Sample records for single correction factor

  1. A comparative study of the effects of cone-plate and parallel-plate geometries on rheological properties under oscillatory shear flow

    NASA Astrophysics Data System (ADS)

    Song, Hyeong Yong; Salehiyan, Reza; Li, Xiaolei; Lee, Seung Hak; Hyun, Kyu

    2017-11-01

    In this study, the effects of cone-plate (C/P) and parallel-plate (P/P) geometries were investigated on the rheological properties of various complex fluids, e.g. single-phase (polymer melts and solutions) and multiphase systems (polymer blend and nanocomposite, and suspension). Small amplitude oscillatory shear (SAOS) tests were carried out to compare linear rheological responses while nonlinear responses were compared using large amplitude oscillatory shear (LAOS) tests at different frequencies. Moreover, Fourier-transform (FT)-rheology method was used to analyze the nonlinear responses under LAOS flow. Experimental results were compared with predictions obtained by single-point correction and shear rate correction. For all systems, SAOS data measured by C/P and P/P coincide with each other, but results showed discordance between C/P and P/P measurements in the nonlinear regime. For all systems except xanthan gum solutions, first-harmonic moduli were corrected using a single horizontal shift factor, whereas FT rheology-based nonlinear parameters ( I 3/1, I 5/1, Q 3, and Q 5) were corrected using vertical shift factors that are well predicted by single-point correction. Xanthan gum solutions exhibited anomalous corrections. Their first-harmonic Fourier moduli were superposed using a horizontal shift factor predicted by shear rate correction applicable to highly shear thinning fluids. The distinguished corrections were observed for FT rheology-based nonlinear parameters. I 3/1 and I 5/1 were superposed by horizontal shifts, while the other systems displayed vertical shifts of I 3/1 and I 5/1. Q 3 and Q 5 of xanthan gum solutions were corrected using both horizontal and vertical shift factors. In particular, the obtained vertical shift factors for Q 3 and Q 5 were twice as large as predictions made by single-point correction. Such larger values are rationalized by the definitions of Q 3 and Q 5. These results highlight the significance of horizontal shift corrections in nonlinear oscillatory shear data.

  2. A comparison of quality of present-day heat flow obtained from BHTs, Horner Plots of Malay Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waples, D.W.; Mahadir, R.

    1994-07-01

    Reconciling temperature data obtained from measurement of single BHT, multiple BHT at a single depth, RFTs, and DSTs, is very difficult. Quality of data varied widely, however DST data were assumed to be most reliable. Data from 87 wells was used in this study, but only 47 wells have DST data. BASINMOD program was used to calculate the present-day heat flow, using measured thermal conductivity and calibrated against the DST data. The heat flows obtained from the DST data were assumed to be correct and representative throughout the basin. Then, heat flows using (1) uncorrected RFT data, (2) multiple BHTmore » data corrected by the Horner plot method, and (3) single BHT values corrected upward by a standard 10% were calculated. All of these three heat-flow populations had identically standard deviations to that for the DST data, but with significantly lower mean values. Correction factors were calculated to give each of the three erroneous populations the same mean value as the DST population. Heat flows calculated from RFT data had to be corrected upward by a factor of 1.12 to be equivalent to DST data; Horner plot data corrected by a factor of 1.18, and single BHT data by a factor of 1.2. These results suggest that present-day subsurface temperatures using RFT, Horner plot, and BHT data are considerably lower than they should be. The authors suspect qualitatively similar results would be found in other areas. Hence, they recommend significant corrections be routinely made until local calibration factors are established.« less

  3. A Correction to the Stress-Strain Curve During Multistage Hot Deformation of 7150 Aluminum Alloy Using Instantaneous Friction Factors

    NASA Astrophysics Data System (ADS)

    Jiang, Fulin; Tang, Jie; Fu, Dinfa; Huang, Jianping; Zhang, Hui

    2018-04-01

    Multistage stress-strain curve correction based on an instantaneous friction factor was studied for axisymmetric uniaxial hot compression of 7150 aluminum alloy. Experimental friction factors were calculated based on continuous isothermal axisymmetric uniaxial compression tests at various deformation parameters. Then, an instantaneous friction factor equation was fitted by mathematic analysis. After verification by comparing single-pass flow stress correction with traditional average friction factor correction, the instantaneous friction factor equation was applied to correct multistage stress-strain curves. The corrected results were reasonable and validated by multistage relative softening calculations. This research provides a broad potential for implementing axisymmetric uniaxial compression in multistage physical simulations and friction optimization in finite element analysis.

  4. Convenient determination of luminescence quantum yield using a combined electronic absorption and emission spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prakash, John; Mishra, Ashok Kumar

    2016-01-15

    It is possible to measure luminescence quantum yield in a facile way, by designing an optical spectrometer capable of obtaining electronic absorption as well as luminescence spectra, with a setup that uses the same light source and detector for both the spectral measurements. Employment of a single light source and single detector enables use of the same correction factor profile for spectral corrections. A suitable instrumental scaling factor is used for adjusting spectral losses.

  5. Determination of small field synthetic single-crystal diamond detector correction factors for CyberKnife, Leksell Gamma Knife Perfexion and linear accelerator.

    PubMed

    Veselsky, T; Novotny, J; Pastykova, V; Koniarova, I

    2017-12-01

    The aim of this study was to determine small field correction factors for a synthetic single-crystal diamond detector (PTW microDiamond) for routine use in clinical dosimetric measurements. Correction factors following small field Alfonso formalism were calculated by comparison of PTW microDiamond measured ratio M Qclin fclin /M Qmsr fmsr with Monte Carlo (MC) based field output factors Ω Qclin,Qmsr fclin,fmsr determined using Dosimetry Diode E or with MC simulation itself. Diode measurements were used for the CyberKnife and Varian Clinac 2100C/D linear accelerator. PTW microDiamond correction factors for Leksell Gamma Knife (LGK) were derived using MC simulated reference values from the manufacturer. PTW microDiamond correction factors for CyberKnife field sizes 25-5 mm were mostly smaller than 1% (except for 2.9% for 5 mm Iris field and 1.4% for 7.5 mm fixed cone field). The correction of 0.1% and 2.0% for 8 mm and 4 mm collimators, respectively, needed to be applied to PTW microDiamond measurements for LGK Perfexion. Finally, PTW microDiamond M Qclin fclin /M Qmsr fmsr for the linear accelerator varied from MC corrected Dosimetry Diode data by less than 0.5% (except for 1 × 1 cm 2 field size with 1.3% deviation). Regarding low resulting correction factor values, the PTW microDiamond detector may be considered an almost ideal tool for relative small field dosimetry in a large variety of stereotactic and radiosurgery treatment devices. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  6. Power considerations for λ inflation factor in meta-analyses of genome-wide association studies.

    PubMed

    Georgiopoulos, Georgios; Evangelou, Evangelos

    2016-05-19

    The genomic control (GC) approach is extensively used to effectively control false positive signals due to population stratification in genome-wide association studies (GWAS). However, GC affects the statistical power of GWAS. The loss of power depends on the magnitude of the inflation factor (λ) that is used for GC. We simulated meta-analyses of different GWAS. Minor allele frequency (MAF) ranged from 0·001 to 0·5 and λ was sampled from two scenarios: (i) random scenario (empirically-derived distribution of real λ values) and (ii) selected scenario from simulation parameter modification. Adjustment for λ was considered under single correction (within study corrected standard errors) and double correction (additional λ corrected summary estimate). MAF was a pivotal determinant of observed power. In random λ scenario, double correction induced a symmetric power reduction in comparison to single correction. For MAF 1·2 and MAF >5%. Our results provide a quick but detailed index for power considerations of future meta-analyses of GWAS that enables a more flexible design from early steps based on the number of studies accumulated in different groups and the λ values observed in the single studies.

  7. Radiative corrections to the η(') Dalitz decays

    NASA Astrophysics Data System (ADS)

    Husek, Tomáš; Kampf, Karol; Novotný, Jiří; Leupold, Stefan

    2018-05-01

    We provide the complete set of radiative corrections to the Dalitz decays η(')→ℓ+ℓ-γ beyond the soft-photon approximation, i.e., over the whole range of the Dalitz plot and with no restrictions on the energy of a radiative photon. The corrections inevitably depend on the η(')→ γ*γ(*) transition form factors. For the singly virtual transition form factor appearing, e.g., in the bremsstrahlung correction, recent dispersive calculations are used. For the one-photon-irreducible contribution at the one-loop level (for the doubly virtual form factor), we use a vector-meson-dominance-inspired model while taking into account the η -η' mixing.

  8. Biometrics encryption combining palmprint with two-layer error correction codes

    NASA Astrophysics Data System (ADS)

    Li, Hengjian; Qiu, Jian; Dong, Jiwen; Feng, Guang

    2017-07-01

    To bridge the gap between the fuzziness of biometrics and the exactitude of cryptography, based on combining palmprint with two-layer error correction codes, a novel biometrics encryption method is proposed. Firstly, the randomly generated original keys are encoded by convolutional and cyclic two-layer coding. The first layer uses a convolution code to correct burst errors. The second layer uses cyclic code to correct random errors. Then, the palmprint features are extracted from the palmprint images. Next, they are fused together by XORing operation. The information is stored in a smart card. Finally, the original keys extraction process is the information in the smart card XOR the user's palmprint features and then decoded with convolutional and cyclic two-layer code. The experimental results and security analysis show that it can recover the original keys completely. The proposed method is more secure than a single password factor, and has higher accuracy than a single biometric factor.

  9. Efficiency of single-particle engines

    NASA Astrophysics Data System (ADS)

    Proesmans, Karel; Driesen, Cedric; Cleuren, Bart; Van den Broeck, Christian

    2015-09-01

    We study the efficiency of a single-particle Szilard and Carnot engine. Within a first order correction to the quasistatic limit, the work distribution is found to be Gaussian and the correction factor to average work and efficiency only depends on the piston speed. The stochastic efficiency is studied for both models and the recent findings on efficiency fluctuations are confirmed numerically. Special features are revealed in the zero-temperature limit.

  10. Ionization chamber-based reference dosimetry of intensity modulated radiation beams.

    PubMed

    Bouchard, Hugo; Seuntjens, Jan

    2004-09-01

    The present paper addresses reference dose measurements using thimble ionization chambers for quality assurance in IMRT fields. In these radiation fields, detector fluence perturbation effects invalidate the application of open-field dosimetry protocol data for the derivation of absorbed dose to water from ionization chamber measurements. We define a correction factor C(Q)IMRT to correct the absorbed dose to water calibration coefficient N(D, w)Q for fluence perturbation effects in individual segments of an IMRT delivery and developed a calculation method to evaluate the factor. The method consists of precalculating, using accurate Monte Carlo techniques, ionization chamber, type-dependent cavity air dose, and in-phantom dose to water at the reference point for zero-width pencil beams as a function of position of the pencil beams impinging on the phantom surface. These precalculated kernels are convolved with the IMRT fluence distribution to arrive at the dose-to-water-dose-to-cavity air ratio [D(a)w (IMRT)] for IMRT fields and with a 10x10 cm2 open-field fluence to arrive at the same ratio D(a)w (Q) for the 10x10 cm2 reference field. The correction factor C(Q)IMRT is then calculated as the ratio of D(a)w (IMRT) and D(a)w (Q). The calculation method was experimentally validated and the magnitude of chamber correction factors in reference dose measurements in single static and dynamic IMRT fields was studied. The results show that, for thimble-type ionization chambers the correction factor in a single, realistic dynamic IMRT field can be of the order of 10% or more. We therefore propose that for accurate reference dosimetry of complete n-beam IMRT deliveries, ionization chamber fluence perturbation correction factors must explicitly be taken into account.

  11. Continuous quantum error correction for non-Markovian decoherence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oreshkov, Ognyan; Brun, Todd A.; Communication Sciences Institute, University of Southern California, Los Angeles, California 90089

    2007-08-15

    We study the effect of continuous quantum error correction in the case where each qubit in a codeword is subject to a general Hamiltonian interaction with an independent bath. We first consider the scheme in the case of a trivial single-qubit code, which provides useful insights into the workings of continuous error correction and the difference between Markovian and non-Markovian decoherence. We then study the model of a bit-flip code with each qubit coupled to an independent bath qubit and subject to continuous correction, and find its solution. We show that for sufficiently large error-correction rates, the encoded state approximatelymore » follows an evolution of the type of a single decohering qubit, but with an effectively decreased coupling constant. The factor by which the coupling constant is decreased scales quadratically with the error-correction rate. This is compared to the case of Markovian noise, where the decoherence rate is effectively decreased by a factor which scales only linearly with the rate of error correction. The quadratic enhancement depends on the existence of a Zeno regime in the Hamiltonian evolution which is absent in purely Markovian dynamics. We analyze the range of validity of this result and identify two relevant time scales. Finally, we extend the result to more general codes and argue that the performance of continuous error correction will exhibit the same qualitative characteristics.« less

  12. Single-stage three-phase boost power factor correction circuit for AC-DC converter

    NASA Astrophysics Data System (ADS)

    Azazi, Haitham Z.; Ahmed, Sayed M.; Lashine, Azza E.

    2018-01-01

    This article presents a single-stage three-phase power factor correction (PFC) circuit for AC-to-DC converter using a single-switch boost regulator, leading to improve the input power factor (PF), reducing the input current harmonics and decreasing the number of required active switches. A novel PFC control strategy which is characterised as a simple and low-cost control circuit was adopted, for achieving a good dynamic performance, unity input PF, and minimising the harmonic contents of the input current, at which it can be applied to low/medium power converters. A detailed analytical, simulation and experimental studies were therefore conducted. The effectiveness of the proposed controller algorithm is validated by the simulation results, which were carried out using MATLAB/SIMULINK environment. The proposed system is built and tested in the laboratory using DSP-DS1104 digital control board for an inductive load. The results revealed that the total harmonic distortion in the supply current was very low. Finally, a good agreement between simulation and experimental results was achieved.

  13. [Determination of five naphthaquinones in Arnebia euchroma by quantitative analysis multi-components with single-marker].

    PubMed

    Zhao, Wen-Wen; Wu, Zhi-Min; Wu, Xia; Zhao, Hai-Yu; Chen, Xiao-Qing

    2016-10-01

    This study is to determine five naphthaquinones (acetylshikonin, β-acetoxyisovalerylalkannin, isobutylshikonin, β,β'-dimethylacrylalkannin,α-methyl-n-butylshikonin) by quantitative analysis of multi-components with a single marker (QAMS). β,β'-Dimethylacrylalkannin was selected as the internal reference substance, and the relative correlation factors (RCFs) of acetylshikonin, β-acetoxyisovalerylalkannin, isobutylshikonin and α-methyl-n-butylshikonin were calculated. Then the ruggedness of relative correction factors was tested on different instruments and columns. Meanwhile, 16 batches of Arnebia euchroma were analyzed by external standard method (ESM) and QAMS, respectively. The peaks were identifited by LC-MS. The ruggedness of relative correction factors was good. And the analytical results calculated by ESM and QAMS showed no difference. The quantitative method established was feasible and suitable for the quality evaluation of A. euchroma. Copyright© by the Chinese Pharmaceutical Association.

  14. Determination of velocity correction factors for real-time air velocity monitoring in underground mines.

    PubMed

    Zhou, Lihong; Yuan, Liming; Thomas, Rick; Iannacchione, Anthony

    2017-12-01

    When there are installations of air velocity sensors in the mining industry for real-time airflow monitoring, a problem exists with how the monitored air velocity at a fixed location corresponds to the average air velocity, which is used to determine the volume flow rate of air in an entry with the cross-sectional area. Correction factors have been practically employed to convert a measured centerline air velocity to the average air velocity. However, studies on the recommended correction factors of the sensor-measured air velocity to the average air velocity at cross sections are still lacking. A comprehensive airflow measurement was made at the Safety Research Coal Mine, Bruceton, PA, using three measuring methods including single-point reading, moving traverse, and fixed-point traverse. The air velocity distribution at each measuring station was analyzed using an air velocity contour map generated with Surfer ® . The correction factors at each measuring station for both the centerline and the sensor location were calculated and are discussed.

  15. Determination of velocity correction factors for real-time air velocity monitoring in underground mines

    PubMed Central

    Yuan, Liming; Thomas, Rick; Iannacchione, Anthony

    2017-01-01

    When there are installations of air velocity sensors in the mining industry for real-time airflow monitoring, a problem exists with how the monitored air velocity at a fixed location corresponds to the average air velocity, which is used to determine the volume flow rate of air in an entry with the cross-sectional area. Correction factors have been practically employed to convert a measured centerline air velocity to the average air velocity. However, studies on the recommended correction factors of the sensor-measured air velocity to the average air velocity at cross sections are still lacking. A comprehensive airflow measurement was made at the Safety Research Coal Mine, Bruceton, PA, using three measuring methods including single-point reading, moving traverse, and fixed-point traverse. The air velocity distribution at each measuring station was analyzed using an air velocity contour map generated with Surfer®. The correction factors at each measuring station for both the centerline and the sensor location were calculated and are discussed. PMID:29201495

  16. Super-global distortion correction for a rotational C-arm x-ray image intensifier.

    PubMed

    Liu, R R; Rudin, S; Bednarek, D R

    1999-09-01

    Image intensifier (II) distortion changes as a function of C-arm rotation angle because of changes in the orientation of the II with the earth's or other stray magnetic fields. For cone-beam computed tomography (CT), distortion correction for all angles is essential. The new super-global distortion correction consists of a model to continuously correct II distortion not only at each location in the image but for every rotational angle of the C arm. Calibration bead images were acquired with a standard C arm in 9 in. II mode. The super-global (SG) model is obtained from the single-plane global correction of the selected calibration images with given sampling angle interval. The fifth-order single-plane global corrections yielded a residual rms error of 0.20 pixels, while the SG model yielded a rms error of 0.21 pixels, a negligibly small difference. We evaluated the accuracy dependence of the SG model on various factors, such as the single-plane global fitting order, SG order, and angular sampling interval. We found that a good SG model can be obtained using a sixth-order SG polynomial fit based on the fifth-order single-plane global correction, and that a 10 degrees sampling interval was sufficient. Thus, the SG model saves processing resources and storage space. The residual errors from the mechanical errors of the x-ray system were also investigated, and found comparable with the SG residual error. Additionally, a single-plane global correction was done in the cylindrical coordinate system, and physical information about pincushion distortion and S distortion were observed and analyzed; however, this method is not recommended due to a lack of calculational efficiency. In conclusion, the SG model provides an accurate, fast, and simple correction for rotational C-arm images, which may be used for cone-beam CT.

  17. [Nonpharmacological correction of low back pain by single or integrated means of medical rehabilitation and the evaluation of their effectiveness].

    PubMed

    Sakalauskiene, Giedre

    2009-01-01

    Low back pain is a global worldwide problem. A great attention is given to correction of this health status by a wide range of rehabilitation specialists. Some single or integrated physical factors, physiotherapy, specific and nonspecific physical exercises, alternative methods of treatment, also the complex of multidisciplinary rehabilitation means are applied in the management of low back pain. The evidence-based data are analyzed in order to identify which nonpharmacological means are effective in pain correction; in addition, the effectiveness of various methods and models of low back pain management are compared in this article. Research data evaluating the impact effectiveness of single or integrated means of rehabilitation are very controversial. There are no evidence-based specific recommendations for the correction of this health status objectively assessing advantages of physiotherapy or physical factors and referring the definite indications of their prescription. It is thought that multidisciplinary rehabilitation is most effective in management of chronic low back pain. The positive results depend on the experience of a physician and other rehabilitation specialists. A patient's motivation to participate in the process of pain control is very important. It is recommended to inform a patient about the effectiveness of administered methods. There is a lack of evidence-based trials evaluating the effectiveness of nonpharmacological methods of pain control in Lithuania. Therefore, the greater attention of researchers and administrative structures of health care should be given to this problem in order to develop the evidence-based guidelines for an effective correction of low back pain.

  18. Testing the Perey effect

    DOE PAGES

    Titus, L. J.; Nunes, Filomena M.

    2014-03-12

    Here, the effects of non-local potentials have historically been approximately included by applying a correction factor to the solution of the corresponding equation for the local equivalent interaction. This is usually referred to as the Perey correction factor. In this work we investigate the validity of the Perey correction factor for single-channel bound and scattering states, as well as in transfer (p, d) cross sections. Method: We solve the scattering and bound state equations for non-local interactions of the Perey-Buck type, through an iterative method. Using the distorted wave Born approximation, we construct the T-matrix for (p,d) on 17O, 41Ca,more » 49Ca, 127Sn, 133Sn, and 209Pb at 20 and 50 MeV. As a result, we found that for bound states, the Perey corrected wave function resulting from the local equation agreed well with that from the non-local equation in the interior region, but discrepancies were found in the surface and peripheral regions. Overall, the Perey correction factor was adequate for scattering states, with the exception of a few partial waves corresponding to the grazing impact parameters. These differences proved to be important for transfer reactions. In conclusion, the Perey correction factor does offer an improvement over taking a direct local equivalent solution. However, if the desired accuracy is to be better than 10%, the exact solution of the non-local equation should be pursued.« less

  19. Higher Flexibility and Better Immediate Spontaneous Correction May Not Gain Better Results for Nonstructural Thoracic Curve in Lenke 5C AIS Patients

    PubMed Central

    Zhang, Yanbin; Lin, Guanfeng; Wang, Shengru; Zhang, Jianguo; Shen, Jianxiong; Wang, Yipeng; Guo, Jianwei; Yang, Xinyu; Zhao, Lijuan

    2016-01-01

    Study Design. Retrospective study. Objective. To study the behavior of the unfused thoracic curve in Lenke type 5C during the follow-up and to identify risk factors for its correction loss. Summary of Background Data. Few studies have focused on the spontaneous behaviors of the unfused thoracic curve after selective thoracolumbar or lumbar fusion during the follow-up and the risk factors for spontaneous correction loss. Methods. We retrospectively reviewed 45 patients (41 females and 4 males) with AIS who underwent selective TL/L fusion from 2006 to 2012 in a single institution. The follow-up averaged 36 months (range, 24–105 months). Patients were divided into two groups. Thoracic curves in group A improved or maintained their curve magnitude after spontaneous correction, with a negative or no correction loss during the follow-up. Thoracic curves in group B deteriorated after spontaneous correction with a positive correction loss. Univariate analysis and multivariate analysis were built to identify the risk factors for correction loss of the unfused thoracic curves. Results. The minor thoracic curve was 26° preoperatively. It was corrected to 13° immediately with a spontaneous correction of 48.5%. At final follow-up it was 14° with a correction loss of 1°. Thoracic curves did not deteriorate after spontaneous correction in 23 cases in group A, while 22 cases were identified with thoracic curve progressing in group B. In multivariate analysis, two risk factors were independently associated with thoracic correction loss: higher flexibility and better immediate spontaneous correction rate of thoracic curve. Conclusion. Posterior selective TL/L fusion with pedicle screw constructs is an effective treatment for Lenke 5C AIS patients. Nonstructural thoracic curves with higher flexibility or better immediate correction are more likely to progress during the follow-up and close attentions must be paid to these patients in case of decompensation. Level of Evidence: 4 PMID:27831989

  20. An analysis of the ArcCHECK-MR diode array's performance for ViewRay quality assurance.

    PubMed

    Ellefson, Steven T; Culberson, Wesley S; Bednarz, Bryan P; DeWerd, Larry A; Bayouth, John E

    2017-07-01

    The ArcCHECK-MR diode array utilizes a correction system with a virtual inclinometer to correct the angular response dependencies of the diodes. However, this correction system cannot be applied to measurements on the ViewRay MR-IGRT system due to the virtual inclinometer's incompatibility with the ViewRay's multiple simultaneous beams. Additionally, the ArcCHECK's current correction factors were determined without magnetic field effects taken into account. In the course of performing ViewRay IMRT quality assurance with the ArcCHECK, measurements were observed to be consistently higher than the ViewRay TPS predictions. The goals of this study were to quantify the observed discrepancies and test whether applying the current factors improves the ArcCHECK's accuracy for measurements on the ViewRay. Gamma and frequency analysis were performed on 19 ViewRay patient plans. Ion chamber measurements were performed at a subset of diode locations using a PMMA phantom with the same dimensions as the ArcCHECK. A new method for applying directionally dependent factors utilizing beam information from the ViewRay TPS was developed in order to analyze the current ArcCHECK correction factors. To test the current factors, nine ViewRay plans were altered to be delivered with only a single simultaneous beam and were measured with the ArcCHECK. The current correction factors were applied using both the new and current methods. The new method was also used to apply corrections to the original 19 ViewRay plans. It was found the ArcCHECK systematically reports doses higher than those actually delivered by the ViewRay. Application of the current correction factors by either method did not consistently improve measurement accuracy. As dose deposition and diode response have both been shown to change under the influence of a magnetic field, it can be concluded the current ArcCHECK correction factors are invalid and/or inadequate to correct measurements on the ViewRay system. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  1. Spectroscopic Factors from the Single Neutron Pickup ^64Zn(d,t)

    NASA Astrophysics Data System (ADS)

    Leach, Kyle; Garrett, P. E.; Demand, G. A.; Finlay, P.; Green, K. L.; Phillips, A. A.; Rand, E. T.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Wong, J.; Towner, I. S.; Ball, G. C.; Faestermann, T.; Krücken, R.; Hertenberger, R.; Wirth, H.-F.

    2010-11-01

    A great deal of attention has recently been paid towards high-precision superallowed β-decay Ft values. With the availability of extremely high-precision (<0.1%) experimental data, precision on the individual Ft values are now dominated by the ˜1% theoretical corrections. This limitation is most evident in heavier superallowed nuclei (e.g. ^62Ga) where the isospin-symmetry-breaking (ISB) correction calculations become more difficult due to the truncated model space. Experimental spectroscopic factors for these nuclei are important for the identification of the relevant orbitals that should be included in the model space of the calculations. Motivated by this need, the single-nucleon transfer reaction ^64Zn(d,t)^63Zn was conducted at the Maier-Leibnitz-Laboratory (MLL) of TUM/LMU in Munich, Germany, using a 22 MeV polarized deuteron beam from the tandem Van de Graaff accelerator and the TUM/LMU Q3D magnetic spectrograph, with angular distributions from 10^o to 60^o. Results from this experiment will be presented and implications for calculations of ISB corrections in the superallowed ° decay of ^62Ga will be discussed.

  2. Single Phase Passive Rectification Versus Active Rectification Applied to High Power Stirling Engines

    NASA Technical Reports Server (NTRS)

    Santiago, Walter; Birchenough, Arthur G.

    2006-01-01

    Stirling engine converters are being considered as potential candidates for high power energy conversion systems required by future NASA explorations missions. These types of engines typically contain two major moving parts, the displacer and the piston, in which a linear alternator is attached to the piston to produce a single phase sinusoidal waveform at a specific electric frequency. Since all Stirling engines perform at low electrical frequencies (less or equal to 100 Hz), space explorations missions that will employ these engines will be required to use DC power management and distribution (PMAD) system instead of an AC PMAD system to save on space and weight. Therefore, to supply such DC power an AC to DC converter is connected to the Stirling engine. There are two types of AC to DC converters that can be employed, a passive full bridge diode rectifier and an active switching full bridge rectifier. Due to the inherent line inductance of the Stirling Engine-Linear Alternator (SE-LA), their sinusoidal voltage and current will be phase shifted producing a power factor below 1. In order to keep power the factor close to unity, both AC to DC converters topologies will implement power factor correction. This paper discusses these power factor correction methods as well as their impact on overall mass for exploration applications. Simulation results on both AC to DC converters topologies with power factor correction as a function of output power and SE-LA line inductance impedance are presented and compared.

  3. Spectroscopic Factors From the Single Neutron Pickup Reaction ^64Zn(d,t)

    NASA Astrophysics Data System (ADS)

    Leach, Kyle; Garrett, P. E.; Demand, G. A.; Finlay, P.; Green, K. L.; Phillips, A. A.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Ball, G. C.; Faestermann, T.; Krücken, R.; Wirth, H.-F.; Herten-Berger, R.

    2008-10-01

    A great deal of attention has recently been paid towards high precision superallowed β-decay Ft values. With the availability of extremely high precision (<0.1%) experimental data, the precision on Ft is now limited by the ˜1% theoretical corrections.ootnotetextI.S. Towner and J.C. Hardy, Phys. Rev. C 77, 025501 (2008). This limitation is most evident in heavier superallowed nuclei (e.g. ^62Ga) where the isospin-symmetry-breaking correction calculations become more difficult due to the truncated model space. Experimental data is needed to help constrain input parameters for these calculations, and thus experimental spectroscopic factors for these nuclei are important. Preliminary results from the single-nucleon-transfer reaction ^64Zn(d,t)^63Zn will be presented, and the implications for calculations of isospin-symmetry breaking in the superallowed &+circ; decay of ^62Ga will be discussed.

  4. Resolution of the COBE Earth sensor anomaly

    NASA Technical Reports Server (NTRS)

    Sedler, J.

    1993-01-01

    Since its launch on November 18, 1989, the Earth sensors on the Cosmic Background Explorer (COBE) have shown much greater noise than expected. The problem was traced to an error in Earth horizon acquisition-of-signal (AOS) times. Due to this error, the AOS timing correction was ignored, causing Earth sensor split-to-index (SI) angles to be incorrectly time-tagged to minor frame synchronization times. Resulting Earth sensor residuals, based on gyro-propagated fine attitude solutions, were as large as plus or minus 0.45 deg (much greater than plus or minus 0.10 deg from scanner specifications (Reference 1)). Also, discontinuities in single-frame coarse attitude pitch and roll angles (as large as 0.80 and 0.30 deg, respectively) were noted several times during each orbit. However, over the course of the mission, each Earth sensor was observed to independently and unexpectedly reset and then reactivate into a new configuration. Although the telemetered AOS timing corrections are still in error, a procedure has been developed to approximate and apply these corrections. This paper describes the approach, analysis, and results of approximating and applying AOS timing adjustments to correct Earth scanner data. Furthermore, due to the continuing degradation of COBE's gyroscopes, gyro-propagated fine attitude solutions may soon become unavailable, requiring an alternative method for attitude determination. By correcting Earth scanner AOS telemetry, as described in this paper, more accurate single-frame attitude solutions are obtained. All aforementioned pitch and roll discontinuities are removed. When proper AOS corrections are applied, the standard deviation of pitch residuals between coarse attitude and gyro-propagated fine attitude solutions decrease by a factor of 3. Also, the overall standard deviation of SI residuals from fine attitude solutions decrease by a factor of 4 (meeting sensor specifications) when AOS corrections are applied.

  5. A New, More Powerful Approach to Multitrait-Multimethod Analyses: An Application of Second-Order Confirmatory Factor Analysis.

    ERIC Educational Resources Information Center

    Marsh, Herbert W.; Hocevar, Dennis

    The advantages of applying confirmatory factor analysis (CFA) to multitrait-multimethod (MTMM) data are widely recognized. However, because CFA as traditionally applied to MTMM data incorporates single indicators of each scale (i.e., each trait/method combination), important weaknesses are the failure to: (1) correct appropriately for measurement…

  6. Improving satellite retrievals of NO2 in biomass burning regions

    NASA Astrophysics Data System (ADS)

    Bousserez, N.; Martin, R. V.; Lamsal, L. N.; Mao, J.; Cohen, R. C.; Anderson, B. E.

    2010-12-01

    The quality of space-based nitrogen dioxide (NO2) retrievals from solar backscatter depends on a priori knowledge of the NO2 profile shape as well as the effects of atmospheric scattering. These effects are characterized by the air mass factor (AMF) calculation. Calculation of the AMF combines a radiative transfer calculation together with a priori information about aerosols and about NO2 profiles (shape factors), which are usually taken from a chemical transport model. In this work we assess the impact of biomass burning emissions on the AMF using the LIDORT radiative transfer model and a GEOS-Chem simulation based on a daily fire emissions inventory (FLAMBE). We evaluate the GEOS-Chem aerosol optical properties and NO2 shape factors using in situ data from the ARCTAS summer 2008 (North America) and DABEX winter 2006 (western Africa) experiments. Sensitivity studies are conducted to assess the impact of biomass burning on the aerosols and the NO2 shape factors used in the AMF calculation. The mean aerosol correction over boreal fires is negligible (+3%), in contrast with a large reduction (-18%) over African savanna fires. The change in sign and magnitude over boreal forest and savanna fires appears to be driven by the shielding effects that arise from the greater biomass burning aerosol optical thickness (AOT) above the African biomass burning NO2. In agreement with previous work, the single scattering albedo (SSA) also affects the aerosol correction. We further investigated the effect of clouds on the aerosol correction. For a fixed AOT, the aerosol correction can increase from 20% to 50% when cloud fraction increases from 0 to 30%. Over both boreal and savanna fires, the greatest impact on the AMF is from the fire-induced change in the NO2 profile (shape factor correction), that decreases the AMF by 38% over the boreal fires and by 62% of the savanna fires. Combining the aerosol and shape factor corrections together results in small differences compared to the shape factor correction alone (without the aerosol correction), indicating that a shape factor-only correction is a good approximation of the total AMF correction associated with fire emissions. We use this result to define a measurement-based correction of the AMF based on the relationship between the slant column variability and the variability of the shape factor in the lower troposphere. This method may be generalized to other types of emission sources.

  7. Spectroscopic Factors from the Single Neutron Pickup Reaction ^64Zn(d,t)

    NASA Astrophysics Data System (ADS)

    Leach, Kyle; Garrett, P. E.; Ball, G. C.; Bangay, J. C.; Bianco, L.; Demand, G. A.; Faestermann, T.; Finlay, P.; Green, K. L.; Hertenberger, R.; Krücken, R.; Phillips, A. A.; Rand, E. T.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Wirth, H.-F.; Wong, J.

    2009-10-01

    A great deal of attention has recently been paid towards high-precision superallowed β-decay Ft values. With the availability of extremely high-precision (<0.1%) experimental data, precision on the individual Ft values are now dominated by the ˜1% theoretical corrections^[1]. This limitation is most evident in heavier superallowed nuclei (e.g. ^62Ga) where the isospin-symmetry-breaking (ISB) correction calculations become more difficult due to the truncated model space. Experimental spectroscopic factors for these nuclei are important for the identification of the relevant orbitals that should be included in the model space of the calculations. Motivated by this need, the single-nucleon transfer reaction ^64Zn(d,t)^63Zn was conducted at the Maier-Leibnitz-Laboratory (MLL) of TUM/LMU in Munich, Germany, using a 22 MeV polarized deuteron beam from the tandem Van de Graaff accelerator and the TUM/LMU Q3D magnetic spectrograph, with angular distributions from 10^o to 60^o. Results from this experiment will be presented and implications for calculations of ISB corrections in the superallowed &+circ; decay of ^62Ga will be discussed.^[1] I.S. Towner and J.C. Hardy, Phys. Rev. C 77, 025501 (2008).

  8. CGC factorization for forward particle production in proton-nucleus collisions at next-to-leading order

    DOE PAGES

    Iancu, E.; Mueller, A. H.; Triantafyllopoulos, D. N.

    2016-12-13

    Within the Color Glass Condensate effective theory, we reconsider the next-to-leading order (NLO) calculation of the single inclusive particle production at forward rapidities in proton-nucleus collisions at high energy. Focusing on quark production for definiteness, we establish a new factorization scheme, perturbatively correct through NLO, in which there is no ‘rapidity subtraction’. That is, the NLO correction to the impact factor is not explicitly separated from the high-energy evolution. Our construction exploits the skeleton structure of the (NLO) Balitsky-Kovchegov equation, in which the first step of the evolution is explicitly singled out. The NLO impact factor is included by computingmore » this first emission with the exact kinematics for the emitted gluon, rather than by using the eikonal approximation. This particular calculation has already been presented in the literature, but the reorganization of the perturbation theory that we propose is new. As compared to the proposal in, our scheme is free of the fine-tuning inherent in the rapidity subtraction, which might be the origin of the negativity of the NLO cross-section observed in previous studies.« less

  9. Estimation of Image Sensor Fill Factor Using a Single Arbitrary Image

    PubMed Central

    Wen, Wei; Khatibi, Siamak

    2017-01-01

    Achieving a high fill factor is a bottleneck problem for capturing high-quality images. There are hardware and software solutions to overcome this problem. In the solutions, the fill factor is known. However, this is an industrial secrecy by most image sensor manufacturers due to its direct effect on the assessment of the sensor quality. In this paper, we propose a method to estimate the fill factor of a camera sensor from an arbitrary single image. The virtual response function of the imaging process and sensor irradiance are estimated from the generation of virtual images. Then the global intensity values of the virtual images are obtained, which are the result of fusing the virtual images into a single, high dynamic range radiance map. A non-linear function is inferred from the original and global intensity values of the virtual images. The fill factor is estimated by the conditional minimum of the inferred function. The method is verified using images of two datasets. The results show that our method estimates the fill factor correctly with significant stability and accuracy from one single arbitrary image according to the low standard deviation of the estimated fill factors from each of images and for each camera. PMID:28335459

  10. A study of ionospheric grid modification technique for BDS/GPS receiver

    NASA Astrophysics Data System (ADS)

    Liu, Xuelin; Li, Meina; Zhang, Lei

    2017-07-01

    For the single-frequency GPS receiver, ionospheric delay is an important factor affecting the positioning performance. There are many kinds of ionospheric correction methods, common models are Bent model, IRI model, Klobuchar model, Ne Quick model and so on. The US Global Positioning System (GPS) uses the Klobuchar coefficients transmitted in the satellite signal to correct the ionospheric delay error for a single frequency GPS receiver, but this model can only reduce the ionospheric error of about 50% in the mid-latitudes. In the Beidou system, the accuracy of the correction delay is higher. Therefore, this paper proposes a method that using BD grid information to correct GPS ionospheric delay to improve the ionospheric delay for the BDS/GPS compatible positioning receiver. In this paper, the principle of ionospheric grid algorithm is introduced in detail, and the positioning accuracy of GPS system and BDS/GPS compatible positioning system is compared and analyzed by the real measured data. The results show that the method can effectively improve the positioning accuracy of the receiver in a more concise way.

  11. Communication: Finite size correction in periodic coupled cluster theory calculations of solids.

    PubMed

    Liao, Ke; Grüneis, Andreas

    2016-10-14

    We present a method to correct for finite size errors in coupled cluster theory calculations of solids. The outlined technique shares similarities with electronic structure factor interpolation methods used in quantum Monte Carlo calculations. However, our approach does not require the calculation of density matrices. Furthermore we show that the proposed finite size corrections achieve chemical accuracy in the convergence of second-order Møller-Plesset perturbation and coupled cluster singles and doubles correlation energies per atom for insulating solids with two atomic unit cells using 2 × 2 × 2 and 3 × 3 × 3 k-point meshes only.

  12. Array-based satellite phase bias sensing: theory and GPS/BeiDou/QZSS results

    NASA Astrophysics Data System (ADS)

    Khodabandeh, A.; Teunissen, P. J. G.

    2014-09-01

    Single-receiver integer ambiguity resolution (IAR) is a measurement concept that makes use of network-derived non-integer satellite phase biases (SPBs), among other corrections, to recover and resolve the integer ambiguities of the carrier-phase data of a single GNSS receiver. If it is realized, the very precise integer ambiguity-resolved carrier-phase data would then contribute to the estimation of the receiver’s position, thus making (near) real-time precise point positioning feasible. Proper definition and determination of the SPBs take a leading part in developing the idea of single-receiver IAR. In this contribution, the concept of array-based between-satellite single-differenced (SD) SPB determination is introduced, which is aimed to reduce the code-dominated precision of the SD-SPB corrections. The underlying model is realized by giving the role of the local reference network to an array of antennas, mounted on rigid platforms, that are separated by short distances so that the same ionospheric delay is assumed to be experienced by all the antennas. To that end, a closed-form expression of the array-aided SD-SPB corrections is presented, thereby proposing a simple strategy to compute the SD-SPBs. After resolving double-differenced ambiguities of the array’s data, the variance of the SD-SPB corrections is shown to be reduced by a factor equal to the number of antennas. This improvement in precision is also affirmed by numerical results of the three GNSSs GPS, BeiDou and QZSS. Experimental results demonstrate that the integer-recovered ambiguities converge to integers faster, upon increasing the number of antennas aiding the SD-SPB corrections.

  13. A new dual-collimation batch reactor for determination of ultraviolet inactivation rate constants for microorganisms in aqueous suspensions

    PubMed Central

    Martin, Stephen B.; Schauer, Elizabeth S.; Blum, David H.; Kremer, Paul A.; Bahnfleth, William P.; Freihaut, James D.

    2017-01-01

    We developed, characterized, and tested a new dual-collimation aqueous UV reactor to improve the accuracy and consistency of aqueous k-value determinations. This new system is unique because it collimates UV energy from a single lamp in two opposite directions. The design provides two distinct advantages over traditional single-collimation systems: 1) real-time UV dose (fluence) determination; and 2) simple actinometric determination of a reactor factor that relates measured irradiance levels to actual irradiance levels experienced by the microbial suspension. This reactor factor replaces three of the four typical correction factors required for single-collimation reactors. Using this dual-collimation reactor, Bacillus subtilis spores demonstrated inactivation following the classic multi-hit model with k = 0.1471 cm2/mJ (with 95% confidence bounds of 0.1426 to 0.1516). PMID:27498232

  14. Long-term correction of canine hemophilia B by gene transfer of blood coagulation factor IX mediated by adeno-associated viral vector.

    PubMed

    Herzog, R W; Yang, E Y; Couto, L B; Hagstrom, J N; Elwell, D; Fields, P A; Burton, M; Bellinger, D A; Read, M S; Brinkhous, K M; Podsakoff, G M; Nichols, T C; Kurtzman, G J; High, K A

    1999-01-01

    Hemophilia B is a severe X-linked bleeding diathesis caused by the absence of functional blood coagulation factor IX, and is an excellent candidate for treatment of a genetic disease by gene therapy. Using an adeno-associated viral vector, we demonstrate sustained expression (>17 months) of factor IX in a large-animal model at levels that would have a therapeutic effect in humans (up to 70 ng/ml, adequate to achieve phenotypic correction, in an animal injected with 8.5x10(12) vector particles/kg). The five hemophilia B dogs treated showed stable, vector dose-dependent partial correction of the whole blood clotting time and, at higher doses, of the activated partial thromboplastin time. In contrast to other viral gene delivery systems, this minimally invasive procedure, consisting of a series of percutaneous intramuscular injections at a single timepoint, was not associated with local or systemic toxicity. Efficient gene transfer to muscle was shown by immunofluorescence staining and DNA analysis of biopsied tissue. Immune responses against factor IX were either absent or transient. These data provide strong support for the feasibility of the approach for therapy of human subjects.

  15. SU-E-T-408: Determination of KQ,Q0-Factors From Water and Graphite Calorimetry in a 60 MeV Proton Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossomme, S; Renaud, J; Sarfehnia, A

    2014-06-01

    Purpose: To reduce the uncertainty of the beam quality correction factor k Q,Q0, for scattered proton beams (SPB). This factor is used in dosimetry protocols, to determine absorbed dose-to-water with ionization chambers. For the Roos plane parallel chambers (RPPICs), the IAEA TRS-398 protocol estimates k Q,Q0-factor to be 1.004(for a beam quality Rres=2 g.cm{sup 2}), with an uncertainty of 2.1%. Methods: A graphite calorimeter (GCal), a water calorimeter (WCal) and RPPICs were exposed, in a single experiment, to a 60 MeV non-modulated SPB. RPPICs were calibrated in terms of absorbed dose-to-water in a 20 MeV electron beam. The calibration coefficientmore » is traceable to NPL's absorbed dose standards. Chamber measurements were corrected for environmental conditions, recombination and polarity. The WCal corrections include heat loss, heat defect and vessel perturbation. The GCal corrections include heat loss and absorbed dose conversion. Except for heat loss correction and its uncertainty in the WCal system, all major corrections were included in the analysis. Other minor corrections, such as beam profile non-uniformity, are still to be evaluated. Experimental k Q,Q0-factors were derived by comparing the results obtained with both calorimeters and ionometry. Results: The absorbed dose-to-water from both calorimeters was found to be within 1.3% with an uncertainty of 1.2%. k Q,Q0-factor for a RPPIC was found to be 0.998 and 1.011, with a standard uncertainty of 1.4% and 0.9% when the dose is based on the GCal and the WCal, respectively. Conclusion: Results suggest the possibility to determine k Q,Q0-values for PPICs in SPB with a lower uncertainty than specified in the TRS-398 thereby helping to reduce uncertainty on absorbed dose-to-water. The agreement between calorimeters confirms the possibility to use GCal or WCal as primary standard in SPB. Because of the dose conversion, the use of GCal may lead to slightly higher uncertainty, but is, at present, considerably easier to operate.« less

  16. On the importance of appropriate precipitation gauge catch correction for hydrological modelling at mid to high latitudes

    NASA Astrophysics Data System (ADS)

    Stisen, S.; Højberg, A. L.; Troldborg, L.; Refsgaard, J. C.; Christensen, B. S. B.; Olsen, M.; Henriksen, H. J.

    2012-11-01

    Precipitation gauge catch correction is often given very little attention in hydrological modelling compared to model parameter calibration. This is critical because significant precipitation biases often make the calibration exercise pointless, especially when supposedly physically-based models are in play. This study addresses the general importance of appropriate precipitation catch correction through a detailed modelling exercise. An existing precipitation gauge catch correction method addressing solid and liquid precipitation is applied, both as national mean monthly correction factors based on a historic 30 yr record and as gridded daily correction factors based on local daily observations of wind speed and temperature. The two methods, named the historic mean monthly (HMM) and the time-space variable (TSV) correction, resulted in different winter precipitation rates for the period 1990-2010. The resulting precipitation datasets were evaluated through the comprehensive Danish National Water Resources model (DK-Model), revealing major differences in both model performance and optimised model parameter sets. Simulated stream discharge is improved significantly when introducing the TSV correction, whereas the simulated hydraulic heads and multi-annual water balances performed similarly due to recalibration adjusting model parameters to compensate for input biases. The resulting optimised model parameters are much more physically plausible for the model based on the TSV correction of precipitation. A proxy-basin test where calibrated DK-Model parameters were transferred to another region without site specific calibration showed better performance for parameter values based on the TSV correction. Similarly, the performances of the TSV correction method were superior when considering two single years with a much dryer and a much wetter winter, respectively, as compared to the winters in the calibration period (differential split-sample tests). We conclude that TSV precipitation correction should be carried out for studies requiring a sound dynamic description of hydrological processes, and it is of particular importance when using hydrological models to make predictions for future climates when the snow/rain composition will differ from the past climate. This conclusion is expected to be applicable for mid to high latitudes, especially in coastal climates where winter precipitation types (solid/liquid) fluctuate significantly, causing climatological mean correction factors to be inadequate.

  17. A prospective randomized trial of 1 versus 2 injections during EUS-guided celiac plexus block for chronic pancreatitis pain.

    PubMed

    LeBlanc, Julia K; DeWitt, Jon; Johnson, Cynthia; Okumu, Wycliffe; McGreevy, Kathleen; Symms, Michelle; McHenry, Lee; Sherman, Stuart; Imperiale, Thomas

    2009-04-01

    The efficacy of 1-injection versus a 2-injections method of EUS-guided celiac plexus block (EUS-CPB) in patients with chronic pancreatitis is not known. To compare the clinical effectiveness and safety of EUS-CPB by using 1 versus 2 injections in patients with chronic pancreatitis and pain. The secondary aim is to identify factors that predict responsiveness. A prospective randomized study. EUS-CPB was performed by using bupivacaine and triamcinolone injected into 1 or 2 sites at the level of the celiac trunk during a single EUS-CPB procedure. Duration of pain relief, onset of pain relief, and complications. Fifty [corrected] subjects were enrolled (23 received 1 injection, 27 [corrected] received 2 injections). The median duration of pain relief in the 31 responders was 28 days (range 1-673 days). [corrected] Fifteen [corrected] of 23 (65%) [corrected] subjects who received 1 injection [corrected] had relief from pain compared with 16 of 27 (59%) [corrected] subjects who received 2 injections [corrected] (P = .67). [corrected] The median times to onset in the 1-injection and 2-injections groups were 21 and 14 days, respectively (P = .99). No correlation existed between duration of pain relief and time to onset of pain relief or onset within 24 hours. Age, sex, race, prior EUS-CPB, and smoking or alcohol history did not predict duration of pain relief. Telephone interviewers were not blinded. There was no difference in duration of pain relief or onset of pain relief in subjects with chronic pancreatitis and pain when the same total amount of medication was delivered in 1 or 2 injections during a single EUS-CPB procedure. Both methods were safe.

  18. Diagnosing and Correcting Mass Accuracy and Signal Intensity Error Due to Initial Ion Position Variations in a MALDI TOFMS

    NASA Astrophysics Data System (ADS)

    Malys, Brian J.; Piotrowski, Michelle L.; Owens, Kevin G.

    2018-02-01

    Frustrated by worse than expected error for both peak area and time-of-flight (TOF) in matrix assisted laser desorption ionization (MALDI) experiments using samples prepared by electrospray deposition, it was finally determined that there was a correlation between sample location on the target plate and the measured TOF/peak area. Variations in both TOF and peak area were found to be due to small differences in the initial position of ions formed in the source region of the TOF mass spectrometer. These differences arise largely from misalignment of the instrument sample stage, with a smaller contribution arising from the non-ideal shape of the target plates used. By physically measuring the target plates used and comparing TOF data collected from three different instruments, an estimate of the magnitude and direction of the sample stage misalignment was determined for each of the instruments. A correction method was developed to correct the TOFs and peak areas obtained for a given combination of target plate and instrument. Two correction factors are determined, one by initially collecting spectra from each sample position used and another by using spectra from a single position for each set of samples on a target plate. For TOF and mass values, use of the correction factor reduced the error by a factor of 4, with the relative standard deviation (RSD) of the corrected masses being reduced to 12-24 ppm. For the peak areas, the RSD was reduced from 28% to 16% for samples deposited twice onto two target plates over two days.

  19. Diagnosing and Correcting Mass Accuracy and Signal Intensity Error Due to Initial Ion Position Variations in a MALDI TOFMS

    NASA Astrophysics Data System (ADS)

    Malys, Brian J.; Piotrowski, Michelle L.; Owens, Kevin G.

    2017-12-01

    Frustrated by worse than expected error for both peak area and time-of-flight (TOF) in matrix assisted laser desorption ionization (MALDI) experiments using samples prepared by electrospray deposition, it was finally determined that there was a correlation between sample location on the target plate and the measured TOF/peak area. Variations in both TOF and peak area were found to be due to small differences in the initial position of ions formed in the source region of the TOF mass spectrometer. These differences arise largely from misalignment of the instrument sample stage, with a smaller contribution arising from the non-ideal shape of the target plates used. By physically measuring the target plates used and comparing TOF data collected from three different instruments, an estimate of the magnitude and direction of the sample stage misalignment was determined for each of the instruments. A correction method was developed to correct the TOFs and peak areas obtained for a given combination of target plate and instrument. Two correction factors are determined, one by initially collecting spectra from each sample position used and another by using spectra from a single position for each set of samples on a target plate. For TOF and mass values, use of the correction factor reduced the error by a factor of 4, with the relative standard deviation (RSD) of the corrected masses being reduced to 12-24 ppm. For the peak areas, the RSD was reduced from 28% to 16% for samples deposited twice onto two target plates over two days. [Figure not available: see fulltext.

  20. A single-scattering correction for the seismo-acoustic parabolic equation.

    PubMed

    Collins, Michael D

    2012-04-01

    An efficient single-scattering correction that does not require iterations is derived and tested for the seismo-acoustic parabolic equation. The approach is applicable to problems involving gradual range dependence in a waveguide with fluid and solid layers, including the key case of a sloping fluid-solid interface. The single-scattering correction is asymptotically equivalent to a special case of a single-scattering correction for problems that only have solid layers [Küsel et al., J. Acoust. Soc. Am. 121, 808-813 (2007)]. The single-scattering correction has a simple interpretation (conservation of interface conditions in an average sense) that facilitated its generalization to problems involving fluid layers. Promising results are obtained for problems in which the ocean bottom interface has a small slope.

  1. SU-E-T-223: Computed Radiography Dose Measurements of External Radiotherapy Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aberle, C; Kapsch, R

    2015-06-15

    Purpose: To obtain quantitative, two-dimensional dose measurements of external radiotherapy beams with a computed radiography (CR) system and to derive volume correction factors for ionization chambers in small fields. Methods: A commercial Kodak ACR2000i CR system with Kodak Flexible Phosphor Screen HR storage foils was used. Suitable measurement conditions and procedures were established. Several corrections were derived, including image fading, length-scale corrections and long-term stability corrections. Dose calibration curves were obtained for cobalt, 4 MV, 8 MV and 25 MV photons, and for 10 MeV, 15 MeV and 18 MeV electrons in a water phantom. Inherent measurement inhomogeneities were studiedmore » as well as directional dependence of the response. Finally, 2D scans with ionization chambers were directly compared to CR measurements, and volume correction factors were derived. Results: Dose calibration curves (0.01 Gy to 7 Gy) were obtained for multiple photon and electron beam qualities. For each beam quality, the calibration curves can be described by a single fit equation over the whole dose range. The energy dependence of the dose response was determined. The length scale on the images was adjusted scan-by-scan, typically by 2 percent horizontally and by 3 percent vertically. The remaining inhomogeneities after the system’s standard calibration procedure were corrected for. After correction, the homogeneity is on the order of a few percent. The storage foils can be rotated by up to 30 degrees without a significant effect on the measured signal. First results on the determination of volume correction factors were obtained. Conclusion: With CR, quantitative, two-dimensional dose measurements with a high spatial resolution (sub-mm) can be obtained over a large dose range. In order to make use of these advantages, several calibrations, corrections and supporting measurements are needed. This work was funded by the European Metrology Research Programme (EMRP) project HLT09 MetrExtRT Metrology for Radiotherapy using Complex Radiation Fields.« less

  2. Alignment algorithms and per-particle CTF correction for single particle cryo-electron tomography.

    PubMed

    Galaz-Montoya, Jesús G; Hecksel, Corey W; Baldwin, Philip R; Wang, Eryu; Weaver, Scott C; Schmid, Michael F; Ludtke, Steven J; Chiu, Wah

    2016-06-01

    Single particle cryo-electron tomography (cryoSPT) extracts features from cryo-electron tomograms, followed by 3D classification, alignment and averaging to generate improved 3D density maps of such features. Robust methods to correct for the contrast transfer function (CTF) of the electron microscope are necessary for cryoSPT to reach its resolution potential. Many factors can make CTF correction for cryoSPT challenging, such as lack of eucentricity of the specimen stage, inherent low dose per image, specimen charging, beam-induced specimen motions, and defocus gradients resulting both from specimen tilting and from unpredictable ice thickness variations. Current CTF correction methods for cryoET make at least one of the following assumptions: that the defocus at the center of the image is the same across the images of a tiltseries, that the particles all lie at the same Z-height in the embedding ice, and/or that the specimen, the cryo-electron microscopy (cryoEM) grid and/or the carbon support are flat. These experimental conditions are not always met. We have developed a CTF correction algorithm for cryoSPT without making any of the aforementioned assumptions. We also introduce speed and accuracy improvements and a higher degree of automation to the subtomogram averaging algorithms available in EMAN2. Using motion-corrected images of isolated virus particles as a benchmark specimen, recorded with a DE20 direct detection camera, we show that our CTF correction and subtomogram alignment routines can yield subtomogram averages close to 4/5 Nyquist frequency of the detector under our experimental conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Alignment Algorithms and Per-Particle CTF Correction for Single Particle Cryo-Electron Tomography

    PubMed Central

    Galaz-Montoya, Jesús G.; Hecksel, Corey W.; Baldwin, Philip R.; Wang, Eryu; Weaver, Scott C.; Schmid, Michael F.; Ludtke, Steven J.; Chiu, Wah

    2016-01-01

    Single particle cryo-electron tomography (cryoSPT) extracts features from cryo-electron tomograms, followed by 3D classification, alignment and averaging to generate improved 3D density maps of such features. Robust methods to correct for the contrast transfer function (CTF) of the electron microscope are necessary for cryoSPT to reach its resolution potential. Many factors can make CTF correction for cryoSPT challenging, such as lack of eucentricity of the specimen stage, inherent low dose per image, specimen charging, beam-induced specimen motions, and defocus gradients resulting both from specimen tilting and from unpredictable ice thickness variations. Current CTF correction methods for cryoET make at least one of the following assumptions: that the defocus at the center of the image is the same across the images of a tiltseries, that the particles all lie at the same Z-height in the embedding ice, and/or that the specimen grid and carbon support are flat. These experimental conditions are not always met. We have developed a CTF correction algorithm for cryoSPT without making any of the aforementioned assumptions. We also introduce speed and accuracy improvements and a higher degree of automation to the subtomogram averaging algorithms available in EMAN2. Using motion-corrected images of isolated virus particles as a benchmark specimen, recorded with a DE20 direct detection camera, we show that our CTF correction and subtomogram alignment routines can yield subtomogram averages close to 4/5 Nyquist frequency of the detector under our experimental conditions. PMID:27016284

  4. Attenuation correction for the large non-human primate brain imaging using microPET.

    PubMed

    Naidoo-Variawa, S; Lehnert, W; Kassiou, M; Banati, R; Meikle, S R

    2010-04-21

    Assessment of the biodistribution and pharmacokinetics of radiopharmaceuticals in vivo is often performed on animal models of human disease prior to their use in humans. The baboon brain is physiologically and neuro-anatomically similar to the human brain and is therefore a suitable model for evaluating novel CNS radioligands. We previously demonstrated the feasibility of performing baboon brain imaging on a dedicated small animal PET scanner provided that the data are accurately corrected for degrading physical effects such as photon attenuation in the body. In this study, we investigated factors affecting the accuracy and reliability of alternative attenuation correction strategies when imaging the brain of a large non-human primate (papio hamadryas) using the microPET Focus 220 animal scanner. For measured attenuation correction, the best bias versus noise performance was achieved using a (57)Co transmission point source with a 4% energy window. The optimal energy window for a (68)Ge transmission source operating in singles acquisition mode was 20%, independent of the source strength, providing bias-noise performance almost as good as for (57)Co. For both transmission sources, doubling the acquisition time had minimal impact on the bias-noise trade-off for corrected emission images, despite observable improvements in reconstructed attenuation values. In a [(18)F]FDG brain scan of a female baboon, both measured attenuation correction strategies achieved good results and similar SNR, while segmented attenuation correction (based on uncorrected emission images) resulted in appreciable regional bias in deep grey matter structures and the skull. We conclude that measured attenuation correction using a single pass (57)Co (4% energy window) or (68)Ge (20% window) transmission scan achieves an excellent trade-off between bias and propagation of noise when imaging the large non-human primate brain with a microPET scanner.

  5. Attenuation correction for the large non-human primate brain imaging using microPET

    NASA Astrophysics Data System (ADS)

    Naidoo-Variawa, S.; Lehnert, W.; Kassiou, M.; Banati, R.; Meikle, S. R.

    2010-04-01

    Assessment of the biodistribution and pharmacokinetics of radiopharmaceuticals in vivo is often performed on animal models of human disease prior to their use in humans. The baboon brain is physiologically and neuro-anatomically similar to the human brain and is therefore a suitable model for evaluating novel CNS radioligands. We previously demonstrated the feasibility of performing baboon brain imaging on a dedicated small animal PET scanner provided that the data are accurately corrected for degrading physical effects such as photon attenuation in the body. In this study, we investigated factors affecting the accuracy and reliability of alternative attenuation correction strategies when imaging the brain of a large non-human primate (papio hamadryas) using the microPET Focus 220 animal scanner. For measured attenuation correction, the best bias versus noise performance was achieved using a 57Co transmission point source with a 4% energy window. The optimal energy window for a 68Ge transmission source operating in singles acquisition mode was 20%, independent of the source strength, providing bias-noise performance almost as good as for 57Co. For both transmission sources, doubling the acquisition time had minimal impact on the bias-noise trade-off for corrected emission images, despite observable improvements in reconstructed attenuation values. In a [18F]FDG brain scan of a female baboon, both measured attenuation correction strategies achieved good results and similar SNR, while segmented attenuation correction (based on uncorrected emission images) resulted in appreciable regional bias in deep grey matter structures and the skull. We conclude that measured attenuation correction using a single pass 57Co (4% energy window) or 68Ge (20% window) transmission scan achieves an excellent trade-off between bias and propagation of noise when imaging the large non-human primate brain with a microPET scanner.

  6. Method for Correcting Control Surface Angle Measurements in Single Viewpoint Photogrammetry

    NASA Technical Reports Server (NTRS)

    Burner, Alpheus W. (Inventor); Barrows, Danny A. (Inventor)

    2006-01-01

    A method of determining a corrected control surface angle for use in single viewpoint photogrammetry to correct control surface angle measurements affected by wing bending. First and second visual targets are spaced apart &om one another on a control surface of an aircraft wing. The targets are positioned at a semispan distance along the aircraft wing. A reference target separation distance is determined using single viewpoint photogrammetry for a "wind off condition. An apparent target separation distance is then computed for "wind on." The difference between the reference and apparent target separation distances is minimized by recomputing the single viewpoint photogrammetric solution for incrementally changed values of target semispan distances. A final single viewpoint photogrammetric solution is then generated that uses the corrected semispan distance that produced the minimized difference between the reference and apparent target separation distances. The final single viewpoint photogrammetric solution set is used to determine the corrected control surface angle.

  7. Aspherical-atom modeling of coordination compounds by single-crystal X-ray diffraction allows the correct metal atom to be identified.

    PubMed

    Dittrich, Birger; Wandtke, Claudia M; Meents, Alke; Pröpper, Kevin; Mondal, Kartik Chandra; Samuel, Prinson P; Amin Sk, Nurul; Singh, Amit Pratap; Roesky, Herbert W; Sidhu, Navdeep

    2015-02-02

    Single-crystal X-ray diffraction (XRD) is often considered the gold standard in analytical chemistry, as it allows element identification as well as determination of atom connectivity and the solid-state structure of completely unknown samples. Element assignment is based on the number of electrons of an atom, so that a distinction of neighboring heavier elements in the periodic table by XRD is often difficult. A computationally efficient procedure for aspherical-atom least-squares refinement of conventional diffraction data of organometallic compounds is proposed. The iterative procedure is conceptually similar to Hirshfeld-atom refinement (Acta Crystallogr. Sect. A- 2008, 64, 383-393; IUCrJ. 2014, 1,61-79), but it relies on tabulated invariom scattering factors (Acta Crystallogr. Sect. B- 2013, 69, 91-104) and the Hansen/Coppens multipole model; disordered structures can be handled as well. Five linear-coordinate 3d metal complexes, for which the wrong element is found if standard independent-atom model scattering factors are relied upon, are studied, and it is shown that only aspherical-atom scattering factors allow a reliable assignment. The influence of anomalous dispersion in identifying the correct element is investigated and discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Target/error overlap in jargonaphasia: The case for a one-source model, lexical and non-lexical summation, and the special status of correct responses.

    PubMed

    Olson, Andrew; Halloran, Elizabeth; Romani, Cristina

    2015-12-01

    We present three jargonaphasic patients who made phonological errors in naming, repetition and reading. We analyse target/response overlap using statistical models to answer three questions: 1) Is there a single phonological source for errors or two sources, one for target-related errors and a separate source for abstruse errors? 2) Can correct responses be predicted by the same distribution used to predict errors or do they show a completion boost (CB)? 3) Is non-lexical and lexical information summed during reading and repetition? The answers were clear. 1) Abstruse errors did not require a separate distribution created by failure to access word forms. Abstruse and target-related errors were the endpoints of a single overlap distribution. 2) Correct responses required a special factor, e.g., a CB or lexical/phonological feedback, to preserve their integrity. 3) Reading and repetition required separate lexical and non-lexical contributions that were combined at output. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Assessment of genetic and nongenetic interactions for the prediction of depressive symptomatology: an analysis of the Wisconsin Longitudinal Study using machine learning algorithms.

    PubMed

    Roetker, Nicholas S; Page, C David; Yonker, James A; Chang, Vicky; Roan, Carol L; Herd, Pamela; Hauser, Taissa S; Hauser, Robert M; Atwood, Craig S

    2013-10-01

    We examined depression within a multidimensional framework consisting of genetic, environmental, and sociobehavioral factors and, using machine learning algorithms, explored interactions among these factors that might better explain the etiology of depressive symptoms. We measured current depressive symptoms using the Center for Epidemiologic Studies Depression Scale (n = 6378 participants in the Wisconsin Longitudinal Study). Genetic factors were 78 single nucleotide polymorphisms (SNPs); environmental factors-13 stressful life events (SLEs), plus a composite proportion of SLEs index; and sociobehavioral factors-18 personality, intelligence, and other health or behavioral measures. We performed traditional SNP associations via logistic regression likelihood ratio testing and explored interactions with support vector machines and Bayesian networks. After correction for multiple testing, we found no significant single genotypic associations with depressive symptoms. Machine learning algorithms showed no evidence of interactions. Naïve Bayes produced the best models in both subsets and included only environmental and sociobehavioral factors. We found no single or interactive associations with genetic factors and depressive symptoms. Various environmental and sociobehavioral factors were more predictive of depressive symptoms, yet their impacts were independent of one another. A genome-wide analysis of genetic alterations using machine learning methodologies will provide a framework for identifying genetic-environmental-sociobehavioral interactions in depressive symptoms.

  10. Analytic image reconstruction from partial data for a single-scan cone-beam CT with scatter correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Min, Jonghwan; Pua, Rizza; Cho, Seungryong, E-mail: scho@kaist.ac.kr

    Purpose: A beam-blocker composed of multiple strips is a useful gadget for scatter correction and/or for dose reduction in cone-beam CT (CBCT). However, the use of such a beam-blocker would yield cone-beam data that can be challenging for accurate image reconstruction from a single scan in the filtered-backprojection framework. The focus of the work was to develop an analytic image reconstruction method for CBCT that can be directly applied to partially blocked cone-beam data in conjunction with the scatter correction. Methods: The authors developed a rebinned backprojection-filteration (BPF) algorithm for reconstructing images from the partially blocked cone-beam data in amore » circular scan. The authors also proposed a beam-blocking geometry considering data redundancy such that an efficient scatter estimate can be acquired and sufficient data for BPF image reconstruction can be secured at the same time from a single scan without using any blocker motion. Additionally, scatter correction method and noise reduction scheme have been developed. The authors have performed both simulation and experimental studies to validate the rebinned BPF algorithm for image reconstruction from partially blocked cone-beam data. Quantitative evaluations of the reconstructed image quality were performed in the experimental studies. Results: The simulation study revealed that the developed reconstruction algorithm successfully reconstructs the images from the partial cone-beam data. In the experimental study, the proposed method effectively corrected for the scatter in each projection and reconstructed scatter-corrected images from a single scan. Reduction of cupping artifacts and an enhancement of the image contrast have been demonstrated. The image contrast has increased by a factor of about 2, and the image accuracy in terms of root-mean-square-error with respect to the fan-beam CT image has increased by more than 30%. Conclusions: The authors have successfully demonstrated that the proposed scanning method and image reconstruction algorithm can effectively estimate the scatter in cone-beam projections and produce tomographic images of nearly scatter-free quality. The authors believe that the proposed method would provide a fast and efficient CBCT scanning option to various applications particularly including head-and-neck scan.« less

  11. Hadronic energy resolution of a highly granular scintillator-steel hadron calorimeter using software compensation techniques

    NASA Astrophysics Data System (ADS)

    Adloff, C.; Blaha, J.; Blaising, J.-J.; Drancourt, C.; Espargilière, A.; Gaglione, R.; Geffroy, N.; Karyotakis, Y.; Prast, J.; Vouters, G.; Francis, K.; Repond, J.; Smith, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, S. T.; Sosebee, M.; White, A. P.; Yu, J.; Buanes, T.; Eigen, G.; Mikami, Y.; Watson, N. K.; Goto, T.; Mavromanolakis, G.; Thomson, M. A.; Ward, D. R.; Yan, W.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Benyamna, M.; Cârloganu, C.; Fehr, F.; Gay, P.; Manen, S.; Royer, L.; Blazey, G. C.; Dyshkant, A.; Lima, J. G. R.; Zutshi, V.; Hostachy, J.-Y.; Morin, L.; Cornett, U.; David, D.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hermberg, B.; Karstensen, S.; Krivan, F.; Lucaci-Timoce, A.-I.; Lu, S.; Lutz, B.; Morozov, S.; Morgunov, V.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Vargas-Trevino, A.; Feege, N.; Garutti, E.; Marchesini, I.; Ramilli, M.; Eckert, P.; Harion, T.; Kaplan, A.; Schultz-Coulon, H.-Ch; Shen, W.; Stamen, R.; Tadday, A.; Bilki, B.; Norbeck, E.; Onel, Y.; Wilson, G. W.; Kawagoe, K.; Dauncey, P. D.; Magnan, A.-M.; Wing, M.; Salvatore, F.; Calvo Alamillo, E.; Fouz, M.-C.; Puerta-Pelayo, J.; Balagura, V.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Rusinov, V.; Tarkovsky, E.; Kirikova, N.; Kozlov, V.; Smirnov, P.; Soloviev, Y.; Buzhan, P.; Dolgoshein, B.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Karakash, A.; Popova, E.; Smirnov, S.; Kiesling, C.; Pfau, S.; Seidel, K.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Bonis, J.; Bouquet, B.; Callier, S.; Cornebise, P.; Doublet, Ph; Dulucq, F.; Faucci Giannelli, M.; Fleury, J.; Li, H.; Martin-Chassard, G.; Richard, F.; de la Taille, Ch; Pöschl, R.; Raux, L.; Seguin-Moreau, N.; Wicek, F.; Anduze, M.; Boudry, V.; Brient, J.-C.; Jeans, D.; Mora de Freitas, P.; Musat, G.; Reinhard, M.; Ruan, M.; Videau, H.; Bulanek, B.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Takeshita, T.; Uozumi, S.; Sauer, J.; Weber, S.; Zeitnitz, C.

    2012-09-01

    The energy resolution of a highly granular 1 m3 analogue scintillator-steel hadronic calorimeter is studied using charged pions with energies from 10 GeV to 80 GeV at the CERN SPS. The energy resolution for single hadrons is determined to be approximately 58%/√E/GeV. This resolution is improved to approximately 45%/√E/GeV with software compensation techniques. These techniques take advantage of the event-by-event information about the substructure of hadronic showers which is provided by the imaging capabilities of the calorimeter. The energy reconstruction is improved either with corrections based on the local energy density or by applying a single correction factor to the event energy sum derived from a global measure of the shower energy density. The application of the compensation algorithms to geant4 simulations yield resolution improvements comparable to those observed for real data.

  12. A study on scattering correction for γ-photon 3D imaging test method

    NASA Astrophysics Data System (ADS)

    Xiao, Hui; Zhao, Min; Liu, Jiantang; Chen, Hao

    2018-03-01

    A pair of 511KeV γ-photons is generated during a positron annihilation. Their directions differ by 180°. The moving path and energy information can be utilized to form the 3D imaging test method in industrial domain. However, the scattered γ-photons are the major factors influencing the imaging precision of the test method. This study proposes a γ-photon single scattering correction method from the perspective of spatial geometry. The method first determines possible scattering points when the scattered γ-photon pair hits the detector pair. The range of scattering angle can then be calculated according to the energy window. Finally, the number of scattered γ-photons denotes the attenuation of the total scattered γ-photons along its moving path. The corrected γ-photons are obtained by deducting the scattered γ-photons from the original ones. Two experiments are conducted to verify the effectiveness of the proposed scattering correction method. The results concluded that the proposed scattering correction method can efficiently correct scattered γ-photons and improve the test accuracy.

  13. Observation of the continuous stern-gerlach effect on an electron bound in an atomic Ion

    PubMed

    Hermanspahn; Haffner; Kluge; Quint; Stahl; Verdu; Werth

    2000-01-17

    We report on the first observation of the continuous Stern-Gerlach effect on an electron bound in an atomic ion. The measurement was performed on a single hydrogenlike ion ( 12C5+) in a Penning trap. The measured g factor of the bound electron, g = 2.001 042(2), is in excellent agreement with the theoretical value, confirming the relativistic correction at a level of 0.1%. This proves the possibility of g-factor determinations on atomic ions to high precision by using the continuous Stern-Gerlach effect. The result demonstrates the feasibility of conducting experiments on single heavy highly charged ions to test quantum electrodynamics in the strong electric field of the nucleus.

  14. Measuring and modeling the interaction among reward size, delay to reward, and satiation level on motivation in monkeys.

    PubMed

    Minamimoto, Takafumi; La Camera, Giancarlo; Richmond, Barry J

    2009-01-01

    Motivation is usually inferred from the likelihood or the intensity with which behavior is carried out. It is sensitive to external factors (e.g., the identity, amount, and timing of a rewarding outcome) and internal factors (e.g., hunger or thirst). We trained macaque monkeys to perform a nonchoice instrumental task (a sequential red-green color discrimination) while manipulating two external factors: reward size and delay-to-reward. We also inferred the state of one internal factor, level of satiation, by monitoring the accumulated reward. A visual cue indicated the forthcoming reward size and delay-to-reward in each trial. The fraction of trials completed correctly by the monkeys increased linearly with reward size and was hyperbolically discounted by delay-to-reward duration, relations that are similar to those found in free operant and choice tasks. The fraction of correct trials also decreased progressively as a function of the satiation level. Similar (albeit noiser) relations were obtained for reaction times. The combined effect of reward size, delay-to-reward, and satiation level on the proportion of correct trials is well described as a multiplication of the effects of the single factors when each factor is examined alone. These results provide a quantitative account of the interaction of external and internal factors on instrumental behavior, and allow us to extend the concept of subjective value of a rewarding outcome, usually confined to external factors, to account also for slow changes in the internal drive of the subject.

  15. Measuring and Modeling the Interaction Among Reward Size, Delay to Reward, and Satiation Level on Motivation in Monkeys

    PubMed Central

    Minamimoto, Takafumi; La Camera, Giancarlo; Richmond, Barry J.

    2009-01-01

    Motivation is usually inferred from the likelihood or the intensity with which behavior is carried out. It is sensitive to external factors (e.g., the identity, amount, and timing of a rewarding outcome) and internal factors (e.g., hunger or thirst). We trained macaque monkeys to perform a nonchoice instrumental task (a sequential red-green color discrimination) while manipulating two external factors: reward size and delay-to-reward. We also inferred the state of one internal factor, level of satiation, by monitoring the accumulated reward. A visual cue indicated the forthcoming reward size and delay-to-reward in each trial. The fraction of trials completed correctly by the monkeys increased linearly with reward size and was hyperbolically discounted by delay-to-reward duration, relations that are similar to those found in free operant and choice tasks. The fraction of correct trials also decreased progressively as a function of the satiation level. Similar (albeit noiser) relations were obtained for reaction times. The combined effect of reward size, delay-to-reward, and satiation level on the proportion of correct trials is well described as a multiplication of the effects of the single factors when each factor is examined alone. These results provide a quantitative account of the interaction of external and internal factors on instrumental behavior, and allow us to extend the concept of subjective value of a rewarding outcome, usually confined to external factors, to account also for slow changes in the internal drive of the subject. PMID:18987119

  16. Atmospheric scattering corrections to solar radiometry

    NASA Technical Reports Server (NTRS)

    Box, M. A.; Deepak, A.

    1979-01-01

    Whenever a solar radiometer is used to measure direct solar radiation, some diffuse sky radiation invariably enters the detector's field of view along with the direct beam. Therefore, the atmospheric optical depth obtained by the use of Bouguer's transmission law (also called Beer-Lambert's law), that is valid only for direct radiation, needs to be corrected by taking account of the scattered radiation. This paper discusses the correction factors needed to account for the diffuse (i,e., singly and multiply scattered) radiation and the algorithms developed for retrieving aerosol size distribution from such measurements. For a radiometer with a small field of view (half-cone angle of less than 5 deg) and relatively clear skies (optical depths less than 0.4), it is shown that the total diffuse contribution represents approximately 1% of the total intensity.

  17. On the Performance of T2∗ Correction Methods for Quantification of Hepatic Fat Content

    PubMed Central

    Reeder, Scott B.; Bice, Emily K.; Yu, Huanzhou; Hernando, Diego; Pineda, Angel R.

    2014-01-01

    Nonalcoholic fatty liver disease is the most prevalent chronic liver disease in Western societies. MRI can quantify liver fat, the hallmark feature of nonalcoholic fatty liver disease, so long as multiple confounding factors including T2∗ decay are addressed. Recently developed MRI methods that correct for T2∗ to improve the accuracy of fat quantification either assume a common T2∗ (single- T2∗) for better stability and noise performance or independently estimate the T2∗ for water and fat (dual- T2∗) for reduced bias, but with noise performance penalty. In this study, the tradeoff between bias and variance for different T2∗ correction methods is analyzed using the Cramér-Rao bound analysis for biased estimators and is validated using Monte Carlo experiments. A noise performance metric for estimation of fat fraction is proposed. Cramér-Rao bound analysis for biased estimators was used to compute the metric at different echo combinations. Optimization was performed for six echoes and typical T2∗ values. This analysis showed that all methods have better noise performance with very short first echo times and echo spacing of ∼π/2 for single- T2∗ correction, and ∼2π/3 for dual- T2∗ correction. Interestingly, when an echo spacing and first echo shift of ∼π/2 are used, methods without T2∗ correction have less than 5% bias in the estimates of fat fraction. PMID:21661045

  18. Calibration of 4π NaI(Tl) detectors with coincidence summing correction using new numerical procedure and ANGLE4 software

    NASA Astrophysics Data System (ADS)

    Badawi, Mohamed S.; Jovanovic, Slobodan I.; Thabet, Abouzeid A.; El-Khatib, Ahmed M.; Dlabac, Aleksandar D.; Salem, Bohaysa A.; Gouda, Mona M.; Mihaljevic, Nikola N.; Almugren, Kholud S.; Abbas, Mahmoud I.

    2017-03-01

    The 4π NaI(Tl) γ-ray detectors are consisted of the well cavity with cylindrical cross section, and the enclosing geometry of measurements with large detection angle. This leads to exceptionally high efficiency level and a significant coincidence summing effect, much more than a single cylindrical or coaxial detector especially in very low activity measurements. In the present work, the detection effective solid angle in addition to both full-energy peak and total efficiencies of well-type detectors, were mainly calculated by the new numerical simulation method (NSM) and ANGLE4 software. To obtain the coincidence summing correction factors through the previously mentioned methods, the simulation of the coincident emission of photons was modeled mathematically, based on the analytical equations and complex integrations over the radioactive volumetric sources including the self-attenuation factor. The measured full-energy peak efficiencies and correction factors were done by using 152Eu, where an exact adjustment is required for the detector efficiency curve, because neglecting the coincidence summing effect can make the results inconsistent with the whole. These phenomena, in general due to the efficiency calibration process and the coincidence summing corrections, appear jointly. The full-energy peak and the total efficiencies from the two methods typically agree with discrepancy 10%. The discrepancy between the simulation, ANGLE4 and measured full-energy peak after corrections for the coincidence summing effect was on the average, while not exceeding 14%. Therefore, this technique can be easily applied in establishing the efficiency calibration curves of well-type detectors.

  19. Exploration of the Factors That Support Learning: Web-Based Activity and Testing Systems in Community College Algebra

    ERIC Educational Resources Information Center

    Hauk, Shandy; Matlen, Bryan

    2016-01-01

    A variety of computerized interactive learning platforms exist. Most include instructional supports in the form of problem sets. Feedback to users ranges from a single word like "Correct!" to offers of hints and partially to fully worked examples. Behind-the-scenes design of such systems varies as well --from static dictionaries of…

  20. Exploration of the Factors That Support Learning: Web-Based Activity and Testing Systems in Community College Algebra [Contributed Report

    ERIC Educational Resources Information Center

    Hauk, Shandy; Matlen, Bryan; Thomas, Larry

    2017-01-01

    A variety of computerized interactive learning platforms exist. Most include instructional supports in the form of problem sets. Feedback to users ranges from a single word like "Correct!" to offers of hints and partially- to fully-worked examples. Behind-the-scenes design of systems varies as well--from static dictionaries of problems…

  1. Measurement of dissolved organic matter fluorescense in aquatic environments: An interlaboratory comparison

    USGS Publications Warehouse

    Murphy, Kathleen R.; Butler, Kenna D.; Spencer, Robert G. M.; Stedmon, Colin A.; Boehme, Jennifer R.; Aiken, George R.

    2010-01-01

    The fluorescent properties of dissolved organic matter (DOM) are often studied in order to infer DOM characteristics in aquatic environments, including source, quantity, composition, and behavior. While a potentially powerful technique, a single widely implemented standard method for correcting and presenting fluorescence measurements is lacking, leading to difficulties when comparing data collected by different research groups. This paper reports on a large-scale interlaboratory comparison in which natural samples and well-characterized fluorophores were analyzed in 20 laboratories in the U.S., Europe, and Australia. Shortcomings were evident in several areas, including data quality-assurance, the accuracy of spectral correction factors used to correct EEMs, and the treatment of optically dense samples. Data corrected by participants according to individual laboratory procedures were more variable than when corrected under a standard protocol. Wavelength dependency in measurement precision and accuracy were observed within and between instruments, even in corrected data. In an effort to reduce future occurrences of similar problems, algorithms for correcting and calibrating EEMs are described in detail, and MATLAB scripts for implementing the study's protocol are provided. Combined with the recent expansion of spectral fluorescence standards, this approach will serve to increase the intercomparability of DOM fluorescence studies.

  2. On Neglecting Chemical Exchange Effects When Correcting in Vivo 31P MRS Data for Partial Saturation

    NASA Astrophysics Data System (ADS)

    Ouwerkerk, Ronald; Bottomley, Paul A.

    2001-02-01

    Signal acquisition in most MRS experiments requires a correction for partial saturation that is commonly based on a single exponential model for T1 that ignores effects of chemical exchange. We evaluated the errors in 31P MRS measurements introduced by this approximation in two-, three-, and four-site chemical exchange models under a range of flip-angles and pulse sequence repetition times (TR) that provide near-optimum signal-to-noise ratio (SNR). In two-site exchange, such as the creatine-kinase reaction involving phosphocreatine (PCr) and γ-ATP in human skeletal and cardiac muscle, errors in saturation factors were determined for the progressive saturation method and the dual-angle method of measuring T1. The analysis shows that these errors are negligible for the progressive saturation method if the observed T1 is derived from a three-parameter fit of the data. When T1 is measured with the dual-angle method, errors in saturation factors are less than 5% for all conceivable values of the chemical exchange rate and flip-angles that deliver useful SNR per unit time over the range T1/5 ≤ TR ≤ 2T1. Errors are also less than 5% for three- and four-site exchange when TR ≥ T1*/2, the so-called "intrinsic" T1's of the metabolites. The effect of changing metabolite concentrations and chemical exchange rates on observed T1's and saturation corrections was also examined with a three-site chemical exchange model involving ATP, PCr, and inorganic phosphate in skeletal muscle undergoing up to 95% PCr depletion. Although the observed T1's were dependent on metabolite concentrations, errors in saturation corrections for TR = 2 s could be kept within 5% for all exchanging metabolites using a simple interpolation of two dual-angle T1 measurements performed at the start and end of the experiment. Thus, the single-exponential model appears to be reasonably accurate for correcting 31P MRS data for partial saturation in the presence of chemical exchange. Even in systems where metabolite concentrations change, accurate saturation corrections are possible without much loss in SNR.

