy, M.N.; Hoffmann, J.W.; Spitzer, S.G.
1991-02-15
In this report, the authors describe an approach to detect the presence of abnormal alleles in those genetic diseases in which frequency of occurrence of the same mutation is high (e.g., hemophilia B). Initially, from each subject, the DNA fragment containing the putative mutation site is amplified by the polymerase chain reaction. For each fragment two reaction mixtures are then prepared. Each contains the amplified fragment, a primer (18-mer or longer) whose sequence is identical to the coding sequence of the normal gene immediately flanking the 5{prime} end of the mutation site, and either an {alpha}-{sup 32}P-labeled nucleotide corresponding tomore » the normal coding sequence at the mutation site or an {alpha}-{sup 32}P-labeled nucleotide corresponding to the mutant sequence. An essential feature of the present methodology is that the base immediately 3{prime} to the template-bound primer is one of those altered in the mutant, since in this way an extension of the primer by a single base will give an extended molecule characteristic of either the mutant or the wild type. The method is rapid and should be useful in carrier detection and prenatal diagnosis of every genetic disease with a known sequence variation.« less
A finite-temperature Hartree-Fock code for shell-model Hamiltonians
NASA Astrophysics Data System (ADS)
Bertsch, G. F.; Mehlhaff, J. M.
2016-10-01
The codes HFgradZ.py and HFgradT.py find axially symmetric minima of a Hartree-Fock energy functional for a Hamiltonian supplied in a shell model basis. The functional to be minimized is the Hartree-Fock energy for zero-temperature properties or the Hartree-Fock grand potential for finite-temperature properties (thermal energy, entropy). The minimization may be subjected to additional constraints besides axial symmetry and nucleon numbers. A single-particle operator can be used to constrain the minimization by adding it to the single-particle Hamiltonian with a Lagrange multiplier. One can also constrain its expectation value in the zero-temperature code. Also the orbital filling can be constrained in the zero-temperature code, fixing the number of nucleons having given Kπ quantum numbers. This is particularly useful to resolve near-degeneracies among distinct minima.
Multi-processing on supercomputers for computational aerodynamics
NASA Technical Reports Server (NTRS)
Yarrow, Maurice; Mehta, Unmeel B.
1990-01-01
The MIMD concept is applied, through multitasking, with relatively minor modifications to an existing code for a single processor. This approach maps the available memory to multiple processors, exploiting the C-FORTRAN-Unix interface. An existing single processor algorithm is mapped without the need for developing a new algorithm. The procedure of designing a code utilizing this approach is automated with the Unix stream editor. A Multiple Processor Multiple Grid (MPMG) code is developed as a demonstration of this approach. This code solves the three-dimensional, Reynolds-averaged, thin-layer and slender-layer Navier-Stokes equations with an implicit, approximately factored and diagonalized method. This solver is applied to a generic, oblique-wing aircraft problem on a four-processor computer using one process for data management and nonparallel computations and three processes for pseudotime advance on three different grid systems.
Fourier phase retrieval with a single mask by Douglas-Rachford algorithms.
Chen, Pengwen; Fannjiang, Albert
2018-05-01
The Fourier-domain Douglas-Rachford (FDR) algorithm is analyzed for phase retrieval with a single random mask. Since the uniqueness of phase retrieval solution requires more than a single oversampled coded diffraction pattern, the extra information is imposed in either of the following forms: 1) the sector condition on the object; 2) another oversampled diffraction pattern, coded or uncoded. For both settings, the uniqueness of projected fixed point is proved and for setting 2) the local, geometric convergence is derived with a rate given by a spectral gap condition. Numerical experiments demonstrate global, power-law convergence of FDR from arbitrary initialization for both settings as well as for 3 or more coded diffraction patterns without oversampling. In practice, the geometric convergence can be recovered from the power-law regime by a simple projection trick, resulting in highly accurate reconstruction from generic initialization.
Zhao, Yuan; Yang, Qingrui; Chang, Ye; Pang, Wei; Zhang, Hao; Duan, Xuexin
2017-01-01
This paper demonstrates a novel micro-size (120 μm × 200 μm) piezoelectric gas sensor based on a piezotransduced single-crystal silicon bulk acoustic resonator (PSBAR). The PSBARs operate at 102 MHz and possess high Q values (about 2000), ensuring the stability of the measurement. A corresponding gas sensor array is fabricated by integrating three different self-assembled monolayers (SAMs) modified PSBARs. The limit of detection (LOD) for ethanol vapor is demonstrated to be as low as 25 ppm with a sensitivity of about 1.5 Hz/ppm. Two sets of identification code bars based on the sensitivities and the adsorption energy constants are utilized to successfully discriminate isopropanol (IPA), ethanol, hexane and heptane vapors at low and high gas partial pressures, respectively. The proposed sensor array shows the potential to form a portable electronic nose system for volatile organic compound (VOC) differentiation. PMID:28672852
Zhao, Yuan; Yang, Qingrui; Chang, Ye; Pang, Wei; Zhang, Hao; Duan, Xuexin
2017-06-26
This paper demonstrates a novel micro-size (120 μm × 200 μm) piezoelectric gas sensor based on a piezotransduced single-crystal silicon bulk acoustic resonator (PSBAR). The PSBARs operate at 102 MHz and possess high Q values (about 2000), ensuring the stability of the measurement. A corresponding gas sensor array is fabricated by integrating three different self-assembled monolayers (SAMs) modified PSBARs. The limit of detection (LOD) for ethanol vapor is demonstrated to be as low as 25 ppm with a sensitivity of about 1.5 Hz/ppm. Two sets of identification code bars based on the sensitivities and the adsorption energy constants are utilized to successfully discriminate isopropanol (IPA), ethanol, hexane and heptane vapors at low and high gas partial pressures, respectively. The proposed sensor array shows the potential to form a portable electronic nose system for volatile organic compound (VOC) differentiation.
Droplet microfluidic technology for single-cell high-throughput screening.
Brouzes, Eric; Medkova, Martina; Savenelli, Neal; Marran, Dave; Twardowski, Mariusz; Hutchison, J Brian; Rothberg, Jonathan M; Link, Darren R; Perrimon, Norbert; Samuels, Michael L
2009-08-25
We present a droplet-based microfluidic technology that enables high-throughput screening of single mammalian cells. This integrated platform allows for the encapsulation of single cells and reagents in independent aqueous microdroplets (1 pL to 10 nL volumes) dispersed in an immiscible carrier oil and enables the digital manipulation of these reactors at a very high-throughput. Here, we validate a full droplet screening workflow by conducting a droplet-based cytotoxicity screen. To perform this screen, we first developed a droplet viability assay that permits the quantitative scoring of cell viability and growth within intact droplets. Next, we demonstrated the high viability of encapsulated human monocytic U937 cells over a period of 4 days. Finally, we developed an optically-coded droplet library enabling the identification of the droplets composition during the assay read-out. Using the integrated droplet technology, we screened a drug library for its cytotoxic effect against U937 cells. Taken together our droplet microfluidic platform is modular, robust, uses no moving parts, and has a wide range of potential applications including high-throughput single-cell analyses, combinatorial screening, and facilitating small sample analyses.
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Kalluri, Sreeramesh; Mcgaw, Michael A.
1993-01-01
The influence of primary orientation on the elastic response of a (001)-oriented nickel-base single-crystal superalloy, PWA 1480, was investigated under mechanical, thermal, and combined thermal and mechanical loading conditions using finite element techniques. Elastic stress analyses were performed using the MARC finite element code on a square plate of PWA 1480 material. Primary orientation of the single crystal superalloy was varied in increments of 2 deg, from 0 to 10 deg, from the (001) direction. Two secondary orientations (0 and 45 deg) were considered, with respect to the global coordinate system, as the primary orientation angle was varied. The stresses developed within the single crystal plate were determined for each loading condition. In this paper, the influence of the angular offset between the primary crystal orientation and the loading direction on the elastic stress response of the PWA 1480 plate is presented for different loading conditions. The influence of primary orientation angle, when constrained between the bounds considered, was not found to be as significant as the influence of the secondary orientation angle, which is not typically controlled.
Multi-stage decoding of multi-level modulation codes
NASA Technical Reports Server (NTRS)
Lin, Shu; Kasami, Tadao; Costello, Daniel J., Jr.
1991-01-01
Various types of multi-stage decoding for multi-level modulation codes are investigated. It is shown that if the component codes of a multi-level modulation code and types of decoding at various stages are chosen properly, high spectral efficiency and large coding gain can be achieved with reduced decoding complexity. Particularly, it is shown that the difference in performance between the suboptimum multi-stage soft-decision maximum likelihood decoding of a modulation code and the single-stage optimum soft-decision decoding of the code is very small, only a fraction of dB loss in signal to noise ratio at a bit error rate (BER) of 10(exp -6).
Parametric Studies of the Ejector Process within a Turbine-Based Combined-Cycle Propulsion System
NASA Technical Reports Server (NTRS)
Georgiadis, Nicholas J.; Walker, James F.; Trefny, Charles J.
1999-01-01
Performance characteristics of the ejector process within a turbine-based combined-cycle (TBCC) propulsion system are investigated using the NPARC Navier-Stokes code. The TBCC concept integrates a turbine engine with a ramjet into a single propulsion system that may efficiently operate from takeoff to high Mach number cruise. At the operating point considered, corresponding to a flight Mach number of 2.0, an ejector serves to mix flow from the ramjet duct with flow from the turbine engine. The combined flow then passes through a diffuser where it is mixed with hydrogen fuel and burned. Three sets of fully turbulent Navier-Stokes calculations are compared with predictions from a cycle code developed specifically for the TBCC propulsion system. A baseline ejector system is investigated first. The Navier-Stokes calculations indicate that the flow leaving the ejector is not completely mixed, which may adversely affect the overall system performance. Two additional sets of calculations are presented; one set that investigated a longer ejector region (to enhance mixing) and a second set which also utilized the longer ejector but replaced the no-slip surfaces of the ejector with slip (inviscid) walls in order to resolve discrepancies with the cycle code. The three sets of Navier-Stokes calculations and the TBCC cycle code predictions are compared to determine the validity of each of the modeling approaches.
Application of a GPU-Assisted Maxwell Code to Electromagnetic Wave Propagation in ITER
NASA Astrophysics Data System (ADS)
Kubota, S.; Peebles, W. A.; Woodbury, D.; Johnson, I.; Zolfaghari, A.
2014-10-01
The Low Field Side Reflectometer (LSFR) on ITER is envisioned to provide capabilities for electron density profile and fluctuations measurements in both the plasma core and edge. The current design for the Equatorial Port Plug 11 (EPP11) employs seven monostatic antennas for use with both fixed-frequency and swept-frequency systems. The present work examines the characteristics of this layout using the 3-D version of the GPU-Assisted Maxwell Code (GAMC-3D). Previous studies in this area were performed with either 2-D full wave codes or 3-D ray- and beam-tracing. GAMC-3D is based on the FDTD method and can be run with either a fixed-frequency or modulated (e.g. FMCW) source, and with either a stationary or moving target (e.g. Doppler backscattering). The code is designed to run on a single NVIDIA Tesla GPU accelerator, and utilizes a technique based on the moving window method to overcome the size limitation of the onboard memory. Effects such as beam drift, linear mode conversion, and diffraction/scattering will be examined. Comparisons will be made with beam-tracing calculations using the complex eikonal method. Supported by U.S. DoE Grants DE-FG02-99ER54527 and DE-AC02-09CH11466, and the DoE SULI Program at PPPL.
Security printing of covert quick response codes using upconverting nanoparticle inks
NASA Astrophysics Data System (ADS)
Meruga, Jeevan M.; Cross, William M.; May, P. Stanley; Luu, QuocAnh; Crawford, Grant A.; Kellar, Jon J.
2012-10-01
Counterfeiting costs governments and private industries billions of dollars annually due to loss of value in currency and other printed items. This research involves using lanthanide doped β-NaYF4 nanoparticles for security printing applications. Inks comprised of Yb3+/Er3+ and Yb3+/Tm3+ doped β-NaYF4 nanoparticles with oleic acid as the capping agent in toluene and methyl benzoate with poly(methyl methacrylate) (PMMA) as the binding agent were used to print quick response (QR) codes. The QR codes were made using an AutoCAD file and printed with Optomec direct-write aerosol jetting®. The printed QR codes are invisible under ambient lighting conditions, but are readable using a near-IR laser, and were successfully scanned using a smart phone. This research demonstrates that QR codes, which have been used primarily for information sharing applications, can also be used for security purposes. Higher levels of security were achieved by printing both green and blue upconverting inks, based on combinations of Er3+/Yb3+ and Tm3+/Yb3+, respectively, in a single QR code. The near-infrared (NIR)-to-visible upconversion luminescence properties of the two-ink QR codes were analyzed, including the influence of NIR excitation power density on perceived color, in term of the CIE 1931 chromaticity index. It was also shown that this security ink can be optimized for line width, thickness and stability on different substrates.
Security printing of covert quick response codes using upconverting nanoparticle inks.
Meruga, Jeevan M; Cross, William M; Stanley May, P; Luu, QuocAnh; Crawford, Grant A; Kellar, Jon J
2012-10-05
Counterfeiting costs governments and private industries billions of dollars annually due to loss of value in currency and other printed items. This research involves using lanthanide doped β-NaYF(4) nanoparticles for security printing applications. Inks comprised of Yb(3+)/Er(3+) and Yb(3+)/Tm(3+) doped β-NaYF(4) nanoparticles with oleic acid as the capping agent in toluene and methyl benzoate with poly(methyl methacrylate) (PMMA) as the binding agent were used to print quick response (QR) codes. The QR codes were made using an AutoCAD file and printed with Optomec direct-write aerosol jetting(®). The printed QR codes are invisible under ambient lighting conditions, but are readable using a near-IR laser, and were successfully scanned using a smart phone. This research demonstrates that QR codes, which have been used primarily for information sharing applications, can also be used for security purposes. Higher levels of security were achieved by printing both green and blue upconverting inks, based on combinations of Er(3+)/Yb(3+) and Tm(3+)/Yb(3+), respectively, in a single QR code. The near-infrared (NIR)-to-visible upconversion luminescence properties of the two-ink QR codes were analyzed, including the influence of NIR excitation power density on perceived color, in term of the CIE 1931 chromaticity index. It was also shown that this security ink can be optimized for line width, thickness and stability on different substrates.
Natural language processing of clinical notes for identification of critical limb ischemia.
Afzal, Naveed; Mallipeddi, Vishnu Priya; Sohn, Sunghwan; Liu, Hongfang; Chaudhry, Rajeev; Scott, Christopher G; Kullo, Iftikhar J; Arruda-Olson, Adelaide M
2018-03-01
Critical limb ischemia (CLI) is a complication of advanced peripheral artery disease (PAD) with diagnosis based on the presence of clinical signs and symptoms. However, automated identification of cases from electronic health records (EHRs) is challenging due to absence of a single definitive International Classification of Diseases (ICD-9 or ICD-10) code for CLI. In this study, we extend a previously validated natural language processing (NLP) algorithm for PAD identification to develop and validate a subphenotyping NLP algorithm (CLI-NLP) for identification of CLI cases from clinical notes. We compared performance of the CLI-NLP algorithm with CLI-related ICD-9 billing codes. The gold standard for validation was human abstraction of clinical notes from EHRs. Compared to billing codes the CLI-NLP algorithm had higher positive predictive value (PPV) (CLI-NLP 96%, billing codes 67%, p < 0.001), specificity (CLI-NLP 98%, billing codes 74%, p < 0.001) and F1-score (CLI-NLP 90%, billing codes 76%, p < 0.001). The sensitivity of these two methods was similar (CLI-NLP 84%; billing codes 88%; p < 0.12). The CLI-NLP algorithm for identification of CLI from narrative clinical notes in an EHR had excellent PPV and has potential for translation to patient care as it will enable automated identification of CLI cases for quality projects, clinical decision support tools and support a learning healthcare system. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Kopf, Matthias; Klähn, Stephan; Scholz, Ingeborg; Hess, Wolfgang R; Voß, Björn
2015-04-22
In all studied organisms, a substantial portion of the transcriptome consists of non-coding RNAs that frequently execute regulatory functions. Here, we have compared the primary transcriptomes of the cyanobacteria Synechocystis sp. PCC 6714 and PCC 6803 under 10 different conditions. These strains share 2854 protein-coding genes and a 16S rRNA identity of 99.4%, indicating their close relatedness. Conserved major transcriptional start sites (TSSs) give rise to non-coding transcripts within the sigB gene, from the 5'UTRs of cmpA and isiA, and 168 loci in antisense orientation. Distinct differences include single nucleotide polymorphisms rendering promoters inactive in one of the strains, e.g., for cmpR and for the asRNA PsbA2R. Based on the genome-wide mapped location, regulation and classification of TSSs, non-coding transcripts were identified as the most dynamic component of the transcriptome. We identified a class of mRNAs that originate by read-through from an sRNA that accumulates as a discrete and abundant transcript while also serving as the 5'UTR. Such an sRNA/mRNA structure, which we name 'actuaton', represents another way for bacteria to remodel their transcriptional network. Our findings support the hypothesis that variations in the non-coding transcriptome constitute a major evolutionary element of inter-strain divergence and capability for physiological adaptation.
External-Compression Supersonic Inlet Design Code
NASA Technical Reports Server (NTRS)
Slater, John W.
