Sample records for single crystal model

  1. Mosaic anisotropy model for magnetic interactions in mesostructured crystals

    NASA Astrophysics Data System (ADS)

    Goldman, Abby R.; Asenath-Smith, Emily; Estroff, Lara A.

    2017-10-01

    We propose a new model for interpreting the magnetic interactions in crystals with mosaic texture called the mosaic anisotropy (MA) model. We test the MA model using hematite as a model system, comparing mosaic crystals to polycrystals, single crystal nanoparticles, and bulk single crystals. Vibrating sample magnetometry confirms the hypothesis of the MA model that mosaic crystals have larger remanence (Mr/Ms) and coercivity (Hc) compared to polycrystalline or bulk single crystals. By exploring the magnetic properties of mesostructured crystalline materials, we may be able to develop new routes to engineering harder magnets.

  2. Interface Character of Aluminum-Graphite Metal Matrix Composites.

    DTIC Science & Technology

    1983-01-27

    studied included the commer- cial A/graphite composites; layered model systems on single crystal and poly- crystalline graphite substrates as well as...composition and thickness of the composite interface, and graphite crystal orientation. 3 For the model systems in this study , single crystal graphite...been reviewed by Kingcry. Segregation at surfaces in single- crystal MgO of Fe, Cr and Sc, which were Dresent in concentrations within the single- 3phase

  3. Critical experiments of the self-consistent model for polycrystalline Hastelloy-X

    NASA Technical Reports Server (NTRS)

    Shi, Shixiang; Walker, Kevin P.; Jordan, Eric H.

    1991-01-01

    A viscoplastic constitutive model is presented for the estimation of the overall mechanical response of Hastelloy-X polycrystalline metals from a knowledge of single crystal behavior. The behavior of polycrystal is derived from that of single crystals using a self-consistent formulation. The single crystal behavior which has been used was developed by summing postulated slip on crystallographic slip systems. The plasticity and creep are treated coupledly using unified viscoplastic model which includes the interaction effects between rapid and slow deformation at elevated temperature. The validity of the model is directly tested by experiments on Hastelloy-X in both single crystal and polycrystalline versions.

  4. Anisotropic constitutive modeling for nickel base single crystal superalloys using a crystallographic approach

    NASA Technical Reports Server (NTRS)

    Stouffer, D. C.; Sheh, M. Y.

    1988-01-01

    A micromechanical model based on crystallographic slip theory was formulated for nickel-base single crystal superalloys. The current equations include both drag stress and back stress state variables to model the local inelastic flow. Specially designed experiments have been conducted to evaluate the effect of back stress in single crystals. The results showed that (1) the back stress is orientation dependent; and (2) the back stress state variable in the inelastic flow equation is necessary for predicting anelastic behavior of the material. The model also demonstrated improved fatigue predictive capability. Model predictions and experimental data are presented for single crystal superalloy Rene N4 at 982 C.

  5. Anisotropic constitutive modeling for nickel-base single crystal superalloys. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Sheh, Michael Y.

    1988-01-01

    An anisotropic constitutive model was developed based on crystallographic slip theory for nickel base single crystal superalloys. The constitutive equations developed utilizes drag stress and back stress state variables to model the local inelastic flow. Specially designed experiments were conducted to evaluate the existence of back stress in single crystal superalloy Rene N4 at 982 C. The results suggest that: (1) the back stress is orientation dependent; and (2) the back stress state variable is required for the current model to predict material anelastic recovery behavior. The model was evaluated for its predictive capability on single crystal material behavior including orientation dependent stress-strain response, tension/compression asymmetry, strain rate sensitivity, anelastic recovery behavior, cyclic hardening and softening, stress relaxation, creep and associated crystal lattice rotation. Limitation and future development needs are discussed.

  6. Ignition and growth modeling of detonation reaction zone experiments on single crystals of PETN and HMX

    NASA Astrophysics Data System (ADS)

    White, Bradley W.; Tarver, Craig M.

    2017-01-01

    It has long been known that detonating single crystals of solid explosives have much larger failure diameters than those of heterogeneous charges of the same explosive pressed or cast to 98 - 99% theoretical maximum density (TMD). In 1957, Holland et al. demonstrated that PETN single crystals have failure diameters of about 8 mm, whereas heterogeneous PETN charges have failure diameters of less than 0.5 mm. Recently, Fedorov et al. quantitatively determined nanosecond time resolved detonation reaction zone profiles of single crystals of PETN and HMX by measuring the interface particle velocity histories of the detonating crystals and LiF windows using a PDV system. The measured reaction zone time durations for PETN and HMX single crystal detonations were approximately 100 and 260 nanoseconds, respectively. These experiments provided the necessary data to develop Ignition and Growth (I&G) reactive flow model parameters for the single crystal detonation reaction zones. Using these parameters, the calculated unconfined failure diameter of a PETN single crystal was 7.5 +/- 0.5 mm, close to the 8 mm experimental value. The calculated failure diameter of an unconfined HMX single crystal was 15 +/- 1 mm. The unconfined failure diameter of an HMX single crystal has not yet been determined precisely, but Fedorov et al. detonated 14 mm diameter crystals confined by detonating a HMX-based plastic bonded explosive (PBX) without initially overdriving the HMX crystals.

  7. A first-principle model of 300 mm Czochralski single-crystal Si production process for predicting crystal radius and crystal growth rate

    NASA Astrophysics Data System (ADS)

    Zheng, Zhongchao; Seto, Tatsuru; Kim, Sanghong; Kano, Manabu; Fujiwara, Toshiyuki; Mizuta, Masahiko; Hasebe, Shinji

    2018-06-01

    The Czochralski (CZ) process is the dominant method for manufacturing large cylindrical single-crystal ingots for the electronics industry. Although many models and control methods for the CZ process have been proposed, they were only tested with small equipment and only a few industrial application were reported. In this research, we constructed a first-principle model for controlling industrial CZ processes that produce 300 mm single-crystal silicon ingots. The developed model, which consists of energy, mass balance, hydrodynamic, and geometrical equations, calculates the crystal radius and the crystal growth rate as output variables by using the heater input, the crystal pulling rate, and the crucible rise rate as input variables. To improve accuracy, we modeled the CZ process by considering factors such as changes in the positions of the crucible and the melt level. The model was validated with the operation data from an industrial 300 mm CZ process. We compared the calculated and actual values of the crystal radius and the crystal growth rate, and the results demonstrated that the developed model simulated the industrial process with high accuracy.

  8. A High-Rate, Single-Crystal Model including Phase Transformations, Plastic Slip, and Twinning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Addessio, Francis L.; Bronkhorst, Curt Allan; Bolme, Cynthia Anne

    2016-08-09

    An anisotropic, rate-­dependent, single-­crystal approach for modeling materials under the conditions of high strain rates and pressures is provided. The model includes the effects of large deformations, nonlinear elasticity, phase transformations, and plastic slip and twinning. It is envisioned that the model may be used to examine these coupled effects on the local deformation of materials that are subjected to ballistic impact or explosive loading. The model is formulated using a multiplicative decomposition of the deformation gradient. A plate impact experiment on a multi-­crystal sample of titanium was conducted. The particle velocities at the back surface of three crystal orientationsmore » relative to the direction of impact were measured. Molecular dynamics simulations were conducted to investigate the details of the high-­rate deformation and pursue issues related to the phase transformation for titanium. Simulations using the single crystal model were conducted and compared to the high-­rate experimental data for the impact loaded single crystals. The model was found to capture the features of the experiments.« less

  9. Effect of Crystal Orientation on Analysis of Single-Crystal, Nickel-Based Turbine Blade Superalloys

    NASA Technical Reports Server (NTRS)

    Swanson, G. R.; Arakere, N. K.

    2000-01-01

    High-cycle fatigue-induced failures in turbine and turbopump blades is a pervasive problem. Single-crystal nickel turbine blades are used because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities. Single-crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant and complicating factor. A fatigue failure criterion based on the maximum shear stress amplitude on the 24 octahedral and 6 cube slip systems is presented for single-crystal nickel superalloys (FCC crystal). This criterion greatly reduces the scatter in uniaxial fatigue data for PWA 1493 at 1,200 F in air. Additionally, single-crystal turbine blades used in the Space Shuttle main engine high pressure fuel turbopump/alternate turbopump are modeled using a three-dimensional finite element (FE) model. This model accounts for material orthotrophy and crystal orientation. Fatigue life of the blade tip is computed using FE stress results and the failure criterion that was developed. Stress analysis results in the blade attachment region are also presented. Results demonstrate that control of crystallographic orientation has the potential to significantly increase a component's resistance to fatigue crack growth without adding additional weight or cost.

  10. Effect of Crystal Orientation on Fatigue Failure of Single Crystal Nickel Base Turbine Blade Superalloys

    NASA Technical Reports Server (NTRS)

    Arakere, N. K.; Swanson, G.

    2002-01-01

    High cycle fatigue (HCF) induced failures in aircraft gas turbine and rocket engine turbopump blades is a pervasive problem. Single crystal nickel turbine blades are being utilized in rocket engine turbopumps and jet engines throughout industry because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities over polycrystalline alloys. Currently the most widely used single crystal turbine blade superalloys are PWA 1480/1493, PWA 1484, RENE' N-5 and CMSX-4. These alloys play an important role in commercial, military and space propulsion systems. Single crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant factor in the overall analysis. The failure modes of single crystal turbine blades are complicated to predict due to the material orthotropy and variations in crystal orientations. Fatigue life estimation of single crystal turbine blades represents an important aspect of durability assessment. It is therefore of practical interest to develop effective fatigue failure criteria for single crystal nickel alloys and to investigate the effects of variation of primary and secondary crystal orientation on fatigue life. A fatigue failure criterion based on the maximum shear stress amplitude /Delta(sub tau)(sub max))] on the 24 octahedral and 6 cube slip systems, is presented for single crystal nickel superalloys (FCC crystal). This criterion reduces the scatter in uniaxial LCF test data considerably for PWA 1493 at 1200 F in air. Additionally, single crystal turbine blades used in the alternate advanced high-pressure fuel turbopump (AHPFTP/AT) are modeled using a large-scale three-dimensional finite element model. This finite element model is capable of accounting for material orthotrophy and variation in primary and secondary crystal orientation. Effects of variation in crystal orientation on blade stress response are studied based on 297 finite element model runs. Fatigue lives at critical points in the blade are computed using finite element stress results and the failure criterion developed. Stress analysis results in the blade attachment region are also presented. Results presented demonstrates that control of secondary and primary crystallographic orientation has the potential to significantly increase a component S resistance to fatigue crack growth with- out adding additional weight or cost. [DOI: 10.1115/1.1413767

  11. Life prediction and constitutive models for engine hot section anisotropic materials program

    NASA Technical Reports Server (NTRS)

    Nissley, D. M.; Meyer, T. G.

    1992-01-01

    This report presents the results from a 35 month period of a program designed to develop generic constitutive and life prediction approaches and models for nickel-based single crystal gas turbine airfoils. The program is composed of a base program and an optional program. The base program addresses the high temperature coated single crystal regime above the airfoil root platform. The optional program investigates the low temperature uncoated single crystal regime below the airfoil root platform including the notched conditions of the airfoil attachment. Both base and option programs involve experimental and analytical efforts. Results from uniaxial constitutive and fatigue life experiments of coated and uncoated PWA 1480 single crystal material form the basis for the analytical modeling effort. Four single crystal primary orientations were used in the experiments: (001), (011), (111), and (213). Specific secondary orientations were also selected for the notched experiments in the optional program. Constitutive models for an overlay coating and PWA 1480 single crystal material were developed based on isothermal hysteresis loop data and verified using thermomechanical (TMF) hysteresis loop data. A fatigue life approach and life models were selected for TMF crack initiation of coated PWA 1480. An initial life model used to correlate smooth and notched fatigue data obtained in the option program shows promise. Computer software incorporating the overlay coating and PWA 1480 constitutive models was developed.

  12. Sponge-like nanoporous single crystals of gold

    PubMed Central

    Khristosov, Maria Koifman; Bloch, Leonid; Burghammer, Manfred; Kauffmann, Yaron; Katsman, Alex; Pokroy, Boaz

    2015-01-01

    Single crystals in nature often demonstrate fascinating intricate porous morphologies rather than classical faceted surfaces. We attempt to grow such crystals, drawing inspiration from biogenic porous single crystals. Here we show that nanoporous single crystals of gold can be grown with no need for any elaborate fabrication steps. These crystals are found to grow following solidification of a eutectic composition melt that forms as a result of the dewetting of nanometric thin films. We also present a kinetic model that shows how this nano-porous single-crystalline structure can be obtained, and which allows the potential size of the porous single crystal to be predicted. Retaining their single-crystalline nature is due to the fact that the full crystallization process is faster than the average period between two subsequent nucleation events. Our findings clearly demonstrate that it is possible to form single-crystalline nano porous metal crystals in a controlled manner. PMID:26554856

  13. Generalized Reliability Methodology Applied to Brittle Anisotropic Single Crystals. Degree awarded by Washington Univ., 1999

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.

    2002-01-01

    A generalized reliability model was developed for use in the design of structural components made from brittle, homogeneous anisotropic materials such as single crystals. The model is based on the Weibull distribution and incorporates a variable strength distribution and any equivalent stress failure criteria. In addition to the reliability model, an energy based failure criterion for elastically anisotropic materials was formulated. The model is different from typical Weibull-based models in that it accounts for strength anisotropy arising from fracture toughness anisotropy and thereby allows for strength and reliability predictions of brittle, anisotropic single crystals subjected to multiaxial stresses. The model is also applicable to elastically isotropic materials exhibiting strength anisotropy due to an anisotropic distribution of flaws. In order to develop and experimentally verify the model, the uniaxial and biaxial strengths of a single crystal nickel aluminide were measured. The uniaxial strengths of the <100> and <110> crystal directions were measured in three and four-point flexure. The biaxial strength was measured by subjecting <100> plates to a uniform pressure in a test apparatus that was developed and experimentally verified. The biaxial strengths of the single crystal plates were estimated by extending and verifying the displacement solution for a circular, anisotropic plate to the case of a variable radius and thickness. The best correlation between the experimental strength data and the model predictions occurred when an anisotropic stress analysis was combined with the normal stress criterion and the strength parameters associated with the <110> crystal direction.

  14. A finite-strain homogenization model for viscoplastic porous single crystals: II - Applications

    NASA Astrophysics Data System (ADS)

    Song, Dawei; Ponte Castañeda, P.

    2017-10-01

    In part I of this work (Song and Ponte Castañeda, 2017a), a new homogenization-based constitutive model was developed for the finite-strain, macroscopic response of porous viscoplastic single crystals. In this second part, the new model is first used to investigate the instantaneous response and the evolution of the microstructure for porous FCC single crystals for a wide range of loading conditions. The loading orientation, Lode angle and stress triaxiality are found to have significant effects on the evolution of porosity and average void shape, which play crucial roles in determining the overall hardening/softening behavior of porous single crystals. The predictions of the model are found to be in fairly good agreement with numerical simulations available from the literature for all loadings considered, especially for low triaxiality conditions. The model is then used to investigate the strong effect of crystal anisotropy on the instantaneous response and the evolution of the microstructure for porous HCP single crystals. For uniaxial tension and compression, the overall hardening/softening behavior of porous HCP crystals is found to be controlled mostly by the evolution of void shape, and not so much by the evolution of porosity. In particular, porous HCP crystals exhibit overall hardening behavior with increasing porosity, while they exhibit overall softening behavior with decreasing porosity. This interesting behavior is consistent with corresponding results for porous FCC crystals, but is found to be more significant for porous HCP crystals with large anisotropy, such as porous ice, where the non-basal slip systems are much harder than the basal systems.

  15. A finite-strain homogenization model for viscoplastic porous single crystals: I - Theory

    NASA Astrophysics Data System (ADS)

    Song, Dawei; Ponte Castañeda, P.

    2017-10-01

    This paper presents a homogenization-based constitutive model for the finite-strain, macroscopic response of porous viscoplastic single crystals. The model accounts explicitly for the evolution of the average lattice orientation, as well as the porosity, average shape and orientation of the voids (and their distribution), by means of appropriate microstructural variables playing the role of internal variables and serving to characterize the evolution of both the "crystallographic" and "morphological" anisotropy of the porous single crystals. The model makes use of the fully optimized second-order variational method of Ponte Castañeda (2015), together with the iterated homogenization approach of Agoras and Ponte Castañeda (2013), to characterize the instantaneous effective response of the porous single crystals with fixed values of the microstructural variables. Consistent homogenization estimates for the average strain rate and vorticity fields in the phases are then used to derive evolution equations for the associated microstructural variables. The model is 100% predictive, requiring no fitting parameters, and applies for porous viscoplastic single crystals with general crystal anisotropy and average void shape and orientation, which are subjected to general loading conditions. In Part II of this work (Song and Ponte Castañeda, 2017a), results for both the instantaneous response and the evolution of the microstructure will be presented for porous FCC and HCP single crystals under a wide range of loading conditions, and good agreement with available FEM results will be shown.

  16. Life prediction and constitutive models for engine hot section anisotropic materials program

    NASA Technical Reports Server (NTRS)

    Nissley, D. M.; Meyer, T. G.; Walker, K. P.

    1992-01-01

    This report presents a summary of results from a 7 year program designed to develop generic constitutive and life prediction approaches and models for nickel-based single crystal gas turbine airfoils. The program was composed of a base program and an optional program. The base program addressed the high temperature coated single crystal regime above the airfoil root platform. The optional program investigated the low temperature uncoated single crystal regime below the airfoil root platform including the notched conditions of the airfoil attachment. Both base and option programs involved experimental and analytical efforts. Results from uniaxial constitutive and fatigue life experiments of coated and uncoated PWA 1480 single crystal material formed the basis for the analytical modeling effort. Four single crystal primary orientations were used in the experiments: group of zone axes (001), group of zone axes (011), group of zone axes (111), and group of zone axes (213). Specific secondary orientations were also selected for the notched experiments in the optional program. Constitutive models for an overlay coating and PWA 1480 single crystal materials were developed based on isothermal hysteresis loop data and verified using thermomechanical (TMF) hysteresis loop data. A fatigue life approach and life models were developed for TMF crack initiation of coated PWA 1480. A life model was developed for smooth and notched fatigue in the option program. Finally, computer software incorporating the overlay coating and PWA 1480 constitutive and life models was developed.

  17. Exploring the folding pattern of a polymer chain in a single crystal by combining single-molecule force spectroscopy and steered molecular dynamics simulations.

    PubMed

    Song, Yu; Feng, Wei; Liu, Kai; Yang, Peng; Zhang, Wenke; Zhang, Xi

    2013-03-26

    Understanding the folding pattern of a single polymer chain within its single crystal will shed light on the mechanism of crystallization. Here, we use the combined techniques of atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) and steered molecular dynamics (SMD) simulations to study the folding pattern of a polyethylene oxide (PEO) chain in its single crystal. Our results show that the folding pattern of a PEO chain in the crystal formed in dilute solution follows the adjacent re-entry folding model. While in the crystal obtained from the melt, the nonadjacent folding with large and irregular loops contributes to big force fluctuations in the force-extension curves. The method established here can offer a novel strategy to directly unravel the chain-folding pattern of polymer single crystals at single-molecule level.

  18. A model for finite-deformation nonlinear thermomechanical response of single crystal copper under shock conditions

    NASA Astrophysics Data System (ADS)

    Luscher, Darby J.; Bronkhorst, Curt A.; Alleman, Coleman N.; Addessio, Francis L.

    2013-09-01

    A physically consistent framework for combining pressure-volume-temperature equations of state with crystal plasticity models is developed for the application of modeling the response of single and polycrystals under shock conditions. The particular model is developed for copper, thus the approach focuses on crystals of cubic symmetry although many of the concepts in the approach are applicable to crystals of lower symmetry. We employ a multiplicative decomposition of the deformation gradient into isochoric elastic, thermoelastic dilation, and plastic parts leading to a definition of isochoric elastic Green-Lagrange strain. This finite deformation kinematic decomposition enables a decomposition of Helmholtz free-energy into terms reflecting dilatational thermoelasticity, strain energy due to long-range isochoric elastic deformation of the lattice and a term reflecting energy stored in short range elastic lattice deformation due to evolving defect structures. A model for the single crystal response of copper is implemented consistent with the framework into a three-dimensional Lagrangian finite element code. Simulations exhibit favorable agreement with single and bicrystal experimental data for shock pressures ranging from 3 to 110 GPa.

  19. A micromechanical constitutive model for anisotropic cyclic deformation of super-elastic NiTi shape memory alloy single crystals

    NASA Astrophysics Data System (ADS)

    Yu, Chao; Kang, Guozheng; Kan, Qianhua

    2015-09-01

    Based on the experimental observations on the anisotropic cyclic deformation of super-elastic NiTi shape memory alloy single crystals done by Gall and Maier (2002), a crystal plasticity based micromechanical constitutive model is constructed to describe such anisotropic cyclic deformation. To model the internal stress caused by the unmatched inelastic deformation between the austenite and martensite phases on the plastic deformation of austenite phase, 24 induced martensite variants are assumed to be ellipsoidal inclusions with anisotropic elasticity and embedded in the austenite matrix. The homogeneous stress fields in the austenite matrix and each induced martensite variant are obtained by using the Mori-Tanaka homogenization method. Two different inelastic mechanisms, i.e., martensite transformation and transformation-induced plasticity, and their interactions are considered in the proposed model. Following the assumption of instantaneous domain growth (Cherkaoui et al., 1998), the Helmholtz free energy of a representative volume element of a NiTi shape memory single crystal is established and the thermodynamic driving forces of the internal variables are obtained from the dissipative inequalities. The capability of the proposed model to describe the anisotropic cyclic deformation of super-elastic NiTi single crystals is first verified by comparing the predicted results with the experimental ones. It is concluded that the proposed model can capture the main quantitative features observed in the experiments. And then, the proposed model is further used to predict the uniaxial and multiaxial transformation ratchetting of a NiTi single crystal.

  20. Diffuse-interface polycrystal plasticity: expressing grain boundaries as geometrically necessary dislocations

    NASA Astrophysics Data System (ADS)

    Admal, Nikhil Chandra; Po, Giacomo; Marian, Jaime

    2017-12-01

    The standard way of modeling plasticity in polycrystals is by using the crystal plasticity model for single crystals in each grain, and imposing suitable traction and slip boundary conditions across grain boundaries. In this fashion, the system is modeled as a collection of boundary-value problems with matching boundary conditions. In this paper, we develop a diffuse-interface crystal plasticity model for polycrystalline materials that results in a single boundary-value problem with a single crystal as the reference configuration. Using a multiplicative decomposition of the deformation gradient into lattice and plastic parts, i.e. F( X,t)= F L( X,t) F P( X,t), an initial stress-free polycrystal is constructed by imposing F L to be a piecewise constant rotation field R 0( X), and F P= R 0( X)T, thereby having F( X,0)= I, and zero elastic strain. This model serves as a precursor to higher order crystal plasticity models with grain boundary energy and evolution.

  1. Magnetic properties of single crystal alpha-benzoin oxime: An EPR study

    NASA Astrophysics Data System (ADS)

    Sayin, Ulku; Dereli, Ömer; Türkkan, Ercan; Ozmen, Ayhan

    2012-02-01

    The electron paramagnetic resonance (EPR) spectra of gamma irradiated single crystals of alpha-benzoinoxime (ABO) have been examined between 120 and 440 K. Considering the dependence on temperature and the orientation of the spectra of single crystals in the magnetic field, we identified two different radicals formed in irradiated ABO single crystals. To theoretically determine the types of radicals, the most stable structure of ABO was obtained by molecular mechanic and B3LYP/6-31G(d,p) calculations. Four possible radicals were modeled and EPR parameters were calculated for the modeled radicals using the B3LYP method and the TZVP basis set. Calculated values of two modeled radicals were in strong agreement with experimental EPR parameters determined from the spectra. Additional simulated spectra of the modeled radicals, where calculated hyperfine coupling constants were used as starting points for simulations, were well matched with experimental spectra.

  2. Multiphysical simulation analysis of the dislocation structure in germanium single crystals

    NASA Astrophysics Data System (ADS)

    Podkopaev, O. I.; Artemyev, V. V.; Smirnov, A. D.; Mamedov, V. M.; Sid'ko, A. P.; Kalaev, V. V.; Kravtsova, E. D.; Shimanskii, A. F.

    2016-09-01

    To grow high-quality germanium crystals is one of the most important problems of growth industry. The dislocation density is an important parameter of the quality of single crystals. The dislocation densities in germanium crystals 100 mm in diameter, which have various shapes of the side surface and are grown by the Czochralski technique, are experimentally measured. The crystal growth is numerically simulated using heat-transfer and hydrodynamics models and the Alexander-Haasen dislocation model in terms of the CGSim software package. A comparison of the experimental and calculated dislocation densities shows that the dislocation model can be applied to study lattice defects in germanium crystals and to improve their quality.

  3. Methodology Developed for Modeling the Fatigue Crack Growth Behavior of Single-Crystal, Nickel-Base Superalloys

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Because of their superior high-temperature properties, gas generator turbine airfoils made of single-crystal, nickel-base superalloys are fast becoming the standard equipment on today's advanced, high-performance aerospace engines. The increased temperature capabilities of these airfoils has allowed for a significant increase in the operating temperatures in turbine sections, resulting in superior propulsion performance and greater efficiencies. However, the previously developed methodologies for life-prediction models are based on experience with polycrystalline alloys and may not be applicable to single-crystal alloys under certain operating conditions. One of the main areas where behavior differences between single-crystal and polycrystalline alloys are readily apparent is subcritical fatigue crack growth (FCG). The NASA Lewis Research Center's work in this area enables accurate prediction of the subcritical fatigue crack growth behavior in single-crystal, nickel-based superalloys at elevated temperatures.

  4. Substructure based modeling of nickel single crystals cycled at low plastic strain amplitudes

    NASA Astrophysics Data System (ADS)

    Zhou, Dong

    In this dissertation a meso-scale, substructure-based, composite single crystal model is fully developed from the simple uniaxial model to the 3-D finite element method (FEM) model with explicit substructures and further with substructure evolution parameters, to simulate the completely reversed, strain controlled, low plastic strain amplitude cyclic deformation of nickel single crystals. Rate-dependent viscoplasticity and Armstrong-Frederick type kinematic hardening rules are applied to substructures on slip systems in the model to describe the kinematic hardening behavior of crystals. Three explicit substructure components are assumed in the composite single crystal model, namely "loop patches" and "channels" which are aligned in parallel in a "vein matrix," and persistent slip bands (PSBs) connected in series with the vein matrix. A magnetic domain rotation model is presented to describe the reverse magnetostriction of single crystal nickel. Kinematic hardening parameters are obtained by fitting responses to experimental data in the uniaxial model, and the validity of uniaxial assumption is verified in the 3-D FEM model with explicit substructures. With information gathered from experiments, all control parameters in the model including hardening parameters, volume fraction of loop patches and PSBs, and variation of Young's modulus etc. are correlated to cumulative plastic strain and/or plastic strain amplitude; and the whole cyclic deformation history of single crystal nickel at low plastic strain amplitudes is simulated in the uniaxial model. Then these parameters are implanted in the 3-D FEM model to simulate the formation of PSB bands. A resolved shear stress criterion is set to trigger the formation of PSBs, and stress perturbation in the specimen is obtained by several elements assigned with PSB material properties a priori. Displacement increment, plastic strain amplitude control and overall stress-strain monitor and output are carried out in the user subroutine DISP and URDFIL of ABAQUS, respectively, while constitutive formulations of the FEM model are coded and implemented in UMAT. The results of the simulations are compared to experiments. This model verified the validity of Winter's two-phase model and Taylor's uniform stress assumption, explored substructure evolution and "intrinsic" behavior in substructures and successfully simulated the process of PSB band formation and propagation.

  5. Formation of curved micrometer-sized single crystals.

    PubMed

    Koifman Khristosov, Maria; Kabalah-Amitai, Lee; Burghammer, Manfred; Katsman, Alex; Pokroy, Boaz

    2014-05-27

    Crystals in nature often demonstrate curved morphologies rather than classical faceted surfaces. Inspired by biogenic curved single crystals, we demonstrate that gold single crystals exhibiting curved surfaces can be grown with no need of any fabrication steps. These single crystals grow from the confined volume of a droplet of a eutectic composition melt that forms via the dewetting of nanometric thin films. We can control their curvature by controlling the environment in which the process is carried out, including several parameters, such as the contact angle and the curvature of the drops, by changing the surface tension of the liquid drop during crystal growth. Here we present an energetic model that explains this phenomenon and predicts why and under what conditions crystals will be forced to grow with the curvature of the microdroplet even though the energetic state of a curved single crystal is very high.

  6. Numerical study of slip system activity and crystal lattice rotation under wedge nanoindents in tungsten single crystals

    NASA Astrophysics Data System (ADS)

    Volz, T.; Schwaiger, R.; Wang, J.; Weygand, S. M.

    2018-05-01

    Tungsten is a promising material for plasma facing components in future nuclear fusion reactors. In the present work, we numerically investigate the deformation behavior of unirradiated tungsten (a body-centered cubic (bcc) single crystal) underneath nanoindents. A finite element (FE) model is presented to simulate wedge indentation. Crystal plasticity finite element (CPFE) simulations were performed for face-centered and body-centered single crystals accounting for the slip system family {110} <111> in the bcc crystal system and the {111} <110> slip family in the fcc system. The 90° wedge indenter was aligned parallel to the [1 ¯01 ]-direction and indented the crystal in the [0 1 ¯0 ]-direction up to a maximum indentation depth of 2 µm. In both, the fcc and bcc single crystals, the activity of slip systems was investigated and compared. Good agreement with the results from former investigations on fcc single crystals was observed. Furthermore, the in-plane lattice rotation in the material underneath an indent was determined and compared for the fcc and bcc single crystals.

  7. Modelling of thermal field and point defect dynamics during silicon single crystal growth using CZ technique

    NASA Astrophysics Data System (ADS)

    Sabanskis, A.; Virbulis, J.

    2018-05-01

    Mathematical modelling is employed to numerically analyse the dynamics of the Czochralski (CZ) silicon single crystal growth. The model is axisymmetric, its thermal part describes heat transfer by conduction and thermal radiation, and allows to predict the time-dependent shape of the crystal-melt interface. Besides the thermal field, the point defect dynamics is modelled using the finite element method. The considered process consists of cone growth and cylindrical phases, including a short period of a reduced crystal pull rate, and a power jump to avoid large diameter changes. The influence of the thermal stresses on the point defects is also investigated.

  8. The study on the nanomachining property and cutting model of single-crystal sapphire by atomic force microscopy.

    PubMed

    Huang, Jen-Ching; Weng, Yung-Jin

    2014-01-01

    This study focused on the nanomachining property and cutting model of single-crystal sapphire during nanomachining. The coated diamond probe is used to as a tool, and the atomic force microscopy (AFM) is as an experimental platform for nanomachining. To understand the effect of normal force on single-crystal sapphire machining, this study tested nano-line machining and nano-rectangular pattern machining at different normal force. In nano-line machining test, the experimental results showed that the normal force increased, the groove depth from nano-line machining also increased. And the trend is logarithmic type. In nano-rectangular pattern machining test, it is found when the normal force increases, the groove depth also increased, but rather the accumulation of small chips. This paper combined the blew by air blower, the cleaning by ultrasonic cleaning machine and using contact mode probe to scan the surface topology after nanomaching, and proposed the "criterion of nanomachining cutting model," in order to determine the cutting model of single-crystal sapphire in the nanomachining is ductile regime cutting model or brittle regime cutting model. After analysis, the single-crystal sapphire substrate is processed in small normal force during nano-linear machining; its cutting modes are ductile regime cutting model. In the nano-rectangular pattern machining, due to the impact of machined zones overlap, the cutting mode is converted into a brittle regime cutting model. © 2014 Wiley Periodicals, Inc.

  9. Life prediction and constitutive models for engine hot section anisotropic materials program

    NASA Technical Reports Server (NTRS)

    Swanson, G. A.; Linask, I.; Nissley, D. M.; Norris, P. P.; Meyer, T. G.; Walker, K. P.

    1986-01-01

    This report presents the results of the first year of a program designed to develop life prediction and constitutive models for two coated single crystal alloys used in gas turbine airfoils. The two alloys are PWA 1480 and Alloy 185. The two oxidation resistant coatings are PWA 273, an aluminide coating, and PWA 286, an overlay NiCoCrAlY coating. To obtain constitutive and/or fatigue data, tests were conducted on coated and uncoated PWA 1480 specimens tensilely loaded in the 100 , 110 , 111 , and 123 directions. A literature survey of constitutive models was completed for both single crystal alloys and metallic coating materials; candidate models were selected. One constitutive model under consideration for single crystal alloys applies Walker's micromechanical viscoplastic formulation to all slip systems participating in the single crystal deformation. The constitutive models for the overlay coating correlate the viscoplastic data well. For the aluminide coating, a unique test method is under development. LCF and TMF tests are underway. The two coatings caused a significant drop in fatigue life, and each produced a much different failure mechanism.

  10. Quantification of photoinduced bending of dynamic molecular crystals: from macroscopic strain to kinetic constants and activation energies.

    PubMed

    Chizhik, Stanislav; Sidelnikov, Anatoly; Zakharov, Boris; Naumov, Panče; Boldyreva, Elena

    2018-02-28

    Photomechanically reconfigurable elastic single crystals are the key elements for contactless, timely controllable and spatially resolved transduction of light into work from the nanoscale to the macroscale. The deformation in such single-crystal actuators is observed and usually attributed to anisotropy in their structure induced by the external stimulus. Yet, the actual intrinsic and external factors that affect the mechanical response remain poorly understood, and the lack of rigorous models stands as the main impediment towards benchmarking of these materials against each other and with much better developed soft actuators based on polymers, liquid crystals and elastomers. Here, experimental approaches for precise measurement of macroscopic strain in a single crystal bent by means of a solid-state transformation induced by light are developed and used to extract the related temperature-dependent kinetic parameters. The experimental results are compared against an overarching mathematical model based on the combined consideration of light transport, chemical transformation and elastic deformation that does not require fitting of any empirical information. It is demonstrated that for a thermally reversible photoreactive bending crystal, the kinetic constants of the forward (photochemical) reaction and the reverse (thermal) reaction, as well as their temperature dependence, can be extracted with high accuracy. The improved kinematic model of crystal bending takes into account the feedback effect, which is often neglected but becomes increasingly important at the late stages of the photochemical reaction in a single crystal. The results provide the most rigorous and exact mathematical description of photoinduced bending of a single crystal to date.

  11. A crystallographic model for the tensile and fatigue response for Rene N4 at 982 C

    NASA Technical Reports Server (NTRS)

    Sheh, M. Y.; Stouffer, D. C.

    1990-01-01

    An anisotropic constitutive model based on crystallographic slip theory was formulated for nickel-base single-crystal superalloys. The current equations include both drag stress and back stress state variables to model the local inelastic flow. Specially designed experiments have been conducted to evaluate the existence of back stress in single crystals. The results showed that the back stress effect of reverse inelastic flow on the unloading stress is orientation-dependent, and a back stress state variable in the inelastic flow equation is necessary for predicting inelastic behavior. Model correlations and predictions of experimental data are presented for the single crystal superalloy Rene N4 at 982 C.

  12. Effect of Chain Conformation on the Single-Molecule Melting Force in Polymer Single Crystals: Steered Molecular Dynamics Simulations Study.

    PubMed

    Feng, Wei; Wang, Zhigang; Zhang, Wenke

    2017-02-28

    Understanding the relationship between polymer chain conformation as well as the chain composition within the single crystal and the mechanical properties of the corresponding single polymer chain will facilitate the rational design of high performance polymer materials. Here three model systems of polymer single crystals, namely poly(ethylene oxide) (PEO), polyethylene (PE), and nylon-66 (PA66) have been chosen to study the effects of chain conformation, helical (PEO) versus planar zigzag conformation (PE, PA66), and chain composition (PE versus PA66) on the mechanical properties of a single polymer chain. To do that, steered molecular dynamics simulations were performed on those polymer single crystals by pulling individual polymer chains out of the crystals. Our results show that the patterns of force-extension curve as well as the chain moving mode are closely related to the conformation of the polymer chain in the single crystal. In addition, hydrogen bonds can enhance greatly the force required to stretch the polymer chain out of the single crystal. The dynamic breaking and reformation of multivalent hydrogen bonds have been observed for the first time in PA66 at the single molecule level.

  13. EPR investigation of gamma irradiated single crystal guaifenesin: A combined experimental and computational study

    NASA Astrophysics Data System (ADS)

    Tasdemir, Halil Ugur; Sayin, Ulku; Türkkan, Ercan; Ozmen, Ayhan

    2016-04-01

    Gamma irradiated single crystal of Guaifenesin (Glyceryl Guaiacolate), an important expectorant drug, were investigated with Electron Paramagnetic Resonance (EPR) spectroscopy between 123 and 333 K temperature at different orientations in the magnetic field. Considering the chemical structure and the experimental spectra of the gamma irradiated single crystal of guaifenesin sample, we assumed that alkoxy or alkyl-type paramagnetic species may be produced by irradiation. Depending on this assumption, eight possible alkoxy and alkyl-type radicals were modeled and EPR parameters of these modeled radicals were calculated using the B3LYP/6-311++G(d,p)-level of density functional theory (DFT). Theoretically calculated values of alkyl-type modeled radical(R3) are in good agreement with experimentally determined EPR parameters of single crystal. Furthermore, simulation spectra which are obtained by using the theoretical initial values are well matched with the experimental spectra. It was determined that a stable Cα •H2αCβHβCγH2γ (R3) alkyl radical was produced in the host crystal as a result of gamma irradiation.

  14. Single-crystal silicon optical fiber by direct laser crystallization

    DOE PAGES

    Ji, Xiaoyu; Lei, Shiming; Yu, Shih -Ying; ...

    2016-12-05

    Semiconductor core optical fibers with a silica cladding are of great interest in nonlinear photonics and optoelectronics applications. Laser crystallization has been recently demonstrated for crystallizing amorphous silicon fibers into crystalline form. Here we explore the underlying mechanism by which long single-crystal silicon fibers, which are novel platforms for silicon photonics, can be achieved by this process. Using finite element modeling, we construct a laser processing diagram that reveals a parameter space within which single crystals can be grown. Utilizing this diagram, we illustrate the creation of single-crystal silicon core fibers by laser crystallizing amorphous silicon deposited inside silica capillarymore » fibers by high-pressure chemical vapor deposition. The single-crystal fibers, up to 5.1 mm long, have a very welldefined core/cladding interface and a chemically pure silicon core that leads to very low optical losses down to ~0.47-1dB/cm at the standard telecommunication wavelength (1550 nm). Furthermore, tt also exhibits a photosensitivity that is comparable to bulk silicon. Creating such laser processing diagrams can provide a general framework for developing single-crystal fibers in other materials of technological importance.« less

  15. Control of DNA-Functionalized Nanoparticle Assembly

    NASA Astrophysics Data System (ADS)

    Olvera de La Cruz, Monica

    Directed crystallization of a large variety of nanoparticles, including proteins, via DNA hybridization kinetics has led to unique materials with a broad range of crystal symmetries. The nanoparticles are functionalized with DNA chains that link neighboring functionalized units. The shape of the nanoparticle, the DNA length, the sequence of the hybridizing DNA linker and the grafting density determine the crystal symmetries and lattice spacing. By carefully selecting these parameters one can, in principle, achieve all the symmetries found for both atomic and colloidal crystals of asymmetric shapes as well as new symmetries, and drive transitions between them. A scale-accurate coarse-grained model with explicit DNA chains provides the design parameters, including degree of hybridization, to achieve specific crystal structures. The model also provides surface energy values to determine the shape of defect-free single crystals with macroscopic anisotropic properties, as well as the parameters to develop colloidal models that reproduce both the shape of single crystals and their growth kinetics.

  16. One-step model of photoemission from single-crystal surfaces

    DOE PAGES

    Karkare, Siddharth; Wan, Weishi; Feng, Jun; ...

    2017-02-28

    In our paper, we present a three-dimensional one-step photoemission model that can be used to calculate the quantum efficiency and momentum distributions of electrons photoemitted from ordered single-crystal surfaces close to the photoemission threshold. Using Ag(111) as an example, we also show that the model can not only calculate the quantum efficiency from the surface state accurately without using any ad hoc parameters, but also provides a theoretical quantitative explanation of the vectorial photoelectric effect. This model in conjunction with other band structure and wave function calculation techniques can be effectively used to screen single-crystal photoemitters for use as electronmore » sources for particle accelerator and ultrafast electron diffraction applications.« less

  17. Constitutive and life modeling of single crystal blade alloys for root attachment analysis

    NASA Technical Reports Server (NTRS)

    Meyer, T. G.; Mccarthy, G. J.; Favrow, L. H.; Anton, D. L.; Bak, Joe

    1988-01-01

    Work to develop fatigue life prediction and constitutive models for uncoated attachment regions of single crystal gas turbine blades is described. At temperatures relevant to attachment regions, deformation is dominated by slip on crystallographic planes. However, fatigue crack initiation and early crack growth are not always observed to be crystallographic. The influence of natural occurring microporosity will be investigated by testing both hot isostatically pressed and conventionally cast PWA 1480 single crystal specimens. Several differnt specimen configurations and orientations relative to the natural crystal axes are being tested to investigate the influence of notch acuity and the material's anisotropy. Global and slip system stresses in the notched regions were determined from three dimensional stress analyses and will be used to develop fatigue life prediction models consistent with the observed lives and crack characteristics.

  18. Constitutive modeling of superalloy single crystals with verification testing

    NASA Technical Reports Server (NTRS)

    Jordan, Eric; Walker, Kevin P.

    1985-01-01

    The goal is the development of constitutive equations to describe the elevated temperature stress-strain behavior of single crystal turbine blade alloys. The program includes both the development of a suitable model and verification of the model through elevated temperature-torsion testing. A constitutive model is derived from postulated constitutive behavior on individual crystallographic slip systems. The behavior of the entire single crystal is then arrived at by summing up the slip on all the operative crystallographic slip systems. This type of formulation has a number of important advantages, including the prediction orientation dependence and the ability to directly represent the constitutive behavior in terms which metallurgists use in describing the micromechanisms. Here, the model is briefly described, followed by the experimental set-up and some experimental findings to date.

  19. Deformation induced microtwins and stacking faults in aluminum single crystal.

    PubMed

    Han, W Z; Cheng, G M; Li, S X; Wu, S D; Zhang, Z F

    2008-09-12

    Microtwins and stacking faults in plastically deformed aluminum single crystal were successfully observed by high-resolution transmission electron microscope. The occurrence of these microtwins and stacking faults is directly related to the specially designed crystallographic orientation, because they were not observed in pure aluminum single crystal or polycrystal before. Based on the new finding above, we propose a universal dislocation-based model to judge the preference or not for the nucleation of deformation twins and stacking faults in various face-centered-cubic metals in terms of the critical stress for dislocation glide or twinning by considering the intrinsic factors, such as stacking fault energy, crystallographic orientation, and grain size. The new finding of deformation induced microtwins and stacking faults in aluminum single crystal and the proposed model should be of interest to a broad community.

  20. Effect of dislocation pile-up on size-dependent yield strength in finite single-crystal micro-samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Bo; Shibutani, Yoji, E-mail: sibutani@mech.eng.osaka-u.ac.jp; Zhang, Xu

    2015-07-07

    Recent research has explained that the steeply increasing yield strength in metals depends on decreasing sample size. In this work, we derive a statistical physical model of the yield strength of finite single-crystal micro-pillars that depends on single-ended dislocation pile-up inside the micro-pillars. We show that this size effect can be explained almost completely by considering the stochastic lengths of the dislocation source and the dislocation pile-up length in the single-crystal micro-pillars. The Hall–Petch-type relation holds even in a microscale single-crystal, which is characterized by its dislocation source lengths. Our quantitative conclusions suggest that the number of dislocation sources andmore » pile-ups are significant factors for the size effect. They also indicate that starvation of dislocation sources is another reason for the size effect. Moreover, we investigated the explicit relationship between the stacking fault energy and the dislocation “pile-up” effect inside the sample: materials with low stacking fault energy exhibit an obvious dislocation pile-up effect. Our proposed physical model predicts a sample strength that agrees well with experimental data, and our model can give a more precise prediction than the current single arm source model, especially for materials with low stacking fault energy.« less

  1. Growth of PBI 2 single crystals from stoichiometric and Pb excess melts

    NASA Astrophysics Data System (ADS)

    Hayashi, T.; Kinpara, M.; Wang, J. F.; Mimura, K.; Isshiki, M.

    2008-01-01

    We have successfully grown high-purity and -quality PbI 2 single crystals by the vertical Bridgman method. The rocking curves of four-crystal X-ray diffraction (XRD) show 120 arcsec in full-width at half-maximum (FWHM). The photoluminescence (PL) spectra at 7.8 K show the resolved intensive exciton emission line and the weak DAP emission band. The deep-level emissions are not observed. The measurement of the electrical and radiographic properties show that Leadiodide (PbI 2) single crystal has a resistivity of 5×10 10 Ω cm and imager lag is 8 s, respectively. In order to improve the controllability of crystal growth, PbI 2 single crystals were also grown from a lead (Pb) excess PbI 2 source. The experimental results show very good reproducibility. In addition, the growth models of crystal are proposed, and the growth mechanism is discussed.

  2. Crystal viscoplasticity model for the creep-fatigue interactions in single-crystal Ni-base superalloy CMSX-8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estrada Rodas, Ernesto A.; Neu, Richard W.

    A crystal viscoplasticity (CVP) model for the creep-fatigue interactions of nickel-base superalloy CMSX-8 is proposed. At the microstructure scale of relevance, the superalloys are a composite material comprised of a γ phase and a γ' strengthening phase with unique deformation mechanisms that are highly dependent on temperature. Considering the differences in the deformation of the individual material phases is paramount to predicting the deformation behavior of superalloys at a wide range of temperatures. In this work, we account for the relevant deformation mechanisms that take place in both material phases by utilizing two additive strain rates to model the deformationmore » on each material phase. The model is capable of representing the creep-fatigue interactions in single-crystal superalloys for realistic 3-dimensional components in an Abaqus User Material Subroutine (UMAT). Using a set of material parameters calibrated to superalloy CMSX-8, the model predicts creep-fatigue, fatigue and thermomechanical fatigue behavior of this single-crystal superalloy. In conclusion, a sensitivity study of the material parameters is done to explore the effect on the deformation due to changes in the material parameters relevant to the microstructure.« less

  3. Crystal viscoplasticity model for the creep-fatigue interactions in single-crystal Ni-base superalloy CMSX-8

    DOE PAGES

    Estrada Rodas, Ernesto A.; Neu, Richard W.

    2017-09-11

    A crystal viscoplasticity (CVP) model for the creep-fatigue interactions of nickel-base superalloy CMSX-8 is proposed. At the microstructure scale of relevance, the superalloys are a composite material comprised of a γ phase and a γ' strengthening phase with unique deformation mechanisms that are highly dependent on temperature. Considering the differences in the deformation of the individual material phases is paramount to predicting the deformation behavior of superalloys at a wide range of temperatures. In this work, we account for the relevant deformation mechanisms that take place in both material phases by utilizing two additive strain rates to model the deformationmore » on each material phase. The model is capable of representing the creep-fatigue interactions in single-crystal superalloys for realistic 3-dimensional components in an Abaqus User Material Subroutine (UMAT). Using a set of material parameters calibrated to superalloy CMSX-8, the model predicts creep-fatigue, fatigue and thermomechanical fatigue behavior of this single-crystal superalloy. In conclusion, a sensitivity study of the material parameters is done to explore the effect on the deformation due to changes in the material parameters relevant to the microstructure.« less

  4. Theoretical model of hardness anisotropy in brittle materials

    NASA Astrophysics Data System (ADS)

    Gao, Faming

    2012-07-01

    Anisotropy is prominent in the hardness test of single crystals. However, the anisotropic nature is not demonstrated quantitatively in previous hardness model. In this work, it is found that the electron transition energy per unit volume in the glide region and the orientation of glide region play critical roles in determining hardness value and hardness anisotropy for a single crystal material. We express the mathematical definition of hardness anisotropy through simple algebraic relations. The calculated Knoop hardnesses of the single crystals are in good agreement with observations. This theory, extended to polycrystalline materials by including hall-petch effect and quantum size effect, predicts that the polycrystalline diamond with low angle grain boundaries can be harder than single-crystal bulk diamond. Combining first-principles technique and the formula of hardness anisotropy the hardness of monoclinic M-carbon, orthorhombic W-carbon, Z-carbon, and T-carbon are predicted.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Xiaoyu; Lei, Shiming; Yu, Shih -Ying

    Semiconductor core optical fibers with a silica cladding are of great interest in nonlinear photonics and optoelectronics applications. Laser crystallization has been recently demonstrated for crystallizing amorphous silicon fibers into crystalline form. Here we explore the underlying mechanism by which long single-crystal silicon fibers, which are novel platforms for silicon photonics, can be achieved by this process. Using finite element modeling, we construct a laser processing diagram that reveals a parameter space within which single crystals can be grown. Utilizing this diagram, we illustrate the creation of single-crystal silicon core fibers by laser crystallizing amorphous silicon deposited inside silica capillarymore » fibers by high-pressure chemical vapor deposition. The single-crystal fibers, up to 5.1 mm long, have a very welldefined core/cladding interface and a chemically pure silicon core that leads to very low optical losses down to ~0.47-1dB/cm at the standard telecommunication wavelength (1550 nm). Furthermore, tt also exhibits a photosensitivity that is comparable to bulk silicon. Creating such laser processing diagrams can provide a general framework for developing single-crystal fibers in other materials of technological importance.« less

  6. A crystallographic model for nickel base single crystal alloys

    NASA Technical Reports Server (NTRS)

    Dame, L. T.; Stouffer, D. C.

    1988-01-01

    The purpose of this research is to develop a tool for the mechanical analysis of nickel-base single-crystal superalloys, specifically Rene N4, used in gas turbine engine components. This objective is achieved by developing a rate-dependent anisotropic constitutive model and implementing it in a nonlinear three-dimensional finite-element code. The constitutive model is developed from metallurgical concepts utilizing a crystallographic approach. An extension of Schmid's law is combined with the Bodner-Partom equations to model the inelastic tension/compression asymmetry and orientation-dependence in octahedral slip. Schmid's law is used to approximate the inelastic response of the material in cube slip. The constitutive equations model the tensile behavior, creep response and strain-rate sensitivity of the single-crystal superalloys. Methods for deriving the material constants from standard tests are also discussed. The model is implemented in a finite-element code, and the computed and experimental results are compared for several orientations and loading conditions.

  7. Introducing single-crystal scattering and optical potentials into MCNPX: Predicting neutron emission from a convoluted moderator

    DOE PAGES

    Gallmeier, F. X.; Iverson, E. B.; Lu, W.; ...

    2016-01-08

    Neutron transport simulation codes are an indispensable tool used for the design and construction of modern neutron scattering facilities and instrumentation. It has become increasingly clear that some neutron instrumentation has started to exploit physics that is not well-modelled by the existing codes. Particularly, the transport of neutrons through single crystals and across interfaces in MCNP(X), Geant4 and other codes ignores scattering from oriented crystals and refractive effects, and yet these are essential ingredients for the performance of monochromators and ultra-cold neutron transport respectively (to mention but two examples). In light of these developments, we have extended the MCNPX codemore » to include a single-crystal neutron scattering model and neutron reflection/refraction physics. Furthermore, we have also generated silicon scattering kernels for single crystals of definable orientation with respect to an incoming neutron beam. As a first test of these new tools, we have chosen to model the recently developed convoluted moderator concept, in which a moderating material is interleaved with layers of perfect crystals to provide an exit path for neutrons moderated to energies below the crystal s Bragg cut off at locations deep within the moderator. Studies of simple cylindrical convoluted moderator systems of 100 mm diameter and composed of polyethylene and single crystal silicon were performed with the upgraded MCNPX code and reproduced the magnitude of effects seen in experiments compared to homogeneous moderator systems. Applying different material properties for refraction and reflection, and by replacing the silicon in the models with voids, we show that the emission enhancements seen in recent experiments are primarily caused by the transparency of the silicon/void layers. Finally the convoluted moderator experiments described by Iverson et al. were simulated and we find satisfactory agreement between the measurement and the results of simulations performed using the tools we have developed.« less

  8. A coupled ductile fracture phase-field model for crystal plasticity

    NASA Astrophysics Data System (ADS)

    Hernandez Padilla, Carlos Alberto; Markert, Bernd

    2017-07-01

    Nowadays crack initiation and evolution play a key role in the design of mechanical components. In the past few decades, several numerical approaches have been developed with the objective to predict these phenomena. The objective of this work is to present a simplified, nonetheless representative phenomenological model to predict the crack evolution of ductile fracture in single crystals. The proposed numerical approach is carried out by merging a conventional elasto-plastic crystal plasticity model and a phase-field model modified to predict ductile fracture. A two-dimensional initial boundary value problem of ductile fracture is introduced considering a single-crystal setup and Nickel-base superalloy material properties. The model is implemented into the finite element context subjected to a quasi-static uniaxial tension test. The results are then qualitatively analyzed and briefly compared to current benchmark results in the literature.

  9. Analytical studies on the crystal melt interface shape in the Czochralski process for oxide single crystals

    NASA Astrophysics Data System (ADS)

    Jeong, Ja Hoon; Kang, In Seok

    2000-09-01

    Effects of the operating conditions on the crystal-melt interface shape are analytically investigated for the Czochralski process of the oxide single crystals. The ideas, which were used for the silicon single-crystal growth by Jeong et al. (J. Crystal Growth 177 (1997) 157), are extended to the oxide single-crystal growth problem by considering the internal radiation in the crystal phase and the melt phase heat transfer with the high Prandtl number. The interface shape is approximated in the simplest form as a quadratic function of radial position and an expression for the deviation from the flat interface shape is derived as a function of operating conditions. The radiative heat transfer rate between the interface and the ambient is computed by calculating the view factors for the curved interface shape with the assumption that the crystal phase is completely transparent. For the melt phase, the well-known results from the thermal boundary layer analysis are applied for the asymptotic case of high Prandtl number based on the idea that the flow field near the crystal-melt interface can be modeled as either a uniaxial or a biaxial flow. Through this work, essential information on the interface shape deformation and the effects of operating conditions are brought out for the oxide single-crystal growth.

  10. Fretting Stresses in Single Crystal Superalloy Turbine Blade Attachments

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Swanson, Gregory

    2000-01-01

    Single crystal nickel base superalloy turbine blades are being utilized in rocket engine turbopumps and turbine engines because of their superior creep, stress rupture, melt resistance and thermomechanical fatigue capabilities over polycrystalline alloys. Currently the most widely used single crystal nickel base turbine blade superalloys are PWA 1480/1493 and PWA 1484. These alloys play an important role in commercial, military and space propulsion systems. High Cycle Fatigue (HCF) induced failures in aircraft gas turbine and rocket engine turbopump blades is a pervasive problem. Blade attachment regions are prone to fretting fatigue failures. Single crystal nickel base superalloy turbine blades are especially prone to fretting damage because the subsurface shear stresses induced by fretting action at the attachment regions can result in crystallographic initiation and crack growth along octahedral planes. Furthermore, crystallographic crack growth on octahedral planes under fretting induced mixed mode loading can be an order of magnitude faster than under pure mode I loading. This paper presents contact stress evaluation in the attachment region for single crystal turbine blades used in the NASA alternate Advanced High Pressure Fuel Turbo Pump (HPFTP/AT) for the Space Shuttle Main Engine (SSME). Single crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant factor in the overall analysis. Blades and the attachment region are modeled using a large-scale 3D finite element (FE) model capable of accounting for contact friction, material orthotrophy, and variation in primary and secondary crystal orientation. Contact stress analysis in the blade attachment regions is presented as a function of coefficient of friction and primary and secondary crystal orientation, Stress results are used to discuss fretting fatigue failure analysis of SSME blades. Attachment stresses are seen to reach peak values at locations where fretting cracks have been observed. Fretting stresses at the attachment region are seen to vary significantly as a function of crystal orientation. Attempts to adapt techniques used for estimating fatigue life in the airfoil region, for life calculations in the attachment region, are presented. An effective model for predicting crystallographic crack initiation under mixed mode loading is required for life prediction under fretting action.

  11. Three-dimensional analysis of dislocation multiplication during thermal process of grown silicon with different orientations

    NASA Astrophysics Data System (ADS)

    Gao, B.; Nakano, S.; Harada, H.; Miyamura, Y.; Kakimoto, K.

    2017-09-01

    We used an advanced 3D model to study the effect of crystal orientation on the dislocation multiplication in single-crystal silicon under accurate control of the cooling history of temperature. The incorporation of the anisotropy effect of the crystal lattice into the model has been explained in detail, and an algorithm for accurate control of the temperature in the furnace has also been presented. This solver can dynamically track the history of dislocation generation for different orientations during thermal processing of single-crystal silicon. Four orientations, [001], [110], [111], and [112], have been examined, and the comparison of dislocation distributions has been provided.

  12. The effect of tailor-made additives on crystal growth of methyl paraben: Experiments and modelling

    NASA Astrophysics Data System (ADS)

    Cai, Zhihui; Liu, Yong; Song, Yang; Guan, Guoqiang; Jiang, Yanbin

    2017-03-01

    In this study, methyl paraben (MP) was selected as the model component, and acetaminophen (APAP), p-methyl acetanilide (PMAA) and acetanilide (ACET), which share the similar molecular structure as MP, were selected as the three tailor-made additives to study the effect of tailor-made additives on the crystal growth of MP. HPLC results indicated that the MP crystals induced by the three additives contained MP only. Photographs of the single crystals prepared indicated that the morphology of the MP crystals was greatly changed by the additives, but PXRD and single crystal diffraction results illustrated that the MP crystals were the same polymorph only with different crystal habits, and no new crystal form was found compared with other references. To investigate the effect of the additives on the crystal growth, the interaction between additives and facets was discussed in detail using the DFT methods and MD simulations. The results showed that APAP, PMAA and ACET would be selectively adsorbed on the growth surfaces of the crystal facets, which induced the change in MP crystal habits.

  13. Optical parameters and dispersion behavior of potassium magnesium chloride sulfate single crystals doped with Co+2 ions

    NASA Astrophysics Data System (ADS)

    Abu El-Fadl, A.; Abd-Elsalam, A. M.

    2018-05-01

    Single crystals of potassium magnesium chloride sulfate (KMCS) doped with cobalt ions were grown by slow cooling method. Powder XRD study confirmed the monoclinic structure of the grown crystals. The functional group vibrations were checked through FTIR spectroscopy measurements. In optical studies, the absorbance behavior of the crystals and their optical energy gap were established by Tauc plot. The refractive index, the extinction coefficient and other optical constants were calculated for the grown crystals. The normal dispersion of the refractive index was analyzed according to single oscillator Sellmeier's model. The Urbach's rule was applied to analyze the localized states density in the forbidden gap.

  14. Numerical simulation of thermal stress distributions in Czochralski-grown silicon crystals

    NASA Astrophysics Data System (ADS)

    Kumar, M. Avinash; Srinivasan, M.; Ramasamy, P.

    2018-04-01

    Numerical simulation is one of the important tools in the investigation and optimization of the single-crystal silicon grown by the Czochralski (Cz) method. A 2D steady global heat transfer model was used to investigate the temperature distribution and the thermal stress distributions at particular crystal position during the Cz growth process. The computation determines the thermal stress such as von Mises stress and maximum shear stress distribution along grown crystal and shows possible reason for dislocation formation in the Cz-grown single-crystal silicon.

  15. Modeling Nonlinear Elastic-plastic Behavior of RDX Single Crystals During Indentation

    DTIC Science & Technology

    2012-01-01

    single crystals has also been probed using shock experiments (6, 12) and molecular dynamics simulations (12–14). RDX undergoes a polymorphic phase...Patterson, J.; Dreger, Z.; Gupta, Y. Shock-wave Induced Phase Transition in RDX Single Crystals. J. Phys. Chem. B 2007, 111, 10897–10904. 17. Bedrov, D...and Volume Compression of β - HMX and RDX . In Proc. Int. Symp. High Dynamic Pressures; Commissariat a l’Energie Atomique: Paris, 1978; pp 3–8. 24

  16. Reliability analysis of single crystal NiAl turbine blades

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan; Noebe, Ronald; Wheeler, Donald R.; Holland, Fred; Palko, Joseph; Duffy, Stephen; Wright, P. Kennard

    1995-01-01

    As part of a co-operative agreement with General Electric Aircraft Engines (GEAE), NASA LeRC is modifying and validating the Ceramic Analysis and Reliability Evaluation of Structures algorithm for use in design of components made of high strength NiAl based intermetallic materials. NiAl single crystal alloys are being actively investigated by GEAE as a replacement for Ni-based single crystal superalloys for use in high pressure turbine blades and vanes. The driving force for this research lies in the numerous property advantages offered by NiAl alloys over their superalloy counterparts. These include a reduction of density by as much as a third without significantly sacrificing strength, higher melting point, greater thermal conductivity, better oxidation resistance, and a better response to thermal barrier coatings. The current drawback to high strength NiAl single crystals is their limited ductility. Consequently, significant efforts including the work agreement with GEAE are underway to develop testing and design methodologies for these materials. The approach to validation and component analysis involves the following steps: determination of the statistical nature and source of fracture in a high strength, NiAl single crystal turbine blade material; measurement of the failure strength envelope of the material; coding of statistically based reliability models; verification of the code and model; and modeling of turbine blades and vanes for rig testing.

  17. A Hybrid Actuation System Demonstrating Significantly Enhanced Electromechanical Performance

    NASA Technical Reports Server (NTRS)

    Su, Ji; Xu, Tian-Bing; Zhang, Shujun; Shrout, Thomas R.; Zhang, Qiming

    2004-01-01

    A hybrid actuation system (HYBAS) utilizing advantages of a combination of electromechanical responses of an electroactive polymer (EAP), an electrostrictive copolymer, and an electroactive ceramic single crystal, PZN-PT single crystal, has been developed. The system employs the contribution of the actuation elements cooperatively and exhibits a significantly enhanced electromechanical performance compared to the performances of the device made of each constituting material, the electroactive polymer or the ceramic single crystal, individually. The theoretical modeling of the performances of the HYBAS is in good agreement with experimental observation. The consistence between the theoretical modeling and experimental test make the design concept an effective route for the development of high performance actuating devices for many applications. The theoretical modeling, fabrication of the HYBAS and the initial experimental results will be presented and discussed.

  18. Catalytic Chemistry of Hydrocarbon Conversion Reactions on Metallic Single Crystals

    NASA Astrophysics Data System (ADS)

    Tysoe, Wilfred T.

    The ability to be able to follow the chemistry of adsorbates on model catalyst surfaces has, in principle, allowed us to peer inside the “black box” of a catalytic reaction and understand the pathway. Such a strategy is most simply implemented for well-ordered single crystal model catalysts for which the catalytic reaction proceeds in ultrahigh vacuum. Thus, in order to be a good model for the supported catalyst, the single crystal should catalyze the reactions with kinetics identical to those for the supported system. This chapter focuses on catalytic systems that fulfill these criteria, namely alkene and alkyne hydrogenation and acetylene cyclotrimerization on Pd(111). The surface chemistry and geometries of the reactants in ultrahigh vacuum are explored in detail allowing fundamental insights into the catalytic reaction pathways to be obtained.

  19. Influence of bending strains on radio frequency characteristics of flexible microwave switches using single-crystal silicon nanomembranes on plastic substrate

    NASA Astrophysics Data System (ADS)

    Qin, Guoxuan; Yuan, Hao-Chih; Celler, George K.; Ma, Jianguo; Ma, Zhenqiang

    2011-10-01

    This letter presents radio frequency (RF) characterization of flexible microwave switches using single-crystal silicon nanomembranes (SiNMs) on plastic substrate under various uniaxial mechanical tensile bending strains. The flexible switches shows significant/negligible performance enhancement on strains under on/off states from dc to 10 GHz. Furthermore, an RF/microwave strain equivalent circuit model is developed and reveals the most influential factors, and un-proportional device parameters change with bending strains. The study demonstrates that flexible microwave single-crystal SiNM switches, as a simple circuit example towards the goal of flexible monolithic microwave integrated circuits, can be properly operated and modeled under mechanical bending conditions.

  20. Pyroelectric effect in tryglicyne sulphate single crystals - Differential measurement method

    NASA Astrophysics Data System (ADS)

    Trybus, M.

    2018-06-01

    A simple mathematical model of the pyroelectric phenomenon was used to explain the electric response of the TGS (triglycine sulphate) samples in the linear heating process in ferroelectric and paraelectric phases. Experimental verification of mathematical model was realized. TGS single crystals were grown and four electrode samples were fabricated. Differential measurements of the pyroelectric response of two different regions of the samples were performed and the results were compared with data obtained from the model. Experimental results are in good agreement with model calculations.

  1. Superposition model analysis of zero field splitting for Mn2+ in some host single crystals

    NASA Astrophysics Data System (ADS)

    Bansal, R. S.; Ahlawat, P.; Bharti, M.; Hooda, S. S.

    2013-07-01

    The Newman superposition model has been used to investigate the substitution of Mn2+ for Zn2+ site in ammonium tetra flurozincate dihydrate and for Co2+ site in cobalt ammonium phosphate hexahydrate and cobalt potassium phosphate hexahydrate single crystals. The calculated values of zero field splitting parameter b 2 0 at room temperature fit the experimental data with average intrinsic parameters overline{b}2 (F) = -0.0531 cm-1 for fluorine and overline{b}2 (O) = -0.0280 cm-1 for oxygen, taken t 2 = 7 for Mn2+ doped in ammonium tetra fluorozincate dihydrate single crystals. The values of overline{b}2 determined for Mn2+ doped in cobalt ammonium phosphate hexahydrate are -0.049 cm-1 for site I and -0.045 cm-1 for site II and in cobalt pottasium phosphate hexahydrate single crystals it is found to be overline{b}2 = -0.086 cm-1. We find close agreement between theoretical and experimental values of b 2 0.

  2. Constitutive Modeling of Superalloy Single Crystals and Directionally Solidified Materials

    NASA Technical Reports Server (NTRS)

    Walker, K. P.; Jordan, E. H.

    1985-01-01

    A unified viscoplastic constitutive relation based on crystallographic slip theory was developed for the deformation analysis of nickel base face centered cubic superalloy single crystals at elevated temperature. The single crystal theory is embedded in a self consistent method to derive a constitutive relation for a directionally solidified material comprised of a polycrystalline aggregate of columnar cylindrical grains. One of the crystallographic axes of the cylindrical crystals points in the columnar direction while the remaining crystallographic axes are oriented at random in the basal plane perpendicular to the columnar direction. These constitutive formulations are coded in FORTRAN for use in nonlinear finite element and boundary element programs.

  3. Mechanical properties of hydroxyapatite single crystals from nanoindentation data

    PubMed Central

    Zamiri, A.; De, S.

    2011-01-01

    In this paper we compute elasto-plastic properties of hydroxyapatite single crystals from nanindentation data using a two-step algorithm. In the first step the yield stress is obtained using hardness and Young’s modulus data, followed by the computation of the flow parameters. The computational approach is first validated with data from existing literature. It is observed that hydroxyapatite single crystals exhibit anisotropic mechanical response with a lower yield stress along the [1010] crystallographic direction compared to the [0001] direction. Both work hardening rate and work hardening exponent are found to be higher for indentation along the [0001] crystallographic direction. The stress-strain curves extracted here could be used for developing constitutive models for hydroxyapatite single crystals. PMID:21262492

  4. The application of inverse Broyden's algorithm for modeling of crack growth in iron crystals.

    PubMed

    Telichev, Igor; Vinogradov, Oleg

    2011-07-01

    In the present paper we demonstrate the use of inverse Broyden's algorithm (IBA) in the simulation of fracture in single iron crystals. The iron crystal structure is treated as a truss system, while the forces between the atoms situated at the nodes are defined by modified Morse inter-atomic potentials. The evolution of lattice structure is interpreted as a sequence of equilibrium states corresponding to the history of applied load/deformation, where each equilibrium state is found using an iterative procedure based on IBA. The results presented demonstrate the success of applying the IBA technique for modeling the mechanisms of elastic, plastic and fracture behavior of single iron crystals.

  5. Calculations of single crystal elastic constants for yttria partially stabilised zirconia from powder diffraction data

    NASA Astrophysics Data System (ADS)

    Lunt, A. J. G.; Xie, M. Y.; Baimpas, N.; Zhang, S. Y.; Kabra, S.; Kelleher, J.; Neo, T. K.; Korsunsky, A. M.

    2014-08-01

    Yttria Stabilised Zirconia (YSZ) is a tough, phase-transforming ceramic that finds use in a wide range of commercial applications from dental prostheses to thermal barrier coatings. Micromechanical modelling of phase transformation can deliver reliable predictions in terms of the influence of temperature and stress. However, models must rely on the accurate knowledge of single crystal elastic stiffness constants. Some techniques for elastic stiffness determination are well-established. The most popular of these involve exploiting frequency shifts and phase velocities of acoustic waves. However, the application of these techniques to YSZ can be problematic due to the micro-twinning observed in larger crystals. Here, we propose an alternative approach based on selective elastic strain sampling (e.g., by diffraction) of grain ensembles sharing certain orientation, and the prediction of the same quantities by polycrystalline modelling, for example, the Reuss or Voigt average. The inverse problem arises consisting of adjusting the single crystal stiffness matrix to match the polycrystal predictions to observations. In the present model-matching study, we sought to determine the single crystal stiffness matrix of tetragonal YSZ using the results of time-of-flight neutron diffraction obtained from an in situ compression experiment and Finite Element modelling of the deformation of polycrystalline tetragonal YSZ. The best match between the model predictions and observations was obtained for the optimized stiffness values of C11 = 451, C33 = 302, C44 = 39, C66 = 82, C12 = 240, and C13 = 50 (units: GPa). Considering the significant amount of scatter in the published literature data, our result appears reasonably consistent.

  6. Reverse engineering the kidney: modelling calcium oxalate monohydrate crystallization in the nephron.

    PubMed

    Borissova, A; Goltz, G E; Kavanagh, J P; Wilkins, T A

    2010-07-01

    Crystallization of calcium oxalate monohydrate in a section of a single kidney nephron (distal convoluted tubule) is simulated using a model adapted from industrial crystallization. The nephron fluid dynamics is represented as a crystallizer/separator series with changing volume to allow for water removal along the tubule. The model integrates crystallization kinetics and crystal size distribution and allows the prediction of the calcium oxalate concentration profile and the nucleation and growth rates. The critical supersaturation ratio for the nucleation of calcium oxalate crystals has been estimated as 2 and the mean crystal size as 1 mum. The crystal growth order, determined as 2.2, indicates a surface integration mechanism of crystal growth and crystal growth dispersion. The model allows the exploration of the effect of varying the input calcium oxalate concentration and the rate of water extraction, simulating real life stressors for stone formation such as dietary loading and dehydration.

  7. Rotating lattice single crystal architecture on the surface of glass

    DOE PAGES

    Savytskii, D.; Jain, H.; Tamura, N.; ...

