Summary of compliant and multi-arm control at NASA. Langley Research Center
NASA Technical Reports Server (NTRS)
Harrison, Fenton W.
1992-01-01
The topics are presented in viewgraph form and include the: single arm system, single arm axis system, single arm control systems, single arm hand controller axis system, single arm position axis system, single arm vision axis system, single arm force axis system, multi-arm system, multi-arm axis system, and the dual arm hand control axis system with control signals.
Demonstration of Standard HVAC Single-Loop Digital Control Systems
1993-01-01
AD-A265 372 T N FEAP-TR-FE-93/05 REPORT January 1993 FACILITIES ENGINEERING APPLICATIONS PROGRAM Demonstration of Standard HVAC Single-Loop Digital...AND DATES COVERED January 1993 Final 4. TITLE AND SUBTITLE [5. FUNDING NUMBERS Demonstration of Standard HVAC Single-Loop Digital Control Systems FEAP...conditioning ( HVAC ) control systems provide guidance on designing and specifying standard HVAC control systems that use single-loop digital controllers
Advanced helicopter cockpit and control configurations for helicopter combat missions
NASA Technical Reports Server (NTRS)
Haworth, Loran A.; Atencio, Adolph, Jr.; Bivens, Courtland; Shively, Robert; Delgado, Daniel
1987-01-01
Two piloted simulations were conducted by the U.S. Army Aeroflightdynamics Directorate to evaluate workload and helicopter-handling qualities requirements for single pilot operation in a combat Nap-of-the-Earth environment. The single-pilot advanced cockpit engineering simulation (SPACES) investigations were performed on the NASA Ames Vertical Motion Simulator, using the Advanced Digital Optical Control System control laws and an advanced concepts glass cockpit. The first simulation (SPACES I) compared single pilot to dual crewmember operation for the same flight tasks to determine differences between dual and single ratings, and to discover which control laws enabled adequate single-pilot helicopter operation. The SPACES II simulation concentrated on single-pilot operations and use of control laws thought to be viable candidates for single pilot operations workload. Measures detected significant differences between single-pilot task segments. Control system configurations were task dependent, demonstrating a need for inflight reconfigurable control system to match the optimal control system with the required task.
Approaches to Quality Risk Management When Using Single-Use Systems in the Manufacture of Biologics.
Ishii-Watabe, Akiko; Hirose, Akihiko; Katori, Noriko; Hashii, Norikata; Arai, Susumu; Awatsu, Hirotoshi; Eiza, Akira; Hara, Yoshiaki; Hattori, Hideshi; Inoue, Tomomi; Isono, Tetsuya; Iwakura, Masahiro; Kajihara, Daisuke; Kasahara, Nobuo; Matsuda, Hiroyuki; Murakami, Sei; Nakagawa, Taishiro; Okumura, Takehiro; Omasa, Takeshi; Takuma, Shinya; Terashima, Iyo; Tsukahara, Masayoshi; Tsutsui, Maiko; Yano, Takahiro; Kawasaki, Nana
2015-10-01
Biologics manufacturing technology has made great progress in the last decade. One of the most promising new technologies is the single-use system, which has improved the efficiency of biologics manufacturing processes. To ensure safety of biologics when employing such single-use systems in the manufacturing process, various issues need to be considered including possible extractables/leachables and particles arising from the components used in single-use systems. Japanese pharmaceutical manufacturers, together with single-use suppliers, members of the academia and regulatory authorities have discussed the risks of using single-use systems and established control strategies for the quality assurance of biologics. In this study, we describe approaches for quality risk management when employing single-use systems in the manufacturing of biologics. We consider the potential impact of impurities related to single-use components on drug safety and the potential impact of the single-use system on other critical quality attributes as well as the stable supply of biologics. We also suggest a risk-mitigating strategy combining multiple control methods which includes the selection of appropriate single-use components, their inspections upon receipt and before releasing for use and qualification of single-use systems. Communication between suppliers of single-use systems and the users, as well as change controls in the facilities both of suppliers and users, are also important in risk-mitigating strategies. Implementing these control strategies can mitigate the risks attributed to the use of single-use systems. This study will be useful in promoting the development of biologics as well as in ensuring their safety, quality and stable supply.
NASA Astrophysics Data System (ADS)
Zhang, Xianxia; Wang, Jian; Qin, Tinggao
2003-09-01
Intelligent control algorithms are introduced into the control system of temperature and humidity. A multi-mode control algorithm of PI-Single Neuron is proposed for single loop control of temperature and humidity. In order to remove the coupling between temperature and humidity, a new decoupling method is presented, which is called fuzzy decoupling. The decoupling is achieved by using a fuzzy controller that dynamically modifies the static decoupling coefficient. Taking the control algorithm of PI-Single Neuron as the single loop control of temperature and humidity, the paper provides the simulated output response curves with no decoupling control, static decoupling control and fuzzy decoupling control. Those control algorithms are easily implemented in singlechip-based hardware systems.
NASA Technical Reports Server (NTRS)
Musgrave, Jeffrey L.
1997-01-01
General aviation research is leading to major advances in internal combustion engine control systems for single-engine, single-pilot aircraft. These advances promise to increase engine performance and fuel efficiency while substantially reducing pilot workload and increasing flight safety. One such advance is a single-lever power control (SLPC) system, a welcome departure from older, less user-friendly, multilever engine control systems. The benefits of using single-lever power controls for general aviation aircraft are improved flight safety through advanced engine diagnostics, simplified powerplant operations, increased time between overhauls, and cost-effective technology (extends fuel burn and reduces overhaul costs). The single-lever concept has proven to be so effective in preliminary studies that general aviation manufacturers are making plans to retrofit current aircraft with the technology and are incorporating it in designs for future aircraft.
A universal setup for active control of a single-photon detector
NASA Astrophysics Data System (ADS)
Liu, Qin; Lamas-Linares, Antía; Kurtsiefer, Christian; Skaar, Johannes; Makarov, Vadim; Gerhardt, Ilja
2014-01-01
The influence of bright light on a single-photon detector has been described in a number of recent publications. The impact on quantum key distribution (QKD) is important, and several hacking experiments have been tailored to fully control single-photon detectors. Special attention has been given to avoid introducing further errors into a QKD system. We describe the design and technical details of an apparatus which allows to attack a quantum-cryptographic connection. This device is capable of controlling free-space and fiber-based systems and of minimizing unwanted clicks in the system. With different control diagrams, we are able to achieve a different level of control. The control was initially targeted to the systems using BB84 protocol, with polarization encoding and basis switching using beamsplitters, but could be extended to other types of systems. We further outline how to characterize the quality of active control of single-photon detectors.
A universal setup for active control of a single-photon detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Qin; Skaar, Johannes; Lamas-Linares, Antía
2014-01-15
The influence of bright light on a single-photon detector has been described in a number of recent publications. The impact on quantum key distribution (QKD) is important, and several hacking experiments have been tailored to fully control single-photon detectors. Special attention has been given to avoid introducing further errors into a QKD system. We describe the design and technical details of an apparatus which allows to attack a quantum-cryptographic connection. This device is capable of controlling free-space and fiber-based systems and of minimizing unwanted clicks in the system. With different control diagrams, we are able to achieve a different levelmore » of control. The control was initially targeted to the systems using BB84 protocol, with polarization encoding and basis switching using beamsplitters, but could be extended to other types of systems. We further outline how to characterize the quality of active control of single-photon detectors.« less
Microcomputer-Aided Control Systems Design.
ERIC Educational Resources Information Center
Roat, S. D.; Melsheimer, S. S.
1987-01-01
Describes a single input/single output feedback control system design program for IBM PC and compatible microcomputers. Uses a heat exchanger temperature control loop to illustrate the various applications of the program. (ML)
Autonomous control system reconfiguration for spacecraft with non-redundant actuators
NASA Astrophysics Data System (ADS)
Grossman, Walter
1995-05-01
The Small Satellite Technology Initiative (SSTI) 'CLARK' spacecraft is required to be single-failure tolerant, i.e., no failure of any single component or subsystem shall result in complete mission loss. Fault tolerance is usually achieved by implementing redundant subsystems. Fault tolerant systems are therefore heavier and cost more to build and launch than non-redundent, non fault-tolerant spacecraft. The SSTI CLARK satellite Attitude Determination and Control System (ADACS) achieves single-fault tolerance without redundancy. The attitude determination system system uses a Kalman Filter which is inherently robust to loss of any single attitude sensor. The attitude control system uses three orthogonal reaction wheels for attitude control and three magnetic dipoles for momentum control. The nominal six-actuator control system functions by projecting the attitude correction torque onto the reaction wheels while a slower momentum management outer loop removes the excess momentum in the direction normal to the local B field. The actuators are not redundant so the nominal control law cannot be implemented in the event of a loss of a single actuator (dipole or reaction wheel). The spacecraft dynamical state (attitude, angular rate, and momentum) is controllable from any five-element subset of the six actuators. With loss of an actuator the instantaneous control authority may not span R(3) but the controllability gramian integral(limits between t,0) Phi(t, tau)B(tau )B(prime)(tau) Phi(prime)(t, tau)d tau retains full rank. Upon detection of an actuator failure the control torque is decomposed onto the remaining active axes. The attitude control torque is effected and the over-orbit momentum is controlled. The resulting control system performance approaches that of the nominal system.
Delegation control of multiple unmanned systems
NASA Astrophysics Data System (ADS)
Flaherty, Susan R.; Shively, Robert J.
2010-04-01
Maturing technologies and complex payloads coupled with a future objective to reduce the logistics burden of current unmanned aerial systems (UAS) operations require a change to the 2-crew employment paradigm. Increased automation and operator supervisory control of unmanned systems have been advocated to meet the objective of reducing the crew requirements, while managing future technologies. Specifically, a delegation control employment strategy has resulted in reduced workload and higher situation awareness for single operators controlling multiple unmanned systems in empirical studies1,2. Delegation control is characterized by the ability for an operator to call a single "play" that initiates prescribed default actions for each vehicle and associated sensor related to a common mission goal. Based upon the effectiveness of delegation control in simulation, the U.S. Army Aeroflightdynamics Directorate (AFDD) developed a Delegation Control (DelCon) operator interface with voice recognition implementation for play selection, real-time play modification, and play status with automation transparency to enable single operator control of multiple unmanned systems in flight. AFDD successfully demonstrated delegation control in a Troops-in-Contact mission scenario at Ft. Ord in 2009. This summary showcases the effort as a beneficial advance in single operator control of multiple UAS.
Blumrich, Matthias A.; Salapura, Valentina
2010-11-02
An apparatus and method are disclosed for single-stepping coherence events in a multiprocessor system under software control in order to monitor the behavior of a memory coherence mechanism. Single-stepping coherence events in a multiprocessor system is made possible by adding one or more step registers. By accessing these step registers, one or more coherence requests are processed by the multiprocessor system. The step registers determine if the snoop unit will operate by proceeding in a normal execution mode, or operate in a single-step mode.
Ma, Teng; Li, Hui; Deng, Lili; Yang, Hao; Lv, Xulin; Li, Peiyang; Li, Fali; Zhang, Rui; Liu, Tiejun; Yao, Dezhong; Xu, Peng
2017-04-01
Movement control is an important application for EEG-BCI (EEG-based brain-computer interface) systems. A single-modality BCI cannot provide an efficient and natural control strategy, but a hybrid BCI system that combines two or more different tasks can effectively overcome the drawbacks encountered in single-modality BCI control. In the current paper, we developed a new hybrid BCI system by combining MI (motor imagery) and mVEP (motion-onset visual evoked potential), aiming to realize the more efficient 2D movement control of a cursor. The offline analysis demonstrates that the hybrid BCI system proposed in this paper could evoke the desired MI and mVEP signal features simultaneously, and both are very close to those evoked in the single-modality BCI task. Furthermore, the online 2D movement control experiment reveals that the proposed hybrid BCI system could provide more efficient and natural control commands. The proposed hybrid BCI system is compensative to realize efficient 2D movement control for a practical online system, especially for those situations in which P300 stimuli are not suitable to be applied.
Systems and Algorithms for Automated Collaborative Observation Using Networked Robotic Cameras
ERIC Educational Resources Information Center
Xu, Yiliang
2011-01-01
The development of telerobotic systems has evolved from Single Operator Single Robot (SOSR) systems to Multiple Operator Multiple Robot (MOMR) systems. The relationship between human operators and robots follows the master-slave control architecture and the requests for controlling robot actuation are completely generated by human operators. …
NASA Technical Reports Server (NTRS)
Russell, D. L.
1983-01-01
Various aspects of the control theory of hyperbolic systems, including controllability, stabilization, control canonical form theory, etc., are reviewed. To allow a unified and not excessively technical treatment, attention is restricted to the case of a single space variable. A newly developed procedure of canonical augmentation is discussed.
Simulated lumped-parameter system reduced-order adaptive control studies
NASA Technical Reports Server (NTRS)
Johnson, C. R., Jr.; Lawrence, D. A.; Taylor, T.; Malakooti, M. V.
1981-01-01
Two methods of interpreting the misbehavior of reduced order adaptive controllers are discussed. The first method is based on system input-output description and the second is based on state variable description. The implementation of the single input, single output, autoregressive, moving average system is considered.
NASA Astrophysics Data System (ADS)
Ma, Teng; Li, Hui; Deng, Lili; Yang, Hao; Lv, Xulin; Li, Peiyang; Li, Fali; Zhang, Rui; Liu, Tiejun; Yao, Dezhong; Xu, Peng
2017-04-01
Objective. Movement control is an important application for EEG-BCI (EEG-based brain-computer interface) systems. A single-modality BCI cannot provide an efficient and natural control strategy, but a hybrid BCI system that combines two or more different tasks can effectively overcome the drawbacks encountered in single-modality BCI control. Approach. In the current paper, we developed a new hybrid BCI system by combining MI (motor imagery) and mVEP (motion-onset visual evoked potential), aiming to realize the more efficient 2D movement control of a cursor. Main result. The offline analysis demonstrates that the hybrid BCI system proposed in this paper could evoke the desired MI and mVEP signal features simultaneously, and both are very close to those evoked in the single-modality BCI task. Furthermore, the online 2D movement control experiment reveals that the proposed hybrid BCI system could provide more efficient and natural control commands. Significance. The proposed hybrid BCI system is compensative to realize efficient 2D movement control for a practical online system, especially for those situations in which P300 stimuli are not suitable to be applied.
Instrumentation and control of harmonic oscillators via a single-board microprocessor-FPGA device.
Picone, Rico A R; Davis, Solomon; Devine, Cameron; Garbini, Joseph L; Sidles, John A
2017-04-01
We report the development of an instrumentation and control system instantiated on a microprocessor-field programmable gate array (FPGA) device for a harmonic oscillator comprising a portion of a magnetic resonance force microscope. The specific advantages of the system are that it minimizes computation, increases maintainability, and reduces the technical barrier required to enter the experimental field of magnetic resonance force microscopy. Heterodyne digital control and measurement yields computational advantages. A single microprocessor-FPGA device improves system maintainability by using a single programming language. The system presented requires significantly less technical expertise to instantiate than the instrumentation of previous systems, yet integrity of performance is retained and demonstrated with experimental data.
Instrumentation and control of harmonic oscillators via a single-board microprocessor-FPGA device
NASA Astrophysics Data System (ADS)
Picone, Rico A. R.; Davis, Solomon; Devine, Cameron; Garbini, Joseph L.; Sidles, John A.
2017-04-01
We report the development of an instrumentation and control system instantiated on a microprocessor-field programmable gate array (FPGA) device for a harmonic oscillator comprising a portion of a magnetic resonance force microscope. The specific advantages of the system are that it minimizes computation, increases maintainability, and reduces the technical barrier required to enter the experimental field of magnetic resonance force microscopy. Heterodyne digital control and measurement yields computational advantages. A single microprocessor-FPGA device improves system maintainability by using a single programming language. The system presented requires significantly less technical expertise to instantiate than the instrumentation of previous systems, yet integrity of performance is retained and demonstrated with experimental data.
Self tuning control of wind-diesel power systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mufti, M.D.; Balasubramanian, R.; Tripathy, S.C.
1995-12-31
This paper proposes some effective self-tuning control strategies for isolated Wind-Diesel power generation systems. Detailed modeling and studies on both single-input single-output (SISO) as well as multi-input multi-output (MIMO) self tuning regulators, applied to a typical system, are reported. Further, the effect of introducing a Super-conducting Magnetic Energy Storage (SMES) unit on the system performance has been investigated. The MIMO self-tuning regulator controlling the hybrid system and the SMES in a coordinated manner exhibits the best performance.
NASA Technical Reports Server (NTRS)
Brichenough, A. G.
1975-01-01
The control system consists of the ac-dc conversion, voltage regulation, speed regulation through parasitic load control, and overload control. A no-single-failure configuration was developed to attain the required reliability for a 10-year design life of unattended operation. The design principles, complete schematics, and performance are reported. Testing was performed on an alternator simulator pending construction of the actual Mini-Brayton alternator.
General model and control of an n rotor helicopter
NASA Astrophysics Data System (ADS)
Sidea, A. G.; Yding Brogaard, R.; Andersen, N. A.; Ravn, O.
2014-12-01
The purpose of this study was to create a dynamic, nonlinear mathematical model of a multirotor that would be valid for different numbers of rotors. Furthermore, a set of Single Input Single Output (SISO) controllers were implemented for attitude control. Both model and controllers were tested experimentally on a quadcopter. Using the combined model and controllers, simple system simulation and control is possible, by replacing the physical values for the individual systems.
NASA Technical Reports Server (NTRS)
Bainum, P. M.; Sellappan, R.
1977-01-01
The problem of optimal control with a minimum time criterion as applied to a single boom system for achieving two axis control is discussed. The special case where the initial conditions are such that the system can be driven to the equilibrium state with only a single switching maneuver in the bang-bang optimal sequence is analyzed. The system responses are presented. Application of the linear regulator problem for the optimal control of the telescoping system is extended to consider the effects of measurement and plant noises. The noise uncertainties are included with an application of the estimator - Kalman filter problem. Different schemes for measuring the components of the angular velocity are considered. Analytical results are obtained for special cases, and numerical results are presented for the general case.
A fast solution switching system with temperature control for single cell measurements
Koh, Duk-Su; Chen, Liangyi; Ufret-Vincenty, Carmen A.; Jung, Seung-Ryoung
2011-01-01
This article describes a perfusion system for biophysical single cell experiments at the physiological temperature. Our system regulates temperature of test solutions using a small heat exchanger that includes several capillaries. Water circulating inside the heat exchanger warms or cools test solutions flowing inside the capillaries. Temperature-controlled solutions are delivered directly to a single cell(s) through a multibarreled manifold that switches solutions bathing a cell in less than 1 s. This solution exchange is optimal for patch clamp, single-cell microamperometry, and microfluorometry experiments. Using this system, we demonstrate that exocytosis from pancreatic β cells and activation of TRPV1 channels are temperature sensitive. We also discuss how to measure local temperature near a single cell under investigation. PMID:21536068
A preliminary look at control augmented dynamic response of structures
NASA Technical Reports Server (NTRS)
Ryan, R. S.; Jewell, R. E.
1983-01-01
The augmentation of structural characteristics, mass, damping, and stiffness through the use of control theory in lieu of structural redesign or augmentation was reported. The standard single-degree-of-freedom system was followed by a treatment of the same system using control augmentation. The system was extended to elastic structures using single and multisensor approaches and concludes with a brief discussion of potential application to large orbiting space structures.
Quantum phase gate based on electromagnetically induced transparency in optical cavities
NASA Astrophysics Data System (ADS)
Borges, Halyne S.; Villas-Bôas, Celso J.
2016-11-01
We theoretically investigate the implementation of a quantum controlled-phase gate in a system constituted by a single atom inside an optical cavity, based on the electromagnetically induced transparency effect. First we show that a probe pulse can experience a π phase shift due to the presence or absence of a classical control field. Considering the interplay of the cavity-EIT effect and the quantum memory process, we demonstrated a controlled-phase gate between two single photons. To this end, first one needs to store a (control) photon in the ground atomic states. In the following, a second (target) photon must impinge on the atom-cavity system. Depending on the atomic state, this second photon will be either transmitted or reflected, acquiring different phase shifts. This protocol can then be easily extended to multiphoton systems, i.e., keeping the control photon stored, it may induce phase shifts in several single photons, thus enabling the generation of multipartite entangled states. We explore the relevant parameter space in the atom-cavity system that allows the implementation of quantum controlled-phase gates using the recent technologies. In particular, we have found a lower bound for the cooperativity of the atom-cavity system which enables the implementation of phase shift on single photons. The induced shift on the phase of a photonic qubit and the controlled-phase gate between single photons, combined with optical devices, enable one to perform universal quantum computation.
Voltage controlled nano-injection system for single-cell surgery
Seger, R. Adam; Actis, Paolo; Penfold, Catherine; Maalouf, Michelle; Vilozny, Boaz; Pourmand, Nader
2015-01-01
Manipulation and analysis of single cells is the next frontier in understanding processes that control the function and fate of cells. Herein we describe a single-cell injection platform based on nanopipettes. The system uses scanning microscopy techniques to detect cell surfaces, and voltage pulses to deliver molecules into individual cells. As a proof of concept, we injected adherent mammalian cells with fluorescent dyes. PMID:22899383
Voltage controlled nano-injection system for single-cell surgery.
Adam Seger, R; Actis, Paolo; Penfold, Catherine; Maalouf, Michelle; Vilozny, Boaz; Pourmand, Nader
2012-09-28
Manipulation and analysis of single cells is the next frontier in understanding processes that control the function and fate of cells. Herein we describe a single-cell injection platform based on nanopipettes. The system uses scanning microscopy techniques to detect cell surfaces, and voltage pulses to deliver molecules into individual cells. As a proof of concept, we injected adherent mammalian cells with fluorescent dyes.
NASA Astrophysics Data System (ADS)
Zemánek, Ivan; Havlíček, Václav
2006-09-01
A new universal control and measuring system for classic and amorphous soft magnetic materials single/on-line strip testing has been developed at the Czech Technical University in Prague. The measuring system allows to measure magnetization characteristic and specific power losses of different tested materials (strips) at AC magnetization of arbitrary magnetic flux density waveform at wide range of frequencies 20 Hz-20 kHz. The measuring system can be used for both single strip testing in laboratories and on-line strip testing during the production process. The measuring system is controlled by two-stage master-slave control system consisting of the external PC (master) completed by three special A/D measuring plug-in boards, and local executing control unit (slave) with one-chip microprocessor 8051, connected with PC by the RS232 serial line. The "user friendly" powerful control software implemented on the PC and the effective program code for the microprocessor give possibility for full automatic measurement with high measuring power and high measuring accuracy.
Analog design of wireless control for home equipment
NASA Astrophysics Data System (ADS)
Zheng, Shiyong; Li, Zhao; Li, Biqing; Jiang, Suping
2018-04-01
This design consists of a STC89C52 microcontroller, a serial Bluetooth module and the Android system. Production of STC89C52 controlled by single-chip computer telephone systems. The system is composed of mobile phone Android system as a master in the family centre,via serial Bluetooth module pass instructions and information to implement wireless transceiver using STC89C52 MCU wireless Bluetooth transmission to control homedevices. System high reliability, low cost easy to use, stong applicability and other characerristics, can be used in single-user family, has great significance.
A MPPT Algorithm Based PV System Connected to Single Phase Voltage Controlled Grid
NASA Astrophysics Data System (ADS)
Sreekanth, G.; Narender Reddy, N.; Durga Prasad, A.; Nagendrababu, V.
2012-10-01
Future ancillary services provided by photovoltaic (PV) systems could facilitate their penetration in power systems. In addition, low-power PV systems can be designed to improve the power quality. This paper presents a single-phase PV systemthat provides grid voltage support and compensation of harmonic distortion at the point of common coupling thanks to a repetitive controller. The power provided by the PV panels is controlled by a Maximum Power Point Tracking algorithm based on the incremental conductance method specifically modified to control the phase of the PV inverter voltage. Simulation and experimental results validate the presented solution.
Dynamics of multirate sampled data control systems. [for space shuttle boost vehicle
NASA Technical Reports Server (NTRS)
Naylor, J. R.; Hynes, R. J.; Molnar, D. O.
1974-01-01
The effect was investigated of the synthesis approach (single or multirate) on the machine requirements for a digital control system for the space shuttle boost vehicle. The study encompassed four major work areas: synthesis approach trades, machine requirements trades, design analysis requirements and multirate adaptive control techniques. The primary results are two multirate autopilot designs for the low Q and maximum Q flight conditions that exhibits equal or better performance than the analog and single rate system designs. Also, a preferred technique for analyzing and synthesizing multirate digital control systems is included.
Coordinated single-phase control scheme for voltage unbalance reduction in low voltage network.
Pullaguram, Deepak; Mishra, Sukumar; Senroy, Nilanjan
2017-08-13
Low voltage (LV) distribution systems are typically unbalanced in nature due to unbalanced loading and unsymmetrical line configuration. This situation is further aggravated by single-phase power injections. A coordinated control scheme is proposed for single-phase sources, to reduce voltage unbalance. A consensus-based coordination is achieved using a multi-agent system, where each agent estimates the averaged global voltage and current magnitudes of individual phases in the LV network. These estimated values are used to modify the reference power of individual single-phase sources, to ensure system-wide balanced voltages and proper power sharing among sources connected to the same phase. Further, the high X / R ratio of the filter, used in the inverter of the single-phase source, enables control of reactive power, to minimize voltage unbalance locally. The proposed scheme is validated by simulating a LV distribution network with multiple single-phase sources subjected to various perturbations.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).
Automatic control of a liquid nitrogen cooled, closed-circuit, cryogenic pressure tunnel
NASA Technical Reports Server (NTRS)
Balakrishna, S.; Goglia, G. L.
1980-01-01
The control system design, performance analysis, microprocesser based controller software development, and specifications for the Transonic Cryogenic Tunnel (TCT) are discussed. The control laws for the single-input single-output controllers were tested on the TCT simulator, and successfully demonstrated on the TCT.
NASA Technical Reports Server (NTRS)
Glende, W. L. B.
1974-01-01
The design, fabrication and flight testing of a powered elevator system for the Augmentor Wing Jet STOL Research Aircraft (AWJSRA or Mod C-8A) are discussed. The system replaces a manual spring tab elevator control system that was unsatisfactory in the STOL flight regime. Pitch control in the AWJSRA is by means of a single elevator control surface. The elevator is used for both maneuver and trim control as the stabilizer is fixed. A fully powered, irreversible flight control system powered by dual hydraulic sources was designed. The existing control columns and single mechanical cable system of the AWJSRA have been retained as has been the basic elevator surface, except that the elevator spring tab is modified into a geared balance tab. The control surface is directly actuated by a dual tandem moving body actuator. Control signals are transmitted from the elevator aft quadrant to the actuator by a linkage system that includes a limited authority series servo actuator.
Feedback system design with an uncertain plant
NASA Technical Reports Server (NTRS)
Milich, D.; Valavani, L.; Athans, M.
1986-01-01
A method is developed to design a fixed-parameter compensator for a linear, time-invariant, SISO (single-input single-output) plant model characterized by significant structured, as well as unstructured, uncertainty. The controller minimizes the H(infinity) norm of the worst-case sensitivity function over the operating band and the resulting feedback system exhibits robust stability and robust performance. It is conjectured that such a robust nonadaptive control design technique can be used on-line in an adaptive control system.
Singh, Jay; Chattterjee, Kalyan; Vishwakarma, C B
2018-01-01
Load frequency controller has been designed for reduced order model of single area and two-area reheat hydro-thermal power system through internal model control - proportional integral derivative (IMC-PID) control techniques. The controller design method is based on two degree of freedom (2DOF) internal model control which combines with model order reduction technique. Here, in spite of taking full order system model a reduced order model has been considered for 2DOF-IMC-PID design and the designed controller is directly applied to full order system model. The Logarithmic based model order reduction technique is proposed to reduce the single and two-area high order power systems for the application of controller design.The proposed IMC-PID design of reduced order model achieves good dynamic response and robustness against load disturbance with the original high order system. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
US Steel Gary Works land based pushing emissions control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Randolph, R.A.; Price, C.A.
1983-01-01
To meet air quality standards at its Gary Works Coke Plant in Gary, Indiana, US Steel Corporation has installed pushing emission control systems for its five (77) oven, three meter coke batteries. The pushing emission control system consists of a hooded coke guide, single spot catch car, stationary emission capture ducts and remote gas cleaning baghouse with precoat capabilities. The system is providing effective emission control. In addition, there are corollary benefits. The operation of the single spot catch cars is easier and safer and coke moisture variables have been reduced.
Shi, Xiaojie; Wang, Zhiqiang; Liu, Bo; ...
2014-05-16
This paper presents the analysis and control of a multilevel modular converter (MMC)-based HVDC transmission system under three possible single-line-to-ground fault conditions, with special focus on the investigation of their different fault characteristics. Considering positive-, negative-, and zero-sequence components in both arm voltages and currents, the generalized instantaneous power of a phase unit is derived theoretically according to the equivalent circuit model of the MMC under unbalanced conditions. Based on this model, a novel double-line frequency dc-voltage ripple suppression control is proposed. This controller, together with the negative-and zero-sequence current control, could enhance the overall fault-tolerant capability of the HVDCmore » system without additional cost. To further improve the fault-tolerant capability, the operation performance of the HVDC system with and without single-phase switching is discussed and compared in detail. Lastly, simulation results from a three-phase MMC-HVDC system generated with MATLAB/Simulink are provided to support the theoretical analysis and proposed control schemes.« less
NASA Astrophysics Data System (ADS)
Saxena, Hemant; Singh, Alka; Rai, J. N.
2018-07-01
This article discusses the design and control of a single-phase grid-connected photovoltaic (PV) system. A 5-kW PV system is designed and integrated at the DC link of an H-bridge voltage source converter (VSC). The control of the VSC and switching logic is modelled using a generalised integrator (GI). The use of GI or its variants such as second-order GI have recently evolved for synchronisation and are being used as phase locked loop (PLL) circuits for grid integration. Design of PLL circuits and the use of transformations such as Park's and Clarke's are much easier in three-phase systems. But obtaining in-phase and quadrature components becomes an important and challenging issue in single-phase systems. This article addresses this issue and discusses an altogether different application of GI for the design of compensator based on the extraction of in-phase and quadrature components. GI is frequently used as a PLL; however, in this article, it is not used for synchronisation purposes. A new controller has been designed for a single-phase grid-connected PV system working as a single-phase active compensator. Extensive simulation results are shown for the working of integrated PV system under different atmospheric and operating conditions during daytime as well as night conditions. Experimental results showing the proposed control approach are presented and discussed for the hardware set-up developed in the laboratory.
Li, Yun Bo; Li, Lian Lin; Xu, Bai Bing; Wu, Wei; Wu, Rui Yuan; Wan, Xiang; Cheng, Qiang; Cui, Tie Jun
2016-01-01
The programmable and digital metamaterials or metasurfaces presented recently have huge potentials in designing real-time-controlled electromagnetic devices. Here, we propose the first transmission-type 2-bit programmable coding metasurface for single-sensor and single- frequency imaging in the microwave frequency. Compared with the existing single-sensor imagers composed of active spatial modulators with their units controlled independently, we introduce randomly programmable metasurface to transform the masks of modulators, in which their rows and columns are controlled simultaneously so that the complexity and cost of the imaging system can be reduced drastically. Different from the single-sensor approach using the frequency agility, the proposed imaging system makes use of variable modulators under single frequency, which can avoid the object dispersion. In order to realize the transmission-type 2-bit programmable metasurface, we propose a two-layer binary coding unit, which is convenient for changing the voltages in rows and columns to switch the diodes in the top and bottom layers, respectively. In our imaging measurements, we generate the random codes by computer to achieve different transmission patterns, which can support enough multiple modes to solve the inverse-scattering problem in the single-sensor imaging. Simple experimental results are presented in the microwave frequency, validating our new single-sensor and single-frequency imaging system. PMID:27025907
Li, Yun Bo; Li, Lian Lin; Xu, Bai Bing; Wu, Wei; Wu, Rui Yuan; Wan, Xiang; Cheng, Qiang; Cui, Tie Jun
2016-03-30
The programmable and digital metamaterials or metasurfaces presented recently have huge potentials in designing real-time-controlled electromagnetic devices. Here, we propose the first transmission-type 2-bit programmable coding metasurface for single-sensor and single- frequency imaging in the microwave frequency. Compared with the existing single-sensor imagers composed of active spatial modulators with their units controlled independently, we introduce randomly programmable metasurface to transform the masks of modulators, in which their rows and columns are controlled simultaneously so that the complexity and cost of the imaging system can be reduced drastically. Different from the single-sensor approach using the frequency agility, the proposed imaging system makes use of variable modulators under single frequency, which can avoid the object dispersion. In order to realize the transmission-type 2-bit programmable metasurface, we propose a two-layer binary coding unit, which is convenient for changing the voltages in rows and columns to switch the diodes in the top and bottom layers, respectively. In our imaging measurements, we generate the random codes by computer to achieve different transmission patterns, which can support enough multiple modes to solve the inverse-scattering problem in the single-sensor imaging. Simple experimental results are presented in the microwave frequency, validating our new single-sensor and single-frequency imaging system.
NASA Technical Reports Server (NTRS)
Cox, D. E.; Groom, N. J.
1994-01-01
An implementation of a decoupled, single-input/single-output control approach for a large angle magnetic suspension test fixture is described. Numerical and experimental results are presented. The experimental system is a laboratory model large gap magnetic suspension system which provides five degree-of-freedom control of a cylindrical suspended element. The suspended element contains a core composed of permanent magnet material and is levitated above five electromagnets mounted in a planar array.
Adaptive kanban control mechanism for a single-stage hybrid system
NASA Astrophysics Data System (ADS)
Korugan, Aybek; Gupta, Surendra M.
2002-02-01
In this paper, we consider a hybrid manufacturing system with two discrete production lines. Here the output of either production line can satisfy the demand for the same type of product without any penalties. The interarrival times for demand occurrences and service completions are exponentially distributed i.i.d. variables. In order to control this type of manufacturing system we suggest a single stage pull type control mechanism with adaptive kanbans and state independent routing of the production information.
Adaptive nonlinear control for autonomous ground vehicles
NASA Astrophysics Data System (ADS)
Black, William S.
We present the background and motivation for ground vehicle autonomy, and focus on uses for space-exploration. Using a simple design example of an autonomous ground vehicle we derive the equations of motion. After providing the mathematical background for nonlinear systems and control we present two common methods for exactly linearizing nonlinear systems, feedback linearization and backstepping. We use these in combination with three adaptive control methods: model reference adaptive control, adaptive sliding mode control, and extremum-seeking model reference adaptive control. We show the performances of each combination through several simulation results. We then consider disturbances in the system, and design nonlinear disturbance observers for both single-input-single-output and multi-input-multi-output systems. Finally, we show the performance of these observers with simulation results.
Finite-horizon control-constrained nonlinear optimal control using single network adaptive critics.
Heydari, Ali; Balakrishnan, Sivasubramanya N
2013-01-01
To synthesize fixed-final-time control-constrained optimal controllers for discrete-time nonlinear control-affine systems, a single neural network (NN)-based controller called the Finite-horizon Single Network Adaptive Critic is developed in this paper. Inputs to the NN are the current system states and the time-to-go, and the network outputs are the costates that are used to compute optimal feedback control. Control constraints are handled through a nonquadratic cost function. Convergence proofs of: 1) the reinforcement learning-based training method to the optimal solution; 2) the training error; and 3) the network weights are provided. The resulting controller is shown to solve the associated time-varying Hamilton-Jacobi-Bellman equation and provide the fixed-final-time optimal solution. Performance of the new synthesis technique is demonstrated through different examples including an attitude control problem wherein a rigid spacecraft performs a finite-time attitude maneuver subject to control bounds. The new formulation has great potential for implementation since it consists of only one NN with single set of weights and it provides comprehensive feedback solutions online, though it is trained offline.
Nonlinear stability research on the hydraulic system of double-side rolling shear.
Wang, Jun; Huang, Qingxue; An, Gaocheng; Qi, Qisong; Sun, Binyu
2015-10-01
This paper researches the stability of the nonlinear system taking the hydraulic system of double-side rolling shear as an example. The hydraulic system of double-side rolling shear uses unsymmetrical electro-hydraulic proportional servo valve to control the cylinder with single piston rod, which can make best use of the space and reduce reversing shock. It is a typical nonlinear structure. The nonlinear state-space equations of the unsymmetrical valve controlling cylinder system are built first, and the second Lyapunov method is used to evaluate its stability. Second, the software AMEsim is applied to simulate the nonlinear system, and the results indicate that the system is stable. At last, the experimental results show that the system unsymmetrical valve controlling the cylinder with single piston rod is stable and conforms to what is deduced by theoretical analysis and simulation. The construction and application of Lyapunov function not only provide the theoretical basis for using of unsymmetrical valve controlling cylinder with single piston rod but also develop a new thought for nonlinear stability evaluation.
Nonlinear stability research on the hydraulic system of double-side rolling shear
NASA Astrophysics Data System (ADS)
Wang, Jun; Huang, Qingxue; An, Gaocheng; Qi, Qisong; Sun, Binyu
2015-10-01
This paper researches the stability of the nonlinear system taking the hydraulic system of double-side rolling shear as an example. The hydraulic system of double-side rolling shear uses unsymmetrical electro-hydraulic proportional servo valve to control the cylinder with single piston rod, which can make best use of the space and reduce reversing shock. It is a typical nonlinear structure. The nonlinear state-space equations of the unsymmetrical valve controlling cylinder system are built first, and the second Lyapunov method is used to evaluate its stability. Second, the software AMEsim is applied to simulate the nonlinear system, and the results indicate that the system is stable. At last, the experimental results show that the system unsymmetrical valve controlling the cylinder with single piston rod is stable and conforms to what is deduced by theoretical analysis and simulation. The construction and application of Lyapunov function not only provide the theoretical basis for using of unsymmetrical valve controlling cylinder with single piston rod but also develop a new thought for nonlinear stability evaluation.
Act-and-wait time-delayed feedback control of autonomous systems
NASA Astrophysics Data System (ADS)
Pyragas, Viktoras; Pyragas, Kestutis
2018-02-01
Recently an act-and-wait modification of time-delayed feedback control has been proposed for the stabilization of unstable periodic orbits in nonautonomous dynamical systems (Pyragas and Pyragas, 2016 [30]). The modification implies a periodic switching of the feedback gain and makes the closed-loop system finite-dimensional. Here we extend this modification to autonomous systems. In order to keep constant the phase difference between the controlled orbit and the act-and-wait switching function an additional small-amplitude periodic perturbation is introduced. The algorithm can stabilize periodic orbits with an odd number of real unstable Floquet exponents using a simple single-input single-output constraint control.
Analysis and design of segment control system in segmented primary mirror
NASA Astrophysics Data System (ADS)
Yu, Wenhao; Li, Bin; Chen, Mo; Xian, Hao
2017-10-01
Segmented primary mirror will be adopted widely in giant telescopes in future, such as TMT, E-ELT and GMT. High-performance control technology of the segmented primary mirror is one of the difficult technologies for telescopes using segmented primary mirror. The control of each segment is the basis of control system in segmented mirror. Correcting the tilt and tip of single segment is the main work of this paper which is divided into two parts. Firstly, harmonic response done in finite element model of single segment matches the Bode diagram of a two-order system whose natural frequency is 45 hertz and damping ratio is 0.005. Secondly, a control system model is established, and speed feedback is introduced in control loop to suppress resonance point gain and increase the open-loop bandwidth, up to 30Hz or even higher. Corresponding controller is designed based on the control system model described above.
Two different approaches for a control law of single gimbal control moment gyros
NASA Technical Reports Server (NTRS)
Schiehlen, W. O.
1972-01-01
In the field of momentum exchange attitude control systems, single gimbal control moment gyros (SGCMG) are of increasing interest. A gimbal angle approach and a gimbal rate approach are presented for the SGCMG control law including the singularity avoidance. Both approaches are compared and some illustrative examples are given.
Development of a sensitivity analysis technique for multiloop flight control systems
NASA Technical Reports Server (NTRS)
Vaillard, A. H.; Paduano, J.; Downing, D. R.
1985-01-01
This report presents the development and application of a sensitivity analysis technique for multiloop flight control systems. This analysis yields very useful information on the sensitivity of the relative-stability criteria of the control system, with variations or uncertainties in the system and controller elements. The sensitivity analysis technique developed is based on the computation of the singular values and singular-value gradients of a feedback-control system. The method is applicable to single-input/single-output as well as multiloop continuous-control systems. Application to sampled-data systems is also explored. The sensitivity analysis technique was applied to a continuous yaw/roll damper stability augmentation system of a typical business jet, and the results show that the analysis is very useful in determining the system elements which have the largest effect on the relative stability of the closed-loop system. As a secondary product of the research reported here, the relative stability criteria based on the concept of singular values were explored.
PI and repetitive control for single phase inverter based on virtual rotating coordinate system
NASA Astrophysics Data System (ADS)
Li, Mengqi; Tong, Yibin; Jiang, Jiuchun; Liang, Jiangang
2018-03-01
Microgrid technology developed rapidly and nonlinear loads were connected increasingly. A new control strategy was proposed for single phase inverter when connected nonlinear loads under island condition. PI and repetitive compound controller was realized under synchronous rotating coordinate system and acquired high quality sinusoidal voltage output without voltage spike when loads step changed. Validity and correctness were verified by simulation using MATLAB/Simulink.
Controllers for Flow-Field Survey Apparatus
NASA Technical Reports Server (NTRS)
Ashby George C., JR.; Vaccarelli, M. D.
1986-01-01
Control systems of flow-field survey apparatuses of 22-inch (56centimeter) Hypersonic Helium Facility (two-dimensional) and 20-inch (51centimeter) Mach 6 Tunnel (three-dimensional) at Langley Research Center equipped with single-chip microcomputer and single-board microcomputer, respectively, to drive probes at selected speeds and perform other functions automatically. Various modes of operation programed as need arises. Both of these control systems fabricated relatively inexpensively from commercially available stock components.
Dual-user nonlinear teleoperation subjected to varying time delay and bounded inputs.
Zakerimanesh, Amir; Hashemzadeh, Farzad; Ghiasi, Amir Rikhtehgar
2017-05-01
A novel trilateral control architecture for Dual-master/Single-slave teleoperation system with taking account of saturation in actuators, nonlinear dynamics for telemanipulators and bounded varying time delay which affects the transmitted signals in the communication channels, is proposed in this paper. In this research, we will address the stability and desired position coordination problem of trilateral teleoperation system by extension of (nP+D) controller that is used for Single-master/Single-slave teleoperation system. Our proposed controller is weighted summation of nonlinear Proportional plus Damping (nP+D) controller that incorporate gravity compensation and the weights are specified by the dominance factor, which determines the supremacy of each user over the slave robot and over the other user. The asymptotic stability of closed loop dynamics is studied using Lyapunov-Krasovskii functional under conditions on the controller parameters, the actuator saturation characteristics and the maximum values of varying time delays. It is shown that these controllers satisfy the desired position coordination problem in free motion condition. To show the effectiveness of the proposed method, a number of simulations have been conducted on a varying time delay Dual-master/Single-slave teleoperation system using 3-DOF planar robots for each telemanipulator subjected to actuator saturation. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
A steering law for a roof-type configuration for a single-gimbal control moment gyro system
NASA Technical Reports Server (NTRS)
Yoshikawa, T.
1974-01-01
Single-Gimbal Control Moment Gyro (SGCMG) systems have been investigated for attitude control of the Large Space Telescope (LST) and the High Energy Astronomy Observatory (HEAO). However, various proposed steering laws for the SGCMG systems thus far have some defects because of singular states of the system. In this report, a steering law for a roof-type SGCMG system is proposed which is based on a new momentum distribution scheme that makes all the singular states unstable. This momentum distribution scheme is formulated by a treatment of the system as a sampled-data system. From analytical considerations, it is shown that this steering law gives control performance which is satisfactory for practical applications. Results of the preliminary computer simulation entirely support this premise.
NASA Astrophysics Data System (ADS)
Bai, Jing; Wen, Guoguang; Rahmani, Ahmed
2018-04-01
Leaderless consensus for the fractional-order nonlinear multi-agent systems is investigated in this paper. At the first part, a control protocol is proposed to achieve leaderless consensus for the nonlinear single-integrator multi-agent systems. At the second part, based on sliding mode estimator, a control protocol is given to solve leaderless consensus for the the nonlinear single-integrator multi-agent systems. It shows that the control protocol can improve the systems' convergence speed. At the third part, a control protocol is designed to accomplish leaderless consensus for the nonlinear double-integrator multi-agent systems. To judge the systems' stability in this paper, two classic continuous Lyapunov candidate functions are chosen. Finally, several worked out examples under directed interaction topology are given to prove above results.
Single-Chip Microcomputer Control Of The PWM Inverter
NASA Astrophysics Data System (ADS)
Morimoto, Masayuki; Sato, Shinji; Sumito, Kiyotaka; Oshitani, Katsumi
1987-10-01
A single-chip microcomputer-based con-troller for a pulsewidth modulated 1.7 KVA inverter of an airconditioner is presented. The PWM pattern generation and the system control of the airconditioner are achieved by software of the 8-bit single-chip micro-computer. The single-chip microcomputer has the disadvantages of low processing speed and small memory capacity which can be overcome by the magnetic flux control method. The PWM pattern is generated every 90 psec. The memory capacity of the PWM look-up table is less than 2 kbytes. The simple and reliable control is realized by the software-based implementation.
Output control using feedforward and cascade controllers
NASA Technical Reports Server (NTRS)
Seraji, H.
1987-01-01
An open-loop solution to the output control problem in SISO (single-input, single-output) systems by means of feedforward and cascade controllers is investigated. A simple characterization of feedforward controllers, which achieve steady-state disturbance rejection, is given in a transfer-function setting. Cascade controllers which cause steady-state command tracking are characterized. Disturbance decoupling and command matching controllers are identified. Conditions for existence of feedforward and cascade controllers are given. For unstable systems, it is shown that a stabilizing feedback controller can be used without affecting the feedforward and cascade controllers used for output control; hence, the three controllers can be designed independently. Output control by a combination of feedforward and feedback is discussed.
Developments in Science and Technology.
1980-01-01
control. Sucessful completion of the testing and cer- a single unduplicated track file, thereby reducing tification of readiness represents a...Navy shipboard surveillance radar systems Service Corp., is called the single radar performance has been successfully designed, developed, and tested at...for Navy deteciion/disclosure ranges. The single radar per- shipboard surveillance radar systems are reduced by formance prediction system can be
Multivariable control of a forward swept wing aircraft. M.S. Thesis
NASA Technical Reports Server (NTRS)
Quinn, W. W.
1986-01-01
The impact of independent canard and flaperon control of the longitudinal axis of a generic forward swept wing aircraft is examined. The Linear Quadratic Gaussian (LQG)/Loop Transfer Recovery (LTR) method is used to design three compensators: two single-input-single-output (SISO) systems, one with angle of attack as output and canard as control, the other with pitch attitude as output and canard as control, and a two-input-two-output system with both canard and flaperon controlling both the pitch attitude and angle of attack. The performances of the three systems are compared showing the addition of flaperon control allows the aircraft to perform in the precision control modes with very little loss of command following accuracy.
Polarisation-controlled single photon emission at high temperatures from InGaN quantum dots.
Wang, T; Puchtler, T J; Zhu, T; Jarman, J C; Nuttall, L P; Oliver, R A; Taylor, R A
2017-07-13
Solid-state single photon sources with polarisation control operating beyond the Peltier cooling barrier of 200 K are desirable for a variety of applications in quantum technology. Using a non-polar InGaN system, we report the successful realisation of single photon emission with a g (2) (0) of 0.21, a high polarisation degree of 0.80, a fixed polarisation axis determined by the underlying crystallography, and a GHz repetition rate with a radiative lifetime of 357 ps at 220 K in semiconductor quantum dots. The temperature insensitivity of these properties, together with the simple planar epitaxial growth method and absence of complex device geometries, demonstrates that fast single photon emission with polarisation control can be achieved in solid-state quantum dots above the Peltier temperature threshold, making this system a potential candidate for future on-chip applications in integrated systems.
46 CFR 154.540 - Quick-closing shut-off valves: Emergency shut-down system.
Code of Federal Regulations, 2011 CFR
2011-10-01
... BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design... emergency shut-down system that: (a) Closes all the valves; (b) Is actuated by a single control in at least two locations remote from the quick-closing valves; (c) Is actuated by a single control in each cargo...
46 CFR 154.540 - Quick-closing shut-off valves: Emergency shut-down system.
Code of Federal Regulations, 2010 CFR
2010-10-01
... BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design... emergency shut-down system that: (a) Closes all the valves; (b) Is actuated by a single control in at least two locations remote from the quick-closing valves; (c) Is actuated by a single control in each cargo...
Adaptive fuzzy sliding control of single-phase PV grid-connected inverter.
Fei, Juntao; Zhu, Yunkai
2017-01-01
In this paper, an adaptive fuzzy sliding mode controller is proposed to control a two-stage single-phase photovoltaic (PV) grid-connected inverter. Two key technologies are discussed in the presented PV system. An incremental conductance method with adaptive step is adopted to track the maximum power point (MPP) by controlling the duty cycle of the controllable power switch of the boost DC-DC converter. An adaptive fuzzy sliding mode controller with an integral sliding surface is developed for the grid-connected inverter where a fuzzy system is used to approach the upper bound of the system nonlinearities. The proposed strategy has strong robustness for the sliding mode control can be designed independently and disturbances can be adaptively compensated. Simulation results of a PV grid-connected system verify the effectiveness of the proposed method, demonstrating the satisfactory robustness and performance.
Control allocation for gimballed/fixed thrusters
NASA Astrophysics Data System (ADS)
Servidia, Pablo A.
2010-02-01
Some overactuated control systems use a control distribution law between the controller and the set of actuators, usually called control allocator. Beyond the control allocator, the configuration of actuators may be designed to be able to operate after a single point of failure, for system optimization and/or decentralization objectives. For some type of actuators, a control allocation is used even without redundancy, being a good example the design and operation of thruster configurations. In fact, as the thruster mass flow direction and magnitude only can be changed under certain limits, this must be considered in the feedback implementation. In this work, the thruster configuration design is considered in the fixed (F), single-gimbal (SG) and double-gimbal (DG) thruster cases. The minimum number of thrusters for each case is obtained and for the resulting configurations a specific control allocation is proposed using a nonlinear programming algorithm, under nominal and single-point of failure conditions.
Guidelines on ergonomic aspects of control rooms
NASA Technical Reports Server (NTRS)
Mitchell, C. M.; Bocast, A. K.; Stewart, L. J.
1983-01-01
The anthropometry, workstation design, and environmental design of control rooms are outlined. The automated interface and VDTs and displays and various modes of communication between the system and the human operator using VDTs are discussed. The man in the loop is examined, the single controller single task framework and multiple controller multiple tasks issues are considered.
Attitude controls for VTOL aircraft
NASA Technical Reports Server (NTRS)
Pauli, F. A.
1971-01-01
Systems consist of single duct system with two sets of reaction control nozzles, one linked mechanically to pilot's controls, and other set driven by electric servomotors commanded by preselected combinations of electrical signals.
14 CFR 417.309 - Flight safety system analysis.
Code of Federal Regulations, 2012 CFR
2012-01-01
... system anomaly occurring and all of its effects as determined by the single failure point analysis and... termination system. (c) Single failure point. A command control system must undergo an analysis that... fault tree analysis or a failure modes effects and criticality analysis; (2) Identify all possible...
14 CFR 417.309 - Flight safety system analysis.
Code of Federal Regulations, 2010 CFR
2010-01-01
... system anomaly occurring and all of its effects as determined by the single failure point analysis and... termination system. (c) Single failure point. A command control system must undergo an analysis that... fault tree analysis or a failure modes effects and criticality analysis; (2) Identify all possible...
14 CFR 417.309 - Flight safety system analysis.
Code of Federal Regulations, 2013 CFR
2013-01-01
... system anomaly occurring and all of its effects as determined by the single failure point analysis and... termination system. (c) Single failure point. A command control system must undergo an analysis that... fault tree analysis or a failure modes effects and criticality analysis; (2) Identify all possible...