2011-01-01
A computer code named SUPIN has been developed to perform aerodynamic design and analysis of external-compression, supersonic inlets. The baseline set of inlets include axisymmetric pitot, two-dimensional single-duct, axisymmetric outward-turning, and two-dimensional bifurcated-duct inlets. The aerodynamic methods are based on low-fidelity analytical and numerical procedures. The geometric methods are based on planar geometry elements. SUPIN has three modes of operation: 1) generate the inlet geometry from a explicit set of geometry information, 2) size and design the inlet geometry and analyze the aerodynamic performance, and 3) compute the aerodynamic performance of a specified inlet geometry. The aerodynamic performance quantities includes inlet flow rates, total pressure recovery, and drag. The geometry output from SUPIN includes inlet dimensions, cross-sectional areas, coordinates of planar profiles, and surface grids suitable for input to grid generators for analysis by computational fluid dynamics (CFD) methods. The input data file for SUPIN and the output file from SUPIN are text (ASCII) files. The surface grid files are output as formatted Plot3D or stereolithography (STL) files. SUPIN executes in batch mode and is available as a Microsoft Windows executable and Fortran95 source code with a makefile for Linux.
Yen, Chih-Ta; Chen, Wen-Bin
2016-01-01
Chromatic dispersion from optical fiber is the most important problem that produces temporal skews and destroys the rectangular structure of code patterns in the spectra-amplitude-coding-based optical code-division multiple-access (SAC-OCDMA) system. Thus, the balance detection scheme does not work perfectly to cancel multiple access interference (MAI) and the system performance will be degraded. Orthogonal frequency-division multiplexing (OFDM) is the fastest developing technology in the academic and industrial fields of wireless transmission. In this study, the radio-over-fiber system is realized by integrating OFDM and OCDMA via polarization multiplexing scheme. The electronic dispersion compensation (EDC) equalizer element of OFDM integrated with the dispersion compensation fiber (DCF) is used in the proposed radio-over-fiber (RoF) system, which can efficiently suppress the chromatic dispersion influence in long-haul transmitted distance. A set of length differences for 10 km-long single-mode fiber (SMF) and 4 km-long DCF is to verify the compensation scheme by relative equalizer algorithms and constellation diagrams. In the simulation result, the proposed dispersion mechanism successfully compensates the dispersion from SMF and the system performance with dispersion equalizer is highly improved. PMID:27618042
The Development of the Ducted Fan Noise Propagation and Radiation Code CDUCT-LaRC
NASA Technical Reports Server (NTRS)
Nark, Douglas M.; Farassat, F.; Pope, D. Stuart; Vatsa, Veer
2003-01-01
The development of the ducted fan noise propagation and radiation code CDUCT-LaRC at NASA Langley Research Center is described. This code calculates the propagation and radiation of given acoustic modes ahead of the fan face or aft of the exhaust guide vanes in the inlet or exhaust ducts, respectively. This paper gives a description of the modules comprising CDUCT-LaRC. The grid generation module provides automatic creation of numerical grids for complex (non-axisymmetric) geometries that include single or multiple pylons. Files for performing automatic inviscid mean flow calculations are also generated within this module. The duct propagation is based on the parabolic approximation theory of R. P. Dougherty. This theory allows the handling of complex internal geometries and the ability to study the effect of non-uniform (i.e. circumferentially and axially segmented) liners. Finally, the duct radiation module is based on the Ffowcs Williams-Hawkings (FW-H) equation with a penetrable data surface. Refraction of sound through the shear layer between the external flow and bypass duct flow is included. Results for benchmark annular ducts, as well as other geometries with pylons, are presented and compared with available analytical data.
The complete chloroplast genome of Sinopodophyllum hexandrum Ying (Berberidaceae).
Meng, Lihua; Liu, Ruijuan; Chen, Jianbing; Ding, Chenxu
2017-05-01
The complete nucleotide sequence of the Sinopodophyllum hexandrum Ying chloroplast genome (cpDNA) was determined based on next-generation sequencing technologies in this study. The genome was 157 203 bp in length, containing a pair of inverted repeat (IRa and IRb) regions of 25 960 bp, which were separated by a large single-copy (LSC) region of 87 065 bp and a small single-copy (SSC) region of 18 218 bp, respectively. The cpDNA contained 148 genes, including 96 protein-coding genes, 8 ribosomal RNA genes, and 44 tRNA genes. In these genes, eight harbored a single intron, and two (ycf3 and clpP) contained a couple of introns. The cpDNA AT content of S. hexandrum cpDNA is 61.5%.
Vizkelethy, Gyorgy; Bielejec, Edward S.; Aguirre, Brandon A.
2017-11-13
As device dimensions decrease single displacement effects are becoming more important. We measured the gain degradation in III-V Heterojunction Bipolar Transistors due to single particles using a heavy ion microbeam. Two devices with different sizes were irradiated with various ion species ranging from oxygen to gold to study the effect of the irradiation ion mass on the gain change. From the single steps in the inverse gain (which is proportional to the number of defects) we calculated Cumulative Distribution Functions to help determine design margins. The displacement process was modeled using the Marlowe Binary Collision Approximation (BCA) code. The entiremore » structure of the device was modeled and the defects in the base-emitter junction were counted to be compared to the experimental results. While we found good agreement for the large device, we had to modify our model to reach reasonable agreement for the small device.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vizkelethy, Gyorgy; Bielejec, Edward S.; Aguirre, Brandon A.
As device dimensions decrease single displacement effects are becoming more important. We measured the gain degradation in III-V Heterojunction Bipolar Transistors due to single particles using a heavy ion microbeam. Two devices with different sizes were irradiated with various ion species ranging from oxygen to gold to study the effect of the irradiation ion mass on the gain change. From the single steps in the inverse gain (which is proportional to the number of defects) we calculated Cumulative Distribution Functions to help determine design margins. The displacement process was modeled using the Marlowe Binary Collision Approximation (BCA) code. The entiremore » structure of the device was modeled and the defects in the base-emitter junction were counted to be compared to the experimental results. While we found good agreement for the large device, we had to modify our model to reach reasonable agreement for the small device.« less
VLSI single-chip (255,223) Reed-Solomon encoder with interleaver
NASA Technical Reports Server (NTRS)
Hsu, In-Shek (Inventor); Deutsch, Leslie J. (Inventor); Truong, Trieu-Kie (Inventor); Reed, Irving S. (Inventor)
1990-01-01
The invention relates to a concatenated Reed-Solomon/convolutional encoding system consisting of a Reed-Solomon outer code and a convolutional inner code for downlink telemetry in space missions, and more particularly to a Reed-Solomon encoder with programmable interleaving of the information symbols and code correction symbols to combat error bursts in the Viterbi decoder.
TACOM LCMC IB and DMSMS Mitigation
2011-09-26
Sources I Gosed II Opened ~ I AAC flag: Vii6d AI CAGE codes (CONUS): 3 3 CAGE codes (OCONUS): 0 0 ---- Total: 3 3 Single or no CAGE code...v In box - I’lL- I Qi) chambers:... I ~ Microsoft - I I~ AADO SER.- t@) ~ i_ .... gose I I Used On Reference/Part Numbers I~ 26SEP11
Coding Manual for Continuous Observation of Interactions by Single Subjects in an Academic Setting.
ERIC Educational Resources Information Center
Cobb, Joseph A.; Hops, Hyman
The manual, designed particularly for work with acting-out or behavior problem students, describes coding procedures used in the observation of continuous classroom interactions between the student and his peers and teacher. Peer and/or teacher behaviors antecedent and consequent to the subject's behavior are identified in the coding process,…
Physical Processes and Applications of the Monte Carlo Radiative Energy Deposition (MRED) Code
NASA Astrophysics Data System (ADS)
Reed, Robert A.; Weller, Robert A.; Mendenhall, Marcus H.; Fleetwood, Daniel M.; Warren, Kevin M.; Sierawski, Brian D.; King, Michael P.; Schrimpf, Ronald D.; Auden, Elizabeth C.
2015-08-01
MRED is a Python-language scriptable computer application that simulates radiation transport. It is the computational engine for the on-line tool CRÈME-MC. MRED is based on c++ code from Geant4 with additional Fortran components to simulate electron transport and nuclear reactions with high precision. We provide a detailed description of the structure of MRED and the implementation of the simulation of physical processes used to simulate radiation effects in electronic devices and circuits. Extensive discussion and references are provided that illustrate the validation of models used to implement specific simulations of relevant physical processes. Several applications of MRED are summarized that demonstrate its ability to predict and describe basic physical phenomena associated with irradiation of electronic circuits and devices. These include effects from single particle radiation (including both direct ionization and indirect ionization effects), dose enhancement effects, and displacement damage effects. MRED simulations have also helped to identify new single event upset mechanisms not previously observed by experiment, but since confirmed, including upsets due to muons and energetic electrons.
APPRIS 2017: principal isoforms for multiple gene sets
Rodriguez-Rivas, Juan; Di Domenico, Tomás; Vázquez, Jesús; Valencia, Alfonso
2018-01-01
Abstract The APPRIS database (http://appris-tools.org) uses protein structural and functional features and information from cross-species conservation to annotate splice isoforms in protein-coding genes. APPRIS selects a single protein isoform, the ‘principal’ isoform, as the reference for each gene based on these annotations. A single main splice isoform reflects the biological reality for most protein coding genes and APPRIS principal isoforms are the best predictors of these main proteins isoforms. Here, we present the updates to the database, new developments that include the addition of three new species (chimpanzee, Drosophila melangaster and Caenorhabditis elegans), the expansion of APPRIS to cover the RefSeq gene set and the UniProtKB proteome for six species and refinements in the core methods that make up the annotation pipeline. In addition APPRIS now provides a measure of reliability for individual principal isoforms and updates with each release of the GENCODE/Ensembl and RefSeq reference sets. The individual GENCODE/Ensembl, RefSeq and UniProtKB reference gene sets for six organisms have been merged to produce common sets of splice variants. PMID:29069475
Rizvi, Abbas H.; Camara, Pablo G.; Kandror, Elena K.; Roberts, Thomas J.; Schieren, Ira; Maniatis, Tom; Rabadan, Raul
2017-01-01
Transcriptional programs control cellular lineage commitment and differentiation during development. Understanding cell fate has been advanced by studying single-cell RNA-seq, but is limited by the assumptions of current analytic methods regarding the structure of data. We present single-cell topological data analysis (scTDA), an algorithm for topology-based computational analyses to study temporal, unbiased transcriptional regulation. Compared to other methods, scTDA is a non-linear, model-independent, unsupervised statistical framework that can characterize transient cellular states. We applied scTDA to the analysis of murine embryonic stem cell (mESC) differentiation in vitro in response to inducers of motor neuron differentiation. scTDA resolved asynchrony and continuity in cellular identity over time, and identified four transient states (pluripotent, precursor, progenitor, and fully differentiated cells) based on changes in stage-dependent combinations of transcription factors, RNA-binding proteins and long non-coding RNAs. scTDA can be applied to study asynchronous cellular responses to either developmental cues or environmental perturbations. PMID:28459448
Nonlinear wave vacillation in the atmosphere
NASA Technical Reports Server (NTRS)
Antar, Basil N.
1987-01-01
The problem of vacillation in a baroclinically unstable flow field is studied through the time evolution of a single nonlinearly unstable wave. To this end a computer code is being developed to solve numerically for the time evolution of the amplitude of such a wave. The final working code will be the end product resulting from the development of a heirarchy of codes with increasing complexity. The first code in this series was completed and is undergoing several diagnostic analyses to verify its validity. The development of this code is detailed.
Optimizations of a Hardware Decoder for Deep-Space Optical Communications
NASA Technical Reports Server (NTRS)
Cheng, Michael K.; Nakashima, Michael A.; Moision, Bruce E.; Hamkins, Jon
2007-01-01
The National Aeronautics and Space Administration has developed a capacity approaching modulation and coding scheme that comprises a serial concatenation of an inner accumulate pulse-position modulation (PPM) and an outer convolutional code [or serially concatenated PPM (SCPPM)] for deep-space optical communications. Decoding of this code uses the turbo principle. However, due to the nonbinary property of SCPPM, a straightforward application of classical turbo decoding is very inefficient. Here, we present various optimizations applicable in hardware implementation of the SCPPM decoder. More specifically, we feature a Super Gamma computation to efficiently handle parallel trellis edges, a pipeline-friendly 'maxstar top-2' circuit that reduces the max-only approximation penalty, a low-latency cyclic redundancy check circuit for window-based decoders, and a high-speed algorithmic polynomial interleaver that leads to memory savings. Using the featured optimizations, we implement a 6.72 megabits-per-second (Mbps) SCPPM decoder on a single field-programmable gate array (FPGA). Compared to the current data rate of 256 kilobits per second from Mars, the SCPPM coded scheme represents a throughput increase of more than twenty-six fold. Extension to a 50-Mbps decoder on a board with multiple FPGAs follows naturally. We show through hardware simulations that the SCPPM coded system can operate within 1 dB of the Shannon capacity at nominal operating conditions.
Automated Detection and Analysis of Interplanetary Shocks Running Real-Time on the Web
NASA Astrophysics Data System (ADS)
Vorotnikov, V.; Smith, C. W.; Hu, Q.; Szabo, A.; Skoug, R. M.; Cohen, C. M.; Davis, A. J.
2008-05-01
The ACE real-time data stream provides web-based now-casting capabilities for solar wind conditions upstream of Earth. We have built a fully automated code that finds and analyzes interplanetary shocks as they occur and posts their solutions on the Web for possible real-time application to space weather nowcasting. Shock analysis algorithms based on the Rankine-Hugoniot jump conditions exist and are in wide-spread use today for the interactive analysis of interplanetary shocks yielding parameters such as shock speed and propagation direction and shock strength in the form of compression ratios. At a previous meeting we reported on efforts to develop a fully automated code that used ACE Level-2 (science quality) data to prove the applicability and correctness of the code and the associated shock-finder. We have since adapted the code to run ACE RTSW data provided by NOAA. This data lacks the full 3-dimensional velocity vector for the solar wind and contains only a single component wind speed. We show that by assuming the wind velocity to be radial strong shock solutions remain essentially unchanged and the analysis performs as well as it would if 3-D velocity components were available. This is due, at least in part, to the fact that strong shocks tend to have nearly radial shock normals and it is the strong shocks that are most effective in space weather applications. Strong shocks are the only shocks that concern us in this application. The code is now running on the Web and the results are available to all.
Deciphering neuronal population codes for acute thermal pain
NASA Astrophysics Data System (ADS)
Chen, Zhe; Zhang, Qiaosheng; Phuong Sieu Tong, Ai; Manders, Toby R.; Wang, Jing
2017-06-01
Objective. Pain is defined as an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage. Current pain research mostly focuses on molecular and synaptic changes at the spinal and peripheral levels. However, a complete understanding of pain mechanisms requires the physiological study of the neocortex. Our goal is to apply a neural decoding approach to read out the onset of acute thermal pain signals, which can be used for brain-machine interface. Approach. We used micro wire arrays to record ensemble neuronal activities from the primary somatosensory cortex (S1) and anterior cingulate cortex (ACC) in freely behaving rats. We further investigated neural codes for acute thermal pain at both single-cell and population levels. To detect the onset of acute thermal pain signals, we developed a novel latent state-space framework to decipher the sorted or unsorted S1 and ACC ensemble spike activities, which reveal information about the onset of pain signals. Main results. The state space analysis allows us to uncover a latent state process that drives the observed ensemble spike activity, and to further detect the ‘neuronal threshold’ for acute thermal pain on a single-trial basis. Our method achieved good detection performance in sensitivity and specificity. In addition, our results suggested that an optimal strategy for detecting the onset of acute thermal pain signals may be based on combined evidence from S1 and ACC population codes. Significance. Our study is the first to detect the onset of acute pain signals based on neuronal ensemble spike activity. It is important from a mechanistic viewpoint as it relates to the significance of S1 and ACC activities in the regulation of the acute pain onset.
Cartwright, Joseph F; Anderson, Karin; Longworth, Joseph; Lobb, Philip; James, David C
2018-06-01
High-fidelity replication of biologic-encoding recombinant DNA sequences by engineered mammalian cell cultures is an essential pre-requisite for the development of stable cell lines for the production of biotherapeutics. However, immortalized mammalian cells characteristically exhibit an increased point mutation frequency compared to mammalian cells in vivo, both across their genomes and at specific loci (hotspots). Thus unforeseen mutations in recombinant DNA sequences can arise and be maintained within producer cell populations. These may affect both the stability of recombinant gene expression and give rise to protein sequence variants with variable bioactivity and immunogenicity. Rigorous quantitative assessment of recombinant DNA integrity should therefore form part of the cell line development process and be an essential quality assurance metric for instances where synthetic/multi-component assemblies are utilized to engineer mammalian cells, such as the assessment of recombinant DNA fidelity or the mutability of single-site integration target loci. Based on Pacific Biosciences (Menlo Park, CA) single molecule real-time (SMRT™) circular consensus sequencing (CCS) technology we developed a rDNA sequence analysis tool to process the multi-parallel sequencing of ∼40,000 single recombinant DNA molecules. After statistical filtering of raw sequencing data, we show that this analytical method is capable of detecting single point mutations in rDNA to a minimum single mutation frequency of 0.0042% (<1/24,000 bases). Using a stable CHO transfectant pool harboring a randomly integrated 5 kB plasmid construct encoding GFP we found that 28% of recombinant plasmid copies contained at least one low frequency (<0.3%) point mutation. These mutations were predominantly found in GC base pairs (85%) and that there was no positional bias in mutation across the plasmid sequence. There was no discernable difference between the mutation frequencies of coding and non-coding DNA. The putative ratio of non-synonymous and synonymous changes within the open reading frames (ORFs) in the plasmid sequence indicates that natural selection does not impact upon the prevalence of these mutations. Here we have demonstrated the abundance of mutations that fall outside of the reported range of detection of next generation sequencing (NGS) and second generation sequencing (SGS) platforms, providing a methodology capable of being utilized in cell line development platforms to identify the fidelity of recombinant genes throughout the production process. © 2018 Wiley Periodicals, Inc.
Rotational Raman-Based Temperature Measurements in a High-Velocity Turbulent Jet
NASA Technical Reports Server (NTRS)
Locke, Randy J.; Wernet, Mark P.; Anderson, Robert C.