    2016-11-03

    Defying the requirements of translational periodicity in 3D, rotation of the lattice orientation within an otherwise single crystal provides a new form of solid. Such rotating lattice single (RLS) crystals are found, but only as spherulitic grains too small for systematic characterization or practical application. Here we report a novel approach to fabricate RLS crystal lines and 2D layers of unlimited dimensions via a recently discovered solid-to-solid conversion process using a laser to heat a glass to its crystallization temperature but keeping it below the melting temperature. The proof-of-concept including key characteristics of RLS crystals is demonstrated using the examplemore » of Sb 2S 3 crystals within the Sb-S-I model glass system for which the rotation rate depends on the direction of laser scanning relative to the orientation of initially formed seed. Lattice rotation in this new mode of crystal growth occurs upon crystallization through a well-organized dislocation/disclination structure introduced at the glass/ crystal interface. Implications of RLS growth on biomineralization and spherulitic crystal growth are noted.« less

  8. Connecting heterogeneous single slip to diffraction peak evolution in high-energy monochromatic X-ray experiments

    PubMed Central

    Pagan, Darren C.; Miller, Matthew P.

    2014-01-01

    A forward modeling diffraction framework is introduced and employed to identify slip system activity in high-energy diffraction microscopy (HEDM) experiments. In the framework, diffraction simulations are conducted on virtual mosaic crystals with orientation gradients consistent with Nye’s model of heterogeneous single slip. Simulated diffraction peaks are then compared against experimental measurements to identify slip system activity. Simulation results compared against diffraction data measured in situ from a silicon single-crystal specimen plastically deformed under single-slip conditions indicate that slip system activity can be identified during HEDM experiments. PMID:24904242

  9. Rhombohedral cubic semiconductor materials on trigonal substrate with single crystal properties and devices based on such materials

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2012-01-01

    Growth conditions are developed, based on a temperature-dependent alignment model, to enable formation of cubic group IV, group II-V and group II-VI crystals in the [111] orientation on the basal (0001) plane of trigonal crystal substrates, controlled such that the volume percentage of primary twin crystal is reduced from about 40% to about 0.3%, compared to the majority single crystal. The control of stacking faults in this and other embodiments can yield single crystalline semiconductors based on these materials that are substantially without defects, or improved thermoelectric materials with twinned crystals for phonon scattering while maintaining electrical integrity. These methods can selectively yield a cubic-on-trigonal epitaxial semiconductor material in which the cubic layer is substantially either directly aligned, or 60 degrees-rotated from, the underlying trigonal material.

  10. Micromechanical properties of single crystals and polycrystals of pure α-titanium: anisotropy of microhardness, size effect, effect of the temperature (77-300 K)

    NASA Astrophysics Data System (ADS)

    Lubenets, S. V.; Rusakova, A. V.; Fomenko, L. S.; Moskalenko, V. A.

    2018-01-01

    The anisotropy of microhardness of pure α-Ti single crystals, indentation size effect in single-crystal, course grained (CG) pure and nanocrystalline (NC) VT1-0 titanium, as well as the temperature dependences of the microhardness of single-crystal and CG Ti in the temperature range 77-300 K were studied. The minimum value of hardness was obtained when indenting into the basal plane (0001). The indentation size effect (ISE) was clearly observed in the indentation of soft high-purity single-crystal iodide titanium while it was the least pronounced in a sample of nanocrystalline VT1-0 titanium. It has been demonstrated that the ISE can be described within the model of geometrically necessary dislocations (GND), which follows from the theory of strain gradient plasticity. The true hardness and others parameters of the GND model were determined for all materials. The temperature dependence of the microhardness is in agreement with the idea of the governing role of Peierls relief in the dislocation thermally-activated plastic deformation of pure titanium as has been earlier established and justified in macroscopic tensile investigations at low temperatures. The activation energy and activation volume of dislocation motion in the strained region under the indenter were estimated.

  11. Generalized continuum modeling of scale-dependent crystalline plasticity

    NASA Astrophysics Data System (ADS)

    Mayeur, Jason R.

    The use of metallic material systems (e.g. pure metals, alloys, metal matrix composites) in a wide range of engineering applications from medical devices to electronic components to automobiles continues to motivate the development of improved constitutive models to meet increased performance demands while minimizing cost. Emerging technologies often incorporate materials in which the dominant microstructural features have characteristic dimensions reaching into the submicron and nanometer regime. Metals comprised of such fine microstructures often exhibit unique and size-dependent mechanical response, and classical approaches to constitutive model development at engineering (continuum) scales, being local in nature, are inadequate for describing such behavior. Therefore, traditional modeling frameworks must be augmented and/or reformulated to account for such phenomena. Crystal plasticity constitutive models have proven quite capable of capturing first-order microstructural effects such as grain orientation (elastic/plastic anisotropy), grain morphology, phase distribution, etc. on the deformation behavior of both single and polycrystals, yet suffer from the same limitations as other local continuum theories with regard to capturing scale-dependent mechanical response. This research is focused on the development, numerical implementation, and application of a generalized (nonlocal) theory of single crystal plasticity capable of describing the scale-dependent mechanical response of both single and polycrystalline metals that arises as a result of heterogeneous deformation. This research developed a dislocation-based theory of micropolar single crystal plasticity. The majority of nonlocal crystal plasticity theories are predicated on the connection between gradients of slip and geometrically necessary dislocations. Due to the diversity of existing nonlocal crystal plasticity theories, a review, summary, and comparison of representative model classes is presented in Chapter 2 from a unified dislocation-based perspective. The discussion of the continuum crystal plasticity theories is prefaced by a brief review of discrete dislocation plasticity, which facilitates the comparison of certain model aspects and also serves as a reference for latter segments of the research which make connection to this constitutive description. Chapter 2 has utility not only as a literature review, but also as a synthesis and analysis of competing and alternative nonlocal crystal plasticity modeling strategies from a common viewpoint. The micropolar theory of single crystal plasticity is presented in Chapter 3. Two different types of flow criteria are considered - the so-called single and multicriterion theories, and several variations of the dislocation-based strength models appropriate for each theory are presented and discussed. The numerical implementation of the two-dimensional version of the constitutive theory is given in Chapter 4. A user element subroutine for the implicit commercial finite element code Abaqus/Standard is developed and validated through the solution of initial-boundary value problems with closed-form solutions. Convergent behavior of the subroutine is also demonstrated for an initial-boundary value problem exhibiting strain localization. In Chapter 5, the models are employed to solve several standard initial-boundary value problems for heterogeneously deforming single crystals including simple shearing of a semi-infinite constrained thin film, pure bending of thin films, and simple shearing of a metal matrix composite with elastic inclusions. The simulation results are compared to those obtained from the solution of equivalent boundary value problems using discrete dislocation dynamics and alternative generalized crystal plasticity theories. Comparison and calibration with respect to the former provides guidance in the specification of non-traditional material parameters that arise in the model formulation and demonstrates its effectiveness at capturing the heterogeneous deformation fields and size-dependent mechanical behavior predicted by a finer scale constitutive description. Finally, in Chapter 6, the models are applied to simulate the deformation behavior of small polycrystalline ensembles. Several grain boundary constitutive descriptions are explored and the response characteristics are analyzed with respect to experimental observations as well as results obtained from discrete dislocation dynamics and alternative nonlocal crystal plasticity theories. Particular attention is focused on how the various grain boundary descriptions serve to either locally concentrate or diffuse deformation heterogeneity as a function of grain size.

  12. Additive Manufacturing of Single-Crystal Superalloy CMSX-4 Through Scanning Laser Epitaxy: Computational Modeling, Experimental Process Development, and Process Parameter Optimization

    NASA Astrophysics Data System (ADS)

    Basak, Amrita; Acharya, Ranadip; Das, Suman

    2016-08-01

    This paper focuses on additive manufacturing (AM) of single-crystal (SX) nickel-based superalloy CMSX-4 through scanning laser epitaxy (SLE). SLE, a powder bed fusion-based AM process was explored for the purpose of producing crack-free, dense deposits of CMSX-4 on top of similar chemistry investment-cast substrates. Optical microscopy and scanning electron microscopy (SEM) investigations revealed the presence of dendritic microstructures that consisted of fine γ' precipitates within the γ matrix in the deposit region. Computational fluid dynamics (CFD)-based process modeling, statistical design of experiments (DoE), and microstructural characterization techniques were combined to produce metallurgically bonded single-crystal deposits of more than 500 μm height in a single pass along the entire length of the substrate. A customized quantitative metallography based image analysis technique was employed for automatic extraction of various deposit quality metrics from the digital cross-sectional micrographs. The processing parameters were varied, and optimal processing windows were identified to obtain good quality deposits. The results reported here represent one of the few successes obtained in producing single-crystal epitaxial deposits through a powder bed fusion-based metal AM process and thus demonstrate the potential of SLE to repair and manufacture single-crystal hot section components of gas turbine systems from nickel-based superalloy powders.

  13. Single crystal fibers for high power lasers

    NASA Astrophysics Data System (ADS)

    Kim, W.; Florea, C.; Baker, C.; Gibson, D.; Shaw, L. B.; Bowman, S.; O'Connor, S.; Villalobos, G.; Bayya, S.; Aggarwal, I. D.; Sanghera, J. S.

    2012-11-01

    In this paper, we present our recent results in developing cladded-single crystal fibers for high power single frequency fiber lasers significantly exceeding the capabilities of existing silica fiber based lasers. This fiber laser would not only exploit the advantages of crystals, namely their high temperature stability, high thermal conductivity, superior environmental ruggedness, high propensity for rare earth ion doping and low nonlinearity, but will also provide the benefits from an optical fiber geometry to enable better thermal management thereby enabling the potential for high laser power output in short lengths. Single crystal fiber cores with diameters as small as 35μm have been drawn using high purity rare earth doped ceramic or single crystal feed rods by Laser Heated Pedestal Growth (LHPG) process. The mechanical, optical and morphological properties of these fibers have been characterized. The fibers are very flexible and show good overall uniformity. We also measured the optical loss as well as the non-radiative loss of the doped crystal fibers and the results show that the fibers have excellent optical and morphological quality. The gain coefficient of the crystal fiber matches the low quantum defect laser model and it is a good indication of the high quality of the fibers.

  14. Constitutive Model for Anisotropic Creep Behaviors of Single-Crystal Ni-Base Superalloys in the Low-Temperature, High-Stress Regime (Postprint)

    DTIC Science & Technology

    2012-01-19

    specific dislocation reactions. Rae et al .[4,5,7] proposed micromechanisms for primary creep caused by SF shearing of c0 precipitates by ah112i...near the [0 0 1] was done by Matan et al .[3] They proposed a phenomenological creep model, which was adopted from Gilman’s dislocation density model...the original loading orientation). MacLachlan et al .[18 21] proposed a series of creep models for anisotropic creep of single-crystal superalloys. Their

  15. Slip Continuity in Explicit Crystal Plasticity Simulations Using Nonlocal Continuum and Semi-discrete Approaches

    DTIC Science & Technology

    2013-01-01

    Based Micropolar Single Crystal Plasticity: Comparison of Multi - and Single Criterion Theories. J. Mech. Phys. Solids 2011, 59, 398–422. ALE3D ...element boundaries in a multi -step constitutive evaluation (Becker, 2011). The results showed the desired effects of smoothing the deformation field...Implementation The model was implemented in the large-scale parallel, explicit finite element code ALE3D (2012). The crystal plasticity

  16. Self-tuning multivariable pole placement control of a multizone crystal growth furnace

    NASA Technical Reports Server (NTRS)

    Batur, C.; Sharpless, R. B.; Duval, W. M. B.; Rosenthal, B. N.

    1992-01-01

    This paper presents the design and implementation of a multivariable self-tuning temperature controller for the control of lead bromide crystal growth. The crystal grows inside a multizone transparent furnace. There are eight interacting heating zones shaping the axial temperature distribution inside the furnace. A multi-input, multi-output furnace model is identified on-line by a recursive least squares estimation algorithm. A multivariable pole placement controller based on this model is derived and implemented. Comparison between single-input, single-output and multi-input, multi-output self-tuning controllers demonstrates that the zone-to-zone interactions can be minimized better by a multi-input, multi-output controller design. This directly affects the quality of crystal grown.

  17. Elastic-plastic deformation of molybdenum single crystals shocked along [100

    DOE PAGES

    Mandal, A.; Gupta, Y. M.

    2017-01-24

    To understand the elastic-plastic deformation response of shock-compressed molybdenum (Mo) – a body-centered cubic (BCC) metal, single crystal samples were shocked along the [100] crystallographic orientation to an elastic impact stress of 12.5 GPa. Elastic-plastic wave profiles, measured at different propagation distances ranging between ~0.23 to 2.31 mm using laser interferometry, showed a time-dependent material response. Within experimental scatter, the measured elastic wave amplitudes were nearly constant over the propagation distances examined. These data point to a large and rapid elastic wave attenuation near the impact surface, before reaching a threshold value (elastic limit) of ~3.6 GPa. Numerical simulations ofmore » the measured wave profiles, performed using a dislocation-based continuum model, suggested that {110}<111> and/or {112}<111> slip systems are operative under shock loading. In contrast to shocked metal single crystals with close-packed structures, the measured wave profiles in Mo single crystals could not be explained in terms of dislocation multiplication alone. A dislocation generation mechanism, operative for shear stresses larger than that at the elastic limit, was required to model the rapid elastic wave attenuation and to provide a good overall match to the measured wave profiles. However, the physical basis for this mechanism was not established for the high-purity single crystal samples used in this study. As a result, the numerical simulations also suggested that Mo single crystals do not work harden significantly under shock loading in contrast to the behavior observed under quasi-static loading.« less

  18. Calculations of single crystal elastic constants for yttria partially stabilised zirconia from powder diffraction data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lunt, A. J. G., E-mail: alexander.lunt@eng.ox.ac.uk; Xie, M. Y.; Baimpas, N.

    2014-08-07

    Yttria Stabilised Zirconia (YSZ) is a tough, phase-transforming ceramic that finds use in a wide range of commercial applications from dental prostheses to thermal barrier coatings. Micromechanical modelling of phase transformation can deliver reliable predictions in terms of the influence of temperature and stress. However, models must rely on the accurate knowledge of single crystal elastic stiffness constants. Some techniques for elastic stiffness determination are well-established. The most popular of these involve exploiting frequency shifts and phase velocities of acoustic waves. However, the application of these techniques to YSZ can be problematic due to the micro-twinning observed in larger crystals.more » Here, we propose an alternative approach based on selective elastic strain sampling (e.g., by diffraction) of grain ensembles sharing certain orientation, and the prediction of the same quantities by polycrystalline modelling, for example, the Reuss or Voigt average. The inverse problem arises consisting of adjusting the single crystal stiffness matrix to match the polycrystal predictions to observations. In the present model-matching study, we sought to determine the single crystal stiffness matrix of tetragonal YSZ using the results of time-of-flight neutron diffraction obtained from an in situ compression experiment and Finite Element modelling of the deformation of polycrystalline tetragonal YSZ. The best match between the model predictions and observations was obtained for the optimized stiffness values of C11 = 451, C33 = 302, C44 = 39, C66 = 82, C12 = 240, and C13 = 50 (units: GPa). Considering the significant amount of scatter in the published literature data, our result appears reasonably consistent.« less

  19. Quantum model of a hysteresis in a single-domain magnetically soft ferromagnetic

    NASA Astrophysics Data System (ADS)

    Ignatiev, V. K.; Lebedev, N. G.; Orlov, A. A.

    2018-01-01

    A quantum model of a single-domain magnetically soft ferromagnetic is proposed. The α-Fe crystal in a state of the saturation magnetization and a variable magnetic field is considered as a sample. The method of an effective Hamiltonian, including the operators of the Zeeman energy, the spin-orbit interaction and the interaction with the crystal field, is used in the model. An expansion of trial single-electron wave function in a series in small parameter of the spin-orbit interaction is suggested to account for the magnetic anisotropy. Within the framework of the Heisenberg representation, the nonlinear equations of motion for the magnetization and the orbital moment of single domain are obtained. Parameters of the modelling Hamiltonian are found from a comparison with experimental data on the magnetic anisotropy of iron. A phenomenological term of the magnetic friction is introduced into equation of the magnetization motion. Nonlinear equations are solved numerically by the Runge-Kutta method. A dependence of the single domain magnetization on magnetic field intensity has a characteristic form of a hysteresis loop which parameters are quantitatively coordinated with experimental data of researches of magnetic properties of nanoparticles of iron and iron oxide. The method is extended for modelling the magnetization dynamics of multi-domain ferromagnetic in the approximation of a strong crystal field.

  20. Single crystal X-ray diffraction study of the HgBa2CuO4+δ superconducting compound

    NASA Astrophysics Data System (ADS)

    Bordet, P.; Duc, F.; Lefloch, S.; Capponi, J. J.; Alexandre, E.; Rosa-Nunes, M.; Antipov, E. V.; Putilin, S.

    1996-02-01

    A high precision X-ray diffraction analysis up to sin θ/λ = 1.15 of a HgBa2CuO4+δ single crystal having a Tc of ~ 90 K is presented. The cell parameters are a = 3.8815(4), c = 9.485 (7) Å. The refinements indicate the existence of a split barium site due to the presence of excess oxygen in the mercury layer. The position of this excess oxygen might be slightly displaced from the (1/2 1/2 0) position. A 6% mercury deficiency is observed. Models, including mercury defects, substitution by copper cations, or carbonate groups, are compared. However, we obtain no definite evidence for either of the three models. A possible disorder of the Hg position, due to the formation of chemical bonds with neighbouring extra oxygen anions, could correlate to the refinements of mixed species at the Hg site. A low temperature single crystal x-ray diffraction study, and comparison of refinements for the same single crystal with different extra oxygen contents, are in progress to help clarify this problem.

  1. Effect of Magnetic Fields on g-jitter Induced Convection and Solute Striation During Space Processing of Single Crystals

    NASA Technical Reports Server (NTRS)

    deGroh, H. C.; Li, K.; Li, B. Q.

    2002-01-01

    A 2-D finite element model is presented for the melt growth of single crystals in a microgravity environment with a superimposed DC magnetic field. The model is developed based on the deforming finite element methodology and is capable of predicting the phenomena of the steady and transient convective flows, heat transfer, solute distribution, and solid-liquid interface morphology associated with the melt growth of single crystals in microgravity with and without an applied magnetic field. Numerical simulations were carried out for a wide range of parameters including idealized microgravity conditions, the synthesized g-jitter and the real g-jitter data taken by on-board accelerometers during space flights. The results reveal that the time varying g-jitter disturbances, although small in magnitude, cause an appreciable convective flow in the liquid pool, which in turn produces detrimental effects during the space processing of single crystal growth. An applied magnetic field of appropriate strength, superimposed on microgravity, can be very effective in suppressing the deleterious effects resulting from the g-jitter disturbances.

  2. Coulomb crystals in neutron star crust

    NASA Astrophysics Data System (ADS)

    Baiko, D. A.

    2014-03-01

    It is well known that neutron star crust in a wide range of mass densities and temperatures is in a crystal state. At a given density, the crystal is made of fully ionized atomic nuclei of a single species immersed in a nearly incompressible (i.e., constant and uniform) charge compensating background of electrons. This model is known as the Coulomb crystal model. In this talk we analyze thermodynamic and elastic properties of the Coulomb crystals and discuss various deviations from the ideal model. In particular, we study the Coulomb crystal behavior in the presence of a strong magnetic field, consider the effect of the electron gas polarizability, outline the main properties of binary Coulomb crystals, and touch the subject of quasi-free neutrons permeating the Coulomb crystal of ions in deeper layers of neutron star crust.

  3. A Multiscale Computational Model Combining a Single Crystal Plasticity Constitutive Model with the Generalized Method of Cells (GMC) for Metallic Polycrystals.

    PubMed

    Ghorbani Moghaddam, Masoud; Achuthan, Ajit; Bednarcyk, Brett A; Arnold, Steven M; Pineda, Evan J

    2016-05-04

    A multiscale computational model is developed for determining the elasto-plastic behavior of polycrystal metals by employing a single crystal plasticity constitutive model that can capture the microstructural scale stress field on a finite element analysis (FEA) framework. The generalized method of cells (GMC) micromechanics model is used for homogenizing the local field quantities. At first, the stand-alone GMC is applied for studying simple material microstructures such as a repeating unit cell (RUC) containing single grain or two grains under uniaxial loading conditions. For verification, the results obtained by the stand-alone GMC are compared to those from an analogous FEA model incorporating the same single crystal plasticity constitutive model. This verification is then extended to samples containing tens to hundreds of grains. The results demonstrate that the GMC homogenization combined with the crystal plasticity constitutive framework is a promising approach for failure analysis of structures as it allows for properly predicting the von Mises stress in the entire RUC, in an average sense, as well as in the local microstructural level, i.e. , each individual grain. Two-three orders of saving in computational cost, at the expense of some accuracy in prediction, especially in the prediction of the components of local tensor field quantities and the quantities near the grain boundaries, was obtained with GMC. Finally, the capability of the developed multiscale model linking FEA and GMC to solve real-life-sized structures is demonstrated by successfully analyzing an engine disc component and determining the microstructural scale details of the field quantities.

  4. A Multiscale Computational Model Combining a Single Crystal Plasticity Constitutive Model with the Generalized Method of Cells (GMC) for Metallic Polycrystals

    PubMed Central

    Ghorbani Moghaddam, Masoud; Achuthan, Ajit; Bednarcyk, Brett A.; Arnold, Steven M.; Pineda, Evan J.

    2016-01-01

    A multiscale computational model is developed for determining the elasto-plastic behavior of polycrystal metals by employing a single crystal plasticity constitutive model that can capture the microstructural scale stress field on a finite element analysis (FEA) framework. The generalized method of cells (GMC) micromechanics model is used for homogenizing the local field quantities. At first, the stand-alone GMC is applied for studying simple material microstructures such as a repeating unit cell (RUC) containing single grain or two grains under uniaxial loading conditions. For verification, the results obtained by the stand-alone GMC are compared to those from an analogous FEA model incorporating the same single crystal plasticity constitutive model. This verification is then extended to samples containing tens to hundreds of grains. The results demonstrate that the GMC homogenization combined with the crystal plasticity constitutive framework is a promising approach for failure analysis of structures as it allows for properly predicting the von Mises stress in the entire RUC, in an average sense, as well as in the local microstructural level, i.e., each individual grain. Two–three orders of saving in computational cost, at the expense of some accuracy in prediction, especially in the prediction of the components of local tensor field quantities and the quantities near the grain boundaries, was obtained with GMC. Finally, the capability of the developed multiscale model linking FEA and GMC to solve real-life-sized structures is demonstrated by successfully analyzing an engine disc component and determining the microstructural scale details of the field quantities. PMID:28773458

  5. Modelling Assisted Design and Synthesis of Highly Porous Materials for Chemical Adsorbents

    DTIC Science & Technology

    2010-10-01

    two phases of crystal, a monoclinic phase within the solution, and after removal from solution a trigonal phase is obtained. The single crystal...days. Single crystal X-ray data showed there existed a monoclinic phase within the solution that, upon removal from solution, rapidly converted to a... monoclinic to trigonal upon desolvation, as the new peak which has emerged matches the simulated PXRD of the trigonal phase. Also, as the sample is

  6. Sensitivity of Cirrus Bidirectional Reflectance at MODIS Bands to Vertical Inhomogeneity of Ice Crystal Habits and Size Distribution

    NASA Technical Reports Server (NTRS)

    Yang, P.; Gao, B.-C.; Baum, B. A.; Wiscombe, W.; Hu, Y.; Nasiri, S. L.; Soulen, P. F.; Heymsfield, A. J.; McFarquhar, G. M.; Miloshevich, L. M.

    2000-01-01

    A common assumption in satellite imager-based cirrus retrieval algorithms is that the radiative properties of a cirrus cloud may be represented by those associated with a specific ice crystal shape (or habit) and a single particle size distribution. However, observations of cirrus clouds have shown that the shapes and sizes of ice crystals may vary substantially with height within the clouds. In this study we investigate the sensitivity of the top-of-atmosphere bidirectional reflectances at two MODIS bands centered at 0.65 micron and 2.11 micron to the cirrus models assumed to be either a single homogeneous layer or three distinct but contiguous, layers. First, we define the single- and three-layer cirrus cloud models with respect to ice crystal habit and size distribution on the basis of in situ replicator data acquired during the First ISCCP Regional Experiment (FIRE-II), held in Kansas during the fall of 1991. Subsequently, fundamental light scattering and radiative transfer theory is employed to determine the single scattering and the bulk radiative properties of the cirrus cloud. Regarding the radiative transfer computations, we present a discrete form of the adding/doubling principle by introducing a direct transmission function, which is computationally straightforward and efficient an improvement over previous methods. For the 0.65 micron band, at which absorption by ice is negligible, there is little difference between the bidirectional reflectances calculated for the one- and three-layer cirrus models, suggesting that the vertical inhomogeneity effect is relatively unimportant. At the 2.11 micron band, the bidirectional reflectances computed for both optically thin (tau = 1) and thick (tau = 10) cirrus clouds show significant differences between the results for the one- and three-layer models. The reflectances computed for the three-layer cirrus model are substantially larger than those computed for the single-layer cirrus. Finally, we find that cloud reflectance is very sensitive to the optical properties of the small crystals that predominate in the top layer of the three-layer cirrus model. It is critical to define the most realistic geometric shape for the small "quasi-spherical" ice crystals in the top layer for obtaining reliable single-scattering parameters and bulk radiative properties of cirrus.

  7. Producing desired ice faces

    PubMed Central

    Shultz, Mary Jane; Brumberg, Alexandra; Bisson, Patrick J.; Shultz, Ryan

    2015-01-01

    The ability to prepare single-crystal faces has become central to developing and testing models for chemistry at interfaces, spectacularly demonstrated by heterogeneous catalysis and nanoscience. This ability has been hampered for hexagonal ice, Ih––a fundamental hydrogen-bonded surface––due to two characteristics of ice: ice does not readily cleave along a crystal lattice plane and properties of ice grown on a substrate can differ significantly from those of neat ice. This work describes laboratory-based methods both to determine the Ih crystal lattice orientation relative to a surface and to use that orientation to prepare any desired face. The work builds on previous results attaining nearly 100% yield of high-quality, single-crystal boules. With these methods, researchers can prepare authentic, single-crystal ice surfaces for numerous studies including uptake measurements, surface reactivity, and catalytic activity of this ubiquitous, fundamental solid. PMID:26512102

  8. Key structure-activity relationships in the vanadium phosphorus oxide catalyst system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, M.R.; Ebner, J.R.

    1990-04-01

    The crystal structure of vanadyl pyrophosphate has been redetermined using single crystals obtained from a near solidified melt of a microcrystalline catalyst sample. Crystals that index as vanadyl pyrophosphate obtained from this melt are variable in color. Crystallographic refinement of the single crystal x-ray diffraction data indicates that structural differences among these materials can be described in terms of crystal defects associated with linear disorder of the vanadium atoms. The importance of the disorder is outlined in the context of its effect on the proposed surface topology parallel to (1,0,0). Models of the surface topology simply and intuitively account formore » the non-stoichometric surface atomic P/V ratio exhibited by selective catalysts of this phase. These models also point to the possible role of the excess phosphorus in providing site isolation of reactive centers at the surface. 33 refs., 7 figs.« less

  9. Single-Crystal Elasticity of Iron-Bearing Bridgemanite in the Lower Mantle

    NASA Astrophysics Data System (ADS)

    Yang, J.; Lin, J. F.; Okuchi, T.; Tomioka, N.

    2014-12-01

    Bridgemanite is believed to be the most abundant mineral in the Earth's lower mantle. Knowing its elasticity is thus critical to our understanding of the lower-mantle seismology, geochemistry, and geophysics. Although single-crystal elasticity and elastic anisotropy of bridgemanite under high P-T have been reported theoretically, experimental results on the single-crystal elasticity of bridgemanite remain very limited[1, 2]. Published experimental results have been limited to ambient conditions due to technical challenges in high-pressure measurements to permit derivations of all nine elastic constants (C11, C22, C33, C44, C55, C66, C12, C23 and C13) of the crystal. A thorough understanding of the elastic properties of bridgemanite at relevant lower mantle conditions, as well as the effects of iron, is essentially needed to interpret seismic observations and to construct a reliable mineralogical and geochemical model. In order to solve all individual elastic constants of bridgemanite at high pressures via Christoffel's equations, we employed both Brillouin Light Scattering (BLS) which is sensitive to shear wave velocities (Vs) up to megabars, and Impulsive Stimulated Light Scattering (ISS) which is sensitive to compressional wave velocities (VP) at lower mantle pressures. The BLS and ISS allowed us to measure VP and VS sound velocities as a function of the azimuthal angle from two orientated single-crystal iron bearing bridgemanite platelets under lower mantle pressures. These experimental results permit the derivations of full elastic constants of single-crystal bridgemanite that are consistent with previous theoretical studies [3, 4]. We will discuss how pressure-temperature, as well as the iron spin/valence states and minor element aluminum, affect the single-crystal elasticity and seismic parameters (e.g. VP and VS anisotropy AVP, AVS) at lower mantle conditions. Within a pyrolite mineralogical model, these results are extrapolated using a thermoelastic model and compared with seismic profiles of the lower mantle to better understand the deep-mantle geophysics and geochemistry. References: Sinogeikon,S.V., et al., 2004, GRL 31. Yeganeh-Haeri, A., et al., 1994, PEPI 87. Wentzcovitch, R.M., et al., 1998, EPSL 164. Oganov, A.R., et al., 2001, Nature 411.

  10. Computational modelling of mesoscale dislocation patterning and plastic deformation of single crystals

    NASA Astrophysics Data System (ADS)

    Xia, Shengxu; El-Azab, Anter

    2015-07-01

    We present a continuum dislocation dynamics model that predicts the formation of dislocation cell structure in single crystals at low strains. The model features a set of kinetic equations of the curl type that govern the space and time evolution of the dislocation density in the crystal. These kinetic equations are coupled to stress equilibrium and deformation kinematics using the eigenstrain approach. A custom finite element method has been developed to solve the coupled system of equations of dislocation kinetics and crystal mechanics. The results show that, in general, dislocations self-organize in patterns under their mutual interactions. However, the famous dislocation cell structure has been found to form only when cross slip is implemented in the model. Cross slip is also found to lower the yield point, increase the hardening rate, and sustain an increase in the dislocation density over the hardening regime. Analysis of the cell structure evolution reveals that the average cell size decreases with the applied stress, which is consistent with the similitude principle.

  11. Derivation of Physical and Optical Properties of Midlatitude Cirrus Ice Crystals for a Size-Resolved Cloud Microphysics Model

    NASA Technical Reports Server (NTRS)

    Fridlind, Ann M.; Atlas, Rachel; Van Diedenhoven, Bastiaan; Um, Junshik; McFarquhar, Greg M.; Ackerman, Andrew S.; Moyer, Elisabeth J.; Lawson, R. Paul

    2016-01-01

    Single-crystal images collected in mid-latitude cirrus are analyzed to provide internally consistent ice physical and optical properties for a size-resolved cloud microphysics model, including single-particle mass, projected area, fall speed, capacitance, single-scattering albedo, and asymmetry parameter. Using measurements gathered during two flights through a widespread synoptic cirrus shield, bullet rosettes are found to be the dominant identifiable habit among ice crystals with maximum dimension (Dmax) greater than 100µm. Properties are therefore first derived for bullet rosettes based on measurements of arm lengths and widths, then for aggregates of bullet rosettes and for unclassified (irregular) crystals. Derived bullet rosette masses are substantially greater than reported in existing literature, whereas measured projected areas are similar or lesser, resulting in factors of 1.5-2 greater fall speeds, and, in the limit of large Dmax, near-infrared single-scattering albedo and asymmetry parameter (g) greater by approx. 0.2 and 0.05, respectively. A model that includes commonly imaged side plane growth on bullet rosettes exhibits relatively little difference in microphysical and optical properties aside from approx. 0:05 increase in mid-visible g primarily attributable to plate aspect ratio. In parcel simulations, ice size distribution, and g are sensitive to assumed ice properties.

  12. Phononic crystals of spherical particles: A tight binding approach

    NASA Astrophysics Data System (ADS)

    Mattarelli, M.; Secchi, M.; Montagna, M.

    2013-11-01

    The vibrational dynamics of a fcc phononic crystal of spheres is studied and compared with that of a single free sphere, modelled either by a continuous homogeneous medium or by a finite cluster of atoms. For weak interaction among the spheres, the vibrational dynamics of the phononic crystal is described by shallow bands, with low degree of dispersion, corresponding to the acoustic spheroidal and torsional modes of the single sphere. The phonon displacements are therefore related to the vibrations of a sphere, as the electron wave functions in a crystal are related to the atomic wave functions in a tight binding model. Important dispersion is found for the two lowest phonon bands, which correspond to zero frequency free translation and rotation of a free sphere. Brillouin scattering spectra are calculated at some values of the exchanged wavevectors of the light, and compared with those of a single sphere. With weak interaction between particles, given the high acoustic impedance mismatch in dry systems, the density of phonon states consist of sharp bands separated by large gaps, which can be well accounted for by a single particle model. Based on the width of the frequency gaps, tunable with the particle size, and on the small number of dispersive acoustic phonons, such systems may provide excellent materials for application as sound or heat filters.

  13. Low cycle fatigue of MAR-M 200 single crystals at 760 and 870 deg C

    NASA Technical Reports Server (NTRS)

    Milligan, W. W.; Jayaraman, N.; Bill, R. C.

    1984-01-01

    Fully reversed low cycle fatigue tests were conducted on single crystals of the nickel-base superalloys Mar-M 200 at 760 C and 870 C. At 760 C, planar slip (octahedral) lead to orientation-dependent strain hardening and cyclic lives. Multiple slip crystals strain hardened the most, resulting in relatively high stress ranges and low lives. Single slip crystals strain hardened the least, resulting in relatively low stress ranges and higher lives. A preferential crack initiation site which was related to slip plane geometry was observed in single slip orientated crystals. At 870 C, the trends were quite different, and the slip character was much more homogeneous. As the tensile axis orientation deviated from 001 , the stress ranges increased and the cyclic lives decreased. Two possible mechanisms were proposed to explain the behavior: one is based on Takeuchi and Kuramoto's cube cross-slip model, and the other is based on orientation-dependent creep rates.

  14. A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part 2: Dependence of absorption and extinction on ice crystal morphology

    NASA Technical Reports Server (NTRS)

    Mitchell, David L.; Arnott, W. Patrick

    1994-01-01

    This study builds upon the microphysical modeling described in Part 1 by deriving formulations for the extinction and absorption coefficients in terms of the size distribution parameters predicted from the micro-physical model. The optical depth and single scatter albedo of a cirrus cloud can then be determined, which, along with the asymmetry parameter, are the input parameters needed by cloud radiation models. Through the use of anomalous diffraction theory, analytical expressions were developed describing the absorption and extinction coefficients and the single scatter albedo as functions of size distribution parameters, ice crystal shapes (or habits), wavelength, and refractive index. The extinction coefficient was formulated in terms of the projected area of the size distribution, while the absorption coefficient was formulated in terms of both the projected area and mass of the size distribution. These properties were formulated as explicit functions of ice crystal geometry and were not based on an 'effective radius.' Based on simulations of the second cirrus case study described in Part 1, absorption coefficients predicted in the near infrared for hexagonal columns and rosettes were up to 47% and 71% lower, respectively, than absorption coefficients predicted by using equivalent area spheres. This resulted in single scatter albedos in the near-infrared that were considerably greater than those predicted by the equivalent area sphere method. Reflectances in this region should therefore be underestimated using the equivalent area sphere approach. Cloud optical depth was found to depend on ice crystal habit. When the simulated cirrus cloud contained only bullet rosettes, the optical depth was 142% greater than when the cloud contained only hexagonal columns. This increase produced a doubling in cloud albedo. In the near-infrared (IR), the single scatter albedo also exhibited a significant dependence on ice crystal habit. More research is needed on the geometrical properties of ice crystals before the influence of ice crystal shape on cirrus radiative properties can be adequately understood. This study provides a way of coupling the radiative properties of absorption, extinction, and single scatter albedo to the microphysical properties of cirrus clouds. The dependence of extinction and absorption on ice crystal shape was not just due to geometrical differences between crystal types, but was also due to the effect these differences had on the evolution of ice particle size spectra. The ice particle growth model in Part 1 and the radiative properties treated here are based on analytical formulations, and thus represent a computationally efficient means of modeling the microphysical and radiative properties of cirrus clouds.

  15. Model of coordination melting of crystals and anisotropy of physical and chemical properties of the surface

    NASA Astrophysics Data System (ADS)

    Bokarev, Valery P.; Krasnikov, Gennady Ya

    2018-02-01

    Based on the evaluation of the properties of crystals, such as surface energy and its anisotropy, the surface melting temperature, the anisotropy of the work function of the electron, and the anisotropy of adsorption, were shown the advantages of the model of coordination melting (MCM) in calculating the surface properties of crystals. The model of coordination melting makes it possible to calculate with an acceptable accuracy the specific surface energy of the crystals, the anisotropy of the surface energy, the habit of the natural crystals, the temperature of surface melting of the crystal, the anisotropy of the electron work function and the anisotropy of the adhesive properties of single-crystal surfaces. The advantage of our model is the simplicity of evaluating the surface properties of the crystal based on the data given in the reference literature. In this case, there is no need for a complex mathematical tool, which is used in calculations using quantum chemistry or modeling by molecular dynamics.

  16. The relationship between elastic constants and structure of shock waves in a zinc single crystal

    NASA Astrophysics Data System (ADS)

    Krivosheina, M. N.; Kobenko, S. V.; Tuch, E. V.

    2017-12-01

    The paper provides a 3D finite element simulation of shock-loaded anisotropic single crystals on the example of a Zn plate under impact using a mathematical model, which allows for anisotropy in hydrostatic stress and wave velocities in elastic and plastic ranges. The simulation results agree with experimental data, showing the absence of shock wave splitting into an elastic precursor and a plastic wave in Zn single crystals impacted in the [0001] direction. It is assumed that the absence of an elastic precursor under impact loading of a zinc single crystal along the [0001] direction is determined by the anomalously large ratio of the c/a-axes and close values of the propagation velocities of longitudinal and bulk elastic waves. It is shown that an increase in only one elastic constant along the [0001] direction results in shock wave splitting into an elastic precursor and a shock wave of "plastic" compression.

  17. Insertion of Guest Molecules into a Mixed Ligand Metal-Organic Framework via Single-Crystal-to-Single Crystal Guest Exchange

    DTIC Science & Technology

    2014-07-01

    powder x-ray diffraction (PXRD), thermogravimentric analysis (TGA), and Fourier transform infrared (FTIR). 15. SUBJECT TERMS Metal organic frame work...the inclusion by using a variety of analytical techniques, such as powder x-ray diffraction (PXRD), thermo-gravimetric analysis (TGA), Fourier...Characterizations Analysis of the MOF and the complexes with the MOF and the guest molecules was performed using an Agilent GC-MS (Model 6890N GC and Model 5973N

  18. An anisotropic elastoplasticity model implemented in FLAG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buechler, Miles Allen; Canfield, Thomas R.

    2017-10-12

    Many metals, including Tantalum and Zirconium, exhibit anisotropic elastoplastic behavior at the single crystal level, and if components are manufactured from these metals through forming processes the polycrystal (component) may also exhibit anisotropic elastoplastic behavior. This is because the forming can induce a preferential orientation of the crystals in the polycrystal. One example is a rolled plate of Uranium where the sti /strong orientation of the crystal (c-axis) tends to align itself perpendicular to the rolling direction. If loads are applied to this plate in di erent orientations the sti ness as well as the ow strength of the materialmore » will be greater in the through thickness direction than in other directions. To better accommodate simulations of such materials, an anisotropic elastoplasticity model has been implemented in FLAG. The model includes an anisotropic elastic stress model as well as an anisotropic plasticity model. The model could represent single crystals of any symmetry, though it should not be confused with a high- delity crystal plasticity model with multiple slip planes and evolutions. The model is most appropriate for homogenized polycrystalline materials. Elastic rotation of the material due to deformation is captured, so the anisotropic models are appropriate for arbitrary large rotations, but currently they do not account for signi cant change in material texture beyond the elastic rotation of the entire polycrystal.« less

  19. Anisotropy of Single-Crystal Silicon in Nanometric Cutting.

    PubMed

    Wang, Zhiguo; Chen, Jiaxuan; Wang, Guilian; Bai, Qingshun; Liang, Yingchun

    2017-12-01

    The anisotropy exhibited by single-crystal silicon in nanometric cutting is very significant. In order to profoundly understand the effect of crystal anisotropy on cutting behaviors, a large-scale molecular dynamics model was conducted to simulate the nanometric cutting of single-crystal silicon in the (100)[0-10], (100)[0-1-1], (110)[-110], (110)[00-1], (111)[-101], and (111)[-12-1] crystal directions in this study. The simulation results show the variations of different degrees in chip, subsurface damage, cutting force, and friction coefficient with changes in crystal plane and crystal direction. Shear deformation is the formation mechanism of subsurface damage, and the direction and complexity it forms are the primary causes that result in the anisotropy of subsurface damage. Structurally, chips could be classified into completely amorphous ones and incompletely amorphous ones containing a few crystallites. The formation mechanism of the former is high-pressure phase transformation, while the latter is obtained under the combined action of high-pressure phase transformation and cleavage. Based on an analysis of the material removal mode, it can be found that compared with the other crystal direction on the same crystal plane, the (100)[0-10], (110)[-110], and (111)[-101] directions are more suitable for ductile cutting.

  20. Growth and characterization of high-purity SiC single crystals

    NASA Astrophysics Data System (ADS)

    Augustine, G.; Balakrishna, V.; Brandt, C. D.

    2000-04-01

    High-purity SiC single crystals with diameter up to 50 mm have been grown by the physical vapor transport method. Finite element analysis was used for thermal modeling of the crystal growth cavity in order to reduce stress in the grown crystal. Crystals are grown in high-purity growth ambient using purified graphite furniture and high-purity SiC sublimation sources. Undoped crystals up to 50 mm in diameter with micropipe density less than 100 cm -2 have been grown using this method. These undoped crystals exhibit resistivities in the 10 3 Ω cm range and are p-type due to the presence of residual acceptor impurities, mainly boron. Semi-insulating SiC material is obtained by doping the crystal with vanadium. Vanadium has a deep donor level located near the middle of the band gap, which compensates the residual acceptor resulting in semi-insulating behavior.

  1. Growth, spectral, optical, thermal, and mechanical behaviour of an organic single crystal: Quinolinium 2-carboxy 6-nitrophthalate monohydrate

    NASA Astrophysics Data System (ADS)

    Mohana, J.; Ahila, G.; Bharathi, M. Divya; Anbalagan, G.

    2016-09-01

    Organic single crystals of quinolinium 2-carboxy 6-nitrophthalate monohydrate (QN) were grown by slow evaporation solution growth technique using ethanol and water as a mixed solvent. X-ray powder diffraction analysis revealed that the crystal belongs to the monoclinic crystal system with space group of P21/c. The functional groups present in the crystallized material confirmed its molecular structure. The optical transparency range and the lower cutoff wavelength were identified from the UV-vis spectrum. The optical constants were determined by UV-visible transmission spectrum at normal incidence, measured over the 200-700 nm spectral range. The dispersion of the refractive index was discussed in terms of the single-oscillator Wemple and DiDomenico model. The calculated HOMO and LUMO energies show that the charge transfer occur within the molecule. Electronic excitation properties were discussed within the framework of two level model on the basis of an orbital analysis. The nonlinear optical absorption coefficient (β) and nonlinear refraction (n2) of QN was measured by Z-scan technique and reported here. Thermal stability of QN was determined using TGA/DSC curves. Vicker's microhardness studies were carried out on the (1 1 ̅0) plane to understand the mechanical properties of the grown crystal. The microhardness measurements showed a Vickers hardness value as 18.4 kg/mm2 which is comparable to well-known organic crystal, urea.

  2. Measurement and models of bent KAP(001) crystal integrated reflectivity and resolution (invited)

    NASA Astrophysics Data System (ADS)

    Loisel, G. P.; Wu, M.; Stolte, W.; Kruschwitz, C.; Lake, P.; Dunham, G. S.; Bailey, J. E.; Rochau, G. A.

    2016-11-01

    The Advanced Light Source beamline-9.3.1 x-rays are used to calibrate the rocking curve of bent potassium acid phthalate (KAP) crystals in the 2.3-4.5 keV photon-energy range. Crystals are bent on a cylindrically convex substrate with a radius of curvature ranging from 2 to 9 in. and also including the flat case to observe the effect of bending on the KAP spectrometric properties. As the bending radius increases, the crystal reflectivity converges to the mosaic crystal response. The X-ray Oriented Programs (xop) multi-lamellar model of bent crystals is used to model the rocking curve of these crystals and the calibration data confirm that a single model is adequate to reproduce simultaneously all measured integrated reflectivities and rocking-curve FWHM for multiple radii of curvature in both 1st and 2nd order of diffraction.

  3. Measurement and models of bent KAP(001) crystal integrated reflectivity and resolution (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loisel, G. P., E-mail: gploise@sandia.gov; Wu, M.; Lake, P.

    2016-11-15

    The Advanced Light Source beamline-9.3.1 x-rays are used to calibrate the rocking curve of bent potassium acid phthalate (KAP) crystals in the 2.3-4.5 keV photon-energy range. Crystals are bent on a cylindrically convex substrate with a radius of curvature ranging from 2 to 9 in. and also including the flat case to observe the effect of bending on the KAP spectrometric properties. As the bending radius increases, the crystal reflectivity converges to the mosaic crystal response. The X-ray Oriented Programs (XOP) multi-lamellar model of bent crystals is used to model the rocking curve of these crystals and the calibration datamore » confirm that a single model is adequate to reproduce simultaneously all measured integrated reflectivities and rocking-curve FWHM for multiple radii of curvature in both 1st and 2nd order of diffraction.« less

  4. Optical properties of Sulfur doped InP single crystals

    NASA Astrophysics Data System (ADS)

    El-Nahass, M. M.; Youssef, S. B.; Ali, H. A. M.

    2014-05-01

    Optical properties of InP:S single crystals were investigated using spectrophotometric measurements in the spectral range of 200-2500 nm. The absorption coefficient and refractive index were calculated. It was found that InP:S crystals exhibit allowed and forbidden direct transitions with energy gaps of 1.578 and 1.528 eV, respectively. Analysis of the refractive index in the normal dispersion region was discussed in terms of the single oscillator model. Some optical dispersion parameters namely: the dispersion energy (Ed), single oscillator energy (Eo), high frequency dielectric constant (ɛ∞), and lattice dielectric constant (ɛL) were determined. The volume and the surface energy loss functions (VELF & SELF) were estimated. Also, the real and imaginary parts of the complex conductivity were calculated.

  5. Perovskite single crystals and thin films for optoelectronic devices (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Li, Gang; Han, Qifeng; Yang, Yang; Bae, Sang-Hoon; Sun, Pengyu

    2016-09-01

    Hybrid organolead trihalide perovskite (OTP) solar cells have developed as a promising candidate in photovoltaics due to their excellent properties including a direct bandgap, strong absorption coefficient, long carrier lifetime, and high mobility. Most recently, formamidinium (NH2CH=NH2+ or FA) lead iodide (FAPbI3) has attracted significant attention due to several advantages: (1) the larger organic FA cation can replace the MA cation and form a more symmetric crystal structure, (2) the smaller bandgap of FAPbI3 allows for near infrared (NIR) absorption, and (3) FAPbI3 has an elevated decomposition temperature and thus potential to improve stability. Single crystals provide an excellent model system to study the intrinsic electrical and optical properties of these materials due to their high purity, which is particularly important to understand the limits of these materials. In this work, we report the growth of large ( 5 millimeter size) single crystal FAPbI3 using a novel liquid based crystallization method. The single crystal FAPbI3 demonstrated a δ-phase to α-phase transition with a color change from yellow to black when heated to 185°C within approximately two minutes. The crystal structures of the two phases were identified and the PL emission peak of the α-phase FAPbI3 (820 nm) shows clear red-shift compared to the FAPbI3 thin film (805 nm). The FAPbI3 single crystal shows a long carrier lifetime of 484 ns, a high carrier mobility of 4.4 cm2·V-1·s-1, and even more interestingly a conductivity of 1.1 × 10-7(ohm·cm)-1, which is approximately one order of magnitude higher than that of the MAPbI3 single crystal. Finally, high performance photoconductivity type photodetectors were successfully demonstrated using the single crystal FAPbI3.

  6. Some Debye temperatures from single-crystal elastic constant data

    USGS Publications Warehouse

    Robie, R.A.; Edwards, J.L.

    1966-01-01

    The mean velocity of sound has been calculated for 14 crystalline solids by using the best recent values of their single-crystal elastic stiffness constants. These mean sound velocities have been used to obtain the elastic Debye temperatures ??De for these materials. Models of the three wave velocity surfaces for calcite are illustrated. ?? 1966 The American Institute of Physics.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandal, A.; Gupta, Y. M.

    To understand the elastic-plastic deformation response of shock-compressed molybdenum (Mo) – a body-centered cubic (BCC) metal, single crystal samples were shocked along the [100] crystallographic orientation to an elastic impact stress of 12.5 GPa. Elastic-plastic wave profiles, measured at different propagation distances ranging between ~0.23 to 2.31 mm using laser interferometry, showed a time-dependent material response. Within experimental scatter, the measured elastic wave amplitudes were nearly constant over the propagation distances examined. These data point to a large and rapid elastic wave attenuation near the impact surface, before reaching a threshold value (elastic limit) of ~3.6 GPa. Numerical simulations ofmore » the measured wave profiles, performed using a dislocation-based continuum model, suggested that {110}<111> and/or {112}<111> slip systems are operative under shock loading. In contrast to shocked metal single crystals with close-packed structures, the measured wave profiles in Mo single crystals could not be explained in terms of dislocation multiplication alone. A dislocation generation mechanism, operative for shear stresses larger than that at the elastic limit, was required to model the rapid elastic wave attenuation and to provide a good overall match to the measured wave profiles. However, the physical basis for this mechanism was not established for the high-purity single crystal samples used in this study. As a result, the numerical simulations also suggested that Mo single crystals do not work harden significantly under shock loading in contrast to the behavior observed under quasi-static loading.« less

  8. An affine microsphere approach to modeling strain-induced crystallization in rubbery polymers

    NASA Astrophysics Data System (ADS)

    Nateghi, A.; Dal, H.; Keip, M.-A.; Miehe, C.

    2018-01-01

    Upon stretching a natural rubber sample, polymer chains orient themselves in the direction of the applied load and form crystalline regions. When the sample is retracted, the original amorphous state of the network is restored. Due to crystallization, properties of rubber change considerably. The reinforcing effect of the crystallites stiffens the rubber and increases the crack growth resistance. It is of great importance to understand the mechanism leading to strain-induced crystallization. However, limited theoretical work has been done on the investigation of the associated kinetics. A key characteristic observed in the stress-strain diagram of crystallizing rubber is the hysteresis, which is entirely attributed to strain-induced crystallization. In this work, we propose a micromechanically motivated material model for strain-induced crystallization in rubbers. Our point of departure is constructing a micromechanical model for a single crystallizing polymer chain. Subsequently, a thermodynamically consistent evolution law describing the kinetics of crystallization on the chain level is proposed. This chain model is then incorporated into the affine microsphere model. Finally, the model is numerically implemented and its performance is compared to experimental data.

  9. Study of low-modulus biomedical β Ti-Nb-Zr alloys based on single-crystal elastic constants modeling.

    PubMed

    Wang, Xing; Zhang, Ligang; Guo, Ziyi; Jiang, Yun; Tao, Xiaoma; Liu, Libin

    2016-09-01

    CALPHAD-type modeling was used to describe the single-crystal elastic constants of the bcc solution phase in the ternary Ti-Nb-Zr system. The parameters in the model were evaluated based on the available experimental data and first-principle calculations. The composition-elastic properties of the full compositions were predicted and the results were in good agreement with the experimental data. It is found that the β phase can be divided into two regions which are separated by a critical dynamical stability composition line. The corresponding valence electron number per atom and the polycrystalline Young׳s modulus of the critical compositions are 4.04-4.17 and 30-40GPa respectively. Orientation dependencies of single-crystal Young׳s modulus show strong elastic anisotropy on the Ti-rich side. Alloys compositions with a Young׳s modulus along the <100> direction matching that of bone were found. The current results present an effective strategy for designing low modulus biomedical alloys using computational modeling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Life prediction and constitutive models for engine hot section anisotropic materials

    NASA Technical Reports Server (NTRS)

    Swanson, G. A.; Linask, I.; Nissley, D. M.; Norris, P. P.; Meyer, T. G.; Walker, K. P.

    1987-01-01

    The results are presented of a program designed to develop life prediction and constitutive models for two coated single crystal alloys used in gas turbine airfoils. The two alloys are PWA 1480 and Alloy 185. The two oxidation resistant coatings are PWA 273, an aluminide coating, and PWA 286, an overlay NiCoCrAlY coating. To obtain constitutive and fatigue data, tests were conducted on uncoated and coated specimens loaded in the CH76 100 CH110 , CH76 110 CH110 , CH76 111 CH110 and CH76 123 CH110 crystallographic directions. Two constitutive models are being developed and evaluated for the single crystal materials: a micromechanic model based on crystallographic slip systems, and a macroscopic model which employs anisotropic tensors to model inelastic deformation anisotropy. Based on tests conducted on the overlay coating material, constitutive models for coatings also appear feasible and two initial models were selected. A life prediction approach was proposed for coated single crystal materials, including crack initiation either in the coating or in the substrate. The coating initiated failures dominated in the tests at load levels typical of gas turbine operation. Coating life was related to coating stress/strain history which was determined from specimen data using the constitutive models.

  11. Growth of single crystals of organic salts with large second-order optical nonlinearities by solution processes for devices

    NASA Technical Reports Server (NTRS)

    Leslie, Thomas M.

    1995-01-01

    Data obtained from the electric field induced second harmonic generation (EFISH) and Kurtz Powder Methods will be provided to MSFC for further refinement of their method. A theoretical model for predicting the second-order nonlinearities of organic salts is being worked on. Another task is the synthesis of a number of salts with various counterions. Several salts with promising SHG activities and new salts will be tested for the presence of two crystalline forms. The materials will be recrystallized from dry and wet solvents and compared for SHG efficiency. Salts that have a high SHG efficiency and no tendency to form hydrates will be documented. The synthesis of these materials are included in this report. A third task involves method to aid in the growth of large, high quality single crystals by solution processes. These crystals will be characterized for their applicability in the fabrication of devices that will be incorporated into optical computers in future programs. Single crystals of optimum quality may be obtained by crystal growth in low-gravity. The final task is the design of a temperature lowering single crystal growth apparatus for ground based work. At least one prototype will be built.

  12. Increasing low frequency sound attenuation using compounded single layer of sonic crystal

    NASA Astrophysics Data System (ADS)

    Gulia, Preeti; Gupta, Arpan

    2018-05-01

    Sonic crystals (SC) are man-made periodic structures where sound hard scatterers are arranged in a crystalline manner. SC reduces noise in a particular range of frequencies called as band gap. Sonic crystals have a promising application in noise shielding; however, the application is limited due to the size of structure. Particularly for low frequencies, the structure becomes quite bulky, restricting its practical application. This paper presents a compounded model of SC, which has the same overall area and filling fraction but with increased low frequency sound attenuation. Two cases have been considered, a three layer SC and a compounded single layer SC. Both models have been analyzed using finite element simulation and plane wave expansion method. Band gaps for periodic structures have been obtained using both methods which are in good agreement. Further, sound transmission loss has been evaluated using finite element method. The results demonstrate the use of compounded model of Sonic Crystal for low frequency sound attenuation.

  13. Modeling of abnormal mechanical properties of nickel-based single crystal superalloy by three-dimensional discrete dislocation dynamics

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Li, Zhenhuan; Huang, Minsheng

    2014-12-01

    Unlike common single crystals, the nickel-based single crystal superalloy shows surprisingly anomalous flow strength (i.e. with the increase of temperature, the yield strength first increases to a peak value and then decreases) and tension-compression (TC) asymmetry. A comprehensive three-dimensional discrete dislocation dynamics (3D-DDD) procedure was developed to model these abnormal mechanical properties. For this purpose, a series of complicated dynamic evolution details of Kear-Wilsdorf (KW) locks, which are closely related to the flow strength anomaly and TC asymmetry, were incorporated into this 3D-DDD framework. Moreover, the activation of the cubic slip system, which is the origin of the decrease in yield strength with increasing temperature at relatively high temperatures, was especially taken into account by introducing a competition criterion between the unlocking of the KW locks and the activation of the cubic slip system. To test our framework, a series of 3D-DDD simulations were performed on a representative volume cell model with a cuboidal Ni3Al precipitate phase embedded in a nickel matrix. Results show that the present 3D-DDD procedure can successfully capture the dynamic evolution of KW locks, the flow strength anomaly and TC asymmetry. Then, the underlying dislocation mechanisms leading to these abnormal mechanical responses were investigated and discussed in detail. Finally, a cyclic deformation of the nickel-based single crystal superalloy was modeled by using the present DDD model, with a special focus on the influence of KW locks on the Bauschinger effect and cyclic softening.

  14. Shearing single crystal magnesium in the close-packed basal plane at different temperatures

    NASA Astrophysics Data System (ADS)

    Han, Ming; Li, Lili; Zhao, Guangming

    2018-05-01

    Shear behaviors of single crystal magnesium (Mg) in close-packed (0001) basal plane along the [ 1 bar 2 1 bar 0 ], [ 1 2 bar 10 ], [ 10 1 bar 0 ] and [ 1 bar 010 ] directions were studied using molecular dynamics simulations via EAM potential. The results show that both shear stress-strain curves along the four directions and the motion path of free atoms during shearing behave periodic characteristics. It reveals that the periodic shear displacement is inherently related to the crystallographic orientation in single crystal Mg. Moreover, different temperatures in a range from 10 to 750 K were considered, demonstrating that shear modulus decreases with increasing temperatures. The results agree well with the MTS model. It is manifested that the modulus is independent with the shear direction and the size of the atomic model. This work also demonstrates that the classical description of shear modulus is still effective at the nanoscale.

  15. GROWTH AND CHARACTERIZATION OF SINGLE CRYSTALS OF RARE EARTH COMPOUNDS.

    DTIC Science & Technology

    SINGLE CRYSTALS, CRYSTAL GROWTH), (*CRYSTAL GROWTH, SINGLE CRYSTALS), (*RARE EARTH COMPOUNDS, SINGLE CRYSTALS), EPITAXIAL GROWTH, SODIUM COMPOUNDS, CHLORIDES, VAPOR PLATING, ELECTROSTATIC FIELDS, ENERGY, ATOMIC PROPERTIES , BONDING

  16. Derivation of physical and optical properties of mid-latitude cirrus ice crystals for a size-resolved cloud microphysics model

    DOE PAGES

    Fridlind, Ann M.; Atlas, Rachel; van Diedenhoven, Bastiaan; ...

    2016-06-10

    Single-crystal images collected in mid-latitude cirrus are analyzed to provide internally consistent ice physical and optical properties for a size-resolved cloud microphysics model, including single-particle mass, projected area, fall speed, capacitance, single-scattering albedo, and asymmetry parameter. Using measurements gathered during two flights through a widespread synoptic cirrus shield, bullet rosettes are found to be the dominant identifiable habit among ice crystals with maximum dimension ( D max) greater than 100 µm. Properties are therefore first derived for bullet rosettes based on measurements of arm lengths and widths, then for aggregates of bullet rosettes and for unclassified (irregular) crystals. Derived bulletmore » rosette masses are substantially greater than reported in existing literature, whereas measured projected areas are similar or lesser, resulting in factors of 1.5–2 greater fall speeds, and, in the limit of large D max, near-infrared single-scattering albedo and asymmetry parameter ( g) greater by ~0.2 and 0.05, respectively. Furthermore, a model that includes commonly imaged side plane growth on bullet rosettes exhibits relatively little difference in microphysical and optical properties aside from ~0.05 increase in mid-visible g primarily attributable to plate aspect ratio. In parcel simulations, ice size distribution, and g are sensitive to assumed ice properties.« less

  17. Dependences of the density of M 1- x R x F2 + x and R 1- y M y F3- y single crystals ( M = Ca, Sr, Ba, Cd, Pb; R means rare earth elements) on composition

    NASA Astrophysics Data System (ADS)

    Sorokin, N. I.; Krivandina, E. A.; Zhmurova, Z. I.

    2013-11-01

    The density of single crystals of nonstoichiometric phases Ba1 - x La x F2 + x (0 ≤ x ≤ 0.5) and Sr0.8La0.2 - x Lu x F2.2 (0 ≤ x ≤ 0.2) with the fluorite (CaF2) structure type and R 1 - y Sr y F3 - y ( R = Pr, Nd; 0 ≤ y ≤ 0.15) with the tysonite (LaF3) structure type has been measured. Single crystals were grown from a melt by the Bridgman method. The measured concentration dependences of single crystal density are linear. The interstitial and vacancy models of defect formation in the fluorite and tysonite phases, respectively, are confirmed. To implement the composition control of single crystals of superionic conductors M 1 - x R x F2 + x and R 1 - y M y F3 - y in practice, calibration graphs of X-ray density in the MF2- RF3 systems ( M = Ca, Sr, Ba, Cd, Pb; R = La-Lu, Y) are plotted.

  18. A numerical study of steady crystal growth in a vertical Bridgman device

    NASA Astrophysics Data System (ADS)

    Jalics, Miklos Kalman

    Electronics based on semiconductors creates an enormous demand for high quality semiconductor single crystals. The vertical Bridgman device is commonly used for growing single crystals for a variety of materials such as GaAs, InP and HgCdTe. A mathematical model is presented for steady crystal growth under conditions where crystal growth is determined strictly by heat transfer. The ends of the ampoule are chosen far away from the insulation zone to allow for steady growth. A numerical solution is sought for this mathematical model. The equations are transformed into a rectangular geometry and appropriate finite difference techniques are applied on the transformed equations. Newton's method solves the nonlinear problem. To improve efficiency GMRES with preconditioning is used to compute the Newton iterates. The numerical results are used to compare with two current asymptotic theories that assume small Biot numbers. Results indicate that one of the asymptotic theories is accurate for even moderate Biot numbers.

  19. Diamond turning of Si and Ge single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blake, P.; Scattergood, R.O.

    Single-point diamond turning studies have been completed on Si and Ge crystals. A new process model was developed for diamond turning which is based on a critical depth of cut for plastic flow-to-brittle fracture transitions. This concept, when combined with the actual machining geometry for single-point turning, predicts that {open_quotes}ductile{close_quotes} machining is a combined action of plasticity and fracture. Interrupted cutting experiments also provide a meant to directly measure the critical depth parameter for given machining conditions.

  20. Three-dimensional charge transport in organic semiconductor single crystals.

    PubMed

    He, Tao; Zhang, Xiying; Jia, Jiong; Li, Yexin; Tao, Xutang

    2012-04-24

    Three-dimensional charge transport anisotropy in organic semiconductor single crystals - both plates and rods (above and below, respectively, in the figure) - is measured in well-performing organic field-effect transistors for the first time. The results provide an excellent model for molecular design and device preparation that leads to good performance. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Microstructurally-sensitive fatigue crack nucleation in Ni-based single and oligo crystals

    NASA Astrophysics Data System (ADS)

    Chen, Bo; Jiang, Jun; Dunne, Fionn P. E.

    2017-09-01

    An integrated experimental, characterisation and computational crystal plasticity study of cyclic plastic beam loading has been carried out for nickel single crystal (CMSX4) and oligocrystal (MAR002) alloys in order to assess quantitatively the mechanistic drivers for fatigue crack nucleation. The experimentally validated modelling provides knowledge of key microstructural quantities (accumulated slip, stress and GND density) at experimentally observed fatigue crack nucleation sites and it is shown that while each of these quantities is potentially important in crack nucleation, none of them in its own right is sufficient to be predictive. However, the local (elastic) stored energy density, measured over a length scale determined by the density of SSDs and GNDs, has been shown to predict crack nucleation sites in the single and oligocrystals tests. In addition, once primary nucleated cracks develop and are represented in the crystal model using XFEM, the stored energy correctly identifies where secondary fatigue cracks are observed to nucleate in experiments. This (Griffith-Stroh type) quantity also correctly differentiates and explains intergranular and transgranular fatigue crack nucleation.

  2. Effect of guest-host interaction on Raman spectrum of a CO2 clathrate hydrate single crystal

    NASA Astrophysics Data System (ADS)

    Ikeda, Tomoko; Mae, Shinji; Uchida, Tsutomu

    1998-01-01

    The polarized Raman spectra of an artificial CO2 clathrate hydrate single crystal have been measured in order to examine the crystal-orientation dependence of the Raman spectra. Since the crystal had crystallographic facets, the orientation of the crystal was determined by using the Miller indices of the facets. When the angle θ between the polarization plane of the incident laser beam and the direction of one of the <110> axes of the single crystal varied, it was observed that the intensities of the peaks, which were caused by the Fermi resonance of the symmetric stretching mode and the overtone of the bending mode of CO2, and the O-H symmetric stretching vibration mode, varied with θ. Since the tetrakaidecahedron cage in the CO2 clathrate hydrate is distorted along the <100> axis, the variations of the scattering intensities of the CO2 have been calculated by using a simple model that assumes that the CO2 rotates on the {100} plane in the tetrakaidecahedron cage. The results obtained from the experiments are consistent with the calculations made by using this model. It has been concluded that the anisotropy of the peak intensities of the CO2 show the influence of the cage geometry on the motion of the guest molecule. The anisotropy of the O-H symmetric stretching vibration mode was interpreted with a five-body structure model. As the calculation with the model was consistent with the result obtained from the experiment, it was found that the anisotropy of the peak intensity of the O-H symmetric stretching vibration mode was related to the arrangement of the water molecules. We consider that the result indicates the influence of the motion of the guest molecule on the surrounding hydrogen-bonded network.

  3. A High-Rate, Single-Crystal Model for Cyclotrimethylene Trinitramine including Phase Transformations and Plastic Slip

    DOE PAGES

    Addessio, Francis L.; Luscher, Darby Jon; Cawkwell, Marc Jon; ...

    2017-05-14

    A continuum model for the high-rate, thermo-mechanical deformation of single-crystal cyclotrimethylene trinitramine (RDX) is developed. The model includes the effects of anisotropy, large deformations, nonlinear thermo-elasticity, phase transformations, and plastic slip. A multiplicative decomposition of the deformation gradient is used. The volumetric elastic component of the deformation is accounted for through a free-energy based equation of state for the low- (α) and high-pressure (γ) polymorphs of RDX. Crystal plasticity is addressed using a phenomenological thermal activation model. The deformation gradient for the phase transformation is based on an approach that has been applied to martensitic transformations. Simulations were conducted andmore » compared to high-rate, impact loading of oriented RDX single crystals. The simulations considered multiple orientations of the crystal relative to the direction of shock loading and multiple sample thicknesses. Thirteen slip systems, which were inferred from indentation and x-ray topography, were used to model the α-polymorph. It is shown that by increasing the number of slip systems from the previously considered number of six (6) to thirteen (13) in the α-polymorph, better comparisons with data may be obtained. Simulations of impact conditions in the vicinity of the α- to γ-polymorph transformation (3.8 GPa) are considered. Eleven of the simulations, which were at pressures below the transformation value (3.0 GPa), were compared to experimental data. Comparison of the model was also made with available data for one experiment above the transformation pressure (4.4 GPa). Also, simulations are provided for a nominal pressure of 7.5 GPa to demonstrate the effect of the transformation kinetics on the deformation of a high-rate plate impact problem.« less

  4. A High-Rate, Single-Crystal Model for Cyclotrimethylene Trinitramine including Phase Transformations and Plastic Slip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Addessio, Francis L.; Luscher, Darby Jon; Cawkwell, Marc Jon

    A continuum model for the high-rate, thermo-mechanical deformation of single-crystal cyclotrimethylene trinitramine (RDX) is developed. The model includes the effects of anisotropy, large deformations, nonlinear thermo-elasticity, phase transformations, and plastic slip. A multiplicative decomposition of the deformation gradient is used. The volumetric elastic component of the deformation is accounted for through a free-energy based equation of state for the low- (α) and high-pressure (γ) polymorphs of RDX. Crystal plasticity is addressed using a phenomenological thermal activation model. The deformation gradient for the phase transformation is based on an approach that has been applied to martensitic transformations. Simulations were conducted andmore » compared to high-rate, impact loading of oriented RDX single crystals. The simulations considered multiple orientations of the crystal relative to the direction of shock loading and multiple sample thicknesses. Thirteen slip systems, which were inferred from indentation and x-ray topography, were used to model the α-polymorph. It is shown that by increasing the number of slip systems from the previously considered number of six (6) to thirteen (13) in the α-polymorph, better comparisons with data may be obtained. Simulations of impact conditions in the vicinity of the α- to γ-polymorph transformation (3.8 GPa) are considered. Eleven of the simulations, which were at pressures below the transformation value (3.0 GPa), were compared to experimental data. Comparison of the model was also made with available data for one experiment above the transformation pressure (4.4 GPa). Also, simulations are provided for a nominal pressure of 7.5 GPa to demonstrate the effect of the transformation kinetics on the deformation of a high-rate plate impact problem.« less

  5. One-step fabrication of porous GaN crystal membrane and its application in energy storage

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Wang, Shouzhi; Shao, Yongliang; Wu, Yongzhong; Sun, Changlong; Huo, Qin; Zhang, Baoguo; Hu, Haixiao; Hao, Xiaopeng

    2017-03-01

    Single-crystal gallium nitride (GaN) membranes have great potential for a variety of applications. However, fabrication of single-crystalline GaN membranes remains a challenge owing to its chemical inertness and mechanical hardness. This study prepares large-area, free-standing, and single-crystalline porous GaN membranes using a one-step high-temperature annealing technique for the first time. A promising separation model is proposed through a comprehensive study that combines thermodynamic theories analysis and experiments. Porous GaN crystal membrane is processed into supercapacitors, which exhibit stable cycling life, high-rate capability, and ultrahigh power density, to complete proof-of-concept demonstration of new energy storage application. Our results contribute to the study of GaN crystal membranes into a new stage related to the elelctrochemical energy storage application.

  6. Tuning hardness in calcite by incorporation of amino acids

    NASA Astrophysics Data System (ADS)

    Kim, Yi-Yeoun; Carloni, Joseph D.; Demarchi, Beatrice; Sparks, David; Reid, David G.; Kunitake, Miki E.; Tang, Chiu C.; Duer, Melinda J.; Freeman, Colin L.; Pokroy, Boaz; Penkman, Kirsty; Harding, John H.; Estroff, Lara A.; Baker, Shefford P.; Meldrum, Fiona C.

    2016-08-01

    Structural biominerals are inorganic/organic composites that exhibit remarkable mechanical properties. However, the structure-property relationships of even the simplest building unit--mineral single crystals containing embedded macromolecules--remain poorly understood. Here, by means of a model biomineral made from calcite single crystals containing glycine (0-7 mol%) or aspartic acid (0-4 mol%), we elucidate the origin of the superior hardness of biogenic calcite. We analysed lattice distortions in these model crystals by using X-ray diffraction and molecular dynamics simulations, and by means of solid-state nuclear magnetic resonance show that the amino acids are incorporated as individual molecules. We also demonstrate that nanoindentation hardness increased with amino acid content, reaching values equivalent to their biogenic counterparts. A dislocation pinning model reveals that the enhanced hardness is determined by the force required to cut covalent bonds in the molecules.

