Impacts of the IBM Cell Processor to Support Climate Models
NASA Technical Reports Server (NTRS)
Zhou, Shujia; Duffy, Daniel; Clune, Tom; Suarez, Max; Williams, Samuel; Halem, Milt
2008-01-01
NASA is interested in the performance and cost benefits for adapting its applications to the IBM Cell processor. However, its 256KB local memory per SPE and the new communication mechanism, make it very challenging to port an application. We selected the solar radiation component of the NASA GEOS-5 climate model, which: (1) is representative of column physics (approximately 50% computational time), (2) has a high computational load relative to transferring data from and to main memory, (3) performs independent calculations across multiple columns. We converted the baseline code (single-precision, Fortran) to C and ported it with manually SIMDizing 4 independent columns and found that a Cell with 8 SPEs can process 2274 columns per second. Compared with the baseline results, the Cell is approximately 5.2X, approximately 8.2X, approximately 15.1X faster than a core on Intel Woodcrest, Dempsey, and Itanium2, respectively. We believe this dramatic performance improvement makes a hybrid cluster with Cell and traditional nodes competitive.
Seasonal Atmospheric and Oceanic Predictions
NASA Technical Reports Server (NTRS)
Roads, John; Rienecker, Michele (Technical Monitor)
2003-01-01
Several projects associated with dynamical, statistical, single column, and ocean models are presented. The projects include: 1) Regional Climate Modeling; 2) Statistical Downscaling; 3) Evaluation of SCM and NSIPP AGCM Results at the ARM Program Sites; and 4) Ocean Forecasts.
Improving Subtropical Boundary Layer Cloudiness in the 2011 NCEP GFS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fletcher, J. K.; Bretherton, Christopher S.; Xiao, Heng
2014-09-23
The current operational version of National Centers for Environmental Prediction (NCEP) Global Forecasting System (GFS) shows significant low cloud bias. These biases also appear in the Coupled Forecast System (CFS), which is developed from the GFS. These low cloud biases degrade seasonal and longer climate forecasts, particularly of short-wave cloud radiative forcing, and affect predicted sea surface temperature. Reducing this bias in the GFS will aid the development of future CFS versions and contributes to NCEP's goal of unified weather and climate modelling. Changes are made to the shallow convection and planetary boundary layer parameterisations to make them more consistentmore » with current knowledge of these processes and to reduce the low cloud bias. These changes are tested in a single-column version of GFS and in global simulations with GFS coupled to a dynamical ocean model. In the single-column model, we focus on changing parameters that set the following: the strength of shallow cumulus lateral entrainment, the conversion of updraught liquid water to precipitation and grid-scale condensate, shallow cumulus cloud top, and the effect of shallow convection in stratocumulus environments. Results show that these changes improve the single-column simulations when compared to large eddy simulations, in particular through decreasing the precipitation efficiency of boundary layer clouds. These changes, combined with a few other model improvements, also reduce boundary layer cloud and albedo biases in global coupled simulations.« less
Can We Use Single-Column Models for Understanding the Boundary Layer Cloud-Climate Feedback?
NASA Astrophysics Data System (ADS)
Dal Gesso, S.; Neggers, R. A. J.
2018-02-01
This study explores how to drive Single-Column Models (SCMs) with existing data sets of General Circulation Model (GCM) outputs, with the aim of studying the boundary layer cloud response to climate change in the marine subtropical trade wind regime. The EC-EARTH SCM is driven with the large-scale tendencies and boundary conditions as derived from two different data sets, consisting of high-frequency outputs of GCM simulations. SCM simulations are performed near Barbados Cloud Observatory in the dry season (January-April), when fair-weather cumulus is the dominant low-cloud regime. This climate regime is characterized by a near equilibrium in the free troposphere between the long-wave radiative cooling and the large-scale advection of warm air. In the SCM, this equilibrium is ensured by scaling the monthly mean dynamical tendency of temperature and humidity such that it balances that of the model physics in the free troposphere. In this setup, the high-frequency variability in the forcing is maintained, and the boundary layer physics acts freely. This technique yields representative cloud amount and structure in the SCM for the current climate. Furthermore, the cloud response to a sea surface warming of 4 K as produced by the SCM is consistent with that of the forcing GCM.
The CH2O column as a possible constraint on methane oxidation
NASA Astrophysics Data System (ADS)
Valin, L. C.; Fiore, A. M.; Lin, M.
2013-12-01
We explore the potential for space-based measurements of the CH2O column to quantify variations of methane oxidation in the remote atmosphere due to changes in climate (e.g., T, H2O, stratospheric O3) and atmospheric composition (e.g., NOxO, O3, CO, CH4). We investigate the variability of methane oxidation and the formaldehyde column using available global simulations (MOZART-2 chemistry-transport model, GFDL AM3 climate-chemistry model). Over a large region (135° - 175° W; 0° - 16° S), the rate of methane oxidation simulated in the models varies intraseasonally (×10%), seasonally (×20%) and interannually (×5%), and is well correlated with the simulated variability of the CH2O column (R2 = 0.75; ~1x1015 molecules cm-2). The precision of a single space-based measurement is approximately 1×1016 molecules cm-2, an order of magnitude larger than the simulated variability of the CH2O column. However, in a large region such as the tropical Pacific, UV/Vis spectrometers are capable of making thousands of measurements daily, enough sampling to theoretically increase the precision by √N, such that variations on the order of 1×1015 molecules cm-2 should be observable on intraseasonal and interannual timescales.
NASA Astrophysics Data System (ADS)
Perroud, Marjorie; Goyette, StéPhane
2012-06-01
In the companion to the present paper, the one-dimensional k-ɛ lake model SIMSTRAT is coupled to a single-column atmospheric model, nicknamed FIZC, and an application of the coupled model to the deep Lake Geneva, Switzerland, is described. In this paper, the response of Lake Geneva to global warming caused by an increase in atmospheric carbon dioxide concentration (i.e., 2 × CO2) is investigated. Coupling the models allowed for feedbacks between the lake surface and the atmosphere and produced changes in atmospheric moisture and cloud cover that further modified the downward radiation fluxes. The time evolution of atmospheric variables as well as those of the lake's thermal profile could be reproduced realistically by devising a set of adjustable parameters. In a "control" 1 × CO2 climate experiment, the coupled FIZC-SIMSTRAT model demonstrated genuine skills in reproducing epilimnetic and hypolimnetic temperatures, with annual mean errors and standard deviations of 0.25°C ± 0.25°C and 0.3°C ± 0.15°C, respectively. Doubling the CO2 concentration induced an atmospheric warming that impacted the lake's thermal structure, increasing the stability of the water column and extending the stratified period by 3 weeks. Epilimnetic temperatures were seen to increase by 2.6°C to 4.2°C, while hypolimnion temperatures increased by 2.2°C. Climate change modified components of the surface energy budget through changes mainly in air temperature, moisture, and cloud cover. During summer, reduced cloud cover resulted in an increase in the annual net solar radiation budget. A larger water vapor deficit at the air-water interface induced a cooling effect in the lake.
Simulating the 2012 High Plains Drought Using Three Single Column Models (SCM)
NASA Astrophysics Data System (ADS)
Medina, I. D.; Baker, I. T.; Denning, S.; Dazlich, D. A.
2015-12-01
The impact of changes in the frequency and severity of drought on fresh water sustainability is a great concern for many regions of the world. One such location is the High Plains, where the local economy is primarily driven by fresh water withdrawals from the Ogallala Aquifer, which accounts for approximately 30% of total irrigation withdrawals from all U.S. aquifers combined. Modeling studies that focus on the feedback mechanisms that control the climate and eco-hydrology during times of drought are limited, and have used conventional General Circulation Models (GCMs) with grid length scales ranging from one hundred to several hundred kilometers. Additionally, these models utilize crude statistical parameterizations of cloud processes for estimating sub-grid fluxes of heat and moisture and have a poor representation of land surface heterogeneity. For this research, we focus on the 2012 High Plains drought and perform numerical simulations using three single column model (SCM) versions of BUGS5 (Colorado State University (CSU) GCM coupled to the Simple Biosphere Model (SiB3)). In the first version of BUGS5, the model is used in its standard bulk setting (single atmospheric column coupled to a single instance of SiB3), secondly, the Super-Parameterized Community Atmospheric Model (SP-CAM), a cloud resolving model (CRM) (CRM consists of 32 atmospheric columns), replaces the single CSU GCM atmospheric parameterization and is coupled to a single instance of SiB3, and for the third version of BUGS5, an instance of SiB3 is coupled to each CRM column of the SP-CAM (32 CRM columns coupled to 32 instances of SiB3). To assess the physical realism of the land-atmosphere feedbacks simulated by all three versions of BUGS5, differences in simulated energy and moisture fluxes are computed between the 2011 and 2012 period and are compared to those calculated using observational data from the AmeriFlux Tower Network for the same period at the ARM Site in Lamont, OK. This research will provide a better understanding of model deficiencies in reproducing and predicting droughts in the future, which is essential to the economic, ecologic and social well being of the High Plains.
NASA Astrophysics Data System (ADS)
Leifer, I.; Hall, J. L.; Melton, C.; Tratt, D. M.; Chang, C. S.; Buckland, K. N.; Frash, J.; Leen, J. B.; Van Damme, M.; Clarisse, L.
2017-12-01
Emissions of methane and ammonia from intensive animal husbandry are important drivers of climate and photochemical and aerosol pollution. Husbandry emission estimates are somewhat uncertain because of their dependence on practices, temperature, micro-climate, and other factors, leading to variations in emission factors up to an order-of-magnitude. Mobile in situ measurements are increasingly being applied to derive trace gas emissions by Gaussian plume inversion; however, inversion with incomplete information can lead to erroneous emissions and incorrect source location. Mobile in situ concentration and wind data and mobile remote sensing column data from the Chino Dairy Complex in the Los Angeles Basin were collected near simultaneously (within 1-10 s, depending on speed) while transecting plumes, approximately orthogonal to winds. This analysis included airborne remote sensing trace gas information. MISTIR collected vertical column FTIR data simultaneously with in situ concentration data acquired by the AMOG-Surveyor while both vehicles traveled in convoy. The column measurements are insensitive to the turbulence characterization needed in Gaussian plume inversion of concentration data and thus provide a flux reference for evaluating in situ data inversions. Four different approaches were used on inversions for a single dairy, and also for the aggregate dairy complex plume. Approaches were based on differing levels of "knowledge" used in the inversion from solely the in situ platform and a single gas to a combination of information from all platforms and multiple gases. Derived dairy complex fluxes differed significantly from those estimated by other studies of the Chino complex. Analysis of long term satellite data showed that this most likely results from seasonality effects, highlighting the pitfalls of applying annualized extensions of flux measurements to a single campaign instantiation.
NASA Astrophysics Data System (ADS)
Zhang, Junhua; Lohmann, Ulrike
2003-08-01
The single column model of the Canadian Centre for Climate Modeling and Analysis (CCCma) climate model is used to simulate Arctic spring cloud properties observed during the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment. The model is driven by the rawinsonde observations constrained European Center for Medium-Range Weather Forecasts (ECMWF) reanalysis data. Five cloud parameterizations, including three statistical and two explicit schemes, are compared and the sensitivity to mixed phase cloud parameterizations is studied. Using the original mixed phase cloud parameterization of the model, the statistical cloud schemes produce more cloud cover, cloud water, and precipitation than the explicit schemes and in general agree better with observations. The mixed phase cloud parameterization from ECMWF decreases the initial saturation specific humidity threshold of cloud formation. This improves the simulated cloud cover in the explicit schemes and reduces the difference between the different cloud schemes. On the other hand, because the ECMWF mixed phase cloud scheme does not consider the Bergeron-Findeisen process, less ice crystals are formed. This leads to a higher liquid water path and less precipitation than what was observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prather, Michael
This proposal seeks to maintain the DOE-ACME (offshoot of CESM) as one of the leading CCMs to evaluate near-term climate mitigation. It will implement, test, and optimize the new UCI photolysis codes within CESM CAM5 and new CAM versions in ACME. Fast-J is a high-order-accuracy (8 stream) code for calculating solar scattering and absorption in a single column atmosphere containing clouds, aerosols, and gases that was developed at UCI and implemented in CAM5 under the previous BER/SciDAC grant.
NASA Astrophysics Data System (ADS)
Duan, Suqin Q.; Wright, Jonathon S.; Romps, David M.
2018-02-01
Atmospheric water-vapor isotopes have been proposed as a potentially powerful constraint on convection, which plays a critical role in Earth's present and future climate. It is shown here, however, that the mean tropical profile of HDO in the free troposphere does not usefully constrain the mean convective entrainment rate or precipitation efficiency. This is demonstrated using a single-column analytical model of atmospheric water isotopes. The model has three parameters: the entrainment rate, the precipitation efficiency, and the distance that evaporating condensates fall. At a given relative humidity, the possible range of HDO is small: its range is comparable to both the measurement uncertainty in the mean tropical profile and the structural uncertainty of a single-column model. Therefore, the mean tropical HDO profile is unlikely to add information about convective processes in a bulk-plume framework that cannot already be learned from relative humidity alone.
NASA Technical Reports Server (NTRS)
Lin, Wuyin; Liu, Yangang; Vogelmann, Andrew M.; Fridlind, Ann; Endo, Satoshi; Song, Hua; Feng, Sha; Toto, Tami; Li, Zhijin; Zhang, Minghua
2015-01-01
Climatically important low-level clouds are commonly misrepresented in climate models. The FAst-physics System TEstbed and Research (FASTER) Project has constructed case studies from the Atmospheric Radiation Measurement Climate Research Facility's Southern Great Plain site during the RACORO aircraft campaign to facilitate research on model representation of boundary-layer clouds. This paper focuses on using the single-column Community Atmosphere Model version 5 (SCAM5) simulations of a multi-day continental shallow cumulus case to identify specific parameterization causes of low-cloud biases. Consistent model biases among the simulations driven by a set of alternative forcings suggest that uncertainty in the forcing plays only a relatively minor role. In-depth analysis reveals that the model's shallow cumulus convection scheme tends to significantly under-produce clouds during the times when shallow cumuli exist in the observations, while the deep convective and stratiform cloud schemes significantly over-produce low-level clouds throughout the day. The links between model biases and the underlying assumptions of the shallow cumulus scheme are further diagnosed with the aid of large-eddy simulations and aircraft measurements, and by suppressing the triggering of the deep convection scheme. It is found that the weak boundary layer turbulence simulated is directly responsible for the weak cumulus activity and the simulated boundary layer stratiform clouds. Increased vertical and temporal resolutions are shown to lead to stronger boundary layer turbulence and reduction of low-cloud biases.
Lin, Wuyin; Liu, Yangang; Vogelmann, Andrew M.; ...
2015-06-19
Climatically important low-level clouds are commonly misrepresented in climate models. The FAst-physics System TEstbed and Research (FASTER) project has constructed case studies from the Atmospheric Radiation Measurement (ARM) Climate Research Facility's Southern Great Plain site during the RACORO aircraft campaign to facilitate research on model representation of boundary-layer clouds. This paper focuses on using the single-column Community Atmosphere Model version 5 (SCAM5) simulations of a multi-day continental shallow cumulus case to identify specific parameterization causes of low-cloud biases. Consistent model biases among the simulations driven by a set of alternative forcings suggest that uncertainty in the forcing plays only amore » relatively minor role. In-depth analysis reveals that the model's shallow cumulus convection scheme tends to significantly under-produce clouds during the times when shallow cumuli exist in the observations, while the deep convective and stratiform cloud schemes significantly over-produce low-level clouds throughout the day. The links between model biases and the underlying assumptions of the shallow cumulus scheme are further diagnosed with the aid of large-eddy simulations and aircraft measurements, and by suppressing the triggering of the deep convection scheme. It is found that the weak boundary layer turbulence simulated is directly responsible for the weak cumulus activity and the simulated boundary layer stratiform clouds. Increased vertical and temporal resolutions are shown to lead to stronger boundary layer turbulence and reduction of low-cloud biases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Shujia; Duffy, Daniel; Clune, Thomas
The call for ever-increasing model resolutions and physical processes in climate and weather models demands a continual increase in computing power. The IBM Cell processor's order-of-magnitude peak performance increase over conventional processors makes it very attractive to fulfill this requirement. However, the Cell's characteristics, 256KB local memory per SPE and the new low-level communication mechanism, make it very challenging to port an application. As a trial, we selected the solar radiation component of the NASA GEOS-5 climate model, which: (1) is representative of column physics components (half the total computational time), (2) has an extremely high computational intensity: the ratiomore » of computational load to main memory transfers, and (3) exhibits embarrassingly parallel column computations. In this paper, we converted the baseline code (single-precision Fortran) to C and ported it to an IBM BladeCenter QS20. For performance, we manually SIMDize four independent columns and include several unrolling optimizations. Our results show that when compared with the baseline implementation running on one core of Intel's Xeon Woodcrest, Dempsey, and Itanium2, the Cell is approximately 8.8x, 11.6x, and 12.8x faster, respectively. Our preliminary analysis shows that the Cell can also accelerate the dynamics component (~;;25percent total computational time). We believe these dramatic performance improvements make the Cell processor very competitive as an accelerator.« less
Simulating the 2012 High Plains drought using three single column versions (SCM) of BUGS5
NASA Astrophysics Data System (ADS)
Medina, I. D.; Denning, S.
2013-12-01
The impact of changes in the frequency and severity of drought on fresh water sustainability is a great concern for many regions of the world. One such location is the High Plains, where the local economy is primarily driven by fresh water withdrawals from the Ogallala Aquifer, which accounts for approximately 30% of total irrigation withdrawals from all U.S. aquifers combined. Modeling studies that focus on the feedback mechanisms that control the climate and eco-hydrology during times of drought are limited, and have used conventional General Circulation Models (GCMs) with grid length scales ranging from one hundred to several hundred kilometers. Additionally, these models utilize crude statistical parameterizations of cloud processes for estimating sub-grid fluxes of heat and moisture and have a poor representation of land surface heterogeneity. For this research, we will focus on the 2012 High Plains drought and will perform numerical simulations using three single column versions (SCM) of BUGS5 (Colorado State University (CSU) GCM coupled to the Simple Biosphere Model (SiB3)) at multiple sites overlying the Ogallala Aquifer for the 2011-2012 periods. In the first version of BUGS5, the model will be used in its standard bulk setting (single atmospheric column coupled to a single instance of SiB3), secondly, the Super-Parameterized Community Atmospheric Model (SP-CAM), a cloud resolving model (CRM consists of 64 atmospheric columns), will replace the single CSU GCM atmospheric parameterization and will be coupled to a single instance of SiB3, and for the third version of BUGS5, an instance of SiB3 will be coupled to each CRM column of the SP-CAM (64 CRM columns coupled to 64 instances of SiB3). To assess the physical realism of the land-atmosphere feedbacks simulated at each site by all versions of BUGS5, differences in simulated energy and moisture fluxes will be computed between the 2011 and 2012 period and will be compared to differences calculated using observational data from the AmeriFlux tower network for the same period. These results will give some insight to the land-atmosphere feedbacks GCMs may produce when atmospheric and land surface heterogeneity are included within a single framework. Furthermore, this research will provide a better understanding of model deficiencies in reproducing and predicting droughts in the future, which is essential to the economic, ecologic and social well being of the High Plains.
Parameterizing deep convection using the assumed probability density function method
Storer, R. L.; Griffin, B. M.; Höft, J.; ...
2014-06-11
Due to their coarse horizontal resolution, present-day climate models must parameterize deep convection. This paper presents single-column simulations of deep convection using a probability density function (PDF) parameterization. The PDF parameterization predicts the PDF of subgrid variability of turbulence, clouds, and hydrometeors. That variability is interfaced to a prognostic microphysics scheme using a Monte Carlo sampling method. The PDF parameterization is used to simulate tropical deep convection, the transition from shallow to deep convection over land, and mid-latitude deep convection. These parameterized single-column simulations are compared with 3-D reference simulations. The agreement is satisfactory except when the convective forcing ismore » weak. The same PDF parameterization is also used to simulate shallow cumulus and stratocumulus layers. The PDF method is sufficiently general to adequately simulate these five deep, shallow, and stratiform cloud cases with a single equation set. This raises hopes that it may be possible in the future, with further refinements at coarse time step and grid spacing, to parameterize all cloud types in a large-scale model in a unified way.« less
Parameterizing deep convection using the assumed probability density function method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Storer, R. L.; Griffin, B. M.; Höft, J.
2015-01-06
Due to their coarse horizontal resolution, present-day climate models must parameterize deep convection. This paper presents single-column simulations of deep convection using a probability density function (PDF) parameterization. The PDF parameterization predicts the PDF of subgrid variability of turbulence, clouds, and hydrometeors. That variability is interfaced to a prognostic microphysics scheme using a Monte Carlo sampling method.The PDF parameterization is used to simulate tropical deep convection, the transition from shallow to deep convection over land, and midlatitude deep convection. These parameterized single-column simulations are compared with 3-D reference simulations. The agreement is satisfactory except when the convective forcing is weak.more » The same PDF parameterization is also used to simulate shallow cumulus and stratocumulus layers. The PDF method is sufficiently general to adequately simulate these five deep, shallow, and stratiform cloud cases with a single equation set. This raises hopes that it may be possible in the future, with further refinements at coarse time step and grid spacing, to parameterize all cloud types in a large-scale model in a unified way.« less
Parameterizing deep convection using the assumed probability density function method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Storer, R. L.; Griffin, B. M.; Hoft, Jan
2015-01-06
Due to their coarse horizontal resolution, present-day climate models must parameterize deep convection. This paper presents single-column simulations of deep convection using a probability density function (PDF) parameterization. The PDF parameterization predicts the PDF of subgrid variability of turbulence, clouds, and hydrometeors. That variability is interfaced to a prognostic microphysics scheme using a Monte Carlo sampling method.The PDF parameterization is used to simulate tropical deep convection, the transition from shallow to deep convection over land, and mid-latitude deep convection.These parameterized single-column simulations are compared with 3-D reference simulations. The agreement is satisfactory except when the convective forcing is weak. Themore » same PDF parameterization is also used to simulate shallow cumulus and stratocumulus layers. The PDF method is sufficiently general to adequately simulate these five deep, shallow, and stratiform cloud cases with a single equation set. This raises hopes that it may be possible in the future, with further refinements at coarse time step and grid spacing, to parameterize all cloud types in a large-scale model in a unified way.« less
NASA Astrophysics Data System (ADS)
Cai, X.; Riley, W. J.; Zhu, Q.
2017-12-01
Deforestation causes a series of changes to the climate, water, and nutrient cycles. Employing a state-of-the-art earth system model—ACME (Accelerated Climate Modeling for Energy), we comprehensively investigate the impacts of deforestation on these processes. We first assess the performance of the ACME Land Model (ALM) in simulating runoff, evapotranspiration, albedo, and plant productivity at 42 FLUXNET sites. The single column mode of ACME is then used to examine climate effects (temperature cooling/warming) and responses of runoff, evapotranspiration, and nutrient fluxes to deforestation. This approach separates local effects of deforestation from global circulation effects. To better understand the deforestation effects in a global context, we use the coupled (atmosphere, land, and slab ocean) mode of ACME to demonstrate the impacts of deforestation on global climate, water, and nutrient fluxes. Preliminary results showed that the land component of ACME has advantages in simulating these processes and that local deforestation has potentially large impacts on runoff and atmospheric processes.
Indicators of Arctic Sea Ice Bistability in Climate Model Simulations and Observations
2014-09-30
ultimately developed a novel mathematical method to solve the system of equations involving the addition of a numerical “ ghost ” layer, as described in the...balance models ( EBMs ) and (ii) seasonally-varying single-column models (SCMs). As described in Approach item #1, we developed an idealized model that...includes both latitudinal and seasonal variations (Fig. 1). The model reduces to a standard EBM or SCM as limiting cases in the parameter space, thus
NASA Technical Reports Server (NTRS)
Zhang, Minghua; Bretherton, Christopher S.; Blossey, Peter N.; Austin, Phillip H.; Bacmeister, Julio T.; Bony, Sandrine; Brient, Florent; Cheedela, Suvarchal K.; Cheng, Anning; DelGenio, Anthony;
2013-01-01
1] CGILS-the CFMIP-GASS Intercomparison of Large Eddy Models (LESs) and single column models (SCMs)-investigates the mechanisms of cloud feedback in SCMs and LESs under idealized climate change perturbation. This paper describes the CGILS results from 15 SCMs and 8 LES models. Three cloud regimes over the subtropical oceans are studied: shallow cumulus, cumulus under stratocumulus, and well-mixed coastal stratus/stratocumulus. In the stratocumulus and coastal stratus regimes, SCMs without activated shallow convection generally simulated negative cloud feedbacks, while models with active shallow convection generally simulated positive cloud feedbacks. In the shallow cumulus alone regime, this relationship is less clear, likely due to the changes in cloud depth, lateral mixing, and precipitation or a combination of them. The majority of LES models simulated negative cloud feedback in the well-mixed coastal stratus/stratocumulus regime, and positive feedback in the shallow cumulus and stratocumulus regime. A general framework is provided to interpret SCM results: in a warmer climate, the moistening rate of the cloudy layer associated with the surface-based turbulence parameterization is enhanced; together with weaker large-scale subsidence, it causes negative cloud feedback. In contrast, in the warmer climate, the drying rate associated with the shallow convection scheme is enhanced. This causes positive cloud feedback. These mechanisms are summarized as the "NESTS" negative cloud feedback and the "SCOPE" positive cloud feedback (Negative feedback from Surface Turbulence under weaker Subsidence-Shallow Convection PositivE feedback) with the net cloud feedback depending on how the two opposing effects counteract each other. The LES results are consistent with these interpretations
NASA Astrophysics Data System (ADS)
Hoose, C.; Lohmann, U.; Stier, P.; Verheggen, B.; Weingartner, E.; Herich, H.
2007-12-01
The global aerosol-climate model ECHAM5-HAM (Stier et al., 2005) has been extended by an explicit treatment of cloud-borne particles. Two additional modes for in-droplet and in-crystal particles are introduced, which are coupled to the number of cloud droplet and ice crystal concentrations simulated by the ECHAM5 double-moment cloud microphysics scheme (Lohmann et al., 2007). Transfer, production and removal of cloud-borne aerosol number and mass by cloud droplet activation, collision scavenging, aqueous-phase sulfate production, freezing, melting, evaporation, sublimation and precipitation formation are taken into account. The model performance is demonstrated and validated with observations of the evolution of total and interstitial aerosol concentrations and size distributions during three different mixed-phase cloud events at the alpine high-altitude research station Jungfraujoch (Switzerland) (Verheggen et al, 2007). Although the single-column simulations can not be compared one-to-one with the observations, the governing processes in the evolution of the cloud and aerosol parameters are captured qualitatively well. High scavenged fractions are found during the presence of liquid water, while the release of particles during the Bergeron-Findeisen process results in low scavenged fractions after cloud glaciation. The observed coexistence of liquid and ice, which might be related to cloud heterogeneity at subgrid scales, can only be simulated in the model when forcing non-equilibrium conditions. References: U. Lohmann et al., Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM, Atmos. Chem. Phys. 7, 3425-3446 (2007) P. Stier et al., The aerosol-climate model ECHAM5-HAM, Atmos. Chem. Phys. 5, 1125-1156 (2005) B. Verheggen et al., Aerosol partitioning between the interstitial and the condensed phase in mixed-phase clouds, Accepted for publication in J. Geophys. Res. (2007)
Demersal and larval fish assemblages in the Chukchi Sea
NASA Astrophysics Data System (ADS)
Norcross, Brenda L.; Holladay, Brenda A.; Busby, Morgan S.; Mier, Kathryn L.
2010-01-01
A multidisciplinary research cruise was conducted in the Chukchi Sea in summer 2004 during which we investigated assemblages of small demersal fishes and ichthyoplankton and the water masses associated with these assemblages. This study establishes a baseline of 30 demersal fish and 25 ichthyoplankton taxa in US and Russian waters of the Chukchi Sea. Presence/absence of small demersal fish clustered into four assemblages: Coastal Fishes, Western Chukchi Fishes, South Central Chukchi Fishes, and North Central Chukchi Fishes. Habitats occupied by small demersal fishes were characterized by sediment type, bottom salinity, and bottom temperature. Abundance of ichthyoplankton grouped into three assemblages with geographical extent similar to that of the bottom assemblages, except that there was a single assemblage for Central Chukchi Fishes. Water-column temperature and salinity characterized ichthyoplankton habitats. Three water masses, Alaska Coastal Water, Bering Sea Water, and Winter Water, were identified from both bottom and depth-averaged water-column temperature and salinity. A fourth water mass, Resident Chukchi Water, was identified only in the bottom water. The water mass and habitat characteristics with which demersal and larval fish assemblages were associated create a baseline to measure anticipated effects of climate change that are expected to be most severe at high latitudes. Monitoring fish assemblages could be a tool for assessing the effects of climate change. Climate-induced changes in distributions of species would result in a restructuring of fish assemblages in the Chukchi Sea.
NASA Astrophysics Data System (ADS)
Song, J.; Wang, Z.
2013-12-01
Studying urban land-atmospheric interactions by coupling an urban canopy model with a single column atmospheric models Jiyun Song and Zhi-Hua Wang School of Sustainable Engineering and the Built Environment, Arizona State University, PO Box 875306, Tempe, AZ 85287-5306 Landuse landcover changes in urban area will modify surface energy budgets, turbulent fluxes as well as dynamic and thermodynamic structures of the overlying atmospheric boundary layer (ABL). In order to study urban land-atmospheric interactions, we coupled a single column atmospheric model (SCM) to a cutting-edge single layer urban canopy model (SLUCM). Modification of surface parameters such as the fraction of vegetation and engineered pavements, thermal properties of building and pavement materials, and geometrical features of street canyon, etc. in SLUCM dictates the evolution of surface balance of energy, water and momentum. The land surface states then provide lower boundary conditions to the overlying atmosphere, which in turn modulates the modification of ABL structure as well as vertical profiles of temperature, humidity, wind speed and tracer gases. The coupled SLUCM-SCM model is tested against field measurements of surface layer fluxes as well as profiles of temperature and humidity in the mixed layer under convective conditions. After model test, SLUCM-SCM is used to simulate the effect of changing urban land surface conditions on the evolution of ABL structure and dynamics. Simulation results show that despite the prescribed atmospheric forcing, land surface states impose significant impact on the physics of the overlying vertical atmospheric layer. Overall, this numerical framework provides a useful standalone modeling tool to assess the impacts of urban land surface conditions on the local hydrometeorology through land-atmospheric interactions. It also has potentially far-reaching implications to urban ecohydrological services for cities under future expansion and climate challenges.
NASA Technical Reports Server (NTRS)
Russell, Philip B.
1994-01-01
Many theoretical studies have shown that anthropogenic aerosol particles can change the radiation balance in an atmospheric column and might thereby exert a significant effect on the Earth's climate. In particular, recent calculations have shown that sulfate particles from anthropogenic combustion may already exert a cooling influence on the Earth that partially offsets the warming caused by the greenhouse gases from the same combustion. Despite the potential climatic importance of anthropogenic aerosols, simultaneous measurements of anthropogenic aerosol properties and their effect on atmospheric radiation have been very rare. Successful comparisons of measured radiation fields with those calculated from aerosol measurements - now referred to as column closure comparisons - are required to improve the accuracy and credibility of climate predictions. This paper reviews the column closure experiment performed at the Mt. Sutro Tower in San Francisco in 1975, in which elevated radiometers measured the change in Earth-plus-atmosphere albedo caused by an aerosol layer, while a lidar, sunphotometer, nephelometer, and other radiometers measured properties of the responsible aerosol. The time-dependent albedo calculated from the measured aerosol properties agreed with that measured by the tower radiometers. Also presented are designs for future column closure studies using radiometers and aerosol instruments on the ground, aircraft, and satellites. These designs draw upon algorithms and experience developed in the Sutro Tower study, as well as more recent experience with current measurement and analysis capabilities.
Radiative-convective equilibrium model intercomparison project
NASA Astrophysics Data System (ADS)
Wing, Allison A.; Reed, Kevin A.; Satoh, Masaki; Stevens, Bjorn; Bony, Sandrine; Ohno, Tomoki
2018-03-01
RCEMIP, an intercomparison of multiple types of models configured in radiative-convective equilibrium (RCE), is proposed. RCE is an idealization of the climate system in which there is a balance between radiative cooling of the atmosphere and heating by convection. The scientific objectives of RCEMIP are three-fold. First, clouds and climate sensitivity will be investigated in the RCE setting. This includes determining how cloud fraction changes with warming and the role of self-aggregation of convection in climate sensitivity. Second, RCEMIP will quantify the dependence of the degree of convective aggregation and tropical circulation regimes on temperature. Finally, by providing a common baseline, RCEMIP will allow the robustness of the RCE state across the spectrum of models to be assessed, which is essential for interpreting the results found regarding clouds, climate sensitivity, and aggregation, and more generally, determining which features of tropical climate a RCE framework is useful for. A novel aspect and major advantage of RCEMIP is the accessibility of the RCE framework to a variety of models, including cloud-resolving models, general circulation models, global cloud-resolving models, single-column models, and large-eddy simulation models.
Five scientists at Johns Hopkins in the modern evolution of neuroscience.
Harrison, T S
2000-08-01
Neuroscience's evolution at Johns Hopkins, from neurophysiology to the new field of neurobiology, though unplanned, was rapid and important. Beginning in 1933 when Philip Bard became professor of physiology at Johns Hopkins, members of his department concentrated initially on neuroanatomical control of placing reactions and sexual activity. Vernon Mountcastle, extending available techniques, discovered vertical somato-sensory columns in the 1950's. Stephen Kuffler, who arrived at Hopkins in 1947, was a pioneer in single unit microelectrode recording techniques. He soon attracted scientists from all over the world to his laboratory. Among them, Torsten Wiesel and David Hubel discovered vertical neuronal columns in the visual cortex. During several decades at Johns Hopkins, these five scientists set extremely high scientific standards and established a climate of inquiry in which ideas were shared and young scientists encouraged. They contributed significantly to the emerging discipline of neuroscience.
Multiple climate regimes in an idealized lake-ice-atmosphere model
NASA Astrophysics Data System (ADS)
Sugiyama, Noriyuki; Kravtsov, Sergey; Roebber, Paul
2018-01-01
In recent decades, the Laurentian Great Lakes have undergone rapid surface warming with the summertime trends substantially exceeding the warming rates of surrounding land. Warming of the deepest (Lake Superior) was the strongest, and that of the shallowest (Lake Erie)—the weakest of all lakes. To investigate the dynamics of accelerated lake warming, we considered single-column and multi-column thermodynamic lake-ice models coupled to an idealized two-layer atmosphere. The variable temperature of the upper atmospheric layer—a proxy for the large-scale atmospheric forcing—consisted, in the most general case, of a linear trend mimicking the global warming and atmospheric interannual variability, both on top of the prescribed seasonal cycle of the upper-air temperature. The atmospheric boundary layer of the coupled model exchanged heat with the lake and exhibited lateral diffusive heat transports between the adjacent atmospheric columns. In simpler single-column models, we find that, for a certain range of periodic atmospheric forcing, each lake possesses two stable equilibrium seasonal cycles, which we call "regimes"—with and without lake-ice occurrence in winter and with corresponding cold and warm temperatures in the following summer, respectively, all under an identical seasonally varying external forcing. Deeper lakes exhibit larger differences in their summertime surface water temperature between the warm and cold regimes, due to their larger thermal and dynamical inertia. The regime behavior of multi-column coupled models is similar but more complex, and in some cases, they admit more than two stable equilibrium seasonal cycles, with varying degrees of wintertime ice-cover. The simulated lake response to climate change in the presence of the atmospheric noise rationalizes the observed accelerated warming of the lakes, the correlation between wintertime ice cover and next summer's lake-surface temperature, as well as higher warming trends of the (occasionally wintertime ice-covered) deep-lake vs. shallow-lake regions, in terms of the corresponding characteristics of the forced transitions between colder and warmer lake regimes. Since the regime behavior in our models arises due to nonlinear dynamics rooted in the ice-albedo feedback, this feedback is also the root cause of the accelerated lake warming simulated by these models. In addition, our results imply that if Lake Superior eventually becomes largely ice-free (<10% maximum ice cover every winter) under continuing global warming, the surface warming trends of the deeper regions of the lake will become modest, similar to those of the shallower regions of the lake.
NASA Astrophysics Data System (ADS)
Abdel-Lathif, Ahmat Younous; Roehrig, Romain; Beau, Isabelle; Douville, Hervé
2018-03-01
A single-column model (SCM) approach is used to assess the CNRM climate model (CNRM-CM) version 6 ability to represent the properties of the apparent heat source (Q1) and moisture sink (Q2) as observed during the 3 month CINDY2011/DYNAMO field campaign, over its Northern Sounding Array (NSA). The performance of the CNRM SCM is evaluated in a constrained configuration in which the latent and sensible heat surface fluxes are prescribed, as, when forced by observed sea surface temperature, the model is strongly limited by the underestimate of the surface fluxes, most probably related to the SCM forcing itself. The model exhibits a significant cold bias in the upper troposphere, near 200 hPa, and strong wet biases close to the surface and above 700 hPa. The analysis of the Q1 and Q2 profile distributions emphasizes the properties of the convective parameterization of the CNRM-CM physics. The distribution of the Q2 profile is particularly challenging. The model strongly underestimates the frequency of occurrence of the deep moistening profiles, which likely involve misrepresentation of the shallow and congestus convection. Finally, a statistical approach is used to objectively define atmospheric regimes and construct a typical convection life cycle. A composite analysis shows that the CNRM SCM captures the general transition from bottom-heavy to mid-heavy to top-heavy convective heating. Some model errors are shown to be related to the stratiform regimes. The moistening observed during the shallow and congestus convection regimes also requires further improvements of this CNRM-CM physics.
Evaluation of a single column model at the Southern Great Plains climate research facility
NASA Astrophysics Data System (ADS)
Kennedy, Aaron D.
Despite recent advancements in global climate modeling, models produce a large range of climate sensitivities for the Earth. This range of sensitivities results in part from uncertainties in modeling clouds. To understand and to improve cloud parameterizations in Global Climate Models (GCMs), simulations should be evaluated using observations of clouds. Detailed studies can be conducted at Atmospheric Radiation Measurements (ARM) sites which provide adequate observations and forcing for Single Column Model (SCM) studies. Unfortunately, forcing for SCMs is sparse and not available for many locations or times. This study had two main goals: (1) evaluate clouds from the GISS Model E AR5 SCM at the ARM Southern Great Plains site and (2) determine whether reanalysis-based forcing was feasible at this location. To accomplish these goals, multiple model runs were conducted from 1999--2008 using forcing provided by ARM and forcing developed from the North American Regional Reanalysis (NARR). To better understand cloud biases and differences in the forcings, atmospheric states were classified using Self Organizing Maps (SOMs). Although model simulations had many similarities with the observations, there were several noticeable biases. Deep clouds had a negative bias year-round and this was attributed to clouds being too thin during frontal systems and a lack of convection during the spring and summer. These results were consistent regardless of the forcing used. During August, SCM simulations had a positive bias for low clouds. This bias varied with the forcing suggesting that part of the problem was tied to errors in the forcing. NARR forcing had many favorable characteristics when compared to ARM observations and forcing. In particular, temperature and wind information were more accurate than ARM when compared to balloon soundings. During the cool season, NARR forcing produced results similar to ARM with reasonable precipitation and a similar cloud field. Although NARR vertical velocities were weaker than ARM during the convective season, these simulations were able to capture the majority of convective events. The limiting factor for NARR was humidity biases in the upper troposphere during the summer months. Prior to releasing this forcing to the modeling community, this issue must be investigated further.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penner, Joyce E.; Zhou, Cheng
Observation-based studies have shown that the aerosol cloud lifetime effect or the increase of cloud liquid water path (LWP) with increased aerosol loading may have been overestimated in climate models. Here, we simulate shallow warm clouds on 05/27/2011 at the Southern Great Plains (SGP) measurement site established by Department of Energy's Atmospheric Radiation Measurement (ARM) Program using a single column version of a global climate model (Community Atmosphere Model or CAM) and a cloud resolving model (CRM). The LWP simulated by CAM increases substantially with aerosol loading while that in the CRM does not. The increase of LWP in CAMmore » is caused by a large decrease of the autoconversion rate when cloud droplet number increases. In the CRM, the autoconversion rate is also reduced, but this is offset or even outweighed by the increased evaporation of cloud droplets near cloud top, resulting in an overall decrease in LWP. Our results suggest that climate models need to include the dependence of cloud top growth and the evaporation/condensation process on cloud droplet number concentrations.« less
A Single Column Model Ensemble Approach Applied to the TWP-ICE Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davies, Laura; Jakob, Christian; Cheung, K.
2013-06-27
Single column models (SCM) are useful testbeds for investigating the parameterisation schemes of numerical weather prediction and climate models. The usefulness of SCM simulations are limited, however, by the accuracy of the best-estimate large-scale data prescribed. One method to address this uncertainty is to perform ensemble simulations of the SCM. This study first derives an ensemble of large-scale data for the Tropical Warm Pool International Cloud Experiment (TWP-ICE) based on an estimate of a possible source of error in the best-estimate product. This data is then used to carry out simulations with 11 SCM and 2 cloud-resolving models (CRM). Best-estimatemore » simulations are also performed. All models show that moisture related variables are close to observations and there are limited differences between the best-estimate and ensemble mean values. The models, however, show different sensitivities to changes in the forcing particularly when weakly forced. The ensemble simulations highlight important differences in the moisture budget between the SCM and CRM. Systematic differences are also apparent in the ensemble mean vertical structure of cloud variables. The ensemble is further used to investigate relations between cloud variables and precipitation identifying large differences between CRM and SCM. This study highlights that additional information can be gained by performing ensemble simulations enhancing the information derived from models using the more traditional single best-estimate simulation.« less
Modelling trends in tropical column ozone with the UKCA chemistry-climate model
NASA Astrophysics Data System (ADS)
Keeble, James; Bednarz, Ewa; Banerjee, Antara; Abraham, Luke; Harris, Neil; Maycock, Amanda; Pyle, John
2016-04-01
Trends in tropical column ozone under a number of different emissions scenarios are explored with the UM-UKCA coupled chemistry climate model. A transient 1960-2100 simulation was run following the RCP6 scenario. Tropical averaged (10S-10N) total column ozone values decrease from the 1970s, reaching a minimum around 2000, and return to their 1980 values around 2040, consistent with the use and emission of ozone depleting substances, and their later controls under the Montreal Protocol. However, when the total column is subdivided into three partial columns, extending from the surface to the tropopause, the tropopause to 30km, and 30km to 50km, significant differences to the total column trend are seen. Modelled tropospheric column values increase from 1960-2000 before remaining steady throughout the 21st Century. Lower stratospheric column values decrease rapidly from 1960-2000, remain steady until 2050 before slowly decreasing to 2100, never recovering to their 1980s values. Upper stratospheric values decrease from 1960-2000, before rapidly increasing throughout the 21st Century, recovering to 1980s values by ~2020 and are significantly increased above the 1980s values by 2100. Using a series of idealised model simulations with varying concentrations of greenhouse gases and ozone depleting substances, we assess the physical processes driving the partial column response in the troposphere, lower stratosphere and upper stratosphere, and assess how these processes change under different emissions scenarios. Finally, we present a simple, linearised model for predicting tropical column ozone values based on greenhouse gas and ozone depleting substance scenarios.
Examining Chaotic Convection with Super-Parameterization Ensembles
NASA Astrophysics Data System (ADS)
Jones, Todd R.
This study investigates a variety of features present in a new configuration of the Community Atmosphere Model (CAM) variant, SP-CAM 2.0. The new configuration (multiple-parameterization-CAM, MP-CAM) changes the manner in which the super-parameterization (SP) concept represents physical tendency feedbacks to the large-scale by using the mean of 10 independent two-dimensional cloud-permitting model (CPM) curtains in each global model column instead of the conventional single CPM curtain. The climates of the SP and MP configurations are examined to investigate any significant differences caused by the application of convective physical tendencies that are more deterministic in nature, paying particular attention to extreme precipitation events and large-scale weather systems, such as the Madden-Julian Oscillation (MJO). A number of small but significant changes in the mean state climate are uncovered, and it is found that the new formulation degrades MJO performance. Despite these deficiencies, the ensemble of possible realizations of convective states in the MP configuration allows for analysis of uncertainty in the small-scale solution, lending to examination of those weather regimes and physical mechanisms associated with strong, chaotic convection. Methods of quantifying precipitation predictability are explored, and use of the most reliable of these leads to the conclusion that poor precipitation predictability is most directly related to the proximity of the global climate model column state to atmospheric critical points. Secondarily, the predictability is tied to the availability of potential convective energy, the presence of mesoscale convective organization on the CPM grid, and the directive power of the large-scale.
Long-term Ozone Changes and Associated Climate Impacts in CMIP5 Simulations
NASA Technical Reports Server (NTRS)
Eyring, V.; Arblaster, J. M.; Cionni, I.; Sedlacek, J.; Perlwitz, J.; Young, P. J.; Bekki, S.; Bergmann, D.; Cameron-Smith, P.; Collins, W. J.;
2013-01-01
Ozone changes and associated climate impacts in the Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations are analyzed over the historical (1960-2005) and future (2006-2100) period under four Representative Concentration Pathways (RCP). In contrast to CMIP3, where half of the models prescribed constant stratospheric ozone, CMIP5 models all consider past ozone depletion and future ozone recovery. Multimodel mean climatologies and long-term changes in total and tropospheric column ozone calculated from CMIP5 models with either interactive or prescribed ozone are in reasonable agreement with observations. However, some large deviations from observations exist for individual models with interactive chemistry, and these models are excluded in the projections. Stratospheric ozone projections forced with a single halogen, but four greenhouse gas (GHG) scenarios show largest differences in the northern midlatitudes and in the Arctic in spring (approximately 20 and 40 Dobson units (DU) by 2100, respectively). By 2050, these differences are much smaller and negligible over Antarctica in austral spring. Differences in future tropospheric column ozone are mainly caused by differences in methane concentrations and stratospheric input, leading to approximately 10DU increases compared to 2000 in RCP 8.5. Large variations in stratospheric ozone particularly in CMIP5 models with interactive chemistry drive correspondingly large variations in lower stratospheric temperature trends. The results also illustrate that future Southern Hemisphere summertime circulation changes are controlled by both the ozone recovery rate and the rate of GHG increases, emphasizing the importance of simulating and taking into account ozone forcings when examining future climate projections.
Meloy, Gregory M; Mormino, Matthew A; Siska, Peter A; Tarkin, Ivan S
2013-11-01
The study aimed (1) to examine if there are equivalent results in terms of union, alignment and elbow functionally comparing single- to dual-column plating of AO/OTA 13A2 and A3 distal humeral fractures and (2) if there are more implant-related complications in patients managed with bicolumnar plating compared to single-column plate fixation. This was a multi-centred retrospective comparative study. The study was conducted at two academic level 1 trauma centres. A total of 105 patients were identified to have surgical management of extra-articular distal humeral fractures Arbeitsgemeinschaft für Osteosynthesefragen/Orthopaedic Trauma Association (AO/OTA) 13A2 and AO/OTA 13A3). Patients were treated with traditional dual-column plating or a single-column posterolateral small-fragment pre-contoured locking plate used as a neutralisation device with at least five screws in the short distal segment. The patients' elbow functionality was assessed in terms of range of motion, union and alignment. In addition, the rate of complications between the groups including radial nerve palsy, implant-related complications (painful prominence and/or ulnar nerve neuritis) and elbow stiffness were compared. Patients treated with single-column plating had similar union rates and alignment. However, single-column plating resulted in a significantly better range of motion with less complications. The current study suggests that exposure/instrumentation of only the lateral column is a reliable and preferred technique. This technique allows for comparable union rates and alignment with increased elbow functionality and decreased number of complications. Copyright © 2013 Elsevier Ltd. All rights reserved.
Stochastic Models for Precipitable Water in Convection
NASA Astrophysics Data System (ADS)
Leung, Kimberly
Atmospheric precipitable water vapor (PWV) is the amount of water vapor in the atmosphere within a vertical column of unit cross-sectional area and is a critically important parameter of precipitation processes. However, accurate high-frequency and long-term observations of PWV in the sky were impossible until the availability of modern instruments such as radar. The United States Department of Energy (DOE)'s Atmospheric Radiation Measurement (ARM) Program facility made the first systematic and high-resolution observations of PWV at Darwin, Australia since 2002. At a resolution of 20 seconds, this time series allowed us to examine the volatility of PWV, including fractal behavior with dimension equal to 1.9, higher than the Brownian motion dimension of 1.5. Such strong fractal behavior calls for stochastic differential equation modeling in an attempt to address some of the difficulties of convective parameterization in various kinds of climate models, ranging from general circulation models (GCM) to weather research forecasting (WRF) models. This important observed data at high resolution can capture the fractal behavior of PWV and enables stochastic exploration into the next generation of climate models which considers scales from micrometers to thousands of kilometers. As a first step, this thesis explores a simple stochastic differential equation model of water mass balance for PWV and assesses accuracy, robustness, and sensitivity of the stochastic model. A 1000-day simulation allows for the determination of the best-fitting 25-day period as compared to data from the TWP-ICE field campaign conducted out of Darwin, Australia in early 2006. The observed data and this portion of the simulation had a correlation coefficient of 0.6513 and followed similar statistics and low-resolution temporal trends. Building on the point model foundation, a similar algorithm was applied to the National Center for Atmospheric Research (NCAR)'s existing single-column model as a test-of-concept for eventual inclusion in a general circulation model. The stochastic scheme was designed to be coupled with the deterministic single-column simulation by modifying results of the existing convective scheme (Zhang-McFarlane) and was able to produce a 20-second resolution time series that effectively simulated observed PWV, as measured by correlation coefficient (0.5510), fractal dimension (1.9), statistics, and visual examination of temporal trends. Results indicate that simulation of a highly volatile time series of observed PWV is certainly achievable and has potential to improve prediction capabilities in climate modeling. Further, this study demonstrates the feasibility of adding a mathematics- and statistics-based stochastic scheme to an existing deterministic parameterization to simulate observed fractal behavior.
NASA Astrophysics Data System (ADS)
Mandai, Shingo; Jain, Vishwas; Charbon, Edoardo
2014-02-01
This paper presents a digital silicon photomultiplier (SiPM) partitioned in columns, whereas each column is connected to a column-parallel time-to-digital converter (TDC), in order to improve the timing resolution of single-photon detection. By reducing the number of pixels per TDC using a sharing scheme with three TDCs per column, the pixel-to-pixel skew is reduced. We report the basic characterization of the SiPM, comprising 416 single-photon avalanche diodes (SPADs); the characterization includes photon detection probability, dark count rate, afterpulsing, and crosstalk. We achieved 264-ps full-width at half maximum timing resolution of single-photon detection using a 48-fold column-parallel TDC with a temporal resolution of 51.8 ps (least significant bit), fully integrated in standard complementary metal-oxide semiconductor technology.
Clear-Sky Longwave Irradiance at the Earth's Surface--Evaluation of Climate Models.
NASA Astrophysics Data System (ADS)
Garratt, J. R.
2001-04-01
An evaluation of the clear-sky longwave irradiance at the earth's surface (LI) simulated in climate models and in satellite-based global datasets is presented. Algorithm-based estimates of LI, derived from global observations of column water vapor and surface (or screen air) temperature, serve as proxy `observations.' All datasets capture the broad zonal variation and seasonal behavior in LI, mainly because the behavior in column water vapor and temperature is reproduced well. Over oceans, the dependence of annual and monthly mean irradiance upon sea surface temperature (SST) closely resembles the observed behavior of column water with SST. In particular, the observed hemispheric difference in the summer minus winter column water dependence on SST is found in all models, though with varying seasonal amplitudes. The analogous behavior in the summer minus winter LI is seen in all datasets. Over land, all models have a more highly scattered dependence of LI upon surface temperature compared with the situation over the oceans. This is related to a much weaker dependence of model column water on the screen-air temperature at both monthly and annual timescales, as observed. The ability of climate models to simulate realistic LI fields depends as much on the quality of model water vapor and temperature fields as on the quality of the longwave radiation codes. In a comparison of models with observations, root-mean-square gridpoint differences in mean monthly column water and temperature are 4-6 mm (5-8 mm) and 0.5-2 K (3-4 K), respectively, over large regions of ocean (land), consistent with the intermodel differences in LI of 5-13 W m2 (15-28 W m2).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffin, Brian M.; Larson, Vincent E.
Microphysical processes, such as the formation, growth, and evaporation of precipitation, interact with variability and covariances (e.g., fluxes) in moisture and heat content. For instance, evaporation of rain may produce cold pools, which in turn may trigger fresh convection and precipitation. These effects are usually omitted or else crudely parameterized at subgrid scales in weather and climate models.A more formal approach is pursued here, based on predictive, horizontally averaged equations for the variances, covariances, and fluxes of moisture and heat content. These higher-order moment equations contain microphysical source terms. The microphysics terms can be integrated analytically, given a suitably simplemore » warm-rain microphysics scheme and an approximate assumption about the multivariate distribution of cloud-related and precipitation-related variables. Performing the integrations provides exact expressions within an idealized context.A large-eddy simulation (LES) of a shallow precipitating cumulus case is performed here, and it indicates that the microphysical effects on (co)variances and fluxes can be large. In some budgets and altitude ranges, they are dominant terms. The analytic expressions for the integrals are implemented in a single-column, higher-order closure model. Interactive single-column simulations agree qualitatively with the LES. The analytic integrations form a parameterization of microphysical effects in their own right, and they also serve as benchmark solutions that can be compared to non-analytic integration methods.« less
Preliminary Martian Atmospheric Water Vapour Column Abundances with Mars Climate Sounder
NASA Astrophysics Data System (ADS)
Lolachi, Ramin; Irwin, P. G. J.; Teanby, N.; Calcutt, S.; Howett, C. J. A.; Bowles, N. E.; Taylor, F. W.; Schofield, J. T.; Kleinboehl, A.; McCleese, D. J.
2007-12-01
Mars Climate Sounder (MCS) is an infra-red radiometer on board NASA's Mars Reconnaissance Orbiter (MRO) launched in August 2005 and now orbiting Mars in a near circular polar orbit. MCS has nine spectral channels in the range 0.3-50 µm. Goals of MCS include global characterization of atmospheric temperature, dust and water profiles observing temporal and spatial variation. Using Oxford University's multivariate retrieval algorithm, NEMESIS, we present preliminary determinations of the water vapour column abundance in the Martian atmosphere during the period September-October 2006 (Ls range 111-129°, i.e. northern hemisphere summer). A combination of spectral channels inside and outside the water vapour rotation band (at 50 µm) are used to retrieve the column abundances mainly using nadir observations (as aerosol opacity is less important relative to water vapour opacity in nadir viewing geometry). We then compare these column abundances to earlier results from the Viking Orbiter Mars Atmospheric Water Detectors (MAWD) and the Thermal Emission Spectrometer (TES) on Mars Global Surveyor.
NASA Astrophysics Data System (ADS)
Zhou, Cheng; Penner, Joyce E.
2017-01-01
Observation-based studies have shown that the aerosol cloud lifetime effect or the increase of cloud liquid water path (LWP) with increased aerosol loading may have been overestimated in climate models. Here, we simulate shallow warm clouds on 27 May 2011 at the southern Great Plains (SGP) measurement site established by the Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program using a single-column version of a global climate model (Community Atmosphere Model or CAM) and a cloud resolving model (CRM). The LWP simulated by CAM increases substantially with aerosol loading while that in the CRM does not. The increase of LWP in CAM is caused by a large decrease of the autoconversion rate when cloud droplet number increases. In the CRM, the autoconversion rate is also reduced, but this is offset or even outweighed by the increased evaporation of cloud droplets near the cloud top, resulting in an overall decrease in LWP. Our results suggest that climate models need to include the dependence of cloud top growth and the evaporation/condensation process on cloud droplet number concentrations.
Radiative Effects of Aerosol in the Marine Environment: Tales from the Two-Column Aerosol Project
NASA Astrophysics Data System (ADS)
Berg, L. K.; Fast, J. D.; Barnard, J.; Chand, D.; Chapman, E. G.; Comstock, J. M.; Ferrare, R. A.; Flynn, C. J.; Hair, J. W.; Hostetler, C. A.; Hubbe, J.; Johnson, R.; Kassianov, E.; Kluzek, C.; Laskin, A.; Lee, Y.; Mei, F.; Michalsky, J. J.; Redemann, J.; Rogers, R. R.; Russell, P. B.; Sedlacek, A. J.; Schmid, B.; Shilling, J. E.; Shinozuka, Y.; Springston, S. R.; Tomlinson, J. M.; Wilson, J. M.; Zelenyuk, A.; Berkowitz, C. M.
2013-12-01
There is still uncertainty associated with the direct radiative forcing by atmospheric aerosol and its representation in atmospheric models. This is particularly true in marine environments near the coast where the aerosol loading is a function of both naturally occurring and anthropogenic aerosol. These regions are also subject to variable synoptic and thermally driven flows (land-sea breezes) that transport aerosol between the continental and marine environments. The situation is made more complicated due to seasonal changes in aerosol emissions. Given these differences in emissions, we expect significant differences in the aerosol intensive and extensive properties between summer and winter and data is needed to evaluate models over the wide range of conditions. To address this issue, the recently completed Two Column Aerosol Project (TCAP) was designed to measure the key aerosol parameters in two atmospheric columns, one located over Cape Cod, Massachusetts and another approximately 200 km from the coast over the Atlantic Ocean. Measurements included aerosol size distribution, chemical composition, optical properties and vertical distribution. Several aspects make TCAP unique, including the year-long deployment of a suite of surface-based instruments by the US Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility and two aircraft intensive operations periods supported by the ARM Airborne Facility, one conducted in July 2012 and a second in February 2013. The presentation will include a discussion of the impact of the aerosol optical properties and their uncertainty on simulations of the radiation budget within the TCAP domain in the context of both single column and regional scale models. Data from TCAP will be used to highlight a number of important factors, including diurnal variation in aerosol optical depth measured at the surface site, systematic changes in aerosol optical properties (including scattering, absorption, and single scattering albedo) as a function of height, and changes in aerosol loading, chemical composition, and mixing state with height and distance from the coast.
Aerosol optical properties in the Marine Environment during the TCAP-I campaign
NASA Astrophysics Data System (ADS)
Chand, D.; Berg, L. K.; Barnard, J.; Berkowitz, C. M.; Burton, S. P.; Chapman, E. G.; Comstock, J. M.; Fast, J. D.; Ferrare, R. A.; Connor, F. J.; Hair, J. W.; Hostetler, C. A.; Hubbe, J.; Kluzek, C.; Mei, F.; Pekour, M. S.; Sedlacek, A. J.; Schmid, B.; Shilling, J. E.; Shinozuka, Y.; Tomlinson, J. M.; Wilson, J. M.; Zelenyuk-Imre, A.
2013-12-01
The role of direct radiative forcing by atmospheric aerosol is one of the largest sources of uncertainty in predicting climate change. Much of this uncertainty comes from the limited knowledge of observed aerosol optical properties. In this presentation we discuss derived aerosol optical properties based on measurements made during the summer 2012 Two-Column Aerosol Project-I (TCAP) campaign and relate these properties to the corresponding chemical and physical properties of the aerosol. TCAP was designed to provide simultaneous, in-situ observations of the size distribution, chemical properties, and optical properties of aerosol within and between two atmospheric columns over the Atlantic Ocean near the eastern seaboard of the United States. These columns are separated by 200-300 km and were sampled in July 2012 during a summer intensive operation period (IOP) using the U.S. Department of Energy's Gulfstream-1 (G-1) and NASA's B200 aircraft, winter IOP using G-1 aircraft in February 2013, and the surface-based DOE Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) located on Cape Cod. In this presentation we examine the spectral dependence of the aerosol optical properties measured from the aircraft over the TCAP-I domain, with an emphasis on in-situ derived intensive properties measured by a 3-λ Nephelometer, a Particle Soot Absorption Photometer (PSAP), a humidograph (f(RH)), and a Single Particle Soot Photometer (SP2). Preliminary results indicate that the aerosol are more light-absorbing as well as more hygroscopic at higher altitudes (2-4 km) compared to the corresponding values made within residual layers near the surface (0-2 km altitude). The average column (0-4 km) single scattering albedo (ω) and hygroscopic scattering factor (F) are found to be ~0.96 and 1.25, respectively. Additional results on key aerosol intensive properties such as the angstrom exponent (å), asymmetry parameter (g), backscattering fraction (b), and gamma parameter (γ) will be presented and discussed.
Physical properties of the WAIS Divide ice core
Fitzpatrick, Joan J.; Voigt, Donald E.; Fegyveresi, John M.; Stevens, Nathan T.; Spencer, Matthew K.; Cole-Dai, Jihong; Alley, Richard B.; Jardine, Gabriella E.; Cravens, Eric; Wilen, Lawrence A.; Fudge, T. J.; McConnell, Joseph R.
2014-01-01
The WAIS (West Antarctic Ice Sheet) Divide deep ice core was recently completed to a total depth of 3405 m, ending ∼50 m above the bed. Investigation of the visual stratigraphy and grain characteristics indicates that the ice column at the drilling location is undisturbed by any large-scale overturning or discontinuity. The climate record developed from this core is therefore likely to be continuous and robust. Measured grain-growth rates, recrystallization characteristics, and grain-size response at climate transitions fit within current understanding. Significant impurity control on grain size is indicated from correlation analysis between impurity loading and grain size. Bubble-number densities and bubble sizes and shapes are presented through the full extent of the bubbly ice. Where bubble elongation is observed, the direction of elongation is preferentially parallel to the trace of the basal (0001) plane. Preferred crystallographic orientation of grains is present in the shallowest samples measured, and increases with depth, progressing to a vertical-girdle pattern that tightens to a vertical single-maximum fabric. This single-maximum fabric switches into multiple maxima as the grain size increases rapidly in the deepest, warmest ice. A strong dependence of the fabric on the impurity-mediated grain size is apparent in the deepest samples.
Low Dimensional Embedding of Climate Data for Radio Astronomical Site Testing in the Colombian Andes
NASA Astrophysics Data System (ADS)
Chaparro Molano, Germán; Ramírez Suárez, Oscar Leonardo; Restrepo Gaitán, Oscar Alberto; Marcial Martínez Mercado, Alexander
2017-10-01
We set out to evaluate the potential of the Colombian Andes for millimeter-wave astronomical observations. Previous studies for astronomical site testing in this region have suggested that nighttime humidity and cloud cover conditions make most sites unsuitable for professional visible-light observations. Millimeter observations can be done during the day, but require that the precipitable water vapor column above a site stays below ˜10 mm. Due to a lack of direct radiometric or radiosonde measurements, we present a method for correlating climate data from weather stations to sites with a low precipitable water vapor column. We use unsupervised learning techniques to low dimensionally embed climate data (precipitation, rain days, relative humidity, and sunshine duration) in order to group together stations with similar long-term climate behavior. The data were taken over a period of 30 years by 2046 weather stations across the Colombian territory. We find six regions with unusually dry, clear-sky conditions, ranging in elevations from 2200 to 3800 masl. We evaluate the suitability of each region using a quality index derived from a Bayesian probabilistic analysis of the station type and elevation distributions. Two of these regions show a high probability of having an exceptionally low precipitable water vapor column. We compared our results with global precipitable water vapor maps and find a plausible geographical correlation with regions with low water vapor columns (˜10 mm) at an accuracy of ˜20 km. Our methods can be applied to similar data sets taken in other countries as a first step toward astronomical site evaluation.
Modeling the Thickness of Perennial Ice Covers on Stratified Lakes of the Taylor Valley, Antarctica
NASA Technical Reports Server (NTRS)
Obryk, M. K.; Doran, P. T.; Hicks, J. A.; McKay, C. P.; Priscu, J. C.
2016-01-01
A one-dimensional ice cover model was developed to predict and constrain drivers of long term ice thickness trends in chemically stratified lakes of Taylor Valley, Antarctica. The model is driven by surface radiative heat fluxes and heat fluxes from the underlying water column. The model successfully reproduced 16 years (between 1996 and 2012) of ice thickness changes for west lobe of Lake Bonney (average ice thickness = 3.53 m; RMSE = 0.09 m, n = 118) and Lake Fryxell (average ice thickness = 4.22 m; RMSE = 0.21 m, n = 128). Long-term ice thickness trends require coupling with the thermal structure of the water column. The heat stored within the temperature maximum of lakes exceeding a liquid water column depth of 20 m can either impede or facilitate ice thickness change depending on the predominant climatic trend (temperature cooling or warming). As such, shallow (< 20 m deep water columns) perennially ice-covered lakes without deep temperature maxima are more sensitive indicators of climate change. The long-term ice thickness trends are a result of surface energy flux and heat flux from the deep temperature maximum in the water column, the latter of which results from absorbed solar radiation.
Stauffer, Beth A.; Miksis-Olds, Jennifer; Goes, Joaquim I.
2015-01-01
Variability of hydrographic conditions and primary and secondary productivity between cold and warm climatic regimes in the Bering Sea has been the subject of much study in recent years, while interannual variability within a single regime and across multiple trophic levels has been less well-documented. Measurements from an instrumented mooring on the southeastern shelf of the Bering Sea were analyzed for the spring-to-summer transitions within the cold regime years of 2009–2012 to investigate the interannual variability of hydrographic conditions, primary producer biomass, and acoustically-derived secondary producer and consumer abundance and community structure. Hydrographic conditions in 2012 were significantly different than in 2009, 2010, and 2011, driven largely by increased ice extent and thickness, later ice retreat, and earlier stratification of the water column. Primary producer biomass was more tightly coupled to hydrographic conditions in 2012 than in 2009 or 2011, and shallow and mid-column phytoplankton blooms tended to occur independent of one another. There was a high degree of variability in the relationships between different classes of secondary producers and hydrographic conditions, evidence of significant intra-consumer interactions, and trade-offs between different consumer size classes in each year. Phytoplankton blooms stimulated different populations of secondary producers in each year, and summer consumer populations appeared to determine dominant populations in the subsequent spring. Overall, primary producers and secondary producers were more tightly coupled to each other and to hydrographic conditions in the coldest year compared to the warmer years. The highly variable nature of the interactions between the atmospherically-driven hydrographic environment, primary and secondary producers, and within food webs underscores the need to revisit how climatic regimes within the Bering Sea are defined and predicted to function given changing climate scenarios. PMID:26110822
NASA Astrophysics Data System (ADS)
Weidner, E. F.; Weber, T. C.; Mayer, L. A.
2017-12-01
Quantifying methane flux originating from marine seep systems in climatically sensitive regions is of critically importance for current and future climate studies. Yet, the methane contribution from these systems has been difficult to estimate given the broad spatial scale of the ocean and the heterogeneity of seep activity. One such region is the Eastern Siberian Arctic Sea (ESAS), where bubble release into the shallow water column (<40 meters average depth) facilitates transport of methane to the atmosphere without oxidation. Quantifying the current seep methane flux from the ESAS is necessary to understand not only the total ocean methane budget, but also to provide baseline estimates against which future climate-induced changes can be measured. At the 2016 AGU fall meeting, we presented a new acoustic-based flux methodology using a calibrated broadband split-beam echosounder. The broad (14-24 kHz) bandwidth provides a vertical resolution of 10 cm, making possible the identification of single bubbles. After calibration using 64 mm copper sphere of known backscatter, the acoustic backscatter of individual bubbles is measured and compared to analytical models to estimate bubble radius. Additionally, bubbles are precisely located and traced upwards through the water column to estimate rise velocity. The combination of radius and rise velocity allows for gas flux estimation. Here, we follow up with the completed implementation of this methodology applied to the Herald Canyon region of the western ESAS. From the 68 recognized seeps, bubble radii and rise velocity were computed for more than 550 individual bubbles. The range of bubble radii, 1-6 mm, is comparable to those published by other investigators, while the radius dependent rise velocities are consistent with published models. Methane flux for the Herald Canyon region was estimated by extrapolation from individual seep flux values.
Stauffer, Beth A; Miksis-Olds, Jennifer; Goes, Joaquim I
2015-01-01
Variability of hydrographic conditions and primary and secondary productivity between cold and warm climatic regimes in the Bering Sea has been the subject of much study in recent years, while interannual variability within a single regime and across multiple trophic levels has been less well-documented. Measurements from an instrumented mooring on the southeastern shelf of the Bering Sea were analyzed for the spring-to-summer transitions within the cold regime years of 2009-2012 to investigate the interannual variability of hydrographic conditions, primary producer biomass, and acoustically-derived secondary producer and consumer abundance and community structure. Hydrographic conditions in 2012 were significantly different than in 2009, 2010, and 2011, driven largely by increased ice extent and thickness, later ice retreat, and earlier stratification of the water column. Primary producer biomass was more tightly coupled to hydrographic conditions in 2012 than in 2009 or 2011, and shallow and mid-column phytoplankton blooms tended to occur independent of one another. There was a high degree of variability in the relationships between different classes of secondary producers and hydrographic conditions, evidence of significant intra-consumer interactions, and trade-offs between different consumer size classes in each year. Phytoplankton blooms stimulated different populations of secondary producers in each year, and summer consumer populations appeared to determine dominant populations in the subsequent spring. Overall, primary producers and secondary producers were more tightly coupled to each other and to hydrographic conditions in the coldest year compared to the warmer years. The highly variable nature of the interactions between the atmospherically-driven hydrographic environment, primary and secondary producers, and within food webs underscores the need to revisit how climatic regimes within the Bering Sea are defined and predicted to function given changing climate scenarios.
Using Extreme Tropical Precipitation Statistics to Constrain Future Climate States
NASA Astrophysics Data System (ADS)
Igel, M.; Biello, J. A.
2017-12-01
Tropical precipitation is characterized by a rapid growth in mean intensity as the column humidity increases. This behavior is examined in both a cloud resolving model and with high-resolution observations of precipitation and column humidity from CloudSat and AIRS, respectively. The model and the observations exhibit remarkable consistency and suggest a new paradigm for extreme precipitation. We show that the total precipitation can be decomposed into a product of contributions from a mean intensity, a probability of precipitation, and a global PDF of column humidity values. We use the modeling and observational results to suggest simple, analytic forms for each of these functions. The analytic representations are then used to construct a simple expression for the global accumulated precipitation as a function of the parameters of each of the component functions. As the climate warms, extreme precipitation intensity and global precipitation are expected to increase, though at different rates. When these predictions are incorporated into the new analytic expression for total precipitation, predictions for changes due to global warming to the probability of precipitation and the PDF of column humidity can be made. We show that strong constraints can be imposed on the future shape of the PDF of column humidity but that only weak constraints can be set on the probability of precipitation. These are largely imposed by the intensification of extreme precipitation. This result suggests that understanding precisely how extreme precipitation responds to climate warming is critical to predicting other impactful properties of global hydrology. The new framework can also be used to confirm and discount existing theories for shifting precipitation.
Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography
Liu, Huaping; Nishide, Daisuke; Tanaka, Takeshi; Kataura, Hiromichi
2011-01-01
Monostructured single-wall carbon nanotubes (SWCNTs) are important in both scientific research and electronic and biomedical applications; however, the bulk separation of SWCNTs into populations of single-chirality nanotubes remains challenging. Here we report a simple and effective method for the large-scale chirality separation of SWCNTs using a single-surfactant multicolumn gel chromatography method utilizing one surfactant and a series of vertically connected gel columns. This method is based on the structure-dependent interaction strength of SWCNTs with an allyl dextran-based gel. Overloading an SWCNT dispersion on the top column results in the adsorption sites of the column becoming fully occupied by the nanotubes that exhibit the strongest interaction with the gel. The unbound nanotubes flow through to the next column, and the nanotubes with the second strongest interaction with the gel are adsorbed in this stage. In this manner, 13 different (n, m) species were separated. Metallic SWCNTs were finally collected as unbound nanotubes because they exhibited the lowest interaction with the gel. PMID:21556063
The effects of cloud radiative forcing on an ocean-covered planet
NASA Technical Reports Server (NTRS)
Randall, David A.
1990-01-01
Cumulus anvil clouds, whose importance has been emphasized by observationalists in recent years, exert a very powerful influence on deep tropical convection by tending to radiatively destabilize the troposphere. In addition, they radiatively warm the column in which they reside. Their strong influence on the simulated climate argues for a much more refined parameterization in the General Circulation Model (GCM). For Seaworld, the atmospheric cloud radiative forcing (ACRF) has a powerful influence on such basic climate parameters as the strength of the Hadley circulation, the existence of a single narrow InterTropical Convergence Zone (ITCZ), and the precipitable water content of the atmosphere. It seems likely, however, that in the real world the surface CRF feeds back negatively to suppress moist convection and the associated cloudiness, and so tends to counteract the effects of the ACRF. Many current climate models have fixed sea surface temperatures but variable land-surface temperatures. The tropical circulations of such models may experience a position feedback due to ACRF over the oceans, and a negative or weak feedback due to surface CRF over the land. The overall effects of the CRF on the climate system can only be firmly established through much further analysis, which can benefit greatly from the use of a coupled ocean-atmospheric model.
Rudolf von Rohr, Matthias; Hering, Janet G; Kohler, Hans-Peter E; von Gunten, Urs
2014-09-15
Riverbank filtration is an established technique used world-wide to produce clean drinking water in a reliable and cost-efficient way. This practice is, however, facing new challenges posed by climate change, as already observed during past heat waves with the local occurrence of anoxic conditions. In this study we investigated the effect of direct (temperature) and indirect (dissolved organic matter (DOM) concentration and composition, flow rate) climate change variables on redox processes (aerobic respiration, denitrification and Mn(III/IV)/Fe(III) reduction) by means of column experiments. Natural river water, modified river water and river water mixed with treated wastewater effluent were used as feed waters for the columns filled with natural sand from a river-infiltration system in Switzerland. Biodegradable dissolved organic matter was mainly removed immediately at the column inlet and particulate organic matter (POM) associated with the natural sand was the main electron donor for aerobic respiration throughout the column. Low infiltration rates (≤0.01 m/h) enhanced the oxygen consumption leading to anoxic conditions. DOM consumption did not seem to be sensitive to temperature, although oxygen consumption (i.e., associated with POM degradation) showed a strong temperature dependence with an activation energy of ∼70 kJmol(-1). Anoxic conditions developed at 30 °C with partial denitrification and formation of nitrite and ammonium. In absence of oxygen and nitrate, Mn(II) was mobilized at 20 °C, highlighting the importance of nitrate acting as a redox buffer under anoxic conditions preventing the reductive dissolution of Mn(III/IV)(hydr)oxides. Reductive dissolution of Fe(III)(hydr)oxides was not observed under these conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Stochastic Models for Precipitable Water in Convection
NASA Astrophysics Data System (ADS)
Leung, Kimberly
Atmospheric precipitable water vapor (PWV) is the amount of water vapor in the atmosphere within a vertical column of unit cross-sectional area and is a critically important parameter of precipitation processes. However, accurate high-frequency and long-term observations of PWV in the sky were impossible until the availability of modern instruments such as radar. The United States Department of Energy (DOE)'s Atmospheric Radiation Measurement (ARM) Program facility made the first systematic and high-resolution observations of PWV at Darwin, Australia since 2002. At a resolution of 20 seconds, this time series allowed us to examine the volatility of PWV, including fractal behavior with dimension equal to 1.9, higher than the Brownian motion dimension of 1.5. Such strong fractal behavior calls for stochastic differential equation modeling in an attempt to address some of the difficulties of convective parameterization in various kinds of climate models, ranging from general circulation models (GCM) to weather research forecasting (WRF) models. This important observed data at high resolution can capture the fractal behavior of PWV and enables stochastic exploration into the next generation of climate models which considers scales from micrometers to thousands of kilometers. As a first step, this thesis explores a simple stochastic differential equation model of water mass balance for PWV and assesses accuracy, robustness, and sensitivity of the stochastic model. A 1000-day simulation allows for the determination of the best-fitting 25-day period as compared to data from the TWP-ICE field campaign conducted out of Darwin, Australia in early 2006. The observed data and this portion of the simulation had a correlation coefficient of 0.6513 and followed similar statistics and low-resolution temporal trends. Building on the point model foundation, a similar algorithm was applied to the National Center for Atmospheric Research (NCAR)'s existing single-column model as a test-of-concept for eventual inclusion in a general circulation model. The stochastic scheme was designed to be coupled with the deterministic single-column simulation by modifying results of the existing convective scheme (Zhang-McFarlane) and was able to produce a 20-second resolution time series that effectively simulated observed PWV, as measured by correlation coefficient (0.5510), fractal dimension (1.9), statistics, and visual examination of temporal trends.
Uncertainty Analysis for the Miniaturized Laser Heterodyne Radiometer (mini-LHR)
NASA Technical Reports Server (NTRS)
Clarke, G. B.; Wilson E. L.; Miller, J. H.; Melroy, H. R.
2014-01-01
Presented here is a sensitivity analysis for the miniaturized laser heterodyne radiometer (mini-LHR). This passive, ground-based instrument measures carbon dioxide (CO2) in the atmospheric column and has been under development at NASA/GSFC since 2009. The goal of this development is to produce a low-cost, easily-deployable instrument that can extend current ground measurement networks in order to (1) validate column satellite observations, (2) provide coverage in regions of limited satellite observations, (3) target regions of interest such as thawing permafrost, and (4) support the continuity of a long-term climate record. In this paper an uncertainty analysis of the instrument performance is presented and compared with results from three sets of field measurements. The signal-to-noise ratio (SNR) and corresponding uncertainty for a single scan are calculated to be 329.4+/-1.3 by deploying error propagation through the equation governing the SNR. Reported is an absorbance noise of 0.0024 for 6 averaged scans of field data, for an instrument precision of approximately 0.2 ppmv for CO2.
Aerosol specification in single-column Community Atmosphere Model version 5
Lebassi-Habtezion, B.; Caldwell, P. M.
2015-03-27
Single-column model (SCM) capability is an important tool for general circulation model development. In this study, the SCM mode of version 5 of the Community Atmosphere Model (CAM5) is shown to handle aerosol initialization and advection improperly, resulting in aerosol, cloud-droplet, and ice crystal concentrations which are typically much lower than observed or simulated by CAM5 in global mode. This deficiency has a major impact on stratiform cloud simulations but has little impact on convective case studies because aerosol is currently not used by CAM5 convective schemes and convective cases are typically longer in duration (so initialization is less important).more » By imposing fixed aerosol or cloud-droplet and crystal number concentrations, the aerosol issues described above can be avoided. Sensitivity studies using these idealizations suggest that the Meyers et al. (1992) ice nucleation scheme prevents mixed-phase cloud from existing by producing too many ice crystals. Microphysics is shown to strongly deplete cloud water in stratiform cases, indicating problems with sequential splitting in CAM5 and the need for careful interpretation of output from sequentially split climate models. Droplet concentration in the general circulation model (GCM) version of CAM5 is also shown to be far too low (~ 25 cm −3) at the southern Great Plains (SGP) Atmospheric Radiation Measurement (ARM) site.« less
Cordy, Gail E.; Duran, Norma L.; Bouwer, Herman; Rice, Robert C.; Furlong, Edward T.; Zaugg, Steven D.; Meyer, Michael T.; Barber, Larry B.; Kolpin, Dana W.
2004-01-01
A proof-of-concept experiment was devised to determine if pharmaceuticals and other organic waste water compounds (OWCs), as well as pathogens, found in treated effluent could be transported through a 2.4 m soil column and, thus, potentially reach ground water under recharge conditions similar to those in arid or semiarid climates. Treated effluent was applied at the top of the 2.4 m long, 32.5 cm diameter soil column over 23 days, Samples of the column inflow were collected from the effluent storage tank at the beginning (Tbegin) and end (Tend) of the experiment, and a sample of the soil column drainage at the base of the column (Bend) was collected at the end of the experiment. Samples were analyzed for 131 OWCs including veterinary and human antibiotics, other prescription and nonprescription drugs, widely used household and industrial chemicals, and steroids and reproductive hormones, as well as the pathogens Salmonella and Legionella. Analytical results for the two effluent samples taken at the beginning (Tbegin) and end (Tend) of the experiment indicate that the number of OWCs detected in the column inflow decreased by 25% (eight compounds) and the total concentration of OWCs decreased by 46% while the effluent was in the storage tank during the 23-day experiment. After percolating through the soil column, an additional 18 compounds detected in Tend (67% of OWCs) were no longer detected in the effluent (Bend) and the total concentration of OWCs decreased by more than 70%. These compounds may have been subject to transformation (biotic and abiotic), adsorption, and (or) volatilization in the storage tank and during travel through the soil column. Eight compounds—carbamazapine; sulfamethoxazole; benzophenone; 5-methyl-1H-benzotriazole; N,N-diethyltoluamide; tributylphosphate; tri(2-chloroethyl) phosphate; and cholesterol—were detected in all three samples indicating they have the potential to reach ground water under recharge conditions similar to those in arid and semiarid climates. Results from real-time polymerase chain reactions demonstrated the presence of Legionella in all three samples. Salmonella was detected only in Tbegin, suggesting that the bacteria died off in the effluent storage tank over the period of the experiment. This proof-of-concept experiment demonstrates that, under recharge conditions similar to those in arid or semiarid climates, some pharmaceuticals, pathogens, and other OWCs can persist in treated effluent after soil-aquifer treatment.
29. View of paired concreteencased columns at joint between beams ...
29. View of paired concrete-encased columns at joint between beams contrasted against wider single columns. Looking east. - Stillwell Avenue Station, Intersection of Stillwell & Surf Avenues, Brooklyn, Kings County, NY
Zhou, Cheng; Penner, Joyce E.
2017-01-02
Observation-based studies have shown that the aerosol cloud lifetime effect or the increase of cloud liquid water path (LWP) with increased aerosol loading may have been overestimated in climate models. Here, we simulate shallow warm clouds on 27 May 2011 at the southern Great Plains (SGP) measurement site established by the Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program using a single-column version of a global climate model (Community Atmosphere Model or CAM) and a cloud resolving model (CRM). The LWP simulated by CAM increases substantially with aerosol loading while that in the CRM does not. The increase of LWP inmore » CAM is caused by a large decrease of the autoconversion rate when cloud droplet number increases. In the CRM, the autoconversion rate is also reduced, but this is offset or even outweighed by the increased evaporation of cloud droplets near the cloud top, resulting in an overall decrease in LWP. Lastly, our results suggest that climate models need to include the dependence of cloud top growth and the evaporation/condensation process on cloud droplet number concentrations.« less
Could cirrus clouds have warmed early Mars?
NASA Astrophysics Data System (ADS)
Ramirez, Ramses M.; Kasting, James F.
2017-01-01
The presence of the ancient valley networks on Mars indicates that the climate at 3.8 Ga was warm enough to allow substantial liquid water to flow on the martian surface for extended periods of time. However, the mechanism for producing this warming continues to be debated. One hypothesis is that Mars could have been kept warm by global cirrus cloud decks in a CO2sbnd H2O atmosphere containing at least 0.25 bar of CO2 (Urata and Toon, 2013). Initial warming from some other process, e.g., impacts, would be required to make this model work. Those results were generated using the CAM 3-D global climate model. Here, we use a single-column radioactive-convective climate model to further investigate the cirrus cloud warming hypothesis. Our calculations indicate that cirrus cloud decks could have produced global mean surface temperatures above freezing, but only if cirrus cloud cover approaches ∼75 - 100% and if other cloud properties (e.g., height, optical depth, particle size) are chosen favorably. However, at more realistic cirrus cloud fractions, or if cloud parameters are not optimal, cirrus clouds do not provide the necessary warming, suggesting that other greenhouse mechanisms are needed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Cheng; Penner, Joyce E.
