Sample records for single current sensor

  1. Role of the array geometry in multi-bilayer hair cell sensors

    NASA Astrophysics Data System (ADS)

    Tamaddoni, Nima J.; Sarles, Stephen A.

    2014-03-01

    Recently, a bio-inspired, synthetic membrane-based hair cell sensor was fabricated and characterized. This sensor generates current in response to mechanical stimuli, such as airflow or free vibration, which perturb the sensor's hair. Vibration transferred from the hair to a lipid membrane (lipid bilayer) causes a voltage-dependent time rate of change in electrical capacitance of the membrane, which produces measurable current. Studies to date have been performed on systems containing only two droplets and a single bilayer, even though an array of multiple bilayers can be formed with more than 2 droplets. Thus, it is yet to be determined how multiple lipid bilayers affect the sensing response of a membrane-based hair cell sensor. In this work, we assemble serial droplet arrays with more than 1 bilayer to experimentally study the current generated by each membrane in response to perturbation of a single hair element. Two serial array configurations are studied: The first consists of a serial array of 3 bilayers formed using 4 droplets with the hair positioned in an end droplet. The second configuration consists of 3 droplets and 2 bilayers in series with the hair positioned in the central droplet. In serial arrays of up to four droplets, we observe that mechanotransduction of the hair's motion into a capacitive current occurs at every membrane, with bilayers positioned adjacent to the droplet containing the hair generating the largest sensing current. The measured currents suggest the total current generated by all bilayers in a 4-droplet, 3-bilaye array is greater than the current produced by a single-membrane sensor and similar in magnitude to the sum of currents output by 3, single-bilayer sensors operated independently. Moreover, we learned that bilayers positioned on the same side of the hair produce sensing currents that are in-phase, whereas bilayers positioned on opposite sides of the droplet containing the hair generate out-of-phase responses.

  2. Optimization of Self-Directed Target Coverage in Wireless Multimedia Sensor Network

    PubMed Central

    Yang, Yang; Wang, Yufei; Pi, Dechang; Wang, Ruchuan

    2014-01-01

    Video and image sensors in wireless multimedia sensor networks (WMSNs) have directed view and limited sensing angle. So the methods to solve target coverage problem for traditional sensor networks, which use circle sensing model, are not suitable for WMSNs. Based on the FoV (field of view) sensing model and FoV disk model proposed, how expected multimedia sensor covers the target is defined by the deflection angle between target and the sensor's current orientation and the distance between target and the sensor. Then target coverage optimization algorithms based on expected coverage value are presented for single-sensor single-target, multisensor single-target, and single-sensor multitargets problems distinguishingly. Selecting the orientation that sensor rotated to cover every target falling in the FoV disk of that sensor for candidate orientations and using genetic algorithm to multisensor multitargets problem, which has NP-complete complexity, then result in the approximated minimum subset of sensors which covers all the targets in networks. Simulation results show the algorithm's performance and the effect of number of targets on the resulting subset. PMID:25136667

  3. Silicon trench photodiodes on a wafer for efficient X-ray-to-current signal conversion using side-X-ray-irradiation mode

    NASA Astrophysics Data System (ADS)

    Ariyoshi, Tetsuya; Takane, Yuta; Iwasa, Jumpei; Sakamoto, Kenji; Baba, Akiyoshi; Arima, Yutaka

    2018-04-01

    In this paper, we report a direct-conversion-type X-ray sensor composed of trench-structured silicon photodiodes, which achieves a high X-ray-to-current conversion efficiency under side X-ray irradiation. The silicon X-ray sensor with a length of 22.6 mm and a trench depth of 300 µm was fabricated using a single-poly single-metal 0.35 µm process. X-rays with a tube voltage of 80 kV were irradiated along the trench photodiode from the side of the test chip. The theoretical limit of X-ray-to-current conversion efficiency of 83.8% was achieved at a low reverse bias voltage of 25 V. The X-ray-to-electrical signal conversion efficiency of conventional indirect-conversion-type X-ray sensors is about 10%. Therefore, the developed sensor has a conversion efficiency that is about eight times higher than that of conventional sensors. It is expected that the developed X-ray sensor will be able to markedly lower the radiation dose required for X-ray diagnoses.

  4. Staying alive! Sensors used for monitoring cell health in bioreactors.

    PubMed

    O'Mara, P; Farrell, A; Bones, J; Twomey, K

    2018-01-01

    Current and next generation sensors such as pH, dissolved oxygen (dO) and temperature sensors that will help drive the use of single-use bioreactors in industry are reviewed. The current trend in bioreactor use is shifting from the traditional fixed bioreactors to the use of single-use bioreactors (SUBs). However as the shift in paradigm occurs there is now a greater need for sensor technology to play 'catch up' with the innovation of bioreactor technology. Many of the sensors still in use today rely on technology created in the 1960's such as the Clark-type dissolved oxygen sensor or glass pH electrodes. This is due to the strict requirements of sensors to monitor bioprocesses resulting in the use of traditional well understood methods, making it difficult to incorporate new sensor technology into industry. A number of advances in sensor technology have been achieved in recent years, a few of these advances and future research will also be discussed in this review. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Detection of single nano-defects in photonic crystals between crossed polarizers.

    PubMed

    Grepstad, Jon Olav; Kaspar, Peter; Johansen, Ib-Rune; Solgaard, Olav; Sudbø, Aasmund

    2013-12-16

    We investigate, by simulations and experiments, the light scattering of small particles trapped in photonic crystal membranes supporting guided resonance modes. Our results show that, due to amplified Rayleigh small particle scattering, such membranes can be utilized to make a sensor that can detect single nano-particles. We have designed a biomolecule sensor that uses cross-polarized excitation and detection for increased sensitivity. Estimated using Rayleigh scattering theory and simulation results, the current fabricated sensor has a detection limit of 26 nm, corresponding to the size of a single virus. The sensor can potentially be made both cheap and compact, to facilitate use at point-of-care.

  6. Integrated Joule switches for the control of current dynamics in parallel superconducting strips

    NASA Astrophysics Data System (ADS)

    Casaburi, A.; Heath, R. M.; Cristiano, R.; Ejrnaes, M.; Zen, N.; Ohkubo, M.; Hadfield, R. H.

    2018-06-01

    Understanding and harnessing the physics of the dynamic current distribution in parallel superconducting strips holds the key to creating next generation sensors for single molecule and single photon detection. Non-uniformity in the current distribution in parallel superconducting strips leads to low detection efficiency and unstable operation, preventing the scale up to large area sensors. Recent studies indicate that non-uniform current distributions occurring in parallel strips can be understood and modeled in the framework of the generalized London model. Here we build on this important physical insight, investigating an innovative design with integrated superconducting-to-resistive Joule switches to break the superconducting loops between the strips and thus control the current dynamics. Employing precision low temperature nano-optical techniques, we map the uniformity of the current distribution before- and after the resistive strip switching event, confirming the effectiveness of our design. These results provide important insights for the development of next generation large area superconducting strip-based sensors.

  7. Selectivity Enhancement by Using Double-Layer MOX-Based Gas Sensors Prepared by Flame Spray Pyrolysis (FSP).

    PubMed

    Rebholz, Julia; Grossmann, Katharina; Pham, David; Pokhrel, Suman; Mädler, Lutz; Weimar, Udo; Barsan, Nicolae

    2016-09-06

    Here we present a novel concept for the selective recognition of different target gases with a multilayer semiconducting metal oxide (SMOX)-based sensor device. Direct current (DC) electrical resistance measurements were performed during exposure to CO and ethanol as single gases and mixtures of highly porous metal oxide double- and single-layer sensors obtained by flame spray pyrolysis. The results show that the calculated resistance ratios of the single- and double-layer sensors are a good indicator for the presence of specific gases in the atmosphere, and can constitute some building blocks for the development of chemical logic devices. Due to the inherent lack of selectivity of SMOX-based gas sensors, such devices could be especially relevant for domestic applications.

  8. Selectivity Enhancement by Using Double-Layer MOX-Based Gas Sensors Prepared by Flame Spray Pyrolysis (FSP)

    PubMed Central

    Rebholz, Julia; Grossmann, Katharina; Pham, David; Pokhrel, Suman; Mädler, Lutz; Weimar, Udo; Barsan, Nicolae

    2016-01-01

    Here we present a novel concept for the selective recognition of different target gases with a multilayer semiconducting metal oxide (SMOX)-based sensor device. Direct current (DC) electrical resistance measurements were performed during exposure to CO and ethanol as single gases and mixtures of highly porous metal oxide double- and single-layer sensors obtained by flame spray pyrolysis. The results show that the calculated resistance ratios of the single- and double-layer sensors are a good indicator for the presence of specific gases in the atmosphere, and can constitute some building blocks for the development of chemical logic devices. Due to the inherent lack of selectivity of SMOX-based gas sensors, such devices could be especially relevant for domestic applications. PMID:27608028

  9. Annealing of linear birefringence in single-mode fiber coils - Application to optical fiber current sensors

    NASA Technical Reports Server (NTRS)

    Tang, Dingding; Rose, A. H.; Day, G. W.; Etzel, Shelley M.