14 CFR 417.309 - Flight safety system analysis.
Code of Federal Regulations, 2014 CFR
2014-01-01
... system anomaly occurring and all of its effects as determined by the single failure point analysis and... termination system. (c) Single failure point. A command control system must undergo an analysis that... fault tree analysis or a failure modes effects and criticality analysis; (2) Identify all possible...
14 CFR 417.309 - Flight safety system analysis.
Code of Federal Regulations, 2011 CFR
2011-01-01
... system anomaly occurring and all of its effects as determined by the single failure point analysis and... termination system. (c) Single failure point. A command control system must undergo an analysis that... fault tree analysis or a failure modes effects and criticality analysis; (2) Identify all possible...
NASA Technical Reports Server (NTRS)
Bernstein, Dennis S.; Rosen, I. G.
1988-01-01
In controlling distributed parameter systems it is often desirable to obtain low-order, finite-dimensional controllers in order to minimize real-time computational requirements. Standard approaches to this problem employ model/controller reduction techniques in conjunction with LQG theory. In this paper we consider the finite-dimensional approximation of the infinite-dimensional Bernstein/Hyland optimal projection theory. This approach yields fixed-finite-order controllers which are optimal with respect to high-order, approximating, finite-dimensional plant models. The technique is illustrated by computing a sequence of first-order controllers for one-dimensional, single-input/single-output, parabolic (heat/diffusion) and hereditary systems using spline-based, Ritz-Galerkin, finite element approximation. Numerical studies indicate convergence of the feedback gains with less than 2 percent performance degradation over full-order LQG controllers for the parabolic system and 10 percent degradation for the hereditary system.
NASA Astrophysics Data System (ADS)
Li, Zuohua; Chen, Chaojun; Teng, Jun; Wang, Ying
2018-04-01
Active mass damper/driver (AMD) control system has been proposed as an effective tool for high-rise buildings to resist strong dynamic loads. However, such disadvantage as time-varying delay in AMD control systems impedes their application in practices. Time-varying delay, which has an effect on the performance and stability of single-degree-of-freedom (SDOF) and multi-degree-of-freedom (MDOF) systems, is considered in the paper. In addition, a new time-delay compensation controller based on regional pole-assignment method is presented. To verify its effectiveness, the proposed method is applied to a numerical example of a ten-storey frame and an experiment of a single span four-storey steel frame. Both numerical and experimental results demonstrate that the proposed method can enhance the performances of an AMD control system with time-varying delays.
Design of adaptive control systems by means of self-adjusting transversal filters
NASA Technical Reports Server (NTRS)
Merhav, S. J.
1986-01-01
The design of closed-loop adaptive control systems based on nonparametric identification was addressed. Implementation is by self-adjusting Least Mean Square (LMS) transversal filters. The design concept is Model Reference Adaptive Control (MRAC). Major issues are to preserve the linearity of the error equations of each LMS filter, and to prevent estimation bias that is due to process or measurement noise, thus providing necessary conditions for the convergence and stability of the control system. The controlled element is assumed to be asymptotically stable and minimum phase. Because of the nonparametric Finite Impulse Response (FIR) estimates provided by the LMS filters, a-priori information on the plant model is needed only in broad terms. Following a survey of control system configurations and filter design considerations, system implementation is shown here in Single Input Single Output (SISO) format which is readily extendable to multivariable forms. In extensive computer simulation studies the controlled element is represented by a second-order system with widely varying damping, natural frequency, and relative degree.
Output Control Using Feedforward And Cascade Controllers
NASA Technical Reports Server (NTRS)
Seraji, Homayoun
1990-01-01
Report presents theoretical study of open-loop control elements in single-input, single-output linear system. Focus on output-control (servomechanism) problem, in which objective is to find control scheme that causes output to track certain command inputs and to reject certain disturbance inputs in steady state. Report closes with brief discussion of characteristics and relative merits of feedforward, cascade, and feedback controllers and combinations thereof.
Conic Sector Analysis of Hybrid Control Systems. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Thompson, P. M.
1982-01-01
A hybrid control system contains an analog plant and a hybrid (or sampled-data) compensator. In this thesis a new conic sector is determined which is constructive and can be used to: (1) determine closed loop stability, (2) analyze robustness with respect to modelling uncertainties, (3) analyze steady state response to commands, and (4) select the sample rate. The use of conic sectors allows the designer to treat hybrid control systems as though they were analog control systems. The center of the conic sector can be used as a rigorous linear time invariant approximation of the hybrid control system, and the radius places a bound on the errors of this approximation. The hybrid feedback system can be multivariable, and the sampler is assumed to be synchronous. Algorithms to compute the conic sector are presented. Several examples demonstrate how the conic sector analysis techniques are applied. Extensions to single loop multirate hybrid feedback systems are presented. Further extensions are proposed for multiloop multirate hybrid feedback system and for single rate systems with asynchronous sampling.
Decoupling control of vehicle chassis system based on neural network inverse system
NASA Astrophysics Data System (ADS)
Wang, Chunyan; Zhao, Wanzhong; Luan, Zhongkai; Gao, Qi; Deng, Ke
2018-06-01
Steering and suspension are two important subsystems affecting the handling stability and riding comfort of the chassis system. In order to avoid the interference and coupling of the control channels between active front steering (AFS) and active suspension subsystems (ASS), this paper presents a composite decoupling control method, which consists of a neural network inverse system and a robust controller. The neural network inverse system is composed of a static neural network with several integrators and state feedback of the original chassis system to approach the inverse system of the nonlinear systems. The existence of the inverse system for the chassis system is proved by the reversibility derivation of Interactor algorithm. The robust controller is based on the internal model control (IMC), which is designed to improve the robustness and anti-interference of the decoupled system by adding a pre-compensation controller to the pseudo linear system. The results of the simulation and vehicle test show that the proposed decoupling controller has excellent decoupling performance, which can transform the multivariable system into a number of single input and single output systems, and eliminate the mutual influence and interference. Furthermore, it has satisfactory tracking capability and robust performance, which can improve the comprehensive performance of the chassis system.
DOT National Transportation Integrated Search
2009-10-01
This report presents the findings of a comprehensive engineering analysis of electronic stability control (ESC) and roll stability control (RSC) systems for single-unit medium and heavy trucks and large-platform buses. This report details the applica...
Adaptive fuzzy sliding control of single-phase PV grid-connected inverter
Zhu, Yunkai
2017-01-01
In this paper, an adaptive fuzzy sliding mode controller is proposed to control a two-stage single-phase photovoltaic (PV) grid-connected inverter. Two key technologies are discussed in the presented PV system. An incremental conductance method with adaptive step is adopted to track the maximum power point (MPP) by controlling the duty cycle of the controllable power switch of the boost DC-DC converter. An adaptive fuzzy sliding mode controller with an integral sliding surface is developed for the grid-connected inverter where a fuzzy system is used to approach the upper bound of the system nonlinearities. The proposed strategy has strong robustness for the sliding mode control can be designed independently and disturbances can be adaptively compensated. Simulation results of a PV grid-connected system verify the effectiveness of the proposed method, demonstrating the satisfactory robustness and performance. PMID:28797060
NASA Astrophysics Data System (ADS)
Gardner, Gregory S.
This research dissertation summarizes research done on the topic of global air traffic control, to include technology, controlling world organizations and economic considerations. The International Civil Aviation Organization (ICAO) proposed communication, navigation, surveillance, air traffic management system (CNS/ATM) plan is the basis for the development of a single global CNS/ATM system concept as it is discussed within this study. Research will be evaluated on the efficacy of a single technology, Automatic Dependent Surveillance-Broadcast (ADS-B) within the scope of a single global CNS/ATM system concept. ADS-B has been used within the Federal Aviation Administration's (FAA) Capstone program for evaluation since the year 2000. The efficacy of ADS-B was measured solely by using National Transportation Safety Board (NTSB) data relating to accident and incident rates within the Alaskan airspace (AK) and that of the national airspace system (NAS).
The artificial satellite observation chronograph controlled by single chip microcomputer.
NASA Astrophysics Data System (ADS)
Pan, Guangrong; Tan, Jufan; Ding, Yuanjun
1991-06-01
The instrument specifications, hardware structure, software design, and other characteristics of the chronograph mounting on a theodolite used for artificial satellite observation are presented. The instrument is a real time control system with a single chip microcomputer.
Some Aspects of an Air-Core Single-Coil Magnetic Suspension System
NASA Technical Reports Server (NTRS)
Hamlet, Irvin L.; Kilgore, Robert A.
1966-01-01
This paper presents some of the technical aspects in the development at the Langley Research Center of an air-cove, dual-wound, single-coil, magnetic-suspension system with one-dimensional control. Overall electrical system design features and techniques are discussed in addition to the problems of control and stability. Special treatment is given to the operation of a dual-wound, high-current support coil which provides the bias fields and superimposed modulated field. Other designs features include a six-phase, solid-state power stage for modulation of the relatively large magnitude control current, and an associated six-phase trigger circuit.
NASA Astrophysics Data System (ADS)
Vemuri, SH. S.; Bosworth, R.; Morrison, J. F.; Kerrigan, E. C.
2018-05-01
The growth of Tollmien-Schlichting (TS) waves is experimentally attenuated using a single-input and single-output (SISO) feedback system, where the TS wave packet is generated by a surface point source in a flat-plate boundary layer. The SISO system consists of a single wall-mounted hot wire as the sensor and a miniature speaker as the actuator. The actuation is achieved through a dual-slot geometry to minimize the cavity near-field effects on the sensor. The experimental setup to generate TS waves or wave packets is very similar to that used by Li and Gaster [J. Fluid Mech. 550, 185 (2006), 10.1017/S0022112005008219]. The aim is to investigate the performance of the SISO control system in attenuating single-frequency, two-dimensional disturbances generated by these configurations. The necessary plant models are obtained using system identification, and the controllers are then designed based on the models and implemented in real-time to test their performance. Cancellation of the rms streamwise velocity fluctuation of TS waves is evident over a significant domain.
Nonlinear aeroservoelastic analysis of a controlled multiple-actuated-wing model with free-play
NASA Astrophysics Data System (ADS)
Huang, Rui; Hu, Haiyan; Zhao, Yonghui
2013-10-01
In this paper, the effects of structural nonlinearity due to free-play in both leading-edge and trailing-edge outboard control surfaces on the linear flutter control system are analyzed for an aeroelastic model of three-dimensional multiple-actuated-wing. The free-play nonlinearities in the control surfaces are modeled theoretically by using the fictitious mass approach. The nonlinear aeroelastic equations of the presented model can be divided into nine sub-linear modal-based aeroelastic equations according to the different combinations of deflections of the leading-edge and trailing-edge outboard control surfaces. The nonlinear aeroelastic responses can be computed based on these sub-linear aeroelastic systems. To demonstrate the effects of nonlinearity on the linear flutter control system, a single-input and single-output controller and a multi-input and multi-output controller are designed based on the unconstrained optimization techniques. The numerical results indicate that the free-play nonlinearity can lead to either limit cycle oscillations or divergent motions when the linear control system is implemented.
Grid Integration of Single Stage Solar PV System using Three-level Voltage Source Converter
NASA Astrophysics Data System (ADS)
Hussain, Ikhlaq; Kandpal, Maulik; Singh, Bhim
2016-08-01
This paper presents a single stage solar PV (photovoltaic) grid integrated power generating system using a three level voltage source converter (VSC) operating at low switching frequency of 900 Hz with robust synchronizing phase locked loop (RS-PLL) based control algorithm. To track the maximum power from solar PV array, an incremental conductance algorithm is used and this maximum power is fed to the grid via three-level VSC. The use of single stage system with three level VSC offers the advantage of low switching losses and the operation at high voltages and high power which results in enhancement of power quality in the proposed system. Simulated results validate the design and control algorithm under steady state and dynamic conditions.
Supervising and Controlling Unmanned Systems: A Multi-Phase Study with Subject Matter Experts
Porat, Talya; Oron-Gilad, Tal; Rottem-Hovev, Michal; Silbiger, Jacob
2016-01-01
Proliferation in the use of Unmanned Aerial Systems (UASs) in civil and military operations has presented a multitude of human factors challenges; from how to bridge the gap between demand and availability of trained operators, to how to organize and present data in meaningful ways. Utilizing the Design Research Methodology (DRM), a series of closely related studies with subject matter experts (SMEs) demonstrate how the focus of research gradually shifted from “how many systems can a single operator control” to “how to distribute missions among operators and systems in an efficient way”. The first set of studies aimed to explore the modal number, i.e., how many systems can a single operator supervise and control. It was found that an experienced operator can supervise up to 15 UASs efficiently using moderate levels of automation, and control (mission and payload management) up to three systems. Once this limit was reached, a single operator's performance was compared to a team controlling the same number of systems. In general, teams led to better performances. Hence, shifting design efforts toward developing tools that support teamwork environments of multiple operators with multiple UASs (MOMU). In MOMU settings, when the tasks are similar or when areas of interest overlap, one operator seems to have an advantage over a team who needs to collaborate and coordinate. However, in all other cases, a team was advantageous over a single operator. Other findings and implications, as well as future directions for research are discussed. PMID:27252662
Yamamoto, Shoko; Shiraishi, Soma; Kawagoe, Yumi; Mochizuki, Mai; Suzuki, Shunji
2015-05-01
Biological control is a non-hazardous technique to control plant diseases. Researchers have explored microorganisms that show high plant-disease control efficiency for use as biological control agents. A single soil application of Bacillus amyloliquefaciens strain S13-3 suppressed tomato bacterial wilt caused by Ralstonia solanacearum, a soilborne bacterial pathogen, through production of antibiotics augmented possibly by induction of systemic acquired resistance. Soil application also controlled tomato powdery mildew disease through induction of systemic acquired resistance. S13-3 showing bifunctional activity with a single application to soil may be an innovative biological control agent against bacterial wilt and powdery mildew in tomato. © 2014 Society of Chemical Industry.
[The study of DSX-I type microcomputer autometic control injector system].
Shi, M; Wu, G; Bai, G; Xue, J; Zhang, Y
1997-01-01
This paper studies the propulsive force of injector system controlled by 8031 single-chip microcomputer for Medical use By using one 8031 single-chip microcomputer as a microprocessor, the minimal autometic control system is constructed, which turns real-time control into reality. This product is a modern appliance used in diagnostic imaging medicine, in design of which the advanced instrument and electrical machinery are integrated into a unified structure. The clinic data demonstrate that the contrast medium can be injected to patients with rapidly and evenly. Dynamic CT Scanning can be intensified at any site of the body. x-ray dose exposed and lobour intensity to the operator can be decreased greatly, raise working efficiency.
Neural networks for tracking of unknown SISO discrete-time nonlinear dynamic systems.
Aftab, Muhammad Saleheen; Shafiq, Muhammad
2015-11-01
This article presents a Lyapunov function based neural network tracking (LNT) strategy for single-input, single-output (SISO) discrete-time nonlinear dynamic systems. The proposed LNT architecture is composed of two feedforward neural networks operating as controller and estimator. A Lyapunov function based back propagation learning algorithm is used for online adjustment of the controller and estimator parameters. The controller and estimator error convergence and closed-loop system stability analysis is performed by Lyapunov stability theory. Moreover, two simulation examples and one real-time experiment are investigated as case studies. The achieved results successfully validate the controller performance. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Nanopipette Apparatus for Manipulating Cells
NASA Technical Reports Server (NTRS)
Vilozny, Boaz (Inventor); Seger, R. Adam (Inventor); Actis, Paolo (Inventor); Pourmand, Nader (Inventor)
2017-01-01
Disclosed herein are methods and systems for controlled ejection of desired material onto surfaces including in single cells using nanopipettes, as well as ejection onto and into cells. Some embodiments are directed to a method and system comprising nanopipettes combined with an xyz controller for depositing a user defined pattern on an arbitrary substrate for the purpose of controlled cell adhesion and growth. Alternate embodiments are directed to a method and system comprising nanopipettes combined with an xyz controller and electronic control of a voltage differential in a bore of the nanopipette electroosmotically injecting material into a cell in a high-throughput manner and with minimal damage to the cell. Yet other embodiments are directed to method and system comprising functionalized nanopipettes combined with scanning ion conductance microscopy for studying molecular interactions and detection of biomolecules inside a single living cell.
Design of Water Temperature Control System Based on Single Chip Microcomputer
NASA Astrophysics Data System (ADS)
Tan, Hanhong; Yan, Qiyan
2017-12-01
In this paper, we mainly introduce a multi-function water temperature controller designed with 51 single-chip microcomputer. This controller has automatic and manual water, set the water temperature, real-time display of water and temperature and alarm function, and has a simple structure, high reliability, low cost. The current water temperature controller on the market basically use bimetal temperature control, temperature control accuracy is low, poor reliability, a single function. With the development of microelectronics technology, monolithic microprocessor function is increasing, the price is low, in all aspects of widely used. In the water temperature controller in the application of single-chip, with a simple design, high reliability, easy to expand the advantages of the function. Is based on the appeal background, so this paper focuses on the temperature controller in the intelligent control of the discussion.
Operation of Direct Drive Systems: Experiments in Peak Power Tracking and Multi-Thruster Control
NASA Technical Reports Server (NTRS)
Snyder, John Steven; Brophy, John R.
2013-01-01
Direct-drive power and propulsion systems have the potential to significantly reduce the mass of high-power solar electric propulsion spacecraft, among other advantages. Recent experimental direct-drive work has significantly mitigated or retired the technical risks associated with single-thruster operation, so attention is now moving toward systems-level areas of interest. One of those areas is the use of a Hall thruster system as a peak power tracker to fully use the available power from a solar array. A simple and elegant control based on the incremental conductance method, enhanced by combining it with the unique properties of Hall thruster systems, is derived here and it is shown to track peak solar array power very well. Another area of interest is multi-thruster operation and control. Dualthruster operation was investigated in a parallel electrical configuration, with both thrusters operating from discharge power provided by a single solar array. Startup and shutdown sequences are discussed, and it is shown that multi-thruster operation and control is as simple as for a single thruster. Some system architectures require operation of multiple cathodes while they are electrically connected together. Four different methods to control the discharge current emitted by individual cathodes in this configuration are investigated, with cathode flow rate control appearing to be advantageous. Dual-parallel thruster operation with equal cathode current sharing at total powers up to 10 kW is presented.
Controlling the transmitted information of a multi-photon interacting with a single-Cooper pair box
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kadry, Heba, E-mail: hkadry1@yahoo.com; Abdel-Aty, Abdel-Haleem, E-mail: hkadry1@yahoo.com; Zakaria, Nordin, E-mail: hkadry1@yahoo.com
2014-10-24
We study a model of a multi-photon interaction of a single Cooper pair box with a cavity field. The exchange of the information using this system is studied. We quantify the fidelity of the transmitted information. The effect of the system parameters (detuning parameter, field photons, state density and mean photon number) in the fidelity of the transmitted information is investigated. We found that the fidelity of the transmitted information can be controlled using the system parameters.
NASA Technical Reports Server (NTRS)
Griffin, Brian Joseph; Burken, John J.; Xargay, Enric
2010-01-01
This paper presents an L(sub 1) adaptive control augmentation system design for multi-input multi-output nonlinear systems in the presence of unmatched uncertainties which may exhibit significant cross-coupling effects. A piecewise continuous adaptive law is adopted and extended for applicability to multi-input multi-output systems that explicitly compensates for dynamic cross-coupling. In addition, explicit use of high-fidelity actuator models are added to the L1 architecture to reduce uncertainties in the system. The L(sub 1) multi-input multi-output adaptive control architecture is applied to the X-29 lateral/directional dynamics and results are evaluated against a similar single-input single-output design approach.
Haidar, Ahmad; Messier, Virginie; Legault, Laurent; Ladouceur, Martin; Rabasa-Lhoret, Rémi
2017-05-01
To assess whether the dual-hormone (insulin and glucagon) artificial pancreas reduces hypoglycaemia compared to the single-hormone (insulin alone) artificial pancreas in outpatient settings during the day and night. In a randomized, three-way, crossover trial we compared the dual-hormone artificial pancreas, the single-hormone artificial pancreas and sensor-augmented pump therapy (control) in 23 adults with type 1 diabetes. Each intervention was applied from 8 AM Day 1 to 8 PM Day 3 (60 hours) in outpatient free-living conditions. The primary outcome was time spent with sensor glucose levels below 4.0 mmol/L. A P value of less than .017 was regarded as significant. The median difference between the dual-hormone system and the single-hormone system was -2.3% (P = .072) for time spent below 4.0 mmol/L, -1.3% (P = .017) for time below 3.5 mmol/L, and -0.7% (P = .031) for time below 3.3 mmol/L. Both systems reduced (P < .017) hypoglycaemia below 4.0, 3.5 and 3.3 mmol/L compared to control therapy, but reductions were larger with the dual-hormone system than with the single-hormone system (medians -4.0% vs -3.4% for 4.0 mmol/L; -2.7% vs -2.2% for 3.5 mmol/L; and -2.2% vs -1.2% for 3.3 mmol/L). There were 34 hypoglycaemic events (<3.0 mmol/L for 20 minutes) with control therapy, 14 with the single-hormone system and 6 with the dual-hormone system. These differences in hypoglycaemia were observed while mean glucose level was low and comparable in all interventions (P = NS). The dual-hormone artificial pancreas had the lowest risk of hypoglycaemia, but the differences were not statistically significant. Larger studies are needed. © 2017 John Wiley & Sons Ltd.
A new intelligent curtain control system based on 51 single chip microcomputer
NASA Astrophysics Data System (ADS)
Sun, Tuan; Wang, Yanhua; Wu, Mengmeng
2017-04-01
This paper uses 51 (single chip microcomputer) SCM as the operation and data processing center. According to the change of sunshine intensity and ambient temperature, a new type of intelligent curtain control system is designed by adopting photosensitive element and temperature sensor. In addition, the design also has a manual control mode. In the rain, when the light intensity is weak, the open position of the curtain can be set by the user. The system can maximize the user to provide user-friendly operation and comfortable living environment. The system can be applied to home or office environment, with a wide range of applications and simple operation and so on.
46 CFR 62.30-5 - Independence.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Reliability and Safety Criteria, All Automated Vital Systems § 62.30-5 Independence. (a) Single non-concurrent failures in control, alarm, or instrumentation systems, and their logical consequences, must not prevent...)(2) and (b)(3) of this section, primary control, alternate control, safety control, and alarm and...
46 CFR 62.30-5 - Independence.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Reliability and Safety Criteria, All Automated Vital Systems § 62.30-5 Independence. (a) Single non-concurrent failures in control, alarm, or instrumentation systems, and their logical consequences, must not prevent...)(2) and (b)(3) of this section, primary control, alternate control, safety control, and alarm and...
46 CFR 62.30-5 - Independence.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Reliability and Safety Criteria, All Automated Vital Systems § 62.30-5 Independence. (a) Single non-concurrent failures in control, alarm, or instrumentation systems, and their logical consequences, must not prevent...)(2) and (b)(3) of this section, primary control, alternate control, safety control, and alarm and...
46 CFR 62.30-5 - Independence.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Reliability and Safety Criteria, All Automated Vital Systems § 62.30-5 Independence. (a) Single non-concurrent failures in control, alarm, or instrumentation systems, and their logical consequences, must not prevent...)(2) and (b)(3) of this section, primary control, alternate control, safety control, and alarm and...
46 CFR 62.30-5 - Independence.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Reliability and Safety Criteria, All Automated Vital Systems § 62.30-5 Independence. (a) Single non-concurrent failures in control, alarm, or instrumentation systems, and their logical consequences, must not prevent...)(2) and (b)(3) of this section, primary control, alternate control, safety control, and alarm and...
Experimental comparison of conventional and nonlinear model-based control of a mixing tank
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haeggblom, K.E.
1993-11-01
In this case study concerning control of a laboratory-scale mixing tank, conventional multiloop single-input single-output (SISO) control is compared with model-based'' control where the nonlinearity and multivariable characteristics of the process are explicitly taken into account. It is shown, especially if the operating range of the process is large, that the two outputs (level and temperature) cannot be adequately controlled by multiloop SISO control even if gain scheduling is used. By nonlinear multiple-input multiple-output (MIMO) control, on the other hand, very good control performance is obtained. The basic approach to nonlinear control used in this study is first to transformmore » the process into a globally linear and decoupled system, and then to design controllers for this system. Because of the properties of the resulting MIMO system, the controller design is very easy. Two nonlinear control system designs based on a steady-state and a dynamic model, respectively, are considered. In the dynamic case, both setpoint tracking and disturbance rejection can be addressed separately.« less
Intelligent Control for Drag Reduction on the X-48B Vehicle
NASA Technical Reports Server (NTRS)
Griffin, Brian Joseph; Brown, Nelson Andrew; Yoo, Seung Yeun
2011-01-01
This paper focuses on the development of an intelligent control technology for in-flight drag reduction. The system is integrated with and demonstrated on the full X-48B nonlinear simulation. The intelligent control system utilizes a peak-seeking control method implemented with a time-varying Kalman filter. Performance functional coordinate and magnitude measurements, or independent and dependent parameters respectively, are used by the Kalman filter to provide the system with gradient estimates of the designed performance function which is used to drive the system toward a local minimum in a steepestdescent approach. To ensure ease of integration and algorithm performance, a single-input single-output approach was chosen. The framework, specific implementation considerations, simulation results, and flight feasibility issues related to this platform are discussed.
On Decision-Making Among Multiple Rule-Bases in Fuzzy Control Systems
NASA Technical Reports Server (NTRS)
Tunstel, Edward; Jamshidi, Mo
1997-01-01
Intelligent control of complex multi-variable systems can be a challenge for single fuzzy rule-based controllers. This class of problems cam often be managed with less difficulty by distributing intelligent decision-making amongst a collection of rule-bases. Such an approach requires that a mechanism be chosen to ensure goal-oriented interaction between the multiple rule-bases. In this paper, a hierarchical rule-based approach is described. Decision-making mechanisms based on generalized concepts from single-rule-based fuzzy control are described. Finally, the effects of different aggregation operators on multi-rule-base decision-making are examined in a navigation control problem for mobile robots.
The study and design of tension controller
NASA Astrophysics Data System (ADS)
Jun, G.; Lamei, X.
2018-02-01
Tension control is a wide used technology in areas such as textiles, paper and plastic films. In this article, the tension control system release and winding process is analyzed and the mathematical model of tension control system is established, and a high performance tension controller is designed. In hardware design, STM32F130 single chip microcomputer is used as the control core, which has the characteristics of fast running speed and rich peripheral features. In software design, μC/OS-II operating system is introduced to improve the efficiency of single chip microcomputer, and enhance the independence of each module, and make development and maintenance more convenient. The taper tension control is adopted in the winding part, which can effectively solve the problem of rolling shrinkage. The results show that the tension controller has the characteristics of simple structure, easy operation and stable performance.
With the Development of Teaching Sumo Robot are Discussed
NASA Astrophysics Data System (ADS)
quan, Miao Zhi; Ke, Ma; Xin, Wei Jing
In recent years, with of robot technology progress and robot science activities, robot technology obtained fast development. The system USES the Atmega128 single-chip Atmel company as a core controller, was designed using a infrared to tube detection boundary, looking for each other, controller to tube receiving infrared data, and according to the data control motor state thus robot reached automatic control purposes. Against robot by single-chip microcomputer smallest system, By making the teaching purpose is to promote the robot sumo students' interests and let more students to participate in the robot research activities.
Aircraft dual-shaft jet engine with indirect action fuel flow controller
NASA Astrophysics Data System (ADS)
Tudosie, Alexandru-Nicolae
2017-06-01
The paper deals with an aircraft single-jet engine's control system, based on a fuel flow controller. Considering the engine as controlled object and its thrust the most important operation effect, from the multitude of engine's parameters only its rotational speed n is measurable and proportional to its thrust, so engine's speed has become the most important controlled parameter. Engine's control system is based on fuel injection Qi dosage, while the output is engine's speed n. Based on embedded system's main parts' mathematical models, the author has described the system by its block diagram with transfer functions; furthermore, some Simulink-Matlab simulations are performed, concerning embedded system quality (its output parameters time behavior) and, meanwhile, some conclusions concerning engine's parameters mutual influences are revealed. Quantitative determinations are based on author's previous research results and contributions, as well as on existing models (taken from technical literature). The method can be extended for any multi-spool engine, single- or twin-jet.
Sahoo, Avimanyu; Xu, Hao; Jagannathan, Sarangapani
2016-01-01
This paper presents a novel adaptive neural network (NN) control of single-input and single-output uncertain nonlinear discrete-time systems under event sampled NN inputs. In this control scheme, the feedback signals are transmitted, and the NN weights are tuned in an aperiodic manner at the event sampled instants. After reviewing the NN approximation property with event sampled inputs, an adaptive state estimator (SE), consisting of linearly parameterized NNs, is utilized to approximate the unknown system dynamics in an event sampled context. The SE is viewed as a model and its approximated dynamics and the state vector, during any two events, are utilized for the event-triggered controller design. An adaptive event-trigger condition is derived by using both the estimated NN weights and a dead-zone operator to determine the event sampling instants. This condition both facilitates the NN approximation and reduces the transmission of feedback signals. The ultimate boundedness of both the NN weight estimation error and the system state vector is demonstrated through the Lyapunov approach. As expected, during an initial online learning phase, events are observed more frequently. Over time with the convergence of the NN weights, the inter-event times increase, thereby lowering the number of triggered events. These claims are illustrated through the simulation results.
A novel auto-tuning PID control mechanism for nonlinear systems.
Cetin, Meric; Iplikci, Serdar
2015-09-01
In this paper, a novel Runge-Kutta (RK) discretization-based model-predictive auto-tuning proportional-integral-derivative controller (RK-PID) is introduced for the control of continuous-time nonlinear systems. The parameters of the PID controller are tuned using RK model of the system through prediction error-square minimization where the predicted information of tracking error provides an enhanced tuning of the parameters. Based on the model-predictive control (MPC) approach, the proposed mechanism provides necessary PID parameter adaptations while generating additive correction terms to assist the initially inadequate PID controller. Efficiency of the proposed mechanism has been tested on two experimental real-time systems: an unstable single-input single-output (SISO) nonlinear magnetic-levitation system and a nonlinear multi-input multi-output (MIMO) liquid-level system. RK-PID has been compared to standard PID, standard nonlinear MPC (NMPC), RK-MPC and conventional sliding-mode control (SMC) methods in terms of control performance, robustness, computational complexity and design issue. The proposed mechanism exhibits acceptable tuning and control performance with very small steady-state tracking errors, and provides very short settling time for parameter convergence. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Terminal sliding mode tracking control for a class of SISO uncertain nonlinear systems.
Chen, Mou; Wu, Qing-Xian; Cui, Rong-Xin
2013-03-01
In this paper, the terminal sliding mode tracking control is proposed for the uncertain single-input and single-output (SISO) nonlinear system with unknown external disturbance. For the unmeasured disturbance of nonlinear systems, terminal sliding mode disturbance observer is presented. The developed disturbance observer can guarantee the disturbance approximation error to converge to zero in the finite time. Based on the output of designed disturbance observer, the terminal sliding mode tracking control is presented for uncertain SISO nonlinear systems. Subsequently, terminal sliding mode tracking control is developed using disturbance observer technique for the uncertain SISO nonlinear system with control singularity and unknown non-symmetric input saturation. The effects of the control singularity and unknown input saturation are combined with the external disturbance which is approximated using the disturbance observer. Under the proposed terminal sliding mode tracking control techniques, the finite time convergence of all closed-loop signals are guaranteed via Lyapunov analysis. Numerical simulation results are given to illustrate the effectiveness of the proposed terminal sliding mode tracking control. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Single-chip microcomputer application in high-altitude balloon orientation system
NASA Technical Reports Server (NTRS)
Lim, T. S.; Ehrmann, C. H.; Allison, S. R.
1980-01-01
This paper describes the application of a single-chip microcomputer in a high-altitude balloon instrumentation system. The system, consisting of a magnetometer, a stepping motor, a microcomputer and a gray code shaft encoder, is used to provide an orientation reference to point a scientific instrument at an object in space. The single-chip microcomputer, Intel's 8748, consisting of a CPU, program memory, data memory and I/O ports, is used to control the orientation of the system.
Scientific Activities Pursuant to the Provisions of AFOSR Grant 79-0018.
1984-01-01
controllability implies stabilizability n the case of autono- mous finite dimensional linear systems , we are not surprised to find control ...Current Status of the Control Theory of Single Space Dim- ension Hyperbolicr Systems " was presented at the NASA JPL Symposium on Cbntrol and Stabilization ...theory of hyperbolic systems , including controllability , stabilization , control canonical form theory, etc. To allow a unified and not
NASA Astrophysics Data System (ADS)
Go, Gwangjun; Choi, Hyunchul; Jeong, Semi; Ko, Seong Young; Park, Jong-Oh; Park, Sukho
2016-03-01
Microparticle manipulation using a microrobot in an enclosed environment, such as a lab-on-a-chip, has been actively studied because an electromagnetic actuated microrobot can have accurate motility and wireless controllability. In most studies on electromagnetic actuated microrobots, only a single microrobot has been used to manipulate cells or microparticles. However, the use of a single microrobot can pose several limitations when performing multiple roles in microparticle manipulation. To overcome the limitations associated with using a single microrobot, we propose a new method for the control of multiple microrobots. Multiple microrobots can be controlled independently by an electromagnetic actuation system and multiple microclampers combined with microheaters. To select a specific microrobot among multiple microrobots, we propose a microclamper composed of a clamper structure using thermally responsive hydrogel and a microheater for controlling the microclamper. A fundamental test of the proposed microparticle manipulation system is performed by selecting a specific microrobot among multiple microrobots. Through the independent locomotion of multiple microrobots with U- and V-shaped tips, heterogeneous microparticle manipulation is demonstrated in the creation of a two-dimensional structure. In the future, our proposed multiple-microrobot system can be applied to tasks that are difficult to perform using a single microrobot, such as cell manipulation, cargo delivery, tissue assembly, and cloning.
Jenke, Christoph; Pallejà Rubio, Jaume; Kibler, Sebastian; Häfner, Johannes; Richter, Martin; Kutter, Christoph
2017-01-01
With the combination of micropumps and flow sensors, highly accurate and secure closed-loop controlled micro dosing systems for liquids are possible. Implementing a single stroke based control mode with piezoelectrically driven micro diaphragm pumps can provide a solution for dosing of volumes down to nanoliters or variable average flow rates in the range of nL/min to μL/min. However, sensor technologies feature a yet undetermined accuracy for measuring highly pulsatile micropump flow. Two miniaturizable in-line sensor types providing electrical readout—differential pressure based flow sensors and thermal calorimetric flow sensors—are evaluated for their suitability of combining them with mircopumps. Single stroke based calibration of the sensors was carried out with a new method, comparing displacement volumes and sensor flow volumes. Limitations of accuracy and performance for single stroke based flow control are described. Results showed that besides particle robustness of sensors, controlling resistive and capacitive damping are key aspects for setting up reproducible and reliable liquid dosing systems. Depending on the required average flow or defined volume, dosing systems with an accuracy of better than 5% for the differential pressure based sensor and better than 6.5% for the thermal calorimeter were achieved. PMID:28368344
Research on automatic control system of greenhouse
NASA Astrophysics Data System (ADS)
Liu, Yi; Qi, Guoyang; Li, Zeyu; Wu, Qiannan; Meng, Yupeng
2017-03-01
This paper introduces a kind of automatic control system of single-chip microcomputer and a temperature and humidity sensor based on the greenhouse, describes the system's hardware structure, working principle and process, and a large number of experiments on the effect of the control system, the results show that the system can ideally control temperature and room temperature and humidity, can be used in indoor breeding and planting, and has the versatility and portability.
Neuro-adaptive backstepping control of SISO non-affine systems with unknown gain sign.
Ramezani, Zahra; Arefi, Mohammad Mehdi; Zargarzadeh, Hassan; Jahed-Motlagh, Mohammad Reza
2016-11-01
This paper presents two neuro-adaptive controllers for a class of uncertain single-input, single-output (SISO) nonlinear non-affine systems with unknown gain sign. The first approach is state feedback controller, so that a neuro-adaptive state-feedback controller is constructed based on the backstepping technique. The second approach is an observer-based controller and K-filters are designed to estimate the system states. The proposed method relaxes a priori knowledge of control gain sign and therefore by utilizing the Nussbaum-type functions this problem is addressed. In these methods, neural networks are employed to approximate the unknown nonlinear functions. The proposed adaptive control schemes guarantee that all the closed-loop signals are semi-globally uniformly ultimately bounded (SGUUB). Finally, the theoretical results are numerically verified through simulation examples. Simulation results show the effectiveness of the proposed methods. Copyright © 2016 ISA. All rights reserved.
A Single Chip Automotive Control LSI Using SOI Bipolar Complimentary MOS Double-Diffused MOS
NASA Astrophysics Data System (ADS)
Kawamoto, Kazunori; Mizuno, Shoji; Abe, Hirofumi; Higuchi, Yasushi; Ishihara, Hideaki; Fukumoto, Harutsugu; Watanabe, Takamoto; Fujino, Seiji; Shirakawa, Isao
2001-04-01
Using the example of an air bag controller, a single chip solution for automotive sub-control systems is investigated, by using a technological combination of improved circuits, bipolar complimentary metal oxide silicon double-diffused metal oxide silicon (BiCDMOS) and thick silicon on insulator (SOI). For circuits, an automotive specific reduced instruction set computer (RISC) center processing unit (CPU), and a novel, all integrated system clock generator, dividing digital phase-locked loop (DDPLL) are proposed. For the device technologies, the authors use SOI-BiCDMOS with trench dielectric-isolation (TD) which enables integration of various devices in an integrated circuit (IC) while avoiding parasitic miss operations by ideal isolation. The structures of the SOI layer and TD, are optimized for obtaining desired device characteristics and high electromagnetic interference (EMI) immunity. While performing all the air bag system functions over a wide range of supply voltage, and ambient temperature, the resulting single chip reduces the electronic parts to about a half of those in the conventional air bags. The combination of single chip oriented circuits and thick SOI-BiCDMOS technologies offered in this work is valuable for size reduction and improved reliability of automotive electronic control units (ECUs).
Magnetic susceptibility well-logging unit with single power supply thermoregulation system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seeley, R. L.
1985-11-05
The magnetic susceptibility well-logging unit with single power supply thermoregulation system provides power from a single surface power supply over a well-logging cable to an integrated circuit voltage regulator system downhole. This voltage regulator system supplies regulated voltages to a temperature control system and also to a Maxwell bridge sensing unit which includes the solenoid of a magnetic susceptibility probe. The temperature control system is provided with power from the voltage regulator system and operates to permit one of several predetermined temperatures to be chosen, and then operates to maintain the solenoid of a magnetic susceptibility probe at this chosenmore » temperature. The temperature control system responds to a temperature sensor mounted upon the probe solenoid to cause resistance heaters concentrically spaced from the probe solenoid to maintain the chosen temperature. A second temperature sensor on the probe solenoid provides a temperature signal to a temperature transmitting unit, which initially converts the sensed temperature to a representative voltage. This voltage is then converted to a representative current signal which is transmitted by current telemetry over the well logging cable to a surface electronic unit which then reconverts the current signal to a voltage signal.« less
Instrumentation, control, and automation for submerged anaerobic membrane bioreactors.
Robles, Ángel; Durán, Freddy; Ruano, María Victoria; Ribes, Josep; Rosado, Alfredo; Seco, Aurora; Ferrer, José
2015-01-01
A submerged anaerobic membrane bioreactor (AnMBR) demonstration plant with two commercial hollow-fibre ultrafiltration systems (PURON®, Koch Membrane Systems, PUR-PSH31) was designed and operated for urban wastewater treatment. An instrumentation, control, and automation (ICA) system was designed and implemented for proper process performance. Several single-input-single-output (SISO) feedback control loops based on conventional on-off and PID algorithms were implemented to control the following operating variables: flow-rates (influent, permeate, sludge recycling and wasting, and recycled biogas through both reactor and membrane tanks), sludge wasting volume, temperature, transmembrane pressure, and gas sparging. The proposed ICA for AnMBRs for urban wastewater treatment enables the optimization of this new technology to be achieved with a high level of process robustness towards disturbances.
Active parallel redundancy for electronic integrator-type control circuits
NASA Technical Reports Server (NTRS)
Peterson, R. A.
1971-01-01
Circuit extends concept of redundant feedback control from type-0 to type-1 control systems. Inactive channels are slaves to the active channel, if latter fails, it is rejected and slave channel is activated. High reliability and elimination of single-component catastrophic failure are important in closed-loop control systems.
76 FR 55829 - Federal Motor Vehicle Safety Standards; Electronic Stability Control Systems
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-09
.... Benefits of ESC Electronic stability control (ESC) systems use automatic computer- controlled braking of... demonstrated that these systems reduce fatal single-vehicle crashes of passenger cars by 55 percent and fatal... potential to prevent 56 percent of the fatal passenger car rollovers and 74 percent of the fatal LTV first...
Probabilistic Parameter Uncertainty Analysis of Single Input Single Output Control Systems
NASA Technical Reports Server (NTRS)
Smith, Brett A.; Kenny, Sean P.; Crespo, Luis G.
2005-01-01
The current standards for handling uncertainty in control systems use interval bounds for definition of the uncertain parameters. This approach gives no information about the likelihood of system performance, but simply gives the response bounds. When used in design, current methods of m-analysis and can lead to overly conservative controller design. With these methods, worst case conditions are weighted equally with the most likely conditions. This research explores a unique approach for probabilistic analysis of control systems. Current reliability methods are examined showing the strong areas of each in handling probability. A hybrid method is developed using these reliability tools for efficiently propagating probabilistic uncertainty through classical control analysis problems. The method developed is applied to classical response analysis as well as analysis methods that explore the effects of the uncertain parameters on stability and performance metrics. The benefits of using this hybrid approach for calculating the mean and variance of responses cumulative distribution functions are shown. Results of the probabilistic analysis of a missile pitch control system, and a non-collocated mass spring system, show the added information provided by this hybrid analysis.
Levitation With a Single Acoustic Driver
NASA Technical Reports Server (NTRS)
Barmatz, M. B.; Gaspar, M. S.; Allen, J. L.
1986-01-01
Pair of reports describes acoustic-levitation systems in which only one acoustic resonance mode excited, and only one driver needed. Systems employ levitation chambers of rectangular and cylindrical geometries. Reports first describe single mode concept and indicate which modes used to levitate sample without rotation. Reports then describe systems in which controlled rotation of sample introduced.
Solar Collector Control System.
A system for controlling the movement in azimuth and elevation of a large number of sun following solor energy collectors from a single controller...The system utilizes servo signal generators, a modulator and a demodulator for transmitting the servo signals, and stepping motors for controlling...remotely located solar collectors. The system allows precise tracking of the sun by a series of solar collectors without the necessity or expense of individualized solar trackers. (Author)
Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery.
Zhao, Chun-Xia
2013-11-01
Considerable effort has been directed towards developing novel drug delivery systems. Microfluidics, capable of generating monodisperse single and multiple emulsion droplets, executing precise control and operations on these droplets, is a powerful tool for fabricating complex systems (microparticles, microcapsules, microgels) with uniform size, narrow size distribution and desired properties, which have great potential in drug delivery applications. This review presents an overview of the state-of-the-art multiphase flow microfluidics for the production of single emulsions or multiple emulsions for drug delivery. The review starts with a brief introduction of the approaches for making single and multiple emulsions, followed by presentation of some potential drug delivery systems (microparticles, microcapsules and microgels) fabricated in microfluidic devices using single or multiple emulsions as templates. The design principles, manufacturing processes and properties of these drug delivery systems are also discussed and compared. Furthermore, drug encapsulation and drug release (including passive and active controlled release) are provided and compared highlighting some key findings and insights. Finally, site-targeting delivery using multiphase flow microfluidics is also briefly introduced. Copyright © 2013 Elsevier B.V. All rights reserved.
Fuzzy Counter Propagation Neural Network Control for a Class of Nonlinear Dynamical Systems
Sakhre, Vandana; Jain, Sanjeev; Sapkal, Vilas S.; Agarwal, Dev P.
2015-01-01
Fuzzy Counter Propagation Neural Network (FCPN) controller design is developed, for a class of nonlinear dynamical systems. In this process, the weight connecting between the instar and outstar, that is, input-hidden and hidden-output layer, respectively, is adjusted by using Fuzzy Competitive Learning (FCL). FCL paradigm adopts the principle of learning, which is used to calculate Best Matched Node (BMN) which is proposed. This strategy offers a robust control of nonlinear dynamical systems. FCPN is compared with the existing network like Dynamic Network (DN) and Back Propagation Network (BPN) on the basis of Mean Absolute Error (MAE), Mean Square Error (MSE), Best Fit Rate (BFR), and so forth. It envisages that the proposed FCPN gives better results than DN and BPN. The effectiveness of the proposed FCPN algorithms is demonstrated through simulations of four nonlinear dynamical systems and multiple input and single output (MISO) and a single input and single output (SISO) gas furnace Box-Jenkins time series data. PMID:26366169
Fuzzy Counter Propagation Neural Network Control for a Class of Nonlinear Dynamical Systems.
Sakhre, Vandana; Jain, Sanjeev; Sapkal, Vilas S; Agarwal, Dev P
2015-01-01
Fuzzy Counter Propagation Neural Network (FCPN) controller design is developed, for a class of nonlinear dynamical systems. In this process, the weight connecting between the instar and outstar, that is, input-hidden and hidden-output layer, respectively, is adjusted by using Fuzzy Competitive Learning (FCL). FCL paradigm adopts the principle of learning, which is used to calculate Best Matched Node (BMN) which is proposed. This strategy offers a robust control of nonlinear dynamical systems. FCPN is compared with the existing network like Dynamic Network (DN) and Back Propagation Network (BPN) on the basis of Mean Absolute Error (MAE), Mean Square Error (MSE), Best Fit Rate (BFR), and so forth. It envisages that the proposed FCPN gives better results than DN and BPN. The effectiveness of the proposed FCPN algorithms is demonstrated through simulations of four nonlinear dynamical systems and multiple input and single output (MISO) and a single input and single output (SISO) gas furnace Box-Jenkins time series data.
Unconscious relational encoding depends on hippocampus
Duss, Simone B.; Reber, Thomas P.; Hänggi, Jürgen; Schwab, Simon; Wiest, Roland; Müri, René M.; Brugger, Peter; Gutbrod, Klemens
2014-01-01
Textbooks divide between human memory systems based on consciousness. Hippocampus is thought to support only conscious encoding, while neocortex supports both conscious and unconscious encoding. We tested whether processing modes, not consciousness, divide between memory systems in three neuroimaging experiments with 11 amnesic patients (mean age = 45.55 years, standard deviation = 8.74, range = 23–60) and 11 matched healthy control subjects. Examined processing modes were single item versus relational encoding with only relational encoding hypothesized to depend on hippocampus. Participants encoded and later retrieved either single words or new relations between words. Consciousness of encoding was excluded by subliminal (invisible) word presentation. Amnesic patients and controls performed equally well on the single item task activating prefrontal cortex. But only the controls succeeded on the relational task activating the hippocampus, while amnesic patients failed as a group. Hence, unconscious relational encoding, but not unconscious single item encoding, depended on hippocampus. Yet, three patients performed normally on unconscious relational encoding in spite of amnesia capitalizing on spared hippocampal tissue and connections to language cortex. This pattern of results suggests that processing modes divide between memory systems, while consciousness divides between levels of function within a memory system. PMID:25273998
Optimal state transfer of a single dissipative two-level system
NASA Astrophysics Data System (ADS)
Jirari, Hamza; Wu, Ning
2016-04-01
Optimal state transfer of a single two-level system (TLS) coupled to an Ohmic boson bath via off-diagonal TLS-bath coupling is studied by using optimal control theory. In the weak system-bath coupling regime where the time-dependent Bloch-Redfield formalism is applicable, we obtain the Bloch equation to probe the evolution of the dissipative TLS in the presence of a time-dependent external control field. By using the automatic differentiation technique to compute the gradient for the cost functional, we calculate the optimal transfer integral profile that can achieve an ideal transfer within a dimer system in the Fenna-Matthews-Olson (FMO) model. The robustness of the control profile against temperature variation is also analyzed.
NASA Astrophysics Data System (ADS)
Redfern, Andrew; Koplow, Michael; Wright, Paul
2007-01-01
Most residential heating, ventilating, and air-conditioning (HVAC) systems utilize a single zone for conditioning air throughout the entire house. While inexpensive, these systems lead to wide temperature distributions and inefficient cooling due to the difference in thermal loads in different rooms. The end result is additional cost to the end user because the house is over conditioned. To reduce the total amount of energy used in a home and to increase occupant comfort there is a need for a better control system using multiple temperature zones. Typical multi-zone systems are costly and require extensive infrastructure to function. Recent advances in wireless sensor networks (WSNs) have enabled a low cost drop-in wireless vent register control system. The register control system is controlled by a master controller unit, which collects sensor data from a distributed wireless sensor network. Each sensor node samples local settings (occupancy, light, humidity and temperature) and reports the data back to the master control unit. The master control unit compiles the incoming data and then actuates the vent resisters to control the airflow throughout the house. The control system also utilizes a smart thermostat with a movable set point to enable the user to define their given comfort levels. The new system can reduce the run time of the HVAC system and thus decreasing the amount of energy used and increasing the comfort of the home occupations.
A two-qubit logic gate in silicon.
Veldhorst, M; Yang, C H; Hwang, J C C; Huang, W; Dehollain, J P; Muhonen, J T; Simmons, S; Laucht, A; Hudson, F E; Itoh, K M; Morello, A; Dzurak, A S
2015-10-15
Quantum computation requires qubits that can be coupled in a scalable manner, together with universal and high-fidelity one- and two-qubit logic gates. Many physical realizations of qubits exist, including single photons, trapped ions, superconducting circuits, single defects or atoms in diamond and silicon, and semiconductor quantum dots, with single-qubit fidelities that exceed the stringent thresholds required for fault-tolerant quantum computing. Despite this, high-fidelity two-qubit gates in the solid state that can be manufactured using standard lithographic techniques have so far been limited to superconducting qubits, owing to the difficulties of coupling qubits and dephasing in semiconductor systems. Here we present a two-qubit logic gate, which uses single spins in isotopically enriched silicon and is realized by performing single- and two-qubit operations in a quantum dot system using the exchange interaction, as envisaged in the Loss-DiVincenzo proposal. We realize CNOT gates via controlled-phase operations combined with single-qubit operations. Direct gate-voltage control provides single-qubit addressability, together with a switchable exchange interaction that is used in the two-qubit controlled-phase gate. By independently reading out both qubits, we measure clear anticorrelations in the two-spin probabilities of the CNOT gate.
NASA Technical Reports Server (NTRS)
Hindson, William S.
1987-01-01
A flight investigation was conducted to evaluate a multi-mode flight control system designed according to the most recent recommendations for handling qualities criteria for new military helicopters. The modes and capabilities that were included in the system are those considered necessary to permit divided-attention (single-pilot) lowspeed and hover operations near the ground in poor visibility conditions. Design features included mode-selection and mode-blending logic, the use of an automatic position-hold mode that employed precision measurements of aircraft position, and a hover display which permitted manually-controlled hover flight tasks in simulated instrument conditions. Pilot evaluations of the system were conducted using a multi-segment evaluation task. Pilot comments concerning the use of the system are provided, and flight-test data are presented to show system performance.
Carrasco, Juan A; Dormido, Sebastián
2006-04-01
The use of industrial control systems in simulators facilitates the execution of engineering activities related with the installation and the optimization of the control systems in real plants. "Industrial control system" intends to be a valid term that would represent all the control systems which can be installed in an industrial plant, ranging from complex distributed control systems and SCADA packages to small single control devices. This paper summarizes the current alternatives for the development of simulators of industrial plants and presents an analysis of the process of integrating an industrial control system into a simulator, with the aim of helping in the installation of real control systems in simulators.
Design of intelligent vehicle control system based on single chip microcomputer
NASA Astrophysics Data System (ADS)
Zhang, Congwei
2018-06-01
The smart car microprocessor uses the KL25ZV128VLK4 in the Freescale series of single-chip microcomputers. The image sampling sensor uses the CMOS digital camera OV7725. The obtained track data is processed by the corresponding algorithm to obtain track sideline information. At the same time, the pulse width modulation control (PWM) is used to control the motor and servo movements, and based on the digital incremental PID algorithm, the motor speed control and servo steering control are realized. In the project design, IAR Embedded Workbench IDE is used as the software development platform to program and debug the micro-control module, camera image processing module, hardware power distribution module, motor drive and servo control module, and then complete the design of the intelligent car control system.