Observation-based studies have shown that the aerosol cloud lifetime effect or the increase of cloud liquid water path (LWP) with increased aerosol loading may have been overestimated in climate models. Here, we simulate shallow warm clouds on 27 May 2011 at the southern Great Plains (SGP) measurement site established by the Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program using a single-column version of a global climate model (Community Atmosphere Model or CAM) and a cloud resolving model (CRM). The LWP simulated by CAM increases substantially with aerosol loading while that in the CRM does not. The increase of LWP inmore » CAM is caused by a large decrease of the autoconversion rate when cloud droplet number increases. In the CRM, the autoconversion rate is also reduced, but this is offset or even outweighed by the increased evaporation of cloud droplets near the cloud top, resulting in an overall decrease in LWP. Lastly, our results suggest that climate models need to include the dependence of cloud top growth and the evaporation/condensation process on cloud droplet number concentrations.« less
NASA Astrophysics Data System (ADS)
Stieglitz, Marc; Rind, David; Famiglietti, James; Rosenzweig, Cynthia
1997-01-01
The current generation of land-surface models used in GCMs view the soil column as the fundamental hydrologic unit. While this may be effective in simulating such processes as the evolution of ground temperatures and the growth/ablation of a snowpack at the soil plot scale, it effectively ignores the role topography plays in the development of soil moisture heterogeneity and the subsequent impacts of this soil moisture heterogeneity on watershed evapotranspiration and the partitioning of surface fluxes. This view also ignores the role topography plays in the timing of discharge and the partitioning of discharge into surface runoff and baseflow. In this paper an approach to land-surface modeling is presented that allows us to view the watershed as the fundamental hydrologic unit. The analytic form of TOPMODEL equations are incorporated into the soil column framework and the resulting model is used to predict the saturated fraction of the watershed and baseflow in a consistent fashion. Soil moisture heterogeneity represented by saturated lowlands subsequently impacts the partitioning of surface fluxes, including evapotranspiration and runoff. The approach is computationally efficient, allows for a greatly improved simulation of the hydrologic cycle, and is easily coupled into the existing framework of the current generation of single column land-surface models. Because this approach uses the statistics of the topography rather than the details of the topography, it is compatible with the large spatial scales of today's regional and global climate models. Five years of meteorological and hydrological data from the Sleepers River watershed located in the northeastern United States where winter snow cover is significant were used to drive the new model. Site validation data were sufficient to evaluate model performance with regard to various aspects of the watershed water balance, including snowpack growth/ablation, the spring snowmelt hydrograph, storm hydrographs, and the seasonal development of watershed evapotranspiration and soil moisture.
Performance of a TKE diffusion scheme in ECMWF IFS Single Column Model
NASA Astrophysics Data System (ADS)
Svensson, Jacob; Bazile, Eric; Sandu, Irina; Svensson, Gunilla
2015-04-01
Numerical Weather Prediction models (NWP) as well as climate models are used for decision making on all levels in society and their performance and accuracy are of great importance for both economical and safety reasons. Today's extensive use of weather apps and websites that directly uses model output even more highlights the importance of realistic output parameters. The turbulent atmospheric boundary layer (ABL) includes many physical processes which occur on a subgrid scale and need to be parameterized. As the absolute major part of the biosphere is located in the ABL, it is of great importance that these subgrid processes are parametrized so that they give realistic values of e.g. temperature and wind on the levels close to the surface. GEWEX (Global Energy and Water Exchange Project) Atmospheric Boundary Layer Study (GABLS), has the overall objective to improve the understanding and the representation of the atmospheric boundary layers in climate models. The study has pointed out that there is a need for a better understanding and representation of stable atmospheric boundary layers (SBL). Therefore four test cases have been designed to highlight the performance of and differences between a number of climate models and NWP:s in SBL. In the experiments, most global NWP and climate models have shown to be too diffusive in stable conditions and thus give too weak temperature gradients, too strong momentum mixing and too weak ageostrophic Ekman flow. The reason for this is that the models need enhanced diffusion to create enough friction for the large scale weather systems, which otherwise would be too fast and too active. In the GABLS test cases, turbulence schemes that use Turbulent Kinetic Energy (TKE) have shown to be more skilful than schemes that only use stability and gradients. TKE as a prognostic variable allows for advection both vertically and horizontally and gives a "memory" from previous time steps. Therefore, e.g. the ECMWF-GABLS workshop in 2011 recommended a move for global NWP models towards a TKE scheme. Here a comparison between a TKE diffusion scheme (based on the implementation in the ARPEGE model by Meteo France) is compared to ECMWF:s IFS operational first-order scheme and to a less diffusive version, using a single column version of ECMWF:s IFS model. Results from the test cases GABLS 1, 3 and 4 together with the Diurnal land/atmosphere coupling experiment (DICE) are presented.
Flexible Environments for Grand-Challenge Simulation in Climate Science
NASA Astrophysics Data System (ADS)
Pierrehumbert, R.; Tobis, M.; Lin, J.; Dieterich, C.; Caballero, R.
2004-12-01
Current climate models are monolithic codes, generally in Fortran, aimed at high-performance simulation of the modern climate. Though they adequately serve their designated purpose, they present major barriers to application in other problems. Tailoring them to paleoclimate of planetary simulations, for instance, takes months of work. Theoretical studies, where one may want to remove selected processes or break feedback loops, are similarly hindered. Further, current climate models are of little value in education, since the implementation of textbook concepts and equations in the code is obscured by technical detail. The Climate Systems Center at the University of Chicago seeks to overcome these limitations by bringing modern object-oriented design into the business of climate modeling. Our ultimate goal is to produce an end-to-end modeling environment capable of configuring anything from a simple single-column radiative-convective model to a full 3-D coupled climate model using a uniform, flexible interface. Technically, the modeling environment is implemented as a Python-based software component toolkit: key number-crunching procedures are implemented as discrete, compiled-language components 'glued' together and co-ordinated by Python, combining the high performance of compiled languages and the flexibility and extensibility of Python. We are incrementally working towards this final objective following a series of distinct, complementary lines. We will present an overview of these activities, including PyOM, a Python-based finite-difference ocean model allowing run-time selection of different Arakawa grids and physical parameterizations; CliMT, an atmospheric modeling toolkit providing a library of 'legacy' radiative, convective and dynamical modules which can be knitted into dynamical models, and PyCCSM, a version of NCAR's Community Climate System Model in which the coupler and run-control architecture are re-implemented in Python, augmenting its flexibility and adaptability.
Lando, Amy M; Lo, Serena C
2013-02-01
The Food and Drug Administration is considering changes to the Nutrition Facts label to help consumers make more healthful choices. To examine the effects of modifications to the Nutrition Facts label on foods that can be listed as having 1 or 2 servings per container, but are reasonably consumed at a single eating occasion. Participants were randomly assigned to study conditions that varied on label format, product, and nutrition profile. Data were collected via an online consumer panel. Adults aged 18 years and older were recruited from Synovate's online household panel. Data were collected during August 2011. A total of 32,897 invitations were sent for a final sample of 9,493 interviews. Participants were randomly assigned to one of 10 label formats classified into three groups: listing 2 servings per container with a single column, listing 2 servings per container with a dual column, and listing a single serving per container. Within these groups there were versions that enlarged the font size for "calories," removed "calories from fat," and changed the wording for serving size declaration. The single product task measured product healthfulness, the amount of calories and various nutrients per serving and per container, and label perceptions. The product comparison task measured ability to identify the healthier product and the product with fewer calories per container and per serving. Analysis of covariance models with Tukey-Kramer tests were used. Covariates included general label use, age, sex, level of education, and race/ethnicity. Single-serving and dual-column formats performed better and scored higher on most outcome measures. For products that contain 2 servings but are customarily consumed at a single eating occasion, using a single-serving or dual-column labeling approach may help consumers make healthier food choices. Published by Elsevier Inc.
Using Satellite Remote Sensing and Modelling for Insights into N02 Air Pollution and NO2 Emissions
NASA Technical Reports Server (NTRS)
Lamsal, L. N.; Martin, R. V.; Krotkov, N. A.; Bucsela, E. J.; Celarier, E. A.; vanDonkelaar, A.; Parrish, D.
2012-01-01
Nitrogen oxides (NO(x)) are key actors in air quality and climate change. Satellite remote sensing of tropospheric NO2 has developed rapidly with enhanced spatial and temporal resolution since initial observations in 1995. We have developed an improved algorithm and retrieved tropospheric NO2 columns from Ozone Monitoring Instrument. Column observations of tropospheric NO2 from the nadir-viewing satellite sensors contain large contributions from the boundary layer due to strong enhancement of NO2 in the boundary layer. We infer ground-level NO2 concentrations from the OMI satellite instrument which demonstrate significant agreement with in-situ surface measurements. We examine how NO2 columns measured by satellite, ground-level NO2 derived from satellite, and NO(x) emissions obtained from bottom-up inventories relate to world's urban population. We perform inverse modeling analysis of NO2 measurements from OMI to estimate "top-down" surface NO(x) emissions, which are used to evaluate and improve "bottom-up" emission inventories. We use NO2 column observations from OMI and the relationship between NO2 columns and NO(x) emissions from a GEOS-Chem model simulation to estimate the annual change in bottom-up NO(x) emissions. The emission updates offer an improved estimate of NO(x) that are critical to our understanding of air quality, acid deposition, and climate change.
Can cirrus clouds warm early Mars?
NASA Astrophysics Data System (ADS)
Ramirez, R. M.
2015-12-01
The presence of the ancient valley networks on Mars indicates a climate 3.8 Ga that was warm enough to allow substantial liquid water to flow on the martian surface for extended periods of time. However, the origin of these enigmatic features is hotly debated and discussion of their formation has been focused on how warm such a climate may have been and for how long. Recent warm and wet solutions using single-column radiative convective models involve supplementing CO2-H2O atmospheres with other greenhouse gases, such as H2 (i.e. Ramirez et al., 2014; Batalha et al., 2015). An interesting recent proposal, using the CAM 3-D General Circulation model, argues that global cirrus cloud decks in CO2-H2O atmospheres with at least 0.25 bar of CO2 , consisting of 10-micron (and larger) sized particles, could have generated the above-freezing temperatures required to explain the early martian surface geology (Urata and Toon, 2013). Here, we use our single-column radiative convective climate model to check these 3-D results and analyze the likelihood that such warm atmospheres, with mean surface pressures of up to 3 bar, could have supported cirrus cloud decks at full and fractional cloud cover for sufficiently long durations to form the ancient valleys. Our results indicate that cirrus cloud decks could have provided the mean surface temperatures required, but only if cloud cover approaches 100%, in agreement with Urata and Toon (2013). However, even should cirrus cloud coverage approach 100%, we show that such atmospheres are likely to have been too short-lived to produce the volumes of water required to carve the ancient valleys. At more realistic early Mars cloud fractions (~50%, Forget et al., 2013), cirrus clouds do not provide the required warming. Batalha, N., Domagal-Goldman, S. D., Ramirez, R.M., & Kasting, J. F., 2015. Icarus, 258, 337-349. Forget, F., Wordsworth, R., Millour, E., Madeleine, J. B., Kerber, L., Leconte, J., ... & Haberle, R. M., 2013. Icarus, 222,1, 81-99. Ramirez, R. M., Kopparapu, R., Zugger, M. E., Robinson, T. D., Freedman, R., & Kasting, J. F., 2014. Nature Geoscience, 7,1, 59-63. Urata, R.A., and Toon, O.B., 2013. Icarus 226,1, 229-250
NASA Astrophysics Data System (ADS)
Fagbeja, M. A.; Hill, J. L.; Chatterton, T. J.; Longhurst, J. W.; Akinyede, J. O.
2011-12-01
Space-based satellite sensor technology may provide important tools in the study and assessment of national, regional and local air pollution. However, the application of optical satellite sensor observation of atmospheric trace gases, including those considered to be 'air pollutants', within the lower latitudes is limited due to prevailing climatic conditions. The lack of appropriate air pollution ground monitoring stations within the tropical belt reduces the ability to verify and calibrate space-based measurements. This paper considers the suitability of satellite remotely sensed data in estimating concentrations of atmospheric trace gases in view of the prevailing climate over the Niger Delta region. The methodological approach involved identifying suitable satellite data products and using the ArcGIS Geostatistical Analyst kriging interpolation technique to generate surface concentrations from satellite column measurements. The observed results are considered in the context of the climate of the study area. Using data from January 2001 to December 2005, an assessment of the suitability of satellite sensor data to interpolate column concentrations of trace gases over the Niger Delta has been undertaken and indicates varying degrees of reliability. The level of reliability of the interpolated surfaces is predicated on the number and spatial distributions of column measurements. Accounting for the two climatic seasons in the region, the interpolation of total column concentrations of CO and CO2 from SCIAMACHY produced both reliable and unreliable results over inland parts of the region during the dry season, while mainly unreliable results are observed over the coastal parts especially during the rainy season due to inadequate column measurements. The interpolation of tropospheric measurements of NO2 and O3 from GOME and OMI respectively produced reliable results all year. This is thought to be due to the spatial distribution of available column measurements, which were more regularly distributed over the region than the total column measurements of CO and CO2. Observations also indicated higher concentrations during the dry season than the wet seasons. The observed trend in the concentration of tropospheric O3 was as expected, considering the observed concentrations of precursor gases of CO and NO2. Whilst satellites currently play a significant role in the assessment of global air pollution and the long-range transport of air pollutants, the technology is faced with limitations in assessing ground level concentrations of pollutants. These limitations restrict the extent to which both pollution emissions and impacts of receptors can be accurately assessed. Further research is required to improve the capability of satellite sensors to observe atmospheric pollutants within the lower troposphere, where pollution has the most direct impacts on humans and ecosystems.
Significant Climate Changes Caused by Soot Emitted From Rockets in the Stratosphere
NASA Astrophysics Data System (ADS)
Mills, M. J.; Ross, M.; Toohey, D. W.
2010-12-01
A new type of hydrocarbon rocket engine with a larger soot emission index than current kerosene rockets is expected to power a fleet of suborbital rockets for commercial and scientific purposes in coming decades. At projected launch rates, emissions from these rockets will create a persistent soot layer in the northern middle stratosphere that would disproportionally affect the Earth’s atmosphere and cryosphere. A global climate model predicts that thermal forcing in the rocket soot layer will cause significant changes in the global atmospheric circulation and distributions of ozone and temperature. Tropical ozone columns decline as much as 1%, while polar ozone columns increase by up to 6%. Polar surface temperatures rise one Kelvin regionally and polar summer sea ice fractions shrink between 5 - 15%. After 20 years of suborbital rocket fleet operation, globally averaged radiative forcing (RF) from rocket soot exceeds the RF from rocket CO_{2} by six orders of magnitude, but remains small, comparable to the global RF from aviation. The response of the climate system is surprising given the small forcing, and should be investigated further with different climate models.
NASA Technical Reports Server (NTRS)
Oman, Luke D.; Douglass, Anne R.
2014-01-01
The evolution of ozone is examined in the latest version of the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM) using old and new ozone-depleting substances (ODS) scenarios. This version of GEOSCCM includes a representation of the quasi-biennial oscillation, a more realistic implementation of ozone chemistry at high solar zenith angles, an improved air/sea roughness parameterization, and an extra 5 parts per trillion of CH3Br to account for brominated very short-lived substances. Together these additions improve the representation of ozone compared to observations. This improved version of GEOSCCM was used to simulate the ozone evolution for the A1 2010 and the newStratosphere-troposphere Processes and their Role in Climate (SPARC) 2013 ODS scenario derived using the SPARC Lifetimes Report 2013. This new ODS scenario results in a maximum Cltot increase of 65 parts per trillion by volume (pptv), decreasing slightly to 60 pptv by 2100. Approximately 72% of the increase is due to the longer lifetime of CFC-11. The quasi-global (60degS-60degN) total column ozone difference is relatively small and less than 1Dobson unit on average and consistent with the 3-4% larger 2050-2080 average Cly in the new SPARC 2013 scenario. Over high latitudes, this small change in Cly compared to the relatively large natural variabilitymakes it not possible to discern a significant impact on ozone in the second half of the 21st century in a single set of simulations.
Park, Jong-Hwan; Cho, Ju-Sik; Ok, Yong Sik; Kim, Seong-Heon; Kang, Se-Won; Choi, Ik-Won; Heo, Jong-Soo; DeLaune, Ronald D; Seo, Dong-Cheol
2015-01-01
The objective of this research was to evaluate adsorption of heavy metals in single- and ternary-metal forms onto chicken bone biochar (CBB). Competitive sorption of heavy metals by CBB has never been reported previously. The maximum adsorption capacities of metals by CBB were in the order of Cu (130 mg g(-1)) > Cd (109 mg g(-1)) > Zn (93 mg g(-1)) in the single-metal adsorption isotherm and Cu (108 mg g(-1)) > Cd (54 mg g(-1)) ≥ Zn (44 mg g(-1)) in the ternary-metal adsorption isotherm. Cu was the most retained cation, whereas Zn could be easily exchanged and substituted by Cu. Batch experimental data best fit the Langmuir model rather than the Freundlich isotherms. In the column experiments, the total adsorbed amounts of the metals were in the following order of Cu (210 mg g(-1)) > Cd (192 mg g(-1)) > Zn (178) in single-metal conditions, and Cu (156) > Cd (123) > Zn (92) in ternary-metal conditions. Results from both the batch and column experiments indicate that competitive adsorption among metals increases the mobility of these metals. Especially, Zn in single-metal conditions lost it adsorption capacity most significantly. Based on the 3D simulation graphs of heavy metals, adsorption patterns under single adsorption condition were different than under competitive adsorption condition. Results from both the batch and column experiments show that competitive adsorption among metals increases the mobility of these metals. The maximum metal adsorption capacity of the metals in the column experiments was higher than that in the batch experiment indicating other metal retention mechanisms rather than adsorption may be involved. Therefore, both column and batch experiments are needed for estimating retention capacities and removal efficiencies of metals in CBB.
Single fiber lignin distributions based on the density gradient column method
Brian Boyer; Alan W. Rudie
2007-01-01
The density gradient column method was used to determine the effects of uniform and non-uniform pulping processes on variation in individual fiber lignin concentrations of the resulting pulps. A density gradient column uses solvents of different densities and a mixing process to produce a column of liquid with a smooth transition from higher density at the bottom to...
A Single-column Model Ensemble Approach Applied to the TWP-ICE Experiment
NASA Technical Reports Server (NTRS)
Davies, L.; Jakob, C.; Cheung, K.; DelGenio, A.; Hill, A.; Hume, T.; Keane, R. J.; Komori, T.; Larson, V. E.; Lin, Y.;
2013-01-01
Single-column models (SCM) are useful test beds for investigating the parameterization schemes of numerical weather prediction and climate models. The usefulness of SCM simulations are limited, however, by the accuracy of the best estimate large-scale observations prescribed. Errors estimating the observations will result in uncertainty in modeled simulations. One method to address the modeled uncertainty is to simulate an ensemble where the ensemble members span observational uncertainty. This study first derives an ensemble of large-scale data for the Tropical Warm Pool International Cloud Experiment (TWP-ICE) based on an estimate of a possible source of error in the best estimate product. These data are then used to carry out simulations with 11 SCM and two cloud-resolving models (CRM). Best estimate simulations are also performed. All models show that moisture-related variables are close to observations and there are limited differences between the best estimate and ensemble mean values. The models, however, show different sensitivities to changes in the forcing particularly when weakly forced. The ensemble simulations highlight important differences in the surface evaporation term of the moisture budget between the SCM and CRM. Differences are also apparent between the models in the ensemble mean vertical structure of cloud variables, while for each model, cloud properties are relatively insensitive to forcing. The ensemble is further used to investigate cloud variables and precipitation and identifies differences between CRM and SCM particularly for relationships involving ice. This study highlights the additional analysis that can be performed using ensemble simulations and hence enables a more complete model investigation compared to using the more traditional single best estimate simulation only.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitman, A.J.
The sensitivity of a land-surface scheme (the Biosphere Atmosphere Transfer Scheme, BATS) to its parameter values was investigated using a single column model. Identifying which parameters were important in controlling the turbulent energy fluxes, temperature, soil moisture, and runoff was dependent upon many factors. In the simulation of a nonmoisture-stressed tropical forest, results were dependent on a combination of reservoir terms (soil depth, root distribution), flux efficiency terms (roughness length, stomatal resistance), and available energy (albedo). If moisture became limited, the reservoir terms increased in importance because the total fluxes predicted depended on moisture availability and not on the ratemore » of transfer between the surface and the atmosphere. The sensitivity shown by BATS depended on which vegetation type was being simulated, which variable was used to determine sensitivity, the magnitude and sign of the parameter change, the climate regime (precipitation amount and frequency), and soil moisture levels and proximity to wilting. The interactions between these factors made it difficult to identify the most important parameters in BATS. Therefore, this paper does not argue that a particular set of parameters is important in BATS, rather it shows that no general ranking of parameters is possible. It is also emphasized that using `stand-alone` forcing to examine the sensitivity of a land-surface scheme to perturbations, in either parameters or the atmosphere, is unreliable due to the lack of surface-atmospheric feedbacks.« less
Griffin, Brian M.; Larson, Vincent E.
2016-11-25
Microphysical processes, such as the formation, growth, and evaporation of precipitation, interact with variability and covariances (e.g., fluxes) in moisture and heat content. For instance, evaporation of rain may produce cold pools, which in turn may trigger fresh convection and precipitation. These effects are usually omitted or else crudely parameterized at subgrid scales in weather and climate models.A more formal approach is pursued here, based on predictive, horizontally averaged equations for the variances, covariances, and fluxes of moisture and heat content. These higher-order moment equations contain microphysical source terms. The microphysics terms can be integrated analytically, given a suitably simplemore » warm-rain microphysics scheme and an approximate assumption about the multivariate distribution of cloud-related and precipitation-related variables. Performing the integrations provides exact expressions within an idealized context.A large-eddy simulation (LES) of a shallow precipitating cumulus case is performed here, and it indicates that the microphysical effects on (co)variances and fluxes can be large. In some budgets and altitude ranges, they are dominant terms. The analytic expressions for the integrals are implemented in a single-column, higher-order closure model. Interactive single-column simulations agree qualitatively with the LES. The analytic integrations form a parameterization of microphysical effects in their own right, and they also serve as benchmark solutions that can be compared to non-analytic integration methods.« less
2005-06-02
Images from the Ozone Monitoring Instrument onboard NASA Aura spacecraft shows the average total column ozone during the months of January and March, and the total column ozone on the single day of 11 March, 2005.
Global and Local Translation Designs of Quantum Image Based on FRQI
NASA Astrophysics Data System (ADS)
Zhou, Ri-Gui; Tan, Canyun; Ian, Hou
2017-04-01
In this paper, two kinds of quantum image translation are designed based on FRQI, including global translation and local translation. Firstly, global translation is realized by employing adder modulo N, where all pixels in the image will be moved, and the circuit of right translation is designed. Meanwhile, left translation can also be implemented by using right translation. Complexity analysis shows that the circuits of global translation in this paper have lower complexity and cost less qubits. Secondly, local translation, consisted of single-column translation, multiple-columns translation and translation in the restricted area, is designed by adopting Gray code. In local translation, any parts of pixels in the image can be translated while other pixels remain unchanged. In order to lower complexity when the number of columns needing to be translated are more than one, multiple-columns translation is proposed, which has the approximate complexity with single-column translation. To perform multiple-columns translation, three conditions must be satisfied. In addition, all translations in this paper are cyclic.
NASA Astrophysics Data System (ADS)
Liou, K. N.; Takano, Y.; He, C.; Yang, P.; Leung, L. R.; Gu, Y.; Lee, W. L.
2014-06-01
A stochastic approach has been developed to model the positions of BC (black carbon)/dust internally mixed with two snow grain types: hexagonal plate/column (convex) and Koch snowflake (concave). Subsequently, light absorption and scattering analysis can be followed by means of an improved geometric-optics approach coupled with Monte Carlo photon tracing to determine BC/dust single-scattering properties. For a given shape (plate, Koch snowflake, spheroid, or sphere), the action of internal mixing absorbs substantially more light than external mixing. The snow grain shape effect on absorption is relatively small, but its effect on asymmetry factor is substantial. Due to a greater probability of intercepting photons, multiple inclusions of BC/dust exhibit a larger absorption than an equal-volume single inclusion. The spectral absorption (0.2-5 µm) for snow grains internally mixed with BC/dust is confined to wavelengths shorter than about 1.4 µm, beyond which ice absorption predominates. Based on the single-scattering properties determined from stochastic and light absorption parameterizations and using the adding/doubling method for spectral radiative transfer, we find that internal mixing reduces snow albedo substantially more than external mixing and that the snow grain shape plays a critical role in snow albedo calculations through its forward scattering strength. Also, multiple inclusion of BC/dust significantly reduces snow albedo as compared to an equal-volume single sphere. For application to land/snow models, we propose a two-layer spectral snow parameterization involving contaminated fresh snow on top of old snow for investigating and understanding the climatic impact of multiple BC/dust internal mixing associated with snow grain metamorphism, particularly over mountain/snow topography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liou, K. N.; Takano, Y.; He, Cenlin
2014-06-27
A stochastic approach to model the positions of BC/dust internally mixed with two snow-grain types has been developed, including hexagonal plate/column (convex) and Koch snowflake (concave). Subsequently, light absorption and scattering analysis can be followed by means of an improved geometric-optics approach coupled with Monte Carlo photon tracing to determine their single-scattering properties. For a given shape (plate, Koch snowflake, spheroid, or sphere), internal mixing absorbs more light than external mixing. The snow-grain shape effect on absorption is relatively small, but its effect on the asymmetry factor is substantial. Due to a greater probability of intercepting photons, multiple inclusions ofmore » BC/dust exhibit a larger absorption than an equal-volume single inclusion. The spectral absorption (0.2 – 5 um) for snow grains internally mixed with BC/dust is confined to wavelengths shorter than about 1.4 um, beyond which ice absorption predominates. Based on the single-scattering properties determined from stochastic and light absorption parameterizations and using the adding/doubling method for spectral radiative transfer, we find that internal mixing reduces snow albedo more than external mixing and that the snow-grain shape plays a critical role in snow albedo calculations through the asymmetry factor. Also, snow albedo reduces more in the case of multiple inclusion of BC/dust compared to that of an equal-volume single sphere. For application to land/snow models, we propose a two-layer spectral snow parameterization containing contaminated fresh snow on top of old snow for investigating and understanding the climatic impact of multiple BC/dust internal mixing associated with snow grain metamorphism, particularly over mountains/snow topography.« less
NASA Technical Reports Server (NTRS)
Oreopoulos, L.; Chou, M.-D.; Khairoutdinov, M.; Barker, H. W.; Cahalan, R. F.
2003-01-01
We test the performance of the shortwave (SW) and longwave (LW) Column Radiation Models (CORAMs) of Chou and collaborators with heterogeneous cloud fields from a global single-day dataset produced by NCAR's Community Atmospheric Model with a 2-D CRM installed in each gridbox. The original SW version of the CORAM performs quite well compared to reference Independent Column Approximation (ICA) calculations for boundary fluxes, largely due to the success of a combined overlap and cloud scaling parameterization scheme. The absolute magnitude of errors relative to ICA are even smaller for the LW CORAM which applies similar overlap. The vertical distribution of heating and cooling within the atmosphere is also simulated quite well with daily-averaged zonal errors always below 0.3 K/d for SW heating rates and 0.6 K/d for LW cooling rates. The SW CORAM's performance improves by introducing a scheme that accounts for cloud inhomogeneity. These results suggest that previous studies demonstrating the inaccuracy of plane-parallel models may have unfairly focused on worst scenario cases, and that current radiative transfer algorithms of General Circulation Models (GCMs) may be more capable than previously thought in estimating realistic spatial and temporal averages of radiative fluxes, as long as they are provided with correct mean cloud profiles. However, even if the errors of the particular CORAMs are small, they seem to be systematic, and the impact of the biases can be fully assessed only with GCM climate simulations.
Interpreting space-based trends in carbon monoxide with multiple models
Strode, Sarah A.; Worden, Helen M.; Damon, Megan; ...
2016-06-10
Here, we use a series of chemical transport model and chemistry climate model simulations to investigate the observed negative trends in MOPITT CO over several regions of the world, and to examine the consistency of time-dependent emission inventories with observations. We also found that simulations driven by the MACCity inventory, used for the Chemistry Climate Modeling Initiative (CCMI), reproduce the negative trends in the CO column observed by MOPITT for 2000–2010 over the eastern United States and Europe. However, the simulations have positive trends over eastern China, in contrast to the negative trends observed by MOPITT. The model bias inmore » CO, after applying MOPITT averaging kernels, contributes to the model–observation discrepancy in the trend over eastern China. This demonstrates that biases in a model's average concentrations can influence the interpretation of the temporal trend compared to satellite observations. The total ozone column plays a role in determining the simulated tropospheric CO trends. A large positive anomaly in the simulated total ozone column in 2010 leads to a negative anomaly in OH and hence a positive anomaly in CO, contributing to the positive trend in simulated CO. Our results demonstrate that accurately simulating variability in the ozone column is important for simulating and interpreting trends in CO.« less
Interpreting space-based trends in carbon monoxide with multiple models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strode, Sarah A.; Worden, Helen M.; Damon, Megan
Here, we use a series of chemical transport model and chemistry climate model simulations to investigate the observed negative trends in MOPITT CO over several regions of the world, and to examine the consistency of time-dependent emission inventories with observations. We also found that simulations driven by the MACCity inventory, used for the Chemistry Climate Modeling Initiative (CCMI), reproduce the negative trends in the CO column observed by MOPITT for 2000–2010 over the eastern United States and Europe. However, the simulations have positive trends over eastern China, in contrast to the negative trends observed by MOPITT. The model bias inmore » CO, after applying MOPITT averaging kernels, contributes to the model–observation discrepancy in the trend over eastern China. This demonstrates that biases in a model's average concentrations can influence the interpretation of the temporal trend compared to satellite observations. The total ozone column plays a role in determining the simulated tropospheric CO trends. A large positive anomaly in the simulated total ozone column in 2010 leads to a negative anomaly in OH and hence a positive anomaly in CO, contributing to the positive trend in simulated CO. Our results demonstrate that accurately simulating variability in the ozone column is important for simulating and interpreting trends in CO.« less
Interpreting Space-Based Trends in Carbon Monoxide with Multiple Models
NASA Technical Reports Server (NTRS)
Strode, Sarah A.; Worden, Helen M.; Damon, Megan; Douglass, Anne R.; Duncan, Bryan N.; Emmons, Louisa K.; Lamarque, Jean-Francois; Manyin, Michael; Oman, Luke D.; Rodriguez, Jose M.;
2016-01-01
We use a series of chemical transport model and chemistry climate model simulations to investigate the observed negative trends in MOPITT CO over several regions of the world, and to examine the consistency of timedependent emission inventories with observations. We find that simulations driven by the MACCity inventory, used for the Chemistry Climate Modeling Initiative (CCMI), reproduce the negative trends in the CO column observed by MOPITT for 2000-2010 over the eastern United States and Europe. However, the simulations have positive trends over eastern China, in contrast to the negative trends observed by MOPITT. The model bias in CO, after applying MOPITT averaging kernels, contributes to the model-observation discrepancy in the trend over eastern China. This demonstrates that biases in a model's average concentrations can influence the interpretation of the temporal trend compared to satellite observations. The total ozone column plays a role in determining the simulated tropospheric CO trends. A large positive anomaly in the simulated total ozone column in 2010 leads to a negative anomaly in OH and hence a positive anomaly in CO, contributing to the positive trend in simulated CO. These results demonstrate that accurately simulating variability in the ozone column is important for simulating and interpreting trends in CO.
Cloud Forcing and the Earth's Radiation Budget: New Ideas and New Observations
NASA Technical Reports Server (NTRS)
Barkstrom, Bruce R.
1997-01-01
1. NEW PERSPECTIVES ON CLOUD-RADIATIVE FORCING. When the Earth Radiation Budget Experiment (ERBE) produced the first measurements of cloud-radiative forcing, the climate community interpreted the results from a context in which the atmosphere was a single column, strongly coupled to the Earth's surface. 2. NEW PERSPECTIVES ON CLOUD-RADIATION OBSERVATIONS. The climate community is also on the verge of adding a new dimension to its observational capability. In classic thinking about atmospheric circulation and climate, surface pressure was a readily available quantity. As meteorology developed, it was possible to develop quantitative predictions of future weather by bringing together a network of surface pressure observations and then of profiles of temperature and humidity obtained from balloons. 3. ON COMBINING OBSERVATIONS AND THE - ORY. With this new capability, it is natural to seek recognizable features in the observations we make of the Earth. There are techniques we can use to group the remotely sensed data in the individual footprints into objects that we can track. We will present one such image-processing application to radiation budget data, showing how we can interpret the radiation budget data in terms of cloud systems that are organized into systematic patterns of behavior - an ecosystem-like view of cloud behavior.
Wind-instrument reflection function measurements in the time domain.
Keefe, D H
1996-04-01
Theoretical and computational analyses of wind-instrument sound production in the time domain have emerged as useful tools for understanding musical instrument acoustics, yet there exist few experimental measurements of the air-column response directly in the time domain. A new experimental, time-domain technique is proposed to measure the reflection function response of woodwind and brass-instrument air columns. This response is defined at the location of sound regeneration in the mouthpiece or double reed. A probe assembly comprised of an acoustic source and microphone is inserted directly into the air column entryway using a foam plug to ensure a leak-free fit. An initial calibration phase involves measurements on a single cylindrical tube of known dimensions. Measurements are presented on an alto saxophone and euphonium. The technique has promise for testing any musical instrument air columns using a single probe assembly and foam plugs over a range of diameters typical of air-column entryways.
Gama, Mariana R; Aggarwal, Pankaj; Lee, Milton L; Bottoli, Carla B G
2017-11-01
Organic monolithic columns based on single crosslinking of trimethylolpropane trimethacrylate (TRIM) monomer were prepared in a single step by living/controlled free-radical polymerization. Full optimization of the preparation, such as using different percentages of TRIM and different amounts of radical promoter as well as various porogen solvents were explored. The resulting monolithic columns were characterized by scanning electronic microscopy and nitrogen sorption for structure morphology studies and surface area measurements, respectively. Using capillary liquid chromatography, 150 μm i.d. columns were applied to separate a mixture of small hydrophobic molecules. The results indicated that column performance is highly sensitive to the type and the amount of porogen solvents used in the polymerization mixture composition. Good resolution factors and methylene selectivity were obtained, indicating the promising potential of this material for capillary liquid chromatography separations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yongqiang Liu
2005-01-01
Simulations are performed to understand the importance of smoke from biomass burning in tropical South America to regional radiation and climate. The National Center for Atmospheric Research (NCAR) regional climate model coupled with the NCAR column radiative model is used to estimate smoke direct radiative forcing and consequent atmospheric perturbations during a...
A parallel bubble column system for the cultivation of phototrophic microorganisms.
Havel, Jan; Franco-Lara, Ezequiel; Weuster-Botz, Dirk
2008-07-01
An incubator with up to 16 parallel bubble columns was equipped with artificial light sources assuring a light supply with a homogenous light spectrum directly above the bioreactors. Cylindrical light reflecting tubes were positioned around every single bubble column to avoid light scattering effects and to redirect the light from the top onto the cylindrical outer glass surface of each bubble column. The light reflecting tubes were equipped with light intensity filters to control the total light intensity for every single photo-bioreactor. Parallel cultivations of the unicellular obligate phototrophic cyanobacterium, Synechococcus PCC7942, were studied under different constant light intensities ranging from 20 to 102 microE m(-2)s(-1) at a constant humidified air flow rate supplemented with CO(2).
Continuous Evaluation of Fast Processes in Climate Models Using ARM Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhijin; Sha, Feng; Liu, Yangang
2016-02-02
This five-year award supports the project “Continuous Evaluation of Fast Processes in Climate Models Using ARM Measurements (FASTER)”. The goal of this project is to produce accurate, consistent and comprehensive data sets for initializing both single column models (SCMs) and cloud resolving models (CRMs) using data assimilation. A multi-scale three-dimensional variational data assimilation scheme (MS-3DVAR) has been implemented. This MS-3DVAR system is built on top of WRF/GSI. The Community Gridpoint Statistical Interpolation (GSI) system is an operational data assimilation system at the National Centers for Environmental Prediction (NCEP) and has been implemented in the Weather Research and Forecast (WRF) model.more » This MS-3DVAR is further enhanced by the incorporation of a land surface 3DVAR scheme and a comprehensive aerosol 3DVAR scheme. The data assimilation implementation focuses in the ARM SGP region. ARM measurements are assimilated along with other available satellite and radar data. Reanalyses are then generated for a few selected period of time. This comprehensive data assimilation system has also been employed for other ARM-related applications.« less
NASA Astrophysics Data System (ADS)
Fast, J. D.; Berg, L. K.; Chand, D.; Ferrare, R. A.; Flynn, C. J.; Hostetler, C. A.; Redemann, J.; Sedlacek, A. J., III; Shilling, J.; Shinozuka, Y.; Tomlinson, J. M.; Zelenyuk, A.
2015-12-01
Relatively large uncertainties remain in climate model predictions of absorption resulting from black carbon (BC) and brown carbon (BrC). In this study, we focus on comparing simulated profiles of BC, biomass burning aerosols, absorption, and other aerosol optical properties obtained from the regional WRF-Chem model with in situ and remote sensing measurements made during the Department of Energy's Two-Column Aerosol Project (TCAP). TCAP was designed to investigate changes in aerosol mixing state, aerosol radiative forcing, CCN concentration, and cloud-aerosol interactions in two atmospheric columns: one over Cape Cod, Massachusetts and another located approximately 200 km to the east over the ocean. Measurements from the NASA second-generation airborne High Resolution Spectral Lidar reveal the presence distinct aerosol layers associated with the marine boundary layer, residual layer transported over the ocean and in the free troposphere. Analyses of SP2 and aerosol optical measurements indicate that particles in the free troposphere were more 'aged' and had a lower single scattering albebo than for aerosol layers at lower altitudes; however, BC concentrations aloft were lower in the free troposphere. Instead, particle classes derived from the miniSPLAT single particle measurements suggest that the increased absorption aloft may be due biomass burning aerosols. The model suggests that ambient winds likely transported smoke from large wildfires in central Canada as well as smoke from other fires into the sampling domain. The simulated percentage of biomass burning aerosols was consistent with the miniSPLAT data, but the model currently treats all organic matter as non-absorbing. Therefore, we perform sensitivity simulations to examine how the model's absorption and AOD responds to assumptions used for BrC associated with biomass burning and whether the predicted profiles agree with absorption data and wavelength dependent AOD data from 4STAR.
NASA Astrophysics Data System (ADS)
Torres-Orozco, R.; Cronin, S. J.; Damaschke, M.; Kosik, S.; Pardo, N.
2016-12-01
Three eruptive scenarios were determined based on the event-lithostratigraphic reconstruction of the largest late-Holocene eruptions of the andesitic Mt. Taranaki, New Zealand: a) sustained dome-effusion followed by sudden stepwise collapse and unroofing of gas-rich magma; b) repeated plug and burst events generated by transient open-/closed-vent conditions; and c) open-vent conditions of more mafic magmas erupting from a satellite vent. Pyroclastic density currents (PDCs) are the most frequent outcome in every scenario. They can be produced in any/every eruption phase by formation and either repetitive-partial or total gravity-driven collapse of lava domes in the summit crater (block-and-ash flows), frequently followed by sudden magma decompression and violent, highly unsteady to quasi-steady lateral expansion (blast-like PDCs); by collapse or single-pulse fall-back of unsteady eruption columns (pyroclastic flow- and surge-type currents); or during highly unsteady and explosive hydromagmatic phases (wet surges). Fall deposits are produced during the climatic phase of each eruptive scenario by the emplacement of (i) high, sustained and steady, (ii) sustained and height-oscillating, (iii) quasi-steady and pulsating, or (iv) unsteady and totally collapsing eruption columns. Volumes, column heights and mass- and volume-eruption rates indicate that these scenarios correspond to VEI 4-5 plinian and sub-plinian multi-phase and style-shifting episodes, similar or larger than the most recent 1655 AD activity, and comparable to plinian eruptions of e.g. Apoyeque, Colima, Merapi and Tarawera volcanoes. Whole-rock chemistry, textural reconstructions and density-porosity determinations suggest that the different eruptive scenarios are mainly driven by variations in the density structure of magma in the upper conduit. Assuming a simple single conduit model, the style transitions can be explained by differing proportions of alternating gas-poor/degassed and gas-rich magma.
Lidar Measurements of Atmospheric CO2 From Regional to Global Scales
NASA Technical Reports Server (NTRS)
Lin, Bing; Harrison, F. Wallace; Nehrir, Amin; Browell, Edward; Dobler, Jeremy; Campbell, Joel; Meadows, Byron; Obland, Michael; Ismail, Syed; Kooi, Susan;
2015-01-01
Atmospheric CO2 is a critical forcing for the Earth's climate and the knowledge on its distributions and variations influences predictions of the Earth's future climate. Large uncertainties in the predictions persist due to limited observations. This study uses the airborne Intensity-Modulated Continuous-Wave (IMCW) lidar developed at NASA Langley Research Center to measure regional atmospheric CO2 spatio-temporal variations. Further lidar development and demonstration will provide the capability of global atmospheric CO2 estimations from space, which will significantly advances our knowledge on atmospheric CO2 and reduce the uncertainties in the predictions of future climate. In this presentation, atmospheric CO2 column measurements from airborne flight campaigns and lidar system simulations for space missions will be discussed. A measurement precision of approx.0.3 ppmv for a 10-s average over desert and vegetated surfaces has been achieved. Data analysis also shows that airborne lidar CO2 column measurements over these surfaces agree well with in-situ measurements. Even when thin cirrus clouds present, consistent CO2 column measurements between clear and thin cirrus cloudy skies are obtained. Airborne flight campaigns have demonstrated that precise atmospheric column CO2 values can be measured from current IM-CW lidar systems, which will lead to use this airborne technique in monitoring CO2 sinks and sources in regional and continental scales as proposed by the NASA Atmospheric Carbon and Transport â€" America project. Furthermore, analyses of space CO2 measurements shows that applying the current IM-CW lidar technology and approach to space, the CO2 science goals of space missions will be achieved, and uncertainties in CO2 distributions and variations will be reduced.
NASA Astrophysics Data System (ADS)
Pinardi, Gaia; Hendrick, François; Gielen, Clio; Van Roozendael, Michel; De Smedt, Isabelle; Lambert, Jean-Christopher; Granville, José; Compernolle, Steven; Richter, Andreas; Peters, Enno; Piters, Ankie; Wagner, Thomas; Wang, Yang; Drosoglou, Theano; Bais, Alkis; Wang, Shanshan; Saiz-Lopez, Alfonso
2017-04-01
During the last decade, the MAXDOAS technique has been increasingly recognized as a source of Fiducial Reference Measurements (FRM) suitable for the validation of satellite nadir observations of species relevant for climate and air quality like NO2 and HCHO. As part of the EU FP7 QA4ECV (Quality Assurance for Essential Climate Variables; see http://www.qa4ecv.eu/) project, efforts have been recently made to harmonize a network of a dozen of MAXDOAS spectrometers in view of their use to assess the quality of satellite climate data records generated within the same project. Harmonization tasks have addressed both retrieval steps involved in MAXDOAS retrievals, i.e. the DOAS spectral fit providing the differential slant column densities (DSCDs) and the conversion of the retrieved DSCDs into vertical profiles and/or vertical column densities (VCDs). In this work, we illustrate the successive harmonization steps and present the resulting QA4ECV MAXDOAS database v2. The approach adopted for the conversion of slant to vertical columns is based on a simplified look-up-table approach. The strength and limitation of this approach are discussed using reference data retrieved using an optimal estimation scheme. The QA4ECV MAXDOAS database is then used to validate satellite data sets of NO2 and HCHO columns derived from the Aura/OMI and MetOp/GOME-2 sensors. The methodology of comparison, which is also a subject of the QA4ECV project, is reviewed with respect to co-location criteria, impact of vertical and horizontal smoothing and representativeness of validation sites. We conclude by assessing the current strengths and limitations of the existing MAXDOAS datasets for NO2 and HCHO satellite validation.
NASA Astrophysics Data System (ADS)
Wing, Allison; Camargo, Suzana; Sobel, Adam; Kim, Daehyun; Murakami, Hiroyuki; Reed, Kevin; Vecchi, Gabriel; Wehner, Michael; Zarzycki, Colin; Zhao, Ming
2017-04-01
In recent years, climate models have improved such that high-resolution simulations are able to reproduce the climatology of tropical cyclone activity with some fidelity and show some skill in seasonal forecasting. However biases remain in many models, motivating a better understanding of what factors control the representation of tropical cyclone activity in climate models. We explore the tropical cyclogenesis processes in five high-resolution climate models, including both coupled and uncoupled configurations. Our analysis framework focuses on how convection, moisture, clouds and related processes are coupled and employs budgets of column moist static energy and the spatial variance of column moist static energy. The latter was originally developed to study the mechanisms of tropical convective organization in idealized cloud-resolving models, and allows us to quantify the different feedback processes responsible for the amplification of moist static energy anomalies associated with the organization of convection and cyclogenesis. We track the formation and evolution of tropical cyclones in the climate model simulations and apply our analysis both along the individual tracks and composited over many tropical cyclones. We then compare the genesis processes; in particular, the role of cloud-radiation interactions, to those of spontaneous tropical cyclogenesis in idealized cloud-resolving model simulations.
NASA Astrophysics Data System (ADS)
Wing, A. A.; Camargo, S. J.; Sobel, A. H.; Kim, D.; Moon, Y.; Bosilovich, M. G.; Murakami, H.; Reed, K. A.; Vecchi, G. A.; Wehner, M. F.; Zarzycki, C. M.; Zhao, M.
2017-12-01
In recent years, climate models have improved such that high-resolution simulations are able to reproduce the climatology of tropical cyclone activity with some fidelity and show some skill in seasonal forecasting. However, biases remain in many models, motivating a better understanding of what factors control the representation of tropical cyclone activity in climate models. We explore tropical cyclogenesis and intensification processes in six high-resolution climate models from NOAA/GFDL, NCAR, and NASA, including both coupled and uncoupled configurations. Our analysis framework focuses on how convection, moisture, clouds and related processes are coupled and employs budgets of column moist static energy and the spatial variance of column moist static energy. The latter allows us to quantify the different feedback processes responsible for the amplification of moist static energy anomalies associated with the organization of convection and cyclogenesis, including surface flux feedbacks and cloud-radiative feedbacks. We track the formation and evolution of tropical cyclones in the climate model simulations and apply our analysis along the individual tracks and composited over many tropical cyclones. We use two methods of compositing: a composite over all TC track points in a given intensity range, and a composite relative to the time of lifetime maximum intensity for each storm (at the same stage in the TC life cycle).
Diverse policy implications for future ozone and surface UV in a changing climate
NASA Astrophysics Data System (ADS)
Butler, A. H.; Daniel, J. S.; Portmann, R. W.; Ravishankara, A. R.; Young, P. J.; Fahey, D. W.; Rosenlof, K. H.
2016-06-01
Due to the success of the Montreal Protocol in limiting emissions of ozone-depleting substances, concentrations of atmospheric carbon dioxide, nitrous oxide, and methane will control the evolution of total column and stratospheric ozone by the latter half of the 21st century. As the world proceeds down the path of reducing climate forcing set forth by the 2015 Conference of the Parties to the United Nations Framework Convention on Climate Change (COP 21), a broad range of ozone changes are possible depending on future policies enacted. While decreases in tropical stratospheric ozone will likely persist regardless of the future emissions scenario, extratropical ozone could either remain weakly depleted or even increase well above historical levels, with diverse implication for ultraviolet (UV) radiation. The ozone layer’s dependence on future emissions of these gases creates a complex policy decision space for protecting humans and ecosystems, which includes unexpected options such as accepting nitrous oxide emissions in order to maintain historical column ozone and surface UV levels.
Zhang, Ying-Qi; Wang, Shan-Shan; Han, Chao; Xu, Jin-Fang; Luo, Jian-Guang; Kong, Ling-Yi
2017-12-01
A novel isolation strategy, online hyphenation of ultrasonic extraction, Sephadex LH-20 column chromatography combined with high-speed countercurrent chromatography, was developed for pure compounds extraction and purification. Andrographolide from Andrographis paniculata was achieved only in a single step purification protocol via the present strategy. The crude powder was ultrasonic extracted and extraction was pumped into Sephadex LH-20 column directly to cut the nontarget fractions followed by the second-dimensional high-speed countercurrent chromatography, hyphenated by a six-port valve equipped at the post-end of Sephadex LH-20 column, for the final purification. The results yielded andrographolide with the amount of 1.02 mg and a purity of 98.5% in a single step, indicating that the present method is effective to harvest target compound from medicinal plant. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Yuwei; Li, Ang; Junge, Jason; Bronner, Marianne
2017-10-10
Both oriented cell divisions and cell rearrangements are critical for proper embryogenesis and organogenesis. However, little is known about how these two cellular events are integrated. Here we examine the linkage between these processes in chick limb cartilage. By combining retroviral-based multicolor clonal analysis with live imaging, the results show that single chondrocyte precursors can generate both single-column and multi-column clones through oriented division followed by cell rearrangements. Focusing on single column formation, we show that this stereotypical tissue architecture is established by a pivot-like process between sister cells. After mediolateral cell division, N-cadherin is enriched in the post-cleavage furrow; then one cell pivots around the other, resulting in stacking into a column. Perturbation analyses demonstrate that planar cell polarity signaling enables cells to pivot in the direction of limb elongation via this N-cadherin-mediated coupling. Our work provides new insights into the mechanisms generating appropriate tissue architecture of limb skeleton.
Li, Yuwei; Li, Ang; Junge, Jason
2017-01-01
Both oriented cell divisions and cell rearrangements are critical for proper embryogenesis and organogenesis. However, little is known about how these two cellular events are integrated. Here we examine the linkage between these processes in chick limb cartilage. By combining retroviral-based multicolor clonal analysis with live imaging, the results show that single chondrocyte precursors can generate both single-column and multi-column clones through oriented division followed by cell rearrangements. Focusing on single column formation, we show that this stereotypical tissue architecture is established by a pivot-like process between sister cells. After mediolateral cell division, N-cadherin is enriched in the post-cleavage furrow; then one cell pivots around the other, resulting in stacking into a column. Perturbation analyses demonstrate that planar cell polarity signaling enables cells to pivot in the direction of limb elongation via this N-cadherin-mediated coupling. Our work provides new insights into the mechanisms generating appropriate tissue architecture of limb skeleton. PMID:28994649
Investigation of Gas Holdup in a Vibrating Bubble Column
NASA Astrophysics Data System (ADS)
Mohagheghian, Shahrouz; Elbing, Brian
2015-11-01
Synthetic fuels are part of the solution to the world's energy crisis and climate change. Liquefaction of coal during the Fischer-Tropsch process in a bubble column reactor (BCR) is a key step in production of synthetic fuel. It is known from the 1960's that vibration improves mass transfer in bubble column. The current study experimentally investigates the effect that vibration frequency and amplitude has on gas holdup and bubble size distribution within a bubble column. Air (disperse phase) was injected into water (continuous phase) through a needle shape injector near the bottom of the column, which was open to atmospheric pressure. The air volumetric flow rate was measured with a variable area flow meter. Vibrations were generated with a custom-made shaker table, which oscillated the entire column with independently specified amplitude and frequency (0-30 Hz). Geometric dependencies can be investigated with four cast acrylic columns with aspect ratios ranging from 4.36 to 24, and injector needle internal diameters between 0.32 and 1.59 mm. The gas holdup within the column was measured with a flow visualization system, and a PIV system was used to measure phase velocities. Preliminary results for the non-vibrating and vibrating cases will be presented.
Effect of en-glacial water on ice sheet temperatures in a warming climate - a model approach
NASA Astrophysics Data System (ADS)
Phillips, T. P.; Rajaram, H.; Steffen, K.
2009-12-01
Each summer, significant amount of melt is generated in the ablation zones of large glaciers and ice sheets. This melt does not run off on the surface of the glacier or ice sheet. In fact a significant fraction enters the glacier and flows through en-glacial and sub-glacial hydrologic systems. Correspondingly, the en-glacial and sub-glacial hydrologic systems are brought to a temperature close to the pressure melting point of ice. The thermal influence of these hydrologic processes is seldom incorporated in heat transfer models for glaciers and ice sheets. In a warming climate, as melt water generation is amplified, en-glacial and sub-glacial hydrologic processes can influence the thermal dynamics of an ice sheet significantly, a feedback which is missed in current models. Although the role of refreezing melt water in the firn of the accumulation zone is often accounted for to explain warmer near-surface temperatures, the role of melt water flow within a glacier is not considered in large ice sheet models. We propose a simple parameterization of the influence of en-glacial and sub-glacial hydrology on the thermal dynamics of ice sheets, in the form of a dual-column model. Our model basically modifies the classical Budd column model for temperature variations in ice sheets by introducing an interaction with an en-glacial column, where the temperature is brought to the melting point during the melt season, and winter-time refreezing is influenced by latent heat effects associated with water retained within the en-glacial and sub-glacial systems. A cryo-hydraulic heat exchange coefficient ς is defined, as a parameter that quantifies this interaction. The parameter ς is related to k/R^2, where R is the characteristic spacing between en-glacial passages. The general behavior of the dual-column model is influenced by the competition between cooling by horizontal advection and warming by cryo-hydraulic exchange. We present a dimensionless parameter to quantify this competition. Model simulations indicate that the combination of en-glacial water flow and winter snow cover can warm the ice and produce a higher steady state en-glacial temperature. Transient simulations indicate a spin-up period of approximately 10 years until the new steady state is attained. The en-glacially trapped water prevents the ice from cooling as the Arctic winter approaches. As the water refreezes in the shallow ice, the snow cover reaches a thickness that insulates the ice and slows further cooling. The en-glacial temperature is highly dependent on the magnitude of the cryo-hydraulic term (warming) and the magnitude of the horizontal advection term (cooling) which control the newly reached balance. The dual-column model was applied to analyze deep borehole temperature profiles from five sites on Dead Glacier in western Greenland north of Jakobshavn Glacier. The model was able to explain some features of the borehole temperatures that cannot be explained by the conventional single column model.
Using altimetry to help explain patchy changes in hydrographic carbon measurements
NASA Astrophysics Data System (ADS)
Rodgers, Keith B.; Key, Robert M.; Gnanadesikan, Anand; Sarmiento, Jorge L.; Aumont, Olivier; Bopp, Laurent; Doney, Scott C.; Dunne, John P.; Glover, David M.; Ishida, Akio; Ishii, Masao; Jacobson, Andrew R.; Lo Monaco, Claire; Maier-Reimer, Ernst; Mercier, Herlé; Metzl, Nicolas; PéRez, Fiz F.; Rios, Aida F.; Wanninkhof, Rik; Wetzel, Patrick; Winn, Christopher D.; Yamanaka, Yasuhiro
2009-09-01
Here we use observations and ocean models to identify mechanisms driving large seasonal to interannual variations in dissolved inorganic carbon (DIC) and dissolved oxygen (O2) in the upper ocean. We begin with observations linking variations in upper ocean DIC and O2 inventories with changes in the physical state of the ocean. Models are subsequently used to address the extent to which the relationships derived from short-timescale (6 months to 2 years) repeat measurements are representative of variations over larger spatial and temporal scales. The main new result is that convergence and divergence (column stretching) attributed to baroclinic Rossby waves can make a first-order contribution to DIC and O2 variability in the upper ocean. This results in a close correspondence between natural variations in DIC and O2 column inventory variations and sea surface height (SSH) variations over much of the ocean. Oceanic Rossby wave activity is an intrinsic part of the natural variability in the climate system and is elevated even in the absence of significant interannual variability in climate mode indices. The close correspondence between SSH and both DIC and O2 column inventories for many regions suggests that SSH changes (inferred from satellite altimetry) may prove useful in reducing uncertainty in separating natural and anthropogenic DIC signals (using measurements from Climate Variability and Predictability's CO2/Repeat Hydrography program).
NASA Astrophysics Data System (ADS)
Sallée, J.-B.; Shuckburgh, E.; Bruneau, N.; Meijers, A. J. S.; Bracegirdle, T. J.; Wang, Z.; Roy, T.
2013-04-01
The ability of the models contributing to the fifth Coupled Models Intercomparison Project (CMIP5) to represent the Southern Ocean hydrological properties and its overturning is investigated in a water mass framework. Models have a consistent warm and light bias spread over the entire water column. The greatest bias occurs in the ventilated layers, which are volumetrically dominated by mode and intermediate layers. The ventilated layers have been observed to have a strong fingerprint of climate change and to impact climate by sequestrating a significant amount of heat and carbon dioxide. The mode water layer is poorly represented in the models and both mode and intermediate water have a significant fresh bias. Under increased radiative forcing, models simulate a warming and lightening of the entire water column, which is again greatest in the ventilated layers, highlighting the importance of these layers for propagating the climate signal into the deep ocean. While the intensity of the water mass overturning is relatively consistent between models, when compared to observation-based reconstructions, they exhibit a slightly larger rate of overturning at shallow to intermediate depths, and a slower rate of overturning deeper in the water column. Under increased radiative forcing, atmospheric fluxes increase the rate of simulated upper cell overturning, but this increase is counterbalanced by diapycnal fluxes, including mixed-layer horizontal mixing, and mostly vanishes.
Land-atmosphere coupling and climate prediction over the U.S. Southern Great Plains
NASA Astrophysics Data System (ADS)
Williams, Ian N.; Lu, Yaqiong; Kueppers, Lara M.; Riley, William J.; Biraud, Sebastien C.; Bagley, Justin E.; Torn, Margaret S.
2016-10-01
Biases in land-atmosphere coupling in climate models can contribute to climate prediction biases, but land models are rarely evaluated in the context of this coupling. We tested land-atmosphere coupling and explored effects of land surface parameterizations on climate prediction in a single-column version of the National Center for Atmospheric Research Community Earth System Model (CESM1.2.2) and an off-line Community Land Model (CLM4.5). The correlation between leaf area index (LAI) and surface evaporative fraction (ratio of latent to total turbulent heat flux) was substantially underpredicted compared to observations in the U.S. Southern Great Plains, while the correlation between soil moisture and evaporative fraction was overpredicted by CLM4.5. To estimate the impacts of these errors on climate prediction, we modified CLM4.5 by prescribing observed LAI, increasing soil resistance to evaporation, increasing minimum stomatal conductance, and increasing leaf reflectance. The modifications improved the predicted soil moisture-evaporative fraction (EF) and LAI-EF correlations in off-line CLM4.5 and reduced the root-mean-square error in summer 2 m air temperature and precipitation in the coupled model. The modifications had the largest effect on prediction during a drought in summer 2006, when a warm bias in daytime 2 m air temperature was reduced from +6°C to a smaller cold bias of -1.3°C, and a corresponding dry bias in precipitation was reduced from -111 mm to -23 mm. The role of vegetation in droughts and heat waves is underpredicted in CESM1.2.2, and improvements in land surface models can improve prediction of climate extremes.
Low clouds suppress Arctic air formation and amplify high-latitude continental winter warming.
Cronin, Timothy W; Tziperman, Eli
2015-09-15
High-latitude continents have warmed much more rapidly in recent decades than the rest of the globe, especially in winter, and the maintenance of warm, frost-free conditions in continental interiors in winter has been a long-standing problem of past equable climates. We use an idealized single-column atmospheric model across a range of conditions to study the polar night process of air mass transformation from high-latitude maritime air, with a prescribed initial temperature profile, to much colder high-latitude continental air. We find that a low-cloud feedback--consisting of a robust increase in the duration of optically thick liquid clouds with warming of the initial state--slows radiative cooling of the surface and amplifies continental warming. This low-cloud feedback increases the continental surface air temperature by roughly two degrees for each degree increase of the initial maritime surface air temperature, effectively suppressing Arctic air formation. The time it takes for the surface air temperature to drop below freezing increases nonlinearly to ∼ 10 d for initial maritime surface air temperatures of 20 °C. These results, supplemented by an analysis of Coupled Model Intercomparison Project phase 5 climate model runs that shows large increases in cloud water path and surface cloud longwave forcing in warmer climates, suggest that the "lapse rate feedback" in simulations of anthropogenic climate change may be related to the influence of low clouds on the stratification of the lower troposphere. The results also indicate that optically thick stratus cloud decks could help to maintain frost-free winter continental interiors in equable climates.
Low clouds suppress Arctic air formation and amplify high-latitude continental winter warming
Cronin, Timothy W.; Tziperman, Eli
2015-01-01
High-latitude continents have warmed much more rapidly in recent decades than the rest of the globe, especially in winter, and the maintenance of warm, frost-free conditions in continental interiors in winter has been a long-standing problem of past equable climates. We use an idealized single-column atmospheric model across a range of conditions to study the polar night process of air mass transformation from high-latitude maritime air, with a prescribed initial temperature profile, to much colder high-latitude continental air. We find that a low-cloud feedback—consisting of a robust increase in the duration of optically thick liquid clouds with warming of the initial state—slows radiative cooling of the surface and amplifies continental warming. This low-cloud feedback increases the continental surface air temperature by roughly two degrees for each degree increase of the initial maritime surface air temperature, effectively suppressing Arctic air formation. The time it takes for the surface air temperature to drop below freezing increases nonlinearly to ∼10 d for initial maritime surface air temperatures of 20 °C. These results, supplemented by an analysis of Coupled Model Intercomparison Project phase 5 climate model runs that shows large increases in cloud water path and surface cloud longwave forcing in warmer climates, suggest that the “lapse rate feedback” in simulations of anthropogenic climate change may be related to the influence of low clouds on the stratification of the lower troposphere. The results also indicate that optically thick stratus cloud decks could help to maintain frost-free winter continental interiors in equable climates. PMID:26324919
Land-atmosphere coupling and climate prediction over the U.S. Southern Great Plains
NASA Astrophysics Data System (ADS)
Williams, I. N.; Lu, Y.; Kueppers, L. M.; Riley, W. J.; Biraud, S.; Bagley, J. E.; Torn, M. S.
2016-12-01
Biases in land-atmosphere coupling in climate models can contribute to climate prediction biases, but land models are rarely evaluated in the context of this coupling. We tested land-atmosphere coupling and explored effects of land surface parameterizations on climate prediction in a single-column version of the NCAR Community Earth System Model (CESM1.2.2) and an offline Community Land Model (CLM4.5). The correlation between leaf area index (LAI) and surface evaporative fraction (ratio of latent to total turbulent heat flux) was substantially underpredicted compared to observations in the U.S. Southern Great Plains, while the correlation between soil moisture and evaporative fraction was overpredicted by CLM4.5. These correlations were improved by prescribing observed LAI, increasing soil resistance to evaporation, increasing minimum stomatal conductance, and increasing leaf reflectance. The modifications reduced the root mean squared error (RMSE) in daytime 2 m air temperature from 3.6 C to 2 C in summer (JJA), and reduced RMSE in total JJA precipitation from 133 to 84 mm. The modifications had the largest effect on prediction of summer drought in 2006, when a warm bias in daytime 2 m air temperature was reduced from +6 C to a smaller cold bias of -1.3 C, and a corresponding dry bias in total JJA precipitation was reduced from -111 mm to -23 mm. Thus, the role of vegetation in droughts and heat waves is likely underpredicted in CESM1.2.2, and improvements in land surface models can improve prediction of climate extremes.
NASA Astrophysics Data System (ADS)
Sun, Kang; Cady-Pereira, Karen; Miller, David J.; Tao, Lei; Zondlo, Mark A.; Nowak, John B.; Neuman, J. A.; Mikoviny, Tomas; Müller, Markus; Wisthaler, Armin; Scarino, Amy J.; Hostetler, Chris A.
2015-05-01
Ammonia measurements from a vehicle-based, mobile open-path sensor and those from aircraft were compared with Tropospheric Emission Spectrometer (TES) NH3 columns at the pixel scale during the NASA Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality field experiment. Spatial and temporal mismatches were reduced by having the mobile laboratory sample in the same areas as the TES footprints. To examine how large heterogeneities in the NH3 surface mixing ratios may affect validation, a detailed spatial survey was performed within a single TES footprint around the overpass time. The TES total NH3 column above a single footprint showed excellent agreement with the in situ total column constructed from surface measurements with a difference of 2% (within the combined measurement uncertainties). The comparison was then extended to a TES transect of nine footprints where aircraft data (5-80 ppbv) were available in a narrow spatiotemporal window (<10 km, <1 h). The TES total NH3 columns above the nine footprints agreed to within 6% of the in situ total columns derived from the aircraft-based measurements. Finally, to examine how TES captures surface spatial gradients at the interpixel scale, ground-based, mobile measurements were performed directly underneath a TES transect, covering nine footprints within ±1.5 h of the overpass. The TES total columns were strongly correlated (R2 = 0.82) with the median NH3 mixing ratios measured at the surface. These results provide the first in situ validation of the TES total NH3 column product, and the methodology is applicable to other satellite observations of short-lived species at the pixel scale.
NASA Astrophysics Data System (ADS)
Medi, Bijan; Kazi, Monzure-Khoda; Amanullah, Mohammad
2013-06-01
Chromatography has been established as the method of choice for the separation and purification of optically pure drugs which has a market size of about 250 billion USD. Single column chromatography (SCC) is commonly used in the development and testing phase of drug development while multi-column Simulated Moving Bed (SMB) chromatography is more suitable for large scale production due to its continuous nature. In this study, optimal performance of SCC and SMB processes for the separation of optical isomers under linear and overloaded separation conditions has been investigated. The performance indicators, namely productivity and desorbent requirement have been compared under geometric similarity for the separation of a mixture of guaifenesin, and Tröger's base enantiomers. SCC process has been analyzed under equilibrium assumption i.e., assuming infinite column efficiency, and zero dispersion, and its optimal performance parameters are compared with the optimal prediction of an SMB process by triangle theory. Simulation results obtained using actual experimental data indicate that SCC may compete with SMB in terms of productivity depending on the molecules to be separated. Besides, insights into the process performances in terms of degree of freedom and relationship between the optimal operating point and solubility limit of the optical isomers have been ascertained. This investigation enables appropriate selection of single or multi-column chromatographic processes based on column packing properties and isotherm parameters.
NASA Astrophysics Data System (ADS)
Zhao, Jianhong; Qiao, Zhenfang; Zhang, Yumin; Zou, Taoyu; Yu, Leiming; Luo, Li; Wang, Xiaoyan; Yang, Yiji; Wang, Hai; Tang, Libin
2016-09-01
The unsubstituted copper phthalocyanine (CuPc) single crystal nano columns were fabricated for the first time as chlorine (Cl2) gas sensors in this paper. The nano columns of CuPc have been prepared on different substrates via template-free physical vapor deposition (PVD) approach. The growth mechanism of CuPc nano column on quartz was explored and the same condition used on other substrates including glass, sapphire (C-plane<0001>, M-plane<10 1 ¯ 0 >, R-plane<1 1 ¯ 02 >), Si and SiO2/Si came to a same conclusion, which confirmed that the aligned growth of CuPc nano column is not substrate-dependent. And then the CuPc nano column with special morphology was integrated as in-situ sensor device which exhibits high sensitivity and selectivity towards Cl2 at room temperature with a minimum detection limit as low as 0.08 ppm. The response of sensor was found to increase linearly (26 ˜659 % ) with the increase for Cl2 within concentration range (0.08 ˜4.0 ppm ) . These results clearly demonstrate the great potential of the nano column growth and device integration approach for sensor device.
Butt, Asma Mian; Gill, Clarence; Demerdash, Amin; Watanabe, Koichi; Loukas, Marios; Rozzelle, Curtis J; Tubbs, R Shane
2015-07-01
As important as the vertebral ligaments are in maintaining the integrity of the spinal column and protecting the contents of the spinal canal, a single detailed review of their anatomy and function is missing in the literature. A literature search using online search engines was conducted. Single comprehensive reviews of the spinal ligaments are not found in the extant medical literature. This review will be useful to those who treat patients with pathology of the spine or who interpret imaging or investigate the anatomy of the ligaments of the vertebral column.
49 CFR 173.12 - Exceptions for shipment of waste materials.
Code of Federal Regulations, 2012 CFR
2012-10-01
... (IBC) or a UN 11HH2 composite IBC, fitted with a polyethylene liner at least 6 mils (0.24 inches) thick... accordance paragraph (b) of this section or in single packagings authorized for the acid in Column (8B) of... this section or in single packagings authorized for the material in Column (8B) of the § 172.101...
49 CFR 173.12 - Exceptions for shipment of waste materials.
Code of Federal Regulations, 2011 CFR
2011-10-01
... (IBC) or a UN 11HH2 composite IBC, fitted with a polyethylene liner at least 6 mils (0.24 inches) thick... accordance paragraph (b) of this section or in single packagings authorized for the acid in Column (8B) of... this section or in single packagings authorized for the material in Column (8B) of the § 172.101...
Simple gas chromatographic system for analysis of microbial respiratory gases
NASA Technical Reports Server (NTRS)
Carle, G. C.
1972-01-01
Dual column ambient temperature system, consisting of pair of capillary columns, microbead thermistor detector and micro gas-sampling valve, is used in remote life-detection equipment for space experiments. Performance outweighs advantage gained by utilizing single-column systems to reduce weight, conserve carrier gas and operate at lower power levels.
Breakup of last glacial deep stratification in the South Pacific
NASA Astrophysics Data System (ADS)
Basak, Chandranath; Fröllje, Henning; Lamy, Frank; Gersonde, Rainer; Benz, Verena; Anderson, Robert F.; Molina-Kescher, Mario; Pahnke, Katharina
2018-02-01
Stratification of the deep Southern Ocean during the Last Glacial Maximum is thought to have facilitated carbon storage and subsequent release during the deglaciation as stratification broke down, contributing to atmospheric CO2 rise. Here, we present neodymium isotope evidence from deep to abyssal waters in the South Pacific that confirms stratification of the deepwater column during the Last Glacial Maximum. The results indicate a glacial northward expansion of Ross Sea Bottom Water and a Southern Hemisphere climate trigger for the deglacial breakup of deep stratification. It highlights the important role of abyssal waters in sustaining a deep glacial carbon reservoir and Southern Hemisphere climate change as a prerequisite for the destabilization of the water column and hence the deglacial release of sequestered CO2 through upwelling.
NASA Astrophysics Data System (ADS)
Ocko, Ilissa B.; Ginoux, Paul A.
2017-04-01
Anthropogenic aerosols are a key factor governing Earth's climate and play a central role in human-caused climate change. However, because of aerosols' complex physical, optical, and dynamical properties, aerosols are one of the most uncertain aspects of climate modeling. Fortunately, aerosol measurement networks over the past few decades have led to the establishment of long-term observations for numerous locations worldwide. Further, the availability of datasets from several different measurement techniques (such as ground-based and satellite instruments) can help scientists increasingly improve modeling efforts. This study explores the value of evaluating several model-simulated aerosol properties with data from spatially collocated instruments. We compare aerosol optical depth (AOD; total, scattering, and absorption), single-scattering albedo (SSA), Ångström exponent (α), and extinction vertical profiles in two prominent global climate models (Geophysical Fluid Dynamics Laboratory, GFDL, CM2.1 and CM3) to seasonal observations from collocated instruments (AErosol RObotic NETwork, AERONET, and Cloud-Aerosol Lidar with Orthogonal Polarization, CALIOP) at seven polluted and biomass burning regions worldwide. We find that a multi-parameter evaluation provides key insights on model biases, data from collocated instruments can reveal underlying aerosol-governing physics, column properties wash out important vertical distinctions, and improved
models does not mean all aspects are improved. We conclude that it is important to make use of all available data (parameters and instruments) when evaluating aerosol properties derived by models.
Exploring the Radiative Effect and Climate Impact of Contaminated Contrails
NASA Astrophysics Data System (ADS)
Yi, B.; Yang, P.; Minnis, P.; Duda, D. P.
2015-12-01
As an impact of human aviation activities, contrails have drawn a great deal of attention. There have been numerous investigations into the contrail properties, radiative effects, and climate impact. However, very little effort has been focused on the impact of contaminated contrails. Generated by the combustion process within the aircraft engine, the aerosols and exhaust gases frequently influence contrail formation. Contrail ice crystals contaminated by soot particles have been found to exhibit dramatically different light scattering properties from those of pristine crystals. In this study, we employ state-of-the-art light scattering computational capabilities to calculate the single-scattering properties of soot-contaminated contrails. The contaminated contrail particle is assumed to be a hexagonal ice column containing several soot particles. The invariant imbedding T-matrix method and the Ray-by-Ray geometry optics method are combined to construct a simplified yet novel set of contaminated contrail optical properties. The bulk optical properties are calculated based on the data set and are parameterized for use in the Community Atmospheric Model. Using global contrail retrievals from satellite remote sensing observations in 2006 and 2012, simulations are conducted using the general circulation model to analyze contaminated contrail radiative effects as well as their climatic sensitivities. Our results show that the contaminated contrail is significantly more absorbing than pristine contrail in the shortwave spectrum. As a result, much stronger contrail radiative impact and climate feedback are found. Several sensitivity studies are also implemented to quantify the effect of contrail contamination.
NASA Astrophysics Data System (ADS)
Hayman, Garry; Comyn-Platt, Edward; McNorton, Joey; Chipperfield, Martyn; Gedney, Nicola
2016-04-01
The atmospheric concentration of methane began rising again in 2007 after a period of near-zero growth [1,2], with the largest increases observed over polar northern latitudes and the Southern Hemisphere in 2007 and in the tropics since then. The observed inter-annual variability in atmospheric methane concentrations and the associated changes in growth rates have variously been attributed to changes in different methane sources and sinks [2,3]. Wetlands are generally accepted as being the largest, but least well quantified, single natural source of CH4, with global emission estimates ranging from 142-284 Tg yr-1 [3]. The modelling of wetlands and their associated emissions of CH4 has become the subject of much current interest [4]. We have previously used the HadGEM2 chemistry-climate model to evaluate the wetland emission estimates derived using the UK community land surface model (JULES, the Joint UK Land Earth Simulator) against atmospheric observations of methane, including SCIAMACHY total methane columns [5] up to 2007. We have undertaken a series of new HadGEM2 runs using new JULES emission estimates extended in time to the end of 2012, thereby allowing comparison with both SCIAMACHY and GOSAT atmospheric column methane measurements. We will describe the results of these runs and the implications for methane wetland emissions. References [1] Rigby, M., et al.: Renewed growth of atmospheric methane. Geophys. Res. Lett., 35, L22805, 2008; [2] Nisbet, E.G., et al.: Methane on the Rise-Again, Science 343, 493, 2014; [3] Kirschke, S., et al.,: Three decades of global methane sources and sinks, Nature Geosciences, 6, 813-823, 2013; [4] Melton, J. R., et al.: Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP), Biogeosciences, 10, 753-788, 2013; [5] Hayman, G.D., et al.: Comparison of the HadGEM2 climate-chemistry model against in situ and SCIAMACHY atmospheric methane data, Atmos. Chem. Phys., 14, 13257-13280, 2014.
The Column Strength of Two Extruded Aluminum-Alloy H-Sections
NASA Technical Reports Server (NTRS)
Osgood, William R; Holt, Marshall
1939-01-01
Extruded aluminum-alloy members of various cross sections are used in aircraft as compression members either singly or as stiffeners for aluminum-alloy sheet. In order to design such members, it is necessary to know their column strength or, in the case of stiffeners, the value of the double modulus, which is best obtained for practical purposes from column tests. Column tests made on two extruded h-sections are described, and column formulas and formulas for the ratio of the double modulus to Young's modulus, based on the tests, are given.
Influence of Ice Particle Surface Roughening on the Global Cloud Radiative Effect
NASA Technical Reports Server (NTRS)
Yi, Bingqi; Yang, Ping; Baum, Bryan A.; LEcuyer, Tristan; Oreopoulos, Lazaros; Mlawer, Eli J.; Heymsfield, Andrew J.; Liou, Kuo-Nan
2013-01-01
Ice clouds influence the climate system by changing the radiation budget and large-scale circulation. Therefore, climate models need to have an accurate representation of ice clouds and their radiative effects. In this paper, new broadband parameterizations for ice cloud bulk scattering properties are developed for severely roughened ice particles. The parameterizations are based on a general habit mixture that includes nine habits (droxtals, hollow/solid columns, plates, solid/hollow bullet rosettes, aggregate of solid columns, and small/large aggregates of plates). The scattering properties for these individual habits incorporate recent advances in light-scattering computations. The influence of ice particle surface roughness on the ice cloud radiative effect is determined through simulations with the Fu-Liou and the GCM version of the Rapid Radiative Transfer Model (RRTMG) codes and the National Center for Atmospheric Research Community Atmosphere Model (CAM, version 5.1). The differences in shortwave (SW) and longwave (LW) radiative effect at both the top of the atmosphere and the surface are determined for smooth and severely roughened ice particles. While the influence of particle roughening on the single-scattering properties is negligible in the LW, the results indicate that ice crystal roughness can change the SW forcing locally by more than 10 W m(exp -2) over a range of effective diameters. The global-averaged SW cloud radiative effect due to ice particle surface roughness is estimated to be roughly 1-2 W m(exp -2). The CAM results indicate that ice particle roughening can result in a large regional SW radiative effect and a small but nonnegligible increase in the global LW cloud radiative effect.
Confronting Models with Data: The GEWEX Cloud Systems Study
NASA Technical Reports Server (NTRS)
Randall, David; Curry, Judith; Duynkerke, Peter; Krueger, Steven; Moncrieff, Mitchell; Ryan, Brian; Starr, David OC.; Miller, Martin; Rossow, William; Tselioudis, George
2002-01-01
The GEWEX Cloud System Study (GCSS; GEWEX is the Global Energy and Water Cycle Experiment) was organized to promote development of improved parameterizations of cloud systems for use in climate and numerical weather prediction models, with an emphasis on the climate applications. The strategy of GCSS is to use two distinct kinds of models to analyze and understand observations of the behavior of several different types of clouds systems. Cloud-system-resolving models (CSRMs) have high enough spatial and temporal resolutions to represent individual cloud elements, but cover a wide enough range of space and time scales to permit statistical analysis of simulated cloud systems. Results from CSRMs are compared with detailed observations, representing specific cases based on field experiments, and also with statistical composites obtained from satellite and meteorological analyses. Single-column models (SCMs) are the surgically extracted column physics of atmospheric general circulation models. SCMs are used to test cloud parameterizations in an un-coupled mode, by comparison with field data and statistical composites. In the original GCSS strategy, data is collected in various field programs and provided to the CSRM Community, which uses the data to "certify" the CSRMs as reliable tools for the simulation of particular cloud regimes, and then uses the CSRMs to develop parameterizations, which are provided to the GCM Community. We report here the results of a re-thinking of the scientific strategy of GCSS, which takes into account the practical issues that arise in confronting models with data. The main elements of the proposed new strategy are a more active role for the large-scale modeling community, and an explicit recognition of the importance of data integration.
Meteorologica, multilanguages Quarterly Journal of Friuli Venezia Giulia Meteorological Union
NASA Astrophysics Data System (ADS)
Colucci, R. R.; Stel, F.; Virgilio, M.
2009-09-01
The Friuli Venezia Giulia Meteorological Union (UMFVG) is a socially usefull No Profit Organization involved in scientific dissemination of meteorology and climatology. To reach this goal the UMFVG, which involved both profesionists and passionates of weather and climate, organizes conventions, courses, conferences and publishes a quarterly journal, the "Meteorologica” (ISSN 1827-3858). UMFVG is a member of EMS. 8 years have passed since the first edition of the journal, now totally renovated with more pages and topics, part of them translated in 4 languages (Italian, English, Slovenian and German). The "Meteorologica”, edited by the UMFVG, is composed of various columns, some more popular, others more scientific, but all of them with the aim of scientific dissemination to the general public. In the actual last edition of the journal, find place the columns of ARSO of Ljubljana (Slovenia), ZAMG of Klagenfurt (Carintia-Austria) and ARPA OSMER of Udine (Italy), which comment every time the seasonal weather trend. There is also the column of CNR ISMAR, which comments the principal aspects of sea level and sea temperature in the Northern Adriatic. The magazine also host the "Climate Monitor” column edited by Major G.Guidi, forecaster of the Italian Air Force and of RAI television. Last, but not least, there are various deepenings and didactics columns in order to deepen several meteo-climatological themes. The editorial staff have to thank the passion and free will of all of those who actively worked together for the realization of this project if now the thought of delivering "Meteorologica” also in other European countries is not only an ambitious idea but a real objective.
Ideal versus real automated twin column recycling chromatography process.
Gritti, Fabrice; Leal, Mike; McDonald, Thomas; Gilar, Martin
2017-07-28
The full baseline separation of two compounds (selectivity factors α<1.03) is either impractical (too long analysis times) or even impossible when using a single column of any length given the pressure limitations of current LC instruments. The maximum efficiency is that of an infinitely long column operated at infinitely small flow rates. It is determined by the maximum allowable system pressure, the column permeability (particle size), the viscosity of the eluent, and the intensity of the effective diffusivity of the analytes along the column. Alternatively, the twin-column recycling separation process (TCRSP) can overcome the efficiency limit of the single-column approach. In the TCRSP, the sample mixture may be transferred from one to a second (twin) column until its band has spread over one column length. Basic theory of chromatography is used to confirm that the speed-resolution performance of the TCRSP is intrinsically superior to that of the single-column process. This advantage is illustrated in this work by developing an automated TCRSP for the challenging separation of two polycyclic aromatic hydrocarbon (PAH) isomers (benzo[a]anthracene and chrysene) in the reversed-phase retention mode at pressure smaller than 5000psi. The columns used are the 3.0mm×150mm column packed with 3.5μm XBridge BEH-C 18 material (α=1.010) and the 3.0mm or 4.6mm×150mm columns packed with the same 3.5μm XSelect HSST 3 material (α=1.025). The isocratic mobile phase is an acetonitrile-water mixture (80/20, v/v). Remarkably, significant differences are observed between the predicted retention times and efficiencies of the ideal TCRSP (given by the number of cycles multiplied by the retention time and efficiency of one column) and those of the real TCRSP. The fundamental explanation lies in the pressure-dependent retention of these PAHs or in the change of their partial molar volume as they are transferred from the mobile to the stationary phase. A revisited retention and efficiency model is then built to predict the actual performance of real TCRSPs. The experimental and calculated resolution data are found in very good agreement for a change, Δv m =-10cm 3 /mol, of the partial molar volume of the two PAH isomers upon transfer from the acetonitrile-water eluent mixture to the silica-C 18 stationary phase. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sag, Y.; Atacoglu, I.; Kutsal, T.
1999-12-01
The simultaneous biosorption of Cr(VI) and Cu(II) on free Rhizopus arrhizus in a packed column operated in the continuous mode was investigated and compared to the single metal ion situation. The breakthrough curves were measured as a function of feed flow rate, feed pH, and different combinations of metal ion concentrations in the feed solutions. Column competitive biosorption data were evaluated in terms of the maximum (equilibrium) capacity in the column, the amount of metal loading on the R. arrhizus surface, the adsorption yield, and the total adsorption yield. In the single-ion situation the adsorption isotherms were developed for optimummore » conditions, and it was seen that the adsorption equilibrium data fit the noncompetitive Freundlich model. For the multicomponent adsorption equilibrium the competitive adsorption isotherms were also developed. The competitive Freundlich model for binary metal mixtures represented most the column adsorption equilibrium data of Cr(VI) and Cu(II) on R. arrhizus satisfactorily.« less
NASA Astrophysics Data System (ADS)
Cronin, T.; Tziperman, E.; Li, H.