2017-01-01
Spontaneous rotational Raman scattering spectroscopy is used to acquire the first ever high quality, spatially-resolved measurements of the mean and root mean square (rms) temperature fluctuations in turbulent, high-velocity heated jets. Raman spectra in air were obtained across a matrix of radial and axial locations downstream from a 50 mm diameter nozzle operating from subsonic to supersonic conditions over a wide range of temperatures and Mach numbers, in accordance with the Tanna matrix frequently used in jet noise studies. These data were acquired in the hostile, high noise (115 dB) environment of a large scale open air test facility at NASA Glenn Research Center (GRC). Temperature estimates were determined by performing nonlinear least squares fitting of the single shot spectra to the theoretical rotational Stokes spectra of N2 and O2, using a custom in-house code developed specifically for this investigation. The laser employed in this study was a high energy, long-pulsed, frequency doubled Nd:YAG laser. One thousand single-shot spectra were acquired at each spatial coordinate. Mean temperature and rms temperature variations were calculated at each measurement location. Excellent agreement between the averaged and single-shot temperatures was observed with an accuracy better than 2.5 percent for temperature, and rms variations in temperature between +/-2.2 percent at 296 K and +/-4.5 percent at 850 K. The results of this and planned follow-on studies will support NASA GRC's development of physics-based jet noise prediction, turbulence modeling and aeroacoustic source modeling codes.
Evolution of plastic anisotropy for high-strain-rate computations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiferl, S.K.; Maudlin, P.J.
1994-12-01
A model for anisotropic material strength, and for changes in the anisotropy due to plastic strain, is described. This model has been developed for use in high-rate, explicit, Lagrangian multidimensional continuum-mechanics codes. The model handles anisotropies in single-phase materials, in particular the anisotropies due to crystallographic texture--preferred orientations of the single-crystal grains. Textural anisotropies, and the changes in these anisotropies, depend overwhelmingly no the crystal structure of the material and on the deformation history. The changes, particularly for a complex deformations, are not amenable to simple analytical forms. To handle this problem, the material model described here includes a texturemore » code, or micromechanical calculation, coupled to a continuum code. The texture code updates grain orientations as a function of tensor plastic strain, and calculates the yield strength in different directions. A yield function is fitted to these yield points. For each computational cell in the continuum simulation, the texture code tracks a particular set of grain orientations. The orientations will change due to the tensor strain history, and the yield function will change accordingly. Hence, the continuum code supplies a tensor strain to the texture code, and the texture code supplies an updated yield function to the continuum code. Since significant texture changes require relatively large strains--typically, a few percent or more--the texture code is not called very often, and the increase in computer time is not excessive. The model was implemented, using a finite-element continuum code and a texture code specialized for hexagonal-close-packed crystal structures. The results for several uniaxial stress problems and an explosive-forming problem are shown.« less
Multiple description distributed image coding with side information for mobile wireless transmission
NASA Astrophysics Data System (ADS)
Wu, Min; Song, Daewon; Chen, Chang Wen
2005-03-01
Multiple description coding (MDC) is a source coding technique that involves coding the source information into multiple descriptions, and then transmitting them over different channels in packet network or error-prone wireless environment to achieve graceful degradation if parts of descriptions are lost at the receiver. In this paper, we proposed a multiple description distributed wavelet zero tree image coding system for mobile wireless transmission. We provide two innovations to achieve an excellent error resilient capability. First, when MDC is applied to wavelet subband based image coding, it is possible to introduce correlation between the descriptions in each subband. We consider using such a correlation as well as potentially error corrupted description as side information in the decoding to formulate the MDC decoding as a Wyner Ziv decoding problem. If only part of descriptions is lost, however, their correlation information is still available, the proposed Wyner Ziv decoder can recover the description by using the correlation information and the error corrupted description as side information. Secondly, in each description, single bitstream wavelet zero tree coding is very vulnerable to the channel errors. The first bit error may cause the decoder to discard all subsequent bits whether or not the subsequent bits are correctly received. Therefore, we integrate the multiple description scalar quantization (MDSQ) with the multiple wavelet tree image coding method to reduce error propagation. We first group wavelet coefficients into multiple trees according to parent-child relationship and then code them separately by SPIHT algorithm to form multiple bitstreams. Such decomposition is able to reduce error propagation and therefore improve the error correcting capability of Wyner Ziv decoder. Experimental results show that the proposed scheme not only exhibits an excellent error resilient performance but also demonstrates graceful degradation over the packet loss rate.
Shin, Kayeong; Choi, Jaeyeong; Kim, Yeoju; Lee, Yoonjeong; Kim, Joohoon; Lee, Seungho; Chung, Hoeil
2018-06-29
We propose a new analytical scheme in which field-flow fractionation (FFF)-based separation of target-specific polystyrene (PS) particle probes of different sizes are incorporated with amplified surface-enhanced Raman scattering (SERS) tagging for the simultaneous and sensitive detection of multiple microRNAs (miRNAs). For multiplexed detection, PS particles of three different diameters (15, 10, 5 μm) were used for the size-coding, and a probe single stranded DNA (ssDNA) complementary to a target miRNA was conjugated on an intended PS particle. After binding of a target miRNA on PS probe, polyadenylation reaction was executed to generate a long tail composed of adenine (A) serving as a binding site to thymine (T) conjugated Au nanoparticles (T-AuNPs) to increase SERS intensity. The three size-coded PS probes bound with T-AuNPs were then separated in a FFF channel. With the observation of extinction-based fractograms, separation of three size-coded PS probes was clearly confirmed, thereby enabling of measuring three miRNAs simultaneously. Raman intensities of FFF fractions collected at the peak maximum of 15, 10 and 5 μm PS probes varied fairy quantitatively with the change of miRNA concentrations, and the reproducibility of measurement was acceptable. The proposed method is potentially useful for simultaneous detection of multiple miRNAs with high sensitivity. Copyright © 2018 Elsevier B.V. All rights reserved.
Kaspar, Mathias; Fette, Georg; Güder, Gülmisal; Seidlmayer, Lea; Ertl, Maximilian; Dietrich, Georg; Greger, Helmut; Puppe, Frank; Störk, Stefan
2018-04-17
Heart failure is the predominant cause of hospitalization and amongst the leading causes of death in Germany. However, accurate estimates of prevalence and incidence are lacking. Reported figures originating from different information sources are compromised by factors like economic reasons or documentation quality. We implemented a clinical data warehouse that integrates various information sources (structured parameters, plain text, data extracted by natural language processing) and enables reliable approximations to the real number of heart failure patients. Performance of ICD-based diagnosis in detecting heart failure was compared across the years 2000-2015 with (a) advanced definitions based on algorithms that integrate various sources of the hospital information system, and (b) a physician-based reference standard. Applying these methods for detecting heart failure in inpatients revealed that relying on ICD codes resulted in a marked underestimation of the true prevalence of heart failure, ranging from 44% in the validation dataset to 55% (single year) and 31% (all years) in the overall analysis. Percentages changed over the years, indicating secular changes in coding practice and efficiency. Performance was markedly improved using search and permutation algorithms from the initial expert-specified query (F1 score of 81%) to the computer-optimized query (F1 score of 86%) or, alternatively, optimizing precision or sensitivity depending on the search objective. Estimating prevalence of heart failure using ICD codes as the sole data source yielded unreliable results. Diagnostic accuracy was markedly improved using dedicated search algorithms. Our approach may be transferred to other hospital information systems.
Comparison of liquid rocket engine base region heat flux computations using three turbulence models
NASA Technical Reports Server (NTRS)
Kumar, Ganesh N.; Griffith, Dwaine O., II; Prendergast, Maurice J.; Seaford, C. M.
1993-01-01
The flow in the base region of launch vehicles is characterized by flow separation, flow reversals, and reattachment. Computation of the convective heat flux in the base region and on the nozzle external surface of Space Shuttle Main Engine and Space Transportation Main Engine (STME) is an important part of defining base region thermal environments. Several turbulence models were incorporated in a CFD code and validated for flow and heat transfer computations in the separated and reattaching regions associated with subsonic and supersonic flows over backward facing steps. Heat flux computations in the base region of a single STME engine and a single S1C engine were performed using three different wall functions as well as a renormalization-group based k-epsilon model. With the very limited data available, the computed values are seen to be of the right order of magnitude. Based on the validation comparisons, it is concluded that all the turbulence models studied have predicted the reattachment location and the velocity profiles at various axial stations downstream of the step very well.
Development of battering ram vibrator system
NASA Astrophysics Data System (ADS)
Sun, F.; Chen, Z.; Lin, J.; Tong, X.
2012-12-01
This paper researched the battering ram vibrator system, by electric machinery we can control oil system of battering ram, we realized exact control of battering ram, after analyzed pseudorandom coding, code "0" and "1" correspond to rest and shake of battering ram, then we can get pseudorandom coding which is the same with battering ram vibrator. After testing , by the reference trace and single shot record, when we using pseudorandom coding mode, the ratio of seismic wavelet to correlation interfere is about 68 dB, while the general mode , the ratio of seismic wavelet to correlation interfere only is 27.9dB, by battering ram vibrator system, we can debase the correlation interfere which come from the single shaking frequency of battering ram, this system advanced the signal-to-noise ratio of seismic data, which can give direction of the application of battering ram vibrator in metal mine exploration and high resolving seismic exploration.
Sandia Simple Particle Tracking (Sandia SPT) v. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anthony, Stephen M.
2015-06-15
Sandia SPT is designed as software to accompany a book chapter being published a methods chapter which provides an introduction on how to label and track individual proteins. The Sandia Simple Particle Tracking code uses techniques common to the image processing community, where its value is that it facilitates implementing the methods described in the book chapter by providing the necessary open-source code. The code performs single particle spot detection (or segmentation and localization) followed by tracking (or connecting the detected particles into trajectories). The book chapter, which along with the headers in each file, constitutes the documentation for themore » code is: Anthony, S.M.; Carroll-Portillo, A.; Timlon, J.A., Dynamics and Interactions of Individual Proteins in the Membrane of Living Cells. In Anup K. Singh (Ed.) Single Cell Protein Analysis Methods in Molecular Biology. Springer« less
NASA Technical Reports Server (NTRS)
Walton, J. T.
1994-01-01
The development of a single-stage-to-orbit aerospace vehicle intended to be launched horizontally into low Earth orbit, such as the National Aero-Space Plane (NASP), has concentrated on the use of the supersonic combustion ramjet (scramjet) propulsion cycle. SRGULL, a scramjet cycle analysis code, is an engineer's tool capable of nose-to-tail, hydrogen-fueled, airframe-integrated scramjet simulation in a real gas flow with equilibrium thermodynamic properties. This program facilitates initial estimates of scramjet cycle performance by linking a two-dimensional forebody, inlet and nozzle code with a one-dimensional combustor code. Five computer codes (SCRAM, SEAGUL, INLET, Progam HUD, and GASH) originally developed at NASA Langley Research Center in support of hypersonic technology are integrated in this program to analyze changing flow conditions. The one-dimensional combustor code is based on the combustor subroutine from SCRAM and the two-dimensional coding is based on an inviscid Euler program (SEAGUL). Kinetic energy efficiency input for sidewall area variation modeling can be calculated by the INLET program code. At the completion of inviscid component analysis, Program HUD, an integral boundary layer code based on the Spaulding-Chi method, is applied to determine the friction coefficient which is then used in a modified Reynolds Analogy to calculate heat transfer. Real gas flow properties such as flow composition, enthalpy, entropy, and density are calculated by the subroutine GASH. Combustor input conditions are taken from one-dimensionalizing the two-dimensional inlet exit flow. The SEAGUL portions of this program are limited to supersonic flows, but the combustor (SCRAM) section can handle supersonic and dual-mode operation. SRGULL has been compared to scramjet engine tests with excellent results. SRGULL was written in FORTRAN 77 on an IBM PC compatible using IBM's FORTRAN/2 or Microway's NDP386 F77 compiler. The program is fully user interactive, but can also run in batch mode. It operates under the UNIX, VMS, NOS, and DOS operating systems. The source code is not directly compatible with all PC compilers (e.g., Lahey or Microsoft FORTRAN) due to block and segment size requirements. SRGULL executable code requires about 490K RAM and a math coprocessor on PC's. The SRGULL program was developed in 1989, although the component programs originated in the 1960's and 1970's. IBM, IBM PC, and DOS are registered trademarks of International Business Machines. VMS is a registered trademark of Digital Equipment Corporation. UNIX is a registered trademark of Bell Laboratories. NOS is a registered trademark of Control Data Corporation.
Knowledge Data Base for Amorphous Metals
2007-07-26
not programmatic, updates. Over 100 custom SQL statements that maintain the domain specific data are attached to the workflow entries in a generic...for the form by populating the SQL and run generation tables. Application data may be prepared in different ways for two steps that invoke the same form...run generation mode). There is a single table of SQL commands. Each record has a user-definable ID, the SQL code, and a comment. The run generation
Subjective quality evaluation of low-bit-rate video
NASA Astrophysics Data System (ADS)
Masry, Mark; Hemami, Sheila S.; Osberger, Wilfried M.; Rohaly, Ann M.
2001-06-01
A subjective quality evaluation was performed to qualify vie4wre responses to visual defects that appear in low bit rate video at full and reduced frame rates. The stimuli were eight sequences compressed by three motion compensated encoders - Sorenson Video, H.263+ and a Wavelet based coder - operating at five bit/frame rate combinations. The stimulus sequences exhibited obvious coding artifacts whose nature differed across the three coders. The subjective evaluation was performed using the Single Stimulus Continuos Quality Evaluation method of UTI-R Rec. BT.500-8. Viewers watched concatenated coded test sequences and continuously registered the perceived quality using a slider device. Data form 19 viewers was colleted. An analysis of their responses to the presence of various artifacts across the range of possible coding conditions and content is presented. The effects of blockiness and blurriness on perceived quality are examined. The effects of changes in frame rate on perceived quality are found to be related to the nature of the motion in the sequence.
Cookbook Recipe to Simulate Seawater Intrusion with Standard MODFLOW
NASA Astrophysics Data System (ADS)
Schaars, F.; Bakker, M.
2012-12-01
We developed a cookbook recipe to simulate steady interface flow in multi-layer coastal aquifers with regular groundwater codes such as standard MODFLOW. The main step in the recipe is a simple transformation of the hydraulic conductivities and thicknesses of the aquifers. Standard groundwater codes may be applied to compute the head distribution in the aquifer using the transformed parameters. For example, for flow in a single unconfined aquifer, the hydraulic conductivity needs to be multiplied with 41 and the base of the aquifer needs to be set to mean sea level (for a relative seawater density of 1.025). Once the head distribution is obtained, the Ghijben-Herzberg relationship is applied to compute the depth of the interface. The recipe may be applied to quite general settings, including spatially variable aquifer properties. Any standard groundwater code may be used, as long as it can simulate unconfined flow where the transmissivity is a linear function of the head. The proposed recipe is benchmarked successfully against a number of analytic and numerical solutions.
NASA Technical Reports Server (NTRS)
Sanz, J. M.
1983-01-01
The method of complex characteristics and hodograph transformation for the design of shockless airfoils was extended to design supercritical cascades with high solidities and large inlet angles. This capability was achieved by introducing a conformal mapping of the hodograph domain onto an ellipse and expanding the solution in terms of Tchebycheff polynomials. A computer code was developd based on this idea. A number of airfoils designed with the code are presented. Various supercritical and subcritical compressor, turbine and propeller sections are shown. The lag-entrainment method for the calculation of a turbulent boundary layer was incorporated to the inviscid design code. The results of this calculation are shown for the airfoils described. The elliptic conformal transformation developed to map the hodograph domain onto an ellipse can be used to generate a conformal grid in the physical domain of a cascade of airfoils with open trailing edges with a single transformation. A grid generated with this transformation is shown for the Korn airfoil.
A Crack Growth Evaluation Method for Interacting Multiple Cracks
NASA Astrophysics Data System (ADS)
Kamaya, Masayuki
When stress corrosion cracking or corrosion fatigue occurs, multiple cracks are frequently initiated in the same area. According to section XI of the ASME Boiler and Pressure Vessel Code, multiple cracks are considered as a single combined crack in crack growth analysis, if the specified conditions are satisfied. In crack growth processes, however, no prescription for the interference between multiple cracks is given in this code. The JSME Post-Construction Code, issued in May 2000, prescribes the conditions of crack coalescence in the crack growth process. This study aimed to extend this prescription to more general cases. A simulation model was applied, to simulate the crack growth process, taking into account the interference between two cracks. This model made it possible to analyze multiple crack growth behaviors for many cases (e. g. different relative position and length) that could not be studied by experiment only. Based on these analyses, a new crack growth analysis method was suggested for taking into account the interference between multiple cracks.
High-Throughput Characterization of Porous Materials Using Graphics Processing Units
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jihan; Martin, Richard L.; Rübel, Oliver
We have developed a high-throughput graphics processing units (GPU) code that can characterize a large database of crystalline porous materials. In our algorithm, the GPU is utilized to accelerate energy grid calculations where the grid values represent interactions (i.e., Lennard-Jones + Coulomb potentials) between gas molecules (i.e., CHmore » $$_{4}$$ and CO$$_{2}$$) and material's framework atoms. Using a parallel flood fill CPU algorithm, inaccessible regions inside the framework structures are identified and blocked based on their energy profiles. Finally, we compute the Henry coefficients and heats of adsorption through statistical Widom insertion Monte Carlo moves in the domain restricted to the accessible space. The code offers significant speedup over a single core CPU code and allows us to characterize a set of porous materials at least an order of magnitude larger than ones considered in earlier studies. For structures selected from such a prescreening algorithm, full adsorption isotherms can be calculated by conducting multiple grand canonical Monte Carlo simulations concurrently within the GPU.« less
Johansson, Magnus; Zhang, Jingji; Ehrenberg, Måns
2012-01-03
Rapid and accurate translation of the genetic code into protein is fundamental to life. Yet due to lack of a suitable assay, little is known about the accuracy-determining parameters and their correlation with translational speed. Here, we develop such an assay, based on Mg(2+) concentration changes, to determine maximal accuracy limits for a complete set of single-mismatch codon-anticodon interactions. We found a simple, linear trade-off between efficiency of cognate codon reading and accuracy of tRNA selection. The maximal accuracy was highest for the second codon position and lowest for the third. The results rationalize the existence of proofreading in code reading and have implications for the understanding of tRNA modifications, as well as of translation error-modulating ribosomal mutations and antibiotics. Finally, the results bridge the gap between in vivo and in vitro translation and allow us to calibrate our test tube conditions to represent the environment inside the living cell.