    1991-01-01

    Annealing procedures that greatly reduce linear birefringence in single-mode fiber coils are described. These procedures have been successfully applied to coils ranging from 5 mm to 10 cm in diameter and up to 200 or more turns. They involve temperature cycles that last 3-4 days and reach maximum temperatures of about 850 C. The residual birefringence and induced loss are minimized by proper selection of fiber. The primary application of these coils is optical fiber current sensors, where they yield small sensors that are more stable than those achieved by other techniques. A current sensor with a temperature stability of 8.4 x 10 to the -5th/K over the range from -75 to 145 C has been demonstrated. This is approximately 20 percent greater than the temperature dependence of the Verdet constant. Packaging degrades the stability, but a packaged sensor coil with a temperature stability of about 1.6 + 10 to the -4th/K over the range from -20 to 120 C has also been demonstrated.

  10. A fiber-optic current sensor for aerospace applications

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Rose, A. H.; Tang, D.; Day, G. W.

    1990-01-01

    A robust, accurate, broad-band, alternating current sensor using fiber optics is being developed for space applications at power frequencies as high as 20 kHz. It can also be used in low and high voltage 60 Hz terrestrial power systems and in 400 Hz aircraft systems. It is intrinsically electromagnetic interference (EMI) immune and has the added benefit of excellent isolation. The sensor uses the Faraday effect in optical fiber and standard polarimetric measurements to sense electrical current. The primary component of the sensor is a specially treated coil of single-mode optical fiber, through which the current carrying conductor passes. Improved precision is accomplished by temperature compensation by means of signals from a novel fiber-optic temperature sensor embedded in the sensing head. The technology contained in the sensor is examined and the results of precision tests conducted at various temperatures within the wide operating range are given. The results of early EMI tests are also given.

  11. A fiber-optic current sensor for aerospace applications

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Rose, A. H.; Tang, D.; Day, G. W.

    1990-01-01

    A robust, accurate, broadband, alternating current sensor using fiber optics is being developed for space applications at power frequencies as high as 20 kHz. It can also be used in low and high voltage 60-Hz terrestrial power systems and in 400-Hz aircraft systems. It is intrinsically electromagnetic interference (EMI) immune and has the added benefit of excellent isolation. The sensor uses the Faraday effect in optical fiber and standard polarimetric measurements to sense electrical current. The primary component of the sensor is a specially treated coil of single-mode optical fiber, through which the current carrying conductor passes. Improved precision is accomplished by temperature compensation by means of signals from a novel fiber-optic temperature sensor embedded in the sensing head. The technology used in the sensor is examined and the results of precision tests conducted at various temperatures within the wide operating range are given. The results of early EMI tests are also given.

  12. A fiber-optic current sensor for aerospace applications

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Rose, A. H.; Tang, D.; Day, G. W.

    1990-01-01

    A robust, accurate, broadband, alternating current sensor using fiber optics is being developed for space applications at power frequencies as high as 20 kHz. It can also be used in low- and high-voltage 60-Hz terrestrial power systems and in 400-Hz aircraft systems. It is intrinsically EMI (electromagnetic interference) immune and has the added benefit of excellent isolation. The sensor uses the Faraday effect in optical fiber and standard polarimetric measurements to sense electrical current. The primary component of the sensor is a specially treated coil of single-mode optical fiber, through which the current carrying conductor passes. Improved precision is accomplished by temperature compensation by means of signals from a fiber-optic temperature sensor embedded in the sensing head. The authors report on the technology contained in the sensor and also relate the results of precision tests conducted at various temperatures within the wide operating range. The results of early EMI tests are shown.

  13. Sensor Fusion Techniques for Phased-Array Eddy Current and Phased-Array Ultrasound Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arrowood, Lloyd F.

    Sensor (or Data) fusion is the process of integrating multiple data sources to produce more consistent, accurate and comprehensive information than is provided by a single data source. Sensor fusion may also be used to combine multiple signals from a single modality to improve the performance of a particular inspection technique. Industrial nondestructive testing may utilize multiple sensors to acquire inspection data depending upon the object under inspection and the anticipated types of defects that can be identified. Sensor fusion can be performed at various levels of signal abstraction with each having its strengths and weaknesses. A multimodal data fusionmore » strategy first proposed by Heideklang and Shokouhi that combines spatially scattered detection locations to improve detection performance of surface-breaking and near-surface cracks in ferromagnetic metals is shown using a surface inspection example and is then extended for volumetric inspections. Utilizing data acquired from an Olympus Omniscan MX2 from both phased array eddy current and ultrasound probes on test phantoms, single and multilevel fusion techniques are employed to integrate signals from the two modalities. Preliminary results demonstrate how confidence in defect identification and interpretation benefit from sensor fusion techniques. Lastly, techniques for integrating data into radiographic and volumetric imagery from computed tomography are described and results are presented.« less

  14. Single Protein Structural Analysis with a Solid-state Nanopore Sensor

    NASA Astrophysics Data System (ADS)

    Li, Jiali; Golovchenko, Jene; McNabb, David

    2005-03-01

    We report on the use of solid-state nanopore sensors to detect single polypeptides. These solid-state nanopores are fabricated in thin membranes of silicon nitride by ion beam sculpting...[1]. When an electrically biased nanopore is exposed to denatured proteins in ionic solution, discrete transient electronic signals: current blockages are observed. We demonstrate examples of such transient electronic signals for Bovine Serum Albumin (BSA) and human placental laminin M proteins in Guanidine hydrochloride solution, which suggest that these polypeptides are individually translocating through the nanopore during the detecting process. The amplitude of the current blockages is proportional to the bias voltage. No transient current blockages are observed when proteins are not present in the solution. To probe protein-folding state, pH and temperature dependence experiments are performed. The results demonstrate a solid-state nanopore sensor can be used to detect and analyze single polypeptide chains. Similarities and differences with signals obtained from double stranded DNA in a solid-state nanopore and single stranded DNA in a biological nanopore are discussed. [.1] Li, J., D. Stein, C. McMullan, D. Branton, M.J. Aziz, and J.A. Golovchenko, Ion-beam sculpting at nanometre length scales. Nature, 2001. 412(12 July): p. 166-169.

  15. Optical sensor based on a single CdS nanobelt.

    PubMed

    Li, Lei; Yang, Shuming; Han, Feng; Wang, Liangjun; Zhang, Xiaotong; Jiang, Zhuangde; Pan, Anlian

    2014-04-23

    In this paper, an optical sensor based on a cadmium sulfide (CdS) nanobelt has been developed. The CdS nanobelt was synthesized by the vapor phase transportation (VPT) method. X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM) results revealed that the nanobelt had a hexagonal wurtzite structure of CdS and presented good crystal quality. A single nanobelt Schottky contact optical sensor was fabricated by the electron beam lithography (EBL) technique, and the device current-voltage results showed back-to-back Schottky diode characteristics. The photosensitivity, dark current and the decay time of the sensor were 4 × 10⁴, 31 ms and 0.2 pA, respectively. The high photosensitivity and the short decay time were because of the exponential dependence of photocurrent on the number of the surface charges and the configuration of the back to back Schottky junctions.

  16. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors

    USGS Publications Warehouse

    Chander, G.; Markham, B.L.; Helder, D.L.

    2009-01-01

    This paper provides a summary of the current equations and rescaling factors for converting calibrated Digital Numbers (DNs) to absolute units of at-sensor spectral radiance, Top-Of-Atmosphere (TOA) reflectance, and at-sensor brightness temperature. It tabulates the necessary constants for the Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Advanced Land Imager (ALI) sensors. These conversions provide a basis for standardized comparison of data in a single scene or between images acquired on different dates or by different sensors. This paper forms a needed guide for Landsat data users who now have access to the entire Landsat archive at no cost.

  17. Summary of Current Radiometric Calibration Coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI Sensors

    NASA Technical Reports Server (NTRS)

    Chander, Gyanesh; Markham, Brian L.; Helder, Dennis L.