2015-12-01
High latitude continents have warmed much more rapidly in recent decades than the rest of the globe, especially in winter, and the maintenance of warm, frost-free conditions in continental interiors in winter has been a long-standing problem of past equable climates. It has also been found that the high-latitude lapse rate feedback plays an important role in Arctic amplification of climate change in climate model simulations, but we have little understanding of why lapse rates at high latitudes change so strongly with warming. To better understand these problems, we study Arctic air formation - the process by which a high-latitude maritime air mass is advected over a continent during polar night, cooled at the surface by radiation, and transformed into a much colder continental polar air mass - and its sensitivity to climate warming. We use a single-column version of the WRF model to conduct two-week simulations of the cooling process across a wide range of initial temperature profiles and microphysics schemes, and find that a low cloud feedback suppresses Arctic air formation in warmer climates. This cloud feedback consists of an increase in low cloud amount with warming, which shields the surface from radiative cooling, and increases the continental surface air temperature by roughly two degrees for each degree increase of the initial maritime surface air temperature. The time it takes for the surface air temperature to drop below freezing increases nonlinearly to ~10 days for initial maritime surface air temperatures of 20 oC. Given that this is about the time it takes an air mass starting over the Pacific to traverse the north American continent, this suggests that optically thick stratus cloud decks could help to maintain frost-free winter continental interiors in equable climates. We find that CMIP5 climate model runs show large increases in cloud water path and surface cloud longwave forcing in warmer climates, consistent with the proposed low-cloud feedback. The suppression of Arctic air formation with warming may act as a significant amplifier of climate change at high latitudes, and offers a mechanistic perspective on the high-latitude "lapse rate feedback" diagnosed in climate models.
Sounthararajah, D P; Loganathan, P; Kandasamy, J; Vigneswaran, S
2015-04-28
Heavy metals are serious pollutants in aquatic environments. A study was undertaken to remove Cu, Cd, Ni, Pb and Zn individually (single metal system) and together (mixed metals system) from water by adsorption onto a sodium titanate nanofibrous material. Langmuir adsorption capacities (mg/g) at 10(-3)M NaNO3 ionic strength in the single metal system were 60, 83, 115 and 149 for Ni, Zn, Cu, and Cd, respectively, at pH 6.5 and 250 for Pb at pH 4.0. In the mixed metals system they decreased at high metals concentrations. In column experiments with 4% titanate material and 96% granular activated carbon (w/w) mixture at pH 5.0, the metals breakthrough times and adsorption capacities (for both single and mixed metals systems) decreased in the order Pb>Cd, Cu>Zn>Ni within 266 bed volumes. The amounts adsorbed were up to 82 times higher depending on the metal in the granular activated carbon+titanate column than in the granular activated carbon column. The study showed that the titanate material has high potential for removing heavy metals from polluted water when used with granular activated carbon at a very low proportion in fixed-bed columns. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Neggers, R. A. J.; Ackerman, A. S.; Angevine, W. M.; Bazile, E.; Beau, I.; Blossey, P. N.; Boutle, I. A.; de Bruijn, C.; Cheng, A.; van der Dussen, J.; Fletcher, J.; Dal Gesso, S.; Jam, A.; Kawai, H.; Cheedela, S. K.; Larson, V. E.; Lefebvre, M.-P.; Lock, A. P.; Meyer, N. R.; de Roode, S. R.; de Rooy, W.; Sandu, I.; Xiao, H.; Xu, K.-M.
2017-10-01
Results are presented of the GASS/EUCLIPSE single-column model intercomparison study on the subtropical marine low-level cloud transition. A central goal is to establish the performance of state-of-the-art boundary-layer schemes for weather and climate models for this cloud regime, using large-eddy simulations of the same scenes as a reference. A novelty is that the comparison covers four different cases instead of one, in order to broaden the covered parameter space. Three cases are situated in the North-Eastern Pacific, while one reflects conditions in the North-Eastern Atlantic. A set of variables is considered that reflects key aspects of the transition process, making use of simple metrics to establish the model performance. Using this method, some longstanding problems in low-level cloud representation are identified. Considerable spread exists among models concerning the cloud amount, its vertical structure, and the associated impact on radiative transfer. The sign and amplitude of these biases differ somewhat per case, depending on how far the transition has progressed. After cloud breakup the ensemble median exhibits the well-known "too few too bright" problem. The boundary-layer deepening rate and its state of decoupling are both underestimated, while the representation of the thin capping cloud layer appears complicated by a lack of vertical resolution. Encouragingly, some models are successful in representing the full set of variables, in particular, the vertical structure and diurnal cycle of the cloud layer in transition. An intriguing result is that the median of the model ensemble performs best, inspiring a new approach in subgrid parameterization.
NASA Astrophysics Data System (ADS)
Pithan, Felix; Ackerman, Andrew; Angevine, Wayne M.; Hartung, Kerstin; Ickes, Luisa; Kelley, Maxwell; Medeiros, Brian; Sandu, Irina; Steeneveld, Gert-Jan; Sterk, H. A. M.; Svensson, Gunilla; Vaillancourt, Paul A.; Zadra, Ayrton
2016-09-01
Weather and climate models struggle to represent lower tropospheric temperature and moisture profiles and surface fluxes in Arctic winter, partly because they lack or misrepresent physical processes that are specific to high latitudes. Observations have revealed two preferred states of the Arctic winter boundary layer. In the cloudy state, cloud liquid water limits surface radiative cooling, and temperature inversions are weak and elevated. In the radiatively clear state, strong surface radiative cooling leads to the build-up of surface-based temperature inversions. Many large-scale models lack the cloudy state, and some substantially underestimate inversion strength in the clear state. Here, the transformation from a moist to a cold dry air mass is modeled using an idealized Lagrangian perspective. The trajectory includes both boundary layer states, and the single-column experiment is the first Lagrangian Arctic air formation experiment (Larcform 1) organized within GEWEX GASS (Global atmospheric system studies). The intercomparison reproduces the typical biases of large-scale models: some models lack the cloudy state of the boundary layer due to the representation of mixed-phase microphysics or to the interaction between micro- and macrophysics. In some models, high emissivities of ice clouds or the lack of an insulating snow layer prevent the build-up of surface-based inversions in the radiatively clear state. Models substantially disagree on the amount of cloud liquid water in the cloudy state and on turbulent heat fluxes under clear skies. Observations of air mass transformations including both boundary layer states would allow for a tighter constraint of model behavior.
Simulation of a Novel Single-column Cryogenic Air Separation Process Using LNG Cold Energy
NASA Astrophysics Data System (ADS)
Jieyu, Zheng; Yanzhong, Li; Guangpeng, Li; Biao, Si
In this paper, a novel single-column air separation process is proposed with the implementation of heat pump technique and introduction of LNG coldenergy. The proposed process is verifiedand optimized through simulation on the Aspen Hysys® platform. Simulation results reveal that thepower consumption per unit mass of liquid productis around 0.218 kWh/kg, and the total exergy efficiency of the systemis 0.575. According to the latest literatures, an energy saving of 39.1% is achieved compared with those using conventional double-column air separation units.The introduction of LNG cold energy is an effective way to increase the system efficiency.
Cloud Condensation Nuclei Particle Counter (CCN) Instrument Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uin, Janek
2016-04-01
The Cloud Condensation Nuclei Counter—CCN (Figure 1) is a U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility instrument for measuring the concentration of aerosol particles that can act as cloud condensation nuclei [1, 2]. The CCN draws the sample aerosol through a column with thermodynamically unstable supersaturated water vapor that can condense onto aerosol particles. Particles that are activated, i.e., grown larger in this process, are counted (and sized) by an Optical Particle Counter (OPC). Thus, activated ambient aerosol particle number concentration as a function of supersaturation is measured. Models CCN-100 and CCN-200 differ only inmore » the number of humidifier columns and related subsystems: CCN-100 has one column and CCN-200 has two columns along with dual flow systems and electronics.« less
Single-Column Modeling, GCM Parameterizations and Atmospheric Radiation Measurement Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somerville, R.C.J.; Iacobellis, S.F.
2005-03-18
Our overall goal is identical to that of the Atmospheric Radiation Measurement (ARM) Program: the development of new and improved parameterizations of cloud-radiation effects and related processes, using ARM data at all three ARM sites, and the implementation and testing of these parameterizations in global and regional models. To test recently developed prognostic parameterizations based on detailed cloud microphysics, we have first compared single-column model (SCM) output with ARM observations at the Southern Great Plains (SGP), North Slope of Alaska (NSA) and Topical Western Pacific (TWP) sites. We focus on the predicted cloud amounts and on a suite of radiativemore » quantities strongly dependent on clouds, such as downwelling surface shortwave radiation. Our results demonstrate the superiority of parameterizations based on comprehensive treatments of cloud microphysics and cloud-radiative interactions. At the SGP and NSA sites, the SCM results simulate the ARM measurements well and are demonstrably more realistic than typical parameterizations found in conventional operational forecasting models. At the TWP site, the model performance depends strongly on details of the scheme, and the results of our diagnostic tests suggest ways to develop improved parameterizations better suited to simulating cloud-radiation interactions in the tropics generally. These advances have made it possible to take the next step and build on this progress, by incorporating our parameterization schemes in state-of-the-art 3D atmospheric models, and diagnosing and evaluating the results using independent data. Because the improved cloud-radiation results have been obtained largely via implementing detailed and physically comprehensive cloud microphysics, we anticipate that improved predictions of hydrologic cycle components, and hence of precipitation, may also be achievable. We are currently testing the performance of our ARM-based parameterizations in state-of-the--art global and regional models. One fruitful strategy for evaluating advances in parameterizations has turned out to be using short-range numerical weather prediction as a test-bed within which to implement and improve parameterizations for modeling and predicting climate variability. The global models we have used to date are the CAM atmospheric component of the National Center for Atmospheric Research (NCAR) CCSM climate model as well as the National Centers for Environmental Prediction (NCEP) numerical weather prediction model, thus allowing testing in both climate simulation and numerical weather prediction modes. We present detailed results of these tests, demonstrating the sensitivity of model performance to changes in parameterizations.« less
Local classifiers for evoked potentials recorded from behaving rats.
Jakuczun, Wit; Kublik, Ewa; Wójcik, Daniel K; Wróbel, Andrzej
2005-01-01
Dynamic states of the brain determine the way information is processed in local neural networks. We have applied classical conditioning paradigm in order to study whether habituated and aroused states can be differentiated in single barrel column of rat's somatosensory cortex by means of analysis of field potentials evoked by stimulation of a single vibrissa. A new method using local classifiers is presented which allows for reliable and meaningful classification of single evoked potentials which might be consequently attributed to different functional states of the cortical column.
Monolithic stationary phases with a longitudinal gradient of porosity.
Urban, Jiří; Hájek, Tomáš; Svec, Frantisek
2017-04-01
The duration of the hypercrosslinking reaction has been used to control the extent of small pores formation in polymer-based monolithic stationary phases. Segments of five columns hypercrosslinked for 30-360 min were coupled via zero-volume unions to prepare columns with segmented porosity gradients. The steepness of the porosity gradient affected column efficiency, mass transfer resistance, and separation of both small-molecule alkylbenzenes and high-molar-mass polystyrene standards. In addition, the segmented column with the steepest porosity gradient was prepared as a single column with a continuous porosity gradient. The steepness of porosity gradient in this type column was tuned. Compared to a completely hypercrosslinked column, the column with the shallower gradient produced comparable size-exclusion separation of polystyrene standards but allowed higher column permeability. The completely hypercrosslinked column and the column with porosity gradient were successfully coupled in online two-dimensional liquid chromatography of polymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Starr, David O'C.; Benedetti, Angela; Boehm, Matt; Brown, Philip R. A.; Gierens, Klaus M.; Girard, Eric; Giraud, Vincent; Jakob, Christian; Jensen, Eric
2000-01-01
The GEWEX Cloud System Study (GCSS, GEWEX is the Global Energy and Water Cycle Experiment) is a community activity aiming to promote development of improved cloud parameterizations for application in the large-scale general circulation models (GCMs) used for climate research and for numerical weather prediction. The GCSS strategy is founded upon the use of cloud-system models (CSMs). These are "process" models with sufficient spatial and temporal resolution to represent individual cloud elements, but spanning a wide range of space and time scales to enable statistical analysis of simulated cloud systems. GCSS also employs single-column versions of the parametric cloud models (SCMs) used in GCMs. GCSS has working groups on boundary-layer clouds, cirrus clouds, extratropical layer cloud systems, precipitating deep convective cloud systems, and polar clouds.
Method of Forming Three-Dimensional Semiconductors Structures
NASA Technical Reports Server (NTRS)
Fathauer, Robert W. (Inventor)
2002-01-01
Silicon and metal are coevaporated onto a silicon substrate in a molecular beam epitaxy system with a larger than stoichiometric amount of silicon so as to epitaxially grow columns of metal silicide embedded in a matrix of single crystal, epitaxially grown silicon. Higher substrate temperatures and lower deposition rates yield larger columns that are farther apart while more silicon produces smaller columns. Column shapes and locations are selected by seeding the substrate with metal silicide starting regions. A variety of 3-dimensional, exemplary electronic devices are disclosed.
Extreme weather: Subtropical floods and tropical cyclones
NASA Astrophysics Data System (ADS)
Shaevitz, Daniel A.
Extreme weather events have a large effect on society. As such, it is important to understand these events and to project how they may change in a future, warmer climate. The aim of this thesis is to develop a deeper understanding of two types of extreme weather events: subtropical floods and tropical cyclones (TCs). In the subtropics, the latitude is high enough that quasi-geostrophic dynamics are at least qualitatively relevant, while low enough that moisture may be abundant and convection strong. Extratropical extreme precipitation events are usually associated with large-scale flow disturbances, strong ascent, and large latent heat release. In the first part of this thesis, I examine the possible triggering of convection by the large-scale dynamics and investigate the coupling between the two. Specifically two examples of extreme precipitation events in the subtropics are analyzed, the 2010 and 2014 floods of India and Pakistan and the 2015 flood of Texas and Oklahoma. I invert the quasi-geostrophic omega equation to decompose the large-scale vertical motion profile to components due to synoptic forcing and diabatic heating. Additionally, I present model results from within the Column Quasi-Geostrophic framework. A single column model and cloud-revolving model are forced with the large-scale forcings (other than large-scale vertical motion) computed from the quasi-geostrophic omega equation with input data from a reanalysis data set, and the large-scale vertical motion is diagnosed interactively with the simulated convection. It is found that convection was triggered primarily by mechanically forced orographic ascent over the Himalayas during the India/Pakistan flood and by upper-level Potential Vorticity disturbances during the Texas/Oklahoma flood. Furthermore, a climate attribution analysis was conducted for the Texas/Oklahoma flood and it is found that anthropogenic climate change was responsible for a small amount of rainfall during the event but the intensity of this event may be greatly increased if it occurs in a future climate. In the second part of this thesis, I examine the ability of high-resolution global atmospheric models to simulate TCs. Specifically, I present an intercomparison of several models' ability to simulate the global characteristics of TCs in the current climate. This is a necessary first step before using these models to project future changes in TCs. Overall, the models were able to reproduce the geographic distribution of TCs reasonably well, with some of the models performing remarkably well. The intensity of TCs varied widely between the models, with some of this difference being due to model resolution.
NASA Astrophysics Data System (ADS)
Kuze, A.; Suto, H.; Kataoka, F.; Shiomi, K.; Kondo, Y.; Crisp, D.; Butz, A.
2017-12-01
Atmospheric methane (CH4) has an important role in global radiative forcing of climate but its emission estimates have larger uncertainties than carbon dioxide (CO2). The area of anthropogenic emission sources is usually much smaller than 100 km2. The Thermal And Near infrared Sensor for carbon Observation Fourier-Transform Spectrometer (TANSO-FTS) onboard the Greenhouse gases Observing SATellite (GOSAT) has measured CO2 and CH4 column density using sun light reflected from the earth's surface. It has an agile pointing system and its footprint can cover 87-km2 with a single detector. By specifying pointing angles and observation time for every orbit, TANSO-FTS can target various CH4 point sources together with reference points every 3 day over years. We selected a reference point that represents CH4 background density before or after targeting a point source. By combining satellite-measured enhancement of the CH4 column density and surface measured wind data or estimates from the Weather Research and Forecasting (WRF) model, we estimated CH4emission amounts. Here, we picked up two sites in the US West Coast, where clear sky frequency is high and a series of data are available. The natural gas leak at Aliso Canyon showed a large enhancement and its decrease with time since the initial blowout. We present time series of flux estimation assuming the source is single point without influx. The observation of the cattle feedlot in Chino, California has weather station within the TANSO-FTS footprint. The wind speed is monitored continuously and the wind direction is stable at the time of GOSAT overpass. The large TANSO-FTS footprint and strong wind decreases enhancement below noise level. Weak wind shows enhancements in CH4, but the velocity data have large uncertainties. We show the detection limit of single samples and how to reduce uncertainty using time series of satellite data. We will propose that the next generation instruments for accurate anthropogenic CO2 and CH4 flux estimation have improve spatial resolution (˜1km2 ) to further enhance column density changes. We also propose adding imaging capability to monitor plume orientation. We will present laboratory model results and a sampling pattern optimization study that combines local emission source and global survey observations.
A warmer and wetter solution for early Mars and the challenges with transient warming
NASA Astrophysics Data System (ADS)
Ramirez, Ramses M.
2017-11-01
The climate of early Mars has been hotly debated for decades. Although most investigators believe that the geology indicates the presence of surface water, disagreement has persisted regarding how warm and wet the surface must have been and how long such conditions may have existed. Although the geologic evidence is most easily explained by a persistently warm climate, the perceived difficulty that climate models have in generating warm surface conditions has seeded various models that assume a cold and glaciated early Mars punctuated by transient warming episodes. However, I use a single-column radiative convective climate model to show that it is relatively more straightforward to satisfy warm and relatively non-glaciated early Mars conditions, requiring only ∼1% H2 and 3 bar CO2 or ∼20% H2 and 0.55 bar CO2. In contrast, the reflectivity of surface ice greatly increases the difficulty to transiently warm an initially frozen surface. Surface pressure thresholds required for warm conditions increase ∼10 - 60% for transient warming models, depending on ice cover fraction. No warm solution is possible for ice cover fractions exceeding 40%, 70%, and 85% for mixed snow/ice and 25%, 35%, and 49% for fresher snow/ice at H2 concentrations of 3%, 10%, and 20%, respectively. If high temperatures (298-323 K) were required to produce the observed surface clay amounts on a transiently warm early Mars (Bishop et al), I show that such temperatures would have required surface pressures that exceed available paleopressure constraints for nearly all H2 concentrations considered (1-20%). I then argue that a warm and semi-arid climate remains the simplest and most logical solution to Mars paleoclimate.
Atmospheric Science Data Center
2013-04-19
... atmosphere, directly influencing global climate and human health. Ground-based networks that accurately measure column aerosol amount and ... being used to improve Air Quality Models and for regional health studies. To assess the human-health impact of chronic aerosol exposure, ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michalsky, Joseph; Lantz, Kathy
The National Oceanic and Atmospheric Administration (NOAA) is preparing for the launch of the Geostationary Operational Environmental Satellite R-Series (GOES-R) satellite in 2015. This satellite will feature higher time (5-minute versus 30-minute sampling) and spatial resolution (0.5 km vs 1 km in the visible channel) than current GOES instruments provide. NOAA’s National Environmental Satellite Data and Information Service has funded the Global Monitoring Division at the Earth System Research Laboratory to provide ground-based validation data for many of the new and old products the new GOES instruments will retrieve specifically related to radiation at the surface and aerosol and itsmore » extensive and intensive properties in the column. The Two-Column Aerosol Project (TCAP) had an emphasis on aerosol; therefore, we asked to be involved in this campaign to de-bug our new instrumentation and to provide a new capability that the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Mobile Facilities (AMF) did not possess, namely surface albedo measurement out to 1625 nm. This gave us a chance to test remote operation of our new multi-filter rotating shadowband radiometer/multi-filter radiometer (MFRSR/MFR) combination. We did not deploy standard broadband shortwave and longwave radiation instrumentation because ARM does this as part of every AMF deployment. As it turned out, the ARM standard MFRSR had issues, and we were able to provide the aerosol column data for the first 2 months of the campaign covering the summer flight phase of the deployment. Using these data, we were able to work with personnel at Pacific Northwest National Laboratory (PNNL) to retrieve not only aerosol optical depth (AOD), but single scattering albedo and asymmetry parameter, as well.« less
Fabrication and investigation of electrochromatographic columns with a simplex configuration.
Liu, Qing; Yang, Lijun; Wang, Qiuquan; Zhang, Bo
2014-07-04
Duplex capillary columns with a packed and an open section are widely used in electrochromatography (CEC). The duplex column configuration leads to non-uniform voltage drop, electrical field distribution and separation performance. It also adds to the complexity in understanding and optimizing electrochromatographic process. In this study, we introduced a simplex column configuration based on single particle fritting technology. The new column configuration has an essentially uniform packed bed through the entire column length, with only 1mm length left unpacked serving as the optical detection window. The study shows that a simplex column has higher separation efficiency than a duplex column, especially at the high voltage range, due to the consistent distribution of electrical field over the column length. In comparison to the duplex column, the simplex column presented a lower flow rate at the same applied voltage, suggesting that an open section may support a higher speed than a packed section. In practice, the long and short ends of the simplex column could be used as independent CEC columns respectively. This "two-in-one" bi-functional column configuration provided extra flexibilities in selecting and optimizing electrochromatographic conditions. Copyright © 2014 Elsevier B.V. All rights reserved.
Separation of carbon nanotubes into chirally enriched fractions
Doorn, Stephen K [Los Alamos, NM; Niyogi, Sandip [Los Alamos, NM
2012-04-10
A mixture of single-walled carbon nanotubes ("SWNTs") is separated into fractions of enriched chirality by preparing an aqueous suspension of a mixture of SWNTs and a surfactant, injecting a portion of the suspension on a column of separation medium having a density gradient, and centrifuging the column. In some embodiments, salt is added prior to centrifugation. In other embodiments, the centrifugation is performed at a temperature below room temperature. Fractions separate as colored bands in the column. The diameter of the separated SWNTs decreases with increasing density along the gradient of the column. The colored bands can be withdrawn separately from the column.
Analysis of Ozone in Cloudy Versus Clear Sky Conditions
NASA Technical Reports Server (NTRS)
Strode, Sarah; Douglass, Anne; Ziemke, Jerald
2016-01-01
Convection impacts ozone concentrations by transporting ozone vertically and by lofting ozone precursors from the surface, while the clouds and lighting associated with convection affect ozone chemistry. Observations of the above-cloud ozone column (Ziemke et al., 2009) derived from the OMI instrument show geographic variability, and comparison of the above-cloud ozone with all-sky tropospheric ozone columns from OMI indicates important regional differences. We use two global models of atmospheric chemistry, the GMI chemical transport model (CTM) and the GEOS-5 chemistry climate model, to diagnose the contributions of transport and chemistry to observed differences in ozone between areas with and without deep convection, as well as differences in clean versus polluted convective regions. We also investigate how the above-cloud tropospheric ozone from OMI can provide constraints on the relationship between ozone and convection in a free-running climate simulation as well as a CTM.
Breakup of last glacial deep stratification in the South Pacific.
Basak, Chandranath; Fröllje, Henning; Lamy, Frank; Gersonde, Rainer; Benz, Verena; Anderson, Robert F; Molina-Kescher, Mario; Pahnke, Katharina
2018-02-23
Stratification of the deep Southern Ocean during the Last Glacial Maximum is thought to have facilitated carbon storage and subsequent release during the deglaciation as stratification broke down, contributing to atmospheric CO 2 rise. Here, we present neodymium isotope evidence from deep to abyssal waters in the South Pacific that confirms stratification of the deepwater column during the Last Glacial Maximum. The results indicate a glacial northward expansion of Ross Sea Bottom Water and a Southern Hemisphere climate trigger for the deglacial breakup of deep stratification. It highlights the important role of abyssal waters in sustaining a deep glacial carbon reservoir and Southern Hemisphere climate change as a prerequisite for the destabilization of the water column and hence the deglacial release of sequestered CO 2 through upwelling. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
NASA Technical Reports Server (NTRS)
Vonderhaar, Thomas H.; Randel, David L.; Reinke, Donald L.; Stephens, Graeme L.; Ringerud, Mark A.; Combs, Cynthia L.; Greenwald, Thomas J.; Wittmeyer, Ian L.
1994-01-01
In recent years climate research scientists have recognized the need for increased time and space resolution precipitable and liquid water data sets. This project is designed to meet those needs. Specifically, NASA is funding STC-METSAT to develop a total integrated column and layered precipitable water data set. This is complemented by a total column liquid water data set. These data are global in extent, 1 deg x 1 deg in resolution, with daily grids produced. Precipitable water is measured by a combination of in situ radiosonde observations and satellite derived infrared and microwave retrievals from four satellites. This project combines these data into a coherent merged product for use in global climate research. This report is the Year 2 Annual Report from this NASA-sponsored project and includes progress-to-date on the assigned tasks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, W; McGraw, R; Liu, Y
Metric for Quarter 4: Report results of implementation of composite parameterization in single-column model (SCM) to explore the dependency of drizzle formation on aerosol properties. To better represent VOCALS conditions during a test flight, the Liu-Duam-McGraw (LDM) drizzle parameterization is implemented in the high-resolution Weather Research and Forecasting (WRF) model, as well as in the single-column Community Atmosphere Model (CAM), to explore this dependency.
[Examples for using capillary gas chromatography with wide bore columns in occupational health].
Frank, H; Senf, L; Welsch, T
1990-12-01
Wide bore capillary columns (0.4-0.75 mm ID) can be easily and inexpensively installed in packed column GCs. The analytical advantages cause an expanding market for such capillaries and interconverting hardware kits. It is illustrated with some examples that often individual exposition levels can be determined exactly only by using capillary columns: ethylbenzene may be separated from the C8-isomers also in complex mixtures, the marker PBN for rubber smoke expositions can be determined with 30 min sampling time, the detection sensitivity of the FID is sufficient also for chlorinated pesticides and the analyses of high-boiling compounds profit by the high phase ratio of wide bore capillary columns. A single capillary column substitutes a variety of different packed columns, so saving time and money and protecting the analyst from failures and frustrating compromises.
Pithan, Felix; Ackerman, Andrew; Angevine, Wayne M.; ...
2016-08-27
We struggle to represent lower tropospheric temperature and moisture profiles and surface fluxes in Artic winter using weather and climate models, partly because they lack or misrepresent physical processes that are specific to high latitudes. Observations have revealed two preferred states of the Arctic winter boundary layer. In the cloudy state, cloud liquid water limits surface radiative cooling, and temperature inversions are weak and elevated. In the radiatively clear state, strong surface radiative cooling leads to the build-up of surface-based temperature inversions. Many large-scale models lack the cloudy state, and some substantially underestimate inversion strength in the clear state. Themore » transformation from a moist to a cold dry air mass is modeled using an idealized Lagrangian perspective. The trajectory includes both boundary layer states, and the single-column experiment is the first Lagrangian Arctic air formation experiment (Larcform 1) organized within GEWEX GASS (Global atmospheric system studies). The intercomparison reproduces the typical biases of large-scale models: some models lack the cloudy state of the boundary layer due to the representation of mixed-phase microphysics or to the interaction between micro- and macrophysics. In some models, high emissivities of ice clouds or the lack of an insulating snow layer prevent the build-up of surface-based inversions in the radiatively clear state. Models substantially disagree on the amount of cloud liquid water in the cloudy state and on turbulent heat fluxes under clear skies. Finally, observations of air mass transformations including both boundary layer states would allow for a tighter constraint of model behavior.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neggers, R. A. J.; Ackerman, A. S.; Angevine, W. M.
Results are presented of the GASS/EUCLIPSE single-column model inter-comparison study on the subtropical marine low-level cloud transition. A central goal is to establish the performance of state-of-the-art boundary-layer schemes for weather and climate mod- els for this cloud regime, using large-eddy simulations of the same scenes as a reference. A novelty is that the comparison covers four different cases instead of one, in order to broaden the covered parameter space. Three cases are situated in the North-Eastern Pa- cific, while one reflects conditions in the North-Eastern Atlantic. A set of variables is considered that reflects key aspects of the transitionmore » process, making use of simple met- rics to establish the model performance. Using this method some longstanding problems in low level cloud representation are identified. Considerable spread exists among models concerning the cloud amount, its vertical structure and the associated impact on radia- tive transfer. The sign and amplitude of these biases differ somewhat per case, depending on how far the transition has progressed. After cloud breakup the ensemble median ex- hibits the well-known “too few too bright” problem. The boundary layer deepening rate and its state of decoupling are both underestimated, while the representation of the thin capping cloud layer appears complicated by a lack of vertical resolution. Encouragingly, some models are successful in representing the full set of variables, in particular the verti- cal structure and diurnal cycle of the cloud layer in transition. An intriguing result is that the median of the model ensemble performs best, inspiring a new approach in subgrid pa- rameterization.« less
Pithan, Felix; Ackerman, Andrew; Angevine, Wayne M.; Hartung, Kerstin; Ickes, Luisa; Kelley, Maxwell; Medeiros, Brian; Sandu, Irina; Steeneveld, Gert-Jan; Sterk, HAM; Svensson, Gunilla; Vaillancourt, Paul A.; Zadra, Ayrton
2017-01-01
Weather and climate models struggle to represent lower tropospheric temperature and moisture profiles and surface fluxes in Arctic winter, partly because they lack or misrepresent physical processes that are specific to high latitudes. Observations have revealed two preferred states of the Arctic winter boundary layer. In the cloudy state, cloud liquid water limits surface radiative cooling, and temperature inversions are weak and elevated. In the radiatively clear state, strong surface radiative cooling leads to the build-up of surface-based temperature inversions. Many large-scale models lack the cloudy state, and some substantially underestimate inversion strength in the clear state. Here, the transformation from a moist to a cold dry air mass is modelled using an idealized Lagrangian perspective. The trajectory includes both boundary layer states, and the single-column experiment is the first Lagrangian Arctic air formation experiment (Larcform 1) organized within GEWEX GASS (Global atmospheric system studies). The intercomparison reproduces the typical biases of large-scale models: Some models lack the cloudy state of the boundary layer due to the representation of mixed-phase micro-physics or to the interaction between micro-and macrophysics. In some models, high emissivities of ice clouds or the lack of an insulating snow layer prevent the build-up of surface-based inversions in the radiatively clear state. Models substantially disagree on the amount of cloud liquid water in the cloudy state and on turbulent heat fluxes under clear skies. Observations of air mass transformations including both boundary layer states would allow for a tighter constraint of model behaviour. PMID:28966718
NASA Astrophysics Data System (ADS)
Endo, S.; Fridlind, A. M.; Lin, W.; Vogelmann, A. M.; Toto, T.; Liu, Y.
2013-12-01
Three cases of boundary layer clouds are analyzed in the FAst-physics System TEstbed and Research (FASTER) project, based on continental boundary-layer-cloud observations during the RACORO Campaign [Routine Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF) Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations] at the ARM Climate Research Facility's Southern Great Plains (SGP) site. The three 60-hour case study periods are selected to capture the temporal evolution of cumulus, stratiform, and drizzling boundary-layer cloud systems under a range of conditions, intentionally including those that are relatively more mixed or transitional in nature versus being of a purely canonical type. Multi-modal and temporally varying aerosol number size distribution profiles are derived from aircraft observations. Large eddy simulations (LESs) are performed for the three case study periods using the GISS Distributed Hydrodynamic Aerosol and Radiative Modeling Application (DHARMA) model and the WRF-FASTER model, which is the Weather Research and Forecasting (WRF) model implemented with forcing ingestion and other functions to constitute a flexible LES. The two LES models commonly capture the significant transitions of cloud-topped boundary layers in the three periods: diurnal evolution of cumulus layers repeating over multiple days, nighttime evolution/daytime diminution of thick stratus, and daytime breakup of stratus and stratocumulus clouds. Simulated transitions of thermodynamic structures of the cloud-topped boundary layers are examined by balloon-borne soundings and ground-based remote sensors. Aircraft observations are then used to statistically evaluate the predicted cloud droplet number size distributions under varying aerosol and cloud conditions. An ensemble approach is used to refine the model configuration for the combined use of observations with parallel LES and single-column model simulations. See Lin et al. poster for single-column model investigation.
Pithan, Felix; Ackerman, Andrew; Angevine, Wayne M; Hartung, Kerstin; Ickes, Luisa; Kelley, Maxwell; Medeiros, Brian; Sandu, Irina; Steeneveld, Gert-Jan; Sterk, Ham; Svensson, Gunilla; Vaillancourt, Paul A; Zadra, Ayrton
2016-09-01
Weather and climate models struggle to represent lower tropospheric temperature and moisture profiles and surface fluxes in Arctic winter, partly because they lack or misrepresent physical processes that are specific to high latitudes. Observations have revealed two preferred states of the Arctic winter boundary layer. In the cloudy state, cloud liquid water limits surface radiative cooling, and temperature inversions are weak and elevated. In the radiatively clear state, strong surface radiative cooling leads to the build-up of surface-based temperature inversions. Many large-scale models lack the cloudy state, and some substantially underestimate inversion strength in the clear state. Here, the transformation from a moist to a cold dry air mass is modelled using an idealized Lagrangian perspective. The trajectory includes both boundary layer states, and the single-column experiment is the first L agrangian Arc tic air form ation experiment (Larcform 1) organized within GEWEX GASS (Global atmospheric system studies). The intercomparison reproduces the typical biases of large-scale models: Some models lack the cloudy state of the boundary layer due to the representation of mixed-phase micro-physics or to the interaction between micro-and macrophysics. In some models, high emissivities of ice clouds or the lack of an insulating snow layer prevent the build-up of surface-based inversions in the radiatively clear state. Models substantially disagree on the amount of cloud liquid water in the cloudy state and on turbulent heat fluxes under clear skies. Observations of air mass transformations including both boundary layer states would allow for a tighter constraint of model behaviour.
MAVEN/IUVS Apoapse Observations of the Martian FUV Dayglow
NASA Astrophysics Data System (ADS)
Correira, J.; Evans, J. S.; Stevens, M. H.; Schneider, N. M.; Stewart, I. F.; Deighan, J.; Jain, S.; Chaffin, M.; Crismani, M. M. J.; McClintock, B.; Holsclaw, G.; Lefèvre, F.; Lo, D.; Stiepen, A.; Clarke, J. T.; Mahaffy, P. R.; Bougher, S. W.; Bell, J. M.; Jakosky, B. M.
2015-12-01
We present FUV data (115 - 190 nm) from MAVEN/IUVS apoapse mode observations for the Oct 2014 through Feb 2015 time period. During apoapse mode the highly elliptical orbit of MAVEN allows for up to four apoapse disk images by IUVS per day. Maps of FUV feature intensities and intensity ratios as well as derived CO/CO2 and O/CO2 column density ratios will be shown. Column density ratios are derived from lookup tables created using the Atmospheric Ultraviolet Radiance Integrated Code [Strickland et al., 1999] in conjunction with observed intensity ratios. Column density ratios provide a measure of composition changes in the Martian atmosphere. Due to MAVEN's orbital geometry the observations from this time period focus on the southern hemisphere. The broad view provided by apoapse observations allows for the investigation of spatial and temporal variations (both long term and local time) of the atmospheric composition (via the column density ratios). IUVS FUV intensities and derived column density ratios will also be compared with model results from Mars Global Ionosphere/Thermosphere Model (MGITM) and the Mars Climate Database (MCD).
Paleosol Proxies for Low Elevation Paleoclimate East of the Andes, Northwestern Argentina
NASA Astrophysics Data System (ADS)
Rosario, J. J.; Jordan, T. E.; Garzione, C. N.; Higgins, P.; Hernandez, R.; Hernandez, J.
2009-12-01
Paleosols can be used as a proxy for paleoclimate, paleoenvironment, and geomorphological reconstructions. The weathering imprint in the minerals in paleosols can be used as a proxy for moisture conditions, while other environmental information can be obtained from stable isotopes in their minerals such as δ13C and δ18O. The goal of this study is to document changes in paleosol characteristics’ driven by climate change in NW Argentina over the time period between ~14 Ma and 5.1 Ma during a time of significant uplift and climate change in the Altiplano. During this time interval, landscape of the low elevation foreland basin changed as the consequence of the propagation of Andean thrust-fold deformation. Paleosols are interbedded in three stratigraphic sections that are described, sampled, and studied along the Iruya, Peña Colorada, and La Porcelana rivers, distributed from west to east, respectively. Field observations of the paleosols, stratigraphic column construction, thin section petrography and textures, x-ray diffraction (XRD), and stable isotopes together provide climatic proxies. These The stratigraphic columns represent a distributary depositional system, or megafan, whose syn-deformational nature is documented by Echevarría et al. (2003). Argillic-calcic paleosols developed on silty and sandy mudstones in the floodplain environment, with pedogenic calcium carbonate formed as nodules and rizoliths. The Microscopic features show that paleosols on the floodplain contain argillans. Semi-humid to semi-arid conditions are suggested by clay lessivage and calcium carbonate precipitation respectively. The mineralogy reflected by the XRD shows kaolinite, illite, and calcium carbonate in the western stratigraphic column that represents moderate climatic conditions (semi-humid to semi-arid). The coexistence of these minerals suggests seasonal variations in moisture. The eastern columns exhibit wetter soil conditions, including oxide minerals as well as hematite and goethite. Carbon isotopes show C3 vegetation with an increase in δ13C values most likely resulting from increasing seasonality in more recent times. There is little variation in δ18O values through time. In conclusion, these proxies show that soils were developed on interchannel areas, with illuviation of clays during the wet season and precipitation of calcium carbonate during the dry season. Although the megafan migrated eastward and the Altiplano rose, oxygen isotopes suggest that neither rainfall amount nor source of water vapor changed through the approximately 10 million years time interval.
NASA Technical Reports Server (NTRS)
Starr, David OC.; Benedetti, Angela; Boehm, Matt; Brown, Philip R. A.; Gierens, Klaus M.; Girard, Eric; Giraud, Vincent; Jakob, Christian; Jensen, Eric; Khvorostyanov, Vitaly;
2000-01-01
The GEWEX Cloud System Study (GCSS, GEWEX is the Global Energy and Water Cycle Experiment) is a community activity aiming to promote development of improved cloud parameterizations for application in the large-scale general circulation models (GCMs) used for climate research and for numerical weather prediction (Browning et al, 1994). The GCSS strategy is founded upon the use of cloud-system models (CSMs). These are "process" models with sufficient spatial and temporal resolution to represent individual cloud elements, but spanning a wide range of space and time scales to enable statistical analysis of simulated cloud systems. GCSS also employs single-column versions of the parametric cloud models (SCMs) used in GCMs. GCSS has working groups on boundary-layer clouds, cirrus clouds, extratropical layer cloud systems, precipitating deep convective cloud systems, and polar clouds.
Romps, David M.
2016-03-01
Convective entrainment is a process that is poorly represented in existing convective parameterizations. By many estimates, convective entrainment is the leading source of error in global climate models. As a potential remedy, an Eulerian implementation of the Stochastic Parcel Model (SPM) is presented here as a convective parameterization that treats entrainment in a physically realistic and computationally efficient way. Drawing on evidence that convecting clouds comprise air parcels subject to Poisson-process entrainment events, the SPM calculates the deterministic limit of an infinite number of such parcels. For computational efficiency, the SPM groups parcels at each height by their purity, whichmore » is a measure of their total entrainment up to that height. This reduces the calculation of convective fluxes to a sequence of matrix multiplications. The SPM is implemented in a single-column model and compared with a large-eddy simulation of deep convection.« less
Wei, Fang; Hu, Na; Lv, Xin; Dong, Xu-Yan; Chen, Hong
2015-07-24
In this investigation, off-line comprehensive two-dimensional liquid chromatography-atmospheric pressure chemical ionization mass spectrometry using a single column has been applied for the identification and quantification of triacylglycerols in edible oils. A novel mixed-mode phenyl-hexyl chromatographic column was employed in this off-line two-dimensional separation system. The phenyl-hexyl column combined the features of traditional C18 and silver-ion columns, which could provide hydrophobic interactions with triacylglycerols under acetonitrile conditions and can offer π-π interactions with triacylglycerols under methanol conditions. When compared with traditional off-line comprehensive two-dimensional liquid chromatography employing two different chromatographic columns (C18 and silver-ion column) and using elution solvents comprised of two phases (reversed-phase/normal-phase) for triacylglycerols separation, the novel off-line comprehensive two-dimensional liquid chromatography using a single column can be achieved by simply altering the mobile phase between acetonitrile and methanol, which exhibited a much higher selectivity for the separation of triacylglycerols with great efficiency and rapid speed. In addition, an approach based on the use of response factor with atmospheric pressure chemical ionization mass spectrometry has been developed for triacylglycerols quantification. Due to the differences between saturated and unsaturated acyl chains, the use of response factors significantly improves the quantitation of triacylglycerols. This two-dimensional liquid chromatography-mass spectrometry system was successfully applied for the profiling of triacylglycerols in soybean oils, peanut oils and lord oils. A total of 68 triacylglycerols including 40 triacylglycerols in soybean oils, 50 triacylglycerols in peanut oils and 44 triacylglycerols in lord oils have been identified and quantified. The liquid chromatography-mass spectrometry data were analyzed using principal component analysis. The results of the principal component analysis enabled a clear identification of different plant oils. By using this two-dimensional liquid chromatography-mass spectrometry system coupled with principal component analysis, adulterated soybean oils with 5% added lord oil and peanut oils with 5% added soybean oil can be clearly identified. Copyright © 2015 Elsevier B.V. All rights reserved.
Pribil, M.J.; Wanty, R.B.; Ridley, W.I.; Borrok, D.M.
2010-01-01
An increased interest in high precision Cu isotope ratio measurements using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) has developed recently for various natural geologic systems and environmental applications, these typically contain high concentrations of sulfur, particularly in the form of sulfate (SO42-) and sulfide (S). For example, Cu, Fe, and Zn concentrations in acid mine drainage (AMD) can range from 100??g/L to greater than 50mg/L with sulfur species concentrations reaching greater than 1000mg/L. Routine separation of Cu, Fe and Zn from AMD, Cu-sulfide minerals and other geological matrices usually incorporates single anion exchange resin column chromatography for metal separation. During chromatographic separation, variable breakthrough of SO42- during anion exchange resin column chromatography into the Cu fractions was observed as a function of the initial sulfur to Cu ratio, column properties, and the sample matrix. SO42- present in the Cu fraction can form a polyatomic 32S-14N-16O-1H species causing a direct mass interference with 63Cu and producing artificially light ??65Cu values. Here we report the extent of the mass interference caused by SO42- breakthrough when measuring ??65Cu on natural samples and NIST SRM 976 Cu isotope spiked with SO42- after both single anion column chromatography and double anion column chromatography. A set of five 100??g/L Cu SRM 976 samples spiked with 500mg/L SO42- resulted in an average ??65Cu of -3.50?????5.42??? following single anion column separation with variable SO42- breakthrough but an average concentration of 770??g/L. Following double anion column separation, the average SO42-concentration of 13??g/L resulted in better precision and accuracy for the measured ??65Cu value of 0.01?????0.02??? relative to the expected 0??? for SRM 976. We conclude that attention to SO42- breakthrough on sulfur-rich samples is necessary for accurate and precise measurements of ??65Cu and may require the use of a double ion exchange column procedure. ?? 2010.
NASA Technical Reports Server (NTRS)
Duncan, Bryan
2012-01-01
There is now a wealth of satellite data products available with which to evaluate a model fs simulation of tropospheric composition and other model processes. All of these data products have their strengths and limitations that need to be considered for this purpose. For example, uncertainties are introduced into a data product when 1) converting a slant column to a vertical column and 2) estimating the amount of a total column of a trace gas (e.g., ozone, nitrogen dioxide) that resides in the troposphere. Oftentimes, these uncertainties are not well quantified and the satellite data products are not well evaluated against in situ observations. However, these limitations do not preclude us from using these data products to evaluate our model processes if we understand these strengths and limitations when developing diagnostics. I will show several examples of how satellite data products are being used to evaluate particular model processes with a focus on the strengths and limitations of these data products. In addition, I will introduce the goals of a newly formed team to address issues on the topic of "satellite data for improved model evaluation and process studies" that is established in support of the IGAC/SPARC Global Chemistry ]Climate Modeling and Evaluation Workshop.
Total column water vapor estimation over land using radiometer data from SAC-D/Aquarius
NASA Astrophysics Data System (ADS)
Epeloa, Javier; Meza, Amalia
2018-02-01
The aim of this study is retrieving atmospheric total column water vapor (CWV) over land surfaces using a microwave radiometer (MWR) onboard the Scientific Argentine Satellite (SAC-D/Aquarius). To research this goal, a statistical algorithm is used for the purpose of filtering the study region according to the climate type. A log-linear relationship between the brightness temperatures of the MWR and CWV obtained from Global Navigation Satellite System (GNSS) measurements was used. In this statistical algorithm, the retrieved CWV is derived from the Argentinian radiometer's brightness temperature which works at 23.8 GHz and 36.5 GHz, and taking into account CWVs observed from GNSS stations belonging to a region sharing the same climate type. We support this idea, having found a systematic effect when applying the algorithm; it was generated for one region using the previously mentioned criteria, however, it should be applied to additional regions, especially those with other climate types. The region we analyzed is in the Southeastern United States of America, where the climate type is Cfa (Köppen - Geiger classification); this climate type includes moist subtropical mid-latitude climates, with hot, muggy summers and frequent thunderstorms. However, MWR only contains measurements taken from over ocean surfaces; therefore the determination of water vapor over land is an important contribution to extend the use of the SAC-D/Aquarius radiometer measurements beyond the ocean surface. The CWVs computed by our algorithm are compared against radiosonde CWV observations and show a bias of about -0.6 mm, a root mean square (rms) of about 6 mm and a correlation of 0.89.
Improving the Amazonian Hydrologic Cycle in a Coupled Land-Atmosphere, Single Column Model
NASA Astrophysics Data System (ADS)
Harper, A. B.; Denning, S.; Baker, I.; Prihodko, L.; Branson, M.
2006-12-01
We have coupled a land-surface model, the Simple Biosphere Model (SiB3), to a single column of the Colorado State University General Circulation Model (CSU-GCM) in the Amazon River Basin. This is a preliminary step in the broader goal of improved simulation of Basin-wide hydrology. A previous version of the coupled model (SiB2) showed drought and catastrophic dieback of the Amazon rain forest. SiB3 includes updated soil hydrology and root physiology. Our test area for the coupled single column model is near Santarem, Brazil, where measurements from the km 83 flux tower in the Tapajos National Forest can be used to evaluate model output. The model was run for 2001 using NCEP2 Reanalysis as driver data. Preliminary results show that the updated biosphere model coupled to the GCM produces improved simulations of the seasonal cycle of surface water balance and precipitation. Comparisons of the diurnal and seasonal cycles of surface fluxes are also being made.
NASA Astrophysics Data System (ADS)
Qin, Xiu-Chun; Nakayama, Tomoki; Matsumi, Yutaka; Kawasaki, Masahiro; Ono, Akiko; Hayashida, Sachiko; Imasu, Ryoichi; Lei, Li-Ping; Murata, Isao; Kuroki, Takahiro; Ohashi, Masafumi
2018-01-01
Remote sensing of the atmospheric greenhouse gases, methane (CH4) and carbon dioxide (CO2), contributes to the understanding of global warming and climate change. A portable ground-based instrument consisting of a commercially available desktop optical spectrum analyzer and a small sun tracker has been applied to measure the column densities of atmospheric CH4 and CO2 at Yanting observation station in a mountainous paddy field of the Sichuan Basin from September to November 2013. The column-averaged dry-air molar mixing ratios, XCH4/XCO2, are compared with those retrieved by satellite observations in the Sichuan Basin and by ground-based network observations in the same latitude zone as the Yanting observation station.
NASA Astrophysics Data System (ADS)
Semedo, Alvaro; Lemos, Gil; Dobrynin, Mikhail; Behrens, Arno; Staneva, Joanna; Miranda, Pedro
2017-04-01
The knowledge of ocean surface wave energy fluxes (or wave power) is of outmost relevance since wave power has a direct impact in coastal erosion, but also in sediment transport and beach nourishment, and ship, as well as in coastal and offshore infrastructures design. Changes in the global wave energy flux pattern can alter significantly the impact of waves in continental shelf and coastal areas. Up until recently the impact of climate change in future global wave climate had received very little attention. Some single model single scenario global wave climate projections, based on CMIP3 scenarios, were pursuit under the auspices of the COWCLIP (coordinated ocean wave climate projections) project, and received some attention in the IPCC (Intergovernmental Panel for Climate Change) AR5 (fifth assessment report). In the present study the impact of a warmer climate in the near future global wave energy flux climate is investigated through a 4-member "coherent" ensemble of wave climate projections: single-model, single-forcing, and single-scenario. In this methodology model variability is reduced, leaving only room for the climate change signal. The four ensemble members were produced with the wave model WAM, forced with wind speed and ice coverage from EC-Earth projections, following the representative concentration pathway with a high emissions scenario 8.5 (RCP8.5). The ensemble present climate reference period (the control run) has been set for 1976 to 2005. The projected changes in the global wave energy flux climate are analyzed for the 2031-2060 period.
First high-resolution stratigraphic column of the Martian north polar layered deposits
Fishbaugh, K.E.; Hvidberg, C.S.; Byrne, S.; Russell, P.S.; Herkenhoff, K. E.; Winstrup, M.; Kirk, R.
2010-01-01
This study achieves the first high-spatial-resolution, layer-scale, measured stratigraphic column of the Martian north polar layered deposits using a 1m-posting DEM. The marker beds found throughout the upper North Polar Layered Deposits range in thickness from 1.6 m-16.0 m +/-1.4 m, and 6 of 13 marker beds are separated by ???25-35 m. Thin-layer sets have average layer separations of 1.6 m. These layer separations may account for the spectral-power-peaks found in previous brightness-profile analyses. Marker-bed layer thicknesses show a weak trend of decreasing thickness with depth that we interpret to potentially be the result of a decreased accumulation rate in the past, for those layers. However, the stratigraphic column reveals that a simple rhythmic or bundled layer sequence is not immediately apparent throughout the column, implying that the relationship between polar layer formation and cyclic climate forcing is quite complex. Copyright ?? 2010 by the American Geophysical Union.
First high-resolution stratigraphic column of the Martian north polar layered deposits
NASA Astrophysics Data System (ADS)
Fishbaugh, Kathryn E.; Hvidberg, Christine S.; Byrne, Shane; Russell, Patrick S.; Herkenhoff, Kenneth E.; Winstrup, Mai; Kirk, Randolph
2010-04-01
This study achieves the first high-spatial-resolution, layer-scale, measured stratigraphic column of the Martian north polar layered deposits using a 1m-posting DEM. The marker beds found throughout the upper North Polar Layered Deposits range in thickness from 1.6 m-16.0 m +/- 1.4 m, and 6 of 13 marker beds are separated by ˜25-35 m. Thin-layer sets have average layer separations of 1.6 m. These layer separations may account for the spectral-power-peaks found in previous brightness-profile analyses. Marker-bed layer thicknesses show a weak trend of decreasing thickness with depth that we interpret to potentially be the result of a decreased accumulation rate in the past, for those layers. However, the stratigraphic column reveals that a simple rhythmic or bundled layer sequence is not immediately apparent throughout the column, implying that the relationship between polar layer formation and cyclic climate forcing is quite complex.
Kostanyan, Artak E
2015-12-04
The ideal (the column outlet is directly connected to the column inlet) and non-ideal (includes the effects of extra-column dispersion) recycling equilibrium-cell models are used to simulate closed-loop recycling counter-current chromatography (CLR CCC). Simple chromatogram equations for the individual cycles and equations describing the transport and broadening of single peaks and complex chromatograms inside the recycling closed-loop column for ideal and non-ideal recycling models are presented. The extra-column dispersion is included in the theoretical analysis, by replacing the recycling system (connecting lines, pump and valving) by a cascade of Nec perfectly mixed cells. To evaluate extra-column contribution to band broadening, two limiting regimes of recycling are analyzed: plug-flow, Nec→∞, and maximum extra-column dispersion, Nec=1. Comparative analysis of ideal and non-ideal models has shown that when the volume of the recycling system is less than one percent of the column volume, the influence of the extra-column processes on the CLR CCC separation may be neglected. Copyright © 2015 Elsevier B.V. All rights reserved.
Climate-chemical interactions and greenhouse effects of trace gases
NASA Technical Reports Server (NTRS)
Shi, Guang-Yu; Fan, Xiao-Biao
1994-01-01
A completely coupled one-dimensional radiative-convective (RC) and photochemical-diffusion (PC) model has been developed recently and used to study the climate-chemical interactions. The importance of radiative-chemical interactions within the troposphere and stratosphere has been examined in some detail. We find that increases of radiatively and/or chemically active trace gases such as CO2, CH4 and N2O have both the direct effects and the indirect effects on climate change by changing the atmospheric O3 profile through their interaction with chemical processes in the atmosphere. It is also found that the climatic effect of ozone depends strongly on its vertical distribution throughout the troposphere and stratosphere, as well on its column amount in the atmosphere.
Perspective view of the south elevation; this facade faces Constitution ...
Perspective view of the south elevation; this facade faces Constitution Avenue and is nineteen bays long with twelve single columns and two sets of paired columns - United States Department of Commerce, Bounded by Fourteenth, Fifteenth, and E streets and Constitution Avenue, Washington, District of Columbia, DC
NASA Astrophysics Data System (ADS)
Keeble, James; Bednarz, Ewa M.; Banerjee, Antara; Abraham, N. Luke; Harris, Neil R. P.; Maycock, Amanda C.; Pyle, John A.
2017-11-01
Chemical and dynamical drivers of trends in tropical total-column ozone (TCO3) for the recent past and future periods are explored using the UM-UKCA (Unified Model HadGEM3-A (Hewitt et al., 2011) coupled with the United Kingdom Chemistry and Aerosol scheme) chemistry-climate model. A transient 1960-2100 simulation is analysed which follows the representative concentration pathway 6.0 (RCP6.0) emissions scenario for the future. Tropical averaged (10° S-10° N) TCO3 values decrease from the 1970s, reach a minimum around 2000 and return to their 1980 values around 2040, consistent with the use and emission of halogenated ozone-depleting substances (ODSs), and their later controls under the Montreal Protocol. However, when the ozone column is subdivided into three partial columns (PCO3) that cover the upper stratosphere (PCO3US), lower stratosphere (PCO3LS) and troposphere (PCO3T), significant differences in the temporal behaviour of the partial columns are seen. Modelled PCO3T values under the RCP6.0 emissions scenario increase from 1960 to 2000 before remaining approximately constant throughout the 21st century. PCO3LS values decrease rapidly from 1960 to 2000 and remain constant from 2000 to 2050, before gradually decreasing further from 2050 to 2100 and never returning to their 1980s values. In contrast, PCO3US values decrease from 1960 to 2000, before increasing rapidly throughout the 21st century and returning to 1980s values by ˜ 2020, and reach significantly higher values by 2100. Using a series of idealised UM-UKCA time-slice simulations with concentrations of well-mixed greenhouse gases (GHGs) and halogenated ODS species set to either year 2000 or 2100 levels, we examine the main processes that drive the PCO3 responses in the three regions and assess how these processes change under different emission scenarios. Finally, we present a simple, linearised model to describe the future evolution of tropical stratospheric column ozone values based on terms representing time-dependent abundances of GHG and halogenated ODS.
Energy, climate, food and health.
Erwin, Patricia J
2008-01-01
On June 3-5, 2008, international organizations and heads of state met in Rome to discuss the critical situation in global food supplies and prices during the World Food Crisis Summit. The intent of this column is to provide approaches to identifying the complex issues that impact public health, public safety, and nutrition on a global basis. The Web sites selected provide a background for the complex issues involved (energy, climate and environment, agriculture, and politics) and reveal controversial and competing agendas with many far-reaching implications.
Coast of California Storm and Tidal Waves Study. Southern California Coastal Processes Data Summary,
1986-02-01
distribution of tracers injected on the beach. The suspended load was obtained from in situ measurements of the water column in the surf zone (Zampol and...wind waves. 3.2.2 Wave Climate There are relatively few in situ long-term measurements of the deep ocean (i.e. unaffected by the channel islands and...climate parameters and were not intended for that purpose. In the literature reviewed, the principal source of long-term in situ measurements is the
NASA Astrophysics Data System (ADS)
Garane, Katerina; Lerot, Christophe; Coldewey-Egbers, Melanie; Verhoelst, Tijl; Elissavet Koukouli, Maria; Zyrichidou, Irene; Balis, Dimitris S.; Danckaert, Thomas; Goutail, Florence; Granville, Jose; Hubert, Daan; Keppens, Arno; Lambert, Jean-Christopher; Loyola, Diego; Pommereau, Jean-Pierre; Van Roozendael, Michel; Zehner, Claus
2018-03-01
The GOME-type Total Ozone Essential Climate Variable (GTO-ECV) is a level-3 data record, which combines individual sensor products into one single cohesive record covering the 22-year period from 1995 to 2016, generated in the frame of the European Space Agency's Climate Change Initiative Phase II. It is based on level-2 total ozone data produced by the GODFIT (GOME-type Direct FITting) v4 algorithm as applied to the GOME/ERS-2, OMI/Aura, SCIAMACHY/Envisat and GOME-2/Metop-A and Metop-B observations. In this paper we examine whether GTO-ECV meets the specific requirements set by the international climate-chemistry modelling community for decadal stability long-term and short-term accuracy. In the following, we present the validation of the 2017 release of the Climate Research Data Package Total Ozone Column (CRDP TOC) at both level 2 and level 3. The inter-sensor consistency of the individual level-2 data sets has mean differences generally within 0.5 % at moderate latitudes (±50°), whereas the level-3 data sets show mean differences with respect to the OMI reference data record that span between -0.2 ± 0.9 % (for GOME-2B) and 1.0 ± 1.4 % (for SCIAMACHY). Very similar findings are reported for the level-2 validation against independent ground-based TOC observations reported by Brewer, Dobson and SAOZ instruments: the mean bias between GODFIT v4 satellite TOC and the ground instrument is well within 1.0 ± 1.0 % for all sensors, the drift per decade spans between -0.5 % and 1.0 ± 1.0 % depending on the sensor, and the peak-to-peak seasonality of the differences ranges from ˜ 1 % for GOME and OMI to ˜ 2 % for SCIAMACHY. For the level-3 validation, our first goal was to show that the level-3 CRDP produces findings consistent with the level-2 individual sensor comparisons. We show a very good agreement with 0.5 to 2 % peak-to-peak amplitude for the monthly mean difference time series and a negligible drift per decade of the differences in the Northern Hemisphere of -0.11 ± 0.10 % decade-1 for Dobson and +0.22 ± 0.08 % decade-1 for Brewer collocations. The exceptional quality of the level-3 GTO-ECV v3 TOC record temporal stability satisfies well the requirements for the total ozone measurement decadal stability of 1-3 % and the short-term and long-term accuracy requirements of 2 and 3 %, respectively, showing a remarkable inter-sensor consistency, both in the level-2 GODFIT v4 and in the level-3 GTO-ECV v3 datasets, and thus can be used for longer-term analysis of the ozone layer, such as decadal trend studies, chemistry-climate model evaluation and data assimilation applications.
Atmospheric Sampling of Aerosols to Stratospheric Altitudes using High Altitude Balloons
NASA Astrophysics Data System (ADS)
Jerde, E. A.; Thomas, E.
2010-12-01
Although carbon dioxide represents a long-lived atmospheric component relevant to global climate change, it is also understood that many additional contributors influence the overall climate of Earth. Among these, short-lived components are more difficult to incorporate into models due to uncertainties in the abundances of these both spatially and temporally. Possibly the most significant of these short-lived components falls under the heading of “black carbon” (BC). There are numerous overlapping definitions of BC, but it is basically carbonaceous in nature and light absorbing. Due to its potential as a climate forcer, an understanding of the BC population in the atmosphere is critical for modeling of radiative forcing. Prior measurements of atmospheric BC generally consist of airplane- and ground-based sampling, typically below 5000 m and restricted in time and space. Given that BC has a residence time on the order of days, short-term variability is easily missed. Further, since the radiative forcing is a result of BC distributed through the entire atmospheric column, aircraft sampling is by definition incomplete. We are in the process of planning a more comprehensive sampling of the atmosphere for BC using high-altitude balloons. Balloon-borne sampling is a highly reliable means to sample air through the entire troposphere and into the lower stratosphere. Our system will incorporate a balloon and a flight train of two modules. One module will house an atmospheric sampler. This sampler will be single-stage (samples all particle sizes together), and will place particles directly on an SEM sample stub for analysis. The nozzle depositing the sample will be offset from the center of the stub, placing the aerosol particles toward the edge. At various altitudes, the stub will be rotated 45 degrees, providing 6-8 sample “cuts” of particle populations through the atmospheric column. The flights will reach approximately 27 km altitude, above which the balloons burst and the modules return to the surface. The second module will contain instrumentation recording temperature, pressure, and humidity, plus a radio beacon to track the location, facilitating recovery. Another instrument we are planning is a small, lightweight optical aerosol spectrometer probe. This would provide a valuable secondary set of data to compare with the actual sampling. The aerosol particle population will be assessed using the SEM at Morehead State University. Over the next several years, sampling is planned at locations both near and far from urban areas, and at intermediate locations. Sampling will be conducted at four times during the year to assess seasonal variations and, at some sites, repeated short-term samplings (e.g., 5 flights in 10 days) will be undertaken to assess short-term variations. In addition, the SEM should permit the assessment of the ratio of BC to organic carbon (OC). Like BC, organic carbon species are produced through biomass burning, but are not as effective as light absorbers, so are not responsible for as much forcing as black carbon. The atmosphere is sampled at a known volumetric rate, resulting in a picture of the atmospheric column density for both BC and OC, information of great use in modeling of the aerosol contribution to climate change.
Intercomparison of daytime stratospheric NO2 satellite retrievals and model simulations
NASA Astrophysics Data System (ADS)
Belmonte Rivas, M.; Veefkind, P.; Boersma, F.; Levelt, P.; Eskes, H.; Gille, J.
2014-01-01
This paper evaluates the agreement between stratospheric NO2 retrievals from infrared limb sounders (MIPAS and HIRDLS) and solar UV/VIS backscatter sensors (OMI, SCIAMACHY limb and nadir) over the 2005-2007 period and across the seasons. The observational agreement is contrasted with the representation of NO2 profiles in 3-D chemical transport models such as the Whole Atmosphere Community Climate Model (SD-WACCM) and TM4. A conclusion central to this work is that the definition of a reference for stratospheric NO2 columns formed by consistent agreement among SCIAMACHY, MIPAS and HIRDLS limb records (all of which agree to within 0.25 × 1015 molecules cm-2 or better than 10%) allows us to draw attention to relative errors in other datasets, e.g.: (1) the WACCM model overestimates NO2 densities in the extratropical lower stratosphere, particularly over northern latitudes by up to 35% relative to limb observations, and (2) there are remarkable discrepancies between stratospheric NO2 column estimates from limb and nadir techniques, with a characteristic seasonal and latitude dependent pattern. We find that SCIAMACHY nadir and OMI stratospheric columns show overall biases of -0.6 × 1015 molecules cm-2 (-20%) and +0.6 × 10 15 molecules cm-2 (+20%) relative to limb observations. It is highlighted that biases in nadir stratospheric columns are not expected to affect tropospheric retrievals significantly, and that they can be attributed to errors in the total slant column density, either related to algorithmic or instrumental effects. In order to obtain accurate and long time series of stratospheric NO2, a critical evaluation of the currently used Differential Optical Absorption Spectroscopy (DOAS) approaches to nadir retrievals becomes essential, as well as their agreement to limb and ground-based observations, particularly now that limb techniques are giving way to nadir observations as the next generation of climate and air quality monitoring instruments pushes forth.
Ismail, R; Kassim, M A; Inman, M; Baharim, N H; Azman, S
2002-01-01
Environmental monitoring was carried out at Upper Layang Reservoir situated in Masai, Johor, Malaysia. The study shows that thermal stratification and natural mixing of the water column do exist in the reservoir and the level of stratification varies at different times of the year. Artificial destratification via diffused air aeration techniques was employed at the reservoir for two months. The results show that thermal stratification was eliminated after a week of continuous aeration. The concentrations of iron and to a lesser extent manganese in the water column was also reduced during the aeration period.
Double-moment cloud microphysics scheme for the deep convection parameterization in the GFDL AM3
NASA Astrophysics Data System (ADS)
Belochitski, A.; Donner, L.
2014-12-01
A double-moment cloud microphysical scheme originally developed by Morrision and Gettelman (2008) for the stratiform clouds and later adopted for the deep convection by Song and Zhang (2011) has been implemented in to the Geophysical Fluid Dynamics Laboratory's atmospheric general circulation model AM3. The scheme treats cloud drop, cloud ice, rain, and snow number concentrations and mixing ratios as diagnostic variables and incorporates processes of autoconversion, self-collection, collection between hydrometeor species, sedimentation, ice nucleation, drop activation, homogeneous and heterogeneous freezing, and the Bergeron-Findeisen process. Such detailed representation of microphysical processes makes the scheme suitable for studying the interactions between aerosols and convection, as well as aerosols' indirect effects on clouds and their roles in climate change. The scheme is first tested in the single column version of the GFDL AM3 using forcing data obtained at the U.S. Department of Energy Atmospheric Radiation Measurment project's Southern Great Planes site. Scheme's impact on SCM simulations is discussed. As the next step, runs of the full atmospheric GCM incorporating the new parameterization are compared to the unmodified version of GFDL AM3. Global climatological fields and their variability are contrasted with those of the original version of the GCM. Impact on cloud radiative forcing and climate sensitivity is investigated.
The Meandering Margin of the Meteorological Moist Tropics
NASA Astrophysics Data System (ADS)
Mapes, Brian E.; Chung, Eui Seok; Hannah, Walter M.; Masunaga, Hirohiko; Wimmers, Anthony J.; Velden, Christopher S.
2018-01-01
Bimodally distributed column water vapor (CWV) indicates a well-defined moist regime in the Tropics, above a margin value near 48 kg m-2 in current climate (about 80% of column saturation). Maps reveal this margin as a meandering, sinuous synoptic contour bounding broad plateaus of the moist regime. Within these plateaus, convective storms of distinctly smaller convective and mesoscales occur sporadically. Satellite data composites across the poleward most margin reveal its sharpness, despite the crude averaging: precipitation doubles within 100 km, marked by both enhancement and deepening of cloudiness. Transported patches and filaments of the moist regime cause consequential precipitation events within and beyond the Tropics. Distinguishing synoptic flows that
Water Column Correction for Coral Reef Studies by Remote Sensing
Zoffoli, Maria Laura; Frouin, Robert; Kampel, Milton
2014-01-01
Human activity and natural climate trends constitute a major threat to coral reefs worldwide. Models predict a significant reduction in reef spatial extension together with a decline in biodiversity in the relatively near future. In this context, monitoring programs to detect changes in reef ecosystems are essential. In recent years, coral reef mapping using remote sensing data has benefited from instruments with better resolution and computational advances in storage and processing capabilities. However, the water column represents an additional complexity when extracting information from submerged substrates by remote sensing that demands a correction of its effect. In this article, the basic concepts of bottom substrate remote sensing and water column interference are presented. A compendium of methodologies developed to reduce water column effects in coral ecosystems studied by remote sensing that include their salient features, advantages and drawbacks is provided. Finally, algorithms to retrieve the bottom reflectance are applied to simulated data and actual remote sensing imagery and their performance is compared. The available methods are not able to completely eliminate the water column effect, but they can minimize its influence. Choosing the best method depends on the marine environment, available input data and desired outcome or scientific application. PMID:25215941
Water column correction for coral reef studies by remote sensing.
Zoffoli, Maria Laura; Frouin, Robert; Kampel, Milton
2014-09-11
Human activity and natural climate trends constitute a major threat to coral reefs worldwide. Models predict a significant reduction in reef spatial extension together with a decline in biodiversity in the relatively near future. In this context, monitoring programs to detect changes in reef ecosystems are essential. In recent years, coral reef mapping using remote sensing data has benefited from instruments with better resolution and computational advances in storage and processing capabilities. However, the water column represents an additional complexity when extracting information from submerged substrates by remote sensing that demands a correction of its effect. In this article, the basic concepts of bottom substrate remote sensing and water column interference are presented. A compendium of methodologies developed to reduce water column effects in coral ecosystems studied by remote sensing that include their salient features, advantages and drawbacks is provided. Finally, algorithms to retrieve the bottom reflectance are applied to simulated data and actual remote sensing imagery and their performance is compared. The available methods are not able to completely eliminate the water column effect, but they can minimize its influence. Choosing the best method depends on the marine environment, available input data and desired outcome or scientific application.
The numerical simulation of flow field characteristics for single vortex column in different shapes
NASA Astrophysics Data System (ADS)
Shangchang, Yu; Hanxiao, Liu; Wenhua, Li; Ying, Guo
2017-11-01
The coagulation technology of turbulence can improve the PM2.5 removal efficiency of ESP effectively, which is a hot technology researched by the scholars and manufacture. The turbulence produced by vortex column is the main power supply in the turbulence coagulation device, the velocity distribution, turbulence intensity, turbulence viscosity and pressure loss of single vortex column in different shapes and sizes were calculated in this paper. The turbulence produced by angle-steel had a better velocity and character than cylindrical vortex, and if the size of angle-steel and cylindrical vortex was bigge, the turbulence effect of the flow field would become better, but the pressure loss of different shapes would increase. We need to ensure the turbulence effect as well as minimize unnecessary pressure loss in practical applications.
Lindley, C.E.; Stewart, J.T.; Sandstrom, M.W.
1996-01-01
A sensitive and reliable gas chromatographic/mass spectrometric (GC/MS) method for determining acetochlor in environmental water samples was developed. The method involves automated extraction of the herbicide from a filtered 1 L water sample through a C18 solid-phase extraction column, elution from the column with hexane-isopropyl alcohol (3 + 1), and concentration of the extract with nitrogen gas. The herbicide is quantitated by capillary/column GC/MS with selected-ion monitoring of 3 characteristic ions. The single-operator method detection limit for reagent water samples is 0.0015 ??g/L. Mean recoveries ranged from about 92 to 115% for 3 water matrixes fortified at 0.05 and 0.5 ??g/L. Average single-operator precision, over the course of 1 week, was better than 5%.
Wang, Qing; Tong, Ling; Yao, Lin; Zhang, Peng; Xu, Li
2016-06-05
In the present study, a mixed-mode stationary phase, C18-Diol, was applied for fingerprint analysis of traditional Chinese medicines. Hydrophobic, hydrogen bonding and electrostatic interactions were demonstrated to contribute the retention separately or jointly, which endowed the C18-Diol stationary phase with distinct selectivity compared to the bare C18 one. The separation of total alkaloids extracted from Fritillaria hupehensis was compared on the C18-Diol and conventional C18 column with the greater resolving power and better symmetry responses on the former one. Besides, a novel two-dimensional liquid chromatography on the single column (2D-LC-1C) was realized on C18-Diol with the offline mode for the alcohol extract of Fritillaria hupehensis and online mode for Ligusticum chuanxiong Hort. The early co-eluted extracted components with great polarity on the first dimension were reinjected on the same column and well separated on the second dimension. The results exhibited that the two complementary RPLC and HILIC modes on C18-Diol stationary phase enhanced the separation capacity and revealed more abundant chemical information of the sample, which was a powerful tool in analyzing complex herbal medicines. Copyright © 2016 Elsevier B.V. All rights reserved.
High Performance Liquid Chromatographic Analysis of Phytoplankton Pigments Using a C16-Amide Column
A reverse-phase high performance liquid chromatographic (RP-HPLC) method was developed to analyze in a single run, most polar and non-polar chlorophylls and carotenoids from marine phytoplankton. The method is based on a RP-C16-Amide column and a ternary gradient system consistin...
NASA Astrophysics Data System (ADS)
Goyette, Stéphane
2017-04-01
The potential of a novel atmospheric single-column model (SCM) developed in the framework of the Canadian Regional Climate Model, CRCM, driven by NCEP-NCAR reanalyses is investigated. The approach to solve the model equations and the technique described here may be implemented in any RCM system environment as a model option. The working hypothesis underlying this SCM formulation is that a substantial portion of the variability simulated in the column can be reproduced by processes operating in the vertical dimension and a lesser portion comes from processes operating in the horizontal dimension. This SCM offers interesting prospects as the horizontal and vertical resolution of the RCM is ever increasing. Due to its low computational cost, multiple simulations may be carried out in a short period of time. In this paper, a range of possible results from changing the lower boundary from land to open water surface, and varying model parameters are shown for western Switzerland. The benefit of using Newtonian relaxation, or "nudging", is demonstrated. Results show that air temperature, moisture and windspeed profiles are modified in a coherent manner in the lowest levels. Such changes are consistent with those of the surface vertical sensible, latent heat and momentum fluxes. Compared to atmospheric profiles over land, switching to and open water surface representative of Lake Geneva over the annual cycle of 1990, air temperature is increased by up to 1°C during the autumn and winter seasons, and by 0.5°C during the spring and summer seasons. Specific humidity is increased by up to 0.2 g kg-1 during the autumn and winter seasons and decreased by 0.3 g kg-1 during the spring and summer seasons. The increased windspeed at the surface, often more than 1.5 m s-1, is due to the smaller roughness height. The surface radiation and energy budgets are also modified subsequent to the different partionning of the latent end sensible heat fluxes, but also the solar and thermal infrared fluxes undergone siggnificant changes. The question of how the open water and the overlying atmosphere interact and which of these "factors" has the most influence also needs attention. The sole presence of the lake is shown to be a major feature with regard to the surface energy budget components whose contributions counteract those of the lower atmosphere, thus supporting the fact that Lake Geneva acts as a damping factor to the regional climate system. It is also shown that not only did the presence of the lake and the overlying atmosphere independently modulate the surface energy budget, but also the synergistic nonlinear interaction among them, either positive or negative, was often found non-negligible. Moreover, some processes may turn out to be important on short time scales while being negligible on the long term as shown in Goyette (2016).
Separation of copper, iron, and zinc from complex aqueous solutions for isotopic measurement
Borrok, D.M.; Wanty, R.B.; Ridley, W.I.; Wolf, R.; Lamothe, P.J.; Adams, M.
2007-01-01
The measurement of Cu, Fe, and Zn isotopes in natural samples may provide valuable information about biogeochemical processes in the environment. However, the widespread application of stable Cu, Fe, and Zn isotope chemistry to natural water systems remains limited by our ability to efficiently separate these trace elements from the greater concentrations of matrix elements. In this study, we present a new method for the isolation of Cu, Fe, and Zn from complex aqueous solutions using a single anion-exchange column with hydrochloric acid media. Using this method we are able to quantitatively separate Cu, Fe, and Zn from each other and from matrix elements in a single column elution. Elution of the elements of interest, as well as all other elements, through the anion-exchange column is a function of the speciation of each element in the various concentrations of HCl. We highlight the column chemistry by comparing our observations with published studies that have investigated the speciation of Cu, Fe, and Zn in chloride solutions. The functionality of the column procedure was tested by measuring Cu, Fe, and Zn isotopes in a variety of stream water samples impacted by acid mine drainage. The accuracy and precision of Zn isotopic measurements was tested by doping Zn-free stream water with the Zn isotopic standard. The reproducibility of the entire column separation process and the overall precision of the isotopic measurements were also evaluated. The isotopic results demonstrate that the Cu, Fe, and Zn column separates from the tested stream waters are of sufficient purity to be analyzed directly using a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS), and that the measurements are fully-reproducible, accurate, and precise. Although limited in scope, these isotopic measurements reveal significant variations in ??65Cu (- 1.41 to + 0.30???), ??56Fe (- 0.56 to + 0.34???), and ??66Zn (0.31 to 0.49???) among samples collected from different abandoned mines within a single watershed. Hence, Cu, Fe, and Zn isotopic measurements may be a powerful tool for fingerprinting specific metal sources and/or examining biogeochemical reactions within fresh water systems.
The Biogeography of Endorheic Soda Lakes in the Western United States
NASA Astrophysics Data System (ADS)
Stamps, B. W.; Petryshyn, V.; Johnson, H.; Berelson, W.; Nunn, H. S.; Stevenson, B. S.; Loyd, S. J.; Oremland, R. S.; Miller, L. G.; Rosen, M. R.; Corsetti, F. A.; Spear, J. R.
2016-12-01
Closed-basin (endorheic) soda lakes are of economic, social, and ecological importance. Shifts in global climate, which in turn affects local climate, significantly impact the distribution and diversity of microbial communities and lake ecologies. In California, the Mono Lake Basin (MLB) is especially fragile, as it has undergone a significant decline in lake level beginning in the early twentieth century due to both climatic effects and water diversion. The result is a lake with elevated salinity (60-90 g/L) and pH (9.8). The diversion of MLB water has created a unique lake environment dominated by a single macroeukaryote (Artemia monica) in which primary production is controlled at all depths by the microalgae Picocystis sp. In order to better understand the microbial diversity and functional potential of Mono Lake during an on-going drought and climatic upheaval, a combined geochemical, metagenomic, and metatranscriptomic study was undertaken. Members of The International GeoBiology course sampled the water column at multiple depths in the summer of 2016, during a large bloom of Picocystis. A mud spring from a volcanic island (Paoha) near the center of the lake was also sampled. The spring was recently submerged and interacts intermittently with Mono Lake, which may allow for mixing of microbial communities as lake levels fluctuate. Surface sediment samples were also taken from 7 m water depth. Finally, via SSU rRNA gene sequence analyses, the microbial communities of nearby soda lakes were compared in an attempt to place the Mono Lake community in the context of the overall regional biodiversity of endorheic soda lakes. Overall the microbial communities at Mono Lake were distinct both in the bacterial community composition and the abundance of Picocystis from those found at other sampled soda lakes or the surrounding rivers and springs. Our results reveal diverse microbial ecosystems at multiple lakes potentially at risk to continued climate change.
NASA Astrophysics Data System (ADS)
Ward, J. L.; Flanner, M.; Bergin, M. H.; Courville, Z.; Dibb, J. E.; Polashenski, C.; Soja, A. J.; Strellis, B. M.; Thomas, J. L.
2016-12-01
Combustion of biomass material results in the emission of microscopic particles, some of which absorb incoming solar radiation. Including black carbon (BC), these absorbing species can affect regional climate through changes in the local column energy budgets, cloud direct and indirect effects, and atmospheric dynamical processes. The cryosphere, which consists of both snow and ice, is unusually susceptible to changes in radiation due to its characteristically high albedo. As the largest element of the cryosphere in the Northern Hemisphere, the Greenland Ice Sheet (GrIS) covers most of Greenland's terrestrial surface and, if subjected to the increased presence of light-absorbing impurities, could experience enhanced melt. A particularly enhanced melt episode of the GrIS occurred during July 2012; at the same time, large-scale biomass burning events were observed in Eurasia and North America. Observations showed that, at the same time, single-scattering albedo (SSA) was lower than average while aerosol optical depth (AOD) was high for the Greenland region. In this study, we apply idealized climate simulations to analyze how various aspects of Greenland's climate are affected by the enhanced presence of particulate matter in the atmospheric and on the surface of the GrIS. We employ the Community Earth System Model (CESM) with prescribed sea surface temperatures and active land and atmospheric components. Using four sets of modeling experiments, we perturb 1) only AOD, 2) only SSA, 3) mass mixing ratios of BC and dust in snow, and 4) both AOD and in-snow impurity concentrations. The chosen values for each of these modeling experiments are based on field measurements taken in 2011 (AOD, SSA) and the summers of 2012-2014 (mass mixing ratios of BC and dust). Comparing the results of these experiments provides information on how the overall climate of Greenland could be affected by large biomass burning events.
Kazarian, Artaches A; Taylor, Mark R; Haddad, Paul R; Nesterenko, Pavel N; Paull, Brett
2013-12-01
The comprehensive separation and detection of hydrophobic and hydrophilic active pharmaceutical ingredients (APIs), their counter-ions (organic, inorganic) and excipients, using a single mixed-mode chromatographic column, and a dual injection approach is presented. Using a mixed-mode Thermo Fisher Acclaim Trinity P1 column, APIs, their counter-ions and possible degradants were first separated using a combination of anion-exchange, cation-exchange and hydrophobic interactions, using a mobile phase consisting of a dual organic modifier/salt concentration gradient. A complementary method was also developed using the same column for the separation of hydrophilic bulk excipients, using hydrophilic interaction liquid chromatography (HILIC) under high organic solvent mobile phase conditions. These two methods were then combined within a single gradient run using dual sample injection, with the first injection at the start of the applied gradient (mixed-mode retention of solutes), followed by a second sample injection at the end of the gradient (HILIC retention of solutes). Detection using both ultraviolet absorbance and refractive index enabled the sensitive detection of APIs and UV-absorbing counter-ions, together with quantitative determination of bulk excipients. The developed approach was applied successfully to the analysis of a dry powder inhalers (Flixotide(®), Spiriva(®)), enabling comprehensive quantification of all APIs and excipients in the sample. Copyright © 2013 Elsevier B.V. All rights reserved.
Wave–turbulence interaction-induced vertical mixing and its effects in ocean and climate models
Qiao, Fangli; Yuan, Yeli; Deng, Jia; Dai, Dejun; Song, Zhenya
2016-01-01
Heated from above, the oceans are stably stratified. Therefore, the performance of general ocean circulation models and climate studies through coupled atmosphere–ocean models depends critically on vertical mixing of energy and momentum in the water column. Many of the traditional general circulation models are based on total kinetic energy (TKE), in which the roles of waves are averaged out. Although theoretical calculations suggest that waves could greatly enhance coexisting turbulence, no field measurements on turbulence have ever validated this mechanism directly. To address this problem, a specially designed field experiment has been conducted. The experimental results indicate that the wave–turbulence interaction-induced enhancement of the background turbulence is indeed the predominant mechanism for turbulence generation and enhancement. Based on this understanding, we propose a new parametrization for vertical mixing as an additive part to the traditional TKE approach. This new result reconfirmed the past theoretical model that had been tested and validated in numerical model experiments and field observations. It firmly establishes the critical role of wave–turbulence interaction effects in both general ocean circulation models and atmosphere–ocean coupled models, which could greatly improve the understanding of the sea surface temperature and water column properties distributions, and hence model-based climate forecasting capability. PMID:26953182
Trends of total water vapor column above the Arctic from satellites observations
NASA Astrophysics Data System (ADS)
Alraddawi, Dunya; Sarkissian, Alain; Keckhut, Philippe; Bock, Olivier; Claud, Chantal; Irbah, Abdenour
2016-04-01
Atmospheric water vapor (H2O) is the most important natural (as opposed to man-made) greenhouse gas, accounting for about two-thirds of the natural greenhouse effect. Despite this importance, its role in climate and its reaction to climate change are still difficult to assess. Many details of the hydrological cycle are poorly understood, such as the process of cloud formation and the transport and release of latent heat contained in the water vapor. In contrast to other important greenhouse gases like carbon dioxide (CO2) and methane, water vapor has a much higher temporal and spatial variability. Total precipitable water (TPW) or the total column of water vapor (TCWV) is the amount of liquid water that would result if all the water vapor in the atmospheric column of unit area were condensed. TCWV distribution contains valuable information on the vigor of the hydrological processes and moisture transport in the atmosphere. Measurement of TPW can be obtained based on atmospheric water vapor absorption or emission of radiation in the spectral range from UV to MW. TRENDS were found over the terrestrial Arctic by means of TCWV retrievals (using Moderate Resolution Imaging Spectro-radiometer (MODIS) near-infrared (2001-2015) records). More detailed approach was made for comparisons with ground based instruments over Sodankyla - Finland (TCWV from: SCIAMACHY 2003-2011, GOME-2A 2007-2011, SAOZ 2003-2011, GPS 2003-2011, MODIS 2003-2011)
Diem, Samuel; Rudolf von Rohr, Matthias; Hering, Janet G; Kohler, Hans-Peter E; Schirmer, Mario; von Gunten, Urs
2013-11-01
Most peri-alpine shallow aquifers fed by rivers are oxic and the drinking water derived by riverbank filtration is generally of excellent quality. However, observations during past heat waves suggest that water quality may be affected by climate change due to effects on redox processes such as aerobic respiration, denitrification, reductive dissolution of manganese(III/IV)- and iron(III)(hydr)oxides that occur during river infiltration. To assess the dependence of these redox processes on the climate-related variables temperature and discharge, we performed periodic and targeted (summer and winter) field sampling campaigns at the Thur River, Switzerland, and laboratory column experiments simulating the field conditions. Typical summer and winter field conditions could be successfully simulated by the column experiments. Dissolved organic matter (DOM) was found not to be a major electron donor for aerobic respiration in summer and the DOM consumption did not reveal a significant correlation with temperature and discharge. It is hypothesized that under summer conditions, organic matter associated with the aquifer material (particulate organic matter, POM) is responsible for most of the consumption of dissolved oxygen (DO), which was the most important electron acceptor in both the field and the column system. For typical summer conditions at temperatures >20 °C, complete depletion of DO was observed in the column system and in a piezometer located only a few metres from the river. Both in the field system and the column experiments, nitrate acted as a redox buffer preventing the release of manganese(II) and iron(II). For periodic field observations over five years, DO consumption showed a pronounced temperature dependence (correlation coefficient r = 0.74) and therefore a seasonal pattern, which seemed to be mostly explained by the temperature dependence of the calculated POM consumption (r = 0.7). The river discharge was found to be highly and positively correlated with DO consumption (r = 0.85), suggesting an enhanced POM input during flood events. This high correlation could only be observed for the low-temperature range (T < 15 °C). For temperatures >15 °C, DO consumption was already high (almost complete) and the impact of discharge could not be resolved. Based on our results, we estimate the risk for similar river-infiltration systems to release manganese(II) and iron(II) to be low during future average summer conditions. However, long-lasting heat waves might lead to a consumption of the nitrate buffer, inducing a mobilization of manganese and iron. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Hyewon; Doney, Scott C.; Iannuzzi, Richard A.; Meredith, Michael P.; Martinson, Douglas G.; Ducklow, Hugh W.