Optimal strategy analysis based on robust predictive control for inventory system with random demand
NASA Astrophysics Data System (ADS)
Saputra, Aditya; Widowati, Sutrisno
2017-12-01
In this paper, the optimal strategy for a single product single supplier inventory system with random demand is analyzed by using robust predictive control with additive random parameter. We formulate the dynamical system of this system as a linear state space with additive random parameter. To determine and analyze the optimal strategy for the given inventory system, we use robust predictive control approach which gives the optimal strategy i.e. the optimal product volume that should be purchased from the supplier for each time period so that the expected cost is minimal. A numerical simulation is performed with some generated random inventory data. We simulate in MATLAB software where the inventory level must be controlled as close as possible to a set point decided by us. From the results, robust predictive control model provides the optimal strategy i.e. the optimal product volume that should be purchased and the inventory level was followed the given set point.
Modal control of an oblique wing aircraft
NASA Technical Reports Server (NTRS)
Phillips, James D.
1989-01-01
A linear modal control algorithm is applied to the NASA Oblique Wing Research Aircraft (OWRA). The control law is evaluated using a detailed nonlinear flight simulation. It is shown that the modal control law attenuates the coupling and nonlinear aerodynamics of the oblique wing and remains stable during control saturation caused by large command inputs or large external disturbances. The technique controls each natural mode independently allowing single-input/single-output techniques to be applied to multiple-input/multiple-output systems.
NASA Technical Reports Server (NTRS)
Kapasouris, Petros
1988-01-01
A systematic control design methodology is introduced for multi-input/multi-output systems with multiple saturations. The methodology can be applied to stable and unstable open loop plants with magnitude and/or rate control saturations and to systems in which state limitations are desired. This new methodology is a substantial improvement over previous heuristic single-input/single-output approaches. The idea is to introduce a supervisor loop so that when the references and/or disturbances are sufficiently small, the control system operates linearly as designed. For signals large enough to cause saturations, the control law is modified in such a way to ensure stability and to preserve, to the extent possible, the behavior of the linear control design. Key benefits of this methodology are: the modified compensator never produces saturating control signals, integrators and/or slow dynamics in the compensator never windup, the directional properties of the controls are maintained, and the closed loop system has certain guaranteed stability properties. The advantages of the new design methodology are illustrated by numerous simulations, including the multivariable longitudinal control of modified models of the F-8 (stable) and F-16 (unstable) aircraft.
Electromechanical actuation for cryogenic valve control
NASA Technical Reports Server (NTRS)
Lister, M. J.; Reichmuth, D. M.
1993-01-01
The design and analysis of the electromechanical actuator (EMA) being developed for the NASA/Marshall Space Flight Center as part of the National Launch System (NLS) Propellant Control Effector Advanced Development Program (ADP) are addressed. The EMA design uses several proven technologies combined into a single modular package which includes single stage high ratio gear reduction, redundant electric motors mounted on a common drive shaft, redundant drive and control electronics, and digital technology for performing the closed loop position feedback, communication, and health monitoring functions. Results of tests aimed at evaluating both component characteristics and overall system performance demonstrated that the goal of low cost, reliable control in a cryogenic environment is feasible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmad, Israr, E-mail: iak-2000plus@yahoo.com; Saaban, Azizan Bin, E-mail: azizan.s@uum.edu.my; Ibrahim, Adyda Binti, E-mail: adyda@uum.edu.my
This paper addresses a comparative computational study on the synchronization quality, cost and converging speed for two pairs of identical chaotic and hyperchaotic systems with unknown time-varying parameters. It is assumed that the unknown time-varying parameters are bounded. Based on the Lyapunov stability theory and using the adaptive control method, a single proportional controller is proposed to achieve the goal of complete synchronizations. Accordingly, appropriate adaptive laws are designed to identify the unknown time-varying parameters. The designed control strategy is easy to implement in practice. Numerical simulations results are provided to verify the effectiveness of the proposed synchronization scheme.
High-Fidelity Single-Shot Toffoli Gate via Quantum Control.
Zahedinejad, Ehsan; Ghosh, Joydip; Sanders, Barry C
2015-05-22
A single-shot Toffoli, or controlled-controlled-not, gate is desirable for classical and quantum information processing. The Toffoli gate alone is universal for reversible computing and, accompanied by the Hadamard gate, forms a universal gate set for quantum computing. The Toffoli gate is also a key ingredient for (nontopological) quantum error correction. Currently Toffoli gates are achieved by decomposing into sequentially implemented single- and two-qubit gates, which require much longer times and yields lower overall fidelities compared to a single-shot implementation. We develop a quantum-control procedure to construct a single-shot Toffoli gate for three nearest-neighbor-coupled superconducting transmon systems such that the fidelity is 99.9% and is as fast as an entangling two-qubit gate under the same realistic conditions. The gate is achieved by a nongreedy quantum control procedure using our enhanced version of the differential evolution algorithm.
Applications of active adaptive noise control to jet engines
NASA Technical Reports Server (NTRS)
Shoureshi, Rahmat; Brackney, Larry
1993-01-01
During phase 2 research on the application of active noise control to jet engines, the development of multiple-input/multiple-output (MIMO) active adaptive noise control algorithms and acoustic/controls models for turbofan engines were considered. Specific goals for this research phase included: (1) implementation of a MIMO adaptive minimum variance active noise controller; and (2) turbofan engine model development. A minimum variance control law for adaptive active noise control has been developed, simulated, and implemented for single-input/single-output (SISO) systems. Since acoustic systems tend to be distributed, multiple sensors, and actuators are more appropriate. As such, the SISO minimum variance controller was extended to the MIMO case. Simulation and experimental results are presented. A state-space model of a simplified gas turbine engine is developed using the bond graph technique. The model retains important system behavior, yet is of low enough order to be useful for controller design. Expansion of the model to include multiple stages and spools is also discussed.
48 CFR 242.302 - Contract administration functions.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Contractor estimating systems (see FAR 15.407-5); and (B) Contractor material management and accounting... report identifying significant accounting system or related internal control deficiencies. (9) For... solicitation or award. (S-70) Serve as the single point of contact for all Single Process Initiative (SPI...
Adaptable Single Active Loop Thermal Control System (TCS) for Future Space Missions
NASA Technical Reports Server (NTRS)
Mudawar, Issam; Lee, Seunghyun; Hasan, Mohammad
2015-01-01
This presentation will examine the development of a thermal control system (TCS) for future space missions utilizing a single active cooling loop. The system architecture enables the TCS to be reconfigured during the various mission phases to respond, not only to varying heat load, but to heat rejection temperature as well. The system will consist of an accumulator, pump, cold plates (evaporators), condenser radiator, and compressor, in addition to control, bypass and throttling valves. For cold environments, the heat will be rejected by radiation, during which the compressor will be bypassed, reducing the system to a simple pumped loop that, depending on heat load, can operate in either a single-phase liquid mode or two-phase mode. For warmer environments, the pump will be bypassed, enabling the TCS to operate as a heat pump. This presentation will focus on recent findings concerning two-phase flow regimes, pressure drop, and heat transfer coefficient trends in the cabin and avionics micro-channel heat exchangers when using the heat pump mode. Also discussed will be practical implications of using micro-channel evaporators for the heat pump.
NASA Technical Reports Server (NTRS)
Hadass, Z.
1974-01-01
The design procedure of feedback controllers was described and the considerations for the selection of the design parameters were given. The frequency domain properties of single-input single-output systems using state feedback controllers are analyzed, and desirable phase and gain margin properties are demonstrated. Special consideration is given to the design of controllers for tracking systems, especially those designed to track polynomial commands. As an example, a controller was designed for a tracking telescope with a polynomial tracking requirement and some special features such as actuator saturation and multiple measurements, one of which is sampled. The resulting system has a tracking performance comparing favorably with a much more complicated digital aided tracker. The parameter sensitivity reduction was treated by considering the variable parameters as random variables. A performance index is defined as a weighted sum of the state and control convariances that sum from both the random system disturbances and the parameter uncertainties, and is minimized numerically by adjusting a set of free parameters.
Identification and control of a multizone crystal growth furnace
NASA Technical Reports Server (NTRS)
Batur, C.; Sharpless, R. B.; Duval, W. M. B.; Rosenthal, B. N.; Singh, N. B.
1992-01-01
This paper presents an intelligent adaptive control system for the control of a solid-liquid interface of a crystal while it is growing via directional solidification inside a multizone transparent furnace. The task of the process controller is to establish a user-specified axial temperature profile and to maintain a desirable interface shape. Both single-input-single-output and multi-input-multi-output adaptive pole placement algorithms have been used to control the temperature. Also described is an intelligent measurement system to assess the shape of the crystal while it is growing. A color video imaging system observes the crystal in real time and determines the position and the shape of the interface. This information is used to evaluate the crystal growth rate, and to analyze the effects of translational velocity and temperature profiles on the shape of the interface. Creation of this knowledge base is the first step to incorporate image processing into furnace control.
Single-Fiber Optical Link For Video And Control
NASA Technical Reports Server (NTRS)
Galloway, F. Houston
1993-01-01
Single optical fiber carries control signals to remote television cameras and video signals from cameras. Fiber replaces multiconductor copper cable, with consequent reduction in size. Repeaters not needed. System works with either multimode- or single-mode fiber types. Nonmetallic fiber provides immunity to electromagnetic interference at suboptical frequencies and much less vulnerable to electronic eavesdropping and lightning strikes. Multigigahertz bandwidth more than adequate for high-resolution television signals.
Control systems on Lie groups.
NASA Technical Reports Server (NTRS)
Jurdjevic, V.; Sussmann, H. J.
1972-01-01
The controllability properties of systems which are described by an evolution equation in a Lie group are studied. The revelant Lie algebras induced by a right invariant system are singled out, and the basic properties of attainable sets are derived. The homogeneous case and the general case are studied, and results are interpreted in terms of controllability. Five examples are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ponciroli, Roberto; Passerini, Stefano; Vilim, Richard B.
Advanced reactors are often claimed to be passively safe against unprotected upset events. In common practice, these events are not considered in the context of the plant control system, i.e., the reactor is subjected to classes of unprotected upset events while the normally programmed response of the control system is assumed not to be present. However, this approach constitutes an oversimplification since, depending on the upset involving the control system, an actuator does not necessarily go in the same direction as needed for safety. In this work, dynamic simulations are performed to assess the degree to which the inherent self-regulatingmore » plant response is safe from active control system override. The simulations are meant to characterize the resilience of the plant to unprotected initiators. The initiators were represented and modeled as an actuator going to a hard limit. Consideration of failure is further limited to individual controllers as there is no cross-connect of signals between these controllers. The potential for passive safety override by the control system is then relegated to the single-input single-output controllers. Here, the results show that when the plant control system is designed by taking into account and quantifying the impact of the plant control system on accidental scenarios there is very limited opportunity for the preprogrammed response of the control system to override passive safety protection in the event of an unprotected initiator.« less
Ponciroli, Roberto; Passerini, Stefano; Vilim, Richard B.
2017-06-21
Advanced reactors are often claimed to be passively safe against unprotected upset events. In common practice, these events are not considered in the context of the plant control system, i.e., the reactor is subjected to classes of unprotected upset events while the normally programmed response of the control system is assumed not to be present. However, this approach constitutes an oversimplification since, depending on the upset involving the control system, an actuator does not necessarily go in the same direction as needed for safety. In this work, dynamic simulations are performed to assess the degree to which the inherent self-regulatingmore » plant response is safe from active control system override. The simulations are meant to characterize the resilience of the plant to unprotected initiators. The initiators were represented and modeled as an actuator going to a hard limit. Consideration of failure is further limited to individual controllers as there is no cross-connect of signals between these controllers. The potential for passive safety override by the control system is then relegated to the single-input single-output controllers. Here, the results show that when the plant control system is designed by taking into account and quantifying the impact of the plant control system on accidental scenarios there is very limited opportunity for the preprogrammed response of the control system to override passive safety protection in the event of an unprotected initiator.« less
Enhancement of beam pulse controllability for a single-pulse formation system of a cyclotron.
Kurashima, Satoshi; Miyawaki, Nobumasa; Kashiwagi, Hirotsugu; Okumura, Susumu; Taguchi, Mitsumasa; Fukuda, Mitsuhiro
2015-07-01
The single-pulse formation technique using a beam chopping system consisting of two types of high-voltage beam kickers was improved to enhance the quality and intensity of the single-pulse beam with a pulse interval over 1 μs at the Japan Atomic Energy Agency cyclotron facility. A contamination rate of neighboring beam bunches in the single-pulse beam was reduced to less than 0.1%. Long-term purification of the single pulse beam was guaranteed by the well-controlled magnetic field stabilization system for the cyclotron magnet. Reduction of the multi-turn extraction number for suppressing the neighboring beam bunch contamination was achieved by restriction of a beam phase width and precise optimization of a particle acceleration phase. In addition, the single-pulse beam intensity was increased by a factor of two or more by a combination of two types of beam bunchers using sinusoidal and saw-tooth voltage waveforms. Provision of the high quality intense single-pulse beam contributed to improve the accuracy of experiments for investigation of scintillation light time-profile and for neutron energy measurement by a time-of-flight method.
Enhancement of beam pulse controllability for a single-pulse formation system of a cyclotron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurashima, Satoshi, E-mail: kurashima.satoshi@jaea.go.jp; Miyawaki, Nobumasa; Kashiwagi, Hirotsugu
The single-pulse formation technique using a beam chopping system consisting of two types of high-voltage beam kickers was improved to enhance the quality and intensity of the single-pulse beam with a pulse interval over 1 μs at the Japan Atomic Energy Agency cyclotron facility. A contamination rate of neighboring beam bunches in the single-pulse beam was reduced to less than 0.1%. Long-term purification of the single pulse beam was guaranteed by the well-controlled magnetic field stabilization system for the cyclotron magnet. Reduction of the multi-turn extraction number for suppressing the neighboring beam bunch contamination was achieved by restriction of amore » beam phase width and precise optimization of a particle acceleration phase. In addition, the single-pulse beam intensity was increased by a factor of two or more by a combination of two types of beam bunchers using sinusoidal and saw-tooth voltage waveforms. Provision of the high quality intense single-pulse beam contributed to improve the accuracy of experiments for investigation of scintillation light time-profile and for neutron energy measurement by a time-of-flight method.« less
A single FPGA-based portable ultrasound imaging system for point-of-care applications.
Kim, Gi-Duck; Yoon, Changhan; Kye, Sang-Bum; Lee, Youngbae; Kang, Jeeun; Yoo, Yangmo; Song, Tai-kyong
2012-07-01
We present a cost-effective portable ultrasound system based on a single field-programmable gate array (FPGA) for point-of-care applications. In the portable ultrasound system developed, all the ultrasound signal and image processing modules, including an effective 32-channel receive beamformer with pseudo-dynamic focusing, are embedded in an FPGA chip. For overall system control, a mobile processor running Linux at 667 MHz is used. The scan-converted ultrasound image data from the FPGA are directly transferred to the system controller via external direct memory access without a video processing unit. The potable ultrasound system developed can provide real-time B-mode imaging with a maximum frame rate of 30, and it has a battery life of approximately 1.5 h. These results indicate that the single FPGA-based portable ultrasound system developed is able to meet the processing requirements in medical ultrasound imaging while providing improved flexibility for adapting to emerging POC applications.
A single cell penetration system by ultrasonic driving
NASA Astrophysics Data System (ADS)
Zhou, Zhaoying; Xiao, Mingfei; Yang, Xing; Wu, Ting
2008-12-01
The researches of single cell's control and operation are the hotspots in whole world. Among the various technologies, the transmission of ectogenic genetic materials between cell membrane is very significant. Imitating the Chinese traditional acupuncture therapy, a new ultrasonic resonance driving method, is imported to drive a cell's penetration probe. A set of the single cell penetration system was established to perform this function. This system includes four subsystems: driving part, micromanipulation part, observation and measurement part, and actuation part. Some fish egg experiments indicate that this system is workable and effective.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miltiadis Alamaniotis; Vivek Agarwal
This paper places itself in the realm of anticipatory systems and envisions monitoring and control methods being capable of making predictions over system critical parameters. Anticipatory systems allow intelligent control of complex systems by predicting their future state. In the current work, an intelligent model aimed at implementing anticipatory monitoring and control in energy industry is presented and tested. More particularly, a set of support vector regressors (SVRs) are trained using both historical and observed data. The trained SVRs are used to predict the future value of the system based on current operational system parameter. The predicted values are thenmore » inputted to a fuzzy logic based module where the values are fused to obtain a single value, i.e., final system output prediction. The methodology is tested on real turbine degradation datasets. The outcome of the approach presented in this paper highlights the superiority over single support vector regressors. In addition, it is shown that appropriate selection of fuzzy sets and fuzzy rules plays an important role in improving system performance.« less
High-throughput microfluidics to control and measure signaling dynamics in single yeast cells
Hansen, Anders S.; Hao, Nan; O'Shea, Erin K.
2015-01-01
Microfluidics coupled to quantitative time-lapse fluorescence microscopy is transforming our ability to control, measure, and understand signaling dynamics in single living cells. Here we describe a pipeline that incorporates multiplexed microfluidic cell culture, automated programmable fluid handling for cell perturbation, quantitative time-lapse microscopy, and computational analysis of time-lapse movies. We illustrate how this setup can be used to control the nuclear localization of the budding yeast transcription factor Msn2. Using this protocol, we generate oscillations of Msn2 localization and measure the dynamic gene expression response of individual genes in single cells. The protocol allows a single researcher to perform up to 20 different experiments in a single day, whilst collecting data for thousands of single cells. Compared to other protocols, the present protocol is relatively easy to adopt and higher-throughput. The protocol can be widely used to control and monitor single-cell signaling dynamics in other signal transduction systems in microorganisms. PMID:26158443
Design of feedback control systems for stable plants with saturating actuators
NASA Technical Reports Server (NTRS)
Kapasouris, Petros; Athans, Michael; Stein, Gunter
1988-01-01
A systematic control design methodology is introduced for multi-input/multi-output stable open loop plants with multiple saturations. This new methodology is a substantial improvement over previous heuristic single-input/single-output approaches. The idea is to introduce a supervisor loop so that when the references and/or disturbances are sufficiently small, the control system operates linearly as designed. For signals large enough to cause saturations, the control law is modified in such a way as to ensure stability and to preserve, to the extent possible, the behavior of the linear control design. Key benefits of the methodology are: the modified compensator never produces saturating control signals, integrators and/or slow dynamics in the compensator never windup, the directional properties of the controls are maintained, and the closed loop system has certain guaranteed stability properties. The advantages of the new design methodology are illustrated in the simulation of an academic example and the simulation of the multivariable longitudinal control of a modified model of the F-8 aircraft.
NASA Astrophysics Data System (ADS)
Kondo, Keiichiro; Hata, Hiroshi; Yuki, Kazuaki; Naganuma, Katsunori; Matsuoka, Koichi; Hasebe, Toshio
This paper is aimed at providing the designing method of a permanent magnet synchronous motor (PMSM) control system for the high-speed and the single-phase AC powered Gauge Changing Train (GCT). The state-of-the-art electrical motive unit is equipped with downsized direct drive type PMSMs for the simplified gauge changeable truck. Due to the feeding the AC single phase power, we propose a beat-less control for PMSMs. We verify the development results of designing procedures by the experimental results of operation on a high-speed test line in Colorado, USA.
Macintosh/LabVIEW based control and data acquisition system for a single photon counting fluorometer
NASA Astrophysics Data System (ADS)
Stryjewski, Wieslaw J.
1991-08-01
A flexible software system has been developed for controlling fluorescence decay measurements using the virtual instrument approach offered by LabVIEW. The time-correlated single photon counting instrument operates under computer control in both manual and automatic mode. Implementation time was short and the equipment is now easier to use, reducing the training time required for new investigators. It is not difficult to customize the front panel or adapt the program to a different instrument. We found LabVIEW much more convenient to use for this application than traditional, textual computer languages.
Investigation of air transportation technology at Princeton University, 1988-1989
NASA Technical Reports Server (NTRS)
Stengel, Robert F.
1990-01-01
The Air Transportation Technology Program at Princeton University, a program emphasizing graduate and undergraduate student research, proceeded along several avenues during the past year. A study of optimal trajectories for penetration of microbursts when encounter is unavoidable was conducted. The emphasis of current wind shear research is on developing an expert system for wind shear avoidance. A knowledge-based reconfigurable flight control system that is implemented with the Pascal programming language using parallel microprocessors was developed. This expert system could be considered a prototype for a failure-tolerant control system that can be constructed using existing hardware. Development of a real-time cockpit simulator continued during the year. The simulator provides a single-person crew station with both conventional and advanced control devices; it currently is programmed to simulate the Navion single-engine general aviation airplane. Alternatives for the air traffic control system giving particular attention to the institutional structure of the FAA are analyzed. A simple numerical procedure for estimating the stochastic robustness of control systems is being investigated. The revitalization of the general aviation industry is also discussed.
Thermal control system for Space Station Freedom photovoltaic power module
NASA Technical Reports Server (NTRS)
Hacha, Thomas H.; Howard, Laura
1994-01-01
The electric power for Space Station Freedom (SSF) is generated by the solar arrays of the photovoltaic power modules (PVM's) and conditioned, controlled, and distributed by a power management and distribution system. The PVM's are located outboard of the alpha gimbals of SSF. A single-phase thermal control system is being developed to provide thermal control of PVM electrical equipment and energy storage batteries. This system uses ammonia as the coolant and a direct-flow deployable radiator. The description and development status of the PVM thermal control system is presented.
Thermal control system for Space Station Freedom photovoltaic power module
NASA Technical Reports Server (NTRS)
Hacha, Thomas H.; Howard, Laura S.
1992-01-01
The electric power for Space Station Freedom (SSF) is generated by the solar arrays of the photovoltaic power modules (PVM's) and conditioned, controlled, and distributed by a power management and distribution system. The PVM's are located outboard of the alpha gimbals of SSF. A single-phase thermal control system is being developed to provide thermal control of PVM electrical equipment and energy storage batteries. This system uses ammonia as the coolant and a direct-flow deployable radiator. This paper presents the description and development status of the PVM thermal control system.
Automated power distribution system hardware. [for space station power supplies
NASA Technical Reports Server (NTRS)
Anderson, Paul M.; Martin, James A.; Thomason, Cindy
1989-01-01
An automated power distribution system testbed for the space station common modules has been developed. It incorporates automated control and monitoring of a utility-type power system. Automated power system switchgear, control and sensor hardware requirements, hardware design, test results, and potential applications are discussed. The system is designed so that the automated control and monitoring of the power system is compatible with both a 208-V, 20-kHz single-phase AC system and a high-voltage (120 to 150 V) DC system.
NASA Technical Reports Server (NTRS)
Stein, William B.; Holt, K.; Holton, M.; Williams, J. H.; Butt, A.; Dervan, M.; Sharp, D.
2010-01-01
The Ares I launch vehicle is an integral part of NASA s Constellation Program, providing a foundation for a new era of space access. The Ares I is designed to lift the Orion Crew Module and will enable humans to return to the Moon as well as explore Mars.1 The Ares I is comprised of two inline stages: a Space Shuttle-derived five-segment Solid Rocket Booster (SRB) First Stage (FS) and an Upper Stage (US) powered by a Saturn V-derived J-2X engine. A dedicated Roll Control System (RoCS) located on the connecting interstage provides roll control prior to FS separation. Induced yaw and pitch moments are handled by the SRB nozzle vectoring. The FS SRB operates for approximately two minutes after which the US separates from the vehicle and the US Reaction Control System (ReCS) continues to provide reaction control for the remainder of the mission. A representation of the Ares I launch vehicle in the stacked configuration and including the Orion Crew Exploration Vehicle (CEV) is shown in Figure 1. Each Reaction Control System (RCS) design incorporates a Gaseous Helium (GHe) pressurization system combined with a monopropellant Hydrazine (N2H4) propulsion system. Both systems have two diametrically opposed thruster modules. This architecture provides one failure tolerance for function and prevention of catastrophic hazards such as inadvertent thruster firing, bulk propellant leakage, and over-pressurization. The pressurization system on the RoCS includes two ambient pressure-referenced regulators on parallel strings in order to attain the required system level single Fault Tolerant (FT) design for function while the ReCS utilizes a blow-down approach. A single burst disk and relief valve assembly is also included on the RoCS to ensure single failure tolerance for must-not-occur catastrophic hazards. The Reaction Control Systems are designed to support simultaneously firing multiple thrusters as required
Fiber-optic temperature probe system for inner body
NASA Astrophysics Data System (ADS)
Liu, Bo; Deng, Xing-Zhong; Cao, Wei; Cheng, Xianping; Xie, Tuqiang; Zhong, Zugen
1991-08-01
The authors have designed a fiber-optic temperature probe system that can quickly insert its probe into bodies to measure temperature. Its thermometer unit has the function of program- controlled zeroing. The single-chip microcomputer is used to control the whole system and process data. The sample system has been tested in a coal furnace.
An implantable myoelectric sensor based prosthesis control system.
DeMichele, Glenn A; Troyk, Philip R; Kerns, Douglas A; Weir, Richard
2006-01-01
We present progress on the design and testing of an upper-extremity prosthesis control system based on implantable myoelectric sensors. The implant consists of a single silicon chip packaged with transmit and receive coils. Forward control telemetry to, and reverse EMG data telemetry from multiple implants has been demonstrated.
Multivariable control of vapor compression systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, X.D.; Liu, S.; Asada, H.H.
1999-07-01
This paper presents the results of a study of multi-input multi-output (MIMO) control of vapor compression cycles that have multiple actuators and sensors for regulating multiple outputs, e.g., superheat and evaporating temperature. The conventional single-input single-output (SISO) control was shown to have very limited performance. A low order lumped-parameter model was developed to describe the significant dynamics of vapor compression cycles. Dynamic modes were analyzed based on the low order model to provide physical insight of system dynamic behavior. To synthesize a MIMO control system, the Linear-Quadratic Gaussian (LQG) technique was applied to coordinate compressor speed and expansion valve openingmore » with guaranteed stability robustness in the design. Furthermore, to control a vapor compression cycle over a wide range of operating conditions where system nonlinearities become evident, a gain scheduling scheme was used so that the MIMO controller could adapt to changing operating conditions. Both analytical studies and experimental tests showed that the MIMO control could significantly improve the transient behavior of vapor compression cycles compared to the conventional SISO control scheme. The MIMO control proposed in this paper could be extended to the control of vapor compression cycles in a variety of HVAC and refrigeration applications to improve system performance and energy efficiency.« less
A class of stabilizing controllers for flexible multibody systems
NASA Technical Reports Server (NTRS)
Joshi, Suresh M.; Kelkar, Atul G.; Maghami, Peiman G.
1995-01-01
The problem of controlling a class of nonlinear multibody flexible space systems consisting of a flexible central body to which a number of articulated appendages are attached is considered. Collocated actuators and sensors are assumed, and global asymptotic stability of such systems is established under a nonlinear dissipative control law. The stability is shown to be robust to unmodeled dynamics and parametric uncertainties. For a special case in which the attitude motion of the central body is small, the system, although still nonlinear, is shown to be stabilized by linear dissipative control laws. Two types of linear controllers are considered: static dissipative (constant gain) and dynamic dissipative. The static dissipative control law is also shown to provide robust stability in the presence of certain classes of actuator and sensor nonlinearities and actuator dynamics. The results obtained for this special case can also be readily applied for controlling single-body linear flexible space structures. For this case, a synthesis technique for the design of a suboptimal dynamic dissipative controller is also presented. The results obtained in this paper are applicable to a broad class of multibody and single-body systems such as flexible multilink manipulators, multipayload space platforms, and space antennas. The stability proofs use the Lyapunov approach and exploit the inherent passivity of such systems.
Peak-Seeking Control Using Gradient and Hessian Estimates
NASA Technical Reports Server (NTRS)
Ryan, John J.; Speyer, Jason L.
2010-01-01
A peak-seeking control method is presented which utilizes a linear time-varying Kalman filter. Performance function coordinate and magnitude measurements are used by the Kalman filter to estimate the gradient and Hessian of the performance function. The gradient and Hessian are used to command the system toward a local extremum. The method is naturally applied to multiple-input multiple-output systems. Applications of this technique to a single-input single-output example and a two-input one-output example are presented.
NASA Astrophysics Data System (ADS)
Ziauddin; Rahman, Mujeeb ur; Ahmad, Iftikhar; Qamar, Sajid
2017-10-01
The transmission characteristics of probe light field is investigated theoretically in a compound system of two coupled resonators. The proposed system consisted of two high-Q Fabry-Perot resonators in which one of the resonators is optomechanical. Optomechanically induced transparency (OMIT), having relatively large window, is noticed via strong coupling between the two resonators. We investigate tunable switching from single to double OMIT by increasing amplitude of the pump field. We notice that, control of slow and fast light can be obtained via the coupling strength between the two resonators.
NASA Technical Reports Server (NTRS)
Liberty, S. R.; Mielke, R. R.; Tung, L. J.
1981-01-01
Applied research in the area of spectral assignment in multivariable systems is reported. A frequency domain technique for determining the set of all stabilizing controllers for a single feedback loop multivariable system is described. It is shown that decoupling and tracking are achievable using this procedure. The technique is illustrated with a simple example.
Chiang, Mao-Hsiung
2010-01-01
This study aims to develop a X-Y dual-axial intelligent servo pneumatic-piezoelectric hybrid actuator for position control with high response, large stroke (250 mm, 200 mm) and nanometer accuracy (20 nm). In each axis, the rodless pneumatic actuator serves to position in coarse stroke and the piezoelectric actuator compensates in fine stroke. Thus, the overall control systems of the single axis become a dual-input single-output (DISO) system. Although the rodless pneumatic actuator has relatively larger friction force, it has the advantage of mechanism for multi-axial development. Thus, the X-Y dual-axial positioning system is developed based on the servo pneumatic-piezoelectric hybrid actuator. In addition, the decoupling self-organizing fuzzy sliding mode control is developed as the intelligent control strategies. Finally, the proposed novel intelligent X-Y dual-axial servo pneumatic-piezoelectric hybrid actuators are implemented and verified experimentally.
Chiang, Mao-Hsiung
2010-01-01
This study aims to develop a X-Y dual-axial intelligent servo pneumatic-piezoelectric hybrid actuator for position control with high response, large stroke (250 mm, 200 mm) and nanometer accuracy (20 nm). In each axis, the rodless pneumatic actuator serves to position in coarse stroke and the piezoelectric actuator compensates in fine stroke. Thus, the overall control systems of the single axis become a dual-input single-output (DISO) system. Although the rodless pneumatic actuator has relatively larger friction force, it has the advantage of mechanism for multi-axial development. Thus, the X-Y dual-axial positioning system is developed based on the servo pneumatic-piezoelectric hybrid actuator. In addition, the decoupling self-organizing fuzzy sliding mode control is developed as the intelligent control strategies. Finally, the proposed novel intelligent X-Y dual-axial servo pneumatic-piezoelectric hybrid actuators are implemented and verified experimentally. PMID:22319266
A method to stabilize linear systems using eigenvalue gradient information
NASA Technical Reports Server (NTRS)
Wieseman, C. D.
1985-01-01
Formal optimization methods and eigenvalue gradient information are used to develop a stabilizing control law for a closed loop linear system that is initially unstable. The method was originally formulated by using direct, constrained optimization methods with the constraints being the real parts of the eigenvalues. However, because of problems in trying to achieve stabilizing control laws, the problem was reformulated to be solved differently. The method described uses the Davidon-Fletcher-Powell minimization technique to solve an indirect, constrained minimization problem in which the performance index is the Kreisselmeier-Steinhauser function of the real parts of all the eigenvalues. The method is applied successfully to solve two different problems: the determination of a fourth-order control law stabilizes a single-input single-output active flutter suppression system and the determination of a second-order control law for a multi-input multi-output lateral-directional flight control system. Various sets of design variables and initial starting points were chosen to show the robustness of the method.
Isaac-Lowry, Oran Jacob; Okamoto, Steele; Pedram, Sahba Aghajani; Woo, Russell; Berkelman, Peter
2017-12-01
To date a variety of teleoperated surgical robotic systems have been developed to improve a surgeon's ability to perform demanding single-port procedures. However typical large systems are bulky, expensive, and afford limited angular motion, while smaller designs suffer complications arising from limited motion range, speed, and force generation. This work was to develop and validate a simple, compact, low cost single site teleoperated laparoendoscopic surgical robotic system, with demonstrated capability to carry out basic surgical procedures. This system builds upon previous work done at the University of Hawaii at Manoa and includes instrument and endoscope manipulators as well as compact articulated instruments designed to overcome single incision geometry complications. A robotic endoscope holder was used for the base, with an added support frame for teleoperated manipulators and instruments fabricated mostly from 3D printed parts. Kinematics and control methods were formulated for the novel manipulator configuration. Trajectory following results from an optical motion tracker and sample task performance results are presented. Results indicate that the system has successfully met the goal of basic surgical functionality while minimizing physical size, complexity, and cost. Copyright © 2017 John Wiley & Sons, Ltd.
Design of automatic curtain controlled by wireless based on single chip 51 microcomputer
NASA Astrophysics Data System (ADS)
Han, Dafeng; Chen, Xiaoning
2017-08-01
In order to realize the wireless control of the domestic intelligent curtains, a set of wireless intelligent curtain control system based on 51 single chip microcomputer have been designed in this paper. The intelligent curtain can work in the manual mode, automatic mode and sleep mode and can be carried out by the button and mobile phone APP mode loop switch. Through the photosensitive resistance module and human pyroelectric infrared sensor to collect the indoor light value and the data whether there is the person in the room, and then after single chip processing, the motor drive module is controlled to realize the positive inversion of the asynchronous motor, the intelligent opening and closing of the curtain have been realized. The operation of the motor can be stopped under the action of the switch and the curtain opening and closing and timing switch can be controlled through the keys and mobile phone APP. The optical fiber intensity, working mode, curtain state and system time are displayed by LCD1602. The system has a high reliability and security under practical testing and with the popularity and development of smart home, the design has broad market prospects.
Coelho, Antonio Augusto Rodrigues
2016-01-01
This paper introduces the Fuzzy Logic Hypercube Interpolator (FLHI) and demonstrates applications in control of multiple-input single-output (MISO) and multiple-input multiple-output (MIMO) processes with Hammerstein nonlinearities. FLHI consists of a Takagi-Sugeno fuzzy inference system where membership functions act as kernel functions of an interpolator. Conjunction of membership functions in an unitary hypercube space enables multivariable interpolation of N-dimensions. Membership functions act as interpolation kernels, such that choice of membership functions determines interpolation characteristics, allowing FLHI to behave as a nearest-neighbor, linear, cubic, spline or Lanczos interpolator, to name a few. The proposed interpolator is presented as a solution to the modeling problem of static nonlinearities since it is capable of modeling both a function and its inverse function. Three study cases from literature are presented, a single-input single-output (SISO) system, a MISO and a MIMO system. Good results are obtained regarding performance metrics such as set-point tracking, control variation and robustness. Results demonstrate applicability of the proposed method in modeling Hammerstein nonlinearities and their inverse functions for implementation of an output compensator with Model Based Predictive Control (MBPC), in particular Dynamic Matrix Control (DMC). PMID:27657723
NASA Astrophysics Data System (ADS)
Delil, A. A. M.
2003-01-01
Single-component two-phase systems are envisaged for aerospace thermal control applications: Mechanically Pumped Loops, Vapour Pressure Driven Loops, Capillary Pumped Loops and Loop Heat Pipes. Thermal control applications are foreseen in different gravity environments: Micro-g, reduced-g for Mars or Moon bases, 1-g during terrestrial testing, and hyper-g in rotating spacecraft, during combat aircraft manoeuvres and in systems for outer planets. In the evaporator, adiabatic line and condenser sections of such single-component two-phase systems, the fluid is a mixture of the working liquid (for example ammonia, carbon dioxide, ethanol, or other refrigerants, etc.) and its saturated vapour. Results of two-phase two-component flow and heat transfer research (pertaining to liquid-gas mixtures, e.g. water/air, or argon or helium) are often applied to support research on flow and heat transfer in two-phase single-component systems. The first part of the tutorial updates the contents of two earlier tutorials, discussing various aerospace-related two-phase flow and heat transfer research. It deals with the different pressure gradient constituents of the total pressure gradient, with flow regime mapping (including evaporating and condensing flow trajectories in the flow pattern maps), with adiabatic flow and flashing, and with thermal-gravitational scaling issues. The remaining part of the tutorial qualitatively and quantitatively determines the differences between single- and two-component systems: Two systems that physically look similar and close, but in essence are fully different. It was already elucidated earlier that, though there is a certain degree of commonality, the differences will be anything but negligible, in many cases. These differences (quantified by some examples) illustrates how careful one shall be in interpreting data resulting from two-phase two-component simulations or experiments, for the development of single-component two-phase thermal control systems for various gravity environments.
Pilot-model measurements of pilot responses in a lateral-directional control task
NASA Technical Reports Server (NTRS)
Adams, J. J.
1976-01-01
Pilot response during an aircraft bank-angle compensatory control task was measured by using an adaptive modeling technique. In the main control loop, which is the bank angle to aileron command loop, the pilot response was the same as that measured previously in single-input, single-output systems. The pilot used a rudder to aileron control coordination that canceled up to 80 percent of the vehicle yawing moment due to aileron deflection.
Zhao, Li; Xing, Xiao; Guo, Xuhong; Liu, Zehua; He, Yang
2014-10-01
Brain-computer interface (BCI) system is a system that achieves communication and control among humans and computers and other electronic equipment with the electroencephalogram (EEG) signals. This paper describes the working theory of the wireless smart home system based on the BCI technology. We started to get the steady-state visual evoked potential (SSVEP) using the single chip microcomputer and the visual stimulation which composed by LED lamp to stimulate human eyes. Then, through building the power spectral transformation on the LabVIEW platform, we processed timely those EEG signals under different frequency stimulation so as to transfer them to different instructions. Those instructions could be received by the wireless transceiver equipment to control the household appliances and to achieve the intelligent control towards the specified devices. The experimental results showed that the correct rate for the 10 subjects reached 100%, and the control time of average single device was 4 seconds, thus this design could totally achieve the original purpose of smart home system.
Pointing and Jitter Control for the USNA Multi-Beam Combining System
2013-05-10
previous work, an adaptive H-infinity optimal controller has been developed to control a single beam using a beam position detector for feedback... turbulence and airborne particles, platform jitter, lack of feedback from the target , and current laser technology represent just a few of these...lasers. Solid state lasers, however, cannot currently provide high enough power levels to destroy a target using a single beam. On solid-state
NASA Technical Reports Server (NTRS)
Pisharody, Suresh A.; Fisher, John W.; Wignarajah, K.
2002-01-01
The success of physico-chemical waste processing and resource recovery technologies for life support application depends partly on the ability of gas clean-up systems to efficiently remove trace contaminants generated during the process with minimal use of expendables. Carbon nanotubes promise superior performance over conventional approaches to gas clean-up due to their ability to direct the selective uptake of gaseous species based on their controlled pore size, high surface area, ordered chemical structure that allows functionalization and their effectiveness also as catalyst support materials for toxic gas conversion. We present results and findings from a preliminary study on the effectiveness of metal impregnated single walled nanotubes as catalyst/catalyst support materials for toxic gas contaminate control. The study included the purification of single walled nanotubes, the catalyst impregnation of the purified nanotubes, the experimental characterization of the surface properties of purified single walled nanotubes and the characterization of physisorption and chemisorption of uptake molecules.
Adaptive modeling, identification, and control of dynamic structural systems. I. Theory
Safak, Erdal
1989-01-01
A concise review of the theory of adaptive modeling, identification, and control of dynamic structural systems based on discrete-time recordings is presented. Adaptive methods have four major advantages over the classical methods: (1) Removal of the noise from the signal is done over the whole frequency band; (2) time-varying characteristics of systems can be tracked; (3) systems with unknown characteristics can be controlled; and (4) a small segment of the data is needed during the computations. Included in the paper are the discrete-time representation of single-input single-output (SISO) systems, models for SISO systems with noise, the concept of stochastic approximation, recursive prediction error method (RPEM) for system identification, and the adaptive control. Guidelines for model selection and model validation and the computational aspects of the method are also discussed in the paper. The present paper is the first of two companion papers. The theory given in the paper is limited to that which is necessary to follow the examples for applications in structural dynamics presented in the second paper.
All-optical transistor based on Rydberg atom-assisted optomechanical system.
Liu, Yi-Mou; Tian, Xue-Dong; Wang, Jing; Fan, Chu-Hui; Gao, Feng; Bao, Qian-Qian
2018-04-30
We study the optical response of a double optomechanical cavity system assisted by two Rydberg atoms. The target atom is only coupled with one side cavity by a single cavity mode, and gate one is outside the cavities. It has been realized that a long-range manipulation of optical properties of a hybrid system, by controlling the Rydberg atom decoupled with the optomechanical cavity. Switching on the coupling between atoms and cavity mode, the original spatial inversion symmetry of the double cavity structure has been broken. Combining the controllable optical non-reciprocity with the coherent perfect absorption/transmission/synthesis effect (CPA/CPT/CPS reported by [ X.-B.Yan Opt. Express 22, 4886 (2014)], we put forward the theoretical schemes of an all-optical transistor which contains functions such as a controllable diode, rectifier, and amplifier by controlling a single gate photon.
Proportional-delayed controllers design for LTI-systems: a geometric approach
NASA Astrophysics Data System (ADS)
Hernández-Díez, J.-E.; Méndez-Barrios, C.-F.; Mondié, S.; Niculescu, S.-I.; González-Galván, E. J.
2018-04-01
This paper focuses on the design of P-δ controllers for single-input-single-output linear time-invariant systems. The basis of this work is a geometric approach allowing to partitioning the parameter space in regions with constant number of unstable roots. This methodology defines the hyper-planes separating the aforementioned regions and characterises the way in which the number of unstable roots changes when crossing such a hyper-plane. The main contribution of the paper is that it provides an explicit tool to find P-δ gains ensuring the stability of the closed-loop system. In addition, the proposed methodology allows to design a non-fragile controller with a desired exponential decay rate σ. Several numerical examples illustrate the results and a haptic experimental set-up shows the effectiveness of P-δ controllers.
Development of a Power Electronics Controller for the Advanced Stirling Radioisotope Generator
NASA Technical Reports Server (NTRS)
Leland, Douglas K.; Priest, Joel F.; Keiter, Douglas E.; Schreiber, Jeffrey G.
2008-01-01
Under a U.S. Department of Energy program for radioisotope power systems, Lockheed Martin is developing an Engineering Unit of the Advanced Stirling Radioisotope Generator (ASRG). This is an advanced version of the previously reported SRG110 generator. The ASRG uses Advanced Stirling Convertors (ASCs) developed by Sunpower Incorporated under a NASA Research Announcement contract. The ASRG makes use of a Stirling controller based on power electronics that eliminates the tuning capacitors. The power electronics controller synchronizes dual-opposed convertors and maintains a fixed frequency operating point. The controller is single-fault tolerant and uses high-frequency pulse width modulation to create the sinusoidal currents that are nearly in phase with the piston velocity, eliminating the need for large series tuning capacitors. Sunpower supports this effort through an extension of their controller development intended for other applications. Glenn Research Center (GRC) supports this effort through system dynamic modeling, analysis and test support. The ASRG design arrived at a new baseline based on a system-level trade study and extensive feedback from mission planners on the necessity of single-fault tolerance. This paper presents the baseline design with an emphasis on the power electronics controller detailed design concept that will meet space mission requirements including single fault tolerance.
Kuntanapreeda, S; Fullmer, R R
1996-01-01
A training method for a class of neural network controllers is presented which guarantees closed-loop system stability. The controllers are assumed to be nonlinear, feedforward, sampled-data, full-state regulators implemented as single hidden-layer neural networks. The controlled systems must be locally hermitian and observable. Stability of the closed-loop system is demonstrated by determining a Lyapunov function, which can be used to identify a finite stability region about the regulator point.
Prospective guidance in a free-swimming cell.
Delafield-Butt, Jonathan T; Pepping, Gert-Jan; McCaig, Colin D; Lee, David N
2012-07-01
A systems theory of movement control in animals is presented in this article and applied to explaining the controlled behaviour of the single-celled Paramecium caudatum in an electric field. The theory-General Tau Theory-is founded on three basic principles: (i) all purposive movement entails prospectively controlling the closure of action-gaps (e.g. a distance gap when reaching, or an angle gap when steering); (ii) the sole informational variable required for controlling gaps is the relative rate of change of the gap (the time derivative of the gap size divided by the size), which can be directly sensed; and (iii) a coordinated movement is achieved by keeping the relative rates of change of gaps in a constant ratio. The theory is supported by studies of controlled movement in mammals, birds and insects. We now show for the first time that it is also supported by single-celled paramecia steering to the cathode in a bi-polar electric field. General Tau Theory is deployed to explain this guided steering by the cell. This article presents the first computational model of prospective perceptual control in a non-neural, single-celled system.
Coherent single-atom superradiance
NASA Astrophysics Data System (ADS)
Kim, Junki; Yang, Daeho; Oh, Seung-hoon; An, Kyungwon
2018-02-01
Superradiance is a quantum phenomenon emerging in macroscopic systems whereby correlated single atoms cooperatively emit photons. Demonstration of controlled collective atom-field interactions has resulted from the ability to directly imprint correlations with an atomic ensemble. Here we report cavity-mediated coherent single-atom superradiance: Single atoms with predefined correlation traverse a high–quality factor cavity one by one, emitting photons cooperatively with the N atoms that have already gone through the cavity (N represents the number of atoms). Enhanced collective photoemission of N-squared dependence was observed even when the intracavity atom number was less than unity. The correlation among single atoms was achieved by nanometer-precision position control and phase-aligned state manipulation of atoms by using a nanohole-array aperture. Our results demonstrate a platform for phase-controlled atom-field interactions.
An observatory control system for the University of Hawai'i 2.2m Telescope
NASA Astrophysics Data System (ADS)
McKay, Luke; Erickson, Christopher; Mukensnable, Donn; Stearman, Anthony; Straight, Brad
2016-07-01
The University of Hawai'i 2.2m telescope at Maunakea has operated since 1970, and has had several controls upgrades to date. The newest system will operate as a distributed hierarchy of GNU/Linux central server, networked single-board computers, microcontrollers, and a modular motion control processor for the main axes. Rather than just a telescope control system, this new effort is towards a cohesive, modular, and robust whole observatory control system, with design goals of fully robotic unattended operation, high reliability, and ease of maintenance and upgrade.
Small Radioisotope Power System Testing at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Dugala, Gina; Bell, Mark; Oriti, Salvatore; Fraeman, Martin; Frankford, David; Duven, Dennis
2013-01-01
In April 2009, NASA Glenn Research Center (GRC) formed an integrated product team (IPT) to develop a Small Radioisotope Power System (SRPS) utilizing a single Advanced Stirling Convertor (ASC) with passive balancer. A single ASC produces approximately 80 We making this system advantageous for small distributed lunar science stations. The IPT consists of Sunpower, Inc., to provide the single ASC with a passive balancer, The Johns Hopkins University Applied Physics Laboratory (JHUAPL) to design an engineering model Single Convertor Controller (SCC) for an ASC with a passive balancer, and NASA GRC to provide technical support to these tasks and to develop a simulated lunar lander test stand. The single ASC with a passive balancer, simulated lunar lander test stand, and SCC were delivered to GRC and were tested as a system. The testing sequence at GRC included SCC fault tolerance, integration, electromagnetic interference (EMI), vibration, and extended operation testing. The SCC fault tolerance test characterized the SCCs ability to handle various fault conditions, including high or low bus power consumption, total open load or short circuit, and replacing a failed SCC card while the backup maintains control of the ASC. The integrated test characterized the behavior of the system across a range of operating conditions, including variations in cold-end temperature and piston amplitude, including the emitted vibration to both the sensors on the lunar lander and the lunar surface. The EMI test characterized the AC and DC magnetic and electric fields emitted by the SCC and single ASC. The vibration test confirms the SCCs ability to control the single ASC during launch. The extended operation test allows data to be collected over a period of thousands of hours to obtain long term performance data of the ASC with a passive balancer and the SCC. This paper will discuss the results of each of these tests.
Atomic Bose-Hubbard Systems with Single-Particle Control
NASA Astrophysics Data System (ADS)
Preiss, Philipp Moritz
Experiments with ultracold atoms in optical lattices provide outstanding opportunities to realize exotic quantum states due to a high degree of tunability and control. In this thesis, I present experiments that extend this control from global parameters to the level of individual particles. Using a quantum gas microscope for 87Rb, we have developed a single-site addressing scheme based on digital amplitude holograms. The system self-corrects for aberrations in the imaging setup and creates arbitrary beam profiles. We are thus able to shape optical potentials on the scale of single lattice sites and control the dynamics of individual atoms. We study the role of quantum statistics and interactions in the Bose-Hubbard model on the fundamental level of two particles. Bosonic quantum statistics are apparent in the Hong-Ou-Mandel interference of massive particles, which we observe in tailored double-well potentials. These underlying statistics, in combination with tunable repulsive interactions, dominate the dynamics in single- and two-particle quantum walks. We observe highly coherent position-space Bloch oscillations, bosonic bunching in Hanbury Brown-Twiss interference and the fermionization of strongly interacting bosons. Many-body states of indistinguishable quantum particles are characterized by large-scale spatial entanglement, which is difficult to detect in itinerant systems. Here, we extend the concept of Hong-Ou-Mandel interference from individual particles to many-body states to directly quantify entanglement entropy. We perform collective measurements on two copies of a quantum state and detect entanglement entropy through many-body interference. We measure the second order Renyi entropy in small Bose-Hubbard systems and detect the buildup of spatial entanglement across the superfluid-insulator transition. Our experiments open new opportunities for the single-particle-resolved preparation and characterization of many-body quantum states.
2002-12-01
An operating room (OR) automation system is a combination of hardware and software designed to address efficiency issues in the OR by controling multiple devices via a common interface. Systems range from the relatively basic--allowing control of a few devices within a single OR--to advanced designs that are capable of not only controlling a wide range of devices within the OR but also exchanging information with remote locations.
CAMAC driver for the RSX-11M V3 operating system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tippie, J. W.; Cannon, P. H.
1977-01-01
A driver for Kinetic Systems 3911A dedicated crate controller and 3992 serial highway driver for RSX-11M is described. The implementation includes a modified UCB structure. With this structure, multiple active I/O requests are supported to a single controller. The completion of an I/O request may be tied to external events via a WAIT-FOR-LAM command. Features of the driver include the ability to pass a list of FNA's in a single QIO call, serial highway overhead transparent at the QIO level, and special control commands to the driver passed in the FNA list. 1 figure.
Stochastic optimal control of non-stationary response of a single-degree-of-freedom vehicle model
NASA Astrophysics Data System (ADS)
Narayanan, S.; Raju, G. V.
1990-09-01
An active suspension system to control the non-stationary response of a single-degree-of-freedom (sdf) vehicle model with variable velocity traverse over a rough road is investigated. The suspension is optimized with respect to ride comfort and road holding, using stochastic optimal control theory. The ground excitation is modelled as a spatial homogeneous random process, being the output of a linear shaping filter to white noise. The effect of the rolling contact of the tyre is considered by an additional filter in cascade. The non-stationary response with active suspension is compared with that of a passive system.
Wind tunnel investigation of a high lift system with pneumatic flow control
NASA Astrophysics Data System (ADS)
Victor, Pricop Mihai; Mircea, Boscoianu; Daniel-Eugeniu, Crunteanu
2016-06-01
Next generation passenger aircrafts require more efficient high lift systems under size and mass constraints, to achieve more fuel efficiency. This can be obtained in various ways: to improve/maintain aerodynamic performance while simplifying the mechanical design of the high lift system going to a single slotted flap, to maintain complexity and improve the aerodynamics even more, etc. Laminar wings have less efficient leading edge high lift systems if any, requiring more performance from the trailing edge flap. Pulsed blowing active flow control (AFC) in the gap of single element flap is investigated for a relatively large model. A wind tunnel model, test campaign and results and conclusion are presented.