    2009-01-01

    This paper provides a summary of the current equations and rescaling factors for converting calibrated Digital Numbers (DNs) to absolute units of at-sensor spectral radiance, Top-Of- Atmosphere (TOA) reflectance, and at-sensor brightness temperature. It tabulates the necessary constants for the Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Advanced Land Imager (ALI) sensors. These conversions provide a basis for standardized comparison of data in a single scene or between images acquired on different dates or by different sensors. This paper forms a needed guide for Landsat data users who now have access to the entire Landsat archive at no cost.

  18. A MEMS sensor for AC electric current

    NASA Astrophysics Data System (ADS)

    Leland, Eli Sidney

    This manuscript describes the development of a new MEMS sensor for the measurement of AC electric current. The sensor is comprised of a MEMS piezoelectric cantilever with a microscale permanent magnet mounted to the cantilever's free end. When placed near a wire carrying AC current, the magnet couples to the oscillating magnetic field surrounding the wire, causing the cantilever to deflect, and piezoelectric coupling produces a sinusoidal voltage proportional to the current in the wire. The sensor is itself passive, requiring no power supply to operate. It also operates on proximity and need only be placed near a current carrier in order to function. The sensor does not need to encircle the current carrier and it therefore can measure current in two-wire zip-cords without necessitating the separation of the two conductors. Applications for tins sensor include measuring residential and commercial electricity use and monitoring electric power distribution networks. An analytical model describing the behavior of the current sensor was developed. This model was also adapted to describe the power output of an energy scavenger coupled to a wire carrying AC current. A mesoscale sensor exhibited a sensitivity of 75 mV/A when measuring AC electric current in a zip-cord. A mesoscale energy scavenger produced 345 muW when coupled to a zip-cord carrying 13 A. MEMS current sensors were fabricated from aluminum nitride piezoelectric cantilevers and composite permanent magnets. The cantilevers were fabricated using a four-mask process. Microscale permanent magnets were dispenser-printed using NdFeB magnetic powder with an epoxy binder. The MEMS AC current sensor was interfaced with amplification circuitry and packaged inside an almninum enclosure. The sensor was also integrated with a mesoscale energy scavenger and power conditioning circuitry to create a fully self-powered current sensor. Unamplified sensitivity of the sensor was 0.1-1.1 mV/A when measuring currents in single wires and zip-cords. The self-powered current sensor operated at a 0.6% duty cycle when coupled to the zip-cord of a 1500 W space heater drawing 13 A. The self-powered sensor's energy scavenger transferred energy to a 10 mF storage capacitor at a rate of 69 muJ/s.

  19. Carbon monoxide gas sensing using zinc oxide deposited by successive ionic layer adhesion and reaction

    NASA Astrophysics Data System (ADS)

    Florido, E. A.; Dagaas, N. A. C.

    2017-05-01

    This study was aimed to determine the carbon monoxide (CO) gas sensing capability of zinc oxide (ZnO) film fabricated by successive ionic layer adsorption and reaction (SILAR) on glass substrate. Films consisting of a mixture of flower-like clusters of ZnO nanorods and nanowires were observed using scanning electron microscopy (SEM). Current-voltage characterization of the samples showed an average resistivity of 13.0 Ω-m. Carbon monoxide gas was synthesized by mixing the required amount of formic acid and excess sulfuric acid to produce CO gas concentrations of 100, 200, 300, 400, and 500 parts per million (ppm) v/v with five trials for each concentration. Two sets of data were obtained. One set consisted of the voltage response of the single film sensor while the other set were obtained from the double film sensor. The voltage response for the single film sensor and the double film sensor showed an average sensitivity of 0.0038 volts per ppm and 0.0024 volts per ppm, respectively. The concentration the single film can detect with a 2V output is 526 ppm while the double film sensor can detect up to 833 ppm with a 2V output. This shows that using the double film sensor is advantageous compared to single film sensor, because of its higher concentration range due to the larger surface area for the gas to interact. Moreover, the measured average resistance for the single film sensor was 10 MΩ while for the double film sensor the average resistance was 5 MΩ.

  20. Enhancing the Linear Dynamic Range in Multi-Channel Single Photon Detector beyond 7OD

    PubMed Central

    Gudkov, Dmytro; Gudkov, George; Gorbovitski, Boris; Gorfinkel, Vera

    2015-01-01

    We present design, implementation, and characterization of a single photon detector based on 32-channel PMT sensor [model H7260-20, Hamamatsu]. The developed high speed electronics enables the photon counting with linear dynamic range (LDR) up to 108count/s per detector's channel. The experimental characterization and Monte-Carlo simulations showed that in the single photon counting mode the LDR of the PMT sensor is limited by (i) “photon” pulse width (current pulse) of 900ps and (ii) substantial decrease of amplitudes of current pulses for count rates exceeding 108 count/s. The multi-channel architecture of the detector and the developed firm/software allow further expansion of the dynamic range of the device by 32-fold by using appropriate beam shaping. The developed single photon counting detector was tested for the detection of fluorescence labeled microbeads in capillary flow. PMID:27087788

  1. Current status of visibility sensors for aviation

    NASA Technical Reports Server (NTRS)

    Burnham, D. C.

    1983-01-01

    The development of a new increased range higher visibility was investigated. The visibility sensor that is currently is the Transmissometer. Current transmissometer technology provides only a factor of 10 dynamic range with a single base line. The FAA is preparing to install automated weather observing systems (AWOS) at many locations. These systems require visibilities up to approximately 5 miles. To use a transmissometer for this type of measurement, the base line must be about 1,000 feet; where alignment becomes very difficult to maintain. New technologies were developd for measuring visibility. Improved transmissometers, forward-scatter meters and back-scatter meters have become available. A current practical issue for visibility sensors is how to specify one that is good enough to meet the needs of aviation. The first question is what performance is required; how accurately must the sensor measure? Visibility sensors do not actually measure the visibility directly. The purpose of measuring the visibility is to predict what the pilot will see a considerable distance away from the sensor location. The atmosphere introduces considerable variation in the measurement and the basic sensor accuracy needed is difficult to define. The second question for high visibilities is what to use as the standard reference sensor. The third question pertains to the competitive procurement of visibility sensors, which is mandated at present. Two acceptance test procedures to be used to insure satisfactory sensor performance is examined.

  2. Design and development of genetically encoded fluorescent sensors to monitor intracellular chemical and physical parameters.

    PubMed

    Germond, Arno; Fujita, Hideaki; Ichimura, Taro; Watanabe, Tomonobu M

    Over the past decades many researchers have made major contributions towards the development of genetically encoded (GE) fluorescent sensors derived from fluorescent proteins. GE sensors are now used to study biological phenomena by facilitating the measurement of biochemical behaviors at various scales, ranging from single molecules to single cells or even whole animals. Here, we review the historical development of GE fluorescent sensors and report on their current status. We specifically focus on the development strategies of the GE sensors used for measuring pH, ion concentrations (e.g., chloride and calcium), redox indicators, membrane potential, temperature, pressure, and molecular crowding. We demonstrate that these fluroescent protein-based sensors have a shared history of concepts and development strategies, and we highlight the most original concepts used to date. We believe that the understanding and application of these various concepts will pave the road for the development of future GE sensors and lead to new breakthroughs in bioimaging.

  3. Design and development of genetically encoded fluorescent sensors to monitor intracellular chemical and physical parameters.

    PubMed

    Germond, Arno; Fujita, Hideaki; Ichimura, Taro; Watanabe, Tomonobu M

    2016-06-01

    Over the past decades many researchers have made major contributions towards the development of genetically encoded (GE) fluorescent sensors derived from fluorescent proteins. GE sensors are now used to study biological phenomena by facilitating the measurement of biochemical behaviors at various scales, ranging from single molecules to single cells or even whole animals. Here, we review the historical development of GE fluorescent sensors and report on their current status. We specifically focus on the development strategies of the GE sensors used for measuring pH, ion concentrations (e.g., chloride and calcium), redox indicators, membrane potential, temperature, pressure, and molecular crowding. We demonstrate that these fluroescent protein-based sensors have a shared history of concepts and development strategies, and we highlight the most original concepts used to date. We believe that the understanding and application of these various concepts will pave the road for the development of future GE sensors and lead to new breakthroughs in bioimaging.