2016-09-01
We analyzed 20 years (1993-2013) of observations of dissolved inorganic macronutrients (nitrate, N; phosphate, P; and silicate, Si) and chlorophyll a (Chl) at Palmer Station, Antarctica (64.8°S, 64.1°W) to elucidate how large-scale climate and local physical forcing affect the interannual variability in the seasonal phytoplankton bloom and associated drawdown of nutrients. The leading modes of nutrients (N, P, and Si empirical orthogonal functions 1, EOF1) represent overall negative anomalies throughout growing seasons, showing a mixed signal of variability in the initial levels and drawdown thereafter (low-frequency dynamics). The second most common seasonal patterns of nitrate and phosphate (N and P EOF2) capture prolonged drawdown events during December-March, which are correlated to Chl EOF1. Si EOF2 captures a drawdown event during November-December, which is correlated to Chl EOF2. These different drawdown patterns are shaped by different sets of physical and climate forcing mechanisms. N and P drawdown events during December-March are influenced by the winter and spring Southern Annular Mode (SAM) phase, where nutrient utilization is enhanced in a stabilized upper water column as a consequence of SAM-driven winter sea ice and spring wind dynamics. Si drawdown during November-December is influenced by early sea ice retreat, where ice breakup may induce abrupt water column stratification and a subsequent diatom bloom or release of diatom cells from within the sea ice. Our findings underscore that seasonal nutrient dynamics in the coastal WAP are coupled to large-scale climate forcing and related physics, understanding of which may enable improved projections of biogeochemical responses to climate change.
Nose, Atsushi; Yamazaki, Tomohiro; Katayama, Hironobu; Uehara, Shuji; Kobayashi, Masatsugu; Shida, Sayaka; Odahara, Masaki; Takamiya, Kenichi; Matsumoto, Shizunori; Miyashita, Leo; Watanabe, Yoshihiro; Izawa, Takashi; Muramatsu, Yoshinori; Nitta, Yoshikazu; Ishikawa, Masatoshi
2018-04-24
We have developed a high-speed vision chip using 3D stacking technology to address the increasing demand for high-speed vision chips in diverse applications. The chip comprises a 1/3.2-inch, 1.27 Mpixel, 500 fps (0.31 Mpixel, 1000 fps, 2 × 2 binning) vision chip with 3D-stacked column-parallel Analog-to-Digital Converters (ADCs) and 140 Giga Operation per Second (GOPS) programmable Single Instruction Multiple Data (SIMD) column-parallel PEs for new sensing applications. The 3D-stacked structure and column parallel processing architecture achieve high sensitivity, high resolution, and high-accuracy object positioning.
Effect of surfactant on single drop mass transfer for extraction of aromatics from lubricating oils
NASA Astrophysics Data System (ADS)
Izza, H.; Ben Abdessalam, S.; Korichi, M.
2018-03-01
Solvent extraction is an effective method for the reduction of the content of aromatic of lubricating oil. Frequently, with phenol, furfural, the NMP (out of N-methyl pyrrolidone). The power solvent and the selectivity can be still to increase while using surfactant as additive which facilitates the separation of phase and increases the yeild in raffinat. Liquid-liquid mass transfer coefficients for single freely rising drops in the presence of surfactant in an extraction column have been investigated. The surfactant used in this study was sodium lauryl ether sulfate (SLES). The experiments were performed by bubbling a solvent as a series of individual drops from the top of the column containing furfural-SLES solution. The column used in this experiment was made from glass with 17 mm inner diameter and a capacity of 125ml. The effects of the concentration of surfactant on the overall coefficient of mass transfer was investigated.
Jeong, Jong Seok; Mkhoyan, K Andre
2016-06-01
Acquiring an atomic-resolution compositional map of crystalline specimens has become routine practice, thus opening possibilities for extracting subatomic information from such maps. A key challenge for achieving subatomic precision is the improvement of signal-to-noise ratio (SNR) of compositional maps. Here, we report a simple and reliable solution for achieving high-SNR energy-dispersive X-ray (EDX) spectroscopy spectrum images for individual atomic columns. The method is based on standard cross-correlation aided by averaging of single-column EDX maps with modifications in the reference image. It produces EDX maps with minimal specimen drift, beam drift, and scan distortions. Step-by-step procedures to determine a self-consistent reference map with a discussion on the reliability, stability, and limitations of the method are presented here.
NASA Astrophysics Data System (ADS)
Yin, Y.; Worden, J. R.; Bloom, A. A.; Frankenberg, C.
2017-12-01
Atmospheric CH4 concentration stabilized in the early 2000s and began to increase again since 2007. Recent literature has explored various explanations for possible causes of the growth rate change in CH4 with considerable contradictions among each other, suggesting this problem being ill-conditioned with currently available observations. Satellite observations of CH4 in the near infrared (NIR) with full column sensitivity began with SCIAMACHY (2003-2012) and extend to the present with GOSAT (2009-). Observations in the thermal infrared (TIR) such as from TES (2004-2011) and CrIS (2012-) provide data in the free troposphere. Combining the information pieces from TIR and NIR, we could resolve the lower tropospheric partial column of CH4 that is more sensitive to the surface methane fluxes. Here, using a newly developed lower tropospheric partial column retrieval and supplemented by MOPITT CO retrievals, we discuss the interannual variations of tropical CH4 emissions from wetland and biomass burning respectively, and further, we explore the relationship between those fluxes and climate variability.
A Theory of How Columns in the Neocortex Enable Learning the Structure of the World
Hawkins, Jeff; Ahmad, Subutai; Cui, Yuwei
2017-01-01
Neocortical regions are organized into columns and layers. Connections between layers run mostly perpendicular to the surface suggesting a columnar functional organization. Some layers have long-range excitatory lateral connections suggesting interactions between columns. Similar patterns of connectivity exist in all regions but their exact role remain a mystery. In this paper, we propose a network model composed of columns and layers that performs robust object learning and recognition. Each column integrates its changing input over time to learn complete predictive models of observed objects. Excitatory lateral connections across columns allow the network to more rapidly infer objects based on the partial knowledge of adjacent columns. Because columns integrate input over time and space, the network learns models of complex objects that extend well beyond the receptive field of individual cells. Our network model introduces a new feature to cortical columns. We propose that a representation of location relative to the object being sensed is calculated within the sub-granular layers of each column. The location signal is provided as an input to the network, where it is combined with sensory data. Our model contains two layers and one or more columns. Simulations show that using Hebbian-like learning rules small single-column networks can learn to recognize hundreds of objects, with each object containing tens of features. Multi-column networks recognize objects with significantly fewer movements of the sensory receptors. Given the ubiquity of columnar and laminar connectivity patterns throughout the neocortex, we propose that columns and regions have more powerful recognition and modeling capabilities than previously assumed. PMID:29118696
Different decay patterns observed in a nineteenth-century building (Palma, Spain).
Genestar, Catalina; Pons, Carmen; Cerro, José Carlos; Cerdà, Víctor
2014-01-01
The effects of atmospheric pollutants and climatic conditions were studied in a decayed column in the Seminary of Sant Pere. This nineteenth-century building is situated in the historic centre of Palma (Mallorca, Spain), less than 0.5 km from the sea. Samples were collected from the internal and external part of the crusts formed in the four sides of the column. The samples were analysed by means of thermal analysis, X-ray diffractometry, scanning electron microscopy, Fourier transform infrared spectroscopy and ion chromatography. Results show significant differences in the four sides of the column. A high degree of carbonate stone sulfation is observed in all of the samples analysed. A synergistic effect between atmospheric factors and micropollutants on the deterioration of stone is observed. A high uptake of atmospheric particulate matter is found in the external part of the black crusts.
Infrared measurements of atmospheric gases above Mauna Loa, Hawaii, in February 1987
NASA Technical Reports Server (NTRS)
Rinsland, C. P.; Goldman, A.; Murcray, F. J.; Murcray, F. H.; Blatherwick, R. D.
1988-01-01
The IR absorptions spectra of 13 minor and trace atmospheric gases, recorded by the NOAA's Geophysical Monitoring for Climate Change (GMCC) program station at Mauna Loa, Hawaii, for four days in February 1987, were analyzed to determine simultaneous total vertical column amounts for these gases. Comparisons with other data indicate that the NOAA GMCC surface volume mixing ratios are good measures of the mean volume mixing ratios of these gases in the troposphere and that Mauna Loa is a favorable site for IR monitoring of atmospheric gases. The ozone total columns deduced from the IR spectra agreed with the correlative Umkehr observations.
NASA Technical Reports Server (NTRS)
Russell, P. B.; Redemann, J.; Schmid, B.; Bergstrom, R. W.; Livingston, J. M.; McIntosh, D. M.; Hartley, S.; Hobbs, P. V.; Quinn, P. K.; Carrico, C. M.;
2000-01-01
Aerosol single scattering albedo w (the ratio of scattering to extinction) is important in determining aerosol climatic effects, in explaining relationships between calculated and measured radiative fluxes, and in retrieving aerosol optical depths from satellite radiances. Recently, two experiments in the North Atlantic region, TARFOX and ACE-2, determined aerosol w by a variety of techniques. The techniques included fitting of calculated to measured fluxes; retrievals of w from skylight radiances; best fits of complex refractive index to profiles of backscatter, extinction, and size distribution; and in situ measurements of scattering and absorption at the surface and aloft. Both TARFOX and ACE-2 found a fairly wide range of values for w at midvisible wavelengths, with 0.85 less than wmidvis less than 0.99 for the marine aerosol impacted by continental pollution. Frequency distributions of w could usually be approximated by lognormals in wmax-w, with some occurrence of bimodality, suggesting the influence of different aerosol sources or processing. In both TARFOX and ACE-2, closure tests between measured and calculated radiative fluxes yielded best-fit values of wmidvis of 0.90+/-0.04 for the polluted boundary layer. Although these results have the virtue of describing the column aerosol unperturbed by sampling, they are subject to questions about representativeness and possible artifacts (e.g., unknown gas absorption). The other techniques gave larger values for wmidvis for the polluted boundary layer, with a typical result of wmidvis = 0.95+/-0.04, Current uncertainties in vv are large in terms of climate effects. More tests are needed of the consistency among different methods and of humidification effects on w.
Wang, Qiqin; Peng, Kun; Chen, Weijia; Cao, Zhen; Zhu, Peijie; Zhao, Yumei; Wang, Yuqiang; Zhou, Haibo; Jiang, Zhengjin
2017-01-06
This study described a simple synthetic methodology for preparing biomembrane mimicking monolithic column. The suggested approach not only simplifies the preparation procedure but also improves the stability of double chain phosphatidylcholine (PC) functionalized monolithic column. The physicochemical properties of the optimized monolithic column were characterized by scanning electron microscopy, energy-dispersive X-ray spectrometry, and nano-LC. Satisfactory column permeability, efficiency, stability and reproducibility were obtained on this double chain PC functionalized monolithic column. It is worth noting that the resulting polymeric monolith exhibits great potential as a useful alternative of commercial immobilized artificial membrane (IAM) columns for in vitro predication of drug-membrane interactions. Furthermore, the comparative study of both double chain and single chain PC functionalized monoliths indicates that the presence or absence of glycerol backbone and the number of acyl chains are not decisive for the predictive ability of IAM monoliths on drug-membrane interactions. This novel PC functionalized monolithic column also exhibited good selectivity for a protein mixture and a set of pharmaceutical compounds. Copyright © 2016 Elsevier B.V. All rights reserved.
Simulation of deep ventilation in Crater Lake, Oregon, 1951–2099
Wood, Tamara M.; Wherry, Susan A.; Piccolroaz, Sebastiano; Girdner, Scott F
2016-05-04
The frequency of deep ventilation events in Crater Lake, a caldera lake in the Oregon Cascade Mountains, was simulated in six future climate scenarios, using a 1-dimensional deep ventilation model (1DDV) that was developed to simulate the ventilation of deep water initiated by reverse stratification and subsequent thermobaric instability. The model was calibrated and validated with lake temperature data collected from 1994 to 2011. Wind and air temperature data from three general circulation models and two representative concentration pathways were used to simulate the change in lake temperature and the frequency of deep ventilation events in possible future climates. The lumped model air2water was used to project lake surface temperature, a required boundary condition for the lake model, based on air temperature in the future climates.The 1DDV model was used to simulate daily water temperature profiles through 2099. All future climate scenarios projected increased water temperature throughout the water column and a substantive reduction in the frequency of deep ventilation events. The least extreme scenario projected the frequency of deep ventilation events to decrease from about 1 in 2 years in current conditions to about 1 in 3 years by 2100. The most extreme scenario considered projected the frequency of deep ventilation events to be about 1 in 7.7 years by 2100. All scenarios predicted that the temperature of the entire water column will be greater than 4 °C for increasing lengths of time in the future and that the conditions required for thermobaric instability induced mixing will become rare or non-existent.The disruption of deep ventilation by itself does not provide a complete picture of the potential ecological and water quality consequences of warming climate to Crater Lake. Estimating the effect of warming climate on deep water oxygen depletion and water clarity will require careful modeling studies to combine the physical mixing processes affected by the atmosphere with the multitude of factors affecting the growth of algae and corresponding water clarity.
Stochastic parameterization of shallow cumulus convection estimated from high-resolution model data
NASA Astrophysics Data System (ADS)
Dorrestijn, Jesse; Crommelin, Daan T.; Siebesma, A. Pier.; Jonker, Harm J. J.
2013-02-01
In this paper, we report on the development of a methodology for stochastic parameterization of convective transport by shallow cumulus convection in weather and climate models. We construct a parameterization based on Large-Eddy Simulation (LES) data. These simulations resolve the turbulent fluxes of heat and moisture and are based on a typical case of non-precipitating shallow cumulus convection above sea in the trade-wind region. Using clustering, we determine a finite number of turbulent flux pairs for heat and moisture that are representative for the pairs of flux profiles observed in these simulations. In the stochastic parameterization scheme proposed here, the convection scheme jumps randomly between these pre-computed pairs of turbulent flux profiles. The transition probabilities are estimated from the LES data, and they are conditioned on the resolved-scale state in the model column. Hence, the stochastic parameterization is formulated as a data-inferred conditional Markov chain (CMC), where each state of the Markov chain corresponds to a pair of turbulent heat and moisture fluxes. The CMC parameterization is designed to emulate, in a statistical sense, the convective behaviour observed in the LES data. The CMC is tested in single-column model (SCM) experiments. The SCM is able to reproduce the ensemble spread of the temperature and humidity that was observed in the LES data. Furthermore, there is a good similarity between time series of the fractions of the discretized fluxes produced by SCM and observed in LES.
Aerosols and Clouds: In Cahoots to Change Climate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berg, Larry
Key knowledge gaps persist despite advances in the scientific understanding of how aerosols and clouds evolve and affect climate. The Two-Column Aerosol Project, or TCAP, was designed to provide a detailed set of observations to tackle this area of unknowns. Led by PNNL atmospheric scientist Larry Berg, ARM's Climate Research Facility was deployed in Cape Cod, Massachusetts for the 12-month duration of TCAP, which came to a close in June 2013. "We are developing new tools to look at particle chemistry, like our mass spectrometer used in TCAP that can tell us the individual chemical composition of an aerosol," saidmore » Berg. "Then, we'll run our models and compare it with the data that we have to make sure we're getting correct answers and make sure our climate models are reflecting the best information."« less
NASA Astrophysics Data System (ADS)
Pritchard, M. S.; Bretherton, C. S.; DeMott, C. A.
2014-12-01
New trade-offs are discussed in the cloud superparameterization approach to explicitly representing deep convection in global climate models. Intrinsic predictability tests show that the memory of cloud-resolving-scale organization is not critical for producing desired modes of organized convection such as the Madden-Julian Oscillation (MJO). This has implications for the feasibility of data assimilation and real-world initialization for superparameterized weather forecasting. Climate simulation sensitivity tests demonstrate that 400% acceleration of cloud superparameterization is possible by restricting the 32-128 km scale regime without deteriorating the realism of the simulated MJO but the number of cloud resolving model grid columns is discovered to constrain the efficiency of vertical mixing, with consequences for the simulated liquid cloud climatology. Tuning opportunities for next generation accelerated superparameterized climate models are discussed.
Aerosols and Clouds: In Cahoots to Change Climate
Berg, Larry
2018-01-16
Key knowledge gaps persist despite advances in the scientific understanding of how aerosols and clouds evolve and affect climate. The Two-Column Aerosol Project, or TCAP, was designed to provide a detailed set of observations to tackle this area of unknowns. Led by PNNL atmospheric scientist Larry Berg, ARM's Climate Research Facility was deployed in Cape Cod, Massachusetts for the 12-month duration of TCAP, which came to a close in June 2013. "We are developing new tools to look at particle chemistry, like our mass spectrometer used in TCAP that can tell us the individual chemical composition of an aerosol," said Berg. "Then, we'll run our models and compare it with the data that we have to make sure we're getting correct answers and make sure our climate models are reflecting the best information."
NASA Astrophysics Data System (ADS)
Fujii, Yoshiaki
2011-04-01
This study suggests that the cause of the stagnation in global warming in the mid 20th century was the atmospheric nuclear explosions detonated between 1945 and 1980. The estimated GST drop due to fine dust from the actual atmospheric nuclear explosions based on the published simulation results by other researchers (a single column model and Atmosphere-Ocean General Circulation Model) has served to explain the stagnation in global warming. Atmospheric nuclear explosions can be regarded as full-scale in situ tests for nuclear winter. The non-negligible amount of GST drop from the actual atmospheric explosions suggests that nuclear winter is not just a theory but has actually occurred, albeit on a small scale. The accuracy of the simulations of GST by IPCC would also be improved significantly by introducing the influence of fine dust from the actual atmospheric nuclear explosions into their climate models; thus, global warming behavior could be more accurately predicted.
Contrasting carbon cycle responses of the tropical continents to the 2015-2016 El Niño.
Liu, Junjie; Bowman, Kevin W; Schimel, David S; Parazoo, Nicolas C; Jiang, Zhe; Lee, Meemong; Bloom, A Anthony; Wunch, Debra; Frankenberg, Christian; Sun, Ying; O'Dell, Christopher W; Gurney, Kevin R; Menemenlis, Dimitris; Gierach, Michelle; Crisp, David; Eldering, Annmarie
2017-10-13
The 2015-2016 El Niño led to historically high temperatures and low precipitation over the tropics, while the growth rate of atmospheric carbon dioxide (CO 2 ) was the largest on record. Here we quantify the response of tropical net biosphere exchange, gross primary production, biomass burning, and respiration to these climate anomalies by assimilating column CO 2 , solar-induced chlorophyll fluorescence, and carbon monoxide observations from multiple satellites. Relative to the 2011 La Niña, the pantropical biosphere released 2.5 ± 0.34 gigatons more carbon into the atmosphere in 2015, consisting of approximately even contributions from three tropical continents but dominated by diverse carbon exchange processes. The heterogeneity of the carbon-exchange processes indicated here challenges previous studies that suggested that a single dominant process determines carbon cycle interannual variability. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Hu, Lianghai; Li, Xin; Feng, Shun; Kong, Liang; Su, Xingye; Chen, Xueguo; Qin, Feng; Ye, Mingliang; Zou, Hanfa
2006-04-01
A mode of comprehensive 2-D LC was developed by coupling a silica-bonded HSA column to a silica monolithic ODS column. This system combined the affinity property of the HSA column and the high-speed separation ability of the monolithic ODS column. The affinity chromatography with HSA-immobilized stationary phase was applied to study the interaction of multiple components in traditional Chinese medicines (TCMs) with HSA according to their affinity to protein in the first dimension. Then the unresolved components retained on the HSA column were further separated on the silica monolithic ODS column in the second dimension. By hyphenating the 2-D separation system to diode array detector and MS detectors, the UV and molecular weight information of the separated compounds can also be obtained. The developed separation system was applied to analysis of the extract of Rheum palmatum L., a number of low-abundant components can be separated on a single peak from the HSA column after normalization of peak heights. Six compounds were preliminarily identified according to their UV and MS spectra. It showed that this system was very useful for biological fingerprinting analysis of the components in TCMs and natural products.
Pradhan, Snigdhendubala; Boernick, Hilmar; Kumar, Pradeep; Mehrotra, Indu
2016-07-15
The correlation between octanol-water partition coefficient (KOW) and the transport of aqueous samples containing single organic compound is well documented. The concept of the KOW of river water containing the mixture of organics was evolved by Pradhan et al. (2015). The present study aims at determining the KOW and sorption parameters of synthetic aqueous samples and river water to finding out the correlation, if any. The laboratory scale columns packed with aquifer materials were fed with synthetic and river water samples. Under the operating conditions, the compounds in the samples did not separate, and all the samples that contain more than one organic compound yielded a single breakthrough curve. Breakthrough curves simulated from sorption isotherms were compared with those from the column runs. The sorption parameters such as retardation factor (Rf), height of mass transfer zone (HMTZ), rate of mass transfer zone (RMTZ), breakpoint column capacity (qb) and maximum column capacity (qx) estimated from column runs, sorption isotherms and models developed by Yoon-Nelson, Bohart-Adam and Thomas were in agreement. The empirical correlations were found between the KOW and sorption parameters. The transport of the organics measured as dissolved organic carbon (DOC) through the aquifer can be predicted from the KOW of the river water and other water samples. The novelty of the study is to measure KOW and to envisage the fate of the DOC of the river water, particularly during riverbank filtration. Statistical analysis of the results revealed a fair agreement between the observed and computed values. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Berg, Larry K.; Fast, Jerome D.; Barnard, James C.; Burton, Sharon P.; Cairns, Brian; Chand, Duli; Comstock, Jennifer M.; Dunagan, Stephen; Ferrare, Richard A.; Flynn, Connor J.;
2015-01-01
The Two-Column Aerosol Project (TCAP), conducted from June 2012 through June 2013, was a unique study designed to provide a comprehensive data set that can be used to investigate a number of important climate science questions, including those related to aerosol mixing state and aerosol radiative forcing. The study was designed to sample the atmosphere be tween and within two atmospheric columns; one fixed near the coast of North America (over Cape Cod, MA) and a second moveable column over the Atlantic Ocean several hundred kilometers from the coast. The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) was deployed at the base of the Cape Cod column, and the ARM Aerial Facility was utilized for the summer and winter intensive observation periods. One important finding from TCAP is that four of six nearly cloud-free flight days had aerosol layers aloft in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA high-spectral resolution lidar (HSRL-2).These layer s contributed up to 60 of the total observed aerosol optical depth (AOD). Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning material and nitrate compared to aerosol found near the surface. In addition, while there was a great deal of spatial and day-to-day variability in the aerosol chemical composition and optical properties, no systematic differences between the two columns were observed.
NASA Astrophysics Data System (ADS)
Berg, Larry K.; Fast, Jerome D.; Barnard, James C.; Burton, Sharon P.; Cairns, Brian; Chand, Duli; Comstock, Jennifer M.; Dunagan, Stephen; Ferrare, Richard A.; Flynn, Connor J.; Hair, Johnathan W.; Hostetler, Chris A.; Hubbe, John; Jefferson, Anne; Johnson, Roy; Kassianov, Evgueni I.; Kluzek, Celine D.; Kollias, Pavlos; Lamer, Katia; Lantz, Kathleen; Mei, Fan; Miller, Mark A.; Michalsky, Joseph; Ortega, Ivan; Pekour, Mikhail; Rogers, Ray R.; Russell, Philip B.; Redemann, Jens; Sedlacek, Arthur J.; Segal-Rosenheimer, Michal; Schmid, Beat; Shilling, John E.; Shinozuka, Yohei; Springston, Stephen R.; Tomlinson, Jason M.; Tyrrell, Megan; Wilson, Jacqueline M.; Volkamer, Rainer; Zelenyuk, Alla; Berkowitz, Carl M.
2016-01-01
The Two-Column Aerosol Project (TCAP), conducted from June 2012 through June 2013, was a unique study designed to provide a comprehensive data set that can be used to investigate a number of important climate science questions, including those related to aerosol mixing state and aerosol radiative forcing. The study was designed to sample the atmosphere between and within two atmospheric columns; one fixed near the coast of North America (over Cape Cod, MA) and a second moveable column over the Atlantic Ocean several hundred kilometers from the coast. The U.S. Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) was deployed at the base of the Cape Cod column, and the ARM Aerial Facility was utilized for the summer and winter intensive observation periods. One important finding from TCAP is that four of six nearly cloud-free flight days had aerosol layers aloft in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA high-spectral resolution lidar (HSRL-2). These layers contributed up to 60% of the total observed aerosol optical depth (AOD). Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning material and nitrate compared to aerosol found near the surface. In addition, while there was a great deal of spatial and day-to-day variability in the aerosol chemical composition and optical properties, no systematic differences between the two columns were observed.
NASA Astrophysics Data System (ADS)
Dubey, M. K.; Parker, H. A.; Wennberg, P. O.; Wunch, D.; Jacobson, A. R.; Kawa, S. R.; Keppel-Aleks, G.; Basu, S.; O'Dell, C.; Frankenberg, C.; Michalak, A. M.; Baker, D. F.; Christofferson, B.; Restrepo-Coupe, N.; Saleska, S. R.; De Araujo, A. C.; Miller, J. B.
2016-12-01
The Amazon basin stores 150-200 PgC, exchanges 18 PgC with the atmosphere every year and has taken up 0.42-0.65 PgC/y over the past two decades. Despite its global significance, the response of the tropical carbon cycle to climate variability and change is ill constrained as evidenced by the large negative and positive feedbacks in future climate simulations. The complex interplay of radiation, water and ecosystem phenology remains unresolved in current tropical ecosystem models. We use high frequency regional scale TCCON observations of column CO2, CO and CH4 near Manaus, Brazil that began in October 2014 to understand the aforementioned interplay of processes in regulating biosphere-atmosphere exchange. We observe a robust daily column CO2 uptake of about 2 ppm (4 ppm to 0.5 ppm) over 8 hours and evaluate how it changes as we transition to the dry season. Back-trajectory calculations show that the daily CO2 uptake footprint is terrestrial and influenced by the heterogeneity of the Amazon rain forests. The column CO falls from above 120 ppb to below 80 ppb as we transition from the biomass burning to wet seasons. The daily mean column CO2 rises by 3 ppm from October through June. Removal of biomass burning, secular CO2 increase and variations from transport (by Carbon tracker simulations) implies an increase of 2.3 ppm results from tropical biospheric processes (respiration and photosynthesis). This is consistent with ground-based remote sensing and eddy flux observations that indicate that leaf development and demography drives the tropical carbon cycle in regions that are not water limited and is not considered in current models. We compare our observations with output from 7 CO2 inversion transport models with assimilated meteorology and find that while 5 models reproduce the CO2 seasonal cycle all of them under predict the daily drawdown of CO2 by a factor of 3. This indicates that the CO2 flux partitioning between photosynthesis and respiration is incorrect in current models and needs refinement. Finally, we use OCO-2 column CO2 and Solar Induced Fluorescence observations over the Amazon to elucidate the tropical carbon cycle mechanisms at larger scales.
NASA Astrophysics Data System (ADS)
Koley, Susmita; Ghosh, Indranil
Quick and periodic inflow-outflow of adsorbate in an adsorbent column createsa differential temperature between the two ends of it, allowing for the generation of continuous sorption cooling in a single adsorbent tube. The concept has been proven experimentally and theoretically for near room temperature applications using activated carbon-nitrogen. The feasibility of generating continuous solid sorption cooling in a single adsorbent tube in the cryogenic domainhas been studied theoretically with a different adsorbent-adsorbate pair, namely, activated carbon-hydrogen. Precooling of gaseous hydrogen (before it enters the adsorbent column) and removal of the heat of adsorption has been achieved using liquid nitrogen. Theoretical estimation shows nearly 20 K temperature difference between the two ends under no load condition. Finally, parametric variations have been performed.
Analysis of Phenolic Antioxidants in Navy Mobility Fuels by Gas Chromatography-Mass Spectrometry
2013-06-19
8.0 LITERATURE CITED .........................................................................................14 APPENDIX A: Calibration Curves for...chromatogram from an F-76 diesel fuel containing 24 ppm of the AO-37 additive package, analyzed using single column GC-MS-SIM method...sulfur diesel fuel containing 6.25 ppm of the AO-37 additive package, analyzed using dual column Deans switch GC-MS-SIM method
49 CFR 173.12 - Exceptions for shipment of waste materials.
Code of Federal Regulations, 2013 CFR
2013-10-01
... (IBC) or a UN 11HH2 composite IBC, fitted with a polyethylene liner at least 6 mils (0.006 inches... section or in single packagings authorized for the acid in Column (8B) of the § 172.101 Hazardous... packagings authorized for the material in Column (8B) of the § 172.101 Hazardous Materials Table of this...
49 CFR 173.12 - Exceptions for shipment of waste materials.
Code of Federal Regulations, 2014 CFR
2014-10-01
... (IBC) or a UN 11HH2 composite IBC, fitted with a polyethylene liner at least 6 mils (0.006 inches... section or in single packagings authorized for the acid in Column (8B) of the § 172.101 Hazardous... packagings authorized for the material in Column (8B) of the § 172.101 Hazardous Materials Table of this...
NASA Astrophysics Data System (ADS)
Jaksic, V.; Wright, C.; Chanayil, Afeef; Faruque Ali, Shaikh; Murphy, Jimmy; Pakrashi, Vikram
2015-07-01
Tuned liquid column dampers have been proved to be successful in mitigating the dynamic responses of civil infrastructure. There have been some recent applications of this concept on wind turbines and this passive control system can help to mitigate responses of offshore floating platforms and wave devices. The control of dynamic responses of these devices is important for reducing loads on structural elements and facilitating operations and maintenance (O&M) activities. This paper outlines the use of a tuned single liquid column damper for the control of a tension leg platform supported wind turbine. Theoretical studies were carried out and a scaled model was tested in a wave basin to assess the performance of the damper. The tests on the model presented in this paper correspond to a platform with a very low natural frequency for surge, sway and yaw motions. For practical purposes, it was not possible to tune the liquid damper exactly to this frequency. The consequent approach taken and the efficiency of such approach are presented in this paper. Responses to waves of a single frequency are investigated along with responses obtained from wave spectra characterising typical sea states. The extent of control is quantified using peak and root mean squared dynamic responses respectively. The tests present some guidelines and challenges for testing scaled devices in relation to including response control mechanisms. Additionally, the results provide a basis for dictating future research on tuned liquid column damper based control on floating platforms.
Liu, Chengtang; Mu, Yujing; Zhang, Chenglong; Zhang, Zhibo; Zhang, Yuanyuan; Liu, Junfeng; Sheng, Jiujiang; Quan, Jiannong
2016-01-04
A liquid nitrogen-free GC-FID system equipped with a single column has been developed for measuring atmospheric C2-C12 hydrocarbons. The system is consisted of a cooling unit, a sampling unit and a separation unit. The cooling unit is used to meet the temperature needs of the sampling unit and the separation unit. The sampling unit includes a dehydration tube and an enrichment tube. No breakthrough of the hydrocarbons was detected when the temperature of the enrichment tube was kept at -90 °C and sampling volume was 400 mL. The separation unit is a small round oven attached on the cooling column. A single capillary column (OV-1, 30 m × 0.32 mm I.D.) was used to separate the hydrocarbons. An optimal program temperature (-60 ∼ 170 °C) of the oven was achieved to efficiently separate C2-C12 hydrocarbons. There were good linear correlations (R(2)=0.993-0.999) between the signals of the hydrocarbons and the enrichment amount of hydrocarbons, and the relative standard deviation (RSD) was less than 5%, and the method detection limits (MDLs) for the hydrocarbons were in the range of 0.02-0.10 ppbv for sampling volume of 400 mL. Field measurements were also conducted and more than 50 hydrocarbons from C2 to C12 were detected in Beijing city. Copyright © 2015 Elsevier B.V. All rights reserved.
GreenNet: A Global Ground-Based Network of Instruments Measuring Greenhouse Gases in the Atmosphere
NASA Astrophysics Data System (ADS)
Floyd, M.; Grunberg, M.; Wilson, E. L.
2017-12-01
Climate change is the most important crisis of our lifetime. For policy makers to take action to combat the effects of climate change, they will need definitive proof that it is occurring globally. We have developed a low-cost ground instrument - a portable miniaturized laser heterodyne radiometer (mini-LHR) - capable of measuring concentrations of two of the most potent anthropogenic greenhouse gases, CO2 and methane, in columns in the atmosphere. They work by combining sunlight that has undergone absorption by gases with light from a laser. This combined light is detected by a photoreciever and a radio frequency beat signal is produced. From this beat signal, concentrations of these gases throughout the atmospheric column can be determined. A network of mini-LHR instruments in locations around the world will give us the data necessary to significantly reduce uncertainty in greenhouse gas sinks and sources contributing to climate change. Each instrument takes one reading per minute while the sun is up. With a goal to establish up to 500 instrument sites, the estimated total data per day will likely exceed 1GB. Every piece of data must be sorted as it comes in to determine whether it is a good or bad reading. The goal of the citizen science project is to collaborate with citizen scientists enrolled with Zooniverse.org to cycle through our data and help sort it, while also learning about the mini-LHR, greenhouse gases and climate change. This data will be used to construct an algorithm to automatically sort data that relies on statistical analyses of the previously sorted data.
Yang, Yang; Zhang, Yongmin; Wei, Chong; Li, Jing; Sun, Wenji
2018-09-01
Silver ion chromatography, utilizing columns packed with silver ions bonded to silica gel, has proved to be an invaluable technique for the analysis of some positional isomers. In this work, silver ion chromatography by combination with online heart-cutting LC-LC technique for the preparative separation of two sesquiterpenes positional isomers from a natural product was investigated. On the basis of the evaluation that silver ion content impacts on the separation, the laboratory-made silver ion columns, utilizing silica gel impregnated with 15% silver nitrate as column packing materials, were used for peak resolution improvement of these two isomers and the preparative separation of them in heart-cutting LC-LC. The relationship among the maximal sample load, flow rate and peak resolution in the silver ion column were optimized, and the performance of the silver ion column was compared with conventional C 18 column and silica gel column. Based on the developed chromatographic conditions, online heart-cutting LC-LC chromatographic separation system in combination with a silica gel column and a silver ion column that was applied to preparative separation of these two isomers from a traditional Chinese medicine, Inula racemosa Hook.f., was established. The results showed that the online heart-cutting LC-LC technique by combination of a silica gel column and a silver ion column for the preparative separation of these two positional isomers from this natural plant was superior to the preparative separation performed on a single-column system with C 18 column or silica gel column. Copyright © 2018 Elsevier B.V. All rights reserved.
Think Globally, Act Locally: Teaching Climate Change through Digital Inquiry
ERIC Educational Resources Information Center
Castek, Jill; Dwyer, Bernadette
2018-01-01
In the 21st century, our students increasingly communicate, connect, collaborate, and interact with diverse cultures and traditions around the world, so they need to develop global literacy. This department column highlights research and research-to-practice at the international level to bring global best teaching practices to the forefront.…
Persistence and memory timescales in root-zone soil moisture dynamics
Khaled Ghannam; Taro Nakai; Athanasios Paschalis; Andrew C. Oishi; Ayumi Kotani; Yasunori Igarashi; Tomo' omi Kumagai; Gabriel G. Katul
2016-01-01
The memory timescale that characterizes root-zone soil moisture remains the dominant measure in seasonal forecasts of land-climate interactions. This memory is a quasi-deterministic timescale associated with the losses (e.g., evapotranspiration) from the soil column and is often interpreted as persistence in soil moisture states. Persistence, however,...
Airborne Solar Radiant Flux Measurements During ACE-2
NASA Technical Reports Server (NTRS)
Bergstrom, Robert W.; Russell, Philip B.; Jonsson, Haflidi
2000-01-01
Aerosol effects on atmospheric radiative fluxes provide a forcing function that can change the climate in potentially significant ways. This aerosol radiative forcing is a major source of uncertainty in understanding the climate change of the past century and predicting future climate. To help reduce this uncertainty, the 1996 Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) and the 1997 Aerosol Characterization Experiment (ACE-2) measured the properties and radiative effects of aerosols over the Atlantic Ocean. In the ACE 2 program the solar radiant fluxes were measured on the Pelican aircraft and the UK Met Office C130. This poster will show results from the measurements for the aerosol effects during the clear column days. We will compare the results with calculations of the radiant fluxes.
NASA Astrophysics Data System (ADS)
Weidner, E. F.; Mayer, L. A.; Weber, T. C.; Jerram, K.; Jakobsson, M.; Chernykh, D.; Ananiev, R.; Mohammad, R.; Semiletov, I. P.
2016-12-01
On the Eastern Siberian Arctic Shelf (ESAS) subsea permafrost, shallow gas hydrates, and trapped free gas hold an estimated 1400 Gt of methane. Recent observations of methane bubble plumes and high concentrations of dissolved methane in the water column indicate methane release via ebullition. Methane gas released from the shallow ESAS (<50 m average depth) has high potential to be transported to the atmosphere. To directly and quantitatively address the magnitude of methane flux and the fate of rising bubbles in the ESAS, methane seeps were mapped with a broadband split-beam echosounder as part of the Swedish-Russian-US Arctic Ocean Investigation of Climate-Cryosphere-Carbon Interactions program (SWERUS-C3). Acoustic measurements were made over a broad range of frequencies (16 to 29 kHz). The broad bandwidth provided excellent discrimination of individual targets in the water column, allowing for the identification of single bubbles. Absolute bubble target strength values were determined by compensating apparent target strength measurements for beam pattern effects via standard calibration techniques. The bubble size distribution of seeps with individual bubble signatures was determined by exploiting bubble target strength models over the broad range of frequencies. For denser seeps, with potential higher methane flux, bubble size distribution was determined via extrapolation from seeps in similar geomorphological settings. By coupling bubble size distributions with rise velocity measurements, which are made possible by split-beam target tracking, methane gas flux can be estimated. Of the 56 identified seeps in the SWERUS data set, individual bubbles scatterers were identified in more than half (31) of the seeps. Preliminary bubble size distribution results indicate bubble radii range from 0.75 to 3.0 mm, with relatively constant bubble size distribution throughout the water column. Initial rise velocity observations indicate bubble rise velocity increases with decreasing depth, seemingly independent of bubble radius.
NASA Astrophysics Data System (ADS)
ul-Haq, Zia; Rana, Asim Daud; Tariq, Salman; Mahmood, Khalid; Ali, Muhammad; Bashir, Iqra
2018-03-01
We have applied regression analyses for the modeling of tropospheric NO2 (tropo-NO2) as the function of anthropogenic nitrogen oxides (NOx) emissions, aerosol optical depth (AOD), and some important meteorological parameters such as temperature (Temp), precipitation (Preci), relative humidity (RH), wind speed (WS), cloud fraction (CLF) and outgoing long-wave radiation (OLR) over different climatic zones and land use/land cover types in South Asia during October 2004-December 2015. Simple linear regression shows that, over South Asia, tropo-NO2 variability is significantly linked to AOD, WS, NOx, Preci and CLF. Also zone-5, consisting of tropical monsoon areas of eastern India and Myanmar, is the only study zone over which all the selected parameters show their influence on tropo-NO2 at statistical significance levels. In stepwise multiple linear modeling, tropo-NO2 column over landmass of South Asia, is significantly predicted by the combination of RH (standardized regression coefficient, β = - 49), AOD (β = 0.42) and NOx (β = 0.25). The leading predictors of tropo-NO2 columns over zones 1-5 are OLR, AOD, Temp, OLR, and RH respectively. Overall, as revealed by the higher correlation coefficients (r), the multiple regressions provide reasonable models for tropo-NO2 over South Asia (r = 0.82), zone-4 (r = 0.90) and zone-5 (r = 0.93). The lowest r (of 0.66) has been found for hot semi-arid region in northwestern Indus-Ganges Basin (zone-2). The highest value of β for urban area AOD (of 0.42) is observed for megacity Lahore, located in warm semi-arid zone-2 with large scale crop-residue burning, indicating strong influence of aerosols on the modeled tropo-NO2 column. A statistical significant correlation (r = 0.22) at the 0.05 level is found between tropo-NO2 and AOD over Lahore. Also NOx emissions appear as the highest contributor (β = 0.59) for modeled tropo-NO2 column over megacity Dhaka.
Intercomparison of daytime stratospheric NO2 satellite retrievals and model simulations
NASA Astrophysics Data System (ADS)
Belmonte Rivas, M.; Veefkind, P.; Boersma, F.; Levelt, P.; Eskes, H.; Gille, J.
2014-07-01
This paper evaluates the agreement between stratospheric NO2 retrievals from infrared limb sounders (Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and High Resolution Dynamics Limb Sounder (HIRDLS)) and solar UV/VIS backscatter sensors (Ozone Monitoring Instrument (OMI), Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) limb and nadir) over the 2005-2007 period and across the seasons. The observational agreement is contrasted with the representation of NO2 profiles in 3-D chemical transport models such as the Whole Atmosphere Community Climate Model (WACCM) and TM4. A conclusion central to this work is that the definition of a reference for stratospheric NO2 columns formed by consistent agreement among SCIAMACHY, MIPAS and HIRDLS limb records (all of which agree to within 0.25 × 1015 molecules cm-2 or better than 10%) allows us to draw attention to relative errors in other data sets, e.g., (1) WACCM overestimates NO2 densities in the extratropical lower stratosphere, particularly in the springtime and over northern latitudes by up to 35% relative to limb observations, and (2) there are remarkable discrepancies between stratospheric NO2 column estimates from limb and nadir techniques, with a characteristic seasonally and latitudinally dependent pattern. We find that SCIAMACHY nadir and OMI stratospheric columns show overall biases of -0.5 × 1015 molecules cm-2 (-20%) and +0.6 × 1015 molecules cm-2 (+20%) relative to limb observations, respectively. It is argued that additive biases in nadir stratospheric columns are not expected to affect tropospheric retrievals significantly, and that they can be attributed to errors in the total slant column density, related either to algorithmic or instrumental effects. In order to obtain accurate and long-term time series of stratospheric NO2, an effort towards the harmonization of currently used differential optical absorption spectroscopy (DOAS) approaches to nadir retrievals becomes essential, as well as their agreement to limb and ground-based observations, particularly now that limb techniques are giving way to nadir observations as the next generation of climate and air quality monitoring instruments pushes forth.
Surface radiation fluxes in transient climate simulations
NASA Astrophysics Data System (ADS)
Garratt, J. R.; O'Brien, D. M.; Dix, M. R.; Murphy, J. M.; Stephens, G. L.; Wild, M.
1999-01-01
Transient CO 2 experiments from five coupled climate models, in which the CO 2 concentration increases at rates of 0.6-1.1% per annum for periods of 75-200 years, are used to document the responses of surface radiation fluxes, and associated atmospheric properties, to the CO 2 increase. In all five models, the responses of global surface temperature and column water vapour are non-linear and fairly tightly constrained. Thus, global warming lies between 1.9 and 2.7 K at doubled, and between 3.1 and 4.1 K at tripled, CO 2, whilst column water vapour increases by between 3.5 and 4.5 mm at doubled, and between 7 and 8 mm at tripled, CO 2. Global cloud fraction tends to decrease by 1-2% out to tripled CO 2, mainly the result of decreases in low cloud. Global increases in column water, and differences in these increases between models, are mainly determined by the warming of the tropical oceans relative to the middle and high latitudes; these links are emphasised in the zonal profiles of warming and column water vapour increase, with strong water vapour maxima in the tropics. In all models the all-sky shortwave flux to the surface S↓ (global, annual average) changes by less than 5 W m -2 out to tripled CO 2, in some cases being essentially invariant in time. In contrast, the longwave flux to the surface L↓ increases significantly, by 25 W m -2 typically at tripled CO 2. The variations of S↓ and L↓ (clear-sky and all-sky fluxes) with increase in CO 2 concentration are generally non-linear, reflecting the effects of ocean thermal inertia, but as functions of global warming are close to linear in all five models. This is best illustrated for the clear-sky downwelling fluxes, and the net radiation. Regionally, as illustrated in zonal profiles and global distributions, greatest changes in both S↓ and L↓ are the result primarily of local maxima in warming and column water vapour increases.
Are winds in cities always slower than in the countryside? Modelling the Urban Wind Island Effect
NASA Astrophysics Data System (ADS)
Droste, Arjan; Steeneveld, Gert-Jan
2017-04-01
Though the Urban Heat Island has been extensively studied, relatively little has been documented about differences in wind between the city as a whole and the countryside. Urban winds are difficult to capture in both observations and modelling, due to the complex urban canyon and neighbourhood geometry. This study uses a straightforward mixed-layer model (Tennekes & Driedonks, 1981) to investigate the contrast between the diurnal cycle of wind in the urban and the rural environment. The model contains one urban and one rural column, to identify differences in wind patterns between city and countryside under equal geostrophic forcing. The model has been evaluated against rural observations from the 213 m. Cabauw tower (the Netherlands), and the urban observations from the BUBBLE campaign (Basel, Rotach et al., 2005). The influence of the urban fabric on the wind is investigated by varying the surface underneath the column model using the 10 urban Local Climate Zones, thereby altering building height, fraction of impervious surface, and initial boundary-layer depth. First results show that for high initial urban boundary-layer depths compared to the rural boundary-layer depth, the urban column can be much windier than its rural counterpart: i.e. the urban Wind Island Effect. The effect appears to be most prominent in the morning and the late afternoon (up to 1 m/s), for Local Climate Zones with lower buildings (3 or 7). BUBBLE observations confirm the timing of the Wind Island Effect, though with weaker magnitude.
Understanding Differences in the Response to Composition Change as Simulated by CCMVal Models
NASA Technical Reports Server (NTRS)
Douglass, Anne R.; Strahan, Susan E.; Oman, Luke D.
2012-01-01
Chemistry climate models (CCMs) have a common conceptual basis. Differences in implementation lead to differences in the stratospheric ozone response to changes in composition and climate. Although evaluation by CCMVal-2 identified strengths and weaknesses of participant models, the evaluation results were not used to discriminate among projections for future ozone evolution, at least in part because the overall diagnostic evaluation did not cleanly relate to the differences in CCM response. Here we use a subset of CCMVal diagnostics and additional analysis to understand the differences in response. In the upper stratosphere, differences in simulated temperature and total odd nitrogen prior to increases in chlorine loading explain the large differences in CCM sensitivity. In the lower atmosphere, there are two principle contributions to differences in CCM sensitivity to chlorine and climate change. First, differences in the lower stratospheric ClO affect simulated sensitivity to chlorine. CCMs with best transport performance match NDACC column HCl measurements at a broad range of latitudes. Other CCMs disagree with observations due to differences in total inorganic chlorine, partitioning between HCl and ClONO2, or both. Differences in ClONO2 are directly related to differences in simulated ClO. Second, although all CCMs predict increased tropical upwelling, the rate of increase varies and contributes to differences in tropical ozone and the 60N-60S column average.
Stratospheric solar geoengineering without ozone loss.
Keith, David W; Weisenstein, Debra K; Dykema, John A; Keutsch, Frank N
2016-12-27
Injecting sulfate aerosol into the stratosphere, the most frequently analyzed proposal for solar geoengineering, may reduce some climate risks, but it would also entail new risks, including ozone loss and heating of the lower tropical stratosphere, which, in turn, would increase water vapor concentration causing additional ozone loss and surface warming. We propose a method for stratospheric aerosol climate modification that uses a solid aerosol composed of alkaline metal salts that will convert hydrogen halides and nitric and sulfuric acids into stable salts to enable stratospheric geoengineering while reducing or reversing ozone depletion. Rather than minimizing reactive effects by reducing surface area using high refractive index materials, this method tailors the chemical reactivity. Specifically, we calculate that injection of calcite (CaCO 3 ) aerosol particles might reduce net radiative forcing while simultaneously increasing column ozone toward its preanthropogenic baseline. A radiative forcing of -1 W⋅m -2 , for example, might be achieved with a simultaneous 3.8% increase in column ozone using 2.1 Tg⋅y -1 of 275-nm radius calcite aerosol. Moreover, the radiative heating of the lower stratosphere would be roughly 10-fold less than if that same radiative forcing had been produced using sulfate aerosol. Although solar geoengineering cannot substitute for emissions cuts, it may supplement them by reducing some of the risks of climate change. Further research on this and similar methods could lead to reductions in risks and improved efficacy of solar geoengineering methods.
Li, Yun Bo; Li, Lian Lin; Xu, Bai Bing; Wu, Wei; Wu, Rui Yuan; Wan, Xiang; Cheng, Qiang; Cui, Tie Jun
2016-01-01
The programmable and digital metamaterials or metasurfaces presented recently have huge potentials in designing real-time-controlled electromagnetic devices. Here, we propose the first transmission-type 2-bit programmable coding metasurface for single-sensor and single- frequency imaging in the microwave frequency. Compared with the existing single-sensor imagers composed of active spatial modulators with their units controlled independently, we introduce randomly programmable metasurface to transform the masks of modulators, in which their rows and columns are controlled simultaneously so that the complexity and cost of the imaging system can be reduced drastically. Different from the single-sensor approach using the frequency agility, the proposed imaging system makes use of variable modulators under single frequency, which can avoid the object dispersion. In order to realize the transmission-type 2-bit programmable metasurface, we propose a two-layer binary coding unit, which is convenient for changing the voltages in rows and columns to switch the diodes in the top and bottom layers, respectively. In our imaging measurements, we generate the random codes by computer to achieve different transmission patterns, which can support enough multiple modes to solve the inverse-scattering problem in the single-sensor imaging. Simple experimental results are presented in the microwave frequency, validating our new single-sensor and single-frequency imaging system. PMID:27025907
Li, Yun Bo; Li, Lian Lin; Xu, Bai Bing; Wu, Wei; Wu, Rui Yuan; Wan, Xiang; Cheng, Qiang; Cui, Tie Jun
2016-03-30
The programmable and digital metamaterials or metasurfaces presented recently have huge potentials in designing real-time-controlled electromagnetic devices. Here, we propose the first transmission-type 2-bit programmable coding metasurface for single-sensor and single- frequency imaging in the microwave frequency. Compared with the existing single-sensor imagers composed of active spatial modulators with their units controlled independently, we introduce randomly programmable metasurface to transform the masks of modulators, in which their rows and columns are controlled simultaneously so that the complexity and cost of the imaging system can be reduced drastically. Different from the single-sensor approach using the frequency agility, the proposed imaging system makes use of variable modulators under single frequency, which can avoid the object dispersion. In order to realize the transmission-type 2-bit programmable metasurface, we propose a two-layer binary coding unit, which is convenient for changing the voltages in rows and columns to switch the diodes in the top and bottom layers, respectively. In our imaging measurements, we generate the random codes by computer to achieve different transmission patterns, which can support enough multiple modes to solve the inverse-scattering problem in the single-sensor imaging. Simple experimental results are presented in the microwave frequency, validating our new single-sensor and single-frequency imaging system.
Modeling Cooling Rates of Martian Flood Basalt Columns
NASA Astrophysics Data System (ADS)
Weiss, D. K.; Jackson, B.; Milazzo, M. P.; Barnes, J. W.
2011-12-01
Columnar jointing in large basalt flows have been extensively studied and can provide important clues about the emplacement conditions and cooling history of a basalt flow. The recent discovery of basalt columns on Mars in crater walls near Marte Vallis provides an opportunity to infer conditions on early Mars when the Martian basalt flows were laid down. Comparison of the Martian columns to Earth analogs allows us to gain further insight into the early Martian climate, and among the best terrestrial analogs are the basalt columns in the Columbia River Basalt Group (CRBG) in eastern Washington. The CRBG is one of the youngest (< 17 Myrs old) and most extensively studied basalt provinces in the world, extending over 163,700 square km with total thickness exceeding 1 km in some places. The morphologies and textures of CRBG basalt columns suggest that in many places flows ~100 m thick cooled at uniform rates, even deep in the flow interior. Such cooling seems to require the presence of water in the column joints since the flow interiors should have cooled much more slowly than the flow margins if conductive cooling dominated. Secondary features, such pillow basalts, likewise suggest the basalt flows were in direct contact with standing water in many places. At the resolution provided by the orbiting HiRISE camera (0.9 m), the Martian basalt columns resemble the CRBG columns in many respects, and so, subject to important caveats, inferences linking the morphologies of the CRBG columns to their thermal histories can be extended in some respects to the Martian columns. In this presentation, we will describe our analysis of the HiRISE images of the Martian columns and what can be reasonably inferred about their thermal histories and the conditions under which they were emplaced. We will also report on a field expedition to the CRBG in eastern Washington State. During that expedition, we surveyed basalt column outcrops on the ground and from the air using Unmanned Aerial Vehicles to compare ground-truth measurements of the columns to aerial measurements and study the limitations and biases inherent in remote-sensing data of such geological features. D.K.W. acknowledges the South Carolina Space Grant Consortium for travel funding.
Wang, Sheng; Qian, Xin; Han, Bo-Ping; Luo, Lian-Cong; Hamilton, David P
2012-05-15
Thermal regime is strongly associated with hydrodynamics in water, and it plays an important role in the dynamics of water quality and ecosystem succession of stratified reservoirs. Changes in both climate and hydrological conditions can modify thermal regimes. Liuxihe Reservoir (23°45'50″N; 113°46'52″E) is a large, stratified and deep reservoir in Guangdong Province, located at the Tropic of Cancer of southern China. The reservoir is a warm monomictic water body with a long period of summer stratification and a short period of mixing in winter. The vertical distribution of suspended particulate material and nutrients are influenced strongly by the thermal structure and the associated flow fields. The hypolimnion becomes anoxic in the stratified period, increasing the release of nutrients from the bottom sediments. Fifty-one years of climate and reservoir operational observations are used here to show the marked changes in local climate and reservoir operational schemes. The data show increasing air temperature and more violent oscillations in inflow volumes in the last decade, while the inter-annual water level fluctuations tend to be more moderate. To quantify the effects of changes in climate and hydrological conditions on thermal structure, we used a numerical simulation model to create scenarios incorporating different air temperatures, inflow volumes, and water levels. The simulations indicate that water column stability, the duration of the mixing period, and surface and outflow temperatures are influenced by both natural factors and by anthropogenic factors such as climate change and reservoir operation schemes. Under continuous warming and more stable storage in recent years, the simulations indicate greater water column stability and increased duration of stratification, while irregular large discharge events may reduce stability and lead to early mixing in autumn. Our results strongly suggest that more attention should be focused on water quality in years of extreme climate variation and hydrological conditions, and selective withdrawal of deep water may provide an efficient means to reduce internal loading in warm years. Copyright © 2012 Elsevier Ltd. All rights reserved.
Toward Creating A Global Retrospective Climatology of Aerosol Properties
NASA Technical Reports Server (NTRS)
Curran, Robert J.; Mishchenko, Michael I.; Hansen, James E. (Technical Monitor)
2000-01-01
Tropospheric aerosols are thought to cause a significant direct and indirect climate forcing, but the magnitude of this forcing remains highly uncertain because of poor knowledge of global aerosol characteristics and their temporal changes. The standard long-term global product, the one-channel Advanced Very-High-Resolution Radiometer (AVHRR) aerosol optical thickness over the ocean, relies on a single predefined aerosol model and can be inaccurate in many cases. Furthermore, it provides no information on aerosol column number density, thus making it impossible to estimate the indirect aerosol effect on climate. Total Ozone Mapping Spectrometer (TOMS) data can be used to detect absorbing aerosols over land, but are insensitive to aerosols located below one kilometer. It is thus clear that innovative approaches must be employed in order to extract a more quantitative and accurate aerosol climatology from available satellite and other measurements, thus enabling more reliable estimates of the direct and indirect aerosol forcings. The Global Aerosol Climatology Project (GACP) was established in 1998 as part of the Global Energy and Water Cycle Experiment (GEWEX). Its main objective is to analyze satellite radiance measurements and field observations to infer the global distribution of aerosols, their properties, and their seasonal and interannual variations. The overall goal is to develop advanced global aerosol climatologies for the period of satellite data and to make the aerosol climatologies broadly available through the GACP web site.
NASA Technical Reports Server (NTRS)
Meyer, Kerry; Yang, Yuekui; Platnick, Steven
2016-01-01
This paper presents an investigation of the expected uncertainties of a single channel cloud optical thickness (COT) retrieval technique, as well as a simple cloud-temperature-threshold-based thermodynamic phase approach, in support of the Deep Space Climate Observatory (DSCOVR) mission. DSCOVR cloud products will be derived from Earth Polychromatic Imaging Camera (EPIC) observations in the ultraviolet and visible spectra. Since EPIC is not equipped with a spectral channel in the shortwave or mid-wave infrared that is sensitive to cloud effective radius (CER), COT will be inferred from a single visible channel with the assumption of appropriate CER values for liquid and ice phase clouds. One month of Aqua MODIS daytime granules from April 2005 is selected for investigating cloud phase sensitivity, and a subset of these granules that has similar EPIC sun-view geometry is selected for investigating COT uncertainties. EPIC COT retrievals are simulated with the same algorithm as the operational MODIS cloud products (MOD06), except using fixed phase-dependent CER values. Uncertainty estimates are derived by comparing the single channel COT retrievals with the baseline bi-spectral MODIS retrievals. Results show that a single channel COT retrieval is feasible for EPIC. For ice clouds, single channel retrieval errors are minimal (less than 2 percent) due to the particle- size insensitivity of the assumed ice crystal (i.e., severely roughened aggregate of hexagonal columns) scattering properties at visible wavelengths, while for liquid clouds the error is mostly limited to within 10 percent, although for thin clouds (COT less than 2) the error can be higher. Potential uncertainties in EPIC cloud masking and cloud temperature retrievals are not considered in this study.
Meyer, Kerry; Yang, Yuekui; Platnick, Steven
2018-01-01
This paper presents an investigation of the expected uncertainties of a single channel cloud optical thickness (COT) retrieval technique, as well as a simple cloud temperature threshold based thermodynamic phase approach, in support of the Deep Space Climate Observatory (DSCOVR) mission. DSCOVR cloud products will be derived from Earth Polychromatic Imaging Camera (EPIC) observations in the ultraviolet and visible spectra. Since EPIC is not equipped with a spectral channel in the shortwave or mid-wave infrared that is sensitive to cloud effective radius (CER), COT will be inferred from a single visible channel with the assumption of appropriate CER values for liquid and ice phase clouds. One month of Aqua MODIS daytime granules from April 2005 is selected for investigating cloud phase sensitivity, and a subset of these granules that has similar EPIC sun-view geometry is selected for investigating COT uncertainties. EPIC COT retrievals are simulated with the same algorithm as the operational MODIS cloud products (MOD06), except using fixed phase-dependent CER values. Uncertainty estimates are derived by comparing the single channel COT retrievals with the baseline bi-spectral MODIS retrievals. Results show that a single channel COT retrieval is feasible for EPIC. For ice clouds, single channel retrieval errors are minimal (< 2%) due to the particle size insensitivity of the assumed ice crystal (i.e., severely roughened aggregate of hexagonal columns) scattering properties at visible wavelengths, while for liquid clouds the error is mostly limited to within 10%, although for thin clouds (COT < 2) the error can be higher. Potential uncertainties in EPIC cloud masking and cloud temperature retrievals are not considered in this study. PMID:29619116
Meyer, Kerry; Yang, Yuekui; Platnick, Steven
2016-01-01
This paper presents an investigation of the expected uncertainties of a single channel cloud optical thickness (COT) retrieval technique, as well as a simple cloud temperature threshold based thermodynamic phase approach, in support of the Deep Space Climate Observatory (DSCOVR) mission. DSCOVR cloud products will be derived from Earth Polychromatic Imaging Camera (EPIC) observations in the ultraviolet and visible spectra. Since EPIC is not equipped with a spectral channel in the shortwave or mid-wave infrared that is sensitive to cloud effective radius (CER), COT will be inferred from a single visible channel with the assumption of appropriate CER values for liquid and ice phase clouds. One month of Aqua MODIS daytime granules from April 2005 is selected for investigating cloud phase sensitivity, and a subset of these granules that has similar EPIC sun-view geometry is selected for investigating COT uncertainties. EPIC COT retrievals are simulated with the same algorithm as the operational MODIS cloud products (MOD06), except using fixed phase-dependent CER values. Uncertainty estimates are derived by comparing the single channel COT retrievals with the baseline bi-spectral MODIS retrievals. Results show that a single channel COT retrieval is feasible for EPIC. For ice clouds, single channel retrieval errors are minimal (< 2%) due to the particle size insensitivity of the assumed ice crystal (i.e., severely roughened aggregate of hexagonal columns) scattering properties at visible wavelengths, while for liquid clouds the error is mostly limited to within 10%, although for thin clouds (COT < 2) the error can be higher. Potential uncertainties in EPIC cloud masking and cloud temperature retrievals are not considered in this study.
NASA Astrophysics Data System (ADS)
Meyer, Kerry; Yang, Yuekui; Platnick, Steven
2016-04-01
This paper presents an investigation of the expected uncertainties of a single-channel cloud optical thickness (COT) retrieval technique, as well as a simple cloud-temperature-threshold-based thermodynamic phase approach, in support of the Deep Space Climate Observatory (DSCOVR) mission. DSCOVR cloud products will be derived from Earth Polychromatic Imaging Camera (EPIC) observations in the ultraviolet and visible spectra. Since EPIC is not equipped with a spectral channel in the shortwave or mid-wave infrared that is sensitive to cloud effective radius (CER), COT will be inferred from a single visible channel with the assumption of appropriate CER values for liquid and ice phase clouds. One month of Aqua MODerate-resolution Imaging Spectroradiometer (MODIS) daytime granules from April 2005 is selected for investigating cloud phase sensitivity, and a subset of these granules that has similar EPIC Sun-view geometry is selected for investigating COT uncertainties. EPIC COT retrievals are simulated with the same algorithm as the operational MODIS cloud products (MOD06), except using fixed phase-dependent CER values. Uncertainty estimates are derived by comparing the single-channel COT retrievals with the baseline bi-spectral MODIS retrievals. Results show that a single-channel COT retrieval is feasible for EPIC. For ice clouds, single-channel retrieval errors are minimal (< 2 %) due to the particle size insensitivity of the assumed ice crystal (i.e., severely roughened aggregate of hexagonal columns) scattering properties at visible wavelengths, while for liquid clouds the error is mostly limited to within 10 %, although for thin clouds (COT < 2) the error can be higher. Potential uncertainties in EPIC cloud masking and cloud temperature retrievals are not considered in this study.
Smoke and Pollution Aerosol Effect on Cloud Cover
NASA Technical Reports Server (NTRS)
Kaufman, Yoram J.; Koren, Ilan
2006-01-01
Pollution and smoke aerosols can increase or decrease the cloud cover. This duality in the effects of aerosols forms one of the largest uncertainties in climate research. Using solar measurements from Aerosol Robotic Network sites around the globe, we show an increase in cloud cover with an increase in the aerosol column concentration and an inverse dependence on the aerosol absorption of sunlight. The emerging rule appears to be independent of geographical location or aerosol type, thus increasing our confidence in the understanding of these aerosol effects on the clouds and climate. Preliminary estimates suggest an increase of 5% in cloud cover.
Montes-Hugo, Martin; Doney, Scott C; Ducklow, Hugh W; Fraser, William; Martinson, Douglas; Stammerjohn, Sharon E; Schofield, Oscar
2009-03-13
The climate of the western shelf of the Antarctic Peninsula (WAP) is undergoing a transition from a cold-dry polar-type climate to a warm-humid sub-Antarctic-type climate. Using three decades of satellite and field data, we document that ocean biological productivity, inferred from chlorophyll a concentration (Chl a), has significantly changed along the WAP shelf. Summertime surface Chl a (summer integrated Chl a approximately 63% of annually integrated Chl a) declined by 12% along the WAP over the past 30 years, with the largest decreases equatorward of 63 degrees S and with substantial increases in Chl a occurring farther south. The latitudinal variation in Chl a trends reflects shifting patterns of ice cover, cloud formation, and windiness affecting water-column mixing. Regional changes in phytoplankton coincide with observed changes in krill (Euphausia superba) and penguin populations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jung Hwa; Hyung, Seok-Won; Mun, Dong-Gi
2012-08-03
A multi-functional liquid chromatography system that performs 1-dimensional, 2-dimensional (strong cation exchange/reverse phase liquid chromatography, or SCX/RPLC) separations, and online phosphopeptides enrichment using a single binary nano-flow pump has been developed. With a simple operation of a function selection valve, which is equipped with a SCX column and a TiO2 (titanium dioxide) column, a fully automated selection of three different experiment modes was achieved. Because the current system uses essentially the same solvent flow paths, the same trap column, and the same separation column for reverse-phase separation of 1D, 2D, and online phosphopeptides enrichment experiments, the elution time information obtainedmore » from these experiments is in excellent agreement, which facilitates correlating peptide information from different experiments.« less
Observations of circumstellar carbon monoxide and evidence for multiple ejections in red giants
NASA Technical Reports Server (NTRS)
Bernat, A. P.
1981-01-01
Observations of the fundamental 4.6 micron band of CO in nine red giants are presented. A common feature is multiple absorption lines which are identified as products of separate components or shells. Column densities are derived; the relative values should be free of the uncertainties inherent in determining the absolute scale. These column densities are well fitted by single excitation temperatures for each absorption component; these excitation temperatures are identified with the local kinetic temperatures. There is no correlation of CO column density with either gas or dust column density nor of the expansion velocity of the component with its distance from the star. The evidence is reviewed, and it is concluded that mass loss from red giants is most likely episodic in nature.
Growth and Brilliant Photo-Emission of Crystalline Hexagonal Column of Alq3 Microwires
Kim, Seokho; Kim, Do Hyoung; Choi, Jinho; Lee, Hojin; Kim, Sun-Young; Park, Jung Woon; Park, Dong Hyuk
2018-01-01
We report the growth and nanoscale luminescence characteristics of 8-hydroxyquinolinato aluminum (Alq3) with a crystalline hexagonal column morphology. Pristine Alq3 nanoparticles (NPs) were prepared using a conventional reprecipitation method. Crystal hexagonal columns of Alq3 were grown by using a surfactant-assisted self-assembly technique as an adjunct to the aforementioned reprecipitation method. The formation and structural properties of the crystalline and non-crystalline Alq3 NPs were analyzed with scanning electron microscopy and X-ray diffraction. The nanoscale photoluminescence (PL) characteristics and the luminescence color of the Alq3 single NPs and their crystal microwires (MWs) were evaluated from color charge-coupled device images acquired using a high-resolution laser confocal microscope. In comparison with the Alq3 NPs, the crystalline MWs exhibited a very bright and sharp emission. This enhanced and sharp emission from the crystalline Alq3 single MWs originated from effective π-π stacking of the Alq3 molecules due to strong interactions in the crystalline structure. PMID:29565306
Dscam2 mediates axonal tiling in the Drosophila visual system
Millard, S. Sean; Flanagan, John J.; Pappu, Kartik S.; Wu, Wei; Zipursky, S. Lawrence
2009-01-01
Sensory processing centres in both the vertebrate and the invertebrate brain are often organized into reiterated columns, thus facilitating an internal topographic representation of the external world. Cells within each column are arranged in a stereotyped fashion and form precise patterns of synaptic connections within discrete layers. These connections are largely confined to a single column, thereby preserving the spatial information from the periphery. Other neurons integrate this information by connecting to multiple columns. Restricting axons to columns is conceptually similar to tiling. Axons and dendrites of neighbouring neurons of the same class use tiling to form complete, yet non-overlapping, receptive fields1-3. It is thought that, at the molecular level, cell-surface proteins mediate tiling through contact-dependent repulsive interactions1,2,4,5, but proteins serving this function have not yet been identified. Here we show that the immunoglobulin superfamily member Dscam2 restricts the connections formed by L1 lamina neurons to columns in the Drosophila visual system. Our data support a model in which Dscam2 homophilic interactions mediate repulsion between neurites of L1 cells in neighbouring columns. We propose that Dscam2 is a tiling receptor for L1 neurons. PMID:17554308
Rotation sensitivity analysis of a two-dimensional array of coupled resonators
NASA Astrophysics Data System (ADS)
Zamani Aghaie, Kiarash; Vigneron, Pierre-Baptiste; Digonnet, Michel J. F.
2015-03-01
In this paper, we study the rotation sensitivity of a gyroscope made of a two-dimensional array of coupled resonators consisting of N columns of one-dimensional coupled resonant optical waveguides (CROWs) connected by two bus waveguides, each CROW consisting of M identical ring resonators. We show that the maximum rotation sensitivity of this structure is a strong function of the parity of the number of rows M. For an odd number of rows, and when the number of columns is small, the maximum sensitivity is high, and it is slightly lower than the maximum sensitivity of a single-ring resonator with two input/output waveguides (the case M = N = 1), which is a resonant waveguide optical gyroscope (RWOG). For an even M and small N, the maximum sensitivity is much lower than that of the RWOG. Increasing the number columns N increases the sensitivity of an even-row 2D CROW sublinearly, as N0.39, up to 30 columns. In comparison, the maximum sensitivity of an RWOG of equal area increases faster, as √N. The sensitivity of the 2D CROW therefore always lags behind that of the RWOG. For a 2×2 CROW, if the spacing between the columns L is increased sufficiently the maximum sensitivity increases linearly with L due to the presence of a composite Mach- Zehnder interferometer in the structure. However, for equal footprints this sensitivity is also not larger than that of a single-ring resonator. Regardless of the number of rows and columns and the spacing, for the same footprint and propagation loss, a 2D CROW gyroscope is not more sensitive than an RWOG.
Kazarian, Artaches A; Nesterenko, Pavel N; Soisungnoen, Phimpha; Burakham, Rodjana; Srijaranai, Supalax; Paull, Brett
2014-08-01
Liquid chromatographic assays were developed using a mixed-mode column coupled in sequence with a hydrophilic interaction liquid chromatography column to allow the simultaneous comprehensive analysis of inorganic/organic anions and cations, active pharmaceutical ingredients, and excipients (carbohydrates). The approach utilized dual sample injection and valve-mediated column switching and was based upon a single high-performance liquid chromatography gradient pump. The separation consisted of three distinct sequential separation mechanisms, namely, (i) ion-exchange, (ii) mixed-mode interactions under an applied dual gradient (reversed-phase/ion-exchange), and (iii) hydrophilic interaction chromatography. Upon first injection, the Scherzo SS C18 column (Imtakt) provided resolution of inorganic anions and cations under isocratic conditions, followed by a dual organic/salt gradient to elute active pharmaceutical ingredients and their respective organic counterions and potential degradants. At the top of the mixed-mode gradient (high acetonitrile content), the mobile phase flow was switched to a preconditioned hydrophilic interaction liquid chromatography column, and the standard/sample was reinjected for the separation of hydrophilic carbohydrates, some of which are commonly known excipients in drug formulations. The approach afforded reproducible separation and resolution of up to 23 chemically diverse solutes in a single run. The method was applied to investigate the composition of commercial cough syrups (Robitussin®), allowing resolution and determination of inorganic ions, active pharmaceutical ingredients, excipients, and numerous well-resolved unknown peaks. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Piccolroaz, S.; Wood, T. M.; Wherry, S.; Girdner, S.
2015-12-01
We applied a 1-dimensional lake model developed to simulate deep mixing related to thermobaric instabilities in temperate lakes to Crater Lake, a 590-m deep caldera lake in Oregon's Cascade Range known for its stunning deep blue color and extremely clear water, in order to determine the frequency of deep water renewal in future climate conditions. The lake model was calibrated with 6 years of water temperature profiles, and then simulated 10 years of validation data with an RMSE ranging from 0.81°C at 50 m depth to 0.04°C at 350-460 m depth. The simulated time series of heat content in the deep lake accurately captured extreme years characterized by weak and strong deep water renewal. The lake model uses wind speed and lake surface temperature (LST) as boundary conditions. LST projections under six climate scenarios from the CMIP5 intermodel comparison project (2 representative concentration pathways X 3 general circulation models) were evaluated with air2water, a simple lumped model that only requires daily values of downscaled air temperature. air2water was calibrated with data from 1993-2011, resulting in a RMSE between simulated and observed daily LST values of 0.68°C. All future climate scenarios project increased water temperature throughout the water column and a substantive reduction in the frequency of deepwater renewal events. The least extreme scenario (CNRM-CM5, RCP4.5) projects the frequency of deepwater renewal events to decrease from about 1 in 2 years in the present to about 1 in 3 years by 2100. The most extreme scenario (HadGEM2-ES, RCP8.5) projects the frequency of deepwater renewal events to be less than 1 in 7 years by 2100 and lake surface temperatures never cooling to less than 4°C after 2050. In all RCP4.5 simulations the temperature of the entire water column is greater than 4°C for increasing periods of time. In the RCP8.5 simulations, the temperature of the entire water column is greater than 4°C year round by the year 2060 (HadGEM2) or 2080 (CNRM-CM5); thus, the conditions required for thermobaric instability induced mixing become rare or non-existent in these projections. The results indicate that the frequency of deep water renewal events could change substantially in a warmer future climate, potentially altering the lake ecosystem and water clarity.
Berg, Larry K.; Fast, Jerome D.; Barnard, James C.; ...
2016-01-08
The Two-Column Aerosol Project (TCAP), conducted from June 2012 through June 2013, was a unique study designed to provide a comprehensive data set that can be used to investigate a number of important climate science questions, including those related to aerosol mixing state and aerosol radiative forcing. The study was designed to sample the atmosphere between and within two atmospheric columns; one fixed near the coast of North America (over Cape Cod, MA) and a second moveable column over the Atlantic Ocean several hundred kilometers from the coast. The U.S. Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facilitymore » (AMF) was deployed at the base of the Cape Cod column, and the ARM Aerial Facility was utilized for the summer and winter intensive observation periods. One important finding from TCAP is that four of six nearly cloud-free flight days had aerosol layers aloft in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA high-spectral resolution lidar (HSRL-2). In addition, these layers contributed up to 60% of the total observed aerosol optical depth (AOD). Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning material and nitrate compared to aerosol found near the surface. Lastly, while there was a great deal of spatial and day-to-day variability in the aerosol chemical composition and optical properties, no systematic differences between the two columns were observed.« less
Vass, Andrea; Robles-Molina, José; Pérez-Ortega, Patricia; Gilbert-López, Bienvenida; Dernovics, Mihaly; Molina-Díaz, Antonio; García-Reyes, Juan F
2016-07-01
The aim of the study was to evaluate the performance of different chromatographic approaches for the liquid chromatography/mass spectrometry (LC-MS(/MS)) determination of 24 highly polar pesticides. The studied compounds, which are in most cases unsuitable for conventional LC-MS(/MS) multiresidue methods were tested with nine different chromatographic conditions, including two different hydrophilic interaction liquid chromatography (HILIC) columns, two zwitterionic-type mixed-mode columns, three normal-phase columns operated in HILIC-mode (bare silica and two silica-based chemically bonded columns (cyano and amino)), and two standard reversed-phase C18 columns. Different sets of chromatographic parameters in positive (for 17 analytes) and negative ionization modes (for nine analytes) were examined. In order to compare the different approaches, a semi-quantitative classification was proposed, calculated as the percentage of an empirical performance value, which consisted of three main features: (i) capacity factor (k) to characterize analyte separation from the void, (ii) relative response factor, and (iii) peak shape based on analytes' peak width. While no single method was able to provide appropriate detection of all the 24 studied species in a single run, the best suited approach for the compounds ionized in positive mode was based on a UHPLC HILIC column with 1.8 μm particle size, providing appropriate results for 22 out of the 24 species tested. In contrast, the detection of glyphosate and aminomethylphosphonic acid could only be achieved with a zwitterionic-type mixed-mode column, which proved to be suitable only for the pesticides detected in negative ion mode. Finally, the selected approach (UHPLC HILIC) was found to be useful for the determination of multiple pesticides in oranges using HILIC-ESI-MS/MS, with limits of quantitation in the low microgram per kilogram in most cases. Graphical Abstract HILIC improves separation of multiclass polar pesticides.
Zaugg, Steven D.; Sandstrom, Mark W.; Smith, Steven G.; Fehlberg, Kevin M.
1995-01-01
A method for the isolation of 41 pesticides and pesticide metabolites in natural-water samples using C-18 solid-phase extraction and determination by capillary-column gas chromatography/mass spectrometry with selected-ion monitoring is described. Water samples are filtered to remove suspended particulate matter and then are pumped through disposable solid-phase extraction columns containing octadecyl-bonded porous silica to extract the pesticides. The columns are dried using carbon dioxide or nitrogen gas, and adsorbed pesticides are removed from the columns by elution with 3.0 milliliters of hexane-isopropanol (3:1). Extracted pesticides are determined by capillary- column gas chromatography/mass spectrometry with selected-ion monitoring of three characteristic ions. The upper concentration limit is 4 micrograms per liter (g/L) for most pesticides, with the exception of widely used corn herbicides--atrazine, alachlor, cyanazine, and metolachlor--which have upper concentration limits of 20 g/L. Single- operator method detection limits in reagent-water samples range from 0.001 to 0.018 g/L. Average short-term single-operator precision in reagent- water samples is 7 percent at the 0.1- and 1.0-g/L levels and 8 percent at the 0.01-g/L level. Mean recoveries in reagent-water samples are 73 percent at the 0.1- and 1.0-g/L levels and 83 percent at the 0.01-g/L level. The estimated holding time for pesticides after extraction on the solid-phase extraction columns was 7 days. An optional on-site extraction procedure allows for samples to be collected and processed at remote sites where it is difficult to ship samples to the laboratory within the recommended pre-extraction holding time.
Qin, Zhang-Na; Yu, Qiong-Wei; Wang, Ren-Qi; Feng, Yu-Qi
2018-04-27
A mixed-mode polymer monolithic column functionalized by arsonic acid groups was prepared by single-step in situ copolymerization of monomers p-methacryloylaminophenylarsonic acid (p-MAPHA) and pentaerythritol triacrylate (PETA). The prepared poly(p-MAPHA-co-PETA) monolithic column has a homogeneous monolithic structure with good permeability and mechanical stability. Zeta potential measurements reveal that the monolithic stationary phase holds a negative surface charge when the mobile phase resides in the pH range of 3.0-8.0. The retention mechanisms of prepared monolithic column are explored by the separation of selected polycyclic aromatic hydrocarbons (PAHs), nucleosides, and three basic compounds. The results indicate that the column functions in three different separation modes associated with reversed-phase chromatography based on hydrophobic interaction, hydrophilic interaction chromatography, and cation-exchange chromatography. The column efficiency of prepared monolithic column is estimated to be 70,000 and 76,000 theoretical plates/m for thiourea and naphthalene, respectively, at a linear flow velocity of 0.85 mm/s using acetonitrile/H 2 O (85/15, v/v) as the mobile phase. Furthermore, an analysis of the retention factors obtained for the PAHs indicates that the prepared monolithic column exhibits good reproducibility with relative standard deviations of 2.9%, 4.0%, and 4.7% based on run-to-run injections, column-to-column preparation, and batch-to-batch preparation, respectively. Finally, we investigate the separation performance of the proposed monolithic column for select phenols, sulfonamides, nucleobases and nucleosides. Copyright © 2018 Elsevier B.V. All rights reserved.
Mixed retention mechanism of proteins in weak anion-exchange chromatography.
Liu, Peng; Yang, Haiya; Geng, Xindu
2009-10-30
Using four commercial weak anion-exchange chromatography (WAX) columns and 11 kinds of different proteins, we experimentally examined the involvement of hydrophobic interaction chromatography (HIC) mechanism in protein retention on the WAX columns. The HIC mechanism was found to operate in all four WAX columns, and each of these columns had a better resolution in the HIC mode than in the corresponding WAX mode. Detailed analysis of the molecular interactions in a chromatographic system indicated that it is impossible to completely eliminate hydrophobic interactions from a WAX column. Based on these results, it may be possible to employ a single WAX column for protein separation by exploiting mixed modes (WAX and HIC) of retention. The stoichiometric displacement theory and two linear plots were used to show that mechanism of the mixed modes of retention in the system was a combination of two kinds of interactions, i.e., nonselective interactions in the HIC mode and selective interactions in the IEC mode. The obtained U-shaped elution curve of proteins could be distinguished into four different ranges of salt concentration, which also represent four retention regions.
Enhancement of soft X-ray lasing action with thin blade radiators
Suckewer, Szymon; Skinner, Charles H.; Voorhees, David R.
1988-01-01
An enhancement of approximately 100 of stimulated emission over spontaneous emission of the CVI 182 Angstrom line was obtained in a recombining magnetically confined plasma column. The plasma was formed by focusing a CO.sub.2 laser beam on a carbon disc. A magnetic solenoid produced a strong magnetic field which confined the plasma to the shape of a column. A single thin carbon blade extended parallel to the plasma column and served to make the column axially more uniform and also acted as a heat sink. Axial and transverse measurements of the soft X-ray lasing action were made from locations off-set from the central axis of the plasma column. Multiple carbon blades located at equal intervals around the plasma column were also found to produce acceptable results. According to another embodiment 10 a thin coating of aluminum or magnesium was placed on the carbon disc and blade. The Z of the coating should preferably be at least 5 greater than the Z of the target. Measurements of the soft X-rays generated at 182 Angstroms showed a significant increase in intensity enhancement.
High-throughput NGL electron-beam direct-write lithography system
NASA Astrophysics Data System (ADS)
Parker, N. William; Brodie, Alan D.; McCoy, John H.
2000-07-01
Electron beam lithography systems have historically had low throughput. The only practical solution to this limitation is an approach using many beams writing simultaneously. For single-column multi-beam systems, including projection optics (SCALPELR and PREVAIL) and blanked aperture arrays, throughput and resolution are limited by space-charge effects. Multibeam micro-column (one beam per column) systems are limited by the need for low voltage operation, electrical connection density and fabrication complexities. In this paper, we discuss a new multi-beam concept employing multiple columns each with multiple beams to generate a very large total number of parallel writing beams. This overcomes the limitations of space-charge interactions and low voltage operation. We also discuss a rationale leading to the optimum number of columns and beams per column. Using this approach we show how production throughputs >= 60 wafers per hour can be achieved at CDs
Author Correction: Short-lived climate pollutant mitigation and the Sustainable Development Goals
NASA Astrophysics Data System (ADS)
Haines, Andy; Amann, Markus; Borgford-Parnell, Nathan; Leonard, Sunday; Kuylenstierna, Johan; Shindell, Drew
2018-04-01
In the version of this Perspective originally published, Fig. 1 incorrectly had two entries of `Reduced rate of sea-level rise by 20% by 2050'; the first entry (row 2, column 3) should instead have read `Reduced disruption of weather patterns'. This has now been corrected in the online versions of the Perspective.