Redundant single gimbal control moment gyroscope singularity analysis
NASA Technical Reports Server (NTRS)
Bedrossian, Nazareth S.; Paradiso, Joseph; Bergmann, Edward V.; Rowell, Derek
1990-01-01
The robotic manipulator is proposed as the mechanical analog to single gimbal control moment gyroscope systems, and it is shown that both systems share similar difficulties with singular configurations. This analogy is used to group gimbal angles corresponding to any momentum state into different families. The singularity problem associated with these systems is examined in detail. In particular, a method is presented to test for the possibility of nontorque-producing gimbal motion at a singular configuration, as well as to determine the admissible motions in the case when this is possible. Sufficient conditions are derived for instances where the singular system can be reconfigured into a nonsingular state by these nontorque-producing motions.
Single Stage Rocket Technology's real time data system
NASA Technical Reports Server (NTRS)
Voglewede, Steven D.
1994-01-01
The Single Stage Rocket Technology (SSRT) Delta Clipper Experimental (DC-X) Program is a United States Air Force Ballistic Missile Defense Organization (BMDO) rapid prototyping initiative that is currently demonstrating technology readiness for reusable suborbital rockets. The McDonnell Douglas DC-X rocket performed technology demonstrations at the U.S. Army White Sands Missile Range in New Mexico from April-October in 1993. The DC-X Flight Operations Control Center (FOCC) contains the ground control system that is used to monitor and control the DC-X vehicle and its Ground Support Systems (GSS). The FOCC is operated by a flight crew of three operators. Two operators manage the DC-X Flight Systems and one operator is the Ground Systems Manager. A group from McDonnell Douglas Aerospace at KSC developed the DC-X ground control system for the FOCC. This system is known as the Real Time Data System (RTDS). The RTDS is a distributed real time control and monitoring system that utilizes the latest available commercial off-the-shelf computer technology. The RTDS contains front end interfaces for the DC-X RF uplink/downlink and fiber optic interfaces to the GSS equipment. This paper describes the RTDS architecture and FOCC layout. The DC-X applications and ground operations are covered.
AP@home: a novel European approach to bring the artificial pancreas home.
Heinemann, Lutz; Benesch, Carsten; DeVries, J Hans
2011-11-01
The development of an artificial pancreas (AP) made huge strides from 2006 to 2008 and a large number of activities are going on in this area of research. Until now, most AP systems under development were tested only under highly controlled conditions. The aim of our project, funded by the European Union, is to develop an AP system to such a level that it can be studied under daily life conditions at the home of patients with diabetes (hence AP@home). Based on a subcutaneous-subcutaneous closed-loop strategy (i.e., glucose sensing and insulin infusion in the subcutaneous tissue), two different approaches will be taken to achieve this aim: a two-port AP system and a single-port AP system. The two-port AP system will use off-the-shelf-components for the glucose sensor and insulin pump in combination with closed-loop algorithms generated in Europe. As to the single-port AP system, two different innovative single-port systems will be developed; in this case, continuous glucose monitoring and insulin infusion will take place via a single catheter. The first clinical trials with the two-port AP system under controlled clinical conditions have started and good progress has been made in the development of the single-port AP systems. We believe that our consortium of 12 European partners, which builds on existing achievements and close cooperation between academic centers and industry, can contribute substantially to the development of an AP system that can be used by patients in daily life. © 2011 Diabetes Technology Society.
Application of total distributed control system in car-body inspection
NASA Astrophysics Data System (ADS)
Yang, Xueyou; Ren, Dahai; Wang, Zhong; Ye, Shenghua; Lu, Hongbo; Duan, Jilin
1996-08-01
An application of distributed control system in Autocar-body Visual Inspection Station is presented in the paper, a distributed control system using PC as the host processor and single-chip microcomputer as the slave controller is proposed. In this paper, the physical interface of the control network and the relevant hardware are introduced. Meanwhile, a minute research on data communication is performed, relevant protocols on data framing, instruction codes and channel access methods have been laid down and part of related software is presented.
Definition of a Robust Supervisory Control Scheme for Sodium-Cooled Fast Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ponciroli, R.; Passerini, S.; Vilim, R. B.
In this work, an innovative control approach for metal-fueled Sodium-cooled Fast Reactors is proposed. With respect to the classical approach adopted for base-load Nuclear Power Plants, an alternative control strategy for operating the reactor at different power levels by respecting the system physical constraints is presented. In order to achieve a higher operational flexibility along with ensuring that the implemented control loops do not influence the system inherent passive safety features, a dedicated supervisory control scheme for the dynamic definition of the corresponding set-points to be supplied to the PID controllers is designed. In particular, the traditional approach based onmore » the adoption of tabulated lookup tables for the set-point definition is found not to be robust enough when failures of the implemented SISO (Single Input Single Output) actuators occur. Therefore, a feedback algorithm based on the Reference Governor approach, which allows for the optimization of reference signals according to the system operating conditions, is proposed.« less
Cockrell, Robert Chase; An, Gary
2018-02-01
Sepsis, a manifestation of the body's inflammatory response to injury and infection, has a mortality rate of between 28%-50% and affects approximately 1 million patients annually in the United States. Currently, there are no therapies targeting the cellular/molecular processes driving sepsis that have demonstrated the ability to control this disease process in the clinical setting. We propose that this is in great part due to the considerable heterogeneity of the clinical trajectories that constitute clinical "sepsis," and that determining how this system can be controlled back into a state of health requires the application of concepts drawn from the field of dynamical systems. In this work, we consider the human immune system to be a random dynamical system, and investigate its potential controllability using an agent-based model of the innate immune response (the Innate Immune Response ABM or IIRABM) as a surrogate, proxy system. Simulation experiments with the IIRABM provide an explanation as to why single/limited cytokine perturbations at a single, or small number of, time points is unlikely to significantly improve the mortality rate of sepsis. We then use genetic algorithms (GA) to explore and characterize multi-targeted control strategies for the random dynamical immune system that guide it from a persistent, non-recovering inflammatory state (functionally equivalent to the clinical states of systemic inflammatory response syndrome (SIRS) or sepsis) to a state of health. We train the GA on a single parameter set with multiple stochastic replicates, and show that while the calculated results show good generalizability, more advanced strategies are needed to achieve the goal of adaptive personalized medicine. This work evaluating the extent of interventions needed to control a simplified surrogate model of sepsis provides insight into the scope of the clinical challenge, and can serve as a guide on the path towards true "precision control" of sepsis.
NASA Astrophysics Data System (ADS)
Kurian, Priya C.; Gopinath, Anish; Shinoy, K. S.; Santhi, P.; Sundaramoorthy, K.; Sebastian, Baby; Jaya, B.; Namboodiripad, M. N.; Mookiah, T.
2017-12-01
Reusable Launch Vehicle-Technology Demonstrator (RLV-TD) is a system which has the ability to carry a payload from the earth's surface to the outer space more than once. The control actuation forms the major component of the control system and it actuates the control surfaces of the RLV-TD based on the control commands. Eight electro hydraulic actuators were used in RLV-TD for vectoring the control surfaces about their axes. A centralised Hydraulic Power Generating Unit (HPU) was used for powering the eight actuators located in two stages. The actuation system had to work for the longest ever duration of about 850 s for an Indian launch vehicle. High bandwidth requirement from autopilot was met by the servo design using the nonlinear mathematical model. Single Control Electronics which drive four electrohydraulic actuators was developed for each stage. High power electronics with soft start scheme was realized for driving the BLDC motor which is the prime mover for hydraulic pump. Many challenges arose due to single HPU for two stages, uncertainty of aero load, higher bandwidth requirements etc. and provisions were incorporated in the design to successfully overcome them. This paper describes the servo design and control electronics architecture of control actuation system.
Single Axis Attitude Control and DC Bus Regulation with Two Flywheels
NASA Technical Reports Server (NTRS)
Kascak, Peter E.; Jansen, Ralph H.; Kenny, Barbara; Dever, Timothy P.
2002-01-01
A computer simulation of a flywheel energy storage single axis attitude control system is described. The simulation models hardware which will be experimentally tested in the future. This hardware consists of two counter rotating flywheels mounted to an air table. The air table allows one axis of rotational motion. An inertia DC bus coordinator is set forth that allows the two control problems, bus regulation and attitude control, to be separated. Simulation results are presented with a previously derived flywheel bus regulator and a simple PID attitude controller.
NASA Astrophysics Data System (ADS)
Wu, Chaoxing; Li, Fushan; Chen, Wei; Veeramalai, Chandrasekar Perumal; Ooi, Poh Choon; Guo, Tailiang
2015-03-01
The direct observation of single crystal graphene growth and its shape evolution is of fundamental importance to the understanding of graphene growth physicochemical mechanisms and the achievement of wafer-scale single crystalline graphene. Here we demonstrate the controlled formation of single crystal graphene with varying shapes, and directly observe the shape evolution of single crystal graphene by developing a localized-heating and rapid-quenching chemical vapor deposition (CVD) system based on electromagnetic induction heating. Importantly, rational control of circular, hexagonal, and dendritic single crystalline graphene domains can be readily obtained for the first time by changing the growth condition. Systematic studies suggest that the graphene nucleation only occurs during the initial stage, while the domain density is independent of the growth temperatures due to the surface-limiting effect. In addition, the direct observation of graphene domain shape evolution is employed for the identification of competing growth mechanisms including diffusion-limited, attachment-limited, and detachment-limited processes. Our study not only provides a novel method for morphology-controlled graphene synthesis, but also offers fundamental insights into the kinetics of single crystal graphene growth.
Load Frequency Control of AC Microgrid Interconnected Thermal Power System
NASA Astrophysics Data System (ADS)
Lal, Deepak Kumar; Barisal, Ajit Kumar
2017-08-01
In this paper, a microgrid (MG) power generation system is interconnected with a single area reheat thermal power system for load frequency control study. A new meta-heuristic optimization algorithm i.e. Moth-Flame Optimization (MFO) algorithm is applied to evaluate optimal gains of the fuzzy based proportional, integral and derivative (PID) controllers. The system dynamic performance is studied by comparing the results with MFO optimized classical PI/PID controllers. Also the system performance is investigated with fuzzy PID controller optimized by recently developed grey wolf optimizer (GWO) algorithm, which has proven its superiority over other previously developed algorithm in many interconnected power systems.
A novel optimal coordinated control strategy for the updated robot system for single port surgery.
Bai, Weibang; Cao, Qixin; Leng, Chuntao; Cao, Yang; Fujie, Masakatsu G; Pan, Tiewen
2017-09-01
Research into robotic systems for single port surgery (SPS) has become widespread around the world in recent years. A new robot arm system for SPS was developed, but its positioning platform and other hardware components were not efficient. Special features of the developed surgical robot system make good teleoperation with safety and efficiency difficult. A robot arm is combined and used as new positioning platform, and the remote center motion is realized by a new method using active motion control. A new mapping strategy based on kinematics computation and a novel optimal coordinated control strategy based on real-time approaching to a defined anthropopathic criterion configuration that is referred to the customary ease state of human arms and especially the configuration of boxers' habitual preparation posture are developed. The hardware components, control architecture, control system, and mapping strategy of the robotic system has been updated. A novel optimal coordinated control strategy is proposed and tested. The new robot system can be more dexterous, intelligent, convenient and safer for preoperative positioning and intraoperative adjustment. The mapping strategy can achieve good following and representation for the slave manipulator arms. And the proposed novel control strategy can enable them to complete tasks with higher maneuverability, lower possibility of self-interference and singularity free while teleoperating. Copyright © 2017 John Wiley & Sons, Ltd.
Design of a surgical robot with dynamic vision field control for Single Port Endoscopic Surgery.
Kobayashi, Yo; Sekiguchi, Yuta; Tomono, Yu; Watanabe, Hiroki; Toyoda, Kazutaka; Konishi, Kozo; Tomikawa, Morimasa; Ieiri, Satoshi; Tanoue, Kazuo; Hashizume, Makoto; Fujie, Masaktsu G
2010-01-01
Recently, a robotic system was developed to assist Single Port Endoscopic Surgery (SPS). However, the existing system required a manual change of vision field, hindering the surgical task and increasing the degrees of freedom (DOFs) of the manipulator. We proposed a surgical robot for SPS with dynamic vision field control, the endoscope view being manipulated by a master controller. The prototype robot consisted of a positioning and sheath manipulator (6 DOF) for vision field control, and dual tool tissue manipulators (gripping: 5DOF, cautery: 3DOF). Feasibility of the robot was demonstrated in vitro. The "cut and vision field control" (using tool manipulators) is suitable for precise cutting tasks in risky areas while a "cut by vision field control" (using a vision field control manipulator) is effective for rapid macro cutting of tissues. A resection task was accomplished using a combination of both methods.
Robust high-performance control for robotic manipulators
NASA Technical Reports Server (NTRS)
Seraji, Homayoun (Inventor)
1991-01-01
Model-based and performance-based control techniques are combined for an electrical robotic control system. Thus, two distinct and separate design philosophies have been merged into a single control system having a control law formulation including two distinct and separate components, each of which yields a respective signal component that is combined into a total command signal for the system. Those two separate system components include a feedforward controller and a feedback controller. The feedforward controller is model-based and contains any known part of the manipulator dynamics that can be used for on-line control to produce a nominal feedforward component of the system's control signal. The feedback controller is performance-based and consists of a simple adaptive PID controller which generates an adaptive control signal to complement the nominal feedforward signal.
Robust high-performance control for robotic manipulators
NASA Technical Reports Server (NTRS)
Seraji, Homayoun (Inventor)
1989-01-01
Model-based and performance-based control techniques are combined for an electrical robotic control system. Thus, two distinct and separate design philosophies were merged into a single control system having a control law formulation including two distinct and separate components, each of which yields a respective signal componet that is combined into a total command signal for the system. Those two separate system components include a feedforward controller and feedback controller. The feedforward controller is model-based and contains any known part of the manipulator dynamics that can be used for on-line control to produce a nominal feedforward component of the system's control signal. The feedback controller is performance-based and consists of a simple adaptive PID controller which generates an adaptive control signal to complement the nomical feedforward signal.
The dressed atom as binary phase modulator: towards attojoule/edge optical phase-shift keying.
Kerckhoff, Joseph; Armen, Michael A; Pavlichin, Dmitri S; Mabuchi, Hideo
2011-03-28
We use a single 133Cs atom strongly coupled to an optical resonator to induce random binary phase modulation of a near infra-red, ∼ 500 pW laser beam, with each modulation edge caused by the dissipation of a single photon (≈ 0.23 aJ) by the atom. While our ability to deterministically induce phase edges with an additional optical control beam is limited thus far, theoretical analysis of an analogous, solid-state system indicates that efficient external control should be achievable in demonstrated nanophotonic systems.
Conceptual design of a thermal control system for an inflatable lunar habitat module
NASA Technical Reports Server (NTRS)
Gadkari, Ketan; Goyal, Sanjay K.; Vanniasinkam, Joseph
1991-01-01
NASA is considering the establishment of a manned lunar base within the next few decades. To house and protect the crew from the harsh lunar environment, a habitat is required. A proposed habitat is an spherical, inflatable module. Heat generated in the module must be rejected to maintain a temperature suitable for human habitation. This report presents a conceptual design of a thermal control system for an inflatable lunar module. The design solution includes heat acquisition, heat transport, and heat rejection subsystems. The report discusses alternative designs and design solutions for each of the three subsystems mentioned above. Alternative subsystems for heat acquisition include a single water-loop, a single air-loop, and a double water-loop. The vapor compression cycle, vapor absorption cycle, and metal hydride absorption cycle are the three alternative transport subsystems. Alternative rejection subsystems include flat plate radiators, the liquid droplet radiator, and reflux boiler radiators. Feasibility studies on alternatives of each subsystem showed that the single water-loop, the vapor compression cycle, and the reflux boiler radiator were the most feasible alternatives. The design team combined the three subsystems to come up with an overall system design. Methods of controlling the system to adapt it for varying conditions within the module and in the environment are presented. Finally, the report gives conclusions and recommendations for further study of thermal control systems for lunar applications.
Simultaneous deterministic control of distant qubits in two semiconductor quantum dots.
Gamouras, A; Mathew, R; Freisem, S; Deppe, D G; Hall, K C
2013-10-09
In optimal quantum control (OQC), a target quantum state of matter is achieved by tailoring the phase and amplitude of the control Hamiltonian through femtosecond pulse-shaping techniques and powerful adaptive feedback algorithms. Motivated by recent applications of OQC in quantum information science as an approach to optimizing quantum gates in atomic and molecular systems, here we report the experimental implementation of OQC in a solid-state system consisting of distinguishable semiconductor quantum dots. We demonstrate simultaneous high-fidelity π and 2π single qubit gates in two different quantum dots using a single engineered infrared femtosecond pulse. These experiments enhance the scalability of semiconductor-based quantum hardware and lay the foundation for applications of pulse shaping to optimize quantum gates in other solid-state systems.
Demonstration of Active Combustion Control
NASA Technical Reports Server (NTRS)
Lovett, Jeffrey A.; Teerlinck, Karen A.; Cohen, Jeffrey M.
2008-01-01
The primary objective of this effort was to demonstrate active control of combustion instabilities in a direct-injection gas turbine combustor that accurately simulates engine operating conditions and reproduces an engine-type instability. This report documents the second phase of a two-phase effort. The first phase involved the analysis of an instability observed in a developmental aeroengine and the design of a single-nozzle test rig to replicate that phenomenon. This was successfully completed in 2001 and is documented in the Phase I report. This second phase was directed toward demonstration of active control strategies to mitigate this instability and thereby demonstrate the viability of active control for aircraft engine combustors. This involved development of high-speed actuator technology, testing and analysis of how the actuation system was integrated with the combustion system, control algorithm development, and demonstration testing in the single-nozzle test rig. A 30 percent reduction in the amplitude of the high-frequency (570 Hz) instability was achieved using actuation systems and control algorithms developed within this effort. Even larger reductions were shown with a low-frequency (270 Hz) instability. This represents a unique achievement in the development and practical demonstration of active combustion control systems for gas turbine applications.
Robustness of reduced-order observer-based controllers in transitional 2D Blasius boundary layers
NASA Astrophysics Data System (ADS)
Belson, Brandt; Semeraro, Onofrio; Rowley, Clarence; Pralits, Jan; Henningson, Dan
2011-11-01
In this work, we seek to delay transition in the Blasius boundary layer. We trip the flow with an upstream disturbance and dampen the growth of the resulting structures downstream. The observer-based controllers use a single sensor and a single localized body force near the wall. To formulate the controllers, we first find a reduced-order model of the system via the Eigensystem Realization Algorithm (ERA), then find the H2 optimal controller for this reduced-order system. We find the resulting controllers are effective only when the sensor is upstream of the actuator (in a feedforward configuration), but as is expected, are sensitive to model uncertainty. When the sensor is downstream of the actuator (in a feedback configuration), the reduced-order observer-based controllers are not robust and ineffective on the full system. In order to investigate the robustness properties of the system, an iterative technique called the adjoint of the direct adjoint (ADA) is employed to find a full-dimensional H2 optimal controller. This avoids the reduced-order modelling step and serves as a reference point. ADA is promising for investigating the lack of robustness previously mentioned.
NASA Technical Reports Server (NTRS)
Harkney, R. D.
1980-01-01
Increased system requirements and functional integration with the aircraft have placed an increased demand on control system capability and reliability. To provide these at an affordable cost and weight and because of the rapid advances in electronic technology, hydromechanical systems are being phased out in favor of digital electronic systems. The transition is expected to be orderly from electronic trimming of hydromechanical controls to full authority digital electronic control. Future propulsion system controls will be highly reliable full authority digital electronic with selected component and circuit redundancy to provide the required safety and reliability. Redundancy may include a complete backup control of a different technology for single engine applications. The propulsion control will be required to communicate rapidly with the various flight and fire control avionics as part of an integrated control concept.
BROADBAND DIGITAL GEOPHYSICAL TELEMETRY SYSTEM.
Seeley, Robert L.; Daniels, Jeffrey J.
1984-01-01
A system has been developed to simultaneously sample and transmit digital data from five remote geophysical data receiver stations to a control station that processes, displays, and stores the data. A microprocessor in each remote station receives commands from the control station over a single telemetry channel.
Organizational Context and the Success of Management Information Systems
ERIC Educational Resources Information Center
Ein-Dor, Phillip; Segev, Eli
1978-01-01
This paper identifies the organizational context variables affecting the success and failure of management information systems. The variables are categorized as uncontrollable, partially controllable, and controlled. Available from the Institue of Management Sciences, Circulation Dept., 345 Whitney Avenue, New Haven, Connecticut 06511; Single copy…
Linear System Control Using Stochastic Learning Automata
NASA Technical Reports Server (NTRS)
Ziyad, Nigel; Cox, E. Lucien; Chouikha, Mohamed F.
1998-01-01
This paper explains the use of a Stochastic Learning Automata (SLA) to control switching between three systems to produce the desired output response. The SLA learns the optimal choice of the damping ratio for each system to achieve a desired result. We show that the SLA can learn these states for the control of an unknown system with the proper choice of the error criteria. The results of using a single automaton are compared to using multiple automata.
Heo, Jino; Hong, Chang-Ho; Kang, Min-Sung; Yang, Hyeon; Yang, Hyung-Jin; Hong, Jong-Phil; Choi, Seong-Gon
2017-11-02
We propose a controlled quantum teleportation scheme to teleport an unknown state based on the interactions between flying photons and quantum dots (QDs) confined within single- and double-sided cavities. In our scheme, users (Alice and Bob) can teleport the unknown state through a secure entanglement channel under the control and distribution of an arbitrator (Trent). For construction of the entanglement channel, Trent utilizes the interactions between two photons and the QD-cavity system, which consists of a charged QD (negatively charged exciton) inside a single-sided cavity. Subsequently, Alice can teleport the unknown state of the electron spin in a QD inside a double-sided cavity to Bob's electron spin in a QD inside a single-sided cavity assisted by the channel information from Trent. Furthermore, our scheme using QD-cavity systems is feasible with high fidelity, and can be experimentally realized with current technologies.
Optima XE Single Wafer High Energy Ion Implanter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satoh, Shu; Ferrara, Joseph; Bell, Edward
2008-11-03
The Optima XE is the first production worthy single wafer high energy implanter. The new system combines a state-of-art single wafer endstation capable of throughputs in excess of 400 wafers/hour with a production-proven RF linear accelerator technology. Axcelis has been evolving and refining RF Linac technology since the introduction of the NV1000 in 1986. The Optima XE provides production worthy beam currents up to energies of 1.2 MeV for P{sup +}, 2.9 MeV for P{sup ++}, and 1.5 MeV for B{sup +}. Energies as low as 10 keV and tilt angles as high as 45 degrees are also available., allowingmore » the implanter to be used for a wide variety of traditional medium current implants to ensure high equipment utilization. The single wafer endstation provides precise implant angle control across wafer and wafer to wafer. In addition, Optima XE's unique dose control system allows compensation of photoresist outgassing effects without relying on traditional pressure-based methods. We describe the specific features, angle control and dosimetry of the Optima XE and their applications in addressing the ever-tightening demands for more precise process controls and higher productivity.« less
Research on width control of Metal Fused-coating Additive Manufacturing based on active control
NASA Astrophysics Data System (ADS)
Ren, Chuan qi; Wei, Zheng ying; Wang, Xin; Du, Jun; Zhang, Shan; Zhang, Zhitong; Bai, Hao
2017-12-01
Given the stability of the shape of the forming layer is one of the key problems that affect the final quality of the sample morphology, taking a study on the forming process and the control method of morphology make a significant difference to metal fused-coating additive manufacturing (MFCAM) in achieving the efficient and stable forming. To improve the quality and precision of the samples of single-layer single pass, a control method of morphology based on active control was established by this paper. The real-time acquisition of image was realized by CCD and the characteristics of morphology of the forming process were simultaneously extracted. Making analysis of the characteristics of the width during the process, the relationship between the relative difference of different frames and moving speed was given. A large number of experiments are used to verify the response speed and accuracy of the system. The results show that the active system can improve the morphology of the sample and the smoothness of the width of the single channel, and increase the uniformity of width by 55.16%.
Computational imaging with a single-pixel detector and a consumer video projector
NASA Astrophysics Data System (ADS)
Sych, D.; Aksenov, M.
2018-02-01
Single-pixel imaging is a novel rapidly developing imaging technique that employs spatially structured illumination and a single-pixel detector. In this work, we experimentally demonstrate a fully operating modular single-pixel imaging system. Light patterns in our setup are created with help of a computer-controlled digital micromirror device from a consumer video projector. We investigate how different working modes and settings of the projector affect the quality of reconstructed images. We develop several image reconstruction algorithms and compare their performance for real imaging. Also, we discuss the potential use of the single-pixel imaging system for quantum applications.
Globally linearized control on diabatic continuous stirred tank reactor: a case study.
Jana, Amiya Kumar; Samanta, Amar Nath; Ganguly, Saibal
2005-07-01
This paper focuses on the promise of globally linearized control (GLC) structure in the realm of strongly nonlinear reactor system control. The proposed nonlinear control strategy is comprised of: (i) an input-output linearizing state feedback law (transformer), (ii) a state observer, and (iii) an external linear controller. The synthesis of discrete-time GLC controller for single-input single-output diabatic continuous stirred tank reactor (DCSTR) has been studied first, followed by the synthesis of feedforward/feedback controller for the same reactor having dead time in process as well as in disturbance. Subsequently, the multivariable GLC structure has been designed and then applied on multi-input multi-output DCSTR system. The simulation study shows high quality performance of the derived nonlinear controllers. The better-performed GLC in conjunction with reduced-order observer has been compared with the conventional proportional integral controller on the example reactor and superior performance has been achieved by the proposed GLC control scheme.
Microscale Symmetrical Electroporator Array as a Versatile Molecular Delivery System
NASA Astrophysics Data System (ADS)
Ouyang, Mengxing; Hill, Winfield; Lee, Jung Hyun; Hur, Soojung Claire
2017-03-01
Successful developments of new therapeutic strategies often rely on the ability to deliver exogenous molecules into cytosol. We have developed a versatile on-chip vortex-assisted electroporation system, engineered to conduct sequential intracellular delivery of multiple molecules into various cell types at low voltage in a dosage-controlled manner. Micro-patterned planar electrodes permit substantial reduction in operational voltages and seamless integration with an existing microfluidic technology. Equipped with real-time process visualization functionality, the system enables on-chip optimization of electroporation parameters for cells with varying properties. Moreover, the system’s dosage control and multi-molecular delivery capabilities facilitate intracellular delivery of various molecules as a single agent or in combination and its utility in biological research has been demonstrated by conducting RNA interference assays. We envision the system to be a powerful tool, aiding a wide range of applications, requiring single-cell level co-administrations of multiple molecules with controlled dosages.
Teixeira, Miguel; Mendonça, Teresa; Rocha, Paula; Rabiço, Rui
2014-12-01
This paper presents a model based switching control strategy to drive the neuromuscular blockade (NMB) level of patients undergoing general anesthesia to a predefined reference. A single-input single-output Wiener system with only two parameters is used to model the effect of two different muscle relaxants, atracurium and rocuronium, and a switching controller is designed based on a bank of total system mass control laws. Each of such laws is tuned for an individual model from a bank chosen to represent the behavior of the whole population. The control law to be applied at each instant corresponds to the model whose NMB response is closer to the patient's response. Moreover a scheme to improve the reference tracking quality based on the analysis of the patient's response, as well as, a comparison between the switching strategy and the Extended Kalman Kilter (EKF) technique are presented. The results are illustrated by means of several simulations, where switching shows to provide good results, both in theory and in practice, with a desirable reference tracking. The reference tracking improvement technique is able to produce a better reference tracking. Also, this technique showed a better performance than the (EKF). Based on these results, the switching control strategy with a bank of total system mass control laws proved to be robust enough to be used as an automatic control system for the NMB level.
Zhang, Yajun; Chai, Tianyou; Wang, Hong
2011-11-01
This paper presents a novel nonlinear control strategy for a class of uncertain single-input and single-output discrete-time nonlinear systems with unstable zero-dynamics. The proposed method combines adaptive-network-based fuzzy inference system (ANFIS) with multiple models, where a linear robust controller, an ANFIS-based nonlinear controller and a switching mechanism are integrated using multiple models technique. It has been shown that the linear controller can ensure the boundedness of the input and output signals and the nonlinear controller can improve the dynamic performance of the closed loop system. Moreover, it has also been shown that the use of the switching mechanism can simultaneously guarantee the closed loop stability and improve its performance. As a result, the controller has the following three outstanding features compared with existing control strategies. First, this method relaxes the assumption of commonly-used uniform boundedness on the unmodeled dynamics and thus enhances its applicability. Second, since ANFIS is used to estimate and compensate the effect caused by the unmodeled dynamics, the convergence rate of neural network learning has been increased. Third, a "one-to-one mapping" technique is adapted to guarantee the universal approximation property of ANFIS. The proposed controller is applied to a numerical example and a pulverizing process of an alumina sintering system, respectively, where its effectiveness has been justified.
Nonlinear control of voltage source converters in AC-DC power system.
Dash, P K; Nayak, N
2014-07-01
This paper presents the design of a robust nonlinear controller for a parallel AC-DC power system using a Lyapunov function-based sliding mode control (LYPSMC) strategy. The inputs for the proposed control scheme are the DC voltage and reactive power errors at the converter station and the active and reactive power errors at the inverter station of the voltage-source converter-based high voltage direct current transmission (VSC-HVDC) link. The stability and robust tracking of the system parameters are ensured by applying the Lyapunov direct method. Also the gains of the sliding mode control (SMC) are made adaptive using the stability conditions of the Lyapunov function. The proposed control strategy offers invariant stability to a class of systems having modeling uncertainties due to parameter changes and exogenous inputs. Comprehensive computer simulations are carried out to verify the proposed control scheme under several system disturbances like changes in short-circuit ratio, converter parametric changes, and faults on the converter and inverter buses for single generating system connected to the power grid in a single machine infinite-bus AC-DC network and also for a 3-machine two-area power system. Furthermore, a second order super twisting sliding mode control scheme has been presented in this paper that provides a higher degree of nonlinearity than the LYPSMC and damps faster the converter and inverter voltage and power oscillations. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Integrated control-system design via generalized LQG (GLQG) theory
NASA Technical Reports Server (NTRS)
Bernstein, Dennis S.; Hyland, David C.; Richter, Stephen; Haddad, Wassim M.
1989-01-01
Thirty years of control systems research has produced an enormous body of theoretical results in feedback synthesis. Yet such results see relatively little practical application, and there remains an unsettling gap between classical single-loop techniques (Nyquist, Bode, root locus, pole placement) and modern multivariable approaches (LQG and H infinity theory). Large scale, complex systems, such as high performance aircraft and flexible space structures, now demand efficient, reliable design of multivariable feedback controllers which optimally tradeoff performance against modeling accuracy, bandwidth, sensor noise, actuator power, and control law complexity. A methodology is described which encompasses numerous practical design constraints within a single unified formulation. The approach, which is based upon coupled systems or modified Riccati and Lyapunov equations, encompasses time-domain linear-quadratic-Gaussian theory and frequency-domain H theory, as well as classical objectives such as gain and phase margin via the Nyquist circle criterion. In addition, this approach encompasses the optimal projection approach to reduced-order controller design. The current status of the overall theory will be reviewed including both continuous-time and discrete-time (sampled-data) formulations.
Heinze, Dirk; Breddermann, Dominik; Zrenner, Artur; Schumacher, Stefan
2015-10-05
Sources of single photons are key elements for applications in quantum information science. Among the different sources available, semiconductor quantum dots excel with their integrability in semiconductor on-chip solutions and the potential that photon emission can be triggered on demand. Usually, the photon is emitted from a single-exciton ground state. Polarization of the photon and time of emission are either probabilistic or pre-determined by electronic properties of the system. Here, we study the direct two-photon emission from the biexciton. The two-photon emission is enabled by a laser pulse driving the system into a virtual state inside the band gap. From this intermediate state, the single photon of interest is then spontaneously emitted. We show that emission through this higher-order transition provides a versatile approach to generate a single photon. Through the driving laser pulse, polarization state, frequency and emission time of the photon can be controlled on-the-fly.
A universal heliostat control system
NASA Astrophysics Data System (ADS)
Gross, Fabian; Geiger, Mark; Buck, Reiner
2017-06-01
This paper describes the development of a universal heliostat control system as part of the AutoR project [1]. The system can control multiple receivers and heliostat types in a single application. The system offers support for multiple operators on different machines and is designed to be as adaptive as possible. Thus, the system can be used for different heliostat field setups with only minor adaptations of the system's source code. This is achieved by extensive usage of modern programming techniques like reflection and dependency injection. Furthermore, the system features co-simulation of a ray tracer, a reference PID-controller implementation for open volumetric receivers and methods for heliostat calibration and monitoring.
Microprocessor-Controlled Laser Balancing System
NASA Technical Reports Server (NTRS)
Demuth, R. S.
1985-01-01
Material removed by laser action as part tested for balance. Directed by microprocessor, laser fires appropriate amount of pulses in correct locations to remove necessary amount of material. Operator and microprocessor software interact through video screen and keypad; no programing skills or unprompted system-control decisions required. System provides complete and accurate balancing in single load-and-spinup cycle.
Complete quantum control of a single quantum dot spin using ultrafast optical pulses.
Press, David; Ladd, Thaddeus D; Zhang, Bingyang; Yamamoto, Yoshihisa
2008-11-13
A basic requirement for quantum information processing systems is the ability to completely control the state of a single qubit. For qubits based on electron spin, a universal single-qubit gate is realized by a rotation of the spin by any angle about an arbitrary axis. Driven, coherent Rabi oscillations between two spin states can be used to demonstrate control of the rotation angle. Ramsey interference, produced by two coherent spin rotations separated by a variable time delay, demonstrates control over the axis of rotation. Full quantum control of an electron spin in a quantum dot has previously been demonstrated using resonant radio-frequency pulses that require many spin precession periods. However, optical manipulation of the spin allows quantum control on a picosecond or femtosecond timescale, permitting an arbitrary rotation to be completed within one spin precession period. Recent work in optical single-spin control has demonstrated the initialization of a spin state in a quantum dot, as well as the ultrafast manipulation of coherence in a largely unpolarized single-spin state. Here we demonstrate complete coherent control over an initialized electron spin state in a quantum dot using picosecond optical pulses. First we vary the intensity of a single optical pulse to observe over six Rabi oscillations between the two spin states; then we apply two sequential pulses to observe high-contrast Ramsey interference. Such a two-pulse sequence realizes an arbitrary single-qubit gate completed on a picosecond timescale. Along with the spin initialization and final projective measurement of the spin state, these results demonstrate a complete set of all-optical single-qubit operations.
Three axis pulsed plasma thruster with angled cathode and anode strip lines
NASA Technical Reports Server (NTRS)
Cassady, R. Joseph (Inventor); Myers, Roger M. (Inventor); Osborne, Robert D. (Inventor)
2001-01-01
A spacecraft attitude and altitude control system utilizes sets of three pulsed plasma thrusters connected to a single controller. The single controller controls the operation of each thruster in the set. The control of a set of three thrusters in the set makes it possible to provide a component of thrust along any one of three desired axes. This configuration reduces the total weight of a spacecraft since only one controller and its associated electronics is required for each set of thrusters rather than a controller for each thruster. The thrusters are positioned about the spacecraft such that the effect of the thrusters is balanced.
Intelligent Luminance Control of Lighting Systems Based on Imaging Sensor Feedback
Liu, Haoting; Zhou, Qianxiang; Yang, Jin; Jiang, Ting; Liu, Zhizhen; Li, Jie
2017-01-01
An imaging sensor-based intelligent Light Emitting Diode (LED) lighting system for desk use is proposed. In contrast to the traditional intelligent lighting system, such as the photosensitive resistance sensor-based or the infrared sensor-based system, the imaging sensor can realize a finer perception of the environmental light; thus it can guide a more precise lighting control. Before this system works, first lots of typical imaging lighting data of the desk application are accumulated. Second, a series of subjective and objective Lighting Effect Evaluation Metrics (LEEMs) are defined and assessed for these datasets above. Then the cluster benchmarks of these objective LEEMs can be obtained. Third, both a single LEEM-based control and a multiple LEEMs-based control are developed to realize a kind of optimal luminance tuning. When this system works, first it captures the lighting image using a wearable camera. Then it computes the objective LEEMs of the captured image and compares them with the cluster benchmarks of the objective LEEMs. Finally, the single LEEM-based or the multiple LEEMs-based control can be implemented to get a kind of optimal lighting effect. Many experiment results have shown the proposed system can tune the LED lamp automatically according to environment luminance changes. PMID:28208781
Intelligent Luminance Control of Lighting Systems Based on Imaging Sensor Feedback.
Liu, Haoting; Zhou, Qianxiang; Yang, Jin; Jiang, Ting; Liu, Zhizhen; Li, Jie
2017-02-09
An imaging sensor-based intelligent Light Emitting Diode (LED) lighting system for desk use is proposed. In contrast to the traditional intelligent lighting system, such as the photosensitive resistance sensor-based or the infrared sensor-based system, the imaging sensor can realize a finer perception of the environmental light; thus it can guide a more precise lighting control. Before this system works, first lots of typical imaging lighting data of the desk application are accumulated. Second, a series of subjective and objective Lighting Effect Evaluation Metrics (LEEMs) are defined and assessed for these datasets above. Then the cluster benchmarks of these objective LEEMs can be obtained. Third, both a single LEEM-based control and a multiple LEEMs-based control are developed to realize a kind of optimal luminance tuning. When this system works, first it captures the lighting image using a wearable camera. Then it computes the objective LEEMs of the captured image and compares them with the cluster benchmarks of the objective LEEMs. Finally, the single LEEM-based or the multiple LEEMs-based control can be implemented to get a kind of optimal lighting effect. Many experiment results have shown the proposed system can tune the LED lamp automatically according to environment luminance changes.
Advanced turbine blade tip seal system
NASA Technical Reports Server (NTRS)
Zelahy, J. W.
1981-01-01
An advanced blade/shroud system designed to maintain close clearance between blade tips and turbine shrouds and at the same time, be resistant to environmental effects including high temperature oxidation, hot corrosion, and thermal cycling is described. Increased efficiency and increased blade life are attained by using the advanced blade tip seal system. Features of the system include improved clearance control when blade tips preferentially wear the shrouds and a superior single crystal superalloy tip. The tip design, joint location, characterization of the single crystal tip alloy, the abrasive tip treatment, and the component and engine test are among the factors addressed. Results of wear testing, quality control plans, and the total manufacturing cycle required to fully process the blades are also discussed.
A new type of temperature and humidity detection-control system
NASA Astrophysics Data System (ADS)
Jiao, Lian-Bo; Lou, Shu-Hui
This paper introduces a new type of intelligent multichannel system for the detection and control of temperature and humidity. In this paper, the integration of the hardware with the software is discussed. Additionally, the function of the single-chip microcomputer (microcontroller) is described fully.
RNAi control of aflatoxins in peanut plants, a multifactorial system
USDA-ARS?s Scientific Manuscript database
RNA-interference (RNAi)-mediated control of aflatoxin contamination in peanut plants is a multifactorial and hyper variable system. The use of RNAi biotechnology to silence single genes in plants has inherently high-variability among transgenic events. Also the level of expression of small interfe...
Pulse-Flow Microencapsulation System
NASA Technical Reports Server (NTRS)
Morrison, Dennis R.
2006-01-01
The pulse-flow microencapsulation system (PFMS) is an automated system that continuously produces a stream of liquid-filled microcapsules for delivery of therapeutic agents to target tissues. Prior microencapsulation systems have relied on batch processes that involve transfer of batches between different apparatuses for different stages of production followed by sampling for acquisition of quality-control data, including measurements of size. In contrast, the PFMS is a single, microprocessor-controlled system that performs all processing steps, including acquisition of quality-control data. The quality-control data can be used as real-time feedback to ensure the production of large quantities of uniform microcapsules.
Framework and Method for Controlling a Robotic System Using a Distributed Computer Network
NASA Technical Reports Server (NTRS)
Sanders, Adam M. (Inventor); Strawser, Philip A. (Inventor); Barajas, Leandro G. (Inventor); Permenter, Frank Noble (Inventor)
2015-01-01
A robotic system for performing an autonomous task includes a humanoid robot having a plurality of compliant robotic joints, actuators, and other integrated system devices that are controllable in response to control data from various control points, and having sensors for measuring feedback data at the control points. The system includes a multi-level distributed control framework (DCF) for controlling the integrated system components over multiple high-speed communication networks. The DCF has a plurality of first controllers each embedded in a respective one of the integrated system components, e.g., the robotic joints, a second controller coordinating the components via the first controllers, and a third controller for transmitting a signal commanding performance of the autonomous task to the second controller. The DCF virtually centralizes all of the control data and the feedback data in a single location to facilitate control of the robot across the multiple communication networks.
Single-photon routing with whispering-gallery resonators
NASA Astrophysics Data System (ADS)
Huang, Jin-Song; Zhang, Jia-Hao; Wei, L. F.
2018-04-01
Quantum routing of single photons in a system with two waveguides coupled to two whispering-gallery resonators (WGRs) are investigated theoretically. Using a real-space full quantum theory, photonic scattering amplitudes along four ports of the waveguide network are analytically obtained. It is shown that, by adjusting the geometric and physical parameters of the two-WGR configuration, the quantum routing properties of single photons along the present waveguide network can be controlled effectively. The routing capability from input waveguide to another one can significantly exceed 0.5 near the resonance point of scattering spectra, which can be achieved with only one resonator. By properly designing the distance between two WGRs and the waveguide-WGR coupling strengths, the transfer rate between the waveguides can also reach certain sufficiently high values even in the non-resonance regime. Moreover, Fano-like resonances in the scattering spectra are designable. The proposed system may provide a potential application in controlling single-photon quantum routing.
Two-layer anti-reflection strategies for implant applications
NASA Astrophysics Data System (ADS)
Guerrero, Douglas J.; Smith, Tamara; Kato, Masakazu; Kimura, Shigeo; Enomoto, Tomoyuki
2006-03-01
A two-layer bottom anti-reflective coating (BARC) concept in which a layer that develops slowly is coated on top of a bottom layer that develops more rapidly was demonstrated. Development rate control was achieved by selection of crosslinker amount and BARC curing conditions. A single-layer BARC was compared with the two-layer BARC concept. The single-layer BARC does not clear out of 200-nm deep vias. When the slower developing single-layer BARC was coated on top of the faster developing layer, the vias were cleared. Lithographic evaluation of the two-layer BARC concept shows the same resolution advantages as the single-layer system. Planarization properties of a two-layer BARC system are better than for a single-layer system, when comparing the same total nominal thicknesses.
Lymphatic microangiopathy of the skin in systemic sclerosis.
Leu, A J; Gretener, S B; Enderlin, S; Brühlmann, P; Michel, B A; Kowal-Bielecka, O; Hoffmann, U; Franzeck, U K
1999-03-01
The cutaneous capillary lymphatic system in patients with systemic sclerosis was investigated using fluorescence microlymphography. The distal upper limbs of 16 healthy controls (mean age 62.3+/-13.1 yr) and 16 patients with systemic sclerosis (mean age 58.9+/-13.6 yr) were examined and the following parameters were evaluated: (a) single lymphatic capillaries; (b) lymphatic capillary network and cutaneous backflow; (c) extension of the stained lymphatics; (d) diameter of single lymphatic capillaries. At the finger level, lymphatic capillaries were lacking in five patients, while they were present in all controls (P < 0.05). Extension of the stained lymphatics was increased in 11 patients (8.1+/-6.0 mm) compared to the 16 healthy controls (2.0+/-1.2 mm) (P < 0.0001). Cutaneous backflow was observed in three patients (P < 0.05). At the hand level, lymphatic network extension was significantly different between patients (3.8+/-2.4 mm) and controls (1.2+/-0.8 mm) (P < 0.01); however, no significant differences were found at the forearm level. Lesional skin in patients with systemic sclerosis exhibits evidence of lymphatic microangiopathy.
Tracking and data relay satellite system: NASA's new spacecraft data acquisition system
NASA Astrophysics Data System (ADS)
Schneider, W. C.; Garman, A. A.
The growth in NASA's ground network complexity and cost triggered a search for an alternative. Through a lease service contract, Western Union will provide to NASA 10 years of space communications services with a Tracking and Data Relay Satellite System (TDRSS). A constellation of four operating satellites in geostationary orbit and a single ground terminal will provide complete tracking, telemetry and command service for all of NASA's Earth orbital satellites below an altitude of 12,000 km. The system is shared: two satellites will be dedicated to NASA service; a third will provide backup as a shared spare; the fourth satellite will be dedicated to Western Union's Advanced Westar commercial service. Western Union will operate the ground terminal and provide operational satellite control. NASA's Network Control Center will provide the focal point for scheduling user services and controlling the interface between TDRSS and the rest of the NASA communications network, project control centers and data processing facilities. TDRSS single access user spacecraft data systems should be designed for efficient time shared data relay support. Reimbursement policy and rate structure for non-NASA users are currently being developed.
Control system development for a 1 MW/e/ solar thermal power plant
NASA Technical Reports Server (NTRS)
Daubert, E. R.; Bergthold, F. M., Jr.; Fulton, D. G.
1981-01-01
The point-focusing distributed receiver power plant considered consists of a number of power modules delivering power to a central collection point. Each power module contains a parabolic dish concentrator with a closed-cycle receiver/turbine/alternator assembly. Currently, a single-module prototype plant is under construction. The major control system tasks required are related to concentrator pointing control, receiver temperature control, and turbine speed control. Attention is given to operational control details, control hardware and software, and aspects of CRT output display.
Quantum Control of Open Systems and Dense Atomic Ensembles
NASA Astrophysics Data System (ADS)
DiLoreto, Christopher
Controlling the dynamics of open quantum systems; i.e. quantum systems that decohere because of interactions with the environment, is an active area of research with many applications in quantum optics and quantum computation. My thesis expands the scope of this inquiry by seeking to control open systems in proximity to an additional system. The latter could be a classical system such as metal nanoparticles, or a quantum system such as a cluster of similar atoms. By modelling the interactions between the systems, we are able to expand the accessible state space of the quantum system in question. For a single, three-level quantum system, I examine isolated systems that have only normal spontaneous emission. I then show that intensity-intensity correlation spectra, which depend directly on the density matrix of the system, can be used detect whether transitions share a common energy level. This detection is possible due to the presence of quantum interference effects between two transitions if they are connected. This effect allows one to asses energy level structure diagrams in complex atoms/molecules. By placing an open quantum system near a nanoparticle dimer, I show that the spontaneous emission rate of the system can be changed "on demand" by changing the polarization of an incident, driving field. In a three-level, Lambda system, this allows a qubit to both retain high qubit fidelity when it is operating, and to be rapidly initialized to a pure state once it is rendered unusable by decoherence. This type of behaviour is not possible in a single open quantum system; therefore adding a classical system nearby extends the overall control space of the quantum system. An open quantum system near identical neighbours in a dense ensemble is another example of how the accessible state space can be expanded. I show that a dense ensemble of atoms rapidly becomes disordered with states that are not directly excited by an incident field becoming significantly populated. This effect motivates the need for using multi-directional basis sets in theoretical analysis of dense quantum systems. My results demonstrate the shortcomings of short-pulse techniques used in many recent studies. Based on my numerical studies, I hypothesize that the dense ensemble can be modelled by an effective single quantum system that has a decoherence rate that changes over time. My effective single particle model provides a way in which computational time can be reduced, and also a model in which the underlying physical processes involved in the system's evolution are much easier to understand. I then use this model to provide an elegant theoretical explanation for an unusual experimental result called "transverse optical magnetism''. My effective single particle model's predictions match very well with experimental data.
Feedback linearizing control of a MIMO power system
NASA Astrophysics Data System (ADS)
Ilyes, Laszlo
Prior research has demonstrated that either the mechanical or electrical subsystem of a synchronous electric generator may be controlled using single-input single-output (SISO) nonlinear feedback linearization. This research suggests a new approach which applies nonlinear feedback linearization to a multi-input multi-output (MIMO) model of the synchronous electric generator connected to an infinite bus load model. In this way, the electrical and mechanical subsystems may be linearized and simultaneously decoupled through the introduction of a pair of auxiliary inputs. This allows well known, linear, SISO control methods to be effectively applied to the resulting systems. The derivation of the feedback linearizing control law is presented in detail, including a discussion on the use of symbolic math processing as a development tool. The linearizing and decoupling properties of the control law are validated through simulation. And finally, the robustness of the control law is demonstrated.
Simulation and Development of Internal Model Control Applications in the Bayer Process
NASA Astrophysics Data System (ADS)
Colombé, Ph.; Dablainville, R.; Vacarisas, J.
Traditional PID feedback control system is limited in its use in the Bayer cycle due to the important and omnipresent time delays which can lead to stability problems and sluggish response. Advanced modern control techniques are available, but suffer in an industrial environment from a lack of simplicity and robustness. In this respect the Internal Model Control (IMC) method may be considered as an exception. After a brief review of the basic theoretical principles behind IMC, an IMC scheme is developed to work with single-input, single-output, discrete-time, nonlinear systems. Two applications of IMC in the Bayer process, both in simulations and on industrial plants, are then described: control of the caustic soda concentration of the aluminate liquor and control of the A12O3/Na20 caust. ratio of the digested slurry, Finally, the results obtained make this technique quite attractive for the alumina industry.
NASA Astrophysics Data System (ADS)
Blower, Christopher J.; Lee, Woody; Wickenheiser, Adam M.
2012-04-01
This paper presents the development of a biomimetic closed-loop flight controller that integrates gust alleviation and flight control into a single distributed system. Modern flight controllers predominantly rely on and respond to perturbations in the global states, resulting in rotation or displacement of the entire aircraft prior to the response. This bio-inspired gust alleviation system (GAS) employs active deflection of electromechanical feathers that react to changes in the airflow, i.e. the local states. The GAS design is a skeletal wing structure with a network of featherlike panels installed on the wing's surfaces, creating the airfoil profile and replacing the trailing-edge flaps. In this study, a dynamic model of the GAS-integrated wing is simulated to compute gust-induced disturbances. The system implements continuous adjustment to flap orientation to perform corrective responses to inbound gusts. MATLAB simulations, using a closed-loop LQR integrated with a 2D adaptive panel method, allow analysis of the morphing structure's aerodynamic data. Non-linear and linear dynamic models of the GAS are compared to a traditional single control surface baseline wing. The feedback loops synthesized rely on inertial changes in the global states; however, variations in number and location of feather actuation are compared. The bio-inspired system's distributed control effort allows the flight controller to interchange between the single and dual trailing edge flap profiles, thereby offering an improved efficiency to gust response in comparison to the traditional wing configuration. The introduction of aero-braking during continuous gusting flows offers a 25% reduction in x-velocity deviation; other flight parameters can be reduced in magnitude and deviation through control weighting optimization. Consequently, the GAS demonstrates enhancements to maneuverability and stability in turbulent intensive environments.
Advance of Mechanically Controllable Break Junction for Molecular Electronics.
Wang, Lu; Wang, Ling; Zhang, Lei; Xiang, Dong
2017-06-01
Molecular electronics stands for the ultimate size of functional elements, keeping up with an unstoppable trend over the past few decades. As a vital component of molecular electronics, single molecular junctions have attracted significant attention from research groups all over the world. Due to its pronounced superiority, the mechanically controllable break junctions (MCBJ) technique has been widely applied to characterize the dynamic performance of single molecular junctions. This review presents a system analysis for single-molecule junctions and offers an overview of four test-beds for single-molecule junctions, thus offering more insight into the mechanisms of electron transport. We mainly focus on the development of state-of-the-art mechanically controlled break junctions. The three-terminal gated MCBJ approaches are introduced to manipulate the electron transport of molecules, and MCBJs are combined with characterization techniques. Additionally, applications of MCBJs and remarkable properties of single molecules are addressed. Finally, the challenges and perspective for the mechanically controllable break junctions technique are provided.