  3. 49 CFR 325.75 - Ground surface correction factors. 1

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Ground surface correction factors. 1 325.75... MOTOR CARRIER NOISE EMISSION STANDARDS Correction Factors § 325.75 Ground surface correction factors. 1... account both the distance correction factors contained in § 325.73 and the ground surface correction...

  4. 49 CFR 325.75 - Ground surface correction factors. 1

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Ground surface correction factors. 1 325.75... MOTOR CARRIER NOISE EMISSION STANDARDS Correction Factors § 325.75 Ground surface correction factors. 1... account both the distance correction factors contained in § 325.73 and the ground surface correction...

  5. Analyses of factors of crash avoidance maneuvers using the general estimates system.

    PubMed

    Yan, Xuedong; Harb, Rami; Radwan, Essam

    2008-06-01

    Taking an effective corrective action to a critical traffic situation provides drivers an opportunity to avoid crash occurrence and minimize crash severity. The objective of this study is to investigate the relationship between the probability of taking corrective actions and the characteristics of drivers, vehicles, and driving environments. Using the 2004 GES crash database, this study classified drivers who encountered critical traffic events (identified as P_CRASH3 in the GES database) into two pre-crash groups: corrective avoidance actions group and no corrective avoidance actions group. Single and multiple logistic regression analyses were performed to identify potential traffic factors associated with the probability of drivers taking corrective actions. The regression results showed that the driver/vehicle factors associated with the probability of taking corrective actions include: driver age, gender, alcohol use, drug use, physical impairments, distraction, sight obstruction, and vehicle type. In particular, older drivers, female drivers, drug/alcohol use, physical impairment, distraction, or poor visibility may increase the probability of failing to attempt to avoid crashes. Moreover, drivers of larger size vehicles are 42.5% more likely to take corrective avoidance actions than passenger car drivers. On the other hand, the significant environmental factors correlated with the drivers' crash avoidance maneuver include: highway type, number of lanes, divided/undivided highway, speed limit, highway alignment, highway profile, weather condition, and surface condition. Some adverse highway environmental factors, such as horizontal curves, vertical curves, worse weather conditions, and slippery road surface conditions are correlated with a higher probability of crash avoidance maneuvers. These results may seem counterintuitive but they can be explained by the fact that motorists may be more likely to drive cautiously in those adverse driving environments. The analyses revealed that drivers' distraction could be the highest risk factor leading to the failure of attempting to avoid crashes. Further analyses entailing distraction causes (e.g., cellular phone use) and their possible countermeasures need to be conducted. The age and gender factors are overrepresented in the "no avoidance maneuver." A possible solution could involve the integration of a new function in the current ITS technologies. A personalized system, which could be related to the expected type of maneuver for a driver with certain characteristics, would assist different drivers with different characteristics to avoid crashes. Further crash database studies are recommended to investigate the association of drivers' emergency maneuvers such as braking, steering, or their combination with crash severity.

  6. Research on the Application of Fast-steering Mirror in Stellar Interferometer

    NASA Astrophysics Data System (ADS)

    Mei, R.; Hu, Z. W.; Xu, T.; Sun, C. S.

    2017-07-01

    For a stellar interferometer, the fast-steering mirror (FSM) is widely utilized to correct wavefront tilt caused by atmospheric turbulence and internal instrumental vibration due to its high resolution and fast response frequency. In this study, the non-coplanar error between the FSM and actuator deflection axis introduced by manufacture, assembly, and adjustment is analyzed. Via a numerical method, the additional optical path difference (OPD) caused by above factors is studied, and its effects on tracking accuracy of stellar interferometer are also discussed. On the other hand, the starlight parallelism between the beams of two arms is one of the main factors of the loss of fringe visibility. By analyzing the influence of wavefront tilt caused by the atmospheric turbulence on fringe visibility, a simple and efficient real-time correction scheme of starlight parallelism is proposed based on a single array detector. The feasibility of this scheme is demonstrated by laboratory experiment. The results show that starlight parallelism meets the requirement of stellar interferometer in wavefront tilt preliminarily after the correction of fast-steering mirror.

  7. Strength of the interatomic potential derived from angular scans in LEIS

    NASA Astrophysics Data System (ADS)

    Primetzhofer, D.; Markin, S. N.; Draxler, M.; Beikler, R.; Taglauer, E.; Bauer, P.

    2008-09-01

    Angular scans were performed for a Cu(1 0 0) single crystal and He + ions. The results were compared to MARLOWE, KALYPSO and FAN simulations to obtain information on the interaction potential. The influence of the used evaluation procedure on the deduced scattering potential was investigated. The scattering potential is found to be weaker than what is predicted by an uncorrected TFM potential. It was found that the use of a single screening correction factor is applicable in a wide range of impact parameters. It is further shown that selection of single scattering trajectories and a limitation of information depth to the surface layers is possible for neutral and charge integrated spectra.

  8. Pose determination of a blade implant in three dimensions from a single two-dimensional radiograph.

    PubMed

    Toti, Paolo; Barone, Antonio; Marconcini, Simone; Menchini-Fabris, Giovanni Battista; Martuscelli, Ranieri; Covani, Ugo

    2018-05-01

    The aim of the study was to introduce a mathematical method to estimate the correct pose of a blade by evaluating the radiographic features obtained from a single two-dimensional image. Blade-form implant bed preparation was performed using the piezosurgery device, and placement was attained with the use of magnetic mallet. The pose determination of the blade was described by means of three consecutive rotations defined by three angles of orientation (triplet φ, θ and ψ). Retrospective analysis on periapical radiographs was performed. This method was used to compare implant (axial length along the marker, i.e. the implant structure) vs angular correction factor (a trigonometric function of the triplet). The accuracy of the method was tested by generating two-dimensional radiographic simulations of the blades, which were then compared with the images of the implants as appearing on the real radiographs. Two patients had to be excluded from further evaluation because the values of the estimated pose angles showed a too-wide range to be effective for a good standardization of serial radiographs: intrapatient range from baseline to 1-year survey was > of a threshold determined by the clinicians (30°). The linear dependence between implant (CF°) and angular correction factor (CF^) was estimated by a robust linear regression, yielding the following coefficients: slope, 0.908; intercept, -0.092; and coefficient of determination, 0.924. The absolute error in accuracy was -0.29 ± 4.35, 0.23 ± 3.81 and 0.64 ± 1.18°, respectively, for the angles φ, θ and ψ. The present theoretical and experimental study established the possibility of determining, a posteriori, a unique triplet of angles (φ, θ and ψ) which described the pose of a blade upon a single two-dimensional radiograph, and of suggesting a method to detect cases in which the standardized geometric projection failed. The angular correction of the bone level yielded results very close to those obtained with an internal marker related to the implant length.

  9. Using Mason number to predict MR damper performance from limited test data

    NASA Astrophysics Data System (ADS)

    Becnel, Andrew C.; Wereley, Norman M.

    2017-05-01

    The Mason number can be used to produce a single master curve which relates MR fluid stress versus strain rate behavior across a wide range of shear rates, temperatures, and applied magnetic fields. As applications of MR fluid energy absorbers expand to a variety of industries and operating environments, Mason number analysis offers a path to designing devices with desired performance from a minimal set of preliminary test data. Temperature strongly affects the off-state viscosity of the fluid, as the passive viscous force drops considerably at higher temperatures. Yield stress is not similarly affected, and stays relatively constant with changing temperature. In this study, a small model-scale MR fluid rotary energy absorber is used to measure the temperature correction factor of a commercially-available MR fluid from LORD Corporation. This temperature correction factor is identified from shear stress vs. shear rate data collected at four different temperatures. Measurements of the MR fluid yield stress are also obtained and related to a standard empirical formula. From these two MR fluid properties - temperature-dependent viscosity and yield stress - the temperature-corrected Mason number is shown to predict the force vs. velocity performance of a full-scale rotary MR fluid energy absorber. This analysis technique expands the design space of MR devices to high shear rates and allows for comprehensive predictions of overall performance across a wide range of operating conditions from knowledge only of the yield stress vs. applied magnetic field and a temperature-dependent viscosity correction factor.

  10. Better band gaps for wide-gap semiconductors from a locally corrected exchange-correlation potential that nearly eliminates self-interaction errors

    DOE PAGES

    Singh, Prashant; Harbola, Manoj K.; Johnson, Duane D.

    2017-09-08

    Here, this work constitutes a comprehensive and improved account of electronic-structure and mechanical properties of silicon-nitride (more » $${\\rm Si}_{3}$$ $${\\rm N}_{4}$$ ) polymorphs via van Leeuwen and Baerends (LB) exchange-corrected local density approximation (LDA) that enforces the exact exchange potential asymptotic behavior. The calculated lattice constant, bulk modulus, and electronic band structure of $${\\rm Si}_{3}$$ $${\\rm N}_{4}$$ polymorphs are in good agreement with experimental results. We also show that, for a single electron in a hydrogen atom, spherical well, or harmonic oscillator, the LB-corrected LDA reduces the (self-interaction) error to exact total energy to ~10%, a factor of three to four lower than standard LDA, due to a dramatically improved representation of the exchange-potential.« less

  11. Myasthenic syndrome: effect of choline, plasmapheresis and tests for circulating factor.

    PubMed Central

    Kranz, H; Caddy, D J; Williams, A M; Gay, W

    1980-01-01

    In a patient with myasthenic syndrome neuro-muscular transmission was characterised by depression and facilitation. The relative extent of these two processes varied between muscles, and in the one muscle with time. Guanidine HCl treatment corrected the electrophysiological defect. Oral choline increased muscle action potential amplitude in response to single shocks. Intravenous choline produced features indicating cholinergic autonomic stimulation. Pimozide and plasmapheresis had no effect. Animal in-vivo and in-vitro studies performed to detect a circulating factor which interferes with neuro-muscular transmission were negative. PMID:6110709

  12. Exploration of the Factors That Support Learning: Web-Based Activity and Testing Systems in Community College Algebra [Conference Long Paper

    ERIC Educational Resources Information Center

    Hauk, Shandy; Matlen, Bryan J.

    2017-01-01

    This is an extended conference proceedings report [Long Paper] based on a shorter contributed report at the same conference. A variety of computerized learning platforms exist. In mathematics, most include sets of problems to complete. Feedback to users ranges from a single word like "Correct!" to offers of hints and partially- to…

  13. Simple aerosol correction technique based on the spectral relationships of the aerosol multiple-scattering reflectances for atmospheric correction over the oceans.

    PubMed

    Ahn, Jae-Hyun; Park, Young-Je; Kim, Wonkook; Lee, Boram

    2016-12-26

    An estimation of the aerosol multiple-scattering reflectance is an important part of the atmospheric correction procedure in satellite ocean color data processing. Most commonly, the utilization of two near-infrared (NIR) bands to estimate the aerosol optical properties has been adopted for the estimation of the effects of aerosols. Previously, the operational Geostationary Color Ocean Imager (GOCI) atmospheric correction scheme relies on a single-scattering reflectance ratio (SSE), which was developed for the processing of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data to determine the appropriate aerosol models and their aerosol optical thicknesses. The scheme computes reflectance contributions (weighting factor) of candidate aerosol models in a single scattering domain then spectrally extrapolates the single-scattering aerosol reflectance from NIR to visible (VIS) bands using the SSE. However, it directly applies the weight value to all wavelengths in a multiple-scattering domain although the multiple-scattering aerosol reflectance has a non-linear relationship with the single-scattering reflectance and inter-band relationship of multiple scattering aerosol reflectances is non-linear. To avoid these issues, we propose an alternative scheme for estimating the aerosol reflectance that uses the spectral relationships in the aerosol multiple-scattering reflectance between different wavelengths (called SRAMS). The process directly calculates the multiple-scattering reflectance contributions in NIR with no residual errors for selected aerosol models. Then it spectrally extrapolates the reflectance contribution from NIR to visible bands for each selected model using the SRAMS. To assess the performance of the algorithm regarding the errors in the water reflectance at the surface or remote-sensing reflectance retrieval, we compared the SRAMS atmospheric correction results with the SSE atmospheric correction using both simulations and in situ match-ups with the GOCI data. From simulations, the mean errors for bands from 412 to 555 nm were 5.2% for the SRAMS scheme and 11.5% for SSE scheme in case-I waters. From in situ match-ups, 16.5% for the SRAMS scheme and 17.6% scheme for the SSE scheme in both case-I and case-II waters. Although we applied the SRAMS algorithm to the GOCI, it can be applied to other ocean color sensors which have two NIR wavelengths.

  14. Reference dosimetry of proton pencil beams based on dose-area product: a proof of concept.

    PubMed

    Gomà, Carles; Safai, Sairos; Vörös, Sándor

    2017-06-21

    This paper describes a novel approach to the reference dosimetry of proton pencil beams based on dose-area product ([Formula: see text]). It depicts the calibration of a large-diameter plane-parallel ionization chamber in terms of dose-area product in a 60 Co beam, the Monte Carlo calculation of beam quality correction factors-in terms of dose-area product-in proton beams, the Monte Carlo calculation of nuclear halo correction factors, and the experimental determination of [Formula: see text] of a single proton pencil beam. This new approach to reference dosimetry proves to be feasible, as it yields [Formula: see text] values in agreement with the standard and well-established approach of determining the absorbed dose to water at the centre of a broad homogeneous field generated by the superposition of regularly-spaced proton pencil beams.

  15. Approximations for column effect in airplane wing spars

    NASA Technical Reports Server (NTRS)

    Warner, Edward P; Short, Mac

    1927-01-01

    The significance attaching to "column effect" in airplane wing spars has been increasingly realized with the passage of time, but exact computations of the corrections to bending moment curves resulting from the existence of end loads are frequently omitted because of the additional labor involved in an analysis by rigorously correct methods. The present report represents an attempt to provide for approximate column effect corrections that can be graphically or otherwise expressed so as to be applied with a minimum of labor. Curves are plotted giving approximate values of the correction factors for single and two bay trusses of varying proportions and with various relationships between axial and lateral loads. It is further shown from an analysis of those curves that rough but useful approximations can be obtained from Perry's formula for corrected bending moment, with the assumed distance between points of inflection arbitrarily modified in accordance with rules given in the report. The discussion of general rules of variation of bending stress with axial load is accompanied by a study of the best distribution of the points of support along a spar for various conditions of loading.

  16. Relationship Satisfaction and Risk Factors for Suicide.

    PubMed

    Till, Benedikt; Tran, Ulrich S; Niederkrotenthaler, Thomas

    2017-01-01

    Previous studies suggest that troubled romantic relationships are associated with higher risk factors for mental health. However, studies examining the role of relationship satisfaction in suicide risk factors are scarce. We investigated differences in risk factors for suicide between individuals with high relationship satisfaction, individuals with low relationship satisfaction, and singles. Furthermore, we explored patterns of experiencing, and dealing with, conflicts in the relationship and examined associations with suicide risk factors. In this cross-sectional study, we assessed relationship status, relationship satisfaction, specific types of relationship conflicts, and suicide risk factors (i.e., suicidal ideation, hopelessness, depression) with questionnaires among 382 individuals in Austria. Risk factors for suicide were higher among singles than among individuals in happy relationships, but highest among those with low relationship satisfaction [corrected]. Participants reporting a high number of unsolved conflicts in their relationship had higher levels of suicidal ideation, hopelessness, and depression than individuals who tend to solve issues with their partner amicably or report no conflicts. Relationship satisfaction and relationship conflicts reflect risk factors for suicide, with higher levels of suicidal ideation, hopelessness, and depression reported by individuals who mentioned unsolved conflicts with their partner and experienced low satisfaction with their relationship.

  17. Underwater and Dive Station Work-Site Noise Surveys

    DTIC Science & Technology

    2008-03-14

    A) octave band noise measurements, dB (A) correction factors, dB ( A ) levels , MK-21 diving helmet attenuation correction factors, overall in-helmet...band noise measurements, dB (A) correction factors, dB ( A ) levels , MK-21 diving helmet attenuation correction factors, overall in-helmet dB (A...noise measurements, dB (A) correction factors, dB ( A ) levels , MK-21 diving helmet attenuation correction factors, overall in-helmet dB (A) level, and

  18. Intercalibration of research survey vessels on Lake Erie

    USGS Publications Warehouse

    Tyson, J.T.; Johnson, T.B.; Knight, C.T.; Bur, M.T.

    2006-01-01

    Fish abundance indices obtained from annual research trawl surveys are an integral part of fisheries stock assessment and management in the Great Lakes. It is difficult, however, to administer trawl surveys using a single vessel-gear combination owing to the large size of these systems, the jurisdictional boundaries that bisect the Great Lakes, and changes in vessels as a result of fleet replacement. When trawl surveys are administered by multiple vessel-gear combinations, systematic error may be introduced in combining catch-per-unit-effort (CPUE) data across vessels. This bias is associated with relative differences in catchability among vessel-gear combinations. In Lake Erie, five different research vessels conduct seasonal trawl surveys in the western half of the lake. To eliminate this systematic bias, the Lake Erie agencies conducted a side-by-side trawling experiment in 2003 to develop correction factors for CPUE data associated with different vessel-gear combinations. Correcting for systematic bias in CPUE data should lead to more accurate and comparable estimates of species density and biomass. We estimated correction factors for the 10 most commonly collected species age-groups for each vessel during the experiment. Most of the correction factors (70%) ranged from 0.5 to 2.0, indicating that the systematic bias associated with different vessel-gear combinations was not large. Differences in CPUE were most evident for vessels using different sampling gears, although significant differences also existed for vessels using the same gears. These results suggest that standardizing gear is important for multiple-vessel surveys, but there will still be significant differences in catchability stemming from the vessel effects and agencies must correct for this. With standardized estimates of CPUE, the Lake Erie agencies will have the ability to directly compare and combine time series for species abundance. ?? Copyright by the American Fisheries Society 2006.

  19. Multicenter evaluation of a synthetic single-crystal diamond detector for CyberKnife small field size output factors.

    PubMed

    Russo, Serenella; Masi, Laura; Francescon, Paolo; Frassanito, Maria Cristina; Fumagalli, Maria Luisa; Marinelli, Marco; Falco, Maria Daniela; Martinotti, Anna Stefania; Pimpinella, Maria; Reggiori, Giacomo; Verona Rinati, Gianluca; Vigorito, Sabrina; Mancosu, Pietro

    2016-04-01

    The aim of the present work was to evaluate small field size output factors (OFs) using the latest diamond detector commercially available, PTW-60019 microDiamond, over different CyberKnife systems. OFs were measured also by silicon detectors routinely used by each center, considered as reference. Five Italian CyberKnife centers performed OFs measurements for field sizes ranging from 5 to 60mm, defined by fixed circular collimators (5 centers) and by Iris(™) variable aperture collimator (4 centers). Setup conditions were: 80cm source to detector distance, and 1.5cm depth in water. To speed up measurements two diamond detectors were used and their equivalence was evaluated. MonteCarlo (MC) correction factors for silicon detectors were used for comparing the OF measurements. Considering OFs values averaged over all centers, diamond data resulted lower than uncorrected silicon diode ones. The agreement between diamond and MC corrected silicon values was within 0.6% for all fixed circular collimators. Relative differences between microDiamond and MC corrected silicon diodes data for Iris(™) collimator were lower than 1.0% for all apertures in the totality of centers. The two microDiamond detectors showed similar characteristics, in agreement with the technical specifications. Excellent agreement between microDiamond and MC corrected silicon diode detectors OFs was obtained for both collimation systems fixed cones and Iris(™), demonstrating the microDiamond could be a suitable detector for CyberKnife commissioning and routine checks. These results obtained in five centers suggest that for CyberKnife systems microDiamond can be used without corrections even at the smallest field size. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  20. Order of accuracy of QUICK and related convection-diffusion schemes

    NASA Technical Reports Server (NTRS)

    Leonard, B. P.

    1993-01-01

    This report attempts to correct some misunderstandings that have appeared in the literature concerning the order of accuracy of the QUICK scheme for steady-state convective modeling. Other related convection-diffusion schemes are also considered. The original one-dimensional QUICK scheme written in terms of nodal-point values of the convected variable (with a 1/8-factor multiplying the 'curvature' term) is indeed a third-order representation of the finite volume formulation of the convection operator average across the control volume, written naturally in flux-difference form. An alternative single-point upwind difference scheme (SPUDS) using node values (with a 1/6-factor) is a third-order representation of the finite difference single-point formulation; this can be written in a pseudo-flux difference form. These are both third-order convection schemes; however, the QUICK finite volume convection operator is 33 percent more accurate than the single-point implementation of SPUDS. Another finite volume scheme, writing convective fluxes in terms of cell-average values, requires a 1/6-factor for third-order accuracy. For completeness, one can also write a single-point formulation of the convective derivative in terms of cell averages, and then express this in pseudo-flux difference form; for third-order accuracy, this requires a curvature factor of 5/24. Diffusion operators are also considered in both single-point and finite volume formulations. Finite volume formulations are found to be significantly more accurate. For example, classical second-order central differencing for the second derivative is exactly twice as accurate in a finite volume formulation as it is in single-point.

  1. A two-dimensional ACAR study of untwinned YBa2Cu3O(7-x)

    NASA Astrophysics Data System (ADS)

    Smedskjaer, L. C.; Bansil, A.

    1991-12-01

    We have carried out 2D-ACAR measurements on an untwinned single crystal of YBa2Cu3O(sub 7-x) as a function of temperature, for five temperatures ranging from 30K to 300K. We show that these temperature-dependent 2D-ACAR spectra can be described to a good approximation as a superposition of two temperature independent spectra with temperature-dependent weighting factors. We show further how the data can be used to correct for the 'background' in the experimental spectrum. Such a 'background corrected' spectrum is in remarkable accord with the corresponding band theory predictions, and displays, in particular, clear signatures of the electron ridge Fermi surface.

  2. Invariant protection of high-voltage electric motors of technological complexes at industrial enterprises at partial single-phase ground faults

    NASA Astrophysics Data System (ADS)

    Abramovich, B. N.; Sychev, Yu A.; Pelenev, D. N.

    2018-03-01

    Development results of invariant protection of high-voltage motors at incomplete single-phase ground faults are observed in the article. It is established that current protections have low action selectivity because of an inadmissible decrease in entrance signals during the shirt circuit occurrence in the place of transient resistance. The structural functional scheme and an algorithm of protective actions where correction of automatic zero sequence currents signals of the protected accessions implemented according to the level of incompleteness of ground faults are developed. It is revealed that automatic correction of zero sequence currents allows one to provide the invariance of sensitivity factor for protection under the variation conditions of a transient resistance in the place of damage. Application of invariant protection allows one to minimize damages in 6-10 kV electrical installations of industrial enterprises for a cause of infringement of consumers’ power supply and their system breakdown due to timely localization of emergency of ground faults modes.

  3. Analysis of the causes of dental implant fracture: A retrospective clinical study.

    PubMed

    Stoichkov, Biser; Kirov, Dimitar

    2018-01-01

    Fracture of osseointegrated dental implants is the most severe mechanical complication. The aim of the present study was to analyze possible causative factors for implant body fracture. One hundred and one patients with 218 fitted implants and a follow-up period of 3 to 10 years were studied. Factors associated with biomechanical and physiologic overloading such as parafunctional activity (eg, bruxism), occlusion, and cantilevers, and factors related to the planning of the dental prosthesis, available bone volume, implant area, implant diameter, number of implants, and their inclination were tracked. The impact of their effect was analyzed using the Bonferroni-corrected post-hoc Mann-Whitney test for each group. The incidence of dental implant fracture was 2.3% in the investigated cases. Improper treatment planning, bruxism, and time of the complication setting in were the main factors leading to this complication. Typical size effect was established only for available bruxism, occlusal errors, and their activity duration. These complications were observed most often with single crown prostheses, and in combination with parafunctional activities such as bruxism and lack of implant-protected occlusion. Occlusal overload due to bruxism or inappropriate or inadequate occlusion as a single factor or a combination of these factors during the first years after the functional load can cause implant fracture. Fracture of the implant body more frequently occurred with single crowns than with other implant-supported fixed dental prostheses.

  4. Assessment of Genetic and Nongenetic Interactions for the Prediction of Depressive Symptomatology: An Analysis of the Wisconsin Longitudinal Study Using Machine Learning Algorithms

    PubMed Central

    Roetker, Nicholas S.; Yonker, James A.; Chang, Vicky; Roan, Carol L.; Herd, Pamela; Hauser, Taissa S.; Hauser, Robert M.

    2013-01-01

    Objectives. We examined depression within a multidimensional framework consisting of genetic, environmental, and sociobehavioral factors and, using machine learning algorithms, explored interactions among these factors that might better explain the etiology of depressive symptoms. Methods. We measured current depressive symptoms using the Center for Epidemiologic Studies Depression Scale (n = 6378 participants in the Wisconsin Longitudinal Study). Genetic factors were 78 single nucleotide polymorphisms (SNPs); environmental factors—13 stressful life events (SLEs), plus a composite proportion of SLEs index; and sociobehavioral factors—18 personality, intelligence, and other health or behavioral measures. We performed traditional SNP associations via logistic regression likelihood ratio testing and explored interactions with support vector machines and Bayesian networks. Results. After correction for multiple testing, we found no significant single genotypic associations with depressive symptoms. Machine learning algorithms showed no evidence of interactions. Naïve Bayes produced the best models in both subsets and included only environmental and sociobehavioral factors. Conclusions. We found no single or interactive associations with genetic factors and depressive symptoms. Various environmental and sociobehavioral factors were more predictive of depressive symptoms, yet their impacts were independent of one another. A genome-wide analysis of genetic alterations using machine learning methodologies will provide a framework for identifying genetic–environmental–sociobehavioral interactions in depressive symptoms. PMID:23927508

  5. Silicon Photonics Transmitter with SOA and Semiconductor Mode-Locked Laser.

    PubMed

    Moscoso-Mártir, Alvaro; Müller, Juliana; Hauck, Johannes; Chimot, Nicolas; Setter, Rony; Badihi, Avner; Rasmussen, Daniel E; Garreau, Alexandre; Nielsen, Mads; Islamova, Elmira; Romero-García, Sebastián; Shen, Bin; Sandomirsky, Anna; Rockman, Sylvie; Li, Chao; Sharif Azadeh, Saeed; Lo, Guo-Qiang; Mentovich, Elad; Merget, Florian; Lelarge, François; Witzens, Jeremy

    2017-10-24

    We experimentally investigate an optical link relying on silicon photonics transmitter and receiver components as well as a single section semiconductor mode-locked laser as a light source and a semiconductor optical amplifier for signal amplification. A transmitter based on a silicon photonics resonant ring modulator, an external single section mode-locked laser and an external semiconductor optical amplifier operated together with a standard receiver reliably supports 14 Gbps on-off keying signaling with a signal quality factor better than 7 for 8 consecutive comb lines, as well as 25 Gbps signaling with a signal quality factor better than 7 for one isolated comb line, both without forward error correction. Resonant ring modulators and Germanium waveguide photodetectors are further hybridly integrated with chip scale driver and receiver electronics, and their co-operability tested. These experiments will serve as the basis for assessing the feasibility of a silicon photonics wavelength division multiplexed link relying on a single section mode-locked laser as a multi-carrier light source.

  6. cgCorrect: a method to correct for confounding cell-cell variation due to cell growth in single-cell transcriptomics

    NASA Astrophysics Data System (ADS)

    Blasi, Thomas; Buettner, Florian; Strasser, Michael K.; Marr, Carsten; Theis, Fabian J.

    2017-06-01

    Accessing gene expression at a single-cell level has unraveled often large heterogeneity among seemingly homogeneous cells, which remains obscured when using traditional population-based approaches. The computational analysis of single-cell transcriptomics data, however, still imposes unresolved challenges with respect to normalization, visualization and modeling the data. One such issue is differences in cell size, which introduce additional variability into the data and for which appropriate normalization techniques are needed. Otherwise, these differences in cell size may obscure genuine heterogeneities among cell populations and lead to overdispersed steady-state distributions of mRNA transcript numbers. We present cgCorrect, a statistical framework to correct for differences in cell size that are due to cell growth in single-cell transcriptomics data. We derive the probability for the cell-growth-corrected mRNA transcript number given the measured, cell size-dependent mRNA transcript number, based on the assumption that the average number of transcripts in a cell increases proportionally to the cell’s volume during the cell cycle. cgCorrect can be used for both data normalization and to analyze the steady-state distributions used to infer the gene expression mechanism. We demonstrate its applicability on both simulated data and single-cell quantitative real-time polymerase chain reaction (PCR) data from mouse blood stem and progenitor cells (and to quantitative single-cell RNA-sequencing data obtained from mouse embryonic stem cells). We show that correcting for differences in cell size affects the interpretation of the data obtained by typically performed computational analysis.

  7. Testing of Lagrange multiplier damped least-squares control algorithm for woofer-tweeter adaptive optics

    PubMed Central

    Zou, Weiyao; Burns, Stephen A.

    2012-01-01

    A Lagrange multiplier-based damped least-squares control algorithm for woofer-tweeter (W-T) dual deformable-mirror (DM) adaptive optics (AO) is tested with a breadboard system. We show that the algorithm can complementarily command the two DMs to correct wavefront aberrations within a single optimization process: the woofer DM correcting the high-stroke, low-order aberrations, and the tweeter DM correcting the low-stroke, high-order aberrations. The optimal damping factor for a DM is found to be the median of the eigenvalue spectrum of the influence matrix of that DM. Wavefront control accuracy is maximized with the optimized control parameters. For the breadboard system, the residual wavefront error can be controlled to the precision of 0.03 μm in root mean square. The W-T dual-DM AO has applications in both ophthalmology and astronomy. PMID:22441462

  8. Testing of Lagrange multiplier damped least-squares control algorithm for woofer-tweeter adaptive optics.

    PubMed

    Zou, Weiyao; Burns, Stephen A

    2012-03-20

    A Lagrange multiplier-based damped least-squares control algorithm for woofer-tweeter (W-T) dual deformable-mirror (DM) adaptive optics (AO) is tested with a breadboard system. We show that the algorithm can complementarily command the two DMs to correct wavefront aberrations within a single optimization process: the woofer DM correcting the high-stroke, low-order aberrations, and the tweeter DM correcting the low-stroke, high-order aberrations. The optimal damping factor for a DM is found to be the median of the eigenvalue spectrum of the influence matrix of that DM. Wavefront control accuracy is maximized with the optimized control parameters. For the breadboard system, the residual wavefront error can be controlled to the precision of 0.03 μm in root mean square. The W-T dual-DM AO has applications in both ophthalmology and astronomy. © 2012 Optical Society of America

  9. Development of base pressure similarity parameters for application to space shuttle launch vehicle power-on aerodynamic testing

    NASA Technical Reports Server (NTRS)

    Sulyma, P. R.; Penny, M. M.

    1978-01-01

    A base pressure data correlation study was conducted to define exhaust plume similarity parameters for use in Space Shuttle power-on launch vehicle aerodynamic test programs. Data correlations were performed for single bodies having, respectively, single and triple nozzle configurations and for a triple body configuration with single nozzles on each of the outside bodies. Base pressure similarity parameters were found to differ for the single nozzle and triple nozzle configurations. However, the correlation parameter for each was found to be a strong function of the nozzle exit momentum. Results of the data base evaluation are presented indicating an assessment of all data points. Analytical/experimental data comparisons were made for nozzle calibrations and correction factors derived, where indicated for use in nozzle exit plane data calculations.

  10. A hybrid filter to mitigate harmonics caused by nonlinear load and resonance caused by power factor correction capacitor

    NASA Astrophysics Data System (ADS)

    Adan, N. F.; Soomro, D. M.

    2017-01-01

    Power factor correction capacitor (PFCC) is commonly installed in industrial applications for power factor correction (PFC). With the expanding use of non-linear equipment such as ASDs, power converters, etc., power factor (PF) improvement has become difficult due to the presence of harmonics. The resulting capacitive impedance of the PFCC may form a resonant circuit with the source inductive reactance at a certain frequency, which is likely to coincide with one of the harmonic frequency of the load. This condition will trigger large oscillatory currents and voltages that may stress the insulation and cause subsequent damage to the PFCC and equipment connected to the power system (PS). Besides, high PF cannot be achieved due to power distortion. This paper presents the design of a three-phase hybrid filter consisting of a single tuned passive filter (STPF) and shunt active power filter (SAPF) to mitigate harmonics and resonance in the PS through simulation using PSCAD/EMTDC software. SAPF was developed using p-q theory. The hybrid filter has resulted in significant improvement on both total harmonic distortion for voltage (THDV) and total demand distortion for current (TDDI) with maximum values of 2.93% and 9.84% respectively which were within the recommended IEEE 519-2014 standard limits. Regarding PF improvement, the combined filters have achieved PF close to desired PF at 0.95 for firing angle, α values up to 40°.

  11. Technical note: Design flood under hydrological uncertainty

    NASA Astrophysics Data System (ADS)

    Botto, Anna; Ganora, Daniele; Claps, Pierluigi; Laio, Francesco

    2017-07-01

    Planning and verification of hydraulic infrastructures require a design estimate of hydrologic variables, usually provided by frequency analysis, and neglecting hydrologic uncertainty. However, when hydrologic uncertainty is accounted for, the design flood value for a specific return period is no longer a unique value, but is represented by a distribution of values. As a consequence, the design flood is no longer univocally defined, making the design process undetermined. The Uncertainty Compliant Design Flood Estimation (UNCODE) procedure is a novel approach that, starting from a range of possible design flood estimates obtained in uncertain conditions, converges to a single design value. This is obtained through a cost-benefit criterion with additional constraints that is numerically solved in a simulation framework. This paper contributes to promoting a practical use of the UNCODE procedure without resorting to numerical computation. A modified procedure is proposed by using a correction coefficient that modifies the standard (i.e., uncertainty-free) design value on the basis of sample length and return period only. The procedure is robust and parsimonious, as it does not require additional parameters with respect to the traditional uncertainty-free analysis. Simple equations to compute the correction term are provided for a number of probability distributions commonly used to represent the flood frequency curve. The UNCODE procedure, when coupled with this simple correction factor, provides a robust way to manage the hydrologic uncertainty and to go beyond the use of traditional safety factors. With all the other parameters being equal, an increase in the sample length reduces the correction factor, and thus the construction costs, while still keeping the same safety level.

  12. Extracting the pair distribution function of liquids and liquid-vapor surfaces by grazing incidence x-ray diffraction mode.

    PubMed

    Vaknin, David; Bu, Wei; Travesset, Alex

    2008-07-28

    We show that the structure factor S(q) of water can be obtained from x-ray synchrotron experiments at grazing angle of incidence (in reflection mode) by using a liquid surface diffractometer. The corrections used to obtain S(q) self-consistently are described. Applying these corrections to scans at different incident beam angles (above the critical angle) collapses the measured intensities into a single master curve, without fitting parameters, which within a scale factor yields S(q). Performing the measurements below the critical angle for total reflectivity yields the structure factor of the top most layers of the water/vapor interface. Our results indicate water restructuring at the vapor/water interface. We also introduce a new approach to extract g(r), the pair distribution function (PDF), by expressing the PDF as a linear sum of error functions whose parameters are refined by applying a nonlinear least square fit method. This approach enables a straightforward determination of the inherent uncertainties in the PDF. Implications of our results to previously measured and theoretical predictions of the PDF are also discussed.

  13. SiC MOSFET Based Single Phase Active Boost Rectifier with Power Factor Correction for Wireless Power Transfer Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onar, Omer C; Tang, Lixin; Chinthavali, Madhu Sudhan

    2014-01-01

    Wireless Power Transfer (WPT) technology is a novel research area in the charging technology that bridges the utility and the automotive industries. There are various solutions that are currently being evaluated by several research teams to find the most efficient way to manage the power flow from the grid to the vehicle energy storage system. There are different control parameters that can be utilized to compensate for the change in the impedance due to variable parameters such as battery state-of-charge, coupling factor, and coil misalignment. This paper presents the implementation of an active front-end rectifier on the grid side formore » power factor control and voltage boost capability for load power regulation. The proposed SiC MOSFET based single phase active front end rectifier with PFC resulted in >97% efficiency at 137mm air-gap and >95% efficiency at 160mm air-gap.« less

  14. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination.

    PubMed

    Krause, Lennard; Herbst-Irmer, Regine; Sheldrick, George M; Stalke, Dietmar

    2015-02-01

    The quality of diffraction data obtained using silver and molybdenum microsources has been compared for six model compounds with a wide range of absorption factors. The experiments were performed on two 30 W air-cooled Incoatec IµS microfocus sources with multilayer optics mounted on a Bruker D8 goniometer with a SMART APEX II CCD detector. All data were analysed, processed and refined using standard Bruker software. The results show that Ag  K α radiation can be beneficial when heavy elements are involved. A numerical absorption correction based on the positions and indices of the crystal faces is shown to be of limited use for the highly focused microsource beams, presumably because the assumption that the crystal is completely bathed in a (top-hat profile) beam of uniform intensity is no longer valid. Fortunately the empirical corrections implemented in SADABS , although originally intended as a correction for absorption, also correct rather well for the variations in the effective volume of the crystal irradiated. In three of the cases studied (two Ag and one Mo) the final SHELXL R 1 against all data after application of empirical corrections implemented in SADABS was below 1%. Since such corrections are designed to optimize the agreement of the intensities of equivalent reflections with different paths through the crystal but the same Bragg 2θ angles, a further correction is required for the 2θ dependence of the absorption. For this, SADABS uses the transmission factor of a spherical crystal with a user-defined value of μ r (where μ is the linear absorption coefficient and r is the effective radius of the crystal); the best results are obtained when r is biased towards the smallest crystal dimension. The results presented here suggest that the IUCr publication requirement that a numerical absorption correction must be applied for strongly absorbing crystals is in need of revision.

  15. A Compact Laboratory Spectro-Goniometer (CLabSpeG) to Assess the BRDF of Materials. Presentation, Calibration and Implementation on Fagus sylvatica L. Leaves

    PubMed Central

    Biliouris, Dimitrios; Verstraeten, Willem W.; Dutré, Phillip; van Aardt, Jan A.N.; Muys, Bart; Coppin, Pol

    2007-01-01

    The design and calibration of a new hyperspectral Compact Laboratory Spectro-Goniometer (CLabSpeG) is presented. CLabSpeG effectively measures the bidirectional reflectance Factor (BRF) of a sample, using a halogen light source and an Analytical Spectral Devices (ASD) spectroradiometer. The apparatus collects 4356 reflectance data readings covering the spectrum from 350 nm to 2500 nm by independent positioning of the sensor, sample holder, and light source. It has an azimuth and zenith resolution of 30 and 15 degrees, respectively. CLabSpeG is used to collect BRF data and extract Bidirectional Reflectance Distribution Function (BRDF) data of non-isotropic vegetation elements such as bark, soil, and leaves. Accurate calibration has ensured robust geometric accuracy of the apparatus, correction for the conicality of the light source, while sufficient radiometric stability and repeatability between measurements are obtained. The bidirectional reflectance data collection is automated and remotely controlled and takes approximately two and half hours for a BRF measurement cycle over a full hemisphere with 125 cm radius and 2.4 minutes for a single BRF acquisition. A specific protocol for vegetative leaf collection and measurement was established in order to investigate the possibility to extract BRDF values from Fagus sylvatica L. leaves under laboratory conditions. Drying leaf effects induce a reflectance change during the BRF measurements due to the laboratory illumination source. Therefore, the full hemisphere could not be covered with one leaf. Instead 12 BRF measurements per leaf were acquired covering all azimuth positions for a single light source zenith position. Data are collected in radiance format and reflectance is calculated by dividing the leaf cycle measurement with a radiance cycle of a Spectralon reference panel, multiplied by a Spectralon reflectance correction factor and a factor to correct for the conical effect of the light source. BRF results of measured leaves are presented. PMID:28903201

  16. A Compact Laboratory Spectro-Goniometer (CLabSpeG) to Assess the BRDF of Materials. Presentation, Calibration and Implementation on Fagus sylvatica L. Leaves.

    PubMed

    Biliouris, Dimitrios; Verstraeten, Willem W; Dutré, Phillip; Van Aardt, Jan A N; Muys, Bart; Coppin, Pol

    2007-09-07

    The design and calibration of a new hyperspectral Compact Laboratory Spectro-Goniometer (CLabSpeG) is presented. CLabSpeG effectively measures the bidirectionalreflectance Factor (BRF) of a sample, using a halogen light source and an AnalyticalSpectral Devices (ASD) spectroradiometer. The apparatus collects 4356 reflectance datareadings covering the spectrum from 350 nm to 2500 nm by independent positioning of thesensor, sample holder, and light source. It has an azimuth and zenith resolution of 30 and15 degrees, respectively. CLabSpeG is used to collect BRF data and extract BidirectionalReflectance Distribution Function (BRDF) data of non-isotropic vegetation elements suchas bark, soil, and leaves. Accurate calibration has ensured robust geometric accuracy of theapparatus, correction for the conicality of the light source, while sufficient radiometricstability and repeatability between measurements are obtained. The bidirectionalreflectance data collection is automated and remotely controlled and takes approximatelytwo and half hours for a BRF measurement cycle over a full hemisphere with 125 cmradius and 2.4 minutes for a single BRF acquisition. A specific protocol for vegetative leafcollection and measurement was established in order to investigate the possibility to extractBRDF values from Fagus sylvatica L. leaves under laboratory conditions. Drying leafeffects induce a reflectance change during the BRF measurements due to the laboratorySensors 2007, 7 1847 illumination source. Therefore, the full hemisphere could not be covered with one leaf. Instead 12 BRF measurements per leaf were acquired covering all azimuth positions for a single light source zenith position. Data are collected in radiance format and reflectance is calculated by dividing the leaf cycle measurement with a radiance cycle of a Spectralon reference panel, multiplied by a Spectralon reflectance correction factor and a factor to correct for the conical effect of the light source. BRF results of measured leaves are presented.

  17. Systematics of first 2+ state g factors around mass 80

    NASA Astrophysics Data System (ADS)

    Mertzimekis, T. J.; Stuchbery, A. E.; Benczer-Koller, N.; Taylor, M. J.

    2003-11-01

    The systematics of the first 2+ state g factors in the mass 80 region are investigated in terms of an IBM-II analysis, a pairing-corrected geometrical model, and a shell-model approach. Subshell closure effects at N=38 and overall trends were examined using IBM-II. A large-space shell-model calculation was successful in describing the behavior for N=48 and N=50 nuclei, where single-particle features are prominent. A schematic truncated-space calculation was applied to the lighter isotopes. The variations of the effective boson g factors are discussed in connection with the role of F -spin breaking, and comparisons are made between the mass 80 and mass 180 regions.

  18. Hybrid error correction and de novo assembly of single-molecule sequencing reads

    PubMed Central

    Koren, Sergey; Schatz, Michael C.; Walenz, Brian P.; Martin, Jeffrey; Howard, Jason; Ganapathy, Ganeshkumar; Wang, Zhong; Rasko, David A.; McCombie, W. Richard; Jarvis, Erich D.; Phillippy, Adam M.

    2012-01-01

    Emerging single-molecule sequencing instruments can generate multi-kilobase sequences with the potential to dramatically improve genome and transcriptome assembly. However, the high error rate of single-molecule reads is challenging, and has limited their use to resequencing bacteria. To address this limitation, we introduce a novel correction algorithm and assembly strategy that utilizes shorter, high-identity sequences to correct the error in single-molecule sequences. We demonstrate the utility of this approach on Pacbio RS reads of phage, prokaryotic, and eukaryotic whole genomes, including the novel genome of the parrot Melopsittacus undulatus, as well as for RNA-seq reads of the corn (Zea mays) transcriptome. Our approach achieves over 99.9% read correction accuracy and produces substantially better assemblies than current sequencing strategies: in the best example, quintupling the median contig size relative to high-coverage, second-generation assemblies. Greater gains are predicted if read lengths continue to increase, including the prospect of single-contig bacterial chromosome assembly. PMID:22750884

  19. CALIOP Version 3 Data Products: A Comparison to Version 2

    NASA Technical Reports Server (NTRS)

    Vaughan, Mark; Omar, Ali; Hunt, Bill; Getzewich, Brian; Tackett, Jason; Powell, Kathy; Avery, Melody; Kuehn, Ralph; Young, Stuart; Hu, Yong; hide

    2010-01-01

    After launch we discovered that the CALIOP daytime measurements were subject to thermally induced beamdrift,and this caused the calibration to vary by as much as 30% during the course of a single daytime orbit segment. Using an algorithm developed by Powell et al.(2010), empirically derived correction factors are now computed in near realtime as a function of orbit elapsed time, and these are used to compensate for the beam wandering effects.

  20. Correction of the near threshold behavior of electron collisional excitation cross-sections in the plane-wave Born approximation

    NASA Astrophysics Data System (ADS)

    Kilcrease, D. P.; Brookes, S.

    2013-12-01

    The modeling of NLTE plasmas requires the solution of population rate equations to determine the populations of the various atomic levels relevant to a particular problem. The equations require many cross sections for excitation, de-excitation, ionization and recombination. A simple and computational fast way to calculate electron collisional excitation cross-sections for ions is by using the plane-wave Born approximation. This is essentially a high-energy approximation and the cross section suffers from the unphysical problem of going to zero near threshold. Various remedies for this problem have been employed with varying degrees of success. We present a correction procedure for the Born cross-sections that employs the Elwert-Sommerfeld factor to correct for the use of plane waves instead of Coulomb waves in an attempt to produce a cross-section similar to that from using the more time consuming Coulomb Born approximation. We compare this new approximation with other, often employed correction procedures. We also look at some further modifications to our Born Elwert procedure and its combination with Y.K. Kim's correction of the Coulomb Born approximation for singly charged ions that more accurately approximate convergent close coupling calculations.

  1. Radiologic and clinical outcomes comparison between single- and two-level pedicle subtraction osteotomies in correcting ankylosing spondylitis kyphosis.

    PubMed

    Xu, Hui; Zhang, Yonggang; Zhao, Yongfei; Zhang, Xuesong; Xiao, Songhua; Wang, Yan

    2015-02-01

    Single pedicle subtraction osteotomy (PSO) has been used to correct ankylosing spondylitis (AS) kyphosis successfully, but this approach seems insufficient to correct severe kyphosis. Two-level PSO has been attempted to correct advanced kyphosis in recent years. However, studies have not yet compared outcomes between single and double PSOs, and the indications to perform two-level PSO are unclear. This study aimed to compare the radiologic and clinical outcomes between single- and two-level PSOs in correcting AS kyphosis. This work is a retrospective cohort study. Sixty patients were included. Thirty-seven underwent single-level PSO, and 23 underwent one stage two-level PSO. The radiologic analysis included thoracic kyphosis, thoracolumbar junction, lumbar lordosis, pelvic index, chin-brow vertical angle (CBVA), sagittal vertical axis (SVA), and pelvic tilt (PT). Clinical assessment was performed with a Scoliosis Research Society-22 (SRS-22) outcomes instrument. The operative time, blood loss, and complications were also documented. All of the aforementioned measurements were recorded before surgery, after surgery, and at the last follow-up. The outcomes were compared between the two groups. The operating time was 232±52 minutes for single- and 282±43 minutes for two-level PSOs. The blood loss was 1,240±542 mL (Level 1) and 2,202±737 mL (Level 2). The total spine correction was 43.2°±15.1° (Level 1) and 60.6°±19.1° (Level 2) (p<.001), the SVA correction was 13.2±10.6 cm (Level 1) and 23.6±10.2 cm (Level 2) (p<.001), and the PT correction was 10.1°±11.6° (Level 1) and 15.2°±10.8° (Level 2) (p<.001). The CBVA correction was 50.6°±17.8° (Level 1) and 51.4°±18.6° in (Level 2) (p>.05). All patients could walk with horizontal vision and lie on their backs postoperatively. The SRS-22 improved from 1.7±0.4 to 4.2±0.8 in the two-level group and 1.8±0.8 to 4.3±0.7 in the single-level group. The fusion of the osteotomy was achieved in each patient. The complications were similar in both groups. Pedicle subtraction osteotomy is an effective method to correct kyphosis with AS. Most patients can be successfully treated by single PSO. In severe patients, two-level PSO may be preferable because its correction ability is greater and spine curvature is better than that of single-level PSO. However, two-level PSO requires an increased operating time and results in increased blood loss. Nevertheless, the complications were similar between the two groups. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Prashant; Harbola, Manoj K.; Johnson, Duane D.

    Here, this work constitutes a comprehensive and improved account of electronic-structure and mechanical properties of silicon-nitride (more » $${\\rm Si}_{3}$$ $${\\rm N}_{4}$$ ) polymorphs via van Leeuwen and Baerends (LB) exchange-corrected local density approximation (LDA) that enforces the exact exchange potential asymptotic behavior. The calculated lattice constant, bulk modulus, and electronic band structure of $${\\rm Si}_{3}$$ $${\\rm N}_{4}$$ polymorphs are in good agreement with experimental results. We also show that, for a single electron in a hydrogen atom, spherical well, or harmonic oscillator, the LB-corrected LDA reduces the (self-interaction) error to exact total energy to ~10%, a factor of three to four lower than standard LDA, due to a dramatically improved representation of the exchange-potential.« less

  3. Universal state-selective corrections to multireference coupled-cluster theories with single and double excitations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brabec, Jiri; van Dam, Hubertus JJ; Pittner, Jiri

    2012-03-28

    The recently proposed Universal State-Selective (USS) corrections [K. Kowalski, J. Chem. Phys. 134, 194107 (2011)] to approximate Multi-Reference Coupled Cluster (MRCC) energies can be commonly applied to any type of MRCC theory based on the Jeziorski-Monkhorst [B. Jeziorski, H.J. Monkhorst, Phys. Rev. A 24, 1668 (1981)] exponential Ansatz. In this letter we report on the performance of a simple USS correction to the Brillouin-Wigner MRCC (BW-MRCC) formalism employing single and double excitations (BW-MRCCSD). It is shown that the resulting formalism (USS-BW-MRCCSD), which uses the manifold of single and double excitations to construct the correction, can be related to a posteriorimore » corrections utilized in routine BW-MRCCSD calculations. In several benchmark calculations we compare the results of the USS-BW-MRCCSD method with results of the BW-MRCCSD approach employing a posteriori corrections and with results obtained with the Full Configuration Interaction (FCI) method.« less

  4. Investigation of electron-loss and photon scattering correction factors for FAC-IR-300 ionization chamber

    NASA Astrophysics Data System (ADS)

    Mohammadi, S. M.; Tavakoli-Anbaran, H.; Zeinali, H. Z.

    2017-02-01

    The parallel-plate free-air ionization chamber termed FAC-IR-300 was designed at the Atomic Energy Organization of Iran, AEOI. This chamber is used for low and medium X-ray dosimetry on the primary standard level. In order to evaluate the air-kerma, some correction factors such as electron-loss correction factor (ke) and photon scattering correction factor (ksc) are needed. ke factor corrects the charge loss from the collecting volume and ksc factor corrects the scattering of photons into collecting volume. In this work ke and ksc were estimated by Monte Carlo simulation. These correction factors are calculated for mono-energy photon. As a result of the simulation data, the ke and ksc values for FAC-IR-300 ionization chamber are 1.0704 and 0.9982, respectively.

  5. Calibration of piezoelectric RL shunts with explicit residual mode correction

    NASA Astrophysics Data System (ADS)

    Høgsberg, Jan; Krenk, Steen

    2017-01-01

    Piezoelectric RL (resistive-inductive) shunts are passive resonant devices used for damping of dominant vibration modes of a flexible structure and their efficiency relies on the precise calibration of the shunt components. In the present paper improved calibration accuracy is attained by an extension of the local piezoelectric transducer displacement by two additional terms, representing the flexibility and inertia contributions from the residual vibration modes not directly addressed by the shunt damping. This results in an augmented dynamic model for the targeted resonant vibration mode, in which the residual contributions, represented by two correction factors, modify both the apparent transducer capacitance and the shunt circuit impedance. Explicit expressions for the correction of the shunt circuit inductance and resistance are presented in a form that is generally applicable to calibration formulae derived on the basis of an assumed single-mode structure, where modal interaction has been neglected. A design procedure is devised and subsequently verified by a numerical example, which demonstrates that effective mitigation can be obtained for an arbitrary vibration mode when the residual mode correction is included in the calibration of the RL shunt.

  6. Effect of single vision soft contact lenses on peripheral refraction.

    PubMed

    Kang, Pauline; Fan, Yvonne; Oh, Kelly; Trac, Kevin; Zhang, Frank; Swarbrick, Helen

    2012-07-01

    To investigate changes in peripheral refraction with under-, full, and over-correction of central refraction with commercially available single vision soft contact lenses (SCLs) in young myopic adults. Thirty-four myopic adult subjects were fitted with Proclear Sphere SCLs to under-correct (+0.75 DS), fully correct, and over-correct (-0.75 DS) their manifest central refractive error. Central and peripheral refraction were measured with no lens wear and subsequently with different levels of SCL central refractive error correction. The uncorrected refractive error was myopic at all locations along the horizontal meridian. Peripheral refraction was relatively hyperopic compared to center at 30 and 35° in the temporal visual field (VF) in low myopes and at 30 and 35° in the temporal VF and 10, 30, and 35° in the nasal VF in moderate myopes. All levels of SCL correction caused a hyperopic shift in refraction at all locations in the horizontal VF. The smallest hyperopic shift was demonstrated with under-correction followed by full correction and then by over-correction of central refractive error. An increase in relative peripheral hyperopia was measured with full correction SCLs compared with no correction in both low and moderate myopes. However, no difference in relative peripheral refraction profiles were found between under-, full, and over-correction. Under-, full, and over-correction of central refractive error with single vision SCLs caused a hyperopic shift in both central and peripheral refraction at all positions in the horizontal meridian. All levels of SCL correction caused the peripheral retina, which initially experienced absolute myopic defocus at baseline with no correction, to experience absolute hyperopic defocus. This peripheral hyperopia may be a possible cause of myopia progression reported with different types and levels of myopia correction.

  7. Research on respiratory motion correction method based on liver contrast-enhanced ultrasound images of single mode

    NASA Astrophysics Data System (ADS)

    Zhang, Ji; Li, Tao; Zheng, Shiqiang; Li, Yiyong

    2015-03-01

    To reduce the effects of respiratory motion in the quantitative analysis based on liver contrast-enhanced ultrasound (CEUS) image sequencesof single mode. The image gating method and the iterative registration method using model image were adopted to register liver contrast-enhanced ultrasound image sequences of single mode. The feasibility of the proposed respiratory motion correction method was explored preliminarily using 10 hepatocellular carcinomas CEUS cases. The positions of the lesions in the time series of 2D ultrasound images after correction were visually evaluated. Before and after correction, the quality of the weighted sum of transit time (WSTT) parametric images were also compared, in terms of the accuracy and spatial resolution. For the corrected and uncorrected sequences, their mean deviation values (mDVs) of time-intensity curve (TIC) fitting derived from CEUS sequences were measured. After the correction, the positions of the lesions in the time series of 2D ultrasound images were almost invariant. In contrast, the lesions in the uncorrected images all shifted noticeably. The quality of the WSTT parametric maps derived from liver CEUS image sequences were improved more greatly. Moreover, the mDVs of TIC fitting derived from CEUS sequences after the correction decreased by an average of 48.48+/-42.15. The proposed correction method could improve the accuracy of quantitative analysis based on liver CEUS image sequences of single mode, which would help in enhancing the differential diagnosis efficiency of liver tumors.

  8. Changes in the U.S. Primary Standards for the Air Kerma From Gamma-Ray Beams

    PubMed Central

    Seltzer, Stephen M.; Bergstrom, Paul M.

    2003-01-01

    Monte Carlo photon-electron transport calculations have been done to derive new wall corrections for the six NBS-NIST standard graphite-wall, air-ionization cavity chambers that serve as the U.S. national primary standard for air kerma (and exposure) for gamma rays from 60Co, 137Cs, and 192Ir sources. The data developed for and from these calculations have also been used to refine a number of other factors affecting the standards. The largest changes are due to the new wall corrections, and the total changes are +0.87 % to +1.11 % (depending on the chamber) for 60Co beams, +0.64 % to +1.07 % (depending on the chamber) for 137Cs beams, and −0.06 % for the single chamber used in the measurement of the standardized 192Ir source. The primary standards for air kerma will be adjusted in the near future to reflect the changes in factors described in this work. PMID:27413615

  9. Changes in the U.S. Primary Standards for the Air Kerma From Gamma-Ray Beams.

    PubMed

    Seltzer, Stephen M; Bergstrom, Paul M

    2003-01-01

    Monte Carlo photon-electron transport calculations have been done to derive new wall corrections for the six NBS-NIST standard graphite-wall, air-ionization cavity chambers that serve as the U.S. national primary standard for air kerma (and exposure) for gamma rays from (60)Co, (137)Cs, and (192)Ir sources. The data developed for and from these calculations have also been used to refine a number of other factors affecting the standards. The largest changes are due to the new wall corrections, and the total changes are +0.87 % to +1.11 % (depending on the chamber) for (60)Co beams, +0.64 % to +1.07 % (depending on the chamber) for (137)Cs beams, and -0.06 % for the single chamber used in the measurement of the standardized (192)Ir source. The primary standards for air kerma will be adjusted in the near future to reflect the changes in factors described in this work.

  10. Single molecule sequencing-guided scaffolding and correction of draft assemblies.

    PubMed

    Zhu, Shenglong; Chen, Danny Z; Emrich, Scott J

    2017-12-06

    Although single molecule sequencing is still improving, the lengths of the generated sequences are inevitably an advantage in genome assembly. Prior work that utilizes long reads to conduct genome assembly has mostly focused on correcting sequencing errors and improving contiguity of de novo assemblies. We propose a disassembling-reassembling approach for both correcting structural errors in the draft assembly and scaffolding a target assembly based on error-corrected single molecule sequences. To achieve this goal, we formulate a maximum alternating path cover problem. We prove that this problem is NP-hard, and solve it by a 2-approximation algorithm. Our experimental results show that our approach can improve the structural correctness of target assemblies in the cost of some contiguity, even with smaller amounts of long reads. In addition, our reassembling process can also serve as a competitive scaffolder relative to well-established assembly benchmarks.

  11. Crosstalk error correction through dynamical decoupling of single-qubit gates in capacitively coupled singlet-triplet semiconductor spin qubits

    NASA Astrophysics Data System (ADS)

    Buterakos, Donovan; Throckmorton, Robert E.; Das Sarma, S.

    2018-01-01

    In addition to magnetic field and electric charge noise adversely affecting spin-qubit operations, performing single-qubit gates on one of multiple coupled singlet-triplet qubits presents a new challenge: crosstalk, which is inevitable (and must be minimized) in any multiqubit quantum computing architecture. We develop a set of dynamically corrected pulse sequences that are designed to cancel the effects of both types of noise (i.e., field and charge) as well as crosstalk to leading order, and provide parameters for these corrected sequences for all 24 of the single-qubit Clifford gates. We then provide an estimate of the error as a function of the noise and capacitive coupling to compare the fidelity of our corrected gates to their uncorrected versions. Dynamical error correction protocols presented in this work are important for the next generation of singlet-triplet qubit devices where coupling among many qubits will become relevant.

  12. An extremely rare clinical entity: congenitally corrected transposition with situs ınversus and single coronary artery presented with complete atrioventricular block in a young man.

    PubMed

    Cirakoglu, Omer Faruk; Bayraktar, Ali; Sayin, Muhammet Rasit

    2018-05-01

    Congenitally corrected transposition of the great arteries is a rare form of CHD. Situs inversus is a much less common variant of a congenitally corrected transposition of the great arteries. In rare cases, transposition events may be accompanied by various cardiac anomalies. However, situs inversus patients with congenitally corrected transposition, single coronary artery anomaly, and atrioventricular block together have not been reported previously. This combination of abnormalities is presented as a first in the literature.

  13. Resistivity Correction Factor for the Four-Probe Method: Experiment II

    NASA Astrophysics Data System (ADS)

    Yamashita, Masato; Yamaguchi, Shoji; Nishii, Toshifumi; Kurihara, Hiroshi; Enjoji, Hideo

    1989-05-01

    Experimental verification of the theoretically derived resistivity correction factor F is presented. Factor F can be applied to a system consisting of a disk sample and a four-probe array. Measurements are made on isotropic graphite disks and crystalline ITO films. Factor F can correct the apparent variations of the data and lead to reasonable resistivities and sheet resistances. Here factor F is compared to other correction factors; i.e. FASTM and FJIS.

  14. WE-E-18A-07: MAGIC: Multi-Acquisition Gain Image Correction for Mobile X-Ray Systems with Intrinsic Localization Crosshairs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Y; Sharp, G

    2014-06-15

    Purpose: Gain calibration for X-ray imaging systems with movable flat panel detectors (FPD) and intrinsic crosshairs is a challenge due to the geometry dependence of the heel effect and crosshair artifact. This study aims to develop a gain correction method for such systems by implementing the multi-acquisition gain image correction (MAGIC) technique. Methods: Raw flat-field images containing crosshair shadows and heel effect were acquired in 4 different FPD positions with fixed exposure parameters. The crosshair region was automatically detected and substituted with interpolated values from nearby exposed regions, generating a conventional single-image gain-map for each FPD position. Large kernel-based correctionmore » was applied to these images to correct the heel effect. A mask filter was used to invalidate the original cross-hair regions previously filled with the interpolated values. A final, seamless gain-map was created from the processed images by either the sequential filling (SF) or selective averaging (SA) techniques developed in this study. Quantitative evaluation was performed based on detective quantum efficiency improvement factor (DQEIF) for gain-corrected images using the conventional and proposed techniques. Results: Qualitatively, the MAGIC technique was found to be more effective in eliminating crosshair artifacts compared to the conventional single-image method. The mean DQEIF over the range of frequencies from 0.5 to 3.5 mm-1 were 1.09±0.06, 2.46±0.32, and 3.34±0.36 in the crosshair-artifact region and 2.35±0.31, 2.33±0.31, and 3.09±0.34 in the normal region, for the conventional, MAGIC-SF, and MAGIC-SA techniques, respectively. Conclusion: The introduced MAGIC technique is appropriate for gain calibration of an imaging system associated with a moving FPD and an intrinsic crosshair. The technique showed advantages over a conventional single image-based technique by successfully reducing residual crosshair artifacts, and higher image quality with respect to DQE.« less

  15. Application of modern radiative transfer tools to model laboratory quartz emissivity

    NASA Astrophysics Data System (ADS)

    Pitman, Karly M.; Wolff, Michael J.; Clayton, Geoffrey C.

    2005-08-01

    Planetary remote sensing of regolith surfaces requires use of theoretical models for interpretation of constituent grain physical properties. In this work, we review and critically evaluate past efforts to strengthen numerical radiative transfer (RT) models with comparison to a trusted set of nadir incidence laboratory quartz emissivity spectra. By first establishing a baseline statistical metric to rate successful model-laboratory emissivity spectral fits, we assess the efficacy of hybrid computational solutions (Mie theory + numerically exact RT algorithm) to calculate theoretical emissivity values for micron-sized α-quartz particles in the thermal infrared (2000-200 cm-1) wave number range. We show that Mie theory, a widely used but poor approximation to irregular grain shape, fails to produce the single scattering albedo and asymmetry parameter needed to arrive at the desired laboratory emissivity values. Through simple numerical experiments, we show that corrections to single scattering albedo and asymmetry parameter values generated via Mie theory become more necessary with increasing grain size. We directly compare the performance of diffraction subtraction and static structure factor corrections to the single scattering albedo, asymmetry parameter, and emissivity for dense packing of grains. Through these sensitivity studies, we provide evidence that, assuming RT methods work well given sufficiently well-quantified inputs, assumptions about the scatterer itself constitute the most crucial aspect of modeling emissivity values.

  16. Colour-dressed hexagon tessellations for correlation functions and non-planar corrections

    NASA Astrophysics Data System (ADS)

    Eden, Burkhard; Jiang, Yunfeng; le Plat, Dennis; Sfondrini, Alessandro

    2018-02-01

    We continue the study of four-point correlation functions by the hexagon tessellation approach initiated in [38] and [39]. We consider planar tree-level correlation functions in N=4 supersymmetric Yang-Mills theory involving two non-protected operators. We find that, in order to reproduce the field theory result, it is necessary to include SU( N) colour factors in the hexagon formalism; moreover, we find that the hexagon approach as it stands is naturally tailored to the single-trace part of correlation functions, and does not account for multi-trace admixtures. We discuss how to compute correlators involving double-trace operators, as well as more general 1 /N effects; in particular we compute the whole next-to-leading order in the large- N expansion of tree-level BMN two-point functions by tessellating a torus with punctures. Finally, we turn to the issue of "wrapping", Lüscher-like corrections. We show that SU( N) colour-dressing reproduces an earlier empirical rule for incorporating single-magnon wrapping, and we provide a direct interpretation of such wrapping processes in terms of N=2 supersymmetric Feynman diagrams.

  17. SOUL: the Single conjugated adaptive Optics Upgrade for LBT

    NASA Astrophysics Data System (ADS)

    Pinna, E.; Esposito, S.; Hinz, P.; Agapito, G.; Bonaglia, M.; Puglisi, A.; Xompero, M.; Riccardi, A.; Briguglio, R.; Arcidiacono, C.; Carbonaro, L.; Fini, L.; Montoya, M.; Durney, O.

    2016-07-01

    We present here SOUL: the Single conjugated adaptive Optics Upgrade for LBT. Soul will upgrade the wavefront sensors replacing the existing CCD detector with an EMCCD camera and the rest of the system in order to enable the closed loop operations at a faster cycle rate and with higher number of slopes. Thanks to reduced noise, higher number of pixel and framerate, we expect a gain (for a given SR) around 1.5-2 magnitudes at all wavelengths in the range 7.5 70% in I-band and 0.6asec seeing) and the sky coverage will be multiplied by a factor 5 at all galactic latitudes. Upgrading the SCAO systems at all the 4 focal stations, SOUL will provide these benefits in 2017 to the LBTI interferometer and in 2018 to the 2 LUCI NIR spectro-imagers. In the same year the SOUL correction will be exploited also by the new generation of LBT instruments: V-SHARK, SHARK-NIR and iLocater.

  18. Interactions of soil conditioner with other limiting factors to achieve high crop yields. [Lycopersicon esculentum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, A.; Abouzamzam, A.M.

    Tomato (Lycopersicon esculentum Mill. cv. Tropic) was used as a test plant in evaluating the interactions for simultaneously correcting deficiencies of N and P and improving physical properties of soil with a soil conditioner. The three limiting factors were improved singly and in all possible combinations. There was response to each input. The least response to the soil conditioner was with N and P, and the most response was when N and P were also used. The combined effect appeared to be synergistic. The results emphasize that the best crop management system involves overcoming as many limiting factors as possible.more » This is the key to high-yield agriculture.« less

  19. A new VLSI architecture for a single-chip-type Reed-Solomon decoder

    NASA Technical Reports Server (NTRS)

    Hsu, I. S.; Truong, T. K.

    1989-01-01

    A new very large scale integration (VLSI) architecture for implementing Reed-Solomon (RS) decoders that can correct both errors and erasures is described. This new architecture implements a Reed-Solomon decoder by using replication of a single VLSI chip. It is anticipated that this single chip type RS decoder approach will save substantial development and production costs. It is estimated that reduction in cost by a factor of four is possible with this new architecture. Furthermore, this Reed-Solomon decoder is programmable between 8 bit and 10 bit symbol sizes. Therefore, both an 8 bit Consultative Committee for Space Data Systems (CCSDS) RS decoder and a 10 bit decoder are obtained at the same time, and when concatenated with a (15,1/6) Viterbi decoder, provide an additional 2.1-dB coding gain.

  20. SU-E-T-469: A Practical Approach for the Determination of Small Field Output Factors Using Published Monte Carlo Derived Correction Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calderon, E; Siergiej, D

    2014-06-01

    Purpose: Output factor determination for small fields (less than 20 mm) presents significant challenges due to ion chamber volume averaging and diode over-response. Measured output factor values between detectors are known to have large deviations as field sizes are decreased. No set standard to resolve this difference in measurement exists. We observed differences between measured output factors of up to 14% using two different detectors. Published Monte Carlo derived correction factors were used to address this challenge and decrease the output factor deviation between detectors. Methods: Output factors for Elekta's linac-based stereotactic cone system were measured using the EDGE detectormore » (Sun Nuclear) and the A16 ion chamber (Standard Imaging). Measurements conditions were 100 cm SSD (source to surface distance) and 1.5 cm depth. Output factors were first normalized to a 10.4 cm × 10.4 cm field size using a daisy-chaining technique to minimize the dependence of field size on detector response. An equation expressing the relation between published Monte Carlo correction factors as a function of field size for each detector was derived. The measured output factors were then multiplied by the calculated correction factors. EBT3 gafchromic film dosimetry was used to independently validate the corrected output factors. Results: Without correction, the deviation in output factors between the EDGE and A16 detectors ranged from 1.3 to 14.8%, depending on cone size. After applying the calculated correction factors, this deviation fell to 0 to 3.4%. Output factors determined with film agree within 3.5% of the corrected output factors. Conclusion: We present a practical approach to applying published Monte Carlo derived correction factors to measured small field output factors for the EDGE and A16 detectors. Using this method, we were able to decrease the percent deviation between both detectors from 14.8% to 3.4% agreement.« less

  1. Optimization of the linear-scaling local natural orbital CCSD(T) method: Redundancy-free triples correction using Laplace transform.

    PubMed

    Nagy, Péter R; Kállay, Mihály

    2017-06-07

    An improved algorithm is presented for the evaluation of the (T) correction as a part of our local natural orbital (LNO) coupled-cluster singles and doubles with perturbative triples [LNO-CCSD(T)] scheme [Z. Rolik et al., J. Chem. Phys. 139, 094105 (2013)]. The new algorithm is an order of magnitude faster than our previous one and removes the bottleneck related to the calculation of the (T) contribution. First, a numerical Laplace transformed expression for the (T) fragment energy is introduced, which requires on average 3 to 4 times fewer floating point operations with negligible compromise in accuracy eliminating the redundancy among the evaluated triples amplitudes. Second, an additional speedup factor of 3 is achieved by the optimization of our canonical (T) algorithm, which is also executed in the local case. These developments can also be integrated into canonical as well as alternative fragmentation-based local CCSD(T) approaches with minor modifications. As it is demonstrated by our benchmark calculations, the evaluation of the new Laplace transformed (T) correction can always be performed if the preceding CCSD iterations are feasible, and the new scheme enables the computation of LNO-CCSD(T) correlation energies with at least triple-zeta quality basis sets for realistic three-dimensional molecules with more than 600 atoms and 12 000 basis functions in a matter of days on a single processor.

  2. Local collective motion analysis for multi-probe dynamic imaging and microrheology

    NASA Astrophysics Data System (ADS)

    Khan, Manas; Mason, Thomas G.

    2016-08-01

    Dynamical artifacts, such as mechanical drift, advection, and hydrodynamic flow, can adversely affect multi-probe dynamic imaging and passive particle-tracking microrheology experiments. Alternatively, active driving by molecular motors can cause interesting non-Brownian motion of probes in local regions. Existing drift-correction techniques, which require large ensembles of probes or fast temporal sampling, are inadequate for handling complex spatio-temporal drifts and non-Brownian motion of localized domains containing relatively few probes. Here, we report an analytical method based on local collective motion (LCM) analysis of as few as two probes for detecting the presence of non-Brownian motion and for accurately eliminating it to reveal the underlying Brownian motion. By calculating an ensemble-average, time-dependent, LCM mean square displacement (MSD) of two or more localized probes and comparing this MSD to constituent single-probe MSDs, we can identify temporal regimes during which either thermal or athermal motion dominates. Single-probe motion, when referenced relative to the moving frame attached to the multi-probe LCM trajectory, provides a true Brownian MSD after scaling by an appropriate correction factor that depends on the number of probes used in LCM analysis. We show that LCM analysis can be used to correct many different dynamical artifacts, including spatially varying drifts, gradient flows, cell motion, time-dependent drift, and temporally varying oscillatory advection, thereby offering a significant improvement over existing approaches.

  3. Optimization of the linear-scaling local natural orbital CCSD(T) method: Redundancy-free triples correction using Laplace transform

    PubMed Central

    2017-01-01

    An improved algorithm is presented for the evaluation of the (T) correction as a part of our local natural orbital (LNO) coupled-cluster singles and doubles with perturbative triples [LNO-CCSD(T)] scheme [Z. Rolik et al., J. Chem. Phys. 139, 094105 (2013)]. The new algorithm is an order of magnitude faster than our previous one and removes the bottleneck related to the calculation of the (T) contribution. First, a numerical Laplace transformed expression for the (T) fragment energy is introduced, which requires on average 3 to 4 times fewer floating point operations with negligible compromise in accuracy eliminating the redundancy among the evaluated triples amplitudes. Second, an additional speedup factor of 3 is achieved by the optimization of our canonical (T) algorithm, which is also executed in the local case. These developments can also be integrated into canonical as well as alternative fragmentation-based local CCSD(T) approaches with minor modifications. As it is demonstrated by our benchmark calculations, the evaluation of the new Laplace transformed (T) correction can always be performed if the preceding CCSD iterations are feasible, and the new scheme enables the computation of LNO-CCSD(T) correlation energies with at least triple-zeta quality basis sets for realistic three-dimensional molecules with more than 600 atoms and 12 000 basis functions in a matter of days on a single processor. PMID:28576082

  4. Error detection and correction unit with built-in self-test capability for spacecraft applications

    NASA Technical Reports Server (NTRS)

    Timoc, Constantin

    1990-01-01

    The objective of this project was to research and develop a 32-bit single chip Error Detection and Correction unit capable of correcting all single bit errors and detecting all double bit errors in the memory systems of a spacecraft. We designed the 32-bit EDAC (Error Detection and Correction unit) based on a modified Hamming code and according to the design specifications and performance requirements. We constructed a laboratory prototype (breadboard) which was converted into a fault simulator. The correctness of the design was verified on the breadboard using an exhaustive set of test cases. A logic diagram of the EDAC was delivered to JPL Section 514 on 4 Oct. 1988.

  5. Quantum Corrections to the 'Atomistic' MOSFET Simulations

    NASA Technical Reports Server (NTRS)

    Asenov, Asen; Slavcheva, G.; Kaya, S.; Balasubramaniam, R.

    2000-01-01

    We have introduced in a simple and efficient manner quantum mechanical corrections in our 3D 'atomistic' MOSFET simulator using the density gradient formalism. We have studied in comparison with classical simulations the effect of the quantum mechanical corrections on the simulation of random dopant induced threshold voltage fluctuations, the effect of the single charge trapping on interface states and the effect of the oxide thickness fluctuations in decanano MOSFETs with ultrathin gate oxides. The introduction of quantum corrections enhances the threshold voltage fluctuations but does not affect significantly the amplitude of the random telegraph noise associated with single carrier trapping. The importance of the quantum corrections for proper simulation of oxide thickness fluctuation effects has also been demonstrated.

  6. Quantitative analysis of hepatic fat fraction by single-breath-holding MR spectroscopy with T₂ correction: phantom and clinical study with histologic assessment.

    PubMed

    Hayashi, Norio; Miyati, Tosiaki; Minami, Takashi; Takeshita, Yumie; Ryu, Yasuji; Matsuda, Tsuyoshi; Ohno, Naoki; Hamaguchi, Takashi; Kato, Kenichiro; Takamura, Toshinari; Matsui, Osamu

    2013-01-01

    The focus of this study was on the investigation of the accuracy of the fat fraction of the liver by use of single-breath-holding magnetic resonance spectroscopy (MRS) with T (2) correction. Single-voxel proton MRS was performed with several TE values, and the fat fraction was determined with and without T (2) correction. MRS was also performed with use of the point-resolved spectroscopy sequence in single breath holding. The T (2) values of both water and fat were determined separately at the same time, and the effect of T (2) on the fat fraction was corrected. In addition, MRS-based fat fractions were compared with the degree of hepatic steatosis (HS) by liver biopsy in human subjects. With T (2) correction, the MRI-derived fat fractions were in good agreement with the fat fractions in all phantoms, but the fat fractions were overestimated without T (2) correction. R (2) values were in good agreement with the preset iron concentrations in the phantoms. The MRI-derived fat fraction was well correlated with the degree of HS. Iron deposited in the liver affects the signal strength when proton MRS is used for detection of the fat signal in the liver. However, the fat signal can be evaluated more accurately when the T (2) correction is applied. Breath-holding MRS minimizes the respiratory motion, and it can be more accurate in the quantification of the hepatic fat fraction.

  7. Image restoration techniques as applied to Landsat MSS and TM data

    USGS Publications Warehouse

    Meyer, David

    1987-01-01

    Two factors are primarily responsible for the loss of image sharpness in processing digital Landsat images. The first factor is inherent in the data because the sensor's optics and electronics, along with other sensor elements, blur and smear the data. Digital image restoration can be used to reduce this degradation. The second factor, which further degrades by blurring or aliasing, is the resampling performed during geometric correction. An image restoration procedure, when used in place of typical resampled techniques, reduces sensor degradation without introducing the artifacts associated with resampling. The EROS Data Center (EDC) has implemented the restoration proceed for Landsat multispectral scanner (MSS) and thematic mapper (TM) data. This capability, developed at the University of Arizona by Dr. Robert Schowengerdt and Lynette Wood, combines restoration and resampling in a single step to produce geometrically corrected MSS and TM imagery. As with resampling, restoration demands a tradeoff be made between aliasing, which occurs when attempting to extract maximum sharpness from an image, and blurring, which reduces the aliasing problem but sacrifices image sharpness. The restoration procedure used at EDC minimizes these artifacts by being adaptive, tailoring the tradeoff to be optimal for individual images.

  8. Nop9 is a PUF-like protein that prevents premature cleavage to correctly process pre-18S rRNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jun; McCann, Kathleen L.; Qiu, Chen

    Numerous factors direct eukaryotic ribosome biogenesis, and defects in a single ribosome assembly factor may be lethal or produce tissue-specific human ribosomopathies. Pre-ribosomal RNAs (pre-rRNAs) must be processed stepwise and at the correct subcellular locations to produce the mature rRNAs. Nop9 is a conserved small ribosomal subunit biogenesis factor, essential in yeast. Here we report a 2.1-Å crystal structure of Nop9 and a small-angle X-ray-scattering model of a Nop9:RNA complex that reveals a ‘C’-shaped fold formed from 11 Pumilio repeats. We show that Nop9 recognizes sequence and structural features of the 20S pre-rRNA near the cleavage site of the nuclease,more » Nob1. We further demonstrate that Nop9 inhibits Nob1 cleavage, the final processing step to produce mature small ribosomal subunit 18S rRNA. Together, our results suggest that Nop9 is critical for timely cleavage of the 20S pre-rRNA. Moreover, the Nop9 structure exemplifies a new class of Pumilio repeat proteins.« less

  9. Referenceless one-dimensional Nyquist ghost correction in multicoil single-shot spatiotemporally encoded MRI.

    PubMed

    Chen, Ying; Liao, Yupeng; Yuan, Lisha; Liu, Hui; Yun, Seong Dae; Shah, Nadim Joni; Chen, Zhong; Zhong, Jianhui

    2017-04-01

    Single-shot spatiotemporally encoded (SPEN) MRI is a novel fast imaging method capable of retaining the time efficiency of single-shot echo planar imaging (EPI) but with distortion artifacts significantly reduced. Akin to EPI, the phase inconsistencies between mismatched even and odd echoes also result in the so-called Nyquist ghosts. However, the characteristic of the SPEN signals provides the possibility of obtaining ghost-free images directly from even and odd echoes respectively, without acquiring additional reference scans. In this paper, a theoretical analysis of the Nyquist ghosts manifested in single-shot SPEN MRI is presented, a one-dimensional correction scheme is put forward capable of maintaining definition of image features without blurring when the phase inconsistency along SPEN encoding direction is negligible, and a technique is introduced for convenient and robust correction of data from multi-channel receiver coils. The effectiveness of the proposed processing pipeline is validated by a series of experiments conducted on simulation data, in vivo rats and healthy human brains. The robustness of the method is further verified by implementing distortion correction on ghost corrected data. Copyright © 2016. Published by Elsevier Inc.

  10. The functional organization of trial-related activity in lexical processing after early left hemispheric brain lesions: An event-related fMRI study

    PubMed Central

    Fair, Damien A.; Choi, Alexander H.; Dosenbach, Yannic B.L.; Coalson, Rebecca S.; Miezin, Francis M.; Petersen, Steven E.; Schlaggar, Bradley L.

    2009-01-01

    Children with congenital left hemisphere damage due to perinatal stroke are capable of acquiring relatively normal language functions despite experiencing a cortical insult that in adults often leads to devastating lifetime disabilities. Although this observed phenomenon accepted, its neurobiological mechanisms are not well characterized. In this paper we examined the functional neuroanatomy of lexical processing in 13 children/adolescents with perinatal left hemispheric damage. In contrast to many previous perinatal infarct fMRI studies, we use an event-related design, which allowed us to isolate trial related activity and examine correct and error trials separately. Using both group and single subject analysis techniques we attempt to address several methodological factors that may contribute to some discrepancies in the perinatal lesion literature. These methodological factors include making direct statistical comparisons, using common stereotactic space, using both single-subject and group analyses, and accounting for performance differences. Our group analysis, investigating correct trial related activity (separately from error trials), showed very few statistical differences in the non-involved right hemisphere between patients and performance matched controls. The single subject analysis revealed atypical regional activation patterns in several patients; however, the location of these regions identified in individual patients often varied across subjects. These results are consistent with the idea that alternative functional organization of trial-related activity after left hemisphere lesions is in large part unique to the individual. In addition, reported differences between results obtained with event-related designs and blocked designs may suggest diverging organizing principles for sustained and trial-related activity after early childhood brain injuries. PMID:19819000

  11. The functional organization of trial-related activity in lexical processing after early left hemispheric brain lesions: An event-related fMRI study.