Stability of peatland carbon to rising temperatures
R. M. Wilson; A. M. Hopple; M. M. Tfaily; S. D. Sebestyen; C. W. Schadt; L. Pfeifer-Meister; C. Medvedeff; K. J. McFarlane; J. E. Kostka; M. Kolton; R.K. Kolka; L. A. Kluber; J. K. Keller; T. P. Guilderson; N. A. Griffiths; J. P. Chanton; S. D. Bridgham; P. J. Hanson
2016-01-01
Peatlands contain one-third of soil carbon (C), mostly buried in deep, saturated anoxic zones (catotelm). The response of catotelm C to climate forcing is uncertain, because prior experiments have focused on surface warming. We show that deep peat heating of a 2âm-thick peat column results in an exponential increase in CH4 emissions. However,...
Processes governing the temperature structure of the tropical tropopause layer (Invited)
NASA Astrophysics Data System (ADS)
Birner, T.
2013-12-01
The tropical tropopause layer (TTL) is among the most important but least understood regions of the global climate system. The TTL sets the boundary condition for atmospheric tracers entering the stratosphere. Specifically, TTL temperatures control stratospheric water vapor concentrations, which play a key role in the radiative budget of the entire stratosphere with implications for tropospheric and surface climate. The TTL shows a curious stratification structure: temperature continues to decrease beyond the level of main convective outflow (~200 hPa) up to the cold point tropopause (~100 hPa), but TTL lapse rates are smaller than in the upper troposphere. A cold point tropopause well separated from the level of main convective outflow requires TTL cooling which may be the result of: 1) the detailed radiative balance in the TTL, 2) large-scale upwelling (forced by extratropical or tropical waves), 3) the large-scale hydrostatic response aloft deep convective heating, 4) overshooting convection, 5) breaking gravity waves. All of these processes may act in isolation or combine to produce the observed TTL temperature structure. Here, a critical discussion of these processes / mechanisms and their role in lifting the cold point tropopause above the level of main convective outflow is presented. Results are based on idealized radiative-convective equilibrium model simulations, contrasting single-column with cloud-resolving simulations, as well on simulations with chemistry-climate models and reanalysis data. While all of the above processes are capable of producing a TTL-like region in isolation, their combination is found to produce important feedbacks. In particular, both water vapor and ozone are found to have strong radiative effects on TTL temperatures, highlighting important feedbacks between transport circulations setting temperatures and tracer structures and the resulting tracer structures in turn affecting temperatures.
The role of mixotrophic protists in the biological carbon pump
NASA Astrophysics Data System (ADS)
Mitra, A.; Flynn, K. J.; Burkholder, J. M.; Berge, T.; Calbet, A.; Raven, J. A.; Granéli, E.; Glibert, P. M.; Hansen, P. J.; Stoecker, D. K.; Thingstad, F.; Tillmann, U.; Våge, S.; Wilken, S.; Zubkov, M. V.
2013-08-01
The traditional view of the planktonic foodweb describes consumption of inorganic nutrients by photo-autotrophic phytoplankton, which in turn supports zooplankton and ultimately higher trophic levels. Pathways centred on bacteria provide mechanisms for nutrient recycling. This structure lies at the foundation of most models used to explore biogeochemical cycling, functioning of the biological pump, and the impact of climate change on these processes. We suggest an alternative paradigm, which sees the bulk of the base of this foodweb supported by protist plankton (phytoplankton and microzooplankton) communities that are mixotrophic - combining phototrophy and phagotrophy within a~single cell. The photoautotrophic eukaryotic plankton and their heterotrophic microzooplankton grazers dominate only within immature environments (e.g., spring bloom in temperate systems). With their flexible nutrition, mixotrophic protists dominate in more mature systems (e.g., temperate summer, established eutrophic systems and oligotrophic systems); the more stable water columns suggested under climate change may also be expected to favour these mixotrophs. We explore how such a predominantly mixotrophic structure affects microbial trophic dynamics and the biological pump. The mixotroph dominated structure differs fundamentally in its flow of energy and nutrients, with a shortened and potentially more efficient chain from nutrient regeneration to primary production. Furthermore, mixotrophy enables a direct conduit for the support of primary production from bacterial production. We show how the exclusion of an explicit mixotrophic component in studies of the pelagic microbial communities leads to a failure to capture the true dynamics of the carbon flow. In order to prevent a misinterpretation of the full implications of climate change upon biogeochemical cycling and the functioning of the biological pump, we recommend inclusion of multi-nutrient mixotroph models within ecosystem studies.
The role of mixotrophic protists in the biological carbon pump
NASA Astrophysics Data System (ADS)
Mitra, A.; Flynn, K. J.; Burkholder, J. M.; Berge, T.; Calbet, A.; Raven, J. A.; Granéli, E.; Glibert, P. M.; Hansen, P. J.; Stoecker, D. K.; Thingstad, F.; Tillmann, U.; Våge, S.; Wilken, S.; Zubkov, M. V.
2014-02-01
The traditional view of the planktonic food web describes consumption of inorganic nutrients by photoautotrophic phytoplankton, which in turn supports zooplankton and ultimately higher trophic levels. Pathways centred on bacteria provide mechanisms for nutrient recycling. This structure lies at the foundation of most models used to explore biogeochemical cycling, functioning of the biological pump, and the impact of climate change on these processes. We suggest an alternative new paradigm, which sees the bulk of the base of this food web supported by protist plankton communities that are mixotrophic - combining phototrophy and phagotrophy within a single cell. The photoautotrophic eukaryotic plankton and their heterotrophic microzooplankton grazers dominate only during the developmental phases of ecosystems (e.g. spring bloom in temperate systems). With their flexible nutrition, mixotrophic protists dominate in more-mature systems (e.g. temperate summer, established eutrophic systems and oligotrophic systems); the more-stable water columns suggested under climate change may also be expected to favour these mixotrophs. We explore how such a predominantly mixotrophic structure affects microbial trophic dynamics and the biological pump. The mixotroph-dominated structure differs fundamentally in its flow of energy and nutrients, with a shortened and potentially more efficient chain from nutrient regeneration to primary production. Furthermore, mixotrophy enables a direct conduit for the support of primary production from bacterial production. We show how the exclusion of an explicit mixotrophic component in studies of the pelagic microbial communities leads to a failure to capture the true dynamics of the carbon flow. In order to prevent a misinterpretation of the full implications of climate change upon biogeochemical cycling and the functioning of the biological pump, we recommend inclusion of multi-nutrient mixotroph models within ecosystem studies.
Vial, Jessica; Bony, Sandrine; Dufresne, Jean-Louis; Roehrig, Romain
2016-12-01
Several studies have pointed out the dependence of low-cloud feedbacks on the strength of the lower-tropospheric convective mixing. By analyzing a series of single-column model experiments run by a climate model using two different convective parametrizations, this study elucidates the physical mechanisms through which marine boundary-layer clouds depend on this mixing in the present-day climate and under surface warming. An increased lower-tropospheric convective mixing leads to a reduction of low-cloud fraction. However, the rate of decrease strongly depends on how the surface latent heat flux couples to the convective mixing and to boundary-layer cloud radiative effects: (i) on the one hand, the latent heat flux is enhanced by the lower-tropospheric drying induced by the convective mixing, which damps the reduction of the low-cloud fraction, (ii) on the other hand, the latent heat flux is reduced as the lower troposphere stabilizes under the effect of reduced low-cloud radiative cooling, which enhances the reduction of the low-cloud fraction. The relative importance of these two different processes depends on the closure of the convective parameterization. The convective scheme that favors the coupling between latent heat flux and low-cloud radiative cooling exhibits a stronger sensitivity of low-clouds to convective mixing in the present-day climate, and a stronger low-cloud feedback in response to surface warming. In this model, the low-cloud feedback is stronger when the present-day convective mixing is weaker and when present-day clouds are shallower and more radiatively active. The implications of these insights for constraining the strength of low-cloud feedbacks observationally is discussed.
Gundersen, T E; Lundanes, E; Blomhoff, R
1997-03-28
A fully automated isocratic high-performance liquid chromatographic method for the determination of 9-cis-retinoic acid, 13-cis-retinoic acid, all-trans-retinoic acid, 4-oxo-13-cis-retinoic acid and 4-oxo-all-trans-retinoic acid, has been developed using on-line solid-phase extraction and a column switching technique allowing clean-up and pre-concentration in a single step. A 500-microliter sample of serum was diluted with 750 microliters of a solution containing 20% acetonitrile and the internal standard 9,10-dimethylanthracene. About 1000 microliters of this mixture was injected on a 20 x 4.6 mm I.D. poly ether ether ketone (PEEK) pre-column with titanium frits packed with Bondapak C18, 37-53 microns, 300 A particles. Proteins and very polar compounds were washed out to waste, from the pre-column, with 0.05% trifluoroacetic acid (TFA)-acetonitrile (8.5:1.5, v/v). More than 200 aliquots of diluted serum could be injected on this pre-column before elevated back-pressure enforces replacement. Components retained on the pre-column were backflushed to the analytical column for separation and detection at 360 nm. Baseline separation was achieved using a single 250 x 4.6 mm I.D. Suplex pKb-100 column and a mobile phase containing 69:10:2:16:3 (v/v) of acetonitrile-methanol-n-butanol-2% ammonium acetate-glacial acetic acid. A total time of analysis of less than 30 min, including sample preparation, was achieved. Recoveries were in the range of 79-86%. The limit of detection was 1-7 ng/ml serum and the precision, in the concentration range 20-1000 ng/ml, was between 1.3 and 4.5% for all five compounds. The method was applied for the analysis of human serum after oral administration of 60 mg Roaccutan. The method is well suited for pharmacological studies, while the endogenous levels of some retinoic acid isomers are below the limit of quantitation.
Image sensor with high dynamic range linear output
NASA Technical Reports Server (NTRS)
Yadid-Pecht, Orly (Inventor); Fossum, Eric R. (Inventor)
2007-01-01
Designs and operational methods to increase the dynamic range of image sensors and APS devices in particular by achieving more than one integration times for each pixel thereof. An APS system with more than one column-parallel signal chains for readout are described for maintaining a high frame rate in readout. Each active pixel is sampled for multiple times during a single frame readout, thus resulting in multiple integration times. The operation methods can also be used to obtain multiple integration times for each pixel with an APS design having a single column-parallel signal chain for readout. Furthermore, analog-to-digital conversion of high speed and high resolution can be implemented.
Experimental design of a twin-column countercurrent gradient purification process.
Steinebach, Fabian; Ulmer, Nicole; Decker, Lara; Aumann, Lars; Morbidelli, Massimo
2017-04-07
As typical for separation processes, single unit batch chromatography exhibits a trade-off between purity and yield. The twin-column MCSGP (multi-column countercurrent solvent gradient purification) process allows alleviating such trade-offs, particularly in the case of difficult separations. In this work an efficient and reliable procedure for the design of the twin-column MCSGP process is developed. This is based on a single batch chromatogram, which is selected as the design chromatogram. The derived MCSGP operation is not intended to provide optimal performance, but it provides the target product in the selected fraction of the batch chromatogram, but with higher yield. The design procedure is illustrated for the isolation of the main charge isoform of a monoclonal antibody from Protein A eluate with ion-exchange chromatography. The main charge isoform was obtained at a purity and yield larger than 90%. At the same time process related impurities such as HCP and leached Protein A as well as aggregates were at least equally well removed. Additionally, the impact of several design parameters on the process performance in terms of purity, yield, productivity and buffer consumption is discussed. The obtained results can be used for further fine-tuning of the process parameters so as to improve its performance. Copyright © 2017 Elsevier B.V. All rights reserved.
Kostanyan, Artak E; Erastov, Andrey A
2016-09-02
The non-ideal recycling equilibrium-cell model including the effects of extra-column dispersion is used to simulate and analyze closed-loop recycling counter-current chromatography (CLR CCC). Previously, the operating scheme with the detector located before the column was considered. In this study, analysis of the process is carried out for a more realistic and practical scheme with the detector located immediately after the column. Peak equation for individual cycles and equations describing the transport of single peaks and complex chromatograms inside the recycling closed-loop, as well as equations for the resolution between single solute peaks of the neighboring cycles, for the resolution of peaks in the recycling chromatogram and for the resolution between the chromatograms of the neighboring cycles are presented. It is shown that, unlike conventional chromatography, increasing of the extra-column volume (the recycling line length) may allow a better separation of the components in CLR chromatography. For the experimental verification of the theory, aspirin, caffeine, coumarin and the solvent system hexane/ethyl acetate/ethanol/water (1:1:1:1) were used. Comparison of experimental and simulated processes of recycling and distribution of the solutes in the closed-loop demonstrated a good agreement between theory and experiment. Copyright © 2016 Elsevier B.V. All rights reserved.
Impact of rising greenhouse gas concentrations on future tropical ozone and UV exposure
NASA Astrophysics Data System (ADS)
Meul, Stefanie; Dameris, Martin; Langematz, Ulrike; Abalichin, Janna; Kerschbaumer, Andreas; Kubin, Anne; Oberländer-Hayn, Sophie
2016-03-01
Future projections of tropical total column ozone (TCO) are challenging, as its evolution is affected not only by the expected decline of ozone depleting substances but also by the uncertain increase of greenhouse gas (GHG) emissions. To assess the range of tropical TCO projections, we analyze simulations with a chemistry-climate model forced by three different GHG scenarios (Representative Concentration Pathway (RCP) 4.5, RCP6.0, and RCP8.5). We find that tropical TCO will be lower by the end of the 21st century compared to the 1960s in all scenarios with the largest decrease in the medium RCP6.0 scenario. Uncertainties of the projected TCO changes arise from the magnitude of stratospheric column decrease and tropospheric ozone increase which both strongly vary between the scenarios. In the three scenario simulations the stratospheric column decrease is not compensated by the increase in tropospheric ozone. The concomitant increase in harmful ultraviolet irradiance reaches up to 15% in specific regions in the RCP6.0 scenario.
High-resolution passive sampling of dissolved methane in the water column of lakes in Greenland
NASA Astrophysics Data System (ADS)
Goldman, A. E.; Cadieux, S. B.; White, J. R.; Pratt, L. M.
2013-12-01
Arctic lakes are important participants in the global carbon cycle, releasing methane in a warming climate and contributing to a positive feedback to climate change. In order to yield detailed methane budgets and understand the implications of warming on methane dynamics, high-resolution profiles revealing methane behavior within the water column need to be obtained. Single day sampling using disruptive techniques has the potential to result in biases. In order to obtain high-resolution, undisturbed profiles of methane concentration and isotopic composition, this study evaluates a passive sampling method over a multi-day equilibration period. Selected for this study were two small lakes (<1km2) within a narrow valley stretching between Russells Glacier and Søndre Strømfjord in southwestern Greenland, which are part of an ongoing study of a series of seven lakes. Commercially available, 150 mL, polyethylene Passive Diffusion Bags (PDB's) were deployed in July 2013 for five days at 0.5-meter depth intervals. PDB samples were compared to samples collected with a submersible, electric pump taken immediately before PBD deployment. Preliminary CH4 concentrations and carbon isotopes for one lake were obtained in the field using a Los Gatos Research Methane Carbon Isotope Analyzer. PDB sampling and pump sampling resulted in statistically similar concentrations (R2=0.89), ranging from 0.85 to 135 uM from PDB and 0.74 to 143 uM from pump sampling. In anoxic waters of the lake, where concentrations were high enough to yield robust isotopic results on the LGR MCIA, δ13C were also similar between the two methods, yielding -73‰ from PDB and -74‰ from pump sampling. Further investigation will produce results for a second lake and methane carbon and hydrogen isotopic composition for both lakes. Preliminary results for this passive sampling method are promising. We envision the use of this technique in future studies of dissolved methane and expect that it will provide a more finely resolved vertical profile, allowing for a more complete understanding of lacustrine methane dynamics.
Design and Prototype of an Automated Column-Switching HPLC System for Radiometabolite Analysis.
Vasdev, Neil; Collier, Thomas Lee
2016-08-17
Column-switching high performance liquid chromatography (HPLC) is extensively used for the critical analysis of radiolabeled ligands and their metabolites in plasma. However, the lack of streamlined apparatus and consequently varying protocols remain as a challenge among positron emission tomography laboratories. We report here the prototype apparatus and implementation of a fully automated and simplified column-switching procedure to allow for the easy and automated determination of radioligands and their metabolites in up to 5 mL of plasma. The system has been used with conventional UV and coincidence radiation detectors, as well as with a single quadrupole mass spectrometer.
Climate-driven Sympatry does not Lead to Foraging Competition Between Adélie and Gentoo Penguins
NASA Astrophysics Data System (ADS)
Cimino, M. A.; Moline, M. A.; Fraser, W.; Patterson-Fraser, D.; Oliver, M. J.
2016-02-01
Climate-driven sympatry may lead to competition for food resources between species, population shifts and changes in ecosystem structure. Rapid warming in the West Antarctic Peninsula (WAP) is coincident with increasing gentoo penguin and decreasing Adélie penguin populations, suggesting that competition for food may exacerbate the Adélie penguin decline. At Palmer Station, we tested for foraging competition between these species by comparing their prey, Antarctic krill, distributions and penguin foraging behaviors on fine scales. To study these predator-prey dynamics, we simultaneously deployed penguin satellite transmitters, and a REMUS autonomous underwater vehicle that acoustically detected krill aggregations and measured physical and biological properties of the water column. We detected krill aggregations within the horizontal and vertical foraging ranges of Adélie and gentoo penguin. In the upper 100 m of the water column, the distribution of krill aggregations were mainly associated with CHL and light, suggesting that krill selected for habitats that balance the need to consume food and avoid predation. Adélie and gentoo penguins mainly had spatially segregated foraging areas but in areas of overlap, gentoo penguins switched foraging behavior by foraging at deeper depths, a strategy which limits competition with Adélie penguins. This suggests that climate-driven sympatry does not necessarily result in competitive exclusion. Contrary to a recent theory, which suggests that increased competition for krill is the major driver of Adélie penguin population declines, we suggest that declines in Adélie penguins along the WAP are more likely due to direct and indirect climate impacts on their life histories.
NASA Technical Reports Server (NTRS)
Kahn, Ralph A.
2013-01-01
Desert dust, wildfire smoke, volcanic ash, biogenic and urban pollution particles, all affect the regional-scale climate of Earth in places and at times; some have global-scale impacts on the column radiation balance, cloud properties, atmospheric stability structure, and circulation patterns. Remote sensing has played a central role in identifying the sources and transports of airborne particles, mapping their three-dimensional distribution and variability, quantifying their amount, and constraining aerosol air mass type. The measurements obtained from remote sensing have strengths and limitations, and their value for characterizing Earths environment is enhanced immensely when they are combined with direct, in situ observations, and used to constrain aerosol transport and climate models. A similar approach has been taken to study the role particles play in determining the climate of Mars, though based on far fewer observations. This presentation will focus what we have learned from remote sensing about the impacts aerosol have on Earths climate; a few points about how aerosols affect the climate of Mars will also be introduced, in the context of how we might assess aerosol-climate impacts more generally on other worlds.
NASA Astrophysics Data System (ADS)
Lyons, S. L.; Baczynski, A. A.; Vornlocher, J.; Freeman, K. H.
2016-12-01
Climate events in the geologic record reveal the broad array of Earth's responses to carbon cycle perturbations, and provide valuable insights to the predicted impacts of future anthropogenic climate change. The Paleocene-Eocene Thermal Maximum (PETM) hyperthermal was linked to a rapid injection of isotopically light carbon into Earth's ocean-atmosphere system, and this event serves as the best-known analogue for anthropogenic climate change. The addition of 4500 Gt CO2 over < 20,000 years, estimated based on carbon isotope excursions of 3-5‰ in marine and terrestrial records, was accompanied by abrupt global warming of 5-9 oC. Changes in ocean redox chemistry, productivity, sediment accumulation, and organic matter sourcing often accompany climate and carbon cycle perturbations and have been implicated in PETM off-shore ocean records. Yet, despite numerous studies of biomarkers and organic matter in terrestrial and marine PETM records, we lack organic records from truly coastal environments, leaving a gap in our understanding of the land-ocean interface and how the shallow marine environments changed during the PETM. To better understand the effects of climate change on coastal sites and the marine sedimentary records during the PETM, we investigated the role of redox, productivity, and organic matter sourcing using recently collected cores from the paleo-Atlantic shelf. These new coastal PETM records provide needed datasets to understand biogeochemical changes in the shallow marine environment. Here, we present lipid biomarkers (pristane, phytane, n-alkanes, hopanoids, steranes, GDGTs) and compound-specific carbon isotope data along a transect from proximal coastal to more distal inner shelf. These molecular records help detail the intensity of water column stratification, productivity, and carbon source changes, as well as shifting terrestrial and marine inputs. Constraining the marine carbon isotope excursion, organic matter sourcing, and water column chemistry along the shallow shelf during the PETM reveals the impact of abrupt changes in the carbon cycle and global temperatures on the coastal ocean.
NASA Technical Reports Server (NTRS)
Douglass, Anne; Stolarski, Richard; Oman, Luke; Strahan, Susan
2012-01-01
The chemistry climate models that contributed simulations for past and future ozone evolution to the 2010 Scientific Assessment of Ozone Depletion were subject to extensive evaluation by the SPARC (Stratospheric Processes and their Role in Climate) CCMVal (Chemistry-Climate Model Validation) activity. The sensitivity of ozone to changes in composition and climate varies among the models, but the relationship between these variations and the model evaluations of CCMVal is not obvious. We have learned that the transport evaluation can be used to interpret the comparisons between observed and simulated columns of chlorine reservoirs, hydrochloric acid (HCl) and chlorine nitrate (ClONO2); these comparisons were part of the CCMVal evaluation of chemistry. The simulations with best performance on the transport diagnostics most faithfully reproduce the evolution and seasonal variation of the chlorine reservoirs as observed at NDACC (Network for Detection of Atmospheric Composition Change) stations (NyAlesund 78.9N, Kiruna 67.8N, Harestua 60.2N, Jungfraujoch 46.6N, Toronto 43.6N, Kitt Peak 31.9N, Izana 28.3N, Mauna Loa 19.5N, Lauder 45S and Arrival Heights 77.8S). In the simulations, the HCl in the lower stratosphere depends on total inorganic chlorine (Cly) and partitioning between HCl and ClON02. Total inorganic chlorine depends on the fractional release of chlorine from source gases, and ratio of ClON02 to HCl is inversely dependent on methane and varies quadratically with ozone. Simulated HCl from various models may agree with observations even though Cly is in error, partitioning is in error, or both. Simulated ozone sensitivity to chlorine is shown to be greater for models that produce larger values of chlorine nitrate for background chlorine levels, and vice versa. Comparisons with the NDACC data show why the models with 'best' transport have similar sensitivity to chlorine change. The realistic evolution of the simulated HCl and ClONO2 columns suggests realistic levels of Cly in the lower atmosphere. In addition, the wide range values for the sensitivity of ozone to chlorine obtained from the CCMVal simulations is explained by the wide range in lower atmospheric columns of ClONO2 and the concomitant wide range of levels for chlorine monoxide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berg, Larry K.; Fast, Jerome D.; Barnard, James C.
2016-01-08
The Two-Column Aerosol Project (TCAP), which was conducted from June 2012 through June 2013, was a unique field study that was designed to provide a comprehensive data set that can be used to investigate a number of important climate science questions, including those related to aerosol mixing state and aerosol radiative forcing. The study was designed to sample the atmosphere at a number of altitudes, from near the surface to as high as 8 km, within two atmospheric columns; one located near the coast of North America (over Cape Cod, MA) and a second over the Atlantic Ocean several hundredmore » kilometers from the coast. TCAP included the yearlong deployment of the U.S. Department of Energy’s (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) that was located at the base of the Cape Cod column, as well as summer and winter aircraft intensive observation periods of the ARM Aerial Facility. One important finding from TCAP is the relatively common occurrence (on four of six nearly cloud-free flights) of elevated aerosol layers in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA high-spectral resolution lidar (HSRL-2). These layers contributed up to 60% of the total aerosol optical depth (AOD) observed in the column. Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning aerosol and nitrate compared to the aerosol found near the surface.« less
Liu, Rui; Feng, Tao; Wang, Shanshan; Shi, Chanzhen; Guo, Yanlin; Nan, Jialiang; Deng, Yun; Zhou, Bin
2018-02-01
Formaldehyde (HCHO) provides a proxy to reveal the isoprene and biogenic volatile organic compounds emission which plays important roles in atmospheric chemical process and climate change. The ground-based observation with zenith-sky DOAS is carried out in order to validate the HCHO columns from OMI. It has a good correlation of 0.71678 between the HCHO columns from two sources. Then we use the OMI HCHO columns from January 2006 to December 2015 to indicate the interannual variation and spatial distribution in Xishuangbanna. The HCHO concentration peaks appeared in March or April for each year significantly corresponding to the intensive fire counts at the same time, which illustrate that the high HCHO columns are strongly influenced by the biomass burning in spring. Temperature and precipitation are also the important influence factors in the seasonal variation when there is nearly no biomass burning. The spatial patterns over the past ten years strengthen the deduction from the temporal variation and show the relationship with land cover and land use, elevation and population density. It is concluded that the biogenic activity plays a role in controlling the background level of HCHO in Xishuangbanna, while biomass burning is the main driving force of high HCHO concentration. And forests are greater contributor to HCHO rather than rubber trees which cover over 20% of the land in the region. Moreover, uncertainties from HCHO slant column retrieval and AMFs calculation are discussed in detail. Copyright © 2017. Published by Elsevier B.V.
Robb, Paul D; Craven, Alan J
2008-12-01
An image processing technique is presented for atomic resolution high-angle annular dark-field (HAADF) images that have been acquired using scanning transmission electron microscopy (STEM). This technique is termed column ratio mapping and involves the automated process of measuring atomic column intensity ratios in high-resolution HAADF images. This technique was developed to provide a fuller analysis of HAADF images than the usual method of drawing single intensity line profiles across a few areas of interest. For instance, column ratio mapping reveals the compositional distribution across the whole HAADF image and allows a statistical analysis and an estimation of errors. This has proven to be a very valuable technique as it can provide a more detailed assessment of the sharpness of interfacial structures from HAADF images. The technique of column ratio mapping is described in terms of a [110]-oriented zinc-blende structured AlAs/GaAs superlattice using the 1 angstroms-scale resolution capability of the aberration-corrected SuperSTEM 1 instrument.
Zhao, Kailou; Yang, Li; Wang, Xuejiao; Bai, Quan; Yang, Fan; Wang, Fei
2012-08-30
We have explored a novel dual-function stationary phase which combines both strong cation exchange (SCX) and hydrophobic interaction chromatography (HIC) characteristics. The novel dual-function stationary phase is based on porous and spherical silica gel functionalized with ligand containing sulfonic and benzyl groups capable of electrostatic and hydrophobic interaction functionalities, which displays HIC character in a high salt concentration, and IEC character in a low salt concentration in mobile phase employed. As a result, it can be employed to separate proteins with SCX and HIC modes, respectively. The resolution and selectivity of the dual-function stationary phase were evaluated under both HIC and SCX modes with standard proteins and can be comparable to that of conventional IEC and HIC columns. More than 96% of mass and bioactivity recoveries of proteins can be achieved in both HIC and SCX modes, respectively. The results indicated that the novel dual-function column could replace two individual SCX and HIC columns for protein separation. Mixed retention mechanism of proteins on this dual-function column based on stoichiometric displacement theory (SDT) in LC was investigated to find the optimal balance of the magnitude of electrostatic and hydrophobic interactions between protein and the ligand on the silica surface in order to obtain high resolution and selectivity for protein separation. In addition, the effects of the hydrophobicity of the ligand of the dual-function packings and pH of the mobile phase used on protein separation were also investigated in detail. The results show that the ligand with suitable hydrophobicity to match the electrostatic interaction is very important to prepare the dual-function stationary phase, and a better resolution and selectivity can be obtained at pH 6.5 in SCX mode. Therefore, the dual-function column can replace two individual SCX and HIC columns for protein separation and be used to set up two-dimensional liquid chromatography with a single column (2DLC-1C), which can also be employed to separate three kinds of active proteins completely, such as lysozyme, ovotransferrin and ovalbumin from egg white. The result is very important not only to the development of new 2DLC technology with a single column for proteomics, but also to recombinant protein drug production for saving column expense and simplifying the process in biotechnology. Copyright © 2012 Elsevier B.V. All rights reserved.
Enhanced reductive dechlorination in columns treated with edible oil emulsion
NASA Astrophysics Data System (ADS)
Long, Cameron M.; Borden, Robert C.
2006-09-01
The effect of edible oil emulsion treatment on enhanced reductive dechlorination was evaluated in a 14 month laboratory column study. Experimental treatments included: (1) emulsified soybean oil and dilute HCl to inhibit biological activity; (2) emulsified oil only; (3) emulsified oil and anaerobic digester sludge; and (4) continuously feeding soluble substrate. A single application of emulsified oil was effective in generating strongly reducing, anaerobic conditions for over 14 months. PCE was rapidly reduced to cis-DCE in all three live columns. Bioaugmentation with a halorespiring enrichment culture resulted in complete dechlorination of PCE to ethene in the soluble substrate column (yeast extract and lactate). However, an additional treatment with a pulse of yeast extract and bioaugmentation culture was required to stimulate complete dechlorination in the emulsion treated columns. Once the dechlorinating population was established, the emulsion only column degraded PCE from 90-120 μM to below detection with concurrent ethene production in a 33 day contact time. The lower biodegradation rates in the emulsion treated columns compared to the soluble substrate column suggest that emulsified oil barriers may require a somewhat longer contact time for effective treatment. In the HCl inhibited column, partitioning of PCE to the retained oil substantially delayed PCE breakthrough. However, reduction of PCE to more soluble degradation products ( cis-DCE, VC and ethene) greatly reduced the impact of oil-water partitioning in live columns. There was only a small decline in the hydraulic conductivity ( K) of column #1 (low pH + emulsion, Kfinal/ Kinitial = 0.57) and column #2 (live + emulsion, Kfinal/ Kinitial = 0.73) indicating emulsion injection did not result in appreciable clogging of the clayey sand. However, K loss was greater in column #3 (sludge +emulsion, Kfinal/ Kinitial = 0.12) and column #4 (soluble substrate, Kfinal/ Kinitial = 0.03) indicating clogging due to biomass and/or gas production can be significant.
20 Years of Total and Tropical Ozone Time Series Based on European Satellite Observations
NASA Astrophysics Data System (ADS)
Loyola, D. G.; Heue, K. P.; Coldewey-Egbers, M.
2016-12-01
Ozone is an important trace gas in the atmosphere, while the stratospheric ozone layer protects the earth surface from the incident UV radiation, the tropospheric ozone acts as green house gas and causes health damages as well as crop loss. The total ozone column is dominated by the stratospheric column, the tropospheric columns only contributes about 10% to the total column.The ozone column data from the European satellite instruments GOME, SCIAMACHY, OMI, GOME-2A and GOME-2B are available within the ESA Climate Change Initiative project with a high degree of inter-sensor consistency. The tropospheric ozone columns are based on the convective cloud differential algorithm. The datasets encompass a period of more than 20 years between 1995 and 2015, for the trend analysis the data sets were harmonized relative to one of the instruments. For the tropics we found an increase in the tropospheric ozone column of 0.75 ± 0.12 DU decade^{-1} with local variations between 1.8 and -0.8. The largest trends were observed over southern Africa and the Atlantic Ocean. A seasonal trend analysis led to the assumption that the increase is caused by additional forest fires.The trend for the total column was not that certain, based on model predicted trend data and the measurement uncertainty we estimated that another 10 to 15 years of observations will be required to observe a statistical significant trend. In the mid latitudes the trends are currently hidden in the large variability and for the tropics the modelled trends are low. Also the possibility of diverging trends at different altitudes must be considered; an increase in the tropospheric ozone might be accompanied by decreasing stratospheric ozone.The European satellite data record will be extended over the next two decades with the atmospheric satellite missions Sentinel 5 Precursor (launch end of 2016), Sentinel 4 and Sentinel 5.
NASA Astrophysics Data System (ADS)
Bovensmann, Heinrich; Buchwitz, M.; Burrows, J. P.; Notholt, J.; Bovensmann, H.; Reuter, M.; Trautmann, T.; Ehret, G.; Heimann, M.; Monks, P.; B&Ü, H.; Sch; Harding, R.; Quegan, S.; Rayner, P.; Breon, F. M.; Bergam-O Aschi, P.; Dittus, H. J.; Erzinger, J.; Crisp, D.
Surprisingly and in spite of their exceptional driving role in climate change, our knowledge about the variable sources and sinks of the greenhouse gases CO2 and CH4 is currently inadequate. For example, the ability of the Earth-atmosphere system to buffer increasing anthropogenic emissions into the atmosphere has large uncertainties and emissions from many sources (geo-logic, anthropogenic, biogenic) are to a large degree uncertain. An adequate knowledge of the sources and sinks of CO2 and CH4 and their response to a changing climate is a pre-requisite for the accurate prediction of the regional variation of the climate of our planet. CarbonSat is a new mission concept to quantify and monitor CO2 and CH4 sources and sinks at the regional to local scale. The data will allow a better understanding of the processes that control the Carbon Cycle dynamics and an independent estimate of local greenhouse gas emissions (fossil fuel, geological CO2 and CH4, etc.). This will be achieved by a unique combination of high spatial resolution passive and active compact remote sensing with inverse modeling techniques. CarbonSat will accurately measure column-averaged mixing ratios of CO2 and CH4, i.e., XCO2 and XCH4, at a spatial resolution of 2 x 2 km2 (500 km continuous swath) with 0.5 percent goal (1 percent threshold) single measurement precision and global coverage within 3-6 days. Beside the quantification of sources and sinks on the regional scale, one key and innovative aim of the CarbonSat mission is to go a step forward towards quantifying local emission hot spots (fossil fuel emissions by power plants, gas/oil production, geological sources etc.). The core sensor will be a compact Imaging NIR/SWIR spectrometer (SCIAMACHY, OCO her-itage) whose measurements yield global data sets of XCO2 and XCH4 with at least one order of magnitude higher number of cloud free measurements than GOSAT and OCO and one order of magnitude better spatial coverage than OCO, due to CarbonSat's 500 km swath continuous across track coverage with 2 x 2 km2 spatial resolution. Ideally, the imaging spectrometer will be accompanied by a compact CH4 Lidar, to derive complementary accurate XCH4 -especially in high northern latitudes -as well as information on clouds and vegetation height. The overall mission concept will be presented.
NASA Astrophysics Data System (ADS)
Bovensmann, Heinrich; Buchwitz, Michael
2010-05-01
Surprisingly and in spite of their exceptional driving role in climate change, our knowledge about the variable sources and sinks of the greenhouse gases CO2 and CH4 is currently inadequate. For example, the ability of the Earth-atmosphere system to buffer increasing anthropogenic emissions into the atmosphere has large uncertainties and emissions from many sources (geologic, anthropogenic, biogenic) are to a large degree uncertain. An adequate knowledge of the sources and sinks of CO2 and CH4 and their response to a changing climate is a pre-requisite for the accurate prediction of the regional variation of the climate of our planet. CarbonSat is a new mission concept to quantify and monitor CO2 and CH4 sources and sinks at the regional to local scale. The data will allow a better understanding of the processes that control the Carbon Cycle dynamics and an independent estimate of local greenhouse gas emissions (fossil fuel, geological CO2 and CH4, etc.). This will be achieved by a unique combination of high spatial resolution passive and active compact remote sensing with inverse modeling techniques. CarbonSat will accurately measure column-averaged mixing ratios of CO2 and CH4, i.e., XCO2 and XCH4, at a spatial resolution of 2 x 2 km2 (500 km continuous swath) with 0.5% goal (1%, threshold) single measurement precision and global coverage within 3-6 days. Beside the quantification of sources and sinks on the regional scale, one key and innovative aim of the CarbonSat mission is to go a step forward towards quantifying local emission hot spots (fossil fuel emissions by power plants, gas/oil production, geological sources etc.). The core sensor will be a compact Imaging NIR/SWIR spectrometer (SCIAMACHY, OCO heritage) whose measurements yield global data sets of XCO2 and XCH4 with at least one order of magnitude higher number of cloud free measurements than GOSAT and OCO and one order of magnitude better spatial coverage than OCO, due to CarbonSat's 500 km swath continuous across track coverage with 2 x 2 km2 spatial resolution. Ideally, the imaging spectrometer will be accompanied by a compact CH4 Lidar, to derive complementary accurate XCH4 - especially in high northern latitudes - as well as information on clouds and vegetation height. The overall mission concept, the expected data quality and selected application areas will be presented.
NASA Astrophysics Data System (ADS)
Ding, Jiachen; Bi, Lei; Yang, Ping; Kattawar, George W.; Weng, Fuzhong; Liu, Quanhua; Greenwald, Thomas
2017-03-01
An ice crystal single-scattering property database is developed in the microwave spectral region (1 to 874 GHz) to provide the scattering, absorption, and polarization properties of 12 ice crystal habits (10-plate aggregate, 5-plate aggregate, 8-column aggregate, solid hexagonal column, hollow hexagonal column, hexagonal plate, solid bullet rosette, hollow bullet rosette, droxtal, oblate spheroid, prolate spheroid, and sphere) with particle maximum dimensions from 2 μm to 10 mm. For each habit, four temperatures (160, 200, 230, and 270 K) are selected to account for temperature dependence of the ice refractive index. The microphysical and scattering properties include projected area, volume, extinction efficiency, single-scattering albedo, asymmetry factor, and six independent nonzero phase matrix elements (i.e. P11, P12, P22, P33, P43 and P44). The scattering properties are computed by the Invariant Imbedding T-Matrix (II-TM) method and the Improved Geometric Optics Method (IGOM). The computation results show that the temperature dependence of the ice single-scattering properties in the microwave region is significant, particularly at high frequencies. Potential active and passive remote sensing applications of the database are illustrated through radar reflectivity and radiative transfer calculations. For cloud radar applications, ignoring temperature dependence has little effect on ice water content measurements. For passive microwave remote sensing, ignoring temperature dependence may lead to brightness temperature biases up to 5 K in the case of a large ice water path.
Preparative SDS PAGE as an Alternative to His-Tag Purification of Recombinant Amelogenin
Gabe, Claire M.; Brookes, Steven J.; Kirkham, Jennifer
2017-01-01
Recombinant protein technology provides an invaluable source of proteins for use in structure-function studies, as immunogens, and in the development of therapeutics. Recombinant proteins are typically engineered with “tags” that allow the protein to be purified from crude host cell extracts using affinity based chromatography techniques. Amelogenin is the principal component of the developing enamel matrix and a frequent focus for biomineralization researchers. Several groups have reported the successful production of recombinant amelogenins but the production of recombinant amelogenin free of any tags, and at single band purity on silver stained SDS PAGE is technically challenging. This is important, as rigorous structure-function research frequently demands a high degree of protein purity and fidelity of protein sequence. Our aim was to generate His-tagged recombinant amelogenin at single band purity on silver stained SDS PAGE for use in functionality studies after His-tag cleavage. An acetic acid extraction technique (previously reported to produce recombinant amelogenin at 95% purity directly from E. coli) followed by repeated rounds of nickel column affinity chromatography, failed to generate recombinant amelogenin at single band purity. This was because following an initial round of nickel column affinity chromatography, subsequent cleavage of the His-tag was not 100% efficient. A second round of nickel column affinity chromatography, used in attempts to separate the cleaved His-tag free recombinant from uncleaved His-tagged contaminants, was still unsatisfactory as cleaved recombinant amelogenin exhibited significant affinity for the nickel column. To solve this problem, we used preparative SDS PAGE to successfully purify cleaved recombinant amelogenins to single band purity on silver stained SDS PAGE. The resolving power of preparative SDS PAGE was such that His-tag based purification of recombinant amelogenin becomes redundant. We suggest that acetic acid extraction of recombinant amelogenin and subsequent purification using preparative SDS PAGE provides a simple route to highly purified His-tag free amelogenin for use in structure-function experiments and beyond. PMID:28670287
Lin, Shu-Ling; Wang, Chih-Chieh; Fuh, Ming-Ren
2016-10-05
In this study, divinylbenzene (DVB) was used as the cross-linker to prepare alkyl methacrylate (AlMA) monoliths for incorporating π-π interactions between the aromatic analytes and AlMA-DVB monolithic stationary phases in capillary LC analysis. Various AlMA/DVB ratios were investigated to prepare a series of 30% AlMA-DVB monolithic stationary phases in fused-silica capillaries (250-μm i.d.). The physical properties (such as porosity, permeability, and column efficiency) of the synthesized AlMA-DVB monolithic columns were investigated for characterization. Isocratic elution of phenol derivatives was first employed to evaluate the suitability of the prepared AlMA-DVB columns for small molecule separation. The run-to-run (0.16-1.20%, RSD; n = 3) and column-to-column (0.26-2.95%, RSD; n = 3) repeatabilities on retention times were also examined using the selected AlMA-DVB monolithic columns. The π-π interactions between the aromatic ring and the DVB-based stationary phase offered better recognition on polar analytes with aromatic moieties, which resulted in better separation resolution of aromatic analytes on the AlMA-DVB monolithic columns. In order to demonstrate the capability of potential environmental and/or food safety applications, eight phenylurea herbicides with single benzene ring and seven sulfonamide antibiotics with polyaromatic moieties were analyzed using the selected AlMA-DVB monolithic columns. Copyright © 2016. Published by Elsevier B.V.
Robles-Molina, José; Gilbert-López, Bienvenida; García-Reyes, Juan F; Molina-Díaz, Antonio
2017-09-29
Pesticide testing of foodstuffs is usually accomplished with generic wide-scope multi-residue methods based on liquid chromatography tandem mass spectrometry (LC-MS/MS). However, this approach does not cover some special pesticides, the so called "single-residue method" compounds, that are hardly compatible with standard reversed-phase (RP) separations due to their specific properties. In this article, we propose a comprehensive strategy for the integration of single residue method compounds and standard multiresidue pesticides within a single run. It is based on the use of a parallel LC column assembly with two different LC gradients performing orthogonal hydrophilic interaction chromatography (HILIC) and reversed-phase (RPLC) chromatography within one analytical run. Two sample aliquots were simultaneously injected on each column, using different gradients, being the eluents merged post-column prior to mass spectrometry detection. The approach was tested with 41 multiclass pesticides covering a wide range of physicochemical properties across several orders of log K ow (from -4 to +5.5). With this assembly, distinct separation from the void was attained for all the pesticides studied, keeping similar performance in terms of sensitivity, peak area reproducibility (<6 RSD% in most cases) and retention time stability of standard single column approaches (better than±0.1min). The application of the proposed approach using parallel HILIC/RPLC and RPLC/aqueous normal phase (Obelisc) were assessed in leek using LC-MS/MS. For this purpose, a hybrid QuEChERS (Quick, easy, cheap, effective, rugged and safe)/QuPPe (quick method for polar pesticides) method was evaluated based on solvent extraction with MeOH and acetonitrile followed by dispersive solid-phase extraction, delivering appropriate recoveries for most of the pesticides included in the study within the log K ow in the range from -4 to +5.5. The proposed strategy may be extended to other fields such as sport drug testing or environmental analysis, where the same type of variety of analytes featuring poor retention within a single chromatographic separation occurs. Copyright © 2017 Elsevier B.V. All rights reserved.
D'Hondt, Matthias; Verbeke, Frederick; Stalmans, Sofie; Gevaert, Bert; Wynendaele, Evelien; De Spiegeleer, Bart
2014-06-01
Lipopeptides are currently re-emerging as an interesting subgroup in the peptide research field, having historical applications as antibacterial and antifungal agents and new potential applications as antiviral, antitumor, immune-modulating and cell-penetrating compounds. However, due to their specific structure, chromatographic analysis often requires special buffer systems or the use of trifluoroacetic acid, limiting mass spectrometry detection. Therefore, we used a traditional aqueous/acetonitrile based gradient system, containing 0.1% (m/v) formic acid, to separate four pharmaceutically relevant lipopeptides (polymyxin B 1 , caspofungin, daptomycin and gramicidin A 1 ), which were selected based upon hierarchical cluster analysis (HCA) and principal component analysis (PCA). In total, the performance of four different C18 columns, including one UPLC column, were evaluated using two parallel approaches. First, a Derringer desirability function was used, whereby six single and multiple chromatographic response values were rescaled into one overall D -value per column. Using this approach, the YMC Pack Pro C18 column was ranked as the best column for general MS-compatible lipopeptide separation. Secondly, the kinetic plot approach was used to compare the different columns at different flow rate ranges. As the optimal kinetic column performance is obtained at its maximal pressure, the length elongation factor λ ( P max / P exp ) was used to transform the obtained experimental data (retention times and peak capacities) and construct kinetic performance limit (KPL) curves, allowing a direct visual and unbiased comparison of the selected columns, whereby the YMC Triart C18 UPLC and ACE C18 columns performed as best. Finally, differences in column performance and the (dis)advantages of both approaches are discussed.
Century-Long Warming Trends in the Upper Water Column of Lake Tanganyika.
Kraemer, Benjamin M; Hook, Simon; Huttula, Timo; Kotilainen, Pekka; O'Reilly, Catherine M; Peltonen, Anu; Plisnier, Pierre-Denis; Sarvala, Jouko; Tamatamah, Rashid; Vadeboncoeur, Yvonne; Wehrli, Bernhard; McIntyre, Peter B
2015-01-01
Lake Tanganyika, the deepest and most voluminous lake in Africa, has warmed over the last century in response to climate change. Separate analyses of surface warming rates estimated from in situ instruments, satellites, and a paleolimnological temperature proxy (TEX86) disagree, leaving uncertainty about the thermal sensitivity of Lake Tanganyika to climate change. Here, we use a comprehensive database of in situ temperature data from the top 100 meters of the water column that span the lake's seasonal range and lateral extent to demonstrate that long-term temperature trends in Lake Tanganyika depend strongly on depth, season, and latitude. The observed spatiotemporal variation in surface warming rates accounts for small differences between warming rate estimates from in situ instruments and satellite data. However, after accounting for spatiotemporal variation in temperature and warming rates, the TEX86 paleolimnological proxy yields lower surface temperatures (1.46 °C lower on average) and faster warming rates (by a factor of three) than in situ measurements. Based on the ecology of Thaumarchaeota (the microbes whose biomolecules are involved with generating the TEX86 proxy), we offer a reinterpretation of the TEX86 data from Lake Tanganyika as the temperature of the low-oxygen zone, rather than of the lake surface temperature as has been suggested previously. Our analyses provide a thorough accounting of spatiotemporal variation in warming rates, offering strong evidence that thermal and ecological shifts observed in this massive tropical lake over the last century are robust and in step with global climate change.
Climatic consequences of observed ozone loss in the 1980s: Relevance to the greenhouse problem
NASA Technical Reports Server (NTRS)
Molnar, G. I.; Ko, M. K. W.; Zhou, S.; Sze, N. D.
1994-01-01
Recently published findings using satellite and ground-based observations indicate a large winter and summertime decrease in the column abundance of ozone at high and middle latitudes during the last decade. Using a simple ozone depletion profile reflecting the observed decrease in ozone column abundance, Ramaswamy et al. (1992) showed that the negative radiative forcing that results from the ozone decrease between 1979 and 1990 approximately balanced the greenhouse climate forcing due to the chlorofluorocarbons emitted during the same period. Here, we extend the forcing analyses by calculating the equilibrium surface temperature response explicitly, using an updated version of the Atmospheric and Environmental Research two-dimensional radiative-dynamical seasonal model. The calculated steady state responses suggest that the surface cooling due to the ozone depletion in the lower stratosphere offsets about 30% of the surface warming due to greenhouse gases emitted during the same decade. The temperature offset is roughly a factor of 2 larger than the corresponding offset obtained from forcing intercomparisons. This result appears to be related to the climate feedback mechanisms operating in the model troposphere, most notably that associated with atmospheric meridional heat transport. Thus a comprehensive assessment of ozone change effects on the predicted greenhouse warming cannot be accomplished based on forcing evaluations alone. Our results also show that calculations adopting a seasonally and latitudinally dependent ozone depletion profile produce a negative forcing about 50% smaller than that calculated for the depletion profile used by Ramaswamy et al. (1992).
Synthesis of Energetic Polymers.
1981-10-15
demonstrated by a single peak in the gc analysis (injector temperature 2500 C). The reaction will be repeated in a different solvent to avoid the formation of...glass column packed with 10% OV-101 on chrom Q, with n-decane as an internal standard. Rates of polymerization were calculated using the assumption...the Kelen-Tudos method. The disappearance of monomer was monitored by gas chromatography, using a glass column packed with 10% OV-101 on Chrom Q
The organization of orientation selectivity throughout macaque visual cortex.
Vanduffel, Wim; Tootell, Roger B H; Schoups, Aniek A; Orban, Guy A
2002-06-01
A double-label deoxyglucose technique was used to study orientation columns throughout visual cortex in awake behaving macaques. Four macaques were trained to fixate while contrastreversing, stationary gratings or one-dimensional noise of a single orientation or an orthogonal orientation were presented, during uptake of [14C]deoxyglucose ([14C]DG) or [3H]DG, respectively. The two orthogonal stimulus orientations produced DG-labeled columns that were maximally separated in the two isotope maps (inter-digitated) in four areas: V1, V2, V3 and VP. The topographic change from interdigitated to overlapping columns occurred abruptly rather than gradually, at corresponding cortical area borders (e.g. VP and V4v, respectively). In addition, the data suggest that orientation column topography systematically changes with retinotopic eccentricity. In V1, the orientation columns systematically avoided the cytochrome oxidase blobs in the parafoveal representation, but converged closer to the blobs in the foveal representation. A control experiment indicated that this was unlikely to reflect eccentricity-dependent differences in cortical spatial frequency sensitivity. A similar eccentricity-dependent change in the topography of orientation columns occurred in V2. In parafoveal but not foveal visual field representations of V2, the orientation columns were centered on the thick cytochrome oxidase stripes, extended into the adjacent interstripe region, but were virtually absent in the thin stripes.
The Response of Tropospheric Ozone to ENSO in Observations and a Chemistry-Climate Simulation
NASA Technical Reports Server (NTRS)
Oman, L. D.; Douglass, A. R.; Ziemke, J. R.; Waugh, D. W.; Rodriguez, J. M.; Nielsen, J. E.
2012-01-01
The El Nino-Southern Oscillation (ENSO) is the dominant mode of tropical variability on interannual time scales. ENSO appears to extend its influence into the chemical composition of the tropical troposphere. Recent results have revealed an ENSO induced wave-l anomaly in observed tropical tropospheric column ozone. This results in a dipole over the western and eastern tropical Pacific, whereby differencing the two regions produces an ozone anomaly with an extremely high correlation to the Nino 3.4 Index. We have successfully reproduced this result using the Goddard Earth Observing System Version 5 (GEOS-5) general circulation model coupled to a comprehensive stratospheric and tropospheric chemical mechanism forced with observed sea surface temperatures over the past 25 years. An examination of the modeled ozone field reveals the vertical contributions of tropospheric ozone to the column over the western and eastern Pacific region. We will show targeted comparisons with observations from NASA's Aura satellite Microwave Limb Sounder (MLS), and the Tropospheric Emissions Spectrometer (TES) to provide insight into the vertical structure of ozone changes. The tropospheric ozone response to ENSO could be a useful chemistry-climate model evaluation tool and should be considered in future modeling assessments.
NASA Astrophysics Data System (ADS)
Xu, Yangyang; Lamarque, Jean-François
2018-03-01
Particulate matter with the diameter smaller than 2.5 μm (PM2.5) poses health threats to human population. Regardless of efforts to regulate the pollution sources, it is unclear how climate change caused by greenhouse gases (GHGs) would affect PM2.5 levels. Using century-long ensemble simulations with Community Earth System Model 1 (CESM1), we show that, if the anthropogenic emissions would remain at the level in the year 2005, the global surface concentration and atmospheric column burden of sulfate, black carbon, and primary organic carbon would still increase by 5%-10% at the end of 21st century (2090-2100) due to global warming alone. The decrease in the wet removal flux of PM2.5, despite an increase in global precipitation, is the primary cause of the increase in the PM2.5 column burden. Regionally over North America and East Asia, a shift of future precipitation toward more frequent heavy events contributes to weakened wet removal fluxes. Our results suggest climate change impact needs to be accounted for to define the future emission standards necessary to meet air quality standard.
Sienko, K H; Balkwill, M D; Oddsson, L I E; Wall, C
2008-01-01
Single-axis vibrotactile feedback of trunk tilt provided in real-time has previously been shown to significantly reduce the root-mean-square (RMS) trunk sway in subjects with vestibular loss during single-axis perturbation. This research examines the effect of multi-directional vibrotactile feedback on postural sway during continuous multi-directional surface perturbations when the subjects' eyes are closed. Eight subjects with vestibular loss donned a multi-axis feedback device that mapped body tilt estimates onto their torsos with a 3-row by 16-column array of tactile actuators (tactors). Tactor row indicated tilt magnitude and tactor column indicated tilt direction. Root-mean-square trunk tilt, elliptical fits to trunk sway trajectory areas, percentage of time spent outside a no vibrotactile feedback zone, RMS center of pressure, and anchoring index parameters indicating intersegmental coordination were used to assess the efficacy of the multi-directional vibrotactile balance aid. Four tactor display configurations in addition to the tactors off configuration were evaluated. Subjects had significantly reduced RMS trunk sway, significantly smaller elliptical fits of the trajectory area, and spent significantly less time outside of the no feedback zone in the tactors on versus the tactors off configuration. Among the displays evaluated in this study, there was not an optimal tactor column configuration for standing tasks involving continuous surface perturbations. Furthermore, subjects performed worse when erroneous information was displayed. Therefore, a spatial resolution of 90 degrees (4 columns) seems to be as effective as a spatial resolution of 22.5 degrees (16 columns) for control of standing.
Persson, Oliver; Andersson, Niklas; Nilsson, Bernt
2018-01-05
Preparative liquid chromatography is a separation technique widely used in the manufacturing of fine chemicals and pharmaceuticals. A major drawback of traditional single-column batch chromatography step is the trade-off between product purity and process performance. Recirculation of impure product can be utilized to make the trade-off more favorable. The aim of the present study was to investigate the usage of a two-column batch-to-batch recirculation process step to increase the performance compared to single-column batch chromatography at a high purity requirement. The separation of a ternary protein mixture on ion-exchange chromatography columns was used to evaluate the proposed process. The investigation used modelling and simulation of the process step, experimental validation and optimization of the simulated process. In the presented case the yield increases from 45.4% to 93.6% and the productivity increases 3.4 times compared to the performance of a batch run for a nominal case. A rapid concentration build-up product can be seen during the first cycles, before the process reaches a cyclic steady-state with reoccurring concentration profiles. The optimization of the simulation model predicts that the recirculated salt can be used as a flying start of the elution, which would enhance the process performance. The proposed process is more complex than a batch process, but may improve the separation performance, especially while operating at cyclic steady-state. The recirculation of impure fractions reduces the product losses and ensures separation of product to a high degree of purity. Copyright © 2017 Elsevier B.V. All rights reserved.
Mutations in FLVCR1 Cause Posterior Column Ataxia and Retinitis Pigmentosa
Rajadhyaksha, Anjali M.; Elemento, Olivier; Puffenberger, Erik G.; Schierberl, Kathryn C.; Xiang, Jenny Z.; Putorti, Maria L.; Berciano, José; Poulin, Chantal; Brais, Bernard; Michaelides, Michel; Weleber, Richard G.; Higgins, Joseph J.
2010-01-01
The study of inherited retinal diseases has advanced our knowledge of the cellular and molecular mechanisms involved in sensory neural signaling. Dysfunction of two specific sensory modalities, vision and proprioception, characterizes the phenotype of the rare, autosomal-recessive disorder posterior column ataxia and retinitis pigmentosa (PCARP). Using targeted DNA capture and high-throughput sequencing, we analyzed the entire 4.2 Mb candidate sequence on chromosome 1q32 to find the gene mutated in PCARP in a single family. Employing comprehensive bioinformatic analysis and filtering, we identified a single-nucleotide coding variant in the feline leukemia virus subgroup C cellular receptor 1 (FLVCR1), a gene encoding a heme-transporter protein. Sanger sequencing confirmed the FLVCR1 mutation in this family and identified different homozygous missense mutations located within the protein's transmembrane channel segment in two other unrelated families with PCARP. To determine whether the selective pathologic features of PCARP correlated with FLVCR1 expression, we examined wild-type mouse Flvcr1 mRNA levels in the posterior column of the spinal cord and the retina via quantitative real-time reverse-transcriptase PCR. The Flvcr1 mRNA levels were most abundant in the retina, followed by the posterior column of the spinal cord and other brain regions. These results suggest that aberrant FLVCR1 causes a selective degeneration of a subpopulation of neurons in the retina and the posterior columns of the spinal cord via dysregulation of heme or iron homeostasis. This finding broadens the molecular basis of sensory neural signaling to include common mechanisms that involve proprioception and vision. PMID:21070897
Linking the variability of atmospheric carbon monoxide to climate modes in the Southern Hemisphere
NASA Astrophysics Data System (ADS)
Buchholz, Rebecca; Monks, Sarah; Hammerling, Dorit; Worden, Helen; Deeter, Merritt; Emmons, Louisa; Edwards, David
2017-04-01
Biomass burning is a major driver of atmospheric carbon monoxide (CO) variability in the Southern Hemisphere. The magnitude of emissions, such as CO, from biomass burning is connected to climate through both the availability and dryness of fuel. We investigate the link between CO and climate using satellite measured CO and climate indices. Observations of total column CO from the satellite instrument MOPITT are used to build a record of interannual variability in CO since 2001. Four biomass burning regions in the Southern Hemisphere are explored. Data driven relationships are determined between CO and climate indices for the climate modes: El Niño Southern Oscillation (ENSO); the Indian Ocean Dipole (IOD); the Tropical Southern Atlantic (TSA); and the Southern Annular Mode (SAM). Stepwise forward and backward regression is used to select the best statistical model from combinations of lagged indices. We find evidence for the importance of first-order interaction terms of the climate modes when explaining CO variability. Implications of the model results are discussed for the Maritime Southeast Asia and Australasia regions. We also draw on the chemistry-climate model CAM-chem to explain the source contribution as well as the relative contributions of emissions and meteorology to CO variability.
Climate and atmosphere simulator for experiments on ecological systems in changing environments.
Verdier, Bruno; Jouanneau, Isabelle; Simonnet, Benoit; Rabin, Christian; Van Dooren, Tom J M; Delpierre, Nicolas; Clobert, Jean; Abbadie, Luc; Ferrière, Régis; Le Galliard, Jean-François
2014-01-01
Grand challenges in global change research and environmental science raise the need for replicated experiments on ecosystems subjected to controlled changes in multiple environmental factors. We designed and developed the Ecolab as a variable climate and atmosphere simulator for multifactor experimentation on natural or artificial ecosystems. The Ecolab integrates atmosphere conditioning technology optimized for accuracy and reliability. The centerpiece is a highly contained, 13-m(3) chamber to host communities of aquatic and terrestrial species and control climate (temperature, humidity, rainfall, irradiance) and atmosphere conditions (O2 and CO2 concentrations). Temperature in the atmosphere and in the water or soil column can be controlled independently of each other. All climatic and atmospheric variables can be programmed to follow dynamical trajectories and simulate gradual as well as step changes. We demonstrate the Ecolab's capacity to simulate a broad range of atmospheric and climatic conditions, their diurnal and seasonal variations, and to support the growth of a model terrestrial plant in two contrasting climate scenarios. The adaptability of the Ecolab design makes it possible to study interactions between variable climate-atmosphere factors and biotic disturbances. Developed as an open-access, multichamber platform, this equipment is available to the international scientific community for exploring interactions and feedbacks between ecological and climate systems.
Kaymak, Tugrul; Türker, Levent; Tulay, Hüseyin; Stroka, Joerg
2018-04-27
Background : Pekmez and pestil are traditional Turkish foods made from concentrated grapejuice, which can be contaminated with mycotoxins such as aflatoxins and ochratoxin A (OTA). Objective : To carry out a single-laboratory validation of a method to simultaneously determine aflatoxins B 1 , B₂, G 1 , and G₂ and ochratoxin A in pekmez and pestil. Methods : The homogenized sample is extracted with methanol-water (80 + 20) using a high-speed blender. The (sample) extract is filtered, diluted with phosphate-buffered saline solution, and applied to a multi-immunoaffinity column (AFLAOCHRA PREP®). Aflatoxins and ochratoxin A are removed with (neat) methanol and then directly analyzed by reversed-phase LC with fluorescence detection using post-column bromination (Kobra cell®). Results : Test portions of blank pekmez and pestil were spiked with a mixture of aflatoxins and ochratoxin A to give levels ranging from 2.6 to 10.4 μg/kg and 1.0-4.0 μg/kg, respectively. Recoveries for total aflatoxins and ochratoxin A ranged from 84 to 106% and 80-97%, respectively, for spiked samples. Based on results for spiked pekmez and pestil (30 replicates each at three levels), the repeatability RSD ranged from 1.6 to 12% and 2.7-11% for total aflatoxins and ochratoxin A, respectively. Conclusions : The method performance in terms of recovery, repeatability, and detection limits has been demonstrated to be suitable for use as an Official Method. Highlights : First immunoaffinity column method validated for simultaneous analysis of aflatoxins and ochratoxin A in pekmez and pestil. Suitability for use for official purposes in Turkey, demonstrated by single-laboratory validation. Co-occurrence of aflatoxins and OTA in mulberry and carob pekmez reported for the first time.
Conway, Bevil R.; Tsao, Doris Y.
2009-01-01
Large islands of extrastriate cortex that are enriched for color-tuned neurons have recently been described in alert macaque using a combination of functional magnetic resonance imaging (fMRI) and single-unit recording. These millimeter-sized islands, dubbed “globs,” are scattered throughout the posterior inferior temporal cortex (PIT), a swath of brain anterior to area V3, including areas V4, PITd, and posterior TEO. We investigated the micro-organization of neurons within the globs. We used fMRI to identify the globs and then used MRI-guided microelectrodes to test the color properties of single glob cells. We used color stimuli that sample the CIELUV perceptual color space at regular intervals to test the color tuning of single units, and make two observations. First, color-tuned neurons of various color preferences were found within single globs. Second, adjacent glob cells tended to have the same color tuning, demonstrating that glob cells are clustered by color preference and suggesting that they are arranged in color columns. Neurons separated by 50 μm, measured parallel to the cortical sheet, had more similar color tuning than neurons separated by 100 μm, suggesting that the scale of the color columns is <100 μm. These results show that color-tuned neurons in PIT are organized by color preference on a finer scale than the scale of single globs. Moreover, the color preferences of neurons recorded sequentially along a given electrode penetration shifted gradually in many penetrations, suggesting that the color columns are arranged according to a chromotopic map reflecting perceptual color space. PMID:19805195
A comparison among several P300 brain-computer interface speller paradigms.
Fazel-Rezai, Reza; Gavett, Scott; Ahmad, Waqas; Rabbi, Ahmed; Schneider, Eric
2011-10-01
Since the brain-computer interface (BCI) speller was first proposed by Farwell and Donchin, there have been modifications in the visual aspects of P300 paradigms. Most of the changes are based on the original matrix format such as changes in the number of rows and columns, font size, flash/ blank time, and flash order. The improvement in the resulting accuracy and speed of such systems has always been the ultimate goal. In this study, we have compared several different speller paradigms including row-column, single character flashing, and two region-based paradigms which are not based on the matrix format. In the first region-based paradigm, at the first level, characters and symbols are distributed over seven regions alphabetically, while in the second region-based paradigm they are distributed in the most frequently used order. At the second level, each one of the regions is further subdivided into seven subsets. The experimental results showed that the average accuracy and user acceptability for two region-based paradigms were higher than those for traditional paradigms such as row/column and single character.
NASA Astrophysics Data System (ADS)
Gueroult, R.; Rax, J.-M.; Zweben, S. J.; Fisch, N. J.
2018-01-01
The ability to separate large volumes of mixed species based on atomic mass appears desirable for a variety of emerging applications with high societal impact. One possibility to meet this objective consists in leveraging mass differential effects in rotating plasmas. Beyond conventional centrifugation, rotating plasmas offer in principle additional ways to separate elements based on mass. Single ion orbits show that ion radial mass separation in a uniform magnetized plasma column can be achieved by applying a tailored electric potential profile across the column, or by driving a rotating magnetic field within the column. Furthermore, magnetic pressure and centrifugal effects can be combined in a non-uniform geometry to separate ions based on mass along the field lines. Practical application of these separation schemes hinges on the ability to produce the desirable electric and magnetic field configuration within the plasma column.
Changing precipitation in western Europe, climate change or natural variability?
NASA Astrophysics Data System (ADS)
Aalbers, Emma; Lenderink, Geert; van Meijgaard, Erik; van den Hurk, Bart
2017-04-01
Multi-model RCM-GCM ensembles provide high resolution climate projections, valuable for among others climate impact assessment studies. While the application of multiple models (both GCMs and RCMs) provides a certain robustness with respect to model uncertainty, the interpretation of differences between ensemble members - the combined result of model uncertainty and natural variability of the climate system - is not straightforward. Natural variability is intrinsic to the climate system, and a potentially large source of uncertainty in climate change projections, especially for projections on the local to regional scale. To quantify the natural variability and get a robust estimate of the forced climate change response (given a certain model and forcing scenario), large ensembles of climate model simulations of the same model provide essential information. While for global climate models (GCMs) a number of such large single model ensembles exists and have been analyzed, for regional climate models (RCMs) the number and size of single model ensembles is limited, and the predictability of the forced climate response at the local to regional scale is still rather uncertain. We present a regional downscaling of a 16-member single model ensemble over western Europe and the Alps at a resolution of 0.11 degrees (˜12km), similar to the highest resolution EURO-CORDEX simulations. This 16-member ensemble was generated by the GCM EC-EARTH, which was downscaled with the RCM RACMO for the period 1951-2100. This single model ensemble has been investigated in terms of the ensemble mean response (our estimate of the forced climate response), as well as the difference between the ensemble members, which measures natural variability. We focus on the response in seasonal mean and extreme precipitation (seasonal maxima and extremes with a return period up to 20 years) for the near to far future. For most precipitation indices we can reliably determine the climate change signal, given the applied model chain and forcing scenario. However, the analysis also shows how limited the information in single ensemble members is on the local scale forced climate response, even for high levels of global warming when the forced response has emerged from natural variability. Analysis and application of multi-model ensembles like EURO-CORDEX should go hand-in-hand with single model ensembles, like the one presented here, to be able to correctly interpret the fine-scale information in terms of a forced signal and random noise due to natural variability.
Improving microphysics in a convective parameterization: possibilities and limitations
NASA Astrophysics Data System (ADS)
Labbouz, Laurent; Heikenfeld, Max; Stier, Philip; Morrison, Hugh; Milbrandt, Jason; Protat, Alain; Kipling, Zak
2017-04-01
The convective cloud field model (CCFM) is a convective parameterization implemented in the climate model ECHAM6.1-HAM2.2. It represents a population of clouds within each ECHAM-HAM model column, simulating up to 10 different convective cloud types with individual radius, vertical velocities and microphysical properties. Comparisons between CCFM and radar data at Darwin, Australia, show that in order to reproduce both the convective cloud top height distribution and the vertical velocity profile, the effect of aerodynamic drag on the rising parcel has to be considered, along with a reduced entrainment parameter. A new double-moment microphysics (the Predicted Particle Properties scheme, P3) has been implemented in the latest version of CCFM and is compared to the standard single-moment microphysics and the radar retrievals at Darwin. The microphysical process rates (autoconversion, accretion, deposition, freezing, …) and their response to changes in CDNC are investigated and compared to high resolution CRM WRF simulations over the Amazon region. The results shed light on the possibilities and limitations of microphysics improvements in the framework of CCFM and in convective parameterizations in general.
NASA Astrophysics Data System (ADS)
Elsayed Yousef, Ahmed; Ehsan, M. Azhar; Almazroui, Mansour; Assiri, Mazen E.; Al-Khalaf, Abdulrahman K.
2017-02-01
A new closure and a modified detrainment for the simplified Arakawa-Schubert (SAS) cumulus parameterization scheme are proposed. In the modified convective scheme which is named as King Abdulaziz University (KAU) scheme, the closure depends on both the buoyancy force and the environment mean relative humidity. A lateral entrainment rate varying with environment relative humidity is proposed and tends to suppress convection in a dry atmosphere. The detrainment rate also varies with environment relative humidity. The KAU scheme has been tested in a single column model (SCM) and implemented in a coupled global climate model (CGCM). Increased coupling between environment and clouds in the KAU scheme results in improved sensitivity of the depth and strength of convection to environmental humidity compared to the original SAS scheme. The new scheme improves precipitation simulation with better representations of moisture and temperature especially during suppressed convection periods. The KAU scheme implemented in the Seoul National University (SNU) CGCM shows improved precipitation over the tropics. The simulated precipitation pattern over the Arabian Peninsula and Northeast African region is also improved.
NASA Astrophysics Data System (ADS)
Rinna, J.; Warning, B.; Meyers, P. A.; Brumsack, H.-J.; Rullkötter, J.
2002-06-01
Layers of organic-carbon-rich sapropels in the sediment record of the Mediterranean Sea give evidence of repetitive changes in regional Plio-Pleistocene climate. Results from biomarker molecule and major and trace element analyses of closely spaced samples are used to reconstruct the conditions leading to deposition of a Pliocene sapropel at Ocean Drilling Program (ODP) Site 969 on the Mediterranean Ridge. Organic carbon concentrations increase from 0.2% outside the sapropel and peak to more than 30% within it. Major and trace elemental composition and biomarker-derived parameters indicate elevated productivity, depletion of water-column dissolved-oxygen content, and changes in sediment provenance in response to climatic changes. Budgets of rhenium, thallium, and other trace metals indicate that deep-water exchange between the Mediterranean subbasins and the Atlantic Ocean was not completely interrupted during sapropel formation. Enrichment factors of redox-sensitive and sulfide-forming trace metals as well as the presence of isorenieratene derivatives and high stanol/sterol ratios point to an extended zone of anoxic water masses. Depth profiles of biomarker compositions (sterols, long-chain alkenones, alkandiols and -ketols, fatty acids) indicate great floral diversity during deposition of a single sapropel and highlight the sensitive response of the marine community to variable environmental conditions. Changes in water mass circulation and eolian transport can be reconstructed by use of both lithogenic elements and average chain lengths of n-alkanes (ACL index).
NASA Astrophysics Data System (ADS)
Lucas, D. D.; Labute, M.; Chowdhary, K.; Debusschere, B.; Cameron-Smith, P. J.
2014-12-01
Simulating the atmospheric cycles of ozone, methane, and other radiatively important trace gases in global climate models is computationally demanding and requires the use of 100's of photochemical parameters with uncertain values. Quantitative analysis of the effects of these uncertainties on tracer distributions, radiative forcing, and other model responses is hindered by the "curse of dimensionality." We describe efforts to overcome this curse using ensemble simulations and advanced statistical methods. Uncertainties from 95 photochemical parameters in the trop-MOZART scheme were sampled using a Monte Carlo method and propagated through 10,000 simulations of the single column version of the Community Atmosphere Model (CAM). The variance of the ensemble was represented as a network with nodes and edges, and the topology and connections in the network were analyzed using lasso regression, Bayesian compressive sensing, and centrality measures from the field of social network theory. Despite the limited sample size for this high dimensional problem, our methods determined the key sources of variation and co-variation in the ensemble and identified important clusters in the network topology. Our results can be used to better understand the flow of photochemical uncertainty in simulations using CAM and other climate models. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and supported by the DOE Office of Science through the Scientific Discovery Through Advanced Computing (SciDAC).
NASA Astrophysics Data System (ADS)
Zhang, Y.; Klein, S. A.
2016-12-01
Warm-season decade-long observations are used to investigate mechanisms controlling the transition from shallow to deep convection over land. The data are from the DOE Atmospheric Radiation Measurement Climate Research Facility Southern Great Plains site. The study focuses on two questions: 1) what environmental parameters differ between the two convective regimes: fair-weather shallow cumulus versus late-afternoon deep convection, especially in the late morning a few hours before deep convection begins? And 2) Do convective regimes such as fair-weather shallow cumulus and late-afternoon deep convection have any preferences over soil moisture conditions (dry or wet) and soil moisture heterogeneities? It is found that a more humid environment immediately above the boundary layer is present before the start of late afternoon heavy precipitation events. Greater boundary layer inhomogeneity in moist static energy, temperature, moisture, and horizontal wind before precipitation begins is correlated to larger rain rates at the initial stage of precipitation. Late-afternoon deep convection tends to prefer drier soil conditions with larger surface heterogeneity. This observational study helps our understanding of convective responses to different environmental factors especially surface versus atmospheric controls. This work leads to the establishment of composite cases of different continental convective regimes for large-eddy simulations and single-column tests of climate model parameterizations. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-698972
Han, Young-Soo; Tokunaga, Tetsu K
2014-12-01
Renewed interest in managing C balance in soils is motivated by increasing atmospheric concentrations of CO2 and consequent climate change. Here, experiments were conducted in soil columns to determine C mass balances with and without addition of CaSO4-minerals (anhydrite and gypsum), which were hypothesized to promote soil organic carbon (SOC) retention and soil inorganic carbon (SIC) precipitation as calcite under slightly alkaline conditions. Changes in C contents in three phases (gas, liquid and solid) were measured in unsaturated soil columns tested for one year and comprehensive C mass balances were determined. The tested soil columns had no C inputs, and only C utilization by microbial activity and C transformations were assumed in the C chemistry. The measurements showed that changes in C inventories occurred through two processes, SOC loss and SIC gain. However, the measured SOC losses in the treated columns were lower than their corresponding control columns, indicating that the amendments promoted SOC retention. The SOC losses resulted mostly from microbial respiration and loss of CO2 to the atmosphere rather than from chemical leaching. Microbial oxidation of SOC appears to have been suppressed by increased Ca(2+) and SO4(2)(-) from dissolution of CaSO4 minerals. For the conditions tested, SIC accumulation per m(2) soil area under CaSO4-treatment ranged from 130 to 260 g C m(-1) infiltrated water (20-120 g C m(-1) infiltrated water as net C benefit). These results demonstrate the potential for increasing C sequestration in slightly alkaline soils via CaSO4-treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Operational trace gas column observations from GOME-2 on MetOp
NASA Astrophysics Data System (ADS)
Valks, Pieter; Hao, Nan; Pinardi, Gaia; Hedelt, Pascal; Liu, Song; Van Roozendael, Michel; De Smedt, Isabelle; Theys, Nicolas; Koukouli, MariLiza; Balis, Dimitris
2017-04-01
This contribution focuses on the operational GOME-2 trace gas column products developed in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Composition Monitoring (AC-SAF). We present an overview of the retrieval algorithms for ozone, OClO, NO2, SO2 and formaldehyde, and we show examples of various applications such as air quality and climate monitoring, using observations from the GOME-2 instruments on MetOp-A and MetOp-B. Total ozone and the minor trace gas columns from GOME-2 are retrieved with the latest version 4.8 of the GOME Data Processor (GDP), which uses an optimized Differential Optical Absorption Spectroscopy (DOAS) algorithm, with air mass factor conversions based on the LIDORT model. Improved total and tropospheric NO2 columns are retrieved in the visible wavelength region between 425 and 497 nm. SO2 emissions from volcanic and anthropogenic sources can be measured by GOME-2 using the UV wavelength region around 320 nm. For formaldehyde, an optimal DOAS fitting window around 335 nm has been determined for GOME-2. The GOME-2 trace gas columns have reached the operational EUMETSAT product status, and are available to the users in near real time (within two hours after sensing by GOME-2). The use of trace gas observations from the GOME-2 instruments on MetOp-A and MetOp-B for air quality purposed will be illustrated, e.g. for South-East Asia and Europe. Furthermore, comparisons of the GOME-2 satellite observations with ground-based measurements will be shown. Finally, the use of GOME-2 trace-gas column data in the Copernicus Atmosphere Monitoring Service (CAMS) will be presented.
Microfabricated particle focusing device
Ravula, Surendra K.; Arrington, Christian L.; Sigman, Jennifer K.; Branch, Darren W.; Brener, Igal; Clem, Paul G.; James, Conrad D.; Hill, Martyn; Boltryk, Rosemary June
2013-04-23
A microfabricated particle focusing device comprises an acoustic portion to preconcentrate particles over large spatial dimensions into particle streams and a dielectrophoretic portion for finer particle focusing into single-file columns. The device can be used for high throughput assays for which it is necessary to isolate and investigate small bundles of particles and single particles.
Huang, Zhongping; Ni, Chengzhu; Zhu, Zhuyi; Pan, Zaifa; Wang, Lili; Zhu, Yan
2015-05-01
The application of ion chromatography with the single pump cycling-column-switching technique was described for the analysis of trace inorganic anions in weak acid salts within a single run. Due to the hydrogen ions provided by an anion suppressor electrolyzing water, weak acid anions could be transformed into weak acids, existing as molecules, after passing through the suppressor. Therefore, an anion suppressor and ion-exclusion column were adopted to achieve on-line matrix elimination of weak acid anions with high concentration for the analysis of trace inorganic anions in weak acid salts. A series of standard solutions consisting of target anions of various concentrations from 0.005 to 10 mg/L were analyzed, with correlation coefficients r ≥ 0.9990. The limits of detection were in the range of 0.67 to 1.51 μg/L, based on the signal-to-noise ratio of 3 and a 25 μL injection volume. Relative standard deviations for retention time, peak area, and peak height were all less than 2.01%. A spiking study was performed with satisfactory recoveries between 90.3 and 104.4% for all anions. The chromatographic system was successfully applied to the analysis of trace inorganic anions in five weak acid salts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bartnik, Magdalena; Arczewska, Marta; Hoser, Anna A; Mroczek, Tomasz; Kamiński, Daniel M; Głowniak, Kazimierz; Gagoś, Mariusz; Woźniak, Krzysztof
2014-01-01
The structure of peucedanin, isolated from Peucedanum tauricum Bieb. (Apiaceae), has been established using single crystal X-ray diffraction. This furanocoumarin isolated from the light petroleum extract of P. tauricum fruits was characterized by high resolution EI-MS, sATR-FTIR and 2D NMR spectroscopic techniques. The EI-MS showed the typical fragmentation pattern of methoxyfuranocoumarins. Extensive 1D (1H and 13C) as well as 2D NMR data enabled complete assignment of the carbon atoms in the peucedanin molecule. The FTIR data confirms intermolecular hydrogen bonding between peucedanin molecules in polar solvents. Peucedanin crystallises in the R-3 space group from the trigonal system with one molecule in the asymmetric part of the unit cell. The crystal lattice of peucedanin consists of the molecules arranged in separate columns. They are related by two fold screw axes and centres of symmetry. Interestingly, peucedanin columns form two channels per unit cell with a diameter of 7.5angstrom going through the crystal lattice in the Z-direction. These channels are filled with disordered water molecules, which are surrounded by hydrophobic methyl groups and are located exactly at the centres of the channels. The peucedanin molecules are stacked in a single column with the opposite orientation of the neighbouring molecules. These results could be interesting in further application of this molecule, for example in biological tests of its activity.
Yin, Hongfeng; Killeen, Kevin; Brennen, Reid; Sobek, Dan; Werlich, Mark; van de Goor, Tom
2005-01-15
Current nano-LC/MS systems require the use of an enrichment column, a separation column, a nanospray tip, and the fittings needed to connect these parts together. In this paper, we present a microfabricated approach to nano-LC, which integrates these components on a single LC chip, eliminating the need for conventional LC connections. The chip was fabricated by laminating polyimide films with laser-ablated channels, ports, and frit structures. The enrichment and separation columns were packed using conventional reversed-phase chromatography particles. A face-seal rotary valve provided a means for switching between sample loading and separation configurations with minimum dead and delay volumes while allowing high-pressure operation. The LC chip and valve assembly were mounted within a custom electrospray source on an ion-trap mass spectrometer. The overall system performance was demonstrated through reversed-phase gradient separations of tryptic protein digests at flow rates between 100 and 400 nL/min. Microfluidic integration of the nano-LC components enabled separations with subfemtomole detection sensitivity, minimal carryover, and robust and stable electrospray throughout the LC solvent gradient.
Soil Overconsolidation Changes Caused by Dynamic Replacement
NASA Astrophysics Data System (ADS)
Piotr, Kanty; Sławomir, Kwiecień; Jerzy, Sękowski
2017-10-01
In the dynamic replacement method (DR) the soil is improved by initially dropping a large weight (typically 8-20 t) pounder from a significant height up to 25 m. The created crater is filled with a stronger material (gravel, rubble, stone aggregate, debris), and the pounder is dropped once or multiple times again. The construction of dynamic replacement pillars influences the parameters of the adjacent soil. It results from the energy generated by dropping a pounder into the soil. In the current practice, these changes are not taken into the account during the design. This paper focuses on the changes of overconsolidation ratio (OCR) and in situ coefficient of lateral earth pressure (K) values estimated base on cone penetration test (CPTU) and Dilatometric test (DMT) performed at a test site. A single column was constructed and the ground around the column was examined using CPTU and DMT, performed at different distances from the column centre (2, 3, 4 and 6 m) and at different time intervals (during construction and 1, 8, 30 days later). The column was constructed in so-called transition soils (between cohesive and non-cohesive). While interpreting the results of the research, the authors addressed the matter of choosing the procedure of OCR and K indication for transition soils (in this case described as silts and/or sandy silts). Overconsolidation changes may differ depending on the chosen analysis procedure (for cohesive or non-cohesive soils). On the basis of the analysis presented in the paper and the observation of soil (acknowledged as cohesive according to macroscopic observations) during column excavation, it was decided that for more detailed analyses methods dedicated to cohesive soils should be applied. Generally, it can be stated that although the changes were complex, DR pillar formation process resulted in the increase of these parameters. The average increases of OCR and K values were 25% and 10% respectively. The post installation values are not significant from the engineering point of view, but they represent the influence of the formation process of only a single column. The described results indicate that Priebe’s column dimensioning method should be applied with caution, as it assumes the value K=1 which was not obtained in the described research. The results from the conducted tests indicate that different mechanisms occur during stone column formation with vibro-replacement and dynamic replacement. As the authors did not manage to find literature describing the results of K tests in the surrounding of a DR column, the presented results should be acknowledged as significant for designers who will apply the dynamic replacement method.
Pietrogrande, Maria Chiara; Dondi, Francesco; Ciogli, Alessia; Gasparrini, Francesco; Piccin, Antonella; Serafini, Mauro
2010-06-25
In this study, a comparative investigation was performed of HPLC Ascentis (2.7 microm particles) columns based on fused-core particle technology and Acquity (1.7 microm particles) columns requiring UPLC instruments, in comparison with Chromolith RP-18e columns. The study was carried out on mother and vegetal tinctures of Passiflora incarnata L. on one single or two coupled columns. The fundamental attributions of the chromatographic profiles are evaluated using a chemometric procedure, based on the AutoCovariance Function (ACVF). Different chromatographic systems are compared in terms of their separation parameters, i.e., number of total chemical components (m(tot)), separation efficiency (sigma), peak capacity (n(c)), overlap degree of peaks and peak purity. The obtained results show the improvements achieved by HPLC columns with narrow size particles in terms of total analysis time and chromatographic efficiency: comparable performance are achieved by Ascentis (2.7 microm particle) column and Acquity (1.7 microm particle) column requiring UPLC instruments. The ACVF plot is proposed as a simplified tool describing the chromatographic fingerprint to be used for evaluating and comparing chemical composition of plant extracts by using the parameters D% - relative abundance of the deterministic component - and c(EACF) - similarity index computed on ACVF. Copyright 2010 Elsevier B.V. All rights reserved.