  7. Synthesis, crystal structure, and magnetic properties of two-dimensional divalent metal glutarate/dipyridylamine coordination polymers, with a single crystal-to-single crystal transformation in the copper derivative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montney, Matthew R.; Supkowski, Ronald M.; Staples, Richard J.

    Hydrothermal reaction of divalent metal chlorides with glutaric acid and 4,4'-dipyridylamine (dpa) has afforded an isostructural family of coordination polymers with formulation [M(glu)(dpa)]{sub n} (M=Co (1), Ni (2), Cu (3); glu=glutarate). Square pyramidal coordination is seen in 1-3, with semi-ligation of a sixth donor to produce a '5+1' extended coordination sphere. Neighboring metal atoms are linked into 1D [M(glu)]{sub n} neutral chains through chelating/monodentate bridging glutarate moieties with a syn-anti binding mode, and semi-chelation of the pendant carboxylate oxygen. These chains further connect into 2D layers through dipodal dpa ligands. Neighboring layers stack into the pseudo 3D crystal structure ofmore » 1-3 through supramolecular hydrogen bonding between dpa amine units and the semi-chelated glutarate oxygen atoms. The variable temperature magnetic behavior of 1-3 was explored and modeled as infinite 1D Heisenberg chains. Notably, complex 3 undergoes a thermally induced single crystal-to-single crystal transformation between centric and acentric space groups, with a conformationally disordered unilayer structure at 293 K and an ordered bilayer structure at 173 K. All materials were further characterized via infrared spectroscopy and elemental and thermogravimetric analyses. - Graphical abstract: The coordination polymers [M(glu)(dpa)]{sub n} (M=Co (1), Ni (2), Cu (3); glu=glutarate, dpa=4,4'-dipyridylamine) exhibit 2D layer structures based on 1D [M(glu)]{sub n} chains linked through dpa tethers. Antiferromagnetic coupling is observed for 2 and 3, while ferromagnetism is predominant in 1. Compound 3 undergoes a thermally induced single crystal-to-single crystal transformation from an acentric to a centrosymmetric space group.« less

  8. Effect of Crystal Orientation on Fatigue Failure of Single Crystal Nickel Base Turbine Blade Superalloys

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Swanson, Gregory R.

    2000-01-01

    High Cycle Fatigue (HCF) induced failures in aircraft gas-turbine engines is a pervasive problem affecting a wide range of components and materials. HCF is currently the primary cause of component failures in gas turbine aircraft engines. Turbine blades in high performance aircraft and rocket engines are increasingly being made of single crystal nickel superalloys. Single-crystal Nickel-base superalloys were developed to provide superior creep, stress rupture, melt resistance and thermomechanical fatigue capabilities over polycrystalline alloys previously used in the production of turbine blades and vanes. Currently the most widely used single crystal turbine blade superalloys are PWA 1480/1493 and PWA 1484. These alloys play an important role in commercial, military and space propulsion systems. PWA1493, identical to PWA1480, but with tighter chemical constituent control, is used in the NASA SSME (Space Shuttle Main Engine) alternate turbopump, a liquid hydrogen fueled rocket engine. Objectives for this paper are motivated by the need for developing failure criteria and fatigue life evaluation procedures for high temperature single crystal components, using available fatigue data and finite element modeling of turbine blades. Using the FE (finite element) stress analysis results and the fatigue life relations developed, the effect of variation of primary and secondary crystal orientations on life is determined, at critical blade locations. The most advantageous crystal orientation for a given blade design is determined. Results presented demonstrates that control of secondary and primary crystallographic orientation has the potential to optimize blade design by increasing its resistance to fatigue crack growth without adding additional weight or cost.

  9. Strain-relief by single dislocation loops in calcite crystals grown on self-assembled monolayers

    DOE PAGES

    Ihli, Johannes; Clark, Jesse N.; Côté, Alexander S.; ...

    2016-06-15

    Most of our knowledge of dislocation-mediated stress relaxation during epitaxial crystal growth comes from the study of inorganic heterostructures. In this study, we use Bragg coherent diffraction imaging to investigate a contrasting system, the epitaxial growth of calcite (CaCO 3) crystals on organic self-assembled monolayers, where these are widely used as a model for biomineralization processes. The calcite crystals are imaged to simultaneously visualize the crystal morphology and internal strain fields. Our data reveal that each crystal possesses a single dislocation loop that occupies a common position in every crystal. The loops exhibit entirely different geometries to misfit dislocations generatedmore » in conventional epitaxial thin films and are suggested to form in response to the stress field, arising from interfacial defects and the nanoscale roughness of the substrate. In conclusion, this work provides unique insight into how self-assembled monolayers control the growth of inorganic crystals and demonstrates important differences as compared with inorganic substrates.« less

  10. Strain-relief by single dislocation loops in calcite crystals grown on self-assembled monolayers

    PubMed Central

    Ihli, Johannes; Clark, Jesse N.; Côté, Alexander S.; Kim, Yi-Yeoun; Schenk, Anna S.; Kulak, Alexander N.; Comyn, Timothy P.; Chammas, Oliver; Harder, Ross J.; Duffy, Dorothy M.; Robinson, Ian K.; Meldrum, Fiona C.

    2016-01-01

    Most of our knowledge of dislocation-mediated stress relaxation during epitaxial crystal growth comes from the study of inorganic heterostructures. Here we use Bragg coherent diffraction imaging to investigate a contrasting system, the epitaxial growth of calcite (CaCO3) crystals on organic self-assembled monolayers, where these are widely used as a model for biomineralization processes. The calcite crystals are imaged to simultaneously visualize the crystal morphology and internal strain fields. Our data reveal that each crystal possesses a single dislocation loop that occupies a common position in every crystal. The loops exhibit entirely different geometries to misfit dislocations generated in conventional epitaxial thin films and are suggested to form in response to the stress field, arising from interfacial defects and the nanoscale roughness of the substrate. This work provides unique insight into how self-assembled monolayers control the growth of inorganic crystals and demonstrates important differences as compared with inorganic substrates. PMID:27302863

  11. 1100 to 1500 K Slow Plastic Compressive Behavior of NiAl-xCr Single Crystals

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Darolia, Ram

    2003-01-01

    The compressive properties of near <001> and <111> oriented NiAl-2Cr single crystals and near <011> oriented NiAl-6Cr samples have been measured between 1100 and 1500 K. The 2Cr addition produced significant solid solution strengthening in NiAl, and the <111> and <001> single crystals possessed similar strengths. The 6Cr crystals were not stronger than the 2Cr versions. At 1100 and 1200 K plastic flow in all three Cr-modified materials was highly dependent on stress with exponents > 10. The <011> oriented 6Cr alloy exhibited a stress exponent of about 8 at 1400 and 1500 K; whereas both <001> and <111> NiAl-2Cr crystals possessed stress exponents near 3 which is indicative of a viscous dislocation glide creep mechanism. While the Cottrell-Jaswon solute drag model predicted creep rates within a factor of 3 at 1500 K for <001>-oriented NiAl-2Cr; this mechanism greatly over predicted creep rates for other orientations and at 1400 K for <001> crystals.

  12. Defect chemistry and characterization of (Hg, Cd)Te

    NASA Technical Reports Server (NTRS)

    Vydyanath, H. R.

    1981-01-01

    Single crystal samples of phosphorus doped Hg sub 0.8 Cd sub 0.2 Te were anneald at temperatures varying from 450 C to 600 C in various Hg atmospheres. The samples were quenched to room temperature from the annealing temperatures. Hall effect and mobility measurements were performed at 77 K on all these samples. The results indicate the crystals to be p type for a total phosphorus concentration of 10 to the 19th power/cu cm in all the samples. The hole concentration at 77 K increases with increasing Hg pressures at 450 C and 500 C contrary to the observation in undoped crystals. Also, at low Hg pressures the concentration of holes in the phosphorus doped crystals is lower than in the undoped crystals. The hole concentration in all the samples is lower than the intrinsic carrier concentration at the annealing temperatures. The hole mobility in the doped crystals is similar to that in the undoped crystals. A defect model according to which phosphorus behaves as a single acceptor interstitially, occupying Te lattice sites while it acts as a single donor occupying Hg lattice sites was established. Equilibrum constants established for the incorporation of all the phosphorus species explain the experimental results

  13. A theoretical model describing the one-dimensional growth of single crystals on free sustained substrates

    NASA Astrophysics Data System (ADS)

    Ye, Ziran; Wang, Ke; Lu, Chenxi; Jin, Ying; Sui, Chenghua; Yan, Bo; Gao, Fan; Cai, Pinggen; Lv, Bin; Li, Yun; Chen, Naibo; Sun, Guofang; Xu, Fengyun; Ye, Gaoxiang

    2018-03-01

    We develop a theoretical model that interprets the growth mechanism of zinc (Zn) crystal nanorods on a liquid substrate by thermal evaporation. During deposition, Zn atoms diffuse randomly on an isotropic and quasi-free sustained substrate, the nucleation of the atoms results in the primary nanorod (or seed crystal) growth. Subsequently, a characteristic one-dimensional atomic aggregation is proposed, which leads to the accelerating growth of the crystal nanorod along its preferential growth direction until the growth terminates. The theoretical results are in good agreement with the experimental findings.

  14. Crystal growth, structural, optical, thermal, mechanical, laser damage threshold and electrical properties of triphenylphosphine oxide 4-nitrophenol (TP4N) single crystals for nonlinear optical applications

    NASA Astrophysics Data System (ADS)

    Karuppasamy, P.; Senthil Pandian, Muthu; Ramasamy, P.; Verma, Sunil

    2018-05-01

    The optically good quality single crystals of triphenylphosphine oxide 4-nitrophenol (TP4N) with maximum dimension of 15 × 10 × 5 mm3 were grown by slow evaporation solution technique (SEST) at room temperature. The cell dimensions of the grown TP4N crystal were confirmed by single crystal X-ray diffraction (SXRD) and the crystalline purity was confirmed and planes were indexed by powder X-ray diffraction (PXRD) analysis. Functional groups of TP4N crystal were confirmed by Fourier transform infrared (FTIR) spectral analysis. The optical transmittance of the grown crystal was determined by the UV-Vis NIR spectral analysis and it has good optical transparency in the entire visible region. The band tail (Urbach) energy of the grown crystal was analyzed and it appears to be minimum, which indicates that the TP4N has good crystallinity. The position of valence band (Ev) and conduction band (Ec) of the TP4N have been determined from the electron affinity energy (EA) and the ionization energy (EI) of its elements and using the optical band gap. The thermal behaviour of the grown crystal was investigated by thermogravimetric and differential thermal analysis (TG-DTA). Vickers microhardness analysis was carried out to identify the mechanical stability of the grown crystal and their indentation size effect (ISE) was explained by the Meyer's law (ML), Hays-Kendall's (HK) approach, proportional specimen resistance (PSR) model, modified PSR model (MPSR), elastic/plastic deformation (EPD) model and indentation induced cracking (IIC) model. Chemical etching study was carried out to find the etch pit density (EPD) of the grown crystal. Laser damage threshold (LDT) value was measured by using Nd:YAG laser (1064 nm). The dielectric permittivity (ε՛) and dielectric loss (tan δ) as a function of frequency was measured. The electronic polarizability (α) of the TP4N crystal was calculated. It is well matched to the value which was calculated from Clausius-Mossotti relation, Lorentz-Lorentz equation, optical band gap and coupled dipole method (CDM). The Z-scan technique was carried out using solid state laser (640 nm) to analyze the nonlinear optical properties of the TP4N crystal. It exhibits the self-defocusing and saturable absorbance effect during analysis of closed and open aperture respectively. The nonlinear optical parameters such as refractive index (n2), absorption coefficient (β) and the third order nonlinear optical susceptibility (χ(3)) were analyzed.

  15. Crystal growth and electrical properties of CuFeO 2 single crystals

    NASA Astrophysics Data System (ADS)

    Dordor, P.; Chaminade, J. P.; Wichainchai, A.; Marquestaut, E.; Doumerc, J. P.; Pouchard, M.; Hagenmuller, P.; Ammar, A.

    1988-07-01

    Delafossite-type CuFeO 2 single crystals have been prepared by a flux method: crystals obtained in a Cu crucible with LiBO 2 as flux are n-type whereas those prepared in a Pt crucible with a Cu 2O flux are p-type. Electrical measurements have revealed that n-type crystals exhibit weak anisotropic conductivities with large activation energies and small mobilities (r.t. values perpendicular and parallel to the c-axis: μ⊥ = 5 × 10 -5 and μ‖ = 10 -7 cm -2 V -1 sec -1). p-type crystals, less anisotropic, are characterized by low activation energies and higher mobilities ( μ⊥ = 34 and μ‖ = 8.9 cm 2 V -1 sec -1). A two -conduction-band model is proposed to account for the difference observed between the energy gap value deduced from photoelectrochemical measurements and the activation energy of the electrical conductivity in the intrinsic domain.

  16. Diagnosing the Internal Architecture of Zeolite Ferrierite

    PubMed Central

    Schmidt, Joel E.; Hendriks, Frank C.; Lutz, Martin; Post, L. Christiaan; Fu, Donglong

    2017-01-01

    Abstract Large crystals of zeolite ferrierite (FER) are important model systems for spatially resolved catalysis and diffusion studies, though there is considerable variation in crystal habit depending on the chemical composition and employed synthesis conditions. A synergistic combination of techniques has been applied, including single crystal X‐ray diffraction, high‐temperature in situ confocal fluorescence microscopy, fluorescent probe molecules, wide‐field microscopy and atomic force microscopy to unravel the internal architecture of three distinct FER zeolites. Pyrolyzed template species can be used as markers for the 8‐membered ring direction as they are trapped in the terraced roof of the FER crystals. This happens as the materials grow in a layer‐by‐layer, defect‐free manner normal to the large crystal surface, and leads to a facile method to diagnose the pore system orientation, which avoids tedious single crystal X‐ray diffraction experiments. PMID:28809081

  17. Gradient Plasticity Model and its Implementation into MARMOT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barker, Erin I.; Li, Dongsheng; Zbib, Hussein M.

    2013-08-01

    The influence of strain gradient on deformation behavior of nuclear structural materials, such as boby centered cubic (bcc) iron alloys has been investigated. We have developed and implemented a dislocation based strain gradient crystal plasticity material model. A mesoscale crystal plasticity model for inelastic deformation of metallic material, bcc steel, has been developed and implemented numerically. Continuum Dislocation Dynamics (CDD) with a novel constitutive law based on dislocation density evolution mechanisms was developed to investigate the deformation behaviors of single crystals, as well as polycrystalline materials by coupling CDD and crystal plasticity (CP). The dislocation density evolution law in thismore » model is mechanism-based, with parameters measured from experiments or simulated with lower-length scale models, not an empirical law with parameters back-fitted from the flow curves.« less

  18. Low-temperature electrical resistivity of transition-metal carbides

    NASA Astrophysics Data System (ADS)

    Allison, C. Y.; Finch, C. B.; Foegelle, M. D.; Modine, F. A.

    1988-10-01

    The electrical resistivities of single crystals of ZrC 0.93, VC 0.88, NbC 0.95, and TaC 0.99 were measured from liquid helium temperature to 350 K. The Bloch-Gruneisen theory of electrical resistivity gives a good fit to the zirconium carbide and the vanadium carbide measurements. In contrast, the resistivities of the two superconducting crystals, tantalum carbide and niobium carbide, show excellent agreement with the Wilson model. The appropriate model appears to depend upon the superconducting properties of the crystals.

  19. A detailed investigation of the strain hardening response of aluminum alloyed Hadfield steel

    NASA Astrophysics Data System (ADS)

    Canadinc, Demircan

    The unusual strain hardening response exhibited by Hadfield steel single and polycrystals under tensile loading was investigated. Hadfield steel, which deforms plastically through the competing mechanisms slip and twinning, was alloyed with aluminum in order to suppress twinning and study the role of slip only. To avoid complications due to a grained structure, only single crystals of the aluminum alloyed Hadfield steel were considered at the initial stage of the current study. As a result of alloying with aluminum, twinning was suppressed; however a significant increase in the strain hardening response was also present. A detailed microstructural analysis showed the presence of high-density dislocation walls that evolve in volume fraction due to plastic deformation and interaction with slip systems. The very high strain hardening rates exhibited by the aluminum alloyed Hadfield steel single crystals was attributed to the blockage of glide dislocations by the high-density dislocation walls. A crystal plasticity model was proposed, that accounts for the volume fraction evolution and rotation of the dense dislocation walls, as well as their interaction with the active slip systems. The novelty of the model lies in the simplicity of the constitutive equations that define the strain hardening, and the fact that it is based on experimental data regarding the microstructure. The success of the model was tested by its application to different crystallographic orientations, and finally the polycrystals of the aluminum alloyed Hadfield steel. Meanwhile, the capability of the model to predict texture was also observed through the rotation of the loading axis in single crystals. The ability of the model to capture the polycrystalline deformation response provides a venue for its utilization in other alloys that exhibit dislocation sheet structures.

  20. Strength of shock-loaded single-crystal tantalum [100] determined using in situ broadband x-ray Laue diffraction.

    PubMed

    Comley, A J; Maddox, B R; Rudd, R E; Prisbrey, S T; Hawreliak, J A; Orlikowski, D A; Peterson, S C; Satcher, J H; Elsholz, A J; Park, H-S; Remington, B A; Bazin, N; Foster, J M; Graham, P; Park, N; Rosen, P A; Rothman, S R; Higginbotham, A; Suggit, M; Wark, J S

    2013-03-15

    The strength of shock-loaded single crystal tantalum [100] has been experimentally determined using in situ broadband x-ray Laue diffraction to measure the strain state of the compressed crystal, and elastic constants calculated from first principles. The inferred strength reaches 35 GPa at a shock pressure of 181 GPa and is in excellent agreement with a multiscale strength model [N. R. Barton et al., J. Appl. Phys. 109, 073501 (2011)], which employs a hierarchy of simulation methods over a range of length scales to calculate strength from first principles.

  1. Influence of support morphology on the bonding of molecules to nanoparticles

    PubMed Central

    Yim, Chi Ming; Pang, Chi L.; Hermoso, Diego R.; Dover, Coinneach M.; Muryn, Christopher A.; Maccherozzi, Francesco; Dhesi, Sarnjeet S.; Pérez, Rubén; Thornton, Geoff

    2015-01-01

    Supported metal nanoparticles form the basis of heterogeneous catalysts. Above a certain nanoparticle size, it is generally assumed that adsorbates bond in an identical fashion as on a semiinfinite crystal. This assumption has allowed the database on metal single crystals accumulated over the past 40 years to be used to model heterogeneous catalysts. Using a surface science approach to CO adsorption on supported Pd nanoparticles, we show that this assumption may be flawed. Near-edge X-ray absorption fine structure measurements, isolated to one nanoparticle, show that CO bonds upright on the nanoparticle top facets as expected from single-crystal data. However, the CO lateral registry differs from the single crystal. Our calculations indicate that this is caused by the strain on the nanoparticle, induced by carpet growth across the substrate step edges. This strain also weakens the CO–metal bond, which will reduce the energy barrier for catalytic reactions, including CO oxidation. PMID:26080433

  2. Tuning hardness in calcite by incorporation of amino acids.

    PubMed

    Kim, Yi-Yeoun; Carloni, Joseph D; Demarchi, Beatrice; Sparks, David; Reid, David G; Kunitake, Miki E; Tang, Chiu C; Duer, Melinda J; Freeman, Colin L; Pokroy, Boaz; Penkman, Kirsty; Harding, John H; Estroff, Lara A; Baker, Shefford P; Meldrum, Fiona C

    2016-08-01

    Structural biominerals are inorganic/organic composites that exhibit remarkable mechanical properties. However, the structure-property relationships of even the simplest building unit-mineral single crystals containing embedded macromolecules-remain poorly understood. Here, by means of a model biomineral made from calcite single crystals containing glycine (0-7 mol%) or aspartic acid (0-4 mol%), we elucidate the origin of the superior hardness of biogenic calcite. We analysed lattice distortions in these model crystals by using X-ray diffraction and molecular dynamics simulations, and by means of solid-state nuclear magnetic resonance show that the amino acids are incorporated as individual molecules. We also demonstrate that nanoindentation hardness increased with amino acid content, reaching values equivalent to their biogenic counterparts. A dislocation pinning model reveals that the enhanced hardness is determined by the force required to cut covalent bonds in the molecules.

  3. Lattice Rotation Patterns and Strain Gradient Effects in Face-Centered-Cubic Single Crystals Under Spherical Indentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Y. F.; Larson, B. C.; Lee, J. H.

    Strain gradient effects are commonly modeled as the origin of the size dependence of material strength, such as the dependence of indentation hardness on contact depth and spherical indenter radius. However, studies on the microstructural comparisons of experiments and theories are limited. First, we have extended a strain gradient Mises-plasticity model to its crystal plasticity version and implemented a finite element method to simulate the load-displacement response and the lattice rotation field of Cu single crystals under spherical indentation. The strain gradient simulations demonstrate that the forming of distinct sectors of positive and negative angles in the lattice rotation fieldmore » is governed primarily by the slip geometry and crystallographic orientations, depending only weakly on strain gradient effects, although hardness depends strongly on strain gradients. Second, the lattice rotation simulations are compared quantitatively with micron resolution, three-dimensional X-ray microscopy (3DXM) measurements of the lattice rotation fields under 100mN force, 100 mu m radius spherical indentations in < 111 >, < 110 >, and < 001 > oriented Cu single crystals. Third, noting the limitation of continuum strain gradient crystal plasticity models, two-dimensional discrete dislocation simulation results suggest that the hardness in the nanocontact regime is governed synergistically by a combination of strain gradients and source-limited plasticity. However, the lattice rotation field in the discrete dislocation simulations is found to be insensitive to these two factors but to depend critically on dislocation obstacle densities and strengths.« less

  4. Controlled Homoepitaxial Growth of Hybrid Perovskites.

    PubMed

    Lei, Yusheng; Chen, Yimu; Gu, Yue; Wang, Chunfeng; Huang, Zhenlong; Qian, Haoliang; Nie, Jiuyuan; Hollett, Geoff; Choi, Woojin; Yu, Yugang; Kim, NamHeon; Wang, Chonghe; Zhang, Tianjiao; Hu, Hongjie; Zhang, Yunxi; Li, Xiaoshi; Li, Yang; Shi, Wanjun; Liu, Zhaowei; Sailor, Michael J; Dong, Lin; Lo, Yu-Hwa; Luo, Jian; Xu, Sheng

    2018-05-01

    Organic-inorganic hybrid perovskites have demonstrated tremendous potential for the next-generation electronic and optoelectronic devices due to their remarkable carrier dynamics. Current studies are focusing on polycrystals, since controlled growth of device compatible single crystals is extremely challenging. Here, the first chemical epitaxial growth of single crystal CH 3 NH 3 PbBr 3 with controlled locations, morphologies, and orientations, using combined strategies of advanced microfabrication, homoepitaxy, and low temperature solution method is reported. The growth is found to follow a layer-by-layer model. A light emitting diode array, with each CH 3 NH 3 PbBr 3 crystal as a single pixel, with enhanced quantum efficiencies than its polycrystalline counterparts is demonstrated. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A Test of Macromolecular Crystallization in Microgravity: Large, Well-Ordered Insulin Crystals

    NASA Technical Reports Server (NTRS)

    Borgstahl, Gloria E. O.; Vahedi-Faridi, Ardeschir; Lovelace, Jeff; Bellamy, Henry D.; Snell, Edward H.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Crystals of insulin grown in microgravity on space shuttle mission STS-95 were extremely well-ordered and unusually large (many > 2 mm). The physical characteristics of six microgravity and six earth-grown crystals were examined by X-ray analysis employing superfine f slicing and unfocused synchrotron radiation. This experimental setup allowed hundreds of reflections to be precisely examined for each crystal in a short period of time. The microgravity crystals were on average 34 times larger, had 7 times lower mosaicity, had 54 times higher reflection peak heights and diffracted to significantly higher resolution than their earth grown counterparts. A single mosaic domain model could account for reflections in microgravity crystals whereas reflections from earth crystals required a model with multiple mosaic domains. This statistically significant and unbiased characterization indicates that the microgravity environment was useful for the improvement of crystal growth and resultant diffraction quality in insulin crystals and may be similarly useful for macromolecular crystals in general.

  6. From Modeling of Plasticity in Single-Crystal Superalloys to High-Resolution X-rays Three-Crystal Diffractometer Peaks Simulation

    NASA Astrophysics Data System (ADS)

    Jacques, Alain

    2016-12-01

    The dislocation-based modeling of the high-temperature creep of two-phased single-crystal superalloys requires input data beyond strain vs time curves. This may be obtained by use of in situ experiments combining high-temperature creep tests with high-resolution synchrotron three-crystal diffractometry. Such tests give access to changes in phase volume fractions and to the average components of the stress tensor in each phase as well as the plastic strain of each phase. Further progress may be obtained by a new method making intensive use of the Fast Fourier Transform, and first modeling the behavior of a representative volume of material (stress fields, plastic strain, dislocation densities…), then simulating directly the corresponding diffraction peaks, taking into account the displacement field within the material, chemical variations, and beam coherence. Initial tests indicate that the simulated peak shapes are close to the experimental ones and are quite sensitive to the details of the microstructure and to dislocation densities at interfaces and within the soft γ phase.

  7. Segregation control in vertical Bridgman crystal growth

    NASA Astrophysics Data System (ADS)

    Tao, Y.; Kou, S.

    1996-11-01

    To help the crystal grow at a constant dopant concentration in vertical Bridgman crystal growth, the dopant concentration of the growth melt, i.e. the melt from which the crystal grows, was kept constant. To achieve this, three different methods were used to replenish the growth melt at a controlled rate and suppress dopant diffusion between the growth melt and the replenishing melt. In method one, a replenishing crucible having a long melt passageway was immersed in the growth melt. In method two, a replenishing crucible having an independent feed-rate control mechanism was held above the growth melt. In method three, a submerged diffusion baffle was used to form a long melt passageway between the growth melt and the replenishing melt. NaNO 3 was used as a model material for crystal growth. Single crystals were grown by these three methods with effective segregation control. Method two was applied to InSb and single crystals were also grown with effective segregation control.

  8. Continuous structural evolution of calcium carbonate particles: a unifying model of copolymer-mediated crystallization.

    PubMed

    Kulak, Alex N; Iddon, Peter; Li, Yuting; Armes, Steven P; Cölfen, Helmut; Paris, Oskar; Wilson, Rory M; Meldrum, Fiona C

    2007-03-28

    Two double-hydrophilic block copolymers, each comprising a nonionic block and an anionic block comprising pendent aromatic sulfonate groups, were used as additives to modify the crystallization of CaCO3. Marked morphological changes in the CaCO3 particles were observed depending on the reaction conditions used. A poly(ethylene oxide)-b-poly(sodium 4-styrenesulfonate) diblock copolymer was particularly versatile in effecting a morphological change in calcite particles, and a continuous structural transition in the product particles from polycrystalline to mesocrystal to single crystal was observed with variation in the calcium concentration. The existence of this structural sequence provides unique insight into the mechanism of polymer-mediated crystallization. We propose that it reflects continuity in the crystallization mechanism itself, spanning the limits from nonoriented aggregation of nanoparticles to classical ion-by-ion growth. The various pathways to polycrystalline, mesocrystal, and single-crystal particles, which had previously been considered to be distinct, therefore all form part of a unifying crystallization framework based on the aggregation of precursor subunits.

  9. EPR study of a gamma-irradiated (2-hydroxyethyl)triphenylphosphonium chloride single crystal

    NASA Astrophysics Data System (ADS)

    Karakaş, E.; Türkkan, E.; Dereli, Ö.; Sayιn, Ü.; Tapramaz, R.

    2011-12-01

    In this study, gamma-irradiated single crystals of (2-hydroxyethyl)triphenylphosphonium chloride [CH2CH2OH P(C6H5)3Cl] were investigated with electron paramagnetic resonance (EPR) spectroscopy at room temperature for different orientations in the magnetic field. The single crystals were irradiated with a 60Co-γ-ray source at 0.818 kGy/h for about 36 h. Taking the chemical structure and the experimental spectra of the irradiated single crystal of the title compound into consideration, a paramagnetic species was produced with the unpaired electron delocalized around 31P and several 1H nuclei. The anisotropic hyperfine values due to the 31P nucleus, slightly anisotropic hyperfine values due to the 1H nuclei and the g-tensor of the radical were measured from the spectra. Depending on the molecular structure and measured parameters, three possible radicals were modeled using the B3LYP/6-31+G(d) level of density-functional theory, and EPR parameters were calculated for modeled radicals using the B3LYP/TZVP method/basis set combination. The calculated hyperfine coupling constants were found to be in good agreement with the observed EPR parameters. The experimental and theoretically simulated spectra for each of the three crystallographic axes were well matched with one of the modeled radicals (discussed in the text). We thus identified the radical C˙H2CH2 P(C 6H5)3 Cl as a paramagnetic species produced in a single crystal of the title compound in two magnetically distinct sites. The experimental g-factor and hyperfine coupling constants of the radical were found to be anisotropic, with the isotropic values g iso = 2.0032, ? G, ? G, ? G and ? G for site 1 and g iso=2.0031, ? G, ? G ? G and ? G for site 2.

  10. A Model for the Formation of Piezoelectric Single-Crystal Nanorings and Nanobows

    ERIC Educational Resources Information Center

    King, Angela G.

    2004-01-01

    The piezoelectric materials generate electricity or electric polarity in dielectric crystals when subjected to an applied voltage. The nanorings and nanobows are presented that can be used in nanoscale applications such as sensors, transducers, and electromechanical coupling devices.

  11. Infrared-active optical phonons in LiFePO4 single crystals

    NASA Astrophysics Data System (ADS)

    Stanislavchuk, T. N.; Middlemiss, D. S.; Syzdek, J. S.; Janssen, Y.; Basistyy, R.; Sirenko, A. A.; Khalifah, P. G.; Grey, C. P.; Kostecki, R.

    2017-07-01

    Infrared-active optical phonons were studied in olivine LiFePO4 oriented single crystals by means of both rotating analyzer and rotating compensator spectroscopic ellipsometry in the spectral range between 50 and 1400 cm-1. The eigenfrequencies, oscillator strengths, and broadenings of the phonon modes were determined from fits of the anisotropic harmonic oscillator model to the data. Optical phonons in a heterosite FePO4 crystal were measured from the delithiated ab-surface of the LiFePO4 crystal and compared with the phonon modes of the latter. Good agreement was found between experimental data and the results of solid-state hybrid density functional theory calculations for the phonon modes in both LiFePO4 and FePO4.

  12. A Capped Dipeptide Which Simultaneously Exhibits Gelation and Crystallization Behavior.

    PubMed

    Martin, Adam D; Wojciechowski, Jonathan P; Bhadbhade, Mohan M; Thordarson, Pall

    2016-03-08

    Short peptides capped at their N-terminus are often highly efficient gelators, yet notoriously difficult to crystallize. This is due to strong unidirectional interactions within fibers, resulting in structure propagation only along one direction. Here, we synthesize the N-capped dipeptide, benzimidazole-diphenylalanine, which forms both hydrogels and single crystals. Even more remarkably, we show using atomic force microscopy the coexistence of these two distinct phases. We then use powder X-ray diffraction to investigate whether the single crystal structure can be extrapolated to the molecular arrangement within the hydrogel. The results suggest parallel β-sheet arrangement as the dominant structural motif, challenging existing models for gelation of short peptides, and providing new directions for the future rational design of short peptide gelators.

  13. Investigation of grain-scale microstructural variability in tantalum using crystal plasticity-finite element simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Hojun; Dingreville, Rémi; Deibler, Lisa A.

    In this research, a crystal plasticity-finite element (CP-FE) model is used to investigate the effects of microstructural variability at a notch tip in tantalum single crystals and polycrystals. It is shown that at the macroscopic scale, the mechanical response of single crystals is sensitive to the crystallographic orientation while the response of polycrystals shows relatively small susceptibility to it. However, at the microscopic scale, the local stress and strain fields in the vicinity of the crack tip are completely determined by the local crystallographic orientation at the crack tip for both single and polycrystalline specimens with similar mechanical field distributions.more » Variability in the local metrics used (maximum von Mises stress and equivalent plastic strain at 3% deformation) for 100 different realizations of polycrystals fluctuates by up to a factor of 2–7 depending on the local crystallographic texture. Comparison with experimental data shows that the CP model captures variability in stress–strain response of polycrystals that can be attributed to the grain-scale microstructural variability. In conclusion, this work provides a convenient approach to investigate fluctuations in the mechanical behavior of polycrystalline materials induced by grain morphology and crystallographic orientations.« less

  14. Investigation of grain-scale microstructural variability in tantalum using crystal plasticity-finite element simulations

    DOE PAGES

    Lim, Hojun; Dingreville, Rémi; Deibler, Lisa A.; ...

    2016-02-27

    In this research, a crystal plasticity-finite element (CP-FE) model is used to investigate the effects of microstructural variability at a notch tip in tantalum single crystals and polycrystals. It is shown that at the macroscopic scale, the mechanical response of single crystals is sensitive to the crystallographic orientation while the response of polycrystals shows relatively small susceptibility to it. However, at the microscopic scale, the local stress and strain fields in the vicinity of the crack tip are completely determined by the local crystallographic orientation at the crack tip for both single and polycrystalline specimens with similar mechanical field distributions.more » Variability in the local metrics used (maximum von Mises stress and equivalent plastic strain at 3% deformation) for 100 different realizations of polycrystals fluctuates by up to a factor of 2–7 depending on the local crystallographic texture. Comparison with experimental data shows that the CP model captures variability in stress–strain response of polycrystals that can be attributed to the grain-scale microstructural variability. In conclusion, this work provides a convenient approach to investigate fluctuations in the mechanical behavior of polycrystalline materials induced by grain morphology and crystallographic orientations.« less

  15. Crystal growth and molecular modeling studies of inhibition of struvite by phosphocitrate.

    PubMed

    Wierzbicki, A; Sallis, J D; Stevens, E D; Smith, M; Sikes, C S

    1997-09-01

    The inhibition by phosphocitrate of struvite crystal formation and growth has been examined in the present study. Crystal growth in a gel matrix was controlled by phosphocitrate in a dose-dependent manner. The effects of inhibition were followed using scanning electron microscopy, optical microscopy, and single crystal X-ray analysis. The presence of phosphocitrate induced very strong, crystal face specific inhibition of struvite, leading to total cessation of crystal growth when sufficient concentration of the inhibitor was made available. Crystal growth studies and results from molecular modeling indicated strong affinity of phosphocitrate to (101) faces of struvite. This in turn led to an alteration in the expression of these faces and the development of a characteristic arrowhead struvite morphology. Similar changes were not observed in the presence of identical concentrations of citrate, acetohydroxamic acid, and N-sulfo-2 amino tricarballylate (an analog of phosphocitrate), emphasizing the unique interaction of phosphocitrate with the struvite crystal lattice.

  16. Combining EPR spectroscopy and X-ray crystallography to elucidate the structure and dynamics of conformationally constrained spin labels in T4 lysozyme single crystals.

    PubMed

    Consentius, Philipp; Gohlke, Ulrich; Loll, Bernhard; Alings, Claudia; Heinemann, Udo; Wahl, Markus C; Risse, Thomas

    2017-08-09

    Electron paramagnetic resonance (EPR) spectroscopy in combination with site-directed spin labeling is used to investigate the structure and dynamics of conformationally constrained spin labels in T4 lysozyme single crystals. Within a single crystal, the oriented ensemble of spin bearing moieties results in a strong angle dependence of the EPR spectra. A quantitative description of the EPR spectra requires the determination of the unit cell orientation with respect to the sample tube and the orientation of the spin bearing moieties within the crystal lattice. Angle dependent EPR spectra were analyzed by line shape simulations using the stochastic Liouville equation approach developed by Freed and co-workers and an effective Hamiltonian approach. The gain in spectral information obtained from the EPR spectra of single crystalline samples taken at different frequencies, namely the X-band and Q-band, allows us to discriminate between motional models describing the spectra of isotropic solutions similarly well. In addition, it is shown that the angle dependent single crystal spectra allow us to identify two spin label rotamers with very similar side chain dynamics. These results demonstrate the utility of single crystal EPR spectroscopy in combination with spectral line shape simulation techniques to extract valuable dynamic information not readily available from the analysis of isotropic systems. In addition, it will be shown that the loss of electron density in high resolution diffraction experiments at room temperature does not allow us to conclude that there is significant structural disorder in the system.

  17. Neutron diffraction measurements and micromechanical modelling of temperature-dependent variations in TATB lattice parameters

    DOE PAGES

    Yeager, John D.; Luscher, Darby J.; Vogel, Sven C.; ...

    2016-02-02

    Triaminotrinitrobenzene (TATB) is a highly anisotropic molecular crystal used in several plastic-bonded explosive (PBX) formulations. TATB-based explosives exhibit irreversible volume expansion (“ratchet growth”) when thermally cycled. A theoretical understanding of the relationship between anisotropy of the crystal, crystal orientation distribution (texture) of polycrystalline aggregates, and the intergranular interactions leading to this irreversible growth is necessary to accurately develop physics-based predictive models for TATB-based PBXs under various thermal environments. In this work, TATB lattice parameters were measured using neutron diffraction during thermal cycling of loose powder and a pressed pellet. The measured lattice parameters help clarify conflicting reports in the literaturemore » as these new results are more consistent with one set of previous results than another. The lattice parameters of pressed TATB were also measured as a function of temperature, showing some differences from the powder. This data is used along with anisotropic single-crystal stiffness moduli reported in the literature to model the nominal stresses associated with intergranular constraints during thermal expansion. The texture of both specimens were characterized and the pressed pellet exhibits preferential orientation of (001) poles along the pressing direction, whereas no preferred orientation was found for the loose powder. Lastly, thermal strains for single-crystal TATB computed from lattice parameter data for the powder is input to a self-consistent micromechanical model, which predicts the lattice parameters of the constrained TATB crystals within the pellet. The agreement of these model results with the diffraction data obtained from the pellet is discussed along with future directions of research.« less

  18. Prediction of dislocation generation during Bridgman growth of GaAs crystals

    NASA Technical Reports Server (NTRS)

    Tsai, C. T.; Yao, M. W.; Chait, Arnon

    1992-01-01

    Dislocation densities are generated in GaAs single crystals due to the excessive thermal stresses induced by temperature variations during growth. A viscoplastic material model for GaAs, which takes into account the movement and multiplication of dislocations in the plastic deformation, is developed according to Haasen's theory. The dislocation density is expressed as an internal state variable in this dynamic viscoplastic model. The deformation process is a nonlinear function of stress, strain rate, dislocation density and temperature. The dislocation density in the GaAs crystal during vertical Bridgman growth is calculated using a nonlinear finite element model. The dislocation multiplication in GaAs crystals for several temperature fields obtained from thermal modeling of both the GTE GaAs experimental data and artificially designed data are investigated.

  19. Prediction of dislocation generation during Bridgman growth of GaAs crystals

    NASA Astrophysics Data System (ADS)

    Tsai, C. T.; Yao, M. W.; Chait, Arnon

    1992-11-01

    Dislocation densities are generated in GaAs single crystals due to the excessive thermal stresses induced by temperature variations during growth. A viscoplastic material model for GaAs, which takes into account the movement and multiplication of dislocations in the plastic deformation, is developed according to Haasen's theory. The dislocation density is expressed as an internal state variable in this dynamic viscoplastic model. The deformation process is a nonlinear function of stress, strain rate, dislocation density and temperature. The dislocation density in the GaAs crystal during vertical Bridgman growth is calculated using a nonlinear finite element model. The dislocation multiplication in GaAs crystals for several temperature fields obtained from thermal modeling of both the GTE GaAs experimental data and artificially designed data are investigated.

  20. Formation and electrical transport properties of pentacene nanorod crystal.

    PubMed

    Akai-Kasaya, M; Ohmori, C; Kawanishi, T; Nashiki, M; Saito, A; Aono, M; Kuwahara, Y

    2010-09-10

    The monophasic formation of an uncharted pentacene crystal, the pentacene nanorod, has been investigated. The restricted formation of the pentacene nanorod on a bare mica surface reveals a peculiar surface catalytic crystal growth mode of the pentacene. We demonstrated the charge transport measurements through a single pentacene nanorod and analyzed the data using a periodic hopping conduction model. The results revealed that the pentacene nanorod has a periodic conductive node within their one-dimensional crystal.

  1. Crystal growth and characterization of third order nonlinear optical piperazinium bis(4-hydroxybenzenesulphonate) (P4HBS) single crystal

    NASA Astrophysics Data System (ADS)

    Pichan, Karuppasamy; Muthu, Senthil Pandian; Perumalsamy, Ramasamy

    2017-09-01

    The organic single crystal of piperazinium bis(4-hydroxybenzenesulphonate) (P4HBS) was grown by slow evaporation solution technique (SEST) at room temperature. The lattice parameters of the grown crystal were confirmed by single crystal X-ray diffraction analysis. Functional groups of P4HBS crystal were confirmed by FTIR spectrum analysis. The optical quality of the grown crystal was identified by the UV-Vis NIR spectrum analysis. The grown crystal has good optical transmittance in the range of 410-1100 nm. In photoluminescence spectrum, sharp emission peaks are observed, which indicates the ultraviolet (UV) emission. The photoconductivity study reveals that the grown crystal has negative photoconductive nature. The thermal behaviour of the P4HBS crystal was investigated by thermogravimetric and differential thermal analysis (TG-DTA). The mechanical stability of grown crystal was analyzed and the indentation size effect (ISE) was explained by Hays-Kendall's (HK) approach and proportional specimen resistance model (PSRM). Chemical etching study was carried out and the etch pit density (EPD) was calculated. The dielectric constant (ε‧) and dielectric loss (tan δ) as a function of frequency were measured for the grown crystal. The solid state parameters such as valence electron, plasma energy, Penn gap and Fermi energy were evaluated theoretically for the P4HBS using the empirical relation. The estimated values are used to calculate the electronic polarizability. The third-order nonlinear optical properties such as nonlinear refractive index (n2), absorption co-efficient (β) and susceptibility (χ(3)) were studied by Z-scan technique at 632.8 nm using He-Ne laser.

  2. Constitutive Models for Shape Memory Alloy Polycrystals

    NASA Technical Reports Server (NTRS)

    Comstock, R. J., Jr.; Somerday, M.; Wert, J. A.

    1996-01-01

    Shape memory alloys (SMA) exhibiting the superelastic or one-way effects can produce large recoverable strains upon application of a stress. In single crystals this stress and resulting strain are very orientation dependent. We show experimental stress/strain curves for a Ni-Al single crystal for various loading orientations. Also shown are model predictions; the open and closed circles indicate recoverable strains obtained at various stages in the transformation process. Because of the strong orientation dependence of shape memory properties, crystallographic texture can be expected to play an important role in the mechanical behavior of polycrystalline SMA. It is desirable to formulate a constitutive model to better understand and exploit the unique properties of SMA.

  3. Defect-induced solid state amorphization of molecular crystals

    NASA Astrophysics Data System (ADS)

    Lei, Lei; Carvajal, Teresa; Koslowski, Marisol

    2012-04-01

    We investigate the process of mechanically induced amorphization in small molecule organic crystals under extensive deformation. In this work, we develop a model that describes the amorphization of molecular crystals, in which the plastic response is calculated with a phase field dislocation dynamics theory in four materials: acetaminophen, sucrose, γ-indomethacin, and aspirin. The model is able to predict the fraction of amorphous material generated in single crystals for a given applied stress. Our results show that γ-indomethacin and sucrose demonstrate large volume fractions of amorphous material after sufficient plastic deformation, while smaller amorphous volume fractions are predicted in acetaminophen and aspirin, in agreement with experimental observation.

  4. Effects of heavy-ion irradiation on the microwave surface impedance of (Ba1-x K x )Fe2As2 single crystals

    NASA Astrophysics Data System (ADS)

    Ghigo, G.; Torsello, D.; Gerbaldo, R.; Gozzelino, L.; Laviano, F.; Tamegai, T.

    2018-07-01

    The electrodynamic response of Ba1-x K x Fe2As2 single crystals at the microwave frequencies has been investigated by means of a coplanar resonator technique, at different values of non-magnetic disorder introduced into the samples by heavy-ion irradiation. The surface impedance Z s = R s + iX s conforms to the classical skin effect above the critical temperature. Below T c, R s monotonically decreases while X s shows a peak, which evolves as a function of the irradiation fluence. The disorder-dependent Z s (T) curves are analyzed within a two-fluid model, suitably modified to account for a finite quasiparticle fraction at T = 0. The analysis gives, for the unirradiated crystal, quasiparticle relaxation times τ that are in good agreement with previous literature. Smaller τ values are deduced for the disordered crystals, both in the normal and in the superconducting states. The limits of application of the model are discussed.

  5. Fabrication and comparison of PMN-PT single crystal, PZT and PZT-based 1-3 composite ultrasonic transducers for NDE applications.

    PubMed

    Kim, Ki-Bok; Hsu, David K; Ahn, Bongyoung; Kim, Young-Gil; Barnard, Daniel J

    2010-08-01

    This paper describes fabrication and comparison of PMN-PT single crystal, PZT, and PZT-based 1-3 composite ultrasonic transducers for NDE applications. As a front matching layer between test material (Austenite stainless steel, SUS316) and piezoelectric materials, alumina ceramics was selected. The appropriate acoustic impedance of the backing materials for each transducer was determined based on the results of KLM model simulation. Prototype ultrasonic transducers with the center frequencies of approximately 2.25 and 5MHz for contact measurement were fabricated and compared to each other. The PMN-PT single crystal ultrasonic transducer shows considerably improved performance in sensitivity over the PZT and PZT-based 1-3 composite ultrasonic transducers. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  6. Theoretical and experimental studies of the molecular orbital bonding coefficients for Cu{sup 2+} ion in cesium hydrogen oxalate single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalfaoğlu, Emel, E-mail: emelkalfaoglu@mynet.com; Karabulut, Bünyamin

    2016-03-25

    Electron paramagnetic resonance (EPR) and optical absorption spectra of Cu{sup 2+} ions in cesium hydrogen oxalate single crystals have been investigated at room temperature. The spin-Hamiltonian parameters (g and A), have been determined. Crystalline field around the Cu{sup 2+} ion is almost axially symmetric. The results show a single paramagnetic site which confirms the triclinic crystal symmetry. Molecular orbital bonding coefficients are studied from the EPR and optical data. Theoretical octahedral field parameter and the tetragonal field parameters have been evaluated from the superposition model. Using these parameters, various bonding parameters are analyzed and the nature of bonding in themore » complex is discussed. The theoretical results are supported by experimental results.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Benjamin L; Bronkhorst, Curt; Beyerlein, Irene

    The goal of this work is to formulate a constitutive model for the deformation of metals over a wide range of strain rates. Damage and failure of materials frequently occurs at a variety of deformation rates within the same sample. The present state of the art in single crystal constitutive models relies on thermally-activated models which are believed to become less reliable for problems exceeding strain rates of 10{sup 4} s{sup -1}. This talk presents work in which we extend the applicability of the single crystal model to the strain rate region where dislocation drag is believed to dominate. Themore » elastic model includes effects from volumetric change and pressure sensitive moduli. The plastic model transitions from the low-rate thermally-activated regime to the high-rate drag dominated regime. The direct use of dislocation density as a state parameter gives a measurable physical mechanism to strain hardening. Dislocation densities are separated according to type and given a systematic set of interactions rates adaptable by type. The form of the constitutive model is motivated by previously published dislocation dynamics work which articulated important behaviors unique to high-rate response in fcc systems. The proposed material model incorporates thermal coupling. The hardening model tracks the varying dislocation population with respect to each slip plane and computes the slip resistance based on those values. Comparisons can be made between the responses of single crystals and polycrystals at a variety of strain rates. The material model is fit to copper.« less

  8. A Study of Defect Behavior in Almandine Garnet

    NASA Astrophysics Data System (ADS)

    Geiger, C. A.; Brearley, A. J.; Dachs, E.; Tipplet, G.; Rossman, G. R.

    2016-12-01

    Transport and diffusion in crystals are controlled by defects. However, a good understanding of the defect types in many silicates, including garnet, is not at hand. We undertook a study on synthetic almandine, ideal end-member Fe3Al2Si3O12, to better understand its precise chemical and physical properties and defect behavior. Crystals were synthesized at high pressures and temperatures under different fO2 conditions using various starting materials with H2O and without. The almandine obtained came in polycrystalline and single-crystal form. The synthetic reaction products and crystals were carefully characterized using X-ray powder diffraction, electron microprobe and TEM analysis and with 57Fe Mössbauer, UV/VIS single-crystal absorption and IR single-crystal spectroscopy. Various possible intrinsic defects, such as the Frenkel, Schottky and site-disorder types, along with Fe3+, in both synthetic and natural almandine crystals, were analyzed based on model defects expressed in Kröger-Vink notation. Certain types of minor microscopic- to macroscopic-sized precipitation or exsolution phases, including some that are nanosized, that are observed in synthetic almandine (e.g., magnetite), as well as in more compositionally complex natural crystals (e.g., magnetite, rutile, ilmenite), may result from defect reactions. An explanation for their origin through minor amounts of defects in garnet has certain advantages over other models that have been put forth in the literature that assume strict garnet stoichiometry for their formation and/or open-system atomic transport over relatively long length scales. Physical properties, including magnetic, electrical conductivity and diffusion behavior, as well as the color, of almandine are also analyzed in terms of various possible model defects. It is difficult, if not impossible, to synthesize stoichiometric end-member almandine, Fe3Al2Si3O12, in the laboratory, as small amounts of extrinsic OH- and/or Fe3+ defects, for example, are typically present depending on the synthesis route. The nature of possible nonstoichiometry in synthetic almandine and natural almandine-rich crystals is discussed and compared.

  9. Optical Properties of Ice Particles in Young Contrails

    NASA Technical Reports Server (NTRS)

    Hong, Gang; Feng, Qian; Yang, Ping; Kattawar, George; Minnis, Patrick; Hu, Yong X.

    2008-01-01

    The single-scattering properties of four types of ice crystals (pure ice crystals, ice crystals with an internal mixture of ice and black carbon, ice crystals coated with black carbon, and soot coated with ice) in young contrails are investigated at wavelengths 0.65 and 2.13 micrometers using Mie codes from coated spheres. The four types of ice crystals have distinct differences in their single-scattering properties because of the embedded black carbon. The bulk scattering properties of young contrails consisting of the four types of ice crystals are further investigated by averaging their single-scattering properties over a typical ice particle size distribution found in young contrails. The effect of the radiative properties of the four types of ice particles on the Stokes parameters I, Q, U, and V is also investigated for different viewing zenith angles and relative azimuth angles with a solar zenith angle of 30 degrees using a vector radiative transfer model based on the adding-doubling technique. The Stokes parameters at a wavelength of 0.65 micrometers show pronounced differences for the four types of ice crystals. Those at a wavelength of 2.13 micrometers show similar variations with the viewing zenith angle and relative azimuth angle, but their values are noticeably different.

  10. Growth of single crystals of BaFe12O19 by solid state crystal growth

    NASA Astrophysics Data System (ADS)

    Fisher, John G.; Sun, Hengyang; Kook, Young-Geun; Kim, Joon-Seong; Le, Phan Gia

    2016-10-01

    Single crystals of BaFe12O19 are grown for the first time by solid state crystal growth. Seed crystals of BaFe12O19 are buried in BaFe12O19+1 wt% BaCO3 powder, which are then pressed into pellets containing the seed crystals. During sintering, single crystals of BaFe12O19 up to ∼130 μm thick in the c-axis direction grow on the seed crystals by consuming grains from the surrounding polycrystalline matrix. Scanning electron microscopy-energy dispersive spectroscopy analysis shows that the single crystal and the surrounding polycrystalline matrix have the same chemical composition. Micro-Raman scattering shows the single crystal to have the BaFe12O19 structure. The optimum growth temperature is found to be 1200 °C. The single crystal growth behavior is explained using the mixed control theory of grain growth.

  11. Structural, thermal, laser damage, photoconductivity, NLO and mechanical properties of modified vertical Bridgman method grown AgGa0.5In0.5Se2 single crystal

    NASA Astrophysics Data System (ADS)

    Vijayakumar, P.; Ramasamy, P.

    2016-08-01

    AgGa0.5In0.5Se2 single crystal was grown using modified vertical Bridgman method. The structural perfection of the AgGa0.5In0.5Se2 single crystal has been analyzed by high-resolution X-ray diffraction rocking curve measurements. The structural and compositional uniformities of AgGa0.5In0.5Se2 were studied using Raman scattering spectroscopy at room temperature. The FWHM of the Γ1 (W1) and Γ5L (Γ15) measured at different regions of the crystal confirms that the composition throughout its length is fairly uniform. Thermal properties of the as-grown crystal, including specific heat, thermal diffusivity and thermal conductivity have been investigated. The multiple shot surface laser damage threshold value was measured using Nd:YAG laser. Photoconductivity measurements with different temperatures have confirmed the positive photoconducting behavior. Second harmonic generation (SHG) on powder samples has been measured using the Kurtz and Perry technique and the results display that AgGa0.5In0.5Se2 is a phase-matchable NLO material. The hardness behavior has been measured using Vickers micro hardness measurement and the indentation size effect has been observed. The classical Meyer's law, propositional resistance model and modified propositional resistance model have been used to analyse the micro hardness behavior.

  12. Experimental and numerical analysis of penetration/removal response of endodontic instrument made of single crystal Cu-based SMA: comparison with NiTi SMA instruments

    NASA Astrophysics Data System (ADS)

    Vincent, M.; Xolin, P.; Gevrey, A.-M.; Thiebaud, F.; Engels-Deutsch, M.; Ben Zineb, T.

    2017-04-01

    This paper presents an experimental and numerical study showing that single crystal shape memory alloy (SMA) Cu-based endodontic instruments can lead to equivalent mechanical performances compared to NiTi-based instruments besides their interesting biological properties. Following a previous finite element analysis (FEA) of single crystal CuAlBe endodontic instruments (Vincent et al 2015 J. Mater. Eng. Perform. 24 4128-39), prototypes with the determined geometrical parameters were machined and experimentally characterized in continuous rotation during a penetration/removal (P/R) protocol in artificial canals. The obtained mechanical responses were compared to responses of NiTi endodontic files in the same conditions. In addition, FEA was conducted and compared with the experimental results to validate the adopted modeling and to evaluate the local quantities inside the instrument as the stress state and the distribution of volume fraction of martensite. The obtained results highlight that single crystal CuAlBe SMA prototypes show equivalent mechanical responses to its NiTi homologous prototypes in the same P/R experimental conditions.

  13. Polymorphism of Alprazolam (Xanax): a review of its crystalline phases and identification, crystallographic characterization, and crystal structure of a new polymorph (form III).

    PubMed

    de Armas, Héctor Novoa; Peeters, Oswald M; Van den Mooter, Guy; Blaton, Norbert

    2007-05-01

    A new polymorphic form of Alprazolam (Xanax), 8-chloro-1-methyl-6-phenyl-4H-[1,2,4]triazolo-[4,3-alpha][1,4]benzodiazepine, C(17)H(13)ClN(4), has been investigated by means of X-ray powder diffraction (XRPD), single crystal X-ray diffraction, and differential scanning calorimetry (DSC). This polymorphic form (form III) was obtained during DSC experiments after the exothermic recrystallization of the melt of form I. The crystal unit cell dimensions for form III were determined from diffractometer methods. The monoclinic unit cell found for this polymorph using XRPD after indexing the powder diffractogram was confirmed by the cell parameters obtained from single crystal X-ray diffractometry on a crystal isolated from the DSC pans. The single crystal unit cell parameters are: a = 28.929(9), b = 13.844(8), c = 7.361(3) angstroms, beta = 92.82(3) degrees , V = 2944(2) angstroms(3), Z = 8, space group P2(1) (No.4), Dx = 1.393 Mg/m(3). The structure obtained from single crystal X-ray diffraction was used as initial model for Rietveld refinement on the powder diffraction data of form III. The temperature phase transformations of alprazolam were also studied using high temperature XRPD. A review of the different phases available in the Powder Diffraction File (PDF) database for this drug is described bringing some clarification and corrections. (c) 2007 Wiley-Liss, Inc. and the American Pharmacists Association.

  14. Ultrafast dynamic response of single-crystal β-HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine)

    NASA Astrophysics Data System (ADS)

    Zaug, Joseph M.; Austin, Ryan A.; Armstrong, Michael R.; Crowhurst, Jonathan C.; Goldman, Nir; Ferranti, Louis; Saw, Cheng K.; Swan, Raymond A.; Gross, Richard; Fried, Laurence E.

    2018-05-01

    We report experimental and computational studies of shock wave dynamics in single-crystal β-HMX on an ultrafast time scale. Here, a laser-based compression drive (˜1 ns in duration; stresses of up to ˜40 GPa) is used to propagate shock waves normal to the (110) and (010) lattice planes. Ultrafast time-domain interferometry measurements reveal distinct, time-dependent relationships between the shock wave velocity and particle velocity for each crystal orientation, which suggest evolving physical processes on a sub-nanosecond time scale. To help interpret the experimental data, elastic shock wave response was simulated using a finite-strain model of crystal thermoelasticity. At early propagation times (<500 ps), the model is in agreement with the data, which indicates that the mechanical response is dominated by thermoelastic deformation. The model agreement depends on the inclusion of nonlinear elastic effects in both the spherical and deviatoric stress-strain responses. This is achieved by employing an equation-of-state and a pressure-dependent stiffness tensor, which was computed via atomistic simulation. At later times (>500 ps), the crystal samples exhibit signatures of inelastic deformation, structural phase transformation, or chemical reaction, depending on the direction of wave propagation.

  15. Coupling continuum dislocation transport with crystal plasticity for application to shock loading conditions

    DOE PAGES

    Luscher, Darby Jon; Mayeur, Jason Rhea; Mourad, Hashem Mohamed; ...

    2015-08-05

    Here, we have developed a multi-physics modeling approach that couples continuum dislocation transport, nonlinear thermoelasticity, crystal plasticity, and consistent internal stress and deformation fields to simulate the single-crystal response of materials under extreme dynamic conditions. Dislocation transport is modeled by enforcing dislocation conservation at a slip-system level through the solution of advection-diffusion equations. Nonlinear thermoelasticity provides a thermodynamically consistent equation of state to relate stress (including pressure), temperature, energy densities, and dissipation. Crystal plasticity is coupled to dislocation transport via Orowan's expression where the constitutive description makes use of recent advances in dislocation velocity theories applicable under extreme loading conditions.more » The configuration of geometrically necessary dislocation density gives rise to an internal stress field that can either inhibit or accentuate the flow of dislocations. An internal strain field associated with the internal stress field contributes to the kinematic decomposition of the overall deformation. The paper describes each theoretical component of the framework, key aspects of the constitutive theory, and some details of a one-dimensional implementation. Results from single-crystal copper plate impact simulations are discussed in order to highlight the role of dislocation transport and pile-up in shock loading regimes. The main conclusions of the paper reinforce the utility of the modeling approach to shock problems.« less

  16. Hybrid excitations due to crystal field, spin-orbit coupling, and spin waves in LiFePO4

    NASA Astrophysics Data System (ADS)

    Yiu, Yuen; Le, Manh Duc; Toft-Peterson, Rasmus; Ehlers, Georg; McQueeney, Robert J.; Vaknin, David

    2017-03-01

    We report on the spin waves and crystal field excitations in single crystal LiFePO4 by inelastic neutron scattering over a wide range of temperatures, below and above the antiferromagnetic transition of this system. In particular, we find extra excitations below TN=50 K that are nearly dispersionless and are most intense around magnetic zone centers. We show that these excitations correspond to transitions between thermally occupied excited states of Fe2 + due to splitting of the S =2 levels that arise from the crystal field and spin-orbit interactions. These excitations are further amplified by the highly distorted nature of the oxygen octahedron surrounding the iron atoms. Above TN, magnetic fluctuations are observed up to at least 720 K, with an additional inelastic excitation around 4 meV, which we attribute to single-ion effects, as its intensity weakens slightly at 720 K compared to 100 K, which is consistent with the calculated cross sections using a single-ion model. Our theoretical analysis, using the MF-RPA model, provides both detailed spectra of the Fe d shell and estimates of the average ordered magnetic moment and TN. By applying the MF-RPA model to a number of existing spin-wave results from other Li M PO4 (M =Mn , Co, and Ni), we are able to obtain reasonable predictions for the moment sizes and transition temperatures.

  17. Investigation of Three-Dimensional Stress Fields and Slip Systems for FCC Single Crystal Superalloy Notched Specimens

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Magnan, Shannon; Ebrahimi, Fereshteh; Ferroro, Luis

    2004-01-01

    Metals and their alloys, except for a few intermetallics, are inherently ductile, i.e. plastic deformation precedes fracture in these materials. Therefore, resistance to fracture is directly related to the development of the plastic zone at the crack tip. Recent studies indicate that the fracture toughness of single crystals depends on the crystallographic orientation of the notch as well as the loading direction. In general, the dependence of crack propagation resistance on crystallographic orientation arises from the anisotropy of (i) elastic constants, (ii) plastic deformation (or slip), and (iii) the weakest fracture planes (e.g. cleavage planes). Because of the triaxial stress state at the notch tips, many slip systems that otherwise would not be activated during uniaxial testing, become operational. The plastic zone formation in single crystals has been tackled theoretically by Rice and his co-workers and only limited experimental work has been conducted in this area. The study of the stresses and strains in the vicinity of a FCC single crystal notch tip is of relatively recent origin. We present experimental and numerical investigation of 3D stress fields and evolution of slip sector boundaries near notches in FCC single crystal tension test specimens, and demonstrate that a 3D linear elastic finite element model that includes the effect of material anisotropy is shown to predict active slip planes and sectors accurately. The slip sector boundaries are shown to have complex curved shapes with several slip systems active simultaneously near the notch. Results are presented for surface and mid-plane of the specimens. The results demonstrate that accounting for 3D elastic anisotropy is very important for accurate prediction of slip activation near FCC single crystal notches loaded in tension. Results from the study will help establish guidelines for fatigue damage near single crystal notches.

  18. Direct growth of single-crystalline III–V semiconductors on amorphous substrates

    DOE PAGES

    Chen, Kevin; Kapadia, Rehan; Harker, Audrey; ...

    2016-01-27

    The III–V compound semiconductors exhibit superb electronic and optoelectronic properties. Traditionally, closely lattice-matched epitaxial substrates have been required for the growth of high-quality single-crystal III–V thin films and patterned microstructures. To remove this materials constraint, here we introduce a growth mode that enables direct writing of single-crystalline III–V’s on amorphous substrates, thus further expanding their utility for various applications. The process utilizes templated liquid-phase crystal growth that results in user-tunable, patterned micro and nanostructures of single-crystalline III–V’s of up to tens of micrometres in lateral dimensions. InP is chosen as a model material system owing to its technological importance. Themore » patterned InP single crystals are configured as high-performance transistors and photodetectors directly on amorphous SiO 2 growth substrates, with performance matching state-of-the-art epitaxially grown devices. In conclusion, the work presents an important advance towards universal integration of III–V’s on application-specific substrates by direct growth.« less

  19. Direct growth of single-crystalline III–V semiconductors on amorphous substrates

    PubMed Central

    Chen, Kevin; Kapadia, Rehan; Harker, Audrey; Desai, Sujay; Seuk Kang, Jeong; Chuang, Steven; Tosun, Mahmut; Sutter-Fella, Carolin M.; Tsang, Michael; Zeng, Yuping; Kiriya, Daisuke; Hazra, Jubin; Madhvapathy, Surabhi Rao; Hettick, Mark; Chen, Yu-Ze; Mastandrea, James; Amani, Matin; Cabrini, Stefano; Chueh, Yu-Lun; Ager III, Joel W.; Chrzan, Daryl C.; Javey, Ali

    2016-01-01

    The III–V compound semiconductors exhibit superb electronic and optoelectronic properties. Traditionally, closely lattice-matched epitaxial substrates have been required for the growth of high-quality single-crystal III–V thin films and patterned microstructures. To remove this materials constraint, here we introduce a growth mode that enables direct writing of single-crystalline III–V's on amorphous substrates, thus further expanding their utility for various applications. The process utilizes templated liquid-phase crystal growth that results in user-tunable, patterned micro and nanostructures of single-crystalline III–V's of up to tens of micrometres in lateral dimensions. InP is chosen as a model material system owing to its technological importance. The patterned InP single crystals are configured as high-performance transistors and photodetectors directly on amorphous SiO2 growth substrates, with performance matching state-of-the-art epitaxially grown devices. The work presents an important advance towards universal integration of III–V's on application-specific substrates by direct growth. PMID:26813257

  20. Multiscale Modeling of Structurally-Graded Materials Using Discrete Dislocation Plasticity Models and Continuum Crystal Plasticity Models

    NASA Technical Reports Server (NTRS)

    Saether, Erik; Hochhalter, Jacob D.; Glaessgen, Edward H.

    2012-01-01

    A multiscale modeling methodology that combines the predictive capability of discrete dislocation plasticity and the computational efficiency of continuum crystal plasticity is developed. Single crystal configurations of different grain sizes modeled with periodic boundary conditions are analyzed using discrete dislocation plasticity (DD) to obtain grain size-dependent stress-strain predictions. These relationships are mapped into crystal plasticity parameters to develop a multiscale DD/CP model for continuum level simulations. A polycrystal model of a structurally-graded microstructure is developed, analyzed and used as a benchmark for comparison between the multiscale DD/CP model and the DD predictions. The multiscale DD/CP model follows the DD predictions closely up to an initial peak stress and then follows a strain hardening path that is parallel but somewhat offset from the DD predictions. The difference is believed to be from a combination of the strain rate in the DD simulation and the inability of the DD/CP model to represent non-monotonic material response.

  1. Fabrication of single crystal architecture in Sb-S-I glass: Transition from dot to line

    DOE PAGES

    Savytskii, Dmytro; Dierolf, Volkmar; Tamura, Nobumichi; ...

    2017-12-08

    We have investigated the occurrence of the sometimes observed grain boundaries, as initial seed is extended to form line in laser-fabricated single-crystal architecture in glass (SCAG). In particular, for Sb 2S 3 SCAG in Sb-S-I glass as a model system, grain boundaries are formed during the transition from laser-written initial seed dot to crystal line. Such grain boundaries during the growth of Sb 2S 3 crystals occur in 16SbI 3-84Sb 2S 3glass, whereas they are absent in Sb 2S 3 glass. We correlate this difference in tendency to form multiple grains with the relative glass forming ability i.e. the dynamicsmore » of nucleation and crystal growth as determined by differential scanning calorimetry (DSC). On the basis of this understanding, methods to minimize the appearance of grain boundaries in the transition region are suggested.« less

  2. Fabrication of single crystal architecture in Sb-S-I glass: Transition from dot to line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savytskii, Dmytro; Dierolf, Volkmar; Tamura, Nobumichi

    We have investigated the occurrence of the sometimes observed grain boundaries, as initial seed is extended to form line in laser-fabricated single-crystal architecture in glass (SCAG). In particular, for Sb 2S 3 SCAG in Sb-S-I glass as a model system, grain boundaries are formed during the transition from laser-written initial seed dot to crystal line. Such grain boundaries during the growth of Sb 2S 3 crystals occur in 16SbI 3-84Sb 2S 3glass, whereas they are absent in Sb 2S 3 glass. We correlate this difference in tendency to form multiple grains with the relative glass forming ability i.e. the dynamicsmore » of nucleation and crystal growth as determined by differential scanning calorimetry (DSC). On the basis of this understanding, methods to minimize the appearance of grain boundaries in the transition region are suggested.« less

  3. The potential for the indirect crystal structure verification of methyl glycosides based on acetates' parent structures: GIPAW and solid-state NMR approaches

    NASA Astrophysics Data System (ADS)

    Szeleszczuk, Łukasz; Gubica, Tomasz; Zimniak, Andrzej; Pisklak, Dariusz M.; Dąbrowska, Kinga; Cyrański, Michał K.; Kańska, Marianna

    2017-10-01

    A convenient method for the indirect crystal structure verification of methyl glycosides was demonstrated. Single-crystal X-ray diffraction structures for methyl glycoside acetates were deacetylated and subsequently subjected to DFT calculations under periodic boundary conditions. Solid-state NMR spectroscopy served as a guide for calculations. A high level of accuracy of the modelled crystal structures of methyl glycosides was confirmed by comparison with published results of neutron diffraction study using RMSD method.

  4. Dependences of the density of M{sub 1-x}R{sub x}F{sub 2+x} and R{sub 1-y}M{sub y}F{sub 3-y} single crystals (M = Ca, Sr, Ba, Cd, Pb; R means rare earth elements) on composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorokin, N. I., E-mail: sorokin@ns.crys.ras.ru; Krivandina, E. A.; Zhmurova, Z. I.

    2013-11-15

    The density of single crystals of nonstoichiometric phases Ba{sub 1-x}La{sub x}F{sub 2+x} (0 {<=} x {<=} 0.5) and Sr{sub 0.8}La{sub 0.2-x}Lu{sub x}F{sub 2.2} (0 {<=} x {<=} 0.2) with the fluorite (CaF{sub 2}) structure type and R{sub 1-y}Sr{sub y}F{sub 3-y} (R = Pr, Nd; 0 {<=} y {<=} 0.15) with the tysonite (LaF{sub 3}) structure type has been measured. Single crystals were grown from a melt by the Bridgman method. The measured concentration dependences of single crystal density are linear. The interstitial and vacancy models of defect formation in the fluorite and tysonite phases, respectively, are confirmed. To implement themore » composition control of single crystals of superionic conductors M{sub 1-x}R{sub x}F{sub 2+x} and R{sub 1-y}M{sub y}F{sub 3-y} in practice, calibration graphs of X-ray density in the MF{sub 2}-RF{sub 3} systems (M = Ca, Sr, Ba, Cd, Pb; R = La-Lu, Y) are plotted.« less

  5. Infrared-active optical phonons in LiFePO 4 single crystals

    DOE PAGES

    Stanislavchuk, T. N.; Middlemiss, D. S.; Syzdek, J. S.; ...

    2017-07-28

    Infrared-active optical phonons were studied in olivine LiFePO 4 oriented single crystals by means of both rotating analyzer and rotating compensator spectroscopic ellipsometry in the spectral range between 50 and 1400 cm -1. The eigenfrequencies, oscillator strengths, and broadenings of the phonon modes were determined from fits of the anisotropic harmonic oscillator model to the data. Optical phonons in a heterosite FePO 4 crystal were measured from the delithiated ab-surface of the LiFePO 4 crystal and compared with the phonon modes of the latter. Good agreement was found between experimental data and the results of solid-state hybrid density functional theorymore » calculations for the phonon modes in both LiFePO 4 and FePO 4.« less

  6. Crystal front shape control by use of an additional heater in a Czochralski sapphire single crystal growth system

    NASA Astrophysics Data System (ADS)

    Hur, Min-Jae; Han, Xue-Feng; Choi, Ho-Gil; Yi, Kyung-Woo

    2017-09-01

    The quality of sapphire single crystals used as substrates for LED production is largely influenced by two defects: dislocation density and bubbles trapped in the crystal. In particular, the dislocation density has a higher value in sapphire grown by the Czochralski (CZ) method than by other methods. In the present study, we predict a decreased value for the convexity and thermal gradient at the crystal front (CF) through the use of an additional heater in an induction-heated CZ system. In addition, we develop a solute concentration model by which the location of bubble formation in CZ growth is calculated, and the results are compared with experimental results. We further calculate the location of bubble entrapment corresponding with the use of an additional heater. We find that sapphire crystal growth with an additional heater yields a decreased thermal gradient at the CF, together with decreased CF convexity, improved energy efficiency, and improvements in terms of bubble formation location.