    PubMed

    Fair, Damien A; Choi, Alexander H; Dosenbach, Yannic B L; Coalson, Rebecca S; Miezin, Francis M; Petersen, Steven E; Schlaggar, Bradley L

    2010-08-01

    Children with congenital left hemisphere damage due to perinatal stroke are capable of acquiring relatively normal language functions despite experiencing a cortical insult that in adults often leads to devastating lifetime disabilities. Although this observed phenomenon is accepted, its neurobiological mechanisms are not well characterized. In this paper we examined the functional neuroanatomy of lexical processing in 13 children/adolescents with perinatal left hemispheric damage. In contrast to many previous perinatal infarct fMRI studies, we used an event-related design, which allowed us to isolate trial-related activity and examine correct and error trials separately. Using both group and single subject analysis techniques we attempt to address several methodological factors that may contribute to some discrepancies in the perinatal lesion literature. These methodological factors include making direct statistical comparisons, using common stereotactic space, using both single subject and group analyses, and accounting for performance differences. Our group analysis, investigating correct trial-related activity (separately from error trials), showed very few statistical differences in the non-involved right hemisphere between patients and performance matched controls. The single subject analysis revealed atypical regional activation patterns in several patients; however, the location of these regions identified in individual patients often varied across subjects. These results are consistent with the idea that alternative functional organization of trial-related activity after left hemisphere lesions is in large part unique to the individual. In addition, reported differences between results obtained with event-related designs and blocked designs may suggest diverging organizing principles for sustained and trial-related activity after early childhood brain injuries. 2009 Elsevier Inc. All rights reserved.

  12. MeCorS: Metagenome-enabled error correction of single cell sequencing reads

    DOE PAGES

    Bremges, Andreas; Singer, Esther; Woyke, Tanja; ...

    2016-03-15

    Here we present a new tool, MeCorS, to correct chimeric reads and sequencing errors in Illumina data generated from single amplified genomes (SAGs). It uses sequence information derived from accompanying metagenome sequencing to accurately correct errors in SAG reads, even from ultra-low coverage regions. In evaluations on real data, we show that MeCorS outperforms BayesHammer, the most widely used state-of-the-art approach. MeCorS performs particularly well in correcting chimeric reads, which greatly improves both accuracy and contiguity of de novo SAG assemblies.

  13. An Improved Rank Correlation Effect Size Statistic for Single-Case Designs: Baseline Corrected Tau.

    PubMed

    Tarlow, Kevin R

    2017-07-01

    Measuring treatment effects when an individual's pretreatment performance is improving poses a challenge for single-case experimental designs. It may be difficult to determine whether improvement is due to the treatment or due to the preexisting baseline trend. Tau- U is a popular single-case effect size statistic that purports to control for baseline trend. However, despite its strengths, Tau- U has substantial limitations: Its values are inflated and not bound between -1 and +1, it cannot be visually graphed, and its relatively weak method of trend control leads to unacceptable levels of Type I error wherein ineffective treatments appear effective. An improved effect size statistic based on rank correlation and robust regression, Baseline Corrected Tau, is proposed and field-tested with both published and simulated single-case time series. A web-based calculator for Baseline Corrected Tau is also introduced for use by single-case investigators.

  14. Correction of the near threshold behavior of electron collisional excitation cross-sections in the plane-wave Born approximation

    DOE PAGES

    Kilcrease, D. P.; Brookes, S.

    2013-08-19

    The modeling of NLTE plasmas requires the solution of population rate equations to determine the populations of the various atomic levels relevant to a particular problem. The equations require many cross sections for excitation, de-excitation, ionization and recombination. Additionally, a simple and computational fast way to calculate electron collisional excitation cross-sections for ions is by using the plane-wave Born approximation. This is essentially a high-energy approximation and the cross section suffers from the unphysical problem of going to zero near threshold. Various remedies for this problem have been employed with varying degrees of success. We present a correction procedure formore » the Born cross-sections that employs the Elwert–Sommerfeld factor to correct for the use of plane waves instead of Coulomb waves in an attempt to produce a cross-section similar to that from using the more time consuming Coulomb Born approximation. We compare this new approximation with other, often employed correction procedures. Furthermore, we also look at some further modifications to our Born Elwert procedure and its combination with Y.K. Kim's correction of the Coulomb Born approximation for singly charged ions that more accurately approximate convergent close coupling calculations.« less

  15. Modeling non-linear growth responses to temperature and hydrology in wetland trees

    NASA Astrophysics Data System (ADS)

    Keim, R.; Allen, S. T.

    2016-12-01

    Growth responses of wetland trees to flooding and climate variations are difficult to model because they depend on multiple, apparently interacting factors, but are a critical link in hydrological control of wetland carbon budgets. To more generally understand tree growth to hydrological forcing, we modeled non-linear responses of tree ring growth to flooding and climate at sub-annual time steps, using Vaganov-Shashkin response functions. We calibrated the model to six baldcypress tree-ring chronologies from two hydrologically distinct sites in southern Louisiana, and tested several hypotheses of plasticity in wetlands tree responses to interacting environmental variables. The model outperformed traditional multiple linear regression. More importantly, optimized response parameters were generally similar among sites with varying hydrological conditions, suggesting generality to the functions. Model forms that included interacting responses to multiple forcing factors were more effective than were single response functions, indicating the principle of a single limiting factor is not correct in wetlands and both climatic and hydrological variables must be considered in predicting responses to hydrological or climate change.

  16. Combined target factor analysis and Bayesian soft-classification of interference-contaminated samples: forensic fire debris analysis.

    PubMed

    Williams, Mary R; Sigman, Michael E; Lewis, Jennifer; Pitan, Kelly McHugh

    2012-10-10

    A bayesian soft classification method combined with target factor analysis (TFA) is described and tested for the analysis of fire debris data. The method relies on analysis of the average mass spectrum across the chromatographic profile (i.e., the total ion spectrum, TIS) from multiple samples taken from a single fire scene. A library of TIS from reference ignitable liquids with assigned ASTM classification is used as the target factors in TFA. The class-conditional distributions of correlations between the target and predicted factors for each ASTM class are represented by kernel functions and analyzed by bayesian decision theory. The soft classification approach assists in assessing the probability that ignitable liquid residue from a specific ASTM E1618 class, is present in a set of samples from a single fire scene, even in the presence of unspecified background contributions from pyrolysis products. The method is demonstrated with sample data sets and then tested on laboratory-scale burn data and large-scale field test burns. The overall performance achieved in laboratory and field test of the method is approximately 80% correct classification of fire debris samples. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. The effect of multifocal soft contact lenses on peripheral refraction.

    PubMed

    Kang, Pauline; Fan, Yvonne; Oh, Kelly; Trac, Kevin; Zhang, Frank; Swarbrick, Helen A

    2013-07-01

    To compare changes in peripheral refraction with single-vision (SV) and multifocal (MF) correction of distance central refraction with commercially available SV and MF soft contact lenses (SCLs) in young myopic adults. Thirty-four myopic adult subjects were fitted with Proclear Sphere and Proclear Multifocal SCLs to correct their manifest central refractive error. Central and peripheral refraction were measured with no lens wear and subsequently with the two different types of SCL correction. At baseline, refraction was myopic at all locations along the horizontal meridian. Peripheral refraction was relatively hyperopic compared with center at 30 and 35 degrees in the temporal visual field (VF) in low myopes, and at 30 and 35 degrees in the temporal VF, and 10, 30, and 35 degrees in the nasal VF in moderate myopes. Single-vision and MF distance correction with Proclear Sphere and Proclear Multifocal SCLs, respectively, caused a hyperopic shift in refraction at all locations in the horizontal VF. Compared with SV correction, MF SCL correction caused a significant relative myopic shift at all locations in the nasal VF in both low and moderate myopes and also at 35 degrees in the temporal VF in moderate myopes. Correction of central refractive error with SV and MF SCLs caused a hyperopic shift in both central and peripheral refraction at all positions in the horizontal meridian. Single-vision SCL correction caused the peripheral retina, which initially experienced absolute myopic defocus at baseline with no correction to experience an absolute hyperopic defocus. Multifocal SCL correction resulted in a relative myopic shift in peripheral refraction compared with SV SCL correction. This myopic shift may explain recent reports of reduced myopia progression rates with MF SCL correction.

  18. 49 CFR 325.79 - Application of correction factors.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... microphone location point and the microphone target point is 60 feet (18.3 m) and that the measurement area... vehicle would be 87 dB(A), calculated as follows: 88 dB(A)Uncorrected average of readings −3 dB(A)Distance correction factor +2 dB(A)Ground surface correction factor _____ 87 dB(A)Corrected reading ...

  19. 49 CFR 325.79 - Application of correction factors.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... microphone location point and the microphone target point is 60 feet (18.3 m) and that the measurement area... vehicle would be 87 dB(A), calculated as follows: 88 dB(A)Uncorrected average of readings −3 dB(A)Distance correction factor +2 dB(A)Ground surface correction factor _____ 87 dB(A)Corrected reading ...

  20. 49 CFR 325.79 - Application of correction factors.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... microphone location point and the microphone target point is 60 feet (18.3 m) and that the measurement area... vehicle would be 87 dB(A), calculated as follows: 88 dB(A)Uncorrected average of readings −3 dB(A)Distance correction factor +2 dB(A)Ground surface correction factor _____ 87 dB(A)Corrected reading ...

  1. Small field detector correction factors kQclin,Qmsr (fclin,fmsr) for silicon-diode and diamond detectors with circular 6 MV fields derived using both empirical and numerical methods.

    PubMed

    O'Brien, D J; León-Vintró, L; McClean, B

    2016-01-01

    The use of radiotherapy fields smaller than 3 cm in diameter has resulted in the need for accurate detector correction factors for small field dosimetry. However, published factors do not always agree and errors introduced by biased reference detectors, inaccurate Monte Carlo models, or experimental errors can be difficult to distinguish. The aim of this study was to provide a robust set of detector-correction factors for a range of detectors using numerical, empirical, and semiempirical techniques under the same conditions and to examine the consistency of these factors between techniques. Empirical detector correction factors were derived based on small field output factor measurements for circular field sizes from 3.1 to 0.3 cm in diameter performed with a 6 MV beam. A PTW 60019 microDiamond detector was used as the reference dosimeter. Numerical detector correction factors for the same fields were derived based on calculations from a geant4 Monte Carlo model of the detectors and the Linac treatment head. Semiempirical detector correction factors were derived from the empirical output factors and the numerical dose-to-water calculations. The PTW 60019 microDiamond was found to over-respond at small field sizes resulting in a bias in the empirical detector correction factors. The over-response was similar in magnitude to that of the unshielded diode. Good agreement was generally found between semiempirical and numerical detector correction factors except for the PTW 60016 Diode P, where the numerical values showed a greater over-response than the semiempirical values by a factor of 3.7% for a 1.1 cm diameter field and higher for smaller fields. Detector correction factors based solely on empirical measurement or numerical calculation are subject to potential bias. A semiempirical approach, combining both empirical and numerical data, provided the most reliable results.

  2. The Use of EEG as a Workload Assessment Tool in Flight Test

    DTIC Science & Technology

    1993-10-01

    resource, single pool, mental model (Wickens) 9 which postulates that the human has a limited source of mental potential and when tasked with multiple...psychological spectrum presents an interesting challenge for future research. 10 EP Amplitude Microvolts) I-J ---- Single Task ......... Difficult...example, they obtained a p value of .000025 for a single test and then applied a Bonferroni correction to yield a conservatively corrected value of p

  3. Adhesive blood microsampling systems for steroid measurement via LC-MS/MS in the rat.

    PubMed

    Heussner, Kirsten; Rauh, Manfred; Cordasic, Nada; Menendez-Castro, Carlos; Huebner, Hanna; Ruebner, Matthias; Schmidt, Marius; Hartner, Andrea; Rascher, Wolfgang; Fahlbusch, Fabian B

    2017-04-01

    Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) allows for the direct analysis of multiple hormones in a single probe with minimal sample volume. Rodent-based animal studies strongly rely on microsampling, such as the dry blood spot (DBS) method. However, DBS suffers the drawback of hematocrit-dependence (non-volumetric). Hence, novel volumetric microsampling techniques were introduced recently, allowing sampling of fixed accurate volumes. We compared these methods for steroid analysis in the rat to improve inter-system comparability. We analyzed steroid levels in blood using the absorptive microsampling devices Whatman® 903 Protein Saver Cards, Noviplex™ Plasma Prep Cards and the Mitra™ Microsampling device and compared the obtained results to the respective EDTA plasma levels. Quantitative steroid analysis was performed via LC-MS/MS. For the determination of the plasma volume factor for each steroid, their levels in pooled blood samples from each human adults and rats (18weeks) were compared and the transferability of these factors was evaluated in a new set of juvenile (21days) and adult (18weeks) rats. Hematocrit was determined concomitantly. Using these approaches, we were unable to apply one single volume factor for each steroid. Instead, plasma volume factors had to be adjusted for the recovery rate of each steroid and device individually. The tested microsampling systems did not allow the use of one single volume factor for adult and juvenile rats based on an unexpectedly strong hematocrit-dependency and other steroid specific (pre-analytic) factors. Our study provides correction factors for LC-MS/MS steroid analysis of volumetric and non-volumetric microsampling systems in comparison to plasma. It argues for thorough analysis of chromatographic effects before the use of novel volumetric systems for steroid analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Hard diffraction in the QCD dipole picture

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Peschanski, R.

    1996-02-01

    Using the QCD dipole picture of the BFKL pomeron, the gluon contribution to the cross-section for single diffractive dissociation in deep-inelastic high-energy scattering is calculated. The resulting contribution to the proton diffractive structure function integrated over t is given in terms of relevant variables, xP, Q2, and β = {x Bj}/{x P}. It factorizes into an explicit x P-dependent Hard Pomeron flux factor and structure function. The lux factor is found to have substantial logarithmic corrections which may account for the recent measurements of the Pomeron intercept in this process. The triple Pomeron coupling is shown to be strongly enhanced by the resummation of leading logs. The obtained pattern of scaling violation at small β is similar to that for F2 at small xBj.

  5. Augmented burst-error correction for UNICON laser memory. [digital memory

    NASA Technical Reports Server (NTRS)

    Lim, R. S.

    1974-01-01

    A single-burst-error correction system is described for data stored in the UNICON laser memory. In the proposed system, a long fire code with code length n greater than 16,768 bits was used as an outer code to augment an existing inner shorter fire code for burst error corrections. The inner fire code is a (80,64) code shortened from the (630,614) code, and it is used to correct a single-burst-error on a per-word basis with burst length b less than or equal to 6. The outer code, with b less than or equal to 12, would be used to correct a single-burst-error on a per-page basis, where a page consists of 512 32-bit words. In the proposed system, the encoding and error detection processes are implemented by hardware. A minicomputer, currently used as a UNICON memory management processor, is used on a time-demanding basis for error correction. Based upon existing error statistics, this combination of an inner code and an outer code would enable the UNICON system to obtain a very low error rate in spite of flaws affecting the recorded data.

  6. A Single-Center Experience with Dynamic Compression Bracing for Children with Pectus Carinatum.

    PubMed

    Poola, Ashwini Suresh; Pierce, Amy L; Orrick, Beth A; Peter, Shawn David St; Snyder, Charles L; Juang, David; Aguayo, Pablo; Fraser, Jason D; Holcomb, George W

    2018-02-01

     Bracing for pectus carinatum (PC) has emerged as an alternative to surgical correction. However, predictive factors for bracing remain poorly understood, as much of the data have been reported from small series.  We reviewed a prospective dataset in patients with PC who underwent dynamic compression bracing (DCB) from July 2011 to July 2016. Bracing was initiated in patients > 10 years of age with a significant PC and desire for bracing. Data were analyzed for those observed two or more times after the brace was fitted to the patient.  A total of 503 patients were evaluated for PC and 340 (68%) underwent DCB. Eighty-five percent were males with an average age of 14 ± 2 years. There was a positive correlation of age with pressure of initial correction (PIC, r  = 0.2). One patient underwent operative correction as the initial therapy. Two hundred seventeen patients had two or more visits after the patient was fitted for the brace. The mean PIC in this cohort was 4 psi (range: 1.5-7.8), and the median duration of bracing in this group was 16 months (IQR: 7-23 months). One hundred three patients (47%) achieved complete correction after an average bracing time of 7.5 months and were then placed in the retainer mode. Thirty patients successfully completed bracing therapy and required an average of 23 months of therapy (2 months-4 years). No patient recurred after bracing was completed, but one failed bracing and required operative correction. Complications included mechanical problems (8%), skin complications (10%), complaints of tightness (3%), and pain (2%).  DCB has both early and lasting effects in the correction of PC with minimal complications. Predictive factors for successful resolution of the PC include increased duration of DCB and lower initial PIC. Georg Thieme Verlag KG Stuttgart · New York.

  7. High-order corrections on the laser cooling limit in the Lamb-Dicke regime.

    PubMed

    Yi, Zhen; Gu, Wen-Ju

    2017-01-23

    We investigate corrections on the cooling limit of high-order Lamb-Dicke (LD) parameters in the double electromagnetically induced transparency (EIT) cooling scheme. Via utilizing quantum interferences, the single-phonon heating mechanism vanishes and the system evolves to a double dark state, from which we will obtain the mechanical occupation on the single-phonon excitation state. In addition, the further correction induced by two-phonon heating transitions is included to achieve a more accurate cooling limit. There exist two pathways of two-phonon heating transitions: direct two-phonon excitation from the dark state and further excitation from the single-phonon excited state. By adding up these two parts of correction, the obtained analytical predictions show a well consistence with numerical results. Moreover, we find that the two pathways can destructively interfere with each other, leading to the elimination of two-phonon heating transitions and achieving a lower cooling limit.

  8. Brain Injury Vision Symptom Survey (BIVSS) Questionnaire.

    PubMed

    Laukkanen, Hannu; Scheiman, Mitchell; Hayes, John R

    2017-01-01

    Validation of the Brain Injury Vision Symptom Survey (BIVSS), a self-administered survey for vision symptoms related to traumatic brain injury (TBI). A 28-item vision symptom questionnaire was completed by 107 adult subjects (mean age 42.1, 16.2 SD, range 18-75) who self-reported as having sustained mild-to-moderate TBI and two groups of reference adult subjects (first-year optometry students: mean age 23.2, 2.8 SD, range 20-39; and 71 third-year optometry students: mean age 26.0, 2.9 SD, range 22-42) without TBI. Both a Likert-style method of analysis with factor analysis and a Rasch analysis were used. Logistic regression was used to determine sensitivity and specificity. At least 27 of 28 questions were completed by 93.5% of TBI subjects, and all 28 items were completed by all of the 157 reference subjects. BIVSS sensitivity was 82.2% for correctly predicting TBI and 90.4% for correctly predicting the optometry students. Factor analysis identified eight latent variables; six factors were positive in their risk for TBI. Other than dry eye and double vision, the TBI patients were significantly more symptomatic than either cohort of optometry students by at least one standard deviation (p < 0.001). Twenty-five of 28 questions were within limits for creating a single-dimension Rasch scale. Nearly all of the adult TBI subjects were able to self-complete the BIVSS, and there was significant mean score separation between TBI and non-TBI groups. The Rasch analysis revealed a single dimension associated with TBI. Using the Likert method with the BIVSS, it may be possible to identify different vision symptom profiles with TBI patients. The BIVSS seems to be a promising tool for better understanding the complex and diverse nature of vision symptoms that are associated with brain injury.

  9. Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms

    NASA Astrophysics Data System (ADS)

    Rigetti, Chad; Gambetta, Jay M.; Poletto, Stefano; Plourde, B. L. T.; Chow, Jerry M.; Córcoles, A. D.; Smolin, John A.; Merkel, Seth T.; Rozen, J. R.; Keefe, George A.; Rothwell, Mary B.; Ketchen, Mark B.; Steffen, M.

    2012-09-01

    We report a superconducting artificial atom with a coherence time of T2*=92 μs and energy relaxation time T1=70 μs. The system consists of a single Josephson junction transmon qubit on a sapphire substrate embedded in an otherwise empty copper waveguide cavity whose lowest eigenmode is dispersively coupled to the qubit transition. We attribute the factor of four increase in the coherence quality factor relative to previous reports to device modifications aimed at reducing qubit dephasing from residual cavity photons. This simple device holds promise as a robust and easily produced artificial quantum system whose intrinsic coherence properties are sufficient to allow tests of quantum error correction.

  10. Aerodynamic Performance of a Compact, High Work-Factor Centrifugal Compressor at the Stage and Subcomponent Level

    NASA Technical Reports Server (NTRS)

    Braunscheidel, Edward P.; Welch, Gerard E.; Skoch, Gary J.; Medic, Gorazd; Sharma, Om P.

    2014-01-01

    The measured aerodynamic performance of a compact, high work factor, single-stage centrifugal compressor, comprising an impeller, diffuser, 90-bend, and exit guide vane (EGV), is reported. Performance levels are based on steady-state total-pressure and total-temperature rake and angularity-probe data acquired at key machine rating planes during recent testing at NASA Glenn Research Center. Aerodynamic performance at the stage level are reported for operation between 70 to 105 of design corrected speed, with subcomponent (impeller, diffuser, and exitguide-vane) detailed flow field measurements presented and discussed at the 100 design-speed condition. Individual component losses from measurements are compared with pre-test predictions on a limited basis.

  11. Single-Trial Normalization for Event-Related Spectral Decomposition Reduces Sensitivity to Noisy Trials

    PubMed Central

    Grandchamp, Romain; Delorme, Arnaud

    2011-01-01

    In electroencephalography, the classical event-related potential model often proves to be a limited method to study complex brain dynamics. For this reason, spectral techniques adapted from signal processing such as event-related spectral perturbation (ERSP) – and its variant event-related synchronization and event-related desynchronization – have been used over the past 20 years. They represent average spectral changes in response to a stimulus. These spectral methods do not have strong consensus for comparing pre- and post-stimulus activity. When computing ERSP, pre-stimulus baseline removal is usually performed after averaging the spectral estimate of multiple trials. Correcting the baseline of each single-trial prior to averaging spectral estimates is an alternative baseline correction method. However, we show that this method leads to positively skewed post-stimulus ERSP values. We eventually present new single-trial-based ERSP baseline correction methods that perform trial normalization or centering prior to applying classical baseline correction methods. We show that single-trial correction methods minimize the contribution of artifactual data trials with high-amplitude spectral estimates and are robust to outliers when performing statistical inference testing. We then characterize these methods in terms of their time–frequency responses and behavior compared to classical ERSP methods. PMID:21994498

  12. Scatter measurement and correction method for cone-beam CT based on single grating scan

    NASA Astrophysics Data System (ADS)

    Huang, Kuidong; Shi, Wenlong; Wang, Xinyu; Dong, Yin; Chang, Taoqi; Zhang, Hua; Zhang, Dinghua

    2017-06-01

    In cone-beam computed tomography (CBCT) systems based on flat-panel detector imaging, the presence of scatter significantly reduces the quality of slices. Based on the concept of collimation, this paper presents a scatter measurement and correction method based on single grating scan. First, according to the characteristics of CBCT imaging, the scan method using single grating and the design requirements of the grating are analyzed and figured out. Second, by analyzing the composition of object projection images and object-and-grating projection images, the processing method for the scatter image at single projection angle is proposed. In addition, to avoid additional scan, this paper proposes an angle interpolation method of scatter images to reduce scan cost. Finally, the experimental results show that the scatter images obtained by this method are accurate and reliable, and the effect of scatter correction is obvious. When the additional object-and-grating projection images are collected and interpolated at intervals of 30 deg, the scatter correction error of slices can still be controlled within 3%.

  13. SU-C-304-07: Are Small Field Detector Correction Factors Strongly Dependent On Machine-Specific Characteristics?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathew, D; Tanny, S; Parsai, E

    2015-06-15

    Purpose: The current small field dosimetry formalism utilizes quality correction factors to compensate for the difference in detector response relative to dose deposited in water. The correction factors are defined on a machine-specific basis for each beam quality and detector combination. Some research has suggested that the correction factors may only be weakly dependent on machine-to-machine variations, allowing for determinations of class-specific correction factors for various accelerator models. This research examines the differences in small field correction factors for three detectors across two Varian Truebeam accelerators to determine the correction factor dependence on machine-specific characteristics. Methods: Output factors were measuredmore » on two Varian Truebeam accelerators for equivalently tuned 6 MV and 6 FFF beams. Measurements were obtained using a commercial plastic scintillation detector (PSD), two ion chambers, and a diode detector. Measurements were made at a depth of 10 cm with an SSD of 100 cm for jaw-defined field sizes ranging from 3×3 cm{sup 2} to 0.6×0.6 cm{sup 2}, normalized to values at 5×5cm{sup 2}. Correction factors for each field on each machine were calculated as the ratio of the detector response to the PSD response. Percent change of correction factors for the chambers are presented relative to the primary machine. Results: The Exradin A26 demonstrates a difference of 9% for 6×6mm{sup 2} fields in both the 6FFF and 6MV beams. The A16 chamber demonstrates a 5%, and 3% difference in 6FFF and 6MV fields at the same field size respectively. The Edge diode exhibits less than 1.5% difference across both evaluated energies. Field sizes larger than 1.4×1.4cm2 demonstrated less than 1% difference for all detectors. Conclusion: Preliminary results suggest that class-specific correction may not be appropriate for micro-ionization chamber. For diode systems, the correction factor was substantially similar and may be useful for class-specific reference conditions.« less

  14. Many-Body Effects on Bandgap Shrinkage, Effective Masses, and Alpha Factor

    NASA Technical Reports Server (NTRS)

    Li, Jian-Zhong; Ning, C. Z.; Woo, Alex C. (Technical Monitor)

    2000-01-01

    Many-body Coulomb effects influence the operation of quantum-well (QW) laser diode (LD) strongly. In the present work, we study a two-band electron-hole plasma (EHP) within the Hatree-Fock approximation and the single plasmon pole approximation for static screening. Full inclusion of momentum dependence in the many-body effects is considered. An empirical expression for carrier density dependence of the bandgap renormalization (BGR) in an 8 nm GaAs/Al(0.3)G(4.7)As single QW will be given, which demonstrates a non-universal scaling behavior for quasi-two-dimension structures, due to size-dependent efficiency of screening. In addition, effective mass renormalization (EMR) due to momentum-dependent self-energy many-body correction, for both electrons and holes is studied and serves as another manifestation of the many-body effects. Finally, the effects on carrier density dependence of the alpha factor is evaluated to assess the sensitivity of the full inclusion of momentum dependence.

  15. Compression-ignition Engine Performance at Altitudes and at Various Air Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Collins, John H

    1937-01-01

    Engine test results are presented for simulated altitude conditions. A displaced-piston combustion chamber on a 5- by 7-inch single cylinder compression-ignition engine operating at 2,000 r.p.m. was used. Inlet air temperature equivalent to standard altitudes up to 14,000 feet were obtained. Comparison between performance at altitude of the unsupercharged compression-ignition engine compared favorably with the carburetor engine. Analysis of the results for which the inlet air temperature, inlet air pressure, and inlet and exhaust pressure were varied indicates that engine performance cannot be reliably corrected on the basis of inlet air density or weight of air charge. Engine power increases with inlet air pressure and decreases with inlet air temperatures very nearly as straight line relations over a wide range of air-fuel ratios. Correction factors are given.

  16. High-resolution retinal imaging through open-loop adaptive optics

    NASA Astrophysics Data System (ADS)

    Li, Chao; Xia, Mingliang; Li, Dayu; Mu, Quanquan; Xuan, Li

    2010-07-01

    Using the liquid crystal spatial light modulator (LC-SLM) as the wavefront corrector, an open-loop adaptive optics (AO) system for fundus imaging in vivo is constructed. Compared with the LC-SLM closed-loop AO system, the light energy efficiency is increased by a factor of 2, which is helpful for the safety of fundus illumination in vivo. In our experiment, the subjective accommodation method is used to precorrect the defocus aberration, and three subjects with different myopia 0, -3, and -5 D are tested. Although the residual wavefront error after correction cannot to detected, the fundus images adequately demonstrate that the imaging system reaches the resolution of a single photoreceptor cell through the open-loop correction. Without dilating and cyclopleging the eye, the continuous imaging for 8 s is recorded for one of the subjects.

  17. Influence of stress interaction on the behavior of off-axis unidirectional composites

    NASA Technical Reports Server (NTRS)

    Pindera, M. J.; Herakovich, C. T.

    1980-01-01

    The yield function for plane stress of a transversely isotropic composite lamina consisting of stiff, linearly elastic fibers and a von Mises matrix material is formulated in terms of Hill's elastic stress concentration factors and a single plastic constraint parameter. The above are subsequently evaluated on the basis of observed average lamina and constituent response for the Avco 5505 boron epoxy system. It is shown that inclusion of residual stresses in the yield function together with the incorporation of Dubey and Hillier's concept of generalized yield stress for anisotropic media in the constitutive equation correctly predicts the trends observed in experiments. The incorporation of the strong axial stress interaction necessary to predict the correct trends in the shear response is directly traced to the high residual axial stresses in the matrix induced during fabrication of the composite.

  18. Toward Best Practices For Assessing Near Surface Sensor Fouling: Potential Correction Approaches Using Underway Ferry Measurements

    NASA Astrophysics Data System (ADS)

    Sastri, A. R.; Dewey, R. K.; Pawlowicz, R.; Krogh, J.

    2016-02-01

    Data from long term deployments of sensors on autonomous, mobile and cabled observation platforms suffer potential quality issues associated with bio-fouling. This issue is of particular concern for optical sensors, such as fluorescence and/or absorbance-based instruments for which light emitting/receiving surfaces are prone to fouling due constant contact with the marine environment. Here we examine signal quality for backscatter, chlorophyll and CDOM fluorescence from a single triplet instrument installed in a ferry box system (nominal depth of 3m) operated by Ocean Networks Canada. The time series consists of 22 months of 8-10 daily transits across the productive waters of the Strait of Georgia, British Columbia, Canada (Nanaimo on Vancouver Island and Vancouver on mainland BC). Instruments were cleaned every 2 weeks since all three instruments experienced significant signal attenuation during that period throughout the year. We experimented with a variety of pre- and post-cleaning measurements in an effort to develop `correction factors' with which to account for the effects of fouling. We found that CDOM fluorescence was especially sensitive to fouling and that correction factors derived from measurements of the fluorescence of standardized solutions successfully accounted for fouling. Similar results were found for chlorophyll fluorescence. Here we present results from our measurements and assess the efficacy of each of these approaches using comparisons against additional instruments less prone to signal attenuation over short periods.

  19. Precision laser surveying instrument using atmospheric turbulence compensation by determining the absolute displacement between two laser beam components

    DOEpatents

    Veligdan, James T.

    1993-01-01

    Atmospheric effects on sighting measurements are compensated for by adjusting any sighting measurements using a correction factor that does not depend on atmospheric state conditions such as temperature, pressure, density or turbulence. The correction factor is accurately determined using a precisely measured physical separation between two color components of a light beam (or beams) that has been generated using either a two-color laser or two lasers that project different colored beams. The physical separation is precisely measured by fixing the position of a short beam pulse and measuring the physical separation between the two fixed-in-position components of the beam. This precisely measured physical separation is then used in a relationship that includes the indexes of refraction for each of the two colors of the laser beam in the atmosphere through which the beam is projected, thereby to determine the absolute displacement of one wavelength component of the laser beam from a straight line of sight for that projected component of the beam. This absolute displacement is useful to correct optical measurements, such as those developed in surveying measurements that are made in a test area that includes the same dispersion effects of the atmosphere on the optical measurements. The means and method of the invention are suitable for use with either single-ended systems or a double-ended systems.

  20. Association of a single nucleotide polymorphism in the akirin 2 gene with economically important traits in Korean native cattle.

    PubMed

    Kim, H; Lee, S K; Hong, M W; Park, S R; Lee, Y S; Kim, J W; Lee, H K; Jeong, D K; Song, Y H; Lee, S J

    2013-12-01

    The akirin 2 gene, located on chromosome 9 in cattle, was previously reported to be associated with nuclear factor-kappa B (NF-κB), involved in immune reactions and marbling of meat. To determine whether a single nucleotide polymorphism (SNP) in akirin 2 is associated with economically important traits of Korean native cattle, the c.*188G>A SNP DNA marker in the 3'-UTR region of akirin 2 was analyzed for its association with carcass weight, longissimus muscle area and marbling. The c.*188G>A SNP was genotyped by polymerase chain reaction restriction fragment length polymorphism, and the frequency of the AA, AG, and GG genotypes were 6.82%, 71.29% and 21.88% respectively. This SNP was significantly associated with longissimus muscle area (Bonferroni corrected P < 0.05), and marbling score (Bonferroni corrected P < 0.01). These results suggest that the c.*188G>A SNP of akirin 2 might be useful as a DNA marker for longissimus muscle area and marbling scores in Korean native cattle. © 2013 The Authors, Animal Genetics © 2013 Stichting International Foundation for Animal Genetics.

  1. Peptidic tools applied to redirect alternative splicing events.

    PubMed

    Nancy, Martínez-Montiel; Nora, Rosas-Murrieta; Rebeca, Martínez-Contreras

    2015-05-01

    Peptides are versatile and attractive biomolecules that can be applied to modulate genetic mechanisms like alternative splicing. In this process, a single transcript yields different mature RNAs leading to the production of protein isoforms with diverse or even antagonistic functions. During splicing events, errors can be caused either by mutations present in the genome or by defects or imbalances in regulatory protein factors. In any case, defects in alternative splicing have been related to several genetic diseases including muscular dystrophy, Alzheimer's disease and cancer from almost every origin. One of the most effective approaches to redirect alternative splicing events has been to attach cell-penetrating peptides to oligonucleotides that can modulate a single splicing event and restore correct gene expression. Here, we summarize how natural existing and bioengineered peptides have been applied over the last few years to regulate alternative splicing and genetic expression. Under different genetic and cellular backgrounds, peptides have been shown to function as potent vehicles for splice correction, and their therapeutic benefits have reached clinical trials and patenting stages, emphasizing the use of regulatory peptides as an exciting therapeutic tool for the treatment of different genetic diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. A robust multi-shot scan strategy for high-resolution diffusion weighted MRI enabled by multiplexed sensitivity-encoding (MUSE)

    PubMed Central

    Chen, Nan-kuei; Guidon, Arnaud; Chang, Hing-Chiu; Song, Allen W.

    2013-01-01

    Diffusion weighted magnetic resonance imaging (DWI) data have been mostly acquired with single-shot echo-planar imaging (EPI) to minimize motion induced artifacts. The spatial resolution, however, is inherently limited in single-shot EPI, even when the parallel imaging (usually at an acceleration factor of 2) is incorporated. Multi-shot acquisition strategies could potentially achieve higher spatial resolution and fidelity, but they are generally susceptible to motion-induced phase errors among excitations that are exacerbated by diffusion sensitizing gradients, rendering the reconstructed images unusable. It has been shown that shot-to-shot phase variations may be corrected using navigator echoes, but at the cost of imaging throughput. To address these challenges, a novel and robust multi-shot DWI technique, termed multiplexed sensitivity-encoding (MUSE), is developed here to reliably and inherently correct nonlinear shot-to-shot phase variations without the use of navigator echoes. The performance of the MUSE technique is confirmed experimentally in healthy adult volunteers on 3 Tesla MRI systems. This newly developed technique should prove highly valuable for mapping brain structures and connectivities at high spatial resolution for neuroscience studies. PMID:23370063

  3. Detector-specific correction factors in radiosurgery beams and their impact on dose distribution calculations.

    PubMed

    García-Garduño, Olivia A; Rodríguez-Ávila, Manuel A; Lárraga-Gutiérrez, José M

    2018-01-01

    Silicon-diode-based detectors are commonly used for the dosimetry of small radiotherapy beams due to their relatively small volumes and high sensitivity to ionizing radiation. Nevertheless, silicon-diode-based detectors tend to over-respond in small fields because of their high density relative to water. For that reason, detector-specific beam correction factors ([Formula: see text]) have been recommended not only to correct the total scatter factors but also to correct the tissue maximum and off-axis ratios. However, the application of [Formula: see text] to in-depth and off-axis locations has not been studied. The goal of this work is to address the impact of the correction factors on the calculated dose distribution in static non-conventional photon beams (specifically, in stereotactic radiosurgery with circular collimators). To achieve this goal, the total scatter factors, tissue maximum, and off-axis ratios were measured with a stereotactic field diode for 4.0-, 10.0-, and 20.0-mm circular collimators. The irradiation was performed with a Novalis® linear accelerator using a 6-MV photon beam. The detector-specific correction factors were calculated and applied to the experimental dosimetry data for in-depth and off-axis locations. The corrected and uncorrected dosimetry data were used to commission a treatment planning system for radiosurgery planning. Various plans were calculated with simulated lesions using the uncorrected and corrected dosimetry. The resulting dose calculations were compared using the gamma index test with several criteria. The results of this work presented important conclusions for the use of detector-specific beam correction factors ([Formula: see text] in a treatment planning system. The use of [Formula: see text] for total scatter factors has an important impact on monitor unit calculation. On the contrary, the use of [Formula: see text] for tissue-maximum and off-axis ratios has not an important impact on the dose distribution calculation by the treatment planning system. This conclusion is only valid for the combination of treatment planning system, detector, and correction factors used in this work; however, this technique can be applied to other treatment planning systems, detectors, and correction factors.

  4. Factors favoring regain of the lost vertical spinal height through posterior spinal fusion in adolescent idiopathic scoliosis.

    PubMed

    Shi, Benlong; Mao, Saihu; Xu, Leilei; Sun, Xu; Liu, Zhen; Zhu, Zezhang; Lam, Tsz Ping; Cheng, Jack Cy; Ng, Bobby; Qiu, Yong

    2016-07-04

    Height gain is a common beneficial consequence following correction surgery in adolescent idiopathic scoliosis (AIS), yet little is known concerning factors favoring regain of the lost vertical spinal height (SH) through posterior spinal fusion. A consecutive series of AIS patients from February 2013 to August 2015 were reviewed. Surgical changes in SH (ΔSH), as well as the multiple coronal and sagittal deformity parameters were measured and correlated. Factors associated with ΔSH were identified through Pearson correlation analysis and multivariate regression analysis. A total of 172 single curve and 104 double curve patients were reviewed. The ΔSH averaged 2.5 ± 0.9 cm in single curve group and 2.9 ± 1.0 cm in double curve group. The multivariate regression analysis revealed the following pre-operative variables contributed significantly to ΔSH: pre-op Cobb angle, pre-op TK (single curve group only), pre-op GK (double curve group only) and pre-op LL (double curve group only) (p < 0.05). Thus change in height (in cm) = 0.044 × (pre-op Cobb angle) + 0.012 × (pre-op TK) (Single curve, adjusted R(2) = 0.549) or 0.923 + 0.021 × (pre-op Cobb angle1) + 0.028 × (pre-op Cobb angle2) + 0.015 × (pre-op GK)-0.012 × (pre-op LL) (Double curve, adjusted R(2) = 0.563). Severer pre-operative coronal Cobb angle and greater sagittal curves were beneficial factors favoring more contribution to the surgical lengthening effect in vertical spinal height in AIS.

  5. Bias Corrections for Standardized Effect Size Estimates Used with Single-Subject Experimental Designs

    ERIC Educational Resources Information Center

    Ugille, Maaike; Moeyaert, Mariola; Beretvas, S. Natasha; Ferron, John M.; Van den Noortgate, Wim

    2014-01-01

    A multilevel meta-analysis can combine the results of several single-subject experimental design studies. However, the estimated effects are biased if the effect sizes are standardized and the number of measurement occasions is small. In this study, the authors investigated 4 approaches to correct for this bias. First, the standardized effect…

  6. The cosmic evolution of dust-corrected metallicity in the neutral gas

    NASA Astrophysics Data System (ADS)

    De Cia, Annalisa; Ledoux, Cédric; Petitjean, Patrick; Savaglio, Sandra

    2018-04-01

    Interpreting abundances of damped Ly-α absorbers (DLAs) from absorption-line spectroscopy has typically been a challenge because of the presence of dust. Nevertheless, because DLAs trace distant gas-rich galaxies regardless of their luminosity, they provide an attractive way of measuring the evolution of the metallicity of the neutral gas with cosmic time. This has been done extensively so far, but typically not taking proper dust corrections into account. The aims of this paper are to: (i) provide a simplified way of calculating dust corrections, based on a single observed [X/Fe], (ii) assess the importance of dust corrections for DLA metallicities and their evolution, and (iii) investigate the cosmic evolution of iron for a large DLA sample. We have derived dust corrections based on the observed [Zn/Fe], [Si/Fe], or [S/Fe], and confirmed their robustness. We present dust-corrected metallicities in a scale of [Fe/H]tot for 236 DLAs over a broad range of z, and assess the extent of dust corrections for different metals at different metallicities. Dust corrections in DLAs are important even for Zn (typically of 0.1-0.2, and up to 0.5 dex), which is often neglected. Finally, we study the evolution of the dust-corrected metallicity with z. The DLA metallicities decrease with redshift, by a factor of 50-100 from today to 12.6 billion years ago (z = 5). When including dust corrections, the average DLA metallicities are 0.4-0.5 dex higher than without corrections. The upper envelope of the relation between metallicity and z reaches solar metallicity at z ≲ 0.5, although some systems can have solar metallicity already out to z 3. Based on observations carried out at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 065.P-0038, 065.O-0063, 066.A-0624, 067.A-0078, and 068.A-0600.

  7. Challenging terrestrial biosphere models with data from the long-term multifactor Prairie Heating and CO 2 enrichment experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Kauwe, Martin G.; Medlyn, Belinda E.; Walker, Anthony P.

    Multi-factor experiments are often advocated as important for advancing terrestrial biosphere models (TBMs), yet to date such models have only been tested against single-factor experiments. We applied 10 TBMs to the multi-factor Prairie Heating and CO 2 Enrichment (PHACE) experiment in Wyoming, USA. Our goals were to investigate how multi-factor experiments can be used to constrain models, and to identify a road map for model improvement. We found models performed poorly in ambient conditions; there was a wide spread in simulated above-ground net primary productivity (range: 31-390 g C m -2 yr -1). Comparison with data highlighted model failures particularlymore » in respect to carbon allocation, phenology, and the impact of water stress on phenology. Performance against single-factors was also relatively poor. In addition, similar responses were predicted for different reasons across models: there were large differences among models in sensitivity to water stress and, among the nitrogen cycle models, nitrogen availability during the experiment. Models were also unable to capture observed treatment effects on phenology: they over-estimated the effect of warming on leaf onset and did not allow CO 2-induced water savings to extend growing season length. Observed interactive (CO 2 x warming) treatment effects were subtle and contingent on water stress, phenology and species composition. Since the models did not correctly represent these processes under ambient and single-factor conditions, little extra information was gained by comparing model predictions against interactive responses. Finally, we outline a series of key areas in which this and future experiments could be used to improve model predictions of grassland responses to global change.« less

  8. Challenging terrestrial biosphere models with data from the long-term multifactor Prairie Heating and CO 2 enrichment experiment

    DOE PAGES

    De Kauwe, Martin G.; Medlyn, Belinda E.; Walker, Anthony P.; ...

    2017-02-01

    Multi-factor experiments are often advocated as important for advancing terrestrial biosphere models (TBMs), yet to date such models have only been tested against single-factor experiments. We applied 10 TBMs to the multi-factor Prairie Heating and CO 2 Enrichment (PHACE) experiment in Wyoming, USA. Our goals were to investigate how multi-factor experiments can be used to constrain models, and to identify a road map for model improvement. We found models performed poorly in ambient conditions; there was a wide spread in simulated above-ground net primary productivity (range: 31-390 g C m -2 yr -1). Comparison with data highlighted model failures particularlymore » in respect to carbon allocation, phenology, and the impact of water stress on phenology. Performance against single-factors was also relatively poor. In addition, similar responses were predicted for different reasons across models: there were large differences among models in sensitivity to water stress and, among the nitrogen cycle models, nitrogen availability during the experiment. Models were also unable to capture observed treatment effects on phenology: they over-estimated the effect of warming on leaf onset and did not allow CO 2-induced water savings to extend growing season length. Observed interactive (CO 2 x warming) treatment effects were subtle and contingent on water stress, phenology and species composition. Since the models did not correctly represent these processes under ambient and single-factor conditions, little extra information was gained by comparing model predictions against interactive responses. Finally, we outline a series of key areas in which this and future experiments could be used to improve model predictions of grassland responses to global change.« less

  9. Quantitative multi-pinhole small-animal SPECT: uniform versus non-uniform Chang attenuation correction.

    PubMed

    Wu, C; de Jong, J R; Gratama van Andel, H A; van der Have, F; Vastenhouw, B; Laverman, P; Boerman, O C; Dierckx, R A J O; Beekman, F J

    2011-09-21

    Attenuation of photon flux on trajectories between the source and pinhole apertures affects the quantitative accuracy of reconstructed single-photon emission computed tomography (SPECT) images. We propose a Chang-based non-uniform attenuation correction (NUA-CT) for small-animal SPECT/CT with focusing pinhole collimation, and compare the quantitative accuracy with uniform Chang correction based on (i) body outlines extracted from x-ray CT (UA-CT) and (ii) on hand drawn body contours on the images obtained with three integrated optical cameras (UA-BC). Measurements in phantoms and rats containing known activities of isotopes were conducted for evaluation. In (125)I, (201)Tl, (99m)Tc and (111)In phantom experiments, average relative errors comparing to the gold standards measured in a dose calibrator were reduced to 5.5%, 6.8%, 4.9% and 2.8%, respectively, with NUA-CT. In animal studies, these errors were 2.1%, 3.3%, 2.0% and 2.0%, respectively. Differences in accuracy on average between results of NUA-CT, UA-CT and UA-BC were less than 2.3% in phantom studies and 3.1% in animal studies except for (125)I (3.6% and 5.1%, respectively). All methods tested provide reasonable attenuation correction and result in high quantitative accuracy. NUA-CT shows superior accuracy except for (125)I, where other factors may have more impact on the quantitative accuracy than the selected attenuation correction.

  10. Estimation of Knudsen diffusion coefficients from tracer experiments conducted with a binary gas system and a porous medium.

    PubMed

    Hibi, Yoshihiko; Kashihara, Ayumi

    2018-03-01

    A previous study has reported that Knudsen diffusion coefficients obtained by tracer experiments conducted with a binary gas system and a porous medium are consistently smaller than those obtained by permeability experiments conducted with a single-gas system and a porous medium. To date, however, that study is the only one in which tracer experiments have been conducted with a binary gas system. Therefore, to confirm this difference in Knudsen diffusion coefficients, we used a method we had developed previously to conduct tracer experiments with a binary carbon dioxide-nitrogen gas system and five porous media with permeability coefficients ranging from 10 -13 to 10 -11  m 2 . The results showed that the Knudsen diffusion coefficient of N 2 (D N2 ) (cm 2 /s) was related to the effective permeability coefficient k e (m 2 ) as D N2  = 7.39 × 10 7 k e 0.767 . Thus, the Knudsen diffusion coefficients of N 2 obtained by our tracer experiments were consistently 1/27 of those obtained by permeability experiments conducted with many porous media and air by other researchers. By using an inversion simulation to fit the advection-diffusion equation to the distribution of concentrations at observation points calculated by mathematically solving the equation, we confirmed that the method used to obtain the Knudsen diffusion coefficient in this study yielded accurate values. Moreover, because the Knudsen diffusion coefficient did not differ when columns with two different lengths, 900 and 1500 mm, were used, this column property did not influence the flow of gas in the column. The equation of the dusty gas model already includes obstruction factors for Knudsen diffusion and molecular diffusion, which relate to medium heterogeneity and tortuosity and depend only on the structure of the porous medium. Furthermore, there is no need to take account of any additional correction factor for molecular diffusion except the obstruction factor because molecular diffusion is only treated in a multicomponent gas system. Thus, molecular diffusion considers only the obstruction factor related to tortuosity. Therefore, we introduced a correction factor for a multicomponent gas system into the DGM equation, multiplying the Knudsen diffusion coefficient, which includes the obstruction factor related to tortuosity, by this correction factor. From the present experimental results, the value of this correction factor was 1/27, and it depended only on the structure of the gas system in the porous medium. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Estimation of Knudsen diffusion coefficients from tracer experiments conducted with a binary gas system and a porous medium

    NASA Astrophysics Data System (ADS)

    Hibi, Yoshihiko; Kashihara, Ayumi

    2018-03-01

    A previous study has reported that Knudsen diffusion coefficients obtained by tracer experiments conducted with a binary gas system and a porous medium are consistently smaller than those obtained by permeability experiments conducted with a single-gas system and a porous medium. To date, however, that study is the only one in which tracer experiments have been conducted with a binary gas system. Therefore, to confirm this difference in Knudsen diffusion coefficients, we used a method we had developed previously to conduct tracer experiments with a binary carbon dioxide-nitrogen gas system and five porous media with permeability coefficients ranging from 10-13 to 10-11 m2. The results showed that the Knudsen diffusion coefficient of N2 (DN2) (cm2/s) was related to the effective permeability coefficient ke (m2) as DN2 = 7.39 × 107ke0.767. Thus, the Knudsen diffusion coefficients of N2 obtained by our tracer experiments were consistently 1/27 of those obtained by permeability experiments conducted with many porous media and air by other researchers. By using an inversion simulation to fit the advection-diffusion equation to the distribution of concentrations at observation points calculated by mathematically solving the equation, we confirmed that the method used to obtain the Knudsen diffusion coefficient in this study yielded accurate values. Moreover, because the Knudsen diffusion coefficient did not differ when columns with two different lengths, 900 and 1500 mm, were used, this column property did not influence the flow of gas in the column. The equation of the dusty gas model already includes obstruction factors for Knudsen diffusion and molecular diffusion, which relate to medium heterogeneity and tortuosity and depend only on the structure of the porous medium. Furthermore, there is no need to take account of any additional correction factor for molecular diffusion except the obstruction factor because molecular diffusion is only treated in a multicomponent gas system. Thus, molecular diffusion considers only the obstruction factor related to tortuosity. Therefore, we introduced a correction factor for a multicomponent gas system into the DGM equation, multiplying the Knudsen diffusion coefficient, which includes the obstruction factor related to tortuosity, by this correction factor. From the present experimental results, the value of this correction factor was 1/27, and it depended only on the structure of the gas system in the porous medium.

  12. [The property and applications of the photovoltaic solar panel in the region of diagnostic X-ray].

    PubMed

    Hirota, Jun'ichi; Tarusawa, Kohetsu; Kudo, Kohsei

    2010-10-20

    In this study, the sensitivity in the diagnostic X-ray region of the single crystalline Si photovoltaic solar panel, which is expected to grow further, was measured by using an X-ray tube. The output voltage of the solar panel was clearly proportional to the tube voltage and a good time response in the irradiation time setting of the tube was measured. The factor which converts measured voltage to irradiation dose was extracted experimentally using a correction filter to investigate the ability of the solar panel as a dose monitor. The obtained conversion factors were N(S) = 13 ± 1[µV/µSv/s] for the serial and N(P) = 58 ± 2[µV/µSv/s] for the parallel connected solar panels, both with the Al 1 mm + Cu 0.1 mm correction filter, respectively. Therefore, a good dose dependence of the conversion factor was confirmed by varying the distance between the X-ray tube and the solar panel with that filter. In conclusion, a simple extension of our results pointed out the potential of a new concept of measurements using, for example, the photovoltaic solar panel, the direct dose measurement from X-ray tube and real time estimation of the exposed dose in IVR.

  13. Fast Solar Wind from Slowly Expanding Magnetic Flux Tubes (P54)

    NASA Astrophysics Data System (ADS)

    Srivastava, A. K.; Dwivedi, B. N.

    2006-11-01

    aks.astro.itbhu@gmail.com We present an empirical model of the fast solar wind, emanating from radially oriented slowly expanding magnetic flux tubes. We consider a single-fluid, steady state model in which the flow is driven by thermal and non-thermal pressure gradients. We apply a non-Alfvénic energy correction at the coronal base and find that specific relations correlate solar wind speed and non-thermal energy flux with the aerial expansion factor. The results are compared with the previously reported ones.

  14. A newly identified calculation discrepancy of the Sunset semi-continuous carbon analyzer

    NASA Astrophysics Data System (ADS)

    Zheng, G.; Cheng, Y.; He, K.; Duan, F.; Ma, Y.

    2014-01-01

    Sunset Semi-Continuous Carbon Analyzer (SCCA) is an instrument widely used for carbonaceous aerosol measurement. Despite previous validation work, here we identified a new type of SCCA calculation discrepancy caused by the default multi-point baseline correction method. When exceeding a certain threshold carbon load, multi-point correction could cause significant Total Carbon (TC) underestimation. This calculation discrepancy was characterized for both sucrose and ambient samples with three temperature protocols. For ambient samples, 22%, 36% and 12% TC was underestimated by the three protocols, respectively, with corresponding threshold being ~0, 20 and 25 μg C. For sucrose, however, such discrepancy was observed with only one of these protocols, indicating the need of more refractory SCCA calibration substance. The discrepancy was less significant for the NIOSH (National Institute for Occupational Safety and Health)-like protocol compared with the other two protocols based on IMPROVE (Interagency Monitoring of PROtected Visual Environments). Although the calculation discrepancy could be largely reduced by the single-point baseline correction method, the instrumental blanks of single-point method were higher. Proposed correction method was to use multi-point corrected data when below the determined threshold, while use single-point results when beyond that threshold. The effectiveness of this correction method was supported by correlation with optical data.

  15. A newly identified calculation discrepancy of the Sunset semi-continuous carbon analyzer

    NASA Astrophysics Data System (ADS)

    Zheng, G. J.; Cheng, Y.; He, K. B.; Duan, F. K.; Ma, Y. L.

    2014-07-01

    The Sunset semi-continuous carbon analyzer (SCCA) is an instrument widely used for carbonaceous aerosol measurement. Despite previous validation work, in this study we identified a new type of SCCA calculation discrepancy caused by the default multipoint baseline correction method. When exceeding a certain threshold carbon load, multipoint correction could cause significant total carbon (TC) underestimation. This calculation discrepancy was characterized for both sucrose and ambient samples, with two protocols based on IMPROVE (Interagency Monitoring of PROtected Visual Environments) (i.e., IMPshort and IMPlong) and one NIOSH (National Institute for Occupational Safety and Health)-like protocol (rtNIOSH). For ambient samples, the IMPshort, IMPlong and rtNIOSH protocol underestimated 22, 36 and 12% of TC, respectively, with the corresponding threshold being ~ 0, 20 and 25 μgC. For sucrose, however, such discrepancy was observed only with the IMPshort protocol, indicating the need of more refractory SCCA calibration substance. Although the calculation discrepancy could be largely reduced by the single-point baseline correction method, the instrumental blanks of single-point method were higher. The correction method proposed was to use multipoint-corrected data when below the determined threshold, and use single-point results when beyond that threshold. The effectiveness of this correction method was supported by correlation with optical data.

  16. Resistivity Correction Factor for the Four-Probe Method: Experiment III

    NASA Astrophysics Data System (ADS)

    Yamashita, Masato; Nishii, Toshifumi; Kurihara, Hiroshi; Enjoji, Hideo; Iwata, Atsushi

    1990-04-01

    Experimental verification of the theoretically derived resistivity correction factor F is presented. Factor F is applied to a system consisting of a rectangular parallelepiped sample and a square four-probe array. Resistivity and sheet resistance measurements are made on isotropic graphites and crystalline ITO films. Factor F corrects experimental data and leads to reasonable resistivity and sheet resistance.

  17. Experimental investigation of factors affecting the absolute recovery coefficients in iodine-124 PET lesion imaging

    NASA Astrophysics Data System (ADS)

    Jentzen, Walter

    2010-04-01

    The use of recovery coefficients (RCs) in 124I PET lesion imaging is a simple method to correct the imaged activity concentration (AC) primarily for the partial-volume effect and, to a minor extent, for the prompt gamma coincidence effect. The aim of this phantom study was to experimentally investigate a number of various factors affecting the 124I RCs. Three RC-based correction approaches were considered. These approaches differ with respect to the volume of interest (VOI) drawn, which determines the imaged AC and the RCs: a single voxel VOI containing the maximum value (maximum RC), a spherical VOI with a diameter of the scanner resolution (resolution RC) and a VOI equaling the physical object volume (isovolume RC). Measurements were performed using mainly a stand-alone PET scanner (EXACT HR+) and a latest-generation PET/CT scanner (BIOGRAPH mCT). The RCs were determined using a cylindrical phantom containing spheres or rotational ellipsoids and were derived from images acquired with a reference acquisition protocol. For each type of RC, the influence of the following factors on the RC was assessed: object shape, background activity spill in and iterative image reconstruction parameters. To evaluate the robustness of the RC-based correction approaches, the percentage deviation between RC-corrected and true ACs was determined from images acquired with a clinical acquisition protocol of different AC regimes. The observed results of the shape and spill-in effects were compared with simulation data derived from a convolution-based model. The study demonstrated that the shape effect was negligible and, therefore, was in agreement with theoretical expectations. In contradiction to the simulation results, the observed spill-in effect was unexpectedly small. To avoid variations in the determination of RCs due to reconstruction parameter changes, image reconstruction with a pixel length of about one-third or less of the scanner resolution and an OSEM 1 × 32 algorithm or one with somewhat higher number of effective iterations are recommended. Using the clinical acquisition protocol, the phantom study indicated that the resolution- or isovolume-based recovery-correction approaches appeared to be more appropriate to recover the ACs from patient data; however, the application of the three RC-based correction approaches to small lesions containing low ACs was, in particular, associated with large underestimations. The phantom study had several limitations, which were discussed in detail.

  18. Sudden Cardiac Death in Women With Suspected Ischemic Heart Disease, Preserved Ejection Fraction, and No Obstructive Coronary Artery Disease: A Report From the Women's Ischemia Syndrome Evaluation Study.

    PubMed

    Mehta, Puja K; Johnson, B Delia; Kenkre, Tanya S; Eteiba, Wafia; Sharaf, Barry; Pepine, Carl J; Reis, Steven E; Rogers, William J; Kelsey, Sheryl F; Thompson, Diane V; Bittner, Vera; Sopko, George; Shaw, Leslee J; Bairey Merz, C Noel

    2017-08-21

    Sudden cardiac death (SCD) is often the first presentation of ischemic heart disease; however, there is limited information on SCD among women with and without obstructive coronary artery disease (CAD). We evaluated SCD incidence in the WISE (Women's Ischemia Syndrome Evaluation) study. Overall, 904 women with suspected ischemic heart disease with preserved ejection fraction and core laboratory coronary angiography were followed for outcomes. In case of death, a death certificate and/or a physician or family narrative of the circumstances of death was obtained. A clinical events committee rated all deaths as cardiovascular or noncardiovascular and as SCD or non-SCD. In total, 96 women (11%) died over a median of 6 years (maximum: 8 years). Among 65 cardiovascular deaths, 42% were SCD. Mortality per 1000 person-hours increased linearly with CAD severity (no CAD: 5.8; minimal: 15.9; obstructive: 38.6; P <0.0001). However, the proportion of SCD was similar across CAD severity: 40%, 58%, and 38% for no, minimal, and obstructive CAD subgroups, respectively ( P value not significant). In addition to traditional risk factors (age, diabetes mellitus, smoking), a history of depression ( P =0.018) and longer corrected QT interval ( P =0.023) were independent SCD predictors in the entire cohort. Corrected QT interval was an independent predictor of SCD in women without obstructive CAD ( P =0.033). SCD contributes substantially to mortality in women with and without obstructive CAD. Corrected QT interval is the single independent SCD risk factor in women without obstructive CAD. In addition to management of traditional risk factors, these data indicate that further investigation should address mechanistic understanding and interventions targeting depression and corrected QT interval in women. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  19. Impact of stimulus-related factors and hearing impairment on listening effort as indicated by pupil dilation.

    PubMed

    Ohlenforst, Barbara; Zekveld, Adriana A; Lunner, Thomas; Wendt, Dorothea; Naylor, Graham; Wang, Yang; Versfeld, Niek J; Kramer, Sophia E

    2017-08-01

    Previous research has reported effects of masker type and signal-to-noise ratio (SNR) on listening effort, as indicated by the peak pupil dilation (PPD) relative to baseline during speech recognition. At about 50% correct sentence recognition performance, increasing SNRs generally results in declining PPDs, indicating reduced effort. However, the decline in PPD over SNRs has been observed to be less pronounced for hearing-impaired (HI) compared to normal-hearing (NH) listeners. The presence of a competing talker during speech recognition generally resulted in larger PPDs as compared to the presence of a fluctuating or stationary background noise. The aim of the present study was to examine the interplay between hearing-status, a broad range of SNRs corresponding to sentence recognition performance varying from 0 to 100% correct, and different masker types (stationary noise and single-talker masker) on the PPD during speech perception. Twenty-five HI and 32 age-matched NH participants listened to sentences across a broad range of SNRs, masked with speech from a single talker (-25 dB to +15 dB SNR) or with stationary noise (-12 dB to +16 dB). Correct sentence recognition scores and pupil responses were recorded during stimulus presentation. With a stationary masker, NH listeners show maximum PPD across a relatively narrow range of low SNRs, while HI listeners show relatively large PPD across a wide range of ecological SNRs. With the single-talker masker, maximum PPD was observed in the mid-range of SNRs around 50% correct sentence recognition performance, while smaller PPDs were observed at lower and higher SNRs. Mixed-model ANOVAs revealed significant interactions between hearing-status and SNR on the PPD for both masker types. Our data show a different pattern of PPDs across SNRs between groups, which indicates that listening and the allocation of effort during listening in daily life environments may be different for NH and HI listeners. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Can small field diode correction factors be applied universally?

    PubMed

    Liu, Paul Z Y; Suchowerska, Natalka; McKenzie, David R

    2014-09-01

    Diode detectors are commonly used in dosimetry, but have been reported to over-respond in small fields. Diode correction factors have been reported in the literature. The purpose of this study is to determine whether correction factors for a given diode type can be universally applied over a range of irradiation conditions including beams of different qualities. A mathematical relation of diode over-response as a function of the field size was developed using previously published experimental data in which diodes were compared to an air core scintillation dosimeter. Correction factors calculated from the mathematical relation were then compared those available in the literature. The mathematical relation established between diode over-response and the field size was found to predict the measured diode correction factors for fields between 5 and 30 mm in width. The average deviation between measured and predicted over-response was 0.32% for IBA SFD and PTW Type E diodes. Diode over-response was found to be not strongly dependent on the type of linac, the method of collimation or the measurement depth. The mathematical relation was found to agree with published diode correction factors derived from Monte Carlo simulations and measurements, indicating that correction factors are robust in their transportability between different radiation beams. Copyright © 2014. Published by Elsevier Ireland Ltd.

  1. Development and implementation of a remote audit tool for high dose rate (HDR) Ir-192 brachytherapy using optically stimulated luminescence dosimetry

    PubMed Central

    Casey, Kevin E.; Alvarez, Paola; Kry, Stephen F.; Howell, Rebecca M.; Lawyer, Ann; Followill, David

    2013-01-01

    Purpose: The aim of this work was to create a mailable phantom with measurement accuracy suitable for Radiological Physics Center (RPC) audits of high dose-rate (HDR) brachytherapy sources at institutions participating in National Cancer Institute-funded cooperative clinical trials. Optically stimulated luminescence dosimeters (OSLDs) were chosen as the dosimeter to be used with the phantom. Methods: The authors designed and built an 8 × 8 × 10 cm3 prototype phantom that had two slots capable of holding Al2O3:C OSLDs (nanoDots; Landauer, Glenwood, IL) and a single channel capable of accepting all 192Ir HDR brachytherapy sources in current clinical use in the United States. The authors irradiated the phantom with Nucletron and Varian 192Ir HDR sources in order to determine correction factors for linearity with dose and the combined effects of irradiation energy and phantom characteristics. The phantom was then sent to eight institutions which volunteered to perform trial remote audits. Results: The linearity correction factor was kL = (−9.43 × 10−5 × dose) + 1.009, where dose is in cGy, which differed from that determined by the RPC for the same batch of dosimeters using 60Co irradiation. Separate block correction factors were determined for current versions of both Nucletron and Varian 192Ir HDR sources and these vendor-specific correction factors differed by almost 2.6%. For the Nucletron source, the correction factor was 1.026 [95% confidence interval (CI) = 1.023–1.028], and for the Varian source, it was 1.000 (95% CI = 0.995–1.005). Variations in lateral source positioning up to 0.8 mm and distal/proximal source positioning up to 10 mm had minimal effect on dose measurement accuracy. The overall dose measurement uncertainty of the system was estimated to be 2.4% and 2.5% for the Nucletron and Varian sources, respectively (95% CI). This uncertainty was sufficient to establish a ±5% acceptance criterion for source strength audits under a formal RPC audit program. Trial audits of four Nucletron sources and four Varian sources revealed an average RPC-to-institution dose ratio of 1.000 (standard deviation = 0.011). Conclusions: The authors have created an OSLD-based 192Ir HDR brachytherapy source remote audit tool which offers sufficient dose measurement accuracy to allow the RPC to establish a remote audit program with a ±5% acceptance criterion. The feasibility of the system has been demonstrated with eight trial audits to date. PMID:24320455

  2. Statistical Determination of Rainfall-Runoff Erosivity Indices for Single Storms in the Chinese Loess Plateau

    PubMed Central

    Zheng, Mingguo; Chen, Xiaoan

    2015-01-01

    Correlation analysis is popular in erosion- or earth-related studies, however, few studies compare correlations on a basis of statistical testing, which should be conducted to determine the statistical significance of the observed sample difference. This study aims to statistically determine the erosivity index of single storms, which requires comparison of a large number of dependent correlations between rainfall-runoff factors and soil loss, in the Chinese Loess Plateau. Data observed at four gauging stations and five runoff experimental plots were presented. Based on the Meng’s tests, which is widely used for comparing correlations between a dependent variable and a set of independent variables, two methods were proposed. The first method removes factors that are poorly correlated with soil loss from consideration in a stepwise way, while the second method performs pairwise comparisons that are adjusted using the Bonferroni correction. Among 12 rainfall factors, I 30 (the maximum 30-minute rainfall intensity) has been suggested for use as the rainfall erosivity index, although I 30 is equally correlated with soil loss as factors of I 20, EI 10 (the product of the rainfall kinetic energy, E, and I 10), EI 20 and EI 30 are. Runoff depth (total runoff volume normalized to drainage area) is more correlated with soil loss than all other examined rainfall-runoff factors, including I 30, peak discharge and many combined factors. Moreover, sediment concentrations of major sediment-producing events are independent of all examined rainfall-runoff factors. As a result, introducing additional factors adds little to the prediction accuracy of the single factor of runoff depth. Hence, runoff depth should be the best erosivity index at scales from plots to watersheds. Our findings can facilitate predictions of soil erosion in the Loess Plateau. Our methods provide a valuable tool while determining the predictor among a number of variables in terms of correlations. PMID:25781173

  3. Statistical determination of rainfall-runoff erosivity indices for single storms in the Chinese Loess Plateau.

    PubMed

    Zheng, Mingguo; Chen, Xiaoan

    2015-01-01

    Correlation analysis is popular in erosion- or earth-related studies, however, few studies compare correlations on a basis of statistical testing, which should be conducted to determine the statistical significance of the observed sample difference. This study aims to statistically determine the erosivity index of single storms, which requires comparison of a large number of dependent correlations between rainfall-runoff factors and soil loss, in the Chinese Loess Plateau. Data observed at four gauging stations and five runoff experimental plots were presented. Based on the Meng's tests, which is widely used for comparing correlations between a dependent variable and a set of independent variables, two methods were proposed. The first method removes factors that are poorly correlated with soil loss from consideration in a stepwise way, while the second method performs pairwise comparisons that are adjusted using the Bonferroni correction. Among 12 rainfall factors, I30 (the maximum 30-minute rainfall intensity) has been suggested for use as the rainfall erosivity index, although I30 is equally correlated with soil loss as factors of I20, EI10 (the product of the rainfall kinetic energy, E, and I10), EI20 and EI30 are. Runoff depth (total runoff volume normalized to drainage area) is more correlated with soil loss than all other examined rainfall-runoff factors, including I30, peak discharge and many combined factors. Moreover, sediment concentrations of major sediment-producing events are independent of all examined rainfall-runoff factors. As a result, introducing additional factors adds little to the prediction accuracy of the single factor of runoff depth. Hence, runoff depth should be the best erosivity index at scales from plots to watersheds. Our findings can facilitate predictions of soil erosion in the Loess Plateau. Our methods provide a valuable tool while determining the predictor among a number of variables in terms of correlations.

  4. Computer-assisted oblique single-cut rotation osteotomy to reduce a multidirectional tibia deformity: case report.

    PubMed

    Dobbe, J G G; du Pré, K J; Blankevoort, L; Streekstra, G J; Kloen, P

    2017-08-01

    The correction of multiplanar deformity is challenging. We describe preoperative 3-D planning and treatment of a complex tibia malunion using an oblique single-cut rotation osteotomy to correct deformity parameters in the sagittal, coronal and transverse plane. At 5 years postoperatively, the patient ambulates without pain with a well-aligned leg.

  5. Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy

    PubMed Central

    Amoasii, Leonela; Long, Chengzu; Li, Hui; Mireault, Alex A.; Shelton, John M.; Sanchez-Ortiz, Efrain; McAnally, John R.; Bhattacharyya, Samadrita; Schmidt, Florian; Grimm, Dirk; Hauschka, Stephen D.; Bassel-Duby, Rhonda; Olson, Eric N.

    2017-01-01

    Duchenne muscular dystrophy (DMD) is a severe, progressive muscle disease caused by mutations in the dystrophin gene. The majority of DMD mutations are deletions that prematurely terminate the dystrophin protein. Deletions of exon 50 of the dystrophin gene are among the most common single exon deletions causing DMD. Such mutations can be corrected by skipping exon 51, thereby restoring the dystrophin reading frame. Using clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9), we generated a DMD mouse model by deleting exon 50. These ΔEx50 mice displayed severe muscle dysfunction, which was corrected by systemic delivery of adeno-associated virus encoding CRISPR/Cas9 genome editing components. We optimized the method for dystrophin reading frame correction using a single guide RNA that created reframing mutations and allowed skipping of exon 51. In conjunction with muscle-specific expression of Cas9, this approach restored up to 90% of dystrophin protein expression throughout skeletal muscles and the heart of ΔEx50 mice. This method of permanently bypassing DMD mutations using a single cut in genomic DNA represents a step toward clinical correction of DMD mutations and potentially those of other neuromuscular disorders. PMID:29187645

  6. Risk factors for amblyopia in the vision in preschoolers study.

    PubMed

    Pascual, Maisie; Huang, Jiayan; Maguire, Maureen G; Kulp, Marjean Taylor; Quinn, Graham E; Ciner, Elise; Cyert, Lynn A; Orel-Bixler, Deborah; Moore, Bruce; Ying, Gui-Shuang

    2014-03-01

    To evaluate risk factors for unilateral amblyopia and for bilateral amblyopia in the Vision in Preschoolers (VIP) study. Multicenter, cross-sectional study. Three- to 5-year-old Head Start preschoolers from 5 clinical centers, overrepresenting children with vision disorders. All children underwent comprehensive eye examinations, including threshold visual acuity (VA), cover testing, and cycloplegic retinoscopy, performed by VIP-certified optometrists and ophthalmologists who were experienced in providing care to children. Monocular threshold VA was tested using a single-surround HOTV letter protocol without correction, and retested with full cycloplegic correction when retest criteria were met. Unilateral amblyopia was defined as an interocular difference in best-corrected VA of 2 lines or more. Bilateral amblyopia was defined as best-corrected VA in each eye worse than 20/50 for 3-year-olds and worse than 20/40 for 4- to 5-year-olds. Risk of amblyopia was summarized by the odds ratios and their 95% confidence intervals estimated from logistic regression models. In this enriched sample of Head Start children (n = 3869), 296 children (7.7%) had unilateral amblyopia, and 144 children (3.7%) had bilateral amblyopia. Presence of strabismus (P<0.0001) and greater magnitude of significant refractive errors (myopia, hyperopia, astigmatism, and anisometropia; P<0.00001 for each) were associated independently with an increased risk of unilateral amblyopia. Presence of strabismus, hyperopia of 2.0 diopters (D) or more, astigmatism of 1.0 D or more, or anisometropia of 0.5 D or more were present in 91% of children with unilateral amblyopia. Greater magnitude of astigmatism (P<0.0001) and bilateral hyperopia (P<0.0001) were associated independently with increased risk of bilateral amblyopia. Bilateral hyperopia of 3.0 D or more or astigmatism of 1.0 D or more were present in 76% of children with bilateral amblyopia. Strabismus and significant refractive errors were risk factors for unilateral amblyopia. Bilateral astigmatism and bilateral hyperopia were risk factors for bilateral amblyopia. Despite differences in selection of the study population, these results validated the findings from the Multi-Ethnic Pediatric Eye Disease Study and Baltimore Pediatric Eye Disease Study. Copyright © 2014 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  7. Risk Factors for Amblyopia in the Vision In Preschoolers Study

    PubMed Central

    Pascual, Maisie; Huang, Jiayan; Maguire, Maureen G; Kulp, Marjean Taylor; Quinn, Graham E; Ciner, Elise; Cyert, Lynn A; Orel-Bixler, Deborah; Moore, Bruce; Ying, Gui-shuang

    2013-01-01

    Objective To evaluate risk factors for unilateral amblyopia and for bilateral amblyopia in the Vision In Preschoolers (VIP) Study. Design Multicenter, cross-sectional Study. Participants Three- to 5-year old Head Start preschoolers from 5 clinical centers, over-representing children with vision disorders. Methods All children underwent comprehensive eye exams including threshold visual acuity (VA), cover testing, and cycloplegic retinoscopy, performed by VIP-certified optometrists and ophthalmologists who were experienced in providing care to children. Monocular threshold VA was tested using single-surround HOTV letter protocol without correction, and retested with full cycloplegic correction when retest criteria were met. Unilateral amblyopia was defined as an inter-ocular difference in best-corrected VA ≥2 lines. Bilateral amblyopia was defined as best-corrected VA in each eye worse than 20/50 for 3-year-olds and worse than 20/40 for 4- to 5-year-olds. Main Outcome Measures Risk of amblyopia was summarized by The odds ratios (ORs) and their 95% confidence intervals (95% CIs) estimated from logistic regression models. Results In this enriched sample of Head Start children (N=3869), 296 (7.7%) children had unilateral amblyopia, and 144 (3.7%) children had bilateral amblyopia. Presence of strabismus (p<0.0001), greater magnitude of significant refractive errors (myopia, hyperopia, astigmatism, and anisometropia, each p<0.00001) were independently associated with increased risk of unilateral amblyopia. Presence of strabismus, hyperopia ≥2.0 D, astigmatism ≥1.0 D, or anisometropia ≥0.5 D were present in 91% of children with unilateral amblyopia. Greater magnitude of astigmatism (p<0.0001) and of bilateral hyperopia (p<0.0001) were independently associated with increased risk of bilateral amblyopia. Bilateral hyperopia ≥3.0 diopters (D) or astigmatism ≥1.0 D were present in 76% of children with bilateral amblyopia. Conclusion Strabismus and significant refractive errors were risk factors for unilateral amblyopia. Bilateral astigmatism and bilateral hyperopia were risk factors for bilateral amblyopia. Despite differences in selection of study population, these results validated the findings from the Multi-ethnic Pediatric Eye Disease Study and Baltimore Pediatric Eye Disease Study. PMID:24140117

  8. Aerodynamic Performance of a Compact, High Work-Factor Centrifugal Compressor at the Stage and Subcomponent Level

    NASA Technical Reports Server (NTRS)

    Braunscheidel, Edward P.; Welch, Gerard E.; Skoch, Gary J.; Medic, Gorazd; Sharma, Om P.

    2015-01-01

    The measured aerodynamic performance of a compact, high work-factor, single-stage centrifugal compressor, comprising an impeller, diffuser, 90deg-bend, and exit guide vane is reported. Performance levels are based on steady-state total-pressure and total-temperature rake and angularity-probe data acquired at key machine rating planes during recent testing at NASA Glenn Research Center. Aerodynamic performance at the stage level is reported for operation between 70 to 105 percent of design corrected speed, with subcomponent (impeller, diffuser, and exit-guide-vane) flow field measurements presented and discussed at the 100 percent design-speed condition. Individual component losses from measurements are compared with pre-test CFD predictions on a limited basis.

  9. Aerodynamic Performance of a Compact, High Work-Factor Centrifugal Compressor at the Stage and Subcomponent Level

    NASA Technical Reports Server (NTRS)

    Braunscheidel, Edward P.; Welch, Gerard E.; Skoch, Gary J.; Medic, Gorazd; Sharma, Om P.

    2014-01-01

    The measured aerodynamic performance of a compact, high work-factor, single-stage centrifugal compressor, comprising an impeller, diffuser, 90º-bend, and exit guide vane is reported. Performance levels are based on steady-state total-pressure and total-temperature rake and angularity-probe data acquired at key machine rating planes during recent testing at NASA Glenn Research Center. Aerodynamic performance at the stage level is reported for operation between 70 to 105% of design corrected speed, with subcomponent (impeller, diffuser, and exit-guide-vane) flow field measurements presented and discussed at the 100% design-speed condition. Individual component losses from measurements are compared with pre-test CFD predictions on a limited basis.

  10. Empirical Derivation of Correction Factors for Human Spiral Ganglion Cell Nucleus and Nucleolus Count Units.

    PubMed

    Robert, Mark E; Linthicum, Fred H

    2016-01-01

    Profile count method for estimating cell number in sectioned tissue applies a correction factor for double count (resulting from transection during sectioning) of count units selected to represent the cell. For human spiral ganglion cell counts, we attempted to address apparent confusion between published correction factors for nucleus and nucleolus count units that are identical despite the role of count unit diameter in a commonly used correction factor formula. We examined a portion of human cochlea to empirically derive correction factors for the 2 count units, using 3-dimensional reconstruction software to identify double counts. The Neurotology and House Histological Temporal Bone Laboratory at University of California at Los Angeles. Using a fully sectioned and stained human temporal bone, we identified and generated digital images of sections of the modiolar region of the lower first turn of cochlea, identified count units with a light microscope, labeled them on corresponding digital sections, and used 3-dimensional reconstruction software to identify double-counted count units. For 25 consecutive sections, we determined that double-count correction factors for nucleus count unit (0.91) and nucleolus count unit (0.92) matched the published factors. We discovered that nuclei and, therefore, spiral ganglion cells were undercounted by 6.3% when using nucleolus count units. We determined that correction factors for count units must include an element for undercounting spiral ganglion cells as well as the double-count element. We recommend a correction factor of 0.91 for the nucleus count unit and 0.98 for the nucleolus count unit when using 20-µm sections. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.

  11. Multidrug-Resistant Salmonella Heidelberg Associated with Mechanically Separated Chicken at a Correctional Facility.

    PubMed

    Taylor, Amanda L; Murphree, Rendi; Ingram, L Amanda; Garman, Katie; Solomon, Deborah; Coffey, Eric; Walker, Deborah; Rogers, Marsha; Marder, Ellyn; Bottomley, Marie; Woron, Amy; Thomas, Linda; Roberts, Sheri; Hardin, Henrietta; Arjmandi, Parvin; Green, Alice; Simmons, Latoya; Cornell, Allyson; Dunn, John

    2015-12-01

    We describe multidrug-resistant (MDR) Salmonella Heidelberg infections associated with mechanically separated chicken (MSC) served at a county correctional facility. Twenty-three inmates met the case definition. All reported diarrhea, 19 (83%) reported fever, 16 (70%) reported vomiting, 4 (17%) had fever ≥103°F, and 3 (13%) were hospitalized. A case-control study found no single food item significantly associated with illness. Salmonella Heidelberg with an indistinguishable pulsed-field gel electrophoresis pattern was isolated from nine stool specimens; two isolates displayed resistance to a total of five drug classes, including the third-generation cephalosporin, ceftriaxone. MDR Salmonella Heidelberg might have contributed to the severity of illness. Salmonella Heidelberg indistinguishable from the outbreak subtype was isolated from unopened MSC. The environmental health assessment identified cross-contamination through poor food-handling practices as a possible contributing factor. Proper hand-washing techniques and safe food-handling practices were reviewed with the kitchen supervisor.

  12. Ion radial diffusion in an electrostatic impulse model for stormtime ring current formation

    NASA Technical Reports Server (NTRS)

    Chen, Margaret W.; Schulz, Michael; Lyons, Larry R.; Gorney, David J.

    1992-01-01

    Two refinements to the quasi-linear theory of ion radial diffusion are proposed and examined analytically with simulations of particle trajectories. The resonance-broadening correction by Dungey (1965) is applied to the quasi-linear diffusion theory by Faelthammar (1965) for an individual model storm. Quasi-linear theory is then applied to the mean diffusion coefficients resulting from simulations of particle trajectories in 20 model storms. The correction for drift-resonance broadening results in quasi-linear diffusion coefficients with discrepancies from the corresponding simulated values that are reduced by a factor of about 3. Further reductions in the discrepancies are noted following the averaging of the quasi-linear diffusion coefficients, the simulated coefficients, and the resonance-broadened coefficients for the 20 storms. Quasi-linear theory provides good descriptions of particle transport for a single storm but performs even better in conjunction with the present ensemble-averaging.

  13. Psychometric Testing of the Self-Efficacy for Interdisciplinary Plans of Care Scale.

    PubMed

    Molle, Elizabeth; Froman, Robin

    2017-01-01

    Computerized interdisciplinary plans of care have revitalized nurse-centric care plans into dynamic and meaningful electronic documents. To maximize the benefits of these documents, it is important to understand healthcare professionals' attitudes, specifically their confidence, for making computerized interdisciplinary care plans useful and meaningful documents. The purpose of the study was to test the psychometric properties of the Self-Efficacy for Interdisciplinary Plans of Care instrument intended to measure healthcare professionals' self-efficacy for using such documents. Content validity was assessed by an expert review panel. Content validity indices ranged from 0.75 to 1.00, with a scale CVI of 0.94. A sample of 389 healthcare providers completed the 14-item instrument. Principal axis factoring was used to assess factor structure. The exploratory factor analysis yielded a single-factor structure accounting for 71.76% of covariance. Cronbach internal consistency coefficient for the single factor solution was .97. The corrected item-total correlations ranged from 0.71 to 0.90. The coefficient of stability, during a 2-week period, with a subset of the sample (n = 38), was estimated at 0.82. The results of this study suggest that the Self-Efficacy for Interdisciplinary Plans of Care has sturdy reliability and validity for measuring the self-efficacy of healthcare providers to make computerized interdisciplinary plans of care meaningful and useful documents.