Guan, Yue Hugh; Hewitson, Peter; van den Heuvel, Remco N A M; Zhao, Yan; Siebers, Rick P G; Zhuang, Ying-Ping; Sutherland, Ian
2015-12-11
Manufacturing high-value added biotech biopharmaceutical products (e.g. therapeutic proteins) requires quick-to-develop, GMP-compliant, easy-to-scale and cost effective preparatory chromatography technologies. In this work, we describe the construction and testing of a set of 5-mm inner diameter stainless steel toroidal columns for use on commercially available preparatory scale synchronous J-type counter-current chromatography (CCC) machinery. We used a 20.2m long column with an aqueous two-phase system containing 14% (w/w) PEG1000 and 14% (w/w) potassium phosphate at pH 7, and tested a sample loading of 5% column volume and a mobile phase flow rate of 20ml/min. We then satisfactorily demonstrated the potential for a weekly protein separation and preparation throughput of ca. 11g based on a normal weekly routine for separating a pair of model proteins by making five stacked injections on a single portion of stationary phase with no stripping. Compared to our previous 1.6mm bore PTFE toroidal column, the present columns enlarged the nominal column processing throughput by nearly 10. For an ideal model protein injection modality, we observed a scaling up factor of at least 21. The 2 scales of protein separation and purification steps were realized on the same commercial CCC device. Copyright © 2015 Elsevier B.V. All rights reserved.
Gritti, Fabrice; Guiochon, Georges
2011-02-18
The peak parking (PP) method probes the longitudinal diffusion coefficient of a compound at a single location along the chromatographic column. We extended to a so-called multi-location peak parking (MLPP) method, in which a large number of axial locations along the column are selected in order to check the validity of the conventional PP method and to reveal possible defaults in the structure of the packed bed or pitfalls of the PP and the MLPP methods. MLPP was applied to a series of HILIC columns, including a 5.0 μm Venusil, a 3.0 μm Luna-diol, three 2.7 μm Halo, and a 1.7 μm Kinetex columns. The results demonstrate that the MLPP method may reveal local heterogeneities in the axial diffusion of small retained low molecular weight compounds along the column. Most importantly, experiments show that the sample zone should not be parked in the entrance of the column (i.e., at <1/10 th of the column length). The abrupt drop in the flow rate considerably affects the peak shape and prevents scientists from using the conventional PP method. Practical solutions to cope with that problem are proposed and their success/failure are discussed. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Russell, P. B.; Redemann, J.; Schmid, B.; Bergstrom, R. W.; Livingston, J. M.; McIntosh, D. M.; Ramirez, S. A.; Hartley, S.; Hobbs, P. V.; Quinn, P. K.
2002-01-01
Aerosol single scattering albedo omega (the ratio of scattering to extinction) is important in determining aerosol climatic effects, in explaining relationships between calculated and measured radiative fluxes, and in retrieving aerosol optical depths from satellite radiances. Recently, two experiments in the North Atlantic region, the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) and the Second Aerosol Characterization Experiment (ACE-2), determined aerosol omega by a variety of techniques. The techniques included fitting of calculated to measured radiative fluxes; retrievals of omega from skylight radiances; best fits of complex refractive index to profiles of backscatter extinction, and size distribution; and in situ measurements of scattering and absorption at the surface and aloft. Both TARFOX and ACE-2 found a fairly wide range of values for omega at midvisable wavelengths approx. 550 nm, with omega(sub midvis) greater than or equal to 0.85 and less than or equal to 0.99 for the marine aerosol impacted by continental pollution. Frequency distributions of omega could usually be approximated by lognormals in omega(sub max) - omega, with some occurrence of bimodality, suggesting the influence of different aerosol sources or processing. In both TARFOX and ACE-2, closure tests between measured and calculated radiative fluxes yielded best-fit values of omega(sub midvis) 0.90 +/- 0.04 for the polluted boundary layer. Although these results have the virtue of describing the column aerosol unperturbed by sampling, they are subject to questions about representativeness and other uncertainties (e.g., thermal offsets, unknown gas absorption) The other techniques gave larger values for omega(sub midvis) for the polluted boundary layer, with a typical result of omega(sub midvis) = 0.95 +/- 0.04. Current uncertainties in omega are large in terms of climate effects More tests are needed of the consistency among different methods and of humidification effects on omega.
Wada, Naomi; Akatani, Junko; Miyajima, Noriko; Shimojo, Kengo; Kanda, Kenro
2006-05-23
To gain insight into the neural mechanisms controlling vertebral column movement and its role in walking, we performed kinematic and electromyographic (EMG) studies on cats during level and upslope treadmill walking. Kinematic data of the limbs and vertebral column were obtained with a high-speed camera synchronized with EMG recordings from levels T10, L1, and L5 of m. longissimus dorsi (Long). During a single-step cycle at all upslope angles, vertebral movement in the lateral (left-right), cranial-caudal (forward-backward), and dorsal-ventral (upward-downward) directions was observed. Lateral movements were produced by forelimb take-off and hindlimb landing, and forward and upward movements were produced by hindlimb extension. During the single-step cycle, each of the three epaxial muscles, m. multifidus, m. iliocostalis, and Long, showed two bilateral EMG bursts. The onset of the EMG bursts coincided with the left-right movements, suggesting that epaxial muscle activity depresses lateral movement. The termination of the EMG bursts correlated with the forward and downward phase of the step cycle, suggesting that contraction of the epaxial muscles produces forward and downward movements. EMG bursts of the epaxial muscles increase the stiffness and produce inwardly movements to decrease the lateral movements of the vertebral column and the termination of EMG bursts control the movements into cranial and ventral direction of the vertebral column. The results suggest that the rhythmic EMG bursts in the epaxial muscles are produced by pattern generators, and the timing of EMG bursts among the different levels of the epaxial muscles are altered by walking condition input via peripheral afferents and descending pathways.
NASA Astrophysics Data System (ADS)
Lorenzoni, L.; Muller-Karger, F. E.; Rueda-Roa, D. T.; Thunell, R.; Scranton, M. I.; Taylor, G. T.; benitez-Nelson, C. R.; Montes, E.; Astor, Y. M.; Rojas, J.
2016-02-01
The CARIACO Ocean Time-Series project, located in the Cariaco Basin off the coast of Venezuela, seeks to understand relationships between hydrography, primary production, community composition, microbial activity, particle fluxes, and element cycling in the water column, and how variations in these processes are preserved in sediments accumulating in this anoxic basin. CARIACO uses autonomous and shipboard measurements to understand ecological and biogeochemical changes and how these relate to regional and global climatic/ocean variability. CARIACO is a model for national ocean observing programs in Central/South America, and has been developed as a community facility platform with open access to all data (http://imars.marine.usf.edu/cariaco). Research resulting from this program has contributed to knowledge about the decomposition and cycling of particles, the biological pump, and to our understanding of the ecology and oceanography of oxygen minimum zones. Despite this basin being anoxic below 250m, remineralization rates of organic matter are comparable to those in well oxygenated waters. A dynamic microbial community significantly influences carbon and nutrient biogeochemical cycling throughout the water column. Since 1995, declining particulate organic carbon fluxes have been measured throughout the water column using sediment traps, likely in response to declining Chl-a concentrations and smaller phytoplankton which have replaced the larger taxa over the past decade. This community shift appears to be caused by regional changes in the physical regime. CARIACO also recorded marked long-term changes in surface and deep DIC in response to a combination of factors including surface water warming. The observations of CARIACO highlight the importance of a sustained, holistic approach to studying biodiversity, ecology and the marine carbon cycle to predict potential impacts of climate change on the ocean's ecosystem services and carbon sequestration efficiency.
Some queuing network models of computer systems
NASA Technical Reports Server (NTRS)
Herndon, E. S.
1980-01-01
Queuing network models of a computer system operating with a single workload type are presented. Program algorithms are adapted for use on the Texas Instruments SR-52 programmable calculator. By slightly altering the algorithm to process the G and H matrices row by row instead of column by column, six devices and an unlimited job/terminal population could be handled on the SR-52. Techniques are also introduced for handling a simple load dependent server and for studying interactive systems with fixed multiprogramming limits.
ARM - Midlatitude Continental Convective Clouds - Single Column Model Forcing (xie-scm_forcing)
Xie, Shaocheng; McCoy, Renata; Zhang, Yunyan
2012-10-25
The constrained variational objective analysis approach described in Zhang and Lin [1997] and Zhang et al. [2001]was used to derive the large-scale single-column/cloud resolving model forcing and evaluation data set from the observational data collected during Midlatitude Continental Convective Clouds Experiment (MC3E), which was conducted during April to June 2011 near the ARM Southern Great Plains (SGP) site. The analysis data cover the period from 00Z 22 April - 21Z 6 June 2011. The forcing data represent an average over the 3 different analysis domains centered at central facility with a diameter of 300 km (standard SGP forcing domain size), 150 km and 75 km, as shown in Figure 1. This is to support modeling studies on various-scale convective systems.
Separation of Be and Al for AMS using single-step column chromatography
NASA Astrophysics Data System (ADS)
Binnie, Steven A.; Dunai, Tibor J.; Voronina, Elena; Goral, Tomasz; Heinze, Stefan; Dewald, Alfred
2015-10-01
With the aim of simplifying AMS target preparation procedures for TCN measurements we tested a new extraction chromatography approach which couples an anion exchange resin (WBEC) to a chelating resin (Beryllium resin) to separate Be and Al from dissolved quartz samples. Results show that WBEC-Beryllium resin stacks can be used to provide high purity Be and Al separations using a combination of hydrochloric/oxalic and nitric acid elutions. 10Be and 26Al concentrations from quartz samples prepared using more standard procedures are compared with results from replicate samples prepared using the coupled WBEC-Beryllium resin approach and show good agreement. The new column procedure is performed in a single step, reducing sample preparation times relative to more traditional methods of TCN target production.
Smoke Invigoration Versus Inhibition of Clouds over the Amazon
NASA Technical Reports Server (NTRS)
Koren, Ilan; Martins, J. Vanderlei; Lorraine, A. Remer; Afargan, Hila
2008-01-01
The effect of anthropogenic aerosols on clouds is one of the most important and least understood aspects of human-induced climate change. Small changes in the amount of cloud coverage can produce a climate forcing equivalent in magnitude and opposite in sign to that caused by anthropogenic greenhouse gases, and changes in cloud height can shift the effect of clouds from cooling to warming. Focusing on the Amazon, we show a smooth transition between two opposing effects of aerosols on clouds: the microphysical and the radiative. We show how a feedback between the optical properties of aerosols and the cloud fraction can modify the aerosol forcing, changing the total radiative energy and redistributing it over the atmospheric column.
NASA Astrophysics Data System (ADS)
Terando, A. J.; Grade, S.; Bowden, J.; Henareh Khalyani, A.; Wootten, A.; Misra, V.; Collazo, J.; Gould, W. A.; Boyles, R.
2016-12-01
Sub-tropical island nations may be particularly vulnerable to anthropogenic climate change because of predicted changes in the hydrologic cycle that would lead to significant drying in the future. However, decision makers in these regions have seen their adaptation planning efforts frustrated by the lack of island-resolving climate model information. Recently, two investigations have used statistical and dynamical downscaling techniques to develop climate change projections for the U.S. Caribbean region (Puerto Rico and U.S. Virgin Islands). We compare the results from these two studies with respect to three commonly downscaled CMIP5 global climate models (GCMs). The GCMs were dynamically downscaled at a convective-permitting scale using two different regional climate models. The statistical downscaling approach was conducted at locations with long-term climate observations and then further post-processed using climatologically aided interpolation (yielding two sets of projections). Overall, both approaches face unique challenges. The statistical approach suffers from a lack of observations necessary to constrain the model, particularly at the land-ocean boundary and in complex terrain. The dynamically downscaled model output has a systematic dry bias over the island despite ample availability of moisture in the atmospheric column. Notwithstanding these differences, both approaches are consistent in projecting a drier climate that is driven by the strong global-scale anthropogenic forcing.
Century-Long Warming Trends in the Upper Water Column of Lake Tanganyika
Kraemer, Benjamin M.; Hook, Simon; Huttula, Timo; Kotilainen, Pekka; O’Reilly, Catherine M.; Peltonen, Anu; Plisnier, Pierre-Denis; Sarvala, Jouko; Tamatamah, Rashid; Vadeboncoeur, Yvonne; Wehrli, Bernhard; McIntyre, Peter B.
2015-01-01
Lake Tanganyika, the deepest and most voluminous lake in Africa, has warmed over the last century in response to climate change. Separate analyses of surface warming rates estimated from in situ instruments, satellites, and a paleolimnological temperature proxy (TEX86) disagree, leaving uncertainty about the thermal sensitivity of Lake Tanganyika to climate change. Here, we use a comprehensive database of in situ temperature data from the top 100 meters of the water column that span the lake’s seasonal range and lateral extent to demonstrate that long-term temperature trends in Lake Tanganyika depend strongly on depth, season, and latitude. The observed spatiotemporal variation in surface warming rates accounts for small differences between warming rate estimates from in situ instruments and satellite data. However, after accounting for spatiotemporal variation in temperature and warming rates, the TEX86 paleolimnological proxy yields lower surface temperatures (1.46 °C lower on average) and faster warming rates (by a factor of three) than in situ measurements. Based on the ecology of Thaumarchaeota (the microbes whose biomolecules are involved with generating the TEX86 proxy), we offer a reinterpretation of the TEX86 data from Lake Tanganyika as the temperature of the low-oxygen zone, rather than of the lake surface temperature as has been suggested previously. Our analyses provide a thorough accounting of spatiotemporal variation in warming rates, offering strong evidence that thermal and ecological shifts observed in this massive tropical lake over the last century are robust and in step with global climate change. PMID:26147964
Freshwater discharges drive high levels of methylmercury in Arctic marine biota.
Schartup, Amina T; Balcom, Prentiss H; Soerensen, Anne L; Gosnell, Kathleen J; Calder, Ryan S D; Mason, Robert P; Sunderland, Elsie M
2015-09-22
Elevated levels of neurotoxic methylmercury in Arctic food-webs pose health risks for indigenous populations that consume large quantities of marine mammals and fish. Estuaries provide critical hunting and fishing territory for these populations, and, until recently, benthic sediment was thought to be the main methylmercury source for coastal fish. New hydroelectric developments are being proposed in many northern ecosystems, and the ecological impacts of this industry relative to accelerating climate changes are poorly characterized. Here we evaluate the competing impacts of climate-driven changes in northern ecosystems and reservoir flooding on methylmercury production and bioaccumulation through a case study of a stratified sub-Arctic estuarine fjord in Labrador, Canada. Methylmercury bioaccumulation in zooplankton is higher than in midlatitude ecosystems. Direct measurements and modeling show that currently the largest methylmercury source is production in oxic surface seawater. Water-column methylation is highest in stratified surface waters near the river mouth because of the stimulating effects of terrestrial organic matter on methylating microbes. We attribute enhanced biomagnification in plankton to a thin layer of marine snow widely observed in stratified systems that concentrates microbial methylation and multiple trophic levels of zooplankton in a vertically restricted zone. Large freshwater inputs and the extensive Arctic Ocean continental shelf mean these processes are likely widespread and will be enhanced by future increases in water-column stratification, exacerbating high biological methylmercury concentrations. Soil flooding experiments indicate that near-term changes expected from reservoir creation will increase methylmercury inputs to the estuary by 25-200%, overwhelming climate-driven changes over the next decade.
NASA Astrophysics Data System (ADS)
Hung, Shang-Chao
2014-12-01
This study reports a simple method to design and fabricate a freestanding GaN nano-bridge over a homogeneous short column as supporting leg. Test samples were fabricated from MOCVD-grown single-crystal GaN films over sapphire substrate using a FIB milling to leave freestanding short spans. We also investigated the nanoindentation characteristics and the corresponding nanoscopic mechanism of the GaN nano-bridge and its short column with a conical indenter inside transmission electron microscopy. The stress-strain mechanical properties and Young's modulus have also been examined and calculated as 108 GPa ± 4.8 % by the strain energy method. The significant slope switch of the L- D curve corresponds to the transition from the single-point bending indentation to the surface stretching indentation and has been interpreted with the evolution of TEM images. This freestanding fabrication and test have key advantages to characterize nanoscale behavior of one-dimensional bridge structure and greater ease of sample preparation over other micro-fabrication techniques.
Liquid crystal organization of self-assembling cyclic peptides.
Amorín, Manuel; Pérez, Ana; Barberá, Joaquín; Ozores, Haxel Lionel; Serrano, José Luis; Granja, Juan R; Sierra, Teresa
2014-01-21
Self-assembling cyclic peptides decorated with mesogens form porous columnar mesophases in which, depending on the number of hydrocarbon chains, double or single channels are formed along each column.
Absolute configuration of 2,2',3,3',6-pentachlorinatedbiphenyl (PCB 84) atropisomers.
Li, Xueshu; Parkin, Sean R; Lehmler, Hans-Joachim
2017-05-23
Nineteen polychlorinated biphenyl (PCB) congeners, such as 2,2',3,3',6-pentachlorobiphenyl (PCB 84), display axial chirality because they form stable rotational isomers, or atropisomers, that are non-superimposable mirror images of each other. Although chiral PCBs undergo atropselective biotransformation and atropselectively alter biological processes, the absolute structure of only a few PCB atropisomers has been determined experimentally. To help close this knowledge gap, pure PCB 84 atropisomers were obtained by semi-preparative liquid chromatography with two serially connected Nucleodex β-PM columns. The absolute configuration of both atropisomers was determined by X-ray single-crystal diffraction. The PCB 84 atropisomer eluting first and second on the Nucleodex β-PM column correspond to (aR)-(-)-PCB 84 and (aS)-(+)-PCB 84, respectively. Enantioselective gas chromatographic analysis with the β-cyclodextrin-based CP-Chirasil-Dex CB gas chromatography column showed the same elution order as the Nucleodex β-PM column. Based on earlier reports, the atropisomers eluting first and second on the BGB-172 gas chromatography column are (aR)-(-)-PCB 84 and (aS)-(+)-PCB 84, respectively. An inversion of the elution order is observed on the Cyclosil-B gas chromatography and Cellulose-3 liquid chromatography columns. These results advance the interpretation of environmental and human biomonitoring as well as toxicological studies.
Ren, Yu; Schlager, Hans; Martin, Damien
2014-01-01
A modified method for the quantitative determination of atmospheric perfluoroalkylcycloalkanes (PFCs) using thermal desorption coupled with gas chromatography and detection by negative ion chemical ionization-mass spectrometry was developed. Using an optimized analytical system, a commercially available Al 2 O 3 porous layer open tubular (PLOT) capillary column (30 m × 0.25 mm) deactivated with Na 2 SO 4 was used for separation of PFCs. Improvements in the separation of PFCs, the corresponding identification and the limit of detection of PFCs using this method and column are presented. The method was successfully applied to determine the atmospheric background concentrations of a range of PFCs from a number of samples collected at a rural site in Germany. The results of this study suggest that the method outlined using the Al 2 O 3 -PLOT-S capillary column has good sensitivity and selectivity, and that it can be deployed in a routine laboratory process for the analysis of PFCs in the future research work. In addition, the ability of this column to separate the isomers of one of the lower boiling PFCs (perfluorodimethylcyclobutane) and its ability to resolve perfluoroethylcyclohexane offer the opportunity for single-column analysis for multiple PFCs.
The Climate Effects of Deforestation the Amazon Rainforest under Global Warming Conditions
NASA Astrophysics Data System (ADS)
Werth, D.; Avissar, R.
2006-12-01
Replacement of tropical rainforests has been observed to have a strong drying effect in Amazon simulations, with effects reaching high into the atmospheric column and into the midlatitudes. The drying effects of deforestation, however, can be moderated by the effects of global warming, which should accelerate the hydrologic cycle of the Amazon. The effects of a prescribed, time-varying Amazon deforestation done in conjunction with a steady, moderate increase in CO2 concentrations are determined using a climate model. The model agrees with previous studies when each forcing is applied individually - compared to a control run, Amazon deforestation decreases the local precipitation and global warming increases it. When both are applied, however, the precipitation and other hydrologic variables decrease, but to a lesser extent than when deforestation alone was applied. In effect, the two effects act opposite to one another and bring the simulated climate closer to that of the control.
Climate modulates internal wave activity in the Northern South China Sea
NASA Astrophysics Data System (ADS)
DeCarlo, Thomas M.; Karnauskas, Kristopher B.; Davis, Kristen A.; Wong, George T. F.
2015-02-01
Internal waves (IWs) generated in the Luzon Strait propagate into the Northern South China Sea (NSCS), enhancing biological productivity and affecting coral reefs by modulating nutrient concentrations and temperature. Here we use a state-of-the-art ocean data assimilation system to reconstruct water column stratification in the Luzon Strait as a proxy for IW activity in the NSCS and diagnose mechanisms for its variability. Interannual variability of stratification is driven by intrusions of the Kuroshio Current into the Luzon Strait and freshwater fluxes associated with the El Niño-Southern Oscillation. Warming in the upper 100 m of the ocean caused a trend of increasing IW activity since 1900, consistent with global climate model experiments that show stratification in the Luzon Strait increases in response to radiative forcing. IW activity is expected to increase in the NSCS through the 21st century, with implications for mitigating climate change impacts on coastal ecosystems.
76 FR 18869 - Allocation of Assets in Single-Employer Plans
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-06
... PENSION BENEFIT GUARANTY CORPORATION 29 CFR Part 4044 Allocation of Assets in Single-Employer Plans CFR Correction In Title 29 of the Code of Federal Regulations, Part 1927 to End, revised as of July 1, 2010, on page 1007, in the table in Appendix B, in the entry for July 1994, the fourth column...
Talebi, Mohsen; Patil, Rahul A; Sidisky, Leonard M; Berthod, Alain; Armstrong, Daniel W
2017-12-06
Twelve bis- or dicationic ionic liquids (ILs) including eight based on imidazolium, a single one based on phosphonium, and three based on pyrrolidinium cationic units were prepared with the bis(trifluoromethyl sulfonyl) imide anion. The two identical cationic moieties were attached by different alkyl spacers having three or five carbons and differing alkyl substituents attached to the spacer. The SLB-IL111 column, as the most polar commercial stationary phase known, was included in the study for comparison. Isothermal separations of a rapeseed oil fatty acid methyl ester (FAME) sample were used to study and compare the 12 IL-based column performances and selectivities. The retention times of the most retained methyl esters of lignoceric (C24:0) and erucic (C22:1) acids were used to estimate the IL polarity. The phosphonium dicationic IL column was, by far, the least polar. Imidazolium-based dicationic IL columns were the most polar. Polarity and selectivity for the FAME separation were somewhat related. The separation of a 37-FAME standard mixture allowed the investigation of selectivity variations observed on the 12 IL-based columns under temperature gradients up to 230 °C. The remarkable selectivity of the IL-based columns is demonstrated by the detailed analysis of the cis/trans C18:1 isomers of a partially hydrogenated vegetable oil sample on 30-m columns, separations competing with that done following an "official method" performed on a 100-m column. Graphical abstract Separation of fatty acid methyl esters on a 30-m 3m 2 C 5 (mpy) 2 . 2NTf 2 branched-chain dicationic IL-based column. Branched chain dicationic ILs show great selectivity for separation of cis/trans, ω-3/ω-6, and detailed analysis of cis/trans fats.
NASA Astrophysics Data System (ADS)
Ward, P. L.
2016-12-01
Total column ozone observed by satellite on February 19, 2010, increased 75% in a plume from Eyjafjallajökull volcano in southern Iceland eastward past Novaya Zemlya, extending laterally from northern Greenland to southern Norway (http://youtu.be/wJFZcPEfoR4). Contemporaneous ground deformation and rapidly increasing numbers of earthquakes imply magma began rising from a sill 4-6 km below the volcano, erupting a month later. Whether the ozone formed from the magma or from very hot gases rising through cracks in the ground is unclear. On February 20-22, 1991, similar increases in ozone were observed north of Pinatubo volcano before its initial eruption on April 2 (http://youtu.be/5y1PU2Qu3ag). Annual average total column ozone during the year of most moderate to large explosive volcanic eruptions since routine observations of ozone began in 1927 has been substantially higher than normal. Increased total column ozone absorbs more solar ultraviolet-B radiation, warming the ozone layer and cooling Earth. Most major volcanic eruptions form sulfuric-acid aerosols in the lower part of the ozone layer providing aqueous surfaces on which heterogeneous chemical reactions enhance ozone depletion. Within a year, aerosol droplets grew large enough to reflect and scatter high-frequency solar radiation, cooling Earth 0.5oC for 2-3 years. Temperature anomalies in the northern hemisphere rose 0.7oC in 28 years from 1970 to 1998 (HadCRUT4), while annual average ozone at Arosa dropped 27 DU because of manufactured CFC gases. Beginning in August 2014, temperature anomalies in the northern hemisphere rose another 0.6oC in less than two years apparently because of the 6-month eruption of Bárðarbunga volcano in central Iceland, the highest rate of basaltic lava extrusion since 1783. Large extrusions of basaltic lava are typically contemporaneous with the greatest periods of warming throughout Earth history. Ozone concentrations at Arosa change by season typically from 370 DU during March and April to 285 DU in October. Removing this seasonal change to calculate ozone anomaly and plotting against temperature anomaly, and climate oscillation indices such as NAM, NAO, ENSO, and SAM gives insight into the influence of volcanic eruptions on regional temperatures, pressures, winds, weather, and climate. WhyClimateChanges.com
Wang, Yan; Zhang, Yonggang; Zhang, Xuesong; Huang, Peng; Xiao, Songhua; Wang, Zheng; Liu, Zhengsheng; Liu, Baowei; Lu, Ning; Mao, Keya
2008-03-01
We report a multilevel modified vertebral column resection (MVCR) through a single posterior approach and clinical outcomes for treatment of severe congenital rigid kyphoscoliosis in adults. Transpedicular eggshell osteotomies and vertebral column resection are two techniques for the surgical treatment of rigid severe spine deformities. The authors developed a new technique combining the two surgical methods as a MVCR, through a single posterior approach, for surgical treatment of severe congenital rigid kyphoscoliosis in adults. Thirteen adult patients with severe rigid congenital kyphoscoliosis deformity were treated by a single posterior approach using a MVCR technique. The surgery processes included a one-stage posterior transpedicular eggshell technique first, and then expanded the eggshell technique to adjacent intervertebra space through abrasive reduction of the vertebral cortices from inside out. All posterior vertebral elements were removed including the cortical vertebral bone around the neural canal. Range of resection of the vertebral column at the apex of the deformity included apical vertebra and both cephalic and/or caudal adjacent wedged vertebrae. Totally, 32 vertebrae had been removed in 13 patients, with 2.42 vertebrae being removed on average in each case. The average fusion extent was 7.69 vertebrae. Mean operation time was 266 min with average blood loss of 2,411.54 ml during operation. Patients were followed up for an average duration of 2.54 years. Deformity correction was 59% in the coronal plane (from 79.7 degrees to 32.4 degrees ) postoperatively and 33.7 degrees (57% correction) at 2 years follow-up. In the sagittal plane, correction was from preoperative 85.9 degrees to 27.5 degrees immediately after operation, and 32.0 degrees at 2 years follow-up. Postoperative pain was reduced from preoperative 1.77 to 0.54 at 2 years follow-up in visual analog scale. SRS-24 scale was from 38.2 preoperatively to 76.9 at 2 years follow-up postoperative. Complications were encountered in four patients (30.7%) with transient neurology that spontaneously improved without further treatment within 3 months. MVCR technique through a single posterior approach is an effective procedure for the surgical treatment of severe congenital rigid kyphoscoliosis in adults.
Development of the Large-Scale Forcing Data to Support MC3E Cloud Modeling Studies
NASA Astrophysics Data System (ADS)
Xie, S.; Zhang, Y.
2011-12-01
The large-scale forcing fields (e.g., vertical velocity and advective tendencies) are required to run single-column and cloud-resolving models (SCMs/CRMs), which are the two key modeling frameworks widely used to link field data to climate model developments. In this study, we use an advanced objective analysis approach to derive the required forcing data from the soundings collected by the Midlatitude Continental Convective Cloud Experiment (MC3E) in support of its cloud modeling studies. MC3E is the latest major field campaign conducted during the period 22 April 2011 to 06 June 2011 in south-central Oklahoma through a joint effort between the DOE ARM program and the NASA Global Precipitation Measurement Program. One of its primary goals is to provide a comprehensive dataset that can be used to describe the large-scale environment of convective cloud systems and evaluate model cumulus parameterizations. The objective analysis used in this study is the constrained variational analysis method. A unique feature of this approach is the use of domain-averaged surface and top-of-the atmosphere (TOA) observations (e.g., precipitation and radiative and turbulent fluxes) as constraints to adjust atmospheric state variables from soundings by the smallest possible amount to conserve column-integrated mass, moisture, and static energy so that the final analysis data is dynamically and thermodynamically consistent. To address potential uncertainties in the surface observations, an ensemble forcing dataset will be developed. Multi-scale forcing will be also created for simulating various scale convective systems. At the meeting, we will provide more details about the forcing development and present some preliminary analysis of the characteristics of the large-scale forcing structures for several selected convective systems observed during MC3E.
Roy, Asim
2017-01-01
The debate about representation in the brain and the nature of the cognitive system has been going on for decades now. This paper examines the neurophysiological evidence, primarily from single cell recordings, to get a better perspective on both the issues. After an initial review of some basic concepts, the paper reviews the data from single cell recordings - in cortical columns and of category-selective and multisensory neurons. In neuroscience, columns in the neocortex (cortical columns) are understood to be a basic functional/computational unit. The paper reviews the fundamental discoveries about the columnar organization and finds that it reveals a massively parallel search mechanism. This columnar organization could be the most extensive neurophysiological evidence for the widespread use of localist representation in the brain. The paper also reviews studies of category-selective cells. The evidence for category-selective cells reveals that localist representation is also used to encode complex abstract concepts at the highest levels of processing in the brain. A third major issue is the nature of the cognitive system in the brain and whether there is a form that is purely abstract and encoded by single cells. To provide evidence for a single-cell based purely abstract cognitive system, the paper reviews some of the findings related to multisensory cells. It appears that there is widespread usage of multisensory cells in the brain in the same areas where sensory processing takes place. Plus there is evidence for abstract modality invariant cells at higher levels of cortical processing. Overall, that reveals the existence of a purely abstract cognitive system in the brain. The paper also argues that since there is no evidence for dense distributed representation and since sparse representation is actually used to encode memories, there is actually no evidence for distributed representation in the brain. Overall, it appears that, at an abstract level, the brain is a massively parallel, distributed computing system that is symbolic. The paper also explains how grounded cognition and other theories of the brain are fully compatible with localist representation and a purely abstract cognitive system.
Roy, Asim
2017-01-01
The debate about representation in the brain and the nature of the cognitive system has been going on for decades now. This paper examines the neurophysiological evidence, primarily from single cell recordings, to get a better perspective on both the issues. After an initial review of some basic concepts, the paper reviews the data from single cell recordings – in cortical columns and of category-selective and multisensory neurons. In neuroscience, columns in the neocortex (cortical columns) are understood to be a basic functional/computational unit. The paper reviews the fundamental discoveries about the columnar organization and finds that it reveals a massively parallel search mechanism. This columnar organization could be the most extensive neurophysiological evidence for the widespread use of localist representation in the brain. The paper also reviews studies of category-selective cells. The evidence for category-selective cells reveals that localist representation is also used to encode complex abstract concepts at the highest levels of processing in the brain. A third major issue is the nature of the cognitive system in the brain and whether there is a form that is purely abstract and encoded by single cells. To provide evidence for a single-cell based purely abstract cognitive system, the paper reviews some of the findings related to multisensory cells. It appears that there is widespread usage of multisensory cells in the brain in the same areas where sensory processing takes place. Plus there is evidence for abstract modality invariant cells at higher levels of cortical processing. Overall, that reveals the existence of a purely abstract cognitive system in the brain. The paper also argues that since there is no evidence for dense distributed representation and since sparse representation is actually used to encode memories, there is actually no evidence for distributed representation in the brain. Overall, it appears that, at an abstract level, the brain is a massively parallel, distributed computing system that is symbolic. The paper also explains how grounded cognition and other theories of the brain are fully compatible with localist representation and a purely abstract cognitive system. PMID:28261127
Fluorescence multiplexing with time-resolved and spectral discrimination using a near-IR detector.
Zhu, Li; Stryjewski, Wieslaw; Lassiter, Suzanne; Soper, Steven A
2003-05-15
We report on the design and performance of a two-color, time-resolved detector for the acquisition of both steady-state and time-resolved fluorescence data acquired in real time during the capillary gel electrophoresis separation of DNA sequencing fragments. The detector consisted of a pair of pulsed laser diodes operating at 680 and 780 nm. The diode heads were coupled directly to single-mode fibers, which were terminated into a single fiber mounted via a FC/PC connector to the detector body. The detector contained a dichroic filter, which directed the dual-laser beams to an objective. The objective focused the laser light into a capillary gel column and also collected the resulting fluorescence emission. The dual-color emission was transmitted through the dichroic and focused onto a multimode fiber (core diameter 50 microm), which carried the luminescence to a pair of single-photon avalanche diodes (SPADs). The emission was sorted spectrally using a second dichroic onto one of two SPADs and isolated using appropriate interference filters (710- or 810-nm channel). The dual-color detector demonstrated a time response of 450 and 510 ps (fwhm) for the 710- and 810-nm channels, respectively. The mass detection limits for two near-IR dye-labeled sequencing primers electrophoresed in a capillary gel column were found to be 7.1 x 10(-21) and 3.2 x 10(-20) mol (SNR = 3) for the 710- and 810-nm detector channels, respectively. In addition, no leakage of luminescence excited at 680 nm was observed in the 810-nm channel or 780-nm excited luminescence into the 710-nm channel. An M13mp18 template was sequenced in a single capillary gel column using a two-color, two-lifetime format. The read length was found to be 650 base pairs for the test template at a calling accuracy of 95.1% using a linear poly(dimethylacrylamide) (POP6) gel column, with the read length determined primarily by the electrophoretic resolution produced by the sieving gel.
Multi-Model Assessment of the Factors Driving Stratospheric Ozone Evolution Over the 21st Century
NASA Technical Reports Server (NTRS)
Oman, L. D.; Plummer, D. A.; Waugh, D. W.; Austin, J.; Scinocca, J.; Douglass, A. R.; Salawitch, R. J.; Canty, T.; Akiyoshi, H.; Bekki, S.;
2010-01-01
The evolution of stratospheric ozone from 1960 to 2100 is examined in simulations from fourteen chemistry-climate models. There is general agreement among the models at the broadest levels, showing column ozone decreasing at all latitudes from 1960 to around 2000, then increasing at all latitudes over the first half of the 21st century, and latitudinal variations in the rate of increase and date of return to historical values. In the second half of the century, ozone is projected to continue increasing, level off or even decrease depending on the latitude, resulting in variable dates of return to historical values at latitudes where column ozone has declined below those levels. Separation into partial column above and below 20 hPa reveals that these latitudinal differences are almost completely due to differences in the lower stratosphere. At all latitudes, upper stratospheric ozone increases throughout the 21st century and returns to 1960 levels before the end of the century, although there is a spread among the models in dates that ozone returns to historical values. Using multiple linear regression, we find decreasing halogens and increasing greenhouse gases contribute almost equally to increases in the upper stratospheric ozone. In the tropical lower stratosphere an increase in tropical upwelling causes a steady decrease in ozone through the 21st century, and total column ozone does not return to 1960 levels in all models. In contrast, lower stratospheric and total column ozone in middle and high latitudes increases during the 21st century and returns to 1960 levels.
Bioretention column study of bacteria community response to salt-enriched artificial stormwater.
Endreny, Theodore; Burke, David J; Burchhardt, Kathleen M; Fabian, Mark W; Kretzer, Annette M
2012-01-01
Cold climate cities with green infrastructure depend on soil bacteria to remove nutrients from road salt-enriched stormwater. Our research examined how bacterial communities in laboratory columns containing bioretention media responded to varying concentrations of salt exposure from artificial stormwater and the effect of bacteria and salt on column effluent concentrations. We used a factorial design with two bacteria treatments (sterile, nonsterile) and three salt concentrations (935, 315, and 80 ppm), including a deionized water control. Columns were repeatedly saturated with stormwater or deionized and then drained throughout 5 wk, with the last week of effluent analyzed for water chemistry. To examine bacterial communities, we extracted DNA from column bioretention media at time 0 and at week 5 and used molecular profiling techniques to examine bacterial community changes. We found that bacterial community taxa changed between time 0 and week 5 and that there was significant separation between taxa among salt treatments. Bacteria evenness was significantly affected by stormwater treatment, but there were no differences in bacterial richness or diversity. Soil bacteria and salt treatments had a significant effect on the effluent concentration of NO, PO, Cu, Pb, and Zn based on ANOVA tests. The presence of bacteria reduced effluent NO and Zn concentrations by as much as 150 and 25%, respectively, while having a mixed effect on effluent PO concentrations. Our results demonstrate how stormwater can affect bacterial communities and how the presence of soil bacteria improves pollutant removal by green infrastructure. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Surface Observation Climatic Summaries (SOCS) for Volk Field ANGB, Wisconsin.
1989-05-01
LIMIT(S), EITHER SEPARATELY OR IN ANY CRINATI"Pl. TOTALS PROGRESS FROM RIGHT Tl LEFT AND PRUM BOTTOM1 T2 TOP. TOJ OETER Iljt CEILINS ALINE, REFER TO...THE cATREME7 RIGTHAND CO]LUMN (ZER? VISI3ILITY). TO DETERM’INE VISIBI1LITY ALINE, R’EFER TO THE BOTTOM ROW (ZEkO CEILINGS). OETER INE THE P9F THAT
NASA Astrophysics Data System (ADS)
Beirle, Steffen; Lampel, Johannes; Wang, Yang; Mies, Kornelia; Dörner, Steffen; Grossi, Margherita; Loyola, Diego; Dehn, Angelika; Danielczok, Anja; Schröder, Marc; Wagner, Thomas
2018-03-01
We present time series of the global distribution of water vapor columns over more than 2 decades based on measurements from the satellite instruments GOME, SCIAMACHY, and GOME-2 in the red spectral range. A particular focus is the consistency amongst the different sensors to avoid jumps from one instrument to another. This is reached by applying robust and simple retrieval settings consistently. Potentially systematic effects due to differences in ground pixel size are avoided by merging SCIAMACHY and GOME-2 observations to GOME spatial resolution, which also allows for a consistent treatment of cloud effects. In addition, the GOME-2 swath is reduced to that of GOME and SCIAMACHY to have consistent viewing geometries.Remaining systematic differences between the different sensors are investigated during overlap periods and are corrected for in the homogenized time series. The resulting Climate
product v2.2 (https://doi.org/10.1594/WDCC/GOME-EVL_water_vapor_clim_v2.2) allows the study of the temporal evolution of water vapor over the last 20 years on a global scale.
GHG warming impact on the removal and transport of particulate matter: mean and extreme pollution
NASA Astrophysics Data System (ADS)
Xu, Y.; Lamarque, J. F.
2016-12-01
Particulate matter with a diameter smaller than 2.5 micrometers (PM2.5) poses health threats to human populations. Regardless of efforts to regulate the pollution sources, it is unclear how climate change caused by greenhouse gases (GHGs) would affect PM2.5 levels. Using century-long ensemble simulations with a chemistry-climate model, we show that, if the anthropogenic emissions would remain at the level in the year 2005, the global surface concentration and atmospheric column burden of sulfate, black carbon, and primary organic carbon would still increase by 5-10% at the end of 21st century (2090-2100) due to global warming alone. The decrease in the wet removal flux of PM2.5, despite an increase in global precipitation, is the main cause for the increase in the PM2.5 column burden. Regionally, over North America and East Asia, the shift of future precipitation toward heavy intensity events, contributes to weakened wet removal flux. With the daily PM2.5 output, we also find that the well-known poleward shift of jet stream under global warming contributes to more frequent stagnation events (and less frequent cyclone passages) in northern hemispheric mid-latitude, which further enhances the occurrence of extreme pollution events.
NASA Astrophysics Data System (ADS)
Xu, Y.; Lamarque, J. F.; Wu, X.
2017-12-01
Particulate matter with the diameter smaller than 2.5 micrometers (PM2.5) poses health threats to human populations. Regardless of efforts to regulate the pollution sources, it is unclear how climate change caused by greenhouse gases (GHGs) would affect PM2.5 levels. Using century-long ensemble simulations with Community Earth System Model 1 (CESM1), we show that, if the anthropogenic emissions would remain at the level in the year 2005, the global surface concentration and atmospheric column burden of sulfate, black carbon, and primary organic carbon would still increase by 5-10% at the end of 21st century (2090-2100) due to global warming alone. The decrease in the wet removal flux of PM2.5, despite an increase in global precipitation, is the primary cause for the increase in the PM2.5 column burden. Regionally over North America and East Asia, a shift of future precipitation toward more frequent heavy events contributes to weakened wet removal fluxes. Based on the daily model output, the frequency and intensity of extreme pollution events are also studied. We found that both stagnation frequency and rainfall changes serve to worsen extreme pollution in the future.
El Niño-Southern oscillation variability from the late cretaceous marca shale of California
Davies, Andrew; Kemp, Alan E.S.; Weedon, Graham P.; Barron, John A.
2012-01-01
Changes in the possible behavior of El Niño–Southern Oscillation (ENSO) with global warming have provoked interest in records of ENSO from past “greenhouse” climate states. The latest Cretaceous laminated Marca Shale of California permits a seasonal-scale reconstruction of water column flux events and hence interannual paleoclimate variability. The annual flux cycle resembles that of the modern Gulf of California with diatoms characteristic of spring upwelling blooms followed by silt and clay, and is consistent with the existence of a paleo–North American Monsoon that brought input of terrigenous sediment during summer storms and precipitation runoff. Variation is also indicated in the extent of water column oxygenation by differences in lamina preservation. Time series analysis of interannual variability in terrigenous sediment and diatom flux and in the degree of bioturbation indicates strong periodicities in the quasi-biennial (2.1–2.8 yr) and low-frequency (4.1–6.3 yr) bands both characteristic of ENSO forcing, as well as decadal frequencies. This evidence for robust Late Cretaceous ENSO variability does not support the theory of a “permanent El Niño,” in the sense of a continual El Niño–like state, in periods of warmer climate.
Evaluation of interactions between soil and coal fly ash leachates using column percolation tests.
Tsiridis, V; Petala, M; Samaras, P; Sakellaropoulos, G P
2015-09-01
The aim of this work was the assessment of the environmental impact of different origin fly ashes with regard to their final disposal. The experimental procedure included the performance of single column tests and column tests of fly ash and soil in series. The appraisal of the potential environmental hazards was implemented using physicochemical analyses and bioassays. Two different fly ash samples were examined, one fly ash produced from the combustion of sub-bituminous coal (CFA) and one fly ash produced from the combustion of lignite (LFA). Single column percolation tests were performed according to NEN 7343 protocol, while fly ash/soil experiments were conducted incorporating slight modifications to this protocol. The study focused on the release of metals Ba, Cr, Cu, Mo, Se and Zn and the ecotoxic behavior of leachates on crustacean Daphnia magna and bacteria Vibrio fischeri. The infiltration of the leachates of both fly ashes through soil affected considerably their leaching profile. The transport of Cu and Zn was facilitated by the dynamic leaching conditions and influenced by the pH of the leachates. Moreover, the release and bioavailability of Cr, Cu and Zn was probably altered during the infiltration experiments and organisms' response was not always correlated with the concentration of metals. Nevertheless, the results are signalling that possible manipulations and final disposal of fly ash should be considered when environmental threats are investigated. Copyright © 2015 Elsevier Ltd. All rights reserved.
Climate mode links to atmospheric carbon monoxide over fire regions
NASA Astrophysics Data System (ADS)
Buchholz, R. R.; Hammerling, D.; Worden, H. M.; Monks, S. A.; Edwards, D. P.; Deeter, M. N.; Emmons, L. K.
2017-12-01
Fire is a strong contributor to variability in atmospheric carbon monoxide (CO), particularly for the Southern Hemisphere and tropics. The magnitude of emissions, such as CO, from biomass burning are related to climate through both the availability and dryness of fuel. We investigate this link between CO and climate using satellite measured CO and climate indices. Interannual variability in satellite-measured CO is determined for the time period covering 2001-2016. We use MOPITT total column retrievals and focus on biomass burning regions of the Southern Hemisphere and tropics. In each of the regions, data driven relationships are determined between CO and climate indices for the climate modes: El Niño Southern Oscillation (ENSO); the Indian Ocean Dipole (IOD); the Tropical Southern Atlantic (TSA); and the Antarctic Oscillation (AAO). Step-wise forward and backward regression combined with the Bayesian Information Criterion is used to select the best predictive model from combinations of lagged indices. We find evidence for the importance of first-order interaction terms of the climate modes when explaining CO variability. Generally, over 50% of the variability can be explained, with over 70% for the Maritime Southeast Asia and North Australasia regions. To help interpret variability, we draw on the chemistry-climate model CAM-chem, which provides information on source contributions and the relative influence of emissions and meteorology. Our results have implications for applications such as air quality forecasting and verifying climate-chemistry models.
NASA Astrophysics Data System (ADS)
Pant, H. K.
2007-12-01
Depending on resilience, threshold and lag times, hydro-climatic changes can cause nonlinear and/or irreversible changes in phosphorus (P) dynamic, and instigate P enrichment in aquatic/semi-aquatic systems. Thus, studying direct/indirect effects of expected global climate change on bioavailability of organic P in aquatic systems are in critical need, to help manage or increase the resilience of the ecosystem. The central hypothesis of this study is that P dynamic in aquatic, especially freshwater, ecosystem is likely to behave nonlinearly due to expected changes in sediment and water acidity, redox status, etc., because of potential hydro-climatic changes in the decades to come, thus, could face irreversible adverse changes. Devising possible biological and chemical treatments for the removal of P from eutrophic lakes, estuaries, etc, as well as helping in predicting the movement and fate of P under changing hydro-climatic conditions would be crucial to manage aquatic ecosystem in the near future. The critical question is not how much P is stored in any given aquatic/semi-aquatic system, but how the resilience and nonlinearity relate to the stability of stored P are affected due to the levels of environmental stressors, which are expected to fluctuate due to global change in the decades to come. Studies related to 31P Nuclear Magnetic Resonance Spectroscopy analysis, and multiple hydraulic retention cycles showed that, in general, frequent drying and reflooding of a semi-aquatic system such as wetland could significantly increase the bioavailability of P due to degradation of relatively less stable organic P, e.g., glycerophosphate and nucleoside monophosphate. Moreover, nutrients flux from sediments to the water column depended on the concentration gradients of the sediment-water interface and redox status. Shift in equilibrium P concentration of the water column as the water level rises, may cause release of adsorbed P from the sediments. Restoration of a eutrophic system may involve stepwise efforts including control of catchment nutrient inputs, internal nutrient loading, and biomanipulation, however, flooding, previously non-flooded areas, could export massive amount of P to nearby aquatic bodies, in turn, may cause collapse of the ecosystem.
Dumanli, Rukiye; Attar, Azade; Erci, Vildan; Isildak, Ibrahim
2016-01-01
A microliter dead-volume flow-through cell as a potentiometric detector is described in this article for sensitive, selective and simultaneous detection of common monovalent anions and cations in single column ion chromatography for the first time. The detection cell consisted of less selective anion- and cation-selective composite membrane electrodes together with a solid-state composite matrix reference electrode. The simultaneous separation and sensitive detection of sodium (Na+), potassium (K+), ammonium (NH4+), chloride (Cl−) and nitrate (NO3−) in a single run was achieved by using 98% 1.5 mM MgSO4 and 2% acetonitrile eluent with a mixed-bed ion-exchange separation column without suppressor column system. The separation and simultaneous detection of the anions and cations were completed in 6 min at the eluent flow-rate of 0.8 mL/min. Detection limits, at S/N = 3, were ranged from 0.2 to 1.0 µM for the anions and 0.3 to 3.0 µM for the cations, respectively. The developed method was successfully applied to the simultaneous determination of monovalent anions and cations in several environmental and biological samples. PMID:26786906
NASA Technical Reports Server (NTRS)
Satyanarayana, T.; Klein, Harold P.
1976-01-01
A procedure for the purification of a stable acetyl-coenzyme A synthetase (ACS) from aerobic cells of Saccharomyces cerevisiae is presented. The steps include differential centrifugation, solubilization of the bound enzyme from the crude mitochondrial fraction, ammonium sulfate fractionation, crystallization to constant specific activity from ammonium sulfate solutions followed by Bio-Gel A-1.5 m column chromatography. The resulting enzyme preparation is homogeneous as judged by chromatography on Bio-Gel columns, QAE-Sephadex A-50 anion exchange columns, analytical ultracentrifugal studies, and polyacrylamide gel electrophoresis. Sedimentation velocity runs revealed a single symmetric peak with an s(sub (20,w)) value of 10.6. The molecular weight of the native enzyme, as determined by gel filtration and analytical ultracentrifugation, is 250,000 +/- 500. In polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, the molecular weight of the single polypeptide chain is 83,000 +/- 500. The purified enzyme is inhibited by palmityl-coenzyme A with a Hill interaction coefficient, n, of 2.88. These studies indicate that the ACS of aerobic Saccharomyces cerevisiae is composed of three subunits of identical or nearly identical size.
NASA Astrophysics Data System (ADS)
Eskes, H.; Boersma, F.; Dirksen, R.; van der A, R.; Veefkind, P.; Levelt, P.; Brinksma, E.; van Roozendael, M.; de Smedt, I.; Gleason, J.
2005-05-01
Based on measurements of GOME on ESA ERS-2, SCIAMACHY on ESA-ENVISAT, and Ozone Monitoring Instrument (OMI) on the NASA EOS-Aura satellite there is now a unique 11-year dataset of global tropospheric nitrogen dioxide measurements from space. The retrieval approach consists of two steps. The first step is an application of the DOAS (Differential Optical Absorption Spectroscopy) approach which delivers the total absorption optical thickness along the light path (the slant column). For GOME and SCIAMACHY this is based on the DOAS implementation developed by BIRA/IASB. For OMI the DOAS implementation was developed in a collaboration between KNMI and NASA. The second retrieval step, developed at KNMI, estimates the tropospheric vertical column of NO2 based on the slant column, cloud fraction and cloud top height retrieval, stratospheric column estimates derived from a data assimilation approach and vertical profile estimates from space-time collocated profiles from the TM chemistry-transport model. The second step was applied with only minor modifications to all three instruments to generate a uniform 11-year data set. In our talk we will address the following topics: - A short summary of the retrieval approach and results - Comparisons with other retrievals - Comparisons with global and regional-scale models - OMI-SCIAMACHY and SCIAMACHY-GOME comparisons - Validation with independent measurements - Trend studies of NO2 for the past 11 years
Low-frequency instabilities and plasma turbulence
NASA Technical Reports Server (NTRS)
Ilic, D. B.
1973-01-01
A theoretical and experimental study is reported of steady-state and time-dependent characteristics of the positive column and the hollow cathode discharge (HCD). The steady state of a non-isothermal, cylindrical positive column in an axial magnetic field is described by three moment equations in the plasma approximation. Volume generation of electron-ion pairs by single-stage ionization, the presence of axial current, and collisions with neutrals are considered. The theory covers the range from the low pressure, collisionless regime to the intermediate pressure, collisional regime. It yields radial profiles of the charged particle velocities, density, potential, electron and ion temperatures, and demonstrates similarity laws for the positive column. The results are compared with two moment theories and with experimental data on He, Ar and Hg found in the literature for a wide range of pressures. A simple generalization of the isothermal theory for an infinitely long cylinder in an axial magnetic field to the case of a finite column with axial current flow is also demonstrated.
Baginskas, Armantas; Kuras, Antanas
2016-08-26
Acetylcholine receptors contribute to the control of neuronal and neuronal network activity from insects to humans. We have investigated the action of acetylcholine receptors in the optic tectum of Rana temporaria (common frog). Our previous studies have demonstrated that acetylcholine activates presynaptic nicotinic receptors, when released into the frog optic tectum as a co-mediator during firing of a single retinal ganglion cell, and causes: a) potentiation of retinotectal synaptic transmission, and b) facilitation of transition of the tectum column to a higher level of activity. In the present study we have shown that endogenous acetylcholine also activates muscarinic receptors, leading to a delayed inhibition of recurrent excitatory synaptic transmission in the tectum column. The delay of muscarinic inhibition was evaluated to be of ∼80ms, with an extent of inhibition of ∼2 times. The inhibition of the recurrent excitation determines transition of the tectum column back to its resting state, giving a functional sense for the inhibition. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
The Latest Mars Climate Database (MCD v5.1)
NASA Astrophysics Data System (ADS)
Millour, Ehouarn; Forget, Francois; Spiga, Aymeric; Navarro, Thomas; Madeleine, Jean-Baptiste; Pottier, Alizée; Montabone, Luca; Kerber, Laura; Lefèvre, Franck; Montmessin, Franck; Chaufray, Jean-Yves; López-Valverde, Miguel; González-Galindo, Francisco; Lewis, Stephen; Read, Peter; Huot, Jean-Paul; Desjean, Marie-Christine; the MCD/GCM development Team
2014-05-01
For many years, several teams around the world have developed GCMs (General Circulation Model or Global Climate Model) to simulate the environment on Mars. The GCM developed at the Laboratoire de Météorologie Dynamique in collaboration with several teams in Europe (LATMOS, France, University of Oxford, The Open University, the Instituto de Astrofisica de Andalucia), and with the support of ESA and CNES is currently used for many applications. Its outputs have also regularly been compiled to build a Mars Climate Database, a freely available tool useful for the scientific and engineering communities. The Mars Climate Database (MCD) has over the years been distributed to more than 150 teams around the world. Following the recent improvements inthe GCM, a new series of reference simulations have been run and compiled into a new version (version5.1) of the Mars Climate Database, released in the first half of 2014. To summarize, MCD v5.1 provides: - Climatologies over a series of dust scenarios: standard year, cold (ie: low dust), warm (ie: dusty atmosphere) and dust storm, all topped by various cases of Extreme UV solar inputs (low, mean or maximum). These scenarios differ from those of previous versions of the MCD (version 4.x) as they have been derived from home-made, instrument-derived (TES, THEMIS, MCS, MERs), dust climatology of the last 8 Martian years. - Mean values and statistics of main meteorological variables (atmospheric temperature, density, pressure and winds), as well as surface pressure and temperature, CO2 ice cover, thermal and solar radiative fluxes, dust column opacity and mixing ratio, [H20] vapor and ice columns, concentrations of many species: [CO], [O2], [O], [N2], [H2], [O3], ... - A high resolution mode which combines high resolution (32 pixel/degree) MOLA topography records and Viking Lander 1 pressure records with raw lower resolution GCM results to yield, within the restriction of the procedure, high resolution values of atmospheric variables. - The possibility to reconstruct realistic conditions by combining the provided climatology with additional large scale and small scale perturbations schemes. At EGU, we will report on the latest improvements in the Mars Climate Database, with comparisons with available measurements from orbit (e.g.: TES, MCS) or landers (Viking, Phoenix, MSL).
Ho, Emmie N M; Kwok, W H; Wong, April S Y; Wan, Terence S M
2012-01-13
Quaternary ammonium drugs (QADs) are anticholinergic agents some of which are known to have been abused or misused in equine sports. A recent review of literature shows that the screening methods reported thus far for QADs mainly cover singly-charged QADs. Doubly-charged QADs are extremely polar substances which are difficult to be extracted and poorly retained on reversed-phase columns. It would be ideal if a comprehensive method can be developed which can detect both singly- and doubly-charged QADs. This paper describes an efficient liquid chromatography/tandem mass spectrometry (LC/MS/MS) method for the simultaneous detection and confirmation of 38 singly- and doubly-charged QADs at sub-parts-per-billion (ppb) to low-ppb levels in equine urine after solid-phase extraction. Quaternary ammonium drugs were extracted from equine urine by solid-phase extraction (SPE) using an ISOLUTE(®) CBA SPE column and analysed by LC/MS/MS in the positive electrospray ionisation mode. Separation of the 38 QADs was achieved on a polar group embedded C18 LC column with a mixture of aqueous ammonium formate (pH 3.0, 10 mM) and acetonitrile as the mobile phase. Detection and confirmation of the 38 QADs at sub-ppb to low-ppb levels in equine urine could be achieved within 16 min using selected reaction monitoring (SRM). Matrix interference of the target transitions at the expected retention times was not observed. Other method validation data, including precision and recovery, were acceptable. The method was successfully applied to the analyses of drug-administration samples. Copyright © 2011 Elsevier B.V. All rights reserved.
Marine biodiversity–ecosystem functions under uncertain environmental futures
Bulling, Mark T.; Hicks, Natalie; Murray, Leigh; Paterson, David M.; Raffaelli, Dave; White, Piran C. L.; Solan, Martin
2010-01-01
Anthropogenic activity is currently leading to dramatic transformations of ecosystems and losses of biodiversity. The recognition that these ecosystems provide services that are essential for human well-being has led to a major interest in the forms of the biodiversity–ecosystem functioning relationship. However, there is a lack of studies examining the impact of climate change on these relationships and it remains unclear how multiple climatic drivers may affect levels of ecosystem functioning. Here, we examine the roles of two important climate change variables, temperature and concentration of atmospheric carbon dioxide, on the relationship between invertebrate species richness and nutrient release in a model benthic estuarine system. We found a positive relationship between invertebrate species richness and the levels of release of NH4-N into the water column, but no effect of species richness on the release of PO4-P. Higher temperatures and greater concentrations of atmospheric carbon dioxide had a negative impact on nutrient release. Importantly, we found significant interactions between the climate variables, indicating that reliably predicting the effects of future climate change will not be straightforward as multiple drivers are unlikely to have purely additive effects, resulting in increased levels of uncertainty. PMID:20513718
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sisterson, D. L.
2015-10-01
The Atmospheric Radiation Measurement (ARM) Program was created in 1989 with funding from the U.S. Department of Energy (DOE) to develop several highly instrumented ground stations to study cloud formation processes and their influence on radiative transfer. In 2003, the ARM Program became a national scientific user facility, known as the ARM Climate Research Facility. This scientific infrastructure provides for fixed sites, mobile facilities, an aerial facility, and a data archive available for use by scientists worldwide through the ARM Climate Research Facility—a scientific user facility. The ARM Climate Research Facility currently operates more than 300 instrument systems that providemore » ground-based observations of the atmospheric column. To keep ARM at the forefront of climate observations, the ARM infrastructure depends heavily on instrument scientists and engineers, also known as lead mentors. Lead mentors must have an excellent understanding of in situ and remote-sensing instrumentation theory and operation and have comprehensive knowledge of critical scale-dependent atmospheric processes. They must also possess the technical and analytical skills to develop new data retrievals that provide innovative approaches for creating research-quality data sets. The ARM Climate Research Facility is seeking the best overall qualified candidate who can fulfill lead mentor requirements in a timely manner.« less
Marine biodiversity-ecosystem functions under uncertain environmental futures.
Bulling, Mark T; Hicks, Natalie; Murray, Leigh; Paterson, David M; Raffaelli, Dave; White, Piran C L; Solan, Martin
2010-07-12
Anthropogenic activity is currently leading to dramatic transformations of ecosystems and losses of biodiversity. The recognition that these ecosystems provide services that are essential for human well-being has led to a major interest in the forms of the biodiversity-ecosystem functioning relationship. However, there is a lack of studies examining the impact of climate change on these relationships and it remains unclear how multiple climatic drivers may affect levels of ecosystem functioning. Here, we examine the roles of two important climate change variables, temperature and concentration of atmospheric carbon dioxide, on the relationship between invertebrate species richness and nutrient release in a model benthic estuarine system. We found a positive relationship between invertebrate species richness and the levels of release of NH(4)-N into the water column, but no effect of species richness on the release of PO(4)-P. Higher temperatures and greater concentrations of atmospheric carbon dioxide had a negative impact on nutrient release. Importantly, we found significant interactions between the climate variables, indicating that reliably predicting the effects of future climate change will not be straightforward as multiple drivers are unlikely to have purely additive effects, resulting in increased levels of uncertainty.
[Purification of arsenic-binding proteins in hamster plasma after oral administration of arsenite].
Wang, Wenwen; Zhang, Min; Li, Chunhui; Qin, Yingjie; Hua, Naranmandura
2013-01-01
To purify the arsenic-binding proteins (As-BP) in hamster plasma after a single oral administration of arsenite (iAs(III)). Arsenite was given to hamsters in a single dose. Three types of HPLC columns, size exclusion, gel filtration and anion exchange columns, combined with an inductively coupled argon plasma mass spectrometer (ICP MS) were used to purify the As-BP in hamster plasma. SDS-PAGE was used to confirm the arsenic-binding proteins at each purification step. The three-step purification process successfully separated As-BP from other proteins (ie, arsenic unbound proteins) in hamster plasma. The molecular mass of purified As-BP in plasma was approximately 40-50 kD on SDS-PAGE. The three-step purification method is a simple and fast approach to purify the As-BP in plasma samples.
Mercury cycling in stream ecosystems. 1. Water column chemistry and transport
Brigham, M.E.; Wentz, D.A.; Aiken, G.R.; Krabbenhoft, D.P.
2009-01-01
We studied total mercury (THg) and methylmercury (MeHg) in eight streams, located in Oregon, Wisconsin, and Florida, that span large ranges in climate, landscape characteristics, atmospheric Hg deposition, and water chemistry. While atmospheric deposition was the source of Hg at each site, basin characteristics appeared to mediate this source by providing controls on methylation and fluvial THg and MeHg transport. Instantaneous concentrations of filtered total mercury (FTHg) and filtered methylmercury (FMeHg) exhibited strong positive correlations with both dissolved organic carbon (DOC) concentrations and streamflow for most streams, whereas mean FTHg and FMeHg concentrations were correlated with wetland density of the basins. For all streams combined, whole water concentrations (sum of filtered and particulate forms) of THg and MeHg correlated strongly with DOC and suspended sediment concentrations in the water column. ?? 2009 American Chemical Society.
NASA Astrophysics Data System (ADS)
Chen, Y. H.; Kuo, C. P.; Huang, X.; Yang, P.
2017-12-01
Clouds play an important role in the Earth's radiation budget, and thus realistic and comprehensive treatments of cloud optical properties and cloud-sky radiative transfer are crucial for simulating weather and climate. However, most GCMs neglect LW scattering effects by clouds and tend to use inconsistent cloud SW and LW optical parameterizations. Recently, co-authors of this study have developed a new LW optical properties parameterization for ice clouds, which is based on ice cloud particle statistics from MODIS measurements and state-of-the-art scattering calculation. A two-stream multiple-scattering scheme has also been implemented into the RRTMG_LW, a widely used longwave radiation scheme by climate modeling centers. This study is to integrate both the new LW cloud-radiation scheme for ice clouds and the modified RRTMG_LW with scattering capability into the NCAR CESM to improve the cloud longwave radiation treatment. A number of single column model (SCM) simulations using the observation from the ARM SGP site on July 18 to August 4 in 1995 are carried out to assess the impact of new LW optical properties of clouds and scattering-enabled radiation scheme on simulated radiation budget and cloud radiative effect (CRE). The SCM simulation allows interaction between cloud and radiation schemes with other parameterizations, but the large-scale forcing is prescribed or nudged. Comparing to the results from the SCM of the standard CESM, the new ice cloud optical properties alone leads to an increase of LW CRE by 26.85 W m-2 in average, as well as an increase of the downward LW flux at surface by 6.48 W m-2. Enabling LW cloud scattering further increases the LW CRE by another 3.57 W m-2 and the downward LW flux at the surface by 0.2 W m-2. The change of LW CRE is mainly due to an increase of cloud top height, which enhances the LW CRE. A long-term simulation of CESM will be carried out to further understand the impact of such changes on simulated climates.
Extending the NOAA SBUV(/2) Ozone Profile Record
NASA Astrophysics Data System (ADS)
Frith, S. M.; Wild, J.; Long, C. S.
2017-12-01
Since the signing of the Montreal Protocol in 1987 and its subsequent agreements banning anthropogenic ozone depleting substances (ODS) the climate community has been anticipating the ability to detect the recovery of the ozone layer. This recovery is complicated by climate changes associated with the increase of CO2 in the both the troposphere and stratosphere. The Climate Prediction Center (CPC) has generated a long term total column and profile ozone climate data record (CDR) based on the SBUV and SBUV/2 on Nimbus 7 and the NOAA Polar Orbiting Environmental Satellites (POES): NOAA-9, -11, -14, -16, -17, -18 and -19 spanning 38 years from 1978 to 2016. This dataset uses observations from a single instrument for each time period and an adjustment scheme to remove inter-satellite differences. The last of these SBUV/2 instruments resides on NOAA-19 launched in 2009, and with drifting equatorial crossing time will soon loose latitudinal coverage, and be impacted by an increasing solar zenith angle. The Ozone Mapping and Profiler Suite (OMPS) instrument has replaced the SBUV/2 as the primary ozone monitoring instrument at NOAA. It is taking observations on the Suomi-NPOESS Preparatory Project (S-NPP) satellite which was launched in 2011 and will be on future JPSS satellites. JPSS-1 is expected to be launched in late 2017, and later JPSS satellites will additionally carry the OMPS instrument. Reprocessed OMPS Nadir Profile (NP) and Nadir Mapper (NM) level 2 data has been made available by NESDIS/STAR covering the period from 2012 through 2016. The OMPS NP has been characterized and calibrated to be very similar to the SBUV/2. Results of extending the SBUV(/2) dataset with ozone profile data from OMPS will be reviewed. Stability of ozone recovery trend estimates using these datasets will be explored using the Hockey Stick approach of Reinsel (2002) near-globally (50N-50S), tropically and at mid-latitudes. Seasonality of the trend results will be examined. Reinsel, G.C., et al Journal of Geophys. Res., 107, p4078 (2002).
NASA Astrophysics Data System (ADS)
Neggers, Roel
2016-04-01
Boundary-layer schemes have always formed an integral part of General Circulation Models (GCMs) used for numerical weather and climate prediction. The spatial and temporal scales associated with boundary-layer processes and clouds are typically much smaller than those at which GCMs are discretized, which makes their representation through parameterization a necessity. The need for generally applicable boundary-layer parameterizations has motivated many scientific studies, which in effect has created its own active research field in the atmospheric sciences. Of particular interest has been the evaluation of boundary-layer schemes at "process-level". This means that parameterized physics are studied in isolated mode from the larger-scale circulation, using prescribed forcings and excluding any upscale interaction. Although feedbacks are thus prevented, the benefit is an enhanced model transparency, which might aid an investigator in identifying model errors and understanding model behavior. The popularity and success of the process-level approach is demonstrated by the many past and ongoing model inter-comparison studies that have been organized by initiatives such as GCSS/GASS. A red line in the results of these studies is that although most schemes somehow manage to capture first-order aspects of boundary layer cloud fields, there certainly remains room for improvement in many areas. Only too often are boundary layer parameterizations still found to be at the heart of problems in large-scale models, negatively affecting forecast skills of NWP models or causing uncertainty in numerical predictions of future climate. How to break this parameterization "deadlock" remains an open problem. This presentation attempts to give an overview of the various existing methods for the process-level evaluation of boundary-layer physics in large-scale models. This includes i) idealized case studies, ii) longer-term evaluation at permanent meteorological sites (the testbed approach), and iii) process-level evaluation at climate time-scales. The advantages and disadvantages of each approach will be identified and discussed, and some thoughts about possible future developments will be given.
Joseph, George; Devi, Ranjani; Marley, Elaine C; Leeman, David
2018-05-01
Single- and multilaboratory testing data have provided systematic scientific evidence that a simple, selective, accurate, and precise method can be used as a potential candidate reference method for dispute resolution in determining total biotin in all forms of infant, adult, and/or pediatric formula. Using LC coupled with immunoaffinity column cleanup extraction, the method fully meets the intended purpose and applicability statement in AOAC Standard Method Performance Requirement 2014.005. The method was applied to a cross-section of infant formula and adult nutritional matrixes, and acceptable precision and accuracy were established. The analytical platform is inexpensive, and the method can be used in almost any laboratory worldwide with basic facilities. The immunoaffinity column cleanup extraction is the key step to successful analysis.
Glancing angle deposition of sculptured thin metal films at room temperature
NASA Astrophysics Data System (ADS)
Liedtke, S.; Grüner, Ch; Lotnyk, A.; Rauschenbach, B.
2017-09-01
Metallic thin films consisting of separated nanostructures are fabricated by evaporative glancing angle deposition at room temperature. The columnar microstructure of the Ti and Cr columns is investigated by high resolution transmission electron microscopy and selective area electron diffraction. The morphology of the sculptured metallic films is studied by scanning electron microscopy. It is found that tilted Ti and Cr columns grow with a single crystalline morphology, while upright Cr columns are polycrystalline. Further, the influence of continuous substrate rotation on the shaping of Al, Ti, Cr and Mo nanostructures is studied with view to surface diffusion and the shadowing effect. It is observed that sculptured metallic thin films deposited without substrate rotation grow faster compared to those grown with continuous substrate rotation. A theoretical model is provided to describe this effect.
Cloudy Skies over AGN: Observations with Simbol-X
NASA Astrophysics Data System (ADS)
Salvati, M.; Risaliti, G.
2009-05-01
Recent time-resolved spectroscopic X-ray studies of bright obscured AGN show that column density variability on time scales of hours/days may be common, at least for sources with NH>1023 cm-2. This opens new oppurtunities in the analysis of the structure of the circumnuclear medium and of the X-ray source: resolving the variations due to single clouds covering/uncovering the X-ray source provides tight constraints on the source size, the clouds' size and distance, and their average number, density and column density. We show how Simbol-X will provide a breakthrough in this field, thanks to its broad band coverage, allowing (a) to precisely disentangle the continuum and NH variations, and (2) to extend the NH variability analysis to column densities >1023 cm-2.
Chatterjee, Sumantra; Sivakamasundari, V; Yap, Sook Peng; Kraus, Petra; Kumar, Vibhor; Xing, Xing; Lim, Siew Lan; Sng, Joel; Prabhakar, Shyam; Lufkin, Thomas
2014-12-05
Vertebrate organogenesis is a highly complex process involving sequential cascades of transcription factor activation or repression. Interestingly a single developmental control gene can occasionally be essential for the morphogenesis and differentiation of tissues and organs arising from vastly disparate embryological lineages. Here we elucidated the role of the mammalian homeobox gene Bapx1 during the embryogenesis of five distinct organs at E12.5 - vertebral column, spleen, gut, forelimb and hindlimb - using expression profiling of sorted wildtype and mutant cells combined with genome wide binding site analysis. Furthermore we analyzed the development of the vertebral column at the molecular level by combining transcriptional profiling and genome wide binding data for Bapx1 with similarly generated data sets for Sox9 to assemble a detailed gene regulatory network revealing genes previously not reported to be controlled by either of these two transcription factors. The gene regulatory network appears to control cell fate decisions and morphogenesis in the vertebral column along with the prevention of premature chondrocyte differentiation thus providing a detailed molecular view of vertebral column development.
The wavefield of acoustic logging in a cased hole with a single casing—Part II: a dipole tool
NASA Astrophysics Data System (ADS)
Wang, Hua; Fehler, Michael
2018-02-01
The acoustic method, being the most effective method for cement bond evaluation, has been used by industry for more than a half century. However, the methods currently used are almost always focused on the first arrival (especially for sonic logging), which has limitations. We use a 3-D finite-difference method to numerically simulate the wavefields from a dipole source in a single-cased hole with different cement conditions. By using wavefield snapshots and dispersion curves, we interpret the characteristics of the modes in the models. We investigate the effect of source frequency, the thickness and location of fluid columns on different modes. The dipole wavefield in a single-cased hole consists of a leaky P (for frequency >10 kHz) from formation, formation flexural, and also some casing modes. Depending on the mode, their behaviour is sometimes sensitive to the existence of fluid between the cement and formation and sometimes sensitive to the existence of fluid between the casing and cement. The formation S velocity can be obtained from the formation flexural mode at low frequency. However, interference from high-order casing modes makes the leaky P invisible and P velocity determination difficult when the casing is not well cemented. The dispersion curve of the formation flexural mode is sensitive to the fluid thickness when fluid exists only at the interface between casing and cement. The fundamental casing dipole mode is only sensitive to the total fluid thickness in the annulus between casing and formation. Either the arrival time or amplitude of the high-order casing dipole mode is sensitive to the fluid column when the fluid column is next to the casing. We provide a table that summarizes the ability of different modes to detect fluid columns between various layers of casing, cement and formation. Based on the results, we suggest a data processing flow for field application, which will highly improve cement evaluation.
Cloud Radiation Forcings and Feedbacks: General Circulation Model Tests and Observational Validation
NASA Technical Reports Server (NTRS)
Lee,Wan-Ho; Iacobellis, Sam F.; Somerville, Richard C. J.
1997-01-01
Using an atmospheric general circulation model (the National Center for Atmospheric Research Community Climate Model: CCM2), the effects on climate sensitivity of several different cloud radiation parameterizations have been investigated. In addition to the original cloud radiation scheme of CCM2, four parameterizations incorporating prognostic cloud water were tested: one version with prescribed cloud radiative properties and three other versions with interactive cloud radiative properties. The authors' numerical experiments employ perpetual July integrations driven by globally constant sea surface temperature forcings of two degrees, both positive and negative. A diagnostic radiation calculation has been applied to investigate the partial contributions of high, middle, and low cloud to the total cloud radiative forcing, as well as the contributions of water vapor, temperature, and cloud to the net climate feedback. The high cloud net radiative forcing is positive, and the middle and low cloud net radiative forcings are negative. The total net cloud forcing is negative in all of the model versions. The effect of interactive cloud radiative properties on global climate sensitivity is significant. The net cloud radiative feedbacks consist of quite different shortwave and longwave components between the schemes with interactive cloud radiative properties and the schemes with specified properties. The increase in cloud water content in the warmer climate leads to optically thicker middle- and low-level clouds and in turn to negative shortwave feedbacks for the interactive radiative schemes, while the decrease in cloud amount simply produces a positive shortwave feedback for the schemes with a specified cloud water path. For the longwave feedbacks, the decrease in high effective cloudiness for the schemes without interactive radiative properties leads to a negative feedback, while for the other cases, the longwave feedback is positive. These cloud radiation parameterizations are empirically validated by using a single-column diagnostic model. together with measurements from the Atmospheric Radiation Measurement program and from the Tropical Ocean Global Atmosphere Combined Ocean-Atmosphere Response Experiment. The inclusion of prognostic cloud water produces a notable improvement in the realism of the parameterizations, as judged by these observations. Furthermore, the observational evidence suggests that deriving cloud radiative properties from cloud water content and microphysical characteristics is a promising route to further improvement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Archer, D.
A two-dimensional model of a sediment column, with Darcy fluid flow, biological and thermal methane production, and permafrost and methane hydrate formation, is subjected to glacial–interglacial cycles in sea level, alternately exposing the continental shelf to the cold atmosphere during glacial times and immersing it in the ocean in interglacial times. The glacial cycles are followed by a "long-tail" 100 kyr warming due to fossil fuel combustion. The salinity of the sediment column in the interior of the shelf can be decreased by hydrological forcing to depths well below sea level when the sediment is exposed to the atmosphere. Theremore » is no analogous advective seawater-injecting mechanism upon resubmergence, only slower diffusive mechanisms. This hydrological ratchet is consistent with the existence of freshwater beneath the sea floor on continental shelves around the world, left over from the last glacial period. The salt content of the sediment column affects the relative proportions of the solid and fluid H 2O-containing phases, but in the permafrost zone the salinity in the pore fluid brine is a function of temperature only, controlled by equilibrium with ice. Ice can tolerate a higher salinity in the pore fluid than methane hydrate can at low pressure and temperature, excluding methane hydrate from thermodynamic stability in the permafrost zone. The implication is that any methane hydrate existing today will be insulated from anthropogenic climate change by hundreds of meters of sediment, resulting in a response time of thousands of years. The strongest impact of the glacial–interglacial cycles on the atmospheric methane flux is due to bubbles dissolving in the ocean when sea level is high. When sea level is low and the sediment surface is exposed to the atmosphere, the atmospheric flux is sensitive to whether permafrost inhibits bubble migration in the model. If it does, the atmospheric flux is highest during the glaciating, sea level regression (soil-freezing) part of the cycle rather than during deglacial transgression (warming and thawing). The atmospheric flux response to a warming climate is small, relative to the rest of the methane sources to the atmosphere in the global budget, because of the ongoing flooding of the continental shelf. The increased methane flux due to ocean warming could be completely counteracted by a sea level rise of tens of meters on millennial timescales due to the loss of ice sheets, decreasing the efficiency of bubble transit through the water column. The model results give no indication of a mechanism by which methane emissions from the Siberian continental shelf could have a significant impact on the near-term evolution of Earth's climate, but on millennial timescales the release of carbon from hydrate and permafrost could contribute significantly to the fossil fuel carbon burden in the atmosphere–ocean–terrestrial carbon cycle.« less
Growing Cobalt Silicide Columns In Silicon
NASA Technical Reports Server (NTRS)
Fathauer, Obert W.
1991-01-01
Codeposition by molecular-beam epitaxy yields variety of structures. Proposed fabrication process produces three-dimensional nanometer-sized structures on silicon wafers. Enables control of dimensions of metal and semiconductor epitaxial layers in three dimensions instead of usual single dimension (perpendicular to the plane of the substrate). Process used to make arrays of highly efficient infrared sensors, high-speed transistors, and quantum wires. For fabrication of electronic devices, both shapes and locations of columns controlled. One possible technique for doing this electron-beam lithography, see "Making Submicron CoSi2 Structures on Silicon Substrates" (NPO-17736).
Global variability of cloud condensation nuclei concentrations
NASA Astrophysics Data System (ADS)
Makkonen, Risto; Krüger, Olaf
2017-04-01
Atmospheric aerosols can influence cloud optical and dynamical processes by acting as cloud condensation nuclei (CCN). Globally, these indirect aerosol effects are significant to the radiative budget as well as a source of high uncertainty in anthropogenic radiative forcing. While historically many global climate models have fixed CCN concentrations to a certain level, most state-of-the-art models calculate aerosol-cloud interactions with sophisticated methodologies based on interactively simulated aerosol size distributions. However, due to scarcity of atmospheric observations simulated global CCN concentrations remain poorly constrained. Here we assess global CCN variability with a climate model, and attribute potential trends during 2000-2010 to changes in emissions and meteorological fields. Here we have used ECHAM5.5-HAM2 with model M7 microphysical aerosol model. The model has been upgraded with a secondary organic aerosol (SOA) scheme including ELVOCs. Dust and sea salt emissions are calculated online, based on wind speed and hydrology. Each experiment is 11 years, analysed after a 6-month spin-up period. The MODIS CCN product (Terra platform) is used to evaluate model performance throughout 2000-2010. While optical remote observation of CCN column includes several deficiencies, the products serves as a proxy for changes during the simulation period. In our analysis we utilize the observed and simulated vertical column integrated CCN concentration, and limit our analysis only over marine regions. Simulated annual CCN column densities reach 2ṡ108 cm-2 near strong source regions in central Africa, Arabian Sea, Bay of Bengal and China sea. The spatial concentration gradient in CCN(0.2%) is steep, and column densities drop to <50% a few hundred kilometers away from the coasts. While the spatial distribution of CCN at 0.2% supersaturation is closer to that of MODIS proxy, as opposed to 1.0% supersaturation, the overall column integrated CCN are too low. Still, we can compare the relative response of CCN to emission and meteorological variability. Most evident pattern of high temporal correlation is found over North Atlantic ocean, extending throughout Europe and up to Gulf of Mexico. All of these regions show a generally decreasing trend throughout the decade in control simulations and MODIS CCN, and the simulations including the emission trends clearly improve the simulations with climatological emissions. In regions where the observed intra-annual cycle correlates well with sea-spray emissions, the long-term annual correlation usually remains poor. This could indicate that the model is unable to capture the natural variability in marine aerosol emissions.
Space-Based CO2 Active Optical Remote Sensing using 2-μm Triple-Pulse IPDA Lidar
NASA Astrophysics Data System (ADS)
Singh, Upendra; Refaat, Tamer; Ismail, Syed; Petros, Mulugeta
2017-04-01
Sustained high-quality column CO2 measurements from space are required to improve estimates of regional and global scale sources and sinks to attribute them to specific biogeochemical processes for improving models of carbon-climate interactions and to reduce uncertainties in projecting future change. Several studies show that space-borne CO2 measurements offer many advantages particularly over high altitudes, tropics and southern oceans. Current satellite-based sensing provides rapid CO2 monitoring with global-scale coverage and high spatial resolution. However, these sensors are based on passive remote sensing, which involves limitations such as full seasonal and high latitude coverage, poor sensitivity to the lower atmosphere, retrieval complexities and radiation path length uncertainties. CO2 active optical remote sensing is an alternative technique that has the potential to overcome these limitations. The need for space-based CO2 active optical remote sensing using the Integrated Path Differential Absorption (IPDA) lidar has been advocated by the Advanced Space Carbon and Climate Observation of Planet Earth (A-Scope) and Active Sensing of CO2 Emission over Nights, Days, and Seasons (ASCENDS) studies in Europe and the USA. Space-based IPDA systems can provide sustained, high precision and low-bias column CO2 in presence of thin clouds and aerosols while covering critical regions such as high latitude ecosystems, tropical ecosystems, southern ocean, managed ecosystems, urban and industrial systems and coastal systems. At NASA Langley Research Center, technology developments are in progress to provide high pulse energy 2-μm IPDA that enables optimum, lower troposphere weighted column CO2 measurements from space. This system provides simultaneous ranging; information on aerosol and cloud distributions; measurements over region of broken clouds; and reduces influences of surface complexities. Through the continual support from NASA Earth Science Technology Office, current efforts are focused on developing an aircraft-based 2-μm triple-pulse IPDA lidar for independent and simultaneous monitoring of CO2 and water vapor (H2O). Triple-pulse IPDA design, development and integration is based on the knowledge gathered from the successful demonstration of the airborne CO2 2-μm double-pulse IPDA lidar. IPDA transmitter enhancements include generating high-energy (80 mJ) and high repetition rate (50Hz) three successive pulses using a single pump pulse. IPDA receiver enhancement include an advanced, low noise (1 fW/Hz1/2) MCT e-APD detection system for improved measurement sensitivity. In place of H2O sensing, the triple-pulse IPDA can be tuned to measure CO2 with two different weighting functions using two on-lines and a common off-line. Modeling of a space-based high-energy 2-µm triple-pulse IPDA lidar was conducted to demonstrate CO2 measurement capability and to evaluate random and systematic errors. Projected performance shows <0.12% random error and <0.07% residual systematic error. These translate to near-optimum 0.5 ppm precision and 0.3 ppm bias in low-tropospheric column CO2 mixing ratio measurements from space for 10 second signal averaging over Railroad Valley reference surface using US Standard atmospheric model. In addition, measurements can be optimized by tuning on-lines based upon ground target scenarios, environment and science objectives. With 10 MHz detection bandwidth, surface ranging with an uncertainty of <3 m can be achieved as demonstrated from earlier airborne flights.