  4. Characterization of AC current sensor based on giant magnetoresistance and coil for power meter design

    NASA Astrophysics Data System (ADS)

    Dhani, H. S.; Aminudin, A.; Waslaluddin

    2018-05-01

    Electric current is the basic variable of measurement in instrumentation system. One of the current measurements had been developed was based on magnetic sensor. Giant Magnetoresistance (GMR) produces an output voltage when it detects the magnetic field from electric current flow. The purpose of this study was to characterize the response of GMR when variation number of coil was given. The characterization was the GMR voltage response to the AC current values from 0.01 A to 5.00 A. The linearity of the relation was reaching saturation point when the magnetic field measured higher than 10.5 Oe at room temperature. As the number of coil increased, the earlier saturation occurred. To see the sensitivity of the sensor response, the data graph was cut off at 1.56 A AC. From this research, we got single coil was ideal to measure electric current higher than 1.56 A AC, as the relation of GMR voltage to the current tended to maintain its linearity. For measurement of 1.56 A AC and less, coil number addition would increase the sensitivity of sensor response. This research hopefully will be benefit for further development using an electric current measurement based on GMR magnetic sensor for power meter design.

  5. Estimating Morning Change in Land Surface Temperature from MODIS Day/Night Observations: Applications for Surface Energy Balance Modeling.

    PubMed

    Hain, Christopher R; Anderson, Martha C

    2017-10-16

    Observations of land surface temperature (LST) are crucial for the monitoring of surface energy fluxes from satellite. Methods that require high temporal resolution LST observations (e.g., from geostationary orbit) can be difficult to apply globally because several geostationary sensors are required to attain near-global coverage (60°N to 60°S). While these LST observations are available from polar-orbiting sensors, providing global coverage at higher spatial resolutions, the temporal sampling (twice daily observations) can pose significant limitations. For example, the Atmosphere Land Exchange Inverse (ALEXI) surface energy balance model, used for monitoring evapotranspiration and drought, requires an observation of the morning change in LST - a quantity not directly observable from polar-orbiting sensors. Therefore, we have developed and evaluated a data-mining approach to estimate the mid-morning rise in LST from a single sensor (2 observations per day) of LST from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor on the Aqua platform. In general, the data-mining approach produced estimates with low relative error (5 to 10%) and statistically significant correlations when compared against geostationary observations. This approach will facilitate global, near real-time applications of ALEXI at higher spatial and temporal coverage from a single sensor than currently achievable with current geostationary datasets.

  6. Development of microbend sensors for pressure, load, and displacement measurements in civil engineering

    NASA Astrophysics Data System (ADS)

    Grossman, Barry G.; Cosentino, Paul J.; Doi, Shinobu; Kumar, Girish; Verghese, John

    1994-05-01

    We are developing low cost, rugged, and reliable fiberoptic sensors to meet current and future needs in civil engineering, including those of smart civil structures. Our work has concentrated on load, pressure, and displacement sensors, including pore water pressure sensors. We have built and demonstrated sensors in the laboratory with loads up to 50 lb., water pressures of 100 psi, and displacements up to 1 mm. Repeatability of sensor measurements are within 5% and are being improved with continued development. The range and sensitivity of the sensors can be easily changed without changing the basic sensor design. We also have multiplexed two water pressure sensors on a single fiber. We describe the sensor construction and experimental performance.

  7. Monitoring Method and Apparatus Using Asynchronous, One-Way Transmission from Sensor to Base Station

    NASA Technical Reports Server (NTRS)

    Drouant, George J. (Inventor); Jensen, Scott L. (Inventor)

    2013-01-01

    A monitoring system is disclosed, which includes a base station and at least one sensor unit that is separate from the base station. The at least one sensor unit resides in a dormant state until it is awakened by the triggering of a vibration-sensitive switch. Once awakened, the sensor may take a measurement, and then transmit to the base station the measurement. Once data is transmitted from the sensor to the base station, the sensor may return to its dormant state. There may be various sensors for each base station and the various sensors may optionally measure different quantities, such as current, voltage, single-axis and/or three-axis magnetic fields.

  8. Electrical characterization of single cells using polysilicon wire ion sensor in an isolation window.

    PubMed

    Wu, You-Lin; Hsu, Po-Yen; Hsu, Chung-Ping; Wang, Chih-Cheng; Lee, Li-Wen; Lin, Jing-Jenn

    2011-10-01

    A polysilicon wire (PSW) sensor can detect the H(+) ion density (pH value) of the medium coated on its surface, and different cells produce different extracellular acidification and hence different H(+) ion densities. Based on this, we used a PSW sensor in combination with a mold-cast polydimethylsiloxane (PDMS) isolation window to detect the adhesion, apoptosis and extracellular acidification of single normal cells and single cancer cells. Single living human normal cells WI38, MRC5, and BEAS-2B as well as non-small-cell lung cancer (NSCLC) cells A549, H1299, and CH27 were cultivated separately inside the isolation window. The current flowing through the PSW channel was measured. From the PSW channel current change as a function of time, we determined the cell adhesion time by observing the time required for the current change to saturate, since a stable extracellular ion density was established after the cells were completely adhered to the PSW surface. The apoptosis of cells can also be determined when the channel current change drops to zero. We found that all the NSCLC cells had a higher channel current change and hence a lower pH value than the normal cells anytime after they were seeded. The corresponding average pH values were 5.86 for A549, 6.00 for H1299, 6.20 for CH27, 6.90 for BEAS-2B, 6.96for MRC5, and 7.02 for WI38, respectively, after the cells were completely adhered to the PSW surface. Our results show that NSCLC cells have a stronger cell-substrate adhesion and a higher extracellular acidification rate than normal cells.

  9. Chemical sensors are hybrid-input memristors

    NASA Astrophysics Data System (ADS)

    Sysoev, V. I.; Arkhipov, V. E.; Okotrub, A. V.; Pershin, Y. V.

    2018-04-01

    Memristors are two-terminal electronic devices whose resistance depends on the history of input signal (voltage or current). Here we demonstrate that the chemical gas sensors can be considered as memristors with a generalized (hybrid) input, namely, with the input consisting of the voltage, analyte concentrations and applied temperature. The concept of hybrid-input memristors is demonstrated experimentally using a single-walled carbon nanotubes chemical sensor. It is shown that with respect to the hybrid input, the sensor exhibits some features common with memristors such as the hysteretic input-output characteristics. This different perspective on chemical gas sensors may open new possibilities for smart sensor applications.

  10. Network hydraulics inclusion in water quality event detection using multiple sensor stations data.

    PubMed

    Oliker, Nurit; Ostfeld, Avi

    2015-09-01

    Event detection is one of the current most challenging topics in water distribution systems analysis: how regular on-line hydraulic (e.g., pressure, flow) and water quality (e.g., pH, residual chlorine, turbidity) measurements at different network locations can be efficiently utilized to detect water quality contamination events. This study describes an integrated event detection model which combines multiple sensor stations data with network hydraulics. To date event detection modelling is likely limited to single sensor station location and dataset. Single sensor station models are detached from network hydraulics insights and as a result might be significantly exposed to false positive alarms. This work is aimed at decreasing this limitation through integrating local and spatial hydraulic data understanding into an event detection model. The spatial analysis complements the local event detection effort through discovering events with lower signatures by exploring the sensors mutual hydraulic influences. The unique contribution of this study is in incorporating hydraulic simulation information into the overall event detection process of spatially distributed sensors. The methodology is demonstrated on two example applications using base runs and sensitivity analyses. Results show a clear advantage of the suggested model over single-sensor event detection schemes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Segmented wind energy harvester based on contact-electrification and as a self-powered flow rate sensor

    NASA Astrophysics Data System (ADS)

    Su, Yuanjie; Xie, Guangzhong; Xie, Fabiao; Xie, Tao; Zhang, Qiuping; Zhang, Hulin; Du, Hongfei; Du, Xiaosong; Jiang, Yadong

    2016-06-01

    A single-electrode-based segmented triboelectric nanogenerator (S-TENG) was developed. By utilizing the wind-induced vibration of a fluorinated ethylene propylene (FEP) film between two copper electrodes, the S-TENG delivers an open-circuit voltage up to 36 V and a short-circuit current of 11.8 μA, which can simultaneously light up 20 LEDs and charge capacitors. Moreover, the S-TENG holds linearity between output current and flow rate, revealing its feasibility as a self-powered wind speed sensor. This work demonstrates potential applications of S-TENG in wind energy harvester, self-powered gas sensor, high altitude air navigation.

  12. A multi-core fiber based interferometer for high temperature sensing

    NASA Astrophysics Data System (ADS)

    Zhou, Song; Huang, Bo; Shu, Xuewen

    2017-04-01

    In this paper, we have verified and implemented a Mach-Zehnder interferometer based on seven-core fiber for high temperature sensing application. This proposed structure is based on a multi-mode-multi-core-multi-mode fiber structure sandwiched by a single mode fiber. Between the single-mode and multi-core fiber, a 3 mm long multi-mode fiber is formed for lead-in and lead-out light. The basic operation principle of this device is the use of multi-core modes, single-mode and multi-mode interference coupling is also utilized. Experimental results indicate that this interferometer sensor is capable of accurate measurements of temperatures up to 800 °C, and the temperature sensitivity of the proposed sensor is as high as 170.2 pm/°C, which is much higher than the current existing MZI based temperature sensors (109 pm/°C). This type of sensor is promising for practical high temperature applications due to its advantages including high sensitivity, simple fabrication process, low cost and compactness.