Control system for several rotating mirror camera synchronization operation
NASA Astrophysics Data System (ADS)
Liu, Ningwen; Wu, Yunfeng; Tan, Xianxiang; Lai, Guoji
1997-05-01
This paper introduces a single chip microcomputer control system for synchronization operation of several rotating mirror high-speed cameras. The system consists of four parts: the microcomputer control unit (including the synchronization part and precise measurement part and the time delay part), the shutter control unit, the motor driving unit and the high voltage pulse generator unit. The control system has been used to control the synchronization working process of the GSI cameras (driven by a motor) and FJZ-250 rotating mirror cameras (driven by a gas driven turbine). We have obtained the films of the same objective from different directions in different speed or in same speed.
A wireless neural recording system with a precision motorized microdrive for freely behaving animals
Hasegawa, Taku; Fujimoto, Hisataka; Tashiro, Koichiro; Nonomura, Mayu; Tsuchiya, Akira; Watanabe, Dai
2015-01-01
The brain is composed of many different types of neurons. Therefore, analysis of brain activity with single-cell resolution could provide fundamental insights into brain mechanisms. However, the electrical signal of an individual neuron is very small, and precise isolation of single neuronal activity from moving subjects is still challenging. To measure single-unit signals in actively behaving states, establishment of technologies that enable fine control of electrode positioning and strict spike sorting is essential. To further apply such a single-cell recording approach to small brain areas in naturally behaving animals in large spaces or during social interaction, we developed a compact wireless recording system with a motorized microdrive. Wireless control of electrode placement facilitates the exploration of single neuronal activity without affecting animal behaviors. Because the system is equipped with a newly developed data-encoding program, the recorded data are readily compressed almost to theoretical limits and securely transmitted to a host computer. Brain activity can thereby be stably monitored in real time and further analyzed using online or offline spike sorting. Our wireless recording approach using a precision motorized microdrive will become a powerful tool for studying brain mechanisms underlying natural or social behaviors. PMID:25597933
Carvalho, Maira de Souza; Junior, Emílio Carlos Sponchiado; Bitencourt Garrido, Angela Delfina; Roberti Garcia, Lucas da Fonseca; Franco Marques, André Augusto
2015-01-01
The aim of this study was to evaluate the cleaning effectiveness achieved with two reciprocating single-file systems in severely curved root canals: Reciproc and WaveOne. Twenty-five mesial roots of mandibular molars were randomly separated into two groups, according to the instrumentation system used. The negative control group consisted of five specimens that were not instrumented. The mesial canals (buccal and lingual) in Reciproc Group were instrumented with file R25 and the WaveOne group with the Primary file. The samples were submitted to histological processing and analyzed under a digital microscope. The WaveOne group presented a larger amount of debris than the Reciproc Group, however, without statistically significant difference (P > 0.05). A larger amount of debris in the control group was observed, with statistically significant difference to Reciproc and WaveOne groups (P < 0.05). The two reciprocating single-file instrumentation systems presented similar effectiveness for root canal cleaning.
Residential solar-heating system uses pyramidal optics
NASA Technical Reports Server (NTRS)
1981-01-01
Report describes reflective panels which optimize annual solar energy collection in attic installation. Subunits include collection, storage, distribution, and 4-mode control systems. Pyramid optical system heats single-family and multi-family dwellings.
NASA Technical Reports Server (NTRS)
1980-01-01
Installation procedures for the single family residential solar heating system at the William O'Brien State Park, Stillwater, Minnesota, are presented. The system is a solar-assisted, hydronic-to-warm-air system with solar-assisted domestic water heating. It is composed of the following major components: liquid cooled flat plate collectors; water storage tank; passive solar-fired domestic water preheater; electric hot water heater; heat pump with electric backup; solar hot water coil unit; tube-and-shell heat exchanger, three pumps, and associated pipes and valving in an energy transport module; control system; and air-cooled heat purge unit. Installer guidelines are provided for each subsystem and includes testing and filling the system. Information is also given on the operating procedures, controls, caution requirements and routine and schedule maintenance.
Khoshbin, Elham; Donyavi, Zakiyeh; Abbasi Atibeh, Erfan; Roshanaei, Ghodratollah; Amani, Faranak
2018-01-01
Endodontic rotary systems may result in dentinal cracks. They may propagate to vertical root fracture that compromises the outcome of endodontic treatment. This study aimed to compare Neolix and Reciproc (single-file systems), Mtwo and ProTaper (conventional rotary systems) in terms of dentinal crack formation in root canal walls. This in vitro study was conducted on 110 extracted human single-rooted teeth. The teeth were randomly divided into four experimental groups ( n =25) for root canal preparation with Neolix, Reciproc, Mtwo and ProTaper systems and two control groups ( n =5). The first control group underwent root canal instrumentation with hand files while the second control group received no preparation and was only irrigated. After instrumentation, root canals were horizontally sectioned at 3, 6 and 9 mm from the apex and inspected under a stereomicroscope under 12× magnification for detection of cracks. The data were analyzed using Chi-square, GEE test and Bonferroni tests ( P <0.05). No crack was found in the control groups. All rotary systems caused dentinal cracks. ProTaper, Reciproc, Mtwo and Neolix caused cracks in 92%, 80%, 68% and 48% of samples. ProTaper caused significantly more cracks than Neolix and Mtwo ( P <0.05). No significant differences were noted between other groups ( P >0.05). All rotary systems cause dentinal cracks and it is significantly different in apical, middle and coronal third of the root. Neolix appears to be a suitable alternative to other rotary systems since use of this single-file system saves time and cost and minimizes trauma to dentinal walls.
Khoshbin, Elham; Donyavi, Zakiyeh; Abbasi Atibeh, Erfan; Roshanaei, Ghodratollah; Amani, Faranak
2018-01-01
Introduction: Endodontic rotary systems may result in dentinal cracks. They may propagate to vertical root fracture that compromises the outcome of endodontic treatment. This study aimed to compare Neolix and Reciproc (single-file systems), Mtwo and ProTaper (conventional rotary systems) in terms of dentinal crack formation in root canal walls. Methods and Materials: This in vitro study was conducted on 110 extracted human single-rooted teeth. The teeth were randomly divided into four experimental groups (n=25) for root canal preparation with Neolix, Reciproc, Mtwo and ProTaper systems and two control groups (n=5). The first control group underwent root canal instrumentation with hand files while the second control group received no preparation and was only irrigated. After instrumentation, root canals were horizontally sectioned at 3, 6 and 9 mm from the apex and inspected under a stereomicroscope under 12× magnification for detection of cracks. The data were analyzed using Chi-square, GEE test and Bonferroni tests (P<0.05). Results: No crack was found in the control groups. All rotary systems caused dentinal cracks. ProTaper, Reciproc, Mtwo and Neolix caused cracks in 92%, 80%, 68% and 48% of samples. ProTaper caused significantly more cracks than Neolix and Mtwo (P<0.05). No significant differences were noted between other groups (P>0.05). Conclusion: All rotary systems cause dentinal cracks and it is significantly different in apical, middle and coronal third of the root. Neolix appears to be a suitable alternative to other rotary systems since use of this single-file system saves time and cost and minimizes trauma to dentinal walls. PMID:29707009
Controllability of multi-agent systems with time-delay in state and switching topology
NASA Astrophysics Data System (ADS)
Ji, Zhijian; Wang, Zidong; Lin, Hai; Wang, Zhen
2010-02-01
In this article, the controllability issue is addressed for an interconnected system of multiple agents. The network associated with the system is of the leader-follower structure with some agents taking leader role and others being followers interconnected via the neighbour-based rule. Sufficient conditions are derived for the controllability of multi-agent systems with time-delay in state, as well as a graph-based uncontrollability topology structure is revealed. Both single and double integrator dynamics are considered. For switching topology, two algebraic necessary and sufficient conditions are derived for the controllability of multi-agent systems. Several examples are also presented to illustrate how to control the system to shape into the desired configurations.
Description of a 20 kilohertz power distribution system
NASA Technical Reports Server (NTRS)
Hansen, I. G.
1986-01-01
A single phase, 440 VRMS, 20 kHz power distribution system with a regulated sinusoidal wave form is discussed. A single phase power system minimizes the wiring, sensing, and control complexities required in a multi-sourced redundantly distributed power system. The single phase addresses only the distribution links multiphase lower frequency inputs and outputs accommodation techniques are described. While the 440 V operating potential was initially selected for aircraft operating below 50,000 ft, this potential also appears suitable for space power systems. This voltage choice recognizes a reasonable upper limit for semiconductor ratings, yet will direct synthesis of 220 V, 3 power. A 20 kHz operating frequency was selected to be above the range of audibility, minimize the weight of reactive components, yet allow the construction of single power stages of 25 to 30 kW. The regulated sinusoidal distribution system has several advantages. With a regulated voltage, most ac/dc conversions involve rather simple transformer rectifier applications. A sinusoidal distribution system, when used in conjunction with zero crossing switching, represents a minimal source of EMI. The present state of 20 kHz power technology includes computer controls of voltage and/or frequency, low inductance cable, current limiting circuit protection, bi-directional power flow, and motor/generator operating using standard induction machines. A status update and description of each of these items and their significance is presented.
Description of a 20 Kilohertz power distribution system
NASA Technical Reports Server (NTRS)
Hansen, I. G.
1986-01-01
A single phase, 440 VRMS, 20 kHz power distribution system with a regulated sinusoidal wave form is discussed. A single phase power system minimizes the wiring, sensing, and control complexities required in a multi-sourced redundantly distributed power system. The single phase addresses only the distribution link; mulitphase lower frequency inputs and outputs accommodation techniques are described. While the 440 V operating potential was initially selected for aircraft operating below 50,000 ft, this potential also appears suitable for space power systems. This voltage choice recognizes a reasonable upper limit for semiconductor ratings, yet will direct synthesis of 220 V, 3 power. A 20 kHz operating frequency was selected to be above the range of audibility, minimize the weight of reactive components, yet allow the construction of single power stages of 25 to 30 kW. The regulated sinusoidal distribution system has several advantages. With a regulated voltage, most ac/dc conversions involve rather simple transformer rectifier applications. A sinusoidal distribution system, when used in conjunction with zero crossing switching, represents a minimal source of EMI. The present state of 20 kHz power technology includes computer controls of voltage and/or frequency, low inductance cable, current limiting circuit protection, bi-directional power flow, and motor/generator operating using standard induction machines. A status update and description of each of these items and their significance is presented.
Future Integrated Systems Concept for Preventing Aircraft Loss-of-Control Accidents
NASA Technical Reports Server (NTRS)
Belcastro, Christine M.; Jacobson, Steven r.
2010-01-01
Loss of control remains one of the largest contributors to aircraft fatal accidents worldwide. Aircraft loss-of-control accidents are highly complex in that they can result from numerous causal and contributing factors acting alone or (more often) in combination. Hence, there is no single intervention strategy to prevent these accidents. This paper presents future system concepts and research directions for preventing aircraft loss-of-control accidents.
Flight Test of ASAC Aircraft Interior Noise Control System
NASA Technical Reports Server (NTRS)
Palumbo, Dan; Cabell, Ran; Cline, John; Sullivan, Brenda
1999-01-01
A flight test is described in which an active structural/acoustic control system reduces turboprop induced interior noise on a Raytheon Aircraft Company 1900D airliner. Control inputs to 21 inertial force actuators were computed adaptively using a transform domain version of the multichannel filtered-X LMS algorithm to minimize the mean square response of 32 microphones. A combinatorial search algorithm was employed to optimize placement of the force actuators on the aircraft frame. Both single frequency and multi-frequency results are presented. Reductions of up to 15 dB were obtained at the blade passage frequency (BPF) during single frequency control tests. Simultaneous reductions of the BPF and next 2 harmonics of 10 dB, 2.5 dB and 3.0 dB, were obtained in a multi-frequency test.
Maurice, Matthew J; Ramirez, Daniel; Kaouk, Jihad H
2017-04-01
Robotic single-site retroperitoneal renal surgery has the potential to minimize the morbidity of standard transperitoneal and multiport approaches. Traditionally, technological limitations of non-purpose-built robotic platforms have hindered the application of this approach. To assess the feasibility of retroperitoneal renal surgery using a new purpose-built robotic single-port surgical system. This was a preclinical study using three male cadavers to assess the feasibility of the da Vinci SP1098 surgical system for robotic laparoendoscopic single-site (R-LESS) retroperitoneal renal surgery. We used the SP1098 to perform retroperitoneal R-LESS radical nephrectomy (n=1) and bilateral partial nephrectomy (n=4) on the anterior and posterior surfaces of the kidney. Improvements unique to this system include enhanced optics and intelligent instrument arm control. Access was obtained 2cm anterior and inferior to the tip of the 12th rib using a novel 2.5-cm robotic single-port system that accommodates three double-jointed articulating robotic instruments, an articulating camera, and an assistant port. The primary outcome was the technical feasibility of the procedures, as measured by the need for conversion to standard techniques, intraoperative complications, and operative times. All cases were completed without the need for conversion. There were no intraoperative complications. The operative time was 100min for radical nephrectomy, and the mean operative time was 91.8±18.5min for partial nephrectomy. Limitations include the preclinical model, the small sample size, and the lack of a control group. Single-site retroperitoneal renal surgery is feasible using the latest-generation SP1098 robotic platform. While the potential of the SP1098 appears promising, further study is needed for clinical evaluation of this investigational technology. In an experimental model, we used a new robotic system to successfully perform major surgery on the kidney through a single small incision without entering the abdomen. Copyright © 2016. Published by Elsevier B.V.
Single event effects in pulse width modulation controllers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penzin, S.H.; Crain, W.R.; Crawford, K.B.
1996-12-01
SEE testing was performed on pulse width modulation (PWM) controllers which are commonly used in switching mode power supply systems. The devices are designed using both Set-Reset (SR) flip-flops and Toggle (T) flip-flops which are vulnerable to single event upset (SEU) in a radiation environment. Depending on the implementation of the different devices the effect can be significant in spaceflight hardware.
Design and Development of a Multiprogramming Operating System for Sixteen Bit Microprocessors.
1981-12-01
with the technical details of how services are programmed or produced, except perhaps when they fail to meet user requirements. Users are interested in...locations and loading decks. As the expense *and speed of computers increased, executive programs were created to allow several users to sequence...single user operating system as a companion to the 8080 microprocessor. CP/M (Control Program for Microcomputers) was a single user operating system that
Equipment Development for Automatic Anthropometric Measurements
NASA Technical Reports Server (NTRS)
Cater, J. P.; Oakey, W. E.
1978-01-01
An automated procedure for measuring and recording the anthropometric active angles is presented. The small portable system consists of a microprocessor controlled video data acquisition system which measures single plane active angles using television video techniques and provides the measured data on sponsored-specified preformatted data sheets. This system, using only a single video camera, observes the end limits of the movement of a pair of separated lamps and calculates the vector angle between the extreme positions.
NASA Astrophysics Data System (ADS)
Zhang, Yu-Qing; Zhu, Zhong-Hua; Peng, Zhao-Hui; Jiang, Chun-Lei; Chai, Yi-Feng; Hai, Lian; Tan, Lei
2018-06-01
We theoretically study the single-photon transport along a one-dimensional optical waveguide coupled to an optomechanical cavity containing a Λ-type three-level atom. Our numerical results show that the transmission spectra of the incident photon can be well controlled by such a hybrid atom-optomechanical system. The effects of the optomechanical coupling strength, the classical laser beam applied to the atom, atom-cavity detuning, and atomic dissipation on the single-photon transport properties are analyzed. It is of particular interest that an analogous double electromagnetically induced transparency emerges in the single-photon transmission spectra.
van de Kamp, Cornelis; Gawthrop, Peter J.; Gollee, Henrik; Lakie, Martin; Loram, Ian D.
2013-01-01
Modular organization in control architecture may underlie the versatility of human motor control; but the nature of the interface relating sensory input through task-selection in the space of performance variables to control actions in the space of the elemental variables is currently unknown. Our central question is whether the control architecture converges to a serial process along a single channel? In discrete reaction time experiments, psychologists have firmly associated a serial single channel hypothesis with refractoriness and response selection [psychological refractory period (PRP)]. Recently, we developed a methodology and evidence identifying refractoriness in sustained control of an external single degree-of-freedom system. We hypothesize that multi-segmental whole-body control also shows refractoriness. Eight participants controlled their whole body to ensure a head marker tracked a target as fast and accurately as possible. Analysis showed enhanced delays in response to stimuli with close temporal proximity to the preceding stimulus. Consistent with our preceding work, this evidence is incompatible with control as a linear time invariant process. This evidence is consistent with a single-channel serial ballistic process within the intermittent control paradigm with an intermittent interval of around 0.5 s. A control architecture reproducing intentional human movement control must reproduce refractoriness. Intermittent control is designed to provide computational time for an online optimization process and is appropriate for flexible adaptive control. For human motor control we suggest that parallel sensory input converges to a serial, single channel process involving planning, selection, and temporal inhibition of alternative responses prior to low dimensional motor output. Such design could aid robots to reproduce the flexibility of human control. PMID:23675342
Development of ion source with a washer gun for pulsed neutral beam injection.
Asai, T; Yamaguchi, N; Kajiya, H; Takahashi, T; Imanaka, H; Takase, Y; Ono, Y; Sato, K N
2008-06-01
A new type of economical neutral beam source has been developed by using a single washer gun, pulsed operation, and a simple electrode system. We replaced the conventional hot filaments for arc-discharge-type plasma formation with a single stainless-steel washer gun, eliminating the entire dc power supply for the filaments and the cooling system for the electrodes. Our initial experiments revealed successful beam extraction up to 10 kV and 8.6 A, based on spatial profile measurements of density and temperature in the plasma source. The system also shows the potential to control the beam profile by controlling the plasma parameters in the ion accumulation chamber.
Bidirectional Controlled Quantum Teleportation in the Three-dimension System
NASA Astrophysics Data System (ADS)
Ma, Peng-Cheng; Chen, Gui-Bin; Li, Xiao-Wei; Zhan, You-Bang
2018-04-01
We present a scheme for bidirectional controlled quantum teleportation (BCQT) via a five-qutrit entangled state as the quantum channel. In this scheme, two distant parties, Alice and Bob, are not only senders but also receivers, and Alice wants to teleport an unknown single-qutrit state to Bob, at the same time, Bob wishes to teleport another arbitrary single-qutrit state, respectively. It is shown that, only if the two senders and the controller collaborate with each other, the BCQT can be completed successfully.
Some engineering aspects of insulin delivery systems.
Spencer, W J; Bair, R E; Carlson, G A; Love, J T; Urenda, R S; Eaton, R P; Schade, D S
1980-01-01
The characteristics of electronically controlled insulin delivery systems are presented. Early experiments with an external system have shown promise in providing improved glycemic control over conventional methods of single or multiple subcutaneous insulin injections. The encouraging results with external insulin delivery systems have led to the development and early testing in dogs of an implantable system with remote controls to permit variable insulin flow rates. A number of questions remain to be answered before widespread experimentation with external and implanted insulin delivery systems is possible. There appears to be no major development problems with the engineering aspects of such systems.
Current Source Based on H-Bridge Inverter with Output LCL Filter
NASA Astrophysics Data System (ADS)
Blahnik, Vojtech; Talla, Jakub; Peroutka, Zdenek
2015-09-01
The paper deals with a control of current source with an LCL output filter. The controlled current source is realized as a single-phase inverter and output LCL filter provides low ripple of output current. However, systems incorporating LCL filters require more complex control strategies and there are several interesting approaches to the control of this type of converter. This paper presents the inverter control algorithm, which combines model based control with a direct current control based on resonant controllers and single-phase vector control. The primary goal is to reduce the current ripple and distortion under required limits and provides fast and precise control of output current. The proposed control technique is verified by measurements on the laboratory model.
General algebraic method applied to control analysis of complex engine types
NASA Technical Reports Server (NTRS)
Boksenbom, Aaron S; Hood, Richard
1950-01-01
A general algebraic method of attack on the problem of controlling gas-turbine engines having any number of independent variables was utilized employing operational functions to describe the assumed linear characteristics for the engine, the control, and the other units in the system. Matrices were used to describe the various units of the system, to form a combined system showing all effects, and to form a single condensed matrix showing the principal effects. This method directly led to the conditions on the control system for noninteraction so that any setting disturbance would affect only its corresponding controlled variable. The response-action characteristics were expressed in terms of the control system and the engine characteristics. The ideal control-system characteristics were explicitly determined in terms of any desired response action.
Solar heating and cooling systems design and development
NASA Technical Reports Server (NTRS)
1976-01-01
Solar heating and heating/cooling systems were designed for single family, multifamily, and commercial applications. Subsystems considered included solar collectors, heat storage systems, auxiliary energy sources, working fluids, and supplementary controls, piping, and pumps.
ER fluid applications to vibration control devices and an adaptive neural-net controller
NASA Astrophysics Data System (ADS)
Morishita, Shin; Ura, Tamaki
1993-07-01
Four applications of electrorheological (ER) fluid to vibration control actuators and an adaptive neural-net control system suitable for the controller of ER actuators are described: a shock absorber system for automobiles, a squeeze film damper bearing for rotational machines, a dynamic damper for multidegree-of-freedom structures, and a vibration isolator. An adaptive neural-net control system composed of a forward model network for structural identification and a controller network is introduced for the control system of these ER actuators. As an example study of intelligent vibration control systems, an experiment was performed in which the ER dynamic damper was attached to a beam structure and controlled by the present neural-net controller so that the vibration in several modes of the beam was reduced with a single dynamic damper.
Robust Stability Analysis of the Space Launch System Control Design: A Singular Value Approach
NASA Technical Reports Server (NTRS)
Pei, Jing; Newsome, Jerry R.
2015-01-01
Classical stability analysis consists of breaking the feedback loops one at a time and determining separately how much gain or phase variations would destabilize the stable nominal feedback system. For typical launch vehicle control design, classical control techniques are generally employed. In addition to stability margins, frequency domain Monte Carlo methods are used to evaluate the robustness of the design. However, such techniques were developed for Single-Input-Single-Output (SISO) systems and do not take into consideration the off-diagonal terms in the transfer function matrix of Multi-Input-Multi-Output (MIMO) systems. Robust stability analysis techniques such as H(sub infinity) and mu are applicable to MIMO systems but have not been adopted as standard practices within the launch vehicle controls community. This paper took advantage of a simple singular-value-based MIMO stability margin evaluation method based on work done by Mukhopadhyay and Newsom and applied it to the SLS high-fidelity dynamics model. The method computes a simultaneous multi-loop gain and phase margin that could be related back to classical margins. The results presented in this paper suggest that for the SLS system, traditional SISO stability margins are similar to the MIMO margins. This additional level of verification provides confidence in the robustness of the control design.
New operator assistance features in the CMS Run Control System
NASA Astrophysics Data System (ADS)
Andre, J.-M.; Behrens, U.; Branson, J.; Brummer, P.; Chaze, O.; Cittolin, S.; Contescu, C.; Craigs, B. G.; Darlea, G.-L.; Deldicque, C.; Demiragli, Z.; Dobson, M.; Doualot, N.; Erhan, S.; Fulcher, J. R.; Gigi, D.; Gładki, M.; Glege, F.; Gomez-Ceballos, G.; Hegeman, J.; Holzner, A.; Janulis, M.; Jimenez-Estupiñán, R.; Masetti, L.; Meijers, F.; Meschi, E.; Mommsen, R. K.; Morovic, S.; O'Dell, V.; Orsini, L.; Paus, C.; Petrova, P.; Pieri, M.; Racz, A.; Reis, T.; Sakulin, H.; Schwick, C.; Simelevicius, D.; Vougioukas, M.; Zejdl, P.
2017-10-01
During Run-1 of the LHC, many operational procedures have been automated in the run control system of the Compact Muon Solenoid (CMS) experiment. When detector high voltages are ramped up or down or upon certain beam mode changes of the LHC, the DAQ system is automatically partially reconfigured with new parameters. Certain types of errors such as errors caused by single-event upsets may trigger an automatic recovery procedure. Furthermore, the top-level control node continuously performs cross-checks to detect sub-system actions becoming necessary because of changes in configuration keys, changes in the set of included front-end drivers or because of potential clock instabilities. The operator is guided to perform the necessary actions through graphical indicators displayed next to the relevant command buttons in the user interface. Through these indicators, consistent configuration of CMS is ensured. However, manually following the indicators can still be inefficient at times. A new assistant to the operator has therefore been developed that can automatically perform all the necessary actions in a streamlined order. If additional problems arise, the new assistant tries to automatically recover from these. With the new assistant, a run can be started from any state of the sub-systems with a single click. An ongoing run may be recovered with a single click, once the appropriate recovery action has been selected. We review the automation features of CMS Run Control and discuss the new assistant in detail including first operational experience.
New Operator Assistance Features in the CMS Run Control System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andre, J.M.; et al.
During Run-1 of the LHC, many operational procedures have been automated in the run control system of the Compact Muon Solenoid (CMS) experiment. When detector high voltages are ramped up or down or upon certain beam mode changes of the LHC, the DAQ system is automatically partially reconfigured with new parameters. Certain types of errors such as errors caused by single-event upsets may trigger an automatic recovery procedure. Furthermore, the top-level control node continuously performs cross-checks to detect sub-system actions becoming necessary because of changes in configuration keys, changes in the set of included front-end drivers or because of potentialmore » clock instabilities. The operator is guided to perform the necessary actions through graphical indicators displayed next to the relevant command buttons in the user interface. Through these indicators, consistent configuration of CMS is ensured. However, manually following the indicators can still be inefficient at times. A new assistant to the operator has therefore been developed that can automatically perform all the necessary actions in a streamlined order. If additional problems arise, the new assistant tries to automatically recover from these. With the new assistant, a run can be started from any state of the sub-systems with a single click. An ongoing run may be recovered with a single click, once the appropriate recovery action has been selected. We review the automation features of CMS Run Control and discuss the new assistant in detail including first operational experience.« less
Mergeable nervous systems for robots.
Mathews, Nithin; Christensen, Anders Lyhne; O'Grady, Rehan; Mondada, Francesco; Dorigo, Marco
2017-09-12
Robots have the potential to display a higher degree of lifetime morphological adaptation than natural organisms. By adopting a modular approach, robots with different capabilities, shapes, and sizes could, in theory, construct and reconfigure themselves as required. However, current modular robots have only been able to display a limited range of hardwired behaviors because they rely solely on distributed control. Here, we present robots whose bodies and control systems can merge to form entirely new robots that retain full sensorimotor control. Our control paradigm enables robots to exhibit properties that go beyond those of any existing machine or of any biological organism: the robots we present can merge to form larger bodies with a single centralized controller, split into separate bodies with independent controllers, and self-heal by removing or replacing malfunctioning body parts. This work takes us closer to robots that can autonomously change their size, form and function.Robots that can self-assemble into different morphologies are desired to perform tasks that require different physical capabilities. Mathews et al. design robots whose bodies and control systems can merge and split to form new robots that retain full sensorimotor control and act as a single entity.
Fiber-optical switch controlled by a single atom.
O'Shea, Danny; Junge, Christian; Volz, Jürgen; Rauschenbeutel, Arno
2013-11-08
We demonstrate highly efficient switching of optical signals between two optical fibers controlled by a single atom. The key element of our experiment is a whispering-gallery-mode bottle microresonator, which is coupled to a single atom and interfaced by two tapered fiber couplers. This system reaches the strong coupling regime of cavity quantum electrodynamics, leading to a vacuum Rabi splitting in the excitation spectrum. We systematically investigate the switching efficiency of our system, i.e., the probability that the fiber-optical switch redirects the light into the desired output. We obtain a large redirection efficiency reaching a raw fidelity of more than 60% without postselection. Moreover, by measuring the second-order correlation functions of the output fields, we show that our switch exhibits a photon-number-dependent routing capability.
Active thermal control systems for lunar and Martian exploration
NASA Technical Reports Server (NTRS)
Ewert, Michael K.; Petete, Patricia A.; Dzenitis, John
1990-01-01
Several ATCS options including heat pumps, radiator shading devices, and single-phase flow loops were considered. The ATCS chosen for both lunar and Martian habitats consists of a heat pump integral with a nontoxic fluid acquisition and transport loop, and vertically oriented modular reflux-boiler radiators. The heat pump operates only during the lunar day. The lunar and Martian transfer vehicles have an internal single-phase water-acquisition loop and an external two-phase ammonia rejection system with rotating inflatable radiators. The lunar and Martian excursion vehicles incorporate internal single-phase water acquisition, which is connected via heat exchangers to external body-mounted single-phase radiators. A water evaporation system is used for the transfer vehicles during periods of high heating.
Improving truck and speed data using paired video and single-loop sensors
DOT National Transportation Integrated Search
2006-12-01
Real-time speed and truck data are important inputs for modern freeway traffic control and : management systems. However, these data are not directly measurable by single-loop detectors. : Although dual-loop detectors provide speeds and classified ve...
NASA Technical Reports Server (NTRS)
1980-01-01
The solar heating system installer guidelines are presented for each subsystem. This single family residential heating system is a solar-assisted, hydronic-to-warm-air system with solar-assisted domestic water heating. It is composed of the following major components: (1) liquid cooled flat plate collectors; (2) water storage tank; (3) passive solar-fired domestic water preheater; (4) electric hot water heater; (5) heat pump with electric backup; (6) solar hot water coil unit; (7) tube-and-shell heat exchanger, three pumps, and associated pipes and valving in an energy transport module; (8) control system; and (9) air-cooled heat purge unit. Information is provided on the operating procedures, controls, caution requirements, and routine and schedule maintenance in the form of written descriptions, schematics, detail drawings, pictures, and manufacturer's component data.
A computer aided engineering tool for ECLS systems
NASA Technical Reports Server (NTRS)
Bangham, Michal E.; Reuter, James L.
1987-01-01
The Computer-Aided Systems Engineering and Analysis tool used by NASA for environmental control and life support system design studies is capable of simulating atmospheric revitalization systems, water recovery and management systems, and single-phase active thermal control systems. The designer/analysis interface used is graphics-based, and allows the designer to build a model by constructing a schematic of the system under consideration. Data management functions are performed, and the program is translated into a format that is compatible with the solution routines.
Development of a Production Ready Automated Wire Delivery System
NASA Technical Reports Server (NTRS)
1997-01-01
The current development effort is a Phase 3 research study entitled "A Production Ready Automated Wire Delivery System", contract number NAS8-39933, awarded to Nichols Research Corporation (NRC). The goals of this research study were to production harden the existing Automated Wire Delivery (AWDS) motion and sensor hardware and test the modified AWDS in a range of welding applications. In addition, the prototype AWDS controller would be moved to the VME bus platform by designing, fabricating and testing a single board VME bus AWDS controller. This effort was to provide an AWDS that could transition from the laboratory environment to production operations. The project was performed in two development steps. Step 1 modified and tested an improved MWG. Step 2 developed and tested the AWDS single board VME bus controller. Step 3 installed the Wire Pilot in a Weld Controller with the imbedded VME bus controller.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ngo, Anh T.; Kim, Eugene H.; Ulloa, Sergio E.
Single-atom gating, achieved by manipulation of adatoms on a surface, has been shown in experiments to allow precise control over superposition of electronic states in quantum corrals. Using a Green's function approach, we demonstrate theoretically that such atom gating can also be used to control the coupling between magnetic degrees of freedom in these systems. Atomic gating enables control not only on the direct interaction between magnetic adatoms, but also over superpositions of many-body states which can then control long distance interactions. We illustrate this effect by considering the competition between direct exchange between magnetic impurities and the Kondo screeningmore » mediated by the host electrons, and how this is affected by gating. These results suggest that both magnetic and nonmagnetic single-atom gating may be used to investigate magnetic impurity systems with tailored interactions, and may allow the control of entanglement of different spin states.« less
Diagonalizing controller for a superconducting six-axis accelerometer
NASA Astrophysics Data System (ADS)
Bachrach, B.; Canavan, E. R.; Levine, W. S.
A relatively simple MIMO (multiple input, multiple output) controller which converts an instrument with a nondiagonally dominant transfer function matrix into a strongly diagonally dominant device is developed. The instrument, which uses inductance bridges to sense the position of a magnetically levitated superconducting mass, has very lightly damped resonances and fairly strong cross coupling. By taking advantage of the particular structure of the instrument's transfer function matrix, it is possible to develop a relatively simple controller which achieves the desired decoupling. This controller consists of two parts. The first part cancels the nondiagonal terms of the open-loop transfer function matrix, while the second part is simply a set of SISO (single input, single output) controllers. The stability of the closed-loop system is studied using Rosenbrock's INA (inverse Nyguist array) technique, which produces a simple set of conditions guaranteeing stability. Simulation of the closed-loop system indicates that it should easily achieve its performance goals.
Parallel computation of level set method for 500 Hz visual servo control
NASA Astrophysics Data System (ADS)
Fei, Xianfeng; Igarashi, Yasunobu; Hashimoto, Koichi
2008-11-01
We propose a 2D microorganism tracking system using a parallel level set method and a column parallel vision system (CPV). This system keeps a single microorganism in the middle of the visual field under a microscope by visual servoing an automated stage. We propose a new energy function for the level set method. This function constrains an amount of light intensity inside the detected object contour to control the number of the detected objects. This algorithm is implemented in CPV system and computational time for each frame is 2 [ms], approximately. A tracking experiment for about 25 s is demonstrated. Also we demonstrate a single paramecium can be kept tracking even if other paramecia appear in the visual field and contact with the tracked paramecium.
Research and design of intelligent distributed traffic signal light control system based on CAN bus
NASA Astrophysics Data System (ADS)
Chen, Yu
2007-12-01
Intelligent distributed traffic signal light control system was designed based on technologies of infrared, CAN bus, single chip microprocessor (SCM), etc. The traffic flow signal is processed with the core of SCM AT89C51. At the same time, the SCM controls the CAN bus controller SJA1000/transceiver PCA82C250 to build a CAN bus communication system to transmit data. Moreover, up PC realizes to connect and communicate with SCM through USBCAN chip PDIUSBD12. The distributed traffic signal light control system with three control styles of Vehicle flux, remote and PC is designed. This paper introduces the system composition method and parts of hardware/software design in detail.
Variable structure control of nonlinear systems through simplified uncertain models
NASA Technical Reports Server (NTRS)
Sira-Ramirez, Hebertt
1986-01-01
A variable structure control approach is presented for the robust stabilization of feedback equivalent nonlinear systems whose proposed model lies in the same structural orbit of a linear system in Brunovsky's canonical form. An attempt to linearize exactly the nonlinear plant on the basis of the feedback control law derived for the available model results in a nonlinearly perturbed canonical system for the expanded class of possible equivalent control functions. Conservatism tends to grow as modeling errors become larger. In order to preserve the internal controllability structure of the plant, it is proposed that model simplification be carried out on the open-loop-transformed system. As an example, a controller is developed for a single link manipulator with an elastic joint.
An Advanced Buffet Load Alleviation System
NASA Technical Reports Server (NTRS)
Burnham, Jay K.; Pitt, Dale M.; White, Edward V.; Henderson, Douglas A.; Moses, Robert W.
2001-01-01
This paper describes the development of an advanced buffet load alleviation (BLA) system that utilizes distributed piezoelectric actuators in conjunction with an active rudder to reduce the structural dynamic response of the F/A-18 aircraft vertical tails to buffet loads. The BLA system was defined analytically with a detailed finite-element-model of the tail structure and piezoelectric actuators. Oscillatory aerodynamics were included along with a buffet forcing function to complete the aeroservoelastic model of the tail with rudder control surface. Two single-input-single-output (SISO) controllers were designed, one for the active rudder and one for the active piezoelectric actuators. The results from the analytical open and closed loop simulations were used to predict the system performance. The objective of this BLA system is to extend the life of vertical tail structures and decrease their life-cycle costs. This system can be applied to other aircraft designs to address suppression of structural vibrations on military and commercial aircraft.
Algorithms for adaptive stochastic control for a class of linear systems
NASA Technical Reports Server (NTRS)
Toda, M.; Patel, R. V.
1977-01-01
Control of linear, discrete time, stochastic systems with unknown control gain parameters is discussed. Two suboptimal adaptive control schemes are derived: one is based on underestimating future control and the other is based on overestimating future control. Both schemes require little on-line computation and incorporate in their control laws some information on estimation errors. The performance of these laws is studied by Monte Carlo simulations on a computer. Two single input, third order systems are considered, one stable and the other unstable, and the performance of the two adaptive control schemes is compared with that of the scheme based on enforced certainty equivalence and the scheme where the control gain parameters are known.
Coherent control of single electrons: a review of current progress
NASA Astrophysics Data System (ADS)
Bäuerle, Christopher; Glattli, D. Christian; Meunier, Tristan; Portier, Fabien; Roche, Patrice; Roulleau, Preden; Takada, Shintaro; Waintal, Xavier
2018-05-01
In this report we review the present state of the art of the control of propagating quantum states at the single-electron level and its potential application to quantum information processing. We give an overview of the different approaches that have been developed over the last few years in order to gain full control over a propagating single-electron in a solid-state system. After a brief introduction of the basic concepts, we present experiments on flying qubit circuits for ensemble of electrons measured in the low frequency (DC) limit. We then present the basic ingredients necessary to realise such experiments at the single-electron level. This includes a review of the various single-electron sources that have been developed over the last years and which are compatible with integrated single-electron circuits. This is followed by a review of recent key experiments on electron quantum optics with single electrons. Finally we will present recent developments in the new physics that has emerged using ultrashort voltage pulses. We conclude our review with an outlook and future challenges in the field.
Solar energy system performance evaluation: Seasonal report for SEMCO, Loxahatchee, Florida
NASA Technical Reports Server (NTRS)
1980-01-01
The operational and thermal performance of a variety of solar systems installed in operational test sites are described. The analysis used is based on instrumented system data monitored and collected for at least one full season of operation. The long-term field performance of the installed system and the technical contributions to the definition of techniques and requirements solar energy system design are analyzed. The solar energy system was designed to supply domestic hot water for a family of four, single-family residences. It consists of two liquid flat plate collectors, single tank, controls, and transport lines.
NASA Technical Reports Server (NTRS)
Kassak, John E.
1991-01-01
The objective of the operational television (OTV) technology was to develop a multiple camera system (up to 256 cameras) for NASA Kennedy installations where camera video, synchronization, control, and status data are transmitted bidirectionally via a single fiber cable at distances in excess of five miles. It is shown that the benefits (such as improved video performance, immunity from electromagnetic interference and radio frequency interference, elimination of repeater stations, and more system configuration flexibility) can be realized if application of the proven fiber optic transmission concept is used. The control system will marry the lens, pan and tilt, and camera control functions into a modular based Local Area Network (LAN) control network. Such a system does not exist commercially at present since the Television Broadcast Industry's current practice is to divorce the positional controls from the camera control system. The application software developed for this system will have direct applicability to similar systems in industry using LAN based control systems.
A Single-System Model Predicts Recognition Memory and Repetition Priming in Amnesia
Kessels, Roy P.C.; Wester, Arie J.; Shanks, David R.
2014-01-01
We challenge the claim that there are distinct neural systems for explicit and implicit memory by demonstrating that a formal single-system model predicts the pattern of recognition memory (explicit) and repetition priming (implicit) in amnesia. In the current investigation, human participants with amnesia categorized pictures of objects at study and then, at test, identified fragmented versions of studied (old) and nonstudied (new) objects (providing a measure of priming), and made a recognition memory judgment (old vs new) for each object. Numerous results in the amnesic patients were predicted in advance by the single-system model, as follows: (1) deficits in recognition memory and priming were evident relative to a control group; (2) items judged as old were identified at greater levels of fragmentation than items judged new, regardless of whether the items were actually old or new; and (3) the magnitude of the priming effect (the identification advantage for old vs new items) overall was greater than that of items judged new. Model evidence measures also favored the single-system model over two formal multiple-systems models. The findings support the single-system model, which explains the pattern of recognition and priming in amnesia primarily as a reduction in the strength of a single dimension of memory strength, rather than a selective explicit memory system deficit. PMID:25122896
Single Axis Flywheel IPACS @1300W, 0.8 N-m
NASA Technical Reports Server (NTRS)
Jansen, Ralph; Kenny, Barbara; Kascak, Peter; Dever, Tim; Santiago, Walter
2005-01-01
NASA Glenn Research Center is developing flywheels for space systems. A single axis laboratory version of an integrated power and attitude control (IPACs) system has been experimentally demonstrated. This is a significant step on the road to a flight qualified three axes IPACS system. The presentation outlines the flywheel development process at NASA GRC, the experimental hardware and approach, the IPACS control algorithm that was formulated and the results of the test program and then proposes a direction for future work. GRC has made progress on flywheel module design in terms of specific energy density and capability through a design and test program resulting in three flywheel module designs. Two of the flywheels are used in the 1D-IPACS experiment with loads and power sources to simulate a satellite power system. The system response is measured in three power modes: charge, discharge, and charge reduction while simultaneously producing a net output torque which could be used for attitude control. Finally, recommendations are made for steps that should be taken to evolve from this laboratory demonstration to a flight like system.
Force-controlled manipulation of single cells: from AFM to FluidFM.
Guillaume-Gentil, Orane; Potthoff, Eva; Ossola, Dario; Franz, Clemens M; Zambelli, Tomaso; Vorholt, Julia A
2014-07-01
The ability to perturb individual cells and to obtain information at the single-cell level is of central importance for addressing numerous biological questions. Atomic force microscopy (AFM) offers great potential for this prospering field. Traditionally used as an imaging tool, more recent developments have extended the variety of cell-manipulation protocols. Fluidic force microscopy (FluidFM) combines AFM with microfluidics via microchanneled cantilevers with nano-sized apertures. The crucial element of the technology is the connection of the hollow cantilevers to a pressure controller, allowing their operation in liquid as force-controlled nanopipettes under optical control. Proof-of-concept studies demonstrated a broad spectrum of single-cell applications including isolation, deposition, adhesion and injection in a range of biological systems. Copyright © 2014 Elsevier Ltd. All rights reserved.
Signal-chip microcomputer control system for a diffraction grating ruling engine
NASA Astrophysics Data System (ADS)
Wang, Xiaolin; Zhang, Yuhua; Yang, Houmin; Guo, Du
1998-08-01
A control system with a chip of 8031 single-chip microcomputer as its nucleus for a diffraction grating ruling engine has been developed, its hardware and software are presented in this paper. A series of techniques such as program-controlled amplifier and interference fringes subdivision as well as motor velocity step governing are adopted to improve the control accuracy. With this control system, 8 kinds of gratings of different spacings can be ruled, the positioning precision of the diffraction grating ruling engine (sigma) equals 3.6 nm, and the maximum positioning error is less than 14.6 nm.
Holonomic Quantum Control by Coherent Optical Excitation in Diamond.
Zhou, Brian B; Jerger, Paul C; Shkolnikov, V O; Heremans, F Joseph; Burkard, Guido; Awschalom, David D
2017-10-06
Although geometric phases in quantum evolution are historically overlooked, their active control now stimulates strategies for constructing robust quantum technologies. Here, we demonstrate arbitrary single-qubit holonomic gates from a single cycle of nonadiabatic evolution, eliminating the need to concatenate two separate cycles. Our method varies the amplitude, phase, and detuning of a two-tone optical field to control the non-Abelian geometric phase acquired by a nitrogen-vacancy center in diamond over a coherent excitation cycle. We demonstrate the enhanced robustness of detuned gates to excited-state decoherence and provide insights for optimizing fast holonomic control in dissipative quantum systems.
NASA Technical Reports Server (NTRS)
Hrabak, R. R.; Levy, D. W.; Finn, P.; Roskam, J.
1981-01-01
The use of pressure differentials in a flight control system was evaluated. The pressure profile around the test surface was determined using two techniques: (1) windtunnel data (actual); and (2) NASA/Langley Single Element Airfoil Computer Program (theoretical). The system designed to evaluate the concept of using pressure differentials is composed of a sensor drive and power amplifiers, actuator, position potentiometer, and a control surface. The characteristics (both desired and actual) of the system and each individual component were analyzed. The desired characteristics of the system as a whole are given. The flight control system developed, the testing procedures and data reduction methods used, and theoretical frequency response analysis are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berg, Jonathan Charles; Halse, Chris; Crowther, Ashley
2010-06-01
Prior work on active aerodynamic load control (AALC) of wind turbine blades has demonstrated that appropriate use of this technology has the potential to yield significant reductions in blade loads, leading to a decrease in wind cost of energy. While the general concept of AALC is usually discussed in the context of multiple sensors and active control devices (such as flaps) distributed over the length of the blade, most work to date has been limited to consideration of a single control device per blade with very basic Proportional Derivative controllers, due to limitations in the aeroservoelastic codes used to performmore » turbine simulations. This work utilizes a new aeroservoelastic code developed at Delft University of Technology to model the NREL/Upwind 5 MW wind turbine to investigate the relative advantage of utilizing multiple-device AALC. System identification techniques are used to identify the frequencies and shapes of turbine vibration modes, and these are used with modern control techniques to develop both Single-Input Single-Output (SISO) and Multiple-Input Multiple-Output (MIMO) LQR flap controllers. Comparison of simulation results with these controllers shows that the MIMO controller does yield some improvement over the SISO controller in fatigue load reduction, but additional improvement is possible with further refinement. In addition, a preliminary investigation shows that AALC has the potential to reduce off-axis gearbox loads, leading to reduced gearbox bearing fatigue damage and improved lifetimes.« less
Non-destructive Faraday imaging of dynamically controlled ultracold atoms
NASA Astrophysics Data System (ADS)
Gajdacz, Miroslav; Pedersen, Poul; Mørch, Troels; Hilliard, Andrew; Arlt, Jan; Sherson, Jacob
2013-05-01
We investigate non-destructive measurements of ultra-cold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. In particular, we pursue applications to dynamically controlled ultracold atoms. The dependence of the Faraday signal on laser detuning, atomic density and temperature is characterized in a detailed comparison with theory. In particular the destructivity per measurement is extremely low and we illustrate this by imaging the same cloud up to 2000 times. The technique is applied to avoid the effect of shot-to-shot fluctuations in atom number calibration. Adding dynamic changes to system parameters, we demonstrate single-run vector magnetic field imaging and single-run spatial imaging of the system's dynamic behavior. The method can be implemented particularly easily in standard imaging systems by the insertion of an extra polarizing beam splitter. These results are steps towards quantum state engineering using feedback control of ultracold atoms.
NASA B737 flight test results of the Total Energy Control System
NASA Technical Reports Server (NTRS)
Bruce, K. R.; Kelly, J. R.; Person, L. H., Jr.
1986-01-01
The Total Energy Control System was developed and tested in September 1985 during five flights on the NASA Langley Transport System Research Vehicle, a modified Boeing B737. In the system, the total kinetic and potential energy of the aircraft is controlled by the throttles, and the energy distribution is controlled by the elevator. A common inner loop is used for each mode of the autopilot, and all the control functions of a conventional pitch autopilot and autothrottle are integrated into a single generalized control concept, providing decoupled flightpath and maneuver control, and a coordinated throttle response for all maneuvers. No instabilities or design problems requiring gain adjustment in flight were found, and comparison with simulation results showed excellent path tracking.
14 CFR 33.28 - Engine control systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Applicability. These requirements are applicable to any system or device that is part of engine type design...) Aircraft-supplied data. Single failures leading to loss, interruption or corruption of aircraft-supplied...
14 CFR 33.28 - Engine control systems.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Applicability. These requirements are applicable to any system or device that is part of engine type design...) Aircraft-supplied data. Single failures leading to loss, interruption or corruption of aircraft-supplied...
14 CFR 33.28 - Engine control systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Applicability. These requirements are applicable to any system or device that is part of engine type design...) Aircraft-supplied data. Single failures leading to loss, interruption or corruption of aircraft-supplied...
14 CFR 33.28 - Engine control systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Applicability. These requirements are applicable to any system or device that is part of engine type design...) Aircraft-supplied data. Single failures leading to loss, interruption or corruption of aircraft-supplied...
14 CFR 33.28 - Engine control systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Applicability. These requirements are applicable to any system or device that is part of engine type design...) Aircraft-supplied data. Single failures leading to loss, interruption or corruption of aircraft-supplied...
Intelligent Traffic Light Based on PLC Control
NASA Astrophysics Data System (ADS)
Mei, Lin; Zhang, Lijian; Wang, Lingling
2017-11-01
The traditional traffic light system with a fixed control mode and single control function is contradicted with the current traffic section. The traditional one has been unable to meet the functional requirements of the existing flexible traffic control system. This paper research and develop an intelligent traffic light called PLC control system. It uses PLC as control core, using a sensor module for receiving real-time information of vehicles, traffic control mode for information to select the traffic lights. Of which control mode is flexible and changeable, and it also set the countdown reminder to improve the effectiveness of traffic lights, which can realize the goal of intelligent traffic diversion, intelligent traffic diversion.
Artificial neural networks in Space Station optimal attitude control
NASA Astrophysics Data System (ADS)
Kumar, Renjith R.; Seywald, Hans; Deshpande, Samir M.; Rahman, Zia
1992-08-01
Innovative techniques of using 'Artificial Neural Networks' (ANN) for improving the performance of the pitch axis attitude control system of Space Station Freedom using Control Moment Gyros (CMGs) are investigated. The first technique uses a feedforward ANN with multilayer perceptrons to obtain an on-line controller which improves the performance of the control system via a model following approach. The second techique uses a single layer feedforward ANN with a modified back propagation scheme to estimate the internal plant variations and the external disturbances separately. These estimates are then used to solve two differential Riccati equations to obtain time varying gains which improve the control system performance in successive orbits.
Decentralized adaptive control of interconnected nonlinear systems with unknown control directions.
Huang, Jiangshuai; Wang, Qing-Guo
2018-03-01
In this paper, we propose a decentralized adaptive control scheme for a class of interconnected strict-feedback nonlinear systems without a priori knowledge of subsystems' control directions. To address this problem, a novel Nussbaum-type function is proposed and a key theorem is drawn which involves quantifying the interconnections of multiple Nussbaum-type functions of the subsystems with different control directions in a single inequality. Global stability of the closed-loop system and asymptotic stabilization of subsystems' output are proved and a simulation example is given to illustrate the effectiveness of the proposed control scheme. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Liu, Dahai; Goodrich, Kenneth H.; Peak, Bob
2010-01-01
This study investigated the effects of synthetic vision system (SVS) concepts and advanced flight controls on the performance of pilots flying a light, single-engine general aviation airplane. We evaluated the effects and interactions of two levels of terrain portrayal, guidance symbology, and flight control response type on pilot performance during the conduct of a relatively complex instrument approach procedure. The terrain and guidance presentations were evaluated as elements of an integrated primary flight display system. The approach procedure used in the study included a steeply descending, curved segment as might be encountered in emerging, required navigation performance (RNP) based procedures. Pilot performance measures consisted of flight technical performance, perceived workload, perceived situational awareness and subjective preference. The results revealed that an elevation based generic terrain portrayal significantly improved perceived situation awareness without adversely affecting flight technical performance or workload. Other factors (pilot instrument rating, control response type, and guidance symbology) were not found to significantly affect the performance measures.
Practical robustness measures in multivariable control system analysis. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Lehtomaki, N. A.
1981-01-01
The robustness of the stability of multivariable linear time invariant feedback control systems with respect to model uncertainty is considered using frequency domain criteria. Available robustness tests are unified under a common framework based on the nature and structure of model errors. These results are derived using a multivariable version of Nyquist's stability theorem in which the minimum singular value of the return difference transfer matrix is shown to be the multivariable generalization of the distance to the critical point on a single input, single output Nyquist diagram. Using the return difference transfer matrix, a very general robustness theorem is presented from which all of the robustness tests dealing with specific model errors may be derived. The robustness tests that explicitly utilized model error structure are able to guarantee feedback system stability in the face of model errors of larger magnitude than those robustness tests that do not. The robustness of linear quadratic Gaussian control systems are analyzed.
A car theft deterrent system research based on ARM9
NASA Astrophysics Data System (ADS)
Zhang, Kaisheng; Liu, Jinhao; Fan, Lijun
2009-07-01
The traditional automotive burglarproof systems commonly only rely on the simple remote control to security which measures are not perfect and functions are too single. With the development of society, people tend to concern on the fingerprint recognition technology, GSM /GPRS wireless transmission technology, the idea of ARM9-based design of automobile burglarproof system is dependent on both of them. The S3C2410 microprocessor embedded system is used in this system, which is illuminated the idea of the control system design through the hardware and software. The spot use indicates that the high control precision, steady performance and the humanistic rational design of automotive burglarproof system.