An Enhanced GINGERSimulation Code with Harmonic Emission and HDF5IO Capabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fawley, William M.
GINGER [1] is an axisymmetric, polychromatic (r-z-t) FEL simulation code originally developed in the mid-1980's to model the performance of single-pass amplifiers. Over the past 15 years GINGER's capabilities have been extended to include more complicated configurations such as undulators with drift spaces, dispersive sections, and vacuum chamber wakefield effects; multi-pass oscillators; and multi-stage harmonic cascades. Its coding base has been tuned to permit running effectively on platforms ranging from desktop PC's to massively parallel processors such as the IBM-SP. Recently, we have made significant changes to GINGER by replacing the original predictor-corrector field solver with a new direct implicitmore » algorithm, adding harmonic emission capability, and switching to the HDF5 IO library [2] for output diagnostics. In this paper, we discuss some details regarding these changes and also present simulation results for LCLS SASE emission at {lambda} = 0.15 nm and higher harmonics.« less
Zhang, Guangzhi; Cai, Shaobin; Xiong, Naixue
2018-01-01
One of the remarkable challenges about Wireless Sensor Networks (WSN) is how to transfer the collected data efficiently due to energy limitation of sensor nodes. Network coding will increase network throughput of WSN dramatically due to the broadcast nature of WSN. However, the network coding usually propagates a single original error over the whole network. Due to the special property of error propagation in network coding, most of error correction methods cannot correct more than C/2 corrupted errors where C is the max flow min cut of the network. To maximize the effectiveness of network coding applied in WSN, a new error-correcting mechanism to confront the propagated error is urgently needed. Based on the social network characteristic inherent in WSN and L1 optimization, we propose a novel scheme which successfully corrects more than C/2 corrupted errors. What is more, even if the error occurs on all the links of the network, our scheme also can correct errors successfully. With introducing a secret channel and a specially designed matrix which can trap some errors, we improve John and Yi’s model so that it can correct the propagated errors in network coding which usually pollute exactly 100% of the received messages. Taking advantage of the social characteristic inherent in WSN, we propose a new distributed approach that establishes reputation-based trust among sensor nodes in order to identify the informative upstream sensor nodes. With referred theory of social networks, the informative relay nodes are selected and marked with high trust value. The two methods of L1 optimization and utilizing social characteristic coordinate with each other, and can correct the propagated error whose fraction is even exactly 100% in WSN where network coding is performed. The effectiveness of the error correction scheme is validated through simulation experiments. PMID:29401668
Zhang, Guangzhi; Cai, Shaobin; Xiong, Naixue
2018-02-03
One of the remarkable challenges about Wireless Sensor Networks (WSN) is how to transfer the collected data efficiently due to energy limitation of sensor nodes. Network coding will increase network throughput of WSN dramatically due to the broadcast nature of WSN. However, the network coding usually propagates a single original error over the whole network. Due to the special property of error propagation in network coding, most of error correction methods cannot correct more than C /2 corrupted errors where C is the max flow min cut of the network. To maximize the effectiveness of network coding applied in WSN, a new error-correcting mechanism to confront the propagated error is urgently needed. Based on the social network characteristic inherent in WSN and L1 optimization, we propose a novel scheme which successfully corrects more than C /2 corrupted errors. What is more, even if the error occurs on all the links of the network, our scheme also can correct errors successfully. With introducing a secret channel and a specially designed matrix which can trap some errors, we improve John and Yi's model so that it can correct the propagated errors in network coding which usually pollute exactly 100% of the received messages. Taking advantage of the social characteristic inherent in WSN, we propose a new distributed approach that establishes reputation-based trust among sensor nodes in order to identify the informative upstream sensor nodes. With referred theory of social networks, the informative relay nodes are selected and marked with high trust value. The two methods of L1 optimization and utilizing social characteristic coordinate with each other, and can correct the propagated error whose fraction is even exactly 100% in WSN where network coding is performed. The effectiveness of the error correction scheme is validated through simulation experiments.
Recombinant blood group proteins for use in antibody screening and identification tests.
Seltsam, Axel; Blasczyk, Rainer
2009-11-01
The present review elucidates the potentials of recombinant blood group proteins (BGPs) for red blood cell (RBC) antibody detection and identification in pretransfusion testing and the achievements in this field so far. Many BGPs have been eukaryotically and prokaryotically expressed in sufficient quantity and quality for RBC antibody testing. Recombinant BGPs can be incorporated in soluble protein reagents or solid-phase assays such as ELISA, color-coded microsphere and protein microarray chip-based techniques. Because novel recombinant protein-based assays use single antigens, a positive reaction of a serum with the recombinant protein directly indicates the presence and specificity of the target antibody. Inversely, conventional RBC-based assays use panels of human RBCs carrying a huge number of blood group antigens at the same time and require negative reactions of samples with antigen-negative cells for indirect determination of antibody specificity. Because of their capacity for single-step, direct RBC antibody determination, recombinant protein-based assays may greatly facilitate and accelerate the identification of common and rare RBC antibodies.
Batshon, Hussam G; Djordjevic, Ivan; Schmidt, Ted
2010-09-13
We propose a subcarrier-multiplexed four-dimensional LDPC bit-interleaved coded modulation scheme that is capable of achieving beyond 480 Gb/s single-channel transmission rate over optical channels. Subcarrier-multiplexed four-dimensional LDPC coded modulation scheme outperforms the corresponding dual polarization schemes by up to 4.6 dB in OSNR at BER 10(-8).
NASA Technical Reports Server (NTRS)
Lou, John; Ferraro, Robert; Farrara, John; Mechoso, Carlos
1996-01-01
An analysis is presented of several factors influencing the performance of a parallel implementation of the UCLA atmospheric general circulation model (AGCM) on massively parallel computer systems. Several modificaitons to the original parallel AGCM code aimed at improving its numerical efficiency, interprocessor communication cost, load-balance and issues affecting single-node code performance are discussed.
A Darwinian approach to control-structure design
NASA Technical Reports Server (NTRS)
Zimmerman, David C.
1993-01-01
Genetic algorithms (GA's), as introduced by Holland (1975), are one form of directed random search. The form of direction is based on Darwin's 'survival of the fittest' theories. GA's are radically different from the more traditional design optimization techniques. GA's work with a coding of the design variables, as opposed to working with the design variables directly. The search is conducted from a population of designs (i.e., from a large number of points in the design space), unlike the traditional algorithms which search from a single design point. The GA requires only objective function information, as opposed to gradient or other auxiliary information. Finally, the GA is based on probabilistic transition rules, as opposed to deterministic rules. These features allow the GA to attack problems with local-global minima, discontinuous design spaces and mixed variable problems, all in a single, consistent framework.
Gate sequence for continuous variable one-way quantum computation
Su, Xiaolong; Hao, Shuhong; Deng, Xiaowei; Ma, Lingyu; Wang, Meihong; Jia, Xiaojun; Xie, Changde; Peng, Kunchi
2013-01-01
Measurement-based one-way quantum computation using cluster states as resources provides an efficient model to perform computation and information processing of quantum codes. Arbitrary Gaussian quantum computation can be implemented sufficiently by long single-mode and two-mode gate sequences. However, continuous variable gate sequences have not been realized so far due to an absence of cluster states larger than four submodes. Here we present the first continuous variable gate sequence consisting of a single-mode squeezing gate and a two-mode controlled-phase gate based on a six-mode cluster state. The quantum property of this gate sequence is confirmed by the fidelities and the quantum entanglement of two output modes, which depend on both the squeezing and controlled-phase gates. The experiment demonstrates the feasibility of implementing Gaussian quantum computation by means of accessible gate sequences.
Van Belleghem, Griet; Devos, Stefanie; De Wit, Liesbet; Hubloue, Ives; Lauwaert, Door; Pien, Karen; Putman, Koen
2016-01-01
Injury severity scores are important in the context of developing European and national goals on traffic safety, health-care benchmarking and improving patient communication. Various severity scores are available and are mostly based on Abbreviated Injury Scale (AIS) or International Classification of Diseases (ICD). The aim of this paper is to compare the predictive value for in-hospital mortality between the various severity scores if only International Classification of Diseases, 9th revision, Clinical Modification ICD-9-CM is reported. To estimate severity scores based on the AIS lexicon, ICD-9-CM codes were converted with ICD Programmes for Injury Categorization (ICDPIC) and four AIS-based severity scores were derived: Maximum AIS (MaxAIS), Injury Severity Score (ISS), New Injury Severity Score (NISS) and Exponential Injury Severity Score (EISS). Based on ICD-9-CM, six severity scores were calculated. Determined by the number of injuries taken into account and the means by which survival risk ratios (SRRs) were calculated, four different approaches were used to calculate the ICD-9-based Injury Severity Scores (ICISS). The Trauma Mortality Prediction Model (TMPM) was calculated with the ICD-9-CM-based model averaged regression coefficients (MARC) for both the single worst injury and multiple injuries. Severity scores were compared via model discrimination and calibration. Model comparisons were performed separately for the severity scores based on the single worst injury and multiple injuries. For ICD-9-based scales, estimation of area under the receiver operating characteristic curve (AUROC) ranges between 0.94 and 0.96, while AIS-based scales range between 0.72 and 0.76, respectively. The intercept in the calibration plots is not significantly different from 0 for MaxAIS, ICISS and TMPM. When only ICD-9-CM codes are reported, ICD-9-CM-based severity scores perform better than severity scores based on the conversion to AIS. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sparsey™: event recognition via deep hierarchical sparse distributed codes
Rinkus, Gerard J.
2014-01-01
The visual cortex's hierarchical, multi-level organization is captured in many biologically inspired computational vision models, the general idea being that progressively larger scale (spatially/temporally) and more complex visual features are represented in progressively higher areas. However, most earlier models use localist representations (codes) in each representational field (which we equate with the cortical macrocolumn, “mac”), at each level. In localism, each represented feature/concept/event (hereinafter “item”) is coded by a single unit. The model we describe, Sparsey, is hierarchical as well but crucially, it uses sparse distributed coding (SDC) in every mac in all levels. In SDC, each represented item is coded by a small subset of the mac's units. The SDCs of different items can overlap and the size of overlap between items can be used to represent their similarity. The difference between localism and SDC is crucial because SDC allows the two essential operations of associative memory, storing a new item and retrieving the best-matching stored item, to be done in fixed time for the life of the model. Since the model's core algorithm, which does both storage and retrieval (inference), makes a single pass over all macs on each time step, the overall model's storage/retrieval operation is also fixed-time, a criterion we consider essential for scalability to the huge (“Big Data”) problems. A 2010 paper described a nonhierarchical version of this model in the context of purely spatial pattern processing. Here, we elaborate a fully hierarchical model (arbitrary numbers of levels and macs per level), describing novel model principles like progressive critical periods, dynamic modulation of principal cells' activation functions based on a mac-level familiarity measure, representation of multiple simultaneously active hypotheses, a novel method of time warp invariant recognition, and we report results showing learning/recognition of spatiotemporal patterns. PMID:25566046
Karpievitch, Yuliya V; Almeida, Jonas S
2006-01-01
Background Matlab, a powerful and productive language that allows for rapid prototyping, modeling and simulation, is widely used in computational biology. Modeling and simulation of large biological systems often require more computational resources then are available on a single computer. Existing distributed computing environments like the Distributed Computing Toolbox, MatlabMPI, Matlab*G and others allow for the remote (and possibly parallel) execution of Matlab commands with varying support for features like an easy-to-use application programming interface, load-balanced utilization of resources, extensibility over the wide area network, and minimal system administration skill requirements. However, all of these environments require some level of access to participating machines to manually distribute the user-defined libraries that the remote call may invoke. Results mGrid augments the usual process distribution seen in other similar distributed systems by adding facilities for user code distribution. mGrid's client-side interface is an easy-to-use native Matlab toolbox that transparently executes user-defined code on remote machines (i.e. the user is unaware that the code is executing somewhere else). Run-time variables are automatically packed and distributed with the user-defined code and automated load-balancing of remote resources enables smooth concurrent execution. mGrid is an open source environment. Apart from the programming language itself, all other components are also open source, freely available tools: light-weight PHP scripts and the Apache web server. Conclusion Transparent, load-balanced distribution of user-defined Matlab toolboxes and rapid prototyping of many simple parallel applications can now be done with a single easy-to-use Matlab command. Because mGrid utilizes only Matlab, light-weight PHP scripts and the Apache web server, installation and configuration are very simple. Moreover, the web-based infrastructure of mGrid allows for it to be easily extensible over the Internet. PMID:16539707
Karpievitch, Yuliya V; Almeida, Jonas S
2006-03-15
Matlab, a powerful and productive language that allows for rapid prototyping, modeling and simulation, is widely used in computational biology. Modeling and simulation of large biological systems often require more computational resources then are available on a single computer. Existing distributed computing environments like the Distributed Computing Toolbox, MatlabMPI, Matlab*G and others allow for the remote (and possibly parallel) execution of Matlab commands with varying support for features like an easy-to-use application programming interface, load-balanced utilization of resources, extensibility over the wide area network, and minimal system administration skill requirements. However, all of these environments require some level of access to participating machines to manually distribute the user-defined libraries that the remote call may invoke. mGrid augments the usual process distribution seen in other similar distributed systems by adding facilities for user code distribution. mGrid's client-side interface is an easy-to-use native Matlab toolbox that transparently executes user-defined code on remote machines (i.e. the user is unaware that the code is executing somewhere else). Run-time variables are automatically packed and distributed with the user-defined code and automated load-balancing of remote resources enables smooth concurrent execution. mGrid is an open source environment. Apart from the programming language itself, all other components are also open source, freely available tools: light-weight PHP scripts and the Apache web server. Transparent, load-balanced distribution of user-defined Matlab toolboxes and rapid prototyping of many simple parallel applications can now be done with a single easy-to-use Matlab command. Because mGrid utilizes only Matlab, light-weight PHP scripts and the Apache web server, installation and configuration are very simple. Moreover, the web-based infrastructure of mGrid allows for it to be easily extensible over the Internet.
Investigation of HZETRN 2010 as a Tool for Single Event Effect Qualification of Avionics Systems
NASA Technical Reports Server (NTRS)
Rojdev, Kristina; Atwell, William; Boeder, Paul; Koontz, Steve
2014-01-01
NASA's future missions are focused on deep space for human exploration that do not provide a simple emergency return to Earth. In addition, the deep space environment contains a constant background Galactic Cosmic Ray (GCR) radiation exposure, as well as periodic Solar Particle Events (SPEs) that can produce intense amounts of radiation in a short amount of time. Given these conditions, it is important that the avionics systems for deep space human missions are not susceptible to Single Event Effects (SEE) that can occur from radiation interactions with electronic components. The typical process to minimizing SEE effects is through using heritage hardware and extensive testing programs that are very costly. Previous work by Koontz, et al. [1] utilized an analysis-based method for investigating electronic component susceptibility. In their paper, FLUKA, a Monte Carlo transport code, was used to calculate SEE and single event upset (SEU) rates. This code was then validated against in-flight data. In addition, CREME-96, a deterministic code, was also compared with FLUKA and in-flight data. However, FLUKA has a long run-time (on the order of days), and CREME-96 has not been updated in several years. This paper will investigate the use of HZETRN 2010, a deterministic transport code developed at NASA Langley Research Center, as another tool that can be used to analyze SEE and SEU rates. The benefits to using HZETRN over FLUKA and CREME-96 are that it has a very fast run time (on the order of minutes) and has been shown to be of similar accuracy as other deterministic and Monte Carlo codes when considering dose [2, 3, 4]. The 2010 version of HZETRN has updated its treatment of secondary neutrons and thus has improved its accuracy over previous versions. In this paper, the Linear Energy Transfer (LET) spectra are of interest rather than the total ionizing dose. Therefore, the LET spectra output from HZETRN 2010 will be compared with the FLUKA and in-flight data to validate HZETRN 2010 as a computational tool for SEE qualification by analysis. Furthermore, extrapolation of these data to interplanetary environments at 1 AU will be investigated to determine whether HZETRN 2010 can be used successfully and confidently for deep space mission analyses.