  7. Low Temperature Rhombohedral Single Crystal SiGe Epitaxy on c-plane Sapphire

    NASA Technical Reports Server (NTRS)

    Duzik, Adam J.; Choi, Sang H.

    2016-01-01

    Current best practice in epitaxial growth of rhombohedral SiGe onto (0001) sapphire (Al2O3) substrate surfaces requires extreme conditions to grow a single crystal SiGe film. Previous models described the sapphire surface reconstruction as the overriding factor in rhombohedral epitaxy, requiring a high temperature Al-terminated surface for high quality films. Temperatures in the 850-1100 C range were thought to be necessary to get SiGe to form coherent atomic matching between the (111) SiGe plane and the (0001) sapphire surface. Such fabrication conditions are difficult and uneconomical, hindering widespread application. This work proposes an alternative model that considers the bulk sapphire structure and determines how the SiGe film nucleates and grows. Accounting for thermal expansion effects, calculations using this new model show that both pure Ge and SiGe can form single crystal films in the 450-550 C temperature range. Experimental results confirm these predictions, where x-ray diffraction and atomic force microscopy show the films fabricated at low temperature rival the high temperature films in crystallographic and surface quality. Finally, an explanation is provided for why films of comparable high quality can be produced in either temperature range.

  8. Crucibleless crystal growth and Radioluminescence study of calcium tungstate single crystal fiber

    NASA Astrophysics Data System (ADS)

    Silva, M. S.; Jesus, L. M.; Barbosa, L. B.; Ardila, D. R.; Andreeta, J. P.; Silva, R. S.

    2014-11-01

    In this article, single phase and high optical quality scheelite calcium tungstate single crystal fibers were grown by using the crucibleless laser heated pedestal growth technique. The as-synthesized calcium tungstate powders used for shaping seed and feed rods were investigated by X-ray diffraction technique. As-grown crystals were studied by Raman spectroscopy and Radioluminescence measurements. The results indicate that in both two cases, calcined powder and single crystal fiber, only the expected scheelite CaWO4 phase was observed. It was verified large homogeneity in the crystal composition, without the presence of secondary phases. The Radioluminescence spectra of the as-grown single crystal fibers are in agreement with that present in Literature for bulk single crystals, presented a single emission band centered at 420 nm when irradiated with β-rays.

  9. Temperature induced phase transformations and negative electrocaloric effect in (Pb,La)(Zr,Sn,Ti)O3 antiferroelectric single crystal

    NASA Astrophysics Data System (ADS)

    Zhuo, Fangping; Li, Qiang; Yan, Qingfeng; Zhang, Yiling; Wu, Hong-Hui; Xi, Xiaoqing; Chu, Xiangcheng; Cao, Wenwu

    2017-10-01

    Temperature induced phase transitions and electrocaloric effect (ECE) of (Pb,La)(Zr,Sn,Ti)O3 (PLZST) single crystals have been comprehensively studied. Based on the in situ evolution of domain structures and dielectric properties of the PLZST crystals, the phase transitions during heating are in the sequence of orthorhombic antiferroelectric → rhombohedral ferroelectric → cubic paraelectric. Coexistence of the negative and positive ECEs has been achieved in the PLZST single crystals. A negative ECE value of -1.26 °C and enhanced electrocaloric strength of -0.21 K mm/kV near the Curie temperature have been obtained. A modified Landau model gives a satisfactory description of the experimentally observed unusual ECE. Moreover, a temperature-electric field phase diagram is also established based on theoretical analysis. Our results will help people understand better the electrocaloric family, particularly on the negative and/or positive effect in antiferroelectrics and ferroelectrics.

  10. 3D numerical simulation of free surface shape during the crystal growth of floating zone (FZ) silicon

    NASA Astrophysics Data System (ADS)

    Han, Xue-Feng; Liu, Xin; Nakano, Satoshi; Harada, Hirofumi; Miyamura, Yoshiji; Kakimoto, Koichi

    2018-02-01

    In FZ growth processes, the stability of the free surface is important in the production of single crystal silicon with high quality. To investigate the shape of the free surface in the FZ silicon crystal growth, a 3D numerical model that included gas and liquid phases was developed. In this present study, 3D Young-Laplacian equations have been solved using the Volume of Fluid (VOF) Model. Using this new model, we predicted the 3D shape of the free surface in FZ silicon crystal growth. The effect of magnetic pressure on shape of free surface has been considered. In particular, the free surface of the eccentric growth model, which could not be previously solved using the 2D Young-Laplacian equations, was solved using the VOF model. The calculation results are validated by the experimental results.

  11. Single crystalline growth of a soluble organic semiconductor in a parallel aligned liquid crystal solvent using rubbing-treated polyimide films

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Tomoya; Shibata, Yosei; Takeda, Risa; Ishinabe, Takahiro; Fujikake, Hideo

    2017-01-01

    For directional control of organic single crystals, we propose a crystal growth method using liquid crystal as the solvent. In this study, we examined the formation of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) single crystals using a parallel aligned liquid crystal (LC) cell and rubbing-treated polyimide films in order to clarify the effects of LC alignment on anisotropic C8-BTBT crystal growth. Based on the results, we found that the crystal growth direction of C8-BTBT single crystals was related to the direction of the aligned LC molecules because of rubbing treatment. Moreover, by optical evaluation, we found that the C8-BTBT single crystals have a aligned molecular structure.

  12. Internal protein motions in molecular-dynamics simulations of Bragg and diffuse X-ray scattering.

    PubMed

    Wall, Michael E

    2018-03-01

    Molecular-dynamics (MD) simulations of Bragg and diffuse X-ray scattering provide a means of obtaining experimentally validated models of protein conformational ensembles. This paper shows that compared with a single periodic unit-cell model, the accuracy of simulating diffuse scattering is increased when the crystal is modeled as a periodic supercell consisting of a 2 × 2 × 2 layout of eight unit cells. The MD simulations capture the general dependence of correlations on the separation of atoms. There is substantial agreement between the simulated Bragg reflections and the crystal structure; there are local deviations, however, indicating both the limitation of using a single structure to model disordered regions of the protein and local deviations of the average structure away from the crystal structure. Although it was anticipated that a simulation of longer duration might be required to achieve maximal agreement of the diffuse scattering calculation with the data using the supercell model, only a microsecond is required, the same as for the unit cell. Rigid protein motions only account for a minority fraction of the variation in atom positions from the simulation. The results indicate that protein crystal dynamics may be dominated by internal motions rather than packing interactions, and that MD simulations can be combined with Bragg and diffuse X-ray scattering to model the protein conformational ensemble.

  13. Internal protein motions in molecular-dynamics simulations of Bragg and diffuse X-ray scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Michael E.

    Molecular-dynamics (MD) simulations of Bragg and diffuse X-ray scattering provide a means of obtaining experimentally validated models of protein conformational ensembles. This paper shows that compared with a single periodic unit-cell model, the accuracy of simulating diffuse scattering is increased when the crystal is modeled as a periodic supercell consisting of a 2 × 2 × 2 layout of eight unit cells. The MD simulations capture the general dependence of correlations on the separation of atoms. There is substantial agreement between the simulated Bragg reflections and the crystal structure; there are local deviations, however, indicating both the limitation of using a single structuremore » to model disordered regions of the protein and local deviations of the average structure away from the crystal structure. Although it was anticipated that a simulation of longer duration might be required to achieve maximal agreement of the diffuse scattering calculation with the data using the supercell model, only a microsecond is required, the same as for the unit cell. Rigid protein motions only account for a minority fraction of the variation in atom positions from the simulation. The results indicate that protein crystal dynamics may be dominated by internal motions rather than packing interactions, and that MD simulations can be combined with Bragg and diffuse X-ray scattering to model the protein conformational ensemble.« less

  14. Internal protein motions in molecular-dynamics simulations of Bragg and diffuse X-ray scattering

    DOE PAGES

    Wall, Michael E.

    2018-01-25

    Molecular-dynamics (MD) simulations of Bragg and diffuse X-ray scattering provide a means of obtaining experimentally validated models of protein conformational ensembles. This paper shows that compared with a single periodic unit-cell model, the accuracy of simulating diffuse scattering is increased when the crystal is modeled as a periodic supercell consisting of a 2 × 2 × 2 layout of eight unit cells. The MD simulations capture the general dependence of correlations on the separation of atoms. There is substantial agreement between the simulated Bragg reflections and the crystal structure; there are local deviations, however, indicating both the limitation of using a single structuremore » to model disordered regions of the protein and local deviations of the average structure away from the crystal structure. Although it was anticipated that a simulation of longer duration might be required to achieve maximal agreement of the diffuse scattering calculation with the data using the supercell model, only a microsecond is required, the same as for the unit cell. Rigid protein motions only account for a minority fraction of the variation in atom positions from the simulation. The results indicate that protein crystal dynamics may be dominated by internal motions rather than packing interactions, and that MD simulations can be combined with Bragg and diffuse X-ray scattering to model the protein conformational ensemble.« less

  15. Finite Element Analysis of a Copper Single Crystal Shape Memory Alloy-Based Endodontic Instruments

    NASA Astrophysics Data System (ADS)

    Vincent, Marin; Thiebaud, Frédéric; Bel Haj Khalifa, Saifeddine; Engels-Deutsch, Marc; Ben Zineb, Tarak

    2015-10-01

    The aim of the present paper is the development of endodontic Cu-based single crystal Shape Memory Alloy (SMA) instruments in order to eliminate the antimicrobial and mechanical deficiencies observed with the conventional Nickel-Titane (NiTi) SMA files. A thermomechanical constitutive law, already developed and implemented in a finite element code by our research group, is adopted for the simulation of the single crystal SMA behavior. The corresponding material parameters were identified starting from experimental results for a tensile test at room temperature. A computer-aided design geometry has been achieved and considered for a finite element structural analysis of the endodontic Cu-based single crystal SMA files. They are meshed with tetrahedral continuum elements to improve the computation time and the accuracy of results. The geometric parameters tested in this study are the length of the active blade, the rod length, the pitch, the taper, the tip diameter, and the rod diameter. For each set of adopted parameters, a finite element model is built and tested in a combined bending-torsion loading in accordance with ISO 3630-1 norm. The numerical analysis based on finite element procedure allowed purposing an optimal geometry suitable for Cu-based single crystal SMA endodontic files. The same analysis was carried out for the classical NiTi SMA files and a comparison was made between the two kinds of files. It showed that Cu-based single crystal SMA files are less stiff than the NiTi files. The Cu-based endodontic files could be used to improve the root canal treatments. However, the finite element analysis brought out the need for further investigation based on experiments.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramadhar, Timothy R.; Zheng, Shao-Liang; Chen, Yu-Sheng

    This report describes complete practical guidelines and insights for the crystalline sponge method, which have been derived through the first use of synchrotron radiation on these systems, and includes a procedure for faster synthesis of the sponges. These guidelines will be applicable to crystal sponge data collected at synchrotrons or in-house facilities, and will allow researchers to obtain reliable high-quality data and construct chemically and physically sensible models for guest structural determination. A detailed set of synthetic and crystallographic guidelines for the crystalline sponge method based upon the analysis of expediently synthesized crystal sponges using third-generation synchrotron radiation are reported.more » The procedure for the synthesis of the zinc-based metal–organic framework used in initial crystal sponge reports has been modified to yield competent crystals in 3 days instead of 2 weeks. These crystal sponges were tested on some small molecules, with two being unexpectedly difficult cases for analysis with in-house diffractometers in regard to data quality and proper space-group determination. These issues were easily resolved by the use of synchrotron radiation using data-collection times of less than an hour. One of these guests induced a single-crystal-to-single-crystal transformation to create a larger unit cell with over 500 non-H atoms in the asymmetric unit. This led to a non-trivial refinement scenario that afforded the best Flack x absolute stereochemical determination parameter to date for these systems. The structures did not require the use of PLATON/SQUEEZE or other solvent-masking programs, and are the highest-quality crystalline sponge systems reported to date where the results are strongly supported by the data. A set of guidelines for the entire crystallographic process were developed through these studies. In particular, the refinement guidelines include strategies to refine the host framework, locate guests and determine occupancies, discussion of the proper use of geometric and anisotropic displacement parameter restraints and constraints, and whether to perform solvent squeezing/masking. The single-crystal-to-single-crystal transformation process for the crystal sponges is also discussed. The presented general guidelines will be invaluable for researchers interested in using the crystalline sponge method at in-house diffraction or synchrotron facilities, will facilitate the collection and analysis of reliable high-quality data, and will allow construction of chemically and physically sensible models for guest structural determination.« less

  17. Optimizing alignment and growth of low-loss YAG single crystal fibers using laser heated pedestal growth technique.

    PubMed

    Bera, Subhabrata; Nie, Craig D; Soskind, Michael G; Harrington, James A

    2017-12-10

    The effect of misalignments of different optical components in the laser heated pedestal growth apparatus have been modeled using Zemax optical design software. By isolating the misalignments causing the non-uniformity in the melt zone, the alignment of the components was fine-tuned. Using this optimized alignment, low-loss YAG single crystal fibers of 120 μm diameter were grown, with total attenuation loss as low as 0.5 dB/m at 1064 nm.

  18. Creep and Fatigue Interaction in the PWA 1484 Single Crystal Nickel-Base Alloy (Preprint)

    DTIC Science & Technology

    2011-07-01

    work by Zhang et al . has shown that during the early part of fatigue cycling dislocations are formed primarily in the γ matrix with the number of...dislocations increasing with the number of applied cycles [11]. Ott and Mughrabi showed that during fatigue of single crystal nickel base superalloys... al . and their research determined that the fatigue behavior of PWA1484 could be well represented by a Walker type fatigue model that also included

  19. Flexible radio-frequency single-crystal germanium switch on plastic substrates

    NASA Astrophysics Data System (ADS)

    Qin, Guoxuan; Cai, Tianhao; Yuan, Hao-Chih; Seo, Jung-Hun; Ma, Jianguo; Ma, Zhenqiang

    2014-04-01

    This Letter presents the realization and characterizations of the flexible radio-frequency (RF)/microwave switches on plastic substrates employing single-crystal germanium (Ge) nanomembranes. The fabricated flexible Ge single-pole, single-throw (SPST) switches display high frequency responses (e.g., insertion loss of <1.3 dB at up to 30 GHz and isolation >10 dB at up to ˜13 GHz). RF performance tradeoff exists for the flexible Ge switches and the major affecting parameters are determined. The flexible Ge SPST switch shows better RF property to that of the flexible Si SPST switch. Underlying mechanism is investigated by theoretical analysis and modeling of switches with different structures.

  20. Modelling of creep hysteresis in ferroelectrics

    NASA Astrophysics Data System (ADS)

    He, Xuan; Wang, Dan; Wang, Linxiang; Melnik, Roderick

    2018-05-01

    In the current paper, a macroscopic model is proposed to simulate the hysteretic dynamics of ferroelectric ceramics with creep phenomenon incorporated. The creep phenomenon in the hysteretic dynamics is attributed to the rate-dependent characteristic of the polarisation switching processes induced in the materials. A non-convex Helmholtz free energy based on Landau theory is proposed to model the switching dynamics. The governing equation of single-crystal model is formulated by applying the Euler-Lagrange equation. The polycrystalline model is obtained by combining the single crystal dynamics with a density function which is constructed to model the weighted contributions of different grains with different principle axis orientations. In addition, numerical simulations of hysteretic dynamics with creep phenomenon are presented. Comparison of the numerical results and their experimental counterparts is also presented. It is shown that the creep phenomenon is captured precisely, validating the capability of the proposed model in a range of its potential applications.

  1. Secondary orientation effects in a single crystal superalloy under mechanical and thermal loads

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Abdul-Aziz, Ali; Mcgaw, Michael A.

    1991-01-01

    The nickel-base single crystal superalloy PWA 1480 is a candidate blading material for the advanced turbopump development program of the SSME. In order to improve thermal fatigue resistance of the turbine blades, the single crystal superalloy PWA 1480 is grown along the low modulus zone axes (001) crystal orientation by a directional solidification process. Since cubic single crystal materials such as PWA 1480 exhibit anisotropic elastic behavior, the stresses developed within the single crystal superalloy due to mechanical and thermal loads are likely to be affected by the exact orientation of the secondary crystallographic direction with respect to the geometry of the turbine blade. The effects of secondary crystal orientation on the elastic response of single crystal PWA 1480 superalloy were investigated.

  2. Multiplicity of transmission coefficients in photonic crystal and split ring resonator waveguides with Kerr nonlinear impurities

    NASA Astrophysics Data System (ADS)

    Rai, Buddhi; McGurn, Arthur R.

    2015-02-01

    Photonic crystal and split ring resonator (SRR) metamaterial waveguides with Kerr nonlinear dielectric impurities are studied. The transmission coefficients for two guided modes of different frequencies scattering from the Kerr impurities are computed. The systems are shown to exhibit multiple transmission coefficient solutions arising from the Kerr nonlinearity. Multiple transmission coefficients occur when different input intensities into a waveguide result in the same transmitted output intensities past its nonlinear impurities. (In the case of a single incident guided mode the multiplicity of transmission coefficients is known as optical bistability.) The analytical conditions under which the transmission coefficients are single and multiple valued are determined, and specific examples of both single and multiple valued transmission coefficient scattering are presented. Both photonic crystal and split ring resonator systems are studied as the Kerr nonlinearity enters the photonic crystal and SRR systems in different ways. This allows for an interesting comparison of the differences in behaviors of these two types of system which are described by distinctly different mathematical structures. Both the photonic crystal and SRR models used in the calculations are based on a difference equation approach to the system dynamics. The difference equation approach has been extensively employed in previous papers to model the basic properties of these systems. The paper is a continuation of work on the optical bistability of single guided modes interacting with Kerr impurities in photonic crystals originally considered by McGurn [Chaos 13, 754 (2003), 10.1063/1.1568691] and work on the resonant scattering from Kerr impurities in photonic crystal waveguides considered by McGurn [J. Phys.: Condens. Matter 16, S5243 (2004), 10.1088/0953-8984/16/44/021]. It generalizes this work making the extension to the more complex interaction of two guided modes at different frequencies. It extends the two guided mode treatment by McGurn [Organ. Electron. 8, 227 (2007), 10.1016/j.orgel.2006.06.008] which was limited to a special case of one of the photonic crystal systems considered here.

  3. Electrical conductivity of high-purity germanium crystals at low temperature

    NASA Astrophysics Data System (ADS)

    Yang, Gang; Kooi, Kyler; Wang, Guojian; Mei, Hao; Li, Yangyang; Mei, Dongming

    2018-05-01

    The temperature dependence of electrical conductivity of single-crystal and polycrystalline high-purity germanium (HPGe) samples has been investigated in the temperature range from 7 to 100 K. The conductivity versus inverse of temperature curves for three single-crystal samples consist of two distinct temperature ranges: a high-temperature range where the conductivity increases to a maximum with decreasing temperature, and a low-temperature range where the conductivity continues decreasing slowly with decreasing temperature. In contrast, the conductivity versus inverse of temperature curves for three polycrystalline samples, in addition to a high- and a low-temperature range where a similar conductive behavior is shown, have a medium-temperature range where the conductivity decreases dramatically with decreasing temperature. The turning point temperature ({Tm}) which corresponds to the maximum values of the conductivity on the conductivity versus inverse of temperature curves are higher for the polycrystalline samples than for the single-crystal samples. Additionally, the net carrier concentrations of all samples have been calculated based on measured conductivity in the whole measurement temperature range. The calculated results show that the ionized carrier concentration increases with increasing temperature due to thermal excitation, but it reaches saturation around 40 K for the single-crystal samples and 70 K for the polycrystalline samples. All these differences between the single-crystal samples and the polycrystalline samples could be attributed to trapping and scattering effects of the grain boundaries on the charge carriers. The relevant physical models have been proposed to explain these differences in the conductive behaviors between two kinds of samples.

  4. Dynamics of melt crystal interface and thermal stresses in rotational Bridgman crystal growth process

    NASA Astrophysics Data System (ADS)

    Ma, Ronghui; Zhang, Hui; Larson, David J.; Mandal, Krishna C.

    2004-05-01

    The growth process of potassium bromide (KBr) single crystals in a vertical Bridgman furnace has been studied numerically using an integrated model that combines formulation of global heat transfer and thermal elastic stresses. The global heat transfer sub-model accounts for conduction, convection and interface movement in the multiphase system. Using the elastic stress sub-model, thermal stresses in the growing crystal caused by the non-uniform temperature distribution is predicted. Special attention is directed to the interaction between the crystal and the ampoule. The global temperature distribution in the furnace, the flow pattern in the melt and the interface shapes are presented. We also investigate the effects of the natural convection and rotational forced convection on the shape of the growth fronts. Furthermore, the state of the thermal stresses in the crystal is studied to understand the plastic deformation mechanisms during the cooling process. The influence of the wall contact on thermal stresses is also addressed.

  5. The fracture strength of ceramic brackets: a comparative study.

    PubMed

    Flores, D A; Caruso, J M; Scott, G E; Jeiroudi, M T

    1990-01-01

    Recent demand for esthetic brackets has led to the development and use of ceramic brackets in orthodontics. The purpose of this study was to compare the fracture strength of different ceramic brackets under different surface conditions and ligation methods using a torsional wire bending force. Five different bracket types (two polycrystalline, two single-crystal, and one metal) were tested using elastic and wire ligation, with half being scratched and the other half remaining unscratched. Results showed a significant difference between bracket types and surface conditions. Non-scratched single-crystal brackets had higher fracture strengths and slightly higher fracture loads than polycrystalline brackets. However, single-crystal brackets were significantly adversely affected by surface damage (scratching), while polycrystalline brackets were not significantly affected by surface damage. The fracture behavior of ceramic brackets followed the Griffith model where fracture strength decreased following surface damage.

  6. Piezoelectric single crystals for ultrasonic transducers in biomedical applications

    PubMed Central

    Zhou, Qifa; Lam, Kwok Ho; Zheng, Hairong; Qiu, Weibao; Shung, K. Kirk

    2014-01-01

    Piezoelectric single crystals, which have excellent piezoelectric properties, have extensively been employed for various sensors and actuators applications. In this paper, the state–of–art in piezoelectric single crystals for ultrasonic transducer applications is reviewed. Firstly, the basic principles and design considerations of piezoelectric ultrasonic transducers will be addressed. Then, the popular piezoelectric single crystals used for ultrasonic transducer applications, including LiNbO3 (LN), PMN–PT and PIN–PMN–PT, will be introduced. After describing the preparation and performance of the single crystals, the recent development of both the single–element and array transducers fabricated using the single crystals will be presented. Finally, various biomedical applications including eye imaging, intravascular imaging, blood flow measurement, photoacoustic imaging, and microbeam applications of the single crystal transducers will be discussed. PMID:25386032

  7. A dislocation-based crystal plasticity framework for dynamic ductile failure of single crystals

    DOE PAGES

    Nguyen, Thao; Luscher, D. J.; Wilkerson, J. W.

    2017-08-02

    We developed a framework for dislocation-based viscoplasticity and dynamic ductile failure to model high strain rate deformation and damage in single crystals. The rate-dependence of the crystal plasticity formulation is based on the physics of relativistic dislocation kinetics suited for extremely high strain rates. The damage evolution is based on the dynamics of void growth, which are governed by both micro-inertia as well as dislocation kinetics and dislocation substructure evolution. Furthermore, an averaging scheme is proposed in order to approximate the evolution of the dislocation substructure in both the macroscale as well as its spatial distribution at the microscale. Inmore » addition, a concept of a single equivalent dislocation density that effectively captures the collective influence of dislocation density on all active slip systems is proposed here. Together, these concepts and approximations enable the use of semi-analytic solutions for void growth dynamics developed in [J. Wilkerson and K. Ramesh. A dynamic void growth model governed by dislocation kinetics. J. Mech. Phys. Solids, 70:262–280, 2014.], which greatly reduce the computational overhead that would otherwise be required. The resulting homogenized framework has been implemented into a commercially available finite element package, and a validation study against a suite of direct numerical simulations was carried out.« less

  8. Preparation of a Non-Polar ZnO Film on a Single-Crystal NdGaO3 Substrate by the RF Sputtering Method

    NASA Astrophysics Data System (ADS)

    Kashiwaba, Y.; Tanaka, Y.; Sakuma, M.; Abe, T.; Imai, Y.; Kawasaki, K.; Nakagawa, A.; Niikura, I.; Kashiwaba, Y.; Osada, H.

    2018-04-01

    Preparation of non-polar ZnO ( 11\\overline{2} 0 ) films on single-crystal NdGaO3 (NGO) (001) substrates was successfully achieved by the radio frequency (RF) sputtering method. Orientation, deposition rate, and surface roughness of ZnO films strongly depend on the working pressure. Characteristics of ZnO films deposited on single-crystal NGO (001) substrates were compared with those of ZnO films deposited on single-crystal sapphire ( 01\\overline{1} 2 ) substrates. An x-ray diffraction peak of the ZnO ( 11\\overline{2} 0 ) plane was observed on ZnO films deposited on single-crystal NGO (001) substrates under working pressure of less than 0.5 Pa. On the other hand, uniaxially oriented ZnO ( 11\\overline{2} 0 ) films on single-crystal sapphire ( 01\\overline{1} 2 ) substrates were observed under working pressure of 0.1 Pa. The mechanism by which the diffraction angle of the ZnO ( 11\\overline{2} 0 ) plane on single-crystal NGO (001) substrates was shifted is discussed on the basis of anisotropic stress of lattice mismatch. The deposition rate of ZnO films decreased with an increase in working pressure, and the deposition rate on single-crystal NGO (001) substrates was larger than that on single-crystal sapphire ( 01\\overline{1} 2 ) substrates. Root mean square (RMS) roughness of ZnO films increased with an increase in working pressure, and RMS roughness of ZnO films on single-crystal NGO (001) substrates was smaller than that of ZnO films on single-crystal sapphire ( 01\\overline{1} 2 ) substrates even though the film thickness on single-crystal NGO (001) substrates was greater than that on sapphire substrates. It is thought that a single-crystal NGO (001) substrate is useful for deposition of non-polar ZnO ( 11\\overline{2} 0 ) films.

  9. Electrical characteristics of organic perylene single-crystal-based field-effect transistors

    NASA Astrophysics Data System (ADS)

    Lee, Jin-Woo; Kang, Han-Saem; Kim, Min-Ki; Kim, Kihyun; Cho, Mi-Yeon; Kwon, Young-Wan; Joo, Jinsoo; Kim, Jae-Il; Hong, Chang-Seop

    2007-12-01

    We report on the fabrication of organic field-effect transistors (OFETs) using perylene single crystal as the active material and their electrical characteristics. Perylene single crystals were directly grown from perylene powder in a furnace using a relatively short growth time of 1-3 h. The crystalline structure of the perylene single crystals was characterized by means of a single-crystal x-ray diffractometer. In order to place the perylene single crystal onto the Au electrodes of the field-effect transistor, a polymethlymethacrylate thin layer was spin-coated on top of the crystal surface. The OFETs fabricated using the perylene single crystal showed a typical p-type operating mode. The field-effect mobility of the perylene crystal based OFETs was measured to be ˜9.62×10-4 cm2/V s at room temperature. The anisotropy of the mobility implying the existence of different mobilities when applying currents in different directions was observed for the OFETs, and the existence of traps in the perylene crystal was found through the measurements of the temperature-dependent mobility at various operating drain voltages.

  10. Magnetic susceptibility in the normal phase of Bi2Sr2CaCu2O8+δ single crystals

    NASA Astrophysics Data System (ADS)

    Lopes, Lutiene F.; Peña, J. Paola; Schaf, Jacob; Tumelero, Milton A.; Vieira, Valdemar N.; Pureur, Paulo

    2018-05-01

    We report on measurements of the c-axis component of the magnetic susceptibility in the normal phase of several single crystal samples of the Bi2Sr2CaCu2O8+δ cuprate superconductor. These crystal were submitted to appropriate heat treatments so that the density of hole carriers could be varied in an extended region of the superconducting dome. In general, the measured susceptibility shows significant temperature dependence, which was attributed to the pseudogap phenomenon. The results were interpreted with basis on a phenomenological model that allows the determination of the pseudogap characteristic temperature T* as a function of the carrier density.

  11. Outer-sphere Pb(II) adsorbed at specific surface sites on single crystal α-alumina

    USGS Publications Warehouse

    Bargar, John R.; Towle, Steven N.; Brown, Gordon E.; Parks, George A.

    1996-01-01

    Solvated Pb(II) ions were found to adsorb as structurally well-defined outer-sphere complexes at specific sites on the α-Al2O3 (0001) single crystal surface, as determined by grazing-incidence X-ray absorption fine structure (GI-XAFS) measurements. The XAFS results suggest that the distance between Pb(II) adions and the alumina surface is approximately 4.2 Å. In contrast, Pb(II) adsorbs as more strongly bound inner-sphere complexes on α-Al2O3 (102). The difference in reactivities of the two alumina surfaces has implications for modeling surface complexation reactions of contaminants in natural environments, catalysis, and compositional sector zoning of oxide crystals.

  12. Microstructure-sensitive Crystal Viscoplasticity for Ni-base Superalloys Targeting Long-term Creep-Fatigue Interaction Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neu, Richard W.

    The aim of this project is to develop a microstructure-sensitive crystal viscoplasticity (CVP) model for single-crystal Ni-base superalloys to model the behavior of the material and components in the hot gas path sections of industrial gas turbines (IGT). Microstructure degradation associated with aging critical to predicting long-term creep-fatigue interactions will be embedded into the model through the γ' precipitate morphology evolution by coupling the coarsening drivers and kinetics into the constitutive equations of the CVP model. Model parameters will be determined using new experimental protocols that involve systematically artificially aging the alloy under different stress conditions to determine the relationshipmore » between the size and morphology g' precipitates on the creep and thermomechanical fatigue response.« less

  13. Microstructure-sensitive Crystal Viscoelasticity for Ni-base Superalloys Targeting Long-term Creep-Fatigue Interaction Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neu, Richard W

    The aim of this project is to develop a microstructure-sensitive crystal viscoplasticity (CVP) model for single-crystal Ni-base superalloys to model the behavior of the material and components in the hot gas path sections of industrial gas turbines (IGT). Microstructure degradation associated with aging critical to predicting long-term creep-fatigue interactions will be embedded into the model through the γ' precipitate morphology evolution by coupling the coarsening drivers and kinetics into the constitutive equations of the CVP model. Model parameters will be determined using new experimental protocols that involve systematically artificially aging the alloy under different stress conditions to determine the relationshipmore » between the size and morphology g' precipitates on the creep and thermomechanical fatigue response.« less

  14. Electric polarization observed in single crystals of multiferroic Lu 2 MnCoO 6

    DOE PAGES

    Chikara, Shalinee; Singleton, John; Bowlan, John M.; ...

    2016-05-17

    We report electric polarization and magnetization measurements in single crystals of double perovskite Lu 2MnCoO 6 using pulsed magnetic fields and optical second harmonic generation in dc magnetic fields. We observe well-resolved magnetic field-induced changes in the electric polarization in single crystals and thereby resolve the question about whether multiferroic behavior is intrinsic to these materials or is an extrinsic feature of polycrystals. We find electric polarization along the crystalline b axis, that is suppressed by applying a magnetic fields along the c axis, and advance a model for the origin of magnetoelectric coupling. We furthermore map the phase diagrammore » using both capacitance and electric polarization to identify regions of ordering and regions of magnetoelectric hysteresis. This compound is a rare example of coupled hysteretic behavior in the magnetic and electric properties. Furthermore, the ferromagneticlike magnetic hysteresis loop that couples to hysteretic electric polarization can be attributed not to ordinary ferromagnetic domains, but to the rich physics of magnetic frustration of Ising-like spins in the axial next-nearest-neighbor interaction model.« less

  15. Magnetic susceptibility and spin-lattice interactions in U1-xPuxO2 single crystals

    NASA Astrophysics Data System (ADS)

    Kolberg, D.; Wastin, F.; Rebizant, J.; Boulet, P.; Lander, G. H.; Schoenes, J.

    2002-12-01

    Single crystals of mixed uranium-plutonium dioxides have been grown by means of a chemical vapor transport reaction and characterized by x-ray diffraction on bulk and powdered single crystals. Magnetization and susceptibility data were taken using a commercial superconducting quantum interference device. Characteristic ordering temperatures have been determined as well as paramagnetic Curie temperatures and effective magnetic moments. Departures of the reciprocal susceptibility as a function of temperature from linearity have been treated in detail based on a model of vibronic interactions introduced to explain the gross features of susceptibility measurements on thorium-diluted UO2 [Sasaki and Obata, J. Phys. Soc. Jpn. 28, 1157 (1970)]. The influence of spin-lattice interactions causes a certain shape of the observed 1/χ vs T curves from which we are able to suggest different mechanisms for the interactions as a function of the constituent’s concentrations. From our susceptibility measurements characteristic parameters have been calculated using a model of tetragonal vibrational modes of the oxygen cage surrounding each uranium ion. These include specific coupling parameters G, mode characteristic temperatures Tω, and molecular-field constants λ.

  16. Morphological Evolution of Nanocluster Aggregates and Single Crystals in Alkaline Zinc Electrodeposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, D; Turney, DE; Anantharaman, B

    2014-04-24

    The morphology of Zn electrodeposits is studied on carbon-coated transmission electron microscopy grids. At low over-potentials (eta = -50 mV), the morphology develops by aggregation at two distinct length scales: similar to 5 nm diameter monocrystalline nanoclusters form similar to 50 nm diameter polycrystalline aggregates, and the aggregates form a branched network. Epitaxial (00 (0) over bar2) growth above an overpotential of vertical bar eta(c)vertical bar > 125 mV leads to the formation of hexagonal single crystals up to 2 mu m in diameter. Potentiostatic current transients were used to calculate the nucleation rate from Scharifker et al.'s model. Themore » exp(eta) dependence of the nucleation rates indicates that atomistic nucleation theory explains the nucleation process better than Volmer-Weber theory. A kinetic model is provided using the rate equations of vapor solidification to simulate the evolution of the different morphologies. On solving these equations, we show that aggregation is attributed to cluster impingement and cluster diffusion while single-crystal formation is attributed to direct attachment.« less

  17. The competing effects of slip and twinning on the deformation of Hadfield manganese steel single and polycrystals

    NASA Astrophysics Data System (ADS)

    Karaman, Ibrahim

    2000-10-01

    Hadfield steel is well known for its high strain hardening. However, the mechanism of high strain hardening is still not completely understood. There is a striking paucity of single crystal studies that would allow a superior understanding of the fundamental deformation mechanisms by circumventing the complications associated with grain boundaries. With this need, the present study is aimed at studying Hadfield steel in single and polycrystalline forms. For this purpose, the stress-strain behavior of Hadfield steel (Fe, 12.3% Mn, 1.0 C, in wt.%) single crystals studied for selected orientations ([001], [1¯11], [1¯23], [1¯44] and [1¯5 10]), and for different interstitial contents under tension and compression in the temperature range of 113 K to 293 K. The effect of twinning, slip and stacking faults was revealed in terms of the critical stress levels, and the strain-hardening coefficients. Based on the experimental observations, a model is presented that predicts the orientation, stress direction and solid solution content effects on the critical stress for initiating twinning. Nitrogen was also added to Hadfield steel. Nitrogen was not only proven to be a more effective strengthening agent than carbon in Hadfield steel but also it served as a better trigger for twinning. Stress-strain responses of Hadfield steel were modeled using a viscoplastic self consistent approach. A unique hardening formulation was proposed in the constitutive model incorporating length scales associated with spacing between twin lamellae and grain boundaries. The responses of single crystals and polycrystals with different grain sizes were captured closely with the model. Based on simulations, it was possible to explain unequivocally the upward curvature in stress-strain curves of Hadfield steel. A similar study on the 316L stainless steel single crystals indicated that the addition of nitrogen lead austenitic stainless steel to exhibit deformation mechanisms, orientation and temperature dependence similar to Hadfield steel. Therefore, it is concluded that the mechanical behavior of fcc high strength materials, and the underlying mechanisms responsible for their behavior are universal, irrespective of the way in which the high strength levels are achieved.

  18. Modeling the effect of crystal and crucible rotation on the interface shape in Czochralski growth of piezoelectric langatate crystals

    NASA Astrophysics Data System (ADS)

    Stelian, C.; Nehari, A.; Lasloudji, I.; Lebbou, K.; Dumortier, M.; Cabane, H.; Duffar, T.

    2017-10-01

    Single La3Ga5.5Ta0.5O14 (LGT) crystals have been grown by using the Czochralski technique with inductive heating. Some ingots exhibit imperfections such as cracks, dislocations and striations. Numerical modeling is applied to investigate the factors affecting the shape of the crystal-melt interface during the crystallization of ingots having 3 cm in diameter. It was found that the conical shape of the interface depends essentially on the internal radiative exchanges in the semi-transparent LGT crystal. Numerical results are compared to experimental visualization of the growth interface, showing a good agreement. The effect of the forced convection produced by the crystal and crucible rotation is numerically investigated at various rotation rates. Increasing the crystal rotation rate up to 50 rpm has a significant flattening effect on the interface shape. Applying only crucible rotation enhances the downward flow underneath the crystal, leading to an increased interface curvature. Counter rotation between the crystal and the crucible results in a distorted shape of the interface.

  19. Effect of amaranth dye on the growth and properties of conventional and SR method grown KAP single crystals

    NASA Astrophysics Data System (ADS)

    Babu Rao, G.; P., Rajesh; Ramasamy, P.

    2018-04-01

    The 0.1 mol% amaranth added KAP single crystals were grown from aqueous solutions by both slow evaporation solution technique and Sankaranarayanan-Ramasamy method. The single crystal having dimension of 45 mm length and 12 mm diameter was grown with growth rate of 1.5 mm/day using SR method. 87 % transmittance is obtained for SR method grown amaranth added KAP single crystal. The high intense luminescence at 661 nm is obtained from amaranth added conventional and SR method grown KAP single crystal. The amaranth added KAP single crystal possesses good mechanical and laser damage threshold stability.

  20. GaSe and GaTe anisotropic layered semiconductors for radiation detectors

    NASA Astrophysics Data System (ADS)

    Mandal, Krishna C.; Choi, Michael; Kang, Sung Hoon; Rauh, R. David; Wei, Jiuan; Zhang, Hui; Zheng, Lili; Cui, Y.; Groza, M.; Burger, A.

    2007-09-01

    High quality detector grade GaSe and GaTe single crystals have been grown by a modified vertical Bridgman technique using high purity Ga (7N) and in-house zone refined (ZR) precursor materials (Se and Te). A state-of-the-art computer model, MASTRAPP, is used to model heat and mass transfer in the Bridgman growth system and to predict the stress distribution in the as-grown crystals. The model accounts for heat transfer in the multiphase system, convection in the melt, and interface dynamics. The crystals harvested from ingots of 8-10 cm length and 2.5 cm diameter, have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, low temperature photoluminescence (PL), atomic force microscopy (AFM), and optical absorption/transmission measurements. Single element devices up to 1 cm2 in area have been fabricated from the crystals and tested as radiation detectors by measuring current-voltage (I-V) characteristics and pulse height spectra using 241Am source. The crystals have shown high promise as nuclear detectors with their high dark resistivity (>=10 9 Ω .cm), good charge transport properties (μτ e ~ 1.4x10 -5 cm2/V and μτ h ~ 1.5x10 -5 cm2/V), and relatively good energy resolution (~4% energy resolution at 60 keV). Details of numerical modeling and simulation, detector fabrication, and testing using a 241Am energy source (60 keV) is presented in this paper.

  1. Effect of Slag Composition on the Crystallization Kinetics of Synthetic CaO-SiO2-Al2O3-MgO Slags

    NASA Astrophysics Data System (ADS)

    Esfahani, Shaghayegh; Barati, Mansoor

    2018-04-01

    The crystallization kinetics of CaO-SiO2-Al2O3-MgO (CSAM) slags was studied with the aid of single hot thermocouple technique (SHTT). Kinetic parameters such as the Avrami exponent ( n), rate coefficient ( K), and effective activation energy of crystallization ( E A ) were obtained by kinetic analysis of data obtained from in situ observation of glassy to crystalline transformation and image analysis. Also, the dependence of nucleation and growth rates of crystalline phases were quantified as a function of time, temperature, and slag basicity. Together with the observations of crystallization front, they facilitated establishing the dominant mechanisms of crystallization. In an attempt to predict crystallization rate under non-isothermal conditions, a mathematical model was developed that employs the rate data of isothermal transformation. The model was validated by reproducing an experimental continuous cooling transformation diagram purely from isothermal data.

  2. Translation effects on vertical Bridgman growth and optical, mechanical and surface analysis of 2-phenylphenol single crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadhasivam, S., E-mail: sadha.phy1@gmail.com; Perumal, Rajesh Narayana

    2-phenylphenol optical crystals were grown in cone ampoules using vertical Bridgman technique. Single crystal of 2-phenylphenol with 150 mm length has been grown. The inclination on the conical part of the ampoule reduces the growth defects in the 2-phenylphenol single crystal. The lattice parameters and structure studied using single crystal X-ray diffraction method. 2-phenylphenol single crystal belongs to orthorhombic space group Fdd2. The micro translation rate affects crystal growth of 2-phenylphenol crystal was studied. The translation rate dependent defects present in the crystal were investigated by transmittance, indentation and etching characterizations. The dislocation induced indentation crack lengths variations were studied. Etchmore » pits and striations observed for the selective etchants furnish significant information on growth aspects and degree of defect present in the crystal.« less

  3. Hybrid excitations due to crystal field, spin-orbit coupling, and spin waves in LiFePO 4

    DOE PAGES

    Yiu, Yuen; Le, Manh Duc; Toft-Peterson, Rasmus; ...

    2017-03-09

    Here, we report on the spin waves and crystal field excitations in single crystal LiFePO 4 by inelastic neutron scattering over a wide range of temperatures, below and above the antiferromagnetic transition of this system. In particular, we find extra excitations below T N = 50 K that are nearly dispersionless and are most intense around magnetic zone centers. Furthermore, we show that these excitations correspond to transitions between thermally occupied excited states of Fe 2 + due to splitting of the S = 2 levels that arise from the crystal field and spin-orbit interactions. These excitations are further amplifiedmore » by the highly distorted nature of the oxygen octahedron surrounding the iron atoms. Above T N , magnetic fluctuations are observed up to at least 720 K, with an additional inelastic excitation around 4 meV, which we attribute to single-ion effects, as its intensity weakens slightly at 720 K compared to 100 K, which is consistent with the calculated cross sections using a single-ion model. This theoretical analysis, using the MF-RPA model, provides both detailed spectra of the Fe d shell and estimates of the average ordered magnetic moment and T N . By applying the MF-RPA model to a number of existing spin-wave results from other Li M PO 4 ( M = Mn , Co, and Ni), we are able to obtain reasonable predictions for the moment sizes and transition temperatures.« less

  4. Dissolution of steroid crystals in a nematic droplet: effect of rotation

    NASA Astrophysics Data System (ADS)

    Gvozdovskyy, I. A.; Terenetskaya, Irina P.; Reshetnyak, Victor Y.

    2003-12-01

    The nematic liquid crystals (LCs) can be converted into cholesteric LCs by different chiral dopants. For the first time the dynamics of a cholesteric phase induction was investigated on dissolution of the single steroid crystal (vitamin D isomers and relative compounds) at the nematic droplet and the new effect of the crystal rotation has been discovered. In all cases the correlation between the rotation direction and screw sense of the cholesteric helix was found. A theoretical model and interpretation of the rotation effect has been proposed.

  5. Shock compression modeling of metallic single crystals: comparison of finite difference, steady wave, and analytical solutions

    DOE PAGES

    Lloyd, Jeffrey T.; Clayton, John D.; Austin, Ryan A.; ...

    2015-07-10

    Background: The shock response of metallic single crystals can be captured using a micro-mechanical description of the thermoelastic-viscoplastic material response; however, using a such a description within the context of traditional numerical methods may introduce a physical artifacts. Advantages and disadvantages of complex material descriptions, in particular the viscoplastic response, must be framed within approximations introduced by numerical methods. Methods: Three methods of modeling the shock response of metallic single crystals are summarized: finite difference simulations, steady wave simulations, and algebraic solutions of the Rankine-Hugoniot jump conditions. For the former two numerical techniques, a dislocation density based framework describes themore » rate- and temperature-dependent shear strength on each slip system. For the latter analytical technique, a simple (two-parameter) rate- and temperature-independent linear hardening description is necessarily invoked to enable simultaneous solution of the governing equations. For all models, the same nonlinear thermoelastic energy potential incorporating elastic constants of up to order 3 is applied. Results: Solutions are compared for plate impact of highly symmetric orientations (all three methods) and low symmetry orientations (numerical methods only) of aluminum single crystals shocked to 5 GPa (weak shock regime) and 25 GPa (overdriven regime). Conclusions: For weak shocks, results of the two numerical methods are very similar, regardless of crystallographic orientation. For strong shocks, artificial viscosity affects the finite difference solution, and effects of transverse waves for the lower symmetry orientations not captured by the steady wave method become important. The analytical solution, which can only be applied to highly symmetric orientations, provides reasonable accuracy with regards to prediction of most variables in the final shocked state but, by construction, does not provide insight into the shock structure afforded by the numerical methods.« less

  6. Characterization and modeling of mechanical behavior of single crystal titanium deformed by split-Hopkinson pressure bar

    DOE PAGES

    Morrow, B. M.; Lebensohn, R. A.; Trujillo, C. P.; ...

    2016-03-28

    Single crystal titanium samples were dynamically loaded using split-Hopkinson pressure bar (SHPB) and the resulting microstructures were examined. Characterization of the twins and dislocations present in the microstructure was conducted to understand the pathway for observed mechanical behavior. Electron backscatter diffraction (EBSD) was used to measure textures and quantify twinning. Microstructures were profusely twinned after loading, and twin variants and corresponding textures were different as a function of initial orientation. Focused ion beam (FIB) foils were created to analyze dislocation content using transmission electron microscopy (TEM). Large amounts of dislocations were present, indicating that plasticity was achieved through slip andmore » twinning together. Viscoplastic self-consistent (VPSC) modeling was used to confirm the complex order of operations during deformation. The activation of different mechanisms was highly dependent upon crystal orientation. For [0001] and View the MathML source[101¯1]-oriented crystals, compressive twinning was observed, followed by secondary tensile twinning. Furthermore, dislocations though prevalent in the microstructure, contributed to final texture far less than twinning.« less

  7. Radiation-Induced Damage to Nucleic Acid Constituents

    NASA Astrophysics Data System (ADS)

    Kim, Heasook

    The objective of this research was to identify the primary free radical species produced by ionizing radiation in DNA. The ultimate goal would be to use these data obtained from model compounds to analyze radiation-induced damage in DNA itself. The different single crystals were studied in detail. The first was the sodium salt of guanosine-3 ^':5^' -cyclic monophosphate (cyclic GMP). The results of studies on crystals irradiated at 4.2^ circK distinguished two species. One of these species exhibited a non-exchangeable proton coupling that was characterized by ENDOR spectroscopy and shown to be sigma proton. The spin density on C8 was deduced from the ENDOR hyperfine coupling tensor and found to be 0.15. The second species also exhibited a non-exchangeable sigma proton coupling and a beta proton coupling. The spin densities on C8 and N9 were deduced from ENDOR measurements to be 0.09 and 0.36. The former is attributed to the oxidation product and the latter to the primary reduction product. These products are respectively the guanine cation and anion. The second single crystal studied was a sodium salt of 2^'-deoxyguanosine -5^'-monophosphate tetrahydrate. The ESR and ENDOR spectra obtained from this crystal after x-irradiation at 4.2^circK were complex and the paramagnetic species were tentatively identified as ionic species. The third DNA model compound studied was thymidine. Single crystal of thymidine were irradiated at 1.6^ circK and at 4.2^circ K. The lower temperature preserved a more primitive stage of the radiation damage process. ENDOR measurements distinguished three paramagnetic species. The most interesting component of the paramagnetic absorption in crystals irradiated at 1.6^circK is attributed to trapped electron. These electrons are stabilized by the electrostatic fields generated by hydroxy dipoles. The hyperfine couplings between the trapped electron and the proton of these polar groups were deduced from ENDOR measurements. The ESR and ENDOR measurements described in this report were carried out DNA model compounds x-irradiated and measured at lower temperatures than reported previously. The experiments have demonstrated that an earlier stage of radiation damage can sometimes be stabilized and characterized in single crystals by maintaining the sample at 1.4 ^circK. (Abstract shortened with permission of author.).

  8. Ultratough CVD single crystal diamond and three dimensional growth thereof

    DOEpatents

    Hemley, Russell J [Washington, DC; Mao, Ho-kwang [Washington, DC; Yan, Chih-shiue [Washington, DC

    2009-09-29

    The invention relates to a single-crystal diamond grown by microwave plasma chemical vapor deposition that has a toughness of at least about 30 MPa m.sup.1/2. The invention also relates to a method of producing a single-crystal diamond with a toughness of at least about 30 MPa m.sup.1/2. The invention further relates to a process for producing a single crystal CVD diamond in three dimensions on a single crystal diamond substrate.

  9. Development of n- and p-type Doped Perovskite Single Crystals Using Solid-State Single Crystal Growth (SSCG) Technique

    DTIC Science & Technology

    2017-10-09

    doped BaTiO3 single crystal) could be also fabricated by using a BaTiO3 ceramics with the same compositional gradient (Fig. 8). This result has...piezoelectric applications. Compositionally PZT ceramics lie near the MPB between the tetragonal and rhombohedral phases and MPB compositions ...single crystal growth) technique are suitable to grow a variety of “n- and p-type doped” perovskite single crystals of complicated compositions . The

  10. Growth of high quality bulk size single crystals of inverted solubility lithium sulphate monohydrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silambarasan, A.; Rajesh, P., E-mail: rajeshp@ssn.edu.in; Ramasamy, P.

    2015-06-24

    The paper summarizes the processes of growing large lithium sulfate monohydrate (LSMH) single crystals. We have established a procedure to grow high quality bulk size single crystals of inverted solubility LSMH by a newly developed unidirectional crystallization technique called the Sankeranarayenan - Ramasamy (SR) method. The convective flow of crystal growth processes from solution and the conditions of growing crystals of various aspects were discussed. Good quality LSMH single crystal is grown of the size 20 mmX80 mm without cracks, localized-defects and inclusions. The as-grown crystals are suitable for piezoelectric and nonlinear optical applications.

  11. A new method to evaluate the quality of single crystal Cu by an X-ray diffraction butterfly pattern method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu Zhenming; Guo Zhenqi; Li Jianguo

    2004-12-15

    A new method for the evaluation of the quality of an Ohno continuous cast (OCC) Cu single crystal by X-ray diffraction (XRD) butterfly pattern was brought forward. Experimental results show that the growth direction of single crystal Cu is inclined from both sides of the single crystal Cu rod to the axis and is axially symmetric. The degree of deviation from the [100] orientation from the crystal axis is less than 5 deg. with a casting speed 10-40 mm/min. The orientation of single crystal Cu does not have a fixed direction but is in a regular range. Moreover, the orientationmore » of stray grains in the single crystal Cu is random from continuous casting.« less

  12. Spray printing of organic semiconducting single crystals

    NASA Astrophysics Data System (ADS)

    Rigas, Grigorios-Panagiotis; Payne, Marcia M.; Anthony, John E.; Horton, Peter N.; Castro, Fernando A.; Shkunov, Maxim

    2016-11-01

    Single-crystal semiconductors have been at the forefront of scientific interest for more than 70 years, serving as the backbone of electronic devices. Inorganic single crystals are typically grown from a melt using time-consuming and energy-intensive processes. Organic semiconductor single crystals, however, can be grown using solution-based methods at room temperature in air, opening up the possibility of large-scale production of inexpensive electronics targeting applications ranging from field-effect transistors and light-emitting diodes to medical X-ray detectors. Here we demonstrate a low-cost, scalable spray-printing process to fabricate high-quality organic single crystals, based on various semiconducting small molecules on virtually any substrate by combining the advantages of antisolvent crystallization and solution shearing. The crystals' size, shape and orientation are controlled by the sheer force generated by the spray droplets' impact onto the antisolvent's surface. This method demonstrates the feasibility of a spray-on single-crystal organic electronics.

  13. Gallium arsenide single crystal solar cell structure and method of making

    NASA Technical Reports Server (NTRS)

    Stirn, Richard J. (Inventor)

    1983-01-01

    A production method and structure for a thin-film GaAs crystal for a solar cell on a single-crystal silicon substrate (10) comprising the steps of growing a single-crystal interlayer (12) of material having a closer match in lattice and thermal expansion with single-crystal GaAs than the single-crystal silicon of the substrate, and epitaxially growing a single-crystal film (14) on the interlayer. The material of the interlayer may be germanium or graded germanium-silicon alloy, with low germanium content at the silicon substrate interface, and high germanium content at the upper surface. The surface of the interface layer (12) is annealed for recrystallization by a pulsed beam of energy (laser or electron) prior to growing the interlayer. The solar cell structure may be grown as a single-crystal n.sup.+ /p shallow homojunction film or as a p/n or n/p junction film. A Ga(Al)AS heteroface film may be grown over the GaAs film.

  14. Preparation of fine single crystals of magnetic superconductor RuSr2GdCu2O8-δ by partial melting

    NASA Astrophysics Data System (ADS)

    Yamaki, Kazuhiro; Bamba, Yoshihiro; Irie, Akinobu

    2018-03-01

    In this study, fine uniform RuSr2GdCu2O8-δ (RuGd-1212) single crystals have been successfully prepared by partial melting. Synthesis temperature could be lowered to a value not exceeding the decomposition temperature of RuGd-1212 using the Sr-Gd-Cu-O flux. The crystals grown by alumina boats are cubic, which coincides with the result of a previous study of RuGd-1212 single crystals using platinum crucibles. The single crystals were up to 15 × 15 × 15 µm3 in size and their lattice constants were consistent with those of polycrystalline samples reported previously. Although the present size of single crystals is not sufficient for measurements, the partial melting technique will be beneficial for future progress of research using RuGd-1212 single crystals. Appropriate nominal composition, sintering atmosphere, and temperature are essential factors for growing RuGd-1212 single crystals.

  15. The deformation mechanisms and size effects of single-crystal magnesium

    NASA Astrophysics Data System (ADS)

    Byer, Cynthia M.

    In this work, we seek to understand the deformation mechanisms and size effects of single-crystal magnesium at the micrometer scale through both microcompression experiments and finite element simulations. Microcompression experiments are conducted to investigate the impact of initial dislocation density and orientation on size effects. Micropillars are fabricated using a focused ion beam and tested in a Nanoindenter using a diamond fiat tip as a compression platen. Two different initial dislocation densities are examined for [0001] oriented micropillars. Our results demonstrate that decreasing the initial dislocation density results in an increased size effect in terms of increased strength and stochasticity. Microcompression along the [23¯14] axis results in much lower strengths than for [0001] oriented samples. Post-mortem analysis reveals basal slip in both [0001] and [23¯14] micropillars. The application of a stochastic probability model shows good agreement between theoretical predictions and experimental results for size effects with our values of initial dislocation density and micropillar dimensions. Size effects are then incorporated into a single-crystal plasticity model (modified from Zhang and Joshi [1]) implemented in ABAQUS/STANDARD as a user-material subroutine. The model successfully captures the phenomena typically associated with size effects of increasing stochasticity and strength with decreasing specimen size and also accounts for the changing trends resulting from variations in initial dislocation density that we observe in the experiments. Finally, finite element simulations are performed with the original (traditional, without size effects) crystal plasticity model [1] to investigate the relative activities of the deformation modes of single-crystal magnesium for varying degrees of misalignment in microcompression. The simulations reveal basal activity in all micropillars, even for perfectly aligned compression along the [0001] axis. Pyramidal < c + a > activity dominates until the misalignment increases to 2°, when basal slip takes over as the dominant mode. The stress-strain curves for the case of 0° misalignment agrees well with experimental curves, indicating that good alignment was achieved during the experiments. Through this investigation, we gain a better understanding of how to control the size effects, as well as the deformation mechanisms operating at the small scale in magnesium.

  16. Structure modeling and manufacturing PCFs for the range of 2-25 μm

    NASA Astrophysics Data System (ADS)

    Lvov, Alexandr; Salimgareev, Dmitrii; Korsakov, Michail; Korsakov, Alexandr; Zhukova, Liya

    2017-11-01

    Photostable and flexible materials transparent at the wide spectral range are necessary for the development of optical fiber units. Solid solutions of silver and monadic thallium halides are the most suitable crystal media for this purpose. The goal of our research was the search of optimum structure for the fibers with a single mode operation and a rather large core diameter. We modelled fiber structures (solid-core, hollow-core, active-core PCF) with various ratio of inserts diameters and increments between the inserts, basing on two crystal systems: AgCl-AgBr and AgBr-TlI. Then we chose the single mode fiber structure and manufactured it by means of extrusion.

  17. Three-dimensional modelling of thermal stress in floating zone silicon crystal growth

    NASA Astrophysics Data System (ADS)

    Plate, Matiss; Krauze, Armands; Virbulis, Jānis

    2018-05-01

    During the growth of large diameter silicon single crystals with the industrial floating zone method, undesirable level of thermal stress in the crystal is easily reached due to the inhomogeneous expansion as the crystal cools down. Shapes of the phase boundaries, temperature field and elastic material properties determine the thermal stress distribution in the solid mono crystalline silicon during cylindrical growth. Excessive stress can lead to fracture, generation of dislocations and altered distribution of intrinsic point defects. Although appearance of ridges on the crystal surface is the decisive factor of a dislocation-free growth, the influence of these ridges on the stress field is not completely clear. Here we present the results of thermal stress analysis for 4” and 5” diameter crystals using a quasi-stationary three dimensional mathematical model including the material anisotropy and the presence of experimentally observed ridges which cannot be addressed with axis-symmetric models. The ridge has a local but relatively strong influence on thermal stress therefore its relation to the origin of fracture is hypothesized. In addition, thermal stresses at the crystal rim are found to increase for a particular position of the crystal radiation reflector.

  18. Demonstration of single crystal growth via solid-solid transformation of a glass

    DOE PAGES

    Savytskii, Dmytro; Knorr, Brian; Dierolf, Volkmar; ...

    2016-03-18

    Many advanced technologies have relied on the availability of single crystals of appropriate material such as silicon for microelectronics or superalloys for turbine blades. Similarly, many promising materials could unleash their full potential if they were available in a single crystal form. However, the current methods are unsuitable for growing single crystals of these oftentimes incongruently melting, unstable or metastable materials. Here we demonstrate a strategy to overcome this hurdle by avoiding the gaseous or liquid phase, and directly converting glass into a single crystal. Specifically, Sb 2S 3 single crystals are grown in Sb-S-I glasses as an example ofmore » this approach. In this first unambiguous demonstration of an all-solid-state glass → crystal transformation, extraneous nucleation is avoided relative to crystal growth via spatially localized laser heating and inclusion of a suitable glass former in the composition. Lastly, the ability to fabricate patterned single-crystal architecture on a glass surface is demonstrated, providing a new class of micro-structured substrate for low cost epitaxial growth, active planar devices, etc.« less

  19. Study of single crystals of metal solid solutions

    NASA Technical Reports Server (NTRS)

    Doty, J. P.; Reising, J. A.

    1973-01-01

    The growth of single crystals of relatively high melting point metals such as silver, copper, gold, and their alloys was investigated. The purpose was to develop background information necessary to support a space flight experiment and to generate ground based data for comparison. The ground based data, when compared to the data from space grown crystals, are intended to identify any effects which zero-gravity might have on the basic process of single crystal growth of these metals. The ultimate purposes of the complete investigation are to: (1) determine specific metals and alloys to be investigated; (2) grow single metal crystals in a terrestrial laboratory; (3) determine crystal characteristics, properties, and growth parameters that will be effected by zero-gravity; (4) evaluate terrestrially grown crystals; (5) grow single metal crystals in a space laboratory such as Skylab; (6) evaluate the space grown crystals; (7) compare for zero-gravity effects of crystal characteristics, properties, and parameters; and (8) make a recommendation as to production of these crystals as a routine space manufacturing proceses.

  20. Crystal growth and scintillation properties of Pr-doped SrI2 single crystals

    NASA Astrophysics Data System (ADS)

    Yokota, Yuui; Ito, Tomoki; Yoshino, Masao; Yamaji, Akihiro; Ohashi, Yuji; Kurosawa, Shunsuke; Kamada, Kei; Yoshikawa, Akira

    2018-04-01

    Pr-doped SrI2 (Pr:SrI2) single crystals with various Pr concentrations were grown by the halide-micro-pulling-down (H-μ-PD) method, and the scintillation properties were investigated. Pr1%:SrI2 single crystal with high transparency could be grown by the H-μ-PD method while Pr2, 3 and 5%:SrI2 single crystals included some cracks and opaque parts. In the photoluminescence spectrum of the Pr1%:SrI2 single crystal, an emission peak originated from the Pr3+ ion was observed around 435 nm while the radioluminescence spectra showed an emission peak around 535 nm for the undoped SrI2 and Pr:SrI2 single crystals. Light yields of Pr1, 2, 3 and 5%:SrI2 single crystals under γ-ray irradiation were 7700, 8700, 7200 and 6700 photons/MeV, respectively. Decay times of Pr1 and 2%:SrI2 single crystals under γ-ray irradiation were 55.9 and 35.0 ns of the fast decay component, and 435 and 408 ns of the slow decay component, respectively.

  1. Synthesis and re-investigation of the elastic properties of single-crystal magnesium silicate perovskite

    NASA Astrophysics Data System (ADS)

    Yeganeh-Haeri, Amir

    1994-12-01

    Single crystals of MgSiO3 in the perovskite structure have been grown at a peak pressure of 26 GPa and temperature of approximately 1600 K using a 2000 ton uniaxial split-sphere high-pressure apparatus (USSA-2000). The specimens were subsequently utilized to re-investigate the single-crystal elastic properties of this phase at ambient conditions using laser Brillouin spectroscopy. The nine adiabatic single-crystal elastic stiffness coefficients, in units of GPa, are: C11 = 482, C22 = 537, C33 = 485, C44 = 204, C55 = 186, C66 = 147, C12 = 144, C13 = 147, C23 = 146. The resulting estimated Voigt-Reuss-Hill (VRH) aggregate isotropic elastic moduli are: K=264.0 and mu = 177.3 GPa, respectively. The single-crystal elastic moduli of MgSiO3 perovskite display a pattern that is elastically somewhat anisotropic. The maximum shear and compressional velocities are 18% and 7% greater than the minimum. The (010) crystallographic direction contains both the fastest and the slowest shear wave velocities. If, under lower mantle conditions, magnesium silicate perovskite grains were to become preferentially oriented, a shear wave propagating in the Earth's lower mantle could become polarized with two distinct velocities. The observed density and seismic parameter of the lower mantle over the depth range of 1000-2700 km are compared with the calculated profiles for a model mantle consisting of pure perovskite (Mg(0.89)Fe(0.11))SiO3 and for a mixture composed of silicate perovskite and magnesiowuestite using our new elasticity results. At present, literature values of thermoelastic properties for silicate perovskite, in particular, the coefficient of thermal expansion and the temperature derivative of the isothermal bulk modulus, vary widely. Because of this disparity, we find that mantle models ranging from pure perovskite to 'pyrolitic'-type compositions provide acceptable fits to the seismically observed density and velocity profiles of the Earth's lower mantle.

  2. Potassium-cobalt sulphate crystal growth assisted by low frequency vibrations

    NASA Astrophysics Data System (ADS)

    Sadovsky, A.; Ermochenkov, I.; Dubovenko, E.; Sukhanova, E.; Bebyakin, M.; Dubov, V.; Avetissov, I.

    2018-02-01

    Single crystals of K2Co(SO4)2·6H2O were grown from solution using the temperature reduction method enhanced by the axial low frequency vibration control technique (AVC-technique). Physical modeling of heat-mass transfer in solution under the AVC action was performed. The growth rate of the AVC grown crystal was found to be twice that of the crystal grown under natural convection conditions. Analysis of spectral characteristics (absorption and Raman spectra) as well as structural properties (dislocation density and microhardness) of the grown crystals showed the significant superiority of the AVC technique for the growth of K2Co(SO4)2·6H2O crystals.

  3. Anomalous red luminescence of Sm3+ ions in Sm3+:LaKNaTaO5 single crystals

    NASA Astrophysics Data System (ADS)

    Korzeniowski, Kamil; Sobczyk, Marcin

    2018-05-01

    For the first time much more intense 4G5/2 → 6H9/2 transition than others 4G5/2→6HJ/2 transitions of the Sm3+-doped oxides have been observed. The Sm3+-doped LaKNaTaO5 single crystals have been grown by the flux growth method. The emission and excitation spectra as well as decay profiles of the 4G5/2 luminescent level of the Sm3+ ion have been measured. The decay curve has been fitted by the Inokuti-Hirayama energy transfer model which revealed that electric dipole-dipole interaction is responsible for the energy transfer processes in the Sm3+:LaKNaTaO5 single crystals. The title phosphors may be potentially used as red phosphor for white light-emitting diodes.

  4. Deformation mechanisms, defects, heat treatment, and thermal conductivity in large grain niobium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bieler, Thomas R., E-mail: bieler@egr.msu.edu; Kang, Di, E-mail: kangdi@msu.edu; Baars, Derek C., E-mail: baarsder@gmail.com

    2015-12-04

    The physical and mechanical metallurgy underlying fabrication of large grain cavities for superconducting radio frequency accelerators is summarized, based on research of 1) grain orientations in ingots, 2) a metallurgical assessment of processing a large grain single cell cavity and a tube, 3) assessment of slip behavior of single crystal tensile samples extracted from a high purity ingot slice before and after annealing at 800 °C / 2 h, 4) development of crystal plasticity models based upon the single crystal experiments, and 5) assessment of how thermal conductivity is affected by strain, heat treatment, and exposure to hydrogen. Because of themore » large grains, the plastic anisotropy of deformation is exaggerated, and heterogeneous strains and localized defects are present to a much greater degree than expected in polycrystalline material, making it highly desirable to computationally anticipate potential forming problems before manufacturing cavities.« less

  5. Estimation of the engineering elastic constants of a directionally solidified superalloy for finite element structural analysis

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Kalluri, Sreeramesh

    1991-01-01

    The temperature-dependent engineering elastic constants of a directionally solidified nickel-base superalloy were estimated from the single-crystal elastic constants of nickel and MAR-MOO2 superalloy by using Wells' method. In this method, the directionally solidified (columnar-grained) nickel-base superalloy was modeled as a transversely isotropic material, and the five independent elastic constants of the transversely isotropic material were determined from the three independent elastic constants of a cubic single crystal. Solidification for both the single crystals and the directionally solidified superalloy was assumed to be along the (001) direction. Temperature-dependent Young's moduli in longitudinal and transverse directions, shear moduli, and Poisson's ratios were tabulated for the directionally solidified nickel-base superalloy. These engineering elastic constants could be used as input for performing finite element structural analysis of directionally solidified turbine engine components.

  6. 1300 K Creep Behavior of [001] Oriented Ni-49Al-1Hf (at.%) Single Crystals

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Locci, I. E.; Darolia, Ram; Bowman, R.

    1999-01-01

    A study of the 1300 K compressive and tensile creep properties of [001]-oriented NiAl-1Hf (D209) single crystals has been undertaken. Neither post homogenization cooling treatment, minor chemical variations within an ingot or from ingot-to-ingot, nor testing procedure had a significant effect on mechanical behavior; however a heat treatment which dissolved the initial G-phase precipitates and promoted formation of Heusler particles led to a strength reduction. Little primary creep was found utilizing direct measurement of strain, and a misorientation of 18 deg from the [001] did not reduce the creep strength. The effects of heat treatments on properties and a comparison of the flow stress-strain rate data to those predicted by the Jaswon-Cottrell solid solution hardening model indicate that the 1300 K strength in NiAl-1Hf single crystals is mainly due to precipitation hardening mechanisms.

  7. Slow positrons in the study of surface and near-surface defects

    NASA Astrophysics Data System (ADS)

    Lynn, K. G.

    A general theoretical model is presented which includes the probability of a positron diffusing back to the surface after implantation, and thermalization in samples containing various defects. This model incorporates surface state and thermal desorption from this state, as well as reflection back into the bulk. With this model vacancy formation enthalpies, activation energies of positrons from surface states, and specific trapping rates are deduced from the positronium fraction data. An amorphous Al/sub x/O/sub y/ overlayer on Al is discussed as an example of trapping in overlayers. In well-annealed single crystal samples, the positron is shown to be freely diffusing at low temperatures, whereas in a neutron-irradiatied Al single crystal sample the positron is localized at low positron binding energy defects presumably created during irradiation.

  8. A preliminary review of organic materials single crystal growth by the Czochralski technique

    NASA Astrophysics Data System (ADS)

    Penn, B. G.; Shields, A. W.; Frazier, D. O.

    1988-09-01

    The growth of single crystals of organic compounds by the Czochralski method is reviewed. From the literature it is found that single crystals of benzil, a nonlinear optical material with a d sub 11 value of 11.2 + or - 1.5 x d sub 11 value of alpha quartz, has fewer dislocations than generally contained in Bridgman crystals. More perfect crystals were grown by repeated Czochralski growth. This consists of etching away the defect-containing portion of a Czochralski grown crystal and using it as a seed for further growth. Other compounds used to grow single crystals are benzophenone, 12-tricosanone (laurone), and salol. The physical properties, growth apparatus, and processing conditions presented in the literature are discussed. Moreover, some of the possible advantages of growing single crystals of organic compounds in microgravity to obtain more perfect crystals than on Earth are reviewed.

  9. A preliminary review of organic materials single crystal growth by the Czochralski technique

    NASA Technical Reports Server (NTRS)

    Penn, B. G.; Shields, A. W.; Frazier, D. O.

    1988-01-01

    The growth of single crystals of organic compounds by the Czochralski method is reviewed. From the literature it is found that single crystals of benzil, a nonlinear optical material with a d sub 11 value of 11.2 + or - 1.5 x d sub 11 value of alpha quartz, has fewer dislocations than generally contained in Bridgman crystals. More perfect crystals were grown by repeated Czochralski growth. This consists of etching away the defect-containing portion of a Czochralski grown crystal and using it as a seed for further growth. Other compounds used to grow single crystals are benzophenone, 12-tricosanone (laurone), and salol. The physical properties, growth apparatus, and processing conditions presented in the literature are discussed. Moreover, some of the possible advantages of growing single crystals of organic compounds in microgravity to obtain more perfect crystals than on Earth are reviewed.