Demonstration of Single Axis Combined Attitude Control and Energy Storage Using Two Flywheels
NASA Technical Reports Server (NTRS)
Kenny, Barbara H.; Jansen, Ralph; Kascak, Peter; Dever, Timothy; Santiago, Walter
2004-01-01
The energy storage and attitude control subsystems of the typical satellite are presently distinct and separate. Energy storage is conventionally provided by batteries, either NiCd or NiH, and active attitude control is accomplished with control moment gyros (CMGs) or reaction wheels. An overall system mass savings can be realized if these two subsystems are combined using multiple flywheels for simultaneous kinetic energy storage and momentum transfer. Several authors have studied the control of the flywheels to accomplish this and have published simulation results showing the feasibility and performance. This paper presents the first experimental results showing combined energy storage and momentum control about a single axis using two flywheels.
Radac, Mircea-Bogdan; Precup, Radu-Emil; Petriu, Emil M
2015-11-01
This paper proposes a novel model-free trajectory tracking of multiple-input multiple-output (MIMO) systems by the combination of iterative learning control (ILC) and primitives. The optimal trajectory tracking solution is obtained in terms of previously learned solutions to simple tasks called primitives. The library of primitives that are stored in memory consists of pairs of reference input/controlled output signals. The reference input primitives are optimized in a model-free ILC framework without using knowledge of the controlled process. The guaranteed convergence of the learning scheme is built upon a model-free virtual reference feedback tuning design of the feedback decoupling controller. Each new complex trajectory to be tracked is decomposed into the output primitives regarded as basis functions. The optimal reference input for the control system to track the desired trajectory is next recomposed from the reference input primitives. This is advantageous because the optimal reference input is computed straightforward without the need to learn from repeated executions of the tracking task. In addition, the optimization problem specific to trajectory tracking of square MIMO systems is decomposed in a set of optimization problems assigned to each separate single-input single-output control channel that ensures a convenient model-free decoupling. The new model-free primitive-based ILC approach is capable of planning, reasoning, and learning. A case study dealing with the model-free control tuning for a nonlinear aerodynamic system is included to validate the new approach. The experimental results are given.
Attitude Control System Design for the Solar Dynamics Observatory
NASA Technical Reports Server (NTRS)
Starin, Scott R.; Bourkland, Kristin L.; Kuo-Chia, Liu; Mason, Paul A. C.; Vess, Melissa F.; Andrews, Stephen F.; Morgenstern, Wendy M.
2005-01-01
The Solar Dynamics Observatory mission, part of the Living With a Star program, will place a geosynchronous satellite in orbit to observe the Sun and relay data to a dedicated ground station at all times. SDO remains Sun- pointing throughout most of its mission for the instruments to take measurements of the Sun. The SDO attitude control system is a single-fault tolerant design. Its fully redundant attitude sensor complement includes 16 coarse Sun sensors, a digital Sun sensor, 3 two-axis inertial reference units, 2 star trackers, and 4 guide telescopes. Attitude actuation is performed using 4 reaction wheels and 8 thrusters, and a single main engine nominally provides velocity-change thrust. The attitude control software has five nominal control modes-3 wheel-based modes and 2 thruster-based modes. A wheel-based Safehold running in the attitude control electronics box improves the robustness of the system as a whole. All six modes are designed on the same basic proportional-integral-derivative attitude error structure, with more robust modes setting their integral gains to zero. The paper details the mode designs and their uses.
High density, multi-range analog output Versa Module Europa board for control system applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Kundan, E-mail: kundan@iuac.res.in; Das, Ajit Lal
2014-01-15
A new VMEDAC64, 12-bit 64 channel digital-to-analog converter, a Versa Module Europa (VME) module, features 64 analog voltage outputs with user selectable multiple ranges, has been developed for control system applications at Inter University Accelerator Centre. The FPGA (Field Programmable Gate Array) is the module's core, i.e., it implements the DAC control logic and complexity of VMEbus slave interface logic. The VMEbus slave interface and DAC control logic are completely designed and implemented on a single FPGA chip to achieve high density of 64 channels in a single width VME module and will reduce the module count in the controlmore » system applications, and hence will reduce the power consumption and cost of overall system. One of our early design goals was to develop the VME interface such that it can be easily integrated with the peripheral devices and satisfy the timing specifications of VME standard. The modular design of this module reduces the amount of time required to develop other custom modules for control system. The VME slave interface is written as a single component inside FPGA which will be used as a basic building block for any VMEbus interface project. The module offers multiple output voltage ranges depending upon the requirement. The output voltage range can be reduced or expanded by writing range selection bits in the control register. The module has programmable refresh rate and by default hold capacitors in the sample and hold circuit for each channel are charged periodically every 7.040 ms (i.e., update frequency 284 Hz). Each channel has software controlled output switch which disconnects analog output from the field. The modularity in the firmware design on FPGA makes the debugging very easy. On-board DC/DC converters are incorporated for isolated power supply for the analog section of the board.« less
NASA Astrophysics Data System (ADS)
Neba, Yasuhiko
This paper deals with a maximum power point tracking (MPPT) control of the photovoltaic generation with the single-phase utility interactive inverter. The photovoltaic arrays are connected by employing the PWM current source inverter to the utility. The use of the pulsating dc current and voltage allows the maximum power point to be searched. The inverter can regulate the array voltage and keep the arrays to the maximum power. This paper gives the control method and the experimental results.
Suzuki, Motoshi; Toyoda, Naoya; Takagi, Shin
2014-01-01
Methods for turning on/off gene expression at the experimenter’s discretion would be useful for various biological studies. Recently, we reported on a novel microscope system utilizing an infrared laser-evoked gene operator (IR-LEGO) designed for inducing heat shock response efficiently in targeted single cells in living organisms without cell damage, thereby driving expression of a transgene under the control of a heat shock promoter. Although the original IR-LEGO can be successfully used for gene induction, several limitations hinder its wider application. Here, using the nematode Caenorhabditis elegans (C. elegans) as a subject, we have made improvements in IR-LEGO. For better spatial control of heating, a pulsed irradiation method using an optical chopper was introduced. As a result, single cells of C. elegans embryos as early as the 2-cell stage and single neurons in ganglia can be induced to express genes selectively. In addition, the introduction of site-specific recombination systems to IR-LEGO enables the induction of gene expression controlled by constitutive and cell type-specific promoters. The strategies adopted here will be useful for future applications of IR-LEGO to other organisms. PMID:24465705
Digital Optical Control System
NASA Astrophysics Data System (ADS)
Jordan, David H.; Tipton, Charles A.; Christmann, Charles E.; Hochhausler, Nils P.
1988-09-01
We describe the digital optical control system (DOGS), a state-of-the-art controller for electrical feedback in an optical system. The need for a versatile optical controller arose from a number of unique experiments being performed by the Air Force Weapons Laboratory. These experiments use similar detectors and actuator-controlled mirrors, but the control requirements vary greatly. The experiments have in common a requirement for parallel control systems. The DOGS satisfies these needs by allowing several control systems to occupy a single chassis with one master controller. The architecture was designed to allow upward compatibility with future configurations. Combinations of off-the-shelf and custom boards are configured to meet the requirements of each experiment. The configuration described here was used to control piston error to X/80 at a wavelength of 0.51 Am. A peak sample rate of 8 kHz, yielding a closed loop bandwidth of 800 Hz, was achieved.
Preliminary design package for prototype solar heating system
NASA Technical Reports Server (NTRS)
1976-01-01
A preliminary design review on the development of a prototype solar heating system for single family dwellings is presented. The collector, storage, transport, control, and site data acquisition subsystems are described.
Single pilot scanning behavior in simulated instrument flight
NASA Technical Reports Server (NTRS)
Pennington, J. E.
1979-01-01
A simulation of tasks associated with single pilot general aviation flight under instrument flight rules was conducted as a baseline for future research studies on advanced flight controls and avionics. The tasks, ranging from simple climbs and turns to an instrument landing systems approach, were flown on a fixed base simulator. During the simulation the control inputs, state variables, and the pilots visual scan pattern including point of regard were measured and recorded.
System design package for SIMS prototype system 2, solar hot water
NASA Technical Reports Server (NTRS)
1977-01-01
Information necessary to evaluate the design and assembly of a solar hot water system is presented. A prototype system designed for use in a single family dwelling is investigated in terms of the following subsystems: collector, storage, energy transport, and control.
Analytical and experimental study of control effort associated with model reference adaptive control
NASA Technical Reports Server (NTRS)
Messer, R. S.; Haftka, R. T.; Cudney, H. H.
1992-01-01
Numerical simulation results presently obtained for the performance of model reference adaptive control (MRAC) are experimentally verified, with a view to accounting for differences between the plant and the reference model after the control function has been brought to bear. MRAC is both experimentally and analytically applied to a single-degree-of-freedom system, as well as analytically to a MIMO system having controlled differences between the reference model and the plant. The control effort is noted to be sensitive to differences between the plant and the reference model.
Double-bundle ACL reconstruction can improve rotational stability.
Yagi, Masayoshi; Kuroda, Ryosuke; Nagamune, Kouki; Yoshiya, Shinichi; Kurosaka, Masahiro
2007-01-01
Double-bundle anterior cruciate ligament (ACL) reconstruction reproduces anteromedial and posterolateral bundles, and thus has theoretical advantages over conventional single-bundle reconstruction in controlling rotational torque in vitro. However, its superiority in clinical practice has not been proven. We analyzed rotational stability with three reconstruction techniques in 60 consecutive patients who were randomly divided into three groups (double-bundle, anteromedial single-bundle, posterolateral single-bundle). In the reconstructive procedure, the hamstring tendon was harvested and used as a free tendon graft. Followup examinations were performed 1 year after surgery. Anteroposterior laxity of the knee was examined with a KT-1000 arthrometer, whereas rotatory instability, as elicited by the pivot shift test, was assessed using a new measurement system incorporating three-dimensional electromagnetic sensors. Routine clinical evaluations, including KT examination, demonstrated no differences among the three groups. However, using the new measurement system, patients with double-bundle ACL reconstruction showed better pivot shift control of complex instability than patients with anteromedial and posterolateral single-bundle reconstruction.
NASA Technical Reports Server (NTRS)
Bedrossian, Nazareth Sarkis
1987-01-01
The correspondence between robotic manipulators and single gimbal Control Moment Gyro (CMG) systems was exploited to aid in the understanding and design of single gimbal CMG Steering laws. A test for null motion near a singular CMG configuration was derived which is able to distinguish between escapable and unescapable singular states. Detailed analysis of the Jacobian matrix null-space was performed and results were used to develop and test a variety of single gimbal CMG steering laws. Computer simulations showed that all existing singularity avoidance methods are unable to avoid Elliptic internal singularities. A new null motion algorithm using the Moore-Penrose pseudoinverse, however, was shown by simulation to avoid Elliptic type singularities under certain conditions. The SR-inverse, with appropriate null motion was proposed as a general approach to singularity avoidance, because of its ability to avoid singularities through limited introduction of torque error. Simulation results confirmed the superior performance of this method compared to the other available and proposed pseudoinverse-based Steering laws.
RS-600 programmable controller: Solar heating and cooling
NASA Technical Reports Server (NTRS)
1978-01-01
Three identical microprocessor control subsystems were developed which can be used in heating, heating and cooling, and/or hot water systems for single family, multifamily, or commercial applications. The controller incorporates a low cost, highly reliable (all solid state) microprocessor which can be easily reprogrammed.
A Standalone Solar Photovoltaic Power Generation using Cuk Converter and Single Phase Inverter
NASA Astrophysics Data System (ADS)
Verma, A. K.; Singh, B.; Kaushika, S. C.
2013-03-01
In this paper, a standalone solar photovoltaic (SPV) power generating system is designed and modeled using a Cuk dc-dc converter and a single phase voltage source inverter (VSI). In this system, a dc-dc boost converter boosts a low voltage of a PV array to charge a battery at 24 V using a maximum power point tracking control algorithm. To step up a 24 V battery voltage to 360 V dc, a high frequency transformer based isolated dc-dc Cuk converter is used to reduce size, weight and losses. The dc voltage of 360 V is fed to a single phase VSI with unipolar switching to achieve a 230 Vrms, 50 Hz ac. The main objectives of this investigation are on efficiency improvement, reduction in cost, weight and size of the system and to provide an uninterruptible power to remotely located consumers. The complete SPV system is designed and it is modeled in MATLAB/Simulink. The simulated results are presented to demonstrate its satisfactory performance for validating the proposed design and control algorithm.
Applications of the hybrid coordinate method to the TOPS autopilot
NASA Technical Reports Server (NTRS)
Fleischer, G. E.
1978-01-01
Preliminary results are presented from the application of the hybrid coordinate method to modeling TOPS (thermoelectric outer planet spacecraft) structural dynamics. Computer simulated responses of the vehicle are included which illustrate the interaction of relatively flexible appendages with an autopilot control system. Comparisons were made between simplified single-axis models of the control loop, with spacecraft flexibility represented by hinged rigid bodies, and a very detailed three-axis spacecraft model whose flexible portions are described by modal coordinates. While single-axis system, root loci provided reasonable qualitative indications of stability margins in this case, they were quantitatively optimistic when matched against responses of the detailed model.
Ingham, Richard J; Battilocchio, Claudio; Fitzpatrick, Daniel E; Sliwinski, Eric; Hawkins, Joel M; Ley, Steven V
2015-01-01
Performing reactions in flow can offer major advantages over batch methods. However, laboratory flow chemistry processes are currently often limited to single steps or short sequences due to the complexity involved with operating a multi-step process. Using new modular components for downstream processing, coupled with control technologies, more advanced multi-step flow sequences can be realized. These tools are applied to the synthesis of 2-aminoadamantane-2-carboxylic acid. A system comprising three chemistry steps and three workup steps was developed, having sufficient autonomy and self-regulation to be managed by a single operator. PMID:25377747
Alsabeeha, Nabeel H M; Payne, Alan G T; De Silva, Rohana K; Thomson, W Murray
2011-03-01
To determine surgical and prosthodontic outcomes of mandibular single-implant overdentures, opposing complete maxillary dentures, using a wide diameter implant and large ball attachment system compared with different regular diameter implants with standard attachment systems. Thirty-six edentulous participants (mean age 68 years, SD 9.2) were randomly assigned into three treatment groups (n=12). A single implant was placed in the mandibular midline of participants to support an overdenture using a 6-week loading protocol. The control group received Southern regular implants and standard ball attachments. One group received Southern 8-mm-wide implants and large ball attachments. Another group received Neoss regular implants and Locator attachments. Parametric and non-parametric tests of a statistical software package (SPSS) were used to determine between groups differences in marginal bone loss, implant stability, implant, and prosthodontic success (P<0.05). Implant success after 1 year was 75% for Southern regular implant (control) group; and 100% for the Southern wide and Neoss regular implant groups (P=0.038). Mean marginal bone loss at 1 year was 0.19 mm (SD 0.39) without significant differences observed. Implant stability quotient (ISQ) at baseline was significantly lower for the Southern regular (control) group than the other two groups (P=0.001; P=0.009). At 1 year, no significant difference in implant stability was observed (mean ISQ 74.6, SD 6.1). The change in implant stability from baseline to 1 year was significant for the control group (P=0.025). Prosthodontic success was comparable between the groups but the maintenance (41 events overall, mean 1.2) was greater for the Locator and the standard ball attachments. Mandibular single-implant overdentures are a successful treatment option for older edentulous adults with early loading protocol using implants of different diameters and with different attachment systems. © 2010 John Wiley & Sons A/S.
Analysis and optimisation of the convergence behaviour of the single channel digital tanlock loop
NASA Astrophysics Data System (ADS)
Al-Kharji Al-Ali, Omar; Anani, Nader; Al-Araji, Saleh; Al-Qutayri, Mahmoud
2013-09-01
The mathematical analysis of the convergence behaviour of the first-order single channel digital tanlock loop (SC-DTL) is presented. This article also describes a novel technique that allows controlling the convergence speed of the loop, i.e. the time taken by the phase-error to reach its steady-state value, by using a specialised controller unit. The controller is used to adjust the convergence speed so as to selectively optimise a given performance parameter of the loop. For instance, the controller may be used to speed up the convergence in order to increase the lock range and improve the acquisition speed. However, since increasing the lock range can degrade the noise immunity of the system, in a noisy environment the controller can slow down the convergence speed until locking is achieved. Once the system is in lock, the convergence speed can be increased to improve the acquisition speed. The performance of the SC-DTL system was assessed against similar arctan-based loops and the results demonstrate the success of the controller in optimising the performance of the SC-DTL loop. The results of the system testing using MATLAB/Simulink simulation are presented. A prototype of the proposed system was implemented using a field programmable gate array module and the practical results are in good agreement with those obtained by simulation.
Development of battering ram vibrator system
NASA Astrophysics Data System (ADS)
Sun, F.; Chen, Z.; Lin, J.; Tong, X.
2012-12-01
This paper researched the battering ram vibrator system, by electric machinery we can control oil system of battering ram, we realized exact control of battering ram, after analyzed pseudorandom coding, code "0" and "1" correspond to rest and shake of battering ram, then we can get pseudorandom coding which is the same with battering ram vibrator. After testing , by the reference trace and single shot record, when we using pseudorandom coding mode, the ratio of seismic wavelet to correlation interfere is about 68 dB, while the general mode , the ratio of seismic wavelet to correlation interfere only is 27.9dB, by battering ram vibrator system, we can debase the correlation interfere which come from the single shaking frequency of battering ram, this system advanced the signal-to-noise ratio of seismic data, which can give direction of the application of battering ram vibrator in metal mine exploration and high resolving seismic exploration.
Welch, James D.
2000-01-01
Disclosed are semiconductor systems, such as integrated circuits utilizing Schotky barrier and/or diffused junction technology, which semiconductor systems incorporate material(s) that form rectifying junctions in both metallurgically and/or field induced N and P-type doping regions, and methods of their use. Disclosed are Schottky barrier based inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems and which can be operated as modulators, N and P-channel MOSFETS and CMOS formed therefrom, and (MOS) gate voltage controlled rectification direction and gate voltage controlled switching devices, and use of such material(s) to block parasitic current flow pathways. Simple demonstrative five mask fabrication procedures for inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems are also presented.
A novel single thruster control strategy for spacecraft attitude stabilization
NASA Astrophysics Data System (ADS)
Godard; Kumar, Krishna Dev; Zou, An-Min
2013-05-01
Feasibility of achieving three axis attitude stabilization using a single thruster is explored in this paper. Torques are generated using a thruster orientation mechanism with which the thrust vector can be tilted on a two axis gimbal. A robust nonlinear control scheme is developed based on the nonlinear kinematic and dynamic equations of motion of a rigid body spacecraft in the presence of gravity gradient torque and external disturbances. The spacecraft, controlled using the proposed concept, constitutes an underactuated system (a system with fewer independent control inputs than degrees of freedom) with nonlinear dynamics. Moreover, using thruster gimbal angles as control inputs make the system non-affine (control terms appear nonlinearly in the state equation). This necessitates the control algorithms to be developed based on nonlinear control theory since linear control methods are not directly applicable. The stability conditions for the spacecraft attitude motion for robustness against uncertainties and disturbances are derived to establish the regions of asymptotic 3-axis attitude stabilization. Several numerical simulations are presented to demonstrate the efficacy of the proposed controller and validate the theoretical results. The control algorithm is shown to compensate for time-varying external disturbances including solar radiation pressure, aerodynamic forces, and magnetic disturbances; and uncertainties in the spacecraft inertia parameters. The numerical results also establish the robustness of the proposed control scheme to negate disturbances caused by orbit eccentricity.
Passivity-based Robust Control of Aerospace Systems
NASA Technical Reports Server (NTRS)
Kelkar, Atul G.; Joshi, Suresh M. (Technical Monitor)
2000-01-01
This report provides a brief summary of the research work performed over the duration of the cooperative research agreement between NASA Langley Research Center and Kansas State University. The cooperative agreement which was originally for the duration the three years was extended by another year through no-cost extension in order to accomplish the goals of the project. The main objective of the research was to develop passivity-based robust control methodology for passive and non-passive aerospace systems. The focus of the first-year's research was limited to the investigation of passivity-based methods for the robust control of Linear Time-Invariant (LTI) single-input single-output (SISO), open-loop stable, minimum-phase non-passive systems. The second year's focus was mainly on extending the passivity-based methodology to a larger class of non-passive LTI systems which includes unstable and nonminimum phase SISO systems. For LTI non-passive systems, five different passification. methods were developed. The primary effort during the years three and four was on the development of passification methodology for MIMO systems, development of methods for checking robustness of passification, and developing synthesis techniques for passifying compensators. For passive LTI systems optimal synthesis procedure was also developed for the design of constant-gain positive real controllers. For nonlinear passive systems, numerical optimization-based technique was developed for the synthesis of constant as well as time-varying gain positive-real controllers. The passivity-based control design methodology developed during the duration of this project was demonstrated by its application to various benchmark examples. These example systems included longitudinal model of an F-18 High Alpha Research Vehicle (HARV) for pitch axis control, NASA's supersonic transport wind tunnel model, ACC benchmark model, 1-D acoustic duct model, piezo-actuated flexible link model, and NASA's Benchmark Active Controls Technology (BACT) Wing model. Some of the stability results for linear passive systems were also extended to nonlinear passive systems. Several publications and conference presentations resulted from this research.
A Descent Rate Control Approach to Developing an Autonomous Descent Vehicle
NASA Astrophysics Data System (ADS)
Fields, Travis D.
Circular parachutes have been used for aerial payload/personnel deliveries for over 100 years. In the past two decades, significant work has been done to improve the landing accuracies of cargo deliveries for humanitarian and military applications. This dissertation discusses the approach developed in which a circular parachute is used in conjunction with an electro-mechanical reefing system to manipulate the landing location. Rather than attempt to steer the autonomous descent vehicle directly, control of the landing location is accomplished by modifying the amount of time spent in a particular wind layer. Descent rate control is performed by reversibly reefing the parachute canopy. The first stage of the research investigated the use of a single actuation during descent (with periodic updates), in conjunction with a curvilinear target. Simulation results using real-world wind data are presented, illustrating the utility of the methodology developed. Additionally, hardware development and flight-testing of the single actuation autonomous descent vehicle are presented. The next phase of the research focuses on expanding the single actuation descent rate control methodology to incorporate a multi-actuation path-planning system. By modifying the parachute size throughout the descent, the controllability of the system greatly increases. The trajectory planning methodology developed provides a robust approach to accurately manipulate the landing location of the vehicle. The primary benefits of this system are the inherent robustness to release location errors and the ability to overcome vehicle uncertainties (mass, parachute size, etc.). A separate application of the path-planning methodology is also presented. An in-flight path-prediction system was developed for use in high-altitude ballooning by utilizing the path-planning methodology developed for descent vehicles. The developed onboard system improves landing location predictions in-flight using collected flight information during the ascent and descent. Simulation and real-world flight tests (using the developed low-cost hardware) demonstrate the significance of the improvements achievable when flying the developed system.
Optimal and Autonomous Control Using Reinforcement Learning: A Survey.
Kiumarsi, Bahare; Vamvoudakis, Kyriakos G; Modares, Hamidreza; Lewis, Frank L
2018-06-01
This paper reviews the current state of the art on reinforcement learning (RL)-based feedback control solutions to optimal regulation and tracking of single and multiagent systems. Existing RL solutions to both optimal and control problems, as well as graphical games, will be reviewed. RL methods learn the solution to optimal control and game problems online and using measured data along the system trajectories. We discuss Q-learning and the integral RL algorithm as core algorithms for discrete-time (DT) and continuous-time (CT) systems, respectively. Moreover, we discuss a new direction of off-policy RL for both CT and DT systems. Finally, we review several applications.
Power control system for a hot gas engine
Berntell, John O.
1986-01-01
A power control system for a hot gas engine of the type in which the power output is controlled by varying the mean pressure of the working gas charge in the engine has according to the present invention been provided with two working gas reservoirs at substantially different pressure levels. At working gas pressures below the lower of said levels the high pressure gas reservoir is cut out from the control system, and at higher pressures the low pressure gas reservoir is cut out from the system, thereby enabling a single one-stage compressor to handle gas within a wide pressure range at a low compression ratio.
Probe-Hole Field Emission Microscope System Controlled by Computer
NASA Astrophysics Data System (ADS)
Gong, Yunming; Zeng, Haishan
1991-09-01
A probe-hole field emission microscope system, controlled by an Apple II computer, has been developed and operated successfully for measuring the work function of a single crystal plane. The work functions on the clean W(100) and W(111) planes are measured to be 4.67 eV and 4.45 eV, respectively.
The Launch Processing System for Space Shuttle.
NASA Technical Reports Server (NTRS)
Springer, D. A.
1973-01-01
In order to reduce costs and accelerate vehicle turnaround, a single automated system will be developed to support shuttle launch site operations, replacing a multiplicity of systems used in previous programs. The Launch Processing System will provide real-time control, data analysis, and information display for the checkout, servicing, launch, landing, and refurbishment of the launch vehicles, payloads, and all ground support systems. It will also provide real-time and historical data retrieval for management and sustaining engineering (test records and procedures, logistics, configuration control, scheduling, etc.).
Control system design for the large space systems technology reference platform
NASA Technical Reports Server (NTRS)
Edmunds, R. S.
1982-01-01
Structural models and classical frequency domain control system designs were developed for the large space systems technology (LSST) reference platform which consists of a central bus structure, solar panels, and platform arms on which a variety of experiments may be mounted. It is shown that operation of multiple independently articulated payloads on a single platform presents major problems when subarc second pointing stability is required. Experiment compatibility will be an important operational consideration for systems of this type.
Strong suppression of shot noise in a feedback-controlled single-electron transistor
NASA Astrophysics Data System (ADS)
Wagner, Timo; Strasberg, Philipp; Bayer, Johannes C.; Rugeramigabo, Eddy P.; Brandes, Tobias; Haug, Rolf J.
2017-03-01
Feedback control of quantum mechanical systems is rapidly attracting attention not only due to fundamental questions about quantum measurements, but also because of its novel applications in many fields in physics. Quantum control has been studied intensively in quantum optics but progress has recently been made in the control of solid-state qubits as well. In quantum transport only a few active and passive feedback experiments have been realized on the level of single electrons, although theoretical proposals exist. Here we demonstrate the suppression of shot noise in a single-electron transistor using an exclusively electronic closed-loop feedback to monitor and adjust the counting statistics. With increasing feedback response we observe a stronger suppression and faster freezing of charge current fluctuations. Our technique is analogous to the generation of squeezed light with in-loop photodetection as used in quantum optics. Sub-Poisson single-electron sources will pave the way for high-precision measurements in quantum transport similar to optical or optomechanical equivalents.
A telerobotic digital controller system
NASA Technical Reports Server (NTRS)
Brown, Richard J.
1992-01-01
This system is a network of joint mounted dual axes digital servo-controllers (DDSC), providing control of various joints and end effectors of different robotic systems. This report provides description of and user required information for the Digital Controller System Network (DSCN) and, in particular, the DDSC, Model DDSC-2, developed to perform the controller functions. The DDSC can control 3 phase brushless or brush type DC motors, requiring up to 8 amps. Only four wires, two for power and 2 for serial communication, are required, except for local sensor and motor connections. This highly capable, very flexible, programmable servo-controller, contained on a single, compact printed circuit board measuring only 4.5 x 5.1 inches, is applicable to control systems of all types from sub-arc second precision pointing to control of robotic joints and end effectors. This document concentrates on the robotic applications for the DDSC.
Design of wideband solar ultraviolet radiation intensity monitoring and control system
NASA Astrophysics Data System (ADS)
Ye, Linmao; Wu, Zhigang; Li, Yusheng; Yu, Guohe; Jin, Qi
2009-08-01
According to the principle of SCM (Single Chip Microcomputer) and computer communication technique, the system is composed of chips such as ATML89C51, ADL0809, integrated circuit and sensors for UV radiation, which is designed for monitoring and controlling the UV index. This system can automatically collect the UV index data, analyze and check the history database, research the law of UV radiation in the region.
Automated Power-Distribution System
NASA Technical Reports Server (NTRS)
Thomason, Cindy; Anderson, Paul M.; Martin, James A.
1990-01-01
Automated power-distribution system monitors and controls electrical power to modules in network. Handles both 208-V, 20-kHz single-phase alternating current and 120- to 150-V direct current. Power distributed to load modules from power-distribution control units (PDCU's) via subsystem distributors. Ring busses carry power to PDCU's from power source. Needs minimal attention. Detects faults and also protects against them. Potential applications include autonomous land vehicles and automated industrial process systems.
Linear Quantum Systems: Non-Classical States and Robust Stability
2016-06-29
quantum linear systems subject to non-classical quantum fields. The major outcomes of this project are (i) derivation of quantum filtering equations for...derivation of quantum filtering equations for systems non-classical input states including single photon states, (ii) determination of how linear...history going back some 50 years, to the birth of modern control theory with Kalman’s foundational work on filtering and LQG optimal control
Single axis control of ball position in magnetic levitation system using fuzzy logic control
NASA Astrophysics Data System (ADS)
Sahoo, Narayan; Tripathy, Ashis; Sharma, Priyaranjan
2018-03-01
This paper presents the design and real time implementation of Fuzzy logic control(FLC) for the control of the position of a ferromagnetic ball by manipulating the current flowing in an electromagnet that changes the magnetic field acting on the ball. This system is highly nonlinear and open loop unstable. Many un-measurable disturbances are also acting on the system, making the control of it highly complex but interesting for any researcher in control system domain. First the system is modelled using the fundamental laws, which gives a nonlinear equation. The nonlinear model is then linearized at an operating point. Fuzzy logic controller is designed after studying the system in closed loop under PID control action. The controller is then implemented in real time using Simulink real time environment. The controller is tuned manually to get a stable and robust performance. The set point tracking performance of FLC and PID controllers were compared and analyzed.
PDEMOD: Software for control/structures optimization
NASA Technical Reports Server (NTRS)
Taylor, Lawrence W., Jr.; Zimmerman, David
1991-01-01
Because of the possibility of adverse interaction between the control system and the structural dynamics of large, flexible spacecraft, great care must be taken to ensure stability and system performance. Because of the high cost of insertion of mass into low earth orbit, it is prudent to optimize the roles of structure and control systems simultaneously. Because of the difficulty and the computational burden in modeling and analyzing the control structure system dynamics, the total problem is often split and treated iteratively. It would aid design if the control structure system dynamics could be represented in a single system of equations. With the use of the software PDEMOD (Partial Differential Equation Model), it is now possible to optimize structure and control systems simultaneously. The distributed parameter modeling approach enables embedding the control system dynamics into the same equations for the structural dynamics model. By doing this, the current difficulties involved in model order reduction are avoided. The NASA Mini-MAST truss is used an an example for studying integrated control structure design.
Refrigeration system with a compressor-pump unit and a liquid-injection desuperheating line
Gaul, Christopher J.
2001-01-01
The refrigeration system includes a compressor-pump unit and/or a liquid-injection assembly. The refrigeration system is a vapor-compression refrigeration system that includes an expansion device, an evaporator, a compressor, a condenser, and a liquid pump between the condenser and the expansion device. The liquid pump improves efficiency of the refrigeration system by increasing the pressure of, thus subcooling, the liquid refrigerant delivered from the condenser to the expansion device. The liquid pump and the compressor are driven by a single driving device and, in this regard, are coupled to a single shaft of a driving device, such as a belt-drive, an engine, or an electric motor. While the driving device may be separately contained, in a preferred embodiment, the liquid pump, the compressor, and the driving device (i.e., an electric motor) are contained within a single sealable housing having pump and driving device cooling paths to subcool liquid refrigerant discharged from the liquid pump and to control the operating temperature of the driving device. In another aspect of the present invention, a liquid injection assembly is included in a refrigeration system to divert liquid refrigerant from the discharge of a liquid pressure amplification pump to a compressor discharge pathway within a compressor housing to desuperheat refrigerant vapor to the saturation point within the compressor housing. The liquid injection assembly includes a liquid injection pipe with a control valve to meter the volume of diverted liquid refrigerant. The liquid injection assembly may also include a feedback controller with a microprocessor responsive to a pressure sensor and a temperature sensor both positioned between the compressor to operate the control valve to maintain the refrigerant at or near saturation.
Composite bonding to stainless steel crowns using a new universal bonding and single-bottle systems.
Hattan, Mohammad Ali; Pani, Sharat Chandra; Alomari, Mohammad
2013-01-01
Aim. The aim of this study is to evaluate the shear bond strength of nanocomposite to stainless steel crowns using a new universal bonding system. Material and Methods. Eighty (80) stainless steel crowns (SSCs) were divided into four groups (20 each). Packable nanocomposite was bonded to the lingual surface of the crowns in the following methods: Group A without adhesive (control group), Group B using a new universal adhesive system (Scotchbond Universal Adhesive, 3M ESPE, Seefeld, Germany), and Group C and Group D using two different brands of single-bottle adhesive systems. Shear bond strengths were calculated and the types of failure also were recorded. Results. The shear strength of Group B was significantly greater than that of other groups. No significant differences were found between the shear bond strengths of Groups C and D. The control group had significantly lower shear bond strength (P < 0.05) to composite than the groups that utilized bonding agents. Conclusion. Composites bonding to stainless steel crowns using the new universal bonding agent (Scotchbond Universal Adhesive, 3M ESPE, Seefeld, Germany) show significantly greater shear bond strengths and fewer adhesive failures when compared to traditional single-bottle systems.
An approach to quality and security of supply for single-use bioreactors.
Barbaroux, Magali; Gerighausen, Susanne; Hackel, Heiko
2014-01-01
Single-use systems (also referred to as disposables) have become a huge part of the bioprocessing industry, which raised concern in the industry regarding quality and security of supply. Processes must be in place to assure the supply and control of outsourced activities and quality of purchased materials along the product life cycle. Quality and security of supply for single-use bioreactors (SUBs) are based on a multidisciplinary approach. Developing a state-of-the-art SUB-system based on quality by design (QbD) principles requires broad expertise and know-how including the cell culture application, polymer chemistry, regulatory requirements, and a deep understanding of the biopharmaceutical industry. Using standardized products reduces the complexity and strengthens the robustness of the supply chain. Well-established supplier relations including risk mitigation strategies are the basis for achieving long-term security of supply. Well-developed quality systems including change control approaches aligned with the requirements of the biopharmaceutical industry are a key factor in supporting long-term product availability. This chapter outlines the approach to security of supply for key materials used in single-use production processes for biopharmaceuticals from a supplier perspective.
Zhang, Huaguang; Qu, Qiuxia; Xiao, Geyang; Cui, Yang
2018-06-01
Based on integral sliding mode and approximate dynamic programming (ADP) theory, a novel optimal guaranteed cost sliding mode control is designed for constrained-input nonlinear systems with matched and unmatched disturbances. When the system moves on the sliding surface, the optimal guaranteed cost control problem of sliding mode dynamics is transformed into the optimal control problem of a reformulated auxiliary system with a modified cost function. The ADP algorithm based on single critic neural network (NN) is applied to obtain the approximate optimal control law for the auxiliary system. Lyapunov techniques are used to demonstrate the convergence of the NN weight errors. In addition, the derived approximate optimal control is verified to guarantee the sliding mode dynamics system to be stable in the sense of uniform ultimate boundedness. Some simulation results are presented to verify the feasibility of the proposed control scheme.
Discrete time learning control in nonlinear systems
NASA Technical Reports Server (NTRS)
Longman, Richard W.; Chang, Chi-Kuang; Phan, Minh
1992-01-01
In this paper digital learning control methods are developed primarily for use in single-input, single-output nonlinear dynamic systems. Conditions for convergence of the basic form of learning control based on integral control concepts are given, and shown to be satisfied by a large class of nonlinear problems. It is shown that it is not the gross nonlinearities of the differential equations that matter in the convergence, but rather the much smaller nonlinearities that can manifest themselves during the short time interval of one sample time. New algorithms are developed that eliminate restrictions on the size of the learning gain, and on knowledge of the appropriate sign of the learning gain, for convergence to zero error in tracking a feasible desired output trajectory. It is shown that one of the new algorithms can give guaranteed convergence in the presence of actuator saturation constraints, and indicate when the requested trajectory is beyond the actuator capabilities.
Light-patterning of synthetic tissues with single droplet resolution.
Booth, Michael J; Restrepo Schild, Vanessa; Box, Stuart J; Bayley, Hagan
2017-08-24
Synthetic tissues can be generated by forming networks of aqueous droplets in lipid-containing oil. Each droplet contains a cell-free expression system and is connected to its neighbor through a lipid bilayer. In the present work, we have demonstrated precise external control of such networks by activating protein expression within single droplets, by using light-activated DNA to encode either a fluorescent or a pore-forming protein. By controlling the extent of activation, synthetic tissues were generated with graded levels of protein expression in patterns of single droplets. Further, we have demonstrated reversible activation within individual compartments in synthetic tissues by turning a fluorescent protein on-and-off. This is the first example of the high-resolution patterning of droplet networks, following their formation. Single-droplet control will be essential to power subsets of compartments within synthetic tissues or to stimulate subsets of cells when synthetic tissues are interfaced with living tissues.
Redundant arm control in a supervisory and shared control system
NASA Technical Reports Server (NTRS)
Backes, Paul G.; Long, Mark K.
1992-01-01
The Extended Task Space Control approach to robotic operations based on manipulator behaviors derived from task requirements is described. No differentiation between redundant and non-redundant robots is made at the task level. The manipulation task behaviors are combined into a single set of motion commands. The manipulator kinematics are used subsequently in mapping motion commands into actuator commands. Extended Task Space Control is applied to a Robotics Research K-1207 seven degree-of-freedom manipulator in a supervisory telerobot system as an example.
Jason R. Lewis; John W. Groninger; David L. Loftis
2006-01-01
Sustainability of the single tree selection system in the mixed hardwood forests of the southern Appalachians is compromised by insufficient recruitment of oak species. In 1986, portions of a stand at Bent Creek Experimental Forest that have been under single tree selection management since 1945 were subjected to a midstory herbicide treatment in an effort to improve...
Intelligent single switch wheelchair navigation.
Ka, Hyun W; Simpson, Richard; Chung, Younghyun
2012-11-01
We have developed an intelligent single switch scanning interface and wheelchair navigation assistance system, called intelligent single switch wheelchair navigation (ISSWN), to improve driving safety, comfort and efficiency for individuals who rely on single switch scanning as a control method. ISSWN combines a standard powered wheelchair with a laser rangefinder, a single switch scanning interface and a computer. It provides the user with context sensitive and task specific scanning options that reduce driving effort based on an interpretation of sensor data together with user input. Trials performed by 9 able-bodied participants showed that the system significantly improved driving safety and efficiency in a navigation task by significantly reducing the number of switch presses to 43.5% of traditional single switch wheelchair navigation (p < 0.001). All participants made a significant improvement (39.1%; p < 0.001) in completion time after only two trials.
Pointright: a system to redirect mouse and keyboard control among multiple machines
Johanson, Bradley E [Palo Alto, CA; Winograd, Terry A [Stanford, CA; Hutchins, Gregory M [Mountain View, CA
2008-09-30
The present invention provides a software system, PointRight, that allows for smooth and effortless control of pointing and input devices among multiple displays. With PointRight, a single free-floating mouse and keyboard can be used to control multiple screens. When the cursor reaches the edge of a screen it seamlessly moves to the adjacent screen and keyboard control is simultaneously redirected to the appropriate machine. Laptops may also redirect their keyboard and pointing device, and multiple pointers are supported simultaneously. The system automatically reconfigures itself as displays go on, go off, or change the machine they display.
Tracking and data relay satellite system - NASA's new spacecraft data acquisition system
NASA Technical Reports Server (NTRS)
Schneider, W. C.; Garman, A. A.
1979-01-01
This paper describes NASA's new spacecraft acquisition system provided by the Tracking and Data Relay Satellite System (TDRSS). Four satellites in geostationary orbit and a ground terminal will provide complete tracking, telemetry, and command service for all of NASA's orbital satellites below a 12,000 km altitude. Western Union will lease the system, operate the ground terminal and provide operational satellite control. NASA's network control center will be the focal point for scheduling user services and controlling the interface between TDRSS and the NASA communications network, project control centers, and data processing. TDRSS single access user spacecraft data systems will be designed for time shared data relay support, and reimbursement policy and rate structure for non-NASA users are being developed.
NASA Astrophysics Data System (ADS)
Ma, Xunjun; Lu, Yang; Wang, Fengjiao
2017-09-01
This paper presents the recent advances in reduction of multifrequency noise inside helicopter cabin using an active structural acoustic control system, which is based on active gearbox struts technical approach. To attenuate the multifrequency gearbox vibrations and resulting noise, a new scheme of discrete model predictive sliding mode control has been proposed based on controlled auto-regressive moving average model. Its implementation only needs input/output data, hence a broader frequency range of controlled system is modelled and the burden on the state observer design is released. Furthermore, a new iteration form of the algorithm is designed, improving the developing efficiency and run speed. To verify the algorithm's effectiveness and self-adaptability, experiments of real-time active control are performed on a newly developed helicopter model system. The helicopter model can generate gear meshing vibration/noise similar to a real helicopter with specially designed gearbox and active struts. The algorithm's control abilities are sufficiently checked by single-input single-output and multiple-input multiple-output experiments via different feedback strategies progressively: (1) control gear meshing noise through attenuating vibrations at the key points on the transmission path, (2) directly control the gear meshing noise in the cabin using the actuators. Results confirm that the active control system is practical for cancelling multifrequency helicopter interior noise, which also weakens the frequency-modulation of the tones. For many cases, the attenuations of the measured noise exceed the level of 15 dB, with maximum reduction reaching 31 dB. Also, the control process is demonstrated to be smoother and faster.
Yamamura, Shohei; Yamada, Eriko; Kimura, Fukiko; Miyajima, Kumiko; Shigeto, Hajime
2017-10-21
A new single-cell microarray chip was designed and developed to separate and analyze single adherent and non-adherent cancer cells. The single-cell microarray chip is made of polystyrene with over 60,000 microchambers of 10 different size patterns (31-40 µm upper diameter, 11-20 µm lower diameter). A drop of suspension of adherent carcinoma (NCI-H1650) and non-adherent leukocyte (CCRF-CEM) cells was placed onto the chip, and single-cell occupancy of NCI-H1650 and CCRF-CEM was determined to be 79% and 84%, respectively. This was achieved by controlling the chip design and surface treatment. Analysis of protein expression in single NCI-H1650 and CCRF-CEM cells was performed on the single-cell microarray chip by multi-antibody staining. Additionally, with this system, we retrieved positive single cells from the microchambers by a micromanipulator. Thus, this system demonstrates the potential for easy and accurate separation and analysis of various types of single cells.
Application of higher harmonic blade feathering for helicopter vibration reduction
NASA Technical Reports Server (NTRS)
Powers, R. W.
1978-01-01
Higher harmonic blade feathering for helicopter vibration reduction is considered. Recent wind tunnel tests confirmed the effectiveness of higher harmonic control in reducing articulated rotor vibratory hub loads. Several predictive analyses developed in support of the NASA program were shown to be capable of calculating single harmonic control inputs required to minimize a single 4P hub response. In addition, a multiple-input, multiple-output harmonic control predictive analysis was developed. All techniques developed thus far obtain a solution by extracting empirical transfer functions from sampled data. Algorithm data sampling and processing requirements are minimal to encourage adaptive control system application of such techniques in a flight environment.
Predictive Feedback and Feedforward Control for Systems with Unknown Disturbances
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Eure, Kenneth W.
1998-01-01
Predictive feedback control has been successfully used in the regulation of plate vibrations when no reference signal is available for feedforward control. However, if a reference signal is available it may be used to enhance regulation by incorporating a feedforward path in the feedback controller. Such a controller is known as a hybrid controller. This paper presents the theory and implementation of the hybrid controller for general linear systems, in particular for structural vibration induced by acoustic noise. The generalized predictive control is extended to include a feedforward path in the multi-input multi-output case and implemented on a single-input single-output test plant to achieve plate vibration regulation. There are cases in acoustic-induce vibration where the disturbance signal is not available to be used by the hybrid controller, but a disturbance model is available. In this case the disturbance model may be used in the feedback controller to enhance performance. In practice, however, neither the disturbance signal nor the disturbance model is available. This paper presents the theory of identifying and incorporating the noise model into the feedback controller. Implementations are performed on a test plant and regulation improvements over the case where no noise model is used are demonstrated.
Application of drive circuit based on L298N in direct current motor speed control system
NASA Astrophysics Data System (ADS)
Yin, Liuliu; Wang, Fang; Han, Sen; Li, Yuchen; Sun, Hao; Lu, Qingjie; Yang, Cheng; Wang, Quanzhao
2016-10-01
In the experiment of researching the nanometer laser interferometer, our design of laser interferometer circuit system is up to the wireless communication technique of the 802.15.4 IEEE standard, and we use the RF TI provided by Basic to receive the data on speed control system software. The system's hardware is connected with control module and the DC motor. However, in the experiment, we found that single chip microcomputer control module is very difficult to drive the DC motor directly. The reason is that the DC motor's starting and braking current is larger than the causing current of the single chip microcomputer control module. In order to solve this problem, we add a driving module that control board can transmit PWM wave signal through I/O port to drive the DC motor, the driving circuit board can come true the function of the DC motor's positive and reversal rotation and speed adjustment. In many various driving module, the L298N module's integrated level is higher compared with other driver module. The L298N model is easy to control, it not only can control the DC motor, but also achieve motor speed control by modulating PWM wave that the control panel output. It also has the over-current protection function, when the motor lock, the L298N model can protect circuit and motor. So we use the driver module based on L298N to drive the DC motor. It is concluded that the L298N driver circuit module plays a very important role in the process of driving the DC motor in the DC motor speed control system.
Klepiszewski, K; Schmitt, T G
2002-01-01
While conventional rule based, real time flow control of sewer systems is in common use, control systems based on fuzzy logic have been used only rarely, but successfully. The intention of this study is to compare a conventional rule based control of a combined sewer system with a fuzzy logic control by using hydrodynamic simulation. The objective of both control strategies is to reduce the combined sewer overflow volume by an optimization of the utilized storage capacities of four combined sewer overflow tanks. The control systems affect the outflow of four combined sewer overflow tanks depending on the water levels inside the structures. Both systems use an identical rule base. The developed control systems are tested and optimized for a single storm event which affects heterogeneously hydraulic load conditions and local discharge. Finally the efficiencies of the two different control systems are compared for two more storm events. The results indicate that the conventional rule based control and the fuzzy control similarly reach the objective of the control strategy. In spite of the higher expense to design the fuzzy control system its use provides no advantages in this case.
Internal null controllability of a linear Schrödinger-KdV system on a bounded interval
NASA Astrophysics Data System (ADS)
Araruna, Fágner D.; Cerpa, Eduardo; Mercado, Alberto; Santos, Maurício C.
2016-01-01
The control of a linear dispersive system coupling a Schrödinger and a linear Korteweg-de Vries equation is studied in this paper. The system can be viewed as three coupled real-valued equations by taking real and imaginary parts in the Schrödinger equation. The internal null controllability is proven by using either one complex-valued control on the Schrödinger equation or two real-valued controls, one on each equation. Notice that the single Schrödinger equation is not known to be controllable with a real-valued control. The standard duality method is used to reduce the controllability property to an observability inequality, which is obtained by means of a Carleman estimates approach.
NASA Astrophysics Data System (ADS)
Marshall, Stuart; Thaler, Jon; Schalk, Terry; Huffer, Michael
2006-06-01
The LSST Camera Control System (CCS) will manage the activities of the various camera subsystems and coordinate those activities with the LSST Observatory Control System (OCS). The CCS comprises a set of modules (nominally implemented in software) which are each responsible for managing one camera subsystem. Generally, a control module will be a long lived "server" process running on an embedded computer in the subsystem. Multiple control modules may run on a single computer or a module may be implemented in "firmware" on a subsystem. In any case control modules must exchange messages and status data with a master control module (MCM). The main features of this approach are: (1) control is distributed to the local subsystem level; (2) the systems follow a "Master/Slave" strategy; (3) coordination will be achieved by the exchange of messages through the interfaces between the CCS and its subsystems. The interface between the camera data acquisition system and its downstream clients is also presented.
The Temperature Fuzzy Control System of Barleythe Malt Drying Based on Microcontroller
NASA Astrophysics Data System (ADS)
Gao, Xiaoyang; Bi, Yang; Zhang, Lili; Chen, Jingjing; Yun, Jianmin
The control strategy of temperature and humidity in the beer barley malt drying chamber based on fuzzy logic control was implemented.Expounded in this paper was the selection of parameters for the structure of the regulatory device, as well as the essential design from control rules based on the existing experience. A temperature fuzzy controller was thus constructed using relevantfuzzy logic, and humidity control was achieved by relay, ensured the situation of the humidity to control the temperature. The temperature's fuzzy control and the humidity real-time control were all processed by single chip microcomputer with assembly program. The experimental results showed that the temperature control performance of this fuzzy regulatory system,especially in the ways of working stability and responding speed and so on,was better than normal used PID control. The cost of real-time system was inquite competitive position. It was demonstrated that the system have a promising prospect of extensive application.
Controlling the angular radiation of single emitters using dielectric patch nanoantennas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yuanqing; Li, Qiang; Qiu, Min, E-mail: minqiu@zju.edu.cn
2015-07-20
Dielectric nanoantennas have generated much interest in recent years owing to their low loss and optically induced electric and magnetic resonances. In this paper, we investigate the coupling between a single emitter and dielectric patch nanoantennas. For the coupled system involving non-spherical structures, analytical Mie theory is no longer applicable. A semi-analytical model is proposed instead to interpret the coupling mechanism and the radiation characteristics of the system. Based on the presented model, we demonstrate that the angular emission of the single emitter can be not only enhanced but also rotated using the dielectric patch nanoantennas.
The adaptive observer. [liapunov synthesis, single-input single-output, and reduced observers
NASA Technical Reports Server (NTRS)
Carroll, R. L.
1973-01-01
The simple generation of state from available measurements, for use in systems for which the criteria defining the acceptable state behavior mandates a control that is dependent upon unavailable measurement is described as an adaptive means for determining the state of a linear time invariant differential system having unknown parameters. A single input output adaptive observer and the reduced adaptive observer is developed. The basic ideas for both the adaptive observer and the nonadaptive observer are examined. A survey of the Liapunov synthesis technique is taken, and the technique is applied to adaptive algorithm for the adaptive observer.
Design and Modeling of a Variable Heat Rejection Radiator
NASA Technical Reports Server (NTRS)
Miller, Jennifer R.; Birur, Gajanana C.; Ganapathi, Gani B.; Sunada, Eric T.; Berisford, Daniel F.; Stephan, Ryan
2011-01-01
Variable Heat Rejection Radiator technology needed for future NASA human rated & robotic missions Primary objective is to enable a single loop architecture for human-rated missions (1) Radiators are typically sized for maximum heat load in the warmest continuous environment resulting in a large panel area (2) Large radiator area results in fluid being susceptible to freezing at low load in cold environment and typically results in a two-loop system (3) Dual loop architecture is approximately 18% heavier than single loop architecture (based on Orion thermal control system mass) (4) Single loop architecture requires adaptability to varying environments and heat loads
NASA Technical Reports Server (NTRS)
Bergeron, H. P.
1980-01-01
Data obtained from the NASA Aviation Safety Reporting System (ASRS) data base were used to determine problems in general aviation single pilot IFR operations. The data examined consisted of incident reports involving flight safety in the National Aviation System. Only those incidents involving general aviation fixed wing aircraft flying under IFR in instrument meteorological conditions were analyzed. The data were cataloged into one of five major problem areas: (1) controller judgement and response problems; (2) pilot judgement and response problems; (3) air traffic control intrafacility and interfacility conflicts; (4) ATC and pilot communications problems; and (5) IFR-VFR conflicts. The significance of the related problems, and the various underlying elements associated with each are discussed. Previous ASRS reports covering several areas of analysis are reviewed.