Landsberger, David M.; Vermeire, Katrien; Claes, Annes; Van Rompaey, Vincent; Van de Heyning, Paul
2015-01-01
Objectives Although it has been previously shown that changes in temporal coding produce changes in pitch in all cochlear regions, research has suggested that temporal coding might be best encoded in relatively apical locations. We hypothesized that although temporal coding may provide useable information at any cochlear location, low rates of stimulation might provide better sound quality in apical regions that are more likely to encode temporal information in the normal ear. In the present study, sound qualities of single electrode pulse trains were scaled to provide insight into the combined effects of cochlear location and stimulation rate on sound quality. Design Ten long term users of MED-EL cochlear implants with 31 mm electrode arrays (Standard or FLEXSOFT) were asked to scale the sound quality of single electrode pulse trains in terms of how “Clean”, “Noisy”, “High”, and “Annoying” they sounded. Pulse trains were presented on most electrodes between 1 and 12 representing the entire range of the long electrode array at stimulation rates of 100, 150, 200, 400, or 1500 pulses per second. Results While high rates of stimulation are scaled as having a “Clean” sound quality across the entire array, only the most apical electrodes (typically 1 through 3) were considered “Clean” at low rates. Low rates on electrodes 6 through 12 were not rated as “Clean” while the low rate quality of electrodes 4 and 5 were typically in between. Scaling of “Noisy” responses provided an approximately inverse pattern as “Clean” responses. “High” responses show the trade-off between rate and place of stimulation on pitch. Because “High” responses did not correlate with “Clean” responses, subjects were not rating sound quality based on pitch. Conclusions If explicit temporal coding is to be provided in a cochlear implant, it is likely to sound better when provided apically. Additionally, the finding that low rates sound clean only at apical places of stimulation is consistent with previous findings that a change in rate of stimulation corresponds to an equivalent change in perceived pitch at apical locations. Collectively, the data strongly suggests that temporal coding with a cochlear implant is optimally provided by electrodes placed well into the second cochlear turn. PMID:26583480
Open-Source Development of the Petascale Reactive Flow and Transport Code PFLOTRAN
NASA Astrophysics Data System (ADS)
Hammond, G. E.; Andre, B.; Bisht, G.; Johnson, T.; Karra, S.; Lichtner, P. C.; Mills, R. T.
2013-12-01
Open-source software development has become increasingly popular in recent years. Open-source encourages collaborative and transparent software development and promotes unlimited free redistribution of source code to the public. Open-source development is good for science as it reveals implementation details that are critical to scientific reproducibility, but generally excluded from journal publications. In addition, research funds that would have been spent on licensing fees can be redirected to code development that benefits more scientists. In 2006, the developers of PFLOTRAN open-sourced their code under the U.S. Department of Energy SciDAC-II program. Since that time, the code has gained popularity among code developers and users from around the world seeking to employ PFLOTRAN to simulate thermal, hydraulic, mechanical and biogeochemical processes in the Earth's surface/subsurface environment. PFLOTRAN is a massively-parallel subsurface reactive multiphase flow and transport simulator designed from the ground up to run efficiently on computing platforms ranging from the laptop to leadership-class supercomputers, all from a single code base. The code employs domain decomposition for parallelism and is founded upon the well-established and open-source parallel PETSc and HDF5 frameworks. PFLOTRAN leverages modern Fortran (i.e. Fortran 2003-2008) in its extensible object-oriented design. The use of this progressive, yet domain-friendly programming language has greatly facilitated collaboration in the code's software development. Over the past year, PFLOTRAN's top-level data structures were refactored as Fortran classes (i.e. extendible derived types) to improve the flexibility of the code, ease the addition of new process models, and enable coupling to external simulators. For instance, PFLOTRAN has been coupled to the parallel electrical resistivity tomography code E4D to enable hydrogeophysical inversion while the same code base can be used as a third-party library to provide hydrologic flow, energy transport, and biogeochemical capability to the community land model, CLM, part of the open-source community earth system model (CESM) for climate. In this presentation, the advantages and disadvantages of open source software development in support of geoscience research at government laboratories, universities, and the private sector are discussed. Since the code is open-source (i.e. it's transparent and readily available to competitors), the PFLOTRAN team's development strategy within a competitive research environment is presented. Finally, the developers discuss their approach to object-oriented programming and the leveraging of modern Fortran in support of collaborative geoscience research as the Fortran standard evolves among compiler vendors.
Vo, Elaine; Davila, Jessica A; Hou, Jason; Hodge, Krystle; Li, Linda T; Suliburk, James W; Kao, Lillian S; Berger, David H; Liang, Mike K
2013-08-01
Large databases provide a wealth of information for researchers, but identifying patient cohorts often relies on the use of current procedural terminology (CPT) codes. In particular, studies of stoma surgery have been limited by the accuracy of CPT codes in identifying and differentiating ileostomy procedures from colostomy procedures. It is important to make this distinction because the prevalence of complications associated with stoma formation and reversal differ dramatically between types of stoma. Natural language processing (NLP) is a process that allows text-based searching. The Automated Retrieval Console is an NLP-based software that allows investigators to design and perform NLP-assisted document classification. In this study, we evaluated the role of CPT codes and NLP in differentiating ileostomy from colostomy procedures. Using CPT codes, we conducted a retrospective study that identified all patients undergoing a stoma-related procedure at a single institution between January 2005 and December 2011. All operative reports during this time were reviewed manually to abstract the following variables: formation or reversal and ileostomy or colostomy. Sensitivity and specificity for validation of the CPT codes against the mastery surgery schedule were calculated. Operative reports were evaluated by use of NLP to differentiate ileostomy- from colostomy-related procedures. Sensitivity and specificity for identifying patients with ileostomy or colostomy procedures were calculated for CPT codes and NLP for the entire cohort. CPT codes performed well in identifying stoma procedures (sensitivity 87.4%, specificity 97.5%). A total of 664 stoma procedures were identified by CPT codes between 2005 and 2011. The CPT codes were adequate in identifying stoma formation (sensitivity 97.7%, specificity 72.4%) and stoma reversal (sensitivity 74.1%, specificity 98.7%), but they were inadequate in identifying ileostomy (sensitivity 35.0%, specificity 88.1%) and colostomy (75.2% and 80.9%). NLP performed with greater sensitivity, specificity, and accuracy than CPT codes in identifying stoma procedures and stoma types. Major differences where NLP outperformed CPT included identifying ileostomy (specificity 95.8%, sensitivity 88.3%, and accuracy 91.5%) and colostomy (97.6%, 90.5%, and 92.8%, respectively). CPT codes can identify effectively patients who have had stoma procedures and are adequate in distinguishing between formation and reversal; however, CPT codes cannot differentiate ileostomy from colostomy. NLP can be used to differentiate between ileostomy- and colostomy-related procedures. The role of NLP in conjunction with electronic medical records in data retrieval warrants further investigation. Published by Mosby, Inc.
NASA Astrophysics Data System (ADS)
Magyar, Andrew
The recent discovery of cells that respond to purely conceptual features of the environment (particular people, landmarks, objects, etc) in the human medial temporal lobe (MTL), has raised many questions about the nature of the neural code in humans. The goal of this dissertation is to develop a novel statistical method based upon maximum likelihood regression which will then be applied to these experiments in order to produce a quantitative description of the coding properties of the human MTL. In general, the method is applicable to any experiments in which a sequence of stimuli are presented to an organism while the binary responses of a large number of cells are recorded in parallel. The central concept underlying the approach is the total probability that a neuron responds to a random stimulus, called the neuronal sparsity. The model then estimates the distribution of response probabilities across the population of cells. Applying the method to single-unit recordings from the human medial temporal lobe, estimates of the sparsity distributions are acquired in four regions: the hippocampus, the entorhinal cortex, the amygdala, and the parahippocampal cortex. The resulting distributions are found to be sparse (large fraction of cells with a low response probability) and highly non-uniform, with a large proportion of ultra-sparse neurons that possess a very low response probability, and a smaller population of cells which respond much more frequently. Rammifications of the results are discussed in relation to the sparse coding hypothesis, and comparisons are made between the statistics of the human medial temporal lobe cells and place cells observed in the rodent hippocampus.
High-Speed Digital Interferometry
NASA Technical Reports Server (NTRS)
De Vine, Glenn; Shaddock, Daniel A.; Ware, Brent; Spero, Robert E.; Wuchenich, Danielle M.; Klipstein, William M.; McKenzie, Kirk
2012-01-01
Digitally enhanced heterodyne interferometry (DI) is a laser metrology technique employing pseudo-random noise (PRN) codes phase-modulated onto an optical carrier. Combined with heterodyne interferometry, the PRN code is used to select individual signals, returning the inherent interferometric sensitivity determined by the optical wavelength. The signal isolation arises from the autocorrelation properties of the PRN code, enabling both rejection of spurious signals (e.g., from scattered light) and multiplexing capability using a single metrology system. The minimum separation of optical components is determined by the wavelength of the PRN code.
Towards Realistic Implementations of a Majorana Surface Code.
Landau, L A; Plugge, S; Sela, E; Altland, A; Albrecht, S M; Egger, R
2016-02-05
Surface codes have emerged as promising candidates for quantum information processing. Building on the previous idea to realize the physical qubits of such systems in terms of Majorana bound states supported by topological semiconductor nanowires, we show that the basic code operations, namely projective stabilizer measurements and qubit manipulations, can be implemented by conventional tunnel conductance probes and charge pumping via single-electron transistors, respectively. The simplicity of the access scheme suggests that a functional code might be in close experimental reach.
NASA Astrophysics Data System (ADS)
Rodríguez-Sánchez, Rafael; Martínez, José Luis; Cock, Jan De; Fernández-Escribano, Gerardo; Pieters, Bart; Sánchez, José L.; Claver, José M.; de Walle, Rik Van
2013-12-01
The H.264/AVC video coding standard introduces some improved tools in order to increase compression efficiency. Moreover, the multi-view extension of H.264/AVC, called H.264/MVC, adopts many of them. Among the new features, variable block-size motion estimation is one which contributes to high coding efficiency. Furthermore, it defines a different prediction structure that includes hierarchical bidirectional pictures, outperforming traditional Group of Pictures patterns in both scenarios: single-view and multi-view. However, these video coding techniques have high computational complexity. Several techniques have been proposed in the literature over the last few years which are aimed at accelerating the inter prediction process, but there are no works focusing on bidirectional prediction or hierarchical prediction. In this article, with the emergence of many-core processors or accelerators, a step forward is taken towards an implementation of an H.264/AVC and H.264/MVC inter prediction algorithm on a graphics processing unit. The results show a negligible rate distortion drop with a time reduction of up to 98% for the complete H.264/AVC encoder.
A programmable metasurface with dynamic polarization, scattering and focusing control
NASA Astrophysics Data System (ADS)
Yang, Huanhuan; Cao, Xiangyu; Yang, Fan; Gao, Jun; Xu, Shenheng; Li, Maokun; Chen, Xibi; Zhao, Yi; Zheng, Yuejun; Li, Sijia
2016-10-01
Diverse electromagnetic (EM) responses of a programmable metasurface with a relatively large scale have been investigated, where multiple functionalities are obtained on the same surface. The unit cell in the metasurface is integrated with one PIN diode, and thus a binary coded phase is realized for a single polarization. Exploiting this anisotropic characteristic, reconfigurable polarization conversion is presented first. Then the dynamic scattering performance for two kinds of sources, i.e. a plane wave and a point source, is carefully elaborated. To tailor the scattering properties, genetic algorithm, normally based on binary coding, is coupled with the scattering pattern analysis to optimize the coding matrix. Besides, inverse fast Fourier transform (IFFT) technique is also introduced to expedite the optimization process of a large metasurface. Since the coding control of each unit cell allows a local and direct modulation of EM wave, various EM phenomena including anomalous reflection, diffusion, beam steering and beam forming are successfully demonstrated by both simulations and experiments. It is worthwhile to point out that a real-time switch among these functionalities is also achieved by using a field-programmable gate array (FPGA). All the results suggest that the proposed programmable metasurface has great potentials for future applications.
A programmable metasurface with dynamic polarization, scattering and focusing control
Yang, Huanhuan; Cao, Xiangyu; Yang, Fan; Gao, Jun; Xu, Shenheng; Li, Maokun; Chen, Xibi; Zhao, Yi; Zheng, Yuejun; Li, Sijia
2016-01-01
Diverse electromagnetic (EM) responses of a programmable metasurface with a relatively large scale have been investigated, where multiple functionalities are obtained on the same surface. The unit cell in the metasurface is integrated with one PIN diode, and thus a binary coded phase is realized for a single polarization. Exploiting this anisotropic characteristic, reconfigurable polarization conversion is presented first. Then the dynamic scattering performance for two kinds of sources, i.e. a plane wave and a point source, is carefully elaborated. To tailor the scattering properties, genetic algorithm, normally based on binary coding, is coupled with the scattering pattern analysis to optimize the coding matrix. Besides, inverse fast Fourier transform (IFFT) technique is also introduced to expedite the optimization process of a large metasurface. Since the coding control of each unit cell allows a local and direct modulation of EM wave, various EM phenomena including anomalous reflection, diffusion, beam steering and beam forming are successfully demonstrated by both simulations and experiments. It is worthwhile to point out that a real-time switch among these functionalities is also achieved by using a field-programmable gate array (FPGA). All the results suggest that the proposed programmable metasurface has great potentials for future applications. PMID:27774997
A programmable metasurface with dynamic polarization, scattering and focusing control.
Yang, Huanhuan; Cao, Xiangyu; Yang, Fan; Gao, Jun; Xu, Shenheng; Li, Maokun; Chen, Xibi; Zhao, Yi; Zheng, Yuejun; Li, Sijia
2016-10-24
Diverse electromagnetic (EM) responses of a programmable metasurface with a relatively large scale have been investigated, where multiple functionalities are obtained on the same surface. The unit cell in the metasurface is integrated with one PIN diode, and thus a binary coded phase is realized for a single polarization. Exploiting this anisotropic characteristic, reconfigurable polarization conversion is presented first. Then the dynamic scattering performance for two kinds of sources, i.e. a plane wave and a point source, is carefully elaborated. To tailor the scattering properties, genetic algorithm, normally based on binary coding, is coupled with the scattering pattern analysis to optimize the coding matrix. Besides, inverse fast Fourier transform (IFFT) technique is also introduced to expedite the optimization process of a large metasurface. Since the coding control of each unit cell allows a local and direct modulation of EM wave, various EM phenomena including anomalous reflection, diffusion, beam steering and beam forming are successfully demonstrated by both simulations and experiments. It is worthwhile to point out that a real-time switch among these functionalities is also achieved by using a field-programmable gate array (FPGA). All the results suggest that the proposed programmable metasurface has great potentials for future applications.
Chery, Joyce G; Sass, Chodon; Specht, Chelsea D
2017-09-01
We developed a bioinformatic pipeline that leverages a publicly available genome and published transcriptomes to design primers in conserved coding sequences flanking targeted introns of single-copy nuclear loci. Paullinieae (Sapindaceae) is used to demonstrate the pipeline. Transcriptome reads phylogenetically closer to the lineage of interest are aligned to the closest genome. Single-nucleotide polymorphisms are called, generating a "pseudoreference" closer to the lineage of interest. Several filters are applied to meet the criteria of single-copy nuclear loci with introns of a desired size. Primers are designed in conserved coding sequences flanking introns. Using this pipeline, we developed nine single-copy nuclear intron markers for Paullinieae. This pipeline is highly flexible and can be used for any group with available genomic and transcriptomic resources. This pipeline led to the development of nine variable markers for phylogenetic study without generating sequence data de novo.
Extension of the XGC code for global gyrokinetic simulations in stellarator geometry
NASA Astrophysics Data System (ADS)
Cole, Michael; Moritaka, Toseo; White, Roscoe; Hager, Robert; Ku, Seung-Hoe; Chang, Choong-Seock
2017-10-01
In this work, the total-f, gyrokinetic particle-in-cell code XGC is extended to treat stellarator geometries. Improvements to meshing tools and the code itself have enabled the first physics studies, including single particle tracing and flux surface mapping in the magnetic geometry of the heliotron LHD and quasi-isodynamic stellarator Wendelstein 7-X. These have provided the first successful test cases for our approach. XGC is uniquely placed to model the complex edge physics of stellarators. A roadmap to such a global confinement modeling capability will be presented. Single particle studies will include the physics of energetic particles' global stochastic motions and their effect on confinement. Good confinement of energetic particles is vital for a successful stellarator reactor design. These results can be compared in the core region with those of other codes, such as ORBIT3d. In subsequent work, neoclassical transport and turbulence can then be considered and compared to results from codes such as EUTERPE and GENE. After sufficient verification in the core region, XGC will move into the stellarator edge region including the material wall and neutral particle recycling.
A User''s Guide to the Zwikker-Kosten Transmission Line Code (ZKTL)
NASA Technical Reports Server (NTRS)
Kelly, J. J.; Abu-Khajeel, H.
1997-01-01
This user's guide documents updates to the Zwikker-Kosten Transmission Line Code (ZKTL). This code was developed for analyzing new liner concepts developed to provide increased sound absorption. Contiguous arrays of multi-degree-of-freedom (MDOF) liner elements serve as the model for these liner configurations, and Zwikker and Kosten's theory of sound propagation in channels is used to predict the surface impedance. Transmission matrices for the various liner elements incorporate both analytical and semi-empirical methods. This allows standard matrix techniques to be employed in the code to systematically calculate the composite impedance due to the individual liner elements. The ZKTL code consists of four independent subroutines: 1. Single channel impedance calculation - linear version (SCIC) 2. Single channel impedance calculation - nonlinear version (SCICNL) 3. Multi-channel, multi-segment, multi-layer impedance calculation - linear version (MCMSML) 4. Multi-channel, multi-segment, multi-layer impedance calculation - nonlinear version (MCMSMLNL) Detailed examples, comments, and explanations for each liner impedance computation module are included. Also contained in the guide are depictions of the interactive execution, input files and output files.
A forward error correction technique using a high-speed, high-rate single chip codec
NASA Astrophysics Data System (ADS)
Boyd, R. W.; Hartman, W. F.; Jones, Robert E.
The authors describe an error-correction coding approach that allows operation in either burst or continuous modes at data rates of multiple hundreds of megabits per second. Bandspreading is low since the code rate is 7/8 or greater, which is consistent with high-rate link operation. The encoder, along with a hard-decision decoder, fits on a single application-specific integrated circuit (ASIC) chip. Soft-decision decoding is possible utilizing applique hardware in conjunction with the hard-decision decoder. Expected coding gain is a function of the application and is approximately 2.5 dB for hard-decision decoding at 10-5 bit-error rate with phase-shift-keying modulation and additive Gaussian white noise interference. The principal use envisioned for this technique is to achieve a modest amount of coding gain on high-data-rate, bandwidth-constrained channels. Data rates of up to 300 Mb/s can be accommodated by the codec chip. The major objective is burst-mode communications, where code words are composed of 32 n data bits followed by 32 overhead bits.