  10. Mechanochemical Synthesis of Carbon Nanothread Single Crystals.

    PubMed

    Li, Xiang; Baldini, Maria; Wang, Tao; Chen, Bo; Xu, En-Shi; Vermilyea, Brian; Crespi, Vincent H; Hoffmann, Roald; Molaison, Jamie J; Tulk, Christopher A; Guthrie, Malcolm; Sinogeikin, Stanislav; Badding, John V

    2017-11-15

    Synthesis of well-ordered reduced dimensional carbon solids with extended bonding remains a challenge. For example, few single-crystal organic monomers react under topochemical control to produce single-crystal extended solids. We report a mechanochemical synthesis in which slow compression at room temperature under uniaxial stress can convert polycrystalline or single-crystal benzene monomer into single-crystalline packings of carbon nanothreads, a one-dimensional sp 3 carbon nanomaterial. The long-range order over hundreds of microns of these crystals allows them to readily exfoliate into fibers. The mechanochemical reaction produces macroscopic single crystals despite large dimensional changes caused by the formation of multiple strong, covalent C-C bonds to each monomer and a lack of reactant single-crystal order. Therefore, it appears not to follow a topochemical pathway, but rather one guided by uniaxial stress, to which the nanothreads consistently align. Slow-compression room-temperature synthesis may allow diverse molecular monomers to form single-crystalline packings of polymers, threads, and higher dimensional carbon networks.

  11. Epitaxy: Programmable Atom Equivalents Versus Atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Mary X.; Seo, Soyoung E.; Gabrys, Paul A.

    The programmability of DNA makes it an attractive structure-directing ligand for the assembly of nanoparticle superlattices in a manner that mimics many aspects of atomic crystallization. However, the synthesis of multilayer single crystals of defined size remains a challenge. Though previous studies considered lattice mismatch as the major limiting factor for multilayer assembly, thin film growth depends on many interlinked variables. Here, a more comprehensive approach is taken to study fundamental elements, such as the growth temperature and the thermodynamics of interfacial energetics, to achieve epitaxial growth of nanoparticle thin films. Under optimized equilibrium conditions, single crystal, multilayer thin filmsmore » can be synthesized over 500 × 500 μm2 areas on lithographically patterned templates. Importantly, these superlattices follow the same patterns of crystal growth demonstrated in thin film atomic deposition, allowing for these processes to be understood in the context of well-studied atomic epitaxy, and potentially enabling a nanoscale model to study fundamental crystallization processes.« less

  12. Orientation Dependence of Functional Properties in Heterophase Single Crystals of the Ti36.5Ni51.0Hf12.5 and Ti48.5Ni51.5 Alloys

    NASA Astrophysics Data System (ADS)

    Panchenko, E. Yu.; Chumlyakov, Yu. I.; Surikov, N. Yu.; Tagiltsev, A. I.; Vetoshkina, N. G.; Osipovich, K. S.; Maier, H.; Sehitoglu, H.

    2016-03-01

    The features of orientation dependence of stress-induced thermoelastic B2-( R)- B19'-martensitic transformations in single crystals of the Ti48.5Ni51.5 and Ni51.0Ti36.5Hf12.5 (at.%) alloys, which contain disperse particles of the Ti3Ni4 and H-phase, respectively, are revealed along with those of their shape-memory effects (SME) and superelasticity (SE). It is experimentally demonstrated that irrespective of the crystal structure of disperse particles measuring more than 100 nm, for their volume fraction f > 16% there is a weaker orientation dependence of the reversible strain in the cases of manifestation of SME and SE. In the orientations of Class I, wherein martensitic detwinning introduces a considerable contribution into transformation strain, the values of SME |ɛ SME | and SE |ɛ SE | decrease by over a factor of two compared to the theoretical lattice strain value |ɛ tr0 | for a B2- B19'-transformation and the experimental values of reversible strain for quenched TiNi crystals. In the orientations of Class 2, wherein detwinning of the martensite is suppressed as is the case in quenched single-phase single crystals, the reversible strain is maintained close to its theoretical value |ɛ tr0 |. Micromechanical models of interaction between the martensite and the disperse particles are proposed, which account for the weaker orientation dependence of |ɛ SME | and |ɛ SE | due to suppression of detwinning of the B19'-martensite crystals by the particles and a transition from a single-variant evolution of the stress-induced martensitic transformations to a multiple-variant evolution of transformations in the cases of increased size of the particles and their larger volume fractions.

  13. Microstructure and pinning properties of hexagonal-disc shaped single crystalline MgB2

    NASA Astrophysics Data System (ADS)

    Jung, C. U.; Kim, J. Y.; Chowdhury, P.; Kim, Kijoon H.; Lee, Sung-Ik; Koh, D. S.; Tamura, N.; Caldwell, W. A.; Patel, J. R.

    2002-11-01

    We synthesized hexagonal-disc-shaped MgB2 single crystals under high-pressure conditions and analyzed the microstructure and pinning properties. The lattice constants and the Laue pattern of the crystals from x-ray micro-diffraction showed the crystal symmetry of MgB2. A thorough crystallographic mapping within a single crystal showed that the edge and c axis of hexagonal-disc shape exactly matched the [101¯0] and the [0001] directions of the MgB2 phase. Thus, these well-shaped single crystals may be the best candidates for studying the direction dependences of the physical properties. The magnetization curve and the magnetic hysteresis curve for these single crystals showed the existence of a wide reversible region and weak pinning properties, which supported our single crystals being very clean.

  14. The assessment of pore connectivity in hierarchical zeolites using positron annihilation lifetime spectroscopy: instrumental and morphological aspects.

    PubMed

    Zubiaga, Asier; Warringham, Robbie; Boltz, Marilyne; Cooke, David; Crivelli, Paolo; Gidley, David; Pérez-Ramírez, Javier; Mitchell, Sharon

    2016-04-07

    Recent studies demonstrated the power of positron annihilation lifetime spectroscopy (PALS) to characterise the connectivity and corresponding effectiveness of hierarchical pore networks in zeolites. This was based on the fractional escape of ortho-positronium (Ps), formed within the micropore framework, to vacuum. To further develop this technique, here we assess the impact of the positron implantation energy and of the zeolite crystal size and the particle morphology. Conventional measurements using fast positrons and beam measurements applying moderated positrons both readily distinguish purely microporous ZSM-5 zeolites comprised of single crystals or crystal aggregates. Unlike beam measurements, however, conventional measurements fail to discriminate model hierarchical zeolites with open or constricted mesopore architectures. Several steps are taken to rationalise these observations. The dominant contribution of Ps diffusion to the PALS response is confirmed by capping the external surface of the zeolite crystals with tetraethylorthosilicate, which greatly enhances the sensitivity to the micropore network. A one-dimensional model is constructed to predict the out-diffusion of Ps from a zeolite crystal, which is validated experimentally by comparing coffin-shaped single crystals of varying size. Calculation of the trends expected on the application of fast or moderated positrons indicates that the distinctions in the initial distribution of Ps at the crystal level cannot explain the limited sensitivity of the former to the mesopore architecture. Instead, we propose that the greater penetration of fast positrons within the sample increases the probability of Ps re-entry from intercrystalline voids into mesopores connected with the external surface of zeolite crystals, thereby reducing their fractional escape.

  15. The interpretation of polycrystalline coherent inelastic neutron scattering from aluminium

    PubMed Central

    Roach, Daniel L.; Ross, D. Keith; Gale, Julian D.; Taylor, Jon W.

    2013-01-01

    A new approach to the interpretation and analysis of coherent inelastic neutron scattering from polycrystals (poly-CINS) is presented. This article describes a simulation of the one-phonon coherent inelastic scattering from a lattice model of an arbitrary crystal system. The one-phonon component is characterized by sharp features, determined, for example, by boundaries of the (Q, ω) regions where one-phonon scattering is allowed. These features may be identified with the same features apparent in the measured total coherent inelastic cross section, the other components of which (multiphonon or multiple scattering) show no sharp features. The parameters of the model can then be relaxed to improve the fit between model and experiment. This method is of particular interest where no single crystals are available. To test the approach, the poly-CINS has been measured for polycrystalline aluminium using the MARI spectrometer (ISIS), because both lattice dynamical models and measured dispersion curves are available for this material. The models used include a simple Lennard-Jones model fitted to the elastic constants of this material plus a number of embedded atom method force fields. The agreement obtained suggests that the method demonstrated should be effective in developing models for other materials where single-crystal dispersion curves are not available. PMID:24282332

  16. Growth and microtopographic study of CuInSe{sub 2} single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauhan, Sanjaysinh M.; Chaki, Sunil, E-mail: sunilchaki@yahoo.co.in; Deshpande, M. P.

    2016-05-23

    The CuInSe{sub 2} single crystals were grown by chemical vapour transport (CVT) technique using iodine as transporting agent. The elemental composition of the as-grown CuInSe{sub 2} single crystals was determined by energy dispersive analysis of X-ray (EDAX). The unit cell crystal structure and lattice parameters were determined by X-ray diffraction (XRD) technique. The surface microtopographic study of the as-grown CuInSe{sub 2} single crystals surfaces were done to study the defects, growth mechanism, etc. of the CVT grown crystals.

  17. Method for the preparation of inorganic single crystal and polycrystalline electronic materials

    NASA Technical Reports Server (NTRS)

    Groves, W. O. (Inventor)

    1969-01-01

    Large area, semiconductor crystals selected from group 3-5 compounds and alloys are provided for semiconductor device fabrication by the use of a selective etching operation which completely removes the substrate on which the desired crystal was deposited. The substrate, selected from the same group as the single crystal, has a higher solution rate than the epitaxial single crystal which is essentially unaffected by the etching solution. The preparation of gallium phosphide single crystals using a gallium arsenide substrate and a concentrated nitric acid etching solution is described.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramadhar, Timothy R.; Zheng, Shao -Liang; Chen, Yu -Sheng

    A detailed set of synthetic and crystallographic guidelines for the crystalline sponge method based upon the analysis of expediently synthesized crystal sponges using third-generation synchrotron radiation are reported. The procedure for the synthesis of the zinc-based metal–organic framework used in initial crystal sponge reports has been modified to yield competent crystals in 3 days instead of 2 weeks. These crystal sponges were tested on some small molecules, with two being unexpectedly difficult cases for analysis with in-house diffractometers in regard to data quality and proper space-group determination. These issues were easily resolved by the use of synchrotron radiation using data-collectionmore » times of less than an hour. One of these guests induced a single-crystal-to-single-crystal transformation to create a larger unit cell with over 500 non-H atoms in the asymmetric unit. This led to a non-trivial refinement scenario that afforded the best Flack x absolute stereochemical determination parameter to date for these systems. The structures did not require the use of PLATON/SQUEEZE or other solvent-masking programs, and are the highest-quality crystalline sponge systems reported to date where the results are strongly supported by the data. A set of guidelines for the entire crystallographic process were developed through these studies. In particular, the refinement guidelines include strategies to refine the host framework, locate guests and determine occupancies, discussion of the proper use of geometric and anisotropic displacement parameter restraints and constraints, and whether to perform solvent squeezing/masking. The single-crystal-to-single-crystal transformation process for the crystal sponges is also discussed. The presented general guidelines will be invaluable for researchers interested in using the crystalline sponge method at in-house diffraction or synchrotron facilities, will facilitate the collection and analysis of reliable high-quality data, and will allow construction of chemically and physically sensible models for guest structural determination.« less

  19. Analysis of rapidly synthesized guest-filled porous complexes with synchrotron radiation: Practical guidelines for the crystalline sponge method

    DOE PAGES

    Ramadhar, Timothy R.; Zheng, Shao -Liang; Chen, Yu -Sheng; ...

    2015-01-01

    A detailed set of synthetic and crystallographic guidelines for the crystalline sponge method based upon the analysis of expediently synthesized crystal sponges using third-generation synchrotron radiation are reported. The procedure for the synthesis of the zinc-based metal–organic framework used in initial crystal sponge reports has been modified to yield competent crystals in 3 days instead of 2 weeks. These crystal sponges were tested on some small molecules, with two being unexpectedly difficult cases for analysis with in-house diffractometers in regard to data quality and proper space-group determination. These issues were easily resolved by the use of synchrotron radiation using data-collectionmore » times of less than an hour. One of these guests induced a single-crystal-to-single-crystal transformation to create a larger unit cell with over 500 non-H atoms in the asymmetric unit. This led to a non-trivial refinement scenario that afforded the best Flack x absolute stereochemical determination parameter to date for these systems. The structures did not require the use of PLATON/SQUEEZE or other solvent-masking programs, and are the highest-quality crystalline sponge systems reported to date where the results are strongly supported by the data. A set of guidelines for the entire crystallographic process were developed through these studies. In particular, the refinement guidelines include strategies to refine the host framework, locate guests and determine occupancies, discussion of the proper use of geometric and anisotropic displacement parameter restraints and constraints, and whether to perform solvent squeezing/masking. The single-crystal-to-single-crystal transformation process for the crystal sponges is also discussed. The presented general guidelines will be invaluable for researchers interested in using the crystalline sponge method at in-house diffraction or synchrotron facilities, will facilitate the collection and analysis of reliable high-quality data, and will allow construction of chemically and physically sensible models for guest structural determination.« less

  20. Si-Ge-metal ternary phase diagram calculations

    NASA Technical Reports Server (NTRS)

    Fleurial, J. P.; Borshchevsky, A.

    1990-01-01

    Solution crystal growth and doping conditions of Si-Ge alloys used for high-temperature thermoelectric generation are determined here. Liquid-phase epitaxy (LPE) has been successfully employed recently to obtain single-crystalline homogeneous layers of Si-Ge solid solutions from a liquid metal solvent. Knowledge of Si-Ge-metallic solvent ternary phase diagrams is essential for further single-crystal growth development. Consequently, a thermodynamic equilibrium model was used to calculate the phase diagrams of the Si-Ge-M systems, including solid solubilities, where M is Al, Ga, In, Sn, Pb, Sb, or Bi. Good agreement between calculated liquidus and solidus data and experimental DTA and microprobe results was obtained. The results are used to compare the suitability of the different systems for crystal growth (by LPE-type process).

  1. Drift mobility of holes in phenanthrene single crystals

    NASA Technical Reports Server (NTRS)

    Sonnonstine, T. J.; Hermann, A. M.

    1974-01-01

    The temperature dependence of drift mobilities of holes in single crystals of phenanthrene was measured in the range from 203 to 353 K in three crystallographic directions. Below the anomaly temperature of 72 C, the mobility temperature dependences are consistent with the Munn and Siebrand slow-phonon hopping process in the b direction and the Munn and Siebrand slow-phonon coherent mode in the a and c prime directions. The drift mobility temperature dependences in crystals that have been cooled through the anomaly temperature in the presence of illumination and an electric field are consistent with the model of Spielberg et al. (1971), in which the hindered vibration of the 4,5 hydrogens introduces a new degree of freedom above 72 C.

  2. Raman tensor elements for tetragonal BaTiO3 and their use for in-plane domain texture assessments

    NASA Astrophysics Data System (ADS)

    Deluca, Marco; Higashino, Masayuki; Pezzotti, Giuseppe

    2007-08-01

    A quantitative assessment of c-axis oriented domains in a textured BaTiO3 (BT) single crystal has been carried out by polarized Raman microprobe spectroscopy. The relative intensity modulation of the Raman phonon modes has been theoretically modeled as a function of crystal rotation and linked to the volume fraction of c-axis oriented domains. Raman tensor elements have also been experimentally determined for the Ag and B1 vibrational modes. As an application, the internal in-plane texture and the volume fraction of c-oriented domains in the BT single crystal have been nondestructively visualized by monitoring the relative intensity of Ag and B1 Raman modes.

  3. Improving the Representation of Snow Crystal Properties within a Single-Moment Microphysics Scheme

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Petersen, Walter A.; Case, Jonathan L.; Dembek, Scott R.

    2010-01-01

    The assumptions of a single-moment microphysics scheme (NASA Goddard) were evaluated using a variety of surface, aircraft and radar data sets. Fixed distribution intercepts and snow bulk densities fail to represent the vertical variability and diversity of crystal populations for this event. Temperature-based equations have merit, but they can be adversely affected by complex temperature profiles that are inverted or isothermal. Column-based approaches can mitigate complex profiles of temperature but are restricted by the ability of the model to represent cloud depth. Spheres are insufficient for use in CloudSat reflectivity comparisons due to Mie resonance, but reasonable for Rayleigh scattering applications. Microphysics schemes will benefit from a greater range of snow crystal characteristics to accommodate naturally occurring diversity.

  4. Porosity Evolution in a Creeping Single Crystal (Preprint)

    DTIC Science & Technology

    2012-08-01

    1] indicated that the growth of initially present processing induced voids in a nickel based single crystal superalloy played a significant role in...processing induced voids in a nickel based single crystal superalloy played a significant role in limiting creep life. Also, creep tests on single...experimental observations of creep deformation and failure of a nickel based single crystal superalloy, [1, 2]. Metallographic observations have shown that Ni

  5. Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting

    NASA Astrophysics Data System (ADS)

    Roeffaers, Maarten B. J.; Sels, Bert F.; Uji-I, Hiroshi; de Schryver, Frans C.; Jacobs, Pierre A.; de Vos, Dirk E.; Hofkens, Johan

    2006-02-01

    Catalytic processes on surfaces have long been studied by probing model reactions on single-crystal metal surfaces under high vacuum conditions. Yet the vast majority of industrial heterogeneous catalysis occurs at ambient or elevated pressures using complex materials with crystal faces, edges and defects differing in their catalytic activity. Clearly, if new or improved catalysts are to be rationally designed, we require quantitative correlations between surface features and catalytic activity-ideally obtained under realistic reaction conditions. Transmission electron microscopy and scanning tunnelling microscopy have allowed in situ characterization of catalyst surfaces with atomic resolution, but are limited by the need for low-pressure conditions and conductive surfaces, respectively. Sum frequency generation spectroscopy can identify vibrations of adsorbed reactants and products in both gaseous and condensed phases, but so far lacks sensitivity down to the single molecule level. Here we adapt real-time monitoring of the chemical transformation of individual organic molecules by fluorescence microscopy to monitor reactions catalysed by crystals of a layered double hydroxide immersed in reagent solution. By using a wide field microscope, we are able to map the spatial distribution of catalytic activity over the entire crystal by counting single turnover events. We find that ester hydrolysis proceeds on the lateral {1010} crystal faces, while transesterification occurs on the entire outer crystal surface. Because the method operates at ambient temperature and pressure and in a condensed phase, it can be applied to the growing number of liquid-phase industrial organic transformations to localize catalytic activity on and in inorganic solids. An exciting opportunity is the use of probe molecules with different size and functionality, which should provide insight into shape-selective or structure-sensitive catalysis and thus help with the rational design of new or more productive heterogeneous catalysts.

  6. Growth and surface topography of WSe{sub 2} single crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixit, Vijay, E-mail: vijdix1@gmail.com; Vyas, Chirag; Pataniya, Pratik

    2016-05-06

    Tungsten Di-Selenide belongs to the family of TMDCs showing their potential applications in the fields of Optoelectronics and PEC solar cells. Here in the present investigation single crystals of WSe{sub 2} were grown by Direct Vapour Transport Technique in a dual zone furnace having temperature difference of 50 K between the two zones. These single crystals were characterized by EDAX which confirms the stiochiometry of the grown crystals. Surface topography of the crystal was studied by optical micrograph showing the left handed spirals on the surface of WSe{sub 2} crystals. Single crystalline nature of the crystals was confirmed by SAED.

  7. ‘Pd20Sn13’ revisited: crystal structure of Pd6.69Sn4.31

    PubMed Central

    Klein, Wilhelm; Jin, Hanpeng; Hlukhyy, Viktor; Fässler, Thomas F.

    2015-01-01

    The crystal structure of the title compound was previously reported with composition ‘Pd20Sn13’ [Sarah et al. (1981 ▸). Z. Metallkd, 72, 517–520]. For the original structure model, as determined from powder X-ray data, atomic coordinates from the isostructural compound Ni13Ga3Ge6 were transferred. The present structure determination, resulting in a composition Pd6.69Sn4.31, is based on single crystal X-ray data and includes anisotropic displacement parameters for all atoms as well as standard uncertainties for the atomic coordinates, leading to higher precision and accuracy for the structure model. Single crystals of the title compound were obtained via a solid-state reaction route, starting from the elements. The crystal structure can be derived from the AlB2 type of structure after removing one eighth of the atoms at the boron positions and shifting adjacent atoms in the same layer in the direction of the voids. One atomic site is partially occupied by both elements with a Pd:Sn ratio of 0.38 (3):0.62 (3). One Sn and three Pd atoms are located on special positions with site symmetry 2. (Wyckoff letter 3a and 3b). PMID:26279872

  8. The mechanism of color change in the neon tetra fish: a light-induced tunable photonic crystal array.

    PubMed

    Gur, Dvir; Palmer, Benjamin A; Leshem, Ben; Oron, Dan; Fratzl, Peter; Weiner, Steve; Addadi, Lia

    2015-10-12

    The fresh water fish neon tetra has the ability to change the structural color of its lateral stripe in response to a change in the light conditions, from blue-green in the light-adapted state to indigo in the dark-adapted state. The colors are produced by constructive interference of light reflected from stacks of intracellular guanine crystals, forming tunable photonic crystal arrays. We have used micro X-ray diffraction to track in time distinct diffraction spots corresponding to individual crystal arrays within a single cell during the color change. We demonstrate that reversible variations in crystal tilt within individual arrays are responsible for the light-induced color variations. These results settle a long-standing debate between the two proposed models, the "Venetian blinds" model and the "accordion" model. The insight gained from this biogenic light-induced photonic tunable system may provide inspiration for the design of artificial optical tunable systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Ultrathin solution-processed single crystals of thiophene-phenylene co-oligomers for organic field-effect devices

    NASA Astrophysics Data System (ADS)

    Glushkova, Anastasia V.; Poimanova, Elena Yu.; Bruevich, Vladimir V.; Luponosov, Yuriy N.; Ponomarenko, Sergei A.; Paraschuk, Dmitry Yu.

    2017-08-01

    Thiophene-phenylene co-oligomers (TPCO) single crystals are promising materials for organic light-emitting devices, e.g., light-emitting transistors (OLETs), due to their ability to combine high luminescence and efficient charge transport. However, optical confinement in platy single crystals strongly decreases light emission from their top surface degrading the device performance. To avoid optical waveguiding, single crystals thinner than 100 nm would be beneficial. Herein, we report on solution-processed ultrathin single crystals of TPCO and study their charge transport properties. As materials we used 1,4-bis(5'-hexyl-2,2'-bithiophene-5-yl)benzene (DH-TTPTT) and 1,4-bis(5'-decyl-2,2'-bithiophene-5-yl)benzene (DD-TTPTT). The ultrathin single crystals were studied by optical polarization, atomic-force, and transmission electron microscopies, and as active layers in organic field effect transistors (OFET). The OFET hole mobility was increased tenfold for the oligomer with longer alkyl substituents (DD-TTPTT) reaching 0.2 cm2/Vs. Our studies of crystal growth indicate that if the substrate is wetted, it has no significant effect on the crystal growth. We conclude that solution-processed ultrathin TPCO single crystals are a promising platform for organic optoelectronic field-effect devices.

  10. Nanoparticles Incorporated inside Single-Crystals: Enhanced Fluorescent Properties

    DOE PAGES

    Liu, Yujing; Zang, Huidong; Wang, Ling; ...

    2016-09-25

    Incorporation of guest materials inside single-crystalline hosts leads to single-crystal composites that have become more and more frequently seen in both biogenic and synthetic crystals. The unique composite structure together with long-range ordering promises special properties that are, however, less often demonstrated. In this study, we examine the fluorescent properties of quantum dots (QDs) and polymer dots (Pdots) encapsulated inside the hosts of calcite single-crystals. Two CdTe QDs and two Pdots are incorporated into growing calcite crystals, as the QDs and Pdots are dispersed in the crystallization media of agarose gels. As a result, enhanced fluorescent properties are obtained frommore » the QDs and Pdots inside calcite single-crystals with greatly improved photostability and significantly prolonged fluorescence lifetime, compared to those in solutions and gels. Particularly, the fluorescence lifetime increases by 0.5-1.6 times after the QDs or Pdots are incorporated. The enhanced fluorescent properties indicate the advantages of encapsulation by single-crystal hosts that provide dense shells to isolate the fluorescent nanoparticles from atmosphere. As such, this work has implications for advancing the research of single-crystal composites toward their functional design.« less

  11. Elastico-mechanoluminescence and crystal-structure relationships in persistent luminescent materials and II-VI semiconductor phosphors

    NASA Astrophysics Data System (ADS)

    Chandra, B. P.; Chandra, V. K.; Jha, Piyush

    2015-04-01

    Elastico-mechanoluminescence (EML) has recently attracted the attention of a large number of researchers because of its potential in different types of mechano-optical devices. For understanding the mechanism of EML the relationships between elastico-mechanoluminescence (EML) and crystal-structure of a large number of persistent luminescent materials and II-VI semiconductor phosphors known to date are investigated. It is found that, although most of the non-centrosymmetric crystals exhibit EML, certain non-centrosymmetric crystals do not show EML. Whereas, many centrosymmetric crystals do not exhibit EML, certain centrosymmetric crystals exhibit EML. Piezoelectric ZnS:Cu,Cl single crystals do not show EML, but piezoelectric ZnS:Cu,Cl microcrystalline phosphors show very intense EML. Piezoelectric single crystals of undoped ZnS do not show EML. It seems that EML is related to local piezoelectrification near the impurities in crystals where piezoelectric constant is high. Suitable piezoelectric field near the local piezoelectric region and stable charge carriers in traps are required for appearance of EML. The EML of persistent luminescent materials and II-VI semiconductor phosphors can be understood on the basis of piezoelectrically-induced trap-depth reduction model of EML. Using suitable dopants both in non-centrosymmetric and centrosymmetric crystals intense elastico-mechanoluminescent materials emitting desired colours can be tailored, which may find applications in several mechano-optical devices.

  12. Solar cell structure incorporating a novel single crystal silicon material

    DOEpatents

    Pankove, Jacques I.; Wu, Chung P.

    1983-01-01

    A novel hydrogen rich single crystal silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystal silicon without out-gassing the hydrogen. The new material can be used to fabricate semiconductor devices such as single crystal silicon solar cells with surface window regions having a greater band gap energy than that of single crystal silicon without hydrogen.

  13. Crystal growth, structural, thermal and mechanical behavior of l-arginine 4-nitrophenolate 4-nitrophenol dihydrate (LAPP) single crystals.

    PubMed

    Mahadevan, M; Ramachandran, K; Anandan, P; Arivanandhan, M; Bhagavannarayana, G; Hayakawa, Y

    2014-12-10

    Single crystals of l-arginine 4-nitrophenolate 4-nitrophenol dihydrate (LAPP) have been grown successfully from the solution of l-arginine and 4-nitrophenol. Slow evaporation of solvent technique was adopted to grow the bulk single crystals. Single crystal X-ray diffraction analysis confirms the grown crystal has monoclinic crystal system with space group of P21. Powder X-ray diffraction analysis shows the good crystalline nature. The crystalline perfection of the grown single crystals was analyzed by HRXRD by employing a multicrystal X-ray diffractometer. The functional groups were identified from proton NMR spectroscopic analysis. Linear and nonlinear optical properties were determined by UV-Vis spectrophotometer and Kurtz powder technique respectively. It is found that the grown crystal has no absorption in the green wavelength region and the SHG efficiency was found to be 2.66 times that of the standard KDP. The Thermal stability of the crystal was found by obtaining TG/DTA curve. The mechanical behavior of the grown crystal has been studied by Vicker's microhardness method. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Crystallization of Deformable Spherical Colloids

    NASA Astrophysics Data System (ADS)

    Batista, Vera M. O.; Miller, Mark A.

    2010-08-01

    We introduce and characterize a first-order model for a generic class of colloidal particles that have a preferred spherical shape but can undergo deformations while always maintaining hard-body interactions. The model consists of hard spheres that can continuously change shape at fixed volume into prolate or oblate ellipsoids of revolution, subject to an energetic penalty. The severity of this penalty is specified by a single parameter that determines the flexibility of the particles. The deformable hard spheres crystallize at higher packing fractions than rigid hard spheres, have a narrower solid-fluid coexistence region and can reach high densities by a second transition to an orientationally ordered crystal.

  15. Microtube-Czochralski technique (μT-CZ):. a novel way of seeding the melt to grow bulk single crystal

    NASA Astrophysics Data System (ADS)

    Sankaranarayanan, K.; Ramasamy, P.

    1998-09-01

    A novel microtube seeding has been proposed in the conventional Czochralski pulling technique to grow a bulk single crystal. The versatility of the technique has been shown by adopting this method for the growth of benzil. Benzil single crystals having hexagonal facets are grown by this technique called the microtube-Czochralski technique (μT-CZ). Due to capillary rise, a fine column of melt was crystallized inside the microtube, which leads to the formation of the single crystal nucleation and ends up with hexagonal morphology. The reproducibility for getting single crystal is about 80%. It is evident that this technique is more viable to grow a bulk single crystal from the melt without a pregrown-seed. Further, the proposed μT-CZ technique can also be extended to other newer materials with the proper choice of the microtube.

  16. Melt Flow before Crystal Seeding in Cz Si Growth with Transversal MF

    NASA Astrophysics Data System (ADS)

    Iizuka, Masaya; Mukaiyama, Yuji; Demina, S. E.; Kalaev, V. V.

    2017-06-01

    Industrial Cz growth of Si crystal of 300 mm and higher diameter usually requires DC magnetic fields (MFs) to suppress turbulence in the melt. We present 3D unsteady analysis of melt turbulent convection in an industrial Cz system coupled with the effect of the transversal MF for different argon gas flow rates for the stage before crystal seeding. We have performed detailed 2D axisymmetric modeling of global heat transfer in the whole Cz furnace. Radiative heat fluxes obtained in 2D modeling have been used in detailed 3D steady and unsteady modeling of crystallization zone. LES method is applied as a predictive approach for modeling of turbulent flow of silicon melt. We have obtained flow structure and temperature distribution in the melt, which were different from previously reported data. We have observed a well-fixed dark spike which includes low temperature melt area on the melt free surface in MF cases. These results indicates that MF and argon flow rate conditions are important to achieve stable positioning of the dark spike on the melt free surface for optimized crystal seeding without uncontrollable meltdown and single crystal structure loss.

  17. A simplified counter diffusion method combined with a 1D simulation program for optimizing crystallization conditions.

    PubMed

    Tanaka, Hiroaki; Inaka, Koji; Sugiyama, Shigeru; Takahashi, Sachiko; Sano, Satoshi; Sato, Masaru; Yoshitomi, Susumu

    2004-01-01

    We developed a new protein crystallization method has been developed using a simplified counter-diffusion method for optimizing crystallization condition. It is composed of only a single capillary, the gel in the silicon tube and the screw-top test tube, which are readily available in the laboratory. The one capillary can continuously scan a wide range of crystallization conditions (combination of the concentrations of the precipitant and the protein) unless crystallization occurs, which means that it corresponds to many drops in the vapor-diffusion method. The amount of the precipitant and the protein solutions can be much less than in conventional methods. In this study, lysozyme and alpha-amylase were used as model proteins for demonstrating the efficiency of this method. In addition, one-dimensional (1-D) simulations of the crystal growth were performed based on the 1-D diffusion model. The optimized conditions can be applied to the initial crystallization conditions for both other counter-diffusion methods with the Granada Crystallization Box (GCB) and for the vapor-diffusion method after some modification.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, J. R.

    We synthesized hexagonal-disc-shaped MgB{sub 2} single crystals under high-pressure conditions and analyzed the microstructure and pinning properties. The lattice constants and the Laue pattern of the crystals from X-ray micro-diffraction showed the crystal symmetry of MgB{sub 2}. A thorough crystallographic mapping within a single crystal showed that the edge and c-axis of hexagonal-disc shape exactly matched the (10-10) and the (0001) directions of the MgB{sub 2} phase. Thus, these well-shaped single crystals may be the best candidates for studying the direction dependences of the physical properties. The magnetization curve and the magnetic hysteresis for these single crystals showed the existencemore » of a wide reversible region and weak pinning properties, which supported our single crystals being very clean.« less

  19. Polycrystalline ZrTe 5 Parametrized as a Narrow-Band-Gap Semiconductor for Thermoelectric Performance

    DOE PAGES

    Miller, Samuel A.; Witting, Ian; Aydemir, Umut; ...

    2018-01-24

    The transition-metal pentatellurides HfTe 5 and ZrTe 5 have been studied for their exotic transport properties with much debate over the transport mechanism, band gap, and cause of the resistivity behavior, including a large low-temperature resistivity peak. Single crystals grown by the chemical-vapor-transport method have shown an n-p transition of the Seebeck coefficient at the same temperature as a peak in the resistivity. We show that behavior similar to that of single crystals can be observed in iodine-doped polycrystalline samples but that undoped polycrystalline samples exhibit drastically different properties: they are p type over the entire temperature range. Additionally, themore » thermal conductivity for polycrystalline samples is much lower, 1.5 Wm -1 K -1, than previously reported for single crystals. It is found that the polycrystalline ZrTe 5 system can be modeled as a simple semiconductor with conduction and valence bands both contributing to transport, separated by a band gap of 20 meV. This model demonstrates to first order that a simple two-band model can explain the transition from n- to p-type behavior and the cause of the anomalous resistivity peak. Combined with the experimental data, the two-band model shows that carrier concentration variation is responsible for differences in behavior between samples. Using the two-band model, the thermoelectric performance at different doping levels is predicted, finding zT=0.2 and 0.1 for p and n type, respectively, at 300 K, and zT=0.23 and 0.32 for p and n type at 600 K. Given the reasonably high zT that is comparable in magnitude for both n and p type, a thermoelectric device with a single compound used for both legs is feasible.« less

  20. Polycrystalline ZrTe5 Parametrized as a Narrow-Band-Gap Semiconductor for Thermoelectric Performance

    NASA Astrophysics Data System (ADS)

    Miller, Samuel A.; Witting, Ian; Aydemir, Umut; Peng, Lintao; Rettie, Alexander J. E.; Gorai, Prashun; Chung, Duck Young; Kanatzidis, Mercouri G.; Grayson, Matthew; Stevanović, Vladan; Toberer, Eric S.; Snyder, G. Jeffrey

    2018-01-01

    The transition-metal pentatellurides HfTe5 and ZrTe5 have been studied for their exotic transport properties with much debate over the transport mechanism, band gap, and cause of the resistivity behavior, including a large low-temperature resistivity peak. Single crystals grown by the chemical-vapor-transport method have shown an n -p transition of the Seebeck coefficient at the same temperature as a peak in the resistivity. We show that behavior similar to that of single crystals can be observed in iodine-doped polycrystalline samples but that undoped polycrystalline samples exhibit drastically different properties: they are p type over the entire temperature range. Additionally, the thermal conductivity for polycrystalline samples is much lower, 1.5 Wm-1 K-1 , than previously reported for single crystals. It is found that the polycrystalline ZrTe5 system can be modeled as a simple semiconductor with conduction and valence bands both contributing to transport, separated by a band gap of 20 meV. This model demonstrates to first order that a simple two-band model can explain the transition from n - to p -type behavior and the cause of the anomalous resistivity peak. Combined with the experimental data, the two-band model shows that carrier concentration variation is responsible for differences in behavior between samples. Using the two-band model, the thermoelectric performance at different doping levels is predicted, finding z T =0.2 and 0.1 for p and n type, respectively, at 300 K, and z T =0.23 and 0.32 for p and n type at 600 K. Given the reasonably high z T that is comparable in magnitude for both n and p type, a thermoelectric device with a single compound used for both legs is feasible.

  1. Polycrystalline ZrTe{sub 5} Parameterized as a Narrow Band Gap Semiconductor for Thermoelectric Performance.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Samuel A.; Witting, Ian; Aydemir, Umut

    The transition-metal pentatellurides HfTe5 and ZrTe5 have been studied for their exotic transport properties with much debate over the transport mechanism, band gap, and cause of the resistivity behavior, including a large low-temperature resistivity peak. Single crystals grown by the chemical-vapor-transport method have shown an n-p transition of the Seebeck coefficient at the same temperature as a peak in the resistivity. We show that behavior similar to that of single crystals can be observed in iodine-doped polycrystalline samples but that undoped polycrystalline samples exhibit drastically different properties: they are p type over the entire temperature range. Additionally, the thermal conductivitymore » for polycrystalline samples is much lower, 1.5 Wm -1 K -1, than previously reported for single crystals. It is found that the polycrystalline ZrTe 5 system can be modeled as a simple semiconductor with conduction and valence bands both contributing to transport, separated by a band gap of 20 meV. This model demonstrates to first order that a simple two-band model can explain the transition from n- to p-type behavior and the cause of the anomalous resistivity peak. Combined with the experimental data, the two-band model shows that carrier concentration variation is responsible for differences in behavior between samples. Using the twoband model, the thermoelectric performance at different doping levels is predicted, finding zT =0.2 and 0.1 for p and n type, respectively, at 300 K, and zT= 0.23 and 0.32 for p and n type at 600 K. Given the reasonably high zT that is comparable in magnitude for both n and p type, a thermoelectric device with a single compound used for both legs is feasible.« less

  2. Polycrystalline ZrTe 5 Parametrized as a Narrow-Band-Gap Semiconductor for Thermoelectric Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Samuel A.; Witting, Ian; Aydemir, Umut

    The transition-metal pentatellurides HfTe 5 and ZrTe 5 have been studied for their exotic transport properties with much debate over the transport mechanism, band gap, and cause of the resistivity behavior, including a large low-temperature resistivity peak. Single crystals grown by the chemical-vapor-transport method have shown an n-p transition of the Seebeck coefficient at the same temperature as a peak in the resistivity. We show that behavior similar to that of single crystals can be observed in iodine-doped polycrystalline samples but that undoped polycrystalline samples exhibit drastically different properties: they are p type over the entire temperature range. Additionally, themore » thermal conductivity for polycrystalline samples is much lower, 1.5 Wm -1 K -1, than previously reported for single crystals. It is found that the polycrystalline ZrTe 5 system can be modeled as a simple semiconductor with conduction and valence bands both contributing to transport, separated by a band gap of 20 meV. This model demonstrates to first order that a simple two-band model can explain the transition from n- to p-type behavior and the cause of the anomalous resistivity peak. Combined with the experimental data, the two-band model shows that carrier concentration variation is responsible for differences in behavior between samples. Using the two-band model, the thermoelectric performance at different doping levels is predicted, finding zT=0.2 and 0.1 for p and n type, respectively, at 300 K, and zT=0.23 and 0.32 for p and n type at 600 K. Given the reasonably high zT that is comparable in magnitude for both n and p type, a thermoelectric device with a single compound used for both legs is feasible.« less

  3. Simulation, modeling, and crystal growth of Cd0.9Zn0.1Te for nuclear spectrometers

    NASA Astrophysics Data System (ADS)

    Mandal, Krishna C.; Kang, Sung Hoon; Choi, Michael; Bello, Job; Zheng, Lili; Zhang, Hui; Groza, Michael; Roy, Utpal N.; Burger, Arnold; Jellison, Gerald E.; Holcomb, David E.; Wright, Gomez W.; Williams, Joseph A.

    2006-06-01

    High-quality, large (10 cm long and 2.5 cm diameter), nuclear spectrometer grade Cd0.9Zn0.1Te (CZT) single crystals have been grown by a controlled vertical Bridgman technique using in-house zone refined precursor materials (Cd, Zn, and Te). A state-of-the-art computer model, multizone adaptive scheme for transport and phase-change processes (MASTRAP), is used to model heat and mass transfer in the Bridgman growth system and to predict the stress distribution in the as-grown CZT crystal and optimize the thermal profile. The model accounts for heat transfer in the multiphase system, convection in the melt, and interface dynamics. The grown semi-insulating (SI) CZT crystals have demonstrated promising results for high-resolution room-temperature radiation detectors due to their high dark resistivity (ρ≈2.8 × 1011 Θ cm), good charge-transport properties [electron and hole mobility-life-time product, μτe≈(2 5)×10-3 and μτh≈(3 5)×10-5 respectively, and low cost of production. Spectroscopic ellipsometry and optical transmission measurements were carried out on the grown CZT crystals using two-modulator generalized ellipsometry (2-MGE). The refractive index n and extinction coefficient k were determined by mathematically eliminating the ˜3-nm surface roughness layer. Nuclear detection measurements on the single-element CZT detectors with 241Am and 137Cs clearly detected 59.6 and 662 keV energies with energy resolution (FWHM) of 2.4 keV (4.0%) and 9.2 keV (1.4%), respectively.

  4. New structure type in the mixed-valent compound YbCu4Ga8.

    PubMed

    Subbarao, Udumula; Gutmann, Matthias J; Peter, Sebastian C

    2013-02-18

    The new compound YbCu(4)Ga(8) was obtained as large single crystals in high yield from reactions run in liquid gallium. Preliminary investigations suggest that YbCu(4)Ga(8) crystallizes in the CeMn(4)Al(8) structure type, tetragonal space group I4/mmm, and lattice constants are a = b = 8.6529(4) Å and c = 5.3976(11) Å. However, a detailed single-crystal XRD revealed a tripling of the c axis and crystallizing in a new structure type with lattice constants of a = b = 8.6529(4) Å and c = 15.465(1) Å. The structural model was further confirmed by neutron diffraction measurements on high-quality single crystal. The crystal structure of YbCu(4)Ga(8) is composed of pseudo-Frank-Kasper cages occupying one ytterbium atom in each ring which are shared through the corner along the ab plane, resulting in a three-dimensional network. The magnetic susceptibility of YbCu(4)Ga(8) investigated in the temperature range 2-300 K showed Curie-Weiss law behavior above 100 K, and the experimentally measured magnetic moment indicates mixed-valent ytterbium. Electrical resistivity measurements show the metallic nature of the compound. At low temperatures, variation of ρ as a function of T indicates a possible Fermi-liquid state at low temperatures.

  5. Capillarity creates single-crystal calcite nanowires from amorphous calcium carbonate.

    PubMed

    Kim, Yi-Yeoun; Hetherington, Nicola B J; Noel, Elizabeth H; Kröger, Roland; Charnock, John M; Christenson, Hugo K; Meldrum, Fiona C

    2011-12-23

    Single-crystal calcite nanowires are formed by crystallization of morphologically equivalent amorphous calcium carbonate (ACC) particles within the pores of track etch membranes. The polyaspartic acid stabilized ACC is drawn into the membrane pores by capillary action, and the single-crystal nature of the nanowires is attributed to the limited contact of the intramembrane ACC particle with the bulk solution. The reaction environment then supports transformation to a single-crystal product. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Laser radiation frequency doubling in a single-crystal fibre based on a stoichiometric LiNbO3 crystal

    NASA Astrophysics Data System (ADS)

    Kashin, V. V.; Nikolaev, D. A.; Rusanov, S. Ya; Tsvetkov, V. B.

    2015-01-01

    We demonstrate the employment of single-crystal optical fibres based on lithium niobate for doubling the laser radiation frequency. The measured characteristics of the fibre confirm its high quality and spatial homogeneity. Parameters of the frequency doublers for neodymium laser radiation (λ = 1 mm) based on fibre and bulk single crystals are compared. Single crystals are grown by the method of laser-heated pedestal growing with heating by radiation of a CO2 laser (LHPG-method).

  7. A Lattice-Misfit-Dependent Damage Model for Non-linear Damage Accumulations Under Monotonous Creep in Single Crystal Superalloys

    NASA Astrophysics Data System (ADS)

    le Graverend, J.-B.

    2018-05-01

    A lattice-misfit-dependent damage density function is developed to predict the non-linear accumulation of damage when a thermal jump from 1050 °C to 1200 °C is introduced somewhere in the creep life. Furthermore, a phenomenological model aimed at describing the evolution of the constrained lattice misfit during monotonous creep load is also formulated. The response of the lattice-misfit-dependent plasticity-coupled damage model is compared with the experimental results obtained at 140 and 160 MPa on the first generation Ni-based single crystal superalloy MC2. The comparison reveals that the damage model is well suited at 160 MPa and less at 140 MPa because the transfer of stress to the γ' phase occurs for stresses above 150 MPa which leads to larger variations and, therefore, larger effects of the constrained lattice misfit on the lifetime during thermo-mechanical loading.

  8. Numerical investigation of thermal and residual stress of sapphire during c-axis vertical Bridgman growth process considering the solidification history effect

    NASA Astrophysics Data System (ADS)

    Hwang, Ji Hoon; Lee, Young Cheol; Lee, Wook Jin

    2018-01-01

    Sapphire single crystals have been highlighted for epitaxial of gallium nitride films in high-power laser and light emitting diode industries. In this study, the evolution of thermally induced stress in sapphire during the vertical Bridgman crystal growth process was investigated using a finite element model that simplified the real Bridgman process. A vertical Bridgman process of cylindrical sapphire crystal with a diameter of 50 mm was considered for the model. The solidification history effect during the growth was modeled by the quite element technique. The effects of temperature gradient, seeding interface shape and seeding position on the thermal stress during the process were discussed based on the finite element analysis results.

  9. Melt and metallic solution crystal growth of CuInSe 2

    NASA Astrophysics Data System (ADS)

    Baldus, A.; Benz, K. W.

    1993-05-01

    In this paper the fabrication of CuInSe 2 chalcopyrite single crystals by the vertical Bridgman technique using non-stoichiometric In 2Se 3-rich congruent composition and a novel ampoule design is describe. Furthermore the growth of CuInSe 2 crystals by the travelling heater method (THM) using an In solvent was investigated. The elemental composition of as-grown CuInSe 2 semiconducting compounds and their electrical properties are discussed and correlated with predictions made by an intrinsic chemistry model.

  10. Effect of L-Valine on the growth and characterization of Sodium Acid Phthalate (SAP) single crystals.

    PubMed

    Nirmala, L Ruby; Thomas Joseph Prakash, J

    2013-06-01

    Undoped and amino acid doped good quality single crystals of Sodium Acid Phthalate crystals (SAP) were grown by slow evaporation solution growth technique which are semiorganic in nature. The effect of amino acid (L-Valine) dopant on the growth and the properties of SAP single crystal was investigated. The single crystal X-ray diffraction studies and FT-IR studies were carried out to identify the crystal structure and the presence of functional groups in undoped and L-Valine doped SAP crystals. The transparent nature of the grown crystal was observed using UV-Visible spectrum. The thermal decomposition of the doped SAP crystals was investigated by thermo gravimetric analysis (TGA) and differential thermal analysis (DTA). The enhancement in the NLO property of the undoped and L-Valine doped SAP crystals using KDP crystal as a reference was studied using SHG measurements. Vickers micro hardness measurements are used for the study of mechanical strength of the grown crystals. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Positioning and joining of organic single-crystalline wires

    PubMed Central

    Wu, Yuchen; Feng, Jiangang; Jiang, Xiangyu; Zhang, Zhen; Wang, Xuedong; Su, Bin; Jiang, Lei

    2015-01-01

    Organic single-crystal, one-dimensional materials can effectively carry charges and/or excitons due to their highly ordered molecule packing, minimized defects and eliminated grain boundaries. Controlling the alignment/position of organic single-crystal one-dimensional architectures would allow on-demand photon/electron transport, which is a prerequisite in waveguides and other optoelectronic applications. Here we report a guided physical vapour transport technique to control the growth, alignment and positioning of organic single-crystal wires with the guidance of pillar-structured substrates. Submicrometre-wide, hundreds of micrometres long, highly aligned, organic single-crystal wire arrays are generated. Furthermore, these organic single-crystal wires can be joined within controlled angles by varying the pillar geometries. Owing to the controllable growth of organic single-crystal one-dimensional architectures, we can present proof-of-principle demonstrations utilizing joined wires to allow optical waveguide through small radii of curvature (internal angles of ~90–120°). Our methodology may open a route to control the growth of organic single-crystal one-dimensional materials with potential applications in optoelectronics. PMID:25814032

  12. A numerical multi-scale model to predict macroscopic material anisotropy of multi-phase steels from crystal plasticity material definitions

    NASA Astrophysics Data System (ADS)

    Ravi, Sathish Kumar; Gawad, Jerzy; Seefeldt, Marc; Van Bael, Albert; Roose, Dirk

    2017-10-01

    A numerical multi-scale model is being developed to predict the anisotropic macroscopic material response of multi-phase steel. The embedded microstructure is given by a meso-scale Representative Volume Element (RVE), which holds the most relevant features like phase distribution, grain orientation, morphology etc., in sufficient detail to describe the multi-phase behavior of the material. A Finite Element (FE) mesh of the RVE is constructed using statistical information from individual phases such as grain size distribution and ODF. The material response of the RVE is obtained for selected loading/deformation modes through numerical FE simulations in Abaqus. For the elasto-plastic response of the individual grains, single crystal plasticity based plastic potential functions are proposed as Abaqus material definitions. The plastic potential functions are derived using the Facet method for individual phases in the microstructure at the level of single grains. The proposed method is a new modeling framework and the results presented in terms of macroscopic flow curves are based on the building blocks of the approach, while the model would eventually facilitate the construction of an anisotropic yield locus of the underlying multi-phase microstructure derived from a crystal plasticity based framework.

  13. Pauli structures arising from confined particles interacting via a statistical potential

    NASA Astrophysics Data System (ADS)

    Batle, Josep; Ciftja, Orion; Farouk, Ahmed; Alkhambashi, Majid; Abdalla, Soliman

    2017-09-01

    There have been suggestions that the Pauli exclusion principle alone can lead a non-interacting (free) system of identical fermions to form crystalline structures dubbed Pauli crystals. Single-shot imaging experiments for the case of ultra-cold systems of free spin-polarized fermionic atoms in a two-dimensional harmonic trap appear to show geometric arrangements that cannot be characterized as Wigner crystals. This work explores this idea and considers a well-known approach that enables one to treat a quantum system of free fermions as a system of classical particles interacting with a statistical interaction potential. The model under consideration, though classical in nature, incorporates the quantum statistics by endowing the classical particles with an effective interaction potential. The reasonable expectation is that possible Pauli crystal features seen in experiments may manifest in this model that captures the correct quantum statistics as a first order correction. We use the Monte Carlo simulated annealing method to obtain the most stable configurations of finite two-dimensional systems of confined particles that interact with an appropriate statistical repulsion potential. We consider both an isotropic harmonic and a hard-wall confinement potential. Despite minor differences, the most stable configurations observed in our model correspond to the reported Pauli crystals in single-shot imaging experiments of free spin-polarized fermions in a harmonic trap. The crystalline configurations observed appear to be different from the expected classical Wigner crystal structures that would emerge should the confined classical particles had interacted with a pair-wise Coulomb repulsion.

  14. Simulation and Experimental Studies on Grain Selection and Structure Design of the Spiral Selector for Casting Single Crystal Ni-Based Superalloy.

    PubMed

    Zhang, Hang; Xu, Qingyan

    2017-10-27

    Grain selection is an important process in single crystal turbine blades manufacturing. Selector structure is a control factor of grain selection, as well as directional solidification (DS). In this study, the grain selection and structure design of the spiral selector were investigated through experimentation and simulation. A heat transfer model and a 3D microstructure growth model were established based on the Cellular automaton-Finite difference (CA-FD) method for the grain selector. Consequently, the temperature field, the microstructure and the grain orientation distribution were simulated and further verified. The average error of the temperature result was less than 1.5%. The grain selection mechanisms were further analyzed and validated through simulations. The structural design specifications of the selector were suggested based on the two grain selection effects. The structural parameters of the spiral selector, namely, the spiral tunnel diameter ( d w ), the spiral pitch ( h b ) and the spiral diameter ( h s ), were studied and the design criteria of these parameters were proposed. The experimental and simulation results demonstrated that the improved selector could accurately and efficiently produce a single crystal structure.

  15. Simulation and Experimental Studies on Grain Selection and Structure Design of the Spiral Selector for Casting Single Crystal Ni-Based Superalloy

    PubMed Central

    Zhang, Hang; Xu, Qingyan

    2017-01-01

    Grain selection is an important process in single crystal turbine blades manufacturing. Selector structure is a control factor of grain selection, as well as directional solidification (DS). In this study, the grain selection and structure design of the spiral selector were investigated through experimentation and simulation. A heat transfer model and a 3D microstructure growth model were established based on the Cellular automaton-Finite difference (CA-FD) method for the grain selector. Consequently, the temperature field, the microstructure and the grain orientation distribution were simulated and further verified. The average error of the temperature result was less than 1.5%. The grain selection mechanisms were further analyzed and validated through simulations. The structural design specifications of the selector were suggested based on the two grain selection effects. The structural parameters of the spiral selector, namely, the spiral tunnel diameter (dw), the spiral pitch (hb) and the spiral diameter (hs), were studied and the design criteria of these parameters were proposed. The experimental and simulation results demonstrated that the improved selector could accurately and efficiently produce a single crystal structure. PMID:29077067

  16. Image-based multi-scale simulation and experimental validation of thermal conductivity of lanthanum zirconate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Xingye; Hu, Bin; Wei, Changdong

    Lanthanum zirconate (La2Zr2O7) is a promising candidate material for thermal barrier coating (TBC) applications due to its low thermal conductivity and high-temperature phase stability. In this work, a novel image-based multi-scale simulation framework combining molecular dynamics (MD) and finite element (FE) calculations is proposed to study the thermal conductivity of La2Zr2O7 coatings. Since there is no experimental data of single crystal La2Zr2O7 thermal conductivity, a reverse non-equilibrium molecular dynamics (reverse NEMD) approach is first employed to compute the temperature-dependent thermal conductivity of single crystal La2Zr2O7. The single crystal data is then passed to a FE model which takes into accountmore » of realistic thermal barrier coating microstructures. The predicted thermal conductivities from the FE model are in good agreement with experimental validations using both flash laser technique and pulsed thermal imaging-multilayer analysis. The framework proposed in this work provides a powerful tool for future design of advanced coating systems. (C) 2016 Elsevier Ltd. All rights reserved.« less

  17. Molecular dynamics simulation on the elastoplastic properties of copper nanowire under torsion

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Li, Ying; Yang, Zailin; Zhang, Guowei; Wang, Xizhi; Liu, Jin

    2018-02-01

    Influences of different factors on the torsion properties of single crystal copper nanowire are studied by molecular dynamics method. The length, torsional rate, and temperature of the nanowire are discussed at the elastic-plastic critical point. According to the average potential energy curve and shear stress curve, the elastic-plastic critical angle is determined. Also, the dislocation at elastoplastic critical points is analyzed. The simulation results show that the single crystal copper nanowire can be strengthened by lengthening the model, decreasing the torsional rate, and lowering the temperature. Moreover, atoms move violently and dislocation is more likely to occur with a higher temperature. This work mainly describes the mechanical behavior of the model under different states.

  18. Study on influence of growth conditions on position and shape of crystal/melt interface of alkali lead halide crystals at Bridgman growth

    NASA Astrophysics Data System (ADS)

    Král, Robert

    2012-12-01

    Suitable conditions for growth of high quality single crystals of ternary alkali lead halides prepared by a Bridgman method were explored using direct observation of a crystal/melt interface when pulling an ampoule out of a furnace, deliberated striations' induction and measurement of a temperature field in the filled ampoule in the vertical Bridgman arrangement, as model compounds lead chloride and ternary rubidium lead bromide were used. By direct observation only position of the crystal/melt interface was markedly determined, while by induced striations both the position and the shape of the interface were visualized but their contrast had to be intensified by adding admixtures. Performed temperature measurements in the filled ampoule brought both a view of temperature field in the 3D radial symmetry and basic data for comparison of a real temperature field with those obtained by projected modeling.

  19. Theoretical Calculations of Refractive Properties for Hg3Te2Cl2 Crystals

    NASA Astrophysics Data System (ADS)

    Bokotey, O. V.

    2016-05-01

    This paper reviews the optical properties, such as refractive index, optical dielectric constant, and reflection coefficient of the Hg3Te2Cl2 crystals. The applications of the Hg3X2Y2 crystals as electronic, optical, and optoelectronic devices are very much determined by the nature and magnitude of these fundamental material properties. The origin of chemical bonding in the crystals is very important for definition of the physical and chemical properties. The main structural feature of the Hg3X2Y2 crystals is the presence of covalent pyramids [XHg3] and linear X-Hg-X groups. Optical properties are calculated according to the model proposed by Harrison. The refractive index in the spectral region far from the absorption edge is determined within the generalized single-oscillator model. The calculated results are found to be in good agreement with experimental data.

  20. Morphology and solubility of multiple crystal forms of Taka-amylase A

    NASA Astrophysics Data System (ADS)

    Ninomiya, Kumiko; Yamamoto, Tenyu; Oheda, Tadashi; Sato, Kiyotaka; Sazaki, Gen; Matsuura, Yoshiki

    2001-01-01

    An α-amylase originating from a mold Aspergillus oryzae, Taka-amylase A (Mr of 52 kDa, pI of 3.8), has been purified to an electrophoretically single band grade. Crystallization behaviors were investigated using ammonium sulfate and polyethleneglycol 8000 as precipitants. The variations in the morphology of the crystals obtained with changing crystallization parameters are described. Five apparently different crystal forms were obtained, and their morphology and crystallographic data have been determined. Solubility values of four typical forms were measured using a Michelson-type two-beam interferometer. The results of these experiments showed that this protein can be a potentially interesting and useful model for crystal growth study with a gram-amount availability of pure protein sample.

  1. Eye-Safe Polycrystalline Lasers

    DTIC Science & Technology

    2013-03-01

    developed novel ceramic and single crystal laser gain media as a platform for power scaling to +100 kW class levels. Hydrothermal techniques were used...order of magnitude improvement in purity. Bulk single crystal growth was demonstrated for scandia and lutetia single crystals , as well as several...exhibited equivalent transparency to that of the single crystal in the near-infrared spectral region and initial lasing results have been successful

  2. Single crystalline hollow metal-organic frameworks: a metal-organic polyhedron single crystal as a sacrificial template.

    PubMed

    Kim, Hyehyun; Oh, Minhak; Kim, Dongwook; Park, Jeongin; Seong, Junmo; Kwak, Sang Kyu; Lah, Myoung Soo

    2015-02-28

    Single crystalline hollow metal-organic frameworks (MOFs) with cavity dimensions on the order of several micrometers and hundreds of micrometers were prepared using a metal-organic polyhedron single crystal as a sacrificial hard template. The hollow nature of the MOF crystal was confirmed by scanning electron microscopy of the crystal sliced using a focused ion beam.

  3. Crystal growth, structure analysis and characterisation of 2 - (1, 3 - dioxoisoindolin - 2 - yl) acetic acid single crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sankari, R. Siva, E-mail: sivasankari.sh@act.edu.in; Perumal, Rajesh Narayana

    2014-04-24

    Single crystal of dielectric material 2 - (1, 3 - dioxoisoindolin - 2 - yl) acetic acid has been grown by slow evaporation solution growth method. The grown crystal was harvested in 25 days. The crystal structure was analyzed by Single crystal X - ray diffraction. UV-vis-NIR analysis was performed to examine the optical property of the grown crystal. The thermal property of the grown crystal was studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The dielectric measurements were carried out and the dielectric constant was calculated and plotted at all frequencies.

  4. Wafer-scale single-crystal perovskite patterned thin films based on geometrically-confined lateral crystal growth

    PubMed Central

    Lee, Lynn; Baek, Jangmi; Park, Kyung Sun; Lee, Yong-EunKoo; Shrestha, Nabeen K.; Sung, Myung M.

    2017-01-01

    We report a facile roll-printing method, geometrically confined lateral crystal growth, for the fabrication of large-scale, single-crystal CH3NH3PbI3 perovskite thin films. Geometrically confined lateral crystal growth is based on transfer of a perovskite ink solution via a patterned rolling mould to a heated substrate, where the solution crystallizes instantly with the immediate evaporation of the solvent. The striking feature of this method is that the instant crystallization of the feeding solution under geometrical confinement leads to the unidirectional lateral growth of single-crystal perovskites. Here, we fabricated single-crystal perovskites in the form of a patterned thin film (3 × 3 inch) with a high carrier mobility of 45.64 cm2 V−1 s−1. We also used these single-crystal perovskite thin films to construct solar cells with a lateral configuration. Their active-area power conversion efficiency shows a highest value of 4.83%, which exceeds the literature efficiency values of lateral perovskite solar cells. PMID:28691697

  5. 300 K Isothermal Equations of State of DADNE, DNAN, and LX-17

    NASA Astrophysics Data System (ADS)

    Zaug, Joseph; Stavrou, Elissaios; Grivickas, Paulius; Pagoria, Phil; Hansen, Donald; Gagliardi, Franco; Sain, John; Bastea, Sorin

    2017-06-01

    Using a direct optical-based measurement approach, we report 10 GPa scale, 300 K isothermal equations of state (EOS) of single crystal 1,1-Diamino-2,2-dinitroethylene (DADNE, FOX-7), single crystal 2,4, Dintrosoanisole (DNAN) and a polymer blended explosive (PBX) composite LX-17 (92.5% triamino trinitro benzene (TATB), and 7.5% KEL-F 800). Results from quasi-statically compressed LX-17 represent the first-ever isothermal EOS measurements of a PBX. Recently, we published a paper outlining the utility of using in-house optical microscopy and interferometry (OMI) diagnostics to directly measure pressure dependent sample volumes of single crystals TATB and alpha-NTO compressed within diamond-anvil cell sample chambers. (Our TATB OMI results agree remarkably well with two independent powder x-ray diffraction EOS studies.) In addition, here we report single crystal pressure dependent indices of refraction from DADNE that clearly signal the onset of electronic and/or molecular (structural) transitions that are otherwise indistinguishable in 300 K plotted pressure-volume EOS isotherms. EOS model parameters are reported from weighted and unweighted fits to the OMI experimental data. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  6. Researches on tungsten carbide

    NASA Astrophysics Data System (ADS)

    1994-11-01

    This paper summarizes results of the researches on tungsten carbide (WC), carried out in the 5-year period starting 1989 by the Science and Technology Agency's National Institute for Researches in Inorganic Materials. The high-frequency heating, floating zone technique, generally suited for growth of large-size, single crystals of high melting materials, is inapplicable to the hexagonal WC system, which is decomposed. This problem has been solved by adding boron to the system, to allow it to exist with the W-C-B melt at an equilibrium. The computer-aided control techniques have enabled automatic growth of the single crystals of carbides and borides. The de Haas-Van Alphen effect of the single WC crystals has been observed, to establish the Fermi surface model. The single crystals of transition metal carbides, such as WC, have been coated with the monolayer of graphite at high repeatability, to create the surface layer materials. An attempt has been done to produce the halite type structure by substituting Ti as the atom in the outermost layer of TiC by W. The new method, based on the low-speed deuterium ion scattering, has been developed to analyze the surface bonding conditions, clarifying the conditions of alkalis adsorbed on and bonded to metallic surfaces, and their surface reactivities.

  7. Aluminum surface modification by a non-mass-analyzed nitrogen ion beam

    NASA Astrophysics Data System (ADS)

    Ohira, Shigeo; Iwaki, Masaya

    Non-mass-analyzed nitrogen ion implantation into polycrystal and single crystal aluminum sheets has been carried out at an accelerating voltage of 90 kV and a dose of 1 × 10 18 N ions/cm 2 using a Zymet implanter model Z-100. The pressure during implantation rose to 10 -3 Pa due to the influence of N gas feeding into the ion source. The characteristics of the surface layers were investigated by means of Auger electron spectroscopy (AES), X-ray diffraction (XRD), transmission electron diffraction (TED), and microscopy (TEM). The AES depth profiling shows a rectangular-like distribution of N atoms and little migration of O atoms near the surface. The high dose N-implantation forms c-axis oriented aluminum nitride (AIN) crystallines, and especially irradiation of Al single crystals with N ions leads to the formation of a hcp AlN single crystal. It is concluded that the high dose N-implantation in Al can result in the formation of AlN at room temperature without any thermal annealing. Furthermore, non-mass-analyzed N-implantation at a pressure of 10 -3 Pa of the nitrogen atmosphere causes the formation of pure AlN single crystals in the Al surface layer and consequently it can be practically used for AlN production.

  8. Competition between crystal and fibril formation in molecular mutations of amyloidogenic peptides.

    PubMed

    Reynolds, Nicholas P; Adamcik, Jozef; Berryman, Joshua T; Handschin, Stephan; Zanjani, Ali Asghar Hakami; Li, Wen; Liu, Kun; Zhang, Afang; Mezzenga, Raffaele

    2017-11-07

    Amyloidogenic model peptides are invaluable for investigating assembly mechanisms in disease related amyloids and in protein folding. During aggregation, such peptides can undergo bifurcation leading to fibrils or crystals, however the mechanisms of fibril-to-crystal conversion are unclear. We navigate herein the energy landscape of amyloidogenic peptides by studying a homologous series of hexapeptides found in animal, human and disease related proteins. We observe fibril-to-crystal conversion occurring within single aggregates via untwisting of twisted ribbon fibrils possessing saddle-like curvature and cross-sectional aspect ratios approaching unity. Changing sequence, pH or concentration shifts the growth towards larger aspect ratio species assembling into stable helical ribbons possessing mean-curvature. By comparing atomistic calculations of desolvation energies for association of peptides we parameterise a kinetic model, providing a physical explanation of fibril-to-crystal interconversion. These results shed light on the self-assembly of amyloidogenic peptides, suggesting amyloid crystals, not fibrils, represent the ground state of the protein folding energy landscape.

  9. Patterned solid state growth of barium titanate crystals

    NASA Astrophysics Data System (ADS)

    Ugorek, Michael Stephen

    An understanding of microstructure evolution in ceramic materials, including single crystal development and abnormal/enhanced grain growth should enable more controlled final ceramic element structures. In this study, two different approaches were used to control single crystal development in a patterned array. These two methods are: (1) patterned solid state growth in BaTiO 3 ceramics, and (2) metal-mediated single crystal growth in BaTiO 3. With the patterned solid state growth technique, optical photolithography was used to pattern dopants as well as [001] and [110] BaTiO3 single crystal template arrays with a 1000 microm line pattern array with 1000 microm spacings. These patterns were subsequently used to control the matrix grain growth evolution and single crystal development in BaTiO3. It was shown that the growth kinetics can be controlled by a small initial grain size, atmosphere conditions, and the introduction of a dopant at selective areas/interfaces. By using a PO2 of 1x10-5 atm during high temperature heat treatment, the matrix coarsening has been limited (to roughly 2 times the initial grain size), while retaining single crystal boundary motion up to 0.5 mm during growth for dwell times up to 9 h at 1300°C. The longitudinal and lateral growth rates were optimized at 10--15 microm/h at 1300°C in a PO2 of 1x10 -5 atm for single crystal growth with limited matrix coarsening. Using these conditions, a patterned microstructure in BaTiO3 was obtained. With the metal-mediated single crystal growth technique, a novel approach for fabricating 2-2 single crystal/polymer composites with a kerf < 5 microns was demonstrated. Surface templated grain growth was used to propagate a single crystal interface into a polycrystalline BaTiO3 or Ba(Zr0.05 Ti0.95)O3 matrix with lamellar nickel layers. The grain growth evolution and texture development were studied using both [001] and [110] BaTiO3 single crystals templates. By using a PO 2 of 1x10-11 atm during high temperature heat treatment, matrix coarsening was limited while enabling single crystal boundary motion up to 0.35 mm during growth between 1250°C and 1300°C with growth rates ˜ 3--4 microm/h for both single crystal orientations. By removing the inner electrodes, 2-2 single crystal (or ceramic) composites were prepared. The piezoelectric and dielectric properties of the composites of the two compositions were measured. The d33 and d31 of the composites were similar to the polycrystalline ceramic of the same composition.

  10. The evolution of machining-induced surface of single-crystal FCC copper via nanoindentation

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Huang, Hu; Zhao, Hongwei; Ma, Zhichao; Yang, Yihan; Hu, Xiaoli

    2013-05-01

    The physical properties of the machining-induced new surface depend on the performance of the initial defect surface and deformed layer in the subsurface of the bulk material. In this paper, three-dimensional molecular dynamics simulations of nanoindentation are preformed on the single-point diamond turning surface of single-crystal copper comparing with that of pristine single-crystal face-centered cubic copper. The simulation results indicate that the nucleation of dislocations in the nanoindentation test on the machining-induced surface and pristine single-crystal copper is different. The dislocation embryos are gradually developed from the sites of homogeneous random nucleation around the indenter in the pristine single-crystal specimen, while the dislocation embryos derived from the vacancy-related defects are distributed in the damage layer of the subsurface beneath the machining-induced surface. The results show that the hardness of the machining-induced surface is softer than that of pristine single-crystal copper. Then, the nanocutting simulations are performed along different crystal orientations on the same crystal surface. It is shown that the crystal orientation directly influences the dislocation formation and distribution of the machining-induced surface. The crystal orientation of nanocutting is further verified to affect both residual defect generations and their propagation directions which are important in assessing the change of mechanical properties, such as hardness and Young's modulus, after nanocutting process.

  11. Electron paramagnetic resonance study of radiation-induced paramagnetic centers in succinic anhydride single crystal

    NASA Astrophysics Data System (ADS)

    Caliskan, Betul; Caliskan, Ali Cengiz; Er, Emine

    2017-09-01

    Succinic anhydride single crystals were exposed to 60Co-gamma irradiation at room temperature. The irradiated single crystals were investigated at 125 K by Electron Paramagnetic Resonance (EPR) Spectroscopy. The investigation of EPR spectra of irradiated single crystals of succinic anhydride showed the presence of two succinic anhydride anion radicals. The anion radicals observed in gamma-irradiated succinic anhydride single crystal were created by the scission of the carbon-oxygen double bond. The structure of EPR spectra demonstrated that the hyperfine splittings arise from the same radical species. The reduction of succinic anhydride was identified which is formed by the addition of an electron to oxygen of the Csbnd O bond. The g values, the hyperfine structure constants and direction cosines of the radiation damage centers observed in succinic anhydride single crystal were obtained.

  12. Study of structural and optical properties of YAG and Nd:YAG single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostić, S.; Lazarević, Z.Ž., E-mail: lzorica@yahoo.com; Radojević, V.

    2015-03-15

    Highlights: • Transparent YAG and pale pink Nd:YAG single crystals were produced by the Czochralski technique. • Growth mechanisms and shape of the liquid/solid interface and incorporation of Nd{sup 3+} were studied. • The structure of the crystals was investigated by X-ray diffraction, Raman and IR spectroscopy. • The 15 Raman and 17 IR modes were observed. • The obtained YAG and Nd:YAG single crystals were without core and of good optical quality. - Abstract: Yttrium aluminum garnet (YAG, Y{sub 3}Al{sub 5}O{sub 12}) and yttrium aluminum garnet doped with neodymium (Nd:YAG) single crystals were grown by the Czochralski technique. Themore » critical diameter and the critical rate of rotation were calculated. Suitable polishing and etching solutions were determined. As a result of our experiments, the transparent YAG and pale pink Nd:YAG single crystals were produced. The obtained crystals were studied by X-ray diffraction, Raman and IR spectroscopy. The crystal structure was confirmed by XRD. The 15 Raman and 17 IR modes were observed. The Raman and IR spectroscopy results are in accordance with X-ray diffraction analysis. The obtained YAG and Nd:YAG single crystals were without core and of good optical quality. The absence of a core was confirmed by viewing polished crystal slices. Also, it is important to emphasize that the obtained Nd:YAG single crystal has a concentration of 0.8 wt.% Nd{sup 3+} that is characteristic for laser materials.« less

  13. Relationship of Open-Circuit Voltage to CdTe Hole Concentration and Lifetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duenow, Joel N.; Burst, James M.; Albin, David S.