  14. Two-step single slope/SAR ADC with error correction for CMOS image sensor.

    PubMed

    Tang, Fang; Bermak, Amine; Amira, Abbes; Amor Benammar, Mohieddine; He, Debiao; Zhao, Xiaojin

    2014-01-01

    Conventional two-step ADC for CMOS image sensor requires full resolution noise performance in the first stage single slope ADC, leading to high power consumption and large chip area. This paper presents an 11-bit two-step single slope/successive approximation register (SAR) ADC scheme for CMOS image sensor applications. The first stage single slope ADC generates a 3-bit data and 1 redundant bit. The redundant bit is combined with the following 8-bit SAR ADC output code using a proposed error correction algorithm. Instead of requiring full resolution noise performance, the first stage single slope circuit of the proposed ADC can tolerate up to 3.125% quantization noise. With the proposed error correction mechanism, the power consumption and chip area of the single slope ADC are significantly reduced. The prototype ADC is fabricated using 0.18 μ m CMOS technology. The chip area of the proposed ADC is 7 μ m × 500 μ m. The measurement results show that the energy efficiency figure-of-merit (FOM) of the proposed ADC core is only 125 pJ/sample under 1.4 V power supply and the chip area efficiency is 84 k  μ m(2) · cycles/sample.

  15. Do preterm infants with a birth weight ≤1250 g born to single-parent families have poorer neurodevelopmental outcomes at age 3 than those born to two-parent families?

    PubMed

    Lodha, Abhay; Lakhani, Jahan; Ediger, Krystyna; Tang, Selphee; Lodha, Arijit; Gandhi, Vardhil; Creighton, Dianne

    2018-05-08

    Investigate neurodevelopmental outcomes at 3 years corrected age in infants with a birth weight ≤1250 g born to single parents. Infants born between 1995 and 2010 with a birth weight ≤1250 g were considered eligible. Primary outcome was neurodevelopmental impairment; considered present if a child had any of the following: cerebral palsy, cognitive delay, visual impairment, or deafness/neurosensory hearing impairment. Univariate and multivariate analyses were performed. A total of 1900 infants were eligible for inclusion. Follow-up data were available for 1395; 88 were born to a single parent. Infants in the single-parent group had higher mortality (18% vs. 11%, p = 0.009), IQ ≥1 SD below the mean (40% vs. 21%, p = 0.001) and any neurodevelopmental impairment (47% vs. 29%, p = 0.003). Single-parent family status, maternal education, bronchopulmonary dysplasia and severe neurological injury were significant predictors of intellectual impairment at 3 years corrected age. Preterm infants with a birth weight ≤1250 g born to single parents at birth have poorer intellectual functioning at 3 years corrected age.

  16. Modeling of a bubble-memory organization with self-checking translators to achieve high reliability.

    NASA Technical Reports Server (NTRS)

    Bouricius, W. G.; Carter, W. C.; Hsieh, E. P.; Wadia, A. B.; Jessep, D. C., Jr.

    1973-01-01

    Study of the design and modeling of a highly reliable bubble-memory system that has the capabilities of: (1) correcting a single 16-adjacent bit-group error resulting from failures in a single basic storage module (BSM), and (2) detecting with a probability greater than 0.99 any double errors resulting from failures in BSM's. The results of the study justify the design philosophy adopted of employing memory data encoding and a translator to correct single group errors and detect double group errors to enhance the overall system reliability.

  17. A physics investigation of deadtime losses in neutron counting at low rates with Cf252

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Louise G; Croft, Stephen

    2009-01-01

    {sup 252}Cf spontaneous fission sources are used for the characterization of neutron counters and the determination of calibration parameters; including both neutron coincidence counting (NCC) and neutron multiplicity deadtime (DT) parameters. Even at low event rates, temporally-correlated neutron counting using {sup 252}Cf suffers a deadtime effect. Meaning that in contrast to counting a random neutron source (e.g. AmLi to a close approximation), DT losses do not vanish in the low rate limit. This is because neutrons are emitted from spontaneous fission events in time-correlated 'bursts', and are detected over a short period commensurate with their lifetime in the detector (characterizedmore » by the system die-away time, {tau}). Thus, even when detected neutron events from different spontaneous fissions are unlikely to overlap in time, neutron events within the detected 'burst' are subject to intrinsic DT losses. Intrinsic DT losses for dilute Pu will be lower since the multiplicity distribution is softer, but real items also experience self-multiplication which can increase the 'size' of the bursts. Traditional NCC DT correction methods do not include the intrinsic (within burst) losses. We have proposed new forms of the traditional NCC Singles and Doubles DT correction factors. In this work, we apply Monte Carlo neutron pulse train analysis to investigate the functional form of the deadtime correction factors for an updating deadtime. Modeling is based on a high efficiency {sup 3}He neutron counter with short die-away time, representing an ideal {sup 3}He based detection system. The physics of dead time losses at low rates is explored and presented. It is observed that new forms are applicable and offer more accurate correction than the traditional forms.« less

  18. CCR5 gene polymorphism is a genetic risk factor for radiographic severity of rheumatoid arthritis.

    PubMed

    Han, S W; Sa, K H; Kim, S I; Lee, S I; Park, Y W; Lee, S S; Yoo, W H; Soe, J S; Nam, E J; Lee, J; Park, J Y; Kang, Y M

    2012-11-01

    The chemokine receptor [C-C chemokine receptor 5 (CCR5)] is expressed on diverse immune effecter cells and has been implicated in the pathogenesis of rheumatoid arthritis (RA). This study sought to determine whether single-nucleotide polymorphisms (SNPs) in the CCR5 gene and their haplotypes were associated with susceptibility to and severity of RA. Three hundred fifty-seven patients with RA and 383 healthy unrelated controls were recruited. Using a pyrosequencing assay, we examined four polymorphisms -1118 CTAT(ins) (/del) (rs10577983), 303 A>G (rs1799987), 927 C>T (rs1800024), and 4838 G>T (rs1800874) of the CCR5 gene, which were distributed over the promoter region as well as the 5' and 3' untranslated regions. No significant difference in the genotype, allele, and haplotype frequencies of the four selected SNPs was observed between RA patients and controls. CCR5 polymorphisms of -1118 CTAT(del) (P = 0.012; corrected P = 0.048) and 303 A>G (P = 0.012; corrected P = 0.048) showed a significant association with radiographic severity in a recessive model, and, as a result of multivariate logistic regression analysis, were found to be an independent predictor of radiographic severity. When we separated the erosion score from the total Sharp score, the statistical significance of CCR5 polymorphisms showed an increase; -1118 CTAT(ins) (/del) (P = 0.007; corrected P = 0.028) and 303 A>G (P = 0.007; corrected P = 0.028). Neither SNPs nor haplotypes of the CCR5 gene showed a significant association with joint space narrowing score. These results indicate that genetic polymorphisms of CCR5 are an independent risk factor for radiographic severity denoted by modified Sharp score, particularly joint erosion in RA. © 2012 John Wiley & Sons A/S.

  19. Applicability of single-camera photogrammetry to determine body dimensions of pinnipeds: Galapagos sea lions as an example.

    PubMed

    Meise, Kristine; Mueller, Birte; Zein, Beate; Trillmich, Fritz

    2014-01-01

    Morphological features correlate with many life history traits and are therefore of high interest to behavioral and evolutionary biologists. Photogrammetry provides a useful tool to collect morphological data from species for which measurements are otherwise difficult to obtain. This method reduces disturbance and avoids capture stress. Using the Galapagos sea lion (Zalophus wollebaeki) as a model system, we tested the applicability of single-camera photogrammetry in combination with laser distance measurement to estimate morphological traits which may vary with an animal's body position. We assessed whether linear morphological traits estimated by photogrammetry can be used to estimate body length and mass. We show that accurate estimates of body length (males: ±2.0%, females: ±2.6%) and reliable estimates of body mass are possible (males: ±6.8%, females: 14.5%). Furthermore, we developed correction factors that allow the use of animal photos that diverge somewhat from a flat-out position. The product of estimated body length and girth produced sufficiently reliable estimates of mass to categorize individuals into 10 kg-classes of body mass. Data of individuals repeatedly photographed within one season suggested relatively low measurement errors (body length: 2.9%, body mass: 8.1%). In order to develop accurate sex- and age-specific correction factors, a sufficient number of individuals from both sexes and from all desired age classes have to be captured for baseline measurements. Given proper validation, this method provides an excellent opportunity to collect morphological data for large numbers of individuals with minimal disturbance.

  20. Applicability of Single-Camera Photogrammetry to Determine Body Dimensions of Pinnipeds: Galapagos Sea Lions as an Example

    PubMed Central

    Meise, Kristine; Mueller, Birte; Zein, Beate; Trillmich, Fritz

    2014-01-01

    Morphological features correlate with many life history traits and are therefore of high interest to behavioral and evolutionary biologists. Photogrammetry provides a useful tool to collect morphological data from species for which measurements are otherwise difficult to obtain. This method reduces disturbance and avoids capture stress. Using the Galapagos sea lion (Zalophus wollebaeki) as a model system, we tested the applicability of single-camera photogrammetry in combination with laser distance measurement to estimate morphological traits which may vary with an animal’s body position. We assessed whether linear morphological traits estimated by photogrammetry can be used to estimate body length and mass. We show that accurate estimates of body length (males: ±2.0%, females: ±2.6%) and reliable estimates of body mass are possible (males: ±6.8%, females: 14.5%). Furthermore, we developed correction factors that allow the use of animal photos that diverge somewhat from a flat-out position. The product of estimated body length and girth produced sufficiently reliable estimates of mass to categorize individuals into 10 kg-classes of body mass. Data of individuals repeatedly photographed within one season suggested relatively low measurement errors (body length: 2.9%, body mass: 8.1%). In order to develop accurate sex- and age-specific correction factors, a sufficient number of individuals from both sexes and from all desired age classes have to be captured for baseline measurements. Given proper validation, this method provides an excellent opportunity to collect morphological data for large numbers of individuals with minimal disturbance. PMID:24987983

  1. Integrating seepage heterogeneity with the use of ganged seepage meters

    USGS Publications Warehouse

    Rosenberry, D.O.

    2005-01-01

    The usefulness of standard half-barrel seepage meters for measurement of fluxes between groundwater, and surface water is limited by the small bed area that each measurement represents and the relatively large associated labor costs. Standard half-barrel cylinders were ganged together to allow one measurement of the summed seepage through all of the meters, reducing labor cost and increasing the representative area of measurement. Comparisons of ganged versus individual-meter measurements at two lakes, under both inseepage and outseepage conditions, indicate little loss of efficiency resulting from routing seepage water through the ganging system. Differences between summed and ganged seepage rates were not significant for all but the fastest rates of seepage. At flow rates greater than about 250 mL min-1, ganged values were as low as 80% of summed values. Ganged-meter head losses also were calculated to determine their significance relative to hydraulic-head gradients measured at the field sites. The calculated reduction in hydraulic gradient beneath the seepage meters was significant only for the largest measured seepage rates. A calibration tank was used to determine single-meter and ganged-meter efficiencies compared to known seepage rates. Single-cylinder seepage meters required an average correction factor of 1.05 to convert measured to actual values, whereas the ganged measurements made in the tank required a larger correction factor of 1.14. Although manual measurements were used in these tests, the concept of ganging seepage cylinders also would be useful when used in conjunction with automated flowmeters. ?? 2005, by the American Society of Limnology and Oceanography, Inc.

  2. Early rearing interacts with temperament and housing to influence the risk for motor stereotypy in rhesus monkeys (Macaca mulatta).

    PubMed

    Vandeleest, Jessica J; McCowan, Brenda; Capitanio, John P

    2011-06-01

    Laboratory and zoo housed non-human primates sometimes exhibit abnormal behaviors that are thought to reflect reduced wellbeing. Previous research attempted to identify risk factors to aid in the prevention and treatment of these behaviors, and focused on demographic (e.g. sex or age) and experience-related (e.g. single housing or nursery rearing) factors. However, not all animals that display abnormal behavior possess these risk factors and some individuals that possess a risk factor do not show behavioral abnormalities. We hypothesized that other aspects of early experience and individual characteristics might identify animals that were more likely to display one specific abnormal behavior, motor stereotypy (MS). Using logistic regression we explored the influence of early rearing (involving four different types of rearing conditions), and variation in temperament, on likelihood of displaying MS while controlling for previously identified risk factors. Analyses indicated that having a greater proportion of life lived indoors, a greater proportion of life-indoors singly-housed, and a greater number of anesthesias and blood draws significantly increased the risk of displaying MS (P < 0.001). Rearing condition failed to independently predict the display of MS; however significant interactions indicated that single housing had a greater impact on risk for indoor-reared animals versus outdoor-reared animals, and for indoor mother-reared animals versus nursery-reared animals. There were no main effects of temperament, although interactions with rearing were evident: scoring high on Gentle or Nervous was a risk factor for indoor-reared animals but not outdoor-reared animals. The final model accounted for approximately 69.3 % of the variance in the display of MS, and correctly classified 90.6% of animals. These results indicate that previously identified risk factors may impact animals differently depending on the individual's early rearing condition. These results are also the first in non-human primates to demonstrate that individual difference factors, like temperament, could be additional tools to identify animals at highest risk for motor stereotypy.

  3. Evaluative Research in Corrections: The Uncertain Road.

    ERIC Educational Resources Information Center

    Adams, Stuart

    Martinson's provocative article in Public Interest (Spring, 1974), denying efficacy in prisoner reform, singled out one of the uncertainties in correctional research. In their totality, these uncertainties embrace not only rehabilitative programs but also the method, theory, and organization of correctional research. To comprehend the status and…

  4. Gender-linked impact of epicardial adipose tissue volume in patients who underwent coronary artery bypass graft surgery or non-coronary valve surgery.

    PubMed

    Maimaituxun, Gulinu; Shimabukuro, Michio; Salim, Hotimah Masdan; Tabata, Minoru; Yuji, Daisuke; Morimoto, Yoshihisa; Akasaka, Takeshi; Matsuura, Tomomi; Yagi, Shusuke; Fukuda, Daiju; Yamada, Hirotsugu; Soeki, Takeshi; Sugimoto, Takaki; Tanaka, Masashi; Takanashi, Shuichiro; Sata, Masataka

    2017-01-01

    Traditional and non-traditional risk factors for atherosclerotic cardiovascular disease (ASCVD) are different between men and women. Gender-linked impact of epicardial adipose tissue volume (EATV) in patients undergoing coronary artery bypass grafting (CABG) remains unknown. Gender-linked impact of EATV, abdominal fat distribution and other traditional ASCVD risk factors were compared in 172 patients (men: 115; women: 57) who underwent CABG or non-coronary valvular surgery (non-CABG). In men, EATV, EATV index (EATV/body surface area) and the markers of adiposity such as body mass index, waist circumference and visceral fat area were higher in the CABG group than in the non-CABG group. Traditional ASCVD risk factors were also prevalent in the CABG group. In women, EATV and EATV index were higher in the CABG group, but other adiposity markers were comparable between CABG and non-CABG groups. Multivariate logistic regression analysis showed that in men, CABG was determined by EATV Index and other ASCVD risk factors including hypertension, dyslipidemia, adiponectin, high sensitive C-reactive protein (hsCRP) and type 2 diabetes mellitus (Corrected R2 = 0.262, p < 0.0001), while in women, type 2 diabetes mellitus is a single strong predictor for CABG, excluding EATV Index (Corrected R2 = 0.266, p = 0.005). Our study found that multiple risk factors, including epicardial adipose tissue volume and traditional ASCVD factors are determinants for CABG in men, but type 2 diabetes mellitus was the sole determinant in women. Gender-specific disparities in risk factors of CABG prompt us to evaluate new diagnostic and treatment strategies and to seek underlying mechanisms.

  5. Gender-linked impact of epicardial adipose tissue volume in patients who underwent coronary artery bypass graft surgery or non-coronary valve surgery

    PubMed Central

    Maimaituxun, Gulinu; Salim, Hotimah Masdan; Tabata, Minoru; Yuji, Daisuke; Morimoto, Yoshihisa; Akasaka, Takeshi; Matsuura, Tomomi; Yagi, Shusuke; Fukuda, Daiju; Yamada, Hirotsugu; Soeki, Takeshi; Sugimoto, Takaki; Tanaka, Masashi; Takanashi, Shuichiro; Sata, Masataka

    2017-01-01

    Background Traditional and non-traditional risk factors for atherosclerotic cardiovascular disease (ASCVD) are different between men and women. Gender-linked impact of epicardial adipose tissue volume (EATV) in patients undergoing coronary artery bypass grafting (CABG) remains unknown. Methods Gender-linked impact of EATV, abdominal fat distribution and other traditional ASCVD risk factors were compared in 172 patients (men: 115; women: 57) who underwent CABG or non-coronary valvular surgery (non-CABG). Results In men, EATV, EATV index (EATV/body surface area) and the markers of adiposity such as body mass index, waist circumference and visceral fat area were higher in the CABG group than in the non-CABG group. Traditional ASCVD risk factors were also prevalent in the CABG group. In women, EATV and EATV index were higher in the CABG group, but other adiposity markers were comparable between CABG and non-CABG groups. Multivariate logistic regression analysis showed that in men, CABG was determined by EATV Index and other ASCVD risk factors including hypertension, dyslipidemia, adiponectin, high sensitive C-reactive protein (hsCRP) and type 2 diabetes mellitus (Corrected R2 = 0.262, p < 0.0001), while in women, type 2 diabetes mellitus is a single strong predictor for CABG, excluding EATV Index (Corrected R2 = 0.266, p = 0.005). Conclusions Our study found that multiple risk factors, including epicardial adipose tissue volume and traditional ASCVD factors are determinants for CABG in men, but type 2 diabetes mellitus was the sole determinant in women. Gender-specific disparities in risk factors of CABG prompt us to evaluate new diagnostic and treatment strategies and to seek underlying mechanisms. PMID:28594865

  6. Determination of the thermodynamic correction factor of fluids confined in nano-metric slit pores from molecular simulation

    NASA Astrophysics Data System (ADS)

    Collell, Julien; Galliero, Guillaume

    2014-05-01

    The multi-component diffusive mass transport is generally quantified by means of the Maxwell-Stefan diffusion coefficients when using molecular simulations. These coefficients can be related to the Fick diffusion coefficients using the thermodynamic correction factor matrix, which requires to run several simulations to estimate all the elements of the matrix. In a recent work, Schnell et al. ["Thermodynamics of small systems embedded in a reservoir: A detailed analysis of finite size effects," Mol. Phys. 110, 1069-1079 (2012)] developed an approach to determine the full matrix of thermodynamic factors from a single simulation in bulk. This approach relies on finite size effects of small systems on the density fluctuations. We present here an extension of their work for inhomogeneous Lennard Jones fluids confined in slit pores. We first verified this extension by cross validating the results obtained from this approach with the results obtained from the simulated adsorption isotherms, which allows to determine the thermodynamic factor in porous medium. We then studied the effects of the pore width (from 1 to 15 molecular sizes), of the solid-fluid interaction potential (Lennard Jones 9-3, hard wall potential) and of the reduced fluid density (from 0.1 to 0.7 at a reduced temperature T* = 2) on the thermodynamic factor. The deviation of the thermodynamic factor compared to its equivalent bulk value decreases when increasing the pore width and becomes insignificant for reduced pore width above 15. We also found that the thermodynamic factor is sensitive to the magnitude of the fluid-fluid and solid-fluid interactions, which softens or exacerbates the density fluctuations.

  7. Determination of the thermodynamic correction factor of fluids confined in nano-metric slit pores from molecular simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collell, Julien; Galliero, Guillaume, E-mail: guillaume.galliero@univ-pau.fr

    2014-05-21

    The multi-component diffusive mass transport is generally quantified by means of the Maxwell-Stefan diffusion coefficients when using molecular simulations. These coefficients can be related to the Fick diffusion coefficients using the thermodynamic correction factor matrix, which requires to run several simulations to estimate all the elements of the matrix. In a recent work, Schnell et al. [“Thermodynamics of small systems embedded in a reservoir: A detailed analysis of finite size effects,” Mol. Phys. 110, 1069–1079 (2012)] developed an approach to determine the full matrix of thermodynamic factors from a single simulation in bulk. This approach relies on finite size effectsmore » of small systems on the density fluctuations. We present here an extension of their work for inhomogeneous Lennard Jones fluids confined in slit pores. We first verified this extension by cross validating the results obtained from this approach with the results obtained from the simulated adsorption isotherms, which allows to determine the thermodynamic factor in porous medium. We then studied the effects of the pore width (from 1 to 15 molecular sizes), of the solid-fluid interaction potential (Lennard Jones 9-3, hard wall potential) and of the reduced fluid density (from 0.1 to 0.7 at a reduced temperature T* = 2) on the thermodynamic factor. The deviation of the thermodynamic factor compared to its equivalent bulk value decreases when increasing the pore width and becomes insignificant for reduced pore width above 15. We also found that the thermodynamic factor is sensitive to the magnitude of the fluid-fluid and solid-fluid interactions, which softens or exacerbates the density fluctuations.« less

  8. Scatter characterization and correction for simultaneous multiple small-animal PET imaging.

    PubMed

    Prasad, Rameshwar; Zaidi, Habib

    2014-04-01

    The rapid growth and usage of small-animal positron emission tomography (PET) in molecular imaging research has led to increased demand on PET scanner's time. One potential solution to increase throughput is to scan multiple rodents simultaneously. However, this is achieved at the expense of deterioration of image quality and loss of quantitative accuracy owing to enhanced effects of photon attenuation and Compton scattering. The purpose of this work is, first, to characterize the magnitude and spatial distribution of the scatter component in small-animal PET imaging when scanning single and multiple rodents simultaneously and, second, to assess the relevance and evaluate the performance of scatter correction under similar conditions. The LabPET™-8 scanner was modelled as realistically as possible using Geant4 Application for Tomographic Emission Monte Carlo simulation platform. Monte Carlo simulations allow the separation of unscattered and scattered coincidences and as such enable detailed assessment of the scatter component and its origin. Simple shape-based and more realistic voxel-based phantoms were used to simulate single and multiple PET imaging studies. The modelled scatter component using the single-scatter simulation technique was compared to Monte Carlo simulation results. PET images were also corrected for attenuation and the combined effect of attenuation and scatter on single and multiple small-animal PET imaging evaluated in terms of image quality and quantitative accuracy. A good agreement was observed between calculated and Monte Carlo simulated scatter profiles for single- and multiple-subject imaging. In the LabPET™-8 scanner, the detector covering material (kovar) contributed the maximum amount of scatter events while the scatter contribution due to lead shielding is negligible. The out-of field-of-view (FOV) scatter fraction (SF) is 1.70, 0.76, and 0.11% for lower energy thresholds of 250, 350, and 400 keV, respectively. The increase in SF ranged between 25 and 64% when imaging multiple subjects (three to five) of different size simultaneously in comparison to imaging a single subject. The spill-over ratio (SOR) increases with increasing the number of subjects in the FOV. Scatter correction improved the SOR for both water and air cold compartments of single and multiple imaging studies. The recovery coefficients for different body parts of the mouse whole-body and rat whole-body anatomical models were improved for multiple imaging studies following scatter correction. The magnitude and spatial distribution of the scatter component in small-animal PET imaging of single and multiple subjects simultaneously were characterized, and its impact was evaluated in different situations. Scatter correction improves PET image quality and quantitative accuracy for single rat and simultaneous multiple mice and rat imaging studies, whereas its impact is insignificant in single mouse imaging.

  9. Recurrent aphthous stomatitis: clinical characteristics and associated systemic disorders.

    PubMed

    Rogers, R S

    1997-12-01

    Recurrent aphthous stomatitis (RAS), commonly known as canker sores, has been reported as recurrent oral ulcers, recurrent aphthous ulcers, or simple or complex aphthosis. RAS is the most common inflammatory ulcerative condition of the oral mucosa in North American patients. One of its variants is the most painful condition of the oral mucosa. Recurrent aphthous stomatitis has been the subject of active investigation along multiple lines of research, including epidemiology, immunology, clinical correlations, and therapy. Clinical evaluation of the patient requires correct diagnosis of RAS and classification of the disease based on morphology (MiAU, MjAU, HU) and severity (simple versus complex). The natural history of individual lesions of RAS is important, because it is the bench mark against which treatment benefits are measured. The lesions of RAS are not caused by a single factor but occur in an environment that is permissive for development of lesions. These factors include trauma, smoking, stress, hormonal state, family history, food hypersensitivity and infectious or immunologic factors. The clinician should consider these elements of a multifactorial process leading to the development of lesions of RAS. To properly diagnose and treat a patient with lesions of RAS, the clinician must identify or exclude associated systemic disorders or "correctable causes." Behçet's disease and complex aphthosis variants, such as ulcus vulvae acutum, mouth and genital ulcers with inflamed cartilage (MAGIC) syndrome, fever, aphthosis, pharyngitis, and adenitis (FAPA) syndrome, and cyclic neutropenia, should be considered. The aphthous-like oral ulcerations of patients with human immunodeficiency virus (HIV) disease represent a challenging differential diagnosis. The association of lesions of RAS with hematinic deficiencies and gastrointestinal diseases provides an opportunity to identify a "correctable cause," which, with appropriate treatment, can result in a remission or substantial lessening of disease activity.

  10. On charged particle equilibrium violation in external photon fields.

    PubMed

    Bouchard, Hugo; Seuntjens, Jan; Palmans, Hugo

    2012-03-01

    In a recent paper by Bouchard et al. [Med. Phys. 36(10), 4654-4663 (2009)], a theoretical model of quality correction factors for idealistic so-called plan-class specific reference (PCSR) fields was proposed. The reasoning was founded on the definition of PCSR fields made earlier by Alfonso et al. [Med. Phys. 35(11), 5179-5186 (2008)], requiring the beam to achieve charged particle equilibrium (CPE), in a time-averaged sense, in the reference medium. The relation obtained by Bouchard et al. was derived using Fano's theorem (1954) which states that if CPE is established in a given medium, the dose is independent of point-to-point density variations. A potential misconception on the achievability of the condition required by Fano (1954) might be responsible for false practical conclusions, both in the definition of PCSR fields as well as the theoretical model of quality correction factor. In this paper, the practical achievability of CPE in external beams is treated in detail. The fact that this condition is not achievable in single or composite deliveries is illustrated by an intuitive method and is also formally demonstrated. Fano's theorem is not applicable in external beam radiation dosimetry without (virtually) removing attenuation effects, and therefore, the relation conditionally defined by Bouchard et al. (2009) cannot be valid in practice. A definition of PCSR fields in the recent formalism for nonstandard beams proposed by Alfonso et al. (2008) should be modified, revising the criterion of CPE condition. The authors propose reconsidering the terminology used to describe standard and nonstandard beams. The authors argue that quality correction factors of intensity modulated radiation therapy PCSR fields (i.e., k(Q(pcsr),Q) (f(pcsr),f(ref) )) could be unity under ideal conditions, but it is concluded that further investigation is necessary to confirm that hypothesis.

  11. Habitat complexity and fish size affect the detection of Indo-Pacific lionfish on invaded coral reefs

    NASA Astrophysics Data System (ADS)

    Green, S. J.; Tamburello, N.; Miller, S. E.; Akins, J. L.; Côté, I. M.

    2013-06-01

    A standard approach to improving the accuracy of reef fish population estimates derived from underwater visual censuses (UVCs) is the application of species-specific correction factors, which assumes that a species' detectability is constant under all conditions. To test this assumption, we quantified detection rates for invasive Indo-Pacific lionfish ( Pterois volitans and P. miles), which are now a primary threat to coral reef conservation throughout the Caribbean. Estimates of lionfish population density and distribution, which are essential for managing the invasion, are currently obtained through standard UVCs. Using two conventional UVC methods, the belt transect and stationary visual census (SVC), we assessed how lionfish detection rates vary with lionfish body size and habitat complexity (measured as rugosity) on invaded continuous and patch reefs off Cape Eleuthera, the Bahamas. Belt transect and SVC surveys performed equally poorly, with both methods failing to detect the presence of lionfish in >50 % of surveys where thorough, lionfish-focussed searches yielded one or more individuals. Conventional methods underestimated lionfish biomass by ~200 %. Crucially, detection rate varied significantly with both lionfish size and reef rugosity, indicating that the application of a single correction factor across habitats and stages of invasion is unlikely to accurately characterize local populations. Applying variable correction factors that account for site-specific lionfish size and rugosity to conventional survey data increased estimates of lionfish biomass, but these remained significantly lower than actual biomass. To increase the accuracy and reliability of estimates of lionfish density and distribution, monitoring programs should use detailed area searches rather than standard visual survey methods. Our study highlights the importance of accounting for sources of spatial and temporal variation in detection to increase the accuracy of survey data from coral reef systems.

  12. Frequency correction method for improved spatial correlation of hyperpolarized 13C metabolites and anatomy.

    PubMed

    Cunningham, Charles H; Dominguez Viqueira, William; Hurd, Ralph E; Chen, Albert P

    2014-02-01

    Blip-reversed echo-planar imaging (EPI) is investigated as a method for measuring and correcting the spatial shifts that occur due to bulk frequency offsets in (13)C metabolic imaging in vivo. By reversing the k-space trajectory for every other time point, the direction of the spatial shift for a given frequency is reversed. Here, mutual information is used to find the 'best' alignment between images and thereby measure the frequency offset. Time-resolved 3D images of pyruvate/lactate/urea were acquired with 5 s temporal resolution over a 1 min duration in rats (N = 6). For each rat, a second injection was performed with the demodulation frequency purposely mis-set by +35 Hz, to test the correction for erroneous shifts in the images. Overall, the shift induced by the 35 Hz frequency offset was 5.9 ± 0.6 mm (mean ± standard deviation). This agrees well with the expected 5.7 mm shift based on the 2.02 ms delay between k-space lines (giving 30.9 Hz per pixel). The 0.6 mm standard deviation in the correction corresponds to a frequency-detection accuracy of 4 Hz. A method was presented for ensuring the spatial registration between (13)C metabolic images and conventional anatomical images when long echo-planar readouts are used. The frequency correction method was shown to have an accuracy of 4 Hz. Summing the spatially corrected frames gave a signal-to-noise ratio (SNR) improvement factor of 2 or greater, compared with the highest single frame. Copyright © 2013 John Wiley & Sons, Ltd.

  13. Zinc-finger nuclease-mediated gene correction using single AAV vector transduction and enhancement by Food and Drug Administration-approved drugs

    PubMed Central

    Ellis, BL; Hirsch, ML; Porter, SN; Samulski, RJ; Porteus, MH

    2016-01-01

    An emerging strategy for the treatment of monogenic diseases uses genetic engineering to precisely correct the mutation(s) at the genome level. Recent advancements in this technology have demonstrated therapeutic levels of gene correction using a zinc-finger nuclease (ZFN)-induced DNA double-strand break in conjunction with an exogenous DNA donor substrate. This strategy requires efficient nucleic acid delivery and among viral vectors, recombinant adeno-associated virus (rAAV) has demonstrated clinical success without pathology. However, a major limitation of rAAV is the small DNA packaging capacity and to date, the use of rAAV for ZFN gene delivery has yet to be reported. Theoretically, an ideal situation is to deliver both ZFNs and the repair substrate in a single vector to avoid inefficient gene targeting and unwanted mutagenesis, both complications of a rAAV co-transduction strategy. Therefore, a rAAV format was generated in which a single polypeptide encodes the ZFN monomers connected by a ribosome skipping 2A peptide and furin cleavage sequence. On the basis of this arrangement, a DNA repair substrate of 750 nucleotides was also included in this vector. Efficient polypeptide processing to discrete ZFNs is demonstrated, as well as the ability of this single vector format to stimulate efficient gene targeting in a human cell line and mouse model derived fibroblasts. Additionally, we increased rAAV-mediated gene correction up to sixfold using a combination of Food and Drug Administration-approved drugs, which act at the level of AAV vector transduction. Collectively, these experiments demonstrate the ability to deliver ZFNs and a repair substrate by a single AAV vector and offer insights for the optimization of rAAV-mediated gene correction using drug therapy. PMID:22257934

  14. SU-F-T-23: Correspondence Factor Correction Coefficient for Commissioning of Leipzig and Valencia Applicators with the Standard Imaging IVB 1000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donaghue, J; Gajdos, S

    Purpose: To determine the correction factor of the correspondence factor for the Standard Imaging IVB 1000 well chamber for commissioning of Elekta’s Leipzig and Valencia skin applicators. Methods: The Leipzig and Valencia applicators are designed to treat small skin lesions by collimating irradiation to the treatment area. Published output factors are used to calculate dose rates for clinical treatments. To validate onsite applicators, a correspondence factor (CFrev) is measured and compared to published values. The published CFrev is based on well chamber model SI HDR 1000 Plus. The CFrev is determined by correlating raw values of the source calibration setupmore » (Rcal,raw) and values taken when each applicator is mounted on the same well chamber with an adapter (Rapp,raw). The CFrev is calculated by using the equation CFrev =Rapp,raw/Rcal,raw. The CFrev was measured for each applicator in both the SI HDR 1000 Plus and the SI IVB 1000. A correction factor, CFIVB for the SI IVB 1000 was determined by finding the ratio of CFrev (SI IVB 1000) and CFrev (SI HDR 1000 Plus). Results: The average correction factors at dwell position 1121 were found to be 1.073, 1.039, 1.209, 1.091, and 1.058 for the Valencia V2, Valencia V3, Leipzig H1, Leipzig H2, and Leipzig H3 respectively. There were no significant variations in the correction factor for dwell positions 1119 through 1121. Conclusion: By using the appropriate correction factor, the correspondence factors for the Leipzig and Valencia surface applicators can be validated with the Standard Imaging IVB 1000. This allows users to correlate their measurements with the Standard Imaging IVB 1000 to the published data. The correction factor is included in the equation for the CFrev as follows: CFrev= Rapp,raw/(CFIVB*Rcal,raw). Each individual applicator has its own correction factor, so care must be taken that the appropriate factor is used.« less

  15. Comparing multilayer brain networks between groups: Introducing graph metrics and recommendations.

    PubMed

    Mandke, Kanad; Meier, Jil; Brookes, Matthew J; O'Dea, Reuben D; Van Mieghem, Piet; Stam, Cornelis J; Hillebrand, Arjan; Tewarie, Prejaas

    2018-02-01

    There is an increasing awareness of the advantages of multi-modal neuroimaging. Networks obtained from different modalities are usually treated in isolation, which is however contradictory to accumulating evidence that these networks show non-trivial interdependencies. Even networks obtained from a single modality, such as frequency-band specific functional networks measured from magnetoencephalography (MEG) are often treated independently. Here, we discuss how a multilayer network framework allows for integration of multiple networks into a single network description and how graph metrics can be applied to quantify multilayer network organisation for group comparison. We analyse how well-known biases for single layer networks, such as effects of group differences in link density and/or average connectivity, influence multilayer networks, and we compare four schemes that aim to correct for such biases: the minimum spanning tree (MST), effective graph resistance cost minimisation, efficiency cost optimisation (ECO) and a normalisation scheme based on singular value decomposition (SVD). These schemes can be applied to the layers independently or to the multilayer network as a whole. For correction applied to whole multilayer networks, only the SVD showed sufficient bias correction. For correction applied to individual layers, three schemes (ECO, MST, SVD) could correct for biases. By using generative models as well as empirical MEG and functional magnetic resonance imaging (fMRI) data, we further demonstrated that all schemes were sensitive to identify network topology when the original networks were perturbed. In conclusion, uncorrected multilayer network analysis leads to biases. These biases may differ between centres and studies and could consequently lead to unreproducible results in a similar manner as for single layer networks. We therefore recommend using correction schemes prior to multilayer network analysis for group comparisons. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Single tooth torque correction in the lower frontal area by a completely customized lingual appliance.

    PubMed

    Jacobs, Collin; Katzorke, Milena; Wiechmann, Dirk; Wehrbein, Heiner; Schwestka-Polly, Rainer

    2017-10-10

    Aim of this study was to analyze the efficacy and precision of the completely customized lingual appliance (CCLA) regarding the single tooth torque correction. The study also examined external apical root resorptions as possible side effects of torque correction and the changings of the periodontal situation. A case series of three patients were included. The patients showed a single tooth torque problem with a gingival recession and were treated with the CCLA. Plaster casts before and after treatment and plaster casts of the set up were scanned and superimposed. Deviations between the two plaster casts were analyzed at different points of interest. Changes of the gingival recession were compared before and after treatment. Relative root resorptions were measured by the orthopantomograms. Treatment times were assessed by the records of the patients. Results were presented descriptively. The mean change of the most apical part of the root reached by the orthodontic treatment was 1.8 ± 0.3 mm. The largest deviation between set up and final model was measured on the occlusal surface of the tooth 36 with 0.8 mm. Most measurement points showed a deviation of 0.5 mm or less. The depths of the gingival recession showed a significant reduction of 4.7 mm. The widths of the gingival recession were reduced by 1.1 mm. The average relative root resorption of the corrected teeth was 2.7 ± 1.5%. The average treatment time was 13.8 ± 4.5 months. This is the first study showing that the CCLA with its high precision is very effective in correcting single tooth torque problems. Orthodontic torque correction resulted in a significant reduction of gingival recessions and caused only negligible root resorptions.

  17. Multiple linear regression to estimate time-frequency electrophysiological responses in single trials

    PubMed Central

    Hu, L.; Zhang, Z.G.; Mouraux, A.; Iannetti, G.D.

    2015-01-01

    Transient sensory, motor or cognitive event elicit not only phase-locked event-related potentials (ERPs) in the ongoing electroencephalogram (EEG), but also induce non-phase-locked modulations of ongoing EEG oscillations. These modulations can be detected when single-trial waveforms are analysed in the time-frequency domain, and consist in stimulus-induced decreases (event-related desynchronization, ERD) or increases (event-related synchronization, ERS) of synchrony in the activity of the underlying neuronal populations. ERD and ERS reflect changes in the parameters that control oscillations in neuronal networks and, depending on the frequency at which they occur, represent neuronal mechanisms involved in cortical activation, inhibition and binding. ERD and ERS are commonly estimated by averaging the time-frequency decomposition of single trials. However, their trial-to-trial variability that can reflect physiologically-important information is lost by across-trial averaging. Here, we aim to (1) develop novel approaches to explore single-trial parameters (including latency, frequency and magnitude) of ERP/ERD/ERS; (2) disclose the relationship between estimated single-trial parameters and other experimental factors (e.g., perceived intensity). We found that (1) stimulus-elicited ERP/ERD/ERS can be correctly separated using principal component analysis (PCA) decomposition with Varimax rotation on the single-trial time-frequency distributions; (2) time-frequency multiple linear regression with dispersion term (TF-MLRd) enhances the signal-to-noise ratio of ERP/ERD/ERS in single trials, and provides an unbiased estimation of their latency, frequency, and magnitude at single-trial level; (3) these estimates can be meaningfully correlated with each other and with other experimental factors at single-trial level (e.g., perceived stimulus intensity and ERP magnitude). The methods described in this article allow exploring fully non-phase-locked stimulus-induced cortical oscillations, obtaining single-trial estimate of response latency, frequency, and magnitude. This permits within-subject statistical comparisons, correlation with pre-stimulus features, and integration of simultaneously-recorded EEG and fMRI. PMID:25665966

  18. A method to compute SEU fault probabilities in memory arrays with error correction

    NASA Technical Reports Server (NTRS)

    Gercek, Gokhan

    1994-01-01

    With the increasing packing densities in VLSI technology, Single Event Upsets (SEU) due to cosmic radiations are becoming more of a critical issue in the design of space avionics systems. In this paper, a method is introduced to compute the fault (mishap) probability for a computer memory of size M words. It is assumed that a Hamming code is used for each word to provide single error correction. It is also assumed that every time a memory location is read, single errors are corrected. Memory is read randomly whose distribution is assumed to be known. In such a scenario, a mishap is defined as two SEU's corrupting the same memory location prior to a read. The paper introduces a method to compute the overall mishap probability for the entire memory for a mission duration of T hours.

  19. A revised set of values of single-bond radii derived from the observed interatomic distances in metals by correction for bond number and resonance energy

    PubMed Central

    Pauling, Linus; Kamb, Barclay

    1986-01-01

    An earlier discussion [Pauling, L. (1947) J. Am. Chem. Soc. 69, 542] of observed bond lengths in elemental metals with correction for bond number and resonance energy led to a set of single-bond metallic radii with values usually somewhat less than the corresponding values obtained from molecules and complex ions. A theory of resonating covalent bonds has now been developed that permits calculation of the number of resonance structures per atom and of the effective resonance energy per bond. With this refined method of correcting the observed bond lengths for the effect of resonance energy, a new set of single-bond covalent radii, in better agreement with values from molecules and complex ions, has been constructed. PMID:16593698

  20. Author Correction: Single-nucleus analysis of accessible chromatin in developing mouse forebrain reveals cell-type-specific transcriptional regulation.

    PubMed

    Preissl, Sebastian; Fang, Rongxin; Huang, Hui; Zhao, Yuan; Raviram, Ramya; Gorkin, David U; Zhang, Yanxiao; Sos, Brandon C; Afzal, Veena; Dickel, Diane E; Kuan, Samantha; Visel, Axel; Pennacchio, Len A; Zhang, Kun; Ren, Bing

    2018-03-01

    In the version of this article initially published online, the accession code was given as GSE1000333. The correct code is GSE100033. The error has been corrected in the print, HTML and PDF versions of the article.

  1. A pure dipole analysis of the Gondwana apparent polar wander path: Paleogeographic implications in the evolution of Pangea

    NASA Astrophysics Data System (ADS)

    Gallo, L. C.; Tomezzoli, R. N.; Cristallini, E. O.

    2017-04-01

    The paleogeography of prebreakup Pangea at the beginning of the Atlantic Spreading has been a subject of debate for the past 50 years. Reconciling this debate involves theoretical corrections that cast doubt on available data and paleomagnetism as an effective tool for performing paleoreconstructions. This 50 year old debate focuses specifically on magnetic remanence and its ability to correctly record the inclination of the paleomagnetic field. In this paper, a selection of paleopoles was made to find the great circles containing the paleomagnetic pole and the respective sampling site. The true dipole pole (TDP) was then calculated by intersecting these great circles, effectively avoiding nondipolar contributions and inclination shallowing, in an innovative method. The great circle distance between each of these TDPs and the paleomagnetic means show the accuracy of paleomagnetic determinations in the context of a dominantly geocentric, axial, and dipolar geomagnetic field. The TDPs calculated allowed a bootstrap analysis to be performed to further consider the flattening factor that should be applied to the sedimentary-derived paleopoles. It is argued that the application of a single theoretical correction factor for clastic sedimentary-derived records could lead to a bias in the paleolatitude calculation and therefore to incorrect paleogeographic reconstructions. The unbiased APWP makes it necessary to slide Laurentia to the west in relation to Gondwana in a B-type Pangea during the Upper Carboniferous, later evolving, during the Early Permian, to reach the final A-type Pangea configuration of the Upper Permian.

  2. Stripe nonuniformity correction for infrared imaging system based on single image optimization

    NASA Astrophysics Data System (ADS)

    Hua, Weiping; Zhao, Jufeng; Cui, Guangmang; Gong, Xiaoli; Ge, Peng; Zhang, Jiang; Xu, Zhihai

    2018-06-01

    Infrared imaging is often disturbed by stripe nonuniformity noise. Scene-based correction method can effectively reduce the impact of stripe noise. In this paper, a stripe nonuniformity correction method based on differential constraint is proposed. Firstly, the gray distribution of stripe nonuniformity is analyzed and the penalty function is constructed by the difference of horizontal gradient and vertical gradient. With the weight function, the penalty function is optimized to obtain the corrected image. Comparing with other single-frame approaches, experiments show that the proposed method performs better in both subjective and objective analysis, and does less damage to edge and detail. Meanwhile, the proposed method runs faster. We have also discussed the differences between the proposed idea and multi-frame methods. Our method is finally well applied in hardware system.

  3. SU-E-T-17: A Mathematical Model for PinPoint Chamber Correction in Measuring Small Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, T; Zhang, Y; Li, X

    2014-06-01

    Purpose: For small field dosimetry, such as measuring the cone output factor for stereotactic radiosurgery, ion chambers often result in underestimation of the dose, due to both the volume averaging effect and the lack of electron equilibrium. The purpose of this work is to develop a mathematical model, specifically for the pinpoint chamber, to calculate the correction factors corresponding to different type of small fields, including single cone-based circular field and non-standard composite fields. Methods: A PTW 0.015cc PinPoint chamber was used in the study. Its response in a certain field was modeled as the total contribution of many smallmore » beamlets, each with different response factor depending on the relative strength, radial distance to the chamber axis, and the beam angle. To get these factors, 12 cone-shaped circular fields (5mm,7.5mm, 10mm, 12.5mm, 15mm, 20mm, 25mm, 30mm, 35mm, 40mm, 50mm, 60mm) were irradiated and measured with the PinPoint chamber. For each field size, hundreds of readings were recorded for every 2mm chamber shift in the horizontal plane. These readings were then compared with the theoretical doses as obtained with Monte Carlo calculation. A penalized-least-square optimization algorithm was developed to find out the beamlet response factors. After the parameter fitting, the established mathematical model was validated with the same MC code for other non-circular fields. Results: The optimization algorithm used for parameter fitting was stable and the resulted response factors were smooth in spatial domain. After correction with the mathematical model, the chamber reading matched with the Monte Carlo calculation for all the tested fields to within 2%. Conclusion: A novel mathematical model has been developed for the PinPoint chamber for dosimetric measurement of small fields. The current model is applicable only when the beam axis is perpendicular to the chamber axis. It can be applied to non-standard composite fields. Further validation with other type of detectors is being conducted.« less

  4. Threshold Dynamics of a Semiconductor Single Atom Maser

    NASA Astrophysics Data System (ADS)

    Liu, Yinyu

    Photon emission from single emitters provides fundamental insight into the detailed interaction between light and matter. Here we demonstrate a semiconductor single atom maser (SeSAM) that consists of a single InAs double quantum dot (DQD) that is coupled to a high quality factor microwave cavity. A finite bias results in population inversion in the DQD, enabling sizable cavity gain and stimulated emission. We develop a pulsed-gate approach that allows the SeSAM to be tuned across the masing threshold. The cavity output power as a function of DQD current is in good agreement with single atom maser theory once a small correction for lead emission is included. Photon statistics measurements show that the second-order correlation function of intra-cavity photon number, nc, crosses over from 〈nc2 〉 /〈nc 〉 2 = 2.1 below threshold to 〈nc2 〉 /〈nc 〉 2 = 1.2 above threshold. Large fluctuations are observed at threshold. In collaboration with J. Stehlik, C. Eichler, X. Mi, T. R. Hartke, M. J. Gullans, J. M. Taylor and J. R. Petta. Supported by the NSF and the Gordon and Betty Moore Foundation's EPiQS initiative through Grant No. GBMF4535.

  5. The position of DNA cleavage by TALENs and cell synchronization influences the frequency of gene editing directed by single-stranded oligonucleotides.

    PubMed

    Rivera-Torres, Natalia; Strouse, Bryan; Bialk, Pawel; Niamat, Rohina A; Kmiec, Eric B

    2014-01-01

    With recent technological advances that enable DNA cleavage at specific sites in the human genome, it may now be possible to reverse inborn errors, thereby correcting a mutation, at levels that could have an impact in a clinical setting. We have been developing gene editing, using single-stranded DNA oligonucleotides (ssODNs), as a tool to direct site specific single base changes. Successful application of this technique has been demonstrated in many systems ranging from bacteria to human (ES and somatic) cells. While the frequency of gene editing can vary widely, it is often at a level that does not enable clinical application. As such, a number of stimulatory factors such as double-stranded breaks are known to elevate the frequency significantly. The majority of these results have been discovered using a validated HCT116 mammalian cell model system where credible genetic and biochemical readouts are available. Here, we couple TAL-Effector Nucleases (TALENs) that execute specific ds DNA breaks with ssODNs, designed specifically to repair a missense mutation, in an integrated single copy eGFP gene. We find that proximal cleavage, relative to the mutant base, is key for enabling high frequencies of editing. A directionality of correction is also observed with TALEN activity upstream from the target base being more effective in promoting gene editing than activity downstream. We also find that cells progressing through S phase are more amenable to combinatorial gene editing activity. Thus, we identify novel aspects of gene editing that will help in the design of more effective protocols for genome modification and gene therapy in natural genes.

  6. 75 FR 5536 - Pipeline Safety: Control Room Management/Human Factors, Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Parts...: Control Room Management/Human Factors, Correction AGENCY: Pipeline and Hazardous Materials Safety... following correcting amendments: PART 192--TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM...

  7. Real-Time Single Frequency Precise Point Positioning Using SBAS Corrections

    PubMed Central

    Li, Liang; Jia, Chun; Zhao, Lin; Cheng, Jianhua; Liu, Jianxu; Ding, Jicheng

    2016-01-01

    Real-time single frequency precise point positioning (PPP) is a promising technique for high-precision navigation with sub-meter or even centimeter-level accuracy because of its convenience and low cost. The navigation performance of single frequency PPP heavily depends on the real-time availability and quality of correction products for satellite orbits and satellite clocks. Satellite-based augmentation system (SBAS) provides the correction products in real-time, but they are intended to be used for wide area differential positioning at 1 meter level precision. By imposing the constraints for ionosphere error, we have developed a real-time single frequency PPP method by sufficiently utilizing SBAS correction products. The proposed PPP method are tested with static and kinematic data, respectively. The static experimental results show that the position accuracy of the proposed PPP method can reach decimeter level, and achieve an improvement of at least 30% when compared with the traditional SBAS method. The positioning convergence of the proposed PPP method can be achieved in 636 epochs at most in static mode. In the kinematic experiment, the position accuracy of the proposed PPP method can be improved by at least 20 cm relative to the SBAS method. Furthermore, it has revealed that the proposed PPP method can achieve decimeter level convergence within 500 s in the kinematic mode. PMID:27517930

  8. Experimental 64Zn(d⃗,t)63Zn spectroscopic factors: Guidance for isospin-symmetry-breaking calculations

    NASA Astrophysics Data System (ADS)

    Leach, K. G.; Garrett, P. E.; Towner, I. S.; Ball, G. C.; Bildstein, V.; Brown, B. A.; Demand, G. A.; Faestermann, T.; Finlay, P.; Green, K. L.; Hertenberger, R.; Krücken, R.; Phillips, A. A.; Rand, E. T.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Wirth, H.-F.; Wong, J.

    2013-06-01

    With the recent inclusion of core orbitals to the radial-overlap component of the isospin-symmetry-breaking (ISB) corrections for superallowed Fermi β decay, experimental data are needed to test the validity of the theoretical model. This work reports measurements of single-neutron pickup reaction spectroscopic factors into 63Zn, one neutron away from 62Zn, the superallowed daughter of 62Ga. The experiment was performed using a 22-MeV polarized deuteron beam, a Q3D magnetic spectrograph, and a cathode-strip focal-plane detector to analyze outgoing tritons at nine angles between 10∘ and 60∘. Angular distributions and vector analyzing powers were obtained for all 162 observed states in 63Zn, including 125 newly observed levels, up to an excitation energy of 4.8 MeV. Spectroscopic factors are extracted and compared to several shell-model predictions, and implications for the ISB calculations are discussed.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrett, J C; Karmanos Cancer Institute McLaren-Macomb, Clinton Township, MI; Knill, C

    Purpose: To determine small field correction factors for PTW’s microDiamond detector in Elekta’s Gamma Knife Model-C unit. These factors allow the microDiamond to be used in QA measurements of output factors in the Gamma Knife Model-C; additionally, the results also contribute to the discussion on the water equivalence of the relatively-new microDiamond detector and its overall effectiveness in small field applications. Methods: The small field correction factors were calculated as k correction factors according to the Alfonso formalism. An MC model of the Gamma Knife and microDiamond was built with the EGSnrc code system, using BEAMnrc and DOSRZnrc user codes.more » Validation of the model was accomplished by simulating field output factors and measurement ratios for an available ABS plastic phantom and then comparing simulated results to film measurements, detector measurements, and treatment planning system (TPS) data. Once validated, the final k factors were determined by applying the model to a more waterlike solid water phantom. Results: During validation, all MC methods agreed with experiment within the stated uncertainties: MC determined field output factors agreed within 0.6% of the TPS and 1.4% of film; and MC simulated measurement ratios matched physically measured ratios within 1%. The final k correction factors for the PTW microDiamond in the solid water phantom approached unity to within 0.4%±1.7% for all the helmet sizes except the 4 mm; the 4 mm helmet size over-responded by 3.2%±1.7%, resulting in a k factor of 0.969. Conclusion: Similar to what has been found in the Gamma Knife Perfexion, the PTW microDiamond requires little to no corrections except for the smallest 4 mm field. The over-response can be corrected via the Alfonso formalism using the correction factors determined in this work. Using the MC calculated correction factors, the PTW microDiamond detector is an effective dosimeter in all available helmet sizes. The authors would like to thank PTW (Friedberg, Germany) for providing the PTW microDiamond detector for this research.« less

  10. Impact of the neutron detector choice on Bell and Glasstone spatial correction factor for subcriticality measurement

    NASA Astrophysics Data System (ADS)

    Talamo, Alberto; Gohar, Y.; Cao, Y.; Zhong, Z.; Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.

    2012-03-01

    In subcritical assemblies, the Bell and Glasstone spatial correction factor is used to correct the measured reactivity from different detector positions. In addition to the measuring position, several other parameters affect the correction factor: the detector material, the detector size, and the energy-angle distribution of source neutrons. The effective multiplication factor calculated by computer codes in criticality mode slightly differs from the average value obtained from the measurements in the different experimental channels of the subcritical assembly, which are corrected by the Bell and Glasstone spatial correction factor. Generally, this difference is due to (1) neutron counting errors; (2) geometrical imperfections, which are not simulated in the calculational model, and (3) quantities and distributions of material impurities, which are missing from the material definitions. This work examines these issues and it focuses on the detector choice and the calculation methodologies. The work investigated the YALINA Booster subcritical assembly of Belarus, which has been operated with three different fuel enrichments in the fast zone either: high (90%) and medium (36%), medium (36%), or low (21%) enriched uranium fuel.

  11. [Correction of the mean birth weight calculated from a frequency distribution (Japan, single births, 1969-88)].

    PubMed

    Doi, T; Sone, T; Matsuda, S; Kahyo, H

    1993-02-01

    Recently the mean birth weight (MBW) of Japan is on the decrease. This phenomenon started in 1976 and continues up to the present as of 1988. Various factors accounting for this phenomenon have been considered and discussed by several researchers. They were interested in social, cultural and economic factors as well as factors influencing community health status. Although the above factors seem to be important, one problem connected with calculation of MBW is worth discussing. The MBW was calculated from a frequency distribution because of a limitation of the source material. The accuracy of calculation of statistics from a frequency distribution depends on the assumption that few frequencies fall on boundaries, but birth weight measurements are apt to fall on figures having 0 at the end because of the properties of weighing scales. Suppose that the exact weight of an infant is 2996g. If his weight is read to the nearest figure having 0 at the end by rounding, it is recorded as 3000g on the birth certificate. Then, in a frequency distribution whose class interval is 500g, his weight is treated as 3250g in calculation of the mean. But some improvements of the methods of weighing, for example, utilization of a scale displaying a digital value of weight may result in a greater chance that his weight is recorded as 2996g. Then, in the same frequency distribution, his weight is treated as 2750g in calculation of the mean. Therefore, an improvement of the method of weighing produces the phenomenon that MBW decreases even if all the original birth weights did not change. Exact relative frequency, recorded as just 2500g, that is mentioned secondarily in the Vital Statistics of Japan has been decreasing consistently since 1969. This year is the oldest in the above source having frequency distributions of single birth infants. This fact shows that methods of weighing have been improved as the years pass. In this paper we tried to correct MBW by using the relative frequency recorded as exactly 2500g. Two kinds of widths where rounding would be executed were estimated from a frequency polygon. We obtained the following results. 1) The correction equation is represented as ld approximately; where l is a class interval (500g in this paper) and d is calculated by d = Q/(pa + pa+1 + Z) as a mean value in a certain sense and by d = 2Q/(pa + pa+1 + Z) as a maximum value.(ABSTRACT TRUNCATED AT 400 WORDS)

  12. Anthropometry-corrected exposure modeling as a method to improve trunk posture assessment with a single inclinometer.

    PubMed

    Van Driel, Robin; Trask, Catherine; Johnson, Peter W; Callaghan, Jack P; Koehoorn, Mieke; Teschke, Kay

    2013-01-01

    Measuring trunk posture in the workplace commonly involves subjective observation or self-report methods or the use of costly and time-consuming motion analysis systems (current gold standard). This work compared trunk inclination measurements using a simple data-logging inclinometer with trunk flexion measurements using a motion analysis system, and evaluated adding measures of subject anthropometry to exposure prediction models to improve the agreement between the two methods. Simulated lifting tasks (n=36) were performed by eight participants, and trunk postures were simultaneously measured with each method. There were significant differences between the two methods, with the inclinometer initially explaining 47% of the variance in the motion analysis measurements. However, adding one key anthropometric parameter (lower arm length) to the inclinometer-based trunk flexion prediction model reduced the differences between the two systems and accounted for 79% of the motion analysis method's variance. Although caution must be applied when generalizing lower-arm length as a correction factor, the overall strategy of anthropometric modeling is a novel contribution. In this lifting-based study, by accounting for subject anthropometry, a single, simple data-logging inclinometer shows promise for trunk posture measurement and may have utility in larger-scale field studies where similar types of tasks are performed.

  13. Evaluation of Cloud Microphysics in JMA-NHM Simulations Using Bin or Bulk Microphysical Schemes through Comparison with Cloud Radar Observations

    NASA Technical Reports Server (NTRS)

    Iguchi, Takamichi; Nakajima, Teruyuki; Khain, Alexander P.; Saito, Kazuo; Takemura, Toshihiko; Okamoto, Hajime; Nishizawa, Tomoaki; Tao, Wei-Kuo

    2012-01-01

    Numerical weather prediction (NWP) simulations using the Japan Meteorological Agency NonhydrostaticModel (JMA-NHM) are conducted for three precipitation events observed by shipborne or spaceborneW-band cloud radars. Spectral bin and single-moment bulk cloud microphysics schemes are employed separatelyfor an intercomparative study. A radar product simulator that is compatible with both microphysicsschemes is developed to enable a direct comparison between simulation and observation with respect to theequivalent radar reflectivity factor Ze, Doppler velocity (DV), and path-integrated attenuation (PIA). Ingeneral, the bin model simulation shows better agreement with the observed data than the bulk modelsimulation. The correction of the terminal fall velocities of snowflakes using those of hail further improves theresult of the bin model simulation. The results indicate that there are substantial uncertainties in the masssizeand sizeterminal fall velocity relations of snowflakes or in the calculation of terminal fall velocity of snowaloft. For the bulk microphysics, the overestimation of Ze is observed as a result of a significant predominanceof snow over cloud ice due to substantial deposition growth directly to snow. The DV comparison shows thata correction for the fall velocity of hydrometeors considering a change of particle size should be introducedeven in single-moment bulk cloud microphysics.

  14. Challenging terrestrial biosphere models with data from the long-term multifactor Prairie Heating and CO2 Enrichment experiment

    NASA Astrophysics Data System (ADS)

    De Kauwe, M. G.; Medlyn, B.; Walker, A.; Zaehle, S.; Pendall, E.; Norby, R. J.

    2017-12-01

    Multifactor experiments are often advocated as important for advancing models, yet to date, such models have only been tested against single-factor experiments. We applied 10 models to the multifactor Prairie Heating and CO2 Enrichment (PHACE) experiment in Wyoming, USA. Our goals were to investigate how multifactor experiments can be used to constrain models and to identify a road map for model improvement. We found models performed poorly in ambient conditions: comparison with data highlighted model failures particularly with respect to carbon allocation, phenology, and the impact of water stress on phenology. Performance against the observations from single-factors treatments was also relatively poor. In addition, similar responses were predicted for different reasons across models: there were large differences among models in sensitivity to water stress and, among the nitrogen cycle models, nitrogen availability during the experiment. Models were also unable to capture observed treatment effects on phenology: they overestimated the effect of warming on leaf onset and did not allow CO2-induced water savings to extend the growing season length. Observed interactive (CO2 × warming) treatment effects were subtle and contingent on water stress, phenology, and species composition. As the models did not correctly represent these processes under ambient and single-factor conditions, little extra information was gained by comparing model predictions against interactive responses. We outline a series of key areas in which this and future experiments could be used to improve model predictions of grassland responses to global change.

  15. Short-cavity squeezing in barium

    NASA Technical Reports Server (NTRS)

    Hope, D. M.; Bachor, H-A.; Manson, P. J.; Mcclelland, D. E.

    1992-01-01

    Broadband phase sensitive noise and squeezing were experimentally observed in a system of barium atoms interacting with a single mode of a short optical cavity. Squeezing of 13 +/- 3 percent was observed. A maximum possible squeezing of 45 +/- 8 percent could be inferred for out experimental conditions, after correction for measured loss factors. Noise reductions below the quantum limit were found over a range of detection frequencies 60-170 MHz and were best for high cavity transmission and large optical depths. The amount of squeezing observed is consistent with theoretical predictions from a full quantum statistical model of the system.

  16. The perturbation correction factors for cylindrical ionization chambers in high-energy photon beams.

    PubMed

    Yoshiyama, Fumiaki; Araki, Fujio; Ono, Takeshi

    2010-07-01

    In this study, we calculated perturbation correction factors for cylindrical ionization chambers in high-energy photon beams by using Monte Carlo simulations. We modeled four Farmer-type cylindrical chambers with the EGSnrc/Cavity code and calculated the cavity or electron fluence correction factor, P (cav), the displacement correction factor, P (dis), the wall correction factor, P (wall), the stem correction factor, P (stem), the central electrode correction factor, P (cel), and the overall perturbation correction factor, P (Q). The calculated P (dis) values for PTW30010/30013 chambers were 0.9967 +/- 0.0017, 0.9983 +/- 0.0019, and 0.9980 +/- 0.0019, respectively, for (60)Co, 4 MV, and 10 MV photon beams. The value for a (60)Co beam was about 1.0% higher than the 0.988 value recommended by the IAEA TRS-398 protocol. The P (dis) values had a substantial discrepancy compared to those of IAEA TRS-398 and AAPM TG-51 at all photon energies. The P (wall) values were from 0.9994 +/- 0.0020 to 1.0031 +/- 0.0020 for PTW30010 and from 0.9961 +/- 0.0018 to 0.9991 +/- 0.0017 for PTW30011/30012, in the range of (60)Co-10 MV. The P (wall) values for PTW30011/30012 were around 0.3% lower than those of the IAEA TRS-398. Also, the chamber response with and without a 1 mm PMMA water-proofing sleeve agreed within their combined uncertainty. The calculated P (stem) values ranged from 0.9945 +/- 0.0014 to 0.9965 +/- 0.0014, but they are not considered in current dosimetry protocols. The values were no significant difference on beam qualities. P (cel) for a 1 mm aluminum electrode agreed within 0.3% with that of IAEA TRS-398. The overall perturbation factors agreed within 0.4% with those for IAEA TRS-398.

  17. Reactive correction of a maxillary incisor in single-tooth crossbite following periodontal therapy.

    PubMed

    Huang, Chih-Hao; Brunsvold, Michael A

    2005-05-01

    The reactive correction of a single tooth anterior crossbite following periodontal therapy is described. This case report provides new information regarding correction of a crossbite relationship and con- firms existing reports of tooth movement following periodontal therapy. A 39-year-old woman in good general health presented with a history of recurrent periodontal abscesses of a maxillary incisor. Probing depths of the abscessed tooth ranged from 5 to 12 mm, and class 1 mobility was noted. Radiographs revealed that the tooth had previously been treated endodontically. The patient's periodontal diagnosis was generalized chronic moderate to severe periodontitis. Treatment considerations were complicated by a single-tooth crossbite relationship of the involved incisor and clinical evidence that the periodontal abscess communicated with an apical infection. Treatment of the abscess consisted of cause-related therapy, bone grafting, and occlusal adjustment. Five months after surgical treatment, an edge-to-edge incisal relationship was observed, the first indicator of tooth movement. Further correction to a normal incisal relationship resulted 1 year after modification of the proximal contact. At this time, there was normal probing depth with only slight recession and mobility. Bone fill was radiographically noted. It appears that some cases of maxillary incisor crossbite that are complicated by periodontal disease may be corrected, without orthodontic appliances, following periodontal treatment.

  18. Bootstrap Confidence Intervals for Ordinary Least Squares Factor Loadings and Correlations in Exploratory Factor Analysis

    ERIC Educational Resources Information Center

    Zhang, Guangjian; Preacher, Kristopher J.; Luo, Shanhong

    2010-01-01

    This article is concerned with using the bootstrap to assign confidence intervals for rotated factor loadings and factor correlations in ordinary least squares exploratory factor analysis. Coverage performances of "SE"-based intervals, percentile intervals, bias-corrected percentile intervals, bias-corrected accelerated percentile…

  19. SU-E-T-101: Determination and Comparison of Correction Factors Obtained for TLDs in Small Field Lung Heterogenous Phantom Using Acuros XB and EGSnrc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soh, R; Lee, J; Harianto, F

    Purpose: To determine and compare the correction factors obtained for TLDs in 2 × 2cm{sup 2} small field in lung heterogenous phantom using Acuros XB (AXB) and EGSnrc. Methods: This study will simulate the correction factors due to the perturbation of TLD-100 chips (Harshaw/Thermoscientific, 3 × 3 × 0.9mm{sup 3}, 2.64g/cm{sup 3}) in small field lung medium for Stereotactic Body Radiation Therapy (SBRT). A physical lung phantom was simulated by a 14cm thick composite cork phantom (0.27g/cm{sup 3}, HU:-743 ± 11) sandwiched between 4cm thick Plastic Water (CIRS,Norfolk). Composite cork has been shown to be a good lung substitute materialmore » for dosimetric studies. 6MV photon beam from Varian Clinac iX (Varian Medical Systems, Palo Alto, CA) with field size 2 × 2cm{sup 2} was simulated. Depth dose profiles were obtained from the Eclipse treatment planning system Acuros XB (AXB) and independently from DOSxyznrc, EGSnrc. Correction factors was calculated by the ratio of unperturbed to perturbed dose. Since AXB has limitations in simulating actual material compositions, EGSnrc will also simulate the AXB-based material composition for comparison to the actual lung phantom. Results: TLD-100, with its finite size and relatively high density, causes significant perturbation in 2 × 2cm{sup 2} small field in a low lung density phantom. Correction factors calculated by both EGSnrc and AXB was found to be as low as 0.9. It is expected that the correction factor obtained by EGSnrc wlll be more accurate as it is able to simulate the actual phantom material compositions. AXB have a limited material library, therefore it only approximates the composition of TLD, Composite cork and Plastic water, contributing to uncertainties in TLD correction factors. Conclusion: It is expected that the correction factors obtained by EGSnrc will be more accurate. Studies will be done to investigate the correction factors for higher energies where perturbation may be more pronounced.« less

  20. Factors Associated With Early Loss of Hallux Valgus Correction.

    PubMed

    Shibuya, Naohiro; Kyprios, Evangelos M; Panchani, Prakash N; Martin, Lanster R; Thorud, Jakob C; Jupiter, Daniel C

    Recurrence is common after hallux valgus corrective surgery. Although many investigators have studied the risk factors associated with a suboptimal hallux position at the end of long-term follow-up, few have evaluated the factors associated with actual early loss of correction. We conducted a retrospective cohort study to identify the predictors of lateral deviation of the hallux during the postoperative period. We evaluated the demographic data, preoperative severity of the hallux valgus, other angular measurements characterizing underlying deformities, amount of hallux valgus correction, and postoperative alignment of the corrected hallux valgus for associations with recurrence. After adjusting for the covariates, the only factor associated with recurrence was the postoperative tibial sesamoid position. The recurrence rate was ~50% and ~60% when the postoperative tibial sesamoid position was >4 and >5 on the 7-point scale, respectively. Published by Elsevier Inc.

  1. Quantum Simulation of Tunneling in Small Systems

    PubMed Central

    Sornborger, Andrew T.

    2012-01-01

    A number of quantum algorithms have been performed on small quantum computers; these include Shor's prime factorization algorithm, error correction, Grover's search algorithm and a number of analog and digital quantum simulations. Because of the number of gates and qubits necessary, however, digital quantum particle simulations remain untested. A contributing factor to the system size required is the number of ancillary qubits needed to implement matrix exponentials of the potential operator. Here, we show that a set of tunneling problems may be investigated with no ancillary qubits and a cost of one single-qubit operator per time step for the potential evolution, eliminating at least half of the quantum gates required for the algorithm and more than that in the general case. Such simulations are within reach of current quantum computer architectures. PMID:22916333

  2. Insertional Mutagenesis by CRISPR/Cas9 Ribonucleoprotein Gene Editing in Cells Targeted for Point Mutation Repair Directed by Short Single-Stranded DNA Oligonucleotides.

    PubMed

    Rivera-Torres, Natalia; Banas, Kelly; Bialk, Pawel; Bloh, Kevin M; Kmiec, Eric B

    2017-01-01

    CRISPR/Cas9 and single-stranded DNA oligonucleotides (ssODNs) have been used to direct the repair of a single base mutation in human genes. Here, we examine a method designed to increase the precision of RNA guided genome editing in human cells by utilizing a CRISPR/Cas9 ribonucleoprotein (RNP) complex to initiate DNA cleavage. The RNP is assembled in vitro and induces a double stranded break at a specific site surrounding the mutant base designated for correction by the ssODN. We use an integrated mutant eGFP gene, bearing a single base change rendering the expressed protein nonfunctional, as a single copy target in HCT 116 cells. We observe significant gene correction activity of the mutant base, promoted by the RNP and single-stranded DNA oligonucleotide with validation through genotypic and phenotypic readout. We demonstrate that all individual components must be present to obtain successful gene editing. Importantly, we examine the genotype of individually sorted corrected and uncorrected clonally expanded cell populations for the mutagenic footprint left by the action of these gene editing tools. While the DNA sequence of the corrected population is exact with no adjacent sequence modification, the uncorrected population exhibits heterogeneous mutagenicity with a wide variety of deletions and insertions surrounding the target site. We designate this type of DNA aberration as on-site mutagenicity. Analyses of two clonal populations bearing specific DNA insertions surrounding the target site, indicate that point mutation repair has occurred at the level of the gene. The phenotype, however, is not rescued because a section of the single-stranded oligonucleotide has been inserted altering the reading frame and generating truncated proteins. These data illustrate the importance of analysing mutagenicity in uncorrected cells. Our results also form the basis of a simple model for point mutation repair directed by a short single-stranded DNA oligonucleotides and CRISPR/Cas9 ribonucleoprotein complex.

  3. Insertional Mutagenesis by CRISPR/Cas9 Ribonucleoprotein Gene Editing in Cells Targeted for Point Mutation Repair Directed by Short Single-Stranded DNA Oligonucleotides

    PubMed Central

    Rivera-Torres, Natalia; Bialk, Pawel; Bloh, Kevin M.; Kmiec, Eric B.

    2017-01-01

    CRISPR/Cas9 and single-stranded DNA oligonucleotides (ssODNs) have been used to direct the repair of a single base mutation in human genes. Here, we examine a method designed to increase the precision of RNA guided genome editing in human cells by utilizing a CRISPR/Cas9 ribonucleoprotein (RNP) complex to initiate DNA cleavage. The RNP is assembled in vitro and induces a double stranded break at a specific site surrounding the mutant base designated for correction by the ssODN. We use an integrated mutant eGFP gene, bearing a single base change rendering the expressed protein nonfunctional, as a single copy target in HCT 116 cells. We observe significant gene correction activity of the mutant base, promoted by the RNP and single-stranded DNA oligonucleotide with validation through genotypic and phenotypic readout. We demonstrate that all individual components must be present to obtain successful gene editing. Importantly, we examine the genotype of individually sorted corrected and uncorrected clonally expanded cell populations for the mutagenic footprint left by the action of these gene editing tools. While the DNA sequence of the corrected population is exact with no adjacent sequence modification, the uncorrected population exhibits heterogeneous mutagenicity with a wide variety of deletions and insertions surrounding the target site. We designate this type of DNA aberration as on-site mutagenicity. Analyses of two clonal populations bearing specific DNA insertions surrounding the target site, indicate that point mutation repair has occurred at the level of the gene. The phenotype, however, is not rescued because a section of the single-stranded oligonucleotide has been inserted altering the reading frame and generating truncated proteins. These data illustrate the importance of analysing mutagenicity in uncorrected cells. Our results also form the basis of a simple model for point mutation repair directed by a short single-stranded DNA oligonucleotides and CRISPR/Cas9 ribonucleoprotein complex. PMID:28052104

  4. Ultimate intra-wafer critical dimension uniformity control by using lithography and etch tool corrections

    NASA Astrophysics Data System (ADS)

    Kubis, Michael; Wise, Rich; Reijnen, Liesbeth; Viatkina, Katja; Jaenen, Patrick; Luca, Melisa; Mernier, Guillaume; Chahine, Charlotte; Hellin, David; Kam, Benjamin; Sobieski, Daniel; Vertommen, Johan; Mulkens, Jan; Dusa, Mircea; Dixit, Girish; Shamma, Nader; Leray, Philippe

    2016-03-01

    With shrinking design rules, the overall patterning requirements are getting aggressively tighter. For the 7-nm node and below, allowable CD uniformity variations are entering the Angstrom region (ref [1]). Optimizing inter- and intra-field CD uniformity of the final pattern requires a holistic tuning of all process steps. In previous work, CD control with either litho cluster or etch tool corrections has been discussed. Today, we present a holistic CD control approach, combining the correction capability of the etch tool with the correction capability of the exposure tool. The study is done on 10-nm logic node wafers, processed with a test vehicle stack patterning sequence. We include wafer-to-wafer and lot-to-lot variation and apply optical scatterometry to characterize the fingerprints. Making use of all available correction capabilities (lithography and etch), we investigated single application of exposure tool corrections and of etch tool corrections as well as combinations of both to reach the lowest CD uniformity. Results of the final pattern uniformity based on single and combined corrections are shown. We conclude on the application of this holistic lithography and etch optimization to 7nm High-Volume manufacturing, paving the way to ultimate within-wafer CD uniformity control.

  5. Combining Single Strand Oligodeoxynucleotides and CRISPR/Cas9 to Correct Gene Mutations in β-Thalassemia-induced Pluripotent Stem Cells.

    PubMed

    Niu, Xiaohua; He, Wenyin; Song, Bing; Ou, Zhanhui; Fan, Di; Chen, Yuchang; Fan, Yong; Sun, Xiaofang

    2016-08-05

    β-Thalassemia (β-Thal) is one of the most common genetic diseases in the world. The generation of patient-specific β-Thal-induced pluripotent stem cells (iPSCs), correction of the disease-causing mutations in those cells, and then differentiation into hematopoietic stem cells offers a new therapeutic strategy for this disease. Here, we designed a CRISPR/Cas9 to specifically target the Homo sapiens hemoglobin β (HBB) gene CD41/42(-CTTT) mutation. We demonstrated that the combination of single strand oligodeoxynucleotides with CRISPR/Cas9 was capable of correcting the HBB gene CD41/42 mutation in β-Thal iPSCs. After applying a correction-specific PCR assay to purify the corrected clones followed by sequencing to confirm mutation correction, we verified that the purified clones retained full pluripotency and exhibited normal karyotyping. Additionally, whole-exome sequencing showed that the mutation load to the exomes was minimal after CRISPR/Cas9 targeting. Furthermore, the corrected iPSCs were selected for erythroblast differentiation and restored the expression of HBB protein compared with the parental iPSCs. This method provides an efficient and safe strategy to correct the HBB gene mutation in β-Thal iPSCs. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Legibility of Text and Pictograms in Variable Message Signs: Can Single-Word Messages Outperform Pictograms?

    PubMed

    Roca, Javier; Insa, Beatriz; Tejero, Pilar

    2018-05-01

    The current research shows the advantage of single-word messages in the particular case of variable message signs (VMSs) with a high aspect ratio. Early studies on traffic sign design proposed that pictorial information would advantage equivalent text messages in static signs. We used a driving simulator to present individually 36 VMSs, showing six words (e.g., "congestion") and six danger signs (e.g., congestion traffic sign). In Experiment 1, 18 drivers read aloud the text or orally identified the pictograms as soon as they could correctly do it. In Experiment 2, a different sample of 18 drivers gave a motor response, according to the meaning of the message. We analyzed the legibility distance and accuracy, driving performance (speed variability), and glance behavior. Our results show that single-word messages were associated with better performance (farther reading distances) and required less visual demands (fewer glances and less glancing times) than pictograms. As typical configurations of VMSs usually have a high aspect ratio, and thus allow large character heights, single-word messages can outperform the legibility of pictograms. However, the final advantage of text or pictorial messages would depend on several factors, such as the driver's knowledge of the language and the pictogram set, the use of single or multiple words, the particular design and size of critical details in letters and pictograms, environmental factors, and driver age. Potential applications include the design of VMSs and other devices aimed at displaying text and/or pictograms with a high aspect ratio.

  7. Wavefront correction using machine learning methods for single molecule localization microscopy

    NASA Astrophysics Data System (ADS)

    Tehrani, Kayvan F.; Xu, Jianquan; Kner, Peter

    2015-03-01

    Optical Aberrations are a major challenge in imaging biological samples. In particular, in single molecule localization (SML) microscopy techniques (STORM, PALM, etc.) a high Strehl ratio point spread function (PSF) is necessary to achieve sub-diffraction resolution. Distortions in the PSF shape directly reduce the resolution of SML microscopy. The system aberrations caused by the imperfections in the optics and instruments can be compensated using Adaptive Optics (AO) techniques prior to imaging. However, aberrations caused by the biological sample, both static and dynamic, have to be dealt with in real time. A challenge for wavefront correction in SML microscopy is a robust optimization approach in the presence of noise because of the naturally high fluctuations in photon emission from single molecules. Here we demonstrate particle swarm optimization for real time correction of the wavefront using an intensity independent metric. We show that the particle swarm algorithm converges faster than the genetic algorithm for bright fluorophores.

  8. An improved bias correction method of daily rainfall data using a sliding window technique for climate change impact assessment

    NASA Astrophysics Data System (ADS)

    Smitha, P. S.; Narasimhan, B.; Sudheer, K. P.; Annamalai, H.

    2018-01-01

    Regional climate models (RCMs) are used to downscale the coarse resolution General Circulation Model (GCM) outputs to a finer resolution for hydrological impact studies. However, RCM outputs often deviate from the observed climatological data, and therefore need bias correction before they are used for hydrological simulations. While there are a number of methods for bias correction, most of them use monthly statistics to derive correction factors, which may cause errors in the rainfall magnitude when applied on a daily scale. This study proposes a sliding window based daily correction factor derivations that help build reliable daily rainfall data from climate models. The procedure is applied to five existing bias correction methods, and is tested on six watersheds in different climatic zones of India for assessing the effectiveness of the corrected rainfall and the consequent hydrological simulations. The bias correction was performed on rainfall data downscaled using Conformal Cubic Atmospheric Model (CCAM) to 0.5° × 0.5° from two different CMIP5 models (CNRM-CM5.0, GFDL-CM3.0). The India Meteorological Department (IMD) gridded (0.25° × 0.25°) observed rainfall data was considered to test the effectiveness of the proposed bias correction method. The quantile-quantile (Q-Q) plots and Nash Sutcliffe efficiency (NSE) were employed for evaluation of different methods of bias correction. The analysis suggested that the proposed method effectively corrects the daily bias in rainfall as compared to using monthly factors. The methods such as local intensity scaling, modified power transformation and distribution mapping, which adjusted the wet day frequencies, performed superior compared to the other methods, which did not consider adjustment of wet day frequencies. The distribution mapping method with daily correction factors was able to replicate the daily rainfall pattern of observed data with NSE value above 0.81 over most parts of India. Hydrological simulations forced using the bias corrected rainfall (distribution mapping and modified power transformation methods that used the proposed daily correction factors) was similar to those simulated by the IMD rainfall. The results demonstrate that the methods and the time scales used for bias correction of RCM rainfall data have a larger impact on the accuracy of the daily rainfall and consequently the simulated streamflow. The analysis suggests that the distribution mapping with daily correction factors can be preferred for adjusting RCM rainfall data irrespective of seasons or climate zones for realistic simulation of streamflow.

  9. Volume dependence of N-body bound states

    NASA Astrophysics Data System (ADS)

    König, Sebastian; Lee, Dean

    2018-04-01

    We derive the finite-volume correction to the binding energy of an N-particle quantum bound state in a cubic periodic volume. Our results are applicable to bound states with arbitrary composition and total angular momentum, and in any number of spatial dimensions. The only assumptions are that the interactions have finite range. The finite-volume correction is a sum of contributions from all possible breakup channels. In the case where the separation is into two bound clusters, our result gives the leading volume dependence up to exponentially small corrections. If the separation is into three or more clusters, there is a power-law factor that is beyond the scope of this work, however our result again determines the leading exponential dependence. We also present two independent methods that use finite-volume data to determine asymptotic normalization coefficients. The coefficients are useful to determine low-energy capture reactions into weakly bound states relevant for nuclear astrophysics. Using the techniques introduced here, one can even extract the infinite-volume energy limit using data from a single-volume calculation. The derived relations are tested using several exactly solvable systems and numerical examples. We anticipate immediate applications to lattice calculations of hadronic, nuclear, and cold atomic systems.

  10. Research on material removal accuracy analysis and correction of removal function during ion beam figuring

    NASA Astrophysics Data System (ADS)

    Wu, Weibin; Dai, Yifan; Zhou, Lin; Xu, Mingjin

    2016-09-01

    Material removal accuracy has a direct impact on the machining precision and efficiency of ion beam figuring. By analyzing the factors suppressing the improvement of material removal accuracy, we conclude that correcting the removal function deviation and reducing the removal material amount during each iterative process could help to improve material removal accuracy. Removal function correcting principle can effectively compensate removal function deviation between actual figuring and simulated processes, while experiments indicate that material removal accuracy decreases with a long machining time, so a small amount of removal material in each iterative process is suggested. However, more clamping and measuring steps will be introduced in this way, which will also generate machining errors and suppress the improvement of material removal accuracy. On this account, a free-measurement iterative process method is put forward to improve material removal accuracy and figuring efficiency by using less measuring and clamping steps. Finally, an experiment on a φ 100-mm Zerodur planar is preformed, which shows that, in similar figuring time, three free-measurement iterative processes could improve the material removal accuracy and the surface error convergence rate by 62.5% and 17.6%, respectively, compared with a single iterative process.