Behaviour of polycyclic aromatic hydrocarbons (PAH) in soils under freeze-thaw cycles
NASA Astrophysics Data System (ADS)
Zschocke, Anne; Schönborn, Maike; Eschenbach, Annette
2010-05-01
The arctic region will be one of the most affected regions by climate change due to the predicted temperature rise. As a result of anthropogenic actions as mining, exploration and refining as well as atmospheric transport pollutions can be found in arctic soils. Therefore questions on the behaviour of organic contaminants in permafrost influenced soils are of high relevance. First investigations showed that permafrost can act as a semi-permeable layer for PAH (Curtosi et al., 2007). Therefore it can be assumed that global warming could result in a mobilization of PAH in these permafrost influenced soils. On the other hand a low but detectable mineralization of organic hydrocarbons by microorganisms under repeated freeze-thaw cycles was analysed (Börresen et al. 2007, Eschenbach et al. 2000). In this study the behaviour and distribution of PAH under freezing and periodically freezing and thawing were investigated in laboratory column experiments with spiked soil materials. Two soil materials which are typical for artic regions, a organic matter containing melt water sand and a well decomposed peat, were homogeneously spiked with a composite of a crude oil and the PAH anthracene and benzo(a)pyrene. After 14days preincubation time the soil material was filled in the laboratory columns (40cm high and 10 cm in diameter). Based on studies by Chuvilin et al. (2001) the impact of freezing of the upper third of the column from the surface downwards was examined. The impact of freezing was tested in two different approaches the first one with a single freezing step and the second one with a fourfold repeated cycle of freezing and thawing which takes about 6 or 7 days each. The experimental design and very first results will be shown and discussed. In some experiments with the peat a higher concentration of anthracene and benzo(a)pyrene could be detected below the freezing front in the unfrozen part of the column. Whereas the concentration of PAH had slightly decreased in the frozen part of the column. However these results were not statistically significant they could proof results from Chuvilin et al. (2001). Who found similar results in sandy and clayey material and presumed the expulsion of petroleum hydrocarbons. Barnes et al. (2004) specified that the exclusion of petroleum hydrocarbons due to freezing is caused by displacement from the pore spaces due to expansion of the ice and the forming of crystalline ice structure. Further experimental approaches to investigate the effect of freezing and thawing of permafrost influenced soils on PAH migration will be discussed. References: Barnes, D. L.; Wolfe, S. M. & Filler, D. M. (2004): Equilibrium distribution of petroleum hydrocarbons in freezing ground, Polar Record, 40, 245-251. Börresen M.H., Barnes D.L., Rike A.G. (2007): Repeated freeze-thaw cycles and their effects on mineralization of hexadecane and phenanthrene in cold climate soils. Cold Regions Science and Technology 49, 215-225. Chuvilin, E.; Naletova, N.; Miklyaeva, E.; Kozlova, E. & Instanes, A. (2001): Factors affecting spreadability and transportation of oil in regions of frozen ground. Polar Record 37, 229-238. Curtosi, A.; Pelletier, E.; Vodopivez, C.L.; Mac Cormack, W.P. (2007): Polycyclic aromatic hydrocarbons in soil and surface marine sediment near Jubany Station (Antarctica). Role of permafrost as a low-permeability barrier. Science of The Total Environment 383, 1-3, 193-204. Eschenbach, A.; Wienberg, R.; Mahro, B. (2000): Formation, long-term stability and fate of non-extractable 14C-PAH-residues in contaminated soils. In: Wise, D.L.; Trantolo, D.J.; Cichon, E.J.; Inyang, H.J.; Stottmeister, U. (eds): Remediation Engineering of Contaminated Soils, 2nd Edition; Marcel-Dekker, New York, p. 427-446.
Macias, Diego; Stips, Adolf; Garcia-Gorriz, Elisa; Dosio, Alessandro
2018-01-01
We evaluate the changes on the hydrological (temperature and salinity) and biogeochemical (phytoplankton biomass) characteristics of the Mediterranean Sea induced by freshwater flow modifications under two different scenarios for the end of the 21st century. An ensemble of four regional climate model realizations using different global circulation models at the boundary and different emission scenarios are used to force a single ocean model for the Mediterranean Sea. Freshwater flow is modified according to the simulated changes in the precipitation rates for the different rivers' catchment regions. To isolate the effect resulting from a change in freshwater flow, model results are evaluated against a 'baseline' simulation realized assuming a constant inflow equivalent to climatologic values. Our model results indicate that sea surface salinity could be significantly altered by freshwater flow modification in specific regions and that the affected area and the sign of the anomaly are highly dependent on the used climate model and emission scenario. Sea surface temperature and phytoplankton biomass, on the contrary, show no coherent spatial pattern but a rather widespread scattered response. We found in open-water regions a significant negative relationship between sea surface temperature anomalies and phytoplankton biomass anomalies. This indicates that freshwater flow modification could alter the vertical stability of the water column throughout the Mediterranean Sea, by changing the strength of vertical mixing and consequently upper water fertilization. In coastal regions, however, the correlation between sea temperature anomalies and phytoplankton biomass is positive, indicating a larger importance of the physiological control of growth rates by temperature.
Evaluation of Convective Transport in the GEOS-5 Chemistry and Climate Model
NASA Technical Reports Server (NTRS)
Pickering, Kenneth E.; Ott, Lesley E.; Shi, Jainn J.; Tao. Wei-Kuo; Mari, Celine; Schlager, Hans
2011-01-01
The NASA Goddard Earth Observing System (GEOS-5) Chemistry and Climate Model (CCM) consists of a global atmospheric general circulation model and the combined stratospheric and tropospheric chemistry package from the NASA Global Modeling Initiative (GMI) chemical transport model. The subgrid process of convective tracer transport is represented through the Relaxed Arakawa-Schubert parameterization in the GEOS-5 CCM. However, substantial uncertainty for tracer transport is associated with this parameterization, as is the case with all global and regional models. We have designed a project to comprehensively evaluate this parameterization from the point of view of tracer transport, and determine the most appropriate improvements that can be made to the GEOS-5 convection algorithm, allowing improvement in our understanding of the role of convective processes in determining atmospheric composition. We first simulate tracer transport in individual observed convective events with a cloud-resolving model (WRF). Initial condition tracer profiles (CO, CO2, O3) are constructed from aircraft data collected in undisturbed air, and the simulations are evaluated using aircraft data taken in the convective anvils. A single-column (SCM) version of the GEOS-5 GCM with online tracers is then run for the same convective events. SCM output is evaluated based on averaged tracer fields from the cloud-resolving model. Sensitivity simulations with adjusted parameters will be run in the SCM to determine improvements in the representation of convective transport. The focus of the work to date is on tropical continental convective events from the African Monsoon Multidisciplinary Analyses (AMMA) field mission in August 2006 that were extensively sampled by multiple research aircraft.
Analysis and seismic tests of composite shear walls with CFST columns and steel plate deep beams
NASA Astrophysics Data System (ADS)
Dong, Hongying; Cao, Wanlin; Wu, Haipeng; Zhang, Jianwei; Xu, Fangfang
2013-12-01
A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipation elements: CFST columns; SP deep beams; and reinforced concrete (RC) strips. The RC strips are intended to allow the core structural elements — the CFST columns and SP deep beams — to work as a single structure to consume energy. Six specimens of different configurations were tested under cyclic loading. The resulting data are analyzed herein. In addition, numerical simulations of the stress and damage processes for each specimen were carried out, and simulations were completed for a range of location and span-height ratio variations for the SP beams. The simulations show good agreement with the test results. The core structure exhibits a ductile yielding mechanism characteristic of strong column-weak beam structures, hysteretic curves are plump and the composite shear wall exhibits several seismic defense lines. The deformation of the shear wall specimens with encased CFST column and SP deep beam design appears to be closer to that of entire shear walls. Establishing optimal design parameters for the configuration of SP deep beams is pivotal to the best seismic behavior of the wall. The new composite shear wall is therefore suitable for use in the seismic design of building structures.
Brewer 105 is located in Gaithersburg MD, measuring ultraviolet solar radiation. Irradiance and column ozone are derived from this data. Ultraviolet solar radiation is measured with a Brewer Mark IV, single-monochrometer, spectrophotometer manufactured by SCI-TEC Instruments, Inc...
Climate change impact modelling needs to include cross-sectoral interactions
NASA Astrophysics Data System (ADS)
Harrison, Paula A.; Dunford, Robert W.; Holman, Ian P.; Rounsevell, Mark D. A.
2016-09-01
Climate change impact assessments often apply models of individual sectors such as agriculture, forestry and water use without considering interactions between these sectors. This is likely to lead to misrepresentation of impacts, and consequently to poor decisions about climate adaptation. However, no published research assesses the differences between impacts simulated by single-sector and integrated models. Here we compare 14 indicators derived from a set of impact models run within single-sector and integrated frameworks across a range of climate and socio-economic scenarios in Europe. We show that single-sector studies misrepresent the spatial pattern, direction and magnitude of most impacts because they omit the complex interdependencies within human and environmental systems. The discrepancies are particularly pronounced for indicators such as food production and water exploitation, which are highly influenced by other sectors through changes in demand, land suitability and resource competition. Furthermore, the discrepancies are greater under different socio-economic scenarios than different climate scenarios, and at the sub-regional rather than Europe-wide scale.
Capturing temporal and spatial variability in the chemistry of shallow permafrost ponds
NASA Astrophysics Data System (ADS)
Morison, Matthew Q.; Macrae, Merrin L.; Petrone, Richard M.; Fishback, LeeAnn
2017-12-01
Across the circumpolar north, the fate of small freshwater ponds and lakes (< 1 km2) has been the subject of scientific interest due to their ubiquity in the landscape, capacity to exchange carbon and energy with the atmosphere, and their potential to inform researchers about past climates through sediment records. A changing climate has implications for the capacity of ponds and lakes to support organisms and store carbon, which in turn has important feedbacks to climate change. Thus, an improved understanding of pond biogeochemistry is needed. To characterize spatial and temporal patterns in water column chemistry, a suite of tundra ponds were examined to answer the following research questions: (1) does temporal variability exceed spatial variability? (2) If temporal variability exists, do all ponds (or groups of ponds) behave in a similar temporal pattern, linked to seasonal hydrologic drivers or precipitation events? Six shallow ponds located in the Hudson Bay Lowlands region were monitored between May and October 2015 (inclusive, spanning the entire open-water period). The ponds span a range of biophysical conditions including pond area, perimeter, depth, and shoreline development. Water samples were collected regularly, both bimonthly over the ice-free season and intensively during and following a large summer storm event. Samples were analysed for nitrogen speciation (NO3-, NH4+, dissolved organic nitrogen) and major ions (Cl-, SO42-, K+, Ca2+, Mg2+, Na+). Across all ponds, temporal variability (across the season and within a single rain event) exceeded spatial variability (variation among ponds) in concentrations of several major species (Cl-, SO42-, K+, Ca2+, Na+). Evapoconcentration and dilution of pond water with precipitation and runoff inputs were the dominant processes influencing a set of chemical species which are hydrologically driven (Cl-, Na+, K+, Mg2+, dissolved organic nitrogen), whereas the dissolved inorganic nitrogen species were likely mediated by processes within ponds. This work demonstrates the importance of understanding hydrologically driven chemodynamics in permafrost ponds on multiple scales (seasonal and event scale).
Improvements of the Radiation Code "MstrnX" in AORI/NIES/JAMSTEC Models
NASA Astrophysics Data System (ADS)
Sekiguchi, M.; Suzuki, K.; Takemura, T.; Watanabe, M.; Ogura, T.
2015-12-01
There is a large demand for an accurate yet rapid radiation transfer scheme accurate for general climate models. The broadband radiative transfer code "mstrnX", ,which was developed by Atmosphere and Ocean Research Institute (AORI) and was implemented in several global and regional climate models cooperatively developed in the Japanese research community, for example, MIROC (the Model for Interdisciplinary Research on Climate) [Watanabe et al., 2010], NICAM (Non-hydrostatic Icosahedral Atmospheric Model) [Satoh et al, 2008], and CReSS (Cloud Resolving Storm Simulator) [Tsuboki and Sakakibara, 2002]. In this study, we improve the gas absorption process and the scattering process of ice particles. For update of gas absorption process, the absorption line database is replaced by the latest versions of the Harvard-Smithsonian Center, HITRAN2012. An optimization method is adopted in mstrnX to decrease the number of integration points for the wavenumber integration using the correlated k-distribution method and to increase the computational efficiency in each band. The integration points and weights of the correlated k-distribution are optimized for accurate calculation of the heating rate up to altitude of 70 km. For this purpose we adopted a new non-linear optimization method of the correlated k-distribution and studied an optimal initial condition and the cost function for the non-linear optimization. It is known that mstrnX has a considerable bias in case of quadrapled carbon dioxide concentrations [Pincus et al., 2015], however, the bias is decreased by this improvement. For update of scattering process of ice particles, we adopt a solid column as an ice crystal habit [Yang et al., 2013]. The single scattering properties are calculated and tabulated in advance. The size parameter of this table is ranged from 0.1 to 1000 in mstrnX, we expand the maximum to 50000 in order to correspond to large particles, like fog and rain drop. Those update will be introduced to MIROC and adopted for CMIP6 experiment.
NASA Astrophysics Data System (ADS)
Gruzdev, A.; Elokhov, A.
Since 1990, NO2 measurements are carried out at Zvenigorod Research Station (56°N, 37°E), Moscow region, with the help of zenith viewing spectrophotometer in spectral range 435-450 nm. The instrument and method of observations were verified in comparison campaigns within the framework of the Network for Detection of Stratospheric Change. Measurements are done during morning and evening twilight at solar zenith angles 84-96°. Slant column NO2 abundances are derived from observed spectra taking into account O3 and NO2 absorption, single molecular and aerosol scattering, and the Ring effect. The NO2 abundances in the vertical column as well as vertical NO2 profiles are derived as solution of inverse mathematical problem (with Chahine method) using a spherical single scattering model and a one-dimensional photochemical model. Derived quantities are (1) NO2 abundances within 5-km thick layers in the stratosphere and troposphere, (2) NO2 abundance in the thin atmospheric near-surface layer and (3) columnar NO2 abundances in the troposphere (0-10 km) and the stratosphere (10-50 km) as integrals over appropriate layers. Results of measurements show variability of stratospheric and tropospheric NO2 at different time scales from the diurnal to the interannual scale. Out of the period affected by the Pinatubo eruption (1992-1994), a general decline of the stratospheric column NO2 abundance is occurring, superimposed by interannual variations. A linear, statistically significant, negative annual trend of about 12% per decade has been detected for both morning and evening stratospheric column NO2 abundances. For interpretation of the observed trend, a simple photochemical model is used, which takes into account the observed changes in N2O and stratospheric ozone abundances, and in temperature. The estimated model trend of the stratospheric column NO2 abundance in the extratropical Northern Hemisphere is about -5% per decade, which is less than observed. Dynamical variability is supposed to be responsible, in particular, for the observed NO2 decline.
NASA Astrophysics Data System (ADS)
Boutchko, Rostyslav; Rayz, Vitaliy L.; Vandehey, Nicholas T.; O'Neil, James P.; Budinger, Thomas F.; Nico, Peter S.; Druhan, Jennifer L.; Saloner, David A.; Gullberg, Grant T.; Moses, William W.
2012-01-01
This paper presents experimental and modeling aspects of applying nuclear emission tomography to study fluid flow in laboratory packed porous media columns of the type frequently used in geophysics, geochemistry and hydrology research. Positron emission tomography (PET) and single photon emission computed tomography (SPECT) are used as non-invasive tools to obtain dynamic 3D images of radioactive tracer concentrations. Dynamic sequences obtained using 18F-FDG PET are used to trace flow through a 5 cm diameter × 20 cm tall sand packed column with and without an impermeable obstacle. In addition, a custom-made rotating column setup placed in a clinical two-headed SPECT camera is used to image 99mTc-DTPA tracer propagation in a through-flowing column (10 cm diameter × 30 cm tall) packed with recovered aquifer sediments. A computational fluid dynamics software package FLUENT is used to model the observed flow dynamics. Tracer distributions obtained in the simulations in the smaller column uniformly packed with sand and in the column with an obstacle are remarkably similar to the reconstructed images in the PET experiments. SPECT results demonstrate strongly non-uniform flow patterns for the larger column slurry-packed with sub-surface sediment and slow upward flow. In the numerical simulation of the SPECT study, two symmetric channels with increased permeability are prescribed along the column walls, which result in the emergence of two well-defined preferential flow paths. Methods and results of this work provide new opportunities in hydrologic and biogeochemical research. The primary target application for developed technologies is non-destructive, non-perturbing, quantitative imaging of flow dynamics within laboratory scale porous media systems.
Boutchko, Rostyslav; Rayz, Vitaliy L; Vandehey, Nicholas T; O'Neil, James P; Budinger, Thomas F; Nico, Peter S; Druhan, Jennifer L; Saloner, David A; Gullberg, Grant T; Moses, William W
2012-01-01
This paper presents experimental and modeling aspects of applying nuclear emission tomography to study fluid flow in laboratory packed porous media columns of the type frequently used in geophysics, geochemistry and hydrology research. Positron emission tomography (PET) and single photon emission computed tomography (SPECT) are used as non-invasive tools to obtain dynamic 3D images of radioactive tracer concentrations. Dynamic sequences obtained using 18 F-FDG PET are used to trace flow through a 5 cm diameter × 20 cm tall sand packed column with and without an impermeable obstacle. In addition, a custom-made rotating column setup placed in a clinical two-headed SPECT camera is used to image 99m Tc-DTPA tracer propagation in a through-flowing column (10 cm diameter × 30 cm tall) packed with recovered aquifer sediments. A computational fluid dynamics software package FLUENT is used to model the observed flow dynamics. Tracer distributions obtained in the simulations in the smaller column uniformly packed with sand and in the column with an obstacle are remarkably similar to the reconstructed images in the PET experiments. SPECT results demonstrate strongly non-uniform flow patterns for the larger column slurry-packed with sub-surface sediment and slow upward flow. In the numerical simulation of the SPECT study, two symmetric channels with increased permeability are prescribed along the column walls, which result in the emergence of two well-defined preferential flow paths. Methods and results of this work provide new opportunities in hydrologic and biogeochemical research. The primary target application for developed technologies is non-destructive, non-perturbing, quantitative imaging of flow dynamics within laboratory scale porous media systems.
Chen, Fengli; Jia, Jia; Zhang, Qiang; Gu, Huiyan; Yang, Lei
2017-11-17
In this work, a modified technique was developed to separate essential oil from the fruit of Amorpha fruticosa using microwave-assisted hydrodistillation concatenated liquid-liquid extraction (MHD-LLE). The new apparatus consists of two series-wound separation columns for separating essential oil, one is the conventional oil-water separation column, and the other is the extraction column of components from hydrosol using an organic solvent. Therefore, the apparatus can simultaneously collect the essential oil separated on the top of hydrosol and the components extracted from hydrosol using an organic solvent. Based on the yield of essential oil in the first and second separation columns, the effects of parameters were investigated by single factor experiments and Box-Behnken design. Under the optimum conditions (2mL ethyl ether as the extraction solvent in the second separation column, 12mL/g liquid-solid ratio, 4.0min homogenate time, 35min microwave irradiation time and 540W microwave irradiation power), satisfactory yields for the essential oil in the first separation column (10.31±0.33g/kg) and second separation column (0.82±0.03g/kg) were obtained. Compared with traditional methods, the developed method gave a higher yield of essential oil in a shorter time. In addition, GC-MS analysis of the essential oil indicated significant differences of the relative contents of individual volatile components in the essential oils obtained in the two separation columns. Therefore, the MHD-LLE technique developed here is a good alternative for the isolation of essential oil from A. fruticosa fruit as well as other herbs. Copyright © 2017 Elsevier B.V. All rights reserved.
Haueis, Philipp
2016-09-01
The concept of the cortical column refers to vertical cell bands with similar response properties, which were initially observed by Vernon Mountcastle's mapping of single cell recordings in the cat somatic cortex. It has subsequently guided over 50 years of neuroscientific research, in which fundamental questions about the modularity of the cortex and basic principles of sensory information processing were empirically investigated. Nevertheless, the status of the column remains controversial today, as skeptical commentators proclaim that the vertical cell bands are a functionally insignificant by-product of ontogenetic development. This paper inquires how the column came to be viewed as an elementary unit of the cortex from Mountcastle's discovery in 1955 until David Hubel and Torsten Wiesel's reception of the Nobel Prize in 1981. I first argue that Mountcastle's vertical electrode recordings served as criteria for applying the column concept to electrophysiological data. In contrast to previous authors, I claim that this move from electrophysiological data to the phenomenon of columnar responses was concept-laden, but not theory-laden. In the second part of the paper, I argue that Mountcastle's criteria provided Hubel Wiesel with a conceptual outlook, i.e. it allowed them to anticipate columnar patterns in the cat and macaque visual cortex. I argue that in the late 1970s, this outlook only briefly took a form that one could call a 'theory' of the cerebral cortex, before new experimental techniques started to diversify column research. I end by showing how this account of early column research fits into a larger project that follows the conceptual development of the column into the present.
Morris, Megan M.; Brown, Matt; Doane, Michael; Edwards, Matthew S.; Michael, Todd P.; Dinsdale, Elizabeth A.
2018-01-01
Global climate change includes rising temperatures and increased pCO2 concentrations in the ocean, with potential deleterious impacts on marine organisms. In this case study we conducted a four-week climate change incubation experiment, and tested the independent and combined effects of increased temperature and partial pressure of carbon dioxide (pCO2), on the microbiomes of a foundation species, the giant kelp Macrocystis pyrifera, and the surrounding water column. The water and kelp microbiome responded differently to each of the climate stressors. In the water microbiome, each condition caused an increase in a distinct microbial order, whereas the kelp microbiome exhibited a reduction in the dominant kelp-associated order, Alteromondales. The water column microbiomes were most disrupted by elevated pCO2, with a 7.3 fold increase in Rhizobiales. The kelp microbiome was most influenced by elevated temperature and elevated temperature in combination with elevated pCO2. Kelp growth was negatively associated with elevated temperature, and the kelp microbiome showed a 5.3 fold increase Flavobacteriales and a 2.2 fold increase alginate degrading enzymes and sulfated polysaccharides. In contrast, kelp growth was positively associated with the combination of high temperature and high pCO2 ‘future conditions’, with a 12.5 fold increase in Planctomycetales and 4.8 fold increase in Rhodobacteriales. Therefore, the water and kelp microbiomes acted as distinct communities, where the kelp was stabilizing the microbiome under changing pCO2 conditions, but lost control at high temperature. Under future conditions, a new equilibrium between the kelp and the microbiome was potentially reached, where the kelp grew rapidly and the commensal microbes responded to an increase in mucus production. PMID:29474389
Kröger, Sabrina; Wong, Yong Foo; Chin, Sung-Tong; Grant, Jacob; Lupton, David; Marriott, Philip J
2015-07-24
The reversible molecular interconversion behaviour of a synthesised oxime (2-phenylpropanaldehyde oxime; (C6H5)CH(CH3)CHN(OH)) was investigated by both, single dimensional gas chromatography (1D GC) and comprehensive two-dimensional gas chromatography (GC×GC). Previous studies on small molecular weight oximes were extended to this larger aromatic oxime (molar mass 149.19gmol(-1)) with interest in the extent of interconversion, enantioselective resolution, and retention time. On a polyethylene glycol (PEG; wax-type) column, a characteristic interconversion zone between two antipodes of E and Z isomers was formed by molecules which have undergone isomerisation on the column (E⇌Z). The extent of interconversion was investigated by varying chromatographic conditions (oven temperature and carrier flow rate) to understand the nature of the behaviour observed. The extent of interconversion was negligible in both enantioselective and methyl-phenylpolysiloxane phase-columns, correlating with the low polarity of the stationary phase. In order to obtain isomerisation along with enantio-resolution, a wax-type and an enantioselective column were coupled in either enantioselective-wax or wax-enantioselective order. The most appropriate column arrangement was selected for study by using a GC×GC experiment with either a wax-phase or phenyl-methylpolysiloxane phase as (2)D column. In addition to evaluation of these fast elution columns, a long narrow-bore enantioselective column (10m) was introduced as (2)D, providing an enantioselective-PEG (coupled-column ensemble: (1)D1+(1)D2)×enantioselective ((2)D) column combination. In this instance, the (1)D1 enantioselective column provides enantiomeric separation of the corresponding enantiomers ((R) and (S)) of (E)- and (Z)-2-phenylpropanaldehyde oxime, followed by E/Z isomerisation in the coupled (1)D2 PEG (reactor) column. The resulting chromatographic interconversion region was modulated and separated into either E/Z isomers (achiral (2)D column) or into the respective (R) and (S) enantiomers of the E/Z isomers when using a (2)D enantioselective column. With this arrangement, the isomers underneath the broad interconversion plateau in 1D elution profiles, including the enantiomers, could be resolved, illuminating salient features and understanding of the molecular reversible process of the interconverting molecules during the chromatographic elution. The two-dimensional patterns (contour plots), resulting from the combination of interconversion process and chiral separation, are discussed phenomenologically. Copyright © 2015 Elsevier B.V. All rights reserved.
ARM Cloud Radar Simulator Package for Global Climate Models Value-Added Product
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuying; Xie, Shaocheng
It has been challenging to directly compare U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility ground-based cloud radar measurements with climate model output because of limitations or features of the observing processes and the spatial gap between model and the single-point measurements. To facilitate the use of ARM radar data in numerical models, an ARM cloud radar simulator was developed to converts model data into pseudo-ARM cloud radar observations that mimic the instrument view of a narrow atmospheric column (as compared to a large global climate model [GCM] grid-cell), thus allowing meaningful comparison between model outputmore » and ARM cloud observations. The ARM cloud radar simulator value-added product (VAP) was developed based on the CloudSat simulator contained in the community satellite simulator package, the Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package (COSP) (Bodas-Salcedo et al., 2011), which has been widely used in climate model evaluation with satellite data (Klein et al., 2013, Zhang et al., 2010). The essential part of the CloudSat simulator is the QuickBeam radar simulator that is used to produce CloudSat-like radar reflectivity, but is capable of simulating reflectivity for other radars (Marchand et al., 2009; Haynes et al., 2007). Adapting QuickBeam to the ARM cloud radar simulator within COSP required two primary changes: one was to set the frequency to 35 GHz for the ARM Ka-band cloud radar, as opposed to 94 GHz used for the CloudSat W-band radar, and the second was to invert the view from the ground to space so as to attenuate the beam correctly. In addition, the ARM cloud radar simulator uses a finer vertical resolution (100 m compared to 500 m for CloudSat) to resolve the more detailed structure of clouds captured by the ARM radars. The ARM simulator has been developed following the COSP workflow (Figure 1) and using the capabilities available in COSP wherever possible. The ARM simulator is written in Fortran 90, just as is the COSP. It is incorporated into COSP to facilitate use by the climate modeling community. In order to evaluate simulator output, the observational counterpart of the simulator output, radar reflectivity-height histograms (CFAD) is also generated from the ARM observations. This report includes an overview of the ARM cloud radar simulator VAP and the required simulator-oriented ARM radar data product (radarCFAD) for validating simulator output, as well as a user guide for operating the ARM radar simulator VAP.« less
[Climate suitability for tea growing in Zhejiang Province].
Jin, Zhi-Feng; Ye, Jian-Gang; Yang, Zai-Qiang; Sun, Rui; Hu, Bo; Li, Ren-Zhong
2014-04-01
It is important to quantitatively assess the climate suitability of tea and its response to climate change. Based on meteorological indices of tea growth and daily meteorological data from 1971 to 2010 in Zhejiang Province, three climate suitability models for single climate factors, including temperature, precipitation and sunshine, were established at a 10-day scale by using the fuzzy mathematics method, and a comprehensive climate suitability model was established with the geometric average method. The results indicated that the climate suitability was high in the tea growth season in Zhejiang Province, and the three kinds of climate suitability were all higher than 0.6. As for the single factor climate suitability, temperature suitability was the highest and sunshine suitability was the lowest. There were obvious inter-annual variations of tea climate suitability, with a decline trend in the 1970s, less variation in the 1980s, and an obvious incline trend after the 1990s. The change tendency of climate suitability for spring tea was similar with that of annual climate suitability, lower in the 1980s, higher in the 1970s and after the 1990s. However, the variation amplitude of the climate suitability for spring tea was larger. The climate suitability for summer tea and autumn tea showed a decline trend from 1971 to 2010.
Zinck, John W. R.
2016-01-01
Natural plant populations are often adapted to their local climate and environmental conditions, and populations of forest trees offer some of the best examples of this pattern. However, little empirical work has focused on the relative contribution of single-locus versus multilocus effects to the genetic architecture of local adaptation in plants/forest trees. Here, we employ eastern white pine (Pinus strobus) to test the hypothesis that it is the inter-genic effects that primarily drive climate-induced local adaptation. The genetic structure of 29 range-wide natural populations of eastern white pine was determined in relation to local climatic factors using both a reference set of SSR markers, and SNPs located in candidate genes putatively involved in adaptive response to climate. Comparisons were made between marker sets using standard single-locus outlier analysis, single-locus and multilocus environment association analyses and a novel implementation of Population Graphs. Magnitudes of population structure were similar between the two marker sets. Outlier loci consistent with diversifying selection were rare for both SNPs and SSRs. However, genetic distances based on the multilocus among population covariances (cGD) were significantly more correlated to climate, even after correcting for spatial effects, for SNPs as compared to SSRs. Coalescent simulations confirmed that the differences in mutation rates between SSRs and SNPs did not affect the topologies of the Population Graphs, and hence values of cGD and their correlations with associated climate variables. We conclude that the multilocus covariances among populations primarily reflect adaptation to local climate and environment in eastern white pine. This result highlights the complexity of the genetic architecture of adaptive traits, as well as the need to consider multilocus effects in studies of local adaptation. PMID:27387485
A multi-site stochastic weather generator of daily precipitation and temperature
USDA-ARS?s Scientific Manuscript database
Stochastic weather generators are used to generate time series of climate variables that have statistical properties similar to those of observed data. Most stochastic weather generators work for a single site, and can only generate climate data at a single point, or independent time series at sever...
Methane from shallow seep areas of the NW Svalbard Arctic margin does not reach the sea surface
NASA Astrophysics Data System (ADS)
Silyakova, Anna; Greinert, Jens; Jansson, Pär; Ferré, Bénédicte
2015-04-01
Methane, an important greenhouse gas, leaks from large areas of the Arctic Ocean floor. One overall question is how much methane passes from the seabed through the water column, potentially reaching the atmosphere. Transport of methane from the ocean floor into and through the water column depends on many factors such as distribution of gas seeps, microbial methane oxidation, and ambient oceanographic conditions, which may trigger a change in seep activity. From June-July 2014 we investigated dissolved methane in the water column emanating from the "Prins Karls Forland seeps" area offshore the NW Svalbard Arctic margin. Measurements of the spatial variability of dissolved methane in the water column included 65 CTD stations located in a grid covering an area of 30 by 15 km. We repeated an oceanographic transect twice in a week for time lapse studies, thus documenting significant temporal variability in dissolved methane above one shallow seep site (~100 m water depth). Analysis of both nutrient concentrations and dissolved methane in water samples from the same transect, reveal striking similarities in spatial patterns of both dissolved methane and nutrients indicating that microbial community is involved in methane cycling above the gas seepage. Our preliminary results suggest that although methane release can increase in a week's time, providing twice as much dissolved gas to the water column, no methane from a seep reaches the sea surface. Instead it spreads horizontally under the pycnocline. Yet microbial communities react rapidly to the methane supply above gas seepage areas and may also have an important role as an effective filter, hindering methane release from the ocean to the atmosphere during rapid methane ebullition. This study is funded by CAGE (Centre for Arctic Gas Hydrate, Environment and Climate), Norwegian Research Council grant no. 223259.
NASA Astrophysics Data System (ADS)
Virolainen, Y. A.; Timofeyev, Y. M.; Smyshlyaev, S. P.; Motsakov, M. A.; Kirner, O.
2017-12-01
A comparison between the numerical simulation results of ozone fields with different experimental data makes it possible to estimate the quality of models for their further use in reliable forecasts of ozone layer evolution. We analyze time series of satellite (SBUV) measurements of the total ozone column (TOC) and the ozone partial columns in two atmospheric layers (0-25 and 25-60 km) and compare them with the results of numerical simulation in the chemistry transport model (CTM) for the low and middle atmosphere and the chemistry climate model EMAC. The daily and monthly average ozone values, short-term periods of ozone depletion, and long-term trends of ozone columns are considered; all data sets relate to St. Petersburg and the period between 2000 and 2014. The statistical parameters (means, standard deviations, variations, medians, asymmetry parameter, etc.) of the ozone time series are quite similar for all datasets. However, the EMAC model systematically underestimates the ozone columns in all layers considered. The corresponding differences between satellite measurements and EMAC numerical simulations are (5 ± 5)% and (7 ± 7)% and (1 ± 4)% for the ozone column in the 0-25 and 25-60 km layers, respectively. The correspondent differences between SBUV measurements and CTM results amount to (0 ± 7)%, (1 ± 9)%, and (-2 ± 8)%. Both models describe the sudden episodes of the ozone minimum well, but the EMAC accuracy is much higher than that of the CTM, which often underestimates the ozone minima. Assessments of the long-term linear trends show that they are close to zero for all datasets for the period under study.
Basic Aspects of Deep Soil Mixing Technology Control
NASA Astrophysics Data System (ADS)
Egorova, Alexandra A.; Rybak, Jarosław; Stefaniuk, Damian; Zajączkowski, Przemysław
2017-10-01
Improving a soil is a process of increasing its physical/mechanical properties without changing its natural structure. Improvement of soil subbase is reached by means of the knitted materials, or other methods when strong connection between soil particles is established. The method of DSM (Deep Soil Mixing) columns has been invented in Japan in 1970s. The main reason of designing cement-soil columns is to improve properties of local soils (such as strength and stiffness) by mixing them with various cementing materials. Cement and calcium are the most commonly used binders. However new research undertaken worldwide proves that apart from these materials, also gypsum or fly ashes can also be successfully implemented. As the Deep Soil Mixing is still being under development, anticipating mechanical properties of columns in particular soils and the usage of cementing materials in formed columns is very difficult and often inappropriate to predict. That is why a research is carried out in order to find out what binders and mixing technology should be used. The paper presents several remarks on the testing procedures related to quality and capacity control of Deep Soil Mixing columns. Soil improvement methods, their advantages and limitations are briefly described. The authors analyse the suitability of selected testing methods on subsequent stages of design and execution of special foundations works. Chosen examples from engineering practice form the basis for recommendations for the control procedures. Presented case studies concerning testing the on capacity field samples and laboratory procedures on various categories of soil-cement samples were picked from R&D and consulting works offered by Wroclaw University of Science and Technology. Special emphasis is paid to climate conditions which may affect the availability of performing and controlling of DSM techniques in polar zones, with a special regard to sample curing.
Global Air Quality and Climate Impacts of Mitigating Short-lived Climate Pollution in China
NASA Astrophysics Data System (ADS)
Harper, K.; Unger, N.; Heyes, C.; Kiesewetter, G.; Klimont, Z.; Schoepp, W.; Wagner, F.
2014-12-01
China is a major emitter of harmful air pollutants, including the short-lived climate pollutants (SLCPs) and their precursors. Implementation of pollution control technologies provides a mechanism for simultaneously protecting human and ecosystem health and achieving near-term climate co-benefits; however, predicting the outcomes of technical and policy interventions is challenging because the SLCPs participate in both climate warming and cooling and share many common emission sources. Here, we present the results of a combined regional integrated assessment and global climate modeling study aimed at quantifying the near-term climate and air quality co-benefits of selective control of Chinese air pollution emissions. Results from IIASA's Greenhouse Gas - Air Pollution Interactions and Synergies (GAINS) integrated assessment model indicate that methane emission reductions make up > 75% of possible CO2-equivalent emission reductions of the SLCPs and their precursors in China in 2030. A multi-pollutant emission reduction scenario incorporating the 2030 Chinese pollution control measures with the highest potential for future climate impact is applied to the NASA ModelE2 - Yale Interactive Terrestrial Biosphere (NASA ModelE2-YIBs) global carbon - chemistry - climate model to assess the regional and long-range impacts of Chinese SLCP mitigation measures. Using model simulations that incorporate dynamic methane emissions and photosynthesis-dependent isoprene emissions, we quantify the impacts of Chinese reductions of the short-lived air pollutants on radiative forcing and on surface ozone and particulate air pollution. Present-day modeled methane mole fractions are evaluated against SCIAMACHY methane columns and NOAA ESRL/GMD surface flask measurements.
How do typographical factors affect reading text and comprehension performance in Arabic?
Ganayim, Deia; Ibrahim, Raphiq
2013-04-01
The objective of this study was to establish basic reading performance that could lead to useful design recommendations for print display text formats and layouts for the improvement of reading and comprehension performance of print text, such as academic writings, books, and newspapers, of Arabic language. Readability of English print text has been shown to be influenced by a number of typographical variables, including interline spacing, column setting and line length, and so on.Therefore, it is very important to improve the reading efficiency and satisfaction of print text reading and comprehension by following simple design guidelines. Most existing research on readability of print text is oriented to build guidelines for designing English texts rather than Arabic. However, guidelines built for English script cannot be simply applied for Arabic script because of orthographic differences. In the current study, manipulating interline spacing and column setting and line length generated nine text layouts. The reading and comprehension performance of 210 native Arab students assigned randomly to the different text layouts was compared. Results showed that the use of multicolumn setting (with medium or short line length) affected comprehension achievement but not reading and comprehension speed. Participants' comprehension scores were better for the single-column (with long line length) than for the multicolumn setting. However, no effect was found for interline spacing. The recommendations for appropriate print text format and layout in Arabic language based on the results of objective measures facilitating reading and comprehension performance is a single-column (with long line length) layout with no relevance of the interline spacing.
DEVELOPMENT, TESTING, AND DEMONSTRATION OF AN OPTIMAL FINE COAL CLEANING CIRCUIT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven R. Hadley; R. Mike Mishra; Michael Placha
1999-01-27
The objective of this project was to improve the efficiency of the fine coal froth flotation circuit in commercial coal preparation plants. The plant selected for this project, Cyprus Emerald Coal Preparation Plant, cleans 1200-1400 tph of Pittsburgh seam raw coal and uses conventional flotation cells to clean the minus 100-mesh size fraction. The amount of coal in this size fraction is approximately 80 tph with an average ash content of 35%. The project was carried out in two phases. In Phase I, four advanced flotation cells, i.e., a Jameson cell, an Outokumpu HG tank cell, an open column, andmore » a packed column cell, were subjected to bench-scale testing and demonstration. In Phase II, two of these flotation cells, the Jameson cell and the packed column, were subjected to in-plant, proof-of-concept (POC) pilot plant testing both individually and in two-stage combination in order to ascertain whether a two-stage circuit results in lower levelized production costs. The bench-scale results indicated that the Jameson cell and packed column cell would be amenable to the single- and two-stage flotation approach. POC tests using these cells determined that single-stage coal matter recovery (CMR) of 85% was possible with a product ash content of 5.5-7%. Two-stage operation resulted in a coal recovery of 90% with a clean coal ash content of 6-7.5%. This compares favorably with the plant flotation circuit recovery of 80% at a clean coal ash of 11%.« less
Overview for Design and Construction of Drilled Shafts in Cohesive Soils.
1981-08-01
water flowing around supporting columns of bridges. Methods for determining the lateral load -deflection behavior of drilled shafts are based on solutions...PROCEDURES. ..... ............... 22 Axial Load Behavior of Single Shafts .... ......... 22 Lateral Load Behavior of Single Shafts .... ........ 54 Load ...on the shaft (Patey 1977, Claessen and Horvat 1974). Large-diameter shafts can be more easily constructed to resist lateral loads than driven piles or
ERIC Educational Resources Information Center
O'Connor, Kevin J.
2014-01-01
Two studies measured the impact on student exam performance and exam completion time of strategies aimed to reduce the amount of paper used for printing multiple-choice course exams. Study 1 compared single-sided to double-sided printed exams. Study 2 compared a single-column arrangement of multiple-choice answer options to a space (and paper)…
NASA Astrophysics Data System (ADS)
Ashoori, N.; Planes, M. T.; Lefevre, G.; Sedlak, D.; Luthy, R. G.
2017-12-01
Rapid population growth, urban sprawl and impact of climate change are forcing water-stressed areas to rely on new local sources of water supply. Under this scenario, reclamation of stormwater runoff has emerged as a source for irrigation and replenishing drinking-water groundwater reservoirs. However, urban stormwater can be a significant source of pollutants, including nutrients and organic compounds. In order to overcome the stormwater treatment system limitations, this project has developed a pilot-scale column system for passive treatment of infiltrated water using low-cost, low-energy geomedia. The objective was to provide guidance on the design and operation of systems for controlling nutrient and trace organic contaminant releases to surface waters. The work comprised of replicate column studies in the field to test stormwater treatment modules with various media, such as woodchips and biochar, using urban runoff from a watershed in Sonoma, California. Woodchip bioreactors host an endemic population of microorganisms that can be harnessed to biologically degrade nitrate. The columns amended with biochar enhance removal of organic pollutants present in stormwater through physicochemical processes (i.e., adsorption onto biochar) and biodegradation in the column through increasing retention time. The field columns were conditioned with stormwater for eight months before being spiked weekly with 50 ppb of representative trace organics. The key finding was the successful field demonstration of a novel treatment system for both the removal of nitrate and trace organics. Nitrogen removal was successful in all columns for the thirteen month experiment due to the woodchips being an effective source of carbon for denitrifying microorganisms to convert nitrate to nitrogen gases. As for the trace organics experiments, the results highlight an overall attenuation of the studied trace organic compounds by the columns containing woodchip and biochar throughout the five months of contaminant dosing. By developing a fundamental understanding of the mechanisms of contaminant removal in the laboratory and testing system performance at the test-bed scale, the project advances efforts to improve water quality and augment local water supplies through distributed capture, treatment, and recharge systems.
NASA Astrophysics Data System (ADS)
Keeble, James; Brown, Hannah; Abraham, N. Luke; Harris, Neil R. P.; Pyle, John A.
2018-06-01
Total column ozone values from an ensemble of UM-UKCA model simulations are examined to investigate different definitions of progress on the road to ozone recovery. The impacts of modelled internal atmospheric variability are accounted for by applying a multiple linear regression model to modelled total column ozone values, and ozone trend analysis is performed on the resulting ozone residuals. Three definitions of recovery are investigated: (i) a slowed rate of decline and the date of minimum column ozone, (ii) the identification of significant positive trends and (iii) a return to historic values. A return to past thresholds is the last state to be achieved. Minimum column ozone values, averaged from 60° S to 60° N, occur between 1990 and 1995 for each ensemble member, driven in part by the solar minimum conditions during the 1990s. When natural cycles are accounted for, identification of the year of minimum ozone in the resulting ozone residuals is uncertain, with minimum values for each ensemble member occurring at different times between 1992 and 2000. As a result of this large variability, identification of the date of minimum ozone constitutes a poor measure of ozone recovery. Trends for the 2000-2017 period are positive at most latitudes and are statistically significant in the mid-latitudes in both hemispheres when natural cycles are accounted for. This significance results largely from the large sample size of the multi-member ensemble. Significant trends cannot be identified by 2017 at the highest latitudes, due to the large interannual variability in the data, nor in the tropics, due to the small trend magnitude, although it is projected that significant trends may be identified in these regions soon thereafter. While significant positive trends in total column ozone could be identified at all latitudes by ˜ 2030, column ozone values which are lower than the 1980 annual mean can occur in the mid-latitudes until ˜ 2050, and in the tropics and high latitudes deep into the second half of the 21st century.
NASA Astrophysics Data System (ADS)
De Smedt, Isabelle; Stavrakou, Trissevgeni; Lerot, Christophe; Yu, Huan; François, Hendrick; Gielen, Clio; Pinardi, Gaia; Muller, Jean-François; Van Roozendael, Michel
2015-04-01
Atmospheric formaldehyde (H2CO) is a central carbonyl compound of tropospheric chemistry. It is produced by the oxidation of a large variety of volatile organic compounds (VOCs), from biogenic, pyrogenic or anthropogenic emission sources. Tropical vegetation, in particular the Amazon forest that represents over half of the planet's remaining rainforests, emit a wide range of highly reactive biogenic volatile organic compounds (BVOCs). Those play a critical role in atmospheric chemistry and climate, by changing the oxidation capacity of the atmosphere and thus the lifetimes of other key trace gases such as CO and CH4, and by producing organic aerosols. Satellite observations of H2CO, bringing information at the global scale and over decades, are essential to trace and understand the nature and the spatio-temporal evolution of VOC emissions. We have been developing algorithms to retrieve formaldehyde columns from satellite nadir UV spectral measurements, and we have processed the full level-1 datasets of GOME/ERS-2, SCIAMACHY/ENVISAT, GOME-2/METOPA&B and OMI/AURA (De Smedt et al., 2008; 2012; 2015). Resulting H2CO products are openly distributed via the TEMIS website (http://h2co.aeronomie.be). In this work, we use the morning and afternoon H2CO columns between 2004 and 2014, respectively composed by the SCIAMACHY and GOME2 A&B datasets, and from the OMI observations, to study the diurnal, seasonal and long-term variations of H2CO over the Amazon rainforest. The highest H2CO columns worldwide are observed, with morning columns markedly higher than early afternoon. Very large variations between the dry and the wet seasons occur each year. Importantly, in some areas of the forest, mainly in the Rondonia Brazilian State, we observe a net decrease of the H2CO columns. We find very high correlation coefficients between the satellite H2CO columns and the reported deforestation fires that have significantly decreased in Rondonia since 2004 [INPE].
Numerical simulation of vertical transport and oxidation of methane in Arctic Ocean
NASA Astrophysics Data System (ADS)
Stepanenko, Victor; Iakovlev, Nikolai
2013-04-01
The high abundance of methane in shelf of East Siberian Arctic Seas (ESAS) has been a subject of a number of field studies (e.g. Shakhova et al., 2010). This experimental evidence provoked discussions on probable origins of that methane and possible feedbacks to modern climate change. For instance, the hypothesis of methane hydrates degradation under current ocean warming was tested recently in several modeling studies none of which supported this degradation to be significant feedback for climate change. Regardless the origin of methane the knowledge of its budget in the water column is important to link its bottom flux with emission to the atmosphere (and vice versa). It is frequently assumed that all methane released from a seabed of ESAS shelf reaches the atmosphere. When using ocean circulation models (Biastoch et al., 2011) this simplification is cancelled out but the vertical resolution of 3D models at the shelf (that is several tens meters deep) is not enough to accurately resolve turbulent transport of methane and other gases. Moreover, up the knowledge of authors none of the ocean models includes explicitly bubble transport of gases. These constrains motivate this study. In this study a high-resolution 1D single column ocean model is constructed to explicitly simulate the methane transport, oxidation and emission to the atmosphere. The model accounts for both vertical turbulent transport (using k-ɛ closure) and bubble transport of gases. The ground under the seabed is represented by multilayer heat and moisture transfer model, including methane hydrate evolution. It is forced by time series of atmospheric variables from NCEP reanalysis and horizontal advection terms taken from FEMAO-1 3D ocean model. The baseline simulation is performed for the period 1948-2011. The model is validated using temperature profiles measured at research vessels in ESAS. The annual cycle and multiyear variability of methane profiles in water are studied and compared to available in situ measurements. The components of methane budget in water column are calculated, and the ratio of bubble flux to turbulent one inter alia. A number of additional experiments are performed to assess the sensitivity of methane budget components to variation of uncertain parameters of the model (such as initial bubble radius). References 1) Shakhova, N., I.Semiletov, A.Salyuk, V.Yusupov, D.Kosmach, and Ö.Gustafsson. Extensive Methane Venting to the Atmosphere from Sediments of the East Siberian Arctic Shelf. Science 5 March 2010: Vol. 327 no. 5970 pp. 1246-1250 DOI: 10.1126/science.1182221. 2) Biastoch, A., T. Treude, L. H. Rüpke, U. Riebesell, C. Roth, E. B. Burwicz, W. Park, M. Latif, C. W. Büning, G. Madec, and K. Wallmann. Rising Arctic Ocean temperatures cause gas hydrate destabilization and ocean acidification. Geophysical Research Letters, Vol. 38, L08602, doi:10.1029/2011GL047222,2011.
UV - EVERGLADES NATIONAL PARK FL
Brewer 135 is located in Everglades NP, measuring ultraviolet solar radiation. Irradiance and column ozone are derived from this data. Ultraviolet solar radiation is measured with a Brewer Mark IV, single-monochrometer, spectrophotometer manufactured by SCI-TEC Instruments, Inc. ...
UV - THEODORE ROOSEVELT NATIONAL PARK ND
Brewer 131 is located in Theodore Roosevelt NP (South Section), measuring ultraviolet solar radiation. Irradiance and column ozone are derived from this data. Ultraviolet solar radiation is measured with a Brewer Mark IV, single-monochrometer, spectrophotometer manufactured by SC...
Fold-up concrete construction.
DOT National Transportation Integrated Search
1975-01-01
The fold-up method of concrete construction is a relatively new method of precasting a variety of structural shapes on a single flat surface and then folding portions up to form a three-dimensional shape. Structural members as beams, girders, columns...
SCM Forcing Data Derived from NWP Analyses
Jakob, Christian
2008-01-15
Forcing data, suitable for use with single column models (SCMs) and cloud resolving models (CRMs), have been derived from NWP analyses for the ARM (Atmospheric Radiation Measurement) Tropical Western Pacific (TWP) sites of Manus Island and Nauru.
Newspaper archives + text mining = rich sources of historical geo-spatial data
NASA Astrophysics Data System (ADS)
Yzaguirre, A.; Smit, M.; Warren, R.
2016-04-01
Newspaper archives are rich sources of cultural, social, and historical information. These archives, even when digitized, are typically unstructured and organized by date rather than by subject or location, and require substantial manual effort to analyze. The effort of journalists to be accurate and precise means that there is often rich geo-spatial data embedded in the text, alongside text describing events that editors considered to be of sufficient importance to the region or the world to merit column inches. A regional newspaper can add over 100,000 articles to its database each year, and extracting information from this data for even a single country would pose a substantial Big Data challenge. In this paper, we describe a pilot study on the construction of a database of historical flood events (location(s), date, cause, magnitude) to be used in flood assessment projects, for example to calibrate models, estimate frequency, establish high water marks, or plan for future events in contexts ranging from urban planning to climate change adaptation. We then present a vision for extracting and using the rich geospatial data available in unstructured text archives, and suggest future avenues of research.
Zhang, Huining; Gu, Li; Liu, Bing; Gan, Huihui; Zhang, Kefeng; Jin, Huixia; Yu, Xin
2016-09-01
Dissolved organic nitrogen (DON) is a key precursor of numerous disinfection by-products (DBPs), especially nitrogenous DBPs (N-DBPs) formed during disinfection in drinking water treatment. To effectively control DBPs, reduction of the DON concentration before the disinfection process is critical. Traditional biofilters can increase the DON concentration in the effluent, so an improved biofilter is needed. In this study, an improved biofilter was set up with two-layer columns using activated carbon and quartz sand under different influent patterns. Compared with the single-layer filter, the two-layer biofilter controlled the DON concentration more efficiently. The two-point influent biofilter controlled the DON concentration more effectively than the single-point influent biofilter. The improved biofilter resulted in an environment (including matrix, DO, and pH) suitable for microbial growth. Along the depth of the biofilter column, the environment affected the microbial biomass and microbial activity and thus affected the DON concentration.
Simultaneous determination of three anticonvulsants using hydrophilic interaction LC-MS.
Oertel, Reinhard; Arenz, Norman; Pietsch, Jörg; Kirch, Wilhelm
2009-01-01
A specific and automated method was developed to quantify the anticonvulsants gabapentin, pregabalin and vigabatrin simultaneously in human serum. Samples were prepared with a protein precipitation. The hydrophilic interaction chromatography (HILIC) with a mobile phase gradient was used to divide off ions of the matrix and for separation of the analytes. Four different HILIC-columns and two different column temperatures were tested. The Tosoh-Amid column gave the best results: single small peaks. The anticonvulsants were detected in the multiple reaction monitoring mode (MRM) with ESI-MS-MS. Using a volume of 100 microL biological sample the lowest point of the standard curve, i.e. the lower LOQs were 312 ng/mL. The described HILIC-MS-MS method is suitable for therapeutic drug monitoring and for clinical and pharmcokinetical investigations of the anticonvulsives.
NASA Astrophysics Data System (ADS)
Rajapakse, G.; Jayasinghe, S. G.; Fleming, A.; Shahnia, F.
2017-07-01
Australia’s extended coastline asserts abundance of wave and tidal power. The predictability of these energy sources and their proximity to cities and towns make them more desirable. Several tidal current turbine and ocean wave energy conversion projects have already been planned in the coastline of southern Australia. Some of these projects use air turbine technology with air driven turbines to harvest the energy from an oscillating water column. This study focuses on the power take-off control of a single stage unidirectional oscillating water column air turbine generator system, and proposes a model predictive control-based speed controller for the generator-turbine assembly. The proposed method is verified with simulation results that show the efficacy of the controller in extracting power from the turbine while maintaining the speed at the desired level.
Chen, Ying; Zhang, Yang; Fan, Jiwen; ...
2015-08-18
Online-coupled climate and chemistry models are necessary to realistically represent the interactions between climate variables and chemical species and accurately simulate aerosol direct and indirect effects on cloud, precipitation, and radiation. In this Part I of a two-part paper, simulations from the Weather Research and Forecasting model coupled with the physics package of Community Atmosphere Model (WRF-CAM5) are conducted with the default heterogeneous ice nucleation parameterization over East Asia for two full years: 2006 and 2011. A comprehensive model evaluation is performed using satellite and surface observations. The model shows an overall acceptable performance for major meteorological variables at themore » surface and in the boundary layer, as well as column variables (e.g., precipitation, cloud fraction, precipitating water vapor, downward longwave and shortwave radiation). Moderate to large biases exist for cloud condensation nuclei over oceanic areas, cloud variables (e.g., cloud droplet number concentration, cloud liquid and ice water paths, cloud optical depth, longwave and shortwave cloud forcing). These biases indicate a need to improve the model treatments for cloud processes, especially cloud droplets and ice nucleation, as well as to reduce uncertainty in the satellite retrievals. The model simulates well the column abundances of chemical species except for column SO 2 but relatively poor for surface concentrations of several species such as CO, NO 2, SO 2, PM 2.5, and PM 10. Several reasons could contribute to the underestimation of major chemical species in East Asia including underestimations of anthropogenic emissions and natural dust emissions, uncertainties in the spatial and vertical distributions of the anthropogenic emissions, as well as biases in meteorological, radiative, and cloud predictions. Despite moderate to large biases in the chemical predictions, the model performance is generally consistent with or even better than that reported for East Asia with only a few exceptions. The model generally reproduces the observed seasonal variations and the difference between 2006 and 2011 for most variables or chemical species. Overall, these results demonstrate promising skills of WRF-CAM5 for long-term simulations at a regional scale and suggest several areas of potential improvements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ying; Zhang, Yang; Fan, Jiwen
Online-coupled climate and chemistry models are necessary to realistically represent the interactions between climate variables and chemical species and accurately simulate aerosol direct and indirect effects on cloud, precipitation, and radiation. In this Part I of a two-part paper, simulations from the Weather Research and Forecasting model coupled with the physics package of Community Atmosphere Model (WRF-CAM5) are conducted with the default heterogeneous ice nucleation parameterization over East Asia for two full years: 2006 and 2011. A comprehensive model evaluation is performed using satellite and surface observations. The model shows an overall acceptable performance for major meteorological variables at themore » surface and in the boundary layer, as well as column variables (e.g., precipitation, cloud fraction, precipitating water vapor, downward longwave and shortwave radiation). Moderate to large biases exist for cloud condensation nuclei over oceanic areas, cloud variables (e.g., cloud droplet number concentration, cloud liquid and ice water paths, cloud optical depth, longwave and shortwave cloud forcing). These biases indicate a need to improve the model treatments for cloud processes, especially cloud droplets and ice nucleation, as well as to reduce uncertainty in the satellite retrievals. The model simulates well the column abundances of chemical species except for column SO 2 but relatively poor for surface concentrations of several species such as CO, NO 2, SO 2, PM2.5, and PM10. Several reasons could contribute to the underestimation of major chemical species in East Asia including underestimations of anthropogenic emissions and natural dust emissions, uncertainties in the spatial and vertical distributions of the anthropogenic emissions, as well as biases in meteorological, radiative, and cloud predictions. Despite moderate to large biases in the chemical predictions, the model performance is generally consistent with or even better than that reported for East Asia with only a few exceptions. The model generally reproduces the observed seasonal variations and the difference between 2006 and 2011 for most variables or chemical species. Overall, these results demonstrate promising skills of WRF-CAM5 for long-term simulations at a regional scale and suggest several areas of potential improvements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ying; Zhang, Yang; Fan, Jiwen
Online-coupled climate and chemistry models are necessary to realistically represent the interactions between climate variables and chemical species and accurately simulate aerosol direct and indirect effects on cloud, precipitation, and radiation. In this Part I of a two-part paper, simulations from the Weather Research and Forecasting model coupled with the physics package of Community Atmosphere Model (WRF-CAM5) are conducted with the default heterogeneous ice nucleation parameterization over East Asia for two full years: 2006 and 2011. A comprehensive model evaluation is performed using satellite and surface observations. The model shows an overall acceptable performance for major meteorological variables at themore » surface and in the boundary layer, as well as column variables (e.g., precipitation, cloud fraction, precipitating water vapor, downward longwave and shortwave radiation). Moderate to large biases exist for cloud condensation nuclei over oceanic areas, cloud variables (e.g., cloud droplet number concentration, cloud liquid and ice water paths, cloud optical depth, longwave and shortwave cloud forcing). These biases indicate a need to improve the model treatments for cloud processes, especially cloud droplets and ice nucleation, as well as to reduce uncertainty in the satellite retrievals. The model simulates well the column abundances of chemical species except for column SO 2 but relatively poor for surface concentrations of several species such as CO, NO 2, SO 2, PM 2.5, and PM 10. Several reasons could contribute to the underestimation of major chemical species in East Asia including underestimations of anthropogenic emissions and natural dust emissions, uncertainties in the spatial and vertical distributions of the anthropogenic emissions, as well as biases in meteorological, radiative, and cloud predictions. Despite moderate to large biases in the chemical predictions, the model performance is generally consistent with or even better than that reported for East Asia with only a few exceptions. The model generally reproduces the observed seasonal variations and the difference between 2006 and 2011 for most variables or chemical species. Overall, these results demonstrate promising skills of WRF-CAM5 for long-term simulations at a regional scale and suggest several areas of potential improvements.« less
NASA Astrophysics Data System (ADS)
Stavrakou, Trissevgeni; Müller, Jean-François; Bauwens, Maite; De Smedt, Isabelle; Van Roozendael, Michel
2017-04-01
Biogenic hydrocarbon emissions (BVOC) respond to temperature, photosynthetically active radiation, leaf area index, as well as to factors like leaf age, soil moisture, and ambient CO2 concentrations. Isoprene is the principal contributor to BVOC emissions and accounts for about half of the estimated total emissions on the global scale, whereas monoterpenes are also significant over boreal ecosystems. Due to their large emissions, their major role in the tropospheric ozone formation and contribution to secondary organic aerosols, BVOCs are highly relevant to both air quality and climate. Their oxidation in the atmosphere leads to the formation of formaldehyde (HCHO) at high yields. Satellite observations of HCHO abundances can therefore inform us on the spatial and temporal variability of the underlying sources and on their emission trends. The main objective of this study is to investigate the interannual variability and trends of observed HCHO columns during the growing season, when BVOC emissions are dominant, and interpret them in terms of BVOC emission flux variability. To this aim, we use the MEGAN-MOHYCAN model driven by the ECMWF ERA-interim meteorology to calculate bottom-up BVOC fluxes on the global scale (Müller et al. 2008, Stavrakou et al. 2014) over 2003-2015, and satellite HCHO observations from SCIAMACHY (2003-2011) and OMI (2005-2015) instruments (De Smedt et al. 2008, 2015). We focus on mid- and high-latitude regions of the Northern Hemisphere in summertime, as well as tropical regions taking care to exclude biomass burning events which also lead to HCHO column enhancements. We find generally a very strong temporal correlation (>0.7) between the simulated BVOC emissions and the observed HCHO columns over temperate and boreal ecosystems. Positive BVOC emission trends associated to warming climate are found in almost all regions and are well corroborated by the observations. Furthermore, using OMI HCHO observations over 2005-2015 as constraints in an inversion based on the adjoint of the IMAGESv2 chemistry-transport model (Bauwens et al. 2016), we derive top-down biogenic emissions, which exhibit stronger emission trends than the bottom-up inventory at high-latitude regions of the Northern Hemisphere, suggesting that the response of biogenic emissions to warming temperature might be stronger than currently assumed in models.
NASA Astrophysics Data System (ADS)
Parker, H. A.; Hedelius, J.; Viatte, C.; Wunch, D.; Wennberg, P. O.; Chen, J.; Wofsy, S.; Jones, T.; Franklin, J.; Dubey, M. K.; Roehl, C. M.; Podolske, J. R.; Hillyard, P. W.; Iraci, L. T.
2015-12-01
Measurement, reporting and verification (MRV) of anthropogenic emissions and natural sources and sinks of carbon dioxide (CO2) and methane (CH4) are crucial to predict climate change and develop transparent accounting policies to contain climate forcing. Remote sensing technologies are monitoring column averaged dry air mole fractions of CO2 and CH4 (XCO2 & XCH4) from ground and space (OCO-2 and GOSAT) with solar spectroscopy enabling direct MRV. However, current ground based coverage is sparse due to the need for large and expensive high-resolution spectrometers that are part of the Total Column Carbon Observing Network (TCCON, Bruker 125HR). This limits our MRV and satellite validation abilities, both regionally and globally. There are striking monitoring gaps in Asia, South America and Africa where the CO2 emissions are growing and there is a large uncertainty in fluxes from land use change, biomass burning and rainforest vulnerability. To fill this gap we evaluate the precision, accuracy and stability of compact, affordable and easy to use low-resolution spectrometers (Bruker EM27/SUN) by comparing with XCO2 and XCH4 retrieved from much larger high-resolution TCCON instruments. As these instruments will be used in a variety of locations, we evaluate their performance by comparing with 2 previous and 4 current United States TCCON sites in different regions up to 2700 km apart. These sites range from polluted to unpolluted, latitudes of 32 to 46°N, and altitudes of 230 to 2241 masl. Comparisons with some of these sites cover multiple years allowing assessment of the EM27/SUN performance not only in various regions, but also over an extended period of time and with different seasonal influences. Results show that our 2 EM27/SUN instruments capture the diurnal variability of the aforementioned constituents very well, but with offsets from TCCON and long-term variability which may be due in part to the extensive movement these spectrometers were subjected to. These off-the-shelf spectrometers should dramatically expand the coverage of regional XCO2 and XCH4 observations, particularly in gap regions. Increased temporal and spacial resolution on global carbon data will lead to more reliable information when considering climate change policy and funding.
Ozone depletion following future volcanic eruptions
NASA Astrophysics Data System (ADS)
Eric Klobas, J.; Wilmouth, David M.; Weisenstein, Debra K.; Anderson, James G.; Salawitch, Ross J.
2017-07-01
While explosive volcanic eruptions cause ozone loss in the current atmosphere due to an enhancement in the availability of reactive chlorine following the stratospheric injection of sulfur, future eruptions are expected to increase total column ozone as halogen loading approaches preindustrial levels. The timing of this shift in the impact of major volcanic eruptions on the thickness of the ozone layer is poorly known. Modeling four possible climate futures, we show that scenarios with the smallest increase in greenhouse gas concentrations lead to the greatest risk to ozone from heterogeneous chemical processing following future eruptions. We also show that the presence in the stratosphere of bromine from natural, very short-lived biogenic compounds is critically important for determining whether future eruptions will lead to ozone depletion. If volcanic eruptions inject hydrogen halides into the stratosphere, an effect not considered in current ozone assessments, potentially profound reductions in column ozone would result.
NASA Astrophysics Data System (ADS)
Lekube, J.; Garrido, A. J.; Garrido, I.
2018-03-01
The effects of climate change and global warming reveal the need to find alternative sources of clean energy. In this sense, wave energy power plants, and in particular Oscillating Water Column (OWC) devices, offer a huge potential of energy harnessing. Nevertheless, the conversion systems have not reached a commercially mature stage yet so as to compete with conventional power plants. At this point, the use of new control methods over the existing technology arises as a doable way to improve the efficiency of the system. Due to the non-uniform response that the turbine shows to the rotational speed variation, the speed control of the turbo-generator may offer a feasible solution for efficiency improvement during the energy conversion. In this context, a novel speed control approach for OWC systems is presented in this paper, demonstrating its goodness and affording promising results when particularized to the Mutriku’s wave power plant.
A compendium of geochemical information from the Saanich Inlet water column
NASA Astrophysics Data System (ADS)
Torres-Beltrán, Mónica; Hawley, Alyse K.; Capelle, David; Zaikova, Elena; Walsh, David A.; Mueller, Andreas; Scofield, Melanie; Payne, Chris; Pakhomova, Larysa; Kheirandish, Sam; Finke, Jan; Bhatia, Maya; Shevchuk, Olena; Gies, Esther A.; Fairley, Diane; Michiels, Céline; Suttle, Curtis A.; Whitney, Frank; Crowe, Sean A.; Tortell, Philippe D.; Hallam, Steven J.
2017-10-01
Extensive and expanding oxygen minimum zones (OMZs) exist at variable depths in coastal and open ocean waters. As oxygen levels decline, nutrients and energy are increasingly diverted away from higher trophic levels into microbial community metabolism, resulting in fixed nitrogen loss and production of climate active trace gases including nitrous oxide and methane. While ocean deoxygenation has been reported on a global scale, our understanding of OMZ biology and geochemistry is limited by a lack of time-resolved data sets. Here, we present a historical dataset of oxygen concentrations spanning fifty years and nine years of monthly geochemical time series observations in Saanich Inlet, a seasonally anoxic fjord on the coast of Vancouver Island, British Columbia, Canada that undergoes recurring changes in water column oxygenation status. This compendium provides a unique geochemical framework for evaluating long-term trends in biogeochemical cycling in OMZ waters.
NASA Astrophysics Data System (ADS)
Folkert Boersma, K.
2017-04-01
One of the prime targets of the EU-project Quality Assurance for Essential Climate Variables (QA4ECV, www.qa4ecv.eu) is the generation and subsequent quality assurance of harmonized, long-term data records of ECVs or precursors thereof. Here we report on a new harmonized and improved retrieval algorithm for NO2 columns and its application to spectra measured by the GOME, SCIAMACHY, OMI, and GOME-2(A) sensors over the period 1996-2016. Our community 'best practices' algorithm is based on the classical 3-step DOAS method. It benefits from a thorough comparison and iteration of spectral fitting and air mass factor calculation approaches between IUP Bremen, BIRA, Max Planck Institute for Chemistry, KNMI, WUR, and a number of external partners. For step 1 of the retrieval, we show that improved spectral calibration and the inclusion of liquid water and intensity-offset correction terms in the fitting procedure, lead to 10-30% smaller NO2 slant columns, in better agreement with independent measurements. Moreover, the QA4ECV NO2 slant columns show 15-35% lower uncertainties relative to earlier versions of the spectral fitting algorithm. For step 2, the stratospheric correction, the algorithm relies on the assimilation of NO2 slant columns over remote regions in the Tracer Model 5 (TM5-MP) chemistry transport model. The representation of stratospheric NOy in the model is improved by nudging towards ODIN HNO3:O3 ratios, leading to more realistic NO2 concentrations in the free-running mode, which is relevant at high latitudes near the terminator. The coupling to TM5-Mass Parallel also allows the calculation of air mass factors (AMFs, step 3) from a priori NO2 vertical profiles simulated at a spatial resolution of 1°×1°, so that hotspot gradients are better resolved in the a priori profile shapes. Other AMF improvements include the use of improved cloud information, and a correction for photon scattering in a spherical atmosphere. Preliminary comparisons indicate that the new QA4ECV tropospheric NO2 columns are ±10% lower than operational products, and provide more spatial detail on the horizontal distribution of NO2 in the troposphere. Our comparisons provide more insight in the origin and nature of the retrieval uncertainties. The final QAECV NO2 product therefore contains overall uncertainty estimates for every measurement, but also information on the contribution of uncertainties of each retrieval sub-step to the overall uncertainty budget. We conclude with a presentation of the data format and a verification of the QA4ECV NO2 columns using the traceable quality assurance methodologies developed in the QA4ECV-project, and via validation against independent measurements (using the online QA4ECV Atmospheric Validation Server tool).
Pan, Wenxiao; Galvin, Janine; Huang, Wei Ling; ...
2018-03-25
In this paper we aim to develop a validated device-scale CFD model that can predict quantitatively both hydrodynamics and CO 2 capture efficiency for an amine-based solvent absorber column with random Pall ring packing. A Eulerian porous-media approach and a two-fluid model were employed, in which the momentum and mass transfer equations were closed by literature-based empirical closure models. We proposed a hierarchical approach for calibrating the parameters in the closure models to make them accurate for the packed column. Specifically, a parameter for momentum transfer in the closure was first calibrated based on data from a single experiment. Withmore » this calibrated parameter, a parameter in the closure for mass transfer was next calibrated under a single operating condition. Last, the closure of the wetting area was calibrated for each gas velocity at three different liquid flow rates. For each calibration, cross validations were pursued using the experimental data under operating conditions different from those used for calibrations. This hierarchical approach can be generally applied to develop validated device-scale CFD models for different absorption columns.« less
A two-step A/D conversion and column self-calibration technique for low noise CMOS image sensors.
Bae, Jaeyoung; Kim, Daeyun; Ham, Seokheon; Chae, Youngcheol; Song, Minkyu
2014-07-04
In this paper, a 120 frames per second (fps) low noise CMOS Image Sensor (CIS) based on a Two-Step Single Slope ADC (TS SS ADC) and column self-calibration technique is proposed. The TS SS ADC is suitable for high speed video systems because its conversion speed is much faster (by more than 10 times) than that of the Single Slope ADC (SS ADC). However, there exist some mismatching errors between the coarse block and the fine block due to the 2-step operation of the TS SS ADC. In general, this makes it difficult to implement the TS SS ADC beyond a 10-bit resolution. In order to improve such errors, a new 4-input comparator is discussed and a high resolution TS SS ADC is proposed. Further, a feedback circuit that enables column self-calibration to reduce the Fixed Pattern Noise (FPN) is also described. The proposed chip has been fabricated with 0.13 μm Samsung CIS technology and the chip satisfies the VGA resolution. The pixel is based on the 4-TR Active Pixel Sensor (APS). The high frame rate of 120 fps is achieved at the VGA resolution. The measured FPN is 0.38 LSB, and measured dynamic range is about 64.6 dB.
Removal of 137-Cs from Dissolved Hanford Tank Saltcake by Treatment with IE-911
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rapko, Brian M.; Sinkov, Sergei I.; Levitskaia, Tatiana G.
2003-12-09
The U.S. Department of Energy’s Richland Operations Office plans to accelerate the cleanup of the Hanford Site. Testing new technology for the accelerated cleanup will require dissolved saltcake from single-shell tanks. However, the 137Cs will need to be removed from the saltcake to alleviate radiation hazards. A saltcake composite constructed from archived samples from Hanford Site single-shell tanks 241-S-101, 241-S-109, 241-S-110, 241-S-111, 241-U-106, and 241-U-109 was dissolved in water, adjusted to 5 M Na, and transferred from the 222-S Laboratory to the Radiochemical Processing Laboratory (RPL). At the RPL, the approximately 5.5 liters of solution was passed through a 0.2-micronmore » polyethersulfone filter, collected, and homogenized. The filtered solution then was passed through an ion exchange column containing approximately 150 mL IONSIV® IE-911, an engineered form of crystalline silicotitanate available from UOP, at approximately 200 mL/hour in a continuous operation until all of the feed solution had been run through the column. An analysis of the 137Cs concentrations in the initial feed solution and combined column effluent indicates that > 99.999 percent of the Cs in the feed solution was removed by this operation. PNNR« less
Liu, Guihua; Zhu, Zhou; Cheng, Jinquan; Senyuva, Hamide Z
2012-01-01
A single-laboratory validation was conducted to establish the effectiveness of an immunoaffinity column cleanup procedure followed by LC with fluorescence detection for the determination of aflatoxins B1, B2, G1, and G2 in sesame seeds. The sample is homogenized with 50% water (w/w) to form a slurry, then the test portion is extracted with methanol-water (60 + 40, v/v) using a high-speed blender. The sample extract is filtered, diluted with 15% Tween 20 in phosphate-buffered saline solution, and applied to an immunoaffinity column. Aflatoxins are removed with neat methanol, then directly determined by RP-LC with fluorescence detection using postcolumn bromination (Kobra cell). Test portions of blank white sesame seed slurry were spiked with a mixture of aflatoxins to give total levels of 4 and 10 microg/kg. Recoveries for individual and total aflatoxins ranged from 92.7 to 110.3% for spiked samples. Based on results for spiked sesame paste (triplicates at two levels), the RSD for repeatability (RSD(r)) averaged 1.1% for total aflatoxins and 1.4% for aflatoxin B1. The method was demonstrated to be applicable to naturally contaminated samples of black and white sesame seeds obtained from local markets in China.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Wenxiao; Galvin, Janine; Huang, Wei Ling
In this paper we aim to develop a validated device-scale CFD model that can predict quantitatively both hydrodynamics and CO 2 capture efficiency for an amine-based solvent absorber column with random Pall ring packing. A Eulerian porous-media approach and a two-fluid model were employed, in which the momentum and mass transfer equations were closed by literature-based empirical closure models. We proposed a hierarchical approach for calibrating the parameters in the closure models to make them accurate for the packed column. Specifically, a parameter for momentum transfer in the closure was first calibrated based on data from a single experiment. Withmore » this calibrated parameter, a parameter in the closure for mass transfer was next calibrated under a single operating condition. Last, the closure of the wetting area was calibrated for each gas velocity at three different liquid flow rates. For each calibration, cross validations were pursued using the experimental data under operating conditions different from those used for calibrations. This hierarchical approach can be generally applied to develop validated device-scale CFD models for different absorption columns.« less
Comparison of GOME-2/Metop total column water vapour with ground-based and in situ measurements
NASA Astrophysics Data System (ADS)
Kalakoski, N.; Kujanpää, J.; Sofieva, V.; Tamminen, J.; Grossi, M.; Valks, P.
2014-12-01
Total column water vapour product from the Global Ozone Monitoring Experiment-2 on board Metop-A and Metop-B satellites (GOME-2/Metop-A and GOME-2/Metop-B) produced by the Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M SAF) is compared with co-located radiosonde and Global Positioning System (GPS) observations. The comparisons are performed using recently reprocessed data by the GOME Data Processor (GDP) version 4.7. The comparisons are performed for the period of January 2007-July 2013 (GOME-2A) and from December 2012 to July 2013 (GOME-2B). Radiosonde data are from the Integrated Global Radiosonde Archive (IGRA) maintained by National Climatic Data Center (NCDC) and screened for soundings with incomplete tropospheric column. Ground-based GPS observations from COSMIC/SuomiNet network are used as the second independent data source. Good general agreement between GOME-2 and the ground-based observations is found. The median relative difference of GOME-2 to radiosonde observations is -2.7% for GOME-2A and -0.3% for GOME-2B. Against GPS observations, the median relative differences are 4.9 and 3.2% for GOME-2A and B, respectively. For water vapour total columns below 10 kg m-2, large wet biases are observed, especially against GPS observations. Conversely, at values above 50 kg m-2, GOME-2 generally underestimates both ground-based observations.
The Seasonal Cycle of Water Vapour on Mars from Assimilation of Thermal Emission Spectrometer Data
NASA Technical Reports Server (NTRS)
Steele, Liam J.; Lewis, Stephen R.; Patel, Manish R.; Montmessin, Franck; Forget, Francois; Smith, Michael D.
2014-01-01
We present for the first time an assimilation of Thermal Emission Spectrometer (TES) water vapour column data into a Mars global climate model (MGCM). We discuss the seasonal cycle of water vapour, the processes responsible for the observed water vapour distribution, and the cross-hemispheric water transport. The assimilation scheme is shown to be robust in producing consistent reanalyses, and the global water vapour column error is reduced to around 2-4 pr micron depending on season. Wave activity is shown to play an important role in the water vapour distribution, with topographically steered flows around the Hellas and Argyre basins acting to increase transport in these regions in all seasons. At high northern latitudes, zonal wavenumber 1 and 2 stationary waves during northern summer are responsible for spreading the sublimed water vapour away from the pole. Transport by the zonal wavenumber 2 waves occurs primarily to the west of Tharsis and Arabia Terra and, combined with the effects of western boundary currents, this leads to peak water vapour column abundances here as observed by numerous spacecraft. A net transport of water to the northern hemisphere over the course of one Mars year is calculated, primarily because of the large northwards flux of water vapour which occurs during the local dust storm around L(sub S) = 240-260deg. Finally, outlying frost deposits that surround the north polar cap are shown to be important in creating the peak water vapour column abundances observed during northern summer.
Rodriguez, Estrella Sanz; Poynter, Sam; Curran, Mark; Haddad, Paul R; Shellie, Robert A; Nesterenko, Pavel N; Paull, Brett
2015-08-28
Preservation of ionic species within Antarctic ice yields a unique proxy record of the Earth's climate history. Studies have been focused until now on two proxies: the ionic components of sea salt aerosol and methanesulfonic acid. Measurement of the all of the major ionic species in ice core samples is typically carried out by ion chromatography. Former methods, whilst providing suitable detection limits, have been based upon off-column preconcentration techniques, requiring larger sample volumes, with potential for sample contamination and/or carryover. Here, a new capillary ion chromatography based analytical method has been developed for quantitative analysis of limited volume Antarctic ice core samples. The developed analytical protocol applies capillary ion chromatography (with suppressed conductivity detection) and direct on-column sample injection and focusing, thus eliminating the requirement for off-column sample preconcentration. This limits the total sample volume needed to 300μL per analysis, allowing for triplicate sample analysis with <1mL of sample. This new approach provides a reliable and robust analytical method for the simultaneous determination of organic and inorganic anions, including fluoride, methanesulfonate, chloride, sulfate and nitrate anions. Application to composite ice-core samples is demonstrated, with coupling of the capillary ion chromatograph to high resolution mass spectrometry used to confirm the presence and purity of the observed methanesulfonate peak. Copyright © 2015 Elsevier B.V. All rights reserved.
Multi-Column Experimental Test Bed for Xe/Kr Separation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenhalgh, Mitchell Randy; Garn, Troy Gerry; Welty, Amy Keil
Previous research studies have shown that INL-developed engineered form sorbents are capable of capturing both Kr and Xe from various composite gas streams. The previous experimental test bed provided single column testing for capacity evaluations over a broad temperature range. To advance research capabilities, the employment of an additional column to study selective capture of target species to provide a defined final gas composition for waste storage was warranted. The second column addition also allows for compositional analyses of the final gas product to provide for final storage determinations. The INL krypton capture system was modified by adding an additionalmore » adsorption column in order to create a multi-column test bed. The purpose of this modification was to investigate the separation of xenon from krypton supplied as a mixed gas feed. The extra column was placed in a Stirling Ultra-low Temperature Cooler, capable of controlling temperatures between 190 and 253K. Additional piping and valves were incorporated into the system to allow for a variety of flow path configurations. The new column was filled with the AgZ-PAN sorbent which was utilized as the capture medium for xenon while allowing the krypton to pass through. The xenon-free gas stream was then routed to the cryostat filled with the HZ-PAN sorbent to capture the krypton at 191K. Selectivities of xenon over krypton were determined using the new column to verify the system performance and to establish the operating conditions required for multi-column testing. Results of these evaluations verified that the system was operating as designed and also demonstrated that AgZ-PAN exhibits excellent selectivity for xenon over krypton in air at or near room temperature. Two separation tests were performed utilizing a feed gas consisting of 1000 ppmv xenon and 150 ppmv krypton with the balance being made up of air. The AgZ-PAN temperature was held at 295 or 253K while the HZ-PAN was held at 191K for both tests. The effluent from the AgZ-PAN column was monitored via GC-TCD during the tests with no xenon being observed exiting the column during either test. Samples from each column were taken via evacuated sample bombs and were analyzed by GC-MS analysis. The results demonstrated the ability to separate xenon from krypton from a mixed gas feed utilizing the new multi-column system.« less
Ocean, Land and Meteorology Studies Using Space-Based Lidar Measurements
NASA Technical Reports Server (NTRS)
Hu,Yongxiang
2009-01-01
CALIPSO's main mission objective is studying the climate impact of clouds and aerosols in the atmosphere. CALIPSO also collects information about other components of the Earth's ecosystem, such as oceans and land. This paper introduces the physics concepts and presents preliminary results for the valueadded CALIPSO Earth system science products. These include ocean surface wind speeds, column atmospheric optical depths, ocean subsurface backscatter, land surface elevations, atmospheric temperature profiles, and A-train data fusion products.
Collingsworth, Paris D.; Bunnell, David B.; Murray, Michael W.; Kao, Yu-Chun; Feiner, Zachary S.; Claramunt, Randall M.; Lofgren, Brent M.; Höök, Tomas O.; Ludsin, Stuart A.
2017-01-01
The Laurentian Great Lakes of North America provide valuable ecosystem services, including fisheries, to the surrounding population. Given the prevalence of other anthropogenic stressors that have historically affected the fisheries of the Great Lakes (e.g., eutrophication, invasive species, overfishing), climate change is often viewed as a long-term stressor and, subsequently, may not always be prioritized by managers and researchers. However, climate change has the potential to negatively affect fish and fisheries in the Great Lakes through its influence on habitat. In this paper, we (1) summarize projected changes in climate and fish habitat in the Great Lakes; (2) summarize fish responses to climate change in the Great Lakes; (3) describe key interactions between climate change and other stressors relevant to Great Lakes fish, and (4) summarize how climate change can be incorporated into fisheries management. In general, fish habitat is projected to be characterized by warmer temperatures throughout the water column, less ice cover, longer periods of stratification, and more frequent and widespread periods of bottom hypoxia in productive areas of the Great Lakes. Based solely on thermal habitat, fish populations theoretically could experience prolonged optimal growth environment within a changing climate, however, models that assess physical habitat influences at specific life stages convey a more complex picture. Looking at specific interactions with other stressors, climate change may exacerbate the negative impacts of both eutrophication and invasive species for fish habitat in the Great Lakes. Although expanding monitoring and research to consider climate change interactions with currently studied stressors, may offer managers the best opportunity to keep the valuable Great Lakes fisheries sustainable, this expansion is globally applicable for large lake ecosystem dealing with multiple stressors in the face of continued human-driven changes.
A Global Perspective of Atmospheric CO2 Concentrations
NASA Technical Reports Server (NTRS)
Putman, William M.; Ott, Lesley; Darmenov, Anton; daSilva, Arlindo
2016-01-01
Carbon dioxide (CO2) is the most important greenhouse gas affected by human activity. About half of the CO2 emitted from fossil fuel combustion remains in the atmosphere, contributing to rising temperatures, while the other half is absorbed by natural land and ocean carbon reservoirs. Despite the importance of CO2, many questions remain regarding the processes that control these fluxes and how they may change in response to a changing climate. The Orbiting Carbon Observatory-2 (OCO-2), launched on July 2, 2014, is NASA's first satellite mission designed to provide the global view of atmospheric CO2 needed to better understand both human emissions and natural fluxes. This visualization shows how column CO2 mixing ratio, the quantity observed by OCO-2, varies throughout the year. By observing spatial and temporal gradients in CO2 like those shown, OCO-2 data will improve our understanding of carbon flux estimates. But, CO2 observations can't do that alone. This visualization also shows that column CO2 mixing ratios are strongly affected by large-scale weather systems. In order to fully understand carbon flux processes, OCO-2 observations and atmospheric models will work closely together to determine when and where observed CO2 came from. Together, the combination of high-resolution data and models will guide climate models towards more reliable predictions of future conditions.