    We investigate the correlation of bulk CdTe and CdZnTe material properties with experimental open-circuit voltage (Voc) through fabrication and characterization of diverse single-crystal solar cells with different dopants. Several distinct crystal types reach Voc >900 mV. Correlations are in general agreement with Voc limits modeled from bulk minority-carrier lifetime and hole concentration.

  14. Structural, optical, mechanical and dielectric studies of pure and doped L-Prolinium trichloroacetate single crystals.

    PubMed

    Renuka, N; Ramesh Babu, R; Vijayan, N; Vasanthakumar, Geetha; Krishna, Anuj; Ramamurthi, K

    2015-02-25

    In the present work, pure and metal substituted L-Prolinium trichloroacetate (LPTCA) single crystals were grown by slow evaporation method. The grown crystals were subjected to single crystal X-ray diffraction (XRD), powder X-ray diffraction, FTIR, UV-Visible-NIR, hardness, photoluminescence and dielectric studies. The dopant concentration in the crystals was measured by inductively coupled plasma (ICP) analysis. Single crystal X-ray diffraction studies of the pure and metal substituted LPTCA revealed that the grown crystals belong to the trigonal system. Ni(2+) and Co(2+) doping slightly altered the lattice parameters of LPTCA without affecting the basic structure of the crystal. FTIR spectral analysis confirms the presence of various functional groups in the grown crystals. The mechanical behavior of pure and doped crystals was analyzed by Vickers's microhardness test. The optical transmittance, dielectric and photoluminescence properties of the pure and doped crystals were analyzed. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Single crystals of selected titanates and tungstates

    NASA Technical Reports Server (NTRS)

    Loiacono, G. M.

    1972-01-01

    The compound preparation and crystal growth of a number of mixed titanate compositions was investigated. None of the compounds studied were found to melt congruently and therefore, crystal growth was extremely difficult. Various single crystal preparation methods always resulted in mixed phases from which 1-2 mm size crystals could be separated. It is concluded from this study that before successful single crystal growth can be accomplished, a detailed study of the phase diagrams in each of the systems of interest must be completed.

  16. Magnetic and magnetostrictive behavior of Dy 3+ doped CoFe 2O 4 single crystals grown by flux method

    NASA Astrophysics Data System (ADS)

    Kambale, Rahul C.; Song, K. M.; Won, C. J.; Lee, K. D.; Hur, N.

    2012-02-01

    We studied the effect of Dy 3+ content on the magnetic properties of cobalt ferrite single crystal. The single crystals of CoFe 1.9Dy 0.1O 4 were grown by the flux method using Na 2B 4O 7.10 H 2O (Borax) as a solvent (flux). The black and shiny single crystals were obtained as a product. The X-ray diffraction analysis at room temperature confirmed the spinel cubic structure with lattice constant a=8.42 Å of the single crystals. The compositional analysis endorses the presence of constituents Co, Fe and Dy elements after sintering at 1300 °C within the final structure. The magnetic hysteresis measurements at various temperatures viz. 10 K, 100 K, 200 K and 300 K reveal the soft ferrimagnetic nature of the single crystal than that of for pure CoFe 2O 4. The observed saturation magnetization ( Ms) and coercivity ( Hc) are found to be lower than that of pure CoFe 2O 4 single crystal. The magnetostriction ( λ) measurement was carried out along the [001] direction. The magnetic measurements lead to conclude that the present single crystals can be used for magneto-optic recording media.

  17. Magnetic spherical cores partly coated with periodic mesoporous organosilica single crystals.

    PubMed

    Li, Jing; Wei, Yong; Li, Wei; Deng, Yonghui; Zhao, Dongyuan

    2012-03-07

    Core-shell structured materials are of special significance in various applications. Until now, most reported core-shell structures have polycrystalline or amorphous coatings as their shell layers, with popular morphologies of microspheres or quasi-spheres. However, the single crystals, either mesoscale or atomic ones, are still rarely reported as shell layers. If single crystals can be coated on core materials, it would result in a range of new type core-shell structures with various morphologies, and probably more potential applications. In this work, we demonstrate that periodic mesoporous organosilica (PMO) single crystals can partly grow on magnetic microspheres to form incomplete Fe(3)O(4)@nSiO(2)@PMO core-shell materials in aqueous solution, which indeed is the first illustration that mesoporous single-crystal materials can be used as shell layers for preparation of core-shell materials. The achieved materials have advantages of high specific surface areas, good magnetic responses, embedded functional groups and cubic mesopore channels, which might provide them with various application conveniences. We suppose the partial growth is largely decided by the competition between growing tendency of single crystals and the resistances to this tendency. In principle, other single crystals, including a range of atomic single crystals, such as zeolites, are able to be developed into such core-shell structures.

  18. Flux growth of high-quality CoFe 2O 4 single crystals and their characterization

    NASA Astrophysics Data System (ADS)

    Wang, W. H.; Ren, X.

    2006-04-01

    We report the growth of high-quality CoFe 2O 4 single crystals using a borax flux method. The crystals were characterized by powder X-ray diffraction, electron probe microanalysis and Raman spectroscopy. We found the crystals are flux-free and highly homogeneous in composition. X-ray rocking curves of the CoFe 2O 4 single crystals showed a full-width at half-maximum of 0.15°. The saturation magnetization of the CoFe 2O 4 single crystals was measured to be 90 emu/g or equivalently 3.65 μ B/f.u. at 5 K.

  19. Effect of oxygen on dislocation multiplication in silicon crystals

    NASA Astrophysics Data System (ADS)

    Fukushima, Wataru; Harada, Hirofumi; Miyamura, Yoshiji; Imai, Masato; Nakano, Satoshi; Kakimoto, Koichi

    2018-03-01

    This paper aims to clarify the effect of oxygen on dislocation multiplication in silicon single crystals grown by the Czochralski and floating zone methods using numerical analysis. The analysis is based on the Alexander-Haasen-Sumino model and involves oxygen diffusion from the bulk to the dislocation cores during the annealing process in a furnace. The results show that after the annealing process, the dislocation density in silicon single crystals decreases as a function of oxygen concentration. This decrease can be explained by considering the unlocking stress caused by interstitial oxygen atoms. When the oxygen concentration is 7.5 × 1017 cm-3, the total stress is about 2 MPa and the unlocking stress is less than 1 MPa. As the oxygen concentration increases, the unlocking stress also increases; however, the dislocation velocity decreases.

  20. EPR study of free radical in gamma-irradiated bis(cyclopentadienyl)zirconium dichloride single crystal

    NASA Astrophysics Data System (ADS)

    Caliskan, Betul; Caliskan, Ali Cengiz

    2017-06-01

    Bis(cyclopentadienyl)zirconium dichloride (BCZD; zirconocene dichloride) single crystals were exposed to 60Co-γ irradiation at room temperature. The irradiated single crystals were investigated between 125 and 470 K by electron paramagnetic resonance spectroscopy. The spectra of the crystals were found to be temperature independent. The paramagnetic center was attributed to the cyclopentadienyl radical. The g values of the radiation damage center observed in BCZD single crystal and the hyperfine structure constants of the free electron with nearby protons were obtained.

  1. Pinning in the flux-line-cutting regime of Bi 2Sr 2Ca 1Cu 2O 8 single crystals at high field

    NASA Astrophysics Data System (ADS)

    D'Anna, G.; André, M.-O.; Indenbom, M. V.; Benoit, W.

    1994-09-01

    Using a low-frequency torsion pendulum we show that in a Bi 2Sr 2Ca 1Cu 2O 8 single crystal the irreversibility line Birr( T) is frequency dependent down to 10 -5 Hz in the high-field regime. The activation energy has a logarithmic field dependence, U0( B)= U∗ 1n( B∗/ B). A microscopic model for flux-line-cutting and pancake collision yields quantitative expressions for U0 and for Birr( T)= B∗ exp(- T/T∗), which reproduce the experimental data very well.

  2. Superresolution Microscopy of Single Rare-Earth Emitters in YAG and H 3 Centers in Diamond

    NASA Astrophysics Data System (ADS)

    Kolesov, R.; Lasse, S.; Rothfuchs, C.; Wieck, A. D.; Xia, K.; Kornher, T.; Wrachtrup, J.

    2018-01-01

    We demonstrate superresolution imaging of single rare-earth emitting centers, namely, trivalent cerium, in yttrium aluminum garnet crystals by means of stimulated emission depletion (STED) microscopy. The achieved all-optical resolution is ≈50 nm . Similar results were obtained on H 3 color centers in diamond. In both cases, STED resolution is improving slower than the conventional inverse square-root dependence on the depletion beam intensity. In the proposed model of this effect, the anomalous behavior is caused by excited state absorption and the interaction of the emitter with nonfluorescing crystal defects in its local surrounding.

  3. Growth and characterization of CaCu3Ti4O12 single crystals

    NASA Astrophysics Data System (ADS)

    Kim, Hui Eun; Yang, Sang-don; Lee, Jung-Woo; Park, Hyun Min; Yoo, Sang-Im

    2014-12-01

    The CaCu3Ti4O12 (CCTO) single crystals could be grown from the melt with the nominal composition of Ca:Cu:Ti=1:59:20 in a platinum (Pt) crucible using a self-flux method. The flux-grown CCTO single crystals have well-developed {100} habit planes, and their compositions are close to the ratio of Ca:Cu:Ti=1:3:4. Interestingly, flux-grown CCTO single crystals exhibited two different back reflection Laue patterns; one exhibited only [100] cubic Laue patterns, and the other showed not only [100] cubic Laue patterns but also the satellite spots related to the twin boundary, implying that twin-free CCTO single crystals can be grown by the self-flux method. Both the dielectric constants and losses of twinned CCTO single crystal are significantly higher than those of untwined CCTO crystal at relatively low frequency regime (<10 kHz), suggesting that the dielectric property is sensitive to the twin boundary.

  4. A multistep single-crystal-to-single-crystal bromodiacetylene dimerization

    NASA Astrophysics Data System (ADS)

    Hoheisel, Tobias N.; Schrettl, Stephen; Marty, Roman; Todorova, Tanya K.; Corminboeuf, Clémence; Sienkiewicz, Andrzej; Scopelliti, Rosario; Schweizer, W. Bernd; Frauenrath, Holger

    2013-04-01

    Packing constraints and precise placement of functional groups are the reason that organic molecules in the crystalline state often display unusual physical or chemical properties not observed in solution. Here we report a single-crystal-to-single-crystal dimerization of a bromodiacetylene that involves unusually large atom displacements as well as the cleavage and formation of several bonds. Density functional theory computations support a mechanism in which the dimerization is initiated by a [2 + 1] photocycloaddition favoured by the nature of carbon-carbon short contacts in the crystal structure. The reaction proceeded up to the theoretical degree of conversion without loss of crystallinity, and it was also performed on a preparative scale with good yield. Moreover, it represents the first synthetic pathway to (E)-1,2-dibromo-1,2-diethynylethenes, which could serve as synthetic intermediates for the preparation of molecular carbon scaffolds. Our findings both extend the scope of single-crystal-to-single-crystal reactions and highlight their potential as a synthetic tool for complex transformations.

  5. Preparation of Gd(OH){sub 3} large single crystals by solid KOH assisted hydrothermal method and their luminescent and magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Hai; Zhang, Youjin, E-mail: zyj@ustc.edu.cn; Zhou, Maozhong

    Highlights: • Gd(OH){sub 3} large single crystals were prepared by solid KOH assisted hydrothermal method. • The possible growth mechanism of Gd(OH){sub 3} large single crystals was proposed. • The Gd(OH){sub 3} samples emitted a strong narrow-band ultraviolet B (NB-UVB) light. • The Gd(OH){sub 3} samples showed good paramagnetic properties. - Abstract: Large single crystals of gadolinium hydroxide [Gd(OH){sub 3}] in the length of several millimeters were successfully prepared by using solid KOH assisted hydrothermal method. Gd(OH){sub 3} samples were characterized by X-ray diffraction (XRD), 4-circle single-crystal diffraction, Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). FESEM imagemore » shows hexagonal prism morphology for the Gd(OH){sub 3} large crystals. The possible growth mechanism of Gd(OH){sub 3} large single crystals was proposed. The photoluminescence and magnetic properties of Gd(OH){sub 3} species were investigated.« less

  6. Method for the growth of large low-defect single crystals

    NASA Technical Reports Server (NTRS)

    Powell, J. Anthony (Inventor); Neudeck, Philip G. (Inventor); Trunek, Andrew J. (Inventor); Spry, David J. (Inventor)

    2008-01-01

    A method and the benefits resulting from the product thereof are disclosed for the growth of large, low-defect single-crystals of tetrahedrally-bonded crystal materials. The process utilizes a uniquely designed crystal shape whereby the direction of rapid growth is parallel to a preferred crystal direction. By establishing several regions of growth, a large single crystal that is largely defect-free can be grown at high growth rates. This process is particularly suitable for producing products for wide-bandgap semiconductors, such as SiC, GaN, AlN, and diamond. Large low-defect single crystals of these semiconductors enable greatly enhanced performance and reliability for applications involving high power, high voltage, and/or high temperature operating conditions.

  7. Crystalline perfection and optical studies of L-Histidinium dihydrogen phosphate orthophosphoric acid (LHDP) single crystals

    NASA Astrophysics Data System (ADS)

    Ittyachan, Reena; Arunkumar, A.; Bhagavannarayana, G.

    2015-10-01

    Single crystals of L-Histidinium dihydrogenphosphate orthophosphoric acid (LHDP) were grown by slow evaporation solution growth technique. The grown crystals were confirmed by single crystal X-ray diffraction techniques. The HRXRD rocking curve measurements revealed the crystalline perfection of grown crystal and the absence of structural grain boundaries. The lower optical cut-off wavelength for this crystal was observed at 240 nm. The third order nonlinear refractive index (n2), nonlinear absorption coefficient (β) and susceptibility (χ(3)) were calculated by Z-scan studies using Nd: YAG laser as a source. The single shot laser damage threshold of grown crystal was measured to be 6.286 GW/cm2 using Nd: YAG laser.

  8. Synthesis, crystal structure, thermal and nonlinear optical properties of new metal-organic single crystal: Tetrabromo (piperazinium) zincate (II) (TBPZ)

    NASA Astrophysics Data System (ADS)

    Boopathi, K.; Babu, S. Moorthy; Ramasamy, P.

    2018-04-01

    Tetrabromo (piperazinium) zincate, a new metal-organic crystal has been synthesized and its single crystal grown by slow evaporation method. The grown crystal has characterized by structural, spectral, thermal, linear and nonlinear optical properties. Single crystal X-ray diffractions study reveals that grown crystal belongs to orthorhombic crystal system with space group P212121. The presence of functional groups is identified by FT-IR spectral analysis. Thermal stability of the crystal was ascertained by TG-DTA measurement. The second order harmonic generation efficiency was measured using Kurtz and Perry technique and it was found to be 1.5 times that of KDP.

  9. Laser performance and modeling of RE3+:YAG double-clad crystalline fiber waveguides

    NASA Astrophysics Data System (ADS)

    Li, Da; Lee, Huai-Chuan; Meissner, Stephanie K.; Meissner, Helmuth E.

    2018-02-01

    We report on laser performance of ceramic Yb:YAG and single crystal Tm:YAG double-clad crystalline fiber waveguide (CFW) lasers towards the goal of demonstrating the design and manufacturing strategy of scaling to high output power. The laser component is a double-clad CFW, with RE3+:YAG (RE = Yb, Tm respectively) core, un-doped YAG inner cladding, and ceramic spinel or sapphire outer cladding. Laser performance of the CFW has been demonstrated with 53.6% slope efficiency and 27.5-W stable output power at 1030-nm for Yb:YAG CFW, and 31.6% slope efficiency and 46.7-W stable output power at 2019-nm for Tm:YAG CFW, respectively. Adhesive-Free Bond (AFB®) technology enables a designable refractive index difference between core and inner cladding, and designable core and inner cladding sizes, which are essential for single transverse mode CFW propagation. To guide further development of CFW designs, we present thermal modeling, power scaling and design of single transverse mode operation of double-clad CFWs and redefine the single-mode operation criterion for the double-clad structure design. The power scaling modeling of double-clad CFW shows that in order to achieve the maximum possible output power limited by the physical properties, including diode brightness, thermal lens effect, and simulated Brillion scattering, the length of waveguide is in the range of 0.5 2 meters. The length of an individual CFW is limited by single crystal growth and doping uniformity to about 100 to 200 mm lengths, and also by availability of starting crystals and manufacturing complexity. To overcome the limitation of CFW lengths, end-to-end proximity-coupling of CFWs is introduced.

  10. How far could energy transport within a single crystal

    NASA Astrophysics Data System (ADS)

    Zhang, Yifan; Che, Yanke; Zhao, Jincai; Steve, Granick

    Efficient transport of excitation energy over long distance is a vital process in light-harvesting systems and molecular electronics. The energy transfer distance is largely restricted by the probability decay of the exciton when hopping within a single crystal. Here, we fabricated an organic single crystal within which the energy could transfer more than 100 μm, a distance only limited by its crystal size. Our system could be regarded as a ``Sprint relay game'' performing on different surface of tracks. Photoinduced ``athletes'' (excitons) triggered intermolecular ``domino'' reaction to propagate energy for a long distance. In addition, athletes with the same ability runs much farther on smooth ideal track (single crystal assembled from merely van der Waals interaction) than bumpy mud track (crystal assembled from combination of pi-stacking, hydrogen bond and van der Waals interactions). Our finding presents new physics on enhancing energy transfer length within a single crystal. Current Affiliation: Institute for Basic Science, South Korea.

  11. Preparation and guest-uptake protocol for a porous complex useful for 'crystal-free' crystallography.

    PubMed

    Inokuma, Yasuhide; Yoshioka, Shota; Ariyoshi, Junko; Arai, Tatsuhiko; Fujita, Makoto

    2014-02-01

    We recently reported a new method for single-crystal X-ray diffraction (SCD) analysis that does not require the crystallization of the target compound. In this 'crystal-free' crystallography, a tiny crystal of a porous complex is soaked in the solution of the target guest. The guest molecules are absorbed and oriented in the crystal pores and can be analyzed by X-ray diffraction. We describe here a detailed synthetic protocol for the preparation of uniform single crystals of the porous host complex and for the subsequent guest uptake. The protocol describes our most versatile porous complex, which is prepared from commercially available ZnI2 and 2,4,6-tri(4-pyridyl)-1,3,5-triazine. The host complex has large pores with a cross-section of 8 × 5 Å(2). Single crystals of the complex are grown from layered solutions of the two components. The pores of the as-synthesized complex are filled with nitrobenzene, which is replaced with the inert solvent cyclohexane. This solvent exchange is essential for the rapid and effective inclusion of target compounds. The most crucial and delicate step is the selection of high-quality single crystals from the mixture of crystals of various shapes and sizes. We suggest using the facial indices of the single crystals as a criterion for crystal selection. Single-crystal samples for X-ray analysis can be prepared by immersing the selected crystals in a cyclohexane/dichloromethane solution of target compound. After a very slow evaporation of the solvent, typically over 2 d, the final crystal can be picked and directly subjected to SCD analysis. The protocol can be completed within ∼16 d.

  12. Phase-field crystal modeling of compositional domain formation in ultrathin films.

    PubMed

    Muralidharan, Srevatsan; Haataja, Mikko

    2010-09-17

    Bulk-immiscible binary systems often form stress-induced miscible alloy phases when deposited on a substrate. Both alloying and surface dislocation formation lead to the decrease of the elastic strain energy, and the competition between these two strain-relaxation mechanisms gives rise to the emergence of pseudomorphic compositional nanoscale domains, often coexisting with a partially coherent single phase. In this work, we develop a phase-field crystal model for compositional patterning in monolayer aggregates of binary metallic systems. We first demonstrate that the model naturally incorporates the competition between alloying and misfit dislocations, and quantify the effects of misfit and line tension on equilibrium domain size. Then, we quantitatively relate the parameters of the phase-field crystal model to a specific system, CoAg/Ru(0001), and demonstrate that the simulations capture experimentally observed morphologies.

  13. Linear electro-optic properties of relaxor-based ferroelectric 0.24Pb(In1/2Nb1/2)O3-(0.76 − x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals

    PubMed Central

    Wu, Fengmin; Yang, Bin; Sun, Enwei; Liu, Gang; Tian, Hao; Cao, Wenwu

    2013-01-01

    Linear electro-optic properties of 0.24Pb(In1/2Nb1/2)O3-(0.76 − x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals, with compositions in the rhombohedral, morphotropic phase boundary (MPB) and tetragonal phases, have been investigated. Very large effective electro-optic coefficient γc (204 pm/V) was observed in a crystal with the MPB composition when it is poled along [001]. The rhombohedral phase (x = 0.27 and 0.30) single crystals poled along [111] direction and tetragonal phase (x = 0.39) single crystal poled along [001] direction are in single domain, and their electro-optic coefficients (γc = 76, 94, and 43 pm/V for the crystals with x = 0.27, 0.30, and 0.39, respectively) were found to be much higher than that of traditional electro-optic single crystal LiNbO3 (γc = 19.9 pm/V). The electro-optic coefficients of the single crystal in the rhombohedral phase have excellent temperature stability in the experimental temperature range of 10–40 °C. The half-wave voltage Vπ was calculated to be much lower (less than 1000 V) than that of LiNbO3 single crystal (2800 V). These superior properties make the ternary relaxor-PT single crystals very promising for electro-optic modulation applications. PMID:23922449

  14. Single crystal and optical ceramic multicomponent garnet scintillators: A comparative study

    NASA Astrophysics Data System (ADS)

    Wu, Yuntao; Luo, Zhaohua; Jiang, Haochuan; Meng, Fang; Koschan, Merry; Melcher, Charles L.

    2015-04-01

    Multicomponent garnet materials can be made in optical ceramic as well as single crystal form due to their cubic crystal structure. In this work, high-quality Gd3Ga3Al2O12:0.2 at% Ce (GGAG:Ce) single crystal and (Gd,Lu)3Ga3Al2O12:1 at% Ce (GLuGAG:Ce) optical ceramics were fabricated by the Czochralski method and a combination of hot isostatic pressing (HIPing) and annealing treatment, respectively. Under optical and X-ray excitation, the GLuGAG:Ce optical ceramic exhibits a broad Ce3+ transition emission centered at 550 nm, while the emission peak of the GGAG:Ce single crystal is centered at 540 nm. A self-absorption effect in GLuGAG:Ce optical ceramic results in this red-shift of the Ce3+ emission peak compared to that in the GGAG:Ce single crystal. The light yield under 662 keV γ-ray excitation was 45,000±2500 photons/MeV and 48,200±2410 photons/MeV for the GGAG:Ce single crystal and GLuGAG:Ce optical ceramic, respectively. An energy resolution of 7.1% for 662 keV γ-rays was achieved in the GLuGAG:Ce optical ceramic with a Hamamatsu R6231 PMT, which is superior to the value of 7.6% for a GGAG:Ce single crystal. Scintillation decay time measurements under 137Cs irradiation show two exponential decay components of 58 ns (47%) and 504 ns (53%) for the GGAG:Ce single crystal, and 84 ns (76%) and 148 ns (24%) for the GLuGAG:Ce optical ceramic. The afterglow level after X-ray cutoff in the GLuGAG:Ce optical ceramic is at least one order of magnitude lower than in the GGAG:Ce single crystal.

  15. Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus.

    PubMed

    Kertész, Krisztián; Bálint, Zsolt; Vértesy, Zofia; Márk, Géza I; Lousse, Virginie; Vigneron, Jean Pol; Rassart, Marie; Biró, László P

    2006-08-01

    Photonic-crystal-type nanostructures occurring in the scales of the butterfly Cyanophrys remus were investigated by optical and electron microscopy (scanning and transmission electron microscopy), reflectance measurements (specular, integrated, and goniometric), by fast Fourier transform analysis of micrographs, by modeling, and by numerical simulation of the measured reflectance data. By evaluating the collected data in a cross-correlated way, we show that the metallic blue dorsal coloration originates from scales which individually are photonic single crystals of 50 x 120 microm2 , while the matt pea-green coloration of the ventral side arises from the cumulative effect of randomly arranged, bright photonic crystallites (blue, green, and yellow) with typical diameters in the 3-10-mum range. Both structures are based on a very moderate refractive index contrast between air and chitin. Using a bleached specimen in which the pigment has decayed with time, we investigated the role of pigment in photonic-crystal material in the process of color generation. The possible biologic utility of the metallic blue (single-crystal) and dull green (polycrystal) textures both achieved with photonic crystals are briefly discussed. Potential applications in the field of colorants, flat panel displays, smart textiles, and smart papers are surveyed.

  16. Structural analysis of benzothienobenzothiophene-based soluble organic semiconducting crystals grown by liquid crystal solvent

    NASA Astrophysics Data System (ADS)

    Shibata, Yosei; Matsuzaki, Tomoya; Ishinabe, Takahiro; Fujikake, Hideo

    2018-06-01

    In this study, we analyzed organic semiconducting single crystals composed of benzothienobenzothiophene derivatives (2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene, C8-BTBT) grown by nematic-phase liquid crystal (LC) solvent. As a result, we clarified that the crystal b-axis direction of the C8-BTBT single crystals was consistent with the LC alignment direction. By optical evaluation and simulation based on density functional theory, we found that the C8-BTBT single crystals in LC solvent exhibited a novel molecular conformation having alkyl chains oriented toward the b-axis.

  17. Elastic response of (001)-oriented PWA 1480 single crystal - The influence of secondary orientation

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Abdul-Azis, Ali; Mcgaw, Michael

    1991-01-01

    The influence of secondary orientation on the elastic response of a zone axis (001)-oriented nickel-base single-crystal superalloy, PWA 1480, was investigated under mechanical loading conditions by applying finite element techniques. Elastic stress analyses were performed with a commercially available finite element code. Secondary orientation of the single-crystal superalloy was offset with respect to the global coordinate system in increments from 0 to 90 deg and stresses developed within the single crystal were determined for each loading condition. The results indicated that the stresses were strongly influenced by the angular offset between the secondary crystal orientation and the global coordinate system. The degree of influence was found to vary with the type of loading condition (mechanical, thermal, or combined) imposed on the single-crystal superalloy.

  18. Method of making single crystal fibers

    NASA Technical Reports Server (NTRS)

    Westfall, Leonard J. (Inventor)

    1990-01-01

    Single crystal fibers are made from miniature extruded ceramic feed rods. A decomposable binder is mixed with powders to inform a slurry which is extruded into a small rod which may be sintered, either in air or in vacuum, or it may be used in the extruded and dried condition. A pair of laser beams focuses onto the tip of the rod to melt it thereby forming a liquid portion. A single crystal seed fiber of the same material as the feed rod contacts this liquid portion to establish a zone of liquid material between the feed rod and the single crystal seed fiber. The feed rod and the single crystal feed fiber are moved at a predetermined speed to solidify the molten zone onto the seed fiber while simultaneously melting additional feed rod. In this manner a single crystal fiber is formed from the liquid portion.

  19. Distributed Feedback Laser Based on Single Crystal Perovskite

    NASA Astrophysics Data System (ADS)

    Sun, Shang; Xiao, Shumin; Song, Qinghai

    2017-06-01

    We demonstrate a single crystal perovskite based, with grating-structured photoresist on top, highly polarized distributed feedback laser. A lower laser threshold than the Fabry-Perot mode lasers from the same single crystal CH3NH3PbBr3 microplate was obtained. Single crystal CH3NH3PbBr3 microplates was synthesized with one-step solution processed precipitation method. Once the photoresist on top of the microplate was patterned with electron beam, the device was realized. This one-step fabrication process utilized the advantage of single crystal to the greatest extend. The ultra-low defect density in single crystalline microplate offer an opportunity for lower threshold lasing action compare with poly-crystal perovskite films. In the experiment, the lasing action based on the distributed feedback grating design was found with lower threshold and higher intensity than the Fabry-Perot mode lasers supported by the flat facets of the same microplate.

  20. Effect of grain boundary on the field-effect mobility of microrod single crystal organic transistors.

    PubMed

    Kim, Jaekyun; Kang, Jingu; Cho, Sangho; Yoo, Byungwook; Kim, Yong-Hoon; Park, Sung Kyu

    2014-11-01

    High-performance microrod single crystal organic transistors based on a p-type 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) semiconductor are fabricated and the effects of grain boundaries on the carrier transport have been investigated. The spin-coating of C8-BTBT and subsequent solvent vapor annealing process enabled the formation of organic single crystals with high aspect ratio in the range of 10 - 20. It was found that the organic field-effect transistors (OFETs) based on these single crystals yield a field-effect mobility and an on/off current ratio of 8.04 cm2/Vs and > 10(5), respectively. However, single crystal OFETs with a kink, in which two single crystals are fused together, exhibited a noticeable drop of field-effect mobility, and we claim that this phenomenon results from the carrier scattering at the grain boundary.

  1. Single crystal diamond membranes for nanoelectronics.

    PubMed

    Bray, Kerem; Kato, Hiromitsu; Previdi, Rodolfo; Sandstrom, Russell; Ganesan, Kumaravelu; Ogura, Masahiko; Makino, Toshiharu; Yamasaki, Satoshi; Magyar, Andrew P; Toth, Milos; Aharonovich, Igor

    2018-02-22

    Single crystal, nanoscale diamond membranes are highly sought after for a variety of applications including nanophotonics, nanoelectronics and quantum information science. However, so far, the availability of conductive diamond membranes has remained an unreachable goal. In this work we present a complete nanofabrication methodology for engineering high aspect ratio, electrically active single crystal diamond membranes. The membranes have large lateral directions, exceeding ∼500 × 500 μm 2 and are only several hundreds of nanometers thick. We further realize vertical single crystal p-n junctions made from the diamond membranes that exhibit onset voltages of ∼10 V and a current of several mA. Moreover, we deterministically introduce optically active color centers into the membranes, and demonstrate for the first time a single crystal nanoscale diamond LED. The robust and scalable approach to engineer the electrically active single crystal diamond membranes offers new pathways for advanced nanophotonic, nanoelectronic and optomechanical devices employing diamond.

  2. The effect of Fe 3+ doping in Potassium Hydrogen Phthalate single crystals on structural and optical properties

    NASA Astrophysics Data System (ADS)

    Kumar, R. Ashok; Sivakumar, N.; Vizhi, R. Ezhil; Babu, D. Rajan

    2011-02-01

    This work investigates the influence of iron doping on Potassium Hydrogen Phthalate (KHP) single crystals by the slow evaporation solution growth technique. Factors such as evaporation rate, solution pH, solute concentration, super saturation limit, etc. are very important in order to have optically transparent single crystals. As part of the work, the effects of metallic salt FeCl 3 in different concentrations were analyzed with pure KHP. Powder X-ray diffraction suggests that the grown crystals are crystallized in the orthorhombic structure. The functional groups and the effect of moisture on the doped crystals can be analyzed with the help of a FTIR spectrum. The pure and doped KHP single crystal shows good transparency in the entire visible region, which is suitable for optical device applications. The refractive indices along b axis of pure and doped KHP single crystals were analyzed by the prism coupling technique. The emission of green light with the use of a Nd:YAG laser ( λ=1064 nm) confirmed the second harmonic generation properties of the grown crystals.

  3. Physical Realization of von Neumann Lattices in Rotating Bose Gases with Dipole Interatomic Interactions.

    PubMed

    Cheng, Szu-Cheng; Jheng, Shih-Da

    2016-08-22

    This paper reports a novel type of vortex lattice, referred to as a bubble crystal, which was discovered in rapidly rotating Bose gases with long-range interactions. Bubble crystals differ from vortex lattices which possess a single quantum flux per unit cell, while atoms in bubble crystals are clustered periodically and surrounded by vortices. No existing model is able to describe the vortex structure of bubble crystals; however, we identified a mathematical lattice, which is a subset of coherent states and exists periodically in the physical space. This lattice is called a von Neumann lattice, and when it possesses a single vortex per unit cell, it presents the same geometrical structure as an Abrikosov lattice. In this report, we extend the von Neumann lattice to one with an integral number of flux quanta per unit cell and demonstrate that von Neumann lattices well reproduce the translational properties of bubble crystals. Numerical simulations confirm that, as a generalized vortex, a von Neumann lattice can be physically realized using vortex lattices in rapidly rotating Bose gases with dipole interatomic interactions.

  4. Variability of the contrail radiative forcing due to crystal shape

    NASA Astrophysics Data System (ADS)

    Markowicz, K. M.; Witek, M. L.

    2011-12-01

    The aim of this study is to examine the influence of particles' shape and particles' optical properties on the contrail radiative forcing. Contrail optical properties in the shortwave and longwave range are derived using a ray-tracing geometric method and the discrete dipole approximation method, respectively. Both methods present good correspondence of the single scattering albedo and the asymmetry parameter in a transition range (3-7μm). We compare optical properties defined following simple 10 crystals habits randomly oriented: hexagonal plates, hexagonal columns with different aspect ratio, and spherical. There are substantial differences in single scattering properties between ten crystal models investigated here (e.g. hexagonal columns and plates with different aspect ratios, spherical particles). The single scattering albedo and the asymmetry parameter both vary up to 0.1 between various crystal shapes. Radiative forcing calculations were performed using a model which includes an interface between the state-of-the-art radiative transfer model Fu-Liou and databases containing optical properties of the atmosphere and surface reflectance and emissivity. This interface allows to determine radiative fluxes in the atmosphere and to estimate the contrail radiative forcing for clear- and all-sky (including natural clouds) conditions for various crystal shapes. The Fu-Liou code is fast and therefore it is suitable for computing radiative forcing on a global scale. At the same time it has sufficiently good accuracy for such global applications. A noticeable weakness of the Fu-Liou code is that it does not take into account the 3D radiative effects, e.g. cloud shading and horizontal. Radiative transfer model calculations were performed at horizontal resolution of 5x5 degree and time resolution of 20 min during day and 3 h during night. In order to calculate a geographic distribution of the global and annual mean contrail radiative forcing, the contrail cover must be determined. Two cases are discussed here: a 1% homogeneous contrail cover and the contrail cover provided by Rädel and Shine (2008). In the second distribution case, a more realistic contrail cover is taken into account. This model combines the AERO2K flight inventory with meteorological data and normalizes it with respect to the contrail cover derived from satellite observations. Simulations performed by the Fu-Liou model show significant variability of the shortwave, longwave, and net radiative forcing with crystal shape. The nonspherical crystals have smaller net forcing in contrary to spherical particles. The differences in net radiative forcing between optical models reach up to 50%. The hexagonal column and hexagonal plate particles show the smallest net radiative forcing while the largest forcing is obtained for the spheres. The global and annual mean shortwave, longwave, and net contrail radiative forcing, average over all crystal models and assuming an optical depth of 0.3 at visible wavelengths, is -5.7, 16.8, and 11.1 mW/m2, respectively. A ratio of the radiative forcings' standard deviation to the mean value, derived using 10 different ice particle models, is about 0.2 for the shortwave, 0.14 for the longwave, and 0.23 for the net radiation.

  5. Synthesis, optical, experimental and theoretical investigation of third order nonlinear optical properties of 8-hydroxyquinolinium 2-carboxy-6-nitrophthalate monohydrate single crystal

    NASA Astrophysics Data System (ADS)

    Bharathi, M. Divya; Bhuvaneswari, R.; Srividya, J.; Vinitha, G.; Prithiviraajan, R. N.; Anbalagan, G.

    2018-02-01

    Single crystals of 8-hydroxyquinolinium 2-carboxy-6-nitrophthalate monohydrate (8HQNP) were obtained from slow evaporation solution growth method using methanol-water (1:1) as a solvent. Powder X-ray diffraction was utilized to compute the unit cell parameters and dislocation density of 8HQNP crystal. The crystalline perfection of the as-grown crystal was investigated by high-resolution X-ray diffraction at room temperature. The molecular structure was analyzed by identifying the functional groups from FT-IR and FT-Raman spectra. The cut-off wavelength and the corresponding optical band gap obtained from an optical spectrum were 376 nm and 3.29 eV respectively. The dispersion nature of refractive index was investigated by the single-oscillator Wemple and Di-Domenico model. Red emission was observed in the photoluminescence spectrum when excited with 376 nm. The low birefringence and high laser damage threshold (8.538 GW/cm2) values dictate the suitability of the crystal for optical devices. Z-scan studies revealed the third order nonlinear absorption coefficient (β) and refractive index (n2) of the 8HQNP crystal. The theoretical value of third order nonlinear susceptibility obtained from density function theory is good accordance with the experimental value. The frontier molecular orbital energy gap decreases with increasing external electric field in different directions which attributed to the enhancement of the second hyperpolarizability. The grown title crystal is thermally stable up to 102 °C which was identified using thermal analysis. Mechanical strength of 8HQNP was estimated by using Vicker's microhardness studies.

  6. Edge-Controlled Growth and Etching of Two-Dimensional GaSe Monolayers

    DOE PAGES

    Li, Xufan; Dong, Jichen; Idrobo, Juan C.; ...

    2016-12-07

    Understanding the atomistic mechanisms governing the growth of two-dimensional (2D) materials is of great importance in guiding the synthesis of wafer-sized, single-crystalline, high-quality 2D crystals and heterostructures. Etching, in many cases regarded as the reverse process of material growth, has been used to study the growth kinetics of graphene. In this paper, we explore a growth–etching–regrowth process of monolayer GaSe crystals, including single-crystalline triangles and irregularly shaped domains formed by merged triangles. We show that the etching begins at a slow rate, creating triangular, truncated triangular, or hexagonally shaped holes that eventually evolve to exclusively triangles that are rotated 60°more » with respect to the crystalline orientation of the monolayer triangular crystals. The regrowth occurs much faster than etching, reversibly filling the etched holes and then enlarging the size of the monolayer crystals. A theoretical model developed based on kinetic Wulff construction (KWC) theory and density functional theory (DFT) calculations accurately describe the observed morphology evolution of the monolayer GaSe crystals and etched holes during the growth and etching processes, showing that they are governed by the probability of atom attachment/detachment to/from different types of edges with different formation energies of nucleus/dents mediated by chemical potential difference Δμ between Ga and Se. Finally, our growth–etching–regrowth study provides not only guidance to understand the growth mechanisms of 2D binary crystals but also a potential method for the synthesis of large, shape-controllable, high-quality single-crystalline 2D crystals and their lateral heterostructures.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben Yahia, Hamdi, E-mail: benyahia.hamdi@voila.fr; Rodewald, Ute Ch.; Boulahya, Khalid

    Graphical abstract: The new compounds RE{sub 4}O{sub 4}[AsO{sub 4}]Cl (RE = La, Pr, Nd, Sm, Eu, Gd) were synthesised by solid state reaction via a salt flux route and investigated by HRTEM, SAED, and single crystal X-ray diffraction. - Highlights: • We discovered the series of RE{sub 4}O{sub 4}[AsO{sub 4}]Cl (RE = La, Pr, Nd, Sm, Eu, Gd) compounds. • The RE{sub 4}O{sub 4}[AsO{sub 4}]Cl single crystals were grown using NaCl/KCl flux. • The RE{sub 4}O{sub 4}[AsO{sub 4}]Cl structures were solved using single crystal X-ray diffraction data. • The layered RE{sub 4}O{sub 4}[AsO{sub 4}]Cl compounds were further characterized using HRTEMmore » and SAED. • We observed an alternation of ordered-[RE{sub 4}O{sub 4}]{sup 4+} and disordered-[ClAsO{sub 4}]{sup 4–} layers. - Abstract: The new compounds RE{sub 4}O{sub 4}[AsO{sub 4}]Cl (RE = La, Pr, Nd, Sm, Eu, Gd) were synthesised by solid state reaction via a salt flux route and investigated by HRTEM, SAED, and single crystal X-ray diffraction. The samples crystallise with a tetragonal cell, space group P4{sub 2}/mnm and Z = 2. Their crystal structure consists of an alternation of [RE{sub 4}O{sub 4}]{sup 4+} and [ClAsO{sub 4}]{sup 4–} layers. The [RE{sub 4}O{sub 4}]{sup 4+} layer contains ORE{sub 4/4} tetrahedra which share common edges. The anions AsO{sub 4}{sup 3–} and Cl{sup –} are located between these layers in disordered manner. SAED and HRTEM experiments confirmed this structural model and enabled us to propose an ordered model for the [ClAsO{sub 4}]{sup 4–} layers.« less

  8. An equivalent dipole analysis of PZT ceramics and lead-free piezoelectric single crystals

    NASA Astrophysics Data System (ADS)

    Bell, Andrew J.

    2016-04-01

    The recently proposed Equivalent Dipole Model for describing the electromechanical properties of ionic solids in terms of 3 ions and 2 bonds has been applied to PZT ceramics and lead-free single crystal piezoelectric materials, providing analysis in terms of an effective ionic charge and the asymmetry of the interatomic force constants. For PZT it is shown that, as a function of composition across the morphotropic phase boundary, the dominant bond compliance peaks at 52% ZrO2. The stiffer of the two bonds shows little composition dependence with no anomaly at the phase boundary. The effective charge has a maximum value at 50% ZrO2, decreasing across the phase boundary region, but becoming constant in the rhombohedral phase. The single crystals confirm that both the asymmetry in the force constants and the magnitude of effective charge are equally important in determining the values of the piezoelectric charge coefficient and the electromechanical coupling coefficient. Both are apparently temperature dependent, increasing markedly on approaching the Curie temperature.

  9. Predicting Catalytic Activity of Nanoparticles by a DFT-Aided Machine-Learning Algorithm.

    PubMed

    Jinnouchi, Ryosuke; Asahi, Ryoji

    2017-09-07

    Catalytic activities are often dominated by a few specific surface sites, and designing active sites is the key to realize high-performance heterogeneous catalysts. The great triumphs of modern surface science lead to reproduce catalytic reaction rates by modeling the arrangement of surface atoms with well-defined single-crystal surfaces. However, this method has limitations in the case for highly inhomogeneous atomic configurations such as on alloy nanoparticles with atomic-scale defects, where the arrangement cannot be decomposed into single crystals. Here, we propose a universal machine-learning scheme using a local similarity kernel, which allows interrogation of catalytic activities based on local atomic configurations. We then apply it to direct NO decomposition on RhAu alloy nanoparticles. The proposed method can efficiently predict energetics of catalytic reactions on nanoparticles using DFT data on single crystals, and its combination with kinetic analysis can provide detailed information on structures of active sites and size- and composition-dependent catalytic activities.

  10. Highly robust crystalsome via directed polymer crystallization at curved liquid/liquid interface

    PubMed Central

    Wang, Wenda; Qi, Hao; Zhou, Tian; Mei, Shan; Han, Lin; Higuchi, Takeshi; Jinnai, Hiroshi; Li, Christopher Y.

    2016-01-01

    Lipids and amphiphilic block copolymers spontaneously self-assemble in water to form a plethora of micelles and vesicles. They are typically fluidic in nature and often mechanically weak for applications such as drug delivery and gene therapeutics. Mechanical properties of polymeric materials could be improved by forming crystalline structures. However, most of the self-assembled micelles and vesicles have curved surfaces and precisely tuning crystallization within a nanoscale curved space is challenging, as the curved geometry is incommensurate with crystals having three-dimensional translational symmetry. Herein, we report using a miniemulsion crystallization method to grow nanosized, polymer single-crystal-like capsules. We coin the name crystalsome to describe this unique structure, because they are formed by polymer lamellar crystals and their structure mimics liposomes and polymersomes. Using poly(L-lactic acid) (PLLA) as the model polymer, we show that curved water/p-xylene interface formed by the miniemulsion process can guide the growth of PLLA single crystals. Crystalsomes with the size ranging from ∼148 nm to over 1 μm have been formed. Atomic force microscopy measurement demonstrate a two to three orders of magnitude increase in bending modulus compared with conventional polymersomes. We envisage that this novel structure could shed light on investigating spherical crystallography and drug delivery. PMID:26837260

  11. Improving the Representation of Snow Crystal Properties with a Single-Moment Mircophysics Scheme

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Petersen, Walter A.; Case, Jonathan L.; Demek, Scott R.

    2010-01-01

    Single-moment microphysics schemes are utilized in an increasing number of applications and are widely available within numerical modeling packages, often executed in near real-time to aid in the issuance of weather forecasts and advisories. In order to simulate cloud microphysical and precipitation processes, a number of assumptions are made within these schemes. Snow crystals are often assumed to be spherical and of uniform density, and their size distribution intercept may be fixed to simplify calculation of the remaining parameters. Recently, the Canadian CloudSat/CALIPSO Validation Project (C3VP) provided aircraft observations of snow crystal size distributions and environmental state variables, sampling widespread snowfall associated with a passing extratropical cyclone on 22 January 2007. Aircraft instrumentation was supplemented by comparable surface estimations and sampling by two radars: the C-band, dual-polarimetric radar in King City, Ontario and the NASA CloudSat 94 GHz Cloud Profiling Radar. As radar systems respond to both hydrometeor mass and size distribution, they provide value when assessing the accuracy of cloud characteristics as simulated by a forecast model. However, simulation of the 94 GHz radar signal requires special attention, as radar backscatter is sensitive to the assumed crystal shape. Observations obtained during the 22 January 2007 event are used to validate assumptions of density and size distribution within the NASA Goddard six-class single-moment microphysics scheme. Two high resolution forecasts are performed on a 9-3-1 km grid, with C3VP-based alternative parameterizations incorporated and examined for improvement. In order to apply the CloudSat 94 GHz radar to model validation, the single scattering characteristics of various crystal types are used and demonstrate that the assumption of Mie spheres is insufficient for representing CloudSat reflectivity derived from winter precipitation. Furthermore, snow density and size distribution characteristics are allowed to vary with height, based upon direct aircraft estimates obtained from C3VP data. These combinations improve the representation of modeled clouds versus their radar-observed counterparts, based on profiles and vertical distributions of reflectivity. These meteorological events are commonplace within the mid-latitude cold season and present a challenge to operational forecasters. This study focuses on one event, likely representative of others during the winter season, and aims to improve the representation of snow for use in future operational forecasts.

  12. Nearly-free-electron system of monolayer Na on the surface of single-crystal HfSe 2

    DOE PAGES

    Eknapakul, T.; Fongkaew, I.; Siriroj, S.; ...

    2016-11-15

    Here, the electronic structure of a single Na monolayer on the surface of single-crystal HfSe 2 is investigated using angle-resolved photoemission spectroscopy. We find that this system exhibits an almost perfect "nearly-free-electron" behavior with an extracted effective mass of ~1m e, in contrast to heavier masses found previously for alkali-metal monolayers on other substrates. Our density-functional-theory calculations indicate that this is due to the large lattice constant, causing both exchange and correlation interactions to be suppressed, and to the weak hybridization between the overlayer and the substrate. This is therefore an ideal model system for understanding the properties of two-dimensionalmore » materials.« less

  13. A dislocation-based crystal plasticity framework for dynamic ductile failure of single crystals

    NASA Astrophysics Data System (ADS)

    Nguyen, Thao; Luscher, D. J.; Wilkerson, J. W.

    2017-11-01

    A framework for dislocation-based viscoplasticity and dynamic ductile failure has been developed to model high strain rate deformation and damage in single crystals. The rate-dependence of the crystal plasticity formulation is based on the physics of relativistic dislocation kinetics suited for extremely high strain rates. The damage evolution is based on the dynamics of void growth, which are governed by both micro-inertia as well as dislocation kinetics and dislocation substructure evolution. An averaging scheme is proposed in order to approximate the evolution of the dislocation substructure in both the macroscale as well as its spatial distribution at the microscale. Additionally, a concept of a single equivalent dislocation density that effectively captures the collective influence of dislocation density on all active slip systems is proposed here. Together, these concepts and approximations enable the use of semi-analytic solutions for void growth dynamics developed in (Wilkerson and Ramesh, 2014), which greatly reduce the computational overhead that would otherwise be required. The resulting homogenized framework has been implemented into a commercially available finite element package, and a validation study against a suite of direct numerical simulations was carried out.

  14. Effects of Microstructural Parameters on Creep of Nickel-Base Superalloy Single Crystals

    NASA Technical Reports Server (NTRS)

    MacKay, Rebecca A.; Gabb, Timothy P.; Nathal, Michael V.

    2013-01-01

    Microstructure-sensitive creep models have been developed for Ni-base superalloy single crystals. Creep rupture testing was conducted on fourteen single crystal alloys at two applied stress levels at each of two temperatures, 982 and 1093 C. The variation in creep lives among the different alloys could be explained with regression models containing relatively few microstructural parameters. At 982 C, gamma-gamma prime lattice mismatch, gamma prime volume fraction, and initial gamma prime size were statistically significant in explaining the creep rupture lives. At 1093 C, only lattice mismatch and gamma prime volume fraction were significant. These models could explain from 84 to 94 percent of the variation in creep lives, depending on test condition. Longer creep lives were associated with alloys having more negative lattice mismatch, lower gamma prime volume fractions, and finer gamma prime sizes. The gamma-gamma prime lattice mismatch exhibited the strongest influence of all the microstructural parameters at both temperatures. Although a majority of the alloys in this study were stable with respect to topologically close packed (TCP) phases, it appeared that up to approximately 2 vol% TCP phase did not affect the 1093 C creep lives under applied stresses that produced lives of approximately 200 to 300 h. In contrast, TCP phase contents of approximately 2 vol% were detrimental at lower applied stresses where creep lives were longer. A regression model was also developed for the as-heat treated initial gamma prime size; this model showed that gamma prime solvus temperature, gamma-gamma prime lattice mismatch, and bulk Re content were all statistically significant.

  15. The importance of proper crystal-chemical and geometrical reasoning demonstrated using layered single and double hydroxides

    PubMed Central

    Richardson, Ian G.

    2013-01-01

    Atomistic modelling techniques and Rietveld refinement of X-ray powder diffraction data are widely used but often result in crystal structures that are not realistic, presumably because the authors neglect to check the crystal-chemical plausibility of their structure. The purpose of this paper is to reinforce the importance and utility of proper crystal-chemical and geometrical reasoning in structural studies. It is achieved by using such reasoning to generate new yet fundamental information about layered double hydroxides (LDH), a large, much-studied family of compounds. LDH phases are derived from layered single hydroxides by the substitution of a fraction (x) of the divalent cations by trivalent. Equations are derived that enable calculation of x from the a parameter of the unit cell and vice versa, which can be expected to be of widespread utility as a sanity test for extant and future structure determinations and computer simulation studies. The phase at x = 0 is shown to be an α form of divalent metal hydroxide rather than the β polymorph. Crystal-chemically sensible model structures are provided for β-Zn(OH)2 and Ni- and Mg-based carbonate LDH phases that have any trivalent cation and any value of x, including x = 0 [i.e. for α-M(OH)2·mH2O phases]. PMID:23719702

  16. Theoretical modeling of diode-laser-pumped 3-μm Er3+ crystal lasers

    NASA Astrophysics Data System (ADS)

    Tikerpae, Mark; Jackson, Stuart D.; King, Terence A.

    1997-05-01

    We present results from a theoretical model that has been developed to simulate the 3-micrometer laser transition in Er3+ doped Y3Al5O12 (YAG), Y2Sc2Ga3O12 (YSGG), LiYF4 (YLF) and BaY2F8 (BaYF) host crystals. The rate equations for the lowest seven energy levels of Er3+ were solved numerically and laser action was simulated under cw, gain-switched (pulse pumped) and Q-switched operation with optical pumping at wavelengths of 975 nm and 795 nm. The relative performance of each laser crystal was compared under identical pumping and cavity conditions to establish the optimum crystal host, doping concentration and pump wavelength for each mode of operation. Some unexpected saturation effects were investigated that could limit the maximum practical pump fluence used for high energy Q-switched systems. We investigate possible additional multi-ion energy transfer processes that may cause the decrease in efficiency that is observed experimentally at high Er3+ ion concentrations. In addition, lower laser level deactivation by co-doping with Pr3+ in BaYF was simulated and compared with singly doped Er:BaYF for a range of Er3+ and Pr3+ concentrations. It was found that co-doping was not as effective as the cooperative upconversion process present in singly doped Er3+ crystals for efficient laser operation.

  17. Control of heat transfer in continuous-feeding Czochralski-silicon crystal growth with a water-cooled jacket

    NASA Astrophysics Data System (ADS)

    Zhao, Wenhan; Liu, Lijun

    2017-01-01

    The continuous-feeding Czochralski method is an effective method to reduce the cost of single crystal silicon. By promoting the crystal growth rate, the cost can be reduced further. However, more latent heat will be released at the melt-crystal interface under a high crystal growth rate. In this study, a water-cooled jacket was applied to enhance the heat transfer at the melt-crystal interface. Quasi-steady-state numerical calculation was employed to investigate the impact of the water-cooled jacket on the heat transfer at the melt-crystal interface. Latent heat released during the crystal growth process at the melt-crystal interface and absorbed during feedstock melting at the feeding zone was modeled in the simulations. The results show that, by using the water-cooled jacket, heat transfer in the growing crystal is enhanced significantly. Melt-crystal interface deflection and thermal stress increase simultaneously due to the increase of radial temperature at the melt-crystal interface. With a modified heat shield design, heat transfer at the melt-crystal interface is well controlled. The crystal growth rate can be increased by 20%.

  18. Crystal-field analysis of U3+ ions in K2LaX5 (X=Cl, Br or I) single crystals

    NASA Astrophysics Data System (ADS)

    Karbowiak, M.; Edelstein, N.; Gajek, Z.; Drożdżyński, J.

    1998-11-01

    An analysis of low temperature absorption spectra of U3+ ions doped in K2LaX5 (X=Cl, Br or I) single crystals is reported. The energy levels of the U3+ ion in the single crystals were assigned and fitted to a semiempirical Hamiltonian representing the combined atomic and crystal-field interactions at the Cs symmetry site. An analysis of the nephelauxetic effect and crystal-field splittings in the series of compounds is also reported.

  19. Averaging of elastic constants for polycrystals

    DOE PAGES

    Blaschke, Daniel N.

    2017-10-13

    Many materials of interest are polycrystals, i.e., aggregates of single crystals. Randomly distributed orientations of single crystals lead to macroscopically isotropic properties. Here in this paper, we briefly review strategies of calculating effective isotropic second and third order elastic constants from the single crystal ones. Our main emphasis is on single crystals of cubic symmetry. Specifically, the averaging of third order elastic constants has not been particularly successful in the past, and discrepancies have often been attributed to texturing of polycrystals as well as to uncertainties in the measurement of elastic constants of both poly and single crystals. While thismore » may well be true, we also point out here shortcomings in the theoretical averaging framework.« less

  20. Development of a Single-Crystal Fifth-Generation Nickel Superalloy

    NASA Astrophysics Data System (ADS)

    Petrushin, N. V.; Elyutin, E. S.; Visik, E. M.; Golynets, S. A.

    2017-11-01

    The chemical and phase compositions of a rhenium-ruthenium-containing fifth-generation VZhM8 nickel superalloy, which is intended for single-crystal turbine blades of an aviation engine, are calculated using computer simulation. VZhM8 alloy <001>, <011>, and <111> single crystals are fabricated. The microstructure, the γ/γ' misfit, the segregation coefficients of alloying elements, the dissolution temperature of the γ' phase, and the solidus and liquidus temperatures of the VZhM8 alloy single crystals in the as-cast state and after heat treatment are studied. The temperature-time dependences of the static elastic modulus, the short-term mechanical properties, and the long-term strength of the alloy single crystals are determined

  1. Growth and studies of cyclohexylammonium 4-methoxy benzoate single crystal for nonlinear optical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sathya, P.; Gopalakrishnan, R., E-mail: krgkrishnan@annauniv.edu

    2015-06-24

    Cyclohexylammonium 4-Methoxy Benzoate (C4MB) was synthesised and the functional groups were confirmed by FTIR analysis. The purified C4MB (by repeated recrystallisation) was used for single crystal growth. Single crystal of cyclohexylammonium 4-methoxy benzoate was successfully grown by slow evaporation solution growth method at ambient temperature. Structural orientations were determined from single crystal X-ray diffractometer. Optical absorption and cut off wavelength were identified by UV-Visible spectroscopy. Thermal stability of the crystal was studied from thermogravimetric and differential thermal analyses curves. Mechanical stability of the grown crystal was analysed by Vicker’s microhardness tester. The Second Harmonic Generation (SHG) study revealed that themore » C4MB compound exhibits the SHG efficiency 3.3 times greater than KDP crystal.« less

  2. Synthesis, structural, thermal and Hirshfeld surface analysis of novel [1,2,4]triazolo[3,4-b][1,3,4] thiadiazine carrying 1,4-benzothiazine-3-one moiety

    NASA Astrophysics Data System (ADS)

    Shruthi, C.; Ravindrachary, V.; Guruswamy, B.; Lokanath, N. K.; Kumara, Karthik; Goveas, Janet

    2018-05-01

    Needle shaped single crystal of the title compound was grown by slow evaporation solution growth technique using ethanol as solvent. The grown single crystal was characterized using FT-IR, Single crystal XRD and Thermal analysis. The FT-IR spectrum confirms the molecular structure and identifies the different functional groups present in the compound. Single crystal XRD study reveals that the crystallized compound belongs to the monoclinic crystal system with P21/c space group and the corresponding cell parameters were identified. The thermal stability of the material was determined using both TGA and DTA analysis. The intermolecular interaction of each individual atom in the crystal lattice was estimated using Hirshfeld surface and finger print analysis.

  3. New multicell model for describing the atomic structure of La{sub 3}Ga{sub 5}SiO{sub 14} piezoelectric crystal: Unit cells of different compositions in the same single crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudka, A. P., E-mail: dudka@ns.crys.ras.ru

    2017-03-15

    Accurate X-ray diffraction study of langasite (La{sub 3}Ga{sub 5}SiO{sub 14}) single crystal has been performed using the data obtained on a diffractometer equipped with a CCD area detector at 295 and 90.5 K. Within the known La{sub 3}Ga{sub 5}SiO{sub 14} model, Ga and Si cations jointly occupy the 2d site. A new model of a “multicell” consisting of two different unit cells is proposed. Gallium atoms occupy the 2d site in one of these cells, and silicon atoms occupy this site in the other cell; all other atoms correspondingly coordinate these cations. This structure implements various physical properties exhibited bymore » langasite family crystals. The conclusions are based on processing four data sets obtained with a high resolution (sin θ/λ ≤ 1.35 Å{sup –1}), the results reproduced in repeated experiments, and the high relative precision of the study (sp. gr. P321, Z = 1; at 295 K, a = 8.1652(6) Å, c = 5.0958(5) Å, R/wR = 0.68/0.68%, 3927 independent reflections; at 90.5 K, a = 8.1559(4) Å, c = 5.0913(6) Å, R/wR = 0.92/0.93%, 3928 reflections).« less

  4. Influence of solvents on the habit modification of alpha lactose monohydrate single crystals

    NASA Astrophysics Data System (ADS)

    Parimaladevi, P.; Srinivasan, K.

    2013-02-01

    Restricted evaporation of solvent method was adopted for the growth of alpha lactose monohydrate single crystals from different solvents. The crystal habits of grown crystals were analysed. The form of crystallization was confirmed by powder x-ray diffraction analysis. Thermal behaviour of the grown crystals was studied by using differential scanning calorimetry.

  5. Cesium vacancy ordering in phase-separated C s x F e 2 - y S e 2

    DOE PAGES

    Taddei, Keith M.; Sturza, M.; Chung, Duck -Yung; ...

    2015-09-14

    By simultaneously displaying magnetism and superconductivity in a single phase, the iron-based superconductors provide a model system for the study of magnetism's role in superconductivity. The class of intercalated iron selenide superconductors is unique among these in having the additional property of phase separation and coexistence of two distinct phases—one majority phase with iron vacancy ordering and strong antiferromagnetism, and the other a poorly understood minority microscopic phase with a contested structure. Adding to the intrigue, the majority phase has never been found to show superconductivity on its own while the minority phase has never been successfully synthesized separate frommore » the majority phase. In order to better understand this minority phase, a series of high-quality Cs xFe 2–ySe 2 single crystals with (0.8 ≤ x ≤ 1;0 ≤ y ≤ 0.3) were grown and studied. Neutron and x-ray powder diffraction performed on ground crystals show that the average I4/mmm structure of the minority phase is distinctly different from the high-temperature I4/mmm parent structure. Moreover, single-crystal diffraction reveals the presence of discrete superlattice reflections that remove the degeneracy of the Cs sites in both the majority and minority phases and reduce their structural symmetries from body centered to primitive. Group theoretical analysis in conjunction with structural modeling shows that the observed superlattice reflections originate from three-dimensional Cs vacancy ordering. This model predicts a 25% vacancy of the Cs site in the minority phase which is consistent with the site's refined occupancy. Magnetization measurements performed in tandem with neutron single-crystal diffraction provide evidence that the minority phase is the host of superconductivity. Lastly, our results also reveal a superconducting dome in which the superconducting transition temperature varies as a function of the nominal valence of iron.« less

  6. Cesium vacancy ordering in phase-separated C s x F e 2 - y S e 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taddei, K. M.; Sturza, M.; Chung, D. Y.

    2015-09-01

    By simultaneously displaying magnetism and superconductivity in a single phase, the iron based superconductors provide a model system for the study of magnetism’s role in superconductivity. The class of intercalated iron selenide superconductors is unique amongst these in having the additional property of phase separation and coexistence of two distinct phases - one majority phase with iron vacancy ordering and strong antiferromagnetism and the other a poorly understood minority microscopic phase with a contested structure. Adding to the intrigue, the majority phase has never been found to show superconductivity on its own while the minority phase has never been successfullymore » synthesized separate from the majority phase. In order to better understand this minority phase, a series of high quality CsxFe2-ySe2 single crystals with (0.8 ≤ x ≤ 1; 0 ≤ y ≤ 0.3) were grown and studied. Neutron and x-ray powder diffraction performed on ground crystals show the average structure of the minority phase to be I4/mmm, however, the temperature evolution of its lattice parameters shows it to be distinct from the high temperature I4/mmm parent structure. Neutron and x-ray diffraction experiments performed on single crystal samples reveal the presence of previously unobserved discrete superlattice reflections that remove the degeneracy of the Cs sites in both the majority and minority phases and reduce their structural symmetries from body-centered to primitive. Group theoretical analysis in conjunction with structural modeling shows that the observed superlattice reflections originate from a three-dimensional Cs vacancy ordering in the minority phase. This model predicts a 25% vacancy of the Cs site which is consistent with the site’s refined occupancy. Magnetization measurements performed in tandem with neutron single crystal diffraction provide evidence that the minority phase is the host of superconductivity. Our results also reveal a superconducting dome in which the superconducting transition temperature varies as a function of the valence of iron.« less

  7. Crystal structure, spectral, thermal and dielectric studies of a new zinc benzoate single crystal

    NASA Astrophysics Data System (ADS)

    Bijini, B. R.; Prasanna, S.; Deepa, M.; Nair, C. M. K.; Rajendra Babu, K.

    2012-11-01

    Single crystals of zinc benzoate with a novel structure were grown in gel media. Sodium metasilicate of gel density 1.04 g/cc at pH 6 was employed to yield transparent single crystals. The crystal structure of the compound was ascertained by single crystal X-ray diffractometry. It was noted that the crystal belongs to monoclinic system with space group P21/c with unit cell parameters a = 10.669(1) Å, b = 12.995(5) Å, c = 19.119(3) Å, and β = 94.926(3)°. The crystal was seen to possess a linear polymeric structure along b-axis; with no presence of coordinated or lattice water. CHN analysis established the stoichiometric composition of the crystal. The existence of functional groups present in the single crystal system was confirmed by FT-IR studies. The thermal characteristic of the sample was analysed by TGA-DTA techniques, and the sample was found to be thermally stable up to 280 °C. The kinetic and thermodynamic parameters were also determined. UV-Vis spectroscopy corroborated the transparency of the crystal and revealed the optical band gap to be 4 eV. Dielectric studies showed decrease in the dielectric constant of the sample with increase in frequency.

  8. Superconductivity and valence state in layered single-crystal HfAs1.67Te0.12

    NASA Astrophysics Data System (ADS)

    Peng, Jian; Yu, Jia; Zhang, Shuai; Chen, Genfu

    2018-01-01

    We report a detailed study on single crystals of HfAs1.67Te0.12 within a PbFCl-type layered structure. The single crystals of the title compound were successfully grown using a chemical transport reaction. The temperature dependence of electrical resistivity ρ (T), AC magnetic susceptibility {χ }{AC}(T) and specific heat C(T) show a bulk superconductivity with transition temperature T c = 1.67 K. The jump of C/T at T c is comparable to the traditional BCS weak-coupling model. A full H-T phase diagram is established using the results of ρ (T,H) and C(T) under fields, suggesting a rather weak anisotropy [({H}c2\\parallel {ab}(0)/{H}c2\\parallel c(0)] of 1.8 in orbital limit dominated three-dimension-like superconducting system. The mixed-valence states of Hf and As observed in the binding energy from x-ray photoelectron spectroscopy are consistent with the single-crystal x-ray diffraction analysis, indicating that the As-Te disorder prefers to occur in the [HfAs] layer and a large amount of vacancies are present in tetragonal As layer. As compared to HfAs1.7Se0.2 (T c = 0.52 K), a positive-like vacancy effect on T c has been confirmed in HfAs1.67Te0.12. The analysis of the Hall coefficient implies that the hole-type carriers dominate the transport properties, which is in good agreement with the hole pockets at Fermi surface obtained in a band structure calculation. The detailed study of single-crystal HfAs1.67Te0.12 provides a possible candidate to discuss the non-magnetic Kondo effect.

  9. Reliability Studies of Ceramic Capacitors.

    DTIC Science & Technology

    1983-07-01

    increases. This case has been found to be a good approximation for single crystals with high chemical and structural purity. Shallow traps may arise as a...theory, this sudden increase may be otherwise explained. Single crystals of ZnS have been found to exhibit this vertical increase in the current...Smith and Rose observed SCLC behavior in CdS single crystals . Branwood and Tredgold 2 8 and Branwood et al. 2 9 measured BaTiO 3 single crystals and

  10. Reversible conversion of valence-tautomeric copper metal-organic frameworks dependent single-crystal-to-single-crystal oxidation/reduction: a redox-switchable catalyst for C-H bonds activation reaction.

    PubMed

    Huang, Chao; Wu, Jie; Song, Chuanjun; Ding, Ran; Qiao, Yan; Hou, Hongwei; Chang, Junbiao; Fan, Yaoting

    2015-06-28

    Upon single-crystal-to-single-crystal (SCSC) oxidation/reduction, reversible structural transformations take place between the anionic porous zeolite-like Cu(I) framework and a topologically equivalent neutral Cu(I)Cu(II) mixed-valent framework. The unique conversion behavior of the Cu(I) framework endowed it as a redox-switchable catalyst for the direct arylation of heterocycle C-H bonds.

  11. Solution-grown organic single-crystalline p-n junctions with ambipolar charge transport.

    PubMed

    Fan, Congcheng; Zoombelt, Arjan P; Jiang, Hao; Fu, Weifei; Wu, Jiake; Yuan, Wentao; Wang, Yong; Li, Hanying; Chen, Hongzheng; Bao, Zhenan

    2013-10-25

    Organic single-crystalline p-n junctions are grown from mixed solutions. First, C60 crystals (n-type) form and, subsequently, C8-BTBT crystals (p-type) nucleate heterogeneously on the C60 crystals. Both crystals continue to grow simultaneously into single-crystalline p-n junctions that exhibit ambipolar charge transport characteristics. This work provides a platform to study organic single-crystalline p-n junctions. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Morphological stability and kinetics in crystal growth from vapors

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1990-01-01

    The following topics are discussed: (1) microscopy image storage and processing system; (2) growth kinetics and morphology study with carbon tetrabromide; (3) photothermal deflection vapor growth setup; (4) bridgman growth of iodine single crystals; (5) vapor concentration distribution measurement during growth; and (6) Monte Carlo modeling of anisotropic growth kinetics and morphology. A collection of presentations and publications of these results are presented.

  13. Electron and thermal transport via variable range hopping in MoSe2 single crystals

    NASA Astrophysics Data System (ADS)

    Suri, Dhavala; Patel, R. S.

    2017-06-01

    Bulk single crystal molybdenum diselenide has been studied for its electronic and thermal transport properties. We perform resistivity measurements with current in-plane (CIP) and current perpendicular to plane (CPP) as a function of temperature. The CIP measurements exhibit metal to semiconductor transition at ≃31 K. In the semiconducting phase (T > 31 K), the transport is best explained by the variable range hopping (VRH) model. Large magnitude of resistivity in the CPP mode indicates strong structural anisotropy. The Seebeck coefficient as a function of temperature measured in the range of 90-300 K also agrees well with the VRH model. The room temperature Seebeck coefficient is found to be 139 μV/K. VRH fittings of the resistivity and the Seebeck coefficient data indicate high degree of localization.

  14. Monoclinic crystal structure of α - RuCl 3 and the zigzag antiferromagnetic ground state

    DOE PAGES

    Johnson, R. D.; Williams, S. C.; Haghighirad, A. A.; ...

    2015-12-10

    We have proposed the layered honeycomb magnet α - RuCl 3 as a candidate to realize a Kitaev spin model with strongly frustrated, bond-dependent, anisotropic interactions between spin-orbit entangled j eff = 1/2 Ru 3 + magnetic moments. We report a detailed study of the three-dimensional crystal structure using x-ray diffraction on untwinned crystals combined with structural relaxation calculations. We consider several models for the stacking of honeycomb layers and find evidence for a parent crystal structure with a monoclinic unit cell corresponding to a stacking of layers with a unidirectional in-plane offset, with occasional in-plane sliding stacking faults, inmore » contrast with the currently assumed trigonal three-layer stacking periodicity. We also report electronic band-structure calculations for the monoclinic structure, which find support for the applicability of the j eff = 1/2 picture once spin-orbit coupling and electron correlations are included. Of the three nearest-neighbor Ru-Ru bonds that comprise the honeycomb lattice, the monoclinic structure makes the bond parallel to the b axis nonequivalent to the other two, and we propose that the resulting differences in the magnitude of the anisotropic exchange along these bonds could provide a natural mechanism to explain the previously reported spin gap in powder inelastic neutron scattering measurements, in contrast to spin models based on the three-fold symmetric trigonal structure, which predict a gapless spectrum within linear spin wave theory. Our susceptibility measurements on both powders and stacked crystals, as well as magnetic neutron powder diffraction, show a single magnetic transition upon cooling below T N ≈ 13 K. Our analysis of our neutron powder diffraction data provides evidence for zigzag magnetic order in the honeycomb layers with an antiferromagnetic stacking between layers. Magnetization measurements on stacked single crystals in pulsed field up to 60 T show a single transition around 8 T for in-plane fields followed by a gradual, asymptotic approach to magnetization saturation, as characteristic of strongly anisotropic exchange interactions.« less

  15. Oxidation-Assisted Crack Growth in Single-Crystal Superalloys during Fatigue with Compressive Holds

    NASA Astrophysics Data System (ADS)

    Lafata, M. A.; Rettberg, L. H.; He, M. Y.; Pollock, T. M.

    2018-01-01

    The mechanism of oxidation-assisted growth of surface cracks during fatigue with compressive holds has been studied experimentally and via a model that describes the role of oxide and substrate properties. The creep-based finite element model has been employed to examine the role of material parameters in the damage evolution in a Ni-base single-crystal superalloy René N5. Low-cycle fatigue experiments with compressive holds were conducted at 1255 K and 1366 K (982 °C and 1093 °C). Interrupted and failed specimens were characterized for crack depth and spacing, oxide thickness, and microstructural evolution. Comparison of experimental to modeled hysteresis loops indicates that transient creep drives the macroscopic stress-strain response. Crack penetration rates are strongly influenced by growth stresses in the oxide, structural evolution in the substrate, and the development of γ ^' } denuded zones. Implications for design of alloys resistant to this mode of degradation are discussed.