  13. Single-walled carbon nanotubes based chemiresistive genosensor for label-free detection of human rheumatic heart disease

    NASA Astrophysics Data System (ADS)

    Singh, Swati; Kumar, Ashok; Khare, Shashi; Mulchandani, Ashok; Rajesh

    2014-11-01

    A specific and ultrasensitive, label free single-walled carbon nanotubes (SWNTs) based chemiresistive genosensor was fabricated for the early detection of Streptococcus pyogenes infection in human causing rheumatic heart disease. The mga gene of S. pyogenes specific 24 mer ssDNA probe was covalently immobilized on SWNT through a molecular bilinker, 1-pyrenemethylamine, using carbodiimide coupling reaction. The sensor was characterized by the current-voltage (I-V) characteristic curve and scanning electron microscopy. The sensing performance of the sensor was studied with respect to changes in conductance in SWNT channel based on hybridization of the target S. pyogenes single stranded genomic DNA (ssG-DNA) to its complementary 24 mer ssDNA probe. The sensor shows negligible response to non-complementary Staphylococcus aureus ssG-DNA, confirming the specificity of the sensor only with S. pyogenes. The genosensor exhibited a linear response to S. pyogenes G-DNA from 1 to1000 ng ml-1 with a limit of detection of 0.16 ng ml-1.

  14. Semiconductor neutron detector

    DOEpatents

    Ianakiev, Kiril D [Los Alamos, NM; Littlewood, Peter B [Cambridge, GB; Blagoev, Krastan B [Arlington, VA; Swinhoe, Martyn T [Los Alamos, NM; Smith, James L [Los Alamos, NM; Sullivan, Clair J [Los Alamos, NM; Alexandrov, Boian S [Los Alamos, NM; Lashley, Jason Charles [Santa Fe, NM

    2011-03-08

    A neutron detector has a compound of lithium in a single crystal form as a neutron sensor element. The lithium compound, containing improved charge transport properties, is either lithium niobate or lithium tantalate. The sensor element is in direct contact with a monitor that detects an electric current. A signal proportional to the electric current is produced and is calibrated to indicate the neutrons sensed. The neutron detector is particularly useful for detecting neutrons in a radiation environment. Such radiation environment may, e.g. include gamma radiation and noise.

  15. Miniature Biometric Sensor Project

    NASA Technical Reports Server (NTRS)

    Falker, John; Terrier, Douglas; Clayton, Ronald; Hanson, Andrea; Cooper, Tommy; Downs, Meghan; Flint, Stephanie; Reyna, Baraquiel; Simon, Cory; Wilt, Grier

    2015-01-01

    Heart rate monitoring (HRM) is a critical need during exploration missions. Unlike the four separate systems used on ISS today, the single HRM system should perform as a diagnostic tool, perform well during exercise or high level activity, and be suitable for use during EVA. Currently available HRM technologies are dependent on uninterrupted contact with the skin and are prone to data drop-out and motion artifact when worn in the spacesuit or during exercise. Here, we seek an alternative to the chest strap and electrode based sensors currently in use on ISS today. This project aims to develop a single, high performance, robust biosensor with focused efforts on improved heart rate data quality collection during high intensity activity such as exercise or EVA.

  16. Electrical coupling of single cardiac rat myocytes to field-effect and bipolar transistors.

    PubMed

    Kind, Thomas; Issing, Matthias; Arnold, Rüdiger; Müller, Bernt

    2002-12-01

    A novel bipolar transistor for extracellular recording the electrical activity of biological cells is presented, and the electrical behavior compared with the field-effect transistor (FET). Electrical coupling is examined between single cells separated from the heart of adults rats (cardiac myocytes) and both types of transistors. To initiate a local extracellular voltage, the cells are periodically stimulated by a patch pipette in voltage clamp and current clamp mode. The local extracellular voltage is measured by the planar integrated electronic sensors: the bipolar and the FET. The small signal transistor currents correspond to the local extracellular voltage. The two types of sensor transistors used here were developed and manufactured in the laboratory of our institute. The manufacturing process and the interfaces between myocytes and transistors are described. The recordings are interpreted by way of simulation based on the point-contact model and the single cardiac myocyte model.

  17. ATR architecture for multisensor fusion

    NASA Astrophysics Data System (ADS)

    Hamilton, Mark K.; Kipp, Teresa A.

    1996-06-01

    The work of the U.S. Army Research Laboratory (ARL) in the area of algorithms for the identification of static military targets in single-frame electro-optical (EO) imagery has demonstrated great potential in platform-based automatic target identification (ATI). In this case, the term identification is used to mean being able to tell the difference between two military vehicles -- e.g., the M60 from the T72. ARL's work includes not only single-sensor forward-looking infrared (FLIR) ATI algorithms, but also multi-sensor ATI algorithms. We briefly discuss ARL's hybrid model-based/data-learning strategy for ATI, which represents a significant step forward in ATI algorithm design. For example, in the case of single sensor FLIR it allows the human algorithm designer to build directly into the algorithm knowledge that can be adequately modeled at this time, such as the target geometry which directly translates into the target silhouette in the FLIR realm. In addition, it allows structure that is not currently well understood (i.e., adequately modeled) to be incorporated through automated data-learning algorithms, which in a FLIR directly translates into an internal thermal target structure signature. This paper shows the direct applicability of this strategy to both the single-sensor FLIR as well as the multi-sensor FLIR and laser radar.

  18. Persistent maritime surveillance using multi-sensor feature association and classification

    NASA Astrophysics Data System (ADS)

    van den Broek, Sebastiaan P.; Schwering, Piet B. W.; Liem, Kwan D.; Schleijpen, Ric

    2012-06-01

    In maritime operational scenarios, such as smuggling, piracy, or terrorist threats, it is not only relevant who or what an observed object is, but also where it is now and in the past in relation to other (geographical) objects. In situation and impact assessment, this information is used to determine whether an object is a threat. Single platform (ship, harbor) or single sensor information will not provide all this information. The work presented in this paper focuses on the sensor and object levels that provide a description of currently observed objects to situation assessment. For use of information of objects at higher information levels, it is necessary to have not only a good description of observed objects at this moment, but also from its past. Therefore, currently observed objects have to be linked to previous occurrences. Kinematic features, as used in tracking, are of limited use, as uncertainties over longer time intervals are so large that no unique associations can be made. Features extracted from different sensors (e.g., ESM, EO/IR) can be used for both association and classification. Features and classifications are used to associate current objects to previous object descriptions, allowing objects to be described better, and provide position history. In this paper a description of a high level architecture in which such a multi-sensor association is used is described. Results of an assessment of the usability of several features from ESM (from spectrum), EO and IR (shape, contour, keypoints) data for association and classification are shown.

  19. Amperometric Glucose Sensors: Sources of Error and Potential Benefit of Redundancy

    PubMed Central

    Castle, Jessica R.; Kenneth Ward, W.

    2010-01-01

    Amperometric glucose sensors have advanced the care of patients with diabetes and are being studied to control insulin delivery in the research setting. However, at times, currently available sensors demonstrate suboptimal accuracy, which can result from calibration error, sensor drift, or lag. Inaccuracy can be particularly problematic in a closed-loop glycemic control system. In such a system, the use of two sensors allows selection of the more accurate sensor as the input to the controller. In our studies in subjects with type 1 diabetes, the accuracy of the better of two sensors significantly exceeded the accuracy of a single, randomly selected sensor. If an array with three or more sensors were available, it would likely allow even better accuracy with the use of voting. PMID:20167187

  20. The constant current loop - A new paradigm for resistance signal conditioning

    NASA Astrophysics Data System (ADS)

    Anderson, Karl F.

    A practical single constant current loop circuit for the signal conditioning of variable-resistance transducers has been synthesized, analyzed, and demonstrated. The strain gage and the resistance temperature device are examples of variable-resistance sensors. Lead wires connect variable-resistance sensors to remotely located signal-conditioning hardware. The presence of lead wires in the conventional Wheatstone bridge signal-conditioning circuit introduces undesired effects that reduce the quality of the data from the remote sensors. A practical approach is presented for suppressing essentially all lead wire resistance effects while indicating only the change in resistance value. An adaptation of the current loop circuit is presented that simultaneously provides an output signal voltage directly proportional to transducer resistance change and provides temperature information that is unaffected by transducer and lead wire resistance variations.