Changes in the Structure and Propagation of the MJO with Increasing CO2
NASA Technical Reports Server (NTRS)
Adames, Angel F.; Kim, Daehyun; Sobel, Adam H.; Del Genio, Anthony; Wu, Jingbo
2017-01-01
Changes in the Madden-Julian Oscillation (MJO) with increasing CO2 concentrations are examined using the Goddard Institute for Space Studies Global Climate Model (GCM). Four simulations performed with fixed CO2 concentrations of 0.5, 1, 2 and 4 times pre-industrial levels using the GCM coupled with a mixed layer ocean model are analyzed in terms of the basic state, rainfall and moisture variability, and the structure and propagation of the MJO.The GCM simulates basic state changes associated with increasing CO2 that are consistent with results from earlier studies: column water vapor increases at approximately 7.1% K(exp -1), precipitation also increases but at a lower rate (approximately 3% K(exp -1)), and column relative humidity shows little change. Moisture and rainfall variability intensify with warming. Total moisture and rainfall variability increases at a rate that is similar to that of the mean state change. The intensification is faster in the MJO-related anomalies than in the total anomalies, though the ratio of the MJO band variability to its westward counterpart increases at a much slower rate. On the basis of linear regression analysis and space-time spectral analysis, it is found that the MJO exhibits faster eastward propagation, faster westward energy dispersion, a larger zonal scale and deeper vertical structure in warmer climates.
Duarte, B.; Santos, D.; Silva, H.; Marques, J. C.; Caçador, I.; Sleimi, N.
2014-01-01
Waterlogging and submergence are the major constraints to which wetland plants are subjected, with inevitable impacts on their physiology and productivity. Global warming and climate change, as driving forces of sea level rise, tend to increase such submersion periods and also modify the carbonate chemistry of the water column due to the increased concentration of CO2 in the atmosphere. In the present work, the underwater O2 fluxes in the leaves of two abundant Mediterranean halophytes were evaluated at different levels of dissolved CO2. Photosynthetic enhancement due to increased dissolved CO2 was confirmed for both Halimione portulacoides and Spartina maritima, probably due to high tissue porosity, formation of leaf gas films and reduction of the oxygenase activity of Rubisco. Enhancement of the photosynthetic rates in H. portulacoides and S. maritima was concomitant with an increase in energy trapping and transfer, mostly due to enhancement of the carboxylation reaction of Rubisco, leading to a reduction of the energy costs for carbon fixation. Transposing these findings to the ecosystem, and assuming increased dissolved CO2 concentration scenarios, the halophyte community displays a new ecosystem function, increasing the water column oxygenation and thus reinforcing their role as principal primary producers of the estuarine system. PMID:25381259
Comparative study of different stochastic weather generators for long-term climate data simulation
USDA-ARS?s Scientific Manuscript database
Climate is one of the single most important factors affecting watershed ecosystems and water resources. The effect of climate variability and change has been studied extensively in some places; in many places, however, assessments are hampered by limited availability of long term continuous climate ...
ERIC Educational Resources Information Center
Kurdek, Lawrence A.; Fine, Mark A.
1993-01-01
Young adolescents who lived with both biological parents, single divorced mother, single divorced father, mother and stepfather, father and stepmother, or multiply divorced parent appraised dimensions of family climate and dimensions of parenting. Differences among family structures were found on warmth, conflict, permissive parenting, and…
Tunable Single-Frequency Near IR Lasers for DIAL Applications
NASA Technical Reports Server (NTRS)
Henderson, Sammy W.; Marquardt, John H.; Carrig, Timothy J.; Gatt, Phil; Smith, Duane D.; Hale, Charley P.
2000-01-01
Tunable single-frequency sources in the 2-4 micron wavelength region are useful for remote DIAL measurements of chemicals and pollutants. We are developing tunable single-frequency transmitters and receivers for both direct and coherent detection lidar measurement applications. We have demonstrated a direct-diode-pumped PPLN-based OPO that operates single frequency, produces greater than 10 mW cw and is tunable over the 2.5 - 3.9 micron wavelength region. This laser has been used to injection seed a pulsed PPLN OPO, pumped by a 1.064 micron Nd:YAG laser, producing 50-100 microJoule single-frequency pulses at 100 Hz PRF near 3.6 micron wavelength. In addition, we have demonstrated a cw Cr:ZnSe laser that is tunable over the 2.1 - 2.8 micron wavelength region. This laser is pumped by a cw diode-pumped Tm:YALO laser and has produced over 1.8 W cw. Tm- and Tm, Ho-doped single-frequency solid-state lasers that produce over 50 mW cw and are tunable over approximately 10 nm in the 2 -2.1 micron band with fast PZT tuning have also been demonstrated. A fast PZT-tunable Tm, Ho:YLF laser was used for a direct-detection column content DIAL measurement of atmospheric CO2. Modeling shows that that all these cw and pulsed sources are useful for column-content coherent DIAL measurements at several km range using topographic targets.
Simonin, Marie; Martins, Jean M F; Uzu, Gaëlle; Vince, Erwann; Richaume, Agnès
2016-10-04
Soils are exposed to nanoparticles (NPs) as a result of their increasing use in many commercial products. Adverse effects of NPs on soil microorganisms have been reported in several ecotoxicological studies using microcosms. Although repeated exposures are more likely to occur in soils, most of these previous studies were performed as a single exposure to NPs. Contrary to single contamination, the study of multiple NP contaminations in soils requires the use of specialized setups. Using a soil column experiment, we compared the influence of single and repeated exposures (one, two, or three exposures that resulted in the same final concentration applied) on the transport of titanium dioxide (TiO 2 ) NPs through soil and the effect of these different exposure scenarios on the abundance and activity of soil nitrifying microbial communities after a 2 month incubation. The transport of TiO 2 NPs was very limited under both single and repeated exposures and was highest for the lowest concentration injected during the first application. Significant decreases in nitrification activity and ammonia-oxidizing archaea and bacteria populations were observed only for the repeated exposure scenario (three TiO 2 NP contaminations). These results suggest that, under repeated exposures, the transport of TiO 2 NPs to deep soil layers and groundwater is limited and that a chronic contamination is more harmful for the soil microbiological functioning than a single exposure.
Zhao, Weiquan; Yang, Guang; Zhong, Fanyi; Yang, Nan; Zhao, Xin; Qi, Yunpeng; Fan, Guorong
2014-09-01
Silymarin extracted from Silybum marianum (L.) Gaertn consists of a large number of flavonolignans, of which diastereoisomeric flavonolignans including silybin A and silybin B, and isosilybin A and isosilybin B are the main bioactive components, whose preparation from the crude extracts is still a difficult task. In this work, binary-column recycling preparative high-performance liquid chromatography systems without sample loop trapping, where two columns were switched alternately via one or two six-port switching valves, were established and successfully applied to the isolation and purification of the four diastereoisomeric flavonolignans from silymarin. The proposed system showed significant advantages over conventional preparative high-performance liquid chromatography with a single column in increasing efficiency and reducing the cost. To obtain the same amounts of products, the proposed system spends only one tenth of the time that the conventional system spends, and needs only one eleventh of the solvent that the conventional system consumes. Using the proposed system, the four diastereoisomers were successfully isolated from silymarin with purities over 98%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Computational analysis of vertical axis wind turbine arrays
NASA Astrophysics Data System (ADS)
Bremseth, J.; Duraisamy, K.
2016-10-01
Canonical problems involving single, pairs, and arrays of vertical axis wind turbines (VAWTs) are investigated numerically with the objective of understanding the underlying flow structures and their implications on energy production. Experimental studies by Dabiri (J Renew Sustain Energy 3, 2011) suggest that VAWTs demand less stringent spacing requirements than their horizontal axis counterparts and additional benefits may be obtained by optimizing the placement and rotational direction of VAWTs. The flowfield of pairs of co-/counter-rotating VAWTs shows some similarities with pairs of cylinders in terms of wake structure and vortex shedding. When multiple VAWTs are placed in a column, the extent of the wake is seen to spread further downstream, irrespective of the direction of rotation of individual turbines. However, the aerodynamic interference between turbines gives rise to regions of excess momentum between the turbines which lead to significant power augmentations. Studies of VAWTs arranged in multiple columns show that the downstream columns can actually be more efficient than the leading column, a proposition that could lead to radical improvements in wind farm productivity.
Ates, Ebru; Mittendorf, Klaus; Senyuva, Hamide
2013-01-01
An automated sample preparation technique involving cleanup and analytical separation in a single operation using an online coupled TurboFlow (RP-LC system) is reported. This method eliminates time-consuming sample preparation steps that can be potential sources for cross-contamination in the analysis of plasticizers. Using TurboFlow chromatography, liquid samples were injected directly into the automated system without previous extraction or cleanup. Special cleanup columns enabled specific binding of target compounds; higher MW compounds, i.e., fats and proteins, and other matrix interferences with different chemical properties were removed to waste, prior to LC/MS/MS. Systematic stepwise method development using this new technology in the food safety area is described. Selection of optimum columns and mobile phases for loading onto the cleanup column followed by transfer onto the analytical column and MS detection are critical method parameters. The method was optimized for the assay of 10 phthalates (dimethyl, diethyl, dipropyl, butyl benzyl, diisobutyl, dicyclohexyl, dihexyl, diethylhexyl, diisononyl, and diisododecyl) and one adipate (diethylhexyl) in beverages and milk.
Furukawa, Makoto; Takagai, Yoshitaka
2016-10-04
Online solid-phase extraction (SPE) coupled with inductively coupled plasma mass spectrometry (ICPMS) is a useful tool in automatic sequential analysis. However, it cannot simultaneously quantify the analytical targets and their recovery percentages (R%) in one-shot samples. We propose a system that simultaneously acquires both data in a single sample injection. The main flowline of the online solid-phase extraction is divided into main and split flows. The split flow line (i.e., bypass line), which circumvents the SPE column, was placed on the main flow line. Under program-controlled switching of the automatic valve, the ICPMS sequentially measures the targets in a sample before and after column preconcentration and determines the target concentrations and the R% on the SPE column. This paper describes the system development and two demonstrations to exhibit the analytical significance, i.e., the ultratrace amounts of radioactive strontium ( 90 Sr) using commercial Sr-trap resin and multielement adsorbability on the SPE column. This system is applicable to other flow analyses and detectors in online solid phase extraction.
Simulating the injection of micellar solutions to recover diesel in a sand column.
Bernardez, Letícia A; Therrien, René; Lefebvre, René; Martel, Richard
2009-01-26
This paper presents numerical simulations of laboratory experiments where diesel, initially present at 18% residual saturation in a sand column, was recovered by injecting a micellar solution containing the surfactant Hostapur SAS-60 (SAS), and two alcohols, n-butanol (n-BuOH), and n-pentanol (n-PeOH). The micellar solution was developed and optimized for diesel recovery using phase diagrams and soil column experiments. Numerical simulations with the compositional simulator UTCHEM agree with the experimental results and show that the entire residual diesel in the sand column was recovered after the downward injection of 5 pore volumes of the micellar solution. Recovery of diesel occurs by enhanced solubility in the microemulsion phase and by mobilization. An additional series of simulations investigated the effects of phase transfer, alcohol partitioning, and component segregation on diesel recovery. These simulations indicate that diesel can be accurately represented in the model by a single component, but that the pseudo-component approach for active matter and the assumption of local phase equilibrium leads to an underestimation of diesel mobilization.
Simulating the injection of micellar solutions to recover diesel in a sand column
NASA Astrophysics Data System (ADS)
Bernardez, Letícia A.; Therrien, René; Lefebvre, René; Martel, Richard
2009-01-01
This paper presents numerical simulations of laboratory experiments where diesel, initially present at 18% residual saturation in a sand column, was recovered by injecting a micellar solution containing the surfactant Hostapur SAS-60 (SAS), and two alcohols, n-butanol ( n-BuOH), and n-pentanol ( n-PeOH). The micellar solution was developed and optimized for diesel recovery using phase diagrams and soil column experiments. Numerical simulations with the compositional simulator UTCHEM agree with the experimental results and show that the entire residual diesel in the sand column was recovered after the downward injection of 5 pore volumes of the micellar solution. Recovery of diesel occurs by enhanced solubility in the microemulsion phase and by mobilization. An additional series of simulations investigated the effects of phase transfer, alcohol partitioning, and component segregation on diesel recovery. These simulations indicate that diesel can be accurately represented in the model by a single component, but that the pseudo-component approach for active matter and the assumption of local phase equilibrium leads to an underestimation of diesel mobilization.
Rapid micro-scale proteolysis of proteins for MALDI-MS peptide mapping using immobilized trypsin
NASA Astrophysics Data System (ADS)
Gobom, Johan; Nordhoff, Eckhard; Ekman, Rolf; Roepstorff, Peter
1997-12-01
In this study we present a rapid method for tryptic digestion of proteins using micro-columns with enzyme immobilized on perfusion chromatography media. The performance of the method is exemplified with acyl-CoA-binding protein and reduced carbamidomethylated bovine serum albumin. The method proved to be significantly faster and yielded a better sequence coverage and an improved signal-to-noise ratio for the MALDI-MS peptide maps, compared to in-solution- and on-target digestion. Only a single sample transfer step is required, and therefore sample loss due to adsorption to surfaces is reduced, which is a critical issue when handling low picomole to femtomole amounts of proteins. An example is shown with on-column proteolytic digestion and subsequent elution of the digest into a reversed-phase micro-column. This is useful if the sample contains large amounts of salt or is too diluted for MALDI-MS analysis. Furthermore, by step-wise elution from the reversedphase column, a complex digest can be fractionated, which reduces signal suppression and facilitates data interpretation in the subsequent MS-analysis. The method also proved useful for consecutive digestions with enzymes of different cleavage specificity. This is exemplified with on-column tryptic digestion, followed by reversed-phase step-wise elution, and subsequent on-target V8 protease digestion.
Calibration of the Total Carbon Column Observing Network using Aircraft Profile Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wunch, Debra; Toon, Geoffrey C.; Wennberg, Paul O.
2010-03-26
The Total Carbon Column Observing Network (TCCON) produces precise measurements of the column average dry-air mole fractions of CO{sub 2}, CO, CH{sub 4}, N{sub 2}O and H{sub 2}O at a variety of sites worldwide. These observations rely on spectroscopic parameters that are not known with sufficient accuracy to compute total columns that can be used in combination with in situ measure ments. The TCCON must therefore be calibrated to World Meteorological Organization (WMO) in situ trace gas measurement scales. We present a calibration of TCCON data using WMO-scale instrumentation aboard aircraft that measured profiles over four TCCON stations during 2008more » and 2009. The aircraft campaigns are the Stratosphere-Troposphere Analyses of Regional Transport 2008 (START-08), which included a profile over the Park Falls site, the HIAPER Pole-to-Pole Observations (HIPPO-1) campaign, which included profiles over the Lamont and Lauder sites, a series of Learjet profiles over the Lamont site, and a Beechcraft King Air profile over the Tsukuba site. These calibrations are compared with similar observations made during the INTEX-NA (2004), COBRA-ME (2004) and TWP-ICE (2006) campaigns. A single, global calibration factor for each gas accurately captures the TCCON total column data within error.« less
Open-split interface for mass spectrometers
Diehl, John W.
1991-01-01
An open-split interface includes a connector body having four leg members projecting therefrom within a single plane, the first and third legs being coaxial and the second and fourth legs being coaxial. A tubular aperture extends through the first and third legs and a second tubular aperture extends through the second and fourth legs, connecting at a juncture within the center of the connector body. A fifth leg projects from the connector body and has a third tubular aperture extending therethrough to the juncture of the first and second tubular apertures. A capillary column extends from a gas chromatograph into the third leg with its end adjacent the juncture. A flow restrictor tube extends from a mass spectrometer through the first tubular aperture in the first and third legs and into the capillary columnm end, so as to project beyond the end of the third leg within the capillary column. An annular gap between the tube and column allows excess effluent to pass to the juncture. A pair of short capillary columns extend from separate detectors into the second tubular aperture in the second and fourth legs, and are oriented with their ends spaced slightly from the first capillary column end. A sweep flow tube is mounted in the fifth leg so as to supply a helium sweep flow to the juncture.
Organic matter export to the seafloor in the Baltic Sea: Drivers of change and future projections.
Tamelander, Tobias; Spilling, Kristian; Winder, Monica
2017-12-01
The impact of environmental change and anthropogenic stressors on coastal marine systems will strongly depend on changes in the magnitude and composition of organic matter exported from the water column to the seafloor. Knowledge of vertical export in the Baltic Sea is synthesised to illustrate how organic matter deposition will respond to climate warming, climate-related changes in freshwater runoff, and ocean acidification. Pelagic heterotrophic processes are suggested to become more important in a future warmer climate, with negative feedbacks to organic matter deposition to the seafloor. This is an important step towards improved oxygen conditions in the near-bottom layer that will reduce the release of inorganic nutrients from the sediment and hence counteract further eutrophication. The evaluation of these processes in ecosystem models, validated by field observations, will significantly advance the understanding of the system's response to environmental change and will improve the use of such models in management of coastal areas.
Early Holocene Great Salt Lake
Oviatt, Charles G.; Madsen, David B.; Miller, David; Thompson, Robert S.; McGeehin, John P.
2015-01-01
Shorelines and surficial deposits (including buried forest-floor mats and organic-rich wetland sediments) show that Great Salt Lake did not rise higher than modern lake levels during the earliest Holocene (11.5–10.2 cal ka BP; 10–9 14C ka BP). During that period, finely laminated, organic-rich muds (sapropel) containing brine-shrimp cysts and pellets and interbedded sodium-sulfate salts were deposited on the lake floor. Sapropel deposition was probably caused by stratification of the water column — a freshwater cap possibly was formed by groundwater, which had been stored in upland aquifers during the immediately preceding late-Pleistocene deep-lake cycle (Lake Bonneville), and was actively discharging on the basin floor. A climate characterized by low precipitation and runoff, combined with local areas of groundwater discharge in piedmont settings, could explain the apparent conflict between evidence for a shallow lake (a dry climate) and previously published interpretations for a moist climate in the Great Salt Lake basin of the eastern Great Basin.
23. 100 foot through truss looking west from the ...
23. 100 foot through truss - looking west from the downstream side, view of a single through truss showing its general arrangement on extended column piers. - Weidemeyer Bridge, Spanning Thomes Creek at Rawson Road, Corning, Tehama County, CA
Global fish production and climate change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brander, K.M.
2007-12-11
Current global fisheries production of {approx}160 million tons is rising as a result of increases in aquaculture production. A number of climate-related threats to both capture fisheries and aquaculture are identified, but there is low confidence in predictions of future fisheries production because of uncertainty over future global aquatic net primary production and the transfer of this production through the food chain to human consumption. Recent changes in the distribution and productivity of a number of fish species can be ascribed with high confidence to regional climate variability, such as the El Nino-Southern Oscillation. Future production may increase in somemore » high-latitude regions because of warming and decreased ice cover, but the dynamics in low-latitude regions are giverned by different processes, and production may decline as a result of reduced vertical mixing of the water column and, hence, reduced recycling of nutrients. There are strong interactions between the effects of fishing and the effects of climate because fishing reduces the age, size, and geographic diversity of populations and the biodiversity of marine ecosystems, making both more sensitive to additional stresses such as climate change. Inland fisheries are additionally threatened by changes in precipiation and water management. The frequency and intensity of extreme climate events is likely to have a major impact on future fisheries production in both inland and marine systems. Reducing fishing mortality in the majority of fisheries, which are currently fully exploited or overexploited, is the pricipal feasible means of reducing the impacts of climate change.« less
NASA Technical Reports Server (NTRS)
Russell, Philip B.; Redemann, J.; Schmid, B.; Livingston, J. M.; Bergstrom, R. W.; Ramirez, S. A.; Hipskind, R. Stephen (Technical Monitor)
2001-01-01
The Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) and the Second Aerosol Characterization Experiment (ACE-2) made simultaneous measurements of shortwave radiative fluxes, solar-beam transmissions, and the aerosols affecting those fluxes and transmissions. Besides the measured fluxes and transmissions, other obtained properties include aerosol scattering and absorption measured in situ at the surface and aloft; aerosol single scattering albedo retrieved from skylight radiances; and aerosol complex refractive index derived by combining profiles of backscatter, extinction, and size distribution. These measurements of North Atlantic boundary layer aerosols impacted by anthropogenic pollution revealed the following characteristic results: (1) Better agreement among different types of remote measurements of aerosols (e.g., optical depth, extinction, and backscattering from sunphotometers, satellites, and lidars) than between remote and in situ measurements; 2) More extinction derived from transmission measurements than from in situ measurements; (3) Larger aerosol absorption inferred from flux radiometry than from other measurements. When the measured relationships between downwelling flux and optical depth (or beam transmission) are used to derive best-fit single scattering albedos for the polluted boundary layer aerosol, both TARFOX and ACE-2 yield midvisible values of 0.90 +/- 0.04. The other techniques give larger single scattering albedos (i.e. less absorption) for the polluted boundary layer, with a typical result of 0.95 +/- 0.04. Although the flux-based results have the virtue of describing the column aerosol unperturbed by sampling, they are subject to questions about representativeness and other uncertainties (e.g., unknown gas absorption). Current uncertainties in aerosol single scattering albedo are large in terms of climate effects. They also have an important influence on aerosol optical depths retrieved from satellite radiances. More tests are needed of the consistency among different methods and of the effects of changing humidity on aerosol.
Insights into low-latitude cloud feedbacks from high-resolution models.
Bretherton, Christopher S
2015-11-13
Cloud feedbacks are a leading source of uncertainty in the climate sensitivity simulated by global climate models (GCMs). Low-latitude boundary-layer and cumulus cloud regimes are particularly problematic, because they are sustained by tight interactions between clouds and unresolved turbulent circulations. Turbulence-resolving models better simulate such cloud regimes and support the GCM consensus that they contribute to positive global cloud feedbacks. Large-eddy simulations using sub-100 m grid spacings over small computational domains elucidate marine boundary-layer cloud response to greenhouse warming. Four observationally supported mechanisms contribute: 'thermodynamic' cloudiness reduction from warming of the atmosphere-ocean column, 'radiative' cloudiness reduction from CO2- and H2O-induced increase in atmospheric emissivity aloft, 'stability-induced' cloud increase from increased lower tropospheric stratification, and 'dynamical' cloudiness increase from reduced subsidence. The cloudiness reduction mechanisms typically dominate, giving positive shortwave cloud feedback. Cloud-resolving models with horizontal grid spacings of a few kilometres illuminate how cumulonimbus cloud systems affect climate feedbacks. Limited-area simulations and superparameterized GCMs show upward shift and slight reduction of cloud cover in a warmer climate, implying positive cloud feedbacks. A global cloud-resolving model suggests tropical cirrus increases in a warmer climate, producing positive longwave cloud feedback, but results are sensitive to subgrid turbulence and ice microphysics schemes. © 2015 The Author(s).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonardi, M.; Carbognin, L.; Tosi, L.
1996-12-31
An accurate forecasting of environmental impact on sea level and shoreline changes due to global warming, requires a detailed investigation and interpretation of the events that occurred during the past 20,000 years. This time interval in fact corresponds to two significant climatic global changes: the last Wuermian glaciation, during the Upper Pleistocene, and the warming during the Holocene. Examples of the climatic variation impact on paleoenvironments are here evidenced by sedimentological studies, radiocarbon dating, paleobotanic, paleontological, mineralogical and geochemical investigations of two stratigraphic columns that are geographically far apart: the Lagoon of Venice, Italy, and the Bohai Sea, China. Themore » study focuses first on a general overview of the regional paleoclimatic history of these two core locations and their correlation with the sedimentological variations; second on some depositional events, such clay layers and beachrock formations, that carry the imprints of the climatic conditions. The results of this investigation may contribute to a better understanding of diagenetic processes, still not sufficiently described, caused by the climatic changes. Furthermore the study provided information that may be useful to a more complete overview of the environmental impact caused by natural global warming before the anthropogenic input.« less
Jafarov, Elchin E.; Romanovsky, Vladimir E.; Genet, Helene; McGuire, Anthony David; Marchenko, Sergey S.
2013-01-01
Fire is an important factor controlling the composition and thickness of the organic layer in the black spruce forest ecosystems of interior Alaska. Fire that burns the organic layer can trigger dramatic changes in the underlying permafrost, leading to accelerated ground thawing within a relatively short time. In this study, we addressed the following questions. (1) Which factors determine post-fire ground temperature dynamics in lowland and upland black spruce forests? (2) What levels of burn severity will cause irreversible permafrost degradation in these ecosystems? We evaluated these questions in a transient modeling–sensitivity analysis framework to assess the sensitivity of permafrost to climate, burn severity, soil organic layer thickness, and soil moisture content in lowland (with thick organic layers, ~80 cm) and upland (with thin organic layers, ~30 cm) black spruce ecosystems. The results indicate that climate warming accompanied by fire disturbance could significantly accelerate permafrost degradation. In upland black spruce forest, permafrost could completely degrade in an 18 m soil column within 120 years of a severe fire in an unchanging climate. In contrast, in a lowland black spruce forest, permafrost is more resilient to disturbance and can persist under a combination of moderate burn severity and climate warming.
C+/H2 gas in star-forming clouds and galaxies
NASA Astrophysics Data System (ADS)
Nordon, Raanan; Sternberg, Amiel
2016-11-01
We present analytic theory for the total column density of singly ionized carbon (C+) in the optically thick photon dominated regions (PDRs) of far-UV irradiated (star-forming) molecular clouds. We derive a simple formula for the C+ column as a function of the cloud (hydrogen) density, the far-UV field intensity, and metallicity, encompassing the wide range of galaxy conditions. When assuming the typical relation between UV and density in the cold neutral medium, the C+ column becomes a function of the metallicity alone. We verify our analysis with detailed numerical PDR models. For optically thick gas, most of the C+ column is mixed with hydrogen that is primarily molecular (H2), and this `C+/H2' gas layer accounts for almost all of the `CO-dark' molecular gas in PDRs. The C+/H2 column density is limited by dust shielding and is inversely proportional to the metallicity down to ˜0.1 solar. At lower metallicities, H2 line blocking dominates and the C+/H2 column saturates. Applying our theory to CO surveys in low-redshift spirals, we estimate the fraction of C+/H2 gas out of the total molecular gas to be typically ˜0.4. At redshifts 1 < z < 3 in massive disc galaxies the C+/H2 gas represents a very small fraction of the total molecular gas (≲ 0.16). This small fraction at high redshifts is due to the high gas surface densities when compared to local galaxies.
Núñez-Delgado, Avelino; López-Períago, Eugenio; Diaz-Fierros-Viqueira, Francisco
2002-09-01
Designing soil filtration systems or vegetated filter strips as a means of attenuating water pollution should take into account soil purging capacity. Here we report data on laboratory column trials used to investigate the capacity of a Hortic Anthrosol to attenuate contamination due to downward leaching from cattle slurry applied at the surface. The columns comprised 900 g of soil to a depth of about 20-25 cm, and had been used previously in an experiment involving passage of at least 5 pore volumes of an ion-containing cattle slurry-like feed solution. For the present experiments, the columns were first washed through with distilled water (simulating resting and rain falling after passage of the feed solution), and then received a single slurry dose equivalent to about 300 m3 ha(-1). The columns were then leached with distilled water, with monitoring of chemical oxygen demand (COD) and ion contents in outflow. The results indicated that the pollution-neutralising capacity of the soil was still high but clearly lower than in the earlier experiments with the feed solution. Furthermore, the time-course of COD showed that organic acids were leached through the column even more rapidly than chloride (often viewed as an inert tracer) enhancing the risk of heavy metals leaching and subsequent water pollution. Resting and alternate use of different soil-plant buffer zones would increase the lifespan of purging systems that use soil like the here studied one.
Pedologic and climatic controls on Rn-222 concentrations in soil gas, Denver, Colorado
Asher-Bolinder, S.; Owen, D.E.; Schumann, R.R.
1990-01-01
Soil-gas radon concentrations are controlled seasonally by factors of climate and pedology. In a swelling soil of the semiarid Western United States, soil-gas radon concentrations at 100 cm depth increase in winter and spring due to increased emanation with higher soil moisture and the capping effect of surface water or ice. Radon concentrations in soil drop markedly through the summer and fall. The increased insolation of spring and summer warms and dries the soil, limiting the amount of water that reaches 100 cm. Probable controls on the distribution of uranium within the soil column include its downward leaching, its precipitation or adsorption onto B-horizon clays, concretions, or cement, and the uranium content and mineralogy of the soil's granitic and gneissic precursors. -from Authors
Smouldering bog wildfires and possible implications in palaeoenvironmental reconstructions
NASA Astrophysics Data System (ADS)
Zaccone, C.; Rein, G.; D'Orazio, V.; Hadden, R.; Belcher, C. M.; Miano, T. M.
2012-04-01
Ombrotrophic (i.e., rainwater-fed) peat bogs have been recognized as providing excellent records of past environmental changes over the last millennia. They are well known to provide information on both climatic and vegetational changes, and the deposition of organic and inorganic pollutants from anthropogenic vs. lithogenic sources. Whether they also record well past fire activity is an unresolved issue to date. Peatland ecosystems are most at risk from smouldering fires, especially in drought conditions. Smouldering fires are slow, low temperature, flameless and the most persistent form of combustion of organic matter (OM) in porous form. It is known to consume dozen of times more peat mass than flaming fires. Importantly, the in-depth oxidation reaction in smouldering leaves few charred remains, which hampers their identification in palaeoenvironmental analyses. Smouldering even consumes the possible pyrogenic char produced by flaming wildfires. Most studies on smouldering peatland fires to date have focused on ignition and carbon losses/emissions, leaving a significant gap in our understanding of OM changes following fires. In the present work, we present new data which suggest that variations in the chemical signature of OM in peatlands provides a possibility of identifying past peatland fires. In particular, we show results from a laboratory study about the physical, chemical and spectroscopic changes in OM features following a smouldering fire. We initiated a smouldering fire on top of three sphagnum peat columns (26 cm deep) each having a different initial moisture content (MC) designed to reflect dry conditions (55% MC), undisturbed conditions (90% MC), and wet conditions (210% MC). The fires were allowed to propagate downwards until they self-extinguished at some distance from the top. After the fire, we tracked chemical variations in the residual columns to determine the possible signature of natural past smouldering peatland fires. The analysis shows a consistent variation in the vertical direction of chemical markers below the point at which the fire front propagated the columns. The depth over which the chemical markers vary is apparent down to 5 cm in 55% MC (the whole residual column), and 8 cm deep in 90% MC. No significant variation of any of the chemical parameters was observed in the 210% MC column. The results of this study show that smouldering fires could occur also when bogs are in undisturbed hydrological conditions (e.g., near 100%MC), and that zone affected by smouldering fire is revealed by the presence of: 1) a strong increases of pH and ash content; 2) higher contents of aromatic and condensed molecules (as suggested by higher C/H values and by fluorescence spectra); 3) higher total N content leading to a decrease in C/N ratio. These data show potential to track similar variations in cores taken from peat bogs where they may serve as new proxies for the identification of past fire events. Moreover, these findings suggest the possibility that similar chemical and physical signatures detected in previous peatland cores may have been ascribed to the wrong past climatic or hydrological variations, as fire induced changes had not been considered before. In particular, peaks in ash content, such as those observed in our study (e.g.. ca. 13% in the 90% MC residue vs. 3% in the undisturbed peat), have in the past been ascribed to an increase of either dust depositions or mineralization processes typically linked to climatic changes. Similarly, large variations in pH values (e.g., >6 in the 90% MC residue vs.
Lacustrine records of Holocene climate and environmental change from the Lofoten Islands, Norway
NASA Astrophysics Data System (ADS)
Balascio, Nicholas L.
Lakes sediments from the Lofoten Islands, Norway, can be used to generate well resolved records of past climate and environmental change. This dissertation presents three lacustrine paleoenvironmental reconstructions that show evidence for Holocene climate changes associated with North Atlantic climate dynamics and relative sea-level variations driven by glacio-isostatic adjustment. This study also uses distal tephra deposits (cryptotephra) from Icelandic volcanic eruptions to improve the chronologies of these reconstructions and explores new approaches to crypto-tephrochronology. Past and present conditions at Vikjordvatnet, Fiskebolvatnet, and Heimerdalsvatnet were studied during four field seasons conducted from 2007--2010. Initially, each lake was characterized by measuring water column chemistry, logging annual temperature fluctuations, and conducting bathymetric and seismic surveys. Sediment cores were then collected and analyzed using multiple techniques, including: sediment density, magnetic susceptibility, loss-on-ignition, total carbon and nitrogen, delta13C and delta 15N of organic matter, and elemental compositions acquired by scanning X-ray fluorescence. Chronologies were established using radiocarbon dating and tephrochronology. A 13.8 cal ka BP record from Vikjordvatnet provides evidence for glacial activity during the Younger Dryas cold interval and exhibits trends in Ti, Fe, and organic content during the Holocene that correlate with regional millennial-scale climate trends and provide evidence for more rapid events. A 9.7 cal ka BP record from Fiskebolvatnet shows a strong signal of sediment inwashing likely driven by local geomorphic conditions, although there is evidence that increased inwashing at the onset of the Neoglacial could have been associated with increased precipitation. Heimerdalsvatnet provides a record of relative sea-level change. A 7.8 cal ka BP sedimentary record reflects changes in salinity and water column conditions as the lake was isolated and defines sea-level regression following the Tapes transgression. Cryptotephra horizons were identified in sediments of Heimerdalsvatnet, Vikjordvatnet, and Sverigedalsvatn. They were also found in a Viking-age boathouse excavated along the shore of Inner Borgpollen. These include the GA4-85, BIP-24a, SILK-N2, Askja, 860 Layer B, Hekla 1158, Hekla 1104, Vedde Ash, and Saksunarvatn tephra. This research project also explored the use of scanning XRF to locate cryptotephra in lacustrine sediments and presents experimental results of XRF scans of tephra-spiked synthetic sediment cores.
NASA Technical Reports Server (NTRS)
Stevenson, D.S.; Young, P.J.; Naik, V.; Lamarque, J.-F.; Shindell, D. T.; Voulgarakis, A.; Skeie, R. B.; Dalsoren, S. B.; Myhre, G.; Berntsen, T. K.;
2013-01-01
Ozone (O3) from 17 atmospheric chemistry models taking part in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) has been used to calculate tropospheric ozone radiative forcings (RFs). All models applied a common set of anthropogenic emissions, which are better constrained for the present-day than the past. Future anthropogenic emissions follow the four Representative Concentration Pathway (RCP) scenarios, which define a relatively narrow range of possible air pollution emissions. We calculate a value for the pre-industrial (1750) to present-day (2010) tropospheric ozone RF of 410 mW m-2. The model range of pre-industrial to present-day changes in O3 produces a spread (+/-1 standard deviation) in RFs of +/-17%. Three different radiation schemes were used - we find differences in RFs between schemes (for the same ozone fields) of +/-10 percent. Applying two different tropopause definitions gives differences in RFs of +/-3 percent. Given additional (unquantified) uncertainties associated with emissions, climate-chemistry interactions and land-use change, we estimate an overall uncertainty of +/-30 percent for the tropospheric ozone RF. Experiments carried out by a subset of six models attribute tropospheric ozone RF to increased emissions of methane (44+/-12 percent), nitrogen oxides (31 +/- 9 percent), carbon monoxide (15 +/- 3 percent) and non-methane volatile organic compounds (9 +/- 2 percent); earlier studies attributed more of the tropospheric ozone RF to methane and less to nitrogen oxides. Normalising RFs to changes in tropospheric column ozone, we find a global mean normalised RF of 42 mW m(-2) DU(-1), a value similar to previous work. Using normalised RFs and future tropospheric column ozone projections we calculate future tropospheric ozone RFs (mW m(-2); relative to 1750) for the four future scenarios (RCP2.6, RCP4.5, RCP6.0 and RCP8.5) of 350, 420, 370 and 460 (in 2030), and 200, 300, 280 and 600 (in 2100). Models show some coherent responses of ozone to climate change: decreases in the tropical lower troposphere, associated with increases in water vapour; and increases in the sub-tropical to mid-latitude upper troposphere, associated with increases in lightning and stratosphere-to-troposphere transport. Climate change has relatively small impacts on global mean tropospheric ozone RF.
NASA Astrophysics Data System (ADS)
Arndt, Sandra
2016-04-01
Marine sediments are key components in the Earth System. They host the largest carbon reservoir on Earth, provide the only long term sink for atmospheric CO2, recycle nutrients and represent the most important climate archive. Biogeochemical processes in marine sediments are thus essential for our understanding of the global biogeochemical cycles and climate. They are first and foremost, donor controlled and, thus, driven by the rain of particulate material from the euphotic zone and influenced by the overlying bottom water. Geochemical species may undergo several recycling loops (e.g. authigenic mineral precipitation/dissolution) before they are either buried or diffuse back to the water column. The tightly coupled and complex pelagic and benthic process interplay thus delays recycling flux, significantly modifies the depositional signal and controls the long-term removal of carbon from the ocean-atmosphere system. Despite the importance of this mutual interaction, coupled regional/global biogeochemical models and (paleo)climate models, which are designed to assess and quantify the transformations and fluxes of carbon and nutrients and evaluate their response to past and future perturbations of the climate system either completely neglect marine sediments or incorporate a highly simplified representation of benthic processes. On the other end of the spectrum, coupled, multi-component state-of-the-art early diagenetic models have been successfully developed and applied over the past decades to reproduce observations and quantify sediment-water exchange fluxes, but cannot easily be coupled to pelagic models. The primary constraint here is the high computation cost of simulating all of the essential redox and equilibrium reactions within marine sediments that control carbon burial and benthic recycling fluxes: a barrier that is easily exacerbated if a variety of benthic environments are to be spatially resolved. This presentation provides an integrative overview of the benthic-pelagic coupling that accounts for the complex process interplay from the euphotic ocean to the deep sediment. It explores the intensity of the benthic-pelagic coupling across different environments and from the seasonal to the geological timescale. Different modelling approaches of coupling sediment and water column dynamics in regional/global biogeochemical models and (paleo)climate models are critically evaluated and their most important limitations, as well as the implications for our ability to predict the response of the global carbon cycle to past or future perturbations is discussed. Finally, the presentation identifies major roadblocks to the development of new model approaches and highlights how new techniques, new observational and laboratory data, as well as a close interdisciplinary collaboration can overcome these roadblocks.
Moreau, Robert A; Kohout, Karen; Singh, Vijay
2002-12-01
Previous attempts at separating nonpolar lipid esters (including wax esters, sterol esters, and methyl esters) have achieved only limited success. Among the several normal-phase methods tested, a single recent report of a method employing an alumina column at 30 degrees C with a binary gradient system was the most promising. In the current study, modification of the alumina method by increasing the column temperature to 75 degrees C improved the separation of standards of wax esters and sterol esters. Elevated column temperature also enhanced the separation of FAME with differing degrees of unsaturation. Evidence was also presented to indicate that the method similarly separated phytosterol esters, based on their levels of unsaturation. With the increased interest in phytosterol- and phytostanol-ester enriched functional foods, this method should provide a technique to characterize and compare these products.
Ion exchange of several radionuclides on the hydrous crystalline silicotitanate, UOP IONSIV IE-911
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huckman, M.E.; Latheef, I.M.; Anthony, R.G.
1999-04-01
The crystalline silicotitanate, UOP IONSIV IE-911, is a proven material for removing radionuclides from a wide variety of waste streams. It is superior for removing several radionuclides from the highly alkaline solutions typical of DOE wastes. This laboratory previously developed an equilibrium model applicable to complex solutions for IE-910 (the power form of the granular IE-911), and more recently, the authors have developed several single component ion-exchange kinetic models for predicting column breakthrough curves and batch reactor concentration histories. In this paper, the authors model ion-exchange column performance using effective diffusivities determined from batch kinetic experiments. This technique is preferablemore » because the batch experiments are easier, faster, and cheaper to perform than column experiments. They also extend these ideas to multicomponent systems. Finally, they evaluate the ability of the equilibrium model to predict data for IE-911.« less
Radial Profiles of the Plasma Electron Characteristics in a 30 kW Arc Jet
NASA Technical Reports Server (NTRS)
Codron, Douglas A.; Nawaz, Anuscheh
2013-01-01
The present effort aims to strengthen modeling work conducted at the NASA Ames Research Center by measuring the critical plasma electron characteristics within and slightly outside of an arc jet plasma column. These characteristics are intended to give physical insights while assisting in the formulation of boundary conditions to validate full scale simulations. Single and triple Langmuir probes have been used to achieve estimates of the electron temperature (T(sub e)), electron number density (n(sub e)) and plasma potential (outside of the plasma column) as probing location is varied radially from the flow centerline. Both the electron temperature and electron number density measurements show a large dependence on radial distance from the plasma column centerline with T(sub e) approx. = (3 - 12 eV and n(sub e) approx. = 10(exp 12) - 10(exp 14)/cu cm.
Selbig, William R.
2014-01-01
A new sample collection system was developed to improve the representation of sediment in stormwater by integrating the entire water column. The depth-integrated sampler arm (DISA) was able to mitigate sediment stratification bias in storm water, thereby improving the characterization of particle size distribution from urban source areas. Collector streets had the lowest median particle diameter of 8 μm, followed by parking lots, arterial streets, feeder streets, and residential and mixed land use (32, 43, 50, 80 and 95 μm, respectively). Results from this study suggest there is no single distribution of particles that can be applied uniformly to runoff in urban environments; however, integrating more of the entire water column during the sample collection can address some of the shortcomings of a fixed-point sampler by reducing variability and bias caused by the stratification of solids in a water column.
Distributed control of large space antennas
NASA Technical Reports Server (NTRS)
Cameron, J. M.; Hamidi, M.; Lin, Y. H.; Wang, S. J.
1983-01-01
A systematic way to choose control design parameters and to evaluate performance for large space antennas is presented. The structural dynamics and control properties for a Hoop and Column Antenna and a Wrap-Rib Antenna are characterized. Some results of the effects of model parameter uncertainties to the stability, surface accuracy, and pointing errors are presented. Critical dynamics and control problems for these antenna configurations are identified and potential solutions are discussed. It was concluded that structural uncertainties and model error can cause serious performance deterioration and can even destabilize the controllers. For the hoop and column antenna, large hoop and long meat and the lack of stiffness between the two substructures result in low structural frequencies. Performance can be improved if this design can be strengthened. The two-site control system is more robust than either single-site control systems for the hoop and column antenna.
Wu, Ming-Chang; Lin, Guan-Hui; Wang, Yuh-Tai; Jiang, Chii-Ming; Chang, Hung-Min
2005-10-05
Alcohol-insoluble solids (AIS) from pea pod were cross-linked (CL-AIS) and used as an affinity gel matrix to isolate pectin esterases (PEs) from tendril shoots of chayote (TSC) and jelly fig achenes (JFA), and the results were compared with those isolated by ion-exchange chromatography with a commercial resin. CL-AIS gel matrix in a column displayed poor absorption and purification fold of PE; however, highly methoxylated CL-AIS (HM-CL-AIS), by exposing CL-AIS to methanolic sulfuric acid to increase the degree of esterification (DE) to 92%, facilitated the enzyme purification. The purified TSC PE and JFA PE by the HM-CL-AIS column were proofed as a single band on an SDS-PAGE gel, showing that the HM-CL-AIS column was a good matrix for purification of PE, either with alkaline isoelectric point (pI) (TSC PE) or with acidic pI (JFA PE).
Analysis on the optical aberration effect on spectral resolution of coded aperture spectroscopy
NASA Astrophysics Data System (ADS)
Hao, Peng; Chi, Mingbo; Wu, Yihui
2017-10-01
The coded aperture spectrometer can achieve high throughput and high spectral resolution by replacing the traditional single slit with two-dimensional array slits manufactured by MEMS technology. However, the sampling accuracy of coding spectrum image will be distorted due to the existence of system aberrations, machining error, fixing errors and so on, resulting in the declined spectral resolution. The influence factor of the spectral resolution come from the decode error, the spectral resolution of each column, and the column spectrum offset correction. For the Czerny-Turner spectrometer, the spectral resolution of each column most depend on the astigmatism, in this coded aperture spectroscopy, the uncorrected astigmatism does result in degraded performance. Some methods must be used to reduce or remove the limiting astigmatism. The curvature of field and the spectral curvature can be result in the spectrum revision errors.
NASA Astrophysics Data System (ADS)
Reichel, Katharina; Totsche, Kai Uwe
2013-04-01
Biogeochemical interfaces in soils (Totsche et al. 2010) are the "hot spots" of microbial activity and the processing of organic compounds in soils. The production and relocation of mobile organic matter (MOM) and biocolloids like microorganisms are key processes for the formation and depth propagation of biogeochemical interfaces in soils (BGI). Phenanthrene (PHE) has been shown to affect microbial communities in soils (Ding et al. 2012) and may induce shifts in MOM quantity and quality (amount, type and properties of MOM). We hypothesize that the properties of BGI in soil change significantly due to the presence of PHE. The objectives of this study are (i) to evaluate the effect of PHE on soil microbial communities and on MOM quantity and quality under flow conditions with single- and two-layer column experiments and (ii) to assess the role of these processes for the physicochemical, mechanical and sorptive properties of BGI in soils. The soil columns were operated under water-unsaturated conditions. The top layer (source layer, SL, 2 cm) is made of sieved soil material (Luvisol, Scheyern, Germany) spiked with PHE (0.2 mg/g). The bottom layer (reception layer, RL, 10 cm) comprised the same soil without PHE. PHE-free columns were conducted in parallel as reference. Release and transport of MOM in mature soil of a single-layer column experiment was found to depend on the transport regime. The release of larger sized MOM (>0.45 µm) was restricted to an increased residence time during flow interruptions. Steady flow conditions favor the release of smaller MOM (<0.45 µm). Compared to the reference, in the two-layer column experiments higher OC concentrations were detected in the effluent from PHE spiked columns after enhanced flow interruptions (26d, 52d). That indicated the PHE influenced production or mobilization of MOM. Parallel factor analysis of fluorescence excitation and emission matrices revealed the presence of a constant DOM background and two new unknown components in the effluent, probably PHE metabolites. The emergence of new components emphasizes the role of metabolization processes in the release of MOM. The identification of key microbial actors and communities are currently in progress. Totsche, K.U. et al. (2010): Biogeochemical interfaces in soil: The interdisciplinary challenge for soil science. J. Plant Nutr. Soil Sci., 173(1), 88-99 Ding, G.-C., Heuer, H. & Smalla, K. (2012): Dynamics of bacterial communities in two unpolluted soils after spiking with phenanthrene: soil type specific and common responders. Front Microbio 10.3389/fmicb.2012.00290.
Interweaving climate research and public understanding
NASA Astrophysics Data System (ADS)
Betts, A. K.
2016-12-01
For the past 10 years I have been using research into land-atmosphere-cloud coupling to address Vermont's need to understand climate change, and develop plans for greater resilience in the face of increasing severe weather. The research side has shown that the fraction of days with snow cover determines the cold season climate, because snow acts as a fast climate switch between non-overlapping climates with and without snow cover. Clouds play opposite roles in warm and cold seasons: surface cooling in summer and warming in winter. The later fall freeze-up and earlier spring ice-out on lakes, coupled to the earlier spring phenology, are clear markers both of a warming climate, as well as the large interannual variability. Severe flooding events have come with large-scale quasi-stationary weather patterns. This past decade I have given 230 talks to schools, business and professional groups, as well as legislative committees and state government. I have written 80 environmental columns for two Vermont newspapers, as part of a weekly series I helped start in 2008. Commentaries and interviews on radio and TV enable me to explain directly the issues we face, as the burning of fossil fuels destabilizes the climate system. The public in Vermont is eager to learn and understand these issues since many have roots in the land; while professional groups need all the information and guidance possible to prepare for the future. My task as a scientist is to map out what we know in ways that can readily be grasped in terms of past experience, even though the climate system is already moving outside this range - and at the same time outline general principles and hopeful strategies for dealing with global and local climate change.
Influence of tropical atmospheric variability on Weddell Sea deep water convection
NASA Astrophysics Data System (ADS)
Kleppin, H.
2016-02-01
Climate reconstructions from ice core records in Greenland and Antarctica have revealed a series of abrupt climate transitions, showing a distinct relationship between northern and southern hemisphere climate during the last glacial period. The recent ice core records from West Antarctica (WAIS) point towards an atmospheric teleconnection as a possible trigger for the interhemispheric climate variability (Markle et al., 2015). An unforced simulation of the Community Climate System Model, version 4 (CCSM4) reveals Greenland warming and cooling events, caused by stochastic atmospheric forcing, that resemble Dansgaard-Oeschger cycles in pattern and magnitude (Kleppin et al., 2015). Anti-phased temperature changes in the Southern Hemisphere are small in magnitude and have a spatially varying pattern. We argue that both north and south high latitude climate variability is triggered by changes in tropical atmospheric deep convection in the western tropical Pacific. The atmospheric wave guide provides a fast communication pathway connecting the deep tropics and the polar regions. In the Southern Hemisphere this is manifested as a distinct pressure pattern over West Antarctica. These altered atmospheric surface conditions over the convective region can lead to destabilization of the water column and thus to convective overturning in the Weddell Sea. However, opposed to what is seen in the Northern Hemisphere no centennial scale variability can establish, due to the absence of a strong feedback mechanism between ocean, atmosphere and sea ice. Kleppin, H., Jochum, M., Otto-Bliesner, B., Shields, C. A., & Yeager, S. (2015). Stochastic Atmospheric Forcing as a Cause of Greenland Climate Transitions. Journal of Climate, (2015). Markle, B. and Coauthors (2015, April). Atmospheric teleconnections between the tropics and high southern latitudes during millennial climate change. In EGU General Assembly Conference Abstracts (Vol. 17, p. 2569).
NASA Astrophysics Data System (ADS)
Rustic, G. T.; Polissar, P. J.; Ravelo, A. C.; White, S. M.
2017-12-01
The El Niño Southern Oscillation (ENSO) plays a dominant role in Earth's climate variability. Paleoceanographic evidence suggests that ENSO has changed in the past, and these changes have been linked to large-scale climatic shifts. While a close relationship between ENSO evolution and climate boundary conditions has been predicted, testing these predictions remains challenging. These climate boundary conditions, including insolation, the mean surface temperature gradient of the tropical Pacific, global ice volume, and tropical thermocline depth, often co-vary and may work together to suppress or enhance the ocean-atmosphere feedbacks that drive ENSO variability. Furthermore, suitable paleo-archives spanning multiple climate states are sparse. We have aimed to test ENSO response to changing climate boundary conditions by generating new reconstructions of mixed-layer variability from sedimentary archives spanning the last three glacial-interglacial cycles from the Central Tropical Pacific Line Islands, where El Niño is strongly expressed. We analyzed Mg/Ca ratios from individual foraminifera to reconstruct mixed-layer variability at discrete time intervals representing combinations of climatic boundary conditions from the middle Holocene to Marine Isotope Stage (MIS) 8. We observe changes in the mixed-layer temperature variability during MIS 5 and during the previous interglacial (MIS 7) showing significant reductions in ENSO amplitude. Differences in variability during glacial and interglacial intervals are also observed. Additionally, we reconstructed mixed-layer and thermocline conditions using multi-species Mg/Ca and stable isotope measurements to more fully characterize the state of the Central Tropical Pacific during these intervals. These reconstructions provide us with a unique view of Central Tropical Pacific variability and water-column structure at discrete intervals under varying boundary climate conditions with which to assess factors that shape ENSO variability.
An ARM data-oriented diagnostics package to evaluate the climate model simulation
NASA Astrophysics Data System (ADS)
Zhang, C.; Xie, S.
2016-12-01
A set of diagnostics that utilize long-term high frequency measurements from the DOE Atmospheric Radiation Measurement (ARM) program is developed for evaluating the regional simulation of clouds, radiation and precipitation in climate models. The diagnostics results are computed and visualized automatically in a python-based package that aims to serve as an easy entry point for evaluating climate simulations using the ARM data, as well as the CMIP5 multi-model simulations. Basic performance metrics are computed to measure the accuracy of mean state and variability of simulated regional climate. The evaluated physical quantities include vertical profiles of clouds, temperature, relative humidity, cloud liquid water path, total column water vapor, precipitation, sensible and latent heat fluxes, radiative fluxes, aerosol and cloud microphysical properties. Process-oriented diagnostics focusing on individual cloud and precipitation-related phenomena are developed for the evaluation and development of specific model physical parameterizations. Application of the ARM diagnostics package will be presented in the AGU session. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, IM release number is: LLNL-ABS-698645.
NASA Astrophysics Data System (ADS)
Muhling, B.; Gaitan, C. F.; Tommasi, D.; Saba, V. S.; Stock, C. A.; Dixon, K. W.
2016-02-01
Estuaries of the northeastern United States provide essential habitat for many anadromous fishes, across a range of life stages. Climate change is likely to impact estuarine environments and habitats through multiple pathways. Increasing air temperatures will result in a warming water column, and potentially increased stratification. In addition, changes to precipitation patterns may alter freshwater inflow dynamics, leading to altered seasonal salinity regimes. However, the spatial resolution of global climate models is generally insufficient to resolve these processes at the scale of individual estuaries. Global models can be downscaled to a regional resolution using a variety of dynamical and statistical methods. In this study, we examined projections of estuarine conditions, and future habitat extent, for several anadromous fishes in the Chesapeake Bay using different statistical downscaling methods. Sources of error from physical and biological models were quantified, and key areas of uncertainty were highlighted. Results suggested that future projections of the distribution and recruitment of species most strongly linked to freshwater flow dynamics had the highest levels of uncertainty. The sensitivity of different life stages to environmental conditions, and the population-level responses of anadromous species to climate change, were identified as important areas for further research.
Ingold, T; Mätzler, C; Wehrli, C; Heimo, A; Kämpfer, N; Philipona, R
2001-04-20
Ultraviolet light was measured at four channels (305, 311, 318, and 332 nm) with a precision filter radiometer (UV-PFR) at Arosa, Switzerland (46.78 degrees , 9.68 degrees , 1850 m above sea level), within the instrument trial phase of a cooperative venture of the Swiss Meteorological Institute (MeteoSwiss) and the Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center. We retrieved ozone-column density data from these direct relative irradiance measurements by adapting the Dobson standard method for all possible single-difference wavelength pairs and one double-difference pair (305/311 and 305/318) under conditions of cloud-free sky and of thin clouds (cloud optical depth <2.5 at 500 nm). All UV-PFR retrievals exhibited excellent agreement with those of collocated Dobson and Brewer spectrophotometers for data obtained during two months in 1999. Combining the results of the error analysis and the findings of the validation, we propose to retrieve ozone-column density by using the 305/311 single difference pair and the double-difference pair. Furthermore, combining both retrievals by building the ratio of ozone-column density yields information that is relevant to data quality control. Estimates of the 305/311 pair agree with measurements by the Dobson and Brewer instruments within 1% for both the mean and the standard deviation of the differences. For the double pair these values are in a range up to 1.6%. However, this pair is less sensitive to model errors. The retrieval performance is also consistent with satellite-based data from the Earth Probe Total Ozone Mapping Spectrometer (EP-TOMS) and the Global Ozone Monitoring Experiment instrument (GOME).
NASA Astrophysics Data System (ADS)
Ingold, Thomas; Mätzler, Christian; Wehrli, Christoph; Heimo, Alain; Kämpfer, Niklaus; Philipona, Rolf
2001-04-01
Ultraviolet light was measured at four channels (305, 311, 318, and 332 nm) with a precision filter radiometer (UV-PFR) at Arosa, Switzerland (46.78 , 9.68 , 1850 m above sea level), within the instrument trial phase of a cooperative venture of the Swiss Meteorological Institute (MeteoSwiss) and the Physikalisch-Meteorologisches Observatorium Davos /World Radiation Center. We retrieved ozone-column density data from these direct relative irradiance measurements by adapting the Dobson standard method for all possible single-difference wavelength pairs and one double-difference pair (305 /311 and 305 /318) under conditions of cloud-free sky and of thin clouds (cloud optical depth <2.5 at 500 nm). All UV-PFR retrievals exhibited excellent agreement with those of collocated Dobson and Brewer spectrophotometers for data obtained during two months in 1999. Combining the results of the error analysis and the findings of the validation, we propose to retrieve ozone-column density by using the 305 /311 single difference pair and the double-difference pair. Furthermore, combining both retrievals by building the ratio of ozone-column density yields information that is relevant to data quality control. Estimates of the 305 /311 pair agree with measurements by the Dobson and Brewer instruments within 1% for both the mean and the standard deviation of the differences. For the double pair these values are in a range up to 1.6%. However, this pair is less sensitive to model errors. The retrieval performance is also consistent with satellite-based data from the Earth Probe Total Ozone Mapping Spectrometer (EP-TOMS) and the Global Ozone Monitoring Experiment instrument (GOME).
A model of the methane cycle, permafrost, and hydrology of the Siberian continental margin
NASA Astrophysics Data System (ADS)
Archer, D.
2015-05-01
A two-dimensional model of a sediment column, with Darcy fluid flow, biological and thermal methane production, and permafrost and methane hydrate formation, is subjected to glacial-interglacial cycles in sea level, alternately exposing the continental shelf to the cold atmosphere during glacial times and immersing it in the ocean in interglacial times. The glacial cycles are followed by a "long-tail" 100 kyr warming due to fossil fuel combustion. The salinity of the sediment column in the interior of the shelf can be decreased by hydrological forcing to depths well below sea level when the sediment is exposed to the atmosphere. There is no analogous advective seawater-injecting mechanism upon resubmergence, only slower diffusive mechanisms. This hydrological ratchet is consistent with the existence of freshwater beneath the sea floor on continental shelves around the world, left over from the last glacial period. The salt content of the sediment column affects the relative proportions of the solid and fluid H2O-containing phases, but in the permafrost zone the salinity in the pore fluid brine is a function of temperature only, controlled by equilibrium with ice. Ice can tolerate a higher salinity in the pore fluid than methane hydrate can at low pressure and temperature, excluding methane hydrate from thermodynamic stability in the permafrost zone. The implication is that any methane hydrate existing today will be insulated from anthropogenic climate change by hundreds of meters of sediment, resulting in a response time of thousands of years. The strongest impact of the glacial-interglacial cycles on the atmospheric methane flux is due to bubbles dissolving in the ocean when sea level is high. When sea level is low and the sediment surface is exposed to the atmosphere, the atmospheric flux is sensitive to whether permafrost inhibits bubble migration in the model. If it does, the atmospheric flux is highest during the glaciating, sea level regression (soil-freezing) part of the cycle rather than during deglacial transgression (warming and thawing). The atmospheric flux response to a warming climate is small, relative to the rest of the methane sources to the atmosphere in the global budget, because of the ongoing flooding of the continental shelf. The increased methane flux due to ocean warming could be completely counteracted by a sea level rise of tens of meters on millennial timescales due to the loss of ice sheets, decreasing the efficiency of bubble transit through the water column. The model results give no indication of a mechanism by which methane emissions from the Siberian continental shelf could have a significant impact on the near-term evolution of Earth's climate, but on millennial timescales the release of carbon from hydrate and permafrost could contribute significantly to the fossil fuel carbon burden in the atmosphere-ocean-terrestrial carbon cycle.
A model of the methane cycle, permafrost, and hydrology of the Siberian continental margin
Archer, D.
2015-05-21
A two-dimensional model of a sediment column, with Darcy fluid flow, biological and thermal methane production, and permafrost and methane hydrate formation, is subjected to glacial–interglacial cycles in sea level, alternately exposing the continental shelf to the cold atmosphere during glacial times and immersing it in the ocean in interglacial times. The glacial cycles are followed by a "long-tail" 100 kyr warming due to fossil fuel combustion. The salinity of the sediment column in the interior of the shelf can be decreased by hydrological forcing to depths well below sea level when the sediment is exposed to the atmosphere. Theremore » is no analogous advective seawater-injecting mechanism upon resubmergence, only slower diffusive mechanisms. This hydrological ratchet is consistent with the existence of freshwater beneath the sea floor on continental shelves around the world, left over from the last glacial period. The salt content of the sediment column affects the relative proportions of the solid and fluid H 2O-containing phases, but in the permafrost zone the salinity in the pore fluid brine is a function of temperature only, controlled by equilibrium with ice. Ice can tolerate a higher salinity in the pore fluid than methane hydrate can at low pressure and temperature, excluding methane hydrate from thermodynamic stability in the permafrost zone. The implication is that any methane hydrate existing today will be insulated from anthropogenic climate change by hundreds of meters of sediment, resulting in a response time of thousands of years. The strongest impact of the glacial–interglacial cycles on the atmospheric methane flux is due to bubbles dissolving in the ocean when sea level is high. When sea level is low and the sediment surface is exposed to the atmosphere, the atmospheric flux is sensitive to whether permafrost inhibits bubble migration in the model. If it does, the atmospheric flux is highest during the glaciating, sea level regression (soil-freezing) part of the cycle rather than during deglacial transgression (warming and thawing). The atmospheric flux response to a warming climate is small, relative to the rest of the methane sources to the atmosphere in the global budget, because of the ongoing flooding of the continental shelf. The increased methane flux due to ocean warming could be completely counteracted by a sea level rise of tens of meters on millennial timescales due to the loss of ice sheets, decreasing the efficiency of bubble transit through the water column. The model results give no indication of a mechanism by which methane emissions from the Siberian continental shelf could have a significant impact on the near-term evolution of Earth's climate, but on millennial timescales the release of carbon from hydrate and permafrost could contribute significantly to the fossil fuel carbon burden in the atmosphere–ocean–terrestrial carbon cycle.« less
NASA Astrophysics Data System (ADS)
Jrrar, Amna; Abraham, N. Luke; Pyle, John A.; Holland, David
2014-05-01
Changes in sea ice significantly modulate climate change because of its high reflective and insulating nature. While Arctic Sea Ice Extent (SIE) shows a negative trend. Antarctic SIE shows a weak but positive trend, estimated at 0.127 x 106 km2 per decade. The trend results from large regional cancellations, more ice in the Weddell and the Ross seas, and less ice in the Amundsen - Bellingshausen seas. A number of studies had demonstrated that stratospheric ozone depletion has had a major impact on the atmospheric circulation, causing a positive trend in the Southern Annular Mode (SAM), which has been linked to the observed positive trend in autumn sea ice in the Ross Sea. However, other modelling studies show that models forced with prescribed ozone hole simulate decreased sea ice in all regions comparative to a control run. A recent study has also shown that stratospheric ozone recovery will mitigate Antarctic sea ice loss. To verify this assumed relationship, it is important first to investigate the covariance between ozone's natural (dynamical) variability and Antarctic sea ice distribution in pre-industrial climate, to estimate the trend due to natural variability. We investigate the relationship between anomalous Antarctic ozone years and the subsequent changes in Antarctic sea ice distribution in a multidecadal control simulation using the AO-UMUKCA model. The model has a horizontal resolution of 3.75 X 2.5 degrees in longitude and latitude; and 60 hybrid height levels in the vertical, from the surface up to a height of 84 km. The ocean component is the NEMO ocean model on the ORCA2 tripolar grid, and the sea ice model is CICE. We evaluate the model's performance in terms of sea ice distribution, and we calculate sea ice extent trends for composites of anomalously low versus anomalously high SH polar ozone column. We apply EOF analysis to the seasonal anomalies of sea ice concentration, MSLP, and Z 500, and identify the leading climate modes controlling the variability of Antarctic sea ice in each case, and study their relationship with SH polar ozone column.
The Mars Climate Database (MCD version 5.3)
NASA Astrophysics Data System (ADS)
Millour, Ehouarn; Forget, Francois; Spiga, Aymeric; Vals, Margaux; Zakharov, Vladimir; Navarro, Thomas; Montabone, Luca; Lefevre, Franck; Montmessin, Franck; Chaufray, Jean-Yves; Lopez-Valverde, Miguel; Gonzalez-Galindo, Francisco; Lewis, Stephen; Read, Peter; Desjean, Marie-Christine; MCD/GCM Development Team
2017-04-01
Our Global Circulation Model (GCM) simulates the atmospheric environment of Mars. It is developped at LMD (Laboratoire de Meteorologie Dynamique, Paris, France) in close collaboration with several teams in Europe (LATMOS, France, University of Oxford, The Open University, the Instituto de Astrofisica de Andalucia), and with the support of ESA (European Space Agency) and CNES (French Space Agency). GCM outputs are compiled to build a Mars Climate Database, a freely available tool useful for the scientific and engineering communities. The Mars Climate Database (MCD) has over the years been distributed to more than 300 teams around the world. The latest series of reference simulations have been compiled in a new version (v5.3) of the MCD, released in the first half of 2017. To summarize, MCD v5.3 provides: - Climatologies over a series of synthetic dust scenarios: standard (climatology) year, cold (ie: low dust), warm (ie: dusty atmosphere) and dust storm, all topped by various cases of Extreme UV solar inputs (low, mean or maximum). These scenarios have been derived from home-made, instrument-derived (TES, THEMIS, MCS, MERs), dust climatology of the last 8 Martian years. The MCD also provides simulation outputs (MY24-31) representative of these actual years. - Mean values and statistics of main meteorological variables (atmospheric temperature, density, pressure and winds), as well as surface pressure and temperature, CO2 ice cover, thermal and solar radiative fluxes, dust column opacity and mixing ratio, [H20] vapor and ice columns, concentrations of many species: [CO], [O2], [O], [N2], [H2], [O3], ... - A high resolution mode which combines high resolution (32 pixel/degree) MOLA topography records and Viking Lander 1 pressure records with raw lower resolution GCM results to yield, within the restriction of the procedure, high resolution values of atmospheric variables. - The possibility to reconstruct realistic conditions by combining the provided climatology with additional large scale and small scale perturbations schemes. At EGU, we will report on the latest improvements in the Mars Climate Database, with comparisons with available measurements from orbit (e.g.: TES, MCS) and landers (Viking, Phoenix, MSL).
High-resolution, high-throughput imaging with a multibeam scanning electron microscope.
Eberle, A L; Mikula, S; Schalek, R; Lichtman, J; Knothe Tate, M L; Zeidler, D
2015-08-01
Electron-electron interactions and detector bandwidth limit the maximal imaging speed of single-beam scanning electron microscopes. We use multiple electron beams in a single column and detect secondary electrons in parallel to increase the imaging speed by close to two orders of magnitude and demonstrate imaging for a variety of samples ranging from biological brain tissue to semiconductor wafers. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honaker, R.Q.; Reed, S.
1995-12-31
Column flotation provides excellent recovery of ultrafine coal while producing low ash content concentrates. However, column flotation is not efficient for treating fine coal containing significant amounts of mixed-phase particles. Fortunately, enhanced gravity separation has proved to have the ability to treat the mixed-phased particles more effectively. A disadvantage of gravity separation is that ultrafine clay particles are not easily rejected. Thus, a combination of these two technologies may provide a circuit that maximizes both the ash and sulfur rejection that can be achieved by physical coal cleaning while maintaining a high energy recovery. This project is studying the potentialmore » of using different combinations of gravity separators, i.e., a Floatex hydrosizer and a Falcon Concentrator, and a proven flotation column, which will be selected based on previous studies by the principle investigator. During this reporting period, an extensive separation performance comparison between a pilot-scale Floatex Density Separator (18{times}18-inch) and an existing spiral circuit has been conducted at Kerf-McGee Coal Preparation plan for the treatment of nominally {minus}16 mesh coal. The results indicate that the Floatex is a more efficient separation device (E{sub p}=0.12) than a conventional coal spiral (E{sub p}=0.18) for Illinois seam coals. In addition, the treatment of {minus}100 mesh Illinois No. 5 fine coal from the same plant using Falcon concentrator, column flotation (Packed-Column) and their different combinations was also evaluated. For a single operation, both Falcon concentrator and column flotation can produce a clean coal product with 90% combustible recovery and 5% ash content. In the case of the combined circuit, column flotation followed by the Falcon achieved a higher combustible recovery value (about 75%) than that obtained by the individual units while maintaining an ash content less than 3%.« less
NASA Astrophysics Data System (ADS)
Liu, X.; Zhang, M.; Zhang, D.; Wang, Z.; Wang, Y.
2017-12-01
Mixed-phase clouds are persistently observed over the Arctic and the phase partitioning between cloud liquid and ice hydrometeors in mixed-phase clouds has important impacts on the surface energy budget and Arctic climate. In this study, we test the NCAR Community Atmosphere Model Version 5 (CAM5) with the single-column and weather forecast configurations and evaluate the model performance against observation data from the DOE Atmospheric Radiation Measurement (ARM) Program's M-PACE field campaign in October 2004 and long-term ground-based multi-sensor remote sensing measurements. Like most global climate models, we find that CAM5 also poorly simulates the phase partitioning in mixed-phase clouds by significantly underestimating the cloud liquid water content. Assuming pocket structures in the distribution of cloud liquid and ice in mixed-phase clouds as suggested by in situ observations provides a plausible solution to improve the model performance by reducing the Wegner-Bergeron-Findeisen (WBF) process rate. In this study, the modification of the WBF process in the CAM5 model has been achieved with applying a stochastic perturbation to the time scale of the WBF process relevant to both ice and snow to account for the heterogeneous mixture of cloud liquid and ice. Our results show that this modification of WBF process improves the modeled phase partitioning in the mixed-phase clouds. The seasonal variation of mixed-phase cloud properties is also better reproduced in the model in comparison with the long-term ground-based remote sensing observations. Furthermore, the phase partitioning is insensitive to the reassignment time step of perturbations.
The ice cap zone: a unique habitable zone for ocean worlds
NASA Astrophysics Data System (ADS)
Ramirez, Ramses M.; Levi, Amit
2018-07-01
Traditional definitions of the habitable zone assume that habitable planets contain a carbonate-silicate cycle that regulates CO2 between the atmosphere, surface, and the interior. Such theories have been used to cast doubt on the habitability of ocean worlds. However, Levi et al. have recently proposed a mechanism by which CO2 is mobilized between the atmosphere and the interior of an ocean world. At high enough CO2 pressures, sea ice can become enriched in CO2 clathrates and sink after a threshold density is achieved. The presence of subpolar sea ice is of great importance for habitability in ocean worlds. It may moderate the climate and is fundamental in current theories of life formation in diluted environments. Here, we model the Levi et al. mechanism and use latitudinally dependent non-grey energy balance and single-column radiative-convective climate models and find that this mechanism may be sustained on ocean worlds that rotate at least 3 times faster than the Earth. We calculate the circumstellar region in which this cycle may operate for G-M stars (Teff = 2600-5800 K), extending from ˜1.23-1.65, 0.69-0.954, 0.38-0.528, 0.219-0.308 , 0.146-0.206, and 0.0428-0.0617 au for G2, K2, M0, M3, M5, and M8 stars, respectively. However, unless planets are very young and not tidally locked, our mechanism would be unlikely to apply to stars cooler than a ˜M3. We predict C/O ratios for our atmospheres (˜0.5) that can be verified by the James Webb Space Telescope mission.
Impacts of Organic Macromolecules, Chlorophyll and Soot on Arctic Sea Ice
NASA Astrophysics Data System (ADS)
Ogunro, O. O.; Wingenter, O. W.; Elliott, S.; Flanner, M.; Dubey, M. K.
2014-12-01
Recent intensification of Arctic amplification can be strongly connected to positive feedback relating black carbon deposition to sea ice surface albedo. In addition to soot deposition on the ice and snow pack, ice algal chlorophyll is likely to compete as an absorber and redistributor of energy. Hence, solar radiation absorption by chlorophyll and some components of organic macromolecules in/under the ice column is currently being examined to determine the level of influence on predicted rate of ice loss. High amounts of organic macromolecules and chlorophyll are produced in global sea ice by the bottom microbial community and also in vertically distributed layers where substantial biological activities take place. Brine channeling in columnar ice can allow for upward flow of nutrients which leads to greater primary production in the presence of moderate light. Modeling of the sea-ice processes in tandem with experiments and field observations promises rapid progress in enhancing Arctic ice predictions. We are designing and conducting global climate model experiments to determine the impact of organic macromolecules and chlorophyll on Arctic sea ice. Influences on brine network permeability and radiation/albedo will be considered in this exercise. Absorption by anthropogenic materials such as soot and black carbon will be compared with that of natural pigments. We will indicate areas of soot and biological absorption dominance in the sense of single scattering, then couple into a full radiation transfer scheme to attribute the various contributions to polar climate change amplification. The work prepares us to study more traditional issues such as chlorophyll warming of the pack periphery and chemical effects of the flow of organics from ice internal communities. The experiments started in the Arctic will broaden to include Antarctic sea ice and shelves. Results from the Arctic simulations will be presented.
NASA Astrophysics Data System (ADS)
Wu, Yenan; Zhong, Ping-an; Xu, Bin; Zhu, Feilin; Fu, Jisi
2017-06-01
Using climate models with high performance to predict the future climate changes can increase the reliability of results. In this paper, six kinds of global climate models that selected from the Coupled Model Intercomparison Project Phase 5 (CMIP5) under Representative Concentration Path (RCP) 4.5 scenarios were compared to the measured data during baseline period (1960-2000) and evaluate the simulation performance on precipitation. Since the results of single climate models are often biased and highly uncertain, we examine the back propagation (BP) neural network and arithmetic mean method in assembling the precipitation of multi models. The delta method was used to calibrate the result of single model and multimodel ensembles by arithmetic mean method (MME-AM) during the validation period (2001-2010) and the predicting period (2011-2100). We then use the single models and multimodel ensembles to predict the future precipitation process and spatial distribution. The result shows that BNU-ESM model has the highest simulation effect among all the single models. The multimodel assembled by BP neural network (MME-BP) has a good simulation performance on the annual average precipitation process and the deterministic coefficient during the validation period is 0.814. The simulation capability on spatial distribution of precipitation is: calibrated MME-AM > MME-BP > calibrated BNU-ESM. The future precipitation predicted by all models tends to increase as the time period increases. The order of average increase amplitude of each season is: winter > spring > summer > autumn. These findings can provide useful information for decision makers to make climate-related disaster mitigation plans.
Chocholous, Petr; Satínský, Dalibor; Sklenárová, Hana; Solich, Petr
2010-05-23
This work presents novel approach in low-pressure chromatography flow systems--two-column Sequential Injection Chromatography (2-C SIC) and its comparison with gradient elution chromatography on the same instrument. The system was equipped with two different chromatographic columns (connected to selection valve in parallel design) for isocratic separation and determination of all components in composed anti-inflammatory pharmaceutical preparation (tablets). The sample was first injected on the first column of length 30 mm where less retained analytes were separated and then the sample was injected on the second column of length 10 mm where more retained analytes were separated. The SIC system was based on a commercial SIChrom manifold (8-port high-pressure selection valve and medium-pressure syringe pump with 4 mL reservoir) (FIAlab, USA) with two commercially available monolithic columns the "first column" Chromolith Flash RP-18e (25 mm x 4.6 mm i.d. with guard column 5 mm x 4.6 mm i.d.) and the "second column" Chromolith RP-18e (10 mm x 4.6 mm i.d.) and CCD UV-vis detector USB 4000 with micro-volume 1.0 cm Z flow cell. Two mobile phases were used for analysis (one for each column). The mobile phase 1 used for elution of paracetamol, caffeine and salicylic acid (internal standard) was acetonitrile/water (10:90, v/v, the water part of pH 3.5 adjusted with acetic acid), flow rate was 0.9 mL min(-1) (volume 3.0 mL of mobile phase per analysis). The mobile phase 2 used for elution of propyphenazone was acetonitrile/water (30:70, v/v); flow rate was 1.2 mL min(-1) (volume 1.5 mL of mobile phase per analysis). Absorbance was monitored at 210 nm. Samples were prepared by dissolving of one tablet in 30% acetonitrile and 10 microL of filtered supernatant was injected on each column (2 x 10 microL). The chromatographic resolution between all compounds was >1.45 and analysis time was 5.5 min under the optimal conditions. Limits of detection were determined at 0.4 microg mL(-1) for paracetamol, at 0.5 microg mL(-1) for caffeine and at 0.7 microg mL(-1) for propyphenazone. The new two-column chromatographic set-up developed as an alternative approach to gradient elution chromatography shows evident advantages (time and solvent reduction more than one-third) as compared with single-column gradient SIC method with Chromolith Flash RP-18 (25 mm x 4.6 mm i.d. with guard column 5 mm x 4.6 mm i.d.). Copyright 2010 Elsevier B.V. All rights reserved.
An intermediate-scale model for thermal hydrology in low-relief permafrost-affected landscapes
Jan, Ahmad; Coon, Ethan T.; Painter, Scott L.; ...
2017-07-10
Integrated surface/subsurface models for simulating the thermal hydrology of permafrost-affected regions in a warming climate have recently become available, but computational demands of those new process-rich simu- lation tools have thus far limited their applications to one-dimensional or small two-dimensional simulations. We present a mixed-dimensional model structure for efficiently simulating surface/subsurface thermal hydrology in low-relief permafrost regions at watershed scales. The approach replaces a full three-dimensional system with a two-dimensional overland thermal hydrology system and a family of one-dimensional vertical columns, where each column represents a fully coupled surface/subsurface thermal hydrology system without lateral flow. The system is then operatormore » split, sequentially updating the overland flow system without sources and the one-dimensional columns without lateral flows. We show that the app- roach is highly scalable, supports subcycling of different processes, and compares well with the corresponding fully three-dimensional representation at significantly less computational cost. Those advances enable recently developed representations of freezing soil physics to be coupled with thermal overland flow and surface energy balance at scales of 100s of meters. Furthermore developed and demonstrated for permafrost thermal hydrology, the mixed-dimensional model structure is applicable to integrated surface/subsurface thermal hydrology in general.« less
Linking an ecosystem model and a landscape model to study forest species response to climate warming
Hong S. He; David J. Mladenoff; Thomas R. Crow
1999-01-01
No single model can address forest change from single tree to regional scales. We discuss a framework linking an ecosystem process model {LINKAGES) with a spatial landscape model (LANDIS) to examine forest species responses to climate warming for a large, heterogeneous landscape in northern Wisconsin, USA. Individual species response at the ecosystem scale was...
Russell, Bayden D.; Harley, Christopher D. G.; Wernberg, Thomas; Mieszkowska, Nova; Widdicombe, Stephen; Hall-Spencer, Jason M.; Connell, Sean D.
2012-01-01
Most studies that forecast the ecological consequences of climate change target a single species and a single life stage. Depending on climatic impacts on other life stages and on interacting species, however, the results from simple experiments may not translate into accurate predictions of future ecological change. Research needs to move beyond simple experimental studies and environmental envelope projections for single species towards identifying where ecosystem change is likely to occur and the drivers for this change. For this to happen, we advocate research directions that (i) identify the critical species within the target ecosystem, and the life stage(s) most susceptible to changing conditions and (ii) the key interactions between these species and components of their broader ecosystem. A combined approach using macroecology, experimentally derived data and modelling that incorporates energy budgets in life cycle models may identify critical abiotic conditions that disproportionately alter important ecological processes under forecasted climates. PMID:21900317
NASA Astrophysics Data System (ADS)
Fritz-Endres, T.; Dekens, P.; Spero, H. J.; Fehrenbacher, J. S.; Spiess, V.; France-Lanord, C.
2016-12-01
Sediment cores from the Bay of Bengal present an opportunity to improve our understanding of the links between terrestrial and oceanographic climate variability. Foraminifera archive key proxies for reconstructing oceanographic conditions, but in Bengal fan sediments, fossils may have been transported via turbidity currents. Given the difference in SST and SSS variability in the southern (29.0±0.8°C; 33.9 ±0.3‰) and the northern Bay of Bengal (28.0±1.4°C; 31.6±0.8‰), it is important to determine the source of foraminifera to the sediment cores before attempting paleoceanographic reconstructions. We present paired Mg/Ca and δ18O data from single Globigerinoides sacculifer in mudline samples from three locations with differing oceanographic conditions. Two sites are from IODP Expedition 354 and one site is from the continental shelf. IODP Site U1454 (8.4°N, 85.5°E, 3721 m water depth) is near the modern active channel and more likely to be influenced by transport, while IODP site U1449 (8.4°N, 88.7°E, 3653 m water depth) is 200 km from channel activity and site 342KL (20.6°N, 90°E, 1256 m water depth) is on the continental shelf. The distribution of 70 to 80 Mg/Ca and δ18O data-points reflects the seasonal signal at the location foraminifera calcified. Mg/Ca and δ18O data from site U1449 (far from channel activity) have a distribution that most closely reflects the seasonal oceanographic conditions of the overlying water column. However, the distribution of G. sacculifer Mg/Ca and δ18O from site U1454 (near the active channel) has similarities to the distribution of the G. sacculifer Mg/Ca and δ18O data from the continental shelf. Our data suggest that foraminifera near the active channel are a mixture of shells from the overlying water column and shells transported from the northern Bay of Bengal. We suggest foraminifera can be used to reconstruct SST and δ18O in this complex depositional environment, but caution must be taken when the down-core lithology indicates regional turbidite activity and other evidence of sediment redeposition.
Lyu, Tao; Yao, Suying; Nie, Kaiming; Xu, Jiangtao
2014-11-17
A 12-bit high-speed column-parallel two-step single-slope (SS) analog-to-digital converter (ADC) for CMOS image sensors is proposed. The proposed ADC employs a single ramp voltage and multiple reference voltages, and the conversion is divided into coarse phase and fine phase to improve the conversion rate. An error calibration scheme is proposed to correct errors caused by offsets among the reference voltages. The digital-to-analog converter (DAC) used for the ramp generator is based on the split-capacitor array with an attenuation capacitor. Analysis of the DAC's linearity performance versus capacitor mismatch and parasitic capacitance is presented. A prototype 1024 × 32 Time Delay Integration (TDI) CMOS image sensor with the proposed ADC architecture has been fabricated in a standard 0.18 μm CMOS process. The proposed ADC has average power consumption of 128 μW and a conventional rate 6 times higher than the conventional SS ADC. A high-quality image, captured at the line rate of 15.5 k lines/s, shows that the proposed ADC is suitable for high-speed CMOS image sensors.
Xu, Dongsheng; Shao, Huikai; Luo, Rongying; Wang, Qiqin; Sánchez-López, Elena; Fanali, Salvatore; Marina, Maria Luisa; Jiang, Zhengjin
2018-07-06
A facile single-step preparation strategy for fabricating vancomycin functionalized organic polymer-based monolith within 100μm fused-silica capillary was developed. The synthetic chiral functional monomer, i.e 2-isocyanatoethyl methacrylate (ICNEML) derivative of vancomycin, was co-polymerized with the cross-linker ethylene dimethacrylate (EDMA) in the presence of methanol and dimethyl sulfoxide as the selected porogens. The co-polymerization conditions were systematically optimized in order to obtain satisfactory column performance. Adequate permeability, stability and column morphology were observed for the optimized poly(ICNEML-vancomycin-co-EDMA) monolith. A series of chiral drugs were evaluated on the monolith in either polar organic-phase or reversed-phase modes. After the optimization of separation conditions, baseline or partial enantioseparation were obtained for series of drugs including thalidomide, colchicine, carteolol, salbutamol, clenbuterol and several other β-blockers. The proposed single-step approach not only resulted in a vancomycin functionalized organic polymer-based monolith with acceptable performance, but also significantly simplified the preparation procedure by reducing time and labor. Copyright © 2018 Elsevier B.V. All rights reserved.
Oke, Tobi A; Hager, Heather A
2017-01-01
The fate of Northern peatlands under climate change is important because of their contribution to global carbon (C) storage. Peatlands are maintained via greater plant productivity (especially of Sphagnum species) than decomposition, and the processes involved are strongly mediated by climate. Although some studies predict that warming will relax constraints on decomposition, leading to decreased C sequestration, others predict increases in productivity and thus increases in C sequestration. We explored the lack of congruence between these predictions using single-species and integrated species distribution models as proxies for understanding the environmental correlates of North American Sphagnum peatland occurrence and how projected changes to the environment might influence these peatlands under climate change. Using Maximum entropy and BIOMOD modelling platforms, we generated single and integrated species distribution models for four common Sphagnum species in North America under current climate and a 2050 climate scenario projected by three general circulation models. We evaluated the environmental correlates of the models and explored the disparities in niche breadth, niche overlap, and climate suitability among current and future models. The models consistently show that Sphagnum peatland distribution is influenced by the balance between soil moisture deficit and temperature of the driest quarter-year. The models identify the east and west coasts of North America as the core climate space for Sphagnum peatland distribution. The models show that, at least in the immediate future, the area of suitable climate for Sphagnum peatland could expand. This result suggests that projected warming would be balanced effectively by the anticipated increase in precipitation, which would increase Sphagnum productivity.