  11. SU-F-BRE-01: A Rapid Method to Determine An Upper Limit On a Radiation Detector's Correction Factor During the QA of IMRT Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamio, Y; Bouchard, H

    2014-06-15

    Purpose: Discrepancies in the verification of the absorbed dose to water from an IMRT plan using a radiation dosimeter can be wither caused by 1) detector specific nonstandard field correction factors as described by the formalism of Alfonso et al. 2) inaccurate delivery of the DQA plan. The aim of this work is to develop a simple/fast method to determine an upper limit on the contribution of composite field correction factors to these discrepancies. Methods: Indices that characterize the non-flatness of the symmetrised collapsed delivery (VSC) of IMRT fields over detector-specific regions of interest were shown to be correlated withmore » IMRT field correction factors. The indices introduced are the uniformity index (UI) and the mean fluctuation index (MF). Each one of these correlation plots have 10 000 fields generated with a stochastic model. A total of eight radiation detectors were investigated in the radial orientation. An upper bound on the correction factors was evaluated by fitting values of high correction factors for a given index value. Results: These fitted curves can be used to compare the performance of radiation dosimeters in composite IMRT fields. Highly water-equivalent dosimeters like the scintillating detector (Exradin W1) and a generic alanine detector have been found to have corrections under 1% over a broad range of field modulations (0 – 0.12 for MF and 0 – 0.5 for UI). Other detectors have been shown to have corrections of a few percent over this range. Finally, a full Monte Carlo simulations of 18 clinical and nonclinical IMRT field showed good agreement with the fitted curve for the A12 ionization chamber. Conclusion: This work proposes a rapid method to evaluate an upper bound on the contribution of correction factors to discrepancies found in the verification of DQA plans.« less

  12. Factors Influencing the Design, Establishment, Administration, and Governance of Correctional Education for Females

    ERIC Educational Resources Information Center

    Ellis, Johnica; McFadden, Cheryl; Colaric, Susan

    2008-01-01

    This article summarizes the results of a study conducted to investigate factors influencing the organizational design, establishment, administration, and governance of correctional education for females. The research involved interviews with correctional and community college administrators and practitioners representing North Carolina female…

  13. Development and implementation of a remote audit tool for high dose rate (HDR) Ir-192 brachytherapy using optically stimulated luminescence dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casey, Kevin E.; Kry, Stephen F.; Howell, Rebecca M.

    Purpose: The aim of this work was to create a mailable phantom with measurement accuracy suitable for Radiological Physics Center (RPC) audits of high dose-rate (HDR) brachytherapy sources at institutions participating in National Cancer Institute-funded cooperative clinical trials. Optically stimulated luminescence dosimeters (OSLDs) were chosen as the dosimeter to be used with the phantom.Methods: The authors designed and built an 8 × 8 × 10 cm{sup 3} prototype phantom that had two slots capable of holding Al{sub 2}O{sub 3}:C OSLDs (nanoDots; Landauer, Glenwood, IL) and a single channel capable of accepting all {sup 192}Ir HDR brachytherapy sources in current clinicalmore » use in the United States. The authors irradiated the phantom with Nucletron and Varian {sup 192}Ir HDR sources in order to determine correction factors for linearity with dose and the combined effects of irradiation energy and phantom characteristics. The phantom was then sent to eight institutions which volunteered to perform trial remote audits.Results: The linearity correction factor was k{sub L}= (−9.43 × 10{sup −5}× dose) + 1.009, where dose is in cGy, which differed from that determined by the RPC for the same batch of dosimeters using {sup 60}Co irradiation. Separate block correction factors were determined for current versions of both Nucletron and Varian {sup 192}Ir HDR sources and these vendor-specific correction factors differed by almost 2.6%. For the Nucletron source, the correction factor was 1.026 [95% confidence interval (CI) = 1.023–1.028], and for the Varian source, it was 1.000 (95% CI = 0.995–1.005). Variations in lateral source positioning up to 0.8 mm and distal/proximal source positioning up to 10 mm had minimal effect on dose measurement accuracy. The overall dose measurement uncertainty of the system was estimated to be 2.4% and 2.5% for the Nucletron and Varian sources, respectively (95% CI). This uncertainty was sufficient to establish a ±5% acceptance criterion for source strength audits under a formal RPC audit program. Trial audits of four Nucletron sources and four Varian sources revealed an average RPC-to-institution dose ratio of 1.000 (standard deviation = 0.011).Conclusions: The authors have created an OSLD-based {sup 192}Ir HDR brachytherapy source remote audit tool which offers sufficient dose measurement accuracy to allow the RPC to establish a remote audit program with a ±5% acceptance criterion. The feasibility of the system has been demonstrated with eight trial audits to date.« less

  14. Utilizing an Energy Management System with Distributed Resources to Manage Critical Loads and Reduce Energy Costs

    DTIC Science & Technology

    2014-09-01

    peak shaving, conducting power factor correction, matching critical load to most efficient distributed resource, and islanding a system during...photovoltaic arrays during islanding, and power factor correction, the implementation of the ESS by itself is likely to prove cost prohibitive. The DOD...These functions include peak shaving, conducting power factor correction, matching critical load to most efficient distributed resource, and islanding a

  15. Comparison of central corneal thickness measurement using ultrasonic pachymetry, rotating Scheimpflug camera, and scanning-slit topography.

    PubMed

    Sedaghat, Mohammad Reza; Daneshvar, Ramin; Kargozar, Abbas; Derakhshan, Akbar; Daraei, Mona

    2010-12-01

    To evaluate and compare central corneal thickness measurements using rotating Scheimpflug camera, scanning-slit topography, and ultrasound pachymetry in virgin, healthy corneas. Prospective, observational, cross-sectional study. Central corneal thickness in 157 healthy eyes of 157 patients without ocular abnormalities other than refractive errors was measured, in a sequential order, once with rotating Scheimpflug camera and scanning-slit topography and 3 times with ultrasound pachymetry as the last part of examination. All measurements were performed by a single experienced examiner. The results from scanning-slit topography are given with and without correction for "acoustic correction factor" of 0.92. The average measurements of central corneal thickness by rotating Scheimpflug imaging, scanning-slit pachymetry, and ultrasound were 537.15 ± 32.98 μm, 542.06 ± 39.04 μm, and 544.07 ± 34.75 μm, respectively. The mean differences between modalities were 6.92 μm between rotating Scheimpflug and ultrasound (P < .0001), 2.01 μm between corrected scanning-slit and ultrasound (P = .204), and 4.91 μm between corrected scanning-slit and rotating Scheimpflug imaging (P = .001). According to Bland-Altman analysis, highest agreement was between ultrasonic and rotating Scheimpflug pachymetry. In the assessment of normal corneas, rotating Scheimpflug topography measures central corneal thickness values with higher agreement to ultrasound pachymetry. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Conditional Random Fields for Fast, Large-Scale Genome-Wide Association Studies

    PubMed Central

    Huang, Jim C.; Meek, Christopher; Kadie, Carl; Heckerman, David

    2011-01-01

    Understanding the role of genetic variation in human diseases remains an important problem to be solved in genomics. An important component of such variation consist of variations at single sites in DNA, or single nucleotide polymorphisms (SNPs). Typically, the problem of associating particular SNPs to phenotypes has been confounded by hidden factors such as the presence of population structure, family structure or cryptic relatedness in the sample of individuals being analyzed. Such confounding factors lead to a large number of spurious associations and missed associations. Various statistical methods have been proposed to account for such confounding factors such as linear mixed-effect models (LMMs) or methods that adjust data based on a principal components analysis (PCA), but these methods either suffer from low power or cease to be tractable for larger numbers of individuals in the sample. Here we present a statistical model for conducting genome-wide association studies (GWAS) that accounts for such confounding factors. Our method scales in runtime quadratic in the number of individuals being studied with only a modest loss in statistical power as compared to LMM-based and PCA-based methods when testing on synthetic data that was generated from a generalized LMM. Applying our method to both real and synthetic human genotype/phenotype data, we demonstrate the ability of our model to correct for confounding factors while requiring significantly less runtime relative to LMMs. We have implemented methods for fitting these models, which are available at http://www.microsoft.com/science. PMID:21765897

  17. SU-F-I-13: Correction Factor Computations for the NIST Ritz Free Air Chamber for Medium-Energy X Rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergstrom, P

    Purpose: The National Institute of Standards and Technology (NIST) uses 3 free-air chambers to establish primary standards for radiation dosimetry at x-ray energies. For medium-energy × rays, the Ritz free-air chamber is the main measurement device. In order to convert the charge or current collected by the chamber to the radiation quantities air kerma or air kerma rate, a number of correction factors specific to the chamber must be applied. Methods: We used the Monte Carlo codes EGSnrc and PENELOPE. Results: Among these correction factors are the diaphragm correction (which accounts for interactions of photons from the x-ray source inmore » the beam-defining diaphragm of the chamber), the scatter correction (which accounts for the effects of photons scattered out of the primary beam), the electron-loss correction (which accounts for electrons that only partially expend their energy in the collection region), the fluorescence correction (which accounts for ionization due to reabsorption ffluorescence photons and the bremsstrahlung correction (which accounts for the reabsorption of bremsstrahlung photons). We have computed monoenergetic corrections for the NIST Ritz chamber for the 1 cm, 3 cm and 7 cm collection plates. Conclusion: We find good agreement with other’s results for the 7 cm plate. The data used to obtain these correction factors will be used to establish air kerma and it’s uncertainty in the standard NIST x-ray beams.« less

  18. Two-Dimensional Thermal Boundary Layer Corrections for Convective Heat Flux Gauges

    NASA Technical Reports Server (NTRS)

    Kandula, Max; Haddad, George

    2007-01-01

    This work presents a CFD (Computational Fluid Dynamics) study of two-dimensional thermal boundary layer correction factors for convective heat flux gauges mounted in flat plate subjected to a surface temperature discontinuity with variable properties taken into account. A two-equation k - omega turbulence model is considered. Results are obtained for a wide range of Mach numbers (1 to 5), gauge radius ratio, and wall temperature discontinuity. Comparisons are made for correction factors with constant properties and variable properties. It is shown that the variable-property effects on the heat flux correction factors become significant

  19. Clarifications regarding the use of model-fitting methods of kinetic analysis for determining the activation energy from a single non-isothermal curve.

    PubMed

    Sánchez-Jiménez, Pedro E; Pérez-Maqueda, Luis A; Perejón, Antonio; Criado, José M

    2013-02-05

    This paper provides some clarifications regarding the use of model-fitting methods of kinetic analysis for estimating the activation energy of a process, in response to some results recently published in Chemistry Central journal. The model fitting methods of Arrhenius and Savata are used to determine the activation energy of a single simulated curve. It is shown that most kinetic models correctly fit the data, each providing a different value for the activation energy. Therefore it is not really possible to determine the correct activation energy from a single non-isothermal curve. On the other hand, when a set of curves are recorded under different heating schedules are used, the correct kinetic parameters can be clearly discerned. Here, it is shown that the activation energy and the kinetic model cannot be unambiguously determined from a single experimental curve recorded under non isothermal conditions. Thus, the use of a set of curves recorded under different heating schedules is mandatory if model-fitting methods are employed.

  20. Size Distribution of Sea-Salt Emissions as a Function of Relative Humidity

    NASA Astrophysics Data System (ADS)

    Zhang, K. M.; Knipping, E. M.; Wexler, A. S.; Bhave, P. V.; Tonnesen, G. S.

    2004-12-01

    Here we introduced a simple method for correcting sea-salt particle-size distributions as a function of relative humidity. Distinct from previous approaches, our derivation uses particle size at formation as the reference state rather than dry particle size. The correction factors, corresponding to the size at formation and the size at 80% RH, are given as polynomial functions of local relative humidity which are straightforward to implement. Without major compromises, the correction factors are thermodynamically accurate and can be applied between 0.45 and 0.99 RH. Since the thermodynamic properties of sea-salt electrolytes are weakly dependent on ambient temperature, these factors can be regarded as temperature independent. The correction factor w.r.t. to the size at 80% RH is in excellent agreement with those from Fitzgerald's and Gerber's growth equations; while the correction factor w.r.t. the size at formation has the advantage of being independent of dry size and relative humidity at formation. The resultant sea-salt emissions can be used directly in atmospheric model simulations at urban, regional and global scales without further correction. Application of this method to several common open-ocean and surf-zone sea-salt-particle source functions is described.

  1. The Additional Secondary Phase Correction System for AIS Signals

    PubMed Central

    Wang, Xiaoye; Zhang, Shufang; Sun, Xiaowen

    2017-01-01

    This paper looks at the development and implementation of the additional secondary phase factor (ASF) real-time correction system for the Automatic Identification System (AIS) signal. A large number of test data were collected using the developed ASF correction system and the propagation characteristics of the AIS signal that transmits at sea and the ASF real-time correction algorithm of the AIS signal were analyzed and verified. Accounting for the different hardware of the receivers in the land-based positioning system and the variation of the actual environmental factors, the ASF correction system corrects original measurements of positioning receivers in real time and provides corrected positioning accuracy within 10 m. PMID:28362330

  2. SU-E-T-123: Anomalous Altitude Effect in Permanent Implant Brachytherapy Seeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watt, E; Spencer, DP; Meyer, T

    Purpose: Permanent seed implant brachytherapy procedures require the measurement of the air kerma strength of seeds prior to implant. This is typically accomplished using a well-type ionization chamber. Previous measurements (Griffin et al., 2005; Bohm et al., 2005) of several low-energy seeds using the air-communicating HDR 1000 Plus chamber have demonstrated that the standard temperature-pressure correction factor, P{sub TP}, may overcompensate for air density changes induced by altitude variations by up to 18%. The purpose of this work is to present empirical correction factors for two clinically-used seeds (IsoAid ADVANTAGE™ {sup 103}Pd and Nucletron selectSeed {sup 125}I) for which empiricalmore » altitude correction factors do not yet exist in the literature when measured with the HDR 1000 Plus chamber. Methods: An in-house constructed pressure vessel containing the HDR 1000 Plus well chamber and a digital barometer/thermometer was pumped or evacuated, as appropriate, to a variety of pressures from 725 to 1075 mbar. Current measurements, corrected with P{sub TP}, were acquired for each seed at these pressures and normalized to the reading at ‘standard’ pressure (1013.25 mbar). Results: Measurements in this study have shown that utilization of P{sub TP} can overcompensate in the corrected current reading by up to 20% and 17% for the IsoAid Pd-103 and the Nucletron I-125 seed respectively. Compared to literature correction factors for other seed models, the correction factors in this study diverge by up to 2.6% and 3.0% for iodine (with silver) and palladium respectively, indicating the need for seed-specific factors. Conclusion: The use of seed specific altitude correction factors can reduce uncertainty in the determination of air kerma strength. The empirical correction factors determined in this work can be applied in clinical quality assurance measurements of air kerma strength for two previously unpublished seed designs (IsoAid ADVANTAGE™ {sup 103}Pd and Nucletron selectSeed {sup 125}I) with the HDR 1000 Plus well chamber.« less

  3. Quantum steganography and quantum error-correction

    NASA Astrophysics Data System (ADS)

    Shaw, Bilal A.

    Quantum error-correcting codes have been the cornerstone of research in quantum information science (QIS) for more than a decade. Without their conception, quantum computers would be a footnote in the history of science. When researchers embraced the idea that we live in a world where the effects of a noisy environment cannot completely be stripped away from the operations of a quantum computer, the natural way forward was to think about importing classical coding theory into the quantum arena to give birth to quantum error-correcting codes which could help in mitigating the debilitating effects of decoherence on quantum data. We first talk about the six-qubit quantum error-correcting code and show its connections to entanglement-assisted error-correcting coding theory and then to subsystem codes. This code bridges the gap between the five-qubit (perfect) and Steane codes. We discuss two methods to encode one qubit into six physical qubits. Each of the two examples corrects an arbitrary single-qubit error. The first example is a degenerate six-qubit quantum error-correcting code. We explicitly provide the stabilizer generators, encoding circuits, codewords, logical Pauli operators, and logical CNOT operator for this code. We also show how to convert this code into a non-trivial subsystem code that saturates the subsystem Singleton bound. We then prove that a six-qubit code without entanglement assistance cannot simultaneously possess a Calderbank-Shor-Steane (CSS) stabilizer and correct an arbitrary single-qubit error. A corollary of this result is that the Steane seven-qubit code is the smallest single-error correcting CSS code. Our second example is the construction of a non-degenerate six-qubit CSS entanglement-assisted code. This code uses one bit of entanglement (an ebit) shared between the sender (Alice) and the receiver (Bob) and corrects an arbitrary single-qubit error. The code we obtain is globally equivalent to the Steane seven-qubit code and thus corrects an arbitrary error on the receiver's half of the ebit as well. We prove that this code is the smallest code with a CSS structure that uses only one ebit and corrects an arbitrary single-qubit error on the sender's side. We discuss the advantages and disadvantages for each of the two codes. In the second half of this thesis we explore the yet uncharted and relatively undiscovered area of quantum steganography. Steganography is the process of hiding secret information by embedding it in an "innocent" message. We present protocols for hiding quantum information in a codeword of a quantum error-correcting code passing through a channel. Using either a shared classical secret key or shared entanglement Alice disguises her information as errors in the channel. Bob can retrieve the hidden information, but an eavesdropper (Eve) with the power to monitor the channel, but without the secret key, cannot distinguish the message from channel noise. We analyze how difficult it is for Eve to detect the presence of secret messages, and estimate rates of steganographic communication and secret key consumption for certain protocols. We also provide an example of how Alice hides quantum information in the perfect code when the underlying channel between Bob and her is the depolarizing channel. Using this scheme Alice can hide up to four stego-qubits.

  4. Universal thermal corrections to single interval entanglement entropy for two dimensional conformal field theories.

    PubMed

    Cardy, John; Herzog, Christopher P

    2014-05-02

    We consider single interval Rényi and entanglement entropies for a two dimensional conformal field theory on a circle at nonzero temperature. Assuming that the finite size of the system introduces a unique ground state with a nonzero mass gap, we calculate the leading corrections to the Rényi and entanglement entropy in a low temperature expansion. These corrections have a universal form for any two dimensional conformal field theory that depends only on the size of the mass gap and its degeneracy. We analyze the limits where the size of the interval becomes small and where it becomes close to the size of the spatial circle.

  5. Implementation of an experimental fault-tolerant memory system

    NASA Technical Reports Server (NTRS)

    Carter, W. C.; Mccarthy, C. E.

    1976-01-01

    The experimental fault-tolerant memory system described in this paper has been designed to enable the modular addition of spares, to validate the theoretical fault-secure and self-testing properties of the translator/corrector, to provide a basis for experiments using the new testing and correction processes for recovery, and to determine the practicality of such systems. The hardware design and implementation are described, together with methods of fault insertion. The hardware/software interface, including a restricted single error correction/double error detection (SEC/DED) code, is specified. Procedures are carefully described which, (1) test for specified physical faults, (2) ensure that single error corrections are not miscorrections due to triple faults, and (3) enable recovery from double errors.

  6. Impact of and correction for instrument sensitivity drift on nanoparticle size measurements by single-particle ICP-MS

    PubMed Central

    El Hadri, Hind; Petersen, Elijah J.; Winchester, Michael R.

    2016-01-01

    The effect of ICP-MS instrument sensitivity drift on the accuracy of NP size measurements using single particle (sp)ICP-MS is investigated. Theoretical modeling and experimental measurements of the impact of instrument sensitivity drift are in agreement and indicate that drift can impact the measured size of spherical NPs by up to 25 %. Given this substantial bias in the measured size, a method was developed using an internal standard to correct for the impact of drift and was shown to accurately correct for a decrease in instrument sensitivity of up to 50 % for 30 nm and 60 nm gold nanoparticles. PMID:26894759

  7. SU-E-T-46: Application of a Twin-Detector Method for the Determination of the Mean Photon Energy Em at Points of Measurement in a Water Phantom Surrounding a GammaMed HDR 192Ir Brachytherapy Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chofor, N; Poppe, B; Nebah, F

    Purpose: In a brachytherapy photon field in water the fluence-averaged mean photon energy Em at the point of measurement correlates with the radiation quality correction factor kQ of a non water-equivalent detector. To support the experimental assessment of Em, we show that the normalized signal ratio NSR of a pair of radiation detectors, an unshielded silicon diode and a diamond detector can serve to measure quantity Em in a water phantom at a Ir-192 unit. Methods: Photon fluence spectra were computed in EGSnrc based on a detailed model of the GammaMed source. Factor kQ was calculated as the ratio ofmore » the detector's spectrum-weighted responses under calibration conditions at a 60Co unit and under brachytherapy conditions at various radial distances from the source. The NSR was investigated for a pair of a p-type unshielded silicon diode 60012 and a synthetic single crystal diamond detector 60019 (both PTW Freiburg). Each detector was positioned according to its effective point of measurement, with its axis facing the source. Lateral signal profiles were scanned under complete scatter conditions, and the NSR was determined as the quotient of the signal ratio under application conditions x and that at position r-ref = 1 cm. Results: The radiation quality correction factor kQ shows a close correlation with the mean photon energy Em. The NSR of the diode/diamond pair changes by a factor of two from 0–18 cm from the source, while Em drops from 350 to 150 keV. Theoretical and measured NSR profiles agree by ± 2 % for points within 5 cm from the source. Conclusion: In the presence of the close correlation between radiation quality correction factor kQ and photon mean energy Em, the NSR provides a practical means of assessing Em under clinical conditions. Precise detector positioning is the major challenge.« less

  8. Relativistic corrections to the form factors of Bc into P-wave orbitally excited charmonium

    NASA Astrophysics Data System (ADS)

    Zhu, Ruilin

    2018-06-01

    We investigated the form factors of the Bc meson into P-wave orbitally excited charmonium using the nonrelativistic QCD effective theory. Through the analytic computation, the next-to-leading order relativistic corrections to the form factors were obtained, and the asymptotic expressions were studied in the infinite bottom quark mass limit. Employing the general form factors, we discussed the exclusive decays of the Bc meson into P-wave orbitally excited charmonium and a light meson. We found that the relativistic corrections lead to a large correction for the form factors, which makes the branching ratios of the decay channels B (Bc ± →χcJ (hc) +π± (K±)) larger. These results are useful for the phenomenological analysis of the Bc meson decays into P-wave charmonium, which shall be tested in the LHCb experiments.

  9. On the logarithmic-singularity correction in the kernel function method of subsonic lifting-surface theory

    NASA Technical Reports Server (NTRS)

    Lan, C. E.; Lamar, J. E.

    1977-01-01

    A logarithmic-singularity correction factor is derived for use in kernel function methods associated with Multhopp's subsonic lifting-surface theory. Because of the form of the factor, a relation was formulated between the numbers of chordwise and spanwise control points needed for good accuracy. This formulation is developed and discussed. Numerical results are given to show the improvement of the computation with the new correction factor.

  10. Power corrections to TMD factorization for Z-boson production

    DOE PAGES

    Balitsky, I.; Tarasov, A.

    2018-05-24

    A typical factorization formula for production of a particle with a small transverse momentum in hadron-hadron collisions is given by a convolution of two TMD parton densities with cross section of production of the final particle by the two partons. For practical applications at a given transverse momentum, though, one should estimate at what momenta the power corrections to the TMD factorization formula become essential. In this work, we calculate the first power corrections to TMD factorization formula for Z-boson production and Drell-Yan process in high-energy hadron-hadron collisions. At the leading order in N c power corrections are expressed inmore » terms of leading power TMDs by QCD equations of motion.« less

  11. Power corrections to TMD factorization for Z-boson production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balitsky, I.; Tarasov, A.

    A typical factorization formula for production of a particle with a small transverse momentum in hadron-hadron collisions is given by a convolution of two TMD parton densities with cross section of production of the final particle by the two partons. For practical applications at a given transverse momentum, though, one should estimate at what momenta the power corrections to the TMD factorization formula become essential. In this work, we calculate the first power corrections to TMD factorization formula for Z-boson production and Drell-Yan process in high-energy hadron-hadron collisions. At the leading order in N c power corrections are expressed inmore » terms of leading power TMDs by QCD equations of motion.« less

  12. Comparison of Different Attitude Correction Models for ZY-3 Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Song, Wenping; Liu, Shijie; Tong, Xiaohua; Niu, Changling; Ye, Zhen; Zhang, Han; Jin, Yanmin

    2018-04-01

    ZY-3 satellite, launched in 2012, is the first civilian high resolution stereo mapping satellite of China. This paper analyzed the positioning errors of ZY-3 satellite imagery and conducted compensation for geo-position accuracy improvement using different correction models, including attitude quaternion correction, attitude angle offset correction, and attitude angle linear correction. The experimental results revealed that there exist systematic errors with ZY-3 attitude observations and the positioning accuracy can be improved after attitude correction with aid of ground controls. There is no significant difference between the results of attitude quaternion correction method and the attitude angle correction method. However, the attitude angle offset correction model produced steady improvement than the linear correction model when limited ground control points are available for single scene.

  13. Are you interested? A meta-analysis of relations between vocational interests and employee performance and turnover.

    PubMed

    Van Iddekinge, Chad H; Roth, Philip L; Putka, Dan J; Lanivich, Stephen E

    2011-11-01

    A common belief among researchers is that vocational interests have limited value for personnel selection. However, no comprehensive quantitative summaries of interests validity research have been conducted to substantiate claims for or against the use of interests. To help address this gap, we conducted a meta-analysis of relations between interests and employee performance and turnover using data from 74 studies and 141 independent samples. Overall validity estimates (corrected for measurement error in the criterion but not for range restriction) for single interest scales were .14 for job performance, .26 for training performance, -.19 for turnover intentions, and -.15 for actual turnover. Several factors appeared to moderate interest-criterion relations. For example, validity estimates were larger when interests were theoretically relevant to the work performed in the target job. The type of interest scale also moderated validity, such that corrected validities were larger for scales designed to assess interests relevant to a particular job or vocation (e.g., .23 for job performance) than for scales designed to assess a single, job-relevant realistic, investigative, artistic, social, enterprising, or conventional (i.e., RIASEC) interest (.10) or a basic interest (.11). Finally, validity estimates were largest when studies used multiple interests for prediction, either by using a single job or vocation focused scale (which tend to tap multiple interests) or by using a regression-weighted composite of several RIASEC or basic interest scales. Overall, the results suggest that vocational interests may hold more promise for predicting employee performance and turnover than researchers may have thought. (c) 2011 APA, all rights reserved.

  14. Patient-specific Distraction Regimen to Avoid Growth-rod Failure.

    PubMed

    Agarwal, Aakash; Jayaswal, Arvind; Goel, Vijay K; Agarwal, Anand K

    2018-02-15

    A finite element study to establish the relationship between patient's curve flexibility (determined using curve correction under gravity) in juvenile idiopathic scoliosis and the required distraction frequency to avoid growth rod fracture, as a function of time. To perform a parametric analysis using a juvenile scoliotic spine model (single mid-thoracic curve with the apex at the eighth thoracic vertebra) and establish the relationship between curve flexibility (determined using curve correction under gravity) and the distraction interval that allows a higher factor of safety for the growth rods. Previous studies have shown that frequent distraction with smaller magnitude of distractions are less likely to result in rod failure. However there has not been any methodology or a chart provided to apply this knowledge on to the individual patients that undergo the treatment. This study aims to fill in that gap. The parametric study was performed by varying the material properties of the disc, hence altering the axial stiffness of the scoliotic spine model. The stresses on the rod were found to increase with increased axial stiffness of the spine, and this resulted in the increase of required optimal frequency to achieve a factor of safety of two for growth rods. A relationship between the percentage correction in Cobb's angle due to gravity alone, and the required distraction interval for limiting the maximum von Mises stress to 255 MPa on the growth rods was established. The distraction interval required to limit the stresses to the selected nominal value reduces with increase in stiffness of the spine. Furthermore, the appropriate distraction interval reduces for each model as the spine becomes stiffer with time (autofusion). This points to the fact the optimal distraction frequency is a time-dependent variable that must be achieved to keep the maximum von Mises stress under the specified factor of safety. The current study demonstrates the possibility of translating fundamental information from finite element modeling to the clinical arena, for mitigating the occurrence of growth rod fracture, that is, establishing a relationship between optimal distraction interval and curve flexibility (determined using curve correction under gravity). N/A.

  15. Spontaneous correction of coronal imbalance after selective thoracolumbar-lumbar fusion in patients with Lenke-5C adolescent idiopathic scoliosis.

    PubMed

    Hwang, Chang Ju; Lee, Choon Sung; Kim, Hyojune; Lee, Dong-Ho; Cho, Jae Hwan

    2018-03-22

    Coronal imbalance is a complication of corrective surgeries in adolescent idiopathic scoliosis (AIS). However, few studies about immediate coronal decompensation in Lenke-5C curves have reported its incidence, prognosis, and related factors. To evaluate the development of coronal imbalance after selective thoracolumbar-lumbar (TL/L) fusion (SLF) in Lenke-5C AIS, and to reveal related factors. Retrospective comparative study. This study included 50 consecutive patients with Lenke-5C AIS who underwent SLF at a single center. Whole-spine anteroposterior and lateral radiographs were used to measure radiological parameters. Patients were divided into two groups according to the presence or absence of coronal imbalance (distance between C7 plumb line and central sacral vertical line >2 cm) in the early (1 month) postoperative period. Various radiological parameters were statistically compared between groups. Of the patients, 28% (14 of 50) showed coronal imbalance in the early postoperative period; however, most of them (13 of 14) showed spontaneous correction during follow-up. The development of coronal imbalance was related to less flexibility of the TL/L curve (51.3% vs. 52.6%, p=.040), greater T10-L2 kyphosis (11.7° vs. 6.4°, p=.034), and greater distal junctional angle (6.0° vs. 3.7°, p=.025) in preoperative radiographs. Lowermost instrumented vertebra (LIV) tilt was greater in the decompensation [+] group in the early postoperative period (8.8° vs. 4.4°, p=.009). However, this difference disappeared in final follow-up with the decrease of LIV tilt in the decompensation [+] group. Less flexibility of the TL/L curve, greater TL kyphosis, and greater distal junctional angle preoperatively were predictive factors for immediate coronal imbalance in Lenke-5C curves. Although coronal imbalance was frequently detected in the early postoperative period after SLF, it was mostly corrected spontaneously with a decrease of LIV tilt. Thus, SLF for Lenke-5C curves can be a good option regardless of the possible coronal imbalance in the early postoperative period. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. SPECTRAL CORRECTION FACTORS FOR CONVENTIONAL NEUTRON DOSE METERS USED IN HIGH-ENERGY NEUTRON ENVIRONMENTS-IMPROVED AND EXTENDED RESULTS BASED ON A COMPLETE SURVEY OF ALL NEUTRON SPECTRA IN IAEA-TRS-403.

    PubMed

    Oparaji, U; Tsai, Y H; Liu, Y C; Lee, K W; Patelli, E; Sheu, R J

    2017-06-01

    This paper presents improved and extended results of our previous study on corrections for conventional neutron dose meters used in environments with high-energy neutrons (En > 10 MeV). Conventional moderated-type neutron dose meters tend to underestimate the dose contribution of high-energy neutrons because of the opposite trends of dose conversion coefficients and detection efficiencies as the neutron energy increases. A practical correction scheme was proposed based on analysis of hundreds of neutron spectra in the IAEA-TRS-403 report. By comparing 252Cf-calibrated dose responses with reference values derived from fluence-to-dose conversion coefficients, this study provides recommendations for neutron field characterization and the corresponding dose correction factors. Further sensitivity studies confirm the appropriateness of the proposed scheme and indicate that (1) the spectral correction factors are nearly independent of the selection of three commonly used calibration sources: 252Cf, 241Am-Be and 239Pu-Be; (2) the derived correction factors for Bonner spheres of various sizes (6"-9") are similar in trend and (3) practical high-energy neutron indexes based on measurements can be established to facilitate the application of these correction factors in workplaces. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. New double-byte error-correcting codes for memory systems

    NASA Technical Reports Server (NTRS)

    Feng, Gui-Liang; Wu, Xinen; Rao, T. R. N.

    1996-01-01

    Error-correcting or error-detecting codes have been used in the computer industry to increase reliability, reduce service costs, and maintain data integrity. The single-byte error-correcting and double-byte error-detecting (SbEC-DbED) codes have been successfully used in computer memory subsystems. There are many methods to construct double-byte error-correcting (DBEC) codes. In the present paper we construct a class of double-byte error-correcting codes, which are more efficient than those known to be optimum, and a decoding procedure for our codes is also considered.

  18. A general formula for Rayleigh-Schroedinger perturbation energy utilizing a power series expansion of the quantum mechanical Hamiltonian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herbert, J.M.

    1997-02-01

    Perturbation theory has long been utilized by quantum chemists as a method for approximating solutions to the Schroedinger equation. Perturbation treatments represent a system`s energy as a power series in which each additional term further corrects the total energy; it is therefore convenient to have an explicit formula for the nth-order energy correction term. If all perturbations are collected into a single Hamiltonian operator, such a closed-form expression for the nth-order energy correction is well known; however, use of a single perturbed Hamiltonian often leads to divergent energy series, while superior convergence behavior is obtained by expanding the perturbed Hamiltonianmore » in a power series. This report presents a closed-form expression for the nth-order energy correction obtained using Rayleigh-Schroedinger perturbation theory and a power series expansion of the Hamiltonian.« less

  19. Single image non-uniformity correction using compressive sensing

    NASA Astrophysics Data System (ADS)

    Jian, Xian-zhong; Lu, Rui-zhi; Guo, Qiang; Wang, Gui-pu

    2016-05-01

    A non-uniformity correction (NUC) method for an infrared focal plane array imaging system was proposed. The algorithm, based on compressive sensing (CS) of single image, overcame the disadvantages of "ghost artifacts" and bulk calculating costs in traditional NUC algorithms. A point-sampling matrix was designed to validate the measurements of CS on the time domain. The measurements were corrected using the midway infrared equalization algorithm, and the missing pixels were solved with the regularized orthogonal matching pursuit algorithm. Experimental results showed that the proposed method can reconstruct the entire image with only 25% pixels. A small difference was found between the correction results using 100% pixels and the reconstruction results using 40% pixels. Evaluation of the proposed method on the basis of the root-mean-square error, peak signal-to-noise ratio, and roughness index (ρ) proved the method to be robust and highly applicable.

  20. How well are we preparing pediatricians to manage seizures and epilepsy? A single-center questionnaire-based pilot study.

    PubMed

    Agarwal, Rajkumar L; Agarwal, Roshani R; Sivaswamy, Lalitha

    2014-06-01

    To assess the knowledge of pediatric residents regarding principles of management of seizures and epilepsy. A 10-item multiple-choice questionnaire with single correct response each (scored as 1) was administered to pediatric residents at an academic hospital. Out of 92 questionnaires, 73 were returned (79.3%). The mean score was 5 ± 1.9 (range = 1 to 9). Most correct responses (53/70, 75.5%) were received for the question on diagnosis of epilepsy. Questions on febrile seizures and on pharmacology of valproic acid received <50% correct responses among senior as well as junior residents, with no significant improvement in the correct response rate of senior residents. Deficiencies exist in pediatric residents' knowledge of seizures and epilepsy, especially with respect to febrile seizures and pharmacology of antiepileptic medications. Improved mechanisms to promote understanding in these areas are needed during pediatric training. © The Author(s) 2014.

  1. 49 CFR 325.79 - Application of correction factors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... illustrate the application of correction factors to sound level measurement readings: (1) Example 1—Highway operations. Assume that a motor vehicle generates a maximum observed sound level reading of 86 dB(A) during a... of the test site is acoustically “hard.” The corrected sound level generated by the motor vehicle...

  2. 49 CFR 325.79 - Application of correction factors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... illustrate the application of correction factors to sound level measurement readings: (1) Example 1—Highway operations. Assume that a motor vehicle generates a maximum observed sound level reading of 86 dB(A) during a... of the test site is acoustically “hard.” The corrected sound level generated by the motor vehicle...

  3. Factors influencing workplace violence risk among correctional health workers: insights from an Australian survey.

    PubMed

    Cashmore, Aaron W; Indig, Devon; Hampton, Stephen E; Hegney, Desley G; Jalaludin, Bin B

    2016-11-01

    Little is known about the environmental and organisational determinants of workplace violence in correctional health settings. This paper describes the views of health professionals working in these settings on the factors influencing workplace violence risk. All employees of a large correctional health service in New South Wales, Australia, were invited to complete an online survey. The survey included an open-ended question seeking the views of participants about the factors influencing workplace violence in correctional health settings. Responses to this question were analysed using qualitative thematic analysis. Participants identified several factors that they felt reduced the risk of violence in their workplace, including: appropriate workplace health and safety policies and procedures; professionalism among health staff; the presence of prison guards and the quality of security provided; and physical barriers within clinics. Conversely, participants perceived workplace violence risk to be increased by: low health staff-to-patient and correctional officer-to-patient ratios; high workloads; insufficient or underperforming security staff; and poor management of violence, especially horizontal violence. The views of these participants should inform efforts to prevent workplace violence among correctional health professionals.

  4. Fluence correction factors for graphite calorimetry in a low-energy clinical proton beam: I. Analytical and Monte Carlo simulations.

    PubMed

    Palmans, H; Al-Sulaiti, L; Andreo, P; Shipley, D; Lühr, A; Bassler, N; Martinkovič, J; Dobrovodský, J; Rossomme, S; Thomas, R A S; Kacperek, A

    2013-05-21

    The conversion of absorbed dose-to-graphite in a graphite phantom to absorbed dose-to-water in a water phantom is performed by water to graphite stopping power ratios. If, however, the charged particle fluence is not equal at equivalent depths in graphite and water, a fluence correction factor, kfl, is required as well. This is particularly relevant to the derivation of absorbed dose-to-water, the quantity of interest in radiotherapy, from a measurement of absorbed dose-to-graphite obtained with a graphite calorimeter. In this work, fluence correction factors for the conversion from dose-to-graphite in a graphite phantom to dose-to-water in a water phantom for 60 MeV mono-energetic protons were calculated using an analytical model and five different Monte Carlo codes (Geant4, FLUKA, MCNPX, SHIELD-HIT and McPTRAN.MEDIA). In general the fluence correction factors are found to be close to unity and the analytical and Monte Carlo codes give consistent values when considering the differences in secondary particle transport. When considering only protons the fluence correction factors are unity at the surface and increase with depth by 0.5% to 1.5% depending on the code. When the fluence of all charged particles is considered, the fluence correction factor is about 0.5% lower than unity at shallow depths predominantly due to the contributions from alpha particles and increases to values above unity near the Bragg peak. Fluence correction factors directly derived from the fluence distributions differential in energy at equivalent depths in water and graphite can be described by kfl = 0.9964 + 0.0024·zw-eq with a relative standard uncertainty of 0.2%. Fluence correction factors derived from a ratio of calculated doses at equivalent depths in water and graphite can be described by kfl = 0.9947 + 0.0024·zw-eq with a relative standard uncertainty of 0.3%. These results are of direct relevance to graphite calorimetry in low-energy protons but given that the fluence correction factor is almost solely influenced by non-elastic nuclear interactions the results are also relevant for plastic phantoms that consist of carbon, oxygen and hydrogen atoms as well as for soft tissues.

  5. Explicitly correlated coupled-cluster theory using cusp conditions. II. Treatment of connected triple excitations.

    PubMed

    Köhn, Andreas

    2010-11-07

    The coupled-cluster singles and doubles method augmented with single Slater-type correlation factors (CCSD-F12) determined by the cusp conditions (also denoted as SP ansatz) yields results close to the basis set limit with only small overhead compared to conventional CCSD. Quantitative calculations on many-electron systems, however, require to include the effect of connected triple excitations at least. In this contribution, the recently proposed [A. Köhn, J. Chem. Phys. 130, 131101 (2009)] extended SP ansatz and its application to the noniterative triples correction CCSD(T) is reviewed. The approach allows to include explicit correlation into connected triple excitations without introducing additional unknown parameters. The explicit expressions are presented and analyzed, and possible simplifications to arrive at a computationally efficient scheme are suggested. Numerical tests based on an implementation obtained by an automated approach are presented. Using a partial wave expansion for the neon atom, we can show that the proposed ansatz indeed leads to the expected (L(max)+1)(-7) convergence of the noniterative triples correction, where L(max) is the maximum angular momentum in the orbital expansion. Further results are reported for a test set of 29 molecules, employing Peterson's F12-optimized basis sets. We find that the customary approach of using the conventional noniterative triples correction on top of a CCSD-F12 calculation leads to significant basis set errors. This, however, is not always directly visible for total CCSD(T) energies due to fortuitous error compensation. The new approach offers a thoroughly explicitly correlated CCSD(T)-F12 method with improved basis set convergence of the triples contributions to both total and relative energies.

  6. Optimization of upcyte® human hepatocytes for the in vitro micronucleus assay.

    PubMed

    Nörenberg, Astrid; Heinz, Stefan; Scheller, Katharina; Hewitt, Nicola J; Braspenning, Joris; Ott, Michael

    2013-12-12

    "Upcyte(®) human hepatocytes" have the unique property of combining proliferation with the expression of drug metabolising activities. In our current study, we evaluated whether these cells would be suitable for early in vitro micronucleus (MN) tests. A treatment period of 96 h without a recovery period was most reliable for detecting MN formation in upcyte(®) hepatocytes from Donor 740. The basal MN rate in upcyte(®) hepatocytes varied considerably between donors (7-28%); therefore, modifications to the assay medium were tested to determine whether they could decrease inherent MN formation. Optimal medium supplements were 10 ng/ml oncostatin M for the pre-culture and recovery periods and 25 ng/ml epidermal growth factor and 10 ng/ml oncostatin M for the treatment period. Using the optimised conditions and outcome criteria, the upcyte(®) hepatocyte MN assay could correctly identify directly acting (e.g. mitomycin C, etoposide) and metabolically activated genotoxins (e.g. benzo[a]pyrene, cyclophosphamide). "True negative" and "false positive" compounds were also correctly identified as negative. The basal %MN in upcyte(®) hepatocytes from Donor 740 treated with DMSO, cyclophosphamide or MMC, was essentially unaffected by the growth stage ranging from population doublings of 14-61, suggesting that billions of cells could be produced from a single donor for standardised drug toxicity testing. In conclusion, we have established and optimised an in vitro MN test by using upcyte(®) hepatocytes to correctly identify known direct and metabolically activated genotoxicants as well as "false positives" and true negative compounds. The almost unlimited supply of cells from a single donor and optimised test conditions increase reproducibility in early and more predictive in vitro MN tests. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. [Simultaneous quantitative analysis of five alkaloids in Sophora flavescens by multi-components assay by single marker].

    PubMed

    Chen, Jing; Wang, Shu-Mei; Meng, Jiang; Sun, Fei; Liang, Sheng-Wang

    2013-05-01

    To establish a new method for quality evaluation and validate its feasibilities by simultaneous quantitative assay of five alkaloids in Sophora flavescens. The new quality evaluation method, quantitative analysis of multi-components by single marker (QAMS), was established and validated with S. flavescens. Five main alkaloids, oxymatrine, sophocarpine, matrine, oxysophocarpine and sophoridine, were selected as analytes to evaluate the quality of rhizome of S. flavescens, and the relative correction factor has good repeatibility. Their contents in 21 batches of samples, collected from different areas, were determined by both external standard method and QAMS. The method was evaluated by comparison of the quantitative results between external standard method and QAMS. No significant differences were found in the quantitative results of five alkaloids in 21 batches of S. flavescens determined by external standard method and QAMS. It is feasible and suitable to evaluate the quality of rhizome of S. flavescens by QAMS.

  8. SU-F-T-67: Correction Factors for Monitor Unit Verification of Clinical Electron Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haywood, J

    Purpose: Monitor units calculated by electron Monte Carlo treatment planning systems are often higher than TG-71 hand calculations for a majority of patients. Here I’ve calculated tables of geometry and heterogeneity correction factors for correcting electron hand calculations. Method: A flat water phantom with spherical volumes having radii ranging from 3 to 15 cm was created. The spheres were centered with respect to the flat water phantom, and all shapes shared a surface at 100 cm SSD. D{sub max} dose at 100 cm SSD was calculated for each cone and energy on the flat phantom and for the spherical volumesmore » in the absence of the flat phantom. The ratio of dose in the sphere to dose in the flat phantom defined the geometrical correction factor. The heterogeneity factors were then calculated from the unrestricted collisional stopping power for tissues encountered in electron beam treatments. These factors were then used in patient second check calculations. Patient curvature was estimated by the largest sphere that aligns to the patient contour, and appropriate tissue density was read from the physical properties provided by the CT. The resulting MU were compared to those calculated by the treatment planning system and TG-71 hand calculations. Results: The geometry and heterogeneity correction factors range from ∼(0.8–1.0) and ∼(0.9–1.01) respectively for the energies and cones presented. Percent differences for TG-71 hand calculations drop from ∼(3–14)% to ∼(0–2)%. Conclusion: Monitor units calculated with the correction factors typically decrease the percent difference to under actionable levels, < 5%. While these correction factors work for a majority of patients, there are some patient anatomies that do not fit the assumptions made. Using these factors in hand calculations is a first step in bringing the verification monitor units into agreement with the treatment planning system MU.« less

  9. Nonlinear Phase Distortion in a Ti:Sapphire Optical Amplifier for Optical Stochastic Cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andorf, Matthew; Lebedev, Valeri; Piot, Philippe

    2016-06-01

    Optical Stochastic Cooling (OSC) has been considered for future high-luminosity colliders as it offers much faster cooling time in comparison to the micro-wave stochastic cooling. The OSC technique relies on collecting and amplifying a broadband optical signal from a pickup undulator and feeding the amplified signal back to the beam. It creates a corrective kick in a kicker undulator. Owing to its superb gain qualities and broadband amplification features, Titanium:Sapphire medium has been considered as a gain medium for the optical amplifier (OA) needed in the OSC*. A limiting factor for any OA used in OSC is the possibility ofmore » nonlinear phase distortions. In this paper we experimentally measure phase distortions by inserting a single-pass OA into one leg of a Mach-Zehnder interferometer. The measurement results are used to estimate the reduction of the corrective kick a particle would receive due to these phase distortions in the kicker undulator.« less

  10. Cosmetic rhinoplasty: revision rates revisited.

    PubMed

    Neaman, Keith C; Boettcher, Adam K; Do, Viet H; Mulder, Corlyne; Baca, Marissa; Renucci, John D; VanderWoude, Douglas L

    2013-01-01

    Cosmetic rhinoplasty has great potential to change a patient's appearance. It also carries the very real risk of patient dissatisfaction and request for revision. Although there have been many published patient series studying various aspects of rhinoplasty, questions remain regarding revision rates, as well as risk factors for complications, dissatisfaction, and revision. The authors investigate the rate of cosmetic rhinoplasty revision at a plastic surgery group practice and identify risk factors for revision. Medical records were retrospectively reviewed for all patients who presented to a single multisurgeon practice for primary rhinoplasty, septorhinoplasty, and revision rhinoplasty between 1998 and 2008. Patient demographics, preoperative complaints, preoperative physical examination findings, detailed operative data, and postoperative outcomes were abstracted from the charts. Complication rates, revision rates, and postoperative patient satisfaction were calculated and analyzed for identifiable risk factors. Of 369 consecutive cosmetic rhinoplasties performed during the study period, 279 (72.7%) were conducted with an open approach. The overall complication, dissatisfaction, and revision rates were 7.9%, 15.4%, and 9.8%, respectively. Postoperatively, most patients (87%) were identified by their surgeons as having had successful anatomical correction of their nasal deformity. History of previous nasal operation or facial fracture, lack of anatomical correction, and occurrence of postoperative complications were associated with both revision and dissatisfaction (P < .05). Failure to address the nasal tip at the time of primary rhinoplasty was associated with a higher level of dissatisfaction. Cosmetic rhinoplasty is one of the most challenging procedures in plastic surgery; however, these data indicate that a high level of patient satisfaction is attainable within a plastic surgery group practice if certain factors are considered. Specifically, surgeons should be aware of risk factors that are potentially associated with dissatisfaction and revision. 4.

  11. Factors affecting volume calculation with single photon emission tomography (SPECT) method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, T.H.; Lee, K.H.; Chen, D.C.P.

    1985-05-01

    Several factors may influence the calculation of absolute volumes (VL) from SPECT images. The effect of these factors must be established to optimize the technique. The authors investigated the following on the VL calculations: % of background (BG) subtraction, reconstruction filters, sample activity, angular sampling and edge detection methods. Transaxial images of a liver-trunk phantom filled with Tc-99m from 1 to 3 ..mu..Ci/cc were obtained in 64x64 matrix with a Siemens Rota Camera and MDS computer. Different reconstruction filters including Hanning 20,32, 64 and Butterworth 20, 32 were used. Angular samplings were performed in 3 and 6 degree increments. ROI'smore » were drawn manually and with an automatic edge detection program around the image after BG subtraction. VL's were calculated by multiplying the number of pixels within the ROI by the slice thickness and the x- and y- calibrations of each pixel. One or 2 pixel per slice thickness was applied in the calculation. An inverse correlation was found between the calculated VL and the % of BG subtraction (r=0.99 for 1,2,3 ..mu..Ci/cc activity). Based on the authors' linear regression analysis, the correct liver VL was measured with about 53% BG subtraction. The reconstruction filters, slice thickness and angular sampling had only minor effects on the calculated phantom volumes. Detection of the ROI automatically by the computer was not as accurate as the manual method. The authors conclude that the % of BG subtraction appears to be the most important factor affecting the VL calculation. With good quality control and appropriate reconstruction factors, correct VL calculations can be achieved with SPECT.« less

  12. Impact of creatine kinase correction on the predictive value of S-100B after mild traumatic brain injury.

    PubMed

    Bazarian, Jeffrey J; Beck, Christopher; Blyth, Brian; von Ahsen, Nicolas; Hasselblatt, Martin

    2006-01-01

    To validate a correction factor for the extracranial release of the astroglial protein, S-100B, based on concomitant creatine kinase (CK) levels. The CK- S-100B relationship in non-head injured marathon runners was used to derive a correction factor for the extracranial release of S-100B. This factor was then applied to a separate cohort of 96 mild traumatic brain injury (TBI) patients in whom both CK and S-100B levels were measured. Corrected S-100B was compared to uncorrected S-100B for the prediction of initial head CT, three-month headache and three-month post concussive syndrome (PCS). Corrected S-100B resulted in a statistically significant improvement in the prediction of 3-month headache (area under curve [AUC] 0.46 vs 0.52, p=0.02), but not PCS or initial head CT. Using a cutoff that maximizes sensitivity (> or = 90%), corrected S-100B improved the prediction of initial head CT scan (negative predictive value from 75% [95% CI, 2.6%, 67.0%] to 96% [95% CI: 83.5%, 99.8%]). Although S-100B is overall poorly predictive of outcome, a correction factor using CK is a valid means of accounting for extracranial release. By increasing the proportion of mild TBI patients correctly categorized as low risk for abnormal head CT, CK-corrected S100-B can further reduce the number of unnecessary brain CT scans performed after this injury.

  13. Neural mechanisms of single corrective steps evoked in the standing rabbit

    PubMed Central

    Hsu, L.-J.; Zelenin, P. V.; Lyalka, V. F.; Vemula, M. G.; Orlovsky, G. N.; Deliagina, T. G.

    2017-01-01

    Single steps in different directions are often used for postural corrections. However, our knowledge about the neural mechanisms underlying their generation is scarce. This study was aimed to characterize the corrective steps generated in response to disturbances of the basic body configuration caused by forward, backward or outward displacement of the hindlimb, as well as to reveal location in the CNS of the corrective step generating mechanisms. Video recording of the motor response to translation of the supporting surface under the hindlimb along with contact forces and activity of back and limb muscles was performed in freely standing intact and in fixed postmammillary rabbits. In intact rabbits, displacement of the hindlimb in any direction caused a lateral trunk movement towards the contralateral hindlimb, and then a corrective step in the direction opposite to the initial displacement. The time difference between onsets of these two events varied considerably. The EMG pattern in the supporting hindlimb was similar for all directions of corrective steps. It caused the increase in the limb stiffness. EMG pattern in the stepping limb differed in steps with different directions. In postmammillary rabbits the corrective stepping movements, as well as EMG patterns in both stepping and standing hindlimbs were similar to those observed in intact rabbits. This study demonstrates that the corrective trunk and limb movements are generated by separate mechanisms activated by sensory signals from the deviated limb. The neuronal networks generating postural corrective steps reside in the brainstem, cerebellum, and spinal cord. PMID:28215990

  14. Artefacts of PET/CT images

    PubMed Central

    Pettinato, C; Nanni, C; Farsad, M; Castellucci, P; Sarnelli, A; Civollani, S; Franchi, R; Fanti, S; Marengo, M; Bergamini, C

    2006-01-01

    Positron emission tomography (PET) is a non-invasive imaging modality, which is clinically widely used both for diagnosis and accessing therapy response in oncology, cardiology and neurology. Fusing PET and CT images in a single dataset would be useful for physicians who could read the functional and the anatomical aspects of a disease in a single shot. The use of fusion software has been replaced in the last few years by integrated PET/CT systems, which combine a PET and a CT scanner in the same gantry. CT images have the double function to correct PET images for attenuation and can fuse with PET for a better visualization and localization of lesions. The use of CT for attenuation correction yields several advantages in terms of accuracy and patient comfort, but can also introduce several artefacts on PET-corrected images. PET/CT image artefacts are due primarily to metallic implants, respiratory motion, use of contrast media and image truncation. This paper reviews different types artefacts and their correction methods. PET/CT improves image quality and image accuracy. However, to avoid possible pitfalls the simultaneous display of both Computed Tomography Attenuation Corrected (CTAC) and non corrected PET images, side by side with CT images is strongly recommended. PMID:21614340

  15. The accuracy of climate models' simulated season lengths and the effectiveness of grid scale correction factors

    DOE PAGES

    Winterhalter, Wade E.

    2011-09-01

    Global climate change is expected to impact biological populations through a variety of mechanisms including increases in the length of their growing season. Climate models are useful tools for predicting how season length might change in the future. However, the accuracy of these models tends to be rather low at regional geographic scales. Here, I determined the ability of several atmosphere and ocean general circulating models (AOGCMs) to accurately simulate historical season lengths for a temperate ectotherm across the continental United States. I also evaluated the effectiveness of regional-scale correction factors to improve the accuracy of these models. I foundmore » that both the accuracy of simulated season lengths and the effectiveness of the correction factors to improve the model's accuracy varied geographically and across models. These results suggest that regional specific correction factors do not always adequately remove potential discrepancies between simulated and historically observed environmental parameters. As such, an explicit evaluation of the correction factors' effectiveness should be included in future studies of global climate change's impact on biological populations.« less

  16. Feasibility of one-shot-per-crystal structure determination using Laue diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornaby, Sterling; CHESS; Szebenyi, Doletha M. E.

    Structure determination was successfully carried out using single Laue exposures from a group of lysozyme crystals. The Laue method may be a viable option for collection of one-shot-per-crystal data from microcrystals. Crystal size is an important factor in determining the number of diffraction patterns which may be obtained from a protein crystal before severe radiation damage sets in. As crystal dimensions decrease this number is reduced, eventually falling to one, at which point a complete data set must be assembled using data from multiple crystals. When only a single exposure is to be collected from each crystal, the polychromatic Lauemore » technique may be preferable to monochromatic methods owing to its simultaneous recording of a large number of fully recorded reflections per image. To assess the feasibility of solving structures using single Laue images from multiple crystals, data were collected using a ‘pink’ beam at the CHESS D1 station from groups of lysozyme crystals with dimensions of the order of 20–30 µm mounted on MicroMesh grids. Single-shot Laue data were used for structure determination by molecular replacement and correct solutions were obtained even when as few as five crystals were used.« less

  17. Single classifier, OvO, OvA and RCC multiclass classification method in handheld based smartphone gait identification

    NASA Astrophysics Data System (ADS)

    Raziff, Abdul Rafiez Abdul; Sulaiman, Md Nasir; Mustapha, Norwati; Perumal, Thinagaran

    2017-10-01

    Gait recognition is widely used in many applications. In the application of the gait identification especially in people, the number of classes (people) is many which may comprise to more than 20. Due to the large amount of classes, the usage of single classification mapping (direct classification) may not be suitable as most of the existing algorithms are mostly designed for the binary classification. Furthermore, having many classes in a dataset may result in the possibility of having a high degree of overlapped class boundary. This paper discusses the application of multiclass classifier mappings such as one-vs-all (OvA), one-vs-one (OvO) and random correction code (RCC) on handheld based smartphone gait signal for person identification. The results is then compared with a single J48 decision tree for benchmark. From the result, it can be said that using multiclass classification mapping method thus partially improved the overall accuracy especially on OvO and RCC with width factor more than 4. For OvA, the accuracy result is worse than a single J48 due to a high number of classes.

  18. Correction factors in determining speed of sound among freshmen in undergraduate physics laboratory

    NASA Astrophysics Data System (ADS)

    Lutfiyah, A.; Adam, A. S.; Suprapto, N.; Kholiq, A.; Putri, N. P.

    2018-03-01

    This paper deals to identify the correction factor in determining speed of sound that have been done by freshmen in undergraduate physics laboratory. Then, the result will be compared with speed of sound that determining by senior student. Both of them used the similar instrument, namely resonance tube with apparatus. The speed of sound indicated by senior was 333.38 ms-1 with deviation to the theory about 3.98%. Meanwhile, for freshmen, the speed of sound experiment was categorised into three parts: accurate value (52.63%), middle value (31.58%) and lower value (15.79%). Based on analysis, some correction factors were suggested: human error in determining first and second harmonic, end correction of tube diameter, and another factors from environment, such as temperature, humidity, density, and pressure.

  19. Single-Phase Single-Stage Grid Tied Solar PV System with Active Power Filtering Using Power Balance Theory

    NASA Astrophysics Data System (ADS)

    Singh, Yashi; Hussain, Ikhlaq; Singh, Bhim; Mishra, Sukumar

    2018-06-01

    In this paper, power quality features such as harmonics mitigation, power factor correction with active power filtering are addressed in a single-stage, single-phase solar photovoltaic (PV) grid tied system. The Power Balance Theory (PBT) with perturb and observe based maximum power point tracking algorithm is proposed for the mitigation of power quality problems in a solar PV grid tied system. The solar PV array is interfaced to a single phase AC grid through a Voltage Source Converter (VSC), which provides active power flow from a solar PV array to the grid as well as to the load and it performs harmonics mitigation using PBT based control. The solar PV array power varies with sunlight and due to this, the solar PV grid tied VSC works only 8-10 h per day. At night, when PV power is zero, the VSC works as an active power filter for power quality improvement, and the load active power is delivered by the grid to the load connected at the point of common coupling. This increases the effective utilization of a VSC. The system is modelled and simulated using MATLAB and simulated responses of the system at nonlinear loads and varying environmental conditions are also validated experimentally on a prototype developed in the laboratory.

  20. Single-Phase Single-Stage Grid Tied Solar PV System with Active Power Filtering Using Power Balance Theory

    NASA Astrophysics Data System (ADS)

    Singh, Yashi; Hussain, Ikhlaq; Singh, Bhim; Mishra, Sukumar

    2018-03-01

    In this paper, power quality features such as harmonics mitigation, power factor correction with active power filtering are addressed in a single-stage, single-phase solar photovoltaic (PV) grid tied system. The Power Balance Theory (PBT) with perturb and observe based maximum power point tracking algorithm is proposed for the mitigation of power quality problems in a solar PV grid tied system. The solar PV array is interfaced to a single phase AC grid through a Voltage Source Converter (VSC), which provides active power flow from a solar PV array to the grid as well as to the load and it performs harmonics mitigation using PBT based control. The solar PV array power varies with sunlight and due to this, the solar PV grid tied VSC works only 8-10 h per day. At night, when PV power is zero, the VSC works as an active power filter for power quality improvement, and the load active power is delivered by the grid to the load connected at the point of common coupling. This increases the effective utilization of a VSC. The system is modelled and simulated using MATLAB and simulated responses of the system at nonlinear loads and varying environmental conditions are also validated experimentally on a prototype developed in the laboratory.

  1. Resistivity Correction Factor for the Four-Probe Method: Experiment I

    NASA Astrophysics Data System (ADS)

    Yamashita, Masato; Yamaguchi, Shoji; Enjoji, Hideo

    1988-05-01

    Experimental verification of the theoretically derived resistivity correction factor (RCF) is presented. Resistivity and sheet resistance measurements by the four-probe method are made on three samples: isotropic graphite, ITO film and Au film. It is indicated that the RCF can correct the apparent variations of experimental data to yield reasonable resistivities and sheet resistances.

  2. Monte Carlo calculated correction factors for diodes and ion chambers in small photon fields.

    PubMed

    Czarnecki, D; Zink, K

    2013-04-21

    The application of small photon fields in modern radiotherapy requires the determination of total scatter factors Scp or field factors Ω(f(clin), f(msr))(Q(clin), Q(msr)) with high precision. Both quantities require the knowledge of the field-size-dependent and detector-dependent correction factor k(f(clin), f(msr))(Q(clin), Q(msr)). The aim of this study is the determination of the correction factor k(f(clin), f(msr))(Q(clin), Q(msr)) for different types of detectors in a clinical 6 MV photon beam of a Siemens KD linear accelerator. The EGSnrc Monte Carlo code was used to calculate the dose to water and the dose to different detectors to determine the field factor as well as the mentioned correction factor for different small square field sizes. Besides this, the mean water to air stopping power ratio as well as the ratio of the mean energy absorption coefficients for the relevant materials was calculated for different small field sizes. As the beam source, a Monte Carlo based model of a Siemens KD linear accelerator was used. The results show that in the case of ionization chambers the detector volume has the largest impact on the correction factor k(f(clin), f(msr))(Q(clin), Q(msr)); this perturbation may contribute up to 50% to the correction factor. Field-dependent changes in stopping-power ratios are negligible. The magnitude of k(f(clin), f(msr))(Q(clin), Q(msr)) is of the order of 1.2 at a field size of 1 × 1 cm(2) for the large volume ion chamber PTW31010 and is still in the range of 1.05-1.07 for the PinPoint chambers PTW31014 and PTW31016. For the diode detectors included in this study (PTW60016, PTW 60017), the correction factor deviates no more than 2% from unity in field sizes between 10 × 10 and 1 × 1 cm(2), but below this field size there is a steep decrease of k(f(clin), f(msr))(Q(clin), Q(msr)) below unity, i.e. a strong overestimation of dose. Besides the field size and detector dependence, the results reveal a clear dependence of the correction factor on the accelerator geometry for field sizes below 1 × 1 cm(2), i.e. on the beam spot size of the primary electrons hitting the target. This effect is especially pronounced for the ionization chambers. In conclusion, comparing all detectors, the unshielded diode PTW60017 is highly recommended for small field dosimetry, since its correction factor k(f(clin), f(msr))(Q(clin), Q(msr)) is closest to unity in small fields and mainly independent of the electron beam spot size.

  3. Fatigue Crack Growth Rate and Stress-Intensity Factor Corrections for Out-of-Plane Crack Growth

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; Herman, Dave J.; James, Mark A.

    2003-01-01

    Fatigue crack growth rate testing is performed by automated data collection systems that assume straight crack growth in the plane of symmetry and use standard polynomial solutions to compute crack length and stress-intensity factors from compliance or potential drop measurements. Visual measurements used to correct the collected data typically include only the horizontal crack length, which for cracks that propagate out-of-plane, under-estimates the crack growth rates and over-estimates the stress-intensity factors. The authors have devised an approach for correcting both the crack growth rates and stress-intensity factors based on two-dimensional mixed mode-I/II finite element analysis (FEA). The approach is used to correct out-of-plane data for 7050-T7451 and 2025-T6 aluminum alloys. Results indicate the correction process works well for high DeltaK levels but fails to capture the mixed-mode effects at DeltaK levels approaching threshold (da/dN approximately 10(exp -10) meter/cycle).

  4. Quantification of hepatic steatosis with T1-independent, T2-corrected MR imaging with spectral modeling of fat: blinded comparison with MR spectroscopy.

    PubMed

    Meisamy, Sina; Hines, Catherine D G; Hamilton, Gavin; Sirlin, Claude B; McKenzie, Charles A; Yu, Huanzhou; Brittain, Jean H; Reeder, Scott B

    2011-03-01

    To prospectively compare an investigational version of a complex-based chemical shift-based fat fraction magnetic resonance (MR) imaging method with MR spectroscopy for the quantification of hepatic steatosis. This study was approved by the institutional review board and was HIPAA compliant. Written informed consent was obtained before all studies. Fifty-five patients (31 women, 24 men; age range, 24-71 years) were prospectively imaged at 1.5 T with quantitative MR imaging and single-voxel MR spectroscopy, each within a single breath hold. The effects of T2 correction, spectral modeling of fat, and magnitude fitting for eddy current correction on fat quantification with MR imaging were investigated by reconstructing fat fraction images from the same source data with different combinations of error correction. Single-voxel T2-corrected MR spectroscopy was used to measure fat fraction and served as the reference standard. All MR spectroscopy data were postprocessed at a separate institution by an MR physicist who was blinded to MR imaging results. Fat fractions measured with MR imaging and MR spectroscopy were compared statistically to determine the correlation (r(2)), and the slope and intercept as measures of agreement between MR imaging and MR spectroscopy fat fraction measurements, to determine whether MR imaging can help quantify fat, and examine the importance of T2 correction, spectral modeling of fat, and eddy current correction. Two-sided t tests (significance level, P = .05) were used to determine whether estimated slopes and intercepts were significantly different from 1.0 and 0.0, respectively. Sensitivity and specificity for the classification of clinically significant steatosis were evaluated. Overall, there was excellent correlation between MR imaging and MR spectroscopy for all reconstruction combinations. However, agreement was only achieved when T2 correction, spectral modeling of fat, and magnitude fitting for eddy current correction were used (r(2) = 0.99; slope ± standard deviation = 1.00 ± 0.01, P = .77; intercept ± standard deviation = 0.2% ± 0.1, P = .19). T1-independent chemical shift-based water-fat separation MR imaging methods can accurately quantify fat over the entire liver, by using MR spectroscopy as the reference standard, when T2 correction, spectral modeling of fat, and eddy current correction methods are used. © RSNA, 2011.

  5. Quantification of Hepatic Steatosis with T1-independent, T2*-corrected MR Imaging with Spectral Modeling of Fat: Blinded Comparison with MR Spectroscopy

    PubMed Central

    Hines, Catherine D. G.; Hamilton, Gavin; Sirlin, Claude B.; McKenzie, Charles A.; Yu, Huanzhou; Brittain, Jean H.; Reeder, Scott B.

    2011-01-01

    Purpose: To prospectively compare an investigational version of a complex-based chemical shift–based fat fraction magnetic resonance (MR) imaging method with MR spectroscopy for the quantification of hepatic steatosis. Materials and Methods: This study was approved by the institutional review board and was HIPAA compliant. Written informed consent was obtained before all studies. Fifty-five patients (31 women, 24 men; age range, 24–71 years) were prospectively imaged at 1.5 T with quantitative MR imaging and single-voxel MR spectroscopy, each within a single breath hold. The effects of T2* correction, spectral modeling of fat, and magnitude fitting for eddy current correction on fat quantification with MR imaging were investigated by reconstructing fat fraction images from the same source data with different combinations of error correction. Single-voxel T2-corrected MR spectroscopy was used to measure fat fraction and served as the reference standard. All MR spectroscopy data were postprocessed at a separate institution by an MR physicist who was blinded to MR imaging results. Fat fractions measured with MR imaging and MR spectroscopy were compared statistically to determine the correlation (r2), and the slope and intercept as measures of agreement between MR imaging and MR spectroscopy fat fraction measurements, to determine whether MR imaging can help quantify fat, and examine the importance of T2* correction, spectral modeling of fat, and eddy current correction. Two-sided t tests (significance level, P = .05) were used to determine whether estimated slopes and intercepts were significantly different from 1.0 and 0.0, respectively. Sensitivity and specificity for the classification of clinically significant steatosis were evaluated. Results: Overall, there was excellent correlation between MR imaging and MR spectroscopy for all reconstruction combinations. However, agreement was only achieved when T2* correction, spectral modeling of fat, and magnitude fitting for eddy current correction were used (r2 = 0.99; slope ± standard deviation = 1.00 ± 0.01, P = .77; intercept ± standard deviation = 0.2% ± 0.1, P = .19). Conclusion: T1-independent chemical shift–based water-fat separation MR imaging methods can accurately quantify fat over the entire liver, by using MR spectroscopy as the reference standard, when T2* correction, spectral modeling of fat, and eddy current correction methods are used. © RSNA, 2011 PMID:21248233

  6. Breakdown of the single-exchange approximation in third-order symmetry-adapted perturbation theory.

    PubMed

    Lao, Ka Un; Herbert, John M

    2012-03-22

    We report third-order symmetry-adapted perturbation theory (SAPT) calculations for several dimers whose intermolecular interactions are dominated by induction. We demonstrate that the single-exchange approximation (SEA) employed to derive the third-order exchange-induction correction (E(exch-ind)((30))) fails to quench the attractive nature of the third-order induction (E(ind)((30))), leading to one-dimensional potential curves that become attractive rather than repulsive at short intermolecular separations. A scaling equation for (E(exch-ind)((30))), based on an exact formula for the first-order exchange correction, is introduced to approximate exchange effects beyond the SEA, and qualitatively correct potential energy curves that include third-order induction are thereby obtained. For induction-dominated systems, our results indicate that a "hybrid" SAPT approach, in which a dimer Hartree-Fock calculation is performed in order to obtain a correction for higher-order induction, is necessary not only to obtain quantitative binding energies but also to obtain qualitatively correct potential energy surfaces. These results underscore the need to develop higher-order exchange-induction formulas that go beyond the SEA. © 2012 American Chemical Society

  7. Evaluation of dual energy quantitative CT for determining the spatial distributions of red marrow and bone for dosimetry in internal emitter radiation therapy

    PubMed Central

    Goodsitt, Mitchell M.; Shenoy, Apeksha; Shen, Jincheng; Howard, David; Schipper, Matthew J.; Wilderman, Scott; Christodoulou, Emmanuel; Chun, Se Young; Dewaraja, Yuni K.

    2014-01-01

    Purpose: To evaluate a three-equation three-unknown dual-energy quantitative CT (DEQCT) technique for determining region specific variations in bone spongiosa composition for improved red marrow dose estimation in radionuclide therapy. Methods: The DEQCT method was applied to 80/140 kVp images of patient-simulating lumbar sectional body phantoms of three sizes (small, medium, and large). External calibration rods of bone, red marrow, and fat-simulating materials were placed beneath the body phantoms. Similar internal calibration inserts were placed at vertebral locations within the body phantoms. Six test inserts of known volume fractions of bone, fat, and red marrow were also scanned. External-to-internal calibration correction factors were derived. The effects of body phantom size, radiation dose, spongiosa region segmentation granularity [single (∼17 × 17 mm) region of interest (ROI), 2 × 2, and 3 × 3 segmentation of that single ROI], and calibration method on the accuracy of the calculated volume fractions of red marrow (cellularity) and trabecular bone were evaluated. Results: For standard low dose DEQCT x-ray technique factors and the internal calibration method, the RMS errors of the estimated volume fractions of red marrow of the test inserts were 1.2–1.3 times greater in the medium body than in the small body phantom and 1.3–1.5 times greater in the large body than in the small body phantom. RMS errors of the calculated volume fractions of red marrow within 2 × 2 segmented subregions of the ROIs were 1.6–1.9 times greater than for no segmentation, and RMS errors for 3 × 3 segmented subregions were 2.3–2.7 times greater than those for no segmentation. Increasing the dose by a factor of 2 reduced the RMS errors of all constituent volume fractions by an average factor of 1.40 ± 0.29 for all segmentation schemes and body phantom sizes; increasing the dose by a factor of 4 reduced those RMS errors by an average factor of 1.71 ± 0.25. Results for external calibrations exhibited much larger RMS errors than size matched internal calibration. Use of an average body size external-to-internal calibration correction factor reduced the errors to closer to those for internal calibration. RMS errors of less than 30% or about 0.01 for the bone and 0.1 for the red marrow volume fractions would likely be satisfactory for human studies. Such accuracies were achieved for 3 × 3 segmentation of 5 mm slice images for: (a) internal calibration with 4 times dose for all size body phantoms, (b) internal calibration with 2 times dose for the small and medium size body phantoms, and (c) corrected external calibration with 4 times dose and all size body phantoms. Conclusions: Phantom studies are promising and demonstrate the potential to use dual energy quantitative CT to estimate the spatial distributions of red marrow and bone within the vertebral spongiosa. PMID:24784380

  8. Analytic and Computational Perspectives of Multi-Scale Theory for Homogeneous, Laminated Composite, and Sandwich Beams and Plates

    NASA Technical Reports Server (NTRS)

    Tessler, Alexander; Gherlone, Marco; Versino, Daniele; DiSciuva, Marco

    2012-01-01

    This paper reviews the theoretical foundation and computational mechanics aspects of the recently developed shear-deformation theory, called the Refined Zigzag Theory (RZT). The theory is based on a multi-scale formalism in which an equivalent single-layer plate theory is refined with a robust set of zigzag local layer displacements that are free of the usual deficiencies found in common plate theories with zigzag kinematics. In the RZT, first-order shear-deformation plate theory is used as the equivalent single-layer plate theory, which represents the overall response characteristics. Local piecewise-linear zigzag displacements are used to provide corrections to these overall response characteristics that are associated with the plate heterogeneity and the relative stiffnesses of the layers. The theory does not rely on shear correction factors and is equally accurate for homogeneous, laminated composite, and sandwich beams and plates. Regardless of the number of material layers, the theory maintains only seven kinematic unknowns that describe the membrane, bending, and transverse shear plate-deformation modes. Derived from the virtual work principle, RZT is well-suited for developing computationally efficient, C(sup 0)-continuous finite elements; formulations of several RZT-based elements are highlighted. The theory and its finite element approximations thus provide a unified and reliable computational platform for the analysis and design of high-performance load-bearing aerospace structures.

  9. Systemic peptide-mediated oligonucleotide therapy improves long-term survival in spinal muscular atrophy

    PubMed Central

    Hazell, Gareth; Shabanpoor, Fazel; Saleh, Amer F.; Bowerman, Melissa; Meijboom, Katharina E.; Zhou, Haiyan; Muntoni, Francesco; Talbot, Kevin; Gait, Michael J.; Wood, Matthew J. A.

    2016-01-01

    The development of antisense oligonucleotide therapy is an important advance in the identification of corrective therapy for neuromuscular diseases, such as spinal muscular atrophy (SMA). Because of difficulties of delivering single-stranded oligonucleotides to the CNS, current approaches have been restricted to using invasive intrathecal single-stranded oligonucleotide delivery. Here, we report an advanced peptide-oligonucleotide, Pip6a-morpholino phosphorodiamidate oligomer (PMO), which demonstrates potent efficacy in both the CNS and peripheral tissues in severe SMA mice following systemic administration. SMA results from reduced levels of the ubiquitously expressed survival motor neuron (SMN) protein because of loss-of-function mutations in the SMN1 gene. Therapeutic splice-switching oligonucleotides (SSOs) modulate exon 7 splicing of the nearly identical SMN2 gene to generate functional SMN protein. Pip6a-PMO yields SMN expression at high efficiency in peripheral and CNS tissues, resulting in profound phenotypic correction at doses an order-of-magnitude lower than required by standard naked SSOs. Survival is dramatically extended from 12 d to a mean of 456 d, with improvement in neuromuscular junction morphology, down-regulation of transcripts related to programmed cell death in the spinal cord, and normalization of circulating insulin-like growth factor 1. The potent systemic efficacy of Pip6a-PMO, targeting both peripheral as well as CNS tissues, demonstrates the high clinical potential of peptide-PMO therapy for SMA. PMID:27621445

  10. Analytic and Computational Perspectives of Multi-Scale Theory for Homogeneous, Laminated Composite, and Sandwich Beams and Plates

    NASA Technical Reports Server (NTRS)

    Tessler, Alexander; Gherlone, Marco; Versino, Daniele; Di Sciuva, Marco

    2012-01-01

    This paper reviews the theoretical foundation and computational mechanics aspects of the recently developed shear-deformation theory, called the Refined Zigzag Theory (RZT). The theory is based on a multi-scale formalism in which an equivalent single-layer plate theory is refined with a robust set of zigzag local layer displacements that are free of the usual deficiencies found in common plate theories with zigzag kinematics. In the RZT, first-order shear-deformation plate theory is used as the equivalent single-layer plate theory, which represents the overall response characteristics. Local piecewise-linear zigzag displacements are used to provide corrections to these overall response characteristics that are associated with the plate heterogeneity and the relative stiffnesses of the layers. The theory does not rely on shear correction factors and is equally accurate for homogeneous, laminated composite, and sandwich beams and plates. Regardless of the number of material layers, the theory maintains only seven kinematic unknowns that describe the membrane, bending, and transverse shear plate-deformation modes. Derived from the virtual work principle, RZT is well-suited for developing computationally efficient, C0-continuous finite elements; formulations of several RZT-based elements are highlighted. The theory and its finite elements provide a unified and reliable computational platform for the analysis and design of high-performance load-bearing aerospace structures.

  11. Dye shift: a neglected source of genotyping error in molecular ecology.

    PubMed

    Sutton, Jolene T; Robertson, Bruce C; Jamieson, Ian G

    2011-05-01

    Molecular ecologists must be vigilant in detecting and accounting for genotyping error, yet potential errors stemming from dye-induced mobility shift (dye shift) may be frequently neglected and largely unknown to researchers who employ 3-primer systems with automated genotyping. When left uncorrected, dye shift can lead to mis-scoring alleles and even to falsely calling new alleles if different dyes are used to genotype the same locus in subsequent reactions. When we used four different fluorophore labels from a standard dye set to genotype the same set of loci, differences in the resulting size estimates for a single allele ranged from 2.07 bp to 3.68 bp. The strongest effects were associated with the fluorophore PET, and relative degree of dye shift was inversely related to locus size. We found little evidence in the literature that dye shift is regularly accounted for in 3-primer studies, despite knowledge of this phenomenon existing for over a decade. However, we did find some references to erroneous standard correction factors for the same set of dyes that we tested. We thus reiterate the need for strict quality control when attempting to reduce possible sources of genotyping error, and in cases where different dyes are applied to a single locus, perhaps mistakenly, we strongly discourage researchers from assuming generic correction patterns. © 2011 Blackwell Publishing Ltd.

  12. Correction factor for ablation algorithms used in corneal refractive surgery with gaussian-profile beams

    NASA Astrophysics Data System (ADS)

    Jimenez, Jose Ramón; González Anera, Rosario; Jiménez del Barco, Luis; Hita, Enrique; Pérez-Ocón, Francisco

    2005-01-01

    We provide a correction factor to be added in ablation algorithms when a Gaussian beam is used in photorefractive laser surgery. This factor, which quantifies the effect of pulse overlapping, depends on beam radius and spot size. We also deduce the expected post-surgical corneal radius and asphericity when considering this factor. Data on 141 eyes operated on LASIK (laser in situ keratomileusis) with a Gaussian profile show that the discrepancy between experimental and expected data on corneal power is significantly lower when using the correction factor. For an effective improvement of post-surgical visual quality, this factor should be applied in ablation algorithms that do not consider the effects of pulse overlapping with a Gaussian beam.

  13. The combination of the error correction methods of GAFCHROMIC EBT3 film

    PubMed Central

    Li, Yinghui; Chen, Lixin; Zhu, Jinhan; Liu, Xiaowei

    2017-01-01

    Purpose The aim of this study was to combine a set of methods for use of radiochromic film dosimetry, including calibration, correction for lateral effects and a proposed triple-channel analysis. These methods can be applied to GAFCHROMIC EBT3 film dosimetry for radiation field analysis and verification of IMRT plans. Methods A single-film exposure was used to achieve dose calibration, and the accuracy was verified based on comparisons with the square-field calibration method. Before performing the dose analysis, the lateral effects on pixel values were corrected. The position dependence of the lateral effect was fitted by a parabolic function, and the curvature factors of different dose levels were obtained using a quadratic formula. After lateral effect correction, a triple-channel analysis was used to reduce disturbances and convert scanned images from films into dose maps. The dose profiles of open fields were measured using EBT3 films and compared with the data obtained using an ionization chamber. Eighteen IMRT plans with different field sizes were measured and verified with EBT3 films, applying our methods, and compared to TPS dose maps, to check correct implementation of film dosimetry proposed here. Results The uncertainty of lateral effects can be reduced to ±1 cGy. Compared with the results of Micke A et al., the residual disturbances of the proposed triple-channel method at 48, 176 and 415 cGy are 5.3%, 20.9% and 31.4% smaller, respectively. Compared with the ionization chamber results, the difference in the off-axis ratio and percentage depth dose are within 1% and 2%, respectively. For the application of IMRT verification, there were no difference between two triple-channel methods. Compared with only corrected by triple-channel method, the IMRT results of the combined method (include lateral effect correction and our present triple-channel method) show a 2% improvement for large IMRT fields with the criteria 3%/3 mm. PMID:28750023

  14. Spectral responsivity-based calibration of photometer and colorimeter standards

    NASA Astrophysics Data System (ADS)

    Eppeldauer, George P.

    2013-08-01

    Several new generation transfer- and working-standard illuminance meters and tristimulus colorimeters have been developed at the National Institute of Standards and Technology (NIST) [1] to measure all kinds of light sources with low uncertainty. The spectral and broad-band (illuminance) responsivities of the photometer (Y) channels of two tristimulus meters were determined at both the Spectral Irradiance and Radiance Responsivity Calibrations using Uniform Sources (SIRCUS) facility and the Spectral Comparator Facility (SCF) [2]. The two illuminance responsivities agreed within 0.1% with an overall uncertainty of 0.2% (k = 2), which is a factor of two improvement over the present NIST photometric scale. The first detector-based tristimulus color scale [3] was realized. All channels of the reference tristimulus colorimeter were calibrated at the SIRCUS. The other tristimulus meters were calibrated at the SCF and also against the reference meter on the photometry bench in broad-band measurement mode. The agreement between detector- and source-based calibrations was within 3 K when a tungsten lamp-standard was measured at 2856 K and 3100 K [4]. The color-temperature uncertainty of tungsten lamp measurements was 4 K (k = 2) between 2300 K and 3200 K, which is a factor of two improvement over the presently used NIST source-based color temperature scale. One colorimeter was extended with an additional (fifth) channel to apply software implemented matrix corrections. With this correction, the spectral mismatch caused color difference errors were decreased by a factor of 20 for single-color LEDs.