  1. The constant current loop - A new paradigm for resistance signal conditioning

    NASA Technical Reports Server (NTRS)

    Anderson, Karl F.

    1993-01-01

    A practical single constant current loop circuit for the signal conditioning of variable-resistance transducers has been synthesized, analyzed, and demonstrated. The strain gage and the resistance temperature device are examples of variable-resistance sensors. Lead wires connect variable-resistance sensors to remotely located signal-conditioning hardware. The presence of lead wires in the conventional Wheatstone bridge signal-conditioning circuit introduces undesired effects that reduce the quality of the data from the remote sensors. A practical approach is presented for suppressing essentially all lead wire resistance effects while indicating only the change in resistance value. An adaptation of the current loop circuit is presented that simultaneously provides an output signal voltage directly proportional to transducer resistance change and provides temperature information that is unaffected by transducer and lead wire resistance variations.

  2. SAW-Based Phononic Crystal Microfluidic Sensor-Microscale Realization of Velocimetry Approaches for Integrated Analytical Platform Applications.

    PubMed

    Oseev, Aleksandr; Lucklum, Ralf; Zubtsov, Mikhail; Schmidt, Marc-Peter; Mukhin, Nikolay V; Hirsch, Soeren

    2017-09-23

    The current work demonstrates a novel surface acoustic wave (SAW) based phononic crystal sensor approach that allows the integration of a velocimetry-based sensor concept into single chip integrated solutions, such as Lab-on-a-Chip devices. The introduced sensor platform merges advantages of ultrasonic velocimetry analytic systems and a microacoustic sensor approach. It is based on the analysis of structural resonances in a periodic composite arrangement of microfluidic channels confined within a liquid analyte. Completed theoretical and experimental investigations show the ability to utilize periodic structure localized modes for the detection of volumetric properties of liquids and prove the efficacy of the proposed sensor concept.

  3. Improvements of low-detection-limit filter-free fluorescence sensor developed by charge accumulation operation

    NASA Astrophysics Data System (ADS)

    Tanaka, Kiyotsugu; Choi, Yong Joon; Moriwaki, Yu; Hizawa, Takeshi; Iwata, Tatsuya; Dasai, Fumihiro; Kimura, Yasuyuki; Takahashi, Kazuhiro; Sawada, Kazuaki

    2017-04-01

    We developed a low-detection-limit filter-free fluorescence sensor by a charge accumulation technique. For charge accumulation, a floating diffusion amplifier (FDA), which included a floating diffusion capacitor, a transfer gate, and a source follower circuit, was used. To integrate CMOS circuits with the filter-free fluorescence sensor, we adopted a triple-well process to isolate transistors from the sensor on a single chip. We detected 0.1 nW fluorescence under the illumination of excitation light by 1.5 ms accumulation, which was one order of magnitude greater than that of a previous current detection sensor.

  4. Few-Flakes Reduced Graphene Oxide Sensors for Organic Vapors with a High Signal-to-Noise Ratio

    PubMed Central

    Hasan, Nowzesh; Zhang, Wenli

    2017-01-01

    This paper reports our findings on how to prepare a graphene oxide-based gas sensor for sensing fast pulses of volatile organic compounds with a better signal-to-noise ratio. We use rapid acetone pulses of varying concentrations to test the sensors. First, we compare the effect of graphene oxide deposition method (dielectrophoresis versus solvent evaporation) on the sensor’s response. We find that dielectrophoresis yields films with uniform coverage and better sensor response. Second, we examine the effect of chemical reduction. Contrary to prior reports, we find that graphene oxide reduction leads to a reduction in sensor response and current noise, thus keeping the signal-to-noise ratio the same. We found that if we sonicated the sensor in acetone, we created a sensor with a few flakes of reduced graphene oxide. Such sensors provided a higher signal-to-noise ratio that could be correlated to the vapor concentration of acetone with better repeatability. Modeling shows that the sensor’s response is due to one-site Langmuir adsorption or an overall single exponent process. Further, the desorption of acetone as deduced from the sensor recovery signal follows a single exponent process. Thus, we show a simple way to improve the signal-to-noise ratio in reduced graphene oxide sensors. PMID:29065488

  5. Fiber Loop Ringdown — a Time-Domain Sensing Technique for Multi-Function Fiber Optic Sensor Platforms: Current Status and Design Perspectives

    PubMed Central

    Wang, Chuji

    2009-01-01

    Fiber loop ringdown (FLRD) utilizes an inexpensive telecommunications light source, a photodiode, and a section of single-mode fiber to form a uniform fiber optic sensor platform for sensing various quantities, such as pressure, temperature, strain, refractive index, chemical species, biological cells, and small volume of fluids. In FLRD, optical losses of a light pulse in a fiber loop induced by changes in a quantity are measured by the light decay time constants. FLRD measures time to detect a quantity; thus, FLRD is referred to as a time-domain sensing technique. FLRD sensors have near real-time response, multi-pass enhanced high-sensitivity, and relatively low cost (i.e., without using an optical spectral analyzer). During the last eight years since the introduction of the original form of fiber ringdown spectroscopy, there has been increasing interest in the FLRD technique in fiber optic sensor developments, and new application potential is being explored. This paper first discusses the challenging issues in development of multi-function, fiber optic sensors or sensor networks using current fiber optic sensor sensing schemes, and then gives a review on current fiber optic sensor development using FLRD technique. Finally, design perspectives on new generation, multi-function, fiber optic sensor platforms using FLRD technique are particularly presented. PMID:22408471

  6. Converging Redundant Sensor Network Information for Improved Building Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale Tiller; D. Phil; Gregor Henze

    2007-09-30

    This project investigated the development and application of sensor networks to enhance building energy management and security. Commercial, industrial and residential buildings often incorporate systems used to determine occupancy, but current sensor technology and control algorithms limit the effectiveness of these systems. For example, most of these systems rely on single monitoring points to detect occupancy, when more than one monitoring point could improve system performance. Phase I of the project focused on instrumentation and data collection. During the initial project phase, a new occupancy detection system was developed, commissioned and installed in a sample of private offices and open-planmore » office workstations. Data acquisition systems were developed and deployed to collect data on space occupancy profiles. Phase II of the project demonstrated that a network of several sensors provides a more accurate measure of occupancy than is possible using systems based on single monitoring points. This phase also established that analysis algorithms could be applied to the sensor network data stream to improve the accuracy of system performance in energy management and security applications. In Phase III of the project, the sensor network from Phase I was complemented by a control strategy developed based on the results from the first two project phases: this controller was implemented in a small sample of work areas, and applied to lighting control. Two additional technologies were developed in the course of completing the project. A prototype web-based display that portrays the current status of each detector in a sensor network monitoring building occupancy was designed and implemented. A new capability that enables occupancy sensors in a sensor network to dynamically set the 'time delay' interval based on ongoing occupant behavior in the space was also designed and implemented.« less

  7. Low-cost lightweight airborne laser-based sensors for pipeline leak detection and reporting

    NASA Astrophysics Data System (ADS)

    Frish, Michael B.; Wainner, Richard T.; Laderer, Matthew C.; Allen, Mark G.; Rutherford, James; Wehnert, Paul; Dey, Sean; Gilchrist, John; Corbi, Ron; Picciaia, Daniele; Andreussi, Paolo; Furry, David

    2013-05-01

    Laser sensing enables aerial detection of natural gas pipeline leaks without need to fly through a hazardous gas plume. This paper describes adaptations of commercial laser-based methane sensing technology that provide relatively low-cost lightweight and battery-powered aerial leak sensors. The underlying technology is near-infrared Standoff Tunable Diode Laser Absorption Spectroscopy (sTDLAS). In one configuration, currently in commercial operation for pipeline surveillance, sTDLAS is combined with automated data reduction, alerting, navigation, and video imagery, integrated into a single-engine single-pilot light fixed-wing aircraft or helicopter platform. In a novel configuration for mapping landfill methane emissions, a miniaturized ultra-lightweight sTDLAS sensor flies aboard a small quad-rotor unmanned aerial vehicle (UAV).

  8. Computational investigation of single-wall carbon nanotube functionalized with palladium nanoclusters as hydrogen sulfide gas sensor

    NASA Astrophysics Data System (ADS)

    Bagherzadeh-Nobari, S.; Hosseini-Istadeh, K.; Kalantarinejad, R.; Elahi, S. M.; Shokri, A. A.