Assessing Attachment in Psychotherapy: Validation of the Patient Attachment Coding System (PACS).
Talia, Alessandro; Miller-Bottome, Madeleine; Daniel, Sarah I F
2017-01-01
The authors present and validate the Patient Attachment Coding System (PACS), a transcript-based instrument that assesses clients' in-session attachment based on any session of psychotherapy, in multiple treatment modalities. One-hundred and sixty clients in different types of psychotherapy (cognitive-behavioural, cognitive-behavioural-enhanced, psychodynamic, relational, supportive) and from three different countries were administered the Adult Attachment Interview (AAI) prior to treatment, and one session for each client was rated with the PACS by independent coders. Results indicate strong inter-rater reliability, and high convergent validity of the PACS scales and classifications with the AAI. These results present the PACS as a practical alternative to the AAI in psychotherapy research and suggest that clinicians using the PACS can assess clients' attachment status on an ongoing basis by monitoring clients' verbal activity. These results also provide information regarding the ways in which differences in attachment status play out in therapy sessions and further the study of attachment in psychotherapy from a pre-treatment client factor to a process variable. Copyright © 2015 John Wiley & Sons, Ltd. The Patient Attachment Coding System is a valid measure of attachment that can classify clients' attachment based on any single psychotherapy transcript, in many therapeutic modalities Client differences in attachment manifest in part independently of the therapist's contributions Client adult attachment patterns are likely to affect psychotherapeutic processes. Copyright © 2015 John Wiley & Sons, Ltd.
Single event upsets in semiconductor devices induced by highly ionising particles.
Sannikov, A V
2004-01-01
A new model of single event upsets (SEUs), created in memory cells by heavy ions and high energy hadrons, has been developed. The model takes into account the spatial distribution of charge collection efficiency over the cell area not considered in previous approaches. Three-dimensional calculations made by the HADRON code have shown good agreement with experimental data for the energy dependence of proton SEU cross sections, sensitive depths and other SEU observables. The model is promising for prediction of SEU rates for memory chips exposed in space and in high-energy experiments as well as for the development of a high-energy neutron dosemeter based on the SEU effect.
HangOut: generating clean PSI-BLAST profiles for domains with long insertions.
Kim, Bong-Hyun; Cong, Qian; Grishin, Nick V
2010-06-15
Profile-based similarity search is an essential step in structure-function studies of proteins. However, inclusion of non-homologous sequence segments into a profile causes its corruption and results in false positives. Profile corruption is common in multidomain proteins, and single domains with long insertions are a significant source of errors. We developed a procedure (HangOut) that, for a single domain with specified insertion position, cleans erroneously extended PSI-BLAST alignments to generate better profiles. HangOut is implemented in Python 2.3 and runs on all Unix-compatible platforms. The source code is available under the GNU GPL license at http://prodata.swmed.edu/HangOut/. Supplementary data are available at Bioinformatics online.
Error detection and correction unit with built-in self-test capability for spacecraft applications
NASA Technical Reports Server (NTRS)
Timoc, Constantin
1990-01-01
The objective of this project was to research and develop a 32-bit single chip Error Detection and Correction unit capable of correcting all single bit errors and detecting all double bit errors in the memory systems of a spacecraft. We designed the 32-bit EDAC (Error Detection and Correction unit) based on a modified Hamming code and according to the design specifications and performance requirements. We constructed a laboratory prototype (breadboard) which was converted into a fault simulator. The correctness of the design was verified on the breadboard using an exhaustive set of test cases. A logic diagram of the EDAC was delivered to JPL Section 514 on 4 Oct. 1988.
Estimating recharge rates with analytic element models and parameter estimation
Dripps, W.R.; Hunt, R.J.; Anderson, M.P.
2006-01-01
Quantifying the spatial and temporal distribution of recharge is usually a prerequisite for effective ground water flow modeling. In this study, an analytic element (AE) code (GFLOW) was used with a nonlinear parameter estimation code (UCODE) to quantify the spatial and temporal distribution of recharge using measured base flows as calibration targets. The ease and flexibility of AE model construction and evaluation make this approach well suited for recharge estimation. An AE flow model of an undeveloped watershed in northern Wisconsin was optimized to match median annual base flows at four stream gages for 1996 to 2000 to demonstrate the approach. Initial optimizations that assumed a constant distributed recharge rate provided good matches (within 5%) to most of the annual base flow estimates, but discrepancies of >12% at certain gages suggested that a single value of recharge for the entire watershed is inappropriate. Subsequent optimizations that allowed for spatially distributed recharge zones based on the distribution of vegetation types improved the fit and confirmed that vegetation can influence spatial recharge variability in this watershed. Temporally, the annual recharge values varied >2.5-fold between 1996 and 2000 during which there was an observed 1.7-fold difference in annual precipitation, underscoring the influence of nonclimatic factors on interannual recharge variability for regional flow modeling. The final recharge values compared favorably with more labor-intensive field measurements of recharge and results from studies, supporting the utility of using linked AE-parameter estimation codes for recharge estimation. Copyright ?? 2005 The Author(s).
A framework for streamlining research workflow in neuroscience and psychology
Kubilius, Jonas
2014-01-01
Successful accumulation of knowledge is critically dependent on the ability to verify and replicate every part of scientific conduct. However, such principles are difficult to enact when researchers continue to resort on ad-hoc workflows and with poorly maintained code base. In this paper I examine the needs of neuroscience and psychology community, and introduce psychopy_ext, a unifying framework that seamlessly integrates popular experiment building, analysis and manuscript preparation tools by choosing reasonable defaults and implementing relatively rigid patterns of workflow. This structure allows for automation of multiple tasks, such as generated user interfaces, unit testing, control analyses of stimuli, single-command access to descriptive statistics, and publication quality plotting. Taken together, psychopy_ext opens an exciting possibility for a faster, more robust code development and collaboration for researchers. PMID:24478691
NASA Astrophysics Data System (ADS)
Oertel, D.; Jahn, H.; Sandau, R.; Walter, I.; Driescher, H.
1990-10-01
Objectives of the multifunctional stereo imaging camera (MUSIC) system to be deployed on the Soviet Mars-94 mission are outlined. A high-resolution stereo camera (HRSC) and wide-angle opto-electronic stereo scanner (WAOSS) are combined in terms of hardware, software, technology aspects, and solutions. Both HRSC and WAOSS are push-button instruments containing a single optical system and focal plates with several parallel CCD line sensors. Emphasis is placed on the MUSIC system's stereo capability, its design, mass memory, and data compression. A 1-Gbit memory is divided into two parts: 80 percent for HRSC and 20 percent for WAOSS, while the selected on-line compression strategy is based on macropixel coding and real-time transform coding.
McKenzie, Sam; Keene, Chris; Farovik, Anja; Blandon, John; Place, Ryan; Komorowski, Robert; Eichenbaum, Howard
2016-01-01
Here we consider the value of neural population analysis as an approach to understanding how information is represented in the hippocampus and cortical areas and how these areas might interact as a brain system to support memory. We argue that models based on sparse coding of different individual features by single neurons in these areas (e.g., place cells, grid cells) are inadequate to capture the complexity of experience represented within this system. By contrast, population analyses of neurons with denser coding and mixed selectivity reveal new and important insights into the organization of memories. Furthermore, comparisons of the organization of information in interconnected areas suggest a model of hippocampal-cortical interactions that mediates the fundamental features of memory. PMID:26748022
A practical guide to replica-exchange Wang—Landau simulations
NASA Astrophysics Data System (ADS)
Vogel, Thomas; Li, Ying Wai; Landau, David P.
2018-04-01
This paper is based on a series of tutorial lectures about the replica-exchange Wang-Landau (REWL) method given at the IX Brazilian Meeting on Simulational Physics (BMSP 2017). It provides a practical guide for the implementation of the method. A complete example code for a model system is available online. In this paper, we discuss the main parallel features of this code after a brief introduction to the REWL algorithm. The tutorial section is mainly directed at users who have written a single-walker Wang–Landau program already but might have just taken their first steps in parallel programming using the Message Passing Interface (MPI). In the last section, we answer “frequently asked questions” from users about the implementation of REWL for different scientific problems.
NASA Technical Reports Server (NTRS)
Capo, M. A.; Disney, R. K.
1971-01-01
The work performed in the following areas is summarized: (1) Analysis of Realistic nuclear-propelled vehicle was analyzed using the Marshall Space Flight Center computer code package. This code package includes one and two dimensional discrete ordinate transport, point kernel, and single scatter techniques, as well as cross section preparation and data processing codes, (2) Techniques were developed to improve the automated data transfer in the coupled computation method of the computer code package and improve the utilization of this code package on the Univac-1108 computer system. (3) The MSFC master data libraries were updated.
Dual Coding of Frequency Modulation in the Ventral Cochlear Nucleus.
Paraouty, Nihaad; Stasiak, Arkadiusz; Lorenzi, Christian; Varnet, Léo; Winter, Ian M
2018-04-25
Frequency modulation (FM) is a common acoustic feature of natural sounds and is known to play a role in robust sound source recognition. Auditory neurons show precise stimulus-synchronized discharge patterns that may be used for the representation of low-rate FM. However, it remains unclear whether this representation is based on synchronization to slow temporal envelope (ENV) cues resulting from cochlear filtering or phase locking to faster temporal fine structure (TFS) cues. To investigate the plausibility of those encoding schemes, single units of the ventral cochlear nucleus of guinea pigs of either sex were recorded in response to sine FM tones centered at the unit's best frequency (BF). The results show that, in contrast to high-BF units, for modulation depths within the receptive field, low-BF units (<4 kHz) demonstrate good phase locking to TFS. For modulation depths extending beyond the receptive field, the discharge patterns follow the ENV and fluctuate at the modulation rate. The receptive field proved to be a good predictor of the ENV responses for most primary-like and chopper units. The current in vivo data also reveal a high level of diversity in responses across unit types. TFS cues are mainly conveyed by low-frequency and primary-like units and ENV cues by chopper and onset units. The diversity of responses exhibited by cochlear nucleus neurons provides a neural basis for a dual-coding scheme of FM in the brainstem based on both ENV and TFS cues. SIGNIFICANCE STATEMENT Natural sounds, including speech, convey informative temporal modulations in frequency. Understanding how the auditory system represents those frequency modulations (FM) has important implications as robust sound source recognition depends crucially on the reception of low-rate FM cues. Here, we recorded 115 single-unit responses from the ventral cochlear nucleus in response to FM and provide the first physiological evidence of a dual-coding mechanism of FM via synchronization to temporal envelope cues and phase locking to temporal fine structure cues. We also demonstrate a diversity of neural responses with different coding specializations. These results support the dual-coding scheme proposed by psychophysicists to account for FM sensitivity in humans and provide new insights on how this might be implemented in the early stages of the auditory pathway. Copyright © 2018 the authors 0270-6474/18/384123-15$15.00/0.
High fidelity 3-dimensional models of beam-electron cloud interactions in circular accelerators
NASA Astrophysics Data System (ADS)
Feiz Zarrin Ghalam, Ali
Electron cloud is a low-density electron profile created inside the vacuum chamber of circular machines with positively charged beams. Electron cloud limits the peak current of the beam and degrades the beams' quality through luminosity degradation, emittance growth and head to tail or bunch to bunch instability. The adverse effects of electron cloud on long-term beam dynamics becomes more and more important as the beams go to higher and higher energies. This problem has become a major concern in many future circular machines design like the Large Hadron Collider (LHC) under construction at European Center for Nuclear Research (CERN). Due to the importance of the problem several simulation models have been developed to model long-term beam-electron cloud interaction. These models are based on "single kick approximation" where the electron cloud is assumed to be concentrated at one thin slab around the ring. While this model is efficient in terms of computational costs, it does not reflect the real physical situation as the forces from electron cloud to the beam are non-linear contrary to this model's assumption. To address the existing codes limitation, in this thesis a new model is developed to continuously model the beam-electron cloud interaction. The code is derived from a 3-D parallel Particle-In-Cell (PIC) model (QuickPIC) originally used for plasma wakefield acceleration research. To make the original model fit into circular machines environment, betatron and synchrotron equations of motions have been added to the code, also the effect of chromaticity, lattice structure have been included. QuickPIC is then benchmarked against one of the codes developed based on single kick approximation (HEAD-TAIL) for the transverse spot size of the beam in CERN-LHC. The growth predicted by QuickPIC is less than the one predicted by HEAD-TAIL. The code is then used to investigate the effect of electron cloud image charges on the long-term beam dynamics, particularly on the transverse tune shift of the beam at CERN Super Proton Synchrotron (SPS) ring. The force from the electron cloud image charges on the beam cancels the force due to cloud compression formed on the beam axis and therefore the tune shift is mainly due to the uniform electron cloud density. (Abstract shortened by UMI.)
Shuttle unified navigation filter, revision 1
NASA Technical Reports Server (NTRS)
Muller, E. S., Jr.
1973-01-01
Equations designed to meet the navigation requirements of the separate shuttle mission phases are presented in a series of reports entitled, Space Shuttle GN and C Equation Document. The development of these equations is based on performance studies carried out for each particular mission phase. Although navigation equations have been documented separately for each mission phase, a single unified navigation filter design is embodied in these separate designs. The purpose of this document is to present the shuttle navigation equations in a form in which they would most likely be coded-as the single unified navigation filter used in each mission phase. This document will then serve as a single general reference for the navigation equations replacing each of the individual mission phase navigation documents (which may still be used as a description of a particular navigation phase).
Guide to AERO2S and WINGDES Computer Codes for Prediction and Minimization of Drag Due to Lift
NASA Technical Reports Server (NTRS)
Carlson, Harry W.; Chu, Julio; Ozoroski, Lori P.; McCullers, L. Arnold
1997-01-01
The computer codes, AER02S and WINGDES, are now widely used for the analysis and design of airplane lifting surfaces under conditions that tend to induce flow separation. These codes have undergone continued development to provide additional capabilities since the introduction of the original versions over a decade ago. This code development has been reported in a variety of publications (NASA technical papers, NASA contractor reports, and society journals). Some modifications have not been publicized at all. Users of these codes have suggested the desirability of combining in a single document the descriptions of the code development, an outline of the features of each code, and suggestions for effective code usage. This report is intended to supply that need.
Tailored Codes for Small Quantum Memories
NASA Astrophysics Data System (ADS)
Robertson, Alan; Granade, Christopher; Bartlett, Stephen D.; Flammia, Steven T.
2017-12-01
We demonstrate that small quantum memories, realized via quantum error correction in multiqubit devices, can benefit substantially by choosing a quantum code that is tailored to the relevant error model of the system. For a biased noise model, with independent bit and phase flips occurring at different rates, we show that a single code greatly outperforms the well-studied Steane code across the full range of parameters of the noise model, including for unbiased noise. In fact, this tailored code performs almost optimally when compared with 10 000 randomly selected stabilizer codes of comparable experimental complexity. Tailored codes can even outperform the Steane code with realistic experimental noise, and without any increase in the experimental complexity, as we demonstrate by comparison in the observed error model in a recent seven-qubit trapped ion experiment.
2014-01-01
Background Based on practices in commercial organizations and public services, healthcare organizations are using service charters to inform patients about the quality of service they can expect and to increase patient-centeredness. In the Netherlands, an integrated regional stroke service involving five organizations has developed and implemented a single service charter. The purpose of this study is to determine the organizational enablers for the effective development and implementation of this service charter. Methods We have conducted an exploratory qualitative study using Grounded Theory to determine the organizational enablers of charter development and implementation. Individual semi-structured interviews were held with all members of the steering committee and the taskforce responsible for the service charter. In these twelve interviews, participants were retrospectively asked for their opinions of the enablers. Interview transcripts have been analysed using Glaser’s approach of substantive coding consisting of open and selective coding in order to develop a framework of these enablers. A tabula rasa approach was used without any preconceived frameworks used in the coding process. Results We have determined seven categories of enablers formed of a total of 27 properties. The categories address a broad spectrum of enablers dealing with the basic foundations for cooperation, the way to manage the project’s organization and the way to implement the service charter. In addition to the enablers within each individual organization, enablers that reflect the whole chain seem to be important for the effective development and implementation of this service charter. Strategic alignment of goals within the chain, trust between organizations, willingness to cooperate and the extent of process integration are all important properties. Conclusions This first exploratory study into the enablers of the effective development and implementation was based on a single case study in the Netherlands. This is the only integrated care chain using a single service charter that we could find. Nevertheless, the results of our explorative study provide an initial framework for the development and implementation of service charters in integrated care settings. This research contributes to the literature on service charters, on patient-centeredness in integrated care and on the implementation of innovations. PMID:24678839
Lattice Boltzmann Model of 3D Multiphase Flow in Artery Bifurcation Aneurysm Problem
Abas, Aizat; Mokhtar, N. Hafizah; Ishak, M. H. H.; Abdullah, M. Z.; Ho Tian, Ang
2016-01-01
This paper simulates and predicts the laminar flow inside the 3D aneurysm geometry, since the hemodynamic situation in the blood vessels is difficult to determine and visualize using standard imaging techniques, for example, magnetic resonance imaging (MRI). Three different types of Lattice Boltzmann (LB) models are computed, namely, single relaxation time (SRT), multiple relaxation time (MRT), and regularized BGK models. The results obtained using these different versions of the LB-based code will then be validated with ANSYS FLUENT, a commercially available finite volume- (FV-) based CFD solver. The simulated flow profiles that include velocity, pressure, and wall shear stress (WSS) are then compared between the two solvers. The predicted outcomes show that all the LB models are comparable and in good agreement with the FVM solver for complex blood flow simulation. The findings also show minor differences in their WSS profiles. The performance of the parallel implementation for each solver is also included and discussed in this paper. In terms of parallelization, it was shown that LBM-based code performed better in terms of the computation time required. PMID:27239221
LED-based high-speed visible light communications
NASA Astrophysics Data System (ADS)
Chi, Nan; Shi, Meng; Zhao, Yiheng; Wang, Fumin; Shi, Jianyang; Zhou, Yingjun; Lu, Xingyu; Qiao, Liang
2018-01-01
We are seeing a growing use of light emitting diodes (LEDs) in a range of applications including lighting, TV and backlight board screen, display etc. In comparison with the traditional incandescent and fluorescent light bulbs, LEDs offer long life-space, much higher energy efficiency, high performance cost ratio and above all very fast switching capability. LED based Visible Light Communications (VLC) is an emerging field of optical communications that focuses on the part of the electromagnetic spectrum that humans can see. Depending on the transmission distance, we can divide the whole optical network into two categories, long haul and short haul. Visible light communication can be a promising candidate for short haul applications. In this paper, we outline the configuration of VLC, its unique benefits, and describe the state of the art research contributions consisting of advanced modulation formats including adaptive bit loading OFDM, carrierless amplitude and phase (CAP), pulse amplitude modulation (PAM) and single carrier Nyquist, linear equalization and nonlinear distortion mitigation based on machine learning, quasi-balanced coding and phase-shifted Manchester coding. These enabling technologies can support VLC up to 10Gb/s class free space transmission.