  15. Expectation values of twist fields and universal entanglement saturation of the free massive boson

    NASA Astrophysics Data System (ADS)

    Blondeau-Fournier, Olivier; Doyon, Benjamin

    2017-07-01

    The evaluation of vacuum expectation values (VEVs) in massive integrable quantum field theory (QFT) is a nontrivial renormalization-group ‘connection problem’—relating large and short distance asymptotics—and is in general unsolved. This is particularly relevant in the context of entanglement entropy, where VEVs of branch-point twist fields give universal saturation predictions. We propose a new method to compute VEVs of twist fields associated to continuous symmetries in QFT. The method is based on a differential equation in the continuous symmetry parameter, and gives VEVs as infinite form-factor series which truncate at two-particle level in free QFT. We verify the method by studying U(1) twist fields in free models, which are simply related to the branch-point twist fields. We provide the first exact formulae for the VEVs of such fields in the massive uncompactified free boson model, checking against an independent calculation based on angular quantization. We show that logarithmic terms, overlooked in the original work of Callan and Wilczek (1994 Phys. Lett. B 333 55-61), appear both in the massless and in the massive situations. This implies that, in agreement with numerical form-factor observations by Bianchini and Castro-Alvaredo (2016 Nucl. Phys. B 913 879-911), the standard power-law short-distance behavior is corrected by a logarithmic factor. We discuss how this gives universal formulae for the saturation of entanglement entropy of a single interval in near-critical harmonic chains, including loglog corrections.

  16. Selecting the correct weighting factors for linear and quadratic calibration curves with least-squares regression algorithm in bioanalytical LC-MS/MS assays and impacts of using incorrect weighting factors on curve stability, data quality, and assay performance.

    PubMed

    Gu, Huidong; Liu, Guowen; Wang, Jian; Aubry, Anne-Françoise; Arnold, Mark E

    2014-09-16

    A simple procedure for selecting the correct weighting factors for linear and quadratic calibration curves with least-squares regression algorithm in bioanalytical LC-MS/MS assays is reported. The correct weighting factor is determined by the relationship between the standard deviation of instrument responses (σ) and the concentrations (x). The weighting factor of 1, 1/x, or 1/x(2) should be selected if, over the entire concentration range, σ is a constant, σ(2) is proportional to x, or σ is proportional to x, respectively. For the first time, we demonstrated with detailed scientific reasoning, solid historical data, and convincing justification that 1/x(2) should always be used as the weighting factor for all bioanalytical LC-MS/MS assays. The impacts of using incorrect weighting factors on curve stability, data quality, and assay performance were thoroughly investigated. It was found that the most stable curve could be obtained when the correct weighting factor was used, whereas other curves using incorrect weighting factors were unstable. It was also found that there was a very insignificant impact on the concentrations reported with calibration curves using incorrect weighting factors as the concentrations were always reported with the passing curves which actually overlapped with or were very close to the curves using the correct weighting factor. However, the use of incorrect weighting factors did impact the assay performance significantly. Finally, the difference between the weighting factors of 1/x(2) and 1/y(2) was discussed. All of the findings can be generalized and applied into other quantitative analysis techniques using calibration curves with weighted least-squares regression algorithm.

  17. Updated MISR Dark Water Research Aerosol Retrieval Algorithm - Part 1: Coupled 1.1 km Ocean Surface Chlorophyll a Retrievals with Empirical Calibration Corrections

    NASA Technical Reports Server (NTRS)

    Limbacher, James A.; Kahn, Ralph A.

    2017-01-01

    As aerosol amount and type are key factors in the 'atmospheric correction' required for remote-sensing chlorophyll alpha concentration (Chl) retrievals, the Multi-angle Imaging SpectroRadiometer (MISR) can contribute to ocean color analysis despite a lack of spectral channels optimized for this application. Conversely, an improved ocean surface constraint should also improve MISR aerosol-type products, especially spectral single-scattering albedo (SSA) retrievals. We introduce a coupled, self-consistent retrieval of Chl together with aerosol over dark water. There are time-varying MISR radiometric calibration errors that significantly affect key spectral reflectance ratios used in the retrievals. Therefore, we also develop and apply new calibration corrections to the MISR top-of-atmosphere (TOA) reflectance data, based on comparisons with coincident MODIS (Moderate Resolution Imaging Spectroradiometer) observations and trend analysis of the MISR TOA bidirectional reflectance factors (BRFs) over three pseudo-invariant desert sites. We run the MISR research retrieval algorithm (RA) with the corrected MISR reflectances to generate MISR-retrieved Chl and compare the MISR Chl values to a set of 49 coincident SeaBASS (SeaWiFS Bio-optical Archive and Storage System) in situ observations. Where Chl(sub in situ) less than 1.5 mg m(exp -3), the results from our Chl model are expected to be of highest quality, due to algorithmic assumption validity. Comparing MISR RA Chl to the 49 coincident SeaBASS observations, we report a correlation coefficient (r) of 0.86, a root-mean-square error (RMSE) of 0.25, and a median absolute error (MAE) of 0.10. Statistically, a two-sample Kolmogorov- Smirnov test indicates that it is not possible to distinguish between MISR Chl and available SeaBASS in situ Chl values (p greater than 0.1). We also compare MODIS-Terra and MISR RA Chl statistically, over much broader regions. With about 1.5 million MISR-MODIS collocations having MODIS Chl less than 1.5 mg m(exp -3), MISR and MODIS show very good agreement: r = 0.96, MAE = 0.09, and RMSE = 0.15. The new dark water aerosol/Chl RA can retrieve Chl in low-Chl, case I waters, independent of other imagers such as MODIS, via a largely physical algorithm, compared to the commonly applied statistical ones. At a minimum, MISR's multi-angle data should help reduce uncertainties in the MODIS-Terra ocean color retrieval where coincident measurements are made, while also allowing for a more robust retrieval of particle properties such as spectral single-scattering albedo.

  18. Updated MISR dark water research aerosol retrieval algorithm - Part 1: Coupled 1.1 km ocean surface chlorophyll a retrievals with empirical calibration corrections

    NASA Astrophysics Data System (ADS)

    Limbacher, James A.; Kahn, Ralph A.

    2017-04-01

    As aerosol amount and type are key factors in the atmospheric correction required for remote-sensing chlorophyll a concentration (Chl) retrievals, the Multi-angle Imaging SpectroRadiometer (MISR) can contribute to ocean color analysis despite a lack of spectral channels optimized for this application. Conversely, an improved ocean surface constraint should also improve MISR aerosol-type products, especially spectral single-scattering albedo (SSA) retrievals. We introduce a coupled, self-consistent retrieval of Chl together with aerosol over dark water. There are time-varying MISR radiometric calibration errors that significantly affect key spectral reflectance ratios used in the retrievals. Therefore, we also develop and apply new calibration corrections to the MISR top-of-atmosphere (TOA) reflectance data, based on comparisons with coincident MODIS (Moderate Resolution Imaging Spectroradiometer) observations and trend analysis of the MISR TOA bidirectional reflectance factors (BRFs) over three pseudo-invariant desert sites. We run the MISR research retrieval algorithm (RA) with the corrected MISR reflectances to generate MISR-retrieved Chl and compare the MISR Chl values to a set of 49 coincident SeaBASS (SeaWiFS Bio-optical Archive and Storage System) in situ observations. Where Chlin situ < 1.5 mg m-3, the results from our Chl model are expected to be of highest quality, due to algorithmic assumption validity. Comparing MISR RA Chl to the 49 coincident SeaBASS observations, we report a correlation coefficient (r) of 0.86, a root-mean-square error (RMSE) of 0.25, and a median absolute error (MAE) of 0.10. Statistically, a two-sample Kolmogorov-Smirnov test indicates that it is not possible to distinguish between MISR Chl and available SeaBASS in situ Chl values (p > 0.1). We also compare MODIS-Terra and MISR RA Chl statistically, over much broader regions. With about 1.5 million MISR-MODIS collocations having MODIS Chl < 1.5 mg m-3, MISR and MODIS show very good agreement: r = 0. 96, MAE = 0.09, and RMSE = 0.15. The new dark water aerosol/Chl RA can retrieve Chl in low-Chl, case I waters, independent of other imagers such as MODIS, via a largely physical algorithm, compared to the commonly applied statistical ones. At a minimum, MISR's multi-angle data should help reduce uncertainties in the MODIS-Terra ocean color retrieval where coincident measurements are made, while also allowing for a more robust retrieval of particle properties such as spectral single-scattering albedo.

  19. Single molecule and single cell epigenomics.

    PubMed

    Hyun, Byung-Ryool; McElwee, John L; Soloway, Paul D

    2015-01-15

    Dynamically regulated changes in chromatin states are vital for normal development and can produce disease when they go awry. Accordingly, much effort has been devoted to characterizing these states under normal and pathological conditions. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is the most widely used method to characterize where in the genome transcription factors, modified histones, modified nucleotides and chromatin binding proteins are found; bisulfite sequencing (BS-seq) and its variants are commonly used to characterize the locations of DNA modifications. Though very powerful, these methods are not without limitations. Notably, they are best at characterizing one chromatin feature at a time, yet chromatin features arise and function in combination. Investigators commonly superimpose separate ChIP-seq or BS-seq datasets, and then infer where chromatin features are found together. While these inferences might be correct, they can be misleading when the chromatin source has distinct cell types, or when a given cell type exhibits any cell to cell variation in chromatin state. These ambiguities can be eliminated by robust methods that directly characterize the existence and genomic locations of combinations of chromatin features in very small inputs of cells or ideally, single cells. Here we review single molecule epigenomic methods under development to overcome these limitations, the technical challenges associated with single molecule methods and their potential application to single cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Single Molecule and Single Cell Epigenomics

    PubMed Central

    Hyun, Byung-Ryool; McElwee, John L.; Soloway, Paul D.

    2014-01-01

    Dynamically regulated changes in chromatin states are vital for normal development and can produce disease when they go awry. Accordingly, much effort has been devoted to characterizing these states under normal and pathological conditions. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is the most widely used method to characterize where in the genome transcription factors, modified histones, modified nucleotides and chromatin binding proteins are found; bisulfite sequencing (BS-seq) and its variants are commonly used to characterize the locations of DNA modifications. Though very powerful, these methods are not without limitations. Notably, they are best at characterizing one chromatin feature at a time, yet chromatin features arise and function in combination. Investigators commonly superimpose separate ChIP-seq or BS-seq datasets, and then infer where chromatin features are found together. While these inferences might be correct, they can be misleading when the chromatin source has distinct cell types, or when a given cell type exhibits any cell to cell variation in chromatin state. These ambiguities can be eliminated by robust methods that directly characterize the existence and genomic locations of combinations of chromatin features in very small inputs of cells or ideally, single cells. Here we review single molecule epigenomic methods under development to overcome these limitations, the technical challenges associated with single molecule methods and their potential application to single cells. PMID:25204781

  1. Fisheye camera method for spatial non-uniformity corrections in luminous flux measurements with integrating spheres

    NASA Astrophysics Data System (ADS)

    Kokka, Alexander; Pulli, Tomi; Poikonen, Tuomas; Askola, Janne; Ikonen, Erkki

    2017-08-01

    This paper presents a fisheye camera method for determining spatial non-uniformity corrections in luminous flux measurements with integrating spheres. Using a fisheye camera installed into a port of an integrating sphere, the relative angular intensity distribution of the lamp under test is determined. This angular distribution is used for calculating the spatial non-uniformity correction for the lamp when combined with the spatial responsivity data of the sphere. The method was validated by comparing it to a traditional goniophotometric approach when determining spatial correction factors for 13 LED lamps with different angular spreads. The deviations between the spatial correction factors obtained using the two methods ranged from -0.15 % to 0.15%. The mean magnitude of the deviations was 0.06%. For a typical LED lamp, the expanded uncertainty (k = 2 ) for the spatial non-uniformity correction factor was evaluated to be 0.28%. The fisheye camera method removes the need for goniophotometric measurements in determining spatial non-uniformity corrections, thus resulting in considerable system simplification. Generally, no permanent modifications to existing integrating spheres are required.

  2. Accurate FRET Measurements within Single Diffusing Biomolecules Using Alternating-Laser Excitation

    PubMed Central

    Lee, Nam Ki; Kapanidis, Achillefs N.; Wang, You; Michalet, Xavier; Mukhopadhyay, Jayanta; Ebright, Richard H.; Weiss, Shimon

    2005-01-01

    Fluorescence resonance energy transfer (FRET) between a donor (D) and an acceptor (A) at the single-molecule level currently provides qualitative information about distance, and quantitative information about kinetics of distance changes. Here, we used the sorting ability of confocal microscopy equipped with alternating-laser excitation (ALEX) to measure accurate FRET efficiencies and distances from single molecules, using corrections that account for cross-talk terms that contaminate the FRET-induced signal, and for differences in the detection efficiency and quantum yield of the probes. ALEX yields accurate FRET independent of instrumental factors, such as excitation intensity or detector alignment. Using DNA fragments, we showed that ALEX-based distances agree well with predictions from a cylindrical model of DNA; ALEX-based distances fit better to theory than distances obtained at the ensemble level. Distance measurements within transcription complexes agreed well with ensemble-FRET measurements, and with structural models based on ensemble-FRET and x-ray crystallography. ALEX can benefit structural analysis of biomolecules, especially when such molecules are inaccessible to conventional structural methods due to heterogeneity or transient nature. PMID:15653725

  3. Examining Energy Expenditure in Youth Using XBOX Kinect: Differences by Player Mode.

    PubMed

    Barkman, Jourdin; Pfeiffer, Karin; Diltz, Allie; Peng, Wei

    2016-06-01

    Replacing sedentary time with physical activity through new generation exergames (eg, XBOX Kinect) is a potential intervention strategy. The study's purpose was to compare youth energy expenditure while playing different exergames in single- vs. multiplayer mode. Participants (26 male, 14 female) were 10 to 13 years old. They wore a portable metabolic analyzer while playing 4 XBOX Kinect games for 15 minutes each (2 single-, 2 multiplayer). Repeated-measures ANOVA (with Bonferroni correction) was used to examine player mode differences, controlling for age group, sex, weight status, and game. There was a significant difference in energy expenditure between single player (mean = 15.4 ml/kg/min, SD = 4.5) and multiplayer mode (mean = 16.8 ml/kg/min, SD = 4.7). Overweight and obese participants (mean = 13.7 ml/kg/min, SD = 4.2) expended less energy than normal weight (mean = 17.8 ml/kg/min, SD = 4.5) during multiplayer mode (d = 0.93). Player mode, along with personal factors such as weight status, may be important to consider in energy expenditure during exergames.

  4. The performance of single and multi-collector ICP-MS instruments for fast and reliable 34S/32S isotope ratio measurements†

    PubMed Central

    Pröfrock, Daniel; Irrgeher, Johanna; Prohaska, Thomas

    2016-01-01

    The performance and validation characteristics of different single collector inductively coupled plasma mass spectrometers based on different technical principles (ICP-SFMS, ICP-QMS in reaction and collision modes, and ICP-MS/MS) were evaluated in comparison to the performance of MC ICP-MS for fast and reliable S isotope ratio measurements. The validation included the determination of LOD, BEC, measurement repeatability, within-lab reproducibility and deviation from certified values as well as a study on instrumental isotopic fractionation (IIF) and the calculation of the combined standard measurement uncertainty. Different approaches of correction for IIF applying external intra-elemental IIF correction (aka standard-sample bracketing) using certified S reference materials and internal inter-elemental IIF (aka internal standardization) correction using Si isotope ratios in MC ICP-MS are explained and compared. The resulting combined standard uncertainties of examined ICP-QMS systems were not better than 0.3–0.5% (uc,rel), which is in general insufficient to differentiate natural S isotope variations. Although the performance of the single collector ICP-SFMS is better (single measurement uc,rel = 0.08%), the measurement reproducibility (>0.2%) is the major limit of this system and leaves room for improvement. MC ICP-MS operated in the edge mass resolution mode, applying bracketing for correction of IIF, provided isotope ratio values with the highest quality (relative combined measurement uncertainty: 0.02%; deviation from the certified value: <0.002%). PMID:27812369

  5. The performance of single and multi-collector ICP-MS instruments for fast and reliable 34S/32S isotope ratio measurements.

    PubMed

    Hanousek, Ondrej; Brunner, Marion; Pröfrock, Daniel; Irrgeher, Johanna; Prohaska, Thomas

    2016-11-14

    The performance and validation characteristics of different single collector inductively coupled plasma mass spectrometers based on different technical principles (ICP-SFMS, ICP-QMS in reaction and collision modes, and ICP-MS/MS) were evaluated in comparison to the performance of MC ICP-MS for fast and reliable S isotope ratio measurements. The validation included the determination of LOD, BEC, measurement repeatability, within-lab reproducibility and deviation from certified values as well as a study on instrumental isotopic fractionation (IIF) and the calculation of the combined standard measurement uncertainty. Different approaches of correction for IIF applying external intra-elemental IIF correction (aka standard-sample bracketing) using certified S reference materials and internal inter-elemental IIF (aka internal standardization) correction using Si isotope ratios in MC ICP-MS are explained and compared. The resulting combined standard uncertainties of examined ICP-QMS systems were not better than 0.3-0.5% ( u c,rel ), which is in general insufficient to differentiate natural S isotope variations. Although the performance of the single collector ICP-SFMS is better (single measurement u c,rel = 0.08%), the measurement reproducibility (>0.2%) is the major limit of this system and leaves room for improvement. MC ICP-MS operated in the edge mass resolution mode, applying bracketing for correction of IIF, provided isotope ratio values with the highest quality (relative combined measurement uncertainty: 0.02%; deviation from the certified value: <0.002%).

  6. First Measurement of the Beam Normal Single Spin Asymmetry in $Δ$ Resonance Production by $$Q_{\\rm weak}$$

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuruzzaman, nfn

    The beam normal single spin asymmetry (more » $$B_{\\rm n}$$) is generated in the scattering of transversely polarized electrons from unpolarized nuclei. The asymmetry arises from the interference of the imaginary part of the two-photon exchange with the one-photon exchange amplitude. The $$Q_{\\rm weak}$$ experiment has made the first measurement of $$B_{\\rm n}$$ in the production of the $$\\Delta$$(1232) resonance, using the $$Q_{\\rm weak}$$ apparatus in Hall-C at the Thomas Jefferson National Accelerator Facility. The final transverse asymmetry, corrected for backgrounds and beam polarization, is $$B_{\\rm n}$$ = 43 $$\\pm$$ 16 ppm at beam energy 1.16 GeV at an average scattering angle of about 8.3 degrees, and invariant mass of 1.2 GeV. The measured preliminary $$B_{\\rm n}$$ agrees with a preliminary theoretical calculation. $$B_{\\rm n}$$ for the $$\\Delta$$ is the only known observable that is sensitive to the $$\\Delta$$ elastic form-factors ($$\\gamma$$*$$\\Delta\\Delta$$) in addition to the generally studied transition form-factors ($$\\gamma$$*N$$\\Delta$$), but extracting this information will require significant theoretical input.« less

  7. Plane-dependent ML scatter scaling: 3D extension of the 2D simulated single scatter (SSS) estimate.

    PubMed

    Rezaei, Ahmadreza; Salvo, Koen; Vahle, Thomas; Panin, Vladimir; Casey, Michael; Boada, Fernando; Defrise, Michel; Nuyts, Johan

    2017-07-24

    Scatter correction is typically done using a simulation of the single scatter, which is then scaled to account for multiple scatters and other possible model mismatches. This scaling factor is determined by fitting the simulated scatter sinogram to the measured sinogram, using only counts measured along LORs that do not intersect the patient body, i.e. 'scatter-tails'. Extending previous work, we propose to scale the scatter with a plane dependent factor, which is determined as an additional unknown in the maximum likelihood (ML) reconstructions, using counts in the entire sinogram rather than only the 'scatter-tails'. The ML-scaled scatter estimates are validated using a Monte-Carlo simulation of a NEMA-like phantom, a phantom scan with typical contrast ratios of a 68 Ga-PSMA scan, and 23 whole-body 18 F-FDG patient scans. On average, we observe a 12.2% change in the total amount of tracer activity of the MLEM reconstructions of our whole-body patient database when the proposed ML scatter scales are used. Furthermore, reconstructions using the ML-scaled scatter estimates are found to eliminate the typical 'halo' artifacts that are often observed in the vicinity of high focal uptake regions.

  8. Re-evaluation of the correction factors for the GROVEX

    NASA Astrophysics Data System (ADS)

    Ketelhut, Steffen; Meier, Markus

    2018-04-01

    The GROVEX (GROssVolumige EXtrapolationskammer, large-volume extrapolation chamber) is the primary standard for the dosimetry of low-dose-rate interstitial brachytherapy at the Physikalisch-Technische Bundesanstalt (PTB). In the course of setup modifications and re-measuring of several dimensions, the correction factors have been re-evaluated in this work. The correction factors for scatter and attenuation have been recalculated using the Monte Carlo software package EGSnrc, and a new expression has been found for the divergence correction. The obtained results decrease the measured reference air kerma rate by approximately 0.9% for the representative example of a seed of type Bebig I25.S16C. This lies within the expanded uncertainty (k  =  2).

  9. Detector signal correction method and system

    DOEpatents

    Carangelo, Robert M.; Duran, Andrew J.; Kudman, Irwin

    1995-07-11

    Corrective factors are applied so as to remove anomalous features from the signal generated by a photoconductive detector, and to thereby render the output signal highly linear with respect to the energy of incident, time-varying radiation. The corrective factors may be applied through the use of either digital electronic data processing means or analog circuitry, or through a combination of those effects.

  10. Detector signal correction method and system

    DOEpatents

    Carangelo, R.M.; Duran, A.J.; Kudman, I.

    1995-07-11

    Corrective factors are applied so as to remove anomalous features from the signal generated by a photoconductive detector, and to thereby render the output signal highly linear with respect to the energy of incident, time-varying radiation. The corrective factors may be applied through the use of either digital electronic data processing means or analog circuitry, or through a combination of those effects. 5 figs.

  11. Interleaved segment correction achieves higher improvement factors in using genetic algorithm to optimize light focusing through scattering media

    NASA Astrophysics Data System (ADS)

    Li, Runze; Peng, Tong; Liang, Yansheng; Yang, Yanlong; Yao, Baoli; Yu, Xianghua; Min, Junwei; Lei, Ming; Yan, Shaohui; Zhang, Chunmin; Ye, Tong

    2017-10-01

    Focusing and imaging through scattering media has been proved possible with high resolution wavefront shaping. A completely scrambled scattering field can be corrected by applying a correction phase mask on a phase only spatial light modulator (SLM) and thereby the focusing quality can be improved. The correction phase is often found by global searching algorithms, among which Genetic Algorithm (GA) stands out for its parallel optimization process and high performance in noisy environment. However, the convergence of GA slows down gradually with the progression of optimization, causing the improvement factor of optimization to reach a plateau eventually. In this report, we propose an interleaved segment correction (ISC) method that can significantly boost the improvement factor with the same number of iterations comparing with the conventional all segment correction method. In the ISC method, all the phase segments are divided into a number of interleaved groups; GA optimization procedures are performed individually and sequentially among each group of segments. The final correction phase mask is formed by applying correction phases of all interleaved groups together on the SLM. The ISC method has been proved significantly useful in practice because of its ability to achieve better improvement factors when noise is present in the system. We have also demonstrated that the imaging quality is improved as better correction phases are found and applied on the SLM. Additionally, the ISC method lowers the demand of dynamic ranges of detection devices. The proposed method holds potential in applications, such as high-resolution imaging in deep tissue.

  12. Perceptions of safety culture vary across the intensive care units of a single institution.

    PubMed

    Huang, David T; Clermont, Gilles; Sexton, J Bryan; Karlo, Crystal A; Miller, Rachel G; Weissfeld, Lisa A; Rowan, Kathy M; Angus, Derek C

    2007-01-01

    To determine whether safety culture factors varied across the intensive care units (ICUs) of a single hospital, between nurses and physicians, and to explore ICU nursing directors' perceptions of their personnel's attitudes. Cross-sectional surveys using the Safety Attitudes Questionnaire-ICU version, a validated, aviation industry-based safety culture survey instrument. It assesses culture across six factors: teamwork climate, perceptions of management, safety climate, stress recognition, job satisfaction, and work environment. Four ICUs in one tertiary care hospital. All ICU personnel. We conducted the survey from January 1 to April 1, 2003, and achieved a 70.2% response rate (318 of 453). We calculated safety culture factor mean and percent-positive scores (percentage of respondents with a mean score of > or =75 on a 0-100 scale for which 100 is best) for each ICU. We compared mean ICU scores by ANOVA and percent-positive scores by chi-square. Mean and percent-positive scores by job category were modeled using a generalized estimating equations approach and compared using Wald statistics. We asked ICU nursing directors to estimate their personnel's mean scores and generated ratios of their estimates to the actual scores.Overall, factor scores were low to moderate across all factors (range across ICUs: 43.4-74.9 mean scores, 8.6-69.4 percent positive). Mean and percent-positive scores differed significantly (p < .0083, Bonferroni correction) across ICUs, except for stress recognition, which was uniformly low. Compared with physicians, nurses had significantly lower mean working conditions and perceptions of management scores. ICU nursing directors tended to overestimate their personnel's attitudes. This was greatest for teamwork, for which all director estimates exceeded actual scores, with a mean overestimate of 16%. Significant safety culture variation exists across ICUs of a single hospital. ICU nursing directors tend to overestimate their personnel's attitudes, particularly for teamwork. Culture assessments based on institutional level analysis or director opinion may be flawed.

  13. Calculation of the Pitot tube correction factor for Newtonian and non-Newtonian fluids.

    PubMed

    Etemad, S Gh; Thibault, J; Hashemabadi, S H

    2003-10-01

    This paper presents the numerical investigation performed to calculate the correction factor for Pitot tubes. The purely viscous non-Newtonian fluids with the power-law model constitutive equation were considered. It was shown that the power-law index, the Reynolds number, and the distance between the impact and static tubes have a major influence on the Pitot tube correction factor. The problem was solved for a wide range of these parameters. It was shown that employing Bernoulli's equation could lead to large errors, which depend on the magnitude of the kinetic energy and energy friction loss terms. A neural network model was used to correlate the correction factor of a Pitot tube as a function of these three parameters. This correlation is valid for most Newtonian, pseudoplastic, and dilatant fluids at low Reynolds number.

  14. Entrance dose measurements for in‐vivo diode dosimetry: Comparison of correction factors for two types of commercial silicon diode detectors

    PubMed Central

    Zhu, X. R.

    2000-01-01

    Silicon diode dosimeters have been used routinely for in‐vivo dosimetry. Despite their popularity, an appropriate implementation of an in‐vivo dosimetry program using diode detectors remains a challenge for clinical physicists. One common approach is to relate the diode readout to the entrance dose, that is, dose to the reference depth of maximum dose such as dmax for the 10×10 cm2 field. Various correction factors are needed in order to properly infer the entrance dose from the diode readout, depending on field sizes, target‐to‐surface distances (TSD), and accessories (such as wedges and compensate filters). In some clinical practices, however, no correction factor is used. In this case, a diode‐dosimeter‐based in‐vivo dosimetry program may not serve the purpose effectively; that is, to provide an overall check of the dosimetry procedure. In this paper, we provide a formula to relate the diode readout to the entrance dose. Correction factors for TSD, field size, and wedges used in this formula are also clearly defined. Two types of commercial diode detectors, ISORAD (n‐type) and the newly available QED (p‐type) (Sun Nuclear Corporation), are studied. We compared correction factors for TSDs, field sizes, and wedges. Our results are consistent with the theory of radiation damage of silicon diodes. Radiation damage has been shown to be more serious for n‐type than for p‐type detectors. In general, both types of diode dosimeters require correction factors depending on beam energy, TSD, field size, and wedge. The magnitudes of corrections for QED (p‐type) diodes are smaller than ISORAD detectors. PACS number(s): 87.66.–a, 87.52.–g PMID:11674824

  15. Bridgeless SEPIC PFC Converter for Multistring LED Driver

    NASA Astrophysics Data System (ADS)

    Jha, Aman; Singh, Bhim

    2018-05-01

    This paper deals with Power Factor Correction (PFC) in Low Voltage High Current (LVHC) multi-string light emitting diode (LED) using a bridgeless (BL) single ended primary inductance converter (SEPIC). This application is designed for large area LED lighting with illumination control. A multi-mode LED dimming technique is used for the lighting control. The BL-SEPIC PFC converter is used as a load emulator for high power factor. The regulated low voltage from flyback converter is a source power to the synchronous buck converters for multi-string LED driver and forced cooling system for LED junction. The BL-SEPIC PFC converter inductor design is based on Discontinuous Inductor Current Modes (DICM) which provides good PFC at low cost. Test results are found quite satisfactory for universal input AC (90-265 V). There is significant improvement in the power factor and input current Total Harmonic Distortion (THD) with good margin of harmonic limits for lighting IEC 61000-3-2 Class C.

  16. Precise predictions of H2O line shapes over a wide pressure range using simulations corrected by a single measurement

    NASA Astrophysics Data System (ADS)

    Ngo, N. H.; Nguyen, H. T.; Tran, H.

    2018-03-01

    In this work, we show that precise predictions of the shapes of H2O rovibrational lines broadened by N2, over a wide pressure range, can be made using simulations corrected by a single measurement. For that, we use the partially-correlated speed-dependent Keilson-Storer (pcsdKS) model whose parameters are deduced from molecular dynamics simulations and semi-classical calculations. This model takes into account the collision-induced velocity-changes effects, the speed dependences of the collisional line width and shift as well as the correlation between velocity and internal-state changes. For each considered transition, the model is corrected by using a parameter deduced from its broadening coefficient measured for a single pressure. The corrected-pcsdKS model is then used to simulate spectra for a wide pressure range. Direct comparisons of the corrected-pcsdKS calculated and measured spectra of 5 rovibrational lines of H2O for various pressures, from 0.1 to 1.2 atm, show very good agreements. Their maximum differences are in most cases well below 1%, much smaller than residuals obtained when fitting the measurements with the Voigt line shape. This shows that the present procedure can be used to predict H2O line shapes for various pressure conditions and thus the simulated spectra can be used to deduce the refined line-shape parameters to complete spectroscopic databases, in the absence of relevant experimental values.

  17. Hallux valgus surgery may produce early improvements in balance control: results of a cross-sectional pilot study.

    PubMed

    Sadra, Saba; Fleischer, Adam; Klein, Erin; Grewal, Gurtej S; Knight, Jessica; Weil, Lowell Scott; Weil, Lowell; Najafi, Bijan

    2013-01-01

    Hallux valgus (HV) is associated with poorer performance during gait and balance tasks and is an independent risk factor for falls in older adults. We sought to assess whether corrective HV surgery improves gait and balance. Using a cross-sectional study design, gait and static balance data were obtained from 40 adults: 19 patients with HV only (preoperative group), 10 patients who recently underwent successful HV surgery (postoperative group), and 11 control participants. Assessments were made in the clinic using body-worn sensors. Patients in the preoperative group generally demonstrated poorer static balance control compared with the other two groups. Despite similar age and body mass index, postoperative patients exhibited 29% and 63% less center of mass sway than preoperative patients during double-and single-support balance assessments, respectively (analysis of variance P =.17 and P =.14, respectively [both eyes open condition]). Overall, gait performance was similar among the groups, except for speed during gait initiation, where lower speeds were encountered in the postoperative group compared with the preoperative group (Scheffe P = .049). This study provides supportive evidence regarding the benefits of corrective lower-extremity surgery on certain aspects of balance control. Patients seem to demonstrate early improvements in static balance after corrective HV surgery, whereas gait improvements may require a longer recovery time. Further research using a longitudinal study design and a larger sample size capable of assessing the long-term effects of HV surgical correction on balance and gait is probably warranted.

  18. On the effective field theory for quasi-single field inflation

    NASA Astrophysics Data System (ADS)

    Tong, Xi; Wang, Yi; Zhou, Siyi

    2017-11-01

    We study the effective field theory (EFT) description of the virtual particle effects in quasi-single field inflation, which unifies the previous results on large mass and large mixing cases. By using a horizon crossing approximation and matching with known limits, approximate expressions for the power spectrum and the spectral index are obtained. The error of the approximate solution is within 10% in dominate parts of the parameter space, which corresponds to less-than-0.1% error in the ns-r diagram. The quasi-single field corrections on the ns-r diagram are plotted for a few inflation models. Especially, the quasi-single field correction drives m2phi2 inflation to the best fit region on the ns-r diagram, with an amount of equilateral non-Gaussianity which can be tested in future experiments.

  19. Sequence polymorphism in an insect RNA virus field population: A snapshot from a single point in space and time reveals stochastic differences among and within individual hosts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stenger, Drake C., E-mail: drake.stenger@ars.usda.

    Population structure of Homalodisca coagulata Virus-1 (HoCV-1) among and within field-collected insects sampled from a single point in space and time was examined. Polymorphism in complete consensus sequences among single-insect isolates was dominated by synonymous substitutions. The mutant spectrum of the C2 helicase region within each single-insect isolate was unique and dominated by nonsynonymous singletons. Bootstrapping was used to correct the within-isolate nonsynonymous:synonymous arithmetic ratio (N:S) for RT-PCR error, yielding an N:S value ~one log-unit greater than that of consensus sequences. Probability of all possible single-base substitutions for the C2 region predicted N:S values within 95% confidence limits of themore » corrected within-isolate N:S when the only constraint imposed was viral polymerase error bias for transitions over transversions. These results indicate that bottlenecks coupled with strong negative/purifying selection drive consensus sequences toward neutral sequence space, and that most polymorphism within single-insect isolates is composed of newly-minted mutations sampled prior to selection. -- Highlights: •Sampling protocol minimized differential selection/history among isolates. •Polymorphism among consensus sequences dominated by negative/purifying selection. •Within-isolate N:S ratio corrected for RT-PCR error by bootstrapping. •Within-isolate mutant spectrum dominated by new mutations yet to undergo selection.« less

  20. Subthreshold muscle twitches dissociate oscillatory neural signatures of conflicts from errors.

    PubMed

    Cohen, Michael X; van Gaal, Simon

    2014-02-01

    We investigated the neural systems underlying conflict detection and error monitoring during rapid online error correction/monitoring mechanisms. We combined data from four separate cognitive tasks and 64 subjects in which EEG and EMG (muscle activity from the thumb used to respond) were recorded. In typical neuroscience experiments, behavioral responses are classified as "error" or "correct"; however, closer inspection of our data revealed that correct responses were often accompanied by "partial errors" - a muscle twitch of the incorrect hand ("mixed correct trials," ~13% of the trials). We found that these muscle twitches dissociated conflicts from errors in time-frequency domain analyses of EEG data. In particular, both mixed-correct trials and full error trials were associated with enhanced theta-band power (4-9Hz) compared to correct trials. However, full errors were additionally associated with power and frontal-parietal synchrony in the delta band. Single-trial robust multiple regression analyses revealed a significant modulation of theta power as a function of partial error correction time, thus linking trial-to-trial fluctuations in power to conflict. Furthermore, single-trial correlation analyses revealed a qualitative dissociation between conflict and error processing, such that mixed correct trials were associated with positive theta-RT correlations whereas full error trials were associated with negative delta-RT correlations. These findings shed new light on the local and global network mechanisms of conflict monitoring and error detection, and their relationship to online action adjustment. © 2013.

  1. Automatic summarization of changes in biological image sequences using algorithmic information theory.

    PubMed

    Cohen, Andrew R; Bjornsson, Christopher S; Temple, Sally; Banker, Gary; Roysam, Badrinath

    2009-08-01

    An algorithmic information-theoretic method is presented for object-level summarization of meaningful changes in image sequences. Object extraction and tracking data are represented as an attributed tracking graph (ATG). Time courses of object states are compared using an adaptive information distance measure, aided by a closed-form multidimensional quantization. The notion of meaningful summarization is captured by using the gap statistic to estimate the randomness deficiency from algorithmic statistics. The summary is the clustering result and feature subset that maximize the gap statistic. This approach was validated on four bioimaging applications: 1) It was applied to a synthetic data set containing two populations of cells differing in the rate of growth, for which it correctly identified the two populations and the single feature out of 23 that separated them; 2) it was applied to 59 movies of three types of neuroprosthetic devices being inserted in the brain tissue at three speeds each, for which it correctly identified insertion speed as the primary factor affecting tissue strain; 3) when applied to movies of cultured neural progenitor cells, it correctly distinguished neurons from progenitors without requiring the use of a fixative stain; and 4) when analyzing intracellular molecular transport in cultured neurons undergoing axon specification, it automatically confirmed the role of kinesins in axon specification.

  2. Experimental Guidance of ISB Corrections via Direct Nuclear Reactions

    NASA Astrophysics Data System (ADS)

    Leach, K. G.; Garrett, P. E.; Ball, G. C.; Bangay, J. C.; Bianco, L.; Demand, G. A.; Faestermann, T.; Finlay, P.; Green, K. L.; Hertenberger, R.; Kriicken, R.; Phillips, A. A.; Rand, E. T.; Sumithrarachchi, C. S.; Svensson, C. E.; Towner, I. S.; Triambak, S.; Wirth, H.-F.; Wong, J.

    2011-09-01

    The most recent isospin-symmetry-breaking corrections, δc, of Towner and Hardy for superallowed Fermi β-decay transitions, have included the opening of specific core orbitals. This change has resulted in significant deviations in some of the δc factors from their previous calculations, and an improved agreement of the individual corrected Script Ft values with the overall world average of the 13 most precise cases. While this is consistent with the conserved-vector-current (CVC) hypothesis of the Standard Model, these new calculations must be thoroughly tested, and guidance must be given for the improvement of calculations for the upper-pf shell nuclei. Using the (d,t) reaction mechanism to probe the single neutron wavefunction overlap, information regarding the relevant shell-model configurations needed in the calculation can be determined. An experiment was therefore performed with a 22 MeV polarized deuterium beam from the MP tandem Van de Graaff accelerator in Munich, Germany. Using the Q3D magnetic spectrograph, and a cathode-strip focal-plane detector, outgoing tritons were analyzed at 9 angles between 10° and 60°, up to an excitation energy of 4.8 MeV. This proceeding reports the motivational and experimental details for the 64Zn(d,t)63Zn transfer work presented.

  3. A drift correction optimization technique for the reduction of the inter-measurement dispersion of isotope ratios measured using a multi-collector plasma mass spectrometer

    NASA Astrophysics Data System (ADS)

    Doherty, W.; Lightfoot, P. C.; Ames, D. E.

    2014-08-01

    The effects of polynomial interpolation and internal standardization drift corrections on the inter-measurement dispersion (statistical) of isotope ratios measured with a multi-collector plasma mass spectrometer were investigated using the (analyte, internal standard) isotope systems of (Ni, Cu), (Cu, Ni), (Zn, Cu), (Zn, Ga), (Sm, Eu), (Hf, Re) and (Pb, Tl). The performance of five different correction factors was compared using a (statistical) range based merit function ωm which measures the accuracy and inter-measurement range of the instrument calibration. The frequency distribution of optimal correction factors over two hundred data sets uniformly favored three particular correction factors while the remaining two correction factors accounted for a small but still significant contribution to the reduction of the inter-measurement dispersion. Application of the merit function is demonstrated using the detection of Cu and Ni isotopic fractionation in laboratory and geologic-scale chemical reactor systems. Solvent extraction (diphenylthiocarbazone (Cu, Pb) and dimethylglyoxime (Ni) was used to either isotopically fractionate the metal during extraction using the method of competition or to isolate the Cu and Ni from the sample (sulfides and associated silicates). In the best case, differences in isotopic composition of ± 3 in the fifth significant figure could be routinely and reliably detected for Cu65/63 and Ni61/62. One of the internal standardization drift correction factors uses a least squares estimator to obtain a linear functional relationship between the measured analyte and internal standard isotope ratios. Graphical analysis demonstrates that the points on these graphs are defined by highly non-linear parametric curves and not two linearly correlated quantities which is the usual interpretation of these graphs. The success of this particular internal standardization correction factor was found in some cases to be due to a fortuitous, scale dependent, parametric curve effect.

  4. Method of absorbance correction in a spectroscopic heating value sensor

    DOEpatents

    Saveliev, Alexei; Jangale, Vilas Vyankatrao; Zelepouga, Sergeui; Pratapas, John

    2013-09-17

    A method and apparatus for absorbance correction in a spectroscopic heating value sensor in which a reference light intensity measurement is made on a non-absorbing reference fluid, a light intensity measurement is made on a sample fluid, and a measured light absorbance of the sample fluid is determined. A corrective light intensity measurement at a non-absorbing wavelength of the sample fluid is made on the sample fluid from which an absorbance correction factor is determined. The absorbance correction factor is then applied to the measured light absorbance of the sample fluid to arrive at a true or accurate absorbance for the sample fluid.

  5. Multi-atlas attenuation correction supports full quantification of static and dynamic brain PET data in PET-MR

    NASA Astrophysics Data System (ADS)

    Mérida, Inés; Reilhac, Anthonin; Redouté, Jérôme; Heckemann, Rolf A.; Costes, Nicolas; Hammers, Alexander

    2017-04-01

    In simultaneous PET-MR, attenuation maps are not directly available. Essential for absolute radioactivity quantification, they need to be derived from MR or PET data to correct for gamma photon attenuation by the imaged object. We evaluate a multi-atlas attenuation correction method for brain imaging (MaxProb) on static [18F]FDG PET and, for the first time, on dynamic PET, using the serotoninergic tracer [18F]MPPF. A database of 40 MR/CT image pairs (atlases) was used. The MaxProb method synthesises subject-specific pseudo-CTs by registering each atlas to the target subject space. Atlas CT intensities are then fused via label propagation and majority voting. Here, we compared these pseudo-CTs with the real CTs in a leave-one-out design, contrasting the MaxProb approach with a simplified single-atlas method (SingleAtlas). We evaluated the impact of pseudo-CT accuracy on reconstructed PET images, compared to PET data reconstructed with real CT, at the regional and voxel levels for the following: radioactivity images; time-activity curves; and kinetic parameters (non-displaceable binding potential, BPND). On static [18F]FDG, the mean bias for MaxProb ranged between 0 and 1% for 73 out of 84 regions assessed, and exceptionally peaked at 2.5% for only one region. Statistical parametric map analysis of MaxProb-corrected PET data showed significant differences in less than 0.02% of the brain volume, whereas SingleAtlas-corrected data showed significant differences in 20% of the brain volume. On dynamic [18F]MPPF, most regional errors on BPND ranged from -1 to  +3% (maximum bias 5%) for the MaxProb method. With SingleAtlas, errors were larger and had higher variability in most regions. PET quantification bias increased over the duration of the dynamic scan for SingleAtlas, but not for MaxProb. We show that this effect is due to the interaction of the spatial tracer-distribution heterogeneity variation over time with the degree of accuracy of the attenuation maps. This work demonstrates that inaccuracies in attenuation maps can induce bias in dynamic brain PET studies. Multi-atlas attenuation correction with MaxProb enables quantification on hybrid PET-MR scanners, eschewing the need for CT.

  6. Multi-atlas attenuation correction supports full quantification of static and dynamic brain PET data in PET-MR.

    PubMed

    Mérida, Inés; Reilhac, Anthonin; Redouté, Jérôme; Heckemann, Rolf A; Costes, Nicolas; Hammers, Alexander

    2017-04-07

    In simultaneous PET-MR, attenuation maps are not directly available. Essential for absolute radioactivity quantification, they need to be derived from MR or PET data to correct for gamma photon attenuation by the imaged object. We evaluate a multi-atlas attenuation correction method for brain imaging (MaxProb) on static [ 18 F]FDG PET and, for the first time, on dynamic PET, using the serotoninergic tracer [ 18 F]MPPF. A database of 40 MR/CT image pairs (atlases) was used. The MaxProb method synthesises subject-specific pseudo-CTs by registering each atlas to the target subject space. Atlas CT intensities are then fused via label propagation and majority voting. Here, we compared these pseudo-CTs with the real CTs in a leave-one-out design, contrasting the MaxProb approach with a simplified single-atlas method (SingleAtlas). We evaluated the impact of pseudo-CT accuracy on reconstructed PET images, compared to PET data reconstructed with real CT, at the regional and voxel levels for the following: radioactivity images; time-activity curves; and kinetic parameters (non-displaceable binding potential, BP ND ). On static [ 18 F]FDG, the mean bias for MaxProb ranged between 0 and 1% for 73 out of 84 regions assessed, and exceptionally peaked at 2.5% for only one region. Statistical parametric map analysis of MaxProb-corrected PET data showed significant differences in less than 0.02% of the brain volume, whereas SingleAtlas-corrected data showed significant differences in 20% of the brain volume. On dynamic [ 18 F]MPPF, most regional errors on BP ND ranged from -1 to  +3% (maximum bias 5%) for the MaxProb method. With SingleAtlas, errors were larger and had higher variability in most regions. PET quantification bias increased over the duration of the dynamic scan for SingleAtlas, but not for MaxProb. We show that this effect is due to the interaction of the spatial tracer-distribution heterogeneity variation over time with the degree of accuracy of the attenuation maps. This work demonstrates that inaccuracies in attenuation maps can induce bias in dynamic brain PET studies. Multi-atlas attenuation correction with MaxProb enables quantification on hybrid PET-MR scanners, eschewing the need for CT.

  7. The role of computerized diagnostic proposals in the interpretation of the 12-lead electrocardiogram by cardiology and non-cardiology fellows.

    PubMed

    Novotny, Tomas; Bond, Raymond; Andrsova, Irena; Koc, Lumir; Sisakova, Martina; Finlay, Dewar; Guldenring, Daniel; Spinar, Jindrich; Malik, Marek

    2017-05-01

    Most contemporary 12-lead electrocardiogram (ECG) devices offer computerized diagnostic proposals. The reliability of these automated diagnoses is limited. It has been suggested that incorrect computer advice can influence physician decision-making. This study analyzed the role of diagnostic proposals in the decision process by a group of fellows of cardiology and other internal medicine subspecialties. A set of 100 clinical 12-lead ECG tracings was selected covering both normal cases and common abnormalities. A team of 15 junior Cardiology Fellows and 15 Non-Cardiology Fellows interpreted the ECGs in 3 phases: without any diagnostic proposal, with a single diagnostic proposal (half of them intentionally incorrect), and with four diagnostic proposals (only one of them being correct) for each ECG. Self-rated confidence of each interpretation was collected. Availability of diagnostic proposals significantly increased the diagnostic accuracy (p<0.001). Nevertheless, in case of a single proposal (either correct or incorrect) the increase of accuracy was present in interpretations with correct diagnostic proposals, while the accuracy was substantially reduced with incorrect proposals. Confidence levels poorly correlated with interpretation scores (rho≈2, p<0.001). Logistic regression showed that an interpreter is most likely to be correct when the ECG offers a correct diagnostic proposal (OR=10.87) or multiple proposals (OR=4.43). Diagnostic proposals affect the diagnostic accuracy of ECG interpretations. The accuracy is significantly influenced especially when a single diagnostic proposal (either correct or incorrect) is provided. The study suggests that the presentation of multiple computerized diagnoses is likely to improve the diagnostic accuracy of interpreters. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Correction for tissue optical properties enables quantitative skin fluorescence measurements using multi-diameter single fiber reflectance spectroscopy.

    PubMed

    Middelburg, T A; Hoy, C L; Neumann, H A M; Amelink, A; Robinson, D J

    2015-07-01

    Fluorescence measurements in the skin are very much affected by absorption and scattering but existing methods to correct for this are not applicable to superficial skin measurements. The first use of multiple-diameter single fiber reflectance (MDSFR) and single fiber fluorescence (SFF) spectroscopy in human skin was investigated. MDSFR spectroscopy allows a quantification of the full optical properties in superficial skin (μa, μs' and γ), which can next be used to retrieve the corrected - intrinsic - fluorescence of a fluorophore Qμa,x(f). Our goal was to investigate the importance of such correction for individual patients. We studied this in 22 patients undergoing photodynamic therapy (PDT) for actinic keratosis. The magnitude of correction of fluorescence was around 4 (for both autofluorescence and protoporphyrin IX). Moreover, it was variable between patients, but also within patients over the course of fractionated aminolevulinic acid PDT (range 2.7-7.5). Patients also varied in the amount of protoporphyrin IX synthesis, photobleaching percentages and resynthesis (>100× difference between the lowest and highest PpIX synthesis). The autofluorescence was lower in actinic keratosis than contralateral normal skin (0.0032 versus 0.0052; P<0.0005). Our results clearly demonstrate the importance of correcting the measured fluorescence for optical properties, because these vary considerably between individual patients and also during PDT. Protoporphyrin IX synthesis and photobleaching kinetics allow monitoring clinical PDT which facilitates individual-based PDT dosing and improvement of clinical treatment protocols. Furthermore, the skin autofluorescence can be relevant for diagnostic use in the skin, but it may also be interesting because of its association with several internal diseases. Copyright © 2015 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. New Correction Factors Based on Seasonal Variability of Outdoor Temperature for Estimating Annual Radon Concentrations in UK.

    PubMed

    Daraktchieva, Z

    2017-06-01

    Indoor radon concentrations generally vary with season. Radon gas enters buildings from beneath due to a small air pressure difference between the inside of a house and outdoors. This underpressure which draws soil gas including radon into the house depends on the difference between the indoor and outdoor temperatures. The variation in a typical house in UK showed that the mean indoor radon concentration reaches a maximum in January and a minimum in July. Sine functions were used to model the indoor radon data and monthly average outdoor temperatures, covering the period between 2005 and 2014. The analysis showed a strong negative correlation between the modelled indoor radon data and outdoor temperature. This correlation was used to calculate new correction factors that could be used for estimation of annual radon concentration in UK homes. The comparison between the results obtained with the new correction factors and the previously published correction factors showed that the new correction factors perform consistently better on the selected data sets. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Simple wavefront correction framework for two-photon microscopy of in-vivo brain

    PubMed Central

    Galwaduge, P. T.; Kim, S. H.; Grosberg, L. E.; Hillman, E. M. C.

    2015-01-01

    We present an easily implemented wavefront correction scheme that has been specifically designed for in-vivo brain imaging. The system can be implemented with a single liquid crystal spatial light modulator (LCSLM), which makes it compatible with existing patterned illumination setups, and provides measurable signal improvements even after a few seconds of optimization. The optimization scheme is signal-based and does not require exogenous guide-stars, repeated image acquisition or beam constraint. The unconstrained beam approach allows the use of Zernike functions for aberration correction and Hadamard functions for scattering correction. Low order corrections performed in mouse brain were found to be valid up to hundreds of microns away from the correction location. PMID:26309763

  11. Analysis of diffuse radiation data for Beer Sheva: Measured (shadow ring) versus calculated (global-horizontal beam) values

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kudish, A.I.; Ianetz, A.

    1993-12-01

    The authors have utilized concurrently measured global, normal incidence beam, and diffuse radiation data, the latter measured by means of a shadow ring pyranometer to study the relative magnitude of the anisotropic contribution (circumsolar region and nonuniform sky conditions) to the diffuse radiation. In the case of Beer Sheva, the monthly average hourly anisotropic correction factor varies from 2.9 to 20.9%, whereas the [open quotes]standard[close quotes] geometric correction factor varies from 5.6 to 14.0%. The monthly average hourly overall correction factor (combined anisotropic and geometric factors) varies from 8.9 to 37.7%. The data have also been analyzed using a simplemore » model of sky radiance developed by Steven in 1984. His anisotropic correction factor is a function of the relative strength and angular width of the circumsolar radiation region. The results of this analysis are in agreement with those previously reported for Quidron on the Dead Sea, viz. the anisotropy and relative strength of the circumsolar radiation are significantly greater than at any of the sites analyzed by Steven. In addition, the data have been utilized to validate a model developed by LeBaron et al. in 1990 for correcting shadow ring diffuse radiation data. The monthly average deviation between the corrected and true diffuse radiation values varies from 4.55 to 7.92%.« less

  12. Clearing the waters: Evaluating the need for site-specific field fluorescence corrections based on turbidity measurements

    USGS Publications Warehouse

    Saraceno, John F.; Shanley, James B.; Downing, Bryan D.; Pellerin, Brian A.

    2017-01-01

    In situ fluorescent dissolved organic matter (fDOM) measurements have gained increasing popularity as a proxy for dissolved organic carbon (DOC) concentrations in streams. One challenge to accurate fDOM measurements in many streams is light attenuation due to suspended particles. Downing et al. (2012) evaluated the need for corrections to compensate for particle interference on fDOM measurements using a single sediment standard in a laboratory study. The application of those results to a large river improved unfiltered field fDOM accuracy. We tested the same correction equation in a headwater tropical stream and found that it overcompensated fDOM when turbidity exceeded ∼300 formazin nephelometric units (FNU). Therefore, we developed a site-specific, field-based fDOM correction equation through paired in situ fDOM measurements of filtered and unfiltered streamwater. The site-specific correction increased fDOM accuracy up to a turbidity as high as 700 FNU, the maximum observed in this study. The difference in performance between the laboratory-based correction equation of Downing et al. (2012) and our site-specific, field-based correction equation likely arises from differences in particle size distribution between the sediment standard used in the lab (silt) and that observed in our study (fine to medium sand), particularly during high flows. Therefore, a particle interference correction equation based on a single sediment type may not be ideal when field sediment size is significantly different. Given that field fDOM corrections for particle interference under turbid conditions are a critical component in generating accurate DOC estimates, we describe a way to develop site-specific corrections.

  13. Characterization of a cable-free system based on p-type MOSFET detectors for "in vivo" entrance skin dose measurements in interventional radiology.

    PubMed

    Falco, Maria Daniela; D'Andrea, Marco; Strigari, Lidia; D'Alessio, Daniela; Quagliani, Francesco; Santoni, Riccardo; Bosco, Alessia Lo

    2012-08-01

    During radiological interventional procedures (RIP) the skin of a patient under examination may undergo a prolonged x-ray exposure, receiving a dose as high as 5 Gy in a single session. This paper describes the use of the OneDose(TM) cable-free system based on p-type MOSFET detectors to determine the entrance skin dose (ESD) at selected points during RIP. At first, some dosimetric characteristics of the detector, such as reproducibility, linearity, and fading, have been investigated using a C-arc as a source of radiation. The reference setting (RS) was: 80 kV energy, 40 cm × 40 cm field of view (FOV), current-time product of 50 mAs and source to skin distance (SSD) of 50 cm. A calibrated PMX III solid state detector was used as the reference detector and Gafchromic(®) films have been used as an independent dosimetric system to test the entire procedure. A calibration factor for the RS and correction factors as functions of tube voltage and FOV size have been determined. Reproducibility ranged from 4% at low doses (around 10 cGy as measured by the reference detector) to about 1% for high doses (around 2 Gy). The system response was found to be linear with respect to both dose measured with the PMX III and tube voltage. The fading test has shown that the maximum deviation from the optimal reading conditions (3 min after a single irradiation) was 9.1% corresponding to four irradiations in one hour read 3 min after the last exposure. The calibration factor in the RS has shown that the system response at the kV energy range is about four times larger than in the MV energy range. A fifth order and fourth order polynomial functions were found to provide correction factors for tube voltage and FOV size, respectively, in measurement settings different than the RS. ESDs measured with the system after applying the proper correction factors agreed within one standard deviation (SD) with the corresponding ESDs measured with the reference detector. The ESDs measured with Gafchromic(®) films were in agreement within one SD compared to the ESDs measured using the OneDose(TM) system, as well. The global uncertainty associated to the OneDose(TM) system established in our experiments, ranged from 7% to 10%, depending on the duration of the RIP due to fading. These values are much lower than the uncertainty commonly accepted for general diagnostic practices (20%) and of about the same size of the uncertainty recommended for practices with high risk of deterministic side effects (7%). The OneDose(TM) system has shown a high sensitivity in the kV energy range and has been found capable of measuring the entrance skin dose in RIP.

  14. S-NPP VIIRS thermal emissive band gain correction during the blackbody warm-up-cool-down cycle

    NASA Astrophysics Data System (ADS)

    Choi, Taeyoung J.; Cao, Changyong; Weng, Fuzhong

    2016-09-01

    The Suomi National Polar orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) has onboard calibrators called blackbody (BB) and Space View (SV) for Thermal Emissive Band (TEB) radiometric calibration. In normal operation, the BB temperature is set to 292.5 K providing one radiance level. From the NOAA's Integrated Calibration and Validation System (ICVS) monitoring system, the TEB calibration factors (F-factors) have been trended and show very stable responses, however the BB Warm-Up-Cool-Down (WUCD) cycles provide detectors' gain and temperature dependent sensitivity measurements. Since the launch of S-NPP, the NOAA Sea Surface Temperature (SST) group noticed unexpected global SST anomalies during the WUCD cycles. In this study, the TEB Ffactors are calculated during the WUCD cycle on June 17th 2015. The TEB F-factors are analyzed by identifying the VIIRS On-Board Calibrator Intermediate Product (OBCIP) files to be Warm-Up or Cool-Down granules. To correct the SST anomaly, an F-factor correction parameter is calculated by the modified C1 (or b1) values which are derived from the linear portion of C1 coefficient during the WUCD. The F-factor correction factors are applied back to the original VIIRS SST bands showing significantly reducing the F-factor changes. Obvious improvements are observed in M12, M14 and M16, but corrections effects are hardly seen in M16. Further investigation is needed to find out the source of the F-factor oscillations during the WUCD.

  15. Correction of Microplate Data from High-Throughput Screening.

    PubMed

    Wang, Yuhong; Huang, Ruili

    2016-01-01

    High-throughput screening (HTS) makes it possible to collect cellular response data from a large number of cell lines and small molecules in a timely and cost-effective manner. The errors and noises in the microplate-formatted data from HTS have unique characteristics, and they can be generally grouped into three categories: run-wise (temporal, multiple plates), plate-wise (background pattern, single plate), and well-wise (single well). In this chapter, we describe a systematic solution for identifying and correcting such errors and noises, mainly basing on pattern recognition and digital signal processing technologies.

  16. [Impact factors and bibliometrics of science. Does pure science really exist?].

    PubMed

    Sochman, J; Belán, A

    2003-01-01

    The impact factor is an artificially created indicator which when applied separately does not achieve the value attributed to it. In its assessment a number of different influences are projected which cause partial mistakes with a cumulative effect. It can have an even worse effect if the impact factor is incorrectly conceived or inadequately handled. Only in a long-term review using specific corrections it can serve to determine really top class periodicals but only within the framework of a single scientific discipline. It is not suitable for comparison of interdisciplinary journals. It should be used very carefully in the evaluation of authors. However it is still used in various types of administrative management. From the submitted paper it may seen that with a certain amount of overstatement it is personified and acts on its own. Its personification is homo sapiens scientometricus who evaluates himself as well as his environment which is represented by mere homo sapiens scientificus. In addition to the impact factor the authors discuss also other indicators and some aspects of scientometry.

  17. Experimental setup for the determination of the correction factors of the neutron doseratemeters in fast neutron fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iliescu, Elena; Bercea, Sorin; Dudu, Dorin

    2013-12-16

    The use of the U-120 Cyclotron of the IFIN-HH allowed to perform a testing bench with fast neutrons in order to determine the correction factors of the doseratemeters dedicated to neutron measurement. This paper deals with researchers performed in order to develop the irradiation facility testing the fast neutrons flux generated at the Cyclotron. This facility is presented, together with the results obtain in determining the correction factor for a doseratemeter dedicated to the neutron dose equivalent rate measurement.

  18. Understanding the atmospheric measurement and behavior of perfluorooctanoic acid.

    PubMed

    Webster, Eva M; Ellis, David A

    2012-09-01

    The recently reported quantification of the atmospheric sampling artifact for perfluorooctanoic acid (PFOA) was applied to existing gas and particle concentration measurements. Specifically, gas phase concentrations were increased by a factor of 3.5 and particle-bound concentrations by a factor of 0.1. The correlation constants in two particle-gas partition coefficient (K(QA)) estimation equations were determined for multiple studies with and without correcting for the sampling artifact. Correction for the sampling artifact gave correlation constants with improved agreement to those reported for other neutral organic contaminants, thus supporting the application of the suggested correction factors for perfluorinated carboxylic acids. Applying the corrected correlation constant to a recent multimedia modeling study improved model agreement with corrected, reported, atmospheric concentrations. This work confirms that there is sufficient partitioning to the gas phase to support the long-range atmospheric transport of PFOA. Copyright © 2012 SETAC.

  19. Slip Correction Measurements of Certified PSL Nanoparticles Using a Nanometer Differential Mobility Analyzer (Nano-DMA) for Knudsen Number From 0.5 to 83

    PubMed Central

    Kim, Jung Hyeun; Mulholland, George W.; Kukuck, Scott R.; Pui, David Y. H.

    2005-01-01

    The slip correction factor has been investigated at reduced pressures and high Knudsen number using polystyrene latex (PSL) particles. Nano-differential mobility analyzers (NDMA) were used in determining the slip correction factor by measuring the electrical mobility of 100.7 nm, 269 nm, and 19.90 nm particles as a function of pressure. The aerosol was generated via electrospray to avoid multiplets for the 19.90 nm particles and to reduce the contaminant residue on the particle surface. System pressure was varied down to 8.27 kPa, enabling slip correction measurements for Knudsen numbers as large as 83. A condensation particle counter was modified for low pressure application. The slip correction factor obtained for the three particle sizes is fitted well by the equation: C = 1 + Kn (α + β exp(−γ/Kn)), with α = 1.165, β = 0.483, and γ = 0.997. The first quantitative uncertainty analysis for slip correction measurements was carried out. The expanded relative uncertainty (95 % confidence interval) in measuring slip correction factor was about 2 % for the 100.7 nm SRM particles, about 3 % for the 19.90 nm PSL particles, and about 2.5 % for the 269 nm SRM particles. The major sources of uncertainty are the diameter of particles, the geometric constant associated with NDMA, and the voltage. PMID:27308102

  20. Method and system for photoconductive detector signal correction

    DOEpatents

    Carangelo, Robert M.; Hamblen, David G.; Brouillette, Carl R.

    1992-08-04

    A corrective factor is applied so as to remove anomalous features from the signal generated by a photoconductive detector, and to thereby render the output signal highly linear with respect to the energy of incident, time-varying radiation. The corrective factor may be applied through the use of either digital electronic data processing means or analog circuitry, or through a combination of those effects.

  1. Method and system for photoconductive detector signal correction

    DOEpatents

    Carangelo, R.M.; Hamblen, D.G.; Brouillette, C.R.

    1992-08-04

    A corrective factor is applied so as to remove anomalous features from the signal generated by a photoconductive detector, and to thereby render the output signal highly linear with respect to the energy of incident, time-varying radiation. The corrective factor may be applied through the use of either digital electronic data processing means or analog circuitry, or through a combination of those effects. 5 figs.

  2. Automatic software correction of residual aberrations in reconstructed HRTEM exit waves of crystalline samples

    DOE PAGES

    Ophus, Colin; Rasool, Haider I.; Linck, Martin; ...

    2016-11-30

    We develop an automatic and objective method to measure and correct residual aberrations in atomic-resolution HRTEM complex exit waves for crystalline samples aligned along a low-index zone axis. Our method uses the approximate rotational point symmetry of a column of atoms or single atom to iteratively calculate a best-fit numerical phase plate for this symmetry condition, and does not require information about the sample thickness or precise structure. We apply our method to two experimental focal series reconstructions, imaging a β-Si 3N 4 wedge with O and N doping, and a single-layer graphene grain boundary. We use peak and latticemore » fitting to evaluate the precision of the corrected exit waves. We also apply our method to the exit wave of a Si wedge retrieved by off-axis electron holography. In all cases, the software correction of the residual aberration function improves the accuracy of the measured exit waves.« less

  3. Five-wave-packet quantum error correction based on continuous-variable cluster entanglement

    PubMed Central

    Hao, Shuhong; Su, Xiaolong; Tian, Caixing; Xie, Changde; Peng, Kunchi

    2015-01-01

    Quantum error correction protects the quantum state against noise and decoherence in quantum communication and quantum computation, which enables one to perform fault-torrent quantum information processing. We experimentally demonstrate a quantum error correction scheme with a five-wave-packet code against a single stochastic error, the original theoretical model of which was firstly proposed by S. L. Braunstein and T. A. Walker. Five submodes of a continuous variable cluster entangled state of light are used for five encoding channels. Especially, in our encoding scheme the information of the input state is only distributed on three of the five channels and thus any error appearing in the remained two channels never affects the output state, i.e. the output quantum state is immune from the error in the two channels. The stochastic error on a single channel is corrected for both vacuum and squeezed input states and the achieved fidelities of the output states are beyond the corresponding classical limit. PMID:26498395

  4. Automatic software correction of residual aberrations in reconstructed HRTEM exit waves of crystalline samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ophus, Colin; Rasool, Haider I.; Linck, Martin

    We develop an automatic and objective method to measure and correct residual aberrations in atomic-resolution HRTEM complex exit waves for crystalline samples aligned along a low-index zone axis. Our method uses the approximate rotational point symmetry of a column of atoms or single atom to iteratively calculate a best-fit numerical phase plate for this symmetry condition, and does not require information about the sample thickness or precise structure. We apply our method to two experimental focal series reconstructions, imaging a β-Si 3N 4 wedge with O and N doping, and a single-layer graphene grain boundary. We use peak and latticemore » fitting to evaluate the precision of the corrected exit waves. We also apply our method to the exit wave of a Si wedge retrieved by off-axis electron holography. In all cases, the software correction of the residual aberration function improves the accuracy of the measured exit waves.« less

  5. A Temperature-Based Gain Calibration Technique for Precision Radiometry

    NASA Astrophysics Data System (ADS)

    Parashare, Chaitali Ravindra

    Detecting extremely weak signals in radio astronomy demands high sensitivity and stability of the receivers. The gain of a typical radio astronomy receiver is extremely large, and therefore, even very small gain instabilities can dominate the received noise power and degrade the instrument sensitivity. Hence, receiver stabilization is of prime importance. Gain variations occur mainly due to ambient temperature fluctuations. We take a new approach to receiver stabilization, which makes use of active temperature monitoring and corrects for the gain fluctuations in post processing. This approach is purely passive and does not include noise injection or switching for calibration. This system is to be used for the Precision Array for Probing the Epoch of Reionization (PAPER), which is being developed to detect the extremely faint neutral hydrogen (HI) signature of the Epoch of Reionization (EoR). The epoch of reionization refers to the period in the history of the Universe when the first stars and galaxies started to form. When there are N antenna elements in the case of a large scale array, all elements may not be subjected to the same environmental conditions at a given time. Hence, we expect to mitigate the gain variations by monitoring the physical temperature of each element of the array. This stabilization approach will also benefit experiments like EDGES (Experiment to Detect the Global EoR Signature) and DARE (Dark Ages Radio Explorer), which involve a direct measurement of the global 21 cm signal using a single antenna element and hence, require an extremely stable system. This dissertation focuses on the development and evaluation of a calibration technique that compensates for the gain variations caused due to temperature fluctuations of the RF components. It carefully examines the temperature dependence of the components in the receiver chain. The results from the first-order field instrument, called a Gainometer (GoM), highlight the issue with the cable temperature which varies significantly with different climatic conditions. The model used to correct for gain variations is presented. We describe the measurements performed to verify the model. RFI is a major issue at low frequencies, which makes these kind of measurements extremely challenging. We discuss the careful measures required to mitigate the errors due to the unwanted interference. In the case of the laboratory measurements, the model follows closely with the measured power, and shows an improvement in the gain stability by a factor of ˜ 46, when the corrections are applied. The gain stability (rms to mean) improves from 1 part in 32 to 1 part in 1500. The field measurements suggest that correcting for cable temperature variations is challenging. The improvement in the gain stability is by a factor of ˜ 4.3, when the RF front end components are situated out in the field. The results are analyzed using the statistical methods such as the standard error of the mean, the run test, skewness, and kurtosis. These tests demonstrate the normal distribution of the process when the corrections are applied and confirm an effective gain bias removal. The results obtained from the sky observation using a single antenna element are compared before and after applying the corrections. Several days data verify that the power fluctuations are significantly reduced after the gain corrections are applied.

  6. SU-E-T-552: Monte Carlo Calculation of Correction Factors for a Free-Air Ionization Chamber in Support of a National Air-Kerma Standard for Electronic Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mille, M; Bergstrom, P

    2015-06-15

    Purpose: To use Monte Carlo radiation transport methods to calculate correction factors for a free-air ionization chamber in support of a national air-kerma standard for low-energy, miniature x-ray sources used for electronic brachytherapy (eBx). Methods: The NIST is establishing a calibration service for well-type ionization chambers used to characterize the strength of eBx sources prior to clinical use. The calibration approach involves establishing the well-chamber’s response to an eBx source whose air-kerma rate at a 50 cm distance is determined through a primary measurement performed using the Lamperti free-air ionization chamber. However, the free-air chamber measurements of charge or currentmore » can only be related to the reference air-kerma standard after applying several corrections, some of which are best determined via Monte Carlo simulation. To this end, a detailed geometric model of the Lamperti chamber was developed in the EGSnrc code based on the engineering drawings of the instrument. The egs-fac user code in EGSnrc was then used to calculate energy-dependent correction factors which account for missing or undesired ionization arising from effects such as: (1) attenuation and scatter of the x-rays in air; (2) primary electrons escaping the charge collection region; (3) lack of charged particle equilibrium; (4) atomic fluorescence and bremsstrahlung radiation. Results: Energy-dependent correction factors were calculated assuming a monoenergetic point source with the photon energy ranging from 2 keV to 60 keV in 2 keV increments. Sufficient photon histories were simulated so that the Monte Carlo statistical uncertainty of the correction factors was less than 0.01%. The correction factors for a specific eBx source will be determined by integrating these tabulated results over its measured x-ray spectrum. Conclusion: The correction factors calculated in this work are important for establishing a national standard for eBx which will help ensure that dose is accurately and consistently delivered to patients.« less

  7. Evidence for a Complex Class of Nonadenylated mRNA in Drosophila

    PubMed Central

    Zimmerman, J. Lynn; Fouts, David L.; Manning, Jerry E.

    1980-01-01

    The amount, by mass, of poly(A+) mRNA present in the polyribosomes of third-instar larvae of Drosophila melanogaster, and the relative contribution of the poly(A+) mRNA to the sequence complexity of total polysomal RNA, has been determined. Selective removal of poly(A+) mRNA from total polysomal RNA by use of either oligo-dT-cellulose, or poly(U)-sepharose affinity chromatography, revealed that only 0.15% of the mass of the polysomal RNA was present as poly(A+) mRNA. The present study shows that this RNA hybridized at saturation with 3.3% of the single-copy DNA in the Drosophila genome. After correction for asymmetric transcription and reactability of the DNA, 7.4% of the single-copy DNA in the Drosophila genome is represented in larval poly(A+) mRNA. This corresponds to 6.73 x 106 nucleotides of mRNA coding sequences, or approximately 5,384 diverse RNA sequences of average size 1,250 nucleotides. However, total polysomal RNA hybridizes at saturation to 10.9% of the single-copy DNA sequences. After correcting this value for asymmetric transcription and tracer DNA reactability, 24% of the single-copy DNA in Drosophila is represented in total polysomal RNA. This corresponds to 2.18 x 107 nucleotides of RNA coding sequences or 17,440 diverse RNA molecules of size 1,250 nucleotides. This value is 3.2 times greater than that observed for poly(A+) mRNA, and indicates that ≃69% of the polysomal RNA sequence complexity is contributed by nonadenylated RNA. Furthermore, if the number of different structural genes represented in total polysomal RNA is ≃1.7 x 104, then the number of genes expressed in third-instar larvae exceeds the number of chromomeres in Drosophila by about a factor of three. This numerology indicates that the number of chromomeres observed in polytene chromosomes does not reflect the number of structural gene sequences in the Drosophila genome. PMID:6777246

  8. Heavy quark form factors at two loops

    NASA Astrophysics Data System (ADS)

    Ablinger, J.; Behring, A.; Blümlein, J.; Falcioni, G.; De Freitas, A.; Marquard, P.; Rana, N.; Schneider, C.

    2018-05-01

    We compute the two-loop QCD corrections to the heavy quark form factors in the case of the vector, axial-vector, scalar and pseudoscalar currents up to second order in the dimensional parameter ɛ =(4 -D )/2 . These terms are required in the renormalization of the higher-order corrections to these form factors.

  9. Determination of correction factors in beta radiation beams using Monte Carlo method.

    PubMed

    Polo, Ivón Oramas; Santos, William de Souza; Caldas, Linda V E

    2018-06-15

    The absorbed dose rate is the main characterization quantity for beta radiation. The extrapolation chamber is considered the primary standard instrument. To determine absorbed dose rates in beta radiation beams, it is necessary to establish several correction factors. In this work, the correction factors for the backscatter due to the collecting electrode and to the guard ring, and the correction factor for Bremsstrahlung in beta secondary standard radiation beams are presented. For this purpose, the Monte Carlo method was applied. The results obtained are considered acceptable, and they agree within the uncertainties. The differences between the backscatter factors determined by the Monte Carlo method and those of the ISO standard were 0.6%, 0.9% and 2.04% for 90 Sr/ 90 Y, 85 Kr and 147 Pm sources respectively. The differences between the Bremsstrahlung factors determined by the Monte Carlo method and those of the ISO were 0.25%, 0.6% and 1% for 90 Sr/ 90 Y, 85 Kr and 147 Pm sources respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Multi-Angle Implementation of Atmospheric Correction for MODIS (MAIAC). Part 3: Atmospheric Correction

    NASA Technical Reports Server (NTRS)

    Lyapustin, A.; Wang, Y.; Laszlo, I.; Hilker, T.; Hall, F.; Sellers, P.; Tucker, J.; Korkin, S.

    2012-01-01

    This paper describes the atmospheric correction (AC) component of the Multi-Angle Implementation of Atmospheric Correction algorithm (MAIAC) which introduces a new way to compute parameters of the Ross-Thick Li-Sparse (RTLS) Bi-directional reflectance distribution function (BRDF), spectral surface albedo and bidirectional reflectance factors (BRF) from satellite measurements obtained by the Moderate Resolution Imaging Spectroradiometer (MODIS). MAIAC uses a time series and spatial analysis for cloud detection, aerosol retrievals and atmospheric correction. It implements a moving window of up to 16 days of MODIS data gridded to 1 km resolution in a selected projection. The RTLS parameters are computed directly by fitting the cloud-free MODIS top of atmosphere (TOA) reflectance data stored in the processing queue. The RTLS retrieval is applied when the land surface is stable or changes slowly. In case of rapid or large magnitude change (as for instance caused by disturbance), MAIAC follows the MODIS operational BRDF/albedo algorithm and uses a scaling approach where the BRDF shape is assumed stable but its magnitude is adjusted based on the latest single measurement. To assess the stability of the surface, MAIAC features a change detection algorithm which analyzes relative change of reflectance in the Red and NIR bands during the accumulation period. To adjust for the reflectance variability with the sun-observer geometry and allow comparison among different days (view geometries), the BRFs are normalized to the fixed view geometry using the RTLS model. An empirical analysis of MODIS data suggests that the RTLS inversion remains robust when the relative change of geometry-normalized reflectance stays below 15%. This first of two papers introduces the algorithm, a second, companion paper illustrates its potential by analyzing MODIS data over a tropical rainforest and assessing errors and uncertainties of MAIAC compared to conventional MODIS products.

  11. New decoding methods of interleaved burst error-correcting codes

    NASA Astrophysics Data System (ADS)

    Nakano, Y.; Kasahara, M.; Namekawa, T.

    1983-04-01

    A probabilistic method of single burst error correction, using the syndrome correlation of subcodes which constitute the interleaved code, is presented. This method makes it possible to realize a high capability of burst error correction with less decoding delay. By generalizing this method it is possible to obtain probabilistic method of multiple (m-fold) burst error correction. After estimating the burst error positions using syndrome correlation of subcodes which are interleaved m-fold burst error detecting codes, this second method corrects erasure errors in each subcode and m-fold burst errors. The performance of these two methods is analyzed via computer simulation, and their effectiveness is demonstrated.

  12. Measurement and Modeling of the Optical Scattering Properties of Crop Canopies

    NASA Technical Reports Server (NTRS)

    Vanderbilt, V. C. (Principal Investigator)

    1985-01-01

    The specular reflection process is shown to be a key aspect of radiation transfer by plant canopies. Polarization measurements are demonstrated as the tool for determining the specular and diffuse portions of the canopy radiance. The magnitude of the specular fraction of the reflectance is significant compared to the magnitude of the diffuse fraction. Therefore, it is necessary to consider specularly reflected light in developing and evaluating light-canopy interaction models for wheat canopies. Models which assume leaves are diffuse reflectors correctly predict only the diffuse fraction of the canopy reflectance factor. The specular reflectance model, when coupled with a diffuse leaf model, would predict both the specular and diffuse portions of the reflectance factor. The specular model predicts and the data analysis confirms that the single variable, angle of incidence of specularly reflected sunlight on the leaf, explains much of variation in the polarization data as a function of view-illumination directions.

  13. Correction factors for self-selection when evaluating screening programmes.

    PubMed

    Spix, Claudia; Berthold, Frank; Hero, Barbara; Michaelis, Jörg; Schilling, Freimut H

    2016-03-01

    In screening programmes there is recognized bias introduced through participant self-selection (the healthy screenee bias). Methods used to evaluate screening programmes include Intention-to-screen, per-protocol, and the "post hoc" approach in which, after introducing screening for everyone, the only evaluation option is participants versus non-participants. All methods are prone to bias through self-selection. We present an overview of approaches to correct for this bias. We considered four methods to quantify and correct for self-selection bias. Simple calculations revealed that these corrections are actually all identical, and can be converted into each other. Based on this, correction factors for further situations and measures were derived. The application of these correction factors requires a number of assumptions. Using as an example the German Neuroblastoma Screening Study, no relevant reduction in mortality or stage 4 incidence due to screening was observed. The largest bias (in favour of screening) was observed when comparing participants with non-participants. Correcting for bias is particularly necessary when using the post hoc evaluation approach, however, in this situation not all required data are available. External data or further assumptions may be required for estimation. © The Author(s) 2015.

  14. Simulation and Correction of Triana-Viewed Earth Radiation Budget with ERBE/ISCCP Data

    NASA Technical Reports Server (NTRS)

    Huang, Jian-Ping; Minnis, Patrick; Doelling, David R.; Valero, Francisco P. J.

    2002-01-01

    This paper describes the simulation of the earth radiation budget (ERB) as viewed by Triana and the development of correction models for converting Trianaviewed radiances into a complete ERB. A full range of Triana views and global radiation fields are simulated using a combination of datasets from ERBE (Earth Radiation Budget Experiment) and ISCCP (International Satellite Cloud Climatology Project) and analyzed with a set of empirical correction factors specific to the Triana views. The results show that the accuracy of global correction factors to estimate ERB from Triana radiances is a function of the Triana position relative to the Lagrange-1 (L1) or the Sun location. Spectral analysis of the global correction factor indicates that both shortwave (SW; 0.2 - 5.0 microns) and longwave (LW; 5 -50 microns) parameters undergo seasonal and diurnal cycles that dominate the periodic fluctuations. The diurnal cycle, especially its amplitude, is also strongly dependent on the seasonal cycle. Based on these results, models are developed to correct the radiances for unviewed areas and anisotropic emission and reflection. A preliminary assessment indicates that these correction models can be applied to Triana radiances to produce the most accurate global ERB to date.

  15. Conductivity Cell Thermal Inertia Correction Revisited

    NASA Astrophysics Data System (ADS)

    Eriksen, C. C.

    2012-12-01

    Salinity measurements made with a CTD (conductivity-temperature-depth instrument) rely on accurate estimation of water temperature within their conductivity cell. Lueck (1990) developed a theoretical framework for heat transfer between the cell body and water passing through it. Based on this model, Lueck and Picklo (1990) introduced the practice of correcting for cell thermal inertia by filtering a temperature time series using two parameters, an amplitude α and a decay time constant τ, a practice now widely used. Typically these two parameters are chosen for a given cell configuration and internal flushing speed by a statistical method applied to a particular data set. Here, thermal inertia correction theory has been extended to apply to flow speeds spanning well over an order of magnitude, both within and outside a conductivity cell, to provide predictions of α and τ from cell geometry and composition. The extended model enables thermal inertia correction for the variable flows encountered by conductivity cells on autonomous gliders and floats, as well as tethered platforms. The length scale formed as the product of cell encounter speed of isotherms, α, and τ can be used to gauge the size of the temperature correction for a given thermal stratification. For cells flushed by dynamic pressure variation induced by platform motion, this length varies by less than a factor of 2 over more than a decade of speed variation. The magnitude of correction for free-flow flushed sensors is comparable to that of pumped cells, but at an order of magnitude in energy savings. Flow conditions around a cell's exterior are found to be of comparable importance to thermal inertia response as flushing speed. Simplification of cell thermal response to a single normal mode is most valid at slow speed. Error in thermal inertia estimation arises from both neglect of higher modes and numerical discretization of the correction scheme, both of which can be easily quantified. Consideration of thermal inertia correction enables assessment of various CTD sampling schemes. Spot sampling by pumping a cell intermittently provides particular challenges, and may lead to biases in inferred salinity that are comparable to climate signals reported from profiling float arrays.

  16. Correction factors for the NMi free-air ionization chamber for medium-energy x-rays calculated with the Monte Carlo method.

    PubMed

    Grimbergen, T W; van Dijk, E; de Vries, W

    1998-11-01

    A new method is described for the determination of x-ray quality dependent correction factors for free-air ionization chambers. The method is based on weighting correction factors for mono-energetic photons, which are calculated using the Monte Carlo method, with measured air kerma spectra. With this method, correction factors for electron loss, scatter inside the chamber and transmission through the diaphragm and front wall have been calculated for the NMi free-air chamber for medium-energy x-rays for a wide range of x-ray qualities in use at NMi. The newly obtained correction factors were compared with the values in use at present, which are based on interpolation of experimental data for a specific set of x-ray qualities. For x-ray qualities which are similar to this specific set, the agreement between the correction factors determined with the new method and those based on the experimental data is better than 0.1%, except for heavily filtered x-rays generated at 250 kV. For x-ray qualities dissimilar to the specific set, differences up to 0.4% exist, which can be explained by uncertainties in the interpolation procedure of the experimental data. Since the new method does not depend on experimental data for a specific set of x-ray qualities, the new method allows for a more flexible use of the free-air chamber as a primary standard for air kerma for any x-ray quality in the medium-energy x-ray range.