    2018-03-01

    Our aim is to study theoretically, the sensitivity of a hydrogen sulfide gas sensor, with regard to electrical conductance behavior. Our senor consists of a semiconductor single-wall carbon nanotube (SWCNT), functionalized with palladium nanoclusters, sandwiched between two gold electrodes. Initially, we have computed the optimized structure of the sensor, via molecular dynamic simulations. Then by using non-equilibrium Green's function method, combined with density functional theory, the electronic and transport properties of the sensor were calculated, and compared before and after adsorption of H2S gas, at different bias voltages. The highest sensitivity is achieved at 40 mV bias voltage. In this bias voltage, H2S gas adsorption causes a significant decrease of current, because as a result of charge transfer from the CNT and palladium nanoclusters, to H2S gas, majority carriers (electrons) decrease. The results show that CNT decorated with palladium nanoclusters can be a promising candidate in gas-sensorics.

  9. NGS2: a focal plane array upgrade for the GeMS multiple tip-tilt wavefront sensor

    NASA Astrophysics Data System (ADS)

    Rigaut, François; Price, Ian; d'Orgeville, Céline; Bennet, Francis; Herrald, Nick; Paulin, Nicolas; Uhlendorf, Kristina; Garrel, Vincent; Sivo, Gaetano; Montes, Vanessa; Trujillo, Chad

    2016-07-01

    NGS2 is an upgrade for the multi-natural guide star tip-tilt & plate scale wavefront sensor for GeMS (Gemini Multi-Conjugate Adaptive Optics system). It uses a single Nüvü HNü-512 Electron-Multiplied CCD array that spans the entire GeMS wavefront sensor focal plane. Multiple small regions-of-interest are used to enable frame rates up to 800Hz. This set up will improve the optical throughput with respect to the current wavefront sensor, as well as streamline acquisition and allow for distortion compensation.

  10. Single molecule actuation and detection on a lab-on-a-chip magnetoresistive platform

    NASA Astrophysics Data System (ADS)

    Chaves, R. C.; Bensimon, D.; Freitas, P. P.

    2011-03-01

    On-chip magnetic tweezers based on current loops were integrated with magnetoresistive sensors. Magnetic forces up to 1.0±0.3pN are produced to actuate on DNA anchored to the surface of a flow cell and labeled with micrometer-sized magnetic beads. The levitation of the beads stretches the immobilized DNA. The relative position of the magnetic beads is monitored using spin-valve sensors. A bead vertical displacement resolution of 60nm is derived for DNA molecular motor activity in a tweezer steady current regime.

  11. Single-walled carbon nanotubes based chemiresistive genosensor for label-free detection of human rheumatic heart disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Swati; Kumar, Ashok, E-mail: rajesh-csir@yahoo.com, E-mail: ashokigib@rediffmail.com; Academy of Scientific and Innovative Research

    A specific and ultrasensitive, label free single-walled carbon nanotubes (SWNTs) based chemiresistive genosensor was fabricated for the early detection of Streptococcus pyogenes infection in human causing rheumatic heart disease. The mga gene of S. pyogenes specific 24 mer ssDNA probe was covalently immobilized on SWNT through a molecular bilinker, 1-pyrenemethylamine, using carbodiimide coupling reaction. The sensor was characterized by the current-voltage (I-V) characteristic curve and scanning electron microscopy. The sensing performance of the sensor was studied with respect to changes in conductance in SWNT channel based on hybridization of the target S. pyogenes single stranded genomic DNA (ssG-DNA) to itsmore » complementary 24 mer ssDNA probe. The sensor shows negligible response to non-complementary Staphylococcus aureus ssG-DNA, confirming the specificity of the sensor only with S. pyogenes. The genosensor exhibited a linear response to S. pyogenes G-DNA from 1 to1000 ng ml{sup −1} with a limit of detection of 0.16 ng ml{sup −1}.« less

  12. Design and Application of Hybrid Magnetic Field-Eddy Current Probe

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Wallace, Terryl; Newman, Andy; Leser, Paul; Simpson, John

    2013-01-01

    The incorporation of magnetic field sensors into eddy current probes can result in novel probe designs with unique performance characteristics. One such example is a recently developed electromagnetic probe consisting of a two-channel magnetoresistive sensor with an embedded single-strand eddy current inducer. Magnetic flux leakage maps of ferrous materials are generated from the DC sensor response while high-resolution eddy current imaging is simultaneously performed at frequencies up to 5 megahertz. In this work the design and optimization of this probe will be presented, along with an application toward analysis of sensory materials with embedded ferromagnetic shape-memory alloy (FSMA) particles. The sensory material is designed to produce a paramagnetic to ferromagnetic transition in the FSMA particles under strain. Mapping of the stray magnetic field and eddy current response of the sample with the hybrid probe can thereby image locations in the structure which have experienced an overstrain condition. Numerical modeling of the probe response is performed with good agreement with experimental results.

  13. Spectrally encoded optical fibre sensor systems and their application in process control, environmental and structural monitoring

    NASA Astrophysics Data System (ADS)

    Willsch, Reinhardt; Ecke, Wolfgang; Schwotzer, Gunter

    2005-09-01

    Different types of advanced optical fibre sensor systems using similar spectral interrogation principles and potential low-cost polychromator optoelectronic signal processing instrumentation will be presented, and examples of their industrial application are demonstrated. These are such sensors as multimode fibre based humidity, temperature, and pressure sensors with extrinsic microoptical Fabry-Perot transducers for process control in gas industry, UV absorption evanescent field sensors for organic pollution monitoring in groundwater, and single mode fibre Bragg grating (FBG) multiplexed strain & vibration and temperature sensor networks for structural health monitoring applications in electric power facilities, aerospace, railways, geotechnical and civil engineering. Recent results of current investigations applying FBGs and microstructured fibres for chemical sensing will be discussed.

  14. Vector sensor for scanning SQUID microscopy

    NASA Astrophysics Data System (ADS)

    Dang, Vu The; Toji, Masaki; Thanh Huy, Ho; Miyajima, Shigeyuki; Shishido, Hiroaki; Hidaka, Mutsuo; Hayashi, Masahiko; Ishida, Takekazu

    2017-07-01

    We plan to build a novel 3-dimensional (3D) scanning SQUID microscope with high sensitivity and high spatial resolution. In the system, a vector sensor consists of three SQUID sensors and three pick-up coils realized on a single chip. Three pick-up coils are configured in orthogonal with each other to measure the magnetic field vector of X, Y, Z components. We fabricated some SQUID chips with one uniaxial pick-up coil or three vector pick-up coils and carried out fundamental measurements to reveal the basic characteristics. Josephson junctions (JJs) of sensors are designed to have the critical current density J c of 320 A/cm2, and the critical current I c becomes 12.5 μA for the 2.2μm × 2.2μm JJ. We carefully positioned the three pickup coils so as to keep them at the same height at the centers of all three X, Y and Z coils. This can be done by arranging them along single line parallel to a sample surface. With the aid of multilayer technology of Nb-based fabrication, we attempted to reduce an inner diameter of the pickup coils to enhance both sensitivity and spatial resolution. The method for improving a spatial resolution of a local magnetic field image is to employ an XYZ piezo-driven scanner for controlling the positions of the pick-up coils. The fundamental characteristics of our SQUID sensors confirmed the proper operation of our SQUID sensors and found a good agreement with our design parameters.

  15. Chemistry integrated circuit: chemical system on a complementary metal oxide semiconductor integrated circuit.

    PubMed

    Nakazato, Kazuo

    2014-03-28

    By integrating chemical reactions on a large-scale integration (LSI) chip, new types of device can be created. For biomedical applications, monolithically integrated sensor arrays for potentiometric, amperometric and impedimetric sensing of biomolecules have been developed. The potentiometric sensor array detects pH and redox reaction as a statistical distribution of fluctuations in time and space. For the amperometric sensor array, a microelectrode structure for measuring multiple currents at high speed has been proposed. The impedimetric sensor array is designed to measure impedance up to 10 MHz. The multimodal sensor array will enable synthetic analysis and make it possible to standardize biosensor chips. Another approach is to create new functional devices by integrating molecular systems with LSI chips, for example image sensors that incorporate biological materials with a sensor array. The quantum yield of the photoelectric conversion of photosynthesis is 100%, which is extremely difficult to achieve by artificial means. In a recently developed process, a molecular wire is plugged directly into a biological photosynthetic system to efficiently conduct electrons to a gold electrode. A single photon can be detected at room temperature using such a system combined with a molecular single-electron transistor.