Actuator digital interface unit (AIU). [control units for space shuttle data system
NASA Technical Reports Server (NTRS)
1973-01-01
Alternate versions of the actuator interface unit are presented. One alternate is a dual-failure immune configuration which feeds a look-and-switch dual-failure immune hydraulic system. The other alternate is a single-failure immune configuration which feeds a majority voting hydraulic system. Both systems communicate with the data bus through data terminals dedicated to each user subsystem. Both operational control data and configuration control information are processed in and out of the subsystem via the data terminal which yields the actuator interface subsystem, self-managing within its failure immunity capability.
Tuning fuzzy PD and PI controllers using reinforcement learning.
Boubertakh, Hamid; Tadjine, Mohamed; Glorennec, Pierre-Yves; Labiod, Salim
2010-10-01
In this paper, we propose a new auto-tuning fuzzy PD and PI controllers using reinforcement Q-learning (QL) algorithm for SISO (single-input single-output) and TITO (two-input two-output) systems. We first, investigate the design parameters and settings of a typical class of Fuzzy PD (FPD) and Fuzzy PI (FPI) controllers: zero-order Takagi-Sugeno controllers with equidistant triangular membership functions for inputs, equidistant singleton membership functions for output, Larsen's implication method, and average sum defuzzification method. Secondly, the analytical structures of these typical fuzzy PD and PI controllers are compared to their classical counterpart PD and PI controllers. Finally, the effectiveness of the proposed method is proven through simulation examples. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.
Periodic control of the individual-blade-control helicopter rotor
NASA Technical Reports Server (NTRS)
Mckillip, R. M., Jr.
1985-01-01
This paper describes the results of an investigation into methods of controller design for linear periodic systems utilizing an extension of modern control methods. Trends present in the selection of various cost functions are outlined, and closed-loop controller results are demonstrated for two cases: first, on an analog computer simulation of the rigid out of plane flapping dynamics of a single rotor blade, and second, on a 4 ft diameter single-bladed model helicopter rotor in the MIT 5 x 7 subsonic wind tunnel, both for various high levels of advance ratio. It is shown that modal control using the IBC concept is possible over a large range of advance ratios with only a modest amount of computational power required.
Artificial neural networks in Space Station optimal attitude control
NASA Astrophysics Data System (ADS)
Kumar, Renjith R.; Seywald, Hans; Deshpande, Samir M.; Rahman, Zia
1995-01-01
Innovative techniques of using "artificial neural networks" (ANN) for improving the performance of the pitch axis attitude control system of Space Station Freedom using control moment gyros (CMGs) are investigated. The first technique uses a feed-forward ANN with multi-layer perceptrons to obtain an on-line controller which improves the performance of the control system via a model following approach. The second technique uses a single layer feed-forward ANN with a modified back propagation scheme to estimate the internal plant variations and the external disturbances separately. These estimates are then used to solve two differential Riccati equations to obtain time varying gains which improve the control system performance in successive orbits.
Back to the future: total system management (organic, sustainable)
USDA-ARS?s Scientific Manuscript database
Many soil disinfestation programs are implemented prior to crop cultivation due to the paucity of therapeutic interventions for controlling soilborne pests. In the 1950’s a proliferation of chemical control options ushered in an era of soilborne pest control based upon a single or limited group of ...
Propelled abrasive grit for weed control in organic silage corn
USDA-ARS?s Scientific Manuscript database
Weed management in organic farming requires many strategies to accomplish acceptable control and maintain crop yields. This two-year field study used air propelled abrasive grit for in-row weed control in a silage corn system. Corncob grit was applied as a single application at corn vegetative growt...
29 CFR 1910.211 - Definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Antirepeat means the part of the clutch/brake control system designed to limit the press to a single stroke... acting in conjunction, and is used to describe a situation wherein two or more controls exist in an... without intervening stops (or other clutch control action) at the end of individual strokes. (10...
Li, Zhijun; Su, Chun-Yi
2013-09-01
In this paper, adaptive neural network control is investigated for single-master-multiple-slaves teleoperation in consideration of time delays and input dead-zone uncertainties for multiple mobile manipulators carrying a common object in a cooperative manner. Firstly, concise dynamics of teleoperation systems consisting of a single master robot, multiple coordinated slave robots, and the object are developed in the task space. To handle asymmetric time-varying delays in communication channels and unknown asymmetric input dead zones, the nonlinear dynamics of the teleoperation system are transformed into two subsystems through feedback linearization: local master or slave dynamics including the unknown input dead zones and delayed dynamics for the purpose of synchronization. Then, a model reference neural network control strategy based on linear matrix inequalities (LMI) and adaptive techniques is proposed. The developed control approach ensures that the defined tracking errors converge to zero whereas the coordination internal force errors remain bounded and can be made arbitrarily small. Throughout this paper, stability analysis is performed via explicit Lyapunov techniques under specific LMI conditions. The proposed adaptive neural network control scheme is robust against motion disturbances, parametric uncertainties, time-varying delays, and input dead zones, which is validated by simulation studies.
Dual-wavelength single-frequency laser emission in asymmetric coupled microdisks
Wang, Haotian; Liu, Sheng; Chen, Lin; Shen, Deyuan; Wu, Xiang
2016-01-01
The gain and loss in a microcavity laser play an important role for the modulation of laser spectrum. We show that dual-wavelength single mode lasing can be achieved in an asymmetric coupled system consisted of two size-mismatched microdisks. The amount of eigenmodes in this coupled-microdisk system is reduced relying on the Vernier effect. Then a single mode is selected to lase by controlling the gain branching in the supermodes. The supermodes are formed by the coupling between different transverse whispering-gallery modes (WGMs). When the gain/loss status between the two mirodisks is changed through selectively pumping process, the modulated gain branching for various supermodes leads to the switchable single-frequency laser emission. The results obtained in this work will provide the further understand for the spectral modulation mechanism in the coupled microcavity laser system. PMID:27905506
Performance of Four-Leg VSC based DSTATCOM using Single Phase P-Q Theory
NASA Astrophysics Data System (ADS)
Jampana, Bangarraju; Veramalla, Rajagopal; Askani, Jayalaxmi
2017-02-01
This paper presents single-phase P-Q theory for four-leg VSC based distributed static compensator (DSTATCOM) in the distribution system. The proposed DSTATCOM maintains unity power factor at source, zero voltage regulation, eliminates current harmonics, load balancing and neutral current compensation. The advantage of using four-leg VSC based DSTATCOM is to eliminate isolated/non-isolated transformer connection at point of common coupling (PCC) for neutral current compensation. The elimination of transformer connection at PCC with proposed topology will reduce cost of DSTATCOM. The single-phase P-Q theory control algorithm is used to extract fundamental component of active and reactive currents for generation of reference source currents which is based on indirect current control method. The proposed DSTATCOM is modelled and the results are validated with various consumer loads under unity power factor and zero voltage regulation modes in the MATLAB R2013a environment using simpower system toolbox.
NASA Technical Reports Server (NTRS)
1997-01-01
An AGATE Concepts Demonstration was conducted at the Annual National Air Transportation Association (NATA) Convention in 1997. Following, a 5-minute introductory briefing, an interactive simulation of a single-pilot, single-engine aircraft was conducted. The participant was able to take off, fly a brief enroute segment, fly a Global Positioning System (GPS) approach and landing, and repeat the approach and landing segment. The participant was provided an advanced 'highway-in-the-sky' presentation on both a simulated head-up display and on a large LCD head-down display to follow throughout the flight. A single-lever power control and display concept was also provided for control of the engine throughout the flight. A second head-down, multifunction display in the instrument panel provided a moving map display for navigation purposes and monitoring of the status of the aircraft's systems.
Surface Telerobotics: Development and Testing of a Crew Controlled Planetary Rover System
NASA Technical Reports Server (NTRS)
Bualat, Maria G.; Fong, Terrence; Allan, Mark; Bouyssounouse, Xavier; Cohen, Tamar; Kobayashi, Linda
2013-01-01
In planning for future exploration missions, architecture and study teams have made numerous assumptions about how crew can be telepresent on a planetary surface by remotely operating surface robots from space (i.e. from a flight vehicle or deep space habitat). These assumptions include estimates of technology maturity, existing technology gaps, and operational risks. These assumptions, however, have not been grounded by experimental data. Moreover, to date, no crew-controlled surface telerobot has been fully tested in a high-fidelity manner. To address these issues, we developed the "Surface Telerobotics" tests to do three things: 1) Demonstrate interactive crew control of a mobile surface telerobot in the presence of short communications delay. 2) Characterize a concept of operations for a single astronaut remotely operating a planetary rover with limited support from ground control. 3) Characterize system utilization and operator work-load for a single astronaut remotely operating a planetary rover with limited support from ground control.
Chen, Qi; Yoo, Si-Youl; Chung, Yong-Ho; Lee, Ji-Young; Min, Junhong; Choi, Jeong-Woo
2016-10-01
Various bio-logic gates have been studied intensively to overcome the rigidity of single-function silicon-based logic devices arising from combinations of various gates. Here, a simple control tool using electrochemical signals from quantum dots (QDs) was constructed using DNA and organic materials for multiple logic functions. The electrochemical redox current generated from QDs was controlled by the DNA structure. DNA structure, in turn, was dependent on the components (organic materials) and the input signal (pH). Independent electrochemical signals from two different logic units containing QDs were merged into a single analog-type logic gate, which was controlled by two inputs. We applied this electrochemical biodevice to a simple logic system and achieved various logic functions from the controlled pH input sets. This could be further improved by choosing QDs, ionic conditions, or DNA sequences. This research provides a feasible method for fabricating an artificial intelligence system. Copyright © 2016 Elsevier B.V. All rights reserved.
Markov Jump-Linear Performance Models for Recoverable Flight Control Computers
NASA Technical Reports Server (NTRS)
Zhang, Hong; Gray, W. Steven; Gonzalez, Oscar R.
2004-01-01
Single event upsets in digital flight control hardware induced by atmospheric neutrons can reduce system performance and possibly introduce a safety hazard. One method currently under investigation to help mitigate the effects of these upsets is NASA Langley s Recoverable Computer System. In this paper, a Markov jump-linear model is developed for a recoverable flight control system, which will be validated using data from future experiments with simulated and real neutron environments. The method of tracking error analysis and the plan for the experiments are also described.
NASA Technical Reports Server (NTRS)
Rhoads Stephenson, R.
1986-01-01
The Galileo Mission and Spacecraft design impose tight requirements on the Attitude and Articulation Control System (AACS). These requirements, coupled with the flexible spacecraft, the need for autonomy, and a severe radiation environment, pose a great challenge for the AACS designer. The resulting design and implementation are described, along with the discovery and solution of the Single-Event Upset problem. The status of the testing of the AACS in the Integration and Test Laboratory as well as at the spacecraft level is summarized.
Weisman, Alanna; Bai, Johnny-Wei; Cardinez, Marina; Kramer, Caroline K; Perkins, Bruce A
2017-07-01
Closed-loop artificial pancreas systems have been in development for several years, including assessment in numerous varied outpatient clinical trials. We aimed to summarise the efficacy and safety of artificial pancreas systems in outpatient settings and explore the clinical and technical factors that can affect their performance. We did a systematic review and meta-analysis of randomised controlled trials comparing artificial pancreas systems (insulin only or insulin plus glucagon) with conventional pump therapy (continuous subcutaneous insulin infusion [CSII] with blinded continuous glucose monitoring [CGM] or unblinded sensor-augmented pump [SAP] therapy) in adults and children with type 1 diabetes. We searched Medline, Embase, and the Cochrane Central Register of Controlled Trials for studies published from 1946, to Jan 1, 2017. We excluded studies not published in English, those involving pregnant women or participants who were in hospital, and those testing adjunct medications other than glucagon. The primary outcome was the mean difference in percentage of time blood glucose concentration remained in target range (3·9-10 mmol/L or 3·9-8 mmol/L, depending on the study), assessed by random-effects meta-analysis. This study is registered with PROSPERO, number 2015:CRD42015026854. We identified 984 reports; after exclusions, 27 comparisons from 24 studies (23 crossover and one parallel design) including a total of 585 participants (219 in adult studies, 265 in paediatric studies, and 101 in combined studies) were eligible for analysis. Five comparisons assessed dual-hormone (insulin and glucagon), two comparisons assessed both dual-hormone and single-hormone (insulin only), and 20 comparisons assessed single-hormone artificial pancreas systems. Time in target was 12·59% higher with artificial pancreas systems (95% CI 9·02-16·16; p<0·0001), from a weighted mean of 58·21% for conventional pump therapy (I 2 =84%). Dual-hormone artificial pancreas systems were associated with a greater improvement in time in target range compared with single-hormone systems (19·52% [95% CI 15·12-23·91] vs 11·06% [6·94 to 15·18]; p=0·006), although six of seven comparisons compared dual-hormone systems to CSII with blinded CGM, whereas 21 of 22 single-hormone comparisons had SAP as the comparator. Single-hormone studies had higher heterogeneity than dual-hormone studies (I 2 79% vs 66%). Bias assessment characteristics were incompletely reported in 12 of 24 studies, no studies masked participants to the intervention assignment, and masking of outcome assessment was not done in 12 studies and was unclear in 12 studies. Artificial pancreas systems uniformly improved glucose control in outpatient settings, despite heterogeneous clinical and technical factors. None. Copyright © 2017 Elsevier Ltd. All rights reserved.
2012-06-01
the open-loop path is established, the feedback system can be treated as a set of SISO feedback loops and a single SISO control law can be applied...Zernike polynomials are commonly referred to by the names, such as focus, coma, astigmatism , and etc. Zernike polynomials can be transformed into
Aircraft Digital Input Controlled Hydraulic Actuation and Control System.
1981-03-01
the individual pistons in each motor which act against its rotating swash plate to drive...single piston during each of two equal rotations of the output shaft. In the high-displacement case, the swash plate is assumed to move through an angle...for their assistance in conducting laboratory tests of the digital electrohydraulic actuation system. Vii TABLE OF CONTENTS Section Page I
Bagherpoor, H M; Salmasi, Farzad R
2015-07-01
In this paper, robust model reference adaptive tracking controllers are considered for Single-Input Single-Output (SISO) and Multi-Input Multi-Output (MIMO) linear systems containing modeling uncertainties, unknown additive disturbances and actuator fault. Two new lemmas are proposed for both SISO and MIMO, under which dead-zone modification rule is improved such that the tracking error for any reference signal tends to zero in such systems. In the conventional approach, adaption of the controller parameters is ceased inside the dead-zone region which results tracking error, while preserving the system stability. In the proposed scheme, control signal is reinforced with an additive term based on tracking error inside the dead-zone which results in full reference tracking. In addition, no Fault Detection and Diagnosis (FDD) unit is needed in the proposed approach. Closed loop system stability and zero tracking error are proved by considering a suitable Lyapunov functions candidate. It is shown that the proposed control approach can assure that all the signals of the close loop system are bounded in faulty conditions. Finally, validity and performance of the new schemes have been illustrated through numerical simulations of SISO and MIMO systems in the presence of actuator faults, modeling uncertainty and output disturbance. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Compensation for positioning error of industrial robot for flexible vision measuring system
NASA Astrophysics Data System (ADS)
Guo, Lei; Liang, Yajun; Song, Jincheng; Sun, Zengyu; Zhu, Jigui
2013-01-01
Positioning error of robot is a main factor of accuracy of flexible coordinate measuring system which consists of universal industrial robot and visual sensor. Present compensation methods for positioning error based on kinematic model of robot have a significant limitation that it isn't effective in the whole measuring space. A new compensation method for positioning error of robot based on vision measuring technique is presented. One approach is setting global control points in measured field and attaching an orientation camera to vision sensor. Then global control points are measured by orientation camera to calculate the transformation relation from the current position of sensor system to global coordinate system and positioning error of robot is compensated. Another approach is setting control points on vision sensor and two large field cameras behind the sensor. Then the three dimensional coordinates of control points are measured and the pose and position of sensor is calculated real-timely. Experiment result shows the RMS of spatial positioning is 3.422mm by single camera and 0.031mm by dual cameras. Conclusion is arithmetic of single camera method needs to be improved for higher accuracy and accuracy of dual cameras method is applicable.
Active Structural Acoustic Control of Interior Noise on a Raytheon 1900D
NASA Technical Reports Server (NTRS)
Palumbo, Dan; Cabell, Ran; Sullivan, Brenda; Cline, John
2000-01-01
An active structural acoustic control system has been demonstrated on a Raytheon Aircraft Company 1900D turboprop airliner. Both single frequency and multi-frequency control of the blade passage frequency and its harmonics was accomplished. The control algorithm was a variant of the popular filtered-x LMS implemented in the principal component domain. The control system consisted of 21 inertial actuators and 32 microphones. The actuators were mounted to the aircraft's ring frames. The microphones were distributed uniformly throughout the interior at head height, both seated and standing. Actuator locations were selected using a combinatorial search optimization algorithm. The control system achieved a 14 dB noise reduction of the blade passage frequency during single frequency tests. Multi-frequency control of the first 1st, 2nd and 3rd harmonics resulted in 10.2 dB, 3.3 dB and 1.6 dB noise reductions respectively. These results fall short of the predictions which were produced by the optimization algorithm (13.5 dB, 8.6 dB and 6.3 dB). The optimization was based on actuator transfer functions taken on the ground and it is postulated that cabin pressurization at flight altitude was a factor in this discrepancy.
Dynamic neural networking as a basis for plasticity in the control of heart rate.
Kember, G; Armour, J A; Zamir, M
2013-01-21
A model is proposed in which the relationship between individual neurons within a neural network is dynamically changing to the effect of providing a measure of "plasticity" in the control of heart rate. The neural network on which the model is based consists of three populations of neurons residing in the central nervous system, the intrathoracic extracardiac nervous system, and the intrinsic cardiac nervous system. This hierarchy of neural centers is used to challenge the classical view that the control of heart rate, a key clinical index, resides entirely in central neuronal command (spinal cord, medulla oblongata, and higher centers). Our results indicate that dynamic networking allows for the possibility of an interplay among the three populations of neurons to the effect of altering the order of control of heart rate among them. This interplay among the three levels of control allows for different neural pathways for the control of heart rate to emerge under different blood flow demands or disease conditions and, as such, it has significant clinical implications because current understanding and treatment of heart rate anomalies are based largely on a single level of control and on neurons acting in unison as a single entity rather than individually within a (plastically) interconnected network. Copyright © 2012 Elsevier Ltd. All rights reserved.
Reliability of Fault Tolerant Control Systems. Part 1
NASA Technical Reports Server (NTRS)
Wu, N. Eva
2001-01-01
This paper reports Part I of a two part effort, that is intended to delineate the relationship between reliability and fault tolerant control in a quantitative manner. Reliability analysis of fault-tolerant control systems is performed using Markov models. Reliability properties, peculiar to fault-tolerant control systems are emphasized. As a consequence, coverage of failures through redundancy management can be severely limited. It is shown that in the early life of a syi1ein composed of highly reliable subsystems, the reliability of the overall system is affine with respect to coverage, and inadequate coverage induces dominant single point failures. The utility of some existing software tools for assessing the reliability of fault tolerant control systems is also discussed. Coverage modeling is attempted in Part II in a way that captures its dependence on the control performance and on the diagnostic resolution.
A possible four-phase coexistence in a single-component system
NASA Astrophysics Data System (ADS)
Akahane, Kenji; Russo, John; Tanaka, Hajime
2016-08-01
For different phases to coexist in equilibrium at constant temperature T and pressure P, the condition of equal chemical potential μ must be satisfied. This condition dictates that, for a single-component system, the maximum number of phases that can coexist is three. Historically this is known as the Gibbs phase rule, and is one of the oldest and venerable rules of thermodynamics. Here we make use of the fact that, by varying model parameters, the Gibbs phase rule can be generalized so that four phases can coexist even in single-component systems. To systematically search for the quadruple point, we use a monoatomic system interacting with a Stillinger-Weber potential with variable tetrahedrality. Our study indicates that the quadruple point provides flexibility in controlling multiple equilibrium phases and may be realized in systems with tunable interactions, which are nowadays feasible in several soft matter systems such as patchy colloids.
A possible four-phase coexistence in a single-component system
Akahane, Kenji; Russo, John; Tanaka, Hajime
2016-01-01
For different phases to coexist in equilibrium at constant temperature T and pressure P, the condition of equal chemical potential μ must be satisfied. This condition dictates that, for a single-component system, the maximum number of phases that can coexist is three. Historically this is known as the Gibbs phase rule, and is one of the oldest and venerable rules of thermodynamics. Here we make use of the fact that, by varying model parameters, the Gibbs phase rule can be generalized so that four phases can coexist even in single-component systems. To systematically search for the quadruple point, we use a monoatomic system interacting with a Stillinger–Weber potential with variable tetrahedrality. Our study indicates that the quadruple point provides flexibility in controlling multiple equilibrium phases and may be realized in systems with tunable interactions, which are nowadays feasible in several soft matter systems such as patchy colloids. PMID:27558452
Configurable technology development for reusable control and monitor ground systems
NASA Technical Reports Server (NTRS)
Uhrlaub, David R.
1994-01-01
The control monitor unit (CMU) uses configurable software technology for real-time mission command and control, telemetry processing, simulation, data acquisition, data archiving, and ground operations automation. The base technology is currently planned for the following control and monitor systems: portable Space Station checkout systems; ecological life support systems; Space Station logistics carrier system; and the ground system of the Delta Clipper (SX-2) in the Single-Stage Rocket Technology program. The CMU makes extensive use of commercial technology to increase capability and reduce development and life-cycle costs. The concepts and technology are being developed by McDonnell Douglas Space and Defense Systems for the Real-Time Systems Laboratory at NASA's Kennedy Space Center under the Payload Ground Operations Contract. A second function of the Real-Time Systems Laboratory is development and utilization of advanced software development practices.
Controlling a Four-Quadrant Brushless Three-Phase dc Motor
NASA Technical Reports Server (NTRS)
Nola, F. J.
1986-01-01
Control circuit commutates windings of brushless, three-phase, permanent-magnet motor operating from power supply. With single analog command voltage, controller makes motor accelerate, drive steadily, or brake regeneratively, in clockwise or counterclockwise direction. Controller well suited for use with energy-storage flywheels, actuators for aircraft-control surfaces, cranes, industrial robots, and other electromechanical systems requiring bidirectional control or sudden stopping and reversal.
Boehler, Christian; Güder, Firat; Kücükbayrak, Umut M.; Zacharias, Margit; Asplund, Maria
2016-01-01
On-demand release of bioactive substances with high spatial and temporal control offers ground-breaking possibilities in the field of life sciences. However, available strategies for developing such release systems lack the possibility of combining efficient control over release with adequate storage capability in a reasonably compact system. In this study we present a new approach to target this deficiency by the introduction of a hybrid material. This organic-inorganic material was fabricated by atomic layer deposition of ZnO into thin films of polyethylene glycol, forming the carrier matrix for the substance to be released. Sub-surface growth mechanisms during this process converted the liquid polymer into a solid, yet water-soluble, phase. This layer permits extended storage for various substances within a single film of only a few micrometers in thickness, and hence demands minimal space and complexity. Improved control over release of the model substance Fluorescein was achieved by coating the hybrid material with a conducting polymer film. Single dosage and repetitive dispensing from this system was demonstrated. Release was controlled by applying a bias potential of ±0.5 V to the polymer film enabling or respectively suppressing the expulsion of the model drug. In vitro tests showed excellent biocompatibility of the presented system. PMID:26791399
Single frequency 1083nm ytterbium doped fiber master oscillator power amplifier laser.
Huang, Shenghong; Qin, Guanshi; Shirakawa, Akira; Musha, Mitsuru; Ueda, Ken-Ichi
2005-09-05
Single frequency 1083nm ytterbium fiber master oscillator power amplifier system was demonstrated. The oscillator was a linear fiber cavity with loop mirror filter and polarization controller. The loop mirror with unpumped ytterbium fiber as a narrow bandwidth filter discriminated and selected laser longitudinal modes efficiently. Spatial hole burning effect was restrained by adjusting polarization controller appropriately in the linear cavity. The amplifier was 5 m ytterbium doped fiber pumped by 976nm pigtail coupled laser diode. The linewidth of the single frequency laser was about 2 KHz. Output power up to 177 mW was produced under the launched pump power of 332 mW.
Operational Management of Area Environment.
ERIC Educational Resources Information Center
Sprague, George W.
Three phases leading to the automation of the mechanical building systems on the Harvard campus are described. The systems allow a single operator to monitor and control all the mechanical systems, plus fire, flood, and security alarms, for all buildings in a large area of the campus. (JT)
Intelligent optical fiber sensor system for measurement of gas concentration
NASA Astrophysics Data System (ADS)
Pan, Jingming; Yin, Zongmin
1991-08-01
A measuring, controlling, and alarming system for the concentration of a gas or transparent liquid is described. In this system, a Fabry-Perot etalon with an optical fiber is used as the sensor, a charge-coupled device (CCD) is used as the photoelectric converter, and a single- chip microcomputer 8031 along with an interface circuit is used to measure the interference ring signal. The system has such features as real-time and on-line operation, continuous dynamic handling, and intelligent control.
Static and dynamic single leg postural control performance during dual-task paradigms.
Talarico, Maria K; Lynall, Robert C; Mauntel, Timothy C; Weinhold, Paul S; Padua, Darin A; Mihalik, Jason P
2017-06-01
Combining dynamic postural control assessments and cognitive tasks may give clinicians a more accurate indication of postural control under sport-like conditions compared to single-task assessments. We examined postural control, cognitive and squatting performance of healthy individuals during static and dynamic postural control assessments in single- and dual-task paradigms. Thirty participants (female = 22, male = 8; age = 20.8 ± 1.6 years, height = 157.9 ± 13.0 cm, mass = 67.8 ± 20.6 kg) completed single-leg stance and single-leg squat assessments on a force plate individually (single-task) and concurrently (dual-task) with two cognitive assessments, a modified Stroop test and the Brooks Spatial Memory Test. Outcomes included centre of pressure speed, 95% confidence ellipse, squat depth and speed and cognitive test measures (percentage of correct answers and reaction time). Postural control performance varied between postural control assessments and testing paradigms. Participants did not squat as deep and squatted slower (P < 0.001) during dual-task paradigms (≤12.69 ± 3.4 cm squat depth, ≤16.20 ± 4.6 cm · s -1 squat speed) compared to single-task paradigms (14.57 ± 3.6 cm squat depth, 19.65 ± 5.5 cm · s -1 squat speed). The percentage of correct answers did not change across testing conditions, but Stroop reaction time (725.81 ± 59.2 ms; F 2,58 = 7.725, P = 0.001) was slowest during single-leg squats compared to baseline (691.64 ± 80.1 ms; P = 0.038) and single-task paradigms (681.33 ± 51.5 ms; P < 0.001). Dynamic dual-task assessments may be more challenging to the postural control system and may better represent postural control performance during dynamic activities.
A Morphing Radiator for High-Turndown Thermal Control of Crewed Space Exploration Vehicles
NASA Technical Reports Server (NTRS)
Cognata, Thomas J.; Hardtl, Darren; Sheth, Rubik; Dinsmore, Craig
2015-01-01
Spacecraft designed for missions beyond low earth orbit (LEO) face a difficult thermal control challenge, particularly in the case of crewed vehicles where the thermal control system (TCS) must maintain a relatively constant internal environment temperature despite a vastly varying external thermal environment and despite heat rejection needs that are contrary to the potential of the environment. A thermal control system is in other words required to reject a higher heat load to warm environments and a lower heat load to cold environments, necessitating a quite high turndown ratio. A modern thermal control system is capable of a turndown ratio of on the order of 12:1, but for crew safety and environment compatibility these are massive multi-loop fluid systems. This paper discusses the analysis of a unique radiator design which employs the behavior of shape memory alloys (SMA) to vary the turndown of, and thus enable, a single-loop vehicle thermal control system for space exploration vehicles. This design, a morphing radiator, varies its shape in response to facesheet temperature to control view of space and primary surface emissivity. Because temperature dependence is inherent to SMA behavior, the design requires no accommodation for control, instrumentation, nor power supply in order to operate. Thermal and radiation modeling of the morphing radiator predict a turndown ranging from 11.9:1 to 35:1 independent of TCS configuration. Stress and deformation analyses predict the desired morphing behavior of the concept. A system level mass analysis shows that by enabling a single loop architecture this design could reduce the TCS mass by between 139 kg and 225 kg. The concept is demonstrated in proof-of-concept benchtop tests.
A Morphing Radiator for High-Turndown Thermal Control of Crewed Space Exploration Vehicles
NASA Technical Reports Server (NTRS)
Cognata, Thomas J.; Hartl, Darren J.; Sheth, Rubik; Dinsmore, Craig
2014-01-01
Spacecraft designed for missions beyond low earth orbit (LEO) face a difficult thermal control challenge, particularly in the case of crewed vehicles where the thermal control system (TCS) must maintain a relatively constant internal environment temperature despite a vastly varying external thermal environment and despite heat rejection needs that are contrary to the potential of the environment. A thermal control system may be required to reject a higher heat load to warm environments and a lower heat load to cold environments, necessitating a relatively high turndown ratio. A modern thermal control system is capable of a turndown ratio of on the order of 12:1, but crew safety and environment compatibility have constrained these solutions to massive multi-loop fluid systems. This paper discusses the analysis of a unique radiator design that employs the behavior of shape memory alloys (SMAs) to vary the turndown of, and thus enable, a single-loop vehicle thermal control system for space exploration vehicles. This design, a morphing radiator, varies its shape in response to facesheet temperature to control view of space and primary surface emissivity. Because temperature dependence is inherent to SMA behavior, the design requires no accommodation for control, instrumentation, or power supply in order to operate. Thermal and radiation modeling of the morphing radiator predict a turndown ranging from 11.9:1 to 35:1 independent of TCS configuration. Coupled thermal-stress analyses predict that the desired morphing behavior of the concept is attainable. A system level mass analysis shows that by enabling a single loop architecture this design could reduce the TCS mass by between 139 kg and 225 kg. The concept has been demonstrated in proof-of-concept benchtop tests.
Solar energy system performance evaluation: Seasonal report for IBM System 2, Togus, Maine
NASA Technical Reports Server (NTRS)
1980-01-01
The solar energy system, SIMS Prototype System 2, was designed to supply domestic hot water to single family residences. The system consists of flat plate collectors, silicone working fluid, storage tanks, pumps, heat exchanger, controls, and associated plumbing. The long term field performance of the installed system was analyzed and the results are described.
Single Operator Control of Multiple UAS: A Supervisory Delegation Approach
NASA Technical Reports Server (NTRS)
Shively, Jay
2017-01-01
This presentation will be given as part of the UAS EXCOM Science and Research Panel's (SARP) workshop on multiple UAS controlled by a single operator. Participants were asked to identify public use cases for multiple Unmanned Aircraft Systems (UAS) control and identify research, policy, and technical gaps in those operations. The purpose of this workshop is to brainstorm, categorize, and prioritize those use cases and gaps. Here, I will discuss research performed on this topic when I worked for the Army and on-going work within the division and a NATO working group on Human-Autonomy Teaming.
Magnetically controlled multifrequency invisibility cloak with a single shell of ferrite material
NASA Astrophysics Data System (ADS)
Wang, Xiaohua; Liu, Youwen
2015-02-01
A magnetically controlled multifrequency invisibility cloak with a single shell of the isotropic and homogeneous ferrite material has been investigated based on the scattering cancellation method from the Mie scattering theory. The analytical and simulated results have demonstrated that such this shell can drastically reduce the total scattering cross-section of this cloaking system at multiple frequencies. These multiple cloaking frequencies of this shell can be externally controlled since the magnetic permeability of ferrites is well tuned by the applied magnetic field. This may provide a potential way to design a tunable multifrequency invisibility cloak with considerable flexibility.
Robust Population Inversion by Polarization Selective Pulsed Excitation
Mantei, D.; Förstner, J.; Gordon, S.; Leier, Y. A.; Rai, A. K.; Reuter, D.; Wieck, A. D.; Zrenner, A.
2015-01-01
The coherent state preparation and control of single quantum systems is an important prerequisite for the implementation of functional quantum devices. Prominent examples for such systems are semiconductor quantum dots, which exhibit a fine structure split single exciton state and a V-type three level structure, given by a common ground state and two distinguishable and separately excitable transitions. In this work we introduce a novel concept for the preparation of a robust inversion by the sequential excitation in a V-type system via distinguishable paths. PMID:26000910
Supramolecular Systems and Chemical Reactions in Single-Molecule Break Junctions.
Li, Xiaohui; Hu, Duan; Tan, Zhibing; Bai, Jie; Xiao, Zongyuan; Yang, Yang; Shi, Jia; Hong, Wenjing
2017-04-01
The major challenges of molecular electronics are the understanding and manipulation of the electron transport through the single-molecule junction. With the single-molecule break junction techniques, including scanning tunneling microscope break junction technique and mechanically controllable break junction technique, the charge transport through various single-molecule and supramolecular junctions has been studied during the dynamic fabrication and continuous characterization of molecular junctions. This review starts from the charge transport characterization of supramolecular junctions through a variety of noncovalent interactions, such as hydrogen bond, π-π interaction, and electrostatic force. We further review the recent progress in constructing highly conductive molecular junctions via chemical reactions, the response of molecular junctions to external stimuli, as well as the application of break junction techniques in controlling and monitoring chemical reactions in situ. We suggest that beyond the measurement of single molecular conductance, the single-molecule break junction techniques provide a promising access to study molecular assembly and chemical reactions at the single-molecule scale.
Multiwave low-laser therapy in the pain treatment
NASA Astrophysics Data System (ADS)
Moldovan, Corneliu I.; Antipa, Ciprian; Bratila, Florin; Brukner, Ion; Vasiliu, Virgil V.
1995-03-01
Sixteen patients with knee pain, 17 patients with low back pain and 23 patients with vertebral pain were randomly allocated to multiwave laser therapy (MWL). The MWL was performed through an original method by a special designed laser system. The stimulation parameters adaptably optimized in a closed loop by measuring the reflected laser radiation. A control group of 11 patients was conventionally treated with a single infrared laser system. All patients were assessed by single observer using a visual analogue scale in a controlled trial. Our results indicate that the treatment with different laser wavelengths, different output power and frequencies, simultaneously applied through optic-fibers, has significant effects on the pain when compared with the common low laser therapy.
NASA Technical Reports Server (NTRS)
Freeman, D. C., Jr.; Powell, R. W.
1979-01-01
Aft center-of-gravity locations dictated by the large number of rocket engines required has been a continuing problem of single-stage-to-orbit vehicles. Recent work at Langley has demonstrated that these aft center-of-gravity problems become more pronounced for the proposed heavy-lift mission, creating some unique design problems for both the SSTO and staged vehicle systems. During the course of this study, an effort was made to bring together automated vehicle design, wind-tunnel tests, and flight control analyses to assess the impact of longitudinal and lateral-directional instability, and control philosophy on entry vehicle design technology.
Distributed Evaluation Functions for Fault Tolerant Multi-Rover Systems
NASA Technical Reports Server (NTRS)
Agogino, Adrian; Turner, Kagan
2005-01-01
The ability to evolve fault tolerant control strategies for large collections of agents is critical to the successful application of evolutionary strategies to domains where failures are common. Furthermore, while evolutionary algorithms have been highly successful in discovering single-agent control strategies, extending such algorithms to multiagent domains has proven to be difficult. In this paper we present a method for shaping evaluation functions for agents that provide control strategies that both are tolerant to different types of failures and lead to coordinated behavior in a multi-agent setting. This method neither relies of a centralized strategy (susceptible to single point of failures) nor a distributed strategy where each agent uses a system wide evaluation function (severe credit assignment problem). In a multi-rover problem, we show that agents using our agent-specific evaluation perform up to 500% better than agents using the system evaluation. In addition we show that agents are still able to maintain a high level of performance when up to 60% of the agents fail due to actuator, communication or controller faults.
Wikswo, J P; Prokop, A; Baudenbacher, F; Cliffel, D; Csukas, B; Velkovsky, M
2006-08-01
Systems biology, i.e. quantitative, postgenomic, postproteomic, dynamic, multiscale physiology, addresses in an integrative, quantitative manner the shockwave of genetic and proteomic information using computer models that may eventually have 10(6) dynamic variables with non-linear interactions. Historically, single biological measurements are made over minutes, suggesting the challenge of specifying 10(6) model parameters. Except for fluorescence and micro-electrode recordings, most cellular measurements have inadequate bandwidth to discern the time course of critical intracellular biochemical events. Micro-array expression profiles of thousands of genes cannot determine quantitative dynamic cellular signalling and metabolic variables. Major gaps must be bridged between the computational vision and experimental reality. The analysis of cellular signalling dynamics and control requires, first, micro- and nano-instruments that measure simultaneously multiple extracellular and intracellular variables with sufficient bandwidth; secondly, the ability to open existing internal control and signalling loops; thirdly, external BioMEMS micro-actuators that provide high bandwidth feedback and externally addressable intracellular nano-actuators; and, fourthly, real-time, closed-loop, single-cell control algorithms. The unravelling of the nested and coupled nature of cellular control loops requires simultaneous recording of multiple single-cell signatures. Externally controlled nano-actuators, needed to effect changes in the biochemical, mechanical and electrical environment both outside and inside the cell, will provide a major impetus for nanoscience.
Harandi, Azadeh; Mirzaeerad, Sina; Mehrabani, Mahgol; Mahmoudi, Elham; Bijani, Ali
2017-01-01
Introduction: This study aimed to compare the incidence of dentinal crack formation by instrumentation with ProTaper Universal system (rotary, multi-file system), SafeSider (reciprocation movement, multi-file system) and Neolix (rotary, single-file system). Methods and Materials: In this in vitro study, 60 freshly extracted mandibular first molars were randomly divided into three experimental groups (n=15) and a control group containing unprepared teeth (n=15). Instrumentation in different groups was accomplished using either ProTaper, Neolix or SafeSider systems up to 25/0.08. The teeth were then sectioned at 3, 6 and 9 mm from the apex, and observed under a stereomicroscope for presence of dentinal cracks. Data were analyzed with Chi square test, Fisher’s exact test and Bonferroni correction. Results: Micro cracks were seen in all experimental groups (13.3% in ProTaper, 26.7% in SafeSider and 40% in Neolix). There was a significant difference between Neolix and the control groups in microcrack formation (P=0.042). Micro cracks mainly occurred in the coronal section (9 mm). No microcrack occurred in the control group. Conclusion: Neolix rotary single-file system caused more dentinal cracks compared to the unprepared roots. All the instrumentation systems increased the number of micro cracks compared to unprepared teeth. PMID:29225637
Field-Oriented Control Of Induction Motors
NASA Technical Reports Server (NTRS)
Burrows, Linda M.; Roth, Mary Ellen; Zinger, Don S.
1993-01-01
Field-oriented control system provides for feedback control of torque or speed or both. Developed for use with commercial three-phase, 400-Hz, 208-V, 5-hp motor. Systems include resonant power supply operating at 20 kHz. Pulse-population-modulation subsystem selects individual pulses of 20-kHz single-phase waveform as needed to synthesize three waveforms of appropriate lower frequency applied to three phase windings of motor. Electric actuation systems using technology currently being built to peak powers of 70 kW. Amplitude of voltage of effective machine-frequency waveform determined by momentary frequency of pulses, while machine frequency determined by rate of repetition of overall temporal pattern of pulses. System enables independent control of both voltage and frequency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The purpose of this project by Building Science Corporation was to evaluate the humidity control performance of new single family high performance homes, and compare the interior conditions and mechanical systems operation between two distinct groups of houses: homes with a supplemental dehumidifier installed in addition to HVAC system, and homes without any supplemental dehumidification. The subjects of the study were 10 single-family new construction homes in New Orleans, LA. Data logging equipment was installed at each home in 2012, and interior conditions and various end-use loads were monitored for one year. In terms of averages, the homes with dehumidifiersmore » are limiting elevated levels of humidity in the living space; however, there was significant variation in humidity control between individual houses. An analysis of the equipment operation did not show a clear correlation between energy use and humidity levels. In general, no single explanatory variable appears to provide a consistent understanding of the humidity control in each house. Indoor humidity is likely due to all of the factors we have examined, and the specifics of how they are used by each occupant.« less
Simple Multiplexing Hand-Held Control Unit
NASA Technical Reports Server (NTRS)
Hannaford, Blake
1989-01-01
Multiplexer consists of series of resistors, each shunted by single-pole, single-throw switch. User operates switches by pressing buttons or squeezing triggers. Prototype includes three switches operated successfully in over 200 hours of system operations. Number of switches accommodated determined by signal-to-noise ratio of current source, noise induced in control unit and cable, and number of bits in output of analog-to-digital converter. Because many computer-contolled robots have extra analog-to-digital channels, such multiplexer added at little extra cost.
Shutter mechanism for spacecraft spectrophotometer
NASA Technical Reports Server (NTRS)
Weilbach, A.
1972-01-01
A shutter mechanism is described for the backscatter ultraviolet spectrophotometer experiment on the Nimbus D satellite. The purpose of the experiment is to determine spatial distribution of atmospheric ozone from measurements of ultraviolet radiation backscattered by the earth's atmosphere. The system consists of two independent, rotary cylinder shutters, controlled by a dual star Geneva mechanism, and driven by a single stepper motor. A single driver controls a combination of two independently driven Geneva stars. Design considerations involved the use of low friction, nonmetallic materials.
Insulation of Nitrocellulose Boiling Tubs at Radford Army Ammunition Plant
1982-03-01
control system. The amount of steam usea for the on-boil cycle with the single-sensor autocontrol averaged 647 kg/hr (1426 lb/hr) (test 1, table 2...This was a reduc- tion of 210 kg/hr (463 lb/hr) over the manually controlled uninsulated tub. Steam usage with the single sensor autocontrol and...uninsulated tub. At times durin)g the on- boil cycle of tests I and 2, the temperature of the manual sensor was different from the autocontrol sensor indicating
Zhang, Huacheng; Hou, Xu; Yang, Zhe; Yan, Dadong; Li, Lin; Tian, Ye; Wang, Huanting; Jiang, Lei
2015-02-18
Inspired by biological asymmetric ion channels, new shape-tunable and pH-responsive asymmetric hourglass single nanochannel systems demonstrate unique ion-transport properties. It is found that the change in shape and pH cooperatively control the ion transport within the nanochannel ranging from asymmetric shape with asymmetric ion transport, to asymmetric shape with symmetric ion transport and symmetric shape with symmetric ion transport. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Modular design attitude control system
NASA Technical Reports Server (NTRS)
Chichester, F. D.
1984-01-01
A sequence of single axismodels and a series of reduced state linear observers of minimum order are used to reconstruct inaccessible variables pertaining to the modular attitude control of a rigid body flexible suspension model of a flexible spacecraft. The single axis models consist of two, three, four, and five rigid bodies, each interconnected by a flexible shaft passing through the mass centers of the bodies. Modal damping is added to each model. Reduced state linear observers are developed for synthesizing the inaccessible modal state variables for each modal model.
Power System Transient Stability Improvement by the Interline Power Flow Controller (IPFC)
NASA Astrophysics Data System (ADS)
Zhang, Jun; Yokoyama, Akihiko
This paper presents a study on the power system transient stability improvement by means of interline power flow controller (IPFC). The power injection model of IPFC in transient analysis is proposed and can be easily incorporated into existing power systems. Based on the energy function analysis, the operation of IPFC should guarantee that the time derivative of the global energy of the system is not greater than zero in order to damp the electromechanical oscillations. Accordingly, control laws of IPFC are proposed for its application to the single-machine infinite-bus (SMIB) system and the multimachine systems, respectively. Numerical simulations on the corresponding model power systems are presented to demonstrate their effectiveness in improving power system transient stability.
Using affordable LED arrays for photo-stimulation of neurons.
Valley, Matthew; Wagner, Sebastian; Gallarda, Benjamin W; Lledo, Pierre-Marie
2011-11-15
Standard slice electrophysiology has allowed researchers to probe individual components of neural circuitry by recording electrical responses of single cells in response to electrical or pharmacological manipulations(1,2). With the invention of methods to optically control genetically targeted neurons (optogenetics), researchers now have an unprecedented level of control over specific groups of neurons in the standard slice preparation. In particular, photosensitive channel rhodopsin-2 (ChR2) allows researchers to activate neurons with light(3,4). By combining careful calibration of LED-based photostimulation of ChR2 with standard slice electrophysiology, we are able to probe with greater detail the role of adult-born interneurons in the olfactory bulb, the first central relay of the olfactory system. Using viral expression of ChR2-YFP specifically in adult-born neurons, we can selectively control young adult-born neurons in a milieu of older and mature neurons. Our optical control uses a simple and inexpensive LED system, and we show how this system can be calibrated to understand how much light is needed to evoke spiking activity in single neurons. Hence, brief flashes of blue light can remotely control the firing pattern of ChR2-transduced newborn cells.
The Emergence of Single Neurons in Clinical Neurology
Cash, Sydney S.; Hochberg, Leigh R.
2015-01-01
Summary Single neuron actions and interactions are the sine qua non of brain function, and nearly all diseases and injuries of the central nervous system trace their clinical sequelae to neuronal dysfunction or failure. Remarkably, discussion of neuronal activity is largely absent in clinical neuroscience. Advances in neurotechnology and computational capabilities, accompanied by shifts in theoretical frameworks, have led to renewed interest in the information represented by single neurons. Using direct interfaces with the nervous system, millisecond-scale information will soon be extracted from single neurons in clinical environments, supporting personalized treatment of neurologic and psychiatric disease. In this review we focus on single neuronal activity in restoring communication and motor control in patients suffering from devastating neurological injuries. We also explore the single neuron's role in epilepsy and movement disorders, surgical anesthesia, and in cognitive processes disrupted in neurodegenerative and neuropsychiatric disease. Finally, we speculate on how technological advances will revolutionize neurotherapeutics. PMID:25856488
1995-09-12
Two versions of (PCAM) Protein Crystallization Apparatus for Microgravity, (DCAM) Diffusion Controled Crystallization Apparatus is in the (STES) Single Locker Thermal Enclosure System. Principal Investigator was Dan Carter.
Space Station Environmental Control/Life Support System engineering
NASA Technical Reports Server (NTRS)
Miller, C. W.; Heppner, D. B.
1985-01-01
The present paper is concerned with a systems engineering study which has provided an understanding of the overall Space Station ECLSS (Environmental Control and Life Support System). ECLSS/functional partitioning is considered along with function criticality, technology alternatives, a technology description, single thread systems, Space Station architectures, ECLSS distribution, mechanical schematics per space station, and Space Station ECLSS characteristics. Attention is given to trade studies and system synergism. The Space Station functional description had been defined by NASA. The ECLSS will utilize technologies which embody regenerative concepts to minimize the use of expendables.
NASA Technical Reports Server (NTRS)
Knauber, R. N.
1982-01-01
A FORTRAN coded computer program which computes the capture transient of a launch vehicle upper stage at the ignition and/or separation event is presented. It is for a single degree-of-freedom on-off reaction jet attitude control system. The Monte Carlo method is used to determine the statistical value of key parameters at the outcome of the event. Aerodynamic and booster induced disturbances, vehicle and control system characteristics, and initial conditions are treated as random variables. By appropriate selection of input data pitch, yaw and roll axes can be analyzed. Transient response of a single deterministic case can be computed. The program is currently set up on a CDC CYBER 175 computer system but is compatible with ANSI FORTRAN computer language. This routine has been used over the past fifteen (15) years for the SCOUT Launch Vehicle and has been run on RECOMP III, IBM 7090, IBM 360/370, CDC6600 and CDC CYBER 175 computers with little modification.
Dynamic Modeling, Controls, and Testing for Electrified Aircraft
NASA Technical Reports Server (NTRS)
Connolly, Joseph; Stalcup, Erik
2017-01-01
Electrified aircraft have the potential to provide significant benefits for efficiency and emissions reductions. To assess these potential benefits, modeling tools are needed to provide rapid evaluation of diverse concepts and to ensure safe operability and peak performance over the mission. The modeling challenge for these vehicles is the ability to show significant benefits over the current highly refined aircraft systems. The STARC-ABL (single-aisle turbo-electric aircraft with an aft boundary layer propulsor) is a new test proposal that builds upon previous N3-X team hybrid designs. This presentation describes the STARC-ABL concept, the NASA Electric Aircraft Testbed (NEAT) which will allow testing of the STARC-ABL powertrain, and the related modeling and simulation efforts to date. Modeling and simulation includes a turbofan simulation, Numeric Propulsion System Simulation (NPSS), which has been integrated with NEAT; and a power systems and control model for predicting testbed performance and evaluating control schemes. Model predictions provide good comparisons with testbed data for an NPSS-integrated test of the single-string configuration of NEAT.
Generative Representations for Evolving Families of Designs
NASA Technical Reports Server (NTRS)
Hornby, Gregory S.
2003-01-01
Since typical evolutionary design systems encode only a single artifact with each individual, each time the objective changes a new set of individuals must be evolved. When this objective varies in a way that can be parameterized, a more general method is to use a representation in which a single individual encodes an entire class of artifacts. In addition to saving time by preventing the need for multiple evolutionary runs, the evolution of parameter-controlled designs can create families of artifacts with the same style and a reuse of parts between members of the family. In this paper an evolutionary design system is described which uses a generative representation to encode families of designs. Because a generative representation is an algorithmic encoding of a design, its input parameters are a way to control aspects of the design it generates. By evaluating individuals multiple times with different input parameters the evolutionary design system creates individuals in which the input parameter controls specific aspects of a design. This system is demonstrated on two design substrates: neural-networks which solve the 3/5/7-parity problem and three-dimensional tables of varying heights.
NASA Technical Reports Server (NTRS)
Stubbs, S. M.; Tanner, J. A.; Smith, E. G.
1979-01-01
The braking and cornering response of a slip velocity controlled, pressure bias modulated aircraft antiskid braking system is investigated. The investigation, conducted on dry and wet runway surfaces, utilized one main gear wheel, brake, and tire assembly of a McDonnell Douglas DC 9 series 10 airplane. The landing gear strut was replaced by a dynamometer. The parameters, which were varied, included the carriage speed, tire loading, yaw angle, tire tread condition, brake system operating pressure, and runway wetness conditions. The effects of each of these parameters on the behavior of the skid control system is presented. Comparisons between data obtained with the skid control system and data obtained from single cycle braking tests without antiskid protection are examined.
Performance of the HIMAC beam control system using multiple-energy synchrotron operation
NASA Astrophysics Data System (ADS)
Mizushima, K.; Furukawa, T.; Iwata, Y.; Hara, Y.; Saotome, N.; Saraya, Y.; Tansho, R.; Sato, S.; Fujimoto, T.; Shirai, T.; Noda, K.
2017-09-01
Multiple-energy synchrotron operation was developed to realize fast 3D scanning irradiation for carbon-ion radiotherapy. This type of operation can output various carbon-ion beams with different energies in a single synchrotron cycle. The beam control system used in this kind of operation was developed to quickly provide the beam energy and intensity required from the irradiation control system. The performance of the system was verified by experimental tests. The system could output beams of 197 different energies in 63 s. The beam intensity could be controlled for all the output beams without large ripples or overshooting. The experimental test of irradiation for prostate cancer treatment was also successfully performed, and the test results proved that our system can greatly reduce the irradiation time.
Lee, Hwan Young; Yoo, Ji-Eun; Park, Myung Jin; Chung, Ukhee; Kim, Chong-Youl; Shin, Kyoung-Jin
2006-11-01
The present study analyzed 21 coding region SNP markers and one deletion motif for the determination of East Asian mitochondrial DNA (mtDNA) haplogroups by designing three multiplex systems which apply single base extension methods. Using two multiplex systems, all 593 Korean mtDNAs were allocated into 15 haplogroups: M, D, D4, D5, G, M7, M8, M9, M10, M11, R, R9, B, A, and N9. As the D4 haplotypes occurred most frequently in Koreans, the third multiplex system was used to further define D4 subhaplogroups: D4a, D4b, D4e, D4g, D4h, and D4j. This method allowed the complementation of coding region information with control region mutation motifs and the resultant findings also suggest reliable control region mutation motifs for the assignment of East Asian mtDNA haplogroups. These three multiplex systems produce good results in degraded samples as they contain small PCR products (101-154 bp) for single base extension reactions. SNP scoring was performed in 101 old skeletal remains using these three systems to prove their utility in degraded samples. The sequence analysis of mtDNA control region with high incidence of haplogroup-specific mutations and the selective scoring of highly informative coding region SNPs using the three multiplex systems are useful tools for most applications involving East Asian mtDNA haplogroup determination and haplogroup-directed stringent quality control.