Andrews, Steven S
2017-03-01
Smoldyn is a spatial and stochastic biochemical simulator. It treats each molecule of interest as an individual particle in continuous space, simulating molecular diffusion, molecule-membrane interactions and chemical reactions, all with good accuracy. This article presents several new features. Smoldyn now supports two types of rule-based modeling. These are a wildcard method, which is very convenient, and the BioNetGen package with extensions for spatial simulation, which is better for complicated models. Smoldyn also includes new algorithms for simulating the diffusion of surface-bound molecules and molecules with excluded volume. Both are exact in the limit of short time steps and reasonably good with longer steps. In addition, Smoldyn supports single-molecule tracking simulations. Finally, the Smoldyn source code can be accessed through a C/C ++ language library interface. Smoldyn software, documentation, code, and examples are at http://www.smoldyn.org . steven.s.andrews@gmail.com. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Bradshaw, Debbie; Groenewald, Pamela; Bourne, David E.; Mahomed, Hassan; Nojilana, Beatrice; Daniels, Johan; Nixon, Jo
2006-01-01
OBJECTIVE: To review the quality of the coding of the cause of death (COD) statistics and assess the mortality information needs of the City of Cape Town. METHODS: Using an action research approach, a study was set up to investigate the quality of COD information, the accuracy of COD coding and consistency of coding practices in the larger health subdistricts. Mortality information needs and the best way of presenting the statistics to assist health managers were explored. FINDINGS: Useful information was contained in 75% of death certificates, but nearly 60% had only a single cause certified; 55% of forms were coded accurately. Disagreement was mainly because routine coders coded the immediate instead of the underlying COD. An abridged classification of COD, based on causes of public health importance, prevalent causes and selected combinations of diseases was implemented with training on underlying cause. Analysis of the 2001 data identified the leading causes of death and premature mortality and illustrated striking differences in the disease burden and profile between health subdistricts. CONCLUSION: Action research is particularly useful for improving information systems and revealed the need to standardize the coding practice to identify underlying cause. The specificity of the full ICD classification is beyond the level of detail on the death certificates currently available. An abridged classification for coding provides a practical tool appropriate for local level public health surveillance. Attention to the presentation of COD statistics is important to enable the data to inform decision-makers. PMID:16583080
Coding of Class I and II aminoacyl-tRNA synthetases
Carter, Charles W.
2018-01-01
SUMMARY The aminoacyl-tRNA synthetases and their cognate transfer RNAs translate the universal genetic code. The twenty canonical amino acids are sufficiently diverse to create a selective advantage for dividing amino acid activation between two distinct, apparently unrelated superfamilies of synthetases, Class I amino acids being generally larger and less polar, Class II amino acids smaller and more polar. Biochemical, bioinformatic, and protein engineering experiments support the hypothesis that the two Classes descended from opposite strands of the same ancestral gene. Parallel experimental deconstructions of Class I and II synthetases reveal parallel losses in catalytic proficiency at two novel modular levels—protozymes and Urzymes—associated with the evolution of catalytic activity. Bi-directional coding supports an important unification of the proteome; affords a genetic relatedness metric—middle base-pairing frequencies in sense/antisense alignments—that probes more deeply into the evolutionary history of translation than do single multiple sequence alignments; and has facilitated the analysis of hitherto unknown coding relationships in tRNA sequences. Reconstruction of native synthetases by modular thermodynamic cycles facilitated by domain engineering emphasizes the subtlety associated with achieving high specificity, shedding new light on allosteric relationships in contemporary synthetases. Synthetase Urzyme structural biology suggests that they are catalytically active molten globules, broadening the potential manifold of polypeptide catalysts accessible to primitive genetic coding and motivating revisions of the origins of catalysis. Finally, bi-directional genetic coding of some of the oldest genes in the proteome places major limitations on the likelihood that any RNA World preceded the origins of coded proteins. PMID:28828732
Bradshaw, Debbie; Groenewald, Pamela; Bourne, David E; Mahomed, Hassan; Nojilana, Beatrice; Daniels, Johan; Nixon, Jo
2006-03-01
To review the quality of the coding of the cause of death (COD) statistics and assess the mortality information needs of the City of Cape Town. Using an action research approach, a study was set up to investigate the quality of COD information, the accuracy of COD coding and consistency of coding practices in the larger health subdistricts. Mortality information needs and the best way of presenting the statistics to assist health managers were explored. Useful information was contained in 75% of death certificates, but nearly 60% had only a single cause certified; 55% of forms were coded accurately. Disagreement was mainly because routine coders coded the immediate instead of the underlying COD. An abridged classification of COD, based on causes of public health importance, prevalent causes and selected combinations of diseases was implemented with training on underlying cause. Analysis of the 2001 data identified the leading causes of death and premature mortality and illustrated striking differences in the disease burden and profile between health subdistricts. Action research is particularly useful for improving information systems and revealed the need to standardize the coding practice to identify underlying cause. The specificity of the full ICD classification is beyond the level of detail on the death certificates currently available. An abridged classification for coding provides a practical tool appropriate for local level public health surveillance. Attention to the presentation of COD statistics is important to enable the data to inform decision-makers.
Muller, Sara; Hider, Samantha L; Raza, Karim; Stack, Rebecca J; Hayward, Richard A; Mallen, Christian D
2015-01-01
Objective Rheumatoid arthritis (RA) is a multisystem, inflammatory disorder associated with increased levels of morbidity and mortality. While much research into the condition is conducted in the secondary care setting, routinely collected primary care databases provide an important source of research data. This study aimed to update an algorithm to define RA that was previously developed and validated in the General Practice Research Database (GPRD). Methods The original algorithm consisted of two criteria. Individuals meeting at least one were considered to have RA. Criterion 1: ≥1 RA Read code and a disease modifying antirheumatic drug (DMARD) without an alternative indication. Criterion 2: ≥2 RA Read codes, with at least one ‘strong’ code and no alternative diagnoses. Lists of codes for consultations and prescriptions were obtained from the authors of the original algorithm where these were available, or compiled based on the original description and clinical knowledge. 4161 people with a first Read code for RA between 1 January 2010 and 31 December 2012 were selected from the Clinical Practice Research Datalink (CPRD, successor to the GPRD), and the criteria applied. Results Code lists were updated for the introduction of new Read codes and biological DMARDs. 3577/4161 (86%) of people met the updated algorithm for RA, compared to 61% in the original development study. 62.8% of people fulfilled both Criterion 1 and Criterion 2. Conclusions Those wishing to define RA in the CPRD, should consider using this updated algorithm, rather than a single RA code, if they wish to identify only those who are most likely to have RA. PMID:26700281
Combined Wavelet Video Coding and Error Control for Internet Streaming and Multicast
NASA Astrophysics Data System (ADS)
Chu, Tianli; Xiong, Zixiang
2003-12-01
This paper proposes an integrated approach to Internet video streaming and multicast (e.g., receiver-driven layered multicast (RLM) by McCanne) based on combined wavelet video coding and error control. We design a packetized wavelet video (PWV) coder to facilitate its integration with error control. The PWV coder produces packetized layered bitstreams that are independent among layers while being embedded within each layer. Thus, a lost packet only renders the following packets in the same layer useless. Based on the PWV coder, we search for a multilayered error-control strategy that optimally trades off source and channel coding for each layer under a given transmission rate to mitigate the effects of packet loss. While both the PWV coder and the error-control strategy are new—the former incorporates embedded wavelet video coding and packetization and the latter extends the single-layered approach for RLM by Chou et al.—the main distinction of this paper lies in the seamless integration of the two parts. Theoretical analysis shows a gain of up to 1 dB on a channel with 20% packet loss using our combined approach over separate designs of the source coder and the error-control mechanism. This is also substantiated by our simulations with a gain of up to 0.6 dB. In addition, our simulations show a gain of up to 2.2 dB over previous results reported by Chou et al.
Attacks on quantum key distribution protocols that employ non-ITS authentication
NASA Astrophysics Data System (ADS)
Pacher, C.; Abidin, A.; Lorünser, T.; Peev, M.; Ursin, R.; Zeilinger, A.; Larsson, J.-Å.
2016-01-01
We demonstrate how adversaries with large computing resources can break quantum key distribution (QKD) protocols which employ a particular message authentication code suggested previously. This authentication code, featuring low key consumption, is not information-theoretically secure (ITS) since for each message the eavesdropper has intercepted she is able to send a different message from a set of messages that she can calculate by finding collisions of a cryptographic hash function. However, when this authentication code was introduced, it was shown to prevent straightforward man-in-the-middle (MITM) attacks against QKD protocols. In this paper, we prove that the set of messages that collide with any given message under this authentication code contains with high probability a message that has small Hamming distance to any other given message. Based on this fact, we present extended MITM attacks against different versions of BB84 QKD protocols using the addressed authentication code; for three protocols, we describe every single action taken by the adversary. For all protocols, the adversary can obtain complete knowledge of the key, and for most protocols her success probability in doing so approaches unity. Since the attacks work against all authentication methods which allow to calculate colliding messages, the underlying building blocks of the presented attacks expose the potential pitfalls arising as a consequence of non-ITS authentication in QKD post-processing. We propose countermeasures, increasing the eavesdroppers demand for computational power, and also prove necessary and sufficient conditions for upgrading the discussed authentication code to the ITS level.
Pietan, Lucas L.; Spradling, Theresa A.
2016-01-01
In animals, mitochondrial DNA (mtDNA) typically occurs as a single circular chromosome with 13 protein-coding genes and 22 tRNA genes. The various species of lice examined previously, however, have shown mitochondrial genome rearrangements with a range of chromosome sizes and numbers. Our research demonstrates that the mitochondrial genomes of two species of chewing lice found on pocket gophers, Geomydoecus aurei and Thomomydoecus minor, are fragmented with the 1,536 base-pair (bp) cytochrome-oxidase subunit I (cox1) gene occurring as the only protein-coding gene on a 1,916–1,964 bp minicircular chromosome in the two species, respectively. The cox1 gene of T. minor begins with an atypical start codon, while that of G. aurei does not. Components of the non-protein coding sequence of G. aurei and T. minor include a tRNA (isoleucine) gene, inverted repeat sequences consistent with origins of replication, and an additional non-coding region that is smaller than the non-coding sequence of other lice with such fragmented mitochondrial genomes. Sequences of cox1 minichromosome clones for each species reveal extensive length and sequence heteroplasmy in both coding and noncoding regions. The highly variable non-gene regions of G. aurei and T. minor have little sequence similarity with one another except for a 19-bp region of phylogenetically conserved sequence with unknown function. PMID:27589589
Kopf, Matthias; Klähn, Stephan; Scholz, Ingeborg; Hess, Wolfgang R.; Voß, Björn
2015-01-01
In all studied organisms, a substantial portion of the transcriptome consists of non-coding RNAs that frequently execute regulatory functions. Here, we have compared the primary transcriptomes of the cyanobacteria Synechocystis sp. PCC 6714 and PCC 6803 under 10 different conditions. These strains share 2854 protein-coding genes and a 16S rRNA identity of 99.4%, indicating their close relatedness. Conserved major transcriptional start sites (TSSs) give rise to non-coding transcripts within the sigB gene, from the 5′UTRs of cmpA and isiA, and 168 loci in antisense orientation. Distinct differences include single nucleotide polymorphisms rendering promoters inactive in one of the strains, e.g., for cmpR and for the asRNA PsbA2R. Based on the genome-wide mapped location, regulation and classification of TSSs, non-coding transcripts were identified as the most dynamic component of the transcriptome. We identified a class of mRNAs that originate by read-through from an sRNA that accumulates as a discrete and abundant transcript while also serving as the 5′UTR. Such an sRNA/mRNA structure, which we name ‘actuaton’, represents another way for bacteria to remodel their transcriptional network. Our findings support the hypothesis that variations in the non-coding transcriptome constitute a major evolutionary element of inter-strain divergence and capability for physiological adaptation. PMID:25902393
Reconfigurable generation and measurement of mutually unbiased bases for time-bin qudits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lukens, Joseph M.; Islam, Nurul T.; Lim, Charles Ci Wen
Here, we propose a method for implementing mutually unbiased generation and measurement of time-bin qudits using a cascade of electro-optic phase modulator–coded fiber Bragg grating pairs. Our approach requires only a single spatial mode and can switch rapidly between basis choices. We obtain explicit solutions for dimensions d = 2, 3, and 4 that realize all d + 1 possible mutually unbiased bases and analyze the performance of our approach in quantum key distribution. Given its practicality and compatibility with current technology, our approach provides a promising springboard for scalable processing of high-dimensional time-bin states.
Reconfigurable generation and measurement of mutually unbiased bases for time-bin qudits
Lukens, Joseph M.; Islam, Nurul T.; Lim, Charles Ci Wen; ...
2018-03-12
Here, we propose a method for implementing mutually unbiased generation and measurement of time-bin qudits using a cascade of electro-optic phase modulator–coded fiber Bragg grating pairs. Our approach requires only a single spatial mode and can switch rapidly between basis choices. We obtain explicit solutions for dimensions d = 2, 3, and 4 that realize all d + 1 possible mutually unbiased bases and analyze the performance of our approach in quantum key distribution. Given its practicality and compatibility with current technology, our approach provides a promising springboard for scalable processing of high-dimensional time-bin states.
Reconfigurable generation and measurement of mutually unbiased bases for time-bin qudits
NASA Astrophysics Data System (ADS)
Lukens, Joseph M.; Islam, Nurul T.; Lim, Charles Ci Wen; Gauthier, Daniel J.
2018-03-01
We propose a method for implementing mutually unbiased generation and measurement of time-bin qudits using a cascade of electro-optic phase modulator-coded fiber Bragg grating pairs. Our approach requires only a single spatial mode and can switch rapidly between basis choices. We obtain explicit solutions for dimensions d = 2, 3, and 4 that realize all d + 1 possible mutually unbiased bases and analyze the performance of our approach in quantum key distribution. Given its practicality and compatibility with current technology, our approach provides a promising springboard for scalable processing of high-dimensional time-bin states.
Spin-based quantum computation in multielectron quantum dots
NASA Astrophysics Data System (ADS)
Hu, Xuedong; Das Sarma, S.
2001-10-01
In a quantum computer the hardware and software are intrinsically connected because the quantum Hamiltonian (or more precisely its time development) is the code that runs the computer. We demonstrate this subtle and crucial relationship by considering the example of electron-spin-based solid-state quantum computer in semiconductor quantum dots. We show that multielectron quantum dots with one valence electron in the outermost shell do not behave simply as an effective single-spin system unless special conditions are satisfied. Our work compellingly demonstrates that a delicate synergy between theory and experiment (between software and hardware) is essential for constructing a quantum computer.
Nonlinear dynamic simulation of single- and multi-spool core engines
NASA Technical Reports Server (NTRS)
Schobeiri, T.; Lippke, C.; Abouelkheir, M.
1993-01-01
In this paper a new computational method for accurate simulation of the nonlinear dynamic behavior of single- and multi-spool core engines, turbofan engines, and power generation gas turbine engines is presented. In order to perform the simulation, a modularly structured computer code has been developed which includes individual mathematical modules representing various engine components. The generic structure of the code enables the dynamic simulation of arbitrary engine configurations ranging from single-spool thrust generation to multi-spool thrust/power generation engines under adverse dynamic operating conditions. For precise simulation of turbine and compressor components, row-by-row calculation procedures were implemented that account for the specific turbine and compressor cascade and blade geometry and characteristics. The dynamic behavior of the subject engine is calculated by solving a number of systems of partial differential equations, which describe the unsteady behavior of the individual components. In order to ensure the capability, accuracy, robustness, and reliability of the code, comprehensive critical performance assessment and validation tests were performed. As representatives, three different transient cases with single- and multi-spool thrust and power generation engines were simulated. The transient cases range from operating with a prescribed fuel schedule, to extreme load changes, to generator and turbine shut down.