  17. GPS receiver phase biases estimable in PPP-RTK networks: dynamic characterization and impact analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Baocheng; Liu, Teng; Yuan, Yunbin

    2017-11-01

    The integer ambiguity resolution enabled precise point positioning (PPP-RTK) has been proven advantageous in a wide range of applications. The realization of PPP-RTK concerns the isolation of satellite phase biases (SPBs) and other corrections from a network of Global Positioning System (GPS) reference receivers. This is generally based on Kalman filter in order to achieve real-time capability, in which proper modeling of the dynamics of various types of unknowns remains crucial. This paper seeks to gain insight into how to reasonably deal with the dynamic behavior of the estimable receiver phase biases (RPBs). Using dual-frequency GPS data collected at six colocated receivers over days 50-120 of 2015, we analyze the 30-s epoch-by-epoch estimates of L1 and wide-lane (WL) RPBs for each receiver pair. The dynamics observed in these estimates are a combined effect of three factors, namely the random measurement noise, the multipath and the ambient temperature. The first factor can be overcome by turning to a real-time filter and the second by considering the use of a sidereal filtering. The third factor has an effect only on the WL, and this effect appears to be linear. After accounting for these three factors, the low-pass-filtered, sidereal-filtered, epoch-by-epoch estimates of L1 RPBs follow a random walk process, whereas those of WL RPBs are constant over time. Properly modeling the dynamics of RPBs is vital, as it ensures the best convergence of the Kalman-filtered, between-satellite single-differenced SPB estimates to their correct values and, in turn, shortens the time-to-first-fix at user side.

  18. Vitamin D and ferritin correlation with chronic neck pain using standard statistics and a novel artificial neural network prediction model.

    PubMed

    Eloqayli, Haytham; Al-Yousef, Ali; Jaradat, Raid

    2018-02-15

    Despite the high prevalence of chronic neck pain, there is limited consensus about the primary etiology, risk factors, diagnostic criteria and therapeutic outcome. Here, we aimed to determine if Ferritin and Vitamin D are modifiable risk factors with chronic neck pain using slandered statistics and artificial intelligence neural network (ANN). Fifty-four patients with chronic neck pain treated between February 2016 and August 2016 in King Abdullah University Hospital and 54 patients age matched controls undergoing outpatient or minor procedures were enrolled. Patients and control demographic parameters, height, weight and single measurement of serum vitamin D, Vitamin B12, ferritin, calcium, phosphorus, zinc were obtained. An ANN prediction model was developed. The statistical analysis reveals that patients with chronic neck pain have significantly lower serum Vitamin D and Ferritin (p-value <.05). 90% of patients with chronic neck pain were females. Multilayer Feed Forward Neural Network with Back Propagation(MFFNN) prediction model were developed and designed based on vitamin D and ferritin as input variables and CNP as output. The ANN model output results show that, 92 out of 108 samples were correctly classified with 85% classification accuracy. Although Iron and vitamin D deficiency cannot be isolated as the sole risk factors of chronic neck pain, they should be considered as two modifiable risk. The high prevalence of chronic neck pain, hypovitaminosis D and low ferritin amongst women is of concern. Bioinformatics predictions with artificial neural network can be of future benefit in classification and prediction models for chronic neck pain. We hope this initial work will encourage a future larger cohort study addressing vitamin D and iron correction as modifiable factors and the application of artificial intelligence models in clinical practice.

  19. GPS receiver phase biases estimable in PPP-RTK networks: dynamic characterization and impact analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Baocheng; Liu, Teng; Yuan, Yunbin

    2018-06-01

    The integer ambiguity resolution enabled precise point positioning (PPP-RTK) has been proven advantageous in a wide range of applications. The realization of PPP-RTK concerns the isolation of satellite phase biases (SPBs) and other corrections from a network of Global Positioning System (GPS) reference receivers. This is generally based on Kalman filter in order to achieve real-time capability, in which proper modeling of the dynamics of various types of unknowns remains crucial. This paper seeks to gain insight into how to reasonably deal with the dynamic behavior of the estimable receiver phase biases (RPBs). Using dual-frequency GPS data collected at six colocated receivers over days 50-120 of 2015, we analyze the 30-s epoch-by-epoch estimates of L1 and wide-lane (WL) RPBs for each receiver pair. The dynamics observed in these estimates are a combined effect of three factors, namely the random measurement noise, the multipath and the ambient temperature. The first factor can be overcome by turning to a real-time filter and the second by considering the use of a sidereal filtering. The third factor has an effect only on the WL, and this effect appears to be linear. After accounting for these three factors, the low-pass-filtered, sidereal-filtered, epoch-by-epoch estimates of L1 RPBs follow a random walk process, whereas those of WL RPBs are constant over time. Properly modeling the dynamics of RPBs is vital, as it ensures the best convergence of the Kalman-filtered, between-satellite single-differenced SPB estimates to their correct values and, in turn, shortens the time-to-first-fix at user side.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yaping; Williams, Brent J.; Goldstein, Allen H.

    Here, we present a rapid method for apportioning the sources of atmospheric organic aerosol composition measured by gas chromatography–mass spectrometry methods. Here, we specifically apply this new analysis method to data acquired on a thermal desorption aerosol gas chromatograph (TAG) system. Gas chromatograms are divided by retention time into evenly spaced bins, within which the mass spectra are summed. A previous chromatogram binning method was introduced for the purpose of chromatogram structure deconvolution (e.g., major compound classes) (Zhang et al., 2014). Here we extend the method development for the specific purpose of determining aerosol samples' sources. Chromatogram bins are arrangedmore » into an input data matrix for positive matrix factorization (PMF), where the sample number is the row dimension and the mass-spectra-resolved eluting time intervals (bins) are the column dimension. Then two-dimensional PMF can effectively do three-dimensional factorization on the three-dimensional TAG mass spectra data. The retention time shift of the chromatogram is corrected by applying the median values of the different peaks' shifts. Bin width affects chemical resolution but does not affect PMF retrieval of the sources' time variations for low-factor solutions. A bin width smaller than the maximum retention shift among all samples requires retention time shift correction. A six-factor PMF comparison among aerosol mass spectrometry (AMS), TAG binning, and conventional TAG compound integration methods shows that the TAG binning method performs similarly to the integration method. However, the new binning method incorporates the entirety of the data set and requires significantly less pre-processing of the data than conventional single compound identification and integration. In addition, while a fraction of the most oxygenated aerosol does not elute through an underivatized TAG analysis, the TAG binning method does have the ability to achieve molecular level resolution on other bulk aerosol components commonly observed by the AMS.« less

  1. Experimental purification of single qubits.

    PubMed

    Ricci, M; De Martini, F; Cerf, N J; Filip, R; Fiurásek, J; Macchiavello, C

    2004-10-22

    We report the experimental realization of the purification protocol for single qubits sent through a depolarizing channel. The qubits are associated with polarization states of single photons and the protocol is achieved by means of passive linear optical elements. The present approach may represent a convenient alternative to the distillation and error correction protocols of quantum information.

  2. Calibration of entrance dose measurement for an in vivo dosimetry programme.

    PubMed

    Ding, W; Patterson, W; Tremethick, L; Joseph, D

    1995-11-01

    An increasing number of cancer treatment centres are using in vivo dosimetry as a quality assurance tool for verifying dosimetry as either the entrance or exit surface of the patient undergoing external beam radiotherapy. Equipment is usually limited to either thermoluminescent dosimeters (TLD) or semiconductor detectors such as p-type diodes. The semiconductor detector is more popular than the TLD due to the major advantage of real time analysis of the actual dose delivered. If a discrepancy is observed between the calculated and the measured entrance dose, it is possible to eliminate several likely sources of errors by immediately verifying all treatment parameters. Five Scanditronix EDP-10 p-type diodes were investigated to determine their calibration and relevant correction factors for entrance dose measurements using a Victoreen White Water-RW3 tissue equivalent phantom and a 6 MV photon beam from a Varian Clinac 2100C linear accelerator. Correction factors were determined for individual diodes for the following parameters: source to surface distance (SSD), collimator size, wedge, plate (tray) and temperature. The directional dependence of diode response was also investigated. The SSD correction factor (CSSD) was found to increase by approximately 3% over the range of SSD from 80 to 130 cm. The correction factor for collimator size (Cfield) also varied by approximately 3% between 5 x 5 and 40 x 40 cm2. The wedge correction factor (Cwedge) and plate correction factor (Cplate) were found to be a function of collimator size. Over the range of measurement, these factors varied by a maximum of 1 and 1.5%, respectively. The Cplate variation between the solid and the drilled plates under the same irradiation conditions was a maximum of 2.4%. The diode sensitivity demonstrated an increase with temperature. A maximum of 2.5% variation for the directional dependence of diode response was observed for angle of +/- 60 degrees. In conclusion, in vivo dosimetry is an important and reliable method for checking the dose delivered to the patient. Preclinical calibration and determination of the relevant correction factors for each diode are essential in order to achieve a high accuracy of dose delivered to the patient.

  3. Challenging terrestrial biosphere models with data from the long-term multifactor Prairie Heating and CO2 Enrichment experiment.

    PubMed

    De Kauwe, Martin G; Medlyn, Belinda E; Walker, Anthony P; Zaehle, Sönke; Asao, Shinichi; Guenet, Bertrand; Harper, Anna B; Hickler, Thomas; Jain, Atul K; Luo, Yiqi; Lu, Xingjie; Luus, Kristina; Parton, William J; Shu, Shijie; Wang, Ying-Ping; Werner, Christian; Xia, Jianyang; Pendall, Elise; Morgan, Jack A; Ryan, Edmund M; Carrillo, Yolima; Dijkstra, Feike A; Zelikova, Tamara J; Norby, Richard J

    2017-09-01

    Multifactor experiments are often advocated as important for advancing terrestrial biosphere models (TBMs), yet to date, such models have only been tested against single-factor experiments. We applied 10 TBMs to the multifactor Prairie Heating and CO 2 Enrichment (PHACE) experiment in Wyoming, USA. Our goals were to investigate how multifactor experiments can be used to constrain models and to identify a road map for model improvement. We found models performed poorly in ambient conditions; there was a wide spread in simulated above-ground net primary productivity (range: 31-390 g C m -2  yr -1 ). Comparison with data highlighted model failures particularly with respect to carbon allocation, phenology, and the impact of water stress on phenology. Performance against the observations from single-factors treatments was also relatively poor. In addition, similar responses were predicted for different reasons across models: there were large differences among models in sensitivity to water stress and, among the N cycle models, N availability during the experiment. Models were also unable to capture observed treatment effects on phenology: they overestimated the effect of warming on leaf onset and did not allow CO 2 -induced water savings to extend the growing season length. Observed interactive (CO 2  × warming) treatment effects were subtle and contingent on water stress, phenology, and species composition. As the models did not correctly represent these processes under ambient and single-factor conditions, little extra information was gained by comparing model predictions against interactive responses. We outline a series of key areas in which this and future experiments could be used to improve model predictions of grassland responses to global change. © 2017 John Wiley & Sons Ltd.

  4. Single-scan patient-specific scatter correction in computed tomography using peripheral detection of scatter and compressed sensing scatter retrieval

    PubMed Central

    Meng, Bowen; Lee, Ho; Xing, Lei; Fahimian, Benjamin P.

    2013-01-01

    Purpose: X-ray scatter results in a significant degradation of image quality in computed tomography (CT), representing a major limitation in cone-beam CT (CBCT) and large field-of-view diagnostic scanners. In this work, a novel scatter estimation and correction technique is proposed that utilizes peripheral detection of scatter during the patient scan to simultaneously acquire image and patient-specific scatter information in a single scan, and in conjunction with a proposed compressed sensing scatter recovery technique to reconstruct and correct for the patient-specific scatter in the projection space. Methods: The method consists of the detection of patient scatter at the edges of the field of view (FOV) followed by measurement based compressed sensing recovery of the scatter through-out the projection space. In the prototype implementation, the kV x-ray source of the Varian TrueBeam OBI system was blocked at the edges of the projection FOV, and the image detector in the corresponding blocked region was used for scatter detection. The design enables image data acquisition of the projection data on the unblocked central region of and scatter data at the blocked boundary regions. For the initial scatter estimation on the central FOV, a prior consisting of a hybrid scatter model that combines the scatter interpolation method and scatter convolution model is estimated using the acquired scatter distribution on boundary region. With the hybrid scatter estimation model, compressed sensing optimization is performed to generate the scatter map by penalizing the L1 norm of the discrete cosine transform of scatter signal. The estimated scatter is subtracted from the projection data by soft-tuning, and the scatter-corrected CBCT volume is obtained by the conventional Feldkamp-Davis-Kress algorithm. Experimental studies using image quality and anthropomorphic phantoms on a Varian TrueBeam system were carried out to evaluate the performance of the proposed scheme. Results: The scatter shading artifacts were markedly suppressed in the reconstructed images using the proposed method. On the Catphan©504 phantom, the proposed method reduced the error of CT number to 13 Hounsfield units, 10% of that without scatter correction, and increased the image contrast by a factor of 2 in high-contrast regions. On the anthropomorphic phantom, the spatial nonuniformity decreased from 10.8% to 6.8% after correction. Conclusions: A novel scatter correction method, enabling unobstructed acquisition of the high frequency image data and concurrent detection of the patient-specific low frequency scatter data at the edges of the FOV, is proposed and validated in this work. Relative to blocker based techniques, rather than obstructing the central portion of the FOV which degrades and limits the image reconstruction, compressed sensing is used to solve for the scatter from detection of scatter at the periphery of the FOV, enabling for the highest quality reconstruction in the central region and robust patient-specific scatter correction. PMID:23298098

  5. Dense arrays of millimeter-sized glass lenses fabricated at wafer-level.

    PubMed

    Albero, Jorge; Perrin, Stéphane; Bargiel, Sylwester; Passilly, Nicolas; Baranski, Maciej; Gauthier-Manuel, Ludovic; Bernard, Florent; Lullin, Justine; Froehly, Luc; Krauter, Johann; Osten, Wolfgang; Gorecki, Christophe

    2015-05-04

    This paper presents the study of a fabrication technique of lenses arrays based on the reflow of glass inside cylindrical silicon cavities. Lenses whose sizes are out of the microfabrication standards are considered. In particular, the case of high fill factor arrays is discussed in detail since the proximity between lenses generates undesired effects. These effects, not experienced when lenses are sufficiently separated so that they can be considered as single items, are corrected by properly designing the silicon cavities. Complete topographic as well as optical characterizations are reported. The compatibility of materials with Micro-Opto-Electromechanical Systems (MOEMS) integration processes makes this technology attractive for the miniaturization of inspection systems, especially those devoted to imaging.

  6. MetAlign 3.0: performance enhancement by efficient use of advances in computer hardware.

    PubMed

    Lommen, Arjen; Kools, Harrie J

    2012-08-01

    A new, multi-threaded version of the GC-MS and LC-MS data processing software, metAlign, has been developed which is able to utilize multiple cores on one PC. This new version was tested using three different multi-core PCs with different operating systems. The performance of noise reduction, baseline correction and peak-picking was 8-19 fold faster compared to the previous version on a single core machine from 2008. The alignment was 5-10 fold faster. Factors influencing the performance enhancement are discussed. Our observations show that performance scales with the increase in processor core numbers we currently see in consumer PC hardware development.

  7. Gene therapy for hemophilia

    PubMed Central

    Rogers, Geoffrey L.; Herzog, Roland W.

    2015-01-01

    Hemophilia is an X-linked inherited bleeding disorder consisting of two classifications, hemophilia A and hemophilia B, depending on the underlying mutation. Although the disease is currently treatable with intravenous delivery of replacement recombinant clotting factor, this approach represents a significant cost both monetarily and in terms of quality of life. Gene therapy is an attractive alternative approach to the treatment of hemophilia that would ideally provide life-long correction of clotting activity with a single injection. In this review, we will discuss the multitude of approaches that have been explored for the treatment of both hemophilia A and B, including both in vivo and ex vivo approaches with viral and nonviral delivery vectors. PMID:25553466

  8. [Fiddler's neck].

    PubMed

    Knierim, C; Goertz, W; Reifenberger, J; Homey, B; Meller, S

    2013-10-01

    The fiddler's neck is an uncommon variant of acne mechanica in violinists and violists. It is a single firm red-brown dermal nodule usually on the left side of neck. This special form of acne mechanica represents a therapeutic challenge since the triggering mechanical factors persist, unless they can be corrected by changes in positioning or modifications of the chin pad. A 72-year-old woman who had played the violin since childhood presented with a red-brown nodule on her neck for 18 months. Cushioning provided no relief. Excision of the affected area with primary closure represented one therapeutic option. Further supportive measures include improved posture to reduce the pressure between skin and instrument and interposing a neck cloth.

  9. Efficient and robust analysis of complex scattering data under noise in microwave resonators.

    PubMed

    Probst, S; Song, F B; Bushev, P A; Ustinov, A V; Weides, M

    2015-02-01

    Superconducting microwave resonators are reliable circuits widely used for detection and as test devices for material research. A reliable determination of their external and internal quality factors is crucial for many modern applications, which either require fast measurements or operate in the single photon regime with small signal to noise ratios. Here, we use the circle fit technique with diameter correction and provide a step by step guide for implementing an algorithm for robust fitting and calibration of complex resonator scattering data in the presence of noise. The speedup and robustness of the analysis are achieved by employing an algebraic rather than an iterative fit technique for the resonance circle.

  10. Control circuit maintains unity power factor of reactive load

    NASA Technical Reports Server (NTRS)

    Kramer, M.; Martinage, L. H.

    1966-01-01

    Circuit including feedback control elements automatically corrects the power factor of a reactive load. It maintains power supply efficiency where negative load reactance changes and varies by providing corrective error signals to the control windings of a power supply transformer.

  11. On the use of Orbscan II to assess the peripheral corneal thickness in humans: a comparison with ultrasound pachometry measures.

    PubMed

    Jonuscheit, Sven; Doughty, Michael J; Button, Norman F

    2007-03-01

    To compare the measures of corneal thickness measurements obtained by an optical scanning slit method with those obtained by an ultrasound (US) pachometer, with special interest in the mid-peripheral (2.5 mm from centre) and peripheral (4.5 mm from centre) region of the cornea. Three measures of corneal thickness were taken using Orbscan II and then by US pachometry (under topical anaesthesia with benoxinate 0.4%) on 24 adults, aged 20-58 years and with up to 8.5 D of myopia. The full Orbscan topography maps were used to extract single point data along the horizontal corneal meridian for the geometric centre, 2.5 mm from centre (nasal and temporal) and 4.5 mm (nasal and temporal) from centre. No correction factor was used for the Orbscan data. The same set of measures were made with the US pachometer. In all cases, the averages of three (centre) or six (mid-periphery and periphery) readings were taken as the measurements from each cornea. Orbscan readings on the right eyes averaged 0.576, 0.632 and 0.712 mm for central, mid-peripheral and peripheral sites with average values for emmetropic subjects (<1 DS, n = 12) being marginally higher than for myopic subjects (average - 4.00 DS, n = 12). For US pachometry, the average values were however 0.522, 0.554 and 0.606 mm. Similar results were obtained on left eyes. Combining data from both eyes also showed that the mean difference between Orbscan II and US measures was not constant across the cornea, being 0.055 +/- 0.014 mm at the centre, 0.080 +/- 0.019 mm at mid-peripheral locations and 0.107 +/- 0.046 mm at the peripheral sites. These differences persisted after application of the generally recommended acoustic factor (x0.92) to all of the Orbscan readings. A single acoustic factor correction cannot be applied to all corneal thickness measures made with an Orbscan II to equate the measures to those made with an US pachometer.

  12. Experimental Verification of the Theory of Wind-Tunnel Boundary Interference

    NASA Technical Reports Server (NTRS)

    Theodorsen, Theodore; Silverstein, Abe

    1935-01-01

    The results of an experimental investigation on the boundary-correction factor are presented in this report. The values of the boundary-correction factor from the theory, which at the present time is virtually completed, are given in the report for all conventional types of tunnels. With the isolation of certain disturbing effects, the experimental boundary-correction factor was found to be in satisfactory agreement with the theoretically predicted values, thus verifying the soundness and sufficiency of the theoretical analysis. The establishment of a considerable velocity distortion, in the nature of a unique blocking effect, constitutes a principal result of the investigation.

  13. Improving global estimates of syphilis in pregnancy by diagnostic test type: A systematic review and meta-analysis.

    PubMed

    Ham, D Cal; Lin, Carol; Newman, Lori; Wijesooriya, N Saman; Kamb, Mary

    2015-06-01

    "Probable active syphilis," is defined as seroreactivity in both non-treponemal and treponemal tests. A correction factor of 65%, namely the proportion of pregnant women reactive in one syphilis test type that were likely reactive in the second, was applied to reported syphilis seropositivity data reported to WHO for global estimates of syphilis during pregnancy. To identify more accurate correction factors based on test type reported. Medline search using: "Syphilis [Mesh] and Pregnancy [Mesh]," "Syphilis [Mesh] and Prenatal Diagnosis [Mesh]," and "Syphilis [Mesh] and Antenatal [Keyword]. Eligible studies must have reported results for pregnant or puerperal women for both non-treponemal and treponemal serology. We manually calculated the crude percent estimates of subjects with both reactive treponemal and reactive non-treponemal tests among subjects with reactive treponemal and among subjects with reactive non-treponemal tests. We summarized the percent estimates using random effects models. Countries reporting both reactive non-treponemal and reactive treponemal testing required no correction factor. Countries reporting non-treponemal testing or treponemal testing alone required a correction factor of 52.2% and 53.6%, respectively. Countries not reporting test type required a correction factor of 68.6%. Future estimates should adjust reported maternal syphilis seropositivity by test type to ensure accuracy. Published by Elsevier Ireland Ltd.

  14. Improved scatterer property estimates from ultrasound backscatter for small gate lengths using a gate-edge correction factor

    NASA Astrophysics Data System (ADS)

    Oelze, Michael L.; O'Brien, William D.

    2004-11-01

    Backscattered rf signals used to construct conventional ultrasound B-mode images contain frequency-dependent information that can be examined through the backscattered power spectrum. The backscattered power spectrum is found by taking the magnitude squared of the Fourier transform of a gated time segment corresponding to a region in the scattering volume. When a time segment is gated, the edges of the gated regions change the frequency content of the backscattered power spectrum due to truncating of the waveform. Tapered windows, like the Hanning window, and longer gate lengths reduce the relative contribution of the gate-edge effects. A new gate-edge correction factor was developed that partially accounted for the edge effects. The gate-edge correction factor gave more accurate estimates of scatterer properties at small gate lengths compared to conventional windowing functions. The gate-edge correction factor gave estimates of scatterer properties within 5% of actual values at very small gate lengths (less than 5 spatial pulse lengths) in both simulations and from measurements on glass-bead phantoms. While the gate-edge correction factor gave higher accuracy of estimates at smaller gate lengths, the precision of estimates was not improved at small gate lengths over conventional windowing functions. .

  15. Air-braked cycle ergometers: validity of the correction factor for barometric pressure.

    PubMed

    Finn, J P; Maxwell, B F; Withers, R T

    2000-10-01

    Barometric pressure exerts by far the greatest influence of the three environmental factors (barometric pressure, temperature and humidity) on power outputs from air-braked ergometers. The barometric pressure correction factor for power outputs from air-braked ergometers is in widespread use but apparently has never been empirically validated. Our experiment validated this correction factor by calibrating two air-braked cycle ergometers in a hypobaric chamber using a dynamic calibration rig. The results showed that if the power output correction for changes in air resistance at barometric pressures corresponding to altitudes of 38, 600, 1,200 and 1,800 m above mean sea level were applied, then the coefficients of variation were 0.8-1.9% over the range of 160-1,597 W. The overall mean error was 3.0 % but this included up to 0.73 % for the propagated error that was associated with errors in the measurement of: a) temperature b) relative humidity c) barometric pressure d) force, distance and angular velocity by the dynamic calibration rig. The overall mean error therefore approximated the +/- 2.0% of true load that was specified by the Laboratory Standards Assistance Scheme of the Australian Sports Commission. The validity of the correction factor for barometric pressure on power output was therefore demonstrated over the altitude range of 38-1,800 m.

  16. 24 CFR 572.225 - Grant agreements; corrective and remedial actions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT COMMUNITY FACILITIES HOPE FOR HOMEOWNERSHIP OF SINGLE FAMILY HOMES PROGRAM (HOPE 3) Grants § 572.225 Grant agreements; corrective and remedial actions. (a) Terms and... not incurring further costs for the affected activities; (iv) Reimbursing its HOPE 3 program account...

  17. Improving the quantitative accuracy of optical-emission computed tomography by incorporating an attenuation correction: application to HIF1 imaging

    NASA Astrophysics Data System (ADS)

    Kim, E.; Bowsher, J.; Thomas, A. S.; Sakhalkar, H.; Dewhirst, M.; Oldham, M.

    2008-10-01

    Optical computed tomography (optical-CT) and optical-emission computed tomography (optical-ECT) are new techniques for imaging the 3D structure and function (including gene expression) of whole unsectioned tissue samples. This work presents a method of improving the quantitative accuracy of optical-ECT by correcting for the 'self'-attenuation of photons emitted within the sample. The correction is analogous to a method commonly applied in single-photon-emission computed tomography reconstruction. The performance of the correction method was investigated by application to a transparent cylindrical gelatin phantom, containing a known distribution of attenuation (a central ink-doped gelatine core) and a known distribution of fluorescing fibres. Attenuation corrected and uncorrected optical-ECT images were reconstructed on the phantom to enable an evaluation of the effectiveness of the correction. Significant attenuation artefacts were observed in the uncorrected images where the central fibre appeared ~24% less intense due to greater attenuation from the surrounding ink-doped gelatin. This artefact was almost completely removed in the attenuation-corrected image, where the central fibre was within ~4% of the others. The successful phantom test enabled application of attenuation correction to optical-ECT images of an unsectioned human breast xenograft tumour grown subcutaneously on the hind leg of a nude mouse. This tumour cell line had been genetically labelled (pre-implantation) with fluorescent reporter genes such that all viable tumour cells expressed constitutive red fluorescent protein and hypoxia-inducible factor 1 transcription-produced green fluorescent protein. In addition to the fluorescent reporter labelling of gene expression, the tumour microvasculature was labelled by a light-absorbing vasculature contrast agent delivered in vivo by tail-vein injection. Optical-CT transmission images yielded high-resolution 3D images of the absorbing contrast agent, and revealed highly inhomogeneous vasculature perfusion within the tumour. Optical-ECT emission images yielded high-resolution 3D images of the fluorescent protein distribution in the tumour. Attenuation-uncorrected optical-ECT images showed clear loss of signal in regions of high attenuation, including regions of high perfusion, where attenuation is increased by increased vascular ink stain. Application of attenuation correction showed significant changes in an apparent expression of fluorescent proteins, confirming the importance of the attenuation correction. In conclusion, this work presents the first development and application of an attenuation correction for optical-ECT imaging. The results suggest that successful attenuation correction for optical-ECT is feasible and is essential for quantitatively accurate optical-ECT imaging.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, M; Lee, V; Wong, M

    Purpose: Following the method of in-phantom measurements of reference air kerma rate (Ka) at 100cm and absorbed water dose rate (Dw1) at 1cm of high-dose-rate 192Ir brachytherapy source using 60Co absorbed-dose-to-water calibrated (ND,w,60Co) ionization chamber (IC), we experimentally determined the in-phantom correction factors (kglob) of the PTW30013 (PTW, Freiburg, Germany) IC by comparing the Monte Carlo (MC)-calculated kglob of the other PTW30016 IC. Methods: The Dw1 formalism of in-phantom measurement is: M*ND,w,60Co*(kglob)Dw1, where M is the collected charges, and (kglob)Dw1 the in-phantom Dw1 correction factor. Similarly, Ka is determined by M*ND,w,60Co*(kglob)ka, where (kglob)ka the in-phantom Ka correction factor. Two thimblemore » ICs PTW30013 and another PTW30016 having a ND,w,60Co from the German primary standard laboratory (PTB) were simultaneously exposed to the microselectron 192Ir v2 source at 8cm in a PMMA phantom. A reference well chamber (PTW33004) with a PTB transfer Ka calibration Nka was used for comparing the in-phantom measurements to derive the experimental (kglob)ka factors. We determined the experimental (kglob)Dw1 of the PTW30013 by comparing the PTW30016 measurements with MC-calculated (kglob)Dw1. Results: Ka results of the PTW30016 based on ND,w,60Co and MC-calculated (kglob)ka differ from the well chamber results based on Nka by 1.6% and from the manufacturer by 1.0%. Experimental (kglob)ka factors for the PTW30016 and two other PTW30013 are 0.00683, 0.00681 and 0.00679, and vary <0.5% with 1mm source positioning uncertainty. Experimental (kglob)Dw1 of the PTW30013 ICs are 75.3 and 75.6, and differ by 1.6% from the conversion by dose rate constant from the AAPM report 229. Conclusion: The 1.7% difference between MC and experimental (kglob)ka for the PTW30016 IC is within the PTB 2.5% expanded uncertainty in Ka calibration standard. Using a single IC with ND,w,60Co to calibrate the brachytherapy source and dose output in external radiotherapy is feasible. MC validation of the PTW30013(kglob)Dw1 is warranted.« less

  19. Liquid hydrogen mass flow through a multiple orifice Joule-Thomson device

    NASA Astrophysics Data System (ADS)

    Papell, S. Stephen; Nyland, Ted W.; Saiyed, Naseem H.

    Liquid hydrogen mass flow rate, pressure drop, and temperature drop data were obtained for a number of multiple orifice Joule-Thomas devices known as visco jets. The present investigation continues a study to develop an equation for predicting two phase flow of cryogens through these devices. The test apparatus design allowed isenthalpic expansion of the cryogen through the visco jets. The data covered a range of inlet and outlet operating conditions. The mass flow rate range single phase or two phase was 0.015 to 0.98 lbm/hr. The manufacturer's equation was found to overpredict the single phase hydrogen data by 10 percent and the two phase data by as much as 27 percent. Two modifications of the equation resulted in a data correlation that predicts both the single and two phase flow across the visco jet. The first modification was of a theoretical nature, and the second strictly empirical. The former reduced the spread in the two phase data. It was a multiplication factor of 1 - X applied to the manufacturer's equation. The parameter X is the flow quality downstream of the visco jet based on isenthalpic expansion across the device. The latter modification was a 10 percent correction term that correlated 90 percent of the single and two phase data to within +/- 10 percent scatter band.

  20. Liquid hydrogen mass flow through a multiple orifice Joule-Thomson device

    NASA Technical Reports Server (NTRS)

    Papell, S. S.; Nyland, Ted W.; Saiyed, Naseem H.

    1992-01-01

    Liquid hydrogen mass flow rate, pressure drop, and temperature drop data were obtained for a number of multiple orifice Joule-Thomson devices known as visco jets. The present investigation continues a study to develop an equation for predicting two phase flow of cryogens through these devices. The test apparatus design allowed isenthalpic expansion of the cryogen through the visco jets. The data covered a range of inlet and outlet operating conditions. The mass flow rate range single phase or two phase was 0.015 to 0.98 lbm/hr. The manufacturer's equation was found to overpredict the single phase hydrogen data by 10 percent and the two phase data by as much as 27 percent. Two modifications of the equation resulted in a data correlation that predicts both the single and two phase flow across the visco jet. The first modification was of a theoretical nature, and the second strictly empirical. The former reduced the spread in the two phase data. It was a multiplication factor of 1-X applied to the manufacturer's equation. The parameter X is the flow quality downstream of the visco jet based on isenthalpic expansion across the device. The latter modification was a 10 percent correction term that correlated 90 percent of the single and two phase data to within +/- 10 percent scatter band.

  1. Liquid hydrogen mass flow through a multiple orifice Joule-Thomson device

    NASA Technical Reports Server (NTRS)

    Papell, S. Stephen; Nyland, Ted W.; Saiyed, Naseem H.

    1992-01-01

    Liquid hydrogen mass flow rate, pressure drop, and temperature drop data were obtained for a number of multiple orifice Joule-Thomas devices known as visco jets. The present investigation continues a study to develop an equation for predicting two phase flow of cryogens through these devices. The test apparatus design allowed isenthalpic expansion of the cryogen through the visco jets. The data covered a range of inlet and outlet operating conditions. The mass flow rate range single phase or two phase was 0.015 to 0.98 lbm/hr. The manufacturer's equation was found to overpredict the single phase hydrogen data by 10 percent and the two phase data by as much as 27 percent. Two modifications of the equation resulted in a data correlation that predicts both the single and two phase flow across the visco jet. The first modification was of a theoretical nature, and the second strictly empirical. The former reduced the spread in the two phase data. It was a multiplication factor of 1 - X applied to the manufacturer's equation. The parameter X is the flow quality downstream of the visco jet based on isenthalpic expansion across the device. The latter modification was a 10 percent correction term that correlated 90 percent of the single and two phase data to within +/- 10 percent scatter band.

  2. Liquid hydrogen mass flow through a multiple orifice Joule-Thomson device

    NASA Astrophysics Data System (ADS)

    Papell, S. S.; Nyland, Ted W.; Saiyed, Naseem H.

    1992-07-01

    Liquid hydrogen mass flow rate, pressure drop, and temperature drop data were obtained for a number of multiple orifice Joule-Thomson devices known as visco jets. The present investigation continues a study to develop an equation for predicting two phase flow of cryogens through these devices. The test apparatus design allowed isenthalpic expansion of the cryogen through the visco jets. The data covered a range of inlet and outlet operating conditions. The mass flow rate range single phase or two phase was 0.015 to 0.98 lbm/hr. The manufacturer's equation was found to overpredict the single phase hydrogen data by 10 percent and the two phase data by as much as 27 percent. Two modifications of the equation resulted in a data correlation that predicts both the single and two phase flow across the visco jet. The first modification was of a theoretical nature, and the second strictly empirical. The former reduced the spread in the two phase data. It was a multiplication factor of 1-X applied to the manufacturer's equation. The parameter X is the flow quality downstream of the visco jet based on isenthalpic expansion across the device. The latter modification was a 10 percent correction term that correlated 90 percent of the single and two phase data to within +/- 10 percent scatter band.

  3. Correction of penile ventral curvature in patients with minor or no hypospadias: a single surgeon's experience of 43 cases.

    PubMed

    Seo, Shogo; Ochi, Takanori; Yazaki, Yuta; Murakami, Hiroshi; Okawada, Manabu; Doi, Takashi; Miyano, Go; Koga, Hiroyuki; Lane, Geoffrey J; Yamataka, Atsuyuki

    2016-10-01

    To report our experience of correcting penile ventral curvature associated with minor or no hypospadias. We reviewed 43 penile ventral curvature patients treated by a single surgeon from 1997 to 2015. Of these, 23 had minor hypospadias. Curvature was corrected using degloving, chordectomy, dorsal plication (DP), tunica albuginea incision (TAI), or a combination of these. Outcome was confirmed by induced artificial erection and post-operative appearance. Mean age at curvature correction was 3.2 ± 2.6 years. 17/43 had degloving and chordectomy (DC), 16/43 had DP after DC, and 10/43 had TAI after DC, because of ventral shortening and severe curvature caused by a short hypoplastic urethra. Other procedures required were primary meatoplasty (n = 4) and urethroplasty (UP; n = 1) at the time of curvature correction, and UP after correction of curvature (n = 11). Complications included recurrence of curvature after DP (n = 3/16; 18.8 %) and urethral stenosis after UP with tubed peritoneum (n = 1/10; 10 %). There were no recurrences of curvature in TAI cases. Parents reported penile cosmesis as good (n = 38; 88.4 %), acceptable (n = 4; 9.3 %), or poor (n = 1; 2.3 %). We recommend TAI followed by UP for correcting penile ventral curvature with short hypoplastic urethra. Tubed peritoneum is not recommended for UP.

  4. Correction for spatial averaging in laser speckle contrast analysis

    PubMed Central

    Thompson, Oliver; Andrews, Michael; Hirst, Evan

    2011-01-01

    Practical laser speckle contrast analysis systems face a problem of spatial averaging of speckles, due to the pixel size in the cameras used. Existing practice is to use a system factor in speckle contrast analysis to account for spatial averaging. The linearity of the system factor correction has not previously been confirmed. The problem of spatial averaging is illustrated using computer simulation of time-integrated dynamic speckle, and the linearity of the correction confirmed using both computer simulation and experimental results. The valid linear correction allows various useful compromises in the system design. PMID:21483623

  5. Aberration corrections for free-space optical communications in atmosphere turbulence using orbital angular momentum states.

    PubMed

    Zhao, S M; Leach, J; Gong, L Y; Ding, J; Zheng, B Y

    2012-01-02

    The effect of atmosphere turbulence on light's spatial structure compromises the information capacity of photons carrying the Orbital Angular Momentum (OAM) in free-space optical (FSO) communications. In this paper, we study two aberration correction methods to mitigate this effect. The first one is the Shack-Hartmann wavefront correction method, which is based on the Zernike polynomials, and the second is a phase correction method specific to OAM states. Our numerical results show that the phase correction method for OAM states outperforms the Shark-Hartmann wavefront correction method, although both methods improve significantly purity of a single OAM state and the channel capacities of FSO communication link. At the same time, our experimental results show that the values of participation functions go down at the phase correction method for OAM states, i.e., the correction method ameliorates effectively the bad effect of atmosphere turbulence.

  6. Limited Associations of Dopamine System Genes With Alcohol Dependence and Related Traits in the Irish Affected Sib Pair Study of Alcohol Dependence (IASPSAD)

    PubMed Central

    Hack, Laura M.; Kalsi, Gursharan; Aliev, Fazil; Kuo, Po-Hsiu; Prescott, Carol A.; Patterson, Diana G.; Walsh, Dermot; Dick, Danielle M.; Riley, Brien P.; Kendler, Kenneth S.

    2012-01-01

    Background Over 50 years of evidence from research has established that the central dopaminergic reward pathway is likely involved in alcohol dependence (AD). Additional evidence supports a role for dopamine (DA) in other disinhibitory psychopathology, which is often comorbid with AD. Family and twin studies demonstrate that a common genetic component accounts for most of the genetic variance in these traits. Thus, DA-related genes represent putative candidates for the genetic risk that underlies not only AD but also behavioral disinhibition. Many linkage and association studies have examined these relationships with inconsistent results, possibly because of low power, poor marker coverage, and/or an inappropriate correction for multiple testing. Methods We conducted an association study on the products encoded by 10 DA-related genes (DRD1-D5, SLC18A2, SLC6A3, DDC, TH, COMT) using a large, ethnically homogeneous sample with severe AD (n = 545) and screened controls (n = 509). We collected genotypes from linkage disequilibrium (LD)-tagging single nucleotide polymorphisms (SNPs) and employed a gene-based method of correction. We tested for association with AD diagnosis in cases and controls and with a variety of alcohol-related traits (including age-at-onset, initial sensitivity, tolerance, maximum daily drinks, and a withdrawal factor score), disinhibitory symptoms, and a disinhibitory factor score in cases only. A total of 135 SNPs were genotyped using the Illumina GoldenGate and Taqman Assays-on-Demand protocols. Results Of the 101 SNPs entered into standard analysis, 6 independent SNPs from 5 DA genes were associated with AD or a quantitative alcohol-related trait. Two SNPs across 2 genes were associated with a disinhibitory symptom count, while 1 SNP in DRD5 was positive for association with the general disinhibitory factor score. Conclusions Our study provides evidence of modest associations between a small number of DA-related genes and AD as well as a range of alcohol-related traits and measures of behavioral disinhibition. While we did conduct gene-based correction for multiple testing, we did not correct for multiple traits because the traits are correlated. However, false-positive findings remain possible, so our results must be interpreted with caution. PMID:21083670

  7. Application of a radiophotoluminescent glass dosimeter to nonreference condition dosimetry in the postal dose audit system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizuno, Hideyuki, E-mail: h-mizuno@nirs.go.jp; Fukumura, Akifumi; Fukahori, Mai

    Purpose: The purpose of this study was to obtain a set of correction factors of the radiophotoluminescent glass dosimeter (RGD) output for field size changes and wedge insertions. Methods: Several linear accelerators were used for irradiation of the RGDs. The field sizes were changed from 5 × 5 cm to 25 × 25 cm for 4, 6, 10, and 15 MV x-ray beams. The wedge angles were 15°, 30°, 45°, and 60°. In addition to physical wedge irradiation, nonphysical (dynamic/virtual) wedge irradiations were performed. Results: The obtained data were fitted with a single line for each energy, and correction factorsmore » were determined. Compared with ionization chamber outputs, the RGD outputs gradually increased with increasing field size, because of the higher RGD response to scattered low-energy photons. The output increase was about 1% per 10 cm increase in field size, with a slight difference dependent on the beam energy. For both physical and nonphysical wedged beam irradiation, there were no systematic trends in the RGD outputs, such as monotonic increase or decrease depending on the wedge angle change if the authors consider the uncertainty, which is approximately 0.6% for each set of measured points. Therefore, no correction factor was needed for all inserted wedges. Based on this work, postal dose audits using RGDs for the nonreference condition were initiated in 2010. The postal dose audit results between 2010 and 2012 were analyzed. The mean difference between the measured and stated doses was within 0.5% for all fields with field sizes between 5 × 5 cm and 25 × 25 cm and with wedge angles from 15° to 60°. The standard deviations (SDs) of the difference distribution were within the estimated uncertainty (1SD) except for the 25 × 25 cm field size data, which were not reliable because of poor statistics (n = 16). Conclusions: A set of RGD output correction factors was determined for field size changes and wedge insertions. The results obtained from recent postal dose audits were analyzed, and the mean differences between the measured and stated doses were within 0.5% for every field size and wedge angle. The SDs of the distribution were within the estimated uncertainty, except for one condition that was not reliable because of poor statistics.« less

  8. Phenotypic correction of von Willebrand disease type 3 blood-derived endothelial cells with lentiviral vectors expressing von Willebrand factor

    PubMed Central

    De Meyer, Simon F.; Vanhoorelbeke, Karen; Chuah, Marinee K.; Pareyn, Inge; Gillijns, Veerle; Hebbel, Robert P.; Collen, Désiré; Deckmyn, Hans; VandenDriessche, Thierry

    2006-01-01

    Von Willebrand disease (VWD) is an inherited bleeding disorder, caused by quantitative (type 1 and 3) or qualitative (type 2) defects in von Willebrand factor (VWF). Gene therapy is an appealing strategy for treatment of VWD because it is caused by a single gene defect and because VWF is secreted into the circulation, obviating the need for targeting specific organs or tissues. However, development of gene therapy for VWD has been hampered by the considerable length of the VWF cDNA (8.4 kb [kilobase]) and the inherent complexity of the VWF protein that requires extensive posttranslational processing. In this study, a gene-based approach for VWD was developed using lentiviral transduction of blood-outgrowth endothelial cells (BOECs) to express functional VWF. A lentiviral vector encoding complete human VWF was used to transduce BOECs isolated from type 3 VWD dogs resulting in high-transduction efficiencies (95.6% ± 2.2%). Transduced VWD BOECs efficiently expressed functional vector-encoded VWF (4.6 ± 0.4 U/24 hour per 106 cells), with normal binding to GPIbα and collagen and synthesis of a broad range of multimers resulting in phenotypic correction of these cells. These results indicate for the first time that gene therapy of type 3 VWD is feasible and that BOECs are attractive target cells for this purpose. PMID:16478886

  9. A new method for weakening the combined effect of residual errors on multibeam bathymetric data

    NASA Astrophysics Data System (ADS)

    Zhao, Jianhu; Yan, Jun; Zhang, Hongmei; Zhang, Yuqing; Wang, Aixue

    2014-12-01

    Multibeam bathymetric system (MBS) has been widely applied in the marine surveying for providing high-resolution seabed topography. However, some factors degrade the precision of bathymetry, including the sound velocity, the vessel attitude, the misalignment angle of the transducer and so on. Although these factors have been corrected strictly in bathymetric data processing, the final bathymetric result is still affected by their residual errors. In deep water, the result usually cannot meet the requirements of high-precision seabed topography. The combined effect of these residual errors is systematic, and it's difficult to separate and weaken the effect using traditional single-error correction methods. Therefore, the paper puts forward a new method for weakening the effect of residual errors based on the frequency-spectrum characteristics of seabed topography and multibeam bathymetric data. Four steps, namely the separation of the low-frequency and the high-frequency part of bathymetric data, the reconstruction of the trend of actual seabed topography, the merging of the actual trend and the extracted microtopography, and the accuracy evaluation, are involved in the method. Experiment results prove that the proposed method could weaken the combined effect of residual errors on multibeam bathymetric data and efficiently improve the accuracy of the final post-processing results. We suggest that the method should be widely applied to MBS data processing in deep water.

  10. footprintDB: a database of transcription factors with annotated cis elements and binding interfaces.

    PubMed

    Sebastian, Alvaro; Contreras-Moreira, Bruno

    2014-01-15

    Traditional and high-throughput techniques for determining transcription factor (TF) binding specificities are generating large volumes of data of uneven quality, which are scattered across individual databases. FootprintDB integrates some of the most comprehensive freely available libraries of curated DNA binding sites and systematically annotates the binding interfaces of the corresponding TFs. The first release contains 2422 unique TF sequences, 10 112 DNA binding sites and 3662 DNA motifs. A survey of the included data sources, organisms and TF families was performed together with proprietary database TRANSFAC, finding that footprintDB has a similar coverage of multicellular organisms, while also containing bacterial regulatory data. A search engine has been designed that drives the prediction of DNA motifs for input TFs, or conversely of TF sequences that might recognize input regulatory sequences, by comparison with database entries. Such predictions can also be extended to a single proteome chosen by the user, and results are ranked in terms of interface similarity. Benchmark experiments with bacterial, plant and human data were performed to measure the predictive power of footprintDB searches, which were able to correctly recover 10, 55 and 90% of the tested sequences, respectively. Correctly predicted TFs had a higher interface similarity than the average, confirming its diagnostic value. Web site implemented in PHP,Perl, MySQL and Apache. Freely available from http://floresta.eead.csic.es/footprintdb.

  11. Price corrected domestic technology assumption--a method to assess pollution embodied in trade using primary official statistics only. With a case on CO2 emissions embodied in imports to Europe.

    PubMed

    Tukker, Arnold; de Koning, Arjan; Wood, Richard; Moll, Stephan; Bouwmeester, Maaike C

    2013-02-19

    Environmentally extended input output (EE IO) analysis is increasingly used to assess the carbon footprint of final consumption. Official EE IO data are, however, at best available for single countries or regions such as the EU27. This causes problems in assessing pollution embodied in imported products. The popular "domestic technology assumption (DTA)" leads to errors. Improved approaches based on Life Cycle Inventory data, Multiregional EE IO tables, etc. rely on unofficial research data and modeling, making them difficult to implement by statistical offices. The DTA can lead to errors for three main reasons: exporting countries can have higher impact intensities; may use more intermediate inputs for the same output; or may sell the imported products for lower/other prices than those produced domestically. The last factor is relevant for sustainable consumption policies of importing countries, whereas the first factors are mainly a matter of making production in exporting countries more eco-efficient. We elaborated a simple correction for price differences in imports and domestic production using monetary and physical data from official import and export statistics. A case study for the EU27 shows that this "price-adjusted DTA" gives a partial but meaningful adjustment of pollution embodied in trade compared to multiregional EE IO studies.

  12. An advanced method to assess the diet of free-ranging large carnivores based on scats.

    PubMed

    Wachter, Bettina; Blanc, Anne-Sophie; Melzheimer, Jörg; Höner, Oliver P; Jago, Mark; Hofer, Heribert

    2012-01-01

    The diet of free-ranging carnivores is an important part of their ecology. It is often determined from prey remains in scats. In many cases, scat analyses are the most efficient method but they require correction for potential biases. When the diet is expressed as proportions of consumed mass of each prey species, the consumed prey mass to excrete one scat needs to be determined and corrected for prey body mass because the proportion of digestible to indigestible matter increases with prey body mass. Prey body mass can be corrected for by conducting feeding experiments using prey of various body masses and fitting a regression between consumed prey mass to excrete one scat and prey body mass (correction factor 1). When the diet is expressed as proportions of consumed individuals of each prey species and includes prey animals not completely consumed, the actual mass of each prey consumed by the carnivore needs to be controlled for (correction factor 2). No previous study controlled for this second bias. Here we use an extended series of feeding experiments on a large carnivore, the cheetah (Acinonyx jubatus), to establish both correction factors. In contrast to previous studies which fitted a linear regression for correction factor 1, we fitted a biologically more meaningful exponential regression model where the consumed prey mass to excrete one scat reaches an asymptote at large prey sizes. Using our protocol, we also derive correction factor 1 and 2 for other carnivore species and apply them to published studies. We show that the new method increases the number and proportion of consumed individuals in the diet for large prey animals compared to the conventional method. Our results have important implications for the interpretation of scat-based studies in feeding ecology and the resolution of human-wildlife conflicts for the conservation of large carnivores.

  13. An Advanced Method to Assess the Diet of Free-Ranging Large Carnivores Based on Scats

    PubMed Central

    Wachter, Bettina; Blanc, Anne-Sophie; Melzheimer, Jörg; Höner, Oliver P.; Jago, Mark; Hofer, Heribert

    2012-01-01

    Background The diet of free-ranging carnivores is an important part of their ecology. It is often determined from prey remains in scats. In many cases, scat analyses are the most efficient method but they require correction for potential biases. When the diet is expressed as proportions of consumed mass of each prey species, the consumed prey mass to excrete one scat needs to be determined and corrected for prey body mass because the proportion of digestible to indigestible matter increases with prey body mass. Prey body mass can be corrected for by conducting feeding experiments using prey of various body masses and fitting a regression between consumed prey mass to excrete one scat and prey body mass (correction factor 1). When the diet is expressed as proportions of consumed individuals of each prey species and includes prey animals not completely consumed, the actual mass of each prey consumed by the carnivore needs to be controlled for (correction factor 2). No previous study controlled for this second bias. Methodology/Principal Findings Here we use an extended series of feeding experiments on a large carnivore, the cheetah (Acinonyx jubatus), to establish both correction factors. In contrast to previous studies which fitted a linear regression for correction factor 1, we fitted a biologically more meaningful exponential regression model where the consumed prey mass to excrete one scat reaches an asymptote at large prey sizes. Using our protocol, we also derive correction factor 1 and 2 for other carnivore species and apply them to published studies. We show that the new method increases the number and proportion of consumed individuals in the diet for large prey animals compared to the conventional method. Conclusion/Significance Our results have important implications for the interpretation of scat-based studies in feeding ecology and the resolution of human-wildlife conflicts for the conservation of large carnivores. PMID:22715373

  14. DNA repair variants and breast cancer risk.

    PubMed

    Grundy, Anne; Richardson, Harriet; Schuetz, Johanna M; Burstyn, Igor; Spinelli, John J; Brooks-Wilson, Angela; Aronson, Kristan J

    2016-05-01

    A functional DNA repair system has been identified as important in the prevention of tumour development. Previous studies have hypothesized that common polymorphisms in DNA repair genes could play a role in breast cancer risk and also identified the potential for interactions between these polymorphisms and established breast cancer risk factors such as physical activity. Associations with breast cancer risk for 99 single nucleotide polymorphisms (SNPs) from genes in ten DNA repair pathways were examined in a case-control study including both Europeans (644 cases, 809 controls) and East Asians (299 cases, 160 controls). Odds ratios in both additive and dominant genetic models were calculated separately for participants of European and East Asian ancestry using multivariate logistic regression. The impact of multiple comparisons was assessed by correcting for the false discovery rate within each DNA repair pathway. Interactions between several breast cancer risk factors and DNA repair SNPs were also evaluated. One SNP (rs3213282) in the gene XRCC1 was associated with an increased risk of breast cancer in the dominant model of inheritance following adjustment for the false discovery rate (P < 0.05), although no associations were observed for other DNA repair SNPs. Interactions of six SNPs in multiple DNA repair pathways with physical activity were evident prior to correction for FDR, following which there was support for only one of the interaction terms (P < 0.05). No consistent associations between variants in DNA repair genes and breast cancer risk or their modification by breast cancer risk factors were observed. © 2016 Wiley Periodicals, Inc.

  15. Intracalibration of particle detectors on a three-axis stabilized geostationary platform

    NASA Astrophysics Data System (ADS)

    Rowland, W.; Weigel, R. S.

    2012-11-01

    We describe an algorithm for intracalibration of measurements from plasma or energetic particle detectors on a three-axis stabilized platform. Modeling and forecasting of Earth's radiation belt environment requires data from particle instruments, and these data depend on measurements which have an inherent calibration uncertainty. Pre-launch calibration is typically performed, but on-orbit changes in the instrument often necessitate adjustment of calibration parameters to mitigate the effect of these changes on the measurements. On-orbit calibration practices for particle detectors aboard spin-stabilized spacecraft are well established. Three-axis stabilized platforms, however, pose unique challenges even when comparisons are being performed between multiple telescopes measuring the same energy ranges aboard the same satellite. This algorithm identifies time intervals when different telescopes are measuring particles with the same pitch angles. These measurements are used to compute scale factors which can be multiplied by the pre-launch geometric factor to correct any changes. The approach is first tested using measurements from GOES-13 MAGED particle detectors over a 5-month time period in 2010. We find statistically significant variations which are generally on the order of 5% or less. These results do not appear to be dependent on Poisson statistics nor upon whether a dead time correction was performed. When applied to data from a 5-month interval in 2011, one telescope shows a 10% shift from the 2010 scale factors. This technique has potential for operational use to help maintain relative calibration between multiple telescopes aboard a single satellite. It should also be extensible to inter-calibration between multiple satellites.

  16. Extremely preterm infants small for gestational age are at risk for motor impairment at 3 years corrected age.

    PubMed

    Kato, Takeshi; Mandai, Tsurue; Iwatani, Sota; Koda, Tsubasa; Nagasaka, Miwako; Fujita, Kaori; Kurokawa, Daisuke; Yamana, Keiji; Nishida, Kosuke; Taniguchi-Ikeda, Mariko; Tanimura, Kenji; Deguchi, Masashi; Yamada, Hideto; Iijima, Kazumoto; Morioka, Ichiro

    2016-02-01

    Few studies have targeted psychomotor development and associated perinatal risk factors in Japanese very low birth weight (VLBW) infants who are severely small for gestational age (SGA). A single-center study was conducted in 104 Japanese VLBW infants who were born preterm, due to maternal, umbilical cord, or placental abnormalities, between 2000 and 2007. Psychomotor development as a developmental quotient (DQ) was assessed using the Kyoto Scale of Psychological Development at 3 years corrected age. Severely SGA was defined as birth weight or length below -2 standard deviation values of the mean values at the same gestation. VLBW infants were divided into 2 subgroups based on gestational age at birth: ⩾28 weeks (n=64) and <28 weeks (n=40). DQs of infants with severe SGA were compared with those of infants who were appropriate for gestational age (AGA). Factors associated with developmental disabilities in VLBW infants with severe SGA (n=23) were determined. In the group born at ⩾28 weeks gestation, infants with severe SGA had normal DQ values and did not significantly differ from those with AGA. However, in the group born at <28 weeks gestation, severe SGA infants had significantly lower postural-motor DQ values than AGA infants. Gestational age <28 weeks was an independent factor for low postural-motor DQ, regardless of the cause of severe SGA or pregnancy termination. Extremely preterm newborns with severe SGA are at risk of motor developmental disability at age 3 years. Copyright © 2015 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  17. Normal-faulting slip maxima and stress-drop variability: a geological perspective

    USGS Publications Warehouse

    Hecker, S.; Dawson, T.E.; Schwartz, D.P.

    2010-01-01

    We present an empirical estimate of maximum slip in continental normal-faulting earthquakes and present evidence that stress drop in intraplate extensional environments is dependent on fault maturity. A survey of reported slip in historical earthquakes globally and in latest Quaternary paleoearthquakes in the Western Cordillera of the United States indicates maximum vertical displacements as large as 6–6.5 m. A difference in the ratio of maximum-to-mean displacements between data sets of prehistoric and historical earthquakes, together with constraints on bias in estimates of mean paleodisplacement, suggest that applying a correction factor of 1.4±0.3 to the largest observed displacement along a paleorupture may provide a reasonable estimate of the maximum displacement. Adjusting the largest paleodisplacements in our regional data set (~6 m) by a factor of 1.4 yields a possible upper-bound vertical displacement for the Western Cordillera of about 8.4 m, although a smaller correction factor may be more appropriate for the longest ruptures. Because maximum slip is highly localized along strike, if such large displacements occur, they are extremely rare. Static stress drop in surface-rupturing earthquakes in the Western Cordillera, as represented by maximum reported displacement as a fraction of modeled rupture length, appears to be larger on normal faults with low cumulative geologic displacement (<2 km) and larger in regions such as the Rocky Mountains, where immature, low-throw faults are concentrated. This conclusion is consistent with a growing recognition that structural development influences stress drop and indicates that this influence is significant enough to be evident among faults within a single intraplate environment.

  18. A new approach to correct yaw misalignment in the spinning ultrasonic anemometer

    NASA Astrophysics Data System (ADS)

    Ghaemi-Nasab, M.; Davari, Ali R.; Franchini, S.

    2018-01-01

    Single-axis ultrasonic anemometers are the modern instruments for accurate wind speed measurements. Despite their widespread and ever increasing applications, little attention has been paid up to now to spinning ultrasonic anemometers that can accurately measure both the wind speed and its direction in a single and robust apparatus. In this study, intensive wind-tunnel tests were conducted on a spinning single-axis ultrasonic anemometer to investigate the yaw misalignment in ultrasonic wind speed measurements during the yaw rotation. The anemometer was rotating inside the test section with various angular velocities, and the experiments were performed at several combinations of wind speed and anemometer angular velocity. The instantaneous angular position of the ultrasonic signal path with wind direction was measured using an angular position sensor. For a spinning anemometer, the circulatory wake and the associated flow distortion, along with the Doppler effect, impart a phase shift in the signals measured by the anemometer, which should be added to the position data for correcting the yaw misalignment. In this paper, the experimental data are used to construct a theoretical model, based on a response surface method, to correct the phase shift for various wind speeds and anemometer rotational velocities. This model is shown to successfully correct the velocity indicated by the spinning anemometer for the phase shift due to the rotation, and can easily be used in the calibration process for such anemometers.

  19. The LPM effect in sequential bremsstrahlung 2: factorization

    DOE PAGES

    Arnold, Peter; Chang, Han-Chih; Iqbal, Shahin

    2016-09-13

    The splitting processes of bremsstrahlung and pair production in a medium are coherent over large distances in the very high energy limit, which leads to a suppression known as the Landau-Pomeranchuk-Migdal (LPM) effect. In this paper, we continue analysis of the case when the coherence lengths of two consecutive splitting processes overlap (which is important for understanding corrections to standard treatments of the LPM effect in QCD), avoiding soft-gluon approximations. In particular, this paper analyzes the subtle problem of how to precisely separate overlapping double splitting (e.g. overlapping double bremsstrahlung) from the case of consecutive, independent bremsstrahlung (which is themore » case that would be implemented in a Monte Carlo simulation based solely on single splitting rates). As an example of the method, we consider the rate of real double gluon bremsstrahlung from an initial gluon with various simplifying assumptions (thick media; q approximation; large N c; and neglect for the moment of processes involving 4-gluon ver-tices) and explicitly compute the correction Δ dΓ/dx dy due to overlapping formation times.« less

  20. Evaluating thermoregulation in reptiles: the fallacy of the inappropriately applied method.

    PubMed

    Seebacher, Frank; Shine, Richard

    2004-01-01

    Given the importance of heat in most biological processes, studies on thermoregulation have played a major role in understanding the ecology of ectothermic vertebrates. It is, however, difficult to assess whether body temperature is actually regulated, and several techniques have been developed that allow an objective assessment of thermoregulation. Almost all recent studies on reptiles follow a single methodology that, when used correctly, facilitates comparisons between species, climates, and so on. However, the use of operative temperatures in this methodology assumes zero heat capacity of the study animals and is, therefore, appropriate for small animals only. Operative temperatures represent potentially available body temperatures accurately for small animals but can substantially overestimate the ranges of body temperature available to larger animals whose slower rates of heating and cooling mean that they cannot reach equilibrium if they encounter operative temperatures that change rapidly through either space or time. This error may lead to serious misinterpretations of field data. We derive correction factors specific for body mass and rate of movement that can be used to estimate body temperature null distributions of larger reptiles, thereby overcoming this methodological problem.

  1. Weaker axially dipolar time-averaged paleomagnetic field based on multidomain-corrected paleointensities from Galapagos lavas.

    PubMed

    Wang, Huapei; Kent, Dennis V; Rochette, Pierre

    2015-12-08

    The geomagnetic field is predominantly dipolar today, and high-fidelity paleomagnetic mean directions from all over the globe strongly support the geocentric axial dipole (GAD) hypothesis for the past few million years. However, the bulk of paleointensity data fails to coincide with the axial dipole prediction of a factor-of-2 equator-to-pole increase in mean field strength, leaving the core dynamo process an enigma. Here, we obtain a multidomain-corrected Pliocene-Pleistocene average paleointensity of 21.6 ± 11.0 µT recorded by 27 lava flows from the Galapagos Archipelago near the Equator. Our new result in conjunction with a published comprehensive study of single-domain-behaved paleointensities from Antarctica (33.4 ± 13.9 µT) that also correspond to GAD directions suggests that the overall average paleomagnetic field over the past few million years has indeed been dominantly dipolar in intensity yet only ∼ 60% of the present-day field strength, with a long-term average virtual axial dipole magnetic moment of the Earth of only 4.9 ± 2.4 × 10(22) A ⋅ m(2).

  2. Weaker axially dipolar time-averaged paleomagnetic field based on multidomain-corrected paleointensities from Galapagos lavas

    PubMed Central

    Wang, Huapei; Kent, Dennis V.; Rochette, Pierre

    2015-01-01

    The geomagnetic field is predominantly dipolar today, and high-fidelity paleomagnetic mean directions from all over the globe strongly support the geocentric axial dipole (GAD) hypothesis for the past few million years. However, the bulk of paleointensity data fails to coincide with the axial dipole prediction of a factor-of-2 equator-to-pole increase in mean field strength, leaving the core dynamo process an enigma. Here, we obtain a multidomain-corrected Pliocene–Pleistocene average paleointensity of 21.6 ± 11.0 µT recorded by 27 lava flows from the Galapagos Archipelago near the Equator. Our new result in conjunction with a published comprehensive study of single-domain–behaved paleointensities from Antarctica (33.4 ± 13.9 µT) that also correspond to GAD directions suggests that the overall average paleomagnetic field over the past few million years has indeed been dominantly dipolar in intensity yet only ∼60% of the present-day field strength, with a long-term average virtual axial dipole magnetic moment of the Earth of only 4.9 ± 2.4 × 1022 A⋅m2. PMID:26598664

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eken Tuna, Kevin Mayeda, Abraham Hofstetter, Rengin Gok, Gonca Orgulu, Niyazi Turkelli

    A recently developed coda magnitude methodology was applied to selected broadband stations in Turkey for the purpose of testing the coda method in a large, laterally complex region. As found in other, albeit smaller regions, coda envelope amplitude measurements are significantly less variable than distance-corrected direct wave measurements (i.e., L{sub g} and surface waves) by roughly a factor 3-to-4. Despite strong lateral crustal heterogeneity in Turkey, they found that the region could be adequately modeled assuming a simple 1-D, radially symmetric path correction. After calibrating the stations ISP, ISKB and MALT for local and regional distances, single-station moment-magnitude estimates (M{submore » W}) derived from the coda spectra were in excellent agreement with those determined from multistation waveform modeling inversions, exhibiting a data standard deviation of 0.17. Though the calibration was validated using large events, the results of the calibration will extend M{sub W} estimates to significantly smaller events which could not otherwise be waveform modeled. The successful application of the method is remarkable considering the significant lateral complexity in Turkey and the simple assumptions used in the coda method.« less

  4. Influence of broadening and high-injection effects on GaAs-AlGaAs quantum well lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blood, P.; Colak, S.; Kucharska, A.I.

    1988-08-01

    The authors have calculated gain spectra and gain-current relations for GaAs-AlGaAs quantum well lasers using a model which incorporates a phenomenological description of bandgap narrowing due to many-body effects at high injection, transmission broadening by a carrier-density-dependent intraband scattering process, and broadening of the density of states function by fluctuations in the well width. The justification for including all these phenomena is made by examining spontaneous emission spectra observed through contact windows on quantum well layers. Using reasonable values of the parameters describing these effects, the model predicts correctly the observed lengthening of the laser emission wavelength with respect tomore » the absorption edge and correctly describes the variation of this wavelength, which they have observed for a set of devices with different numbers of quantum wells and the same well width. For a single GaAs quantum well laser 25 A wide, with the same parameters, the model predicts an increase in threshold current by a factor of 2.5 compared to an ideal quantum well without these effects.« less

  5. Impact of reconstruction parameters on quantitative I-131 SPECT

    NASA Astrophysics Data System (ADS)

    van Gils, C. A. J.; Beijst, C.; van Rooij, R.; de Jong, H. W. A. M.

    2016-07-01

    Radioiodine therapy using I-131 is widely used for treatment of thyroid disease or neuroendocrine tumors. Monitoring treatment by accurate dosimetry requires quantitative imaging. The high energy photons however render quantitative SPECT reconstruction challenging, potentially requiring accurate correction for scatter and collimator effects. The goal of this work is to assess the effectiveness of various correction methods on these effects using phantom studies. A SPECT/CT acquisition of the NEMA IEC body phantom was performed. Images were reconstructed using the following parameters: (1) without scatter correction, (2) with triple energy window (TEW) scatter correction and (3) with Monte Carlo-based scatter correction. For modelling the collimator-detector response (CDR), both (a) geometric Gaussian CDRs as well as (b) Monte Carlo simulated CDRs were compared. Quantitative accuracy, contrast to noise ratios and recovery coefficients were calculated, as well as the background variability and the residual count error in the lung insert. The Monte Carlo scatter corrected reconstruction method was shown to be intrinsically quantitative, requiring no experimentally acquired calibration factor. It resulted in a more accurate quantification of the background compartment activity density compared with TEW or no scatter correction. The quantification error relative to a dose calibrator derived measurement was found to be  <1%,-26% and 33%, respectively. The adverse effects of partial volume were significantly smaller with the Monte Carlo simulated CDR correction compared with geometric Gaussian or no CDR modelling. Scatter correction showed a small effect on quantification of small volumes. When using a weighting factor, TEW correction was comparable to Monte Carlo reconstruction in all measured parameters, although this approach is clinically impractical since this factor may be patient dependent. Monte Carlo based scatter correction including accurately simulated CDR modelling is the most robust and reliable method to reconstruct accurate quantitative iodine-131 SPECT images.

  6. Evidence for broken Galilean invariance at the quantum spin Hall edge

    NASA Astrophysics Data System (ADS)

    Geissler, Florian; Crépin, François; Trauzettel, Björn

    2015-12-01

    We study transport properties of the helical edge channels of a quantum spin Hall insulator, in the presence of electron-electron interactions and weak, local Rashba spin-orbit coupling. The combination of the two allows for inelastic backscattering that does not break time-reversal symmetry, resulting in interaction-dependent power-law corrections to the conductance. Here, we use a nonequilibrium Keldysh formalism to describe the situation of a long, one-dimensional edge channel coupled to external reservoirs, where the applied bias is the leading energy scale. By calculating explicitly the corrections to the conductance up to fourth order of the impurity strength, we analyze correlated single- and two-particle backscattering processes on a microscopic level. Interestingly, we show that the modeling of the leads together with the breaking of Galilean invariance has important effects on the transport properties. Such breaking occurs because the Galilean invariance of the bulk spectrum transforms into an emergent Lorentz invariance of the edge spectrum. With this broken Galilean invariance at the quantum spin Hall edge, we find a contribution to single-particle backscattering with a very low power scaling, while in the presence of Galilean invariance the leading contribution will be due to correlated two-particle backscattering only. This difference is further reflected in the different values of the Fano factor of the shot noise, an experimentally observable quantity. The described behavior is specific to the Rashba scatterer and does not occur in the case of backscattering off a time-reversal-breaking, magnetic impurity.

  7. Local concurrent error detection and correction in data structures using virtual backpointers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, C.C.J.; Chen, P.P.; Fuchs, W.K.

    1989-11-01

    A new technique, based on virtual backpointers, is presented in this paper for local concurrent error detection and correction in linked data structures. Two new data structures utilizing virtual backpointers, the Virtual Double-Linked List and the B-Tree and Virtual Backpointers, are described. For these structures, double errors within a fixed-size checking window can be detected in constant time and single errors detected during forward moves can be corrected in constant time.

  8. Cosmological implications of quantum corrections and higher-derivative extension

    NASA Astrophysics Data System (ADS)

    Chialva, Diego; Mazumdar, Anupam

    2015-02-01

    We discuss the challenges for the early universe cosmology from quantum corrections, and in particular higher-derivative terms, in the gravitational and inflaton sectors of the models. The work is divided in two parts. In the first one we review the already well-known issues due to quantum corrections to the inflaton potential, in particular focusing on chaotic/slow-roll single-field models. We will point out some issues concerning the proposed mechanisms to cope with the corrections, and also argue how the presence of higher-derivative corrections could be problematic for those mechanisms. In the second part we will more directly focus on higher-derivative corrections. We will show how, in order to discuss a number of high-energy phenomena relevant to inflation (such as its actual onset) one has to deal with energy scales where the derivative expansion breaks down, presenting problems such as quantum vacuum instability and ghosts. To discuss such phenomena in the convenient framework of the effective theory, one must then abandon the derivative expansion and resort to the full nonlocal formulation of the theory, which is in fact equivalent to re-integrating back the relevant physics, but with the benefit of using a more compact single-field formalism. Finally, we will briefly discuss possible advantages offered by the presence of higher derivatives and a nonlocal theory to build better controlled UV models of inflation.

  9. Lessons Learned for Cx PRACA. Constellation Program Problem Reporting, Analysis and Corrective Action Process and System

    NASA Technical Reports Server (NTRS)

    Kelle, Pido I.; Ratterman, Christian; Gibbs, Cecil

    2009-01-01

    This slide presentation reviews the Constellation Program Problem Reporting, Analysis and Corrective Action Process and System (Cx PRACA). The goal of the Cx PRACA is to incorporate Lessons learned from the Shuttle, ISS, and Orbiter programs by creating a single tool for managing the PRACA process, that clearly defines the scope of PRACA applicability and what must be reported, and defines the ownership and responsibility for managing the PRACA process including disposition approval authority. CxP PRACA is a process, supported by a single information gathering data module which will be integrated with a single CxP Information System, providing interoperability, import and export capability making the CxP PRACA a more effective and user friendly technical and management tool.

  10. Rotational distortion correction in endoscopic optical coherence tomography based on speckle decorrelation

    PubMed Central

    Uribe-Patarroyo, Néstor; Bouma, Brett E.

    2015-01-01

    We present a new technique for the correction of nonuniform rotation distortion in catheter-based optical coherence tomography (OCT), based on the statistics of speckle between A-lines using intensity-based dynamic light scattering. This technique does not rely on tissue features and can be performed on single frames of data, thereby enabling real-time image correction. We demonstrate its suitability in a gastrointestinal balloon-catheter OCT system, determining the actual rotational speed with high temporal resolution, and present corrected cross-sectional and en face views showing significant enhancement of image quality. PMID:26625040

  11. Power-Quality Improvement in PFC Bridgeless SEPIC-Fed BLDC Motor Drive

    NASA Astrophysics Data System (ADS)

    Singh, Bhim; Bist, Vashist

    2013-06-01

    This article presents a design of a power factor correction (PFC)-based brushless DC (BLDC) motor drive. The speed control of BLDC motor is achieved by controlling the DC link voltage of the voltage source inverter (VSI) feeding BLDC motor using a single voltage sensor. A front-end bridgeless single-ended primary inductance converter (SEPIC) is used for DC link voltage control and PFC operation. A bridgeless SEPIC is designed to operate in discontinuous inductor current mode (DICM) thus utilizing a simple control scheme of voltage follower. An electronic commutation of BLDC motor is used for VSI to operate in a low-frequency operation for reduced switching losses in the VSI. Moreover, a bridgeless topology offers less conduction losses due to absence of diode bridge rectifier for further increasing the efficiency. The proposed BLDC motor drive is designed to operate over a wide range of speed control with an improved power-quality at the AC mains under the recommended international power-quality standards such as IEC 61000-3-2.

  12. Experimental Protein Structure Verification by Scoring with a Single, Unassigned NMR Spectrum.

    PubMed

    Courtney, Joseph M; Ye, Qing; Nesbitt, Anna E; Tang, Ming; Tuttle, Marcus D; Watt, Eric D; Nuzzio, Kristin M; Sperling, Lindsay J; Comellas, Gemma; Peterson, Joseph R; Morrissey, James H; Rienstra, Chad M

    2015-10-06

    Standard methods for de novo protein structure determination by nuclear magnetic resonance (NMR) require time-consuming data collection and interpretation efforts. Here we present a qualitatively distinct and novel approach, called Comparative, Objective Measurement of Protein Architectures by Scoring Shifts (COMPASS), which identifies the best structures from a set of structural models by numerical comparison with a single, unassigned 2D (13)C-(13)C NMR spectrum containing backbone and side-chain aliphatic signals. COMPASS does not require resonance assignments. It is particularly well suited for interpretation of magic-angle spinning solid-state NMR spectra, but also applicable to solution NMR spectra. We demonstrate COMPASS with experimental data from four proteins--GB1, ubiquitin, DsbA, and the extracellular domain of human tissue factor--and with reconstructed spectra from 11 additional proteins. For all these proteins, with molecular mass up to 25 kDa, COMPASS distinguished the correct fold, most often within 1.5 Å root-mean-square deviation of the reference structure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Fabrication strategies, sensing modes and analytical applications of ratiometric electrochemical biosensors.

    PubMed

    Jin, Hui; Gui, Rijun; Yu, Jianbo; Lv, Wei; Wang, Zonghua

    2017-05-15

    Previously developed electrochemical biosensors with single-electric signal output are probably affected by intrinsic and extrinsic factors. In contrast, the ratiometric electrochemical biosensors (RECBSs) with dual-electric signal outputs have an intrinsic built-in correction to the effects from system or background electric signals, and therefore exhibit a significant potential to improve the accuracy and sensitivity in electrochemical sensing applications. In this review, we systematically summarize the fabrication strategies, sensing modes and analytical applications of RECBSs. First, the different fabrication strategies of RECBSs were introduced, referring to the analytes-induced single- and dual-dependent electrochemical signal strategies for RECBSs. Second, the different sensing modes of RECBSs were illustrated, such as differential pulse voltammetry, square wave voltammetry, cyclic voltammetry, alternating current voltammetry, electrochemiluminescence, and so forth. Third, the analytical applications of RECBSs were discussed based on the types of target analytes. Finally, the forthcoming development and future prospects in the research field of RECBSs were also highlighted. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Assessment of Population and Microenvironmental Exposure to Fine Particulate Matter (PM2.5)

    NASA Astrophysics Data System (ADS)

    Jiao, Wan

    A positive relationship exists between fine particulate matter (PM 2.5) exposure and adverse health effects. PM2.5 concentration-response functions used in the quantitative risk assessment were based on findings from human epidemiological studies that relied on areawide ambient concentrations as surrogate for actual ambient exposure, which cannot capture the spatial and temporal variability in human exposures. The goal of the study is to assess inter-individual, geographic and seasonal variability in population exposures to inform the interpretation of available epidemiological studies, and to improve the understanding of how exposure-related factors in important exposure microenvironments contribute to the variability in individual PM2.5 exposure. Typically, the largest percentage of time in which an individual is exposed to PM2.5 of ambient origin occurs in indoor residence, and the highest ambient PM2.5 concentrations occur in transportation microenvironments because of the proximity to on-road traffic emissions. Therefore, indoor residence and traffic-related transportation microenvironments were selected for further assessment in the study. Population distributions of individual daily PM2.5 exposures were estimated for the selected regions and seasons using the Stochastic Human Exposure and Dose Simulation Model for Particulate Matter (SHEDS-PM). For the indoor residence, the current practice by assuming the entire residence to be one large single zone for calculating the indoor residential PM 2.5 concentration was evaluated by applying an indoor air quality model, RISK, to compare indoor PM2.5 concentrations between single-zone and multi-zone scenarios. For the transportation microenvironments, one field data collection focused on in-vehicle microenvironment and was conducted to quantify the variability in the in-vehicle PM2.5 concentration with respect to the outside vehicle concentration for a wide range of conditions that affect intra-vehicle variability in exposure concentration, including ventilation air source, window status, fan setting, AC utilization, vehicle speed, road type, travel direction, and time of day. Another field data collection measured PM2.5 exposure concentrations on pre-selected routes across transportation modes of pedestrian, bus, and car to quantify the variability in the transportation mode concentration ratios, and identify factors affecting variability in traffic-related concentrations. In general, population daily average exposure to ambient PM2.5 is less than the ambient concentration by approximately half. The ratio of PM2.5 ambient exposure to ambient concentration (Ea/C) varies by individual, geographic area and season, as a result of regional differences in housing stock and seasonal differences in air exchange rates (ACH). For the indoor residence, the single-zone assumption is biased when any non-ambient source is presented. Bias correction factors are developed for cooking and smoking scenarios, separately, to improve the concentration estimates. Correction factors are most sensitive to changes in ACH but relatively insensitive to variations in source emission rate and duration. In a SHEDS-PM case study, the population daily average total exposure increased by 17% after applying correction factors. Transportation mode exposure concentrations are sensitive to mode, and are affected by factors such as vehicle ventilation and proximity to on-road emission sources. The in-vehicle to outside vehicle concentration (I/O) ratio is highly sensitive to whether windows are open or, for closed windows, to whether fresh air or recirculating air is used. Both model simulations and field studies are needed to inform better understanding of human exposure. Exposure, and not just concentration, should be considered in developing risk management strategies to reduce uncertainty in health effect estimates, and to identify highly exposed groups and possible exposure reduction strategies.

  15. Diaphragm correction factors for the FAC-IR-300 free-air ionization chamber.

    PubMed

    Mohammadi, Seyed Mostafa; Tavakoli-Anbaran, Hossein

    2018-02-01

    A free-air ionization chamber FAC-IR-300, designed by the Atomic Energy Organization of Iran, is used as the primary Iranian national standard for the photon air kerma. For accurate air kerma measurements, the contribution from the scattered photons to the total energy released in the collecting volume must be eliminated. One of the sources of scattered photons is the chamber's diaphragm. In this paper, the diaphragm scattering correction factor, k dia , and the diaphragm transmission correction factor, k tr , were introduced. These factors represent corrections to the measured charge (or current) for the photons scattered from the diaphragm surface and the photons penetrated through the diaphragm volume, respectively. The k dia and k tr values were estimated by Monte Carlo simulations. The simulations were performed for the mono-energetic photons in the energy range of 20 - 300keV. According to the simulation results, in this energy range, the k dia values vary between 0.9997 and 0.9948, and k tr values decrease from 1.0000 to 0.9965. The corrections grow in significance with increasing energy of the primary photons. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Twelve- to 14-Month-Old Infants Can Predict Single-Event Probability with Large Set Sizes

    ERIC Educational Resources Information Center

    Denison, Stephanie; Xu, Fei

    2010-01-01

    Previous research has revealed that infants can reason correctly about single-event probabilities with small but not large set sizes (Bonatti, 2008; Teglas "et al.", 2007). The current study asks whether infants can make predictions regarding single-event probability with large set sizes using a novel procedure. Infants completed two trials: A…

  17. Directivity in NGA earthquake ground motions: Analysis using isochrone theory

    USGS Publications Warehouse

    Spudich, P.; Chiou, B.S.J.

    2008-01-01

    We present correction factors that may be applied to the ground motion prediction relations of Abrahamson and Silva, Boore and Atkinson, Campbell and Bozorgnia, and Chiou and Youngs (all in this volume) to model the azimuthally varying distribution of the GMRotI50 component of ground motion (commonly called 'directivity') around earthquakes. Our correction factors may be used for planar or nonplanar faults having any dip or slip rake (faulting mechanism). Our correction factors predict directivity-induced variations of spectral acceleration that are roughly half of the strike-slip variations predicted by Somerville et al. (1997), and use of our factors reduces record-to-record sigma by about 2-20% at 5 sec or greater period. ?? 2008, Earthquake Engineering Research Institute.

  18. Chiral three-nucleon forces and the evolution of correlations along the oxygen isotopic chain

    NASA Astrophysics Data System (ADS)

    Cipollone, A.; Barbieri, C.; Navrátil, P.

    2015-07-01

    Background: Three-nucleon forces (3NFs) have nontrivial implications on the evolution of correlations at extreme proton-neutron asymmetries. Recent ab initio calculations show that leading-order chiral interactions are crucial to obtain the correct binding energies and neutron driplines along the O, N, and F chains [A. Cipollone, C. Barbieri, and P. Navrátil, Phys. Rev. Lett. 111, 062501 (2013), 10.1103/PhysRevLett.111.062501]. Purpose: Here we discuss the impact of 3NFs along the oxygen chain for other quantities of interest, such has the spectral distribution for attachment and removal of a nucleon, spectroscopic factors, and radii. The objective is to better delineate the general effects of 3NFs on nuclear correlations. Methods: We employ self-consistent Green's function (SCGF) theory which allows a comprehensive calculation of the single-particle spectral function. For the closed subshell isotopes, 14O, 16O, 22O, 24O, and 28O, we perform calculations with the Dyson-ADC(3) method, which is fully nonperturbative and is the state of the art for both nuclear physics and quantum chemistry applications. The remaining open-shell isotopes are studied using the newly developed Gorkov-SCGF formalism up to second order. Results: We produce complete plots for the spectral distributions. The spectroscopic factors for the dominant quasiparticle peaks are found to depend very little on the leading-order (NNLO) chiral 3NFs. The latter have small impact on the calculated matter radii, which, however, are consistently obtained smaller than experiment. Similarly, single-particle spectra tend to be too spread with respect to the experiment. This effect might hinder, to some extent, the onset of correlations and screen the quenching of calculated spectroscopic factors. The most important effect of 3NFs is thus the fine tuning of the energies for the dominant quasiparticle states, which governs the shell evolution and the position of driplines. Conclusions: Although present chiral NNLO 3NFs interactions do reproduce the binding energies correctly in this mass region, the details of the nuclear spectral function remain at odds with the experiment showing too-small radii and a too-spread single-particle spectrum, similar to what has already been pointed out for larger masses. This suggests a lack of repulsion in the present model of N N +3 N interactions, which is mildly apparent already for masses in the A =14 - 28 mass range.