Audio-vocal interaction in single neurons of the monkey ventrolateral prefrontal cortex.
Hage, Steffen R; Nieder, Andreas
2015-05-06
Complex audio-vocal integration systems depend on a strong interconnection between the auditory and the vocal motor system. To gain cognitive control over audio-vocal interaction during vocal motor control, the PFC needs to be involved. Neurons in the ventrolateral PFC (VLPFC) have been shown to separately encode the sensory perceptions and motor production of vocalizations. It is unknown, however, whether single neurons in the PFC reflect audio-vocal interactions. We therefore recorded single-unit activity in the VLPFC of rhesus monkeys (Macaca mulatta) while they produced vocalizations on command or passively listened to monkey calls. We found that 12% of randomly selected neurons in VLPFC modulated their discharge rate in response to acoustic stimulation with species-specific calls. Almost three-fourths of these auditory neurons showed an additional modulation of their discharge rates either before and/or during the monkeys' motor production of vocalization. Based on these audio-vocal interactions, the VLPFC might be well positioned to combine higher order auditory processing with cognitive control of the vocal motor output. Such audio-vocal integration processes in the VLPFC might constitute a precursor for the evolution of complex learned audio-vocal integration systems, ultimately giving rise to human speech. Copyright © 2015 the authors 0270-6474/15/357030-11$15.00/0.
Independent polarisation control of multiple optical traps
Preece, Daryl; Keen, Stephen; Botvinick, Elliot; Bowman, Richard; Padgett, Miles; Leach, Jonathan
2009-01-01
We present a system which uses a single spatial light modulator to control the spin angular momentum of multiple optical traps. These traps may be independently controlled both in terms of spatial location and in terms of their spin angular momentum content. The system relies on a spatial light modulator used in a “split-screen” configuration to generate beams of orthogonal polarisation states which are subsequently combined at a polarising beam splitter. Defining the phase difference between the beams with the spatial light modulator enables control of the polarisation state of the light. We demonstrate the functionality of the system by controlling the rotation and orientation of birefringent vaterite crystals within holographic optical tweezers. PMID:18825226
NASA Technical Reports Server (NTRS)
Hepler, A. K.; Zeck, H.; Walker, W. H.; Shafer, D. E.
1978-01-01
The applicability of the control configured design approach (CCV) to advanced earth orbital transportation systems was studied. The baseline system investigated was fully reusable vertical take-off/horizontal landing single-stage-to-orbit vehicle and had mission requirements similar to the space shuttle orbiter. Technical analyses were made to determine aerodynamic, flight control and subsystem design characteristics. Figures of merit were assessed on vehicle dry weight and orbital payload. The results indicated that the major parameters for CCV designs are hypersonic trim, aft center of gravity, and control surface heating. Optimized CCV designs can be controllable and provide substantial payload gains over conventional non-CCV design vertical take-off vehicles.
NASA Technical Reports Server (NTRS)
Titterington, W. A.; Erickson, A. C.
1975-01-01
An advanced six-man rated oxygen generation system has been fabricated and tested as part of a NASA/JSC technology development program for a long lived, manned spacecraft life support system. Details of the design and tests results are presented. The system is based on the Solid Polymer Electrolyte (SPE) water electrolysis technology and its nominal operating conditions are 2760 kN/sq m (400 psia) and 355 K (180 F) with an electrolysis module current density capability up to 350 mA/sq cm (326 ASF). The system is centered on a 13-cell SPE water electrolysis module having a single cell active area of 214 sq cm (33 sq in) and it incorporates instrumentation and controls for single pushbutton automatic startup/shutdown, component fault detection and isolation, and self-contained sensors and controls for automatic safe emergency shutdown. The system has been tested in both the orbital cyclic and continuous mode of operation. Various parametric tests have been completed to define the system capability for potential application in spacecraft environmental systems.
Novel switching method for single-phase NPC three-level inverter with neutral-point voltage control
NASA Astrophysics Data System (ADS)
Lee, June-Seok; Lee, Seung-Joo; Lee, Kyo-Beum
2018-02-01
This paper proposes a novel switching method with the neutral-point voltage control in a single-phase neutral-point-clamped three-level inverter (SP-NPCI) used in photovoltaic systems. A proposed novel switching method for the SP-NPCI improves the efficiency. The main concept is to fix the switching state of one leg. As a result, the switching loss decreases and the total efficiency is improved. In addition, it enables the maximum power-point-tracking operation to be performed by applying the proposed neutral-point voltage control algorithm. This control is implemented by modifying the reference signal. Simulation and experimental results provide verification of the performance of a novel switching method with the neutral-point voltage control.
A control-theory model for human decision-making
NASA Technical Reports Server (NTRS)
Levison, W. H.; Tanner, R. B.
1971-01-01
A model for human decision making is an adaptation of an optimal control model for pilot/vehicle systems. The models for decision and control both contain concepts of time delay, observation noise, optimal prediction, and optimal estimation. The decision making model was intended for situations in which the human bases his decision on his estimate of the state of a linear plant. Experiments are described for the following task situations: (a) single decision tasks, (b) two-decision tasks, and (c) simultaneous manual control and decision making. Using fixed values for model parameters, single-task and two-task decision performance can be predicted to within an accuracy of 10 percent. Agreement is less good for the simultaneous decision and control situation.
Generalized Momentum Control of the Spin-Stabilized Magnetospheric Multiscale Formation
NASA Technical Reports Server (NTRS)
Queen, Steven Z.; Shah, Neerav; Benegalrao, Suyog S.; Blackman, Kathie
2015-01-01
The Magnetospheric Multiscale (MMS) mission consists of four identically instrumented, spin-stabilized observatories elliptically orbiting the Earth in a tetrahedron formation. The on-board attitude control system adjusts the angular momentum of the system using a generalized thruster-actuated control system that simultaneously manages precession, nutation and spin. Originally developed using Lyapunov control-theory with rate-feedback, a published algorithm has been augmented to provide a balanced attitude/rate response using a single weighting parameter. This approach overcomes an orientation sign-ambiguity in the existing formulation, and also allows for a smoothly tuned-response applicable to both a compact/agile spacecraft, as well as one with large articulating appendages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, J; Kuhlman, J
1981-01-31
The tracker uses a single photo sensor, and a rotating aperature to obtain tracking accuracies better than 1.5 mrads (0.1 degs). Peak signal detection is used to eliminate tracking of false sources, i.e., clouds, etc. A prism is employed to obtain an extended field of view (150 degs axially - 360 degs radially). The tracker digitally measures the Suns displacement angle relative to the concentrator axis, and repositions it incrementally. This arrangement permits the use of low cost non-servo motors. The local controller contains microprocessor based electronics, incorporating digital signal processing. A single controller may be time shared by amore » maximum of sixteen trackers, providing a high performance, cost effective solar tracking system, suitable for both line and point focus concentrators. An installation may have the local controller programmed as a standalone unit or slaved to a central controller. When used with a central controller, dynamic data monitoring and logging is available, together with the ability to change system modes and parameters, as desired.« less
49 CFR 571.135 - Standard No. 135; Light vehicle brake systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... portable sources of electrical current, and which may include a non-electrical source of power designed to... or more subsystems actuated by a single control, designed so that a single failure in any subsystem....2.1. Pavement friction. Unless otherwise specified, the road test surface produces a peak friction...
49 CFR 571.135 - Standard No. 135; Light vehicle brake systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... portable sources of electrical current, and which may include a non-electrical source of power designed to... or more subsystems actuated by a single control, designed so that a single failure in any subsystem....2.1. Pavement friction. Unless otherwise specified, the road test surface produces a peak friction...
49 CFR 571.105 - Standard No. 105; Hydraulic and electric brake systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... current, and which may include a non-electrical source of power designed to charge batteries and... dissipating electrical energy. Skid number means the frictional resistance of a pavement measured in... subsystems actuated by a single control, designed so that a single failure in any subsystem (such as a...
49 CFR 571.135 - Standard No. 135; Light vehicle brake systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... portable sources of electrical current, and which may include a non-electrical source of power designed to... or more subsystems actuated by a single control, designed so that a single failure in any subsystem....2.1. Pavement friction. Unless otherwise specified, the road test surface produces a peak friction...
49 CFR 571.135 - Standard No. 135; Light vehicle brake systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... portable sources of electrical current, and which may include a non-electrical source of power designed to... or more subsystems actuated by a single control, designed so that a single failure in any subsystem....2.1. Pavement friction. Unless otherwise specified, the road test surface produces a peak friction...
49 CFR 571.135 - Standard No. 135; Light vehicle brake systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... portable sources of electrical current, and which may include a non-electrical source of power designed to... or more subsystems actuated by a single control, designed so that a single failure in any subsystem....2.1. Pavement friction. Unless otherwise specified, the road test surface produces a peak friction...
49 CFR 571.105 - Standard No. 105; Hydraulic and electric brake systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... current, and which may include a non-electrical source of power designed to charge batteries and... dissipating electrical energy. Skid number means the frictional resistance of a pavement measured in... subsystems actuated by a single control, designed so that a single failure in any subsystem (such as a...
Management of a Single Species Fishery with Stage Structure
ERIC Educational Resources Information Center
Kar, T. K.; Pahari, U. K.; Chaudhuri, K. S.
2004-01-01
A dynamic model for a single species fishery with stage structure is proposed using taxation as a control instrument to protect the fish population from overexploitation. Criteria for local stability and global stability of the system are derived. The optimal tax policy is established by using Pontryagin's maximal principle. By numerical…
Dynamics modeling and adaptive control of flexible manipulators
NASA Technical Reports Server (NTRS)
Sasiadek, J. Z.
1991-01-01
An application of Model Reference Adaptive Control (MRAC) to the position and force control of flexible manipulators and robots is presented. A single-link flexible manipulator is analyzed. The problem was to develop a mathematical model of a flexible robot that is accurate. The objective is to show that the adaptive control works better than 'conventional' systems and is suitable for flexible structure control.
Single-state electronic ballast with dimming feature and unity power factor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, T.F.; Yu, T.H.; Chiang, M.C.
1998-05-01
Analysis, design, and practical consideration of a single-stage electronic ballast with dimming feature and unity power factor are presented in this paper. The proposed single-stage ballast is the combination of a boost converter and a half-bridge series-resonant parallel-loaded inverter. The boost semistage working in the discontinuous conduction mode functions as a power factor corrector and the inverter semistage operated above resonance are employed to ballast the lamp. Replacing the lamp with the plasma model, analysis of the ballast is fulfilled. The dimming feature is carried out by pulse-width modulation (PWM) and variable-frequency controls simultaneously. The proposed single-stage ballast is suitablemore » for applications with moderate power level and low-line voltage while requiring a high-output voltage. It can save a controller, an active switch and its driver, reduce size, and possibly increase system reliability while requiring two additional diodes over a conventional two-stage system. A prototype was implemented to verify the theoretical discussion. The hardware measurements have shown that the desired performance can be achieved feasibly.« less
Identification of single-input-single-output quantum linear systems
NASA Astrophysics Data System (ADS)
Levitt, Matthew; GuÅ£ǎ, Mǎdǎlin
2017-03-01
The purpose of this paper is to investigate system identification for single-input-single-output general (active or passive) quantum linear systems. For a given input we address the following questions: (1) Which parameters can be identified by measuring the output? (2) How can we construct a system realization from sufficient input-output data? We show that for time-dependent inputs, the systems which cannot be distinguished are related by symplectic transformations acting on the space of system modes. This complements a previous result of Guţă and Yamamoto [IEEE Trans. Autom. Control 61, 921 (2016), 10.1109/TAC.2015.2448491] for passive linear systems. In the regime of stationary quantum noise input, the output is completely determined by the power spectrum. We define the notion of global minimality for a given power spectrum, and characterize globally minimal systems as those with a fully mixed stationary state. We show that in the case of systems with a cascade realization, the power spectrum completely fixes the transfer function, so the system can be identified up to a symplectic transformation. We give a method for constructing a globally minimal subsystem direct from the power spectrum. Restricting to passive systems the analysis simplifies so that identifiability may be completely understood from the eigenvalues of a particular system matrix.
1993-10-01
Structures: Simultaneous Trajectory Tracking and Vibration Reduction ... 10 3 . Buckling Control of a Flexible Beam Using Piezoelectric Actuators...bounded solution for the inverse dynamic torque has to be non-causal. Bayo, et. al. [ 3 ], extended the inverse dynamics to planar, multiple-link systems...presented by &ayo and Moulin [4] for the single link system, with provisions for 3 extension to multiple link systems. An equivalent time domain approach for
Efficient mission control for the 48-satellite Globalstar Constellation
NASA Technical Reports Server (NTRS)
Smith, Dan
1994-01-01
The Globalstar system is being developed by Globalstar, Limited Partnership and will utilize 48 satellites in low earth orbit (See Figure 1) to create a world-wide mobile communications system consistent with Vice President Gore's vision of a Global Information Infrastructure. As a large long term commercial system developed by a newly formed organization, Globalstar provides an excellent opportunity to explore innovative solutions for highly efficient satellite command and control. Design and operational concepts being developed are unencumbered by existing physical and organizational infrastructures. This program really is 'starting with a clean sheet of paper'. Globalstar operations challenges can appear enormous. Clearly, assigning even a single person around the clock to monitor and control each satellite is excessive for Globalstar (it would require a staff of 200! . Even with only a single contact per orbit per satellite, data acquisitions will start or stop every 45 seconds! Although essentially identical, over time the satellites will develop their own 'personalities'and will re quire different data calibrations and levels of support. This paper discusses the Globalstar system and challenges and presents engineering concepts, system design decisions, and operations concepts which address the combined needs and concerns of satellite, ground system, and operations teams. Lessons from past missions have been applied, organizational barriers broken, partnerships formed across the mission segments, and new operations concepts developed for satellite constellation management. Control center requirements were then developed from the operations concepts.
A New Turbo-shaft Engine Control Law during Variable Rotor Speed Transient Process
NASA Astrophysics Data System (ADS)
Hua, Wei; Miao, Lizhen; Zhang, Haibo; Huang, Jinquan
2015-12-01
A closed-loop control law employing compressor guided vanes is firstly investigated to solve unacceptable fuel flow dynamic change in single fuel control for turbo-shaft engine here, especially for rotorcraft in variable rotor speed process. Based on an Augmented Linear Quadratic Regulator (ALQR) algorithm, a dual-input, single-output robust control scheme is proposed for a turbo-shaft engine, involving not only the closed loop adjustment of fuel flow but also that of compressor guided vanes. Furthermore, compared to single fuel control, some digital simulation cases using this new scheme about variable rotor speed have been implemented on the basis of an integrated system of helicopter and engine model. The results depict that the command tracking performance to the free turbine rotor speed can be asymptotically realized. Moreover, the fuel flow transient process has been significantly improved, and the fuel consumption has been dramatically cut down by more than 2% while keeping the helicopter level fight unchanged.
An Efficient Fuzzy Controller Design for Parallel Connected Induction Motor Drives
NASA Astrophysics Data System (ADS)
Usha, S.; Subramani, C.
2018-04-01
Generally, an induction motors are highly non-linear and has a complex time varying dynamics. This makes the speed control of an induction motor a challenging issue in the industries. But, due to the recent trends in the power electronic devices and intelligent controllers, the speed control of the induction motor is achieved by including non-linear characteristics also. Conventionally a single inverter is used to run one induction motor in industries. In the traction applications, two or more inductions motors are operated in parallel to reduce the size and cost of induction motors. In this application, the parallel connected induction motors can be driven by a single inverter unit. The stability problems may introduce in the parallel operation under low speed operating conditions. Hence, the speed deviations should be reduce with help of suitable controllers. The speed control of the parallel connected system is performed by PID controller and fuzzy logic controller. In this paper the speed response of the induction motor for the rating of IHP, 1440 rpm, and 50Hz with these controller are compared in time domain specifications. The stability analysis of the system also performed under low speed using matlab platform. The hardware model is developed for speed control using fuzzy logic controller which exhibited superior performances over the other controller.
STS-2: SAIL non-avionics subsystems math model requirements
NASA Technical Reports Server (NTRS)
Bennett, W. P.; Herold, R. W.
1980-01-01
Simulation of the STS-2 Shuttle nonavionics subsystems in the shuttle avionics integration laboratory (SAIL) is necessary for verification of the integrated shuttle avionics system. The math model (simulation) requirements for each of the nonavionics subsystems that interfaces with the Shuttle avionics system is documented and a single source document for controlling approved changes (by the SAIL change control panel) to the math models is provided.
NASA Technical Reports Server (NTRS)
1981-01-01
The goals in this program for advanced czochralski growth process to produce low cost 150 kg silicon ingots from a single crucible for technology readiness are outlined. To provide a modified CG2000 crystal power capable of pulling a minimum of five crystals, each of approximately 30 kg in weight, 150 mm diameter from a single crucible with periodic melt replenishment. Crystals to have: resistivity of 1 to 3 ohm cm, p-type; dislocation density below 1- to the 6th power per cm; orientation (100); after growth yield of greater than 90%. Growth throughput of greater than 2.5 kg per hour of machine operation using a radiation shield. Prototype equipment suitable for use as a production facility. The overall cost goal is $.70 per peak watt by 1986. To accomplish these goals, the modified CG2000 grower and development program includes: (1) increased automation with a microprocessor based control system; (2) sensors development which will increase the capability of the automatic controls system, and provide technology transfer of the developed systems.
NASA Technical Reports Server (NTRS)
Bergeron, H. P.
1983-01-01
An analysis of incident data obtained from the NASA Aviation Safety Reporting System (ASRS) has been made to determine the problem areas in general aviation single-pilot IFR (SPIFR) operations. The Aviation Safety Reporting System data base is a compilation of voluntary reports of incidents from any person who has observed or been involved in an occurrence which was believed to have posed a threat to flight safety. This paper examines only those reported incidents specifically related to general aviation single-pilot IFR operations. The frequency of occurrence of factors related to the incidents was the criterion used to define significant problem areas and, hence, to suggest where research is needed. The data was cataloged into one of five major problem areas: (1) controller judgment and response problems, (2) pilot judgment and response problems, (3) air traffic control (ATC) intrafacility and interfacility conflicts, (4) ATC and pilot communication problems, and (5) IFR-VFR conflicts. In addition, several points common to all or most of the problems were observed and reported. These included human error, communications, procedures and rules, and work load.
Hwang, Yuh-Shyan; Kung, Che-Min; Lin, Ho-Cheng; Chen, Jiann-Jong
2009-02-01
A low-sensitivity, low-bounce, high-linearity current-controlled oscillator (CCO) suitable for a single-supply mixed-mode instrumentation system is designed and proposed in this paper. The designed CCO can be operated at low voltage (2 V). The power bounce and ground bounce generated by this CCO is less than 7 mVpp when the power-line parasitic inductance is increased to 100 nH to demonstrate the effect of power bounce and ground bounce. The power supply noise caused by the proposed CCO is less than 0.35% in reference to the 2 V supply voltage. The average conversion ratio KCCO is equal to 123.5 GHz/A. The linearity of conversion ratio is high and its tolerance is within +/-1.2%. The sensitivity of the proposed CCO is nearly independent of the power supply voltage, which is less than a conventional current-starved oscillator. The performance of the proposed CCO has been compared with the current-starved oscillator. It is shown that the proposed CCO is suitable for single-supply mixed-mode instrumentation systems.
Air/fuel ratio control system for internal combustion engine having rotary valve and step motor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saito, M.
A system for feedback control of the air/fuel mixing ratio in an internal combustion engine equipped with a carburetor. The control system has an air/fuel ratio detector of a gas sensor type which provides a feedback signal to a control circuit and a rotary valve which is operated by a stepping motor responsive to a control pulse signal produced by the control circuit to regulate the fuel feed rate so as to nullify a deviation of the detected actual air/fuel ratio from a preset air/fuel ratio. The control system may include two auxiliary air-admitting passages respectively connected to a mainmore » fuel passage and a slow fuel passage in the carburetor, and in this case the single rotary valve is designed and arranged so as to simultaneously control the admission of air into both of the two auxiliary air-admitting passages.« less
An integrated power/attitude control system /IPACS/ for space vehicle application
NASA Technical Reports Server (NTRS)
Anderson, W. W.; Keckler, C. R.
1973-01-01
An integrated power and attitude control system (IPACS) concept with potential application to a broad class of space missions is discussed. The concept involves the storage and supply on demand of electrical energy in rotating flywheels while simultaneously providing control torques by controlled precession of the flywheels. The system is thus an alternative to the storage batteries used on present spacecraft while providing similar capability for attitude control as that represented by a control moment gyroscope (CMG) system. Potential IPACS configurations discussed include single- and double-rotor double-gimbal IPACS units. Typical sets of control laws which would manage the momentum and energy exchange between the IPACS and a typical space vehicle are discussed. Discussion of a simulation of a typical potential IPACS configuration and candidate mission concerned with pointing capability, power supply and demand flow, and discussion of the interactions between stabilization and control requirements and power flow requirements are presented.
NASA Astrophysics Data System (ADS)
Joshi, Ramesh; Singh, Manoj; Jadav, H. M.; Misra, Kishor; Kulkarni, S. V.; ICRH-RF Group
2010-02-01
Ion Cyclotron Resonance Heating (ICRH) is a promising heating method for a fusion device due to its localized power deposition profile, a direct ion heating at high density, and established technology for high RF power generation and transmission at low cost. Multiple analog pulse with different duty cycle in master of digital pulse for Data acquisition and Control system for steady state RF ICRH System(RF ICRH DAC) to be used for operating of RF Generator in Aditya to produce pre ionization and second analog pulse will produce heating. The control system software is based upon single digital pulse operation for RF source. It is planned to integrate multiple analog pulses with different duty cycle in master of digital pulse for Data acquisition and Control system for RF ICRH System(RF ICRH DAC) to be used for operating of RF Generator in Aditya tokamak. The task of RF ICRH DAC is to control and acquisition of all ICRH system operation with all control loop and acquisition for post analysis of data with java based tool. For pre ionization startup as well as heating experiments using multiple RF Power of different powers and duration. The experiment based upon the idea of using single RF generator to energize antenna inside the tokamak to radiate power twise, out of which first analog pulse will produce pre ionization and second analog pulse will produce heating. The whole system is based on standard client server technology using tcp/ip protocol. DAC Software is based on linux operating system for highly reliable, secure and stable system operation in failsafe manner. Client system is based on tcl/tk like toolkit for user interface with c/c++ like environment which is reliable programming languages widely used on stand alone system operation with server as vxWorks real time operating system like environment. The paper is focused on the Data acquisition and monitoring system software on Aditya RF ICRH System with analog pulses in slave mode with digital pulse in master mode for control acquisition and monitoring and interlocking.
Distributed MPC based consensus for single-integrator multi-agent systems.
Cheng, Zhaomeng; Fan, Ming-Can; Zhang, Hai-Tao
2015-09-01
This paper addresses model predictive control schemes for consensus in multi-agent systems (MASs) with discrete-time single-integrator dynamics under switching directed interaction graphs. The control horizon is extended to be greater than one which endows the closed-loop system with extra degree of freedom. We derive sufficient conditions on the sampling period and the interaction graph to achieve consensus by using the property of infinite products of stochastic matrices. Consensus can be achieved asymptotically if the sampling period is selected such that the interaction graph among agents has a directed spanning tree jointly. Significantly, if the interaction graph always has a spanning tree, one can select an arbitrary large sampling period to guarantee consensus. Finally, several simulations are conducted to illustrate the effectiveness of the theoretical results. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
A superconducting large-angle magnetic suspension
NASA Technical Reports Server (NTRS)
Downer, James; Goldie, James; Torti, Richard
1991-01-01
The component technologies were developed required for an advanced control moment gyro (CMG) type of slewing actuator for large payloads. The key component of the CMG is a large-angle magnetic suspension (LAMS). The LAMS combines the functions of the gimbal structure, torque motors, and rotor bearings of a CMG. The LAMS uses a single superconducting source coil and an array of cryoresistive control coils to produce a specific output torque more than an order of magnitude greater than conventional devices. The designed and tested LAMS system is based around an available superconducting solenoid, an array of twelve room-temperature normal control coils, and a multi-input, multi-output control system. The control laws were demonstrated for stabilizing and controlling the LAMS system.
Resilient guaranteed cost control of a power system.
Soliman, Hisham M; Soliman, Mostafa H; Hassan, Mohammad F
2014-05-01
With the development of power system interconnection, the low-frequency oscillation is becoming more and more prominent which may cause system separation and loss of energy to consumers. This paper presents an innovative robust control for power systems in which the operating conditions are changing continuously due to load changes. However, practical implementation of robust control can be fragile due to controller inaccuracies (tolerance of resistors used with operational amplifiers). A new design of resilient (non-fragile) robust control is given that takes into consideration both model and controller uncertainties by an iterative solution of a set of linear matrix inequalities (LMI). Both uncertainties are cast into a norm-bounded structure. A sufficient condition is derived to achieve the desired settling time for damping power system oscillations in face of plant and controller uncertainties. Furthermore, an improved controller design, resilient guaranteed cost controller, is derived to achieve oscillations damping in a guaranteed cost manner. The effectiveness of the algorithm is shown for a single machine infinite bus system, and then, it is extended to multi-area power system.
THE RELATIONSHIP BETWEEN VARIOUS MODES OF SINGLE LEG POSTURAL CONTROL ASSESSMENT
Schmitz, Randy
2012-01-01
Purpose/Background: While various techniques have been developed to assess the postural control system, little is known about the relationship between single leg static and functional balance. The purpose of the current study was to determine the relationship between the performance measures of several single leg postural stability tests. Methods: Forty six recreationally active college students (17 males, 29 females, 21±3 yrs, 173±10 cm) performed six single leg tests in a counterbalanced order: 1) Firm Surface-Eyes Open, 2) Firm Surface-Eyes Closed, 3) Multiaxial Surface-Eyes Open, 4) Multiaxial Surface-Eyes Closed, 5) Star Excursion Balance Test (posterior medial reach), 6) Single leg Hop-Stabilization Test. Bivariate correlations were conducted between the six outcome variables. Results: Mild to moderate correlations existed between the static tests. No significant correlations existed involving either of the functional tests. Conclusions: The results indicate that while performance of static balance tasks are mildly to moderately related, they appear to be unrelated to functional reaching or hopping movements, supporting the utilization of a battery of tests to determine overall postural control performance. Level of Evidence: 3b PMID:22666640
Magnetospheric MultiScale (MMS) System Manager
NASA Technical Reports Server (NTRS)
Schiff, Conrad; Maher, Francis Alfred; Henely, Sean Philip; Rand, David
2014-01-01
The Magnetospheric MultiScale (MMS) mission is an ambitious NASA space science mission in which 4 spacecraft are flown in tight formation about a highly elliptical orbit. Each spacecraft has multiple instruments that measure particle and field compositions in the Earths magnetosphere. By controlling the members relative motion, MMS can distinguish temporal and spatial fluctuations in a way that a single spacecraft cannot.To achieve this control, 2 sets of four maneuvers, distributed evenly across the spacecraft must be performed approximately every 14 days. Performing a single maneuver on an individual spacecraft is usually labor intensive and the complexity becomes clearly increases with four. As a result, the MMS flight dynamics team turned to the System Manager to put the routine or error-prone under machine control freeing the analysts for activities that require human judgment.The System Manager is an expert system that is capable of handling operations activities associated with performing MMS maneuvers. As an expert system, it can work off a known schedule, launching jobs based on a one-time occurrence or on a set reoccurring schedule. It is also able to detect situational changes and use event-driven programming to change schedules, adapt activities, or call for help.
NASA Technical Reports Server (NTRS)
Malachowski, M. J.
1990-01-01
Laser beam positioning and beam rider modules were incorporated into the long hollow flexible segment of an articulated robot manipulator (ARM). Using a single laser beam, the system determined the position of the distal ARM endtip, with millimetric precision, in six degrees of freedom, at distances of up to 10 meters. Preliminary designs, using space rated technology for the critical systems, of a two segmented physical ARM, with a single and a dual degree of freedom articulation, were developed, prototyped, and tested. To control the positioning of the physical ARM, an indirect adaptive controller, which used the mismatch between the position of the laser beam under static and dynamic conditions, was devised. To predict the behavior of the system and test the concept, a computer simulation model was constructed. A hierarchical artificially intelligent real time ADA operating system program structure was created. The software was designed for implementation on a dedicated VME bus based Intel 80386 administered parallel processing multi-tasking computer system.
Advanced teleprocessing systems
NASA Astrophysics Data System (ADS)
Kleinrock, L.; Gerla, M.
1983-03-01
This Semi-Annual Technical Report covers research covering the period from October 1, 1982 to March 31, 1983. This contract has three primary designated research areas: packet radio systems, resource sharing and allocation, and distributed processing and control. This report contains abstracts of publications which summarize research results in these areas followed by the main body of the report which is devoted to a treatment of single- and multi-hop packet radio systems. In particular, the main body consists of a Ph.D. dissertation, Analysis of Throughput and Delay for Single- and Multi-Hop Packet Radio Networks. The work presents a new approach to evaluating the performance of multi-hop packet radio networks, namely, a study of the times between successful transmissions. Also studied is the behavior of packets in a multi-hop system when a fixed transmission radius is specified and this radius is then optimized for throughput. A Markov chain model is also introduced and solved numerically to evaluate transmission and flow control strategies in these systems.
Design of a structural and functional hierarchy for planning and control of telerobotic systems
NASA Technical Reports Server (NTRS)
Acar, Levent; Ozguner, Umit
1989-01-01
Hierarchical structures offer numerous advantages over conventional structures for the control of telerobotic systems. A hierarchically organized system can be controlled via undetailed task assignments and can easily adapt to changing circumstances. The distributed and modular structure of these systems also enables fast response needed in most telerobotic applications. On the other hand, most of the hierarchical structures proposed in the literature are based on functional properties of a system. These structures work best for a few given functions of a large class of systems. In telerobotic applications, all functions of a single system needed to be explored. This approach requires a hierarchical organization based on physical properties of a system and such a hierarchical organization is introduced. The decomposition, organization, and control of the hierarchical structure are considered, and a system with two robot arms and a camera is presented.
Developing stereo image based robot control system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suprijadi,; Pambudi, I. R.; Woran, M.
Application of image processing is developed in various field and purposes. In the last decade, image based system increase rapidly with the increasing of hardware and microprocessor performance. Many fields of science and technology were used this methods especially in medicine and instrumentation. New technique on stereovision to give a 3-dimension image or movie is very interesting, but not many applications in control system. Stereo image has pixel disparity information that is not existed in single image. In this research, we proposed a new method in wheel robot control system using stereovision. The result shows robot automatically moves based onmore » stereovision captures.« less
Process Performance of Optima XEx Single Wafer High Energy Implanter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, J. H.; Yoon, Jongyoon; Kondratenko, S.
2011-01-07
To meet the process requirements for well formation in future CMOS memory production, high energy implanters require more robust angle, dose, and energy control while maintaining high productivity. The Optima XEx high energy implanter meets these requirements by integrating a traditional LINAC beamline with a robust single wafer handling system. To achieve beam angle control, Optima XEx can control both the horizontal and vertical beam angles to within 0.1 degrees using advanced beam angle measurement and correction. Accurate energy calibration and energy trim functions accelerate process matching by eliminating energy calibration errors. The large volume process chamber and UDC (upstreammore » dose control) using faraday cups outside of the process chamber precisely control implant dose regardless of any chamber pressure increase due to PR (photoresist) outgassing. An optimized RF LINAC accelerator improves reliability and enables singly charged phosphorus and boron energies up to 1200 keV and 1500 keV respectively with higher beam currents. A new single wafer endstation combined with increased beam performance leads to overall increased productivity. We report on the advanced performance of Optima XEx observed during tool installation and volume production at an advanced memory fab.« less
Real-Time Monitoring and Prediction of the Pilot Vehicle System (PVS) Closed-Loop Stability
NASA Astrophysics Data System (ADS)
Mandal, Tanmay Kumar
Understanding human control behavior is an important step for improving the safety of future aircraft. Considerable resources are invested during the design phase of an aircraft to ensure that the aircraft has desirable handling qualities. However, human pilots exhibit a wide range of control behaviors that are a function of external stimulus, aircraft dynamics, and human psychological properties (such as workload, stress factor, confidence, and sense of urgency factor). This variability is difficult to address comprehensively during the design phase and may lead to undesirable pilot-aircraft interaction, such as pilot-induced oscillations (PIO). This creates the need to keep track of human pilot performance in real-time to monitor the pilot vehicle system (PVS) stability. This work focused on studying human pilot behavior for the longitudinal axis of a remotely controlled research aircraft and using human-in-the-loop (HuIL) simulations to obtain information about the human controlled system (HCS) stability. The work in this dissertation is divided into two main parts: PIO analysis and human control model parameters estimation. To replicate different flight conditions, this study included time delay and elevator rate limiting phenomena, typical of actuator dynamics during the experiments. To study human control behavior, this study employed the McRuer model for single-input single-output manual compensatory tasks. McRuer model is a lead-lag controller with time delay which has been shown to adequately model manual compensatory tasks. This dissertation presents a novel technique to estimate McRuer model parameters in real-time and associated validation using HuIL simulations to correctly predict HCS stability. The McRuer model parameters were estimated in real-time using a Kalman filter approach. The estimated parameters were then used to analyze the stability of the closed-loop HCS and verify them against the experimental data. Therefore, the main contribution of this dissertation is the design of an unscented Kalman filter-based algorithm to estimate McRuer model parameters in real time, and a framework to validate this algorithm for single-input single-output manual compensatory tasks to predict instabilities.
Kim, Chobok; Chung, Chongwook; Kim, Jeounghoon
2013-11-06
Previous experience affects our behavior in terms of adjustments. It has been suggested that the conflict monitor-controller system implemented in the prefrontal cortex plays a critical role in such adjustments. Previous studies suggested that there exists multiple conflict monitor-controller systems associated with the level of information (i.e., stimulus and response levels). In this study, we sought to test whether different types of conflicts occur at the same information processing level (i.e., response level) are independently processed. For this purpose, we designed a task paradigm to measure two different types of response conflicts using color-based and location-based conflict stimuli and measured the conflict adaptation effects associated with the two types of conflicts either independently (i.e., single conflict conditions) or simultaneously (i.e., a double-conflict condition). The behavioral results demonstrated that performance on current incongruent trials was faster only when the preceding trial was the same type of response conflict regardless of whether they included a single- or double-conflict. Imaging data also showed that anterior cingulate and dorsolateral prefrontal cortices operate in a task-specific manner. These findings suggest that there may be multiple monitor-controller loops for color-based and location-based conflicts even at the same response level. Importantly, our results suggest that double-conflict processing is qualitatively different from single-conflict processing although double-conflict shares the same sources of conflict with two single-conflict conditions. © 2013 Published by Elsevier B.V.
Main control computer security model of closed network systems protection against cyber attacks
NASA Astrophysics Data System (ADS)
Seymen, Bilal
2014-06-01
The model that brings the data input/output under control in closed network systems, that maintains the system securely, and that controls the flow of information through the Main Control Computer which also brings the network traffic under control against cyber-attacks. The network, which can be controlled single-handedly thanks to the system designed to enable the network users to make data entry into the system or to extract data from the system securely, intends to minimize the security gaps. Moreover, data input/output record can be kept by means of the user account assigned for each user, and it is also possible to carry out retroactive tracking, if requested. Because the measures that need to be taken for each computer on the network regarding cyber security, do require high cost; it has been intended to provide a cost-effective working environment with this model, only if the Main Control Computer has the updated hardware.
Active control of transmission loss with smart foams.
Kundu, Abhishek; Berry, Alain
2011-02-01
Smart foams combine the complimentary advantages of passive foam material and spatially distributed piezoelectric actuator embedded in it for active noise control applications. In this paper, the problem of improving the transmission loss of smart foams using active control strategies has been investigated both numerically and experimentally inside a waveguide under the condition of plane wave propagation. The finite element simulation of a coupled noise control system has been undertaken with three different smart foam designs and their effectiveness in cancelling the transmitted wave downstream of the smart foam have been studied. The simulation results provide insight into the physical phenomenon of active noise cancellation and explain the impact of the smart foam designs on the optimal active control results. Experimental studies aimed at implementing the real-time control for transmission loss optimization have been performed using the classical single input/single output filtered-reference least mean squares algorithm. The active control results with broadband and single frequency primary source inputs demonstrate a good improvement in the transmission loss of the smart foams. The study gives a comparative description of the transmission and absorption control problems in light of the modification of the vibration response of the piezoelectric actuator under active control.
An Optimized Integrator Windup Protection Technique Applied to a Turbofan Engine Control
NASA Technical Reports Server (NTRS)
Watts, Stephen R.; Garg, Sanjay
1995-01-01
This paper introduces a new technique for providing memoryless integrator windup protection which utilizes readily available optimization software tools. This integrator windup protection synthesis provides a concise methodology for creating integrator windup protection for each actuation system loop independently while assuring both controller and closed loop system stability. The individual actuation system loops' integrator windup protection can then be combined to provide integrator windup protection for the entire system. This technique is applied to an H(exp infinity) based multivariable control designed for a linear model of an advanced afterburning turbofan engine. The resulting transient characteristics are examined for the integrated system while encountering single and multiple actuation limits.
NASA Technical Reports Server (NTRS)
Tinling, B. E.
1977-01-01
Estimates of the effectiveness of a model following type control system in reducing the roll excursion due to a wake vortex encounter were obtained from single degree of freedom computations with inputs derived from the results of wind tunnel, flight, and simulation experiments. The analysis indicates that the control power commanded by the automatic system must be roughly equal to the vortex induced roll acceleration if effective limiting of the maximum bank angle is to be achieved.
Wavelength-multiplexed fiber optic position encoder for aircraft control systems
NASA Astrophysics Data System (ADS)
Beheim, Glenn; Krasowski, Michael J.; Sotomayor, Jorge L.; Fritsch, Klaus; Flatico, Joseph M.; Bathurst, Richard L.; Eustace, John G.; Anthan, Donald J.
1991-02-01
NASA Lewis together with John Carroll University has worked for the last several years to develop wavelength-multiplexed digital position transducers for use in aircraft control systems. A prototype rotary encoder is being built for a demonstration program involving the control of a commercial transport''s turbofan engine. This encoder has eight bits of resolution a 90 degree range and is powered by a single LED. A compact electro-optics module is being developed to withstand the extremely hostile gas turbine environment.
Multichannel temperature controller for hot air solar house
NASA Technical Reports Server (NTRS)
Currie, J. R.
1979-01-01
This paper describes an electronic controller that is optimized to operate a hot air solar system. Thermal information is obtained from copper constantan thermocouples and a wall-type thermostat. The signals from the thermocouples are processed through a single amplifier using a multiplexing scheme. The multiplexing reduces the component count and automatically calibrates the thermocouple amplifier. The processed signals connect to some simple logic that selects one of the four operating modes. This simple, inexpensive, and reliable scheme is well suited to control hot air solar systems.
Rotary Wing Deceleration Use on Titan
NASA Technical Reports Server (NTRS)
Young, Larry A.; Steiner, Ted J.
2011-01-01
Rotary wing decelerator (RWD) systems were compared against other methods of atmospheric deceleration and were determined to show significant potential for application to a system requiring controlled descent, low-velocity landing, and atmospheric research capability on Titan. Design space exploration and down-selection results in a system with a single rotor utilizing cyclic pitch control. Models were developed for selection of a RWD descent system for use on Titan and to determine the relationships between the key design parameters of such a system and the time of descent. The possibility of extracting power from the system during descent was also investigated.
NASA Technical Reports Server (NTRS)
Birur, Gajanana C.; Bhandari, Pradeep; Bame, David; Karlmann, Paul; Mastropietro, A. J.; Liu, Yuanming; Miller, Jennifer; Pauken, Michael; Lyra, Jacqueline
2012-01-01
The Mars Science Laboratory (MSL) rover, Curiosity, which was launched on November 26, 2011, incorporates a novel active thermal control system to keep the sensitive electronics and science instruments at safe operating and survival temperatures. While the diurnal temperature variations on the Mars surface range from -120 C to +30 C, the sensitive equipment are kept within -40 C to +50 C. The active thermal control system is based on a single-phase mechanically pumped fluid loop (MPFL) system which removes or recovers excess waste heat and manages it to maintain the sensitive equipment inside the rover at safe temperatures. This paper will describe the entire process of developing this active thermal control system for the MSL rover from concept to flight implementation. The development of the rover thermal control system during its architecture, design, fabrication, integration, testing, and launch is described.
De Oliveira, Gildasio S; Rodes, Meghan E; Bialek, Jane; Kendall, Mark C; McCarthy, Robert J
2017-11-15
Few systemic drug interventions are efficacious to improve patient reported quality of recovery after ambulatory surgery. We aimed to evaluate whether a single dose systemic acetaminophen improve quality of recovery in female patients undergoing ambulatory breast surgery. We hypothesized that patients receiving a single dose systemic acetaminophen at the end of the surgical procedure would have a better global quality of postsurgical recovery compared to the ones receiving saline. The study was a prospective randomized double blinded, placebo controlled, clinical trial. Healthy female subjects were randomized to receive 1 g single dose systemic acetaminophen at the end of the surgery or the same volume of saline. The primary outcome was the Quality of Recovery 40 (QOR-40) questionnaire at 24 hours after surgery. Other data collected included opioid consumption and pain scores. Data were analyzed using group t tests and the Wilcoxon exact test. The association between opioid consumption and quality of recovery was evaluated using Spearman rho. P < .05 was used to reject the null hypothesis for the primary outcome. Seventy subjects were randomized and sixty-five completed the study. Patients' baseline characteristics and surgical factors were similar between the study groups. There was a clinically significant difference in the global QoR-40 scores between the acetaminophen and the saline groups, median (IQR) of 189 (183 to 194) and 183 (175 to 190), respectively, P = .01. In addition, there was an inverse relationship (Spearman's rho= -0.33) between oral opioid consumption at home (oral morphine equivalents) and 24 hour postoperative quality of recovery, P = .007. A single dose of systemic acetaminophen improves patient reported quality of recovery after ambulatory breast surgery. The use of systemic acetaminophen is an efficacious strategy to improve patient perceived quality of postsurgical recovery and analgesic outcomes after hospital discharge for ambulatory breast surgery. © 2017 Wiley Periodicals, Inc.
Intelligent Robotic Systems Study (IRSS), phase 4
NASA Technical Reports Server (NTRS)
1991-01-01
Under the Intelligent Robotics Systems Study (IRSS), a generalized robotic control architecture was developed for use with the ProtoFlight Manipulator Arm (PFMA). Based upon the NASREM system design concept, the controller built for the PFMA provides localized position based force control, teleoperation, and advanced path recording and playback capabilities. The PFMA has six computer controllable degrees of freedom (DOF) plus a 7th manually indexable DOF, making the manipulator a pseudo 7 DOF mechanism. Joints on the PFMA are driven via 7 pulse width modulated amplifiers. Digital control of the PFMA is implemented using a variety of single board computers. There were two major activities under the IRSS phase 4 study: (1) enhancement of the PFMA control system software functionality; and (2) evaluation of operating modes via a teleoperation performance study. These activities are described and results are given.
Development of a prototype two-phase thermal bus system for Space Station
NASA Technical Reports Server (NTRS)
Myron, D. L.; Parish, R. C.
1987-01-01
This paper describes the basic elements of a pumped two-phase ammonia thermal control system designed for microgravity environments, the development of the concept into a Space Station flight design, and design details of the prototype to be ground-tested in the Johnson Space Center (JSC) Thermal Test Bed. The basic system concept is one of forced-flow heat transport through interface heat exchangers with anhydrous ammonia being pumped by a device expressly designed for two-phase fluid management in reduced gravity. Control of saturation conditions, and thus system interface temperatures, is accomplished with a single central pressure regulating valve. Flow control and liquid inventory are controlled by passive, nonelectromechanical devices. Use of these simple control elements results in minimal computer controls and high system reliability. Building on the basic system concept, a brief overview of a potential Space Station flight design is given. Primary verification of the system concept will involve testing at JSC of a 25-kW ground test article currently in fabrication.
Control of a lithium-ion battery storage system for microgrid applications
NASA Astrophysics Data System (ADS)
Pegueroles-Queralt, Jordi; Bianchi, Fernando D.; Gomis-Bellmunt, Oriol
2014-12-01
The operation of future microgrids will require the use of energy storage systems employing power electronics converters with advanced power management capacities. This paper presents the control scheme for a medium power lithium-ion battery bidirectional DC/AC power converter intended for microgrid applications. The switching devices of a bidirectional DC converter are commanded by a single sliding mode control law, dynamically shaped by a linear voltage regulator in accordance with the battery management system. The sliding mode controller facilitates the implementation and design of the control law and simplifies the stability analysis over the entire operating range. Control parameters of the linear regulator are designed to minimize the impact of commutation noise in the DC-link voltage regulation. The effectiveness of the proposed control strategy is illustrated by experimental results.
Feng, Haibo; Dong, Dinghui; Ma, Tengfei; Zhuang, Jinlei; Fu, Yili; Lv, Yi; Li, Liyi
2017-12-01
Surgical robot systems which can significantly improve surgical procedures have been widely used in laparoendoscopic single-site surgery (LESS). For a relative complex surgical procedure, the development of an in vivo visual robot system for LESS can effectively improve the visualization for surgical robot systems. In this work, an in vivo visual robot system with a new mechanism for LESS was investigated. A finite element method (FEM) analysis was carried out to ensure the safety of the in vivo visual robot during the movement, which was the most important concern for surgical purposes. A master-slave control strategy was adopted, in which the control model was established by off-line experiments. The in vivo visual robot system was verified by using a phantom box. The experiment results show that the robot system can successfully realize the expected functionalities and meet the demands of LESS. The experiment results indicate that the in vivo visual robot with high manipulability has great potential in clinical application. Copyright © 2017 John Wiley & Sons, Ltd.
Satapathy, Sitakanta; Prabakaran, Palani; Prasad, Edamana
2018-04-20
Smart single-component materials with versatile functions require pre-programming of a higher order molecular assembly. An electroactive supergelator (c=0.07 wt %) triphenylamine core-appended poly(aryl ether) dendron (TPAPAE) is described, where substantial dendritic effects improve the order and crystallinity by switching the local minima from self-assembled molecular wires to thermodynamically favorable global minima of ordered crystals, ripened within the fibers. Controlled in situ phase change at room temperature ultimately stabilized the mixed valence states in the single-component supramolecular assembly with photoluminescence and photoinduced charge transport amplified by two orders of magnitude. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Schneider, Michelle; Lippincott, Jeff; Chubb, Steve; Whitaker, Jimmy; Rice, Jim; Gillis, Robert; Sims, Chris; Sellers, Donna; Bailey, Darrell (Technical Monitor)
2002-01-01
The Telescience Resource Kit (TReK) is a PC based ground control system. It can be used by a single individual or in a group environment to monitor and control spacecraft systems and payloads. Capabilities include data receipt, data processing, data storage, data management, and data transmission. Commercial-Off-The-Shelf (COTS) hardware and software have been employed to reduce development costs, operations and maintenance costs, and to effectively take advantage of new commercial products as they become available. The TReK system is currently being used to monitor and control payloads aboard the International Space Station. It is located at sites around the world.
Khoshbin, Elham; Shokri, Abbas; Donyavi, Zakieh; Shahriari, Shahriar; Salehimehr, Golsa; Farhadian, Maryam; Kavandi, Zeinab
2017-08-01
This study sought to compare the root canal debridement ability of Neolix, Reciproc and ProTaper rotary systems in long oval-shaped root canals. Eighty five extracted single-rooted human teeth with long oval-shaped single root canals were selected and divided into three experimental groups(n=25) and one control group (n= 10). Root canals were filled with Vitapex radiopaque contrast medium and prepared with Neolix, Reciproc or ProTaper systems. The control group only received irrigation. Digital radiographs were obtained at baseline and postoperatively and subjected to digital subtraction. The percentage of reduction in contrast medium was quantified at 0-5 mm and 5-10 mm distances from the apex. The data were analyzed using one-way ANOVA and t-test. The mean percentage of the contrast medium removed was not significantly different in the 0-5mm segment among the three groups ( P =0.6). In the 5-10mm segment a significant difference was found in this regard among the ProTaper and Reciproc groups ( P =0.02) and the highest mean percentage of contrast medium was removed by ProTaper. But, difference between ProTaper and Neolix as well as Neolix and Reciproc was not significant. In Neolix ( P =0.024) and Reciproc ( P =0.002) systems, the mean percentage of the contrast medium removed from the 0-5mm segment was significantly greater than that in 5-10mm segment; however, this difference was not significant in ProTaper group ( P =0.069). Neolix single-file system may be a suitable alternative to ProTaper multiple-file system in debridement of long oval shaped canals. Key words: Root Canal Preparation, Debridement, Root Canal Therapy.
Postural control strategies during single limb stance following acute lateral ankle sprain.
Doherty, Cailbhe; Bleakley, Chris; Hertel, Jay; Caulfield, Brian; Ryan, John; Delahunt, Eamonn
2014-06-01
Single-limb stance is maintained via the integration of visual, vestibular and somatosensory afferents. Musculoskeletal injury challenges the somatosensory system to reweight distorted sensory afferents. This investigation supplements kinetic analysis of eyes-open and eyes-closed single-limb stance tasks with a kinematic profile of lower limb postural orientation in an acute lateral ankle sprain group to assess the adaptive capacity of the sensorimotor system to injury. Sixty-six participants with first-time acute lateral ankle sprain completed a 20-second eyes-open single-limb stance task on their injured and non-injured limbs (task 1). Twenty-three of these participants successfully completed the same 20-second single-limb stance task with their eyes closed (task 2). A non-injured control group of 19 participants completed task 1, with 16 completing task 2. 3-dimensional kinematics of the hip, knee and ankle joints, as well as associated fractal dimension of the center-of-pressure path were determined for each limb during these tasks. Between trial analyses revealed significant differences in stance limb kinematics and fractal dimension of the center-of-pressure path for task 2 only. The control group bilaterally assumed a position of greater hip flexion compared to injured participants on their side-matched "involved"(7.41 [6.1°] vs 1.44 [4.8]°; η(2)=.34) and "uninvolved" (9.59 [8.5°] vs 2.16 [5.6°]; η(2)=.31) limbs, with a greater fractal dimension of the center-of-pressure path (involved limb=1.39 [0.16°] vs 1.25 [0.14°]; uninvolved limb=1.37 [0.21°] vs 1.23 [0.14°]). Bilateral impairment in postural control strategies present following a first time acute lateral ankle sprain. Copyright © 2014 Elsevier Ltd. All rights reserved.
Multiple node remote messaging
Blumrich, Matthias A.; Chen, Dong; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Ohmacht, Martin; Salapura, Valentina; Steinmacher-Burow, Burkhard; Vranas, Pavlos
2010-08-31
A method for passing remote messages in a parallel computer system formed as a network of interconnected compute nodes includes that a first compute node (A) sends a single remote message to a remote second compute node (B) in order to control the remote second compute node (B) to send at least one remote message. The method includes various steps including controlling a DMA engine at first compute node (A) to prepare the single remote message to include a first message descriptor and at least one remote message descriptor for controlling the remote second compute node (B) to send at least one remote message, including putting the first message descriptor into an injection FIFO at the first compute node (A) and sending the single remote message and the at least one remote message descriptor to the second compute node (B).
NASA Technical Reports Server (NTRS)
Reed, John A.; Afjeh, Abdollah A.; Lewandowski, Henry; Homer, Patrick T.; Schlichting, Richard D.
1996-01-01
The NASA Numerical Propulsion System Simulation (NPSS) project is exploring the use of computer simulation to facilitate the design of new jet engines. Several key issues raised in this research are being examined in an NPSS-related research project: zooming, monitoring and control, and support for heterogeneity. The design of a simulation executive that addresses each of these issues is described. In this work, the strategy of zooming, which allows codes that model at different levels of fidelity to be integrated within a single simulation, is applied to the fan component of a turbofan propulsion system. A prototype monitoring and control system has been designed for this simulation to support experimentation with expert system techniques for active control of the simulation. An interconnection system provides a transparent means of connecting the heterogeneous systems that comprise the prototype.