NASA Astrophysics Data System (ADS)
Samsing, Johan; Askar, Abbas; Giersz, Mirek
2018-03-01
We estimate the population of eccentric gravitational wave (GW) binary black hole (BBH) mergers forming during binary–single interactions in globular clusters (GCs), using ∼800 GC models that were evolved using the MOCCA code for star cluster simulations as part of the MOCCA-Survey Database I project. By re-simulating BH binary–single interactions extracted from this set of GC models using an N-body code that includes GW emission at the 2.5 post-Newtonian level, we find that ∼10% of all the BBHs assembled in our GC models that merge at present time form during chaotic binary–single interactions, and that about half of this sample have an eccentricity >0.1 at 10 Hz. We explicitly show that this derived rate of eccentric mergers is ∼100 times higher than one would find with a purely Newtonian N-body code. Furthermore, we demonstrate that the eccentric fraction can be accurately estimated using a simple analytical formalism when the interacting BHs are of similar mass, a result that serves as the first successful analytical description of eccentric GW mergers forming during three-body interactions in realistic GCs.
Planning perception and action for cognitive mobile manipulators
NASA Astrophysics Data System (ADS)
Gaschler, Andre; Nogina, Svetlana; Petrick, Ronald P. A.; Knoll, Alois
2013-12-01
We present a general approach to perception and manipulation planning for cognitive mobile manipulators. Rather than hard-coding single purpose robot applications, a robot should be able to reason about its basic skills in order to solve complex problems autonomously. Humans intuitively solve tasks in real-world scenarios by breaking down abstract problems into smaller sub-tasks and use heuristics based on their previous experience. We apply a similar idea for planning perception and manipulation to cognitive mobile robots. Our approach is based on contingent planning and run-time sensing, integrated in our knowledge of volumes" planning framework, called KVP. Using the general-purpose PKS planner, we model information-gathering actions at plan time that have multiple possible outcomes at run time. As a result, perception and sensing arise as necessary preconditions for manipulation, rather than being hard-coded as tasks themselves. We demonstrate the e ectiveness of our approach on two scenarios covering visual and force sensing on a real mobile manipulator.
Simulation of drift wave instability in field-reversed configurations using global magnetic geometry
NASA Astrophysics Data System (ADS)
Fulton, D. P.; Lau, C. K.; Lin, Z.; Tajima, T.; Holod, I.; the TAE Team
2016-10-01
Minimizing transport in the field-reversed configuration (FRC) is essential to enable FRC-based fusion reactors. Recently, significant progress on advanced beam-driven FRCs in C-2 and C-2U (at Tri Alpha Energy) provides opportunities to study transport properties using Doppler backscattering (DBS) measurements of turbulent fluctuations and kinetic particle-in-cell simulations of driftwaves in realistic equilibria via the Gyrokinetic Toroidal Code (GTC). Both measurements and simulations indicate relatively small fluctuations in the scrape-off layer (SOL). In the FRC core, local, single flux surface simulations reveal strong stabilization, while experiments indicate quiescent but finite fluctuations. One possible explanation is that turbulence may originate in the SOL and propagate at very low levels across the separatrix into the core. To test this hypothesis, a significant effort has been made to develop A New Code (ANC) based on GTC physics formulations, but using cylindrical coordinates which span the magnetic separatrix, including both core and SOL. Here, we present first results from global ANC simulations.
A real-time ionospheric model based on GNSS Precise Point Positioning
NASA Astrophysics Data System (ADS)
Tu, Rui; Zhang, Hongping; Ge, Maorong; Huang, Guanwen
2013-09-01
This paper proposes a method of real-time monitoring and modeling the ionospheric Total Electron Content (TEC) by Precise Point Positioning (PPP). Firstly, the ionospheric TEC and receiver’s Differential Code Biases (DCB) are estimated with the undifferenced raw observation in real-time, then the ionospheric TEC model is established based on the Single Layer Model (SLM) assumption and the recovered ionospheric TEC. In this study, phase observations with high precision are directly used instead of phase smoothed code observations. In addition, the DCB estimation is separated from the establishment of the ionospheric model which will limit the impacts of the SLM assumption impacts. The ionospheric model is established at every epoch for real time application. The method is validated with three different GNSS networks on a local, regional, and global basis. The results show that the method is feasible and effective, the real-time ionosphere and DCB results are very consistent with the IGS final products, with a bias of 1-2 TECU and 0.4 ns respectively.
Computational models of location-invariant orthographic processing
NASA Astrophysics Data System (ADS)
Dandurand, Frédéric; Hannagan, Thomas; Grainger, Jonathan
2013-03-01
We trained three topologies of backpropagation neural networks to discriminate 2000 words (lexical representations) presented at different positions of a horizontal letter array. The first topology (zero-deck) contains no hidden layer, the second (one-deck) has a single hidden layer, and for the last topology (two-deck), the task is divided in two subtasks implemented as two stacked neural networks, with explicit word-centred letters as intermediate representations. All topologies successfully simulated two key benchmark phenomena observed in skilled human reading: transposed-letter priming and relative-position priming. However, the two-deck topology most accurately simulated the ability to discriminate words from nonwords, while containing the fewest connection weights. We analysed the internal representations after training. Zero-deck networks implement a letter-based scheme with a position bias to differentiate anagrams. One-deck networks implement a holographic overlap coding in which representations are essentially letter-based and words are linear combinations of letters. Two-deck networks also implement holographic-coding.
Confidence intervals for single-case effect size measures based on randomization test inversion.
Michiels, Bart; Heyvaert, Mieke; Meulders, Ann; Onghena, Patrick
2017-02-01
In the current paper, we present a method to construct nonparametric confidence intervals (CIs) for single-case effect size measures in the context of various single-case designs. We use the relationship between a two-sided statistical hypothesis test at significance level α and a 100 (1 - α) % two-sided CI to construct CIs for any effect size measure θ that contain all point null hypothesis θ values that cannot be rejected by the hypothesis test at significance level α. This method of hypothesis test inversion (HTI) can be employed using a randomization test as the statistical hypothesis test in order to construct a nonparametric CI for θ. We will refer to this procedure as randomization test inversion (RTI). We illustrate RTI in a situation in which θ is the unstandardized and the standardized difference in means between two treatments in a completely randomized single-case design. Additionally, we demonstrate how RTI can be extended to other types of single-case designs. Finally, we discuss a few challenges for RTI as well as possibilities when using the method with other effect size measures, such as rank-based nonoverlap indices. Supplementary to this paper, we provide easy-to-use R code, which allows the user to construct nonparametric CIs according to the proposed method.
Sensory Cortical Population Dynamics Uniquely Track Behavior across Learning and Extinction
Katz, Donald B.
2014-01-01
Neural responses in many cortical regions encode information relevant to behavior: information that necessarily changes as that behavior changes with learning. Although such responses are reasonably theorized to be related to behavior causation, the true nature of that relationship cannot be clarified by simple learning studies, which show primarily that responses change with experience. Neural activity that truly tracks behavior (as opposed to simply changing with experience) will not only change with learning but also change back when that learning is extinguished. Here, we directly probed for this pattern, recording the activity of ensembles of gustatory cortical single neurons as rats that normally consumed sucrose avidly were trained first to reject it (i.e., conditioned taste aversion learning) and then to enjoy it again (i.e., extinction), all within 49 h. Both learning and extinction altered cortical responses, consistent with the suggestion (based on indirect evidence) that extinction is a novel form of learning. But despite the fact that, as expected, postextinction single-neuron responses did not resemble “naive responses,” ensemble response dynamics changed with learning and reverted with extinction: both the speed of stimulus processing and the relationships among ensemble responses to the different stimuli tracked behavioral relevance. These data suggest that population coding is linked to behavior with a fidelity that single-neuron coding is not. PMID:24453316
Fast and Flexible Successive-Cancellation List Decoders for Polar Codes
NASA Astrophysics Data System (ADS)
Hashemi, Seyyed Ali; Condo, Carlo; Gross, Warren J.
2017-11-01
Polar codes have gained significant amount of attention during the past few years and have been selected as a coding scheme for the next generation of mobile broadband standard. Among decoding schemes, successive-cancellation list (SCL) decoding provides a reasonable trade-off between the error-correction performance and hardware implementation complexity when used to decode polar codes, at the cost of limited throughput. The simplified SCL (SSCL) and its extension SSCL-SPC increase the speed of decoding by removing redundant calculations when encountering particular information and frozen bit patterns (rate one and single parity check codes), while keeping the error-correction performance unaltered. In this paper, we improve SSCL and SSCL-SPC by proving that the list size imposes a specific number of bit estimations required to decode rate one and single parity check codes. Thus, the number of estimations can be limited while guaranteeing exactly the same error-correction performance as if all bits of the code were estimated. We call the new decoding algorithms Fast-SSCL and Fast-SSCL-SPC. Moreover, we show that the number of bit estimations in a practical application can be tuned to achieve desirable speed, while keeping the error-correction performance almost unchanged. Hardware architectures implementing both algorithms are then described and implemented: it is shown that our design can achieve 1.86 Gb/s throughput, higher than the best state-of-the-art decoders.
Sakurai, Y
2002-01-01
This study reports how hippocampal individual cells and cell assemblies cooperate for neural coding of pitch and temporal information in memory processes for auditory stimuli. Each rat performed two tasks, one requiring discrimination of auditory pitch (high or low) and the other requiring discrimination of their duration (long or short). Some CA1 and CA3 complex-spike neurons showed task-related differential activity between the high and low tones in only the pitch-discrimination task. However, without exception, neurons which showed task-related differential activity between the long and short tones in the duration-discrimination task were always task-related neurons in the pitch-discrimination task. These results suggest that temporal information (long or short), in contrast to pitch information (high or low), cannot be coded independently by specific neurons. The results also indicate that the two different behavioral tasks cannot be fully differentiated by the task-related single neurons alone and suggest a model of cell-assembly coding of the tasks. Cross-correlation analysis among activities of simultaneously recorded multiple neurons supported the suggested cell-assembly model.Considering those results, this study concludes that dual coding by hippocampal single neurons and cell assemblies is working in memory processing of pitch and temporal information of auditory stimuli. The single neurons encode both auditory pitches and their temporal lengths and the cell assemblies encode types of tasks (contexts or situations) in which the pitch and the temporal information are processed.
NASA Astrophysics Data System (ADS)
Raziff, Abdul Rafiez Abdul; Sulaiman, Md Nasir; Mustapha, Norwati; Perumal, Thinagaran
2017-10-01
Gait recognition is widely used in many applications. In the application of the gait identification especially in people, the number of classes (people) is many which may comprise to more than 20. Due to the large amount of classes, the usage of single classification mapping (direct classification) may not be suitable as most of the existing algorithms are mostly designed for the binary classification. Furthermore, having many classes in a dataset may result in the possibility of having a high degree of overlapped class boundary. This paper discusses the application of multiclass classifier mappings such as one-vs-all (OvA), one-vs-one (OvO) and random correction code (RCC) on handheld based smartphone gait signal for person identification. The results is then compared with a single J48 decision tree for benchmark. From the result, it can be said that using multiclass classification mapping method thus partially improved the overall accuracy especially on OvO and RCC with width factor more than 4. For OvA, the accuracy result is worse than a single J48 due to a high number of classes.
The multidimensional Self-Adaptive Grid code, SAGE, version 2
NASA Technical Reports Server (NTRS)
Davies, Carol B.; Venkatapathy, Ethiraj
1995-01-01
This new report on Version 2 of the SAGE code includes all the information in the original publication plus all upgrades and changes to the SAGE code since that time. The two most significant upgrades are the inclusion of a finite-volume option and the ability to adapt and manipulate zonal-matching multiple-grid files. In addition, the original SAGE code has been upgraded to Version 1.1 and includes all options mentioned in this report, with the exception of the multiple grid option and its associated features. Since Version 2 is a larger and more complex code, it is suggested (but not required) that Version 1.1 be used for single-grid applications. This document contains all the information required to run both versions of SAGE. The formulation of the adaption method is described in the first section of this document. The second section is presented in the form of a user guide that explains the input and execution of the code. The third section provides many examples. Successful application of the SAGE code in both two and three dimensions for the solution of various flow problems has proven the code to be robust, portable, and simple to use. Although the basic formulation follows the method of Nakahashi and Deiwert, many modifications have been made to facilitate the use of the self-adaptive grid method for complex grid structures. Modifications to the method and the simple but extensive input options make this a flexible and user-friendly code. The SAGE code can accommodate two-dimensional and three-dimensional, finite-difference and finite-volume, single grid, and zonal-matching multiple grid flow problems.
Seelandt, Julia C; Tschan, Franziska; Keller, Sandra; Beldi, Guido; Jenni, Nadja; Kurmann, Anita; Candinas, Daniel; Semmer, Norbert K
2014-11-01
To develop a behavioural observation method to simultaneously assess distractors and communication/teamwork during surgical procedures through direct, on-site observations; to establish the reliability of the method for long (>3 h) procedures. Observational categories for an event-based coding system were developed based on expert interviews, observations and a literature review. Using Cohen's κ and the intraclass correlation coefficient, interobserver agreement was assessed for 29 procedures. Agreement was calculated for the entire surgery, and for the 1st hour. In addition, interobserver agreement was assessed between two tired observers and between a tired and a non-tired observer after 3 h of surgery. The observational system has five codes for distractors (door openings, noise distractors, technical distractors, side conversations and interruptions), eight codes for communication/teamwork (case-relevant communication, teaching, leadership, problem solving, case-irrelevant communication, laughter, tension and communication with external visitors) and five contextual codes (incision, last stitch, personnel changes in the sterile team, location changes around the table and incidents). Based on 5-min intervals, Cohen's κ was good to excellent for distractors (0.74-0.98) and for communication/teamwork (0.70-1). Based on frequency counts, intraclass correlation coefficient was excellent for distractors (0.86-0.99) and good to excellent for communication/teamwork (0.45-0.99). After 3 h of surgery, Cohen's κ was 0.78-0.93 for distractors, and 0.79-1 for communication/teamwork. The observational method developed allows a single observer to simultaneously assess distractors and communication/teamwork. Even for long procedures, high interobserver agreement can be achieved. Data collected with this method allow for investigating separate or combined effects of distractions and communication/teamwork on surgical performance and patient outcomes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
RNA-Seq Based Transcriptional Map of Bovine Respiratory Disease Pathogen “Histophilus somni 2336”
Kumar, Ranjit; Lawrence, Mark L.; Watt, James; Cooksey, Amanda M.; Burgess, Shane C.; Nanduri, Bindu
2012-01-01
Genome structural annotation, i.e., identification and demarcation of the boundaries for all the functional elements in a genome (e.g., genes, non-coding RNAs, proteins and regulatory elements), is a prerequisite for systems level analysis. Current genome annotation programs do not identify all of the functional elements of the genome, especially small non-coding RNAs (sRNAs). Whole genome transcriptome analysis is a complementary method to identify “novel” genes, small RNAs, regulatory regions, and operon structures, thus improving the structural annotation in bacteria. In particular, the identification of non-coding RNAs has revealed their widespread occurrence and functional importance in gene regulation, stress and virulence. However, very little is known about non-coding transcripts in Histophilus somni, one of the causative agents of Bovine Respiratory Disease (BRD) as well as bovine infertility, abortion, septicemia, arthritis, myocarditis, and thrombotic meningoencephalitis. In this study, we report a single nucleotide resolution transcriptome map of H. somni strain 2336 using RNA-Seq method. The RNA-Seq based transcriptome map identified 94 sRNAs in the H. somni genome of which 82 sRNAs were never predicted or reported in earlier studies. We also identified 38 novel potential protein coding open reading frames that were absent in the current genome annotation. The transcriptome map allowed the identification of 278 operon (total 730 genes) structures in the genome. When compared with the genome sequence of a non-virulent strain 129Pt, a disproportionate number of sRNAs (∼30%) were located in genomic region unique to strain 2336 (∼18% of the total genome). This observation suggests that a number of the newly identified sRNAs in strain 2336 may be involved in strain-specific adaptations. PMID:22276113
RNA-seq based transcriptional map of bovine respiratory disease pathogen "Histophilus somni 2336".
Kumar, Ranjit; Lawrence, Mark L; Watt, James; Cooksey, Amanda M; Burgess, Shane C; Nanduri, Bindu
2012-01-01
Genome structural annotation, i.e., identification and demarcation of the boundaries for all the functional elements in a genome (e.g., genes, non-coding RNAs, proteins and regulatory elements), is a prerequisite for systems level analysis. Current genome annotation programs do not identify all of the functional elements of the genome, especially small non-coding RNAs (sRNAs). Whole genome transcriptome analysis is a complementary method to identify "novel" genes, small RNAs, regulatory regions, and operon structures, thus improving the structural annotation in bacteria. In particular, the identification of non-coding RNAs has revealed their widespread occurrence and functional importance in gene regulation, stress and virulence. However, very little is known about non-coding transcripts in Histophilus somni, one of the causative agents of Bovine Respiratory Disease (BRD) as well as bovine infertility, abortion, septicemia, arthritis, myocarditis, and thrombotic meningoencephalitis. In this study, we report a single nucleotide resolution transcriptome map of H. somni strain 2336 using RNA-Seq method.The RNA-Seq based transcriptome map identified 94 sRNAs in the H. somni genome of which 82 sRNAs were never predicted or reported in earlier studies. We also identified 38 novel potential protein coding open reading frames that were absent in the current genome annotation. The transcriptome map allowed the identification of 278 operon (total 730 genes) structures in the genome. When compared with the genome sequence of a non-virulent strain 129Pt, a disproportionate number of sRNAs (∼30%) were located in genomic region unique to strain 2336 (∼18% of the total genome). This observation suggests that a number of the newly identified sRNAs in strain 2336 may be involved in strain-specific adaptations.
78 FR 44189 - Petition for Modification of Single Car Air Brake Test Procedures
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-23
...] Petition for Modification of Single Car Air Brake Test Procedures In accordance with Part 232 of Title 49... Administration (FRA) per 49 CFR 232.307 to modify the single car air brake test procedures located in AAR Standard S-486, Code of Air Brake System Tests for Freight Equipment-- Single Car Test, and required...