  16. Growth and nonlinear optical characterization of organic single crystal films

    NASA Astrophysics Data System (ADS)

    Zhou, Ligui

    1997-12-01

    Organic single crystal films are important for various future applications in photonics and integrated optics. The conventional method for inorganic crystal growth is not suitable for organic materials, and the high temperature melting method is not good for most organic materials due to decomposition problems. We developed a new method-modified shear method-to grow large area organic single crystal thin films which have exceptional nonlinear optical properties and high quality surfaces. Several organic materials (NPP, PNP and DAST) were synthesized and purified before the thin film crystal growth. Organic single crystal thin films were grown from saturated organic solutions using modified shear method. The area of single crystal films were about 1.5 cm2 for PNP, 1 cm2 for NPP and 5 mm2 for DAST. The thickness of the thin films which could be controlled by the applied pressure ranged from 1μm to 10 μm. The single crystal thin films of organic materials were characterized by polarized microscopy, x-ray diffraction, polarized UV-Visible and polarized micro-FTIR spectroscopy. Polarized microscopy showed uniform birefringence and complete extinction with the rotation of the single crystal thin films under crossed- polarization, which indicated high quality single crystals with no scattering. The surface orientation of single crystal thin films was characterized by x-ray diffraction. The molecular orientation within the crystal was further studied by the polarized UV-Visible and Polarized micro-FTIR techniques combined with the x-ray and polarized microscopy results. A Nd:YAG laser with 35 picosecond pulses at 1064nm wavelength was employed to perform the nonlinear optical characterization of the organic single crystal thin films. Two measurement techniques were used to study the crystal films: second harmonic generation (SHG) and electro-optic (EO) effect. SHG results showed that the nonlinear optical coefficient of NPP was 18 times that of LiNbO3, a standard inorganic crystal material, and the nonlinear optical coefficient of PNP was 11 times that of LiNbO3. Electro-optic measurements showed that r11 = 65 pm/V for NPP and r12 = 350 pm/V for DAST. EO modulation effect was also observed using Fabry-Perot interferometry. Waveguide devices are very important for integrated optics. But the fabrication of waveguide devices on the organic single crystal thin films was difficult due to the solubility of the film in common organic solvents. A modified photolithographic technique was employed to make channel waveguides and poly(vinyl alcohol) (PVA) was used as a protective layer in the fabrication of the waveguides. Waveguides with dimensions about 7/mum x 1μm x 1mm were obtained.

  17. Synthesis, growth, structural and optical studies of a novel organic Piperazine (bis) p-toluenesulfonate single crystal.

    PubMed

    Rekha, P; Peramaiyan, G; NizamMohideen, M; Kumar, R Mohan; Kanagadurai, R

    2015-03-15

    A novel organic single crystal of Piperazinium (bis) p-toluenesulfonate (PPTS) was grown by a slow evaporation solution growth technique. The structure of the grown crystal was determined using single crystal X-ray diffraction analysis. The PPTS crystal belongs to the triclinic crystal system with space group of P1¯. The presence of functional groups was confirmed by FTIR spectral analysis. The optical transmittance range and cut-off wavelength were identified by UV-vis-NIR spectral studies. The luminescent properties of PPTS crystal were investigated. The thermal behavior of PPTS crystal was studied by TG-DT analyses. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Crystal-Physical Model of Ion Transport in Nonlinear Optical Crystals of KTiOPO4

    NASA Astrophysics Data System (ADS)

    Sorokin, N. I.; Shaldin, Yu. V.

    2018-04-01

    The ionic conductivity along the principal axes a, b, and c of the unit cell of the nonlinear-optical high-resistance KTiOPO4 single crystals (rhombic syngony, space group Pna21), which are as-grown and after thermal annealing in vacuum, has been investigated by the method of impedance spectroscopy. The crystals were grown from a solution-melt by the Czochralski method. The as-grown KTiOPO4 crystals possess a quasi-one-dimensional conductivity along the crystallographic c axis, which is caused by the migration of K+ cations: σ║ c = 1.0 × 10-5 S/cm at 573 K. Wherein the characteristics of the anisotropy of ionic conductivity of the crystals is equal to σ║ c /σ║ a = 3 and σ║ c /σ║ b = 24. The thermal annealing at 1000 K for 10 h in vacuum increases the magnitude of σ║ c of KTiOPO4 by a factor of 28 and leads to an increase in the ratio σ║ c /σ║ b = 2.1 × 103 at 573 K. A crystal-physical model of ionic transport in KTiOPO4 crystals has been proposed.

  19. Structure and Growth Control of Organic-Inorganic Halide Perovskites for Optoelectronics: From Polycrystalline Films to Single Crystals.

    PubMed

    Chen, Yani; He, Minhong; Peng, Jiajun; Sun, Yong; Liang, Ziqi

    2016-04-01

    Recently, organic-inorganic halide perovskites have sparked tremendous research interest because of their ground-breaking photovoltaic performance. The crystallization process and crystal shape of perovskites have striking impacts on their optoelectronic properties. Polycrystalline films and single crystals are two main forms of perovskites. Currently, perovskite thin films have been under intensive investigation while studies of perovskite single crystals are just in their infancy. This review article is concentrated upon the control of perovskite structures and growth, which are intimately correlated for improvements of not only solar cells but also light-emitting diodes, lasers, and photodetectors. We begin with the survey of the film formation process of perovskites including deposition methods and morphological optimization avenues. Strategies such as the use of additives, thermal annealing, solvent annealing, atmospheric control, and solvent engineering have been successfully employed to yield high-quality perovskite films. Next, we turn to summarize the shape evolution of perovskites single crystals from three-dimensional large sized single crystals, two-dimensional nanoplates, one-dimensional nanowires, to zero-dimensional quantum dots. Siginificant functions of perovskites single crystals are highlighted, which benefit fundamental studies of intrinsic photophysics. Then, the growth mechanisms of the previously mentioned perovskite crystals are unveiled. Lastly, perspectives for structure and growth control of perovskites are outlined towards high-performance (opto)electronic devices.

  20. Ames Lab 101: Single Crystal Growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlagel, Deborah

    2013-09-27

    Ames Laboratory scientist Deborah Schlagel talks about the Lab's research in growing single crystals of various metals and alloys. The single crystal samples are vital to researchers' understanding of the characteristics of a materials and what gives these materials their particular properties.

  1. Ames Lab 101: Single Crystal Growth

    ScienceCinema

    Schlagel, Deborah

    2018-01-16

    Ames Laboratory scientist Deborah Schlagel talks about the Lab's research in growing single crystals of various metals and alloys. The single crystal samples are vital to researchers' understanding of the characteristics of a materials and what gives these materials their particular properties.

  2. Elastic response of zone axis (001)-oriented PWA 1480 single crystal: The influence of secondary orientation

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Abdul-Aziz, Ali; Mcgaw, Michael A.

    1991-01-01

    The influence of secondary orientation on the elastic response of a zone axis (001)-oriented nickel-base single-crystal superalloy, PWA 1480, was investigated under mechanical loading conditions by applying finite element techniques. Elastic stress analyses were performed with a commercially available finite element code. Secondary orientation of the single-crystal superalloy was offset with respect to the global coordinate system in increments from 0 to 90 deg and stresses developed within the single crystal were determined for each loading condition. The results indicated that the stresses were strongly influenced by the angular offset between the secondary crystal orientation and the global coordinate system. The degree of influence was found to vary with the type of loading condition (mechanical, thermal, or combined) imposed on the single-crystal superalloy.

  3. Single crystal growth and anisotropic magnetic properties of HoAl2Ge2

    NASA Astrophysics Data System (ADS)

    Matin, Md.; Mondal, Rajib; Thamizhavel, A.; Provino, A.; Manfrinetti, P.; Dhar, S. K.

    2018-05-01

    We have grown a single crystal of HoAl2Ge2, which crystallizes in the hexagonal CaAl2Si2 type structure with Ho ions in the trigonal coordination in the ab plane. The data obtained from the bulk measurement techniques of magnetization, heat capacity and transport reveal that HoAl2Ge2 orders antiferromagnetically at TN ˜6.5 K. The susceptibility below TN and isothermal magnetization at 2 K indicate the ab plane as the easy plane of magnetization. Heat capacity data reveal a prominent Schottky anomaly with a broad peak centered around 25 K, suggesting a relatively low crystal electric field (CEF) splitting. The electrical resistivity reveals the occurrence of a superzone gap below TN. The point charge model of the CEF is applied to the magnetization and the heat capacity data. While a good fit to the paramagnetic susceptibility is obtained, the CEF parameters do not provide a satisfactory fit to the isothermal magnetization at 2 K and the Schottky anomaly.

  4. Preferred growth orientation and microsegregation behaviors of eutectic in a nickel-based single-crystal superalloy

    PubMed Central

    Ma, Dexin; Bührig-Polaczek, Andreas

    2015-01-01

    A nickel-based single-crystal superalloy was employed to investigate the preferred growth orientation behavior of the (γ + γ′) eutectic and the effect of these orientations on the segregation behavior. A novel solidification model for the eutectic island was proposed. At the beginning of the eutectic island’s crystallization, the core directly formed from the liquid by the eutectic reaction, and then preferably grew along [100] direction. The crystallization of the eutectic along [110] always lagged behind that in [100] direction. The eutectic growth in [100] direction terminated on impinging the edge of the dendrites or another eutectic island. The end of the eutectic island’s solidification terminates due to the encroachment of the eutectic liquid/solid interface at the dendrites or another eutectic island in [110] direction. The distribution of the alloying elements depended on the crystalline axis. The degree of the alloying elements’ segregation was lower along [100] than [110] direction with increasing distance from the eutectic island’s center. PMID:27877773

  5. Deciphering chemical order/disorder and material properties at the single-atom level.

    PubMed

    Yang, Yongsoo; Chen, Chien-Chun; Scott, M C; Ophus, Colin; Xu, Rui; Pryor, Alan; Wu, Li; Sun, Fan; Theis, Wolfgang; Zhou, Jihan; Eisenbach, Markus; Kent, Paul R C; Sabirianov, Renat F; Zeng, Hao; Ercius, Peter; Miao, Jianwei

    2017-02-01

    Perfect crystals are rare in nature. Real materials often contain crystal defects and chemical order/disorder such as grain boundaries, dislocations, interfaces, surface reconstructions and point defects. Such disruption in periodicity strongly affects material properties and functionality. Despite rapid development of quantitative material characterization methods, correlating three-dimensional (3D) atomic arrangements of chemical order/disorder and crystal defects with material properties remains a challenge. On a parallel front, quantum mechanics calculations such as density functional theory (DFT) have progressed from the modelling of ideal bulk systems to modelling 'real' materials with dopants, dislocations, grain boundaries and interfaces; but these calculations rely heavily on average atomic models extracted from crystallography. To improve the predictive power of first-principles calculations, there is a pressing need to use atomic coordinates of real systems beyond average crystallographic measurements. Here we determine the 3D coordinates of 6,569 iron and 16,627 platinum atoms in an iron-platinum nanoparticle, and correlate chemical order/disorder and crystal defects with material properties at the single-atom level. We identify rich structural variety with unprecedented 3D detail including atomic composition, grain boundaries, anti-phase boundaries, anti-site point defects and swap defects. We show that the experimentally measured coordinates and chemical species with 22 picometre precision can be used as direct input for DFT calculations of material properties such as atomic spin and orbital magnetic moments and local magnetocrystalline anisotropy. This work combines 3D atomic structure determination of crystal defects with DFT calculations, which is expected to advance our understanding of structure-property relationships at the fundamental level.

  6. Aerosol specification in single-column Community Atmosphere Model version 5

    DOE PAGES

    Lebassi-Habtezion, B.; Caldwell, P. M.

    2015-03-27

    Single-column model (SCM) capability is an important tool for general circulation model development. In this study, the SCM mode of version 5 of the Community Atmosphere Model (CAM5) is shown to handle aerosol initialization and advection improperly, resulting in aerosol, cloud-droplet, and ice crystal concentrations which are typically much lower than observed or simulated by CAM5 in global mode. This deficiency has a major impact on stratiform cloud simulations but has little impact on convective case studies because aerosol is currently not used by CAM5 convective schemes and convective cases are typically longer in duration (so initialization is less important).more » By imposing fixed aerosol or cloud-droplet and crystal number concentrations, the aerosol issues described above can be avoided. Sensitivity studies using these idealizations suggest that the Meyers et al. (1992) ice nucleation scheme prevents mixed-phase cloud from existing by producing too many ice crystals. Microphysics is shown to strongly deplete cloud water in stratiform cases, indicating problems with sequential splitting in CAM5 and the need for careful interpretation of output from sequentially split climate models. Droplet concentration in the general circulation model (GCM) version of CAM5 is also shown to be far too low (~ 25 cm −3) at the southern Great Plains (SGP) Atmospheric Radiation Measurement (ARM) site.« less

  7. Single Crystal Membranes

    NASA Technical Reports Server (NTRS)

    Stormont, R. W.; Morrison, A.

    1974-01-01

    Single crystal a- and c-axis tubes and ribbons of sodium beta-alumina and sodium magnesium beta-alumina were grown from sodium oxide rich melts. Additional experiments grew ribbon crystals containing sodium magnesium beta, beta double prime, beta triple prime, and beta quadruple prime. A high pressure crystal growth chamber, sodium oxide rich melts, and iridium for all surfaces in contact with the melt were combined with the edge-defined, film-fed growth technique to grow the single crystal beta-alumina tubes and ribbons. The crystals were characterized using metallographic and X-ray diffraction techniques, and wet chemical analysis was used to determine the sodium, magnesium, and aluminum content of the grown crystals.

  8. Continuum dislocation-density based models for the dynamic shock response of single-crystal and polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Luscher, Darby

    2017-06-01

    The dynamic thermomechanical responses of polycrystalline materials under shock loading are often dominated by the interaction of defects and interfaces. For example, polymer-bonded explosives (PBX) can initiate under weak shock impacts whose energy, if distributed homogeneously throughout the material, translates to temperature increases that are insufficient to drive the rapid chemistry observed. In such cases, heterogeneous thermomechanical interactions at the mesoscale (i.e. between single-crystal and macroscale) lead to the formation of localized hot spots. Within metals, a prescribed deformation associated with a shock wave may be accommodated by crystallographic slip, provided a sufficient population of mobile dislocations is available. However, if the deformation rate is large enough, there may be an insufficient number of freely mobile dislocations. In these cases, additional dislocations may be nucleated, or alternate mechanisms (e.g. twinning, damage) activated in order to accommodate the deformation. Direct numerical simulation at the mesoscale offers insight into these physical processes that can be invaluable to the development of macroscale constitutive theories, if the mesoscale models adequately represent the anisotropic nonlinear thermomechanical response of individual crystals and their interfaces. This talk will briefly outline a continuum mesoscale modeling framework founded upon local and nonlocal variations of dislocation-density based crystal plasticity theory. The nonlocal theory couples continuum dislocation transport with the local theory. In the latter, dislocation transport is modeled by enforcing dislocation conservation at a slip-system level through the solution of advection-diffusion equations. The configuration of geometrically necessary dislocation density gives rise to a back-stress that inhibits or accentuates the flow of dislocations. Development of the local theory and application to modeling the explosive molecular crystal RDX and polycrystalline PBX will be discussed. The talk will also emphasize recent implementation of the coupled nonlocal model into a 3D shock hydrocode and simulation results for the dynamic response of polycrystalline copper in two and three dimensions.

  9. Complex capacitance in the representation of modulus of the lithium niobate crystals

    NASA Astrophysics Data System (ADS)

    Alim, Mohammad A.; Batra, A. K.; Bhattacharjee, Sudip; Aggarwal, M. D.

    2011-03-01

    The lithium niobate (LiNbO 3 or LN) single crystal is grown in-house. The ac small-signal electrical characterization is conducted over a temperature range 35 ≤T≤150 °C as a function of measurement frequency (10 ≤f≤10 6 Hz). Meaningful observation is noted only in a narrow temperature range 59 ≤T≤73 °C. These electrical data when analyzed via complex plane formalisms revealed single semicircular relaxation both in the complex capacitance ( C*) and in the modulus ( M*) planes. The physical meaning of this kind of observation is obtained on identifying the relaxation type, and then incorporating respective equivalent circuit model. The simplistic non-blocking nature of the equivalent circuit model obtained via M*-plane is established as the lumped relaxation is identified in the C*-plane. The feature of the eventual equivalent circuit model allows non-blocking aspect for the LN crystal attributing to the presence of the operative dc conduction process. Identification of this leakage dc conduction via C*-plane is portrayed in the M*-plane where the blocking nature is removed. The interacting interpretation between these two complex planes is successfully presented.

  10. Study on structural, morphological, optical and thermal properties of guanidine carbonate doped nickel sulfate hexahydrate crystal.

    PubMed

    Silambarasan, A; Rajesh, P; Ramasamy, P

    2015-01-05

    The single crystal of guanidine carbonate doped nickel sulfate hexahydrate was grown from solution for ultraviolet filters. The single crystal XRD confirms that the grown single crystal belongs to the tetragonal system with the space group of P4₁2₁2. The crystallinity of the grown crystal was estimated by powder X-ray diffraction studies. The optical transmission and thermal stability of as-grown guanidine carbonate doped nickel sulfate single crystals have been studied. The optical transmission spectrum demonstrates the characteristics of ultraviolet filters. The TG/DTA studies confirm the thermal properties of grown crystals. Thermo-gravimetric analysis showed that the dehydration temperature of the guanidine carbonate doped nickel sulfate crystal is about 100 °C, which is much higher than that of pure nickel sulfate hexahydrate (NSH) crystals which is 72 °C. The growth behaviors and dislocation density were detected under the high resolution XRD and etching studies respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Room temperature aluminum antimonide radiation detector and methods thereof

    DOEpatents

    Lordi, Vincenzo; Wu, Kuang Jen J.; Aberg, Daniel; Erhart, Paul; Coombs, III, Arthur W; Sturm, Benjamin W

    2015-03-03

    In one embodiment, a method for producing a high-purity single crystal of aluminum antimonide (AlSb) includes providing a growing environment with which to grow a crystal, growing a single crystal of AlSb in the growing environment which comprises hydrogen (H.sub.2) gas to reduce oxide formation and subsequent incorporation of oxygen impurities in the crystal, and adding a controlled amount of at least one impurity to the growing environment to effectively incorporate at least one dopant into the crystal. In another embodiment, a high energy radiation detector includes a single high-purity crystal of AlSb, a supporting structure for the crystal, and logic for interpreting signals obtained from the crystal which is operable as a radiation detector at a temperature of about 25.degree. C. In one embodiment, a high-purity single crystal of AlSb includes AlSb and at least one dopant selected from a group consisting of selenium (Se), tellurium (Te), and tin (Sn).

  12. Crystal structures of carbonates up to Mbar pressures determined by single crystal synchrotron radiation diffraction

    NASA Astrophysics Data System (ADS)

    Merlini, M.

    2013-12-01

    The recent improvements at synchrotron beamlines, currently allow single crystal diffraction experiments at extreme pressures and temperatures [1,2] on very small single crystal domains. We successfully applied such technique to determine the crystal structure adopted by carbonates at mantle pressures. The knowledge of carbon-bearing phases is in fact fundamental for any quantitative modelling of global carbon cycle. The major technical difficulty arises after first order transitions or decomposition reactions, since original crystal (apx. 10x10x5 μm3) is transformed in much smaller crystalline domains often with random orientation. The use of 3D reciprocal space visualization software and the improved resolution of new generation flat panel detectors, however, allow both identification and integration of each single crystal domain, with suitable accuracy for ab-initio structure solution, performed with direct and charge-flipping methods and successive structure refinements. The results obtained on carbonates, indicate two major crystal-chemistry trends established at high pressures. The CO32- units, planar and parallel in ambient pressure calcite and dolomite structures, becomes non parallel in calcite- and dolomite-II and III phases, allowing more flexibility in the structures with possibility to accommodate strain arising from different cation sizes (Ca and Mg in particular). Dolomite-III is therefore also observed to be thermodynamically stable at lower mantle pressures and temperatures, differently from dolomite, which undergoes decomposition into pure end-members in upper mantle. At higher pressure, towards Mbar (lowermost mantle and D'' region) in agreement with theoretical calculations [3,4] and other experimental results [5], carbon coordination transform into 4-fold CO4 units, with different polymerisation in the structure depending on carbonate composition. The second important crystal chemistry feature detected is related to Fe2+ in Fe-bearing magnesite, which spontaneously oxidises at HP/HT, forming Fe3+ carbonates, Fe3+ oxides and reduced carbon (diamonds). Single crystal diffraction approach allowed full structure determination of these phases, yielding to the discovery of few unpredicted structures, such as Mg2Fe2C4O13 and Fe13O19, which can be well reproduced in different experiments. Mg2Fe2C4O13 carbonate present truncated chain C4O13 groups, and Fe13O19 oxide, whose stoichiometry is intermediate between magnetite and hematite, is a one-layer structure, with features encountered in superconducting materials. The results fully support the ideas of unexpected complexities in the mineralogy of the lowermost mantle, and single crystal technique, once properly optimized in ad-hoc synchrotron beamlines, is fundamental for extracting accurate structural information, otherwise rarely accessible with other experimental techniques. References: [1] Merlini M., Hanfland M. (2013). Single crystal diffraction at Mbar conditions by synchrotron radiation. High Pressure Research, in press. [2] Dubrovinsky et al., (2010). High Pressure Research, 30, 620-633. [3] Arapan et al. (1997). Phys. Rev. Lett., 98, 268501. [4] Oganov et al. (2008) EPSL, 273, 38-47. [5] Boulard et al. (2011) PNAS, 108, 5184-5187.

  13. Low Leakage Superconducting Tunnel Junctions with a Single Crystal Al2O3 Barrier

    DTIC Science & Technology

    2016-03-30

    have recently implemented Josephson junction superconducting devices into qubits [1-6]. Before a multi -qubit quantum computer is realized, however...Low-Leakage Superconducting Tunnel Junctions with a Single-Crystal Al2O3 Barrier* S Oh1,2, K Cicak1, R McDermott3, K B Cooper3, K D Osborn1, R W...growth scheme for single-crystal Al2O3 tunnel barriers. The barriers are epitaxially grown on single-crystal rhenium (Re) base electrodes that are

  14. Influence of the pump threshold on the single-frequency output power of singly resonant optical parametric oscillators

    NASA Astrophysics Data System (ADS)

    Sowade, R.; Breunig, I.; Kiessling, J.; Buse, K.

    2009-07-01

    We demonstrate that for a given pump source, there is an optimum pump threshold to achieve the maximum single-frequency output power in singly resonant optical parametric oscillators. Therefore, cavity losses and parametric amplification have to be adjusted. In particular, continuous-wave output powers of 1.5 W were achieved with a 2.5 cm lithium niobate crystal in comparison with 0.5 W by a 5 cm long crystal within the same cavity design. This counter-intuitive result of weaker amplification leading to larger powers can be explained using a model from L.B. Kreuzer (Proc. Joint Conf. Lasers and Opt.-Elect., p. 52, 1969). Kreuzer also states that single-mode operation is possible only up to pump powers which are 4.6 times the threshold value. Additionally, implementing an outcoupling mirror to increase losses, single-frequency waves with powers of 3 W at 3.2 µm and 7 W at 1.5 µm could be generated simultaneously.

  15. Growth Kinetics and Morphology of Barite Crystals Derived from Face-Specific Growth Rates

    DOE PAGES

    Godinho, Jose R. A.; Stack, Andrew G.

    2015-03-30

    Here we investigate the growth kinetics and morphology of barite (BaSO 4) crystals by measuring the growth rates of the (001), (210), (010), and (100) surfaces using vertical scanning interferometry. Solutions with saturation indices 1.1, 2.1, and 3.0 without additional electrolyte, in 0.7 M NaCl, or in 1.3 mM SrCl2 are investigated. Face-specific growth rates are inhibited in the SrCl 2 solution relative to a solution without electrolyte, except for (100). Contrarily, growth of all faces is promoted in the NaCl solution. The variation of face-specific rates is solution-specific, which leads to a. change of the crystal morphology and overallmore » growth rate of crystals. The measured face-specific growth rates are used to model the growth of single crystals. Modeled crystals have a morphology and size similar to those grown from solution. Based on the model the time dependence of surface area and growth rates is analyzed. Growth rates change with time due to surface area normalization for small crystals and large growth intervals. By extrapolating rates to crystals with large surfaces areas, time-independent growth rates are 0.783, 2.96, and 0.513 mmol∙m -2∙h -1, for saturation index 2.1 solutions without additional electrolyte, NaCl, and SrCl 2, respectively.« less

  16. Growth Kinetics and Morphology of Barite Crystals Derived from Face-Specific Growth Rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godinho, Jose R. A.; Stack, Andrew G.

    Here we investigate the growth kinetics and morphology of barite (BaSO 4) crystals by measuring the growth rates of the (001), (210), (010), and (100) surfaces using vertical scanning interferometry. Solutions with saturation indices 1.1, 2.1, and 3.0 without additional electrolyte, in 0.7 M NaCl, or in 1.3 mM SrCl2 are investigated. Face-specific growth rates are inhibited in the SrCl 2 solution relative to a solution without electrolyte, except for (100). Contrarily, growth of all faces is promoted in the NaCl solution. The variation of face-specific rates is solution-specific, which leads to a. change of the crystal morphology and overallmore » growth rate of crystals. The measured face-specific growth rates are used to model the growth of single crystals. Modeled crystals have a morphology and size similar to those grown from solution. Based on the model the time dependence of surface area and growth rates is analyzed. Growth rates change with time due to surface area normalization for small crystals and large growth intervals. By extrapolating rates to crystals with large surfaces areas, time-independent growth rates are 0.783, 2.96, and 0.513 mmol∙m -2∙h -1, for saturation index 2.1 solutions without additional electrolyte, NaCl, and SrCl 2, respectively.« less

  17. Single crystal EPR, optical absorption and superposition model study of Cr3+ doped ammonium dihydrogen phosphate.

    PubMed

    Kripal, Ram; Pandey, Sangita

    2010-06-01

    The electron paramagnetic resonance (EPR) studies are carried out on Cr(3+) ion doped ammonium dihydrogen phosphate (ADP) single crystals at room temperature. Four magnetically inequivalent sites for chromium are observed. No hyperfine structure is obtained. The crystal-field and spin Hamiltonian parameters are calculated from the resonance lines obtained at different angular rotations. The zero field and spin Hamiltonian parameters of Cr(3+) ion in ADP are calculated as: |D|=(257+/-2) x 10(-4) cm(-1), |E|=(79+/-2) x 10(-4) cm(-1), g=1.9724+/-0.0002 for site I; |D|=(257+/-2) x 10(-4) cm(-1), |E|=(77+/-2) x 10(-4) cm(-1), g=1.9727+/-0.0002 for site II; |D|=(259+/-2) x 10(-4) cm(-1), |E|=(78+/-2) x 10(-4) cm(-1), g=1.9733+/-0.0002 for site III; |D|=(259+/-2) x 10(-4) cm(-1), |E|=(77+/-2) x 10(-4) cm(-1), g=1.973+/-0.0002 for site IV, respectively. The site symmetry of Cr(3+) doped single crystal is discussed on the basis of EPR data. The Cr(3+) ion enters the lattice substitutionally replacing the NH(4)(+) sites. The optical absorption spectra are recorded in 195-925 nm wavelength range at room temperature. The energy values of different orbital levels are determined. On the basis of EPR and optical data, the nature of bonding in the crystal is discussed. The calculated values of Racah interelectronic repulsion parameters (B and C), cubic crystal-field splitting parameter (D(q)) and nephelauxetic parameters (h and k) are: B=640, C=3070, D(q)=2067 cm(-1), h=1.44 and k=0.21, respectively. ZFS parameters are also determined using B(kq) parameters from superposition model. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Hydrogen induced fracture characteristics of single crystal nickel-based superalloys

    NASA Technical Reports Server (NTRS)

    Chen, Po-Shou; Wilcox, Roy C.

    1990-01-01

    A stereoscopic method for use with x ray energy dispersive spectroscopy of rough surfaces was adapted and applied to the fracture surfaces single crystals of PWA 1480E to permit rapid orientation determinations of small cleavage planes. The method uses a mathematical treatment of stereo pair photomicrographs to measure the angle between the electron beam and the surface normal. One reference crystal orientation corresponding to the electron beam direction (crystal growth direction) is required to perform this trace analysis. The microstructure of PWA 1480E was characterized before fracture analysis was performed. The fracture behavior of single crystals of the PWA 1480E nickel-based superalloy was studied. The hydrogen-induced fracture behavior of single crystals of the PWA 1480E nickel-based superalloy was also studied. In order to understand the temperature dependence of hydrogen-induced embrittlement, notched single crystals with three different crystal growth orientations near zone axes (100), (110), and (111) were tensile tested at 871 C (1600 F) in both helium and hydrogen atmospheres at 34 MPa. Results and conclusions are given.

  19. Attenuation of thermal neutrons by an imperfect single crystal

    NASA Astrophysics Data System (ADS)

    Naguib, K.; Adib, M.

    1996-06-01

    A semi-empirical formula is given which allows one to calculate the total thermal cross section of an imperfect single crystal as a function of crystal constants, temperature and neutron energy E, in the energy range between 3 meV and 10 eV. The formula also includes the contribution of the parasitic Bragg scattering to the total cross section that takes into account the crystal mosaic spread value and its orientation with respect to the neutron beam direction. A computer program (ISCANF) was developed to calculate the total attenuation of neutrons using the proposed formula. The ISCANF program was applied to investigate the neutron attenuation through a copper single crystal. The calculated values of the neutron transmission through the imperfect copper single crystal were fitted to the measured ones in the energy range 3 - 40 meV at different crystal orientations. The result of fitting shows that use of the computer program ISCANF allows one to predict the behaviour of the total cross section of an imperfect copper single crystal for the whole energy range.

  20. Seeded growth of boron arsenide single crystals with high thermal conductivity

    NASA Astrophysics Data System (ADS)

    Tian, Fei; Song, Bai; Lv, Bing; Sun, Jingying; Huyan, Shuyuan; Wu, Qi; Mao, Jun; Ni, Yizhou; Ding, Zhiwei; Huberman, Samuel; Liu, Te-Huan; Chen, Gang; Chen, Shuo; Chu, Ching-Wu; Ren, Zhifeng

    2018-01-01

    Materials with high thermal conductivities are crucial to effectively cooling high-power-density electronic and optoelectronic devices. Recently, zinc-blende boron arsenide (BAs) has been predicted to have a very high thermal conductivity of over 2000 W m-1 K-1 at room temperature by first-principles calculations, rendering it a close competitor for diamond which holds the highest thermal conductivity among bulk materials. Experimental demonstration, however, has proved extremely challenging, especially in the preparation of large high quality single crystals. Although BAs crystals have been previously grown by chemical vapor transport (CVT), the growth process relies on spontaneous nucleation and results in small crystals with multiple grains and various defects. Here, we report a controllable CVT synthesis of large single BAs crystals (400-600 μm) by using carefully selected tiny BAs single crystals as seeds. We have obtained BAs single crystals with a thermal conductivity of 351 ± 21 W m-1 K-1 at room temperature, which is almost twice as conductive as previously reported BAs crystals. Further improvement along this direction is very likely.

  1. Mid-IR supercontinuum generation and applications: a review

    NASA Astrophysics Data System (ADS)

    Yin, Shizhuo; Ruffin, Paul; Brantley, Christina; Edwards, Eugene; Luo, Claire

    2014-09-01

    In this paper, a review on mid-IR supercontinuum generation (SCG) and its applications is presented. First, the physical mechanism of the supercontinuum generation in IR crystal fiber is introduced. Second, the recent progress on IR single crystal fiber, in particular ultrathin core double cladding IR single crystal fiber is described. Third, the transmission characteristics of mid-IR crystal fiber is illustrated. Fourth, the mid-IR supercontinuum generation in IR single crystal fiber is presented. Finally, the application of IR supercontinuum for smart target recognition is illustrated

  2. Size dependence of nanoscale wear of silicon carbide

    Treesearch

    Chaiyapat Tangpatjaroen; David Grierson; Steve Shannon; Joseph E. Jakes; Izabela Szlufarska

    2017-01-01

    Nanoscale, single-asperity wear of single-crystal silicon carbide (sc- SiC) and nanocrystalline silicon carbide (nc-SiC) is investigated using single-crystal diamond nanoindenter tips and nanocrystalline diamond atomic force microscopy (AFM) tips under dry conditions, and the wear behavior is compared to that of single-crystal silicon with both thin and thick native...

  3. Anisotropic Laminar Piezocomposite Actuator Incorporating Machined PMN-PT Single Crystal Fibers

    NASA Technical Reports Server (NTRS)

    Wilkie, W. Keats; Inman, Daniel J.; Lloyd, Justin M.; High, James W.

    2006-01-01

    The design, fabrication, and testing of a flexible, laminar, anisotropic piezoelectric composite actuator utilizing machined PMN-32%PT single crystal fibers is presented. The device consists of a layer of rectangular single crystal piezoelectric fibers in an epoxy matrix, packaged between interdigitated electrode polyimide films. Quasistatic free-strain measurements of the single crystal device are compared with measurements from geometrically identical specimens incorporating polycrystalline PZT-5A and PZT-5H piezoceramic fibers. Free-strain actuation of the single crystal actuator at low bipolar electric fields (+/- 250 V/mm) is approximately 400% greater than that of the baseline PZT-5A piezoceramic device, and 200% greater than that of the PZT-5H device. Free-strain actuation under high unipolar electric fields (0-4kV/mm) is approximately 200% of the PZT-5A baseline device, and 150% of the PZT-5H alternate piezoceramic device. Performance increases at low field are qualitatively consistent with predicted increases based on scaling the low-field d33 piezoelectric constants of the respective piezoelectric materials. High-field increases are much less than scaled d33 estimates, but appear consistent with high-field freestrain measurements reported for similar bulk single-crystal and piezoceramic compositions. Measurements of single crystal actuator capacitance and coupling coefficient are also provided. These properties were poorly predicted using scaled bulk material dielectric and coupling coefficient data. Rules-of-mixtures calculations of the effective elastic properties of the single crystal device and estimated actuation work energy densities are also presented. Results indicate longitudinal stiffnesses significantly lower (50% less) than either piezoceramic device. This suggests that single-crystal piezocomposite actuators will be best suited to low induced-stress, high strain and deflection applications.

  4. Anisotropic Piezocomposite Actuator Incorporating Machined PMN-PT Single Crystal Fibers

    NASA Technical Reports Server (NTRS)

    Wilkie, W. Keats; Inman, Daniel J.; Lloyd, Justin M.; High, James W.

    2004-01-01

    The design, fabrication, and testing of a flexible, planar, anisotropic piezoelectric composite actuator utilizing machined PMN-32%PT single crystal fibers is presented. The device consists of a layer of rectangular single crystal piezoelectric fibers in an epoxy matrix, packaged between interdigitated electrode polyimide films. Quasistatic free-strain measurements of the single crystal device are compared with measurements from geometrically identical specimens incorporating polycrystalline PZT-5A and PZT-5H piezoceramic fibers. Free-strain actuation of the single crystal actuator at low bipolar electric fields (+/- 250 V/mm) is approximately 400% greater than that of the baseline PZT-5A piezoceramic device, and 200% greater than that of the PZT-5H device. Free-strain actuation under high unipolar electric fields (0-4kV/mm) is approximately 200% of the PZT-5A baseline device, and 150% of the PZT-5H alternate piezoceramic device. Performance increases at low field are qualitatively consistent with predicted increases based on scaling the low-field d(sub 33) piezoelectric constants of the respective piezoelectric materials. High-field increases are much less than scaled d(sub 33) estimates, but appear consistent with high-field freestrain measurements reported for similar bulk single-crystal and piezoceramic compositions. Measurements of single crystal actuator capacitance and coupling coefficient are also provided. These properties were poorly predicted using scaled bulk material dielectric and coupling coefficient data. Rules-of-mixtures calculations of the effective elastic properties of the single crystal device and estimated actuation work energy densities are also presented. Results indicate longitudinal stiffnesses significantly lower (50% less) than either piezoceramic device. This suggests that single-crystal piezocomposite actuators will be best suited to low induced-stress, high strain and deflection applications.

  5. Three-Dimensional Conformation of Folded Polymers in Single Crystals

    NASA Astrophysics Data System (ADS)

    Hong, You-lee; Yuan, Shichen; Li, Zhen; Ke, Yutian; Nozaki, Koji; Miyoshi, Toshikazu

    2015-10-01

    The chain-folding mechanism and structure of semicrystalline polymers have long been controversial. Solid-state NMR was applied to determine the chain trajectory of 13C CH3 -labeled isotactic poly(1-butene) (i PB 1 ) in form III chiral single crystals blended with nonlabeled i PB 1 crystallized in dilute solutions under low supercooling. An advanced 13C - 13C double-quantum NMR technique probing the spatial proximity pattern of labeled 13C nuclei revealed that the chains adopt a three-dimensional (3D) conformation in single crystals. The determined results indicate a two-step crystallization process of (i) cluster formation via self-folding in the precrystallization stage and (ii) deposition of the nanoclusters as a building block at the growth front in single crystals.

  6. High-pressure floating-zone growth of perovskite nickelate LaNiO 3 single crystals

    DOE PAGES

    Zhang, Junjie; Zheng, Hong; Ren, Yang; ...

    2017-04-07

    We report the first single crystal growth of the correlated metal LaNiO 3 using a high-pressure optical-image floating zone furnace. The crystals were studied using single crystal/powder X-ray diffraction, resistivity, specific heat, and magnetic susceptibility. The availability of bulk LaNiO 3 crystals will (i) promote deep understanding in this correlated material, including the mechanism of enhanced paramagnetic susceptibility, and (ii) provide rich opportunities as a substrate for thin film growth such as important ferroelectric and/or multiferroic materials. As a result, this study demonstrates the power of high pO 2 single crystal growth of nickelate perovskites and correlated electron oxides moremore » generally.« less

  7. Solution-processed, Self-organized Organic Single Crystal Arrays with Controlled Crystal Orientation

    PubMed Central

    Kumatani, Akichika; Liu, Chuan; Li, Yun; Darmawan, Peter; Takimiya, Kazuo; Minari, Takeo; Tsukagoshi, Kazuhito

    2012-01-01

    A facile solution process for the fabrication of organic single crystal semiconductor devices which meets the demand for low-cost and large-area fabrication of high performance electronic devices is demonstrated. In this paper, we develop a bottom-up method which enables direct formation of organic semiconductor single crystals at selected locations with desired orientations. Here oriented growth of one-dimensional organic crystals is achieved by using self-assembly of organic molecules as the driving force to align these crystals in patterned regions. Based upon the self-organized organic single crystals, we fabricate organic field effect transistor arrays which exhibit an average field-effect mobility of 1.1 cm2V−1s−1. This method can be carried out under ambient atmosphere at room temperature, thus particularly promising for production of future plastic electronics. PMID:22563523

  8. Structural, mechanical, electrical and optical properties of a new lithium boro phthalate NLO crystal synthesized by a slow evaporation method

    NASA Astrophysics Data System (ADS)

    Mohanraj, K.; Balasubramanian, D.; Jhansi, N.

    2017-11-01

    A new non-linear optical (NLO) single crystal of lithium boro phthalate (LiBP) was grown by slow solvent evaporation technique. The powder sample was subjected to powder X-ray diffraction (PXRD) to find its crystalline nature and the crystal structure of the grown crystal was determined using single crystal X-ray (SXRD) diffraction analysis. The Fourier Transform Infrared (FTIR) spectrum was recorded for grown crystal to identify the various functional groups present in the compound. The mechanical property of the LiBP single crystal was studied using Vickers microhardness tester. The dielectric constant and dielectric loss measurements were carried out for the grown crystal at various temperatures. The grown crystal was subjected to UV-Visible Spectral Studies to analyze the linear optical behavior of the grown crystal. The Kurtz-Perry Powder technique was employed to measure the Second Harmonic Generation efficiency of the grown crystal.

  9. Synthesis, crystal structure, NLO and Hirshfeld surface analysis of 1,2,3-triazolyl chalcone single crystal

    NASA Astrophysics Data System (ADS)

    Shruthi, C.; Ravindrachary, V.; Guruswamy, B.; Lokanath, N. K.; Kumara, Karthik; Goveas, Janet

    2018-05-01

    Needle shaped brown coloured single crystal of the title compound was grown by slow evaporation technique using methanol as solvent. The grown crystal was characterized using FT-IR, Single crystal XRD, UV-visible and NLO studies. Crystal structure was confirmed by FT-IR study and the functional groups were identified. XRD study reveals that the crystal belongs to orthorhombic crystal system with pnaa space group and the corresponding cell parameters were calculated. UV-visible spectrum shows that the crystal is transparent in the entire visible region and absorption takes place in the UV-range. NLO efficiency of the crystal obtained 0.66 times that of urea was determined by SHG test. The intermolecular interaction and percentage contribution of each individual atom in the crystal lattice was quantized using Hirshfeld surface and 2D finger print analysis.

  10. Experimental and analytical parametric study of single-crystal unimorph beams for vibration energy harvesting.

    PubMed

    Karami, M Amin; Bilgen, Onur; Inman, Daniel J; Friswell, Michael I

    2011-07-01

    This research presents an experimental and theoretical energy harvesting characterization of beam-like, uniform cross-section, unimorph structures employing single-crystal piezoelectrics. Different piezoelectric materials, substrates, and configurations are examined to identify the best design configuration for lightweight energy harvesting devices for low-power applications. Three types of piezoelectrics (singlecrystal PMN-PZT, polycrystalline PZT-5A, and PZT-5H-type monolithic ceramics) are evaluated in a unimorph cantilevered beam configuration. The devices have been excited by harmonic base acceleration. All of the experimental characteristics have been used to validate an exact electromechanical model of the harvester. The study shows the optimum choice of substrate material for single-crystal piezoelectric energy harvesting. Comparison of energy scavengers with stainless steel substrates reveals that single-crystal harvesters produce superior power compared with polycrystalline devices. To further optimize the power harvesting, we study the relation between the thickness of the substrate and the power output for different substrate materials. The relation between power and substrate thickness profoundly varies among different substrate materials. The variation is understood by examining the change of mechanical transmissibility and the variations of the coupling figure of merit of the harvesters with thickness ratio. The investigation identifies the optimal thickness of the substrate for different substrate materials. The study also shows that the densities of the substrates and their mechanical damping coefficients have significant effects on the power output.

  11. Investigation on the growth and characterization of 4-aminobenzophenone single crystal by the vertical dynamic gradient freeze technique

    NASA Astrophysics Data System (ADS)

    Prabhakaran, SP.; Ramesh Babu, R.; Sukumar, M.; Bhagavannarayana, G.; Ramamurthi, K.

    2014-03-01

    Growth of bulk single crystal of 4-Aminobenzophenone (4-ABP) from the vertical dynamic gradient freeze (VDGF) setup designed with eight zone furnace was investigated. The experimental parameters for the growth of 4-ABP single crystal with respect to the design of VDGF setup are discussed. The eight zones were used to generate multiple temperature gradients over the furnace, and video imaging system helped to capture the real time growth and solid-liquid interface. 4-ABP single crystal with the size of 18 mm diameter and 40 mm length was grown from this investigation. Structural and optical quality of grown crystal was examined by high resolution X-ray diffraction and UV-visible spectral analysis, respectively and the blue emission was also confirmed from the photoluminescence spectrum. Microhardness number of the crystal was estimated at different loads using Vicker's microhardness tester. The size and quality of single crystal grown from the present investigation are compared with the vertical Bridgman grown 4-ABP.

  12. Growth and characterization of hexamethylenetetramine crystals grown from solution

    NASA Astrophysics Data System (ADS)

    Babu, B.; Chandrasekaran, J.; Balaprabhakaran, S.

    2014-06-01

    Organic nonlinear optical single crystals of hexamethylenetetramine (HMT; 10 × 10 × 5 mm3) were prepared by crystallization from methanol solution. The grown crystals were subjected to various characterization techniques such as single crystal XRD, powder XRD, UV-Vis and electrical studies. Single crystal XRD analysis confirmed the crystalline structure of the grown crystals. Their crystalline nature was also confirmed by powder XRD technique. The optical transmittance property was identified from UV-Vis spectrum. Dielectric measurements were performed as a function of frequency at different temperatures. DC conductivity and photoconductivity studies were also carried out for the crystal. The powder second harmonic generation efficiency (SHG) of the crystal was measured using Nd:YAG laser and the efficiency was found to be two times greater than that of potassium dihydrogen phosphate (KDP).

  13. Effect of surface site interactions on potentiometric titration of hematite (α-Fe2O3) crystal faces.

    PubMed

    Chatman, Shawn; Zarzycki, P; Preočanin, T; Rosso, K M

    2013-02-01

    Time dependent potentiometric pH titrations were used to study the effect of atomic scale surface structure on the protonation behavior of the structurally well-defined hematite/electrolyte interfaces. Our recently proposed thermodynamic model [1,25] was applied to measured acidimetric and alkalimetric titration hysteresis loops, collected from highly organized (001), (012), and (113) crystal face terminations using pH equilibration times ranging from 15 to 30 min. Hysteresis loop areas indicate that (001) faces equilibrate faster than the (012) and (113) faces, consistent with the different expected ensembles of singly-, doubly-, and triply-coordinated surface sites on each face. Strongly non-linear hysteretic pH-potential relationships were found, with slopes exceeding Nernstian, collectively indicating that protonation and deprotonation is much more complex than embodied in present day surface complexation models. The asymmetrical shape of the acidimetric and alkalimetric titration branches were used to illustrate a proposed steric "leaky screen" repulsion/trapping interaction mechanism that stems from high affinity singly-coordinated sites electrostatically and sterically screening lower affinity doubly- and triply-coordinated sites. Our data indicate that site interaction is the dominant phenomenon defining surface potential accumulation behavior on single crystal faces of metal oxide minerals. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Growth of propyl-p-hydroxybenzoate single crystals and its characterizations

    NASA Astrophysics Data System (ADS)

    Karunagaran, N.; Ramasamy, P.

    2012-06-01

    Single crystals of Propyl-p-hydroxybenzoate (PHB) crystals have been grown by slow evaporation solution technique (SEST) using methanol as a solvent. The PHB single crystal of dimension up to 27×16×8 mm3 has been grown in a period of 18 days at room temperature. The optical transparency of the grown PHB crystal has been measured on (212) plane by UV-Vis-NIR spectrophotometer. The crystal has 60% of transparency in the entire visible region. The thermo gravimetric analysis (TG) and differential thermal analysis (DTA) studies reveal that the crystal is thermally stable up to 99°C. The mechanical strength of the grown PHB crystal is measured using Vickers microhardness tester. The chemical etching studies were carried out on (212) plane using methanol etchant. The laser damage threshold of PHB crystal is 1.3 GW/cm2. The dielectric properties have been investigated. The birefringence value is found to be 0.10148 at the wavelength of 504 nm. The refractive index of grown PHB single crystal is 1.6753.

  15. Thermal, mechanical, optical and conductivity studies of a novel NLO active L-phenylalanine L-phenylalaninium dihydrogenphosphate single crystal

    NASA Astrophysics Data System (ADS)

    Sujatha, T.; Cyrac Peter, A.; Vimalan, M.; Merline Shyla, J.; Madhavan, J.

    2010-08-01

    An efficient, novel, semi-organic, nonlinear optical (NLO) material L-phenylalanine L-phenylalaninium dihydrogenphosphate (LPADHP), single crystal of dimension 11×5×2 mm 3, has been grown by the slow evaporation solution growth technique. Single crystal X-ray diffraction studies confirm that the grown crystal belongs to monoclinic system with the space group P2 1. The functional groups present in the crystal were confirmed by the Fourier transform infrared technique. Optical absorption spectrum shows that the material possesses very low absorption in the entire visible region. Thermal analysis confirmed that the crystal is thermally stable up to 161 °C. The frequency dependent dielectric properties of the grown crystal were studied for various temperatures. The second harmonic generation (SHG) efficiency of the grown crystal is 1.2 times greater than that of the potassium dihydrogenphosphate (KDP) single crystal. The laser induced surface damage threshold for the grown crystal was found to be 6.3 GW cm -2 with Nd:YAG laser assembly AC and DC conductivity and photoconductivity experiments are also carried out and the results are discussed.

  16. A STUDY OF DISLOCATION STRUCTURE OF SUBBOUNDARIES IN MOLYBDENUM SINGLE CRYSTALS,

    DTIC Science & Technology

    MOLYBDENUM, *DISLOCATIONS), GRAIN STRUCTURES(METALLURGY), SINGLE CRYSTALS, ZONE MELTING, ELECTRON BEAM MELTING, GRAIN BOUNDARIES, MATHEMATICAL ANALYSIS, ETCHED CRYSTALS, ETCHING, ELECTROEROSIVE MACHINING, CHINA

  17. Growth of single crystals from solutions using semi-permeable membranes

    NASA Astrophysics Data System (ADS)

    Varkey, A. J.; Okeke, C. E.

    1983-05-01

    A technique suitable for growth of single crystals from solutions using semi-preamble membranes is described. Using this technique single crystals of copper sulphate, potassium bromide and ammonium dihydrogen phosphate have been successfully grown. Advantages of this technique over other methods are discussed.

  18. Crystal growth and characterization of semi organic nonlinear optical (NLO) piperazinium tetrachlorozincate monohydrate (PTCZ) single crystal

    NASA Astrophysics Data System (ADS)

    Karuppasamy, P.; Pandian, Muthu Senthil; Ramasamy, P.

    2018-04-01

    The semi-organic single crystal of piperazinium tetrachlorozincate monohydrate (PTCZ) was successfully grown by slow evaporation solution technique (SEST). The grown crystal was subjected to the single crystal XRD studies for confirming the unit cell parameters. The optical quality of the grown crystal was identified by the UV-Vis NIR spectrum analysis and the optical band gap energy was calculated. The photoconductivity study reveals that the grown crystal has positive photoconductive nature. The mechanical stability of the grown crystal was analyzed using Vickers microhardness analyzer. The third-order nonlinear optical properties such as nonlinear refractive index (n2), absorption co-efficient (β) and susceptibility (χ(3)) were studied by Z-scan technique at 640 nm using solid state laser.

  19. Predictive modeling of crystal accumulation in high-level waste glass melters processing radioactive waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyáš, Josef; Gervasio, Vivianaluxa; Sannoh, Sulaiman E.

    The effectiveness of HLW vitrification is limited by precipitation/accumulation of spinel crystals [(Fe, Ni, Mn, Zn)(Fe, Cr)2O4] in the glass discharge riser of Joule-heated ceramic melters during idling. These crystals do not affect glass durability; however, if accumulated in thick layer, they can clog the melter and prevent discharge of molten glass into canisters. To address this problem, an empirical model was developed that can predict thicknesses of accumulated layers as a function of glass composition. This model predicts well the accumulation of single crystals and/or small-scale agglomerates, but, excessive agglomeration observed in high-Ni-Fe glass resulted in an under-prediction ofmore » accumulated layers, which gradually worsen over time as an increased number of agglomerates formed. Accumulation rate of ~53.8 ± 3.7 µm/h determined for this glass will result in ~26 mm thick layer in 20 days of melter idling.« less

  20. Predictive modeling of crystal accumulation in high-level waste glass melters processing radioactive waste

    NASA Astrophysics Data System (ADS)

    Matyáš, Josef; Gervasio, Vivianaluxa; Sannoh, Sulaiman E.; Kruger, Albert A.

    2017-11-01

    The effectiveness of high-level waste vitrification at Hanford's Waste Treatment and Immobilization Plant may be limited by precipitation/accumulation of spinel crystals [(Fe, Ni, Mn, Zn)(Fe, Cr)2O4] in the glass discharge riser of Joule-heated ceramic melters during idling. These crystals do not affect glass durability; however, if accumulated in thick layers, they can clog the melter and prevent discharge of molten glass into canisters. To address this problem, an empirical model was developed that can predict thicknesses of accumulated layers as a function of glass composition. This model predicts well the accumulation of single crystals and/or small-scale agglomerates, but excessive agglomeration observed in high-Ni-Fe glass resulted in an underprediction of accumulated layers, which gradually worsened over time as an increased number of agglomerates formed. The accumulation rate of ∼53.8 ± 3.7 μm/h determined for this glass will result in a ∼26 mm-thick layer after 20 days of melter idling.

  1. Variation of yield loci in finite element analysis by considering texture evolution for AA5042 aluminum sheets

    NASA Astrophysics Data System (ADS)

    Yoon, Jonghun; Kim, Kyungjin; Yoon, Jeong Whan

    2013-12-01

    Yield function has various material parameters that describe how materials respond plastically in given conditions. However, a significant number of mechanical tests are required to identify the many material parameters for yield function. In this study, an effective method using crystal plasticity through a virtual experiment is introduced to develop the anisotropic yield function for AA5042. The crystal plasticity approach was used to predict the anisotropic response of the material in order to consider a number of stress or strain modes that would not otherwise be evident through mechanical testing. A rate-independent crystal plasticity model based on a smooth single crystal yield surface, which removes the innate ambiguity problem within the rate-independent model and Taylor model for polycrystalline deformation behavior were employed to predict the material's response in the balanced biaxial stress, pure shear, and plane strain states to identify the parameters for the anisotropic yield function of AA5042.

  2. Effects of Ca/Sr ratio control on optical and scintillation properties of Eu-doped Li(Ca,Sr)AlF6 single crystals

    NASA Astrophysics Data System (ADS)

    Yokota, Yuui; Tanaka, Chieko; Kurosawa, Shunsuke; Yamaji, Akihiro; Ohashi, Yuji; Kamada, Kei; Nikl, Martin; Yoshikawa, Akira

    2018-05-01

    Eu-doped Li(Ca,Sr)AlF6 [Eu:LiCSAF] single crystals with various Ca/Sr ratios were grown by the micro-pulling-down method, and their optical and scintillation properties were investigated to reveal the effects of Ca/Sr ratio on optical and scintillation properties of the Eu:LiCSAF single crystals. The Li(Ca1-x-ySrxEuy)AlF6 single crystals could be grown in 0 ≤ x ≤ 0.1, 0.5 ≤ x ≤ 1.0 and y = 0.02 while the Eu:LiCSAF crystals with x = 0.2, 0.25 and 0.4 included two colquiriite-type phases with different lattice parameters. The Li(Ca1-x-ySrxEuy)AlF6 single crystal with x = 0.25 and y = 0.02 showed the highest light yield under neutron irradiation.

  3. Room-temperature annealing effects on the basal-plane resistivity of optimally doped YBa2Cu3O7-δ single crystals

    NASA Astrophysics Data System (ADS)

    Khadzhai, G. Ya.; Vovk, R. V.; Vovk, N. R.; Kamchatnaya, S. N.; Dobrovolskiy, O. V.

    2018-02-01

    We reveal that the temperature dependence of the basal-plane normal-state electrical resistance of optimally doped YBa2Cu3O7-δ single crystals can be with great accuracy approximated within the framework of the model of s-d electron-phonon scattering. This requires taking into account the fluctuation conductivity whose contribution exponentially increases with decreasing temperature and decreases with an increase of oxygen deficiency. Room-temperature annealing improves the sample and, thus, increases the superconducting transition temperature. The temperature of the 2D-3D crossover decreases during annealing.

  4. Large tensile superelasticity from intermartensitic transformations in Ni49Mn28Ga23 single crystal

    NASA Astrophysics Data System (ADS)

    Chernenko, V. A.; Villa, E.; Salazar, D.; Barandiaran, J. M.

    2016-02-01

    A multistep superelastic behavior, with up to a 12% strain, is reported in a <001>P-oriented Ni49Mn28Ga23 single crystal. The observed behavior is produced by intermartensitic transformations during the tensile stress-strain measurements at temperatures between -140 °C and +60 °C. The tensile stress-temperature phase diagram and the stress dependence of the intermartensitic transformation entropies have been obtained. These results provide important input for theoretical modeling of the phase transformations in these alloys and show promising mechanical properties of the classical Ni-Mn-Ga ferromagnetic shape memory alloys.

  5. Highly reproducible alkali metal doping system for organic crystals through enhanced diffusion of alkali metal by secondary thermal activation.

    PubMed

    Lee, Jinho; Park, Chibeom; Song, Intek; Koo, Jin Young; Yoon, Taekyung; Kim, Jun Sung; Choi, Hee Cheul

    2018-05-16

    In this paper, we report an efficient alkali metal doping system for organic single crystals. Our system employs an enhanced diffusion method for the introduction of alkali metal into organic single crystals by controlling the sample temperature to induce secondary thermal activation. Using this system, we achieved intercalation of potassium into picene single crystals with closed packed crystal structures. Using optical microscopy and Raman spectroscopy, we confirmed that the resulting samples were uniformly doped and became K 2 picene single crystal, while only parts of the crystal are doped and transformed into K 2 picene without secondary thermal activation. Moreover, using a customized electrical measurement system, the insulator-to-semiconductor transition of picene single crystals upon doping was confirmed by in situ electrical conductivity and ex situ temperature-dependent resistivity measurements. X-ray diffraction studies showed that potassium atoms were intercalated between molecular layers of picene, and doped samples did not show any KH- nor KOH-related peaks, indicating that picene molecules are retained without structural decomposition. During recent decades, tremendous efforts have been exerted to develop high-performance organic semiconductors and superconductors, whereas as little attention has been devoted to doped organic crystals. Our method will enable efficient alkali metal doping of organic crystals and will be a resource for future systematic studies on the electrical property changes of these organic crystals upon doping.

  6. A Hierarchical Modeling Study of the Interactions Among Turbulence, Cloud Microphysics, and Radiative Transfer in the Evolution of Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Curry, Judith; Khvorostyanov, V. I.

    2005-01-01

    This project used a hierarchy of cloud resolving models to address the following science issues of relevance to CRYSTAL-FACE: What ice crystal nucleation mechanisms are active in the different types of cirrus clouds in the Florida area and how do these different nucleation processes influence the evolution of the cloud system and the upper tropospheric humidity? How does the feedback between supersaturation and nucleation impact the evolution of the cloud? What is the relative importance of the large-scale vertical motion and the turbulent motions in the evolution of the crystal size spectra? How does the size spectra impact the life-cycle of the cloud, stratospheric dehydration, and cloud radiative forcing? What is the nature of the turbulence and waves in the upper troposphere generated by precipitating deep convective cloud systems? How do cirrus microphysical and optical properties vary with the small-scale dynamics? How do turbulence and waves in the upper troposphere influence the cross-tropopause mixing and stratospheric and upper tropospheric humidity? The models used in this study were: 2-D hydrostatic model with explicit microphysics that can account for 30 size bins for both the droplet and crystal size spectra. Notably, a new ice crystal nucleation scheme has been incorporated into the model. Parcel model with explicit microphysics, for developing and evaluating microphysical parameterizations. Single column model for testing bulk microphysics parameterizations

  7. Fe-Al alloy single-crystal thin film preparation for basic magnetic measurements

    NASA Astrophysics Data System (ADS)

    Abe, Tatsuya; Kawai, Tetsuroh; Futamoto, Masaaki; Ohtake, Mitsuru; Inaba, Nobuyuki

    2018-04-01

    Fe100-xAlx (x = 0, 4, 10, 20, 30 at. %) alloy films of 40 nm thickness are prepared on MgO(001) single-crystal substrates by varying substrate temperature from room temperature to 600 °C. Single-crystal films of (001) orientation with bcc-based disordered A2 structure are obtained for the Al content range of x = 0 - 20 at. %. An ordered phase of DO3 structure is observed in Fe70Al30 films prepared at temperatures higher than 200 °C, whereas (001) oriented single-crystal films of A2 structure are obtained when prepared at room temperature. The film surface profile does not depend much on the film composition, while the surface roughness increases with increasing substrate temperature. Island-like crystals are observed for films prepared at 600°C for all compositions. Difference in lattice spacing measured parallel and perpendicular to the substrate is noted for the single-crystal thin films and it increases with increasing Al content. The lattice strain in single-crystal film is caused possibly to accommodate the lattice mismatch with the MgO substrate. The (001)-oriented single-crystal films with A2 structure show four-fold symmetries in in-plane magnetic anisotropy with the easy magnetization axis A2[100] and the hard magnetization axis A2[110], whereas the films with DO3 ordered structure show almost isotropic magnetic properties.

  8. Simulation of Gravity Effects on Bulk Crystal Growth with Effects on undercooling

    NASA Astrophysics Data System (ADS)

    Chuang, S.-H.; Lu, M.-F.

    For the production of a perfect single crystal by Bridgman, it is important to acquire the correct information about the heat transfer mechanism and to control the heat transfer in the Bridgman furnace. Because the quality of the crystal is closely related to its thermal history and the transport phenomena in the furnace. Ma et al. (2004) presented that faceting simulation of bulk crystal growth with undercooling method. Lan et al. (2003) developed a new model to study heat flow and facet formation in Bridgman growth with the undercooling satisfied the given growth mechanism. Considering the gravity effects added kinetic undercooling is thus developed. Heat conduction, convection and radiation are considered and coupled with the two-dimensional transient undercooling simulation. The solidification interface temperature is related to the undercooling along the interface and the melting temperature. In this investigation, we are going to apply the developed model to simulate interface in vertical Bridgman crystal growth process for yttrium aluminum garnet subjected to the normal gravity to microgravity. Also, it discusses the effect upon the shape and the propagation of the solidification crystal front.

  9. Temperature dependence of single-crystal elastic constants of flux-grown alpha-GaPO(4).

    PubMed

    Armand, P; Beaurain, M; Rufflé, B; Menaert, B; Papet, P

    2009-06-01

    The lattice parameter change with respect to temperature (T) has been measured using high-temperature powder X-ray diffraction techniques for high-temperature flux-grown GaPO(4) single crystals with the alpha-quartz structure. The lattice and the volume linear thermal expansion coefficients in the temperature range 303-1173 K were computed from the X-ray data. The percentage linear thermal expansions along the a and c axes at 1173 K are 1.5 and 0.51, respectively. The temperature dependence of the mass density rho of flux-grown GaPO(4) single crystals was evaluated using the volume thermal expansion coefficient alpha(V)(T) = 3.291 x 10(-5) - 2.786 x 10(-8) [T] + 4.598 x 10(-11)[T](2). Single-crystal high-resolution Brillouin spectroscopy measurements have been carried out at ambient pressure from 303 to 1123 K to determine the elastic constants C(IJ) of high-temperature flux-grown GaPO(4) material. The single-crystal elastic moduli were calculated using the sound velocities via the measured Brillouin frequency shifts Deltanu(B). These are, to our knowledge, the highest temperatures at which single-crystal elastic constants of alpha-GaPO(4) have been measured. Most of the room-temperature elastic constant values measured on flux-grown GaPO(4) material are higher than the ones found for hydrothermally grown GaPO(4) single crystals. The fourth-order temperature coefficients of both the Brillouin frequency shifts T(nuB)((n)) and the single-crystal elastic moduli T(C(IJ))((n)) were obtained. The first-order temperature coefficients of the C(IJ) are in excellent agreement with previous reports on low-temperature hydrothermally grown alpha-GaPO(4) single crystals, while small discrepancies in the higher-order temperature coefficients are observed. This is explained in terms of the OH content in the GaPO(4) network, which is an important parameter in the crystal thermal behavior.

  10. Structure and Growth Control of Organic–Inorganic Halide Perovskites for Optoelectronics: From Polycrystalline Films to Single Crystals

    PubMed Central

    Chen, Yani; He, Minhong; Peng, Jiajun; Sun, Yong

    2016-01-01

    Recently, organic–inorganic halide perovskites have sparked tremendous research interest because of their ground‐breaking photovoltaic performance. The crystallization process and crystal shape of perovskites have striking impacts on their optoelectronic properties. Polycrystalline films and single crystals are two main forms of perovskites. Currently, perovskite thin films have been under intensive investigation while studies of perovskite single crystals are just in their infancy. This review article is concentrated upon the control of perovskite structures and growth, which are intimately correlated for improvements of not only solar cells but also light‐emitting diodes, lasers, and photodetectors. We begin with the survey of the film formation process of perovskites including deposition methods and morphological optimization avenues. Strategies such as the use of additives, thermal annealing, solvent annealing, atmospheric control, and solvent engineering have been successfully employed to yield high‐quality perovskite films. Next, we turn to summarize the shape evolution of perovskites single crystals from three‐dimensional large sized single crystals, two‐dimensional nanoplates, one‐dimensional nanowires, to zero‐dimensional quantum dots. Siginificant functions of perovskites single crystals are highlighted, which benefit fundamental studies of intrinsic photophysics. Then, the growth mechanisms of the previously mentioned perovskite crystals are unveiled. Lastly, perspectives for structure and growth control of perovskites are outlined towards high‐performance (opto)electronic devices. PMID:27812463

  11. A Quick Method for Determining the Density of Single Crystals.

    ERIC Educational Resources Information Center

    Roman, Pascual; Gutierrez-Zorrilla, Juan M.

    1985-01-01

    Shows how the Archimedes method is used to determine the density of a single crystal of ammonium oxalate monohydrate. Also shows how to calculate the density of other chemicals when they are available as single crystals. Experimental procedures and materials needed are included. (JN)

  12. Analysis of Shock Compression of Strong Single Crystals With Logarithmic Thermoelastic-Plastic Theory

    DTIC Science & Technology

    2014-05-01

    Royal Society of London Series A, 465, 307–334. Clayton, J. (2010a). Modeling nonlinear electromechanical behavior of shocked silicon carbide . Journal...and fourth-order longitudinal elastic constants by shock compression techniques–application to sapphire and fused quartz. Journal of the Acoustical...Vogler, T., & Clayton, J. (2008). Heterogeneous deformation and spall of an extruded tungsten alloy: Plate impact experiments and crystal plasticity

  13. Crystal growth, structural, optical, mechanical and thermal properties of a new nonlinear optical single crystal: L-Ornithine monohydrochloride.

    PubMed

    Balakrishnan, T; Ramamurthi, K

    2009-03-01

    Amino acid family crystals exhibit excellent nonlinear optical and electro optical properties. l-Ornithine monohydrochloride single crystal, belongs to the amino acid group, was grown by the slow evaporation solution growth technique at room temperature. The grown crystals were characterized by single crystal and powder X-ray diffraction analysis, Fourier transform infrared (FTIR) spectroscopy, TGA, DTA and DSC analyses. UV-vis-NIR spectrum shows excellent transmission in the UV, visible and NIR region (300-1600nm). The mechanical properties of grown crystals were studied using Vickers microhardness tester. Its second harmonic generation efficiency was tested using Nd:YAG laser and is 1.25 times that of KDP.

  14. Feasibility of one-shot-per-crystal structure determination using Laue diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornaby, Sterling; CHESS; Szebenyi, Doletha M. E.

    Structure determination was successfully carried out using single Laue exposures from a group of lysozyme crystals. The Laue method may be a viable option for collection of one-shot-per-crystal data from microcrystals. Crystal size is an important factor in determining the number of diffraction patterns which may be obtained from a protein crystal before severe radiation damage sets in. As crystal dimensions decrease this number is reduced, eventually falling to one, at which point a complete data set must be assembled using data from multiple crystals. When only a single exposure is to be collected from each crystal, the polychromatic Lauemore » technique may be preferable to monochromatic methods owing to its simultaneous recording of a large number of fully recorded reflections per image. To assess the feasibility of solving structures using single Laue images from multiple crystals, data were collected using a ‘pink’ beam at the CHESS D1 station from groups of lysozyme crystals with dimensions of the order of 20–30 µm mounted on MicroMesh grids. Single-shot Laue data were used for structure determination by molecular replacement and correct solutions were obtained even when as few as five crystals were used.« less

  15. A hierarchical dislocation-grain boundary interaction model based on 3D discrete dislocation dynamics and molecular dynamics

    NASA Astrophysics Data System (ADS)

    Gao, Yuan; Zhuang, Zhuo; You, XiaoChuan

    2011-04-01

    We develop a new hierarchical dislocation-grain boundary (GB) interaction model to predict the mechanical behavior of polycrystalline metals at micro and submicro scales by coupling 3D Discrete Dislocation Dynamics (DDD) simulation with the Molecular Dynamics (MD) simulation. At the microscales, the DDD simulations are responsible for capturing the evolution of dislocation structures; at the nanoscales, the MD simulations are responsible for obtaining the GB energy and ISF energy which are then transferred hierarchically to the DDD level. In the present model, four kinds of dislocation-GB interactions, i.e. transmission, absorption, re-emission and reflection, are all considered. By this methodology, the compression of a Cu micro-sized bi-crystal pillar is studied. We investigate the characteristic mechanical behavior of the bi-crystal compared with that of the single-crystal. Moreover, the comparison between the present penetrable model of GB and the conventional impenetrable model also shows the accuracy and efficiency of the present model.

  16. Magnetic and Structural Characterization of Fe-Ga Using Kerr Microscopy and Neutron Scattering

    DTIC Science & Technology

    2010-01-01

    117 4.6 Schematic of triple axes single crystal neutron diffractometer (left). TriCS intrument at Paul Scherrer Institut, Switzerland (right...Therefore, USANS data is one-dimensional. 4.3.3 Single Crystal Neutron Diffraction The single crystal neutron diffractometer, TriCS at Paul Scherrer...crystal neutron diffractometer (left). TriCS intrument at Paul Scherrer Institut, Switzerland (right) [106] 4.4 Unpolarized SANS In this section, SANS

  17. Fully gapped superconductivity in single crystals of noncentrosymmetric Re6Zr with broken time-reversal symmetry

    NASA Astrophysics Data System (ADS)

    Pang, G. M.; Nie, Z. Y.; Wang, A.; Singh, D.; Xie, W.; Jiang, W. B.; Chen, Y.; Singh, R. P.; Smidman, M.; Yuan, H. Q.

    2018-06-01

    The noncentrosymmetric superconductor Re6Zr has attracted much interest due to the observation of broken time-reversal symmetry in the superconducting state. Here we report an investigation of the superconducting gap structure of Re6Zr single crystals by measuring the magnetic penetration depth shift Δ λ (T ) and electronic specific heat Ce(T ) . Δ λ (T ) exhibits an exponential temperature dependence behavior for T ≪Tc , which indicates a fully open superconducting gap. Our analysis shows that a single gap s -wave model is sufficient to describe both the superfluid density ρs(T ) and Ce(T ) results, with a fitted gap magnitude larger than the weak coupling BCS value, providing evidence for fully gapped superconductivity in Re6Zr with moderate coupling.

  18. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization

    NASA Astrophysics Data System (ADS)

    Saidaminov, Makhsud I.; Abdelhady, Ahmed L.; Murali, Banavoth; Alarousu, Erkki; Burlakov, Victor M.; Peng, Wei; Dursun, Ibrahim; Wang, Lingfei; He, Yao; Maculan, Giacomo; Goriely, Alain; Wu, Tom; Mohammed, Omar F.; Bakr, Osman M.