  19. Reversal of autism-like behaviors and metabolism in adult mice with single-dose antipurinergic therapy

    PubMed Central

    Naviaux, J C; Schuchbauer, M A; Li, K; Wang, L; Risbrough, V B; Powell, S B; Naviaux, R K

    2014-01-01

    Autism spectrum disorders (ASDs) now affect 1–2% of the children born in the United States. Hundreds of genetic, metabolic and environmental factors are known to increase the risk of ASD. Similar factors are known to influence the risk of schizophrenia and bipolar disorder; however, a unifying mechanistic explanation has remained elusive. Here we used the maternal immune activation (MIA) mouse model of neurodevelopmental and neuropsychiatric disorders to study the effects of a single dose of the antipurinergic drug suramin on the behavior and metabolism of adult animals. We found that disturbances in social behavior, novelty preference and metabolism are not permanent but are treatable with antipurinergic therapy (APT) in this model of ASD and schizophrenia. A single dose of suramin (20 mg kg−1 intraperitoneally (i.p.)) given to 6-month-old adults restored normal social behavior, novelty preference and metabolism. Comprehensive metabolomic analysis identified purine metabolism as the key regulatory pathway. Correction of purine metabolism normalized 17 of 18 metabolic pathways that were disturbed in the MIA model. Two days after treatment, the suramin concentration in the plasma and brainstem was 7.64 μM pmol μl−1 (±0.50) and 5.15 pmol mg−1 (±0.49), respectively. These data show good uptake of suramin into the central nervous system at the level of the brainstem. Most of the improvements associated with APT were lost after 5 weeks of drug washout, consistent with the 1-week plasma half-life of suramin in mice. Our results show that purine metabolism is a master regulator of behavior and metabolism in the MIA model, and that single-dose APT with suramin acutely reverses these abnormalities, even in adults. PMID:24937094

  20. The influence of lifestyle on cardiovascular risk factors. Analysis using a neural network.

    PubMed

    Gueli, Nicoló; Piccirillo, Gianfanco; Troisi, Giovanni; Cicconetti, Paolo; Meloni, Fortunato; Ettorre, Evaristo; Verico, Paola; D'Arcangelo, Enzo; Cacciafesta, Mauro

    2005-01-01

    The cardiovascular pathologies are the most common causes of death in the elderly patient. To single out the main risk factors in order to effectively prevent the onset of the disease, the authors experimented a special computerized tool, the neural network, that works out a mathematical relation that can obtain certain data (defined as output) as a function of other data (defined as input). Data were processed from a sample of 276 subjects of both sexes aged 26-69 years old. The output data were: high/low cholesterolemia, HDL cholesterol, triglyceridemia with respect to an established cut-off; the input data were: sex, age, build, weight, married/single, number of children, number of cigarettes smoked/day, amount of wine and number of cups of coffee. We conclude that: (i) a relationship exists, deduced from a neural network, between a set of input variables and a dichotomous output variable; (ii) this relationship can be expressed as a mathematical function; (iii) a neural network, having learned the data on a sufficiently large population, can provide valid predictive data for a single individual with a high probability (up to 93.33%) that the response it gives is correct. In this study, such a result is found for two of the three cardiovascular risk indicators considered (cholesterol and triglycerides); (iv) the repetition of the neural network analysis of the cases in question after a "pruning" operation provided a somewhat less good performance; (v) a statistical analysis conducted on those same cases has confirmed the existence of a strong relationship between the input and the output variables. Therefore the neural network is a valid instrument for providing predictive in a single subject on cardiovascular pathology risks.

  1. Exome Array Analysis of Nuclear Lens Opacity.

    PubMed

    Loomis, Stephanie J; Klein, Alison P; Lee, Kristine E; Chen, Fei; Bomotti, Samantha; Truitt, Barbara; Iyengar, Sudha K; Klein, Ronald; Klein, Barbara E K; Duggal, Priya

    2018-06-01

    Nuclear cataract is the most common subtype of age-related cataract, the leading cause of blindness worldwide. It results from advanced nuclear sclerosis, or opacity in the center of the optic lens, and is affected by both genetic and environmental risk factors, including smoking. We sought to understand the genetic factors associated with nuclear sclerosis through interrogation of rare and low frequency coding variants using exome array data. We analyzed Illumina Human Exome Array data for 1,488 participants of European ancestry in the Beaver Dam Eye Study who were without cataract surgery for association with nuclear sclerosis grade, controlling for age and sex. We performed single-variant regression analysis for 32,138 variants with minor allele frequency (MAF) ≥0.003. In addition, gene-based analysis of 11,844 genes containing at least two variants with MAF < 0.05 was performed using a gene-based unified burden and non-burden sequence kernel association test (SKAT-O). Additionally, both single-variant and gene-based analyses were analyzed stratified by smoking status. No single-variant test was statistically significant after Bonferroni correction (p < 1.6 × 10 -6 ; top single nucleotide polymorphism (SNP): rs144458991, p = 2.83 × 10 -5 ). Gene-based tests were suggestively associated with the gene RNF149 overall (p = 8.29 × 10 -6 ) and among never smokers (N = 790, p = 2.67 × 10 -6 ). This study did not find a significant genetic association with nuclear sclerosis, the possible association with the RNF149 gene highlights a potential candidate gene for future studies that aim to understand the genetic architecture of nuclear sclerosis.

  2. Accuracy of effective dose estimation in personal dosimetry: a comparison between single-badge and double-badge methods and the MOSFET method.

    PubMed

    Januzis, Natalie; Belley, Matthew D; Nguyen, Giao; Toncheva, Greta; Lowry, Carolyn; Miller, Michael J; Smith, Tony P; Yoshizumi, Terry T

    2014-05-01

    The purpose of this study was three-fold: (1) to measure the transmission properties of various lead shielding materials, (2) to benchmark the accuracy of commercial film badge readings, and (3) to compare the accuracy of effective dose (ED) conversion factors (CF) of the U.S. Nuclear Regulatory Commission methods to the MOSFET method. The transmission properties of lead aprons and the accuracy of film badges were studied using an ion chamber and monitor. ED was determined using an adult male anthropomorphic phantom that was loaded with 20 diagnostic MOSFET detectors and scanned with a whole body CT protocol at 80, 100, and 120 kVp. One commercial film badge was placed at the collar and one at the waist. Individual organ doses and waist badge readings were corrected for lead apron attenuation. ED was computed using ICRP 103 tissue weighting factors, and ED CFs were calculated by taking the ratio of ED and badge reading. The measured single badge CFs were 0.01 (±14.9%), 0.02 (±9.49%), and 0.04 (±15.7%) for 80, 100, and 120 kVp, respectively. Current regulatory ED CF for the single badge method is 0.3; for the double-badge system, they are 0.04 (collar) and 1.5 (under lead apron at the waist). The double-badge system provides a better coefficient for the collar at 0.04; however, exposure readings under the apron are usually negligible to zero. Based on these findings, the authors recommend the use of ED CF of 0.01 for the single badge system from 80 kVp (effective energy 50.4 keV) data.

  3. Musculoskeletal disorder symptoms in correction officers: why do they increase rapidly with job tenure?

    PubMed

    Warren, Nicholas; Dussetschleger, Jeffrey; Punnett, Laura; Cherniack, Martin G

    2015-03-01

    In this study, we sought to explain the rapid musculoskeletal symptomatology increase in correction officers (COs). COs are exposed to levels of biomechanical and psychosocial stressors that have strong associations with musculoskeletal disorders (MSDs) in other occupations, possibly contributing to their rapid health deterioration. Baseline survey data from a longitudinal study of COs and manufacturing line workers were used to model musculoskeletal symptom prevalence and intensity in the upper (UE) and lower (LE) extremity. Outcomes were regressed on demographics and biomechanical and psychosocial exposures. COs reported significantly higher prevalence and intensity of LE symptoms compared to the industrial workers. In regression models, job tenure was a primary driver of CO musculoskeletal outcomes. In CO models, a single biomechanical exposure, head and arms in awkward positions, explained variance in both UE and LE prevalence (β of 0.338 and 0.357, respectively), and low decision latitude was associated with increased LE prevalence and intensity (β of 0.229 and 0.233, respectively). Manufacturing models were less explanatory. Examining demographic associations with exposure intensity, we found none to be significant in manufacturing, but in CO models, important psychosocial exposure levels increased with job tenure. Symptom prevalence and intensity increased more rapidly with job tenure in corrections, compared to manufacturing, and were related to both biomechanical and psychosocial exposures. Tenure-related increases in psychosocial exposure levels may help explain the CO symptom increase. Although exposure assessment improvements are proposed, findings suggest focusing on improving the psychosocial work environment to reduce MSD prevalence and intensity in corrections. © 2014, Human Factors and Ergonomics Society.

  4. Correcting Estimates of the Occurrence Rate of Earth-like Exoplanets for Stellar Multiplicity

    NASA Astrophysics Data System (ADS)

    Cantor, Elliot; Dressing, Courtney D.; Ciardi, David R.; Christiansen, Jessie

    2018-06-01

    One of the most prominent questions in the exoplanet field has been determining the true occurrence rate of potentially habitable Earth-like planets. NASA’s Kepler mission has been instrumental in answering this question by searching for transiting exoplanets, but follow-up observations of Kepler target stars are needed to determine whether or not the surveyed Kepler targets are in multi-star systems. While many researchers have searched for companions to Kepler planet host stars, few studies have investigated the larger target sample. Regardless of physical association, the presence of nearby stellar companions biases our measurements of a system’s planetary parameters and reduces our sensitivity to small planets. Assuming that all Kepler target stars are single (as is done in many occurrence rate calculations) would overestimate our search completeness and result in an underestimate of the frequency of potentially habitable Earth-like planets. We aim to correct for this bias by characterizing the set of targets for which Kepler could have detected Earth-like planets. We are using adaptive optics (AO) imaging to reveal potential stellar companions and near-infrared spectroscopy to refine stellar parameters for a subset of the Kepler targets that are most amenable to the detection of Earth-like planets. We will then derive correction factors to correct for the biases in the larger set of target stars and determine the true frequency of systems with Earth-like planets. Due to the prevalence of stellar multiples, we expect to calculate an occurrence rate for Earth-like exoplanets that is higher than current figures.

  5. Elevated triglycerides may affect cystatin C recovery.

    PubMed

    Witzel, Samantha H; Butts, Katherine; Filler, Guido

    2014-05-01

    The purpose of this study was to investigate the effect of triglyceride concentration on cystatin C (CysC) measurements. Serum samples collected from 10 nephrology patients, 43 to 78years of age, were air centrifuged to separate aqueous and lipid layers. The lipid layer from each patient was pooled together to create a mixture with a high triglyceride concentration. This pooled lipid layer was mixed with each of the ten patient aqueous layers in six different ratios. Single factor ANOVA was used to assess whether CysC recovery was affected by triglyceride levels. Regression analysis was used to develop a formula to correct for the effect of triglycerides on CysC measurement, based on samples from 6 randomly chosen patients from our study population. The formula was validated with the 4 remaining samples. The analysis revealed a significant reduction in measured CysC with increasing concentrations of triglycerides (Pearson r=-0.56, p<0.0001). The following formula was developed to correct for the effect of triglycerides: Subsequent Bland-Altman plots revealed a bias (mean±1 standard deviation [SD]) of -3.7±15.6% for the data used to generate the correction formula and a bias of 3.52±9.38% for the validation set. Our results suggest that triglyceride concentrations significantly impact cystatin C measurements and that this effect may be corrected in samples that cannot be sufficiently clarified by air centrifugation using the equation that we developed. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  6. A quantitative comparison of two methods to correct eddy current-induced distortions in DT-MRI.

    PubMed

    Muñoz Maniega, Susana; Bastin, Mark E; Armitage, Paul A

    2007-04-01

    Eddy current-induced geometric distortions of single-shot, diffusion-weighted, echo-planar (DW-EP) images are a major confounding factor to the accurate determination of water diffusion parameters in diffusion tensor MRI (DT-MRI). Previously, it has been suggested that these geometric distortions can be removed from brain DW-EP images using affine transformations determined from phantom calibration experiments using iterative cross-correlation (ICC). Since this approach was first described, a number of image-based registration methods have become available that can also correct eddy current-induced distortions in DW-EP images. However, as yet no study has investigated whether separate eddy current calibration or image-based registration provides the most accurate way of removing these artefacts from DT-MRI data. Here we compare how ICC phantom calibration and affine FLIRT (http://www.fmrib.ox.ac.uk), a popular image-based multi-modal registration method that can correct both eddy current-induced distortions and bulk subject motion, perform when registering DW-EP images acquired with different slice thicknesses (2.8 and 5 mm) and b-values (1000 and 3000 s/mm(2)). With the use of consistency testing, it was found that ICC was a more robust algorithm for correcting eddy current-induced distortions than affine FLIRT, especially at high b-value and small slice thickness. In addition, principal component analysis demonstrated that the combination of ICC phantom calibration (to remove eddy current-induced distortions) with rigid body FLIRT (to remove bulk subject motion) provided a more accurate registration of DT-MRI data than that achieved by affine FLIRT.

  7. Estimating Occupancy of Gopher Tortoise (Gorpherus polyphemus) Burrows in Coastal Scrub and Slash Pine Flatwoods

    NASA Technical Reports Server (NTRS)

    Breininger, David R.; Schmalzer, Paul A.; Hinkle, C. Ross

    1991-01-01

    One hundred twelve plots were established in coastal scrub and slash pine flatwoods habitats on the John F. Kennedy Space Center (KSC) to evaluate relationships between the number of burrows and gopher tortoise (Gopherus polyphemus) density. All burrows were located within these plots and were classified according to tortoise activity. Depending on season, bucket trapping, a stick method, a gopher tortoise pulling device, and a camera system were used to estimate tortoise occupancy. Correction factors (% of burrows occupied) were calculated by season and habitat type. Our data suggest that less than 20% of the active and inactive burrows combined were occupied during seasons when gopher tortoises were active. Correction factors were higher in poorly-drained areas and lower in well-drained areas during the winter, when gopher tortoise activity was low. Correction factors differed from studies elsewhere, indicating that population estimates require correction factors specific to the site and season to accurately estimate population size.

  8. Regression dilution bias: tools for correction methods and sample size calculation.

    PubMed

    Berglund, Lars

    2012-08-01

    Random errors in measurement of a risk factor will introduce downward bias of an estimated association to a disease or a disease marker. This phenomenon is called regression dilution bias. A bias correction may be made with data from a validity study or a reliability study. In this article we give a non-technical description of designs of reliability studies with emphasis on selection of individuals for a repeated measurement, assumptions of measurement error models, and correction methods for the slope in a simple linear regression model where the dependent variable is a continuous variable. Also, we describe situations where correction for regression dilution bias is not appropriate. The methods are illustrated with the association between insulin sensitivity measured with the euglycaemic insulin clamp technique and fasting insulin, where measurement of the latter variable carries noticeable random error. We provide software tools for estimation of a corrected slope in a simple linear regression model assuming data for a continuous dependent variable and a continuous risk factor from a main study and an additional measurement of the risk factor in a reliability study. Also, we supply programs for estimation of the number of individuals needed in the reliability study and for choice of its design. Our conclusion is that correction for regression dilution bias is seldom applied in epidemiological studies. This may cause important effects of risk factors with large measurement errors to be neglected.

  9. Monte Carlo simulated corrections for beam commissioning measurements with circular and MLC shaped fields on the CyberKnife M6 System: a study including diode, microchamber, point scintillator, and synthetic microdiamond detectors.

    PubMed

    Francescon, P; Kilby, W; Noll, J M; Masi, L; Satariano, N; Russo, S

    2017-02-07

    Monte Carlo simulation was used to calculate correction factors for output factor (OF), percentage depth-dose (PDD), and off-axis ratio (OAR) measurements with the CyberKnife M6 System. These include the first such data for the InCise MLC. Simulated detectors include diodes, air-filled microchambers, a synthetic microdiamond detector, and point scintillator. Individual perturbation factors were also evaluated. OF corrections show similar trends to previous studies. With a 5 mm fixed collimator the diode correction to convert a measured OF to the corresponding point dose ratio varies between  -6.1% and  -3.5% for the diode models evaluated, while in a 7.6 mm  ×  7.7 mm MLC field these are  -4.5% to  -1.8%. The corresponding microchamber corrections are  +9.9% to  +10.7% and  +3.5% to  +4.0%. The microdiamond corrections have a maximum of  -1.4% for the 7.5 mm and 10 mm collimators. The scintillator corrections are  <1% in all beams. Measured OF showed uncorrected inter-detector differences  >15%, reducing to  <3% after correction. PDD corrections at d  >  d max were  <2% for all detectors except IBA Razor where a maximum 4% correction was observed at 300 mm depth. OAR corrections were smaller inside the field than outside. At the beam edge microchamber OAR corrections were up to 15%, mainly caused by density perturbations, which blurs the measured penumbra. With larger beams and depths, PTW and IBA diode corrections outside the beam were up to 20% while the Edge detector needed smaller corrections although these did vary with orientation. These effects are most noticeable for large field size and depth, where they are dominated by fluence and stopping power perturbations. The microdiamond OAR corrections were  <3% outside the beam. This paper provides OF corrections that can be used for commissioning new CyberKnife M6 Systems and retrospectively checking estimated corrections used previously. We recommend the PDD and OAR corrections are used to guide detector selection and inform the evaluation of results rather than to explicitly correct measurements.

  10. Monte Carlo simulated corrections for beam commissioning measurements with circular and MLC shaped fields on the CyberKnife M6 System: a study including diode, microchamber, point scintillator, and synthetic microdiamond detectors

    NASA Astrophysics Data System (ADS)

    Francescon, P.; Kilby, W.; Noll, J. M.; Masi, L.; Satariano, N.; Russo, S.

    2017-02-01

    Monte Carlo simulation was used to calculate correction factors for output factor (OF), percentage depth-dose (PDD), and off-axis ratio (OAR) measurements with the CyberKnife M6 System. These include the first such data for the InCise MLC. Simulated detectors include diodes, air-filled microchambers, a synthetic microdiamond detector, and point scintillator. Individual perturbation factors were also evaluated. OF corrections show similar trends to previous studies. With a 5 mm fixed collimator the diode correction to convert a measured OF to the corresponding point dose ratio varies between  -6.1% and  -3.5% for the diode models evaluated, while in a 7.6 mm  ×  7.7 mm MLC field these are  -4.5% to  -1.8%. The corresponding microchamber corrections are  +9.9% to  +10.7% and  +3.5% to  +4.0%. The microdiamond corrections have a maximum of  -1.4% for the 7.5 mm and 10 mm collimators. The scintillator corrections are  <1% in all beams. Measured OF showed uncorrected inter-detector differences  >15%, reducing to  <3% after correction. PDD corrections at d  >  d max were  <2% for all detectors except IBA Razor where a maximum 4% correction was observed at 300 mm depth. OAR corrections were smaller inside the field than outside. At the beam edge microchamber OAR corrections were up to 15%, mainly caused by density perturbations, which blurs the measured penumbra. With larger beams and depths, PTW and IBA diode corrections outside the beam were up to 20% while the Edge detector needed smaller corrections although these did vary with orientation. These effects are most noticeable for large field size and depth, where they are dominated by fluence and stopping power perturbations. The microdiamond OAR corrections were  <3% outside the beam. This paper provides OF corrections that can be used for commissioning new CyberKnife M6 Systems and retrospectively checking estimated corrections used previously. We recommend the PDD and OAR corrections are used to guide detector selection and inform the evaluation of results rather than to explicitly correct measurements.

  11. Methods for discovering and validating relationships among genotyped animals

    USDA-ARS?s Scientific Manuscript database

    Genomic selection based on single-nucleotide polymorphisms (SNPs) has led to the collection of genotypes for over 2.2 million animals by the Council on Dairy Cattle Breeding in the United States. To assure that a genotype is assigned to the correct animal and that the animal’s pedigree is correct, t...

  12. Imaging the neuroplastic effects of ketamine with VBM and the necessity of placebo control.

    PubMed

    Höflich, A; Ganger, S; Tik, M; Hahn, A; Kranz, G S; Vanicek, T; Spies, M; Kraus, C; Windischberger, C; Kasper, S; Winkler, D; Lanzenberger, R

    2017-02-15

    In the last years a plethora of studies have investigated morphological changes induced by behavioural or pharmacological interventions using structural T1-weighted MRI and voxel-based morphometry (VBM). Ketamine is thought to exert its antidepressant action by restoring neuroplasticity. In order to test for acute impact of a single ketamine infusion on grey matter volume we performed a placebo-controlled, double-blind investigation in healthy volunteers using VBM. 28 healthy individuals underwent two MRI sessions within a timeframe of 2 weeks, each consisting of two structural T1-weighted MRIs within a single session, one before and one 45min after infusion of S-ketamine (bolus of 0.11mg/kg, followed by an maintenance infusion of 0.12mg/kg) or placebo (0.9% NaCl infusion) using a crossover design. In the repeated-measures ANOVA with time (post-infusion/pre-infusion) and medication (placebo/ketamine) as factors, no significant effect of interaction and no effect of medication was found (FWE-corrected). Importantly, further post-hoc t-tests revealed a strong "decrease" of grey matter both in the placebo and the ketamine condition over time. This effect was evident mainly in frontal and temporal regions bilaterally with t-values ranging from 4.95 to 5.31 (FWE-corrected at p<0.05 voxel level). The vulnerabilities of VBM have been repeatedly demonstrated, with reports of influence of blood flow, tissue water and direct effects of pharmacological compounds on the MRI signal. Here again, we highlight that the relationship between intervention and VBM results is apparently subject to a number of physiological influences, which are partly unknown. Future studies focusing on the effects of ketamine on grey matter should try to integrate known influential factors such as blood flow into analysis. Furthermore, the results of this study highlight the importance of a carefully performed placebo condition in pharmacological fMRI studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Perturbative corrections to B → D form factors in QCD

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Ming; Wei, Yan-Bing; Shen, Yue-Long; Lü, Cai-Dian

    2017-06-01

    We compute perturbative QCD corrections to B → D form factors at leading power in Λ/ m b , at large hadronic recoil, from the light-cone sum rules (LCSR) with B-meson distribution amplitudes in HQET. QCD factorization for the vacuum-to- B-meson correlation function with an interpolating current for the D-meson is demonstrated explicitly at one loop with the power counting scheme {m}_c˜ O(√{Λ {m}_b}) . The jet functions encoding information of the hard-collinear dynamics in the above-mentioned correlation function are complicated by the appearance of an additional hard-collinear scale m c , compared to the counterparts entering the factorization formula of the vacuum-to- B-meson correction function for the construction of B → π from factors. Inspecting the next-to-leading-logarithmic sum rules for the form factors of B → Dℓν indicates that perturbative corrections to the hard-collinear functions are more profound than that for the hard functions, with the default theory inputs, in the physical kinematic region. We further compute the subleading power correction induced by the three-particle quark-gluon distribution amplitudes of the B-meson at tree level employing the background gluon field approach. The LCSR predictions for the semileptonic B → Dℓν form factors are then extrapolated to the entire kinematic region with the z-series parametrization. Phenomenological implications of our determinations for the form factors f BD +,0 ( q 2) are explored by investigating the (differential) branching fractions and the R( D) ratio of B → Dℓν and by determining the CKM matrix element |V cb | from the total decay rate of B → Dμν μ .

  14. Plane-dependent ML scatter scaling: 3D extension of the 2D simulated single scatter (SSS) estimate

    NASA Astrophysics Data System (ADS)

    Rezaei, Ahmadreza; Salvo, Koen; Vahle, Thomas; Panin, Vladimir; Casey, Michael; Boada, Fernando; Defrise, Michel; Nuyts, Johan

    2017-08-01

    Scatter correction is typically done using a simulation of the single scatter, which is then scaled to account for multiple scatters and other possible model mismatches. This scaling factor is determined by fitting the simulated scatter sinogram to the measured sinogram, using only counts measured along LORs that do not intersect the patient body, i.e. ‘scatter-tails’. Extending previous work, we propose to scale the scatter with a plane dependent factor, which is determined as an additional unknown in the maximum likelihood (ML) reconstructions, using counts in the entire sinogram rather than only the ‘scatter-tails’. The ML-scaled scatter estimates are validated using a Monte-Carlo simulation of a NEMA-like phantom, a phantom scan with typical contrast ratios of a 68Ga-PSMA scan, and 23 whole-body 18F-FDG patient scans. On average, we observe a 12.2% change in the total amount of tracer activity of the MLEM reconstructions of our whole-body patient database when the proposed ML scatter scales are used. Furthermore, reconstructions using the ML-scaled scatter estimates are found to eliminate the typical ‘halo’ artifacts that are often observed in the vicinity of high focal uptake regions.

  15. A simple solution to systematic errors in density determination by X-ray reflectivity: The XRR-density evaluation (XRR-DE) method

    NASA Astrophysics Data System (ADS)

    Bergese, P.; Bontempi, E.; Depero, L. E.

    2006-10-01

    X-ray reflectivity (XRR) is a non-destructive, accurate and fast technique for evaluating film density. Indeed, sample-goniometer alignment is a critical experimental factor and the overriding error source in XRR density determination. With commercial single-wavelength X-ray reflectometers, alignment is difficult to control and strongly depends on the operator. In the present work, the contribution of misalignment on density evaluation error is discussed, and a novel procedure (named XRR-density evaluation or XRR-DE method) to minimize the problem will be presented. The method allows to overcome the alignment step through the extrapolation of the correct density value from appropriate non-specular XRR data sets. This procedure is operator independent and suitable for commercial single-wavelength X-ray reflectometers. To test the XRR-DE method, single crystals of TiO 2 and SrTiO 3 were used. In both cases the determined densities differed from the nominal ones less than 5.5%. Thus, the XRR-DE method can be successfully applied to evaluate the density of thin films for which only optical reflectivity is today used. The advantage is that this method can be considered thickness independent.

  16. HQET form factors for Bs → Klv decays beyond leading order

    NASA Astrophysics Data System (ADS)

    Banerjee, Debasish; Koren, Mateusz; Simma, Hubert; Sommer, Rainer

    2018-03-01

    We compute semi-leptonic Bs decay form factors using Heavy Quark Effective Theory on the lattice. To obtain good control of the 1 /mb expansion, one has to take into account not only the leading static order but also the terms arising at O (1/mb): kinetic, spin and current insertions. We show results for these terms calculated through the ratio method, using our prior results for the static order. After combining them with non-perturbative HQET parameters they can be continuum-extrapolated to give the QCD form factor correct up to O (1/mb2) corrections and without O (αs(mb)n) corrections.

  17. Markov model of the loan portfolio dynamics considering influence of management and external economic factors

    NASA Astrophysics Data System (ADS)

    Bozhalkina, Yana; Timofeeva, Galina

    2016-12-01

    Mathematical model of loan portfolio in the form of a controlled Markov chain with discrete time is considered. It is assumed that coefficients of migration matrix depend on corrective actions and external factors. Corrective actions include process of receiving applications, interaction with existing solvent and insolvent clients. External factors are macroeconomic indicators, such as inflation and unemployment rates, exchange rates, consumer price indices, etc. Changes in corrective actions adjust the intensity of transitions in the migration matrix. The mathematical model for forecasting the credit portfolio structure taking into account a cumulative impact of internal and external changes is obtained.

  18. Non-stationary Bias Correction of Monthly CMIP5 Temperature Projections over China using a Residual-based Bagging Tree Model

    NASA Astrophysics Data System (ADS)

    Yang, T.; Lee, C.

    2017-12-01

    The biases in the Global Circulation Models (GCMs) are crucial for understanding future climate changes. Currently, most bias correction methodologies suffer from the assumption that model bias is stationary. This paper provides a non-stationary bias correction model, termed Residual-based Bagging Tree (RBT) model, to reduce simulation biases and to quantify the contributions of single models. Specifically, the proposed model estimates the residuals between individual models and observations, and takes the differences between observations and the ensemble mean into consideration during the model training process. A case study is conducted for 10 major river basins in Mainland China during different seasons. Results show that the proposed model is capable of providing accurate and stable predictions while including the non-stationarities into the modeling framework. Significant reductions in both bias and root mean squared error are achieved with the proposed RBT model, especially for the central and western parts of China. The proposed RBT model has consistently better performance in reducing biases when compared to the raw ensemble mean, the ensemble mean with simple additive bias correction, and the single best model for different seasons. Furthermore, the contribution of each single GCM in reducing the overall bias is quantified. The single model importance varies between 3.1% and 7.2%. For different future scenarios (RCP 2.6, RCP 4.5, and RCP 8.5), the results from RBT model suggest temperature increases of 1.44 ºC, 2.59 ºC, and 4.71 ºC by the end of the century, respectively, when compared to the average temperature during 1970 - 1999.

  19. Enhanced intercarrier interference mitigation based on encoded bit-sequence distribution inside optical superchannels

    NASA Astrophysics Data System (ADS)

    Torres, Jhon James Granada; Soto, Ana María Cárdenas; González, Neil Guerrero

    2016-10-01

    In the context of gridless optical multicarrier systems, we propose a method for intercarrier interference (ICI) mitigation which allows bit error correction in scenarios of nonspectral flatness between the subcarriers composing the multicarrier system and sub-Nyquist carrier spacing. We propose a hybrid ICI mitigation technique which exploits the advantages of signal equalization at both levels: the physical level for any digital and analog pulse shaping, and the bit-data level and its ability to incorporate advanced correcting codes. The concatenation of these two complementary techniques consists of a nondata-aided equalizer applied to each optical subcarrier, and a hard-decision forward error correction applied to the sequence of bits distributed along the optical subcarriers regardless of prior subchannel quality assessment as performed in orthogonal frequency-division multiplexing modulations for the implementation of the bit-loading technique. The impact of the ICI is systematically evaluated in terms of bit-error-rate as a function of the carrier frequency spacing and the roll-off factor of the digital pulse-shaping filter for a simulated 3×32-Gbaud single-polarization quadrature phase shift keying Nyquist-wavelength division multiplexing system. After the ICI mitigation, a back-to-back error-free decoding was obtained for sub-Nyquist carrier spacings of 28.5 and 30 GHz and roll-off values of 0.1 and 0.4, respectively.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eken, T; Mayeda, K; Hofstetter, A

    A recently developed coda magnitude methodology was applied to selected broadband stations in Turkey for the purpose of testing the coda method in a large, laterally complex region. As found in other, albeit smaller regions, coda envelope amplitude measurements are significantly less variable than distance-corrected direct wave measurements (i.e., L{sub g} and surface waves) by roughly a factor 3-to-4. Despite strong lateral crustal heterogeneity in Turkey, we found that the region could be adequately modeled assuming a simple 1-D, radially symmetric path correction for 10 narrow frequency bands ranging between 0.02 to 2.0 Hz. For higher frequencies however, 2-D pathmore » corrections will be necessary and will be the subject of a future study. After calibrating the stations ISP, ISKB, and MALT for local and regional distances, single-station moment-magnitude estimates (M{sub w}) derived from the coda spectra were in excellent agreement with those determined from multi-station waveform modeling inversions of long-period data, exhibiting a data standard deviation of 0.17. Though the calibration was validated using large events, the results of the calibration will extend M{sub w} estimates to significantly smaller events which could not otherwise be waveform modeled due to poor signal-to-noise ratio at long periods and sparse station coverage. The successful application of the method is remarkable considering the significant lateral complexity in Turkey and the simple assumptions used in the coda method.« less

  1. Drag Corrections in High-Speed Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Ludwieg, H.

    1947-01-01

    In the vicinity of a body in a wind tunnel the displacement effect of the wake, due to the finite dimensions of the stream, produces a pressure gradient which evokes a change of drag. In incompressible flow this change of drag is so small, in general, that one does not have to take it into account in wind-tunnel measurements; however, in compressible flow it beoomes considerably larger, so that a correction factor is necessary for measured values. Correction factors for a closed tunnel and an open jet with circular cross sections are calculated and compared with the drag - corrections already bown for high-speed tunnnels.

  2. High Energy Phenomenology - Proceedings of the Workshop

    NASA Astrophysics Data System (ADS)

    Pérez, Miguel A.; Huerta, Rodrigo

    1992-06-01

    The Table of Contents for the full book PDF is as follows: * Preface * Radiative Corrections in the Electroweak Standard Model * Introduction * The Electroweak Standard Model and its Renormalization * Basic Properties of the Standard Model * Renormalization of the Standard Model * Calculation of Radiative Corrections * One-Loop Integrals * Corrected Matrix Elements and Cross Sections * Photonic Corrections * Physical Applications and Results * Parameter Relations in Higher Orders * Decay Widths * Z Physics * W-Pair Production * Higgs Production in e+e- Annihilation * Conclusion * Appendix: Feynman Rules * References * Hadron Collider Physics * Introduction * e+ e- Annihilation * The Standard Model * The Drell-Yan Process in Hadronic Collisions * The Structure Functions * Hadronic Z Production * Hadronic W Production * The Transverse Mass * Quark Decays of W's * Weak Interactions * Neutrino Scattering * Weak Neutral Currents * The Standard Model * Symmetries and Lagrangians * Spontaneous Symmetry Breaking * The Standard Model Again * Experimental Situation * Appendix * References * Lectures on Heavy Quark Effective Theory * Introduction * Motivation * Physical Intuition * The Heavy Quark Effective Theory * The Effective Lagrangian and its Feynman Rules * What is an Effective Theory? * The Effective Theory Beyond Tree Level * External Currents * Leading-Logs or No Leading-Logs; A digression * Sample Calculations * Symmetries * Flavor-SU(N) * Spin-SU(2) * Spectrum * Strong Transitions * Covariant Representation of States * Meson Decay Constants * Preliminaries * Formal Derivation: Green Functions * Quick and Dirty Derivation: States in the HQET * Vector Meson Decay Constant * Corrections * Form Factors in overline {B} rightarrow Deν and overline {B} rightarrow D ^ast {e}ν * Preliminaries * Form Factors in the HQET * Form Factors in order αs * 1/MQ * The Correcting Lagrangian * The Corrected Currents * Corrections of order mc/mb * Corrections of order overline {Λ} /m_c and overline {Λ} /m_c * Conclusions and More * Inclusive Semileptonic Decay Rates * overline {B} rightarrow Π {e} overline {ν} and overline {B} rightarrow Π {e} overline {ν} * Rare overline {B} decays * e^+ e^- rightarrow {B} overline {B} * λb → λcDs vs λb → λc D*s * Factorization * A Last Word (or Two) * References * An Overview of Nonleptonic Decays of B, D, K Mesons and CP-Noninvariance * Generic Ways to Study Nonleptonic Decays and CP-Noninvariance * The Quark-Diagram Scheme * Invariants of the CKM and the Universal Decay-Amplitude CP-Noninvariance Factor Xcp * Implications of Measuring Partial-Decay-Rate Asymmetries in B± Decays and in Neutral B Decays such as B0, overline {B}^{0} rightarrow K_sJ/{Ψ} * Nonleptonic Decays of D Mesons: From the CKM Non- and Singly-Suppressed Decays to the Predictions of Doubly-Suppressed Decays * Charm Meson D Decays into Vector and Pseudoscalar Bosons, D → VP * Charm Meson Decays into Pseudoscalar-Pseudoscalar Mesons, D → PP * Charm Meson Decays into Vector-Vector Mesons, D → VV * Nonleptonic Decays of B Mesons * The CKM Non-Suppressed Decays * Interesting Features in the Rare B Meson Decays * CP-Noninvariance in K Meson Decays * Implications of Measurement of Re( ɛ'/ɛ) * Other Important Searches for Decay-Amplitude CP Noninvariance in Strange Particles * Some Generic Properties of Decay-Amplitude CP-Noninvariance * References * Top Quark Physics * Introduction * The Top Quark Exists * Upper Limit on Mt * Other Constraints on Mt * Production of Top * Hadron Colliders * SM Top Decays * Detecting SM Tops-Signatures * Model-Independent Lower Limit on Mt * Determining the Charge of a New Heavy Quark * When the Top Quark is Detected * Top Decays - A Window to New Physics? * - Decay to Supersymmetric Partners * - Decay to Charged Higgs Bosons * - Flavor-Changing Neutral Current Decays * - Other possibilities * New Information Once Top is Observed * Studying the Top Decays Couplings * The Top Quark at N LC * Measuring Mt - How Well? * Sharper Predictions for Many Observables * Measuring Vts, Vtd, Vtb and Γ(t → bW) * Top Polarization Predictions - A New Observable * Testing QCD Polarization Predictions * Correlation of Top Spin Direction with Final b, l+ Directions and Top Mass Measurements * Measuring P_{pm} ^ t * General Top Couplings * One Loop Corrections to Top Decay * Decay Helicity Amplitudes * New Sources of CP Violation at the Weak Scale? * The Effect of Top Loops on Higgs Masses * Is t → Wb a Background for Studying TeV WW Interactions? * Predictions for Mt * Final Remarks * References * High Precision Radiative Corrections in the Semileptonic Decays of Hyperons * On the Decay W± → P±γ * The Decay H0 → γγ and Physics Beyond the Standard Model * Neutrino Masses and Double Beta Decay * Neutrino Oscillations in a Medium: Analytic Calculation of Nonadiabatic Transitions * Gauge-Invariant Perturbation Theory Near a Gauge Resonance * Lower Dimensional Divergences in Gauge Theories * Strange Stars: Which is the Ground State of QCD at Finite Baryon Number? * Experimental Signatures of the SU(5)c Color Model * Generalized Supersymmetric Quantum Mechanics * Chern-Simons Theories in 2 + 1 Dimensions * List of participants

  3. Single-image-based solution for optics temperature-dependent nonuniformity correction in an uncooled long-wave infrared camera.

    PubMed

    Cao, Yanpeng; Tisse, Christel-Loic

    2014-02-01

    In this Letter, we propose an efficient and accurate solution to remove temperature-dependent nonuniformity effects introduced by the imaging optics. This single-image-based approach computes optics-related fixed pattern noise (FPN) by fitting the derivatives of correction model to the gradient components, locally computed on an infrared image. A modified bilateral filtering algorithm is applied to local pixel output variations, so that the refined gradients are most likely caused by the nonuniformity associated with optics. The estimated bias field is subtracted from the raw infrared imagery to compensate the intensity variations caused by optics. The proposed method is fundamentally different from the existing nonuniformity correction (NUC) techniques developed for focal plane arrays (FPAs) and provides an essential image processing functionality to achieve completely shutterless NUC for uncooled long-wave infrared (LWIR) imaging systems.

  4. Computation of a spectrum from a single-beam fourier-transform infrared interferogram.

    PubMed

    Ben-David, Avishai; Ifarraguerri, Agustin

    2002-02-20

    A new high-accuracy method has been developed to transform asymmetric single-sided interferograms into spectra. We used a fraction (short, double-sided) of the recorded interferogram and applied an iterative correction to the complete recorded interferogram for the linear part of the phase induced by the various optical elements. Iterative phase correction enhanced the symmetry in the recorded interferogram. We constructed a symmetric double-sided interferogram and followed the Mertz procedure [Infrared Phys. 7,17 (1967)] but with symmetric apodization windows and with a nonlinear phase correction deduced from this double-sided interferogram. In comparing the solution spectrum with the source spectrum we applied the Rayleigh resolution criterion with a Gaussian instrument line shape. The accuracy of the solution is excellent, ranging from better than 0.1% for a blackbody spectrum to a few percent for a complicated atmospheric radiance spectrum.

  5. qF-SSOP: real-time optical property corrected fluorescence imaging

    PubMed Central

    Valdes, Pablo A.; Angelo, Joseph P.; Choi, Hak Soo; Gioux, Sylvain

    2017-01-01

    Fluorescence imaging is well suited to provide image guidance during resections in oncologic and vascular surgery. However, the distorting effects of tissue optical properties on the emitted fluorescence are poorly compensated for on even the most advanced fluorescence image guidance systems, leading to subjective and inaccurate estimates of tissue fluorophore concentrations. Here we present a novel fluorescence imaging technique that performs real-time (i.e., video rate) optical property corrected fluorescence imaging. We perform full field of view simultaneous imaging of tissue optical properties using Single Snapshot of Optical Properties (SSOP) and fluorescence detection. The estimated optical properties are used to correct the emitted fluorescence with a quantitative fluorescence model to provide quantitative fluorescence-Single Snapshot of Optical Properties (qF-SSOP) images with less than 5% error. The technique is rigorous, fast, and quantitative, enabling ease of integration into the surgical workflow with the potential to improve molecular guidance intraoperatively. PMID:28856038

  6. Statistical properties of single-mode fiber coupling of satellite-to-ground laser links partially corrected by adaptive optics.

    PubMed

    Canuet, Lucien; Védrenne, Nicolas; Conan, Jean-Marc; Petit, Cyril; Artaud, Geraldine; Rissons, Angelique; Lacan, Jerome

    2018-01-01

    In the framework of satellite-to-ground laser downlinks, an analytical model describing the variations of the instantaneous coupled flux into a single-mode fiber after correction of the incoming wavefront by partial adaptive optics (AO) is presented. Expressions for the probability density function and the cumulative distribution function as well as for the average fading duration and fading duration distribution of the corrected coupled flux are given. These results are of prime interest for the computation of metrics related to coded transmissions over correlated channels, and they are confronted by end-to-end wave-optics simulations in the case of a geosynchronous satellite (GEO)-to-ground and a low earth orbit satellite (LEO)-to-ground scenario. Eventually, the impact of different AO performances on the aforementioned fading duration distribution is analytically investigated for both scenarios.

  7. Core-mass nonadiabatic corrections to molecules: H2, H2+, and isotopologues.

    PubMed

    Diniz, Leonardo G; Alijah, Alexander; Mohallem, José Rachid

    2012-10-28

    For high-precision calculations of rovibrational states of light molecules, it is essential to include non-adiabatic corrections. In the absence of crossings of potential energy surfaces, they can be incorporated in a single surface picture through coordinate-dependent vibrational and rotational reduced masses. We present a compact method for their evaluation and relate in particular the vibrational mass to a well defined nuclear core mass derived from a Mulliken analysis of the electronic density. For the rotational mass we propose a simple, but very effective parametrization. The use of these masses in the nuclear Schrödinger equation yields numerical data for the corrections of a much higher quality than can be obtained with optimized constant masses, typically better than 0.1 cm(-1). We demonstrate the method for H(2), H(2)(+), and singly deuterated isotopologues. Isotopic asymmetry does not present any particular difficulty. Generalization to polyatomic molecules is straightforward.

  8. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors.

    PubMed

    Haghverdi, Laleh; Lun, Aaron T L; Morgan, Michael D; Marioni, John C

    2018-06-01

    Large-scale single-cell RNA sequencing (scRNA-seq) data sets that are produced in different laboratories and at different times contain batch effects that may compromise the integration and interpretation of the data. Existing scRNA-seq analysis methods incorrectly assume that the composition of cell populations is either known or identical across batches. We present a strategy for batch correction based on the detection of mutual nearest neighbors (MNNs) in the high-dimensional expression space. Our approach does not rely on predefined or equal population compositions across batches; instead, it requires only that a subset of the population be shared between batches. We demonstrate the superiority of our approach compared with existing methods by using both simulated and real scRNA-seq data sets. Using multiple droplet-based scRNA-seq data sets, we demonstrate that our MNN batch-effect-correction method can be scaled to large numbers of cells.

  9. Finite element and analytical solutions for van der Pauw and four-point probe correction factors when multiple non-ideal measurement conditions coexist

    NASA Astrophysics Data System (ADS)

    Reveil, Mardochee; Sorg, Victoria C.; Cheng, Emily R.; Ezzyat, Taha; Clancy, Paulette; Thompson, Michael O.

    2017-09-01

    This paper presents an extensive collection of calculated correction factors that account for the combined effects of a wide range of non-ideal conditions often encountered in realistic four-point probe and van der Pauw experiments. In this context, "non-ideal conditions" refer to conditions that deviate from the assumptions on sample and probe characteristics made in the development of these two techniques. We examine the combined effects of contact size and sample thickness on van der Pauw measurements. In the four-point probe configuration, we examine the combined effects of varying the sample's lateral dimensions, probe placement, and sample thickness. We derive an analytical expression to calculate correction factors that account, simultaneously, for finite sample size and asymmetric probe placement in four-point probe experiments. We provide experimental validation of the analytical solution via four-point probe measurements on a thin film rectangular sample with arbitrary probe placement. The finite sample size effect is very significant in four-point probe measurements (especially for a narrow sample) and asymmetric probe placement only worsens such effects. The contribution of conduction in multilayer samples is also studied and found to be substantial; hence, we provide a map of the necessary correction factors. This library of correction factors will enable the design of resistivity measurements with improved accuracy and reproducibility over a wide range of experimental conditions.

  10. Finite element and analytical solutions for van der Pauw and four-point probe correction factors when multiple non-ideal measurement conditions coexist.

    PubMed

    Reveil, Mardochee; Sorg, Victoria C; Cheng, Emily R; Ezzyat, Taha; Clancy, Paulette; Thompson, Michael O

    2017-09-01

    This paper presents an extensive collection of calculated correction factors that account for the combined effects of a wide range of non-ideal conditions often encountered in realistic four-point probe and van der Pauw experiments. In this context, "non-ideal conditions" refer to conditions that deviate from the assumptions on sample and probe characteristics made in the development of these two techniques. We examine the combined effects of contact size and sample thickness on van der Pauw measurements. In the four-point probe configuration, we examine the combined effects of varying the sample's lateral dimensions, probe placement, and sample thickness. We derive an analytical expression to calculate correction factors that account, simultaneously, for finite sample size and asymmetric probe placement in four-point probe experiments. We provide experimental validation of the analytical solution via four-point probe measurements on a thin film rectangular sample with arbitrary probe placement. The finite sample size effect is very significant in four-point probe measurements (especially for a narrow sample) and asymmetric probe placement only worsens such effects. The contribution of conduction in multilayer samples is also studied and found to be substantial; hence, we provide a map of the necessary correction factors. This library of correction factors will enable the design of resistivity measurements with improved accuracy and reproducibility over a wide range of experimental conditions.

  11. Virtex-5QV Self Scrubber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wojahn, Christopher K.

    2015-10-20

    This HDL code (hereafter referred to as "software") implements circuitry in Xilinx Virtex-5QV Field Programmable Gate Array (FPGA) hardware. This software allows the device to self-check the consistency of its own configuration memory for radiation-induced errors. The software then provides the capability to correct any single-bit errors detected in the memory using the device's inherent circuitry, or reload corrupted memory frames when larger errors occur that cannot be corrected with the device's built-in error correction and detection scheme.

  12. Wavefront correction performed by a deformable mirror of arbitrary actuator pattern within a multireflection waveguide.

    PubMed

    Ma, Xingkun; Huang, Lei; Bian, Qi; Gong, Mali

    2014-09-10

    The wavefront correction ability of a deformable mirror with a multireflection waveguide was investigated and compared via simulations. By dividing a conventional actuator array into a multireflection waveguide that consisted of single-actuator units, an arbitrary actuator pattern could be achieved. A stochastic parallel perturbation algorithm was proposed to find the optimal actuator pattern for a particular aberration. Compared with conventional an actuator array, the multireflection waveguide showed significant advantages in correction of higher order aberrations.

  13. Arterial Transit Time-corrected Renal Blood Flow Measurement with Pulsed Continuous Arterial Spin Labeling MR Imaging.

    PubMed

    Shimizu, Kazuhiro; Kosaka, Nobuyuki; Fujiwara, Yasuhiro; Matsuda, Tsuyoshi; Yamamoto, Tatsuya; Tsuchida, Tatsuro; Tsuchiyama, Katsuki; Oyama, Nobuyuki; Kimura, Hirohiko

    2017-01-10

    The importance of arterial transit time (ATT) correction for arterial spin labeling MRI has been well debated in neuroimaging, but it has not been well evaluated in renal imaging. The purpose of this study was to evaluate the feasibility of pulsed continuous arterial spin labeling (pcASL) MRI with multiple post-labeling delay (PLD) acquisition for measuring ATT-corrected renal blood flow (ATC-RBF). A total of 14 volunteers were categorized into younger (n = 8; mean age, 27.0 years) and older groups (n = 6; 64.8 years). Images of pcASL were obtained at three different PLDs (0.5, 1.0, and 1.5 s), and ATC-RBF and ATT were calculated using a single-compartment model. To validate ATC-RBF, a comparative study of effective renal plasma flow (ERPF) measured by 99m Tc-MAG3 scintigraphy was performed. ATC-RBF was corrected by kidney volume (ATC-cRBF) for comparison with ERPF. The younger group showed significantly higher ATC-RBF (157.68 ± 38.37 mL/min/100 g) and shorter ATT (961.33 ± 260.87 ms) than the older group (117.42 ± 24.03 mL/min/100 g and 1227.94 ± 226.51 ms, respectively; P < 0.05). A significant correlation was evident between ATC-cRBF and ERPF (P < 0.05, r = 0.47). With suboptimal single PLD (1.5 s) settings, there was no significant correlation between ERPF and kidney volume-corrected RBF calculated from single PLD data. Calculation of ATT and ATC-RBF by pcASL with multiple PLD was feasible in healthy volunteers, and differences in ATT and ATC-RBF were seen between the younger and older groups. Although ATT correction by multiple PLD acquisitions may not always be necessary for RBF quantification in the healthy subjects, the effect of ATT should be taken into account in renal ASL-MRI as debated in brain imaging.

  14. Communication: An improved linear scaling perturbative triples correction for the domain based local pair-natural orbital based singles and doubles coupled cluster method [DLPNO-CCSD(T)].

    PubMed

    Guo, Yang; Riplinger, Christoph; Becker, Ute; Liakos, Dimitrios G; Minenkov, Yury; Cavallo, Luigi; Neese, Frank

    2018-01-07

    In this communication, an improved perturbative triples correction (T) algorithm for domain based local pair-natural orbital singles and doubles coupled cluster (DLPNO-CCSD) theory is reported. In our previous implementation, the semi-canonical approximation was used and linear scaling was achieved for both the DLPNO-CCSD and (T) parts of the calculation. In this work, we refer to this previous method as DLPNO-CCSD(T 0 ) to emphasize the semi-canonical approximation. It is well-established that the DLPNO-CCSD method can predict very accurate absolute and relative energies with respect to the parent canonical CCSD method. However, the (T 0 ) approximation may introduce significant errors in absolute energies as the triples correction grows up in magnitude. In the majority of cases, the relative energies from (T 0 ) are as accurate as the canonical (T) results of themselves. Unfortunately, in rare cases and in particular for small gap systems, the (T 0 ) approximation breaks down and relative energies show large deviations from the parent canonical CCSD(T) results. To address this problem, an iterative (T) algorithm based on the previous DLPNO-CCSD(T 0 ) algorithm has been implemented [abbreviated here as DLPNO-CCSD(T)]. Using triples natural orbitals to represent the virtual spaces for triples amplitudes, storage bottlenecks are avoided. Various carefully designed approximations ease the computational burden such that overall, the increase in the DLPNO-(T) calculation time over DLPNO-(T 0 ) only amounts to a factor of about two (depending on the basis set). Benchmark calculations for the GMTKN30 database show that compared to DLPNO-CCSD(T 0 ), the errors in absolute energies are greatly reduced and relative energies are moderately improved. The particularly problematic case of cumulene chains of increasing lengths is also successfully addressed by DLPNO-CCSD(T).

  15. Communication: An improved linear scaling perturbative triples correction for the domain based local pair-natural orbital based singles and doubles coupled cluster method [DLPNO-CCSD(T)

    NASA Astrophysics Data System (ADS)

    Guo, Yang; Riplinger, Christoph; Becker, Ute; Liakos, Dimitrios G.; Minenkov, Yury; Cavallo, Luigi; Neese, Frank

    2018-01-01

    In this communication, an improved perturbative triples correction (T) algorithm for domain based local pair-natural orbital singles and doubles coupled cluster (DLPNO-CCSD) theory is reported. In our previous implementation, the semi-canonical approximation was used and linear scaling was achieved for both the DLPNO-CCSD and (T) parts of the calculation. In this work, we refer to this previous method as DLPNO-CCSD(T0) to emphasize the semi-canonical approximation. It is well-established that the DLPNO-CCSD method can predict very accurate absolute and relative energies with respect to the parent canonical CCSD method. However, the (T0) approximation may introduce significant errors in absolute energies as the triples correction grows up in magnitude. In the majority of cases, the relative energies from (T0) are as accurate as the canonical (T) results of themselves. Unfortunately, in rare cases and in particular for small gap systems, the (T0) approximation breaks down and relative energies show large deviations from the parent canonical CCSD(T) results. To address this problem, an iterative (T) algorithm based on the previous DLPNO-CCSD(T0) algorithm has been implemented [abbreviated here as DLPNO-CCSD(T)]. Using triples natural orbitals to represent the virtual spaces for triples amplitudes, storage bottlenecks are avoided. Various carefully designed approximations ease the computational burden such that overall, the increase in the DLPNO-(T) calculation time over DLPNO-(T0) only amounts to a factor of about two (depending on the basis set). Benchmark calculations for the GMTKN30 database show that compared to DLPNO-CCSD(T0), the errors in absolute energies are greatly reduced and relative energies are moderately improved. The particularly problematic case of cumulene chains of increasing lengths is also successfully addressed by DLPNO-CCSD(T).

  16. SU-E-T-91: Correction Method to Determine Surface Dose for OSL Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, T; Higgins, P

    Purpose: OSL detectors are commonly used in clinic due to their numerous advantages, such as linear response, negligible energy, angle and temperature dependence in clinical range, for verification of the doses beyond the dmax. Although, due to the bulky shielding envelope, this type of detectors fails to measure skin dose, which is an important assessment of patient ability to finish the treatment on time and possibility of acute side effects. This study aims to optimize the methodology of determination of skin dose for conventional accelerators and a flattening filter free Tomotherapy. Methods: Measurements were done for x-ray beams: 6 MVmore » (Varian Clinac 2300, 10×10 cm{sup 2} open field, SSD = 100 cm) and for 5.5 MV (Tomotherapy, 15×40 cm{sup 2} field, SAD = 85 cm). The detectors were placed at the surface of the solid water phantom and at the reference depth (dref=1.7cm (Varian 2300), dref =1.0 cm (Tomotherapy)). The measurements for OSLs were related to the externally exposed OSLs measurements, and further were corrected to surface dose using an extrapolation method indexed to the baseline Attix ion chamber measurements. A consistent use of the extrapolation method involved: 1) irradiation of three OSLs stacked on top of each other on the surface of the phantom; 2) measurement of the relative dose value for each layer; and, 3) extrapolation of these values to zero thickness. Results: OSL measurements showed an overestimation of surface doses by the factor 2.31 for Varian 2300 and 2.65 for Tomotherapy. The relationships: SD{sup 2300} = 0.68 × M{sup 2300}-12.7 and SDτoμo = 0.73 × Mτoμo-13.1 were found to correct the single OSL measurements to surface doses in agreement with Attix measurements to within 0.1% for both machines. Conclusion: This work provides simple empirical relationships for surface dose measurements using single OSL detectors.« less

  17. [Factors related to the QT prolongation in chronic renal failure].

    PubMed

    Kurosu, M; Ando, Y; Akimoto, T; Ono, S; Kusano, E; Asano, Y

    1999-04-01

    QT prolongation, a risk factor for arrhythmia and cardiac death, is observed in uremic patients. Though hypocalcemia, autonomic nerve dysfunction and cardiac hypertrophy are assumed to cause the uremic QT prolongation, the exact mechanism remains unspecified. We therefore examined factors related to the QT interval in chronic renal failure (CRF). Corrected QT interval (QTc) was significantly prolonged in CRF just before the induction of dialysis therapy (group A) compared with nephrotic syndrome with the intact or mildly impaired renal function (group B). QTc was also prolonged in acute renal failure (group C). Cardio-thoracic ratio, serum albumin and Ca correlated with QTc in group A, but not in B or C. A single HD session in group A failed to shorten QTc, despite a significant increase in serum Ca++. Autonomic dysfunction did not appear to be a major determinant of QT prolongation, since QTc was not different between diabetics and non-diabetics in group A and in chronic HD patients (group D). In group D, QTc did not correlate with SV1 + RV5 on ECG or left ventricular wall thickness (LVWT) on echocardiography. In another group of chronic HD patients (group E), there was no significant correlation between QTc and the parameters of left ventricular mass, plasma brain natriuretic peptide (BNP). However, in the patients subjected to repeated echocardiography in group D, QTc and LVWT changed in parallel. In a retrospective analysis of QTc in group D, QTc was maximally prolonged at the time of starting HD therapy, and gradually improved in the following 1-5 years in both diabetics and non-diabetics. In contrast, chronic CAPD patients (group F) revealed no improvement of QTc. Thus, uremic QT prolongation cannot be explained simply by any of the previously assumed factors, but appears to be affected by multiple factors, which are partially correctable by chronic HD therapy.

  18. Differential distributions for t-channel single top-quark production and decay at next-to-next-to-leading order in QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, Edmond L.; Gao, Jun; Zhu, Hua Xing

    We present a detailed phenomenological study of the next-to-next-to-leading order (NNLO) QCD corrections for t-channel single top (anti-)quark production and its semi-leptonic decay at the CERN Large Hadron Collider (LHC). We find the NNLO corrections for the total inclusive rates at the LHC with different center of mass energies are generally smaller than the NLO corrections, indicative of improved convergence. However, they can be large for differential distributions, reaching a level of 10% or more in certain regions of the transverse momentum distributions of the top (anti-)quark and the pseudo-rapidity distributions of the leading jet in the event. In allmore » cases the perturbative hard-scale uncertainties are greatly reduced after the NNLO corrections are included. We also show a comparison of the normalized parton-level distributions to recent data from the 8 TeV measurement of the ATLAS collaboration. The NNLO corrections tend to shift the theoretical predictions closer to the measured transverse momentum distribution of the top (anti)-quark. Importantly, for the LHC at 13 TeV, we present NNLO cross sections in a fiducial volume with decays of the top quark included.« less

  19. Correlation of carotid blood flow and corrected carotid flow time with invasive cardiac output measurements.

    PubMed

    Ma, Irene W Y; Caplin, Joshua D; Azad, Aftab; Wilson, Christina; Fifer, Michael A; Bagchi, Aranya; Liteplo, Andrew S; Noble, Vicki E

    2017-12-01

    Non-invasive measures that can accurately estimate cardiac output may help identify volume-responsive patients. This study seeks to compare two non-invasive measures (corrected carotid flow time and carotid blood flow) and their correlations with invasive reference measurements of cardiac output. Consenting adult patients (n = 51) at Massachusetts General Hospital cardiac catheterization laboratory undergoing right heart catheterization between February and April 2016 were included. Carotid ultrasound images were obtained concurrently with cardiac output measurements, obtained by the thermodilution method in the absence of severe tricuspid regurgitation and by the Fick oxygen method otherwise. Corrected carotid flow time was calculated as systole time/√cycle time. Carotid blood flow was calculated as π × (carotid diameter) 2 /4 × velocity time integral × heart rate. Measurements were obtained using a single carotid waveform and an average of three carotid waveforms for both measures. Single waveform measurements of corrected flow time did not correlate with cardiac output (ρ = 0.25, 95% CI -0.03 to 0.49, p = 0.08), but an average of three waveforms correlated significantly, although weakly (ρ = 0.29, 95% CI 0.02-0.53, p = 0.046). Carotid blood flow measurements correlated moderately with cardiac output regardless of if single waveform or an average of three waveforms were used: ρ = 0.44, 95% CI 0.18-0.63, p = 0.004, and ρ = 0.41, 95% CI 0.16-0.62, p = 0.004, respectively. Carotid blood flow may be a better marker of cardiac output and less subject to measurements issues than corrected carotid flow time.

  20. Ex vivo gene editing of the dystrophin gene in muscle stem cells mediated by peptide nucleic acid single stranded oligodeoxynucleotides induces stable expression of dystrophin in a mouse model for Duchenne muscular dystrophy.

    PubMed

    Nik-Ahd, Farnoosh; Bertoni, Carmen

    2014-07-01

    Duchenne muscular dystrophy (DMD) is a fatal disease caused by mutations in the dystrophin gene, which result in the complete absence of dystrophin protein throughout the body. Gene correction strategies hold promise to treating DMD. Our laboratory has previously demonstrated the ability of peptide nucleic acid single-stranded oligodeoxynucleotides (PNA-ssODNs) to permanently correct single-point mutations at the genomic level. In this study, we show that PNA-ssODNs can target and correct muscle satellite cells (SCs), a population of stem cells capable of self-renewing and differentiating into muscle fibers. When transplanted into skeletal muscles, SCs transfected with correcting PNA-ssODNs were able to engraft and to restore dystrophin expression. The number of dystrophin-positive fibers was shown to significantly increase over time. Expression was confirmed to be the result of the activation of a subpopulation of SCs that had undergone repair as demonstrated by immunofluorescence analyses of engrafted muscles using antibodies specific to full-length dystrophin transcripts and by genomic DNA analysis of dystrophin-positive fibers. Furthermore, the increase in dystrophin expression detected over time resulted in a significant improvement in muscle morphology. The ability of transplanted cells to return into quiescence and to activate upon demand was confirmed in all engrafted muscles following injury. These results demonstrate the feasibility of using gene editing strategies to target and correct SCs and further establish the therapeutic potential of this approach to permanently restore dystrophin expression into muscle of DMD patients. © 2014 AlphaMed Press.

  1. Single-Step Transepithelial PRK vs Alcohol-Assisted PRK in Myopia and Compound Myopic Astigmatism Correction.

    PubMed

    Kaluzny, Bartlomiej J; Cieslinska, Iwona; Mosquera, Samuel A; Verma, Shwetabh

    2016-02-01

    Transepithelial photorefractive keratectomy (tPRK), where both the epithelium and stroma are removed in a single-step, is a relatively new procedure of laser refractive error correction. This study compares the 3-month results of myopia and compound myopic astigmatism correction by tPRK or conventional alcohol-assisted PRK (aaPRK).This prospective, nonrandomized, case-control study recruited 148 consecutive patients; 93 underwent tPRK (173 eyes) and 55 aaPRK (103 eyes). Refractive results, predictability, safety, and efficacy were evaluated during the 3-month follow-up. The main outcome measures were uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), and mean refractive spherical equivalent (MRSE).Mean preoperative MRSE was -4.30 ± 1.72 D and -4.33 ± 1.96 D, respectively (P = 0.87). The 3-month follow-up rate was 82.1% in the tPRK group (n = 145) and 86.4% in aaPRK group (n = 90), P = 0.81. Postoperative UDVA was 20/20 or better in 97% and 94% of eyes, respectively (P = 0.45). In the tPRK and aaPRK groups, respectively, 13% and 21% of eyes lost 1 line of CDVA, and 30% and 31% gained 1 or 2 lines (P = 0.48). Mean postoperative MRSE was -0.14 ± 0.26 D in the tPRK group and -0.12 ± 0.20 D in the aaPRK group (P = 0.9). The correlation between attempted versus achieved MRSE was equally high in both groups.Single-step transepithelial PRK and conventional PRK provide very similar results 3 months postoperatively. These procedures are predictable, effective, and safe for correction of myopia and compound myopic astigmatism.

  2. Dual-energy-based metal segmentation for metal artifact reduction in dental computed tomography.

    PubMed

    Hegazy, Mohamed A A; Eldib, Mohamed Elsayed; Hernandez, Daniel; Cho, Myung Hye; Cho, Min Hyoung; Lee, Soo Yeol

    2018-02-01

    In a dental CT scan, the presence of dental fillings or dental implants generates severe metal artifacts that often compromise readability of the CT images. Many metal artifact reduction (MAR) techniques have been introduced, but dental CT scans still suffer from severe metal artifacts particularly when multiple dental fillings or implants exist around the region of interest. The high attenuation coefficient of teeth often causes erroneous metal segmentation, compromising the MAR performance. We propose a metal segmentation method for a dental CT that is based on dual-energy imaging with a narrow energy gap. Unlike a conventional dual-energy CT, we acquire two projection data sets at two close tube voltages (80 and 90 kV p ), and then, we compute the difference image between the two projection images with an optimized weighting factor so as to maximize the contrast of the metal regions. We reconstruct CT images from the weighted difference image to identify the metal region with global thresholding. We forward project the identified metal region to designate metal trace on the projection image. We substitute the pixel values on the metal trace with the ones computed by the region filling method. The region filling in the metal trace removes high-intensity data made by the metallic objects from the projection image. We reconstruct final CT images from the region-filled projection image with the fusion-based approach. We have done imaging experiments on a dental phantom and a human skull phantom using a lab-built micro-CT and a commercial dental CT system. We have corrected the projection images of a dental phantom and a human skull phantom using the single-energy and dual-energy-based metal segmentation methods. The single-energy-based method often failed in correcting the metal artifacts on the slices on which tooth enamel exists. The dual-energy-based method showed better MAR performances in all cases regardless of the presence of tooth enamel on the slice of interest. We have compared the MAR performances between both methods in terms of the relative error (REL), the sum of squared difference (SSD) and the normalized absolute difference (NAD). For the dental phantom images corrected by the single-energy-based method, the metric values were 95.3%, 94.5%, and 90.6%, respectively, while they were 90.1%, 90.05%, and 86.4%, respectively, for the images corrected by the dual-energy-based method. For the human skull phantom images, the metric values were improved from 95.6%, 91.5%, and 89.6%, respectively, to 88.2%, 82.5%, and 81.3%, respectively. The proposed dual-energy-based method has shown better performance in metal segmentation leading to better MAR performance in dental imaging. We expect the proposed metal segmentation method can be used to improve the MAR performance of existing MAR techniques that have metal segmentation steps in their correction procedures. © 2017 American Association of Physicists in Medicine.

  3. Proton and neutron electromagnetic form factors and uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Zhihong; Arrington, John; Hill, Richard J.

    We determine the nucleon electromagnetic form factors and their uncertainties from world electron scattering data. The analysis incorporates two-photon exchange corrections, constraints on the low-Q 2 and high-Q 2 behavior, and additional uncertainties to account for tensions between different data sets and uncertainties in radiative corrections.

  4. Proton and neutron electromagnetic form factors and uncertainties

    DOE PAGES

    Ye, Zhihong; Arrington, John; Hill, Richard J.; ...

    2017-12-06

    We determine the nucleon electromagnetic form factors and their uncertainties from world electron scattering data. The analysis incorporates two-photon exchange corrections, constraints on the low-Q 2 and high-Q 2 behavior, and additional uncertainties to account for tensions between different data sets and uncertainties in radiative corrections.

  5. Long-term correction of obesity and diabetes in genetically obese mice by a single intramuscular injection of recombinant adeno-associated virus encoding mouse leptin

    PubMed Central

    Murphy, John E.; Zhou, Shangzhen; Giese, Klaus; Williams, Lewis T.; Escobedo, Jaime A.; Dwarki, Varavani J.

    1997-01-01

    The ob/ob mouse is genetically deficient in leptin and exhibits a phenotype that includes obesity and non-insulin-dependent diabetes melitus. This phenotype closely resembles the morbid obesity seen in humans. In this study, we demonstrate that a single intramuscular injection of a recombinant adeno-associated virus (AAV) vector encoding mouse leptin (rAAV-leptin) in ob/ob mice leads to prevention of obesity and diabetes. The treated animals show normalization of metabolic abnormalities including hyperglycemia, insulin resistance, impaired glucose tolerance, and lethargy. The effects of a single injection have lasted through the 6-month course of the study. At all time points measured the circulating levels of leptin in the serum were similar to age-matched control C57 mice. These results demonstrate that maintenance of normal levels of leptin (2–5 ng/ml) in the circulation can prevent both the onset of obesity and associated non-insulin-dependent diabetes. Thus a single injection of a rAAV vector expressing a therapeutic gene can lead to complete and long-term correction of a genetic disorder. Our study demonstrates the long-term correction of a disease caused by a genetic defect and proves the feasibility of using rAAV-based vectors for the treatment of chronic disorders like obesity. PMID:9391128

  6. SEMICONDUCTOR TECHNOLOGY: An efficient dose-compensation method for proximity effect correction

    NASA Astrophysics Data System (ADS)

    Ying, Wang; Weihua, Han; Xiang, Yang; Renping, Zhang; Yang, Zhang; Fuhua, Yang

    2010-08-01

    A novel simple dose-compensation method is developed for proximity effect correction in electron-beam lithography. The sizes of exposed patterns depend on dose factors while other exposure parameters (including accelerate voltage, resist thickness, exposing step size, substrate material, and so on) remain constant. This method is based on two reasonable assumptions in the evaluation of the compensated dose factor: one is that the relation between dose factors and circle-diameters is linear in the range under consideration; the other is that the compensated dose factor is only affected by the nearest neighbors for simplicity. Four-layer-hexagon photonic crystal structures were fabricated as test patterns to demonstrate this method. Compared to the uncorrected structures, the homogeneity of the corrected hole-size in photonic crystal structures was clearly improved.

  7. Visual Recovery after Macular Hole Surgery and Related Prognostic Factors.

    PubMed

    Kim, Soo Han; Kim, Hong Kyu; Yang, Jong Yun; Lee, Sung Chul; Kim, Sung Soo

    2018-04-01

    To describe the visual recovery and prognostic factors after macular hole surgery. A retrospective chart review was conducted. Charts of patients with idiopathic macular holes who underwent surgery by a single surgeon at Severance Hospital between January 1, 2013 and July 31, 2015 were reviewed. The best-corrected visual acuity (BCVA) score was recorded preoperatively and at 1 day and 1, 3, 6, 9, and 12 months after surgery. The variables of age, sex, macular hole size, basal hole diameter, choroidal thickness, and axial length were also noted. Twenty-six eyes of 26 patients were evaluated. Twenty-five patients (96.2%) showed successful macular hole closure after the primary operation. The BCVA stabilized 6 months postoperatively. A large basal hole diameter (p = 0.006) and thin choroid (p = 0.005) were related to poor visual outcomes. Poor preoperative BCVA (p < 0.001) and a thick choroid (p = 0.020) were associated with greater improvement in BCVA after surgery. Visual acuity stabilized by 6 months after macular hole surgery. Choroidal thickness was a protective factor for final BCVA and visual improvement after the operation. © 2018 The Korean Ophthalmological Society.

  8. [Genetic aspects of the Stroop test].

    PubMed

    Nánási, Tibor; Katonai, Enikő Rózsa; Sasvári-Székely, Mária; Székely, Anna

    2012-12-01

    Impairment of executive control functions in depression is well documented, and performance on the Stroop Test is one of the most widely used markers to measure the decline. This tool provides reliable quantitative phenotype data that can be used efficiently in candidate gene studies investigating inherited components of executive control. Aim of the present review is to summarize research on genetic factors of Stroop performance. Interestingly, only a few such candidate gene studies have been carried out to date. Twin studies show a 30-60% heritability estimate for the Stroop test, suggesting a significant genetic component. A single genome-wide association study has been carried out on Stroop performance, and it did not show any significant association with any of the tested polymorphisms after correction for multiple testing. Candidate gene studies to date pointed to the polymorphisms of several neurotransmitter systems (dopamine, serotonin, acetylcholine) and to the role of the APOE ε4 allele. Surprisingly, little is known about the genetic role of neurothrophic factors and survival factors. In conclusion, further studies are needed for clarifying the genetic background of Stroop performance, characterizing attentional functions.

  9. Acidosis and Correction of Acidosis Does Not Affect rFVIIa Function in Swine

    DTIC Science & Technology

    2012-12-15

    and its correction (or normalization of pH) has been suggested before clinical use of rFVIIa [21, 22]. FVII is one of the many coagulation factors ...A or B (deficient in Factor VIII and Factor IX). Mice lacking FVII die in-utero or soon after birth due to vascular and hemostatic defects [23...the activity of recombinant activated Factor VII (rFVIIa) in vitro. However, it is not known if acidosis induced by hemorrhagic shock or infusion of

  10. Final state interactions in single- and multiparticle inclusive cross sections for hadronic collisions

    NASA Astrophysics Data System (ADS)

    Mitov, Alexander; Sterman, George

    2012-12-01

    We study the role of low momentum transfer (soft) interactions between high transverse momentum heavy particles and beam remnants (spectators) in hadronic collisions. Such final state interactions are power suppressed for single-particle inclusive cross sections whenever that particle is accompanied by a recoiling high-pT partner whose momentum is not fixed. An example is the single-top inclusive cross section in top-pair production. Final state soft interactions in multiparticle inclusive cross sections, including transverse momentum distributions, however, produce leading-power corrections in the absence of hard recoiling radiation. Nonperturbative corrections due to scattering from spectators are generically suppressed by powers of Λ/pT', where Λ is a hadronic scale and pT' is the largest transverse momentum of radiation recoiling against the particles whose momenta are observed.

  11. dropEst: pipeline for accurate estimation of molecular counts in droplet-based single-cell RNA-seq experiments.

    PubMed

    Petukhov, Viktor; Guo, Jimin; Baryawno, Ninib; Severe, Nicolas; Scadden, David T; Samsonova, Maria G; Kharchenko, Peter V

    2018-06-19

    Recent single-cell RNA-seq protocols based on droplet microfluidics use massively multiplexed barcoding to enable simultaneous measurements of transcriptomes for thousands of individual cells. The increasing complexity of such data creates challenges for subsequent computational processing and troubleshooting of these experiments, with few software options currently available. Here, we describe a flexible pipeline for processing droplet-based transcriptome data that implements barcode corrections, classification of cell quality, and diagnostic information about the droplet libraries. We introduce advanced methods for correcting composition bias and sequencing errors affecting cellular and molecular barcodes to provide more accurate estimates of molecular counts in individual cells.

  12. Automated separation of merged Langerhans islets

    NASA Astrophysics Data System (ADS)

    Švihlík, Jan; Kybic, Jan; Habart, David

    2016-03-01

    This paper deals with separation of merged Langerhans islets in segmentations in order to evaluate correct histogram of islet diameters. A distribution of islet diameters is useful for determining the feasibility of islet transplantation in diabetes. First, the merged islets at training segmentations are manually separated by medical experts. Based on the single islets, the merged islets are identified and the SVM classifier is trained on both classes (merged/single islets). The testing segmentations were over-segmented using watershed transform and the most probable back merging of islets were found using trained SVM classifier. Finally, the optimized segmentation is compared with ground truth segmentation (correctly separated islets).

  13. Aspherics in spectacle lenses

    NASA Astrophysics Data System (ADS)

    Dürsteler, Juan Carlos

    2016-12-01

    A review of the use of aspherics in the last decades, understood in a broad sense as encompassing single-vision lenses with conicoid surfaces and free-form and progressive addition lenses (PALs) as well, is provided. The appearance of conicoid surfaces to correct aphakia and later to provide thinner and more aesthetically appealing plus lenses and the introduction of PALs and free-form surfaces have shaped the advances in spectacle lenses in the last three decades. This document basically considers the main target optical aberrations, the idiosyncrasy of single lenses for correction of refractive errors and the restrictions and particularities of PAL design and their links to science vision and perception.

  14. Energy propagation by transverse waves in multiple flux tube systems using filling factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Doorsselaere, T.; Gijsen, S. E.; Andries, J.

    2014-11-01

    In the last few years, it has been found that transverse waves are present at all times in coronal loops or spicules. Their energy has been estimated with an expression derived for bulk Alfvén waves in homogeneous media, with correspondingly uniform wave energy density and flux. The kink mode, however, is localized in space with the energy density and flux dependent on the position in the cross-sectional plane. The more relevant quantities for the kink mode are the integrals of the energy density and flux over the cross-sectional plane. The present paper provides an approximation to the energy propagated bymore » kink modes in an ensemble of flux tubes by means of combining the analysis of single flux tube kink oscillations with a filling factor for the tube cross-sectional area. This finally allows one to compare the expressions for energy flux of Alfvén waves with an ensemble of kink waves. We find that the correction factor for the energy in kink waves, compared to the bulk Alfvén waves, is between f and 2f, where f is the density filling factor of the ensemble of flux tubes.« less

  15. Wavefront detection method of a single-sensor based adaptive optics system.

    PubMed

    Wang, Chongchong; Hu, Lifa; Xu, Huanyu; Wang, Yukun; Li, Dayu; Wang, Shaoxin; Mu, Quanquan; Yang, Chengliang; Cao, Zhaoliang; Lu, Xinghai; Xuan, Li

    2015-08-10

    In adaptive optics system (AOS) for optical telescopes, the reported wavefront sensing strategy consists of two parts: a specific sensor for tip-tilt (TT) detection and another wavefront sensor for other distortions detection. Thus, a part of incident light has to be used for TT detection, which decreases the light energy used by wavefront sensor and eventually reduces the precision of wavefront correction. In this paper, a single Shack-Hartmann wavefront sensor based wavefront measurement method is presented for both large amplitude TT and other distortions' measurement. Experiments were performed for testing the presented wavefront method and validating the wavefront detection and correction ability of the single-sensor based AOS. With adaptive correction, the root-mean-square of residual TT was less than 0.2 λ, and a clear image was obtained in the lab. Equipped on a 1.23-meter optical telescope, the binary stars with angle distance of 0.6″ were clearly resolved using the AOS. This wavefront measurement method removes the separate TT sensor, which not only simplifies the AOS but also saves light energy for subsequent wavefront sensing and imaging, and eventually improves the detection and imaging capability of the AOS.

  16. Eddy current correction in volume-localized MR spectroscopy

    NASA Technical Reports Server (NTRS)

    Lin, C.; Wendt, R. E. 3rd; Evans, H. J.; Rowe, R. M.; Hedrick, T. D.; LeBlanc, A. D.

    1994-01-01

    The quality of volume-localized magnetic resonance spectroscopy is affected by eddy currents caused by gradient switching. Eddy currents can be reduced with improved gradient systems; however, it has been suggested that the distortion due to eddy currents can be compensated for during postprocessing with a single-frequency reference signal. The authors propose modifying current techniques for acquiring the single-frequency reference signal by using relaxation weighting to reduce interference from components that cannot be eliminated by digital filtering alone. Additional sequences with T1 or T2 weighting for reference signal acquisition are shown to have the same eddy current characteristics as the original signal without relaxation weighting. The authors also studied a new eddy current correction method that does not require a single-frequency reference signal. This method uses two free induction decays (FIDs) collected from the same volume with two sequences with opposite gradients. Phase errors caused by eddy currents are opposite in these two FIDs and can be canceled completely by combining the FIDs. These methods were tested in a phantom. Eddy current distortions were corrected, allowing quantitative measurement of structures such as the -CH = CH- component, which is otherwise undetectable.

  17. HIV Stigma in Prisons and Jails: Results from a Staff Survey

    PubMed Central

    Dembo, Richard; Copenhaver, Michael; Hiller, Matthew; Swan, Holly; Garcia, Carmen Albizu; O’Connell, Daniel; Oser, Carrie; Pearson, Frank; Pankow, Jennifer

    2015-01-01

    With numerous HIV service gaps in prisons and jails, there has been little research on HIV stigma attitudes among correctional staff. Such attitudes may undermine HIV services for inmates at risk of or infected with HIV. This HIV stigma attitudes survey among 218 correctional staff in 32 US facilities (1) provides an overview of staff’s stigma attitudes, (2) reports psychometric analyses of domains in Earnshaw and Chaudoir’s HIV Stigma Framework (HSF), and (3) explores differences in stigma attitudes among different staff types. Overall, correctional and medical staff expressed non stigmatizing attitudes toward people living with HIV/AIDS, but perceived that stigma and discrimination exist in others. Factor analyses revealed a three factor structure capturing two mechanisms of the HSF (prejudice, discrimination). Few factor score differences were found by staff type or setting. Implications for correctional HIV services and future research on HIV stigma attitudes are discussed. PMID:26036464

  18. HIV Stigma in Prisons and Jails: Results from a Staff Survey.

    PubMed

    Belenko, Steven; Dembo, Richard; Copenhaver, Michael; Hiller, Matthew; Swan, Holly; Albizu Garcia, Carmen; O'Connell, Daniel; Oser, Carrie; Pearson, Frank; Pankow, Jennifer

    2016-01-01

    With numerous HIV service gaps in prisons and jails, there has been little research on HIV stigma attitudes among correctional staff. Such attitudes may undermine HIV services for inmates at risk of or infected with HIV. This HIV stigma attitudes survey among 218 correctional staff in 32 US facilities (1) provides an overview of staff's stigma attitudes, (2) reports psychometric analyses of domains in Earnshaw and Chaudoir's HIV Stigma Framework (HSF), and (3) explores differences in stigma attitudes among different staff types. Overall, correctional and medical staff expressed non stigmatizing attitudes toward people living with HIV/AIDS, but perceived that stigma and discrimination exist in others. Factor analyses revealed a three factor structure capturing two mechanisms of the HSF (prejudice, discrimination). Few factor score differences were found by staff type or setting. Implications for correctional HIV services and future research on HIV stigma attitudes are discussed.

  19. Three-Dimensional Thermal Boundary Layer Corrections for Circular Heat Flux Gauges Mounted in a Flat Plate with a Surface Temperature Discontinuity

    NASA Technical Reports Server (NTRS)

    Kandula, M.; Haddad, G. F.; Chen, R.-H.

    2006-01-01

    Three-dimensional Navier-Stokes computational fluid dynamics (CFD) analysis has been performed in an effort to determine thermal boundary layer correction factors for circular convective heat flux gauges (such as Schmidt-Boelter and plug type)mounted flush in a flat plate subjected to a stepwise surface temperature discontinuity. Turbulent flow solutions with temperature-dependent properties are obtained for a free stream Reynolds number of 1E6, and freestream Mach numbers of 2 and 4. The effect of gauge diameter and the plate surface temperature have been investigated. The 3-D CFD results for the heat flux correction factors are compared to quasi-21) results deduced from constant property integral solutions and also 2-D CFD analysis with both constant and variable properties. The role of three-dimensionality and of property variations on the heat flux correction factors has been demonstrated.

  20. Chromatographic background drift correction coupled with parallel factor analysis to resolve coelution problems in three-dimensional chromatographic data: quantification of eleven antibiotics in tap water samples by high-performance liquid chromatography coupled with a diode array detector.

    PubMed

    Yu, Yong-Jie; Wu, Hai-Long; Fu, Hai-Yan; Zhao, Juan; Li, Yuan-Na; Li, Shu-Fang; Kang, Chao; Yu, Ru-Qin

    2013-08-09

    Chromatographic background drift correction has been an important field of research in chromatographic analysis. In the present work, orthogonal spectral space projection for background drift correction of three-dimensional chromatographic data was described in detail and combined with parallel factor analysis (PARAFAC) to resolve overlapped chromatographic peaks and obtain the second-order advantage. This strategy was verified by simulated chromatographic data and afforded significant improvement in quantitative results. Finally, this strategy was successfully utilized to quantify eleven antibiotics in tap water samples. Compared with the traditional methodology of introducing excessive factors for the PARAFAC model to eliminate the effect of background drift, clear improvement in the quantitative performance of PARAFAC was observed after background drift correction by orthogonal spectral space projection. Copyright © 2013 Elsevier B.V. All rights reserved.

Top