    2015-07-01

    Single crystals of methylammonium lead trihalide perovskites (MAPbX3; MA=CH3NH3+, X=Br- or I-) have shown remarkably low trap density and charge transport properties; however, growth of such high-quality semiconductors is a time-consuming process. Here we present a rapid crystal growth process to obtain MAPbX3 single crystals, an order of magnitude faster than previous reports. The process is based on our observation of the substantial decrease of MAPbX3 solubility, in certain solvents, at elevated temperatures. The crystals can be both size- and shape-controlled by manipulating the different crystallization parameters. Despite the rapidity of the method, the grown crystals exhibit transport properties and trap densities comparable to the highest quality MAPbX3 reported to date. The phenomenon of inverse or retrograde solubility and its correlated inverse temperature crystallization strategy present a major step forward for advancing the field on perovskite crystallization.

  19. The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water

    NASA Astrophysics Data System (ADS)

    Limmer, David T.; Chandler, David

    2011-10-01

    We use numerical simulation to examine the possibility of a reversible liquid-liquid transition in supercooled water and related systems. In particular, for two atomistic models of water, we have computed free energies as functions of multiple order parameters, where one is density and another distinguishes crystal from liquid. For a range of temperatures and pressures, separate free energy basins for liquid and crystal are found, conditions of phase coexistence between these phases are demonstrated, and time scales for equilibration are determined. We find that at no range of temperatures and pressures is there more than a single liquid basin, even at conditions where amorphous behavior is unstable with respect to the crystal. We find a similar result for a related model of silicon. This result excludes the possibility of the proposed liquid-liquid critical point for the models we have studied. Further, we argue that behaviors others have attributed to a liquid-liquid transition in water and related systems are in fact reflections of transitions between liquid and crystal.

  20. Optical characteristics of Tl0.995Cu0.005InS2 single crystals

    NASA Astrophysics Data System (ADS)

    El-Nahass, M. M.; Ali, H. A. M.; Abu-Samaha, F. S. H.

    2013-04-01

    Optical properties of Tl0.995Cu0.005InS2 single crystals were studied using transmittance and reflectance measurements in the spectral wavelength range of 300-2500 nm. The optical constants (n and k) were calculated at room temperature. The analysis of the spectral behavior of the absorption coefficient in the absorption region revealed indirect transition. The refractive index dispersion data were analyzed in terms of the single oscillator model. Dispersion parameters such as the single oscillator energy (Eo), the dispersion energy (Ed), the high frequency dielectric constant (ε∞), the lattice dielectric constant (εL) and the ratio of free charge carrier concentration to the effective mass (N/m*) were estimated. The third order nonlinear susceptibility (χ(3)) was calculated according to the generalized Miller's rule. Also, the real and imaginary parts of the complex dielectric constant were determined.

  1. Solid state parameters, structure elucidation, High Resolution X-Ray Diffraction (HRXRD), phase matching, thermal and impedance analysis on L-Proline trichloroacetate (L-PTCA) NLO single crystals.

    PubMed

    Kalaiselvi, P; Raj, S Alfred Cecil; Jagannathan, K; Vijayan, N; Bhagavannarayana, G; Kalainathan, S

    2014-11-11

    Nonlinear optical single crystal of L-Proline trichloroacetate (L-PTCA) was successfully grown by Slow Evaporation Solution Technique (SEST). The grown crystals were subjected to single crystal X-ray diffraction analysis to confirm the structure. From the single crystal XRD data, solid state parameters were determined for the grown crystal. The crystalline perfection has been evaluated using high resolution X-ray diffractometer. The frequencies of various functional groups were identified from FTIR spectral analysis. The percentage of transmittance was obtained from UV Visible spectral analysis. TGA-DSC measurements indicate the thermal stability of the crystal. The dielectric constant, dielectric loss and ac conductivity were measured by the impedance analyzer. The DC conductivity was calculated by the cole-cole plot method. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Influence of Al content on non-equilibrium solidification behavior of Ni-Al-Ta model single crystal alloys

    NASA Astrophysics Data System (ADS)

    Ai, Cheng; Zhou, Jian; Zhang, Heng; Zhao, Xinbao; Pei, Yanling; Li, Shusuo; Gong, Shengkai

    2016-01-01

    The non-equilibrium solidification behaviors of five Ni-Al-Ta ternary model single crystal alloys with different Al contents were investigated by experimental analysis and theoretical calculation (by JMatPro) in this study. These model alloys respectively represented the γ' phase with various volume fractions (100%, 75%, 50%, 25% and 0%) at 900 °C. It was found that with decreasing Al content, liquidus temperature of experimental alloys first decreased and then increased. Meanwhile, the solidification range showed a continued downward trend. In addition, with decreasing Al content, the primary phases of non-equilibrium solidified model alloys gradually transformed from γ' phase to γ phase, and the area fraction of which first decreased and then increased. Moreover, the interdendritic/intercellular precipitation of model alloys changed from β phase (for 100% γ') to (γ+γ')Eutectic (for 75% γ'), (γ+γ')Eutectic+γ' (for 50% γ' and 25% γ') and none interdendritic precipitation (for 0% γ'), and the last stage non-equilibrium solidification sequence of model alloys was determined by the nominal Al content and different microsegregation behaviors of Al element.

  3. AN INVESTIGATION INTO THE MECHANICS OF SINGLE CRYSTAL TURBINE BLADES WITH A VIEW TOWARDS ENHANCING GAS TURBINE EFFICIENCY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K.R. Rajagopal; I.J. Rao

    The demand for increased efficiency of gas turbines used in power generation and aircraft applications has fueled research into advanced materials for gas turbine blades that can withstand higher temperatures in that they have excellent resistance to creep. The term ''Superalloys'' describes a group of alloys developed for applications that require high performance at elevated temperatures. Superalloys have a load bearing capacity up to 0.9 times their melting temperature. The objective of the investigation was to develop a thermodynamic model that can be used to describe the response of single crystal superalloys that takes into account the microstructure of themore » alloy within the context of a continuum model. Having developed the model, its efficacy was to be tested by corroborating the predictions of the model with available experimental data. Such a model was developed and it is implemented in the finite element software ABAQUS/STANDARD through a user subroutine (UMAT) so that the model can be used in realistic geometries that correspond to turbine blades.« less

  4. Segregation Phenomena on the Crystal Surface of Chemical Compounds

    NASA Astrophysics Data System (ADS)

    Tomashpol'skii, Yu. Ya.

    2018-06-01

    The current state of the theoretical and experimental studies of changes in the chemical structure and composition caused by segregation phenomena on the surface of chemical compounds was reviewed. The review considers the experimental data obtained exclusively on single crystals, which were studied by modern instrumental methods, including in situ Auger electron spectrometry, X-ray spectral microanalysis, high-resolution scanning and transmission electron microscopy, secondary electron emission, and atomic force microscopy. The models that suggest the crystal-chemical diffusion and liquid-phase mechanisms of segregation were described. The parameters of the theory include the type of chemical bond, elastic constants, and crystal-chemical characteristics of substances. The models make it possible to predict the nature of changes in the surface composition: segregation tendency, segregant type, and degree of nonstoichiometry. A new direction in surface segregation was considered, which is promising for nanoelectronics and emission electronics.

  5. Reproducing the Ensemble Average Polar Solvation Energy of a Protein from a Single Structure: Gaussian-Based Smooth Dielectric Function for Macromolecular Modeling.

    PubMed

    Chakravorty, Arghya; Jia, Zhe; Li, Lin; Zhao, Shan; Alexov, Emil

    2018-02-13

    Typically, the ensemble average polar component of solvation energy (ΔG polar solv ) of a macromolecule is computed using molecular dynamics (MD) or Monte Carlo (MC) simulations to generate conformational ensemble and then single/rigid conformation solvation energy calculation is performed on each snapshot. The primary objective of this work is to demonstrate that Poisson-Boltzmann (PB)-based approach using a Gaussian-based smooth dielectric function for macromolecular modeling previously developed by us (Li et al. J. Chem. Theory Comput. 2013, 9 (4), 2126-2136) can reproduce that ensemble average (ΔG polar solv ) of a protein from a single structure. We show that the Gaussian-based dielectric model reproduces the ensemble average ΔG polar solv (⟨ΔG polar solv ⟩) from an energy-minimized structure of a protein regardless of the minimization environment (structure minimized in vacuo, implicit or explicit waters, or crystal structure); the best case, however, is when it is paired with an in vacuo-minimized structure. In other minimization environments (implicit or explicit waters or crystal structure), the traditional two-dielectric model can still be selected with which the model produces correct solvation energies. Our observations from this work reflect how the ability to appropriately mimic the motion of residues, especially the salt bridge residues, influences a dielectric model's ability to reproduce the ensemble average value of polar solvation free energy from a single in vacuo-minimized structure.

  6. Anisotropic planar Heisenberg model of the quantum heterobimetallic zigzag chains with bridged ReIV-CuII magnetic complexes

    NASA Astrophysics Data System (ADS)

    Sobczak, P.; Barasiński, A.; Kamieniarz, G.; Drzewiński, A.

    2011-12-01

    An anisotropic quantum planar Heisenberg model is proposed and thoroughly analyzed within the numerical density-matrix renormalization group approach. The model takes into account the site-dependent alternating directions of the local coordination system for the ReIV ions and both the axial and the rhombic single-ion anisotropy terms. Thermodynamic properties of a simpler collinear model without the rhombic term and its Ising counterpart as well as some previous approximations for ReIV-ion-containing compounds are discussed to point out the importance of quantum effects and deficiencies of classical approaches. For the noncollinear model with the alternating uniaxial local z axis tilted by the angle θ from the global chain axis formed by copper ions, some symmetries for the single-crystal susceptibilities are found. In the strong-anisotropy limit some striking maxima in the corresponding single-crystal χT products are revealed and their relation to the experimental determination of the anisotropy parameters is emphasized. Some cases to which the collinear model for zigzag chains is fully applicable are indicated. Finally, fitting the reference experimental data for a powder sample of given chloro- and cyanobridged zigzag chains, the weaker magnetic coupling and the uniaxial single-ion anisotropy term parameters have been found. The corrected value of the ferromagnetic interaction parameter implies that for the cyanobridge compound the record of the highest superexchange through cyanide has not been beaten.

  7. Selective Metal Cation Capture by Soft Anionic Metal-Organic Frameworks via Drastic Single-Crystal-to-Single-Crystal Transformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Jian; Saraf, Laxmikant V.; Schwenzer, Birgit

    2012-05-25

    Flexible anionic metal-organic frameworks transform to neutral heterobimetallic systems via single-crystal-to-single-crystal processes invoked by cation insertion. These transformations are directed by cooperative bond breakage and formation, resulting in expansion or contraction of the 3D framework by up to 33% due to the flexible nature of the organic linker. These MOFs displays highly selective uptake of divalent transition metal cations (Co2+ and Ni2+ for example) over alkali metal cations (Li+ and Na+).

  8. Erbium Distribution in Single Crystal YAG Fibers Grown by Laser-Heated Pedestal Growth Technique

    DTIC Science & Technology

    2015-08-28

    single crystal YAG fibers grown by laser - heated pedestal growth technique Single crystal (SC) yttrium aluminum garnet (YAG, Y3Al5O12) as a host...inserted into a SC YAG tube. This rod-in-tube was used as a preform in our laser -heated pedestal growth (LHPG) apparatus to grow a fiber with a radial...fibers grown by laser -heated pedestal growth technique Report Title Single crystal (SC) yttrium aluminum garnet (YAG, Y3Al5O12) as a host material has

  9. Alloy Design Challenge: Development of Low Density Superalloys for Turbine Blade Applications

    NASA Technical Reports Server (NTRS)

    MacKay, Rebecca A.; Gabb, Timothy P.; Smialek, James L.; Nathal, Michael V.

    2009-01-01

    New low density single crystal (LDS) alloys have been developed for turbine blade applications, which have the potential for significant improvements in the thrust to weight ratio over current production alloys. An innovative alloying strategy was identified to achieve high temperature creep resistance, alloy density reductions, microstructural stability, and cyclic oxidation resistance. The approach relies on the use of molybdenum (Mo) as a potent solid solution strengthener for the nickel (Ni)-base superalloy; Mo has a density much closer to Ni than other refractory elements, such as rhenium (Re) or tungsten (W). A host of testing and microstructural examinations was conducted on the superalloy single crystals, including creep rupture testing, microstructural stability, cyclic oxidation, and hot corrosion. The paper will provide an overview of the single crystal properties that were generated in this new superalloy design space. The paper will also demonstrate the feasibility of this innovative approach of low density single crystal superalloy design. It will be shown that the best LDS alloy possesses the best attributes of three generations of single crystal alloys: the low density of first-generation single crystal alloys, the excellent oxidation resistance of second-generation single crystal alloys, and a creep strength which exceeds that of second and third generation alloys.

  10. van der Waals epitaxy of SnS film on single crystal graphene buffer layer on amorphous SiO2/Si

    NASA Astrophysics Data System (ADS)

    Xiang, Yu; Yang, Yunbo; Guo, Fawen; Sun, Xin; Lu, Zonghuan; Mohanty, Dibyajyoti; Bhat, Ishwara; Washington, Morris; Lu, Toh-Ming; Wang, Gwo-Ching

    2018-03-01

    Conventional hetero-epitaxial films are typically grown on lattice and symmetry matched single crystal substrates. We demonstrated the epitaxial growth of orthorhombic SnS film (∼500 nm thick) on single crystal, monolayer graphene that was transferred on the amorphous SiO2/Si substrate. Using X-ray pole figure analysis we examined the structure, quality and epitaxy relationship of the SnS film grown on the single crystal graphene and compared it with the SnS film grown on commercial polycrystalline graphene. We showed that the SnS films grown on both single crystal and polycrystalline graphene have two sets of orientation domains. However, the crystallinity and grain size of the SnS film improve when grown on the single crystal graphene. Reflection high-energy electron diffraction measurements show that the near surface texture has more phases as compared with that of the entire film. The surface texture of a film will influence the growth and quality of film grown on top of it as well as the interface formed. Our result offers an alternative approach to grow a hetero-epitaxial film on an amorphous substrate through a single crystal graphene buffer layer. This strategy of growing high quality epitaxial thin film has potential applications in optoelectronics.

  11. Molecular-dynamic simulations of the thermophysical properties of hexanitrohexaazaisowurtzitane single crystal at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Kozlova, S. A.; Gubin, S. A.; Maklashova, I. V.; Selezenev, A. A.

    2017-11-01

    Molecular dynamic simulations of isothermal compression parameters are performed for a hexanitrohexaazaisowurtzitane single crystal (C6H6O12N12) using a modified ReaxFF-log reactive force field. It is shown that the pressure-compression ratio curve for a single C6H6O12N12 crystal at constant temperature T = 300 K in pressure range P = 0.05-40 GPa is in satisfactory agreement with experimental compression isotherms obtained for a single C6H6O12N12 crystal. Hugoniot molecular-dynamic simulations of the shock-wave hydrostatic compression of a single C6H6O12N12 crystal are performed. Along with Hugoniot temperature-pressure curves, calculated shock-wave pressure-compression ratios for a single C6H6O12N12 crystal are obtained for a wide pressure range of P = 1-40 GPa. It is established that the percussive adiabat obtained for a single C6H6O12N12 crystal is in a good agreement with the experimental data. All calculations are performed using a LAMMPS molecular dynamics simulation software package that provides a ReaxFF-lg reactive force field to support the approach.

  12. Crystal growth, piezoelectric, non-linear optical and mechanical properties of lithium hydrogen oxalate monohydrate single crystal

    NASA Astrophysics Data System (ADS)

    Chandran, Senthilkumar; Paulraj, Rajesh; Ramasamy, P.

    2017-05-01

    Semi-organic lithium hydrogen oxalate monohydrate non-linear optical single crystals have been grown by slow evaporation solution growth technique at 35 °C. Single crystal X-ray diffraction study showed that the grown crystal belongs to the triclinic system with space group P1. The mechanical strength decreases with increasing load. The piezoelectric coefficient is found to be 1.41 pC/N. The nonlinear optical property was measured using Kurtz Perry powder technique and SHG efficiency was almost equal to that of KDP.

  13. ACTIVE MEDIA: BaY2F8 single crystals doped with rare-earth ions as promising up-conversion media for UV and VUV lasers

    NASA Astrophysics Data System (ADS)

    Pushkar', A. A.; Uvarova, T. V.; Molchanov, V. N.

    2008-04-01

    BaY2F8 crystals are studied as promising active media for UV and VUV lasers. The up-conversion pumping of rare-earth activators is proposed to solve problems related to the solarisation of the medium and the selection of pump sources. The technology of growing oriented BaY2F8 single crystals is developed and the influence of the crystal orientation on the growth rate and quality of single crystals is determined.

  14. Polymorphic Protein Crystal Growth: Influence of Hydration and Ions in Glucose Isomerase

    PubMed Central

    Gillespie, C. M.; Asthagiri, D.; Lenhoff, A. M.

    2014-01-01

    Crystal polymorphs of glucose isomerase were examined to characterize the properties and to quantify the energetics of protein crystal growth. Transitions of polymorph stability were measured in poly(ethylene glycol)/NaCl solutions, and one transition point was singled out for more detailed quantitative analysis. Single crystal x-ray diffraction was used to confirm space groups and identify complementary crystal structures. Crystal polymorph stability was found to depend on the NaCl concentration, with stability transitions requiring > 1 M NaCl combined with a low concentration of PEG. Both salting-in and salting-out behavior was observed and was found to differ for the two polymorphs. For NaCl concentrations above the observed polymorph transition, the increase in solubility of the less stable polymorph together with an increase in the osmotic second virial coefficient suggests that changes in protein hydration upon addition of salt may explain the experimental trends. A combination of atomistic and continuum models was employed to dissect this behavior. Molecular dynamics simulations of the solvent environment were interpreted using quasi-chemical theory to understand changes in protein hydration as a function of NaCl concentration. The results suggest that protein surface hydration and Na+ binding may introduce steric barriers to contact formation, resulting in polymorph selection. PMID:24955067

  15. Radiation-induced hydroxyl addition to purine molecules: EPR and ENDOR study of hypoxanthine hydrochloride monohydrate single crystals.

    PubMed

    Tokdemir, Sibel; Nelson, William H

    2005-06-01

    Three radical species were detected in an EPR/ENDOR study of X-irradiated hypoxanthine.HCl.H2O single crystals at room temperature: RI was identified as the product of net H addition to C8, RII was identified as the product of net H addition to C2, and RIII was identified as the product of OH addition to C8. The observed set of radicals was the same for room-temperature irradiation as for irradiation at 10 K followed by warming the crystals to room temperature; however, the C2 H-addition and C8 OH-addition radicals were not detectable after storage of the crystals for about 2 months at room temperature. Use of selectively deuterated crystals permitted unique assignment of the observed hyperfine couplings, and results of density functional theory calculations on each of the radical structures were consistent with the experimental results. Comparison of these experimental results with others from previous crystal-based systems and model system computations provides insight into the mechanisms by which the biologically important purine C8 hydroxyl addition products are formed. The evidence from solid systems supports the mechanism of net water addition to one-electron oxidized purine bases and demonstrates the importance of a facial approach between the reactants.

  16. The Crystal Hotel: A Microfluidic Approach to Biomimetic Crystallization.

    PubMed

    Gong, Xiuqing; Wang, Yun-Wei; Ihli, Johannes; Kim, Yi-Yeoun; Li, Shunbo; Walshaw, Richard; Chen, Li; Meldrum, Fiona C

    2015-12-02

    A "crystal hotel" microfluidic device that allows crystal growth in confined volumes to be studied in situ is used to produce large calcite single crystals with predefined crystallographic orientation, microstructure, and shape by control of the detailed physical environment, flow, and surface chemistry. This general approach can be extended to form technologically important, nanopatterned single crystals. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The tensile effect on crack formation in single crystal silicon irradiated by intense pulsed ion beam

    NASA Astrophysics Data System (ADS)

    Liang, Guoying; Shen, Jie; Zhang, Jie; Zhong, Haowen; Cui, Xiaojun; Yan, Sha; Zhang, Xiaofu; Yu, Xiao; Le, Xiaoyun

    2017-10-01

    Improving antifatigue performance of silicon substrate is very important for the development of semiconductor industry. The cracking behavior of silicon under intense pulsed ion beam irradiation was studied by numerical simulation in order to understand the mechanism of induced surface peeling observed by experimental means. Using molecular dynamics simulation based on Stillinger Weber potential, tensile effect on crack growth and propagation in single crystal silicon was investigated. Simulation results reveal that stress-strain curves of single crystal silicon at a constant strain rate can be divided into three stages, which are not similar to metal stress-strain curves; different tensile load velocities induce difference of single silicon crack formation speed; the layered stress results in crack formation in single crystal silicon. It is concluded that the crack growth and propagation is more sensitive to strain rate, tensile load velocity, stress distribution in single crystal silicon.

  18. Crystal growth of triphenylphosphine oxide 4-nitrophenol (TP4N) for nonlinear optical (NLO) applications

    NASA Astrophysics Data System (ADS)

    Pandian, Muthu Senthil; Karuppasamy, P.; Kamalesh, T.; Ramasamy, P.; Verma, Sunil

    2018-04-01

    The optically good quality organic single crystals of triphenylphosphine oxide 4-nitrophenol (TP4N) were successfully grown by slow evaporation solution technique (SEST) using methanol as solvent. The lattice parameters of the grown crystal were confirmed by single crystal X-ray diffraction analysis. The optical transmittance, cut-off wavelength and band gap of the TP4N crystal were obtained by UV-Vis NIR spectrum analysis. The photoluminescence studies were carried out to find out the luminesce properties of TP4N single crystal. The photoconductivity studies reveal that the TP4N crystal has negative photoconductive nature. The third order nonlinear susceptibility (χ(3)) of TP4N crystal was evaluated using the Z-scan technique at 640 nm.

  19. Growth, optical, ICP and thermal studies of nonlinear optical single crystal: Sodium acid phthalate (NaAP)

    NASA Astrophysics Data System (ADS)

    Mahadevan, M.; Arivanandhan, M.; Elangovan, K.; Anandan, P.; Ramachandran, K.

    2017-07-01

    Good quality single crystals of sodium acid phthalate (NaAP) were grown by slow evaporation technique. Single crystal X-ray diffraction study of the grown crystal reveals that the crystal belongs to orthorhombic system with space group B2ab. Fourier transform infrared spectrum confirms the presence of the functional groups of the grown material. Inductively coupled plasma emission spectroscopy analysis is used to confirm the presence of Na element in the sample. Thermal analysis of the NaAP crystal shows that the crystal is stable up to 140°C. Optical transmittance of the grown crystal was recorded in the wavelength range from 200 and 800 nm using UV-Vis-NIR spectrophotometer. The second harmonic generation of NaAP was analysed using Kurtz powder technique.

  20. Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales.

    PubMed

    Saranathan, Vinodkumar; Osuji, Chinedum O; Mochrie, Simon G J; Noh, Heeso; Narayanan, Suresh; Sandy, Alec; Dufresne, Eric R; Prum, Richard O

    2010-06-29

    Complex three-dimensional biophotonic nanostructures produce the vivid structural colors of many butterfly wing scales, but their exact nanoscale organization is uncertain. We used small angle X-ray scattering (SAXS) on single scales to characterize the 3D photonic nanostructures of five butterfly species from two families (Papilionidae, Lycaenidae). We identify these chitin and air nanostructures as single network gyroid (I4(1)32) photonic crystals. We describe their optical function from SAXS data and photonic band-gap modeling. Butterflies apparently grow these gyroid nanostructures by exploiting the self-organizing physical dynamics of biological lipid-bilayer membranes. These butterfly photonic nanostructures initially develop within scale cells as a core-shell double gyroid (Ia3d), as seen in block-copolymer systems, with a pentacontinuous volume comprised of extracellular space, cell plasma membrane, cellular cytoplasm, smooth endoplasmic reticulum (SER) membrane, and intra-SER lumen. This double gyroid nanostructure is subsequently transformed into a single gyroid network through the deposition of chitin in the extracellular space and the degeneration of the rest of the cell. The butterflies develop the thermodynamically favored double gyroid precursors as a route to the optically more efficient single gyroid nanostructures. Current approaches to photonic crystal engineering also aim to produce single gyroid motifs. The biologically derived photonic nanostructures characterized here may offer a convenient template for producing optical devices based on biomimicry or direct dielectric infiltration.

  1. Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales

    PubMed Central

    Saranathan, Vinodkumar; Osuji, Chinedum O.; Mochrie, Simon G. J.; Noh, Heeso; Narayanan, Suresh; Sandy, Alec; Dufresne, Eric R.; Prum, Richard O.

    2010-01-01

    Complex three-dimensional biophotonic nanostructures produce the vivid structural colors of many butterfly wing scales, but their exact nanoscale organization is uncertain. We used small angle X-ray scattering (SAXS) on single scales to characterize the 3D photonic nanostructures of five butterfly species from two families (Papilionidae, Lycaenidae). We identify these chitin and air nanostructures as single network gyroid (I4132) photonic crystals. We describe their optical function from SAXS data and photonic band-gap modeling. Butterflies apparently grow these gyroid nanostructures by exploiting the self-organizing physical dynamics of biological lipid-bilayer membranes. These butterfly photonic nanostructures initially develop within scale cells as a core-shell double gyroid (Ia3d), as seen in block-copolymer systems, with a pentacontinuous volume comprised of extracellular space, cell plasma membrane, cellular cytoplasm, smooth endoplasmic reticulum (SER) membrane, and intra-SER lumen. This double gyroid nanostructure is subsequently transformed into a single gyroid network through the deposition of chitin in the extracellular space and the degeneration of the rest of the cell. The butterflies develop the thermodynamically favored double gyroid precursors as a route to the optically more efficient single gyroid nanostructures. Current approaches to photonic crystal engineering also aim to produce single gyroid motifs. The biologically derived photonic nanostructures characterized here may offer a convenient template for producing optical devices based on biomimicry or direct dielectric infiltration. PMID:20547870

  2. Laser Fabrication of Two-Dimensional Rotating-Lattice Single Crystal

    DOE PAGES

    Savytskii, Dmytro; Au-Yeung, Courtney; Dierolf, Volkmar; ...

    2017-03-09

    A rotating lattice single (RLS) crystal is a unique form of solid, which was fabricated recently as one-dimensional architecture in glass via solid state transformation induced by laser irradiation. In these objects, the lattice rotates gradually and predictably about an axis that lies in the plane of the crystal and is normal to the laser scanning direction. This paper reports on the fabrication of Sb 2S 3 two-dimensional (2D) RLS crystals on the surface of 16SbI 3-84Sb 2S 3 glass, as a model example: individual RLS crystal lines are joined together using "stitching" or "rastering" as two successful protocols. Themore » electron back scattered diffraction mapping and scanning Laue X-ray microdiffraction of the 2D RLS crystals show gradual rotation of lattice comprising of two components, one along the length of each line and another normal to this direction. The former component is determined by the rotation of the first line of the 2D pattern, but the relative contribution of the last component depends on the extent of overlap between two successive lines. By the appropriate choice of initial seed orientation and the direction of scanning, it is possible to control the lattice rotation, and even to reduce it down to 5 for a 50 × 50 μm 2 2D pattern of Sb 2S 3 crystal.« less

  3. Containerless crystallization of silicon

    NASA Astrophysics Data System (ADS)

    Kuribayashi, K.; Aoyama, T.

    2002-04-01

    Crystallization from undercooled melt of silicon was carried out by means of electro-magnetic levitation method under controlled undercooling. The measured growth rate vs. undercooling was categorized into three regions, I, II and III, respectively, from the point of the interface morphology. Thin plate crystals whose interface consisted of both faceted (1 1 1) plane and wavy edge plane like saw-tooth were observed in the region I where the undercooling is less than 100 K. The growth rate of the wavy edge plane was well described by the dendrite growth model. The morphology of growing crystals was abruptly changed to faceted dendrite in the region II, though there was no abrupt change in the growth rate. Seeding at temperatures in the region I changes the drop to a mono-crystalline sphere, if the growth rate along the normal direction of the thin plate crystal is controlled by step-wise growth on the faceted plane. Actually, the sample of 5 mm in diameter seeded at undercooling of 26 K was a quasi-single crystal with large grain, except for a small area where twinning and cracking are observed. The result suggests that the single crystal could be grown, if a smaller sample, 1 or 2 mm in diameter, that is difficult to be levitated by electro-magnetic force were processed with other methods such as free fall in a drop tube.

  4. Large-scale grain growth in the solid-state process: From "Abnormal" to "Normal"

    NASA Astrophysics Data System (ADS)

    Jiang, Minhong; Han, Shengnan; Zhang, Jingwei; Song, Jiageng; Hao, Chongyan; Deng, Manjiao; Ge, Lingjing; Gu, Zhengfei; Liu, Xinyu

    2018-02-01

    Abnormal grain growth (AGG) has been a common phenomenon during the ceramic or metallurgy processing since prehistoric times. However, usually it had been very difficult to grow big single crystal (centimeter scale over) by using the AGG method due to its so-called occasionality. Based on the AGG, a solid-state crystal growth (SSCG) method was developed. The greatest advantages of the SSCG technology are the simplicity and cost-effectiveness of the technique. But the traditional SSCG technology is still uncontrollable. This article first summarizes the history and current status of AGG, and then reports recent technical developments from AGG to SSCG, and further introduces a new seed-free, solid-state crystal growth (SFSSCG) technology. This SFSSCG method allows us to repeatedly and controllably fabricate large-scale single crystals with appreciable high quality and relatively stable chemical composition at a relatively low temperature, at least in (K0.5Na0.5)NbO3(KNN) and Cu-Al-Mn systems. In this sense, the exaggerated grain growth is no longer 'Abnormal' but 'Normal' since it is able to be artificially controllable and repeated now. This article also provides a crystal growth model to qualitatively explain the mechanism of SFSSCG for KNN system. Compared with the traditional melt and high temperature solution growth methods, the SFSSCG method has the advantages of low energy consumption, low investment, simple technique, composition homogeneity overcoming the issues with incongruent melting and high volatility. This SFSSCG could be helpful for improving the mechanical and physical properties of single crystals, which should be promising for industrial applications.

  5. Fabrication of patterned single-crystal SrTiO3 thin films by ion slicing and anodic bonding

    NASA Astrophysics Data System (ADS)

    Lee, Yoo Seung; Djukic, Djordje; Roth, Ryan M.; Laibowitz, Robert; Izuhara, Tomoyuki; Osgood, Richard M.; Bakhru, Sasha; Bakhru, Hassaram; Si, Weidong; Welch, David

    2006-09-01

    A new technique for directly fabricating patterned thin films (<1μm thick) of fully single-crystal strontium titanate uses deep H+ implantation into the oxide sample, followed by anodic bonding of the sample to a Pyrex or Pyrex-on-Si substrate. The dielectric properties and crystal structure of such thin films are characterized and are found to be essentially those of the bulk single crystal.

  6. The applicability of physical optics in the millimetre and sub-millimetre spectral region. Part II: Application to a three-component model of ice cloud and its evaluation against the bulk single-scattering properties of various other aggregate models

    NASA Astrophysics Data System (ADS)

    Baran, Anthony J.; Ishimoto, Hiroshi; Sourdeval, Odran; Hesse, Evelyn; Harlow, Chawn

    2018-02-01

    The bulk single-scattering properties of various randomly oriented aggregate ice crystal models are compared and contrasted at a number of frequencies between 89 and 874 GHz. The model ice particles consist of the ten-branched plate aggregate, five-branched plate aggregate, eight-branched hexagonal aggregate, Voronoi ice aggregate, six-branched hollow bullet rosette, hexagonal column of aspect ratio unity, and the ten-branched hexagonal aggregate. The bulk single-scattering properties of the latter two ice particle models have been calculated using the light scattering methods described in Part I, which represent the two most extreme members of an ensemble model of cirrus ice crystals. In Part I, it was shown that the method of physical optics could be combined with the T-matrix at a size parameter of about 18 to compute the bulk integral ice optical properties and the phase function in the microwave to sufficient accuracy to be of practical value. Here, the bulk single-scattering properties predicted by the two ensemble model members and the Voronoi model are shown to generally bound those of all other models at frequencies between 89 and 874 GHz, thus representing a three-component model of ice cloud that can be generally applied to the microwave, rather than using many differing ice particle models. Moreover, the Voronoi model and hollow bullet rosette scatter similarly to each other in the microwave. Furthermore, from the various comparisons, the importance of assumed shapes of the particle size distribution as well as cm-sized ice aggregates is demonstrated.

  7. Millimeter-Wave Spectroscopy, X-ray Crystal Structure, and Quantum Chemical Studies of Diketene: Resolving Ambiguities Concerning the Structure of the Ketene Dimer.

    PubMed

    Orr, Vanessa L; Esselman, Brian J; Dorman, P Matisha; Amberger, Brent K; Guzei, Ilia A; Woods, R Claude; McMahon, Robert J

    2016-10-06

    The pure rotational spectrum of diketene has been studied in the millimeter-wave region from ∼240 to 360 GHz. For the ground vibrational state and five vibrationally excited satellites (ν 24 , 2ν 24 , 3ν 24 , 4ν 24 , and ν 16 ), the observed spectrum allowed for the measurement, assignment, and least-squares fitting a total of more than 10 000 distinct rotational transitions. In each case, the transitions were fit to single-state, complete or near-complete sextic centrifugally distorted rotor models to near experimental error limits using Kisiel's ASFIT. Additionally, we obtained less satisfactory least-squares fits to single-state centrifugally distorted rotor models for three additional vibrational states: ν 24 + ν 16 , ν 23 , and 5ν 24 . The structure of diketene was optimized at the CCSD(T)/ANO1 level, and the vibration-rotation interaction (α i ) values for each normal mode were determined with a CCSD(T)/ANO1 VPT2 anharmonic frequency calculation. These α i values were helpful in identifying the previously unreported ν 16 and ν 23 fundamental states. We obtained a single-crystal X-ray structure of diketene at -173 °C. The bond distances are increased in precision by more than an order of magnitude compared to those in the 1958 X-ray crystal structure. The improved accuracy of the crystal structure geometry resolves the discrepancy between previous computational and experimental structures. The rotational transition frequencies provided herein should be useful for a millimeter-wave or terahertz search for diketene in the interstellar medium.

  8. Evaluation of stability region for scandium-containing rare-earth garnet single crystals and their congruent-melting compositions

    NASA Astrophysics Data System (ADS)

    Kaurova, I. A.; Domoroshchina, E. N.; Kuz'micheva, G. M.; Rybakov, V. B.

    2017-06-01

    Single crystals of scandium-containing rare-earth garnets in system R-Sc-C-O (R3+=Y, Gd; C3+=Al, Ga) have been grown by the Czochralski technique. X-ray diffraction analysis has been used to refine crystal compositions. The fundamental difference between the melt compositions and compositions of grown crystals has been found (except for compositions of congruent-melting compounds, CMC). The specific features of garnet solid solution formation have been established and the ternary diagrams with real or hypothetical phases have been built. The dinamics of coordination polyhedra changes with the formation of substitutional solid solutions have been proposed based on the mathematical modeling and experimental data. Possible existence of CMC with garnet structure in different systems as well as limit content of Sc ions in dodecahedral and octahedral sites prior to their partial substitution of ions, located in other sites, have been evaluated. It was established that the redistribution of cations over crystallographic sites (antistructural point defects) due to system self-organization to maintain its stability may be accompanied by cation ordering and the symmetry change of individual polyhedrons and/or the whole crystal.

  9. Measuring and modelling the structure of chocolate

    NASA Astrophysics Data System (ADS)

    Le Révérend, Benjamin J. D.; Fryer, Peter J.; Smart, Ian; Bakalis, Serafim

    2015-01-01

    The cocoa butter present in chocolate exists as six different polymorphs. To achieve the desired crystal form (βV), traditional chocolate manufacturers use relatively slow cooling (<2°C/min). A newer generation of rapid cooling systems has been suggested requiring further understanding of fat crystallisation. To allow better control and understanding of these processes and newer rapid cooling processes, it is necessary to understand both heat transfer and crystallization kinetics. The proposed model aims to predict the temperature in the chocolate products during processing as well as the crystal structure of cocoa butter throughout the process. A set of ordinary differential equations describes the kinetics of fat crystallisation. The parameters were obtained by fitting the model to a set of DSC curves. The heat transfer equations were coupled to the kinetic model and solved using commercially available CFD software. A method using single crystal XRD was developed using a novel subtraction method to quantify the cocoa butter structure in chocolate directly and results were compared to the ones predicted from the model. The model was proven to predict phase change temperature during processing accurately (±1°C). Furthermore, it was possible to correctly predict phase changes and polymorphous transitions. The good agreement between the model and experimental data on the model geometry allows a better design and control of industrial processes.

  10. Improving the Representation of Snow Crystal Properties Within a Single-Moment Microphysics Scheme

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Petersen, Walter A.; Case, Jonathan L.; Dembek, S. R.

    2010-01-01

    As computational resources continue their expansion, weather forecast models are transitioning to the use of parameterizations that predict the evolution of hydrometeors and their microphysical processes, rather than estimating the bulk effects of clouds and precipitation that occur on a sub-grid scale. These parameterizations are referred to as single-moment, bulk water microphysics schemes, as they predict the total water mass among hydrometeors in a limited number of classes. Although the development of single moment microphysics schemes have often been driven by the need to predict the structure of convective storms, they may also provide value in predicting accumulations of snowfall. Predicting the accumulation of snowfall presents unique challenges to forecasters and microphysics schemes. In cases where surface temperatures are near freezing, accumulated depth often depends upon the snowfall rate and the ability to overcome an initial warm layer. Precipitation efficiency relates to the dominant ice crystal habit, as dendrites and plates have relatively large surface areas for the accretion of cloud water and ice, but are only favored within a narrow range of ice supersaturation and temperature. Forecast models and their parameterizations must accurately represent the characteristics of snow crystal populations, such as their size distribution, bulk density and fall speed. These properties relate to the vertical distribution of ice within simulated clouds, the temperature profile through latent heat release, and the eventual precipitation rate measured at the surface. The NASA Goddard, single-moment microphysics scheme is available to the operational forecast community as an option within the Weather Research and Forecasting (WRF) model. The NASA Goddard scheme predicts the occurrence of up to six classes of water mass: vapor, cloud ice, cloud water, rain, snow and either graupel or hail.

  11. Growth and structural characterization of single crystals of the magnetic superconductor Ru1-xSr2-yGd1+yCu2+xO8-δ (RuGd-1212) obtained by the partial melting technique

    NASA Astrophysics Data System (ADS)

    Yamaki, K.; Bamba, Y.; Mochiku, T.; Funahashi, S.; Matsushita, Y.; Irie, A.

    2018-05-01

    In this study, cubic single crystals of the magnetic superconductor Ru1-xSr2-yGd1+yCu2+xO8-δ (RuGd-1212) with typical dimensions of 100-150 μm in length were grown by the partial melting technique. Multiple 00l reflections were first observed by XRD measurements of the bulk RuGd-1212 single crystals. The resistivity of the obtained crystals was roughly estimated to be ∼24-80 mΩ cm and no superconducting transition was observed down to 4.2 K. From the XRD measurements and refinement of the crystal structure, it was apparent that the Ru and Sr sites of the single-crystal RuGd-1212 were partially substituted by Cu and Gd, respectively. Oxygen defects were found to be minor (δ ≈ 0.1). The lattice parameters a and c of the single crystals were found to be larger and smaller, respectively, than those of a polycrystalline sample.

  12. Uncertainty quantification of resonant ultrasound spectroscopy for material property and single crystal orientation estimation on a complex part

    NASA Astrophysics Data System (ADS)

    Aldrin, John C.; Mayes, Alexander; Jauriqui, Leanne; Biedermann, Eric; Heffernan, Julieanne; Livings, Richard; Goodlet, Brent; Mazdiyasni, Siamack

    2018-04-01

    A case study is presented evaluating uncertainty in Resonance Ultrasound Spectroscopy (RUS) inversion for a single crystal (SX) Ni-based superalloy Mar-M247 cylindrical dog-bone specimens. A number of surrogate models were developed with FEM model solutions, using different sampling schemes (regular grid, Monte Carlo sampling, Latin Hyper-cube sampling) and model approaches, N-dimensional cubic spline interpolation and Kriging. Repeated studies were used to quantify the well-posedness of the inversion problem, and the uncertainty was assessed in material property and crystallographic orientation estimates given typical geometric dimension variability in aerospace components. Surrogate model quality was found to be an important factor in inversion results when the model more closely represents the test data. One important discovery was when the model matches well with test data, a Kriging surrogate model using un-sorted Latin Hypercube sampled data performed as well as the best results from an N-dimensional interpolation model using sorted data. However, both surrogate model quality and mode sorting were found to be less critical when inverting properties from either experimental data or simulated test cases with uncontrolled geometric variation.

  13. Influence of crystal orientation and ion bombardment on the nitrogen diffusivity in single-crystalline austenitic stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinavicius, A.; Abrasonis, G.; Moeller, W.

    2011-10-01

    The nitrogen diffusivity in single-crystalline AISI 316L austenitic stainless steel (ASS) during ion nitriding has been investigated at different crystal orientations ((001), (110), (111)) under variations of ion flux (0.3-0.7 mA cm{sup -2}), ion energy (0.5-1.2 keV), and temperature (370-430 deg. C). The nitrogen depth profiles obtained from nuclear reaction analysis are in excellent agreement with fits using the model of diffusion under the influence of traps, from which diffusion coefficients were extracted. At fixed ion energy and flux, the diffusivity varies by a factor up to 2.5 at different crystal orientations. At (100) orientation, it increases linearly with increasingmore » ion flux or energy. The findings are discussed on the basis of atomistic mechanisms of interstitial diffusion, potential lattice distortions, local decomposition, and ion-induced lattice vibrational excitations.« less

  14. Polarized IR-microscope spectra of guanidinium hydrogenselenate single crystal.

    PubMed

    Drozd, M; Baran, J

    2005-10-01

    The polarized IR-microscope spectra of C(NH2)3.HSeO4 small single crystal samples were measured at room temperature. The spectra are discussed with the framework of oriented gas model approximation and group theory. The stretching nuOH vibration of the hydrogen bond with the O...O distance of 2.616 A gives characteristic broad AB-type absorption in the IR spectra. The changes of intensity of the AB bands in function of polarizer angle are described. Detailed assignment for bands derived from stretching and bending modes of selenate anions and guanidinium cations were performed. The observed intensities of these bands in polarized infrared spectra were correlated with theoretical calculation of directional cosines of selected transition dipole moments for investigated crystal. The vibrational studies seem to be helpful in understanding of physical and chemical properties of described compound and also in design of new complexes with exactly defined behaviors.

  15. Low temperature time resolved photoluminescence in ordered and disordered Cu2ZnSnS4 single crystals

    NASA Astrophysics Data System (ADS)

    Raadik, Taavi; Krustok, Jüri; Kauk-Kuusik, M.; Timmo, K.; Grossberg, M.; Ernits, K.; Bleuse, J.

    2017-03-01

    In this work we performed time-resolved micro-photoluminescence (TRPL) studies of Cu2ZnSnS4 (CZTS) single crystals grown in molten KI salt. The order/disorder degree of CZTS was varied by the thermal post treatment temperature. Photoluminescence spectra measured at T=8 K showed an asymmetric band with a peak position of 1.33 eV and 1.27 eV for partially ordered and disordered structures, respectively. Thermal activation energies were found to be ET (PO) =65±9 meV for partially ordered and ET (PD) =27±4 meV for partially disordered. These low activation energy values indicating to the defect cluster recombination model for both partially ordered and disordered structures. TRPL was measured for both crystals and their decay curves were fitted with a stretched exponential function, in order to describe the charge carriers' recombination dynamics at low temperature.

  16. Polarised IR-microscope spectra of guanidinium hydrogensulphate single crystal.

    PubMed

    Drozd, M; Baran, J

    2006-07-01

    Polarised IR-microscope spectra of C(NH(2))(3)*HSO(4) small single crystal samples were measured at room temperature. The spectra are discussed on the basis of oriented gas model approximation and group theory. The stretching nuOH vibration of the hydrogen bond with the Ocdots, three dots, centeredO distance of 2.603A gives characteristic broad AB-type absorption in the IR spectra. The changes of intensity of the AB bands in function of polariser angle are described. Detailed assignments for bands derived from stretching and bending modes of sulphate anions and guanidinium cations were performed. The observed intensities of these bands in polarised infrared spectra were correlated with theoretical calculation of directional cosines of selected transition dipole moments for investigated crystal. The vibrational studies seem to be helpful in understanding of physical and chemical properties of described compound and also in design of new complexes with exactly defined behaviors.

  17. Crystallization process of a three-dimensional complex plasma

    NASA Astrophysics Data System (ADS)

    Steinmüller, Benjamin; Dietz, Christopher; Kretschmer, Michael; Thoma, Markus H.

    2018-05-01

    Characteristic timescales and length scales for phase transitions of real materials are in ranges where a direct visualization is unfeasible. Therefore, model systems can be useful. Here, the crystallization process of a three-dimensional complex plasma under gravity conditions is considered where the system ranges up to a large extent into the bulk plasma. Time-resolved measurements exhibit the process down to a single-particle level. Primary clusters, consisting of particles in the solid state, grow vertically and, secondarily, horizontally. The box-counting method shows a fractal dimension of df≈2.72 for the clusters. This value gives a hint that the formation process is a combination of local epitaxial and diffusion-limited growth. The particle density and the interparticle distance to the nearest neighbor remain constant within the clusters during crystallization. All results are in good agreement with former observations of a single-particle layer.

  18. Microgravity

    NASA Image and Video Library

    2001-01-24

    Experiments with colloidal solutions of plastic microspheres suspended in a liquid serve as models of how molecules interact and form crystals. For the Dynamics of Colloidal Disorder-Order Transition (CDOT) experiment, Paul Chaikin of Princeton University has identified effects that are attributable to Earth's gravity and demonstrated that experiments are needed in the microgravity of orbit. Space experiments have produced unexpected dendritic (snowflake-like) structures. To date, the largest hard sphere crystal grown is a 3 mm single crystal grown at the cool end of a ground sample. At least two more additional flight experiments are plarned aboard the International Space Station. This image is from a video downlink.

  19. The Microwave Radiative Properties of Falling Snow Derived from Nonspherical Ice Particle Models. Part II: Initial Testing Using Radar, Radiometer and In Situ Observations

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Tian, Lin; Grecu, Mircea; Kuo, Kwo-Sen; Johnson, Benjamin; Heymsfield, Andrew J.; Bansemer, Aaron; Heymsfield, Gerald M.; Wang, James R.; Meneghini, Robert

    2016-01-01

    In this study, two different particle models describing the structure and electromagnetic properties of snow are developed and evaluated for potential use in satellite combined radar-radiometer precipitation estimation algorithms. In the first model, snow particles are assumed to be homogeneous ice-air spheres with single-scattering properties derived from Mie theory. In the second model, snow particles are created by simulating the self-collection of pristine ice crystals into aggregate particles of different sizes, using different numbers and habits of the collected component crystals. Single-scattering properties of the resulting nonspherical snow particles are determined using the discrete dipole approximation. The size-distribution-integrated scattering properties of the spherical and nonspherical snow particles are incorporated into a dual-wavelength radar profiling algorithm that is applied to 14- and 34-GHz observations of stratiform precipitation from the ER-2 aircraft-borne High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) radar. The retrieved ice precipitation profiles are then input to a forward radiative transfer calculation in an attempt to simulate coincident radiance observations from the Conical Scanning Millimeter-Wave Imaging Radiometer (CoSMIR). Much greater consistency between the simulated and observed CoSMIR radiances is obtained using estimated profiles that are based upon the nonspherical crystal/aggregate snow particle model. Despite this greater consistency, there remain some discrepancies between the higher moments of the HIWRAP-retrieved precipitation size distributions and in situ distributions derived from microphysics probe observations obtained from Citation aircraft underflights of the ER-2. These discrepancies can only be eliminated if a subset of lower-density crystal/aggregate snow particles is assumed in the radar algorithm and in the interpretation of the in situ data.

  20. Thermodynamics and mechanics of stretch-induced crystallization in rubbers

    NASA Astrophysics Data System (ADS)

    Guo, Qiang; Zaïri, Fahmi; Guo, Xinglin

    2018-05-01

    The aim of the present paper is to provide a quantitative prediction of the stretch-induced crystallization in natural rubber, the exclusive reason for its history-dependent thermomechanical features. A constitutive model based on a micromechanism inspired molecular chain approach is formulated within the context of the thermodynamic framework. The molecular configuration of the partially crystallized single chain is analyzed and calculated by means of some statistical mechanical methods. The random thermal oscillation of the crystal orientation, considered as a continuous random variable, is treated by means of a representative angle. The physical expression of the chain free energy is derived according to a two-step strategy by separating crystallization and stretching. This strategy ensures that the stretch-induced part of the thermodynamic crystallization force is null at the initial instant and allows, without any additional constraint, the formulation of a simple linear relationship for the crystallinity evolution law. The model contains very few physically interpretable material constants to simulate the complex mechanism: two chain-scale constants, one crystallinity kinetics constant, three thermodynamic constants related to the newly formed crystallites, and a function controlling the crystal orientation with respect to the chain. The model is used to discuss some important aspects of the micromechanism and the macroresponse under the equilibrium state and the nonequilibrium state involved during stretching and recovery, and continuous relaxation.

  1. Novel protein crystal growth technology: Proof of concept

    NASA Technical Reports Server (NTRS)

    Nyce, Thomas A.; Rosenberger, Franz

    1989-01-01

    A technology for crystal growth, which overcomes certain shortcomings of other techniques, is developed and its applicability to proteins is examined. There were several unknowns to be determined: the design of the apparatus for suspension of crystals of varying (growing) diameter, control of the temperature and supersaturation, the methods for seeding and/or controlling nucleation, the effect on protein solutions of the temperature oscillations arising from the circulation, and the effect of the fluid shear on the suspended crystals. Extensive effort was put forth to grow lysozyme crystals. Under conditions favorable to the growth of tetragonal lysozyme, spontaneous nucleation could be produced but the number of nuclei could not be controlled. Seed transfer techniques were developed and implemented. When conditions for the orthorhombic form were tried, a single crystal 1.5 x 0.5 x 0.2 mm was grown (after in situ nucleation) and successfully extracted. A mathematical model was developed to predict the flow velocity as a function of the geometry and the operating temperatures. The model can also be used to scaleup the apparatus for growing larger crystals of other materials such as water soluble non-linear optical materials. This crystal suspension technology also shows promise for high quality solution growth of optical materials such as TGS and KDP.

  2. Ultratough single crystal boron-doped diamond

    DOEpatents

    Hemley, Russell J [Carnegie Inst. for Science, Washington, DC ; Mao, Ho-Kwang [Carnegie Inst. for Science, Washington, DC ; Yan, Chih-Shiue [Carnegie Inst. for Science, Washington, DC ; Liang, Qi [Carnegie Inst. for Science, Washington, DC

    2015-05-05

    The invention relates to a single crystal boron doped CVD diamond that has a toughness of at least about 22 MPa m.sup.1/2. The invention further relates to a method of manufacturing single crystal boron doped CVD diamond. The growth rate of the diamond can be from about 20-100 .mu.m/h.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sornadurai, D.; Ravindran, T. R.; Paul, V. Thomas

    Synthesis parameters are optimized in order to grow single crystals of multiferroic BiFeO{sub 3}. 2 to 3 mm size pyramid (tetrahedron) shaped single crystals were successfully obtained by solvothermal method. Scanning electron microscopy with EDAX confirmed the phase formation. Raman scattering spectra of bulk BiFeO3 single crystals have been measured which match well with reported spectra.

  4. Arc-melting preparation of single crystal LaB.sub.6 cathodes

    DOEpatents

    Gibson, Edwin D.; Verhoeven, John D.

    1977-06-21

    A method for preparing single crystals of lanthanum hexaboride (LaB.sub.6) by arc melting a rod of compacted LaB.sub.6 powder. The method is especially suitable for preparing single crystal LaB.sub.6 cathodes for use in scanning electron microscopes (SEM) and scanning transmission electron microscopes (STEM).

  5. Deformation Mechanism and Recrystallization Relationships in Galfenol Single Crystals: On the Origin of Goss and Cube Orientations

    NASA Astrophysics Data System (ADS)

    Na, Suok-Min; Smith, Malcolm; Flatau, Alison B.

    2018-06-01

    In this work, deformation mechanism related to recrystallization behavior in single-crystal disks of Galfenol (Fe-Ga alloy) was investigated to gain insights into the influence of crystal orientations on structural changes and selective grain growth that take place during secondary recrystallization. We started with the three kinds of single-crystal samples with (011)[100], (001)[100], and (001)[110] orientations, which were rolled and annealed to promote the formation of different grain structures and texture evolutions. The initial Goss-oriented (011)[100] crystal mostly rotated into {111}<112> orientations with twofold symmetry and shear band structures by twinning resulted in the exposure of rolled surface along {001}<110> orientation during rolling. In contrast, the Cube-oriented (001)[100] single crystal had no change in texture during rolling with the thickness reduction up to 50 pct. The {123}<111> slip systems were preferentially activated in these single crystals during deformation as well as {112}<111> slip systems that are known to play a role in primary slip of body-centered cubic (BCC) materials such as α-iron and Fe-Si alloys. After annealing, the deformed Cube-oriented single crystal had a small fraction (<10 pct) of recrystallized Goss-oriented grains. The weak Goss component remained in the shear bands of the 50 pct rolled Goss-oriented single crystal, and it appeared to be associated with coalescence of subgrains inside shear band structures during primary recrystallization. Rolling of the (001)[110] single crystal led to the formation of a tilted (001)[100] component close to the <120> orientation, associated with {123}<111> slip systems as well. This was expected to provide potential sites of nucleation for secondary recrystallization; however, no Goss- and Cube-oriented components actually developed in this sample during secondary recrystallization. Those results illustrated how the recrystallization behavior can be influenced by deformed structure and the slip systems.

  6. Single crystal growth and structural evolution across the 1st order valence transition in (Pr1-yYy)1-xCaxCoO3-δ

    NASA Astrophysics Data System (ADS)

    Schreiber, N. J.; Zhang, Junjie; Zheng, Hong; Freeland, J. W.; Chen, Yu-Sheng; Mitchell, J. F.; Phelan, D.

    2017-10-01

    Praseodymium-containing cobalt perovskites, such as (Pr1-yYy)1-xCaxCoO3-δ, have been argued to undergo a first-order charge shift between Pr and hybridized Co-O orbitals that leads to a metal-insulator transition at a temperature, TVT. Magnetization and x-ray absorption spectroscopy measurements on single crystals of (Pr0.85Y0.15)0.7Ca0.3CoO3-δ grown in an IR image furnace under 40-60 bar of oxygen confirm the presence of this valence transition. Single crystal x-ray synchrotron diffraction measurements are consistent with an isomorphic phase transition at TVT. No evidence of charge ordering was revealed by the single crystal diffraction. Dissimilar to analytical transmission electron microscopy measurements performed on a grain from a polycrystalline sample that revealed an oxygen vacancy order-disorder transition at TVT, the present single-crystal measurements did not evidence such a transition, likely reflecting a lower density of oxygen vacancies in the high-pO2 grown single crystals.

  7. Method for implantation of high dopant concentrations in wide band gap materials

    DOEpatents

    Usov, Igor [Los Alamos, NM; Arendt, Paul N [Los Alamos, NM

    2009-09-15

    A method that combines alternate low/medium ion dose implantation with rapid thermal annealing at relatively low temperatures. At least one dopant is implanted in one of a single crystal and an epitaxial film of the wide band gap compound by a plurality of implantation cycles. The number of implantation cycles is sufficient to implant a predetermined concentration of the dopant in one of the single crystal and the epitaxial film. Each of the implantation cycles includes the steps of: implanting a portion of the predetermined concentration of the one dopant in one of the single crystal and the epitaxial film; annealing one of the single crystal and the epitaxial film and implanted portion at a predetermined temperature for a predetermined time to repair damage to one of the single crystal and the epitaxial film caused by implantation and activates the implanted dopant; and cooling the annealed single crystal and implanted portion to a temperature of less than about 100.degree. C. This combination produces high concentrations of dopants, while minimizing the defect concentration.

  8. Studies on 2-amino-5-nitropyridinium nitrate (2A5NPN): A semi-organic third order nonlinear optical single crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivasubramani, V.; Pandian, Muthu Senthil, E-mail: senthilpandianm@ssn.edu.in; Ramasamy, P.

    2016-05-23

    2-amino-5-nitropyridinium nitrate (2A5NPN) is a semi-organic nonlinear optical crystal and optically good quality 2A5NPN single crystals were successfully grown by slow evaporation solution growth technique (SEST) at ambient temperature. The crystallographic structure of the grown crystal was determined by single crystal X-Ray diffraction analysis and it belongs to Monoclinic crystal system with centro symmetric crystalline nature. The crystallinity of the grown crystal was confirmed by powder X-ray diffraction analysis. The other physical properties of grown crystals are also characterized using TG-DTA, UV-Visible NIR, chemical etching, photoconductivity and Z-scan measurements. The Z-scan method reveals that the 2A5NPN crystal possesses multi photonmore » absorption behaviour and the significantly higher third order susceptibility and it is a promising potential NLO material.« less

  9. Synthesis, crystal growth, structural, thermal, optical and mechanical properties of solution grown 4-methylpyridinium 4-hydroxybenzoate single crystal.

    PubMed

    Sudhahar, S; Krishna Kumar, M; Sornamurthy, B M; Mohan Kumar, R

    2014-01-24

    Organic nonlinear optical material, 4-methylpyridinium 4-hydroxybenzoate (4MPHB) was synthesized and single crystal was grown by slow evaporation solution growth method. Single crystal and powder X-ray diffraction analyses confirm the structure and crystalline perfection of 4MPHB crystal. Infrared, Raman and NMR spectroscopy techniques were used to elucidate the functional groups present in the compound. TG-DTA analysis was carried out in nitrogen atmosphere to study the decomposition stages, endothermic and exothermic reactions. UV-visible and Photoluminescence spectra were recorded for the grown crystal to estimate the transmittance and band gap energy respectively. Linear refractive index, birefringence, and SHG efficiency of the grown crystal were studied. Laser induced surface damage threshold and mechanical properties of grown crystal were studied to assess the suitability of the grown crystals for device applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Deciphering chemical order/disorder and material properties at the single-atom level

    DOE PAGES

    Yang, Yongsoo; Chen, Chien-Chun; Scott, M. C.; ...

    2017-02-01

    Perfect crystals are rare in nature. Real materials often contain crystal defects and chemical order/disorder such as grain boundaries, dislocations, interfaces, surface reconstructions and point defects. Such disruption in periodicity strongly affects material properties and functionality. Despite rapid development of quantitative material characterization methods, correlating three-dimensional (3D) atomic arrangements of chemical order/disorder and crystal defects with material properties remains a challenge. On a parallel front, quantum mechanics calculations such as density functional theory (DFT) have progressed from the modelling of ideal bulk systems to modelling ‘real’ materials with dopants, dislocations, grain boundaries and interfaces; but these calculations rely heavily onmore » average atomic models extracted from crystallography. To improve the predictive power of first-principles calculations, there is a pressing need to use atomic coordinates of real systems beyond average crystallographic measurements. Here we determine the 3D coordinates of 6,569 iron and 16,627 platinum atoms in an iron-platinum nanoparticle, and correlate chemical order/disorder and crystal defects with material properties at the single-atom level. We identify rich structural variety with unprecedented 3D detail including atomic composition, grain boundaries, anti-phase boundaries, anti-site point defects and swap defects. We show that the experimentally measured coordinates and chemical species with 22 picometre precision can be used as direct input for DFT calculations of material properties such as atomic spin and orbital magnetic moments and local magnetocrystalline anisotropy. The work presented here combines 3D atomic structure determination of crystal defects with DFT calculations, which is expected to advance our understanding of structure–property relationships at the fundamental level.« less

  11. Effect of the Inhomogeneity of Ice Crystals on Retrieving Ice Cloud Optical Thickness and Effective Particle Size

    NASA Technical Reports Server (NTRS)

    Xie, Yu; Minnis, Patrick; Hu, Yong X.; Kattawar, George W.; Yang, Ping

    2008-01-01

    Spherical or spheroidal air bubbles are generally trapped in the formation of rapidly growing ice crystals. In this study the single-scattering properties of inhomogeneous ice crystals containing air bubbles are investigated. Specifically, a computational model based on an improved geometric-optics method (IGOM) has been developed to simulate the scattering of light by randomly oriented hexagonal ice crystals containing spherical or spheroidal air bubbles. A combination of the ray-tracing technique and the Monte Carlo method is used. The effect of the air bubbles within ice crystals is to smooth the phase functions, diminish the 22deg and 46deg halo peaks, and substantially reduce the backscatter relative to bubble-free particles. These features vary with the number, sizes, locations and shapes of the air bubbles within ice crystals. Moreover, the asymmetry factors of inhomogeneous ice crystals decrease as the volume of air bubbles increases. Cloud reflectance lookup tables were generated at wavelengths 0.65 m and 2.13 m with different air-bubble conditions to examine the impact of the bubbles on retrieving ice cloud optical thickness and effective particle size. The reflectances simulated for inhomogeneous ice crystals are slightly larger than those computed for homogenous ice crystals at a wavelength of 0.65 microns. Thus, the retrieved cloud optical thicknesses are reduced by employing inhomogeneous ice cloud models. At a wavelength of 2.13 microns, including air bubbles in ice cloud models may also increase the reflectance. This effect implies that the retrieved effective particle sizes for inhomogeneous ice crystals are larger than those retrieved for homogeneous ice crystals, particularly, in the case of large air bubbles.

  12. In-situ neutron diffraction and crystal plasticity finite element modeling to study the kinematic stability of retained austenite in bearing steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voothaluru, Rohit; Bedekar, Vikram; Xie, Qingge

    This work integrates in-situ neutron diffraction and crystal plasticity finite element modeling to study the kinematic stability of retained austenite in high carbon bearing steels. The presence of a kinematically metastable retained austenite in bearing steels can significantly affect the macro-mechanical and micro-mechanical material response. Mechanical characterization of metastable austenite is a critical component in accurately capturing the micro-mechanical behavior under typical application loads. Traditional mechanical characterization techniques are unable to discretely quantify the micro-mechanical response of the austenite, and as a result, the computational predictions rely heavily on trial and error or qualitative descriptions of the austenite phase. Inmore » order to overcome this, in the present work, we use in-situ neutron diffraction of a uniaxial tension test of an A485 Grade 1 bearing steel specimen. The mechanical response determined from the neutron diffraction analysis was incorporated into a hybrid crystal plasticity finite element model that accounts for the martensite's crystal plasticity and the stress-assisted transformation from austenite to martensite in bearing steels. Here, the modeling response was used to estimate the single crystal elastic constants of the austenite and martensite phases. Finally, the results show that using in-situ neutron diffraction, coupled with a crystal plasticity model, can successfully predict both the micro-mechanical and macro-mechanical responses of bearing steels while accounting for the martensitic transformation of the retained austenite.« less

  13. In-situ neutron diffraction and crystal plasticity finite element modeling to study the kinematic stability of retained austenite in bearing steels

    DOE PAGES

    Voothaluru, Rohit; Bedekar, Vikram; Xie, Qingge; ...

    2018-11-21

    This work integrates in-situ neutron diffraction and crystal plasticity finite element modeling to study the kinematic stability of retained austenite in high carbon bearing steels. The presence of a kinematically metastable retained austenite in bearing steels can significantly affect the macro-mechanical and micro-mechanical material response. Mechanical characterization of metastable austenite is a critical component in accurately capturing the micro-mechanical behavior under typical application loads. Traditional mechanical characterization techniques are unable to discretely quantify the micro-mechanical response of the austenite, and as a result, the computational predictions rely heavily on trial and error or qualitative descriptions of the austenite phase. Inmore » order to overcome this, in the present work, we use in-situ neutron diffraction of a uniaxial tension test of an A485 Grade 1 bearing steel specimen. The mechanical response determined from the neutron diffraction analysis was incorporated into a hybrid crystal plasticity finite element model that accounts for the martensite's crystal plasticity and the stress-assisted transformation from austenite to martensite in bearing steels. Here, the modeling response was used to estimate the single crystal elastic constants of the austenite and martensite phases. Finally, the results show that using in-situ neutron diffraction, coupled with a crystal plasticity model, can successfully predict both the micro-mechanical and macro-mechanical responses of bearing steels while accounting for the martensitic transformation of the retained austenite.« less

  14. Field-induced phase transitions and enhanced double negative electrocaloric effects in (Pb,La)(Zr,Sn,Ti)O3 antiferroelectric single crystal

    NASA Astrophysics Data System (ADS)

    Zhuo, Fangping; Li, Qiang; Qiao, Huimin; Yan, Qingfeng; Zhang, Yiling; Xi, Xiaoqing; Chu, Xiangcheng; Long, Xifa; Cao, Wenwu

    2018-03-01

    Field-induced phase transitions and electrocaloric effect have been studied in (Pb,La)(Zr,Sn,Ti)O3 (PLZST) antiferroelectric single crystal. Temperature dependent dielectric, Raman spectra, as well as in situ domain evolution demonstrated that the order of phase transitions during heating is in the sequence of orthorhombic antiferroelectric → tetragonal antiferroelectric → cubic paraelectric. Enhanced negative electrocaloric effect value of -3.6 °C and electrocaloric strength of 0.3 K mm/kV at 125 °C have been achieved. Double negative effects (-0.7 °C at 45 °C and -3.6 °C at 125 °C) and a relatively large positive effect (1 °C) near Curie temperature (190 °C) have been found in the PLZST single crystal. Moreover, microscopic dipoles and a phenomenological Landau-type model were employed to understand these unusual electrocaloric effects. Enhanced negative effect and the coexistence of both negative and positive effects in one material are promising for us to develop practical solid-state cooling devices with high efficiency.

  15. Polarized neutron imaging and three-dimensional calculation of magnetic flux trapping in bulk of superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Treimer, Wolfgang; Ebrahimi, Omid; Karakas, Nursel

    Polarized neutron radiography was used to study the three-dimensional magnetic flux distribution inside of single-crystal and polycrystalline Pb cylinders with large (cm3) volume and virtually zero demagnetization. Experiments with single crystals being in the Meissner phase (T

  16. Growth of EuO Single Crystals at Reduced Temperatures

    NASA Astrophysics Data System (ADS)

    Besara, Tiglet; Ramirez, Daniel; Whalen, Jeffrey; Siegrist, Theo

    Single crystals of Eu1-xBaxO have been grown in a barium-magnesium flux at moderate temperatures up to 1000°C, producing single crystals with barium doping levels ranging from x = 0 . 03 to x = 0 . 25 . Magnetic measurements show that the ferromagnetic Curie temperature TC correlates with the Ba doping levels, and a modified Heisenberg model is employed to describe the TC dependence on the stoichiometry. The decrease in TC is dominated by the Ba substitution on the Eu lattice with a small contribution arising from the lattice strain. Extrapolation of results indicates that a sample at x = 0 . 72 should have a TC = 0 K, potentially producing a quantum phase transition in this material. DOE SC-0008832, NSF DMR-1157490. This work was supported by the Department of Energy, Office of Basic Science, under contract DOE SC-0008832. This work has been performed at the National High Magnetic Field Laboratory, which is supported by the National Science Foundation Cooperative Agreement DMR-1157490, the State of Florida, and the U.S. Department of Energy.

  17. Vibrational Dynamics of Biological Molecules: Multi-quantum Contributions

    PubMed Central

    Leu, Bogdan M.; Timothy Sage, J.; Zgierski, Marek Z.; Wyllie, Graeme R. A.; Ellison, Mary K.; Robert Scheidt, W.; Sturhahn, Wolfgang; Ercan Alp, E.; Durbin, Stephen M.

    2006-01-01

    High-resolution X-ray measurements near a nuclear resonance reveal the complete vibrational spectrum of the probe nucleus. Because of this, nuclear resonance vibrational spectroscopy (NRVS) is a uniquely quantitative probe of the vibrational dynamics of reactive iron sites in proteins and other complex molecules. Our measurements of vibrational fundamentals have revealed both frequencies and amplitudes of 57Fe vibrations in proteins and model compounds. Information on the direction of Fe motion has also been obtained from measurements on oriented single crystals, and provides an essential test of normal mode predictions. Here, we report the observation of weaker two-quantum vibrational excitations (overtones and combinations) for compounds that mimic the active site of heme proteins. The predicted intensities depend strongly on the direction of Fe motion. We compare the observed features with predictions based on the observed fundamentals, using information on the direction of Fe motion obtained either from DFT predictions or from single crystal measurements. Two-quantum excitations may become a useful tool to identify the directions of the Fe oscillations when single crystals are not available. PMID:16894397

  18. Preparation and characterization of the magnetic superconductor EuSr2RuCu2O8-δ (RuEu-1212) by partial melting

    NASA Astrophysics Data System (ADS)

    Yamaki, K.; Kitagawa, N.; Funahashi, S.; Bamba, Y.; Irie, A.

    2018-07-01

    In this study, fine single crystals of the magnetic superconductor EuSr2RuCu2O8-δ (RuEu-1212) were successfully prepared using the partial melting technique. The obtained single crystals had a cubic shape, which coincides with the results of previous studies of RuGd-1212 single crystals. The single crystals had a typical length of 20-30 μm and the diffraction pattern observed from a sample prepared by partial melting was consistent with patterns of previously reported polycrystalline RuEu-1212 samples. A sample subjected to prolonged sintering, which consisted of a large number of combined micro single crystals prepared by partial melting, exhibited a superconducting transition with Tc-onset of 30.9 K and Tc-zero of 10.5 K.

  19. Synthesis, structural, optical and thermal properties of N-methyl-N-aryl benzamide organic single crystals grown by a slow evaporation technique

    NASA Astrophysics Data System (ADS)

    Prabukanthan, P.; Lakshmi, R.; Harichandran, G.; Kumar, C. Sudarsana

    2018-03-01

    The organic materials, N-methyl-N-aryl benzamides were synthesized from benzoylation of N-methyl-4-nitrobenzenamine (MNBA) using suitably substituted benzoyl chlorides. The products were purified by recrystallization and their single crystal were grown by a slow evaporation technique. The crystals were characterized by FTIR, UV-Vis-NIR, 1H &13C NMR, and single & powder X-ray diffraction. Thermal stability of the crystals was studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Dielectric and NLO properties of MNPB, FMNPB and MMNPB crystals were studied. The second harmonic generation (SHG) has been confirmed by the Kurtz powder test for all these crystals and the SHG efficiency of MMNPB crystal was found to be 2.25 times higher than that of KDP crystal.

  20. Structural and optical properties of WTe2 single crystals synthesized by DVT technique

    NASA Astrophysics Data System (ADS)

    Dixit, Vijay; Vyas, Chirag; Pathak, V. M.; Soalanki, G. K.; Patel, K. D.

    2018-05-01

    Layered transition metal di-chalcogenide (LTMDCs) crystals have attracted much attention due to their potential in optoelectronic device applications recently due to realization of their monolayer based structures. In the present investigation we report growth of WTe2 single crystals by direct vapor transport (DVT) technique. These crystals are then characterized by energy dispersive analysis of x-rays (EDAX) to study stoichiometric composition after growth. The structural properties are studied by x-ray diffraction (XRD) and selected area electron diffraction (SAED) is used to confirm orthorhombic structure of grown WTe2 crystal. Surface morphological properties of the crystals are also studied by scanning electron microscope (SEM). The optical properties of the grown crystals are studied by UV-Visible spectroscopy which gives direct band gap of 1.44 eV for grown WTe2 single crystals.

Top