  16. SAW-Based Phononic Crystal Microfluidic Sensor—Microscale Realization of Velocimetry Approaches for Integrated Analytical Platform Applications

    PubMed Central

    Lucklum, Ralf; Zubtsov, Mikhail; Schmidt, Marc-Peter; Mukhin, Nikolay V.; Hirsch, Soeren

    2017-01-01

    The current work demonstrates a novel surface acoustic wave (SAW) based phononic crystal sensor approach that allows the integration of a velocimetry-based sensor concept into single chip integrated solutions, such as Lab-on-a-Chip devices. The introduced sensor platform merges advantages of ultrasonic velocimetry analytic systems and a microacoustic sensor approach. It is based on the analysis of structural resonances in a periodic composite arrangement of microfluidic channels confined within a liquid analyte. Completed theoretical and experimental investigations show the ability to utilize periodic structure localized modes for the detection of volumetric properties of liquids and prove the efficacy of the proposed sensor concept. PMID:28946609

  17. Detecting single-abasic residues within a DNA strand immobilized in a biological nanopore using an integrated CMOS sensor.

    PubMed

    Kim, Jungsuk; Maitra, Raj D; Pedrotti, Ken; Dunbar, William B

    2013-02-01

    In this paper, we demonstrate the application of a novel current-measuring sensor (CMS) customized for nanopore applications. The low-noise CMS is fabricated in a 0.35μm CMOS process and is implemented in experiments involving DNA captured in an α-hemolysin (α-HL) nanopore. Specifically, the CMS is used to build a current amplitude map as a function of varying positions of a single-abasic residue within a homopolymer cytosine single-stranded DNA (ssDNA) that is captured and held in the pore. Each ssDNA is immobilized using a biotin-streptavidin linkage. Five different DNA templates are measured and compared: one all-cytosine ssDNA, and four with a single-abasic residue substitution that resides in or near the ~1.5nm aperture of the α-HL channel when the strand is immobilized. The CMOS CMS is shown to resolves the ~5Å displacements of the abasic residue within the varying templates. The demonstration represents an advance in application-specific circuitry that is optimized for small-footprint nanopore applications, including genomic sequencing.

  18. Recent Improvements in Retrieving Near-Surface Air Temperature and Humidity Using Microwave Remote Sensing

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent

    2010-01-01

    Detailed studies of the energy and water cycles require accurate estimation of the turbulent fluxes of moisture and heat across the atmosphere-ocean interface at regional to basin scale. Providing estimates of these latent and sensible heat fluxes over the global ocean necessitates the use of satellite or reanalysis-based estimates of near surface variables. Recent studies have shown that errors in the surface (10 meter)estimates of humidity and temperature are currently the largest sources of uncertainty in the production of turbulent fluxes from satellite observations. Therefore, emphasis has been placed on reducing the systematic errors in the retrieval of these parameters from microwave radiometers. This study discusses recent improvements in the retrieval of air temperature and humidity through improvements in the choice of algorithms (linear vs. nonlinear) and the choice of microwave sensors. Particular focus is placed on improvements using a neural network approach with a single sensor (Special Sensor Microwave/Imager) and the use of combined sensors from the NASA AQUA satellite platform. The latter algorithm utilizes the unique sampling available on AQUA from the Advanced Microwave Scanning Radiometer (AMSR-E) and the Advanced Microwave Sounding Unit (AMSU-A). Current estimates of uncertainty in the near-surface humidity and temperature from single and multi-sensor approaches are discussed and used to estimate errors in the turbulent fluxes.

  19. Fabrication of gas sensor based on field ionization from SWCNTs with tripolar microelectrode

    NASA Astrophysics Data System (ADS)

    Cai, Shengbing; Zhang, Yong; Duan, Zhemin

    2012-12-01

    We report the nanofabrication of a sulfur dioxide (SO2) sensor with a tripolar on-chip microelectrode utilizing a film of single-walled carbon nanotubes (SWCNTs) as the field ionization cathode, where the ion flow current and the partial discharge current generated by the field ionization process of gaseous molecules can be gauged to gas species and concentration. The variation of the sensitivity is less than 4% for all of the tested devices, and the sensor has selectivity against gases such as He, NO2, CO, H2, SO2 and O2. Further, the sensor response presents well-defined and reproducible linear behavior with regard to concentration in the range investigated and a detection limitation of <˜0.5 ppm for SO2. More importantly, a tripolar on-chip microelectrode with SWCNTs as a cathode exhibits an impressive performance with respect to stability and anti-oxidation behavior, which are significantly better than had been possible before in the traditional bipolar sensor under explicit circumstances at room temperature.

  20. Flammable and noxious gas sensing using a microtripolar electrode sensor with diameter and chirality sorted single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cai, Shengbing; Duan, Zhe min; Zhang, Yong

    2013-08-01

    We report on the utilization of densely packed (˜10 SWCNTs µm-1), well-aligned arrays of single-chirality single-walled carbon nanotubes (SWCNTs) as an effective thin-film for integration into a gas sensor with a microtripolar electrode, based on field ionization by dielectrophoretic assembly from a monodisperse SWCNTs solution obtained by polymer-mediated sorting. The sensor is characterized as a field ionization electrode with sorted SWCNTs acting as both the sensing material and transducer gas concentrated directly into an electrical signal, an extractor serving to improve electric field uniformity and a collector electrode completing the current path. The gas sensing properties toward flammable and noxious gases, such as CO and H2, were investigated at room temperature. Besides the high sensitivity, the as-fabricated sensor exhibited attractive behaviors in terms of both the detection limit and a fast response, suggesting that our sensor could be used to partly circumvent the low sensing selectivity, long recovery time or irreversibility and allow for a preferential identification of the selected flammable and noxious analytes. Interestingly, the excellent sensing behaviors of the sensors based on the field ionization effect derive directly from the combined effects of the high-quality, low defect SWCNTs arrays, which leads to a small device-to-device variation in the properties and the optimization of electrode fabrication, highlighting the sensor as an appealing candidate in view of nanotube electronics.

  1. Smart single-chip gas sensor microsystem

    NASA Astrophysics Data System (ADS)

    Hagleitner, C.; Hierlemann, A.; Lange, D.; Kummer, A.; Kerness, N.; Brand, O.; Baltes, H.

    2001-11-01

    Research activity in chemical gas sensing is currently directed towards the search for highly selective (bio)chemical layer materials, and to the design of arrays consisting of different partially selective sensors that permit subsequent pattern recognition and multi-component analysis. Simultaneous use of various transduction platforms has been demonstrated, and the rapid development of integrated-circuit technology has facilitated the fabrication of planar chemical sensors and sensors based on three-dimensional microelectromechanical systems. Complementary metal-oxide silicon processes have previously been used to develop gas sensors based on metal oxides and acoustic-wave-based sensor devices. Here we combine several of these developments to fabricate a smart single-chip chemical microsensor system that incorporates three different transducers (mass-sensitive, capacitive and calorimetric), all of which rely on sensitive polymeric layers to detect airborne volatile organic compounds. Full integration of the microelectronic and micromechanical components on one chip permits control and monitoring of the sensor functions, and enables on-chip signal amplification and conditioning that notably improves the overall sensor performance. The circuitry also includes analog-to-digital converters, and an on-chip interface to transmit the data to off-chip recording units. We expect that our approach will provide a basis for the further development and optimization of gas microsystems.

  2. Single Nanochannel-Aptamer-Based Biosensor for Ultrasensitive and Selective Cocaine Detection.

    PubMed

    Wang, Jian; Hou, Jue; Zhang, Huacheng; Tian, Ye; Jiang, Lei

    2018-01-17

    Ultrasensitive and selective detection of molecules at nano or sub-nanomolar level is very important for many areas such as early diagnosis and drug testing. Herein, we report a high-sensitive cocaine sensor based on a single nanochannel coupled with DNA aptamers. The single nanochannel-aptamer-based biosensor can recognize cocaine molecules with an excellent sensitivity and good selectivity. A linear relationship between target cocaine concentration and output ionic current is obtained in a wide concentration range of cocaine from 1 nM to 10 μM. The cocaine sensor also shows a detection limit down to 1 nM. This study provides a new avenue to develop new nanochannel-aptamer-based biosensors for rapid and ultratrace detection of a variety of illicit drugs.

  3. Computer Algorithms and Architectures for Three-Dimensional Eddy-Current Nondestructive Evaluation. Volume 2. Chapters 1-5

    DTIC Science & Technology

    1989-01-20

    j(, i’j)d~d 25’ I// .=(z_ .V_ ~ .)Fov(q_ .r-irlz’ ff )( .rl)4Z i/ (25) The sensor is a single filament loop . If the source ring remains stationary...while the sensor loop is moved around, then the electric fields do not change as the sensor loop isI moved. In this case, F0. is a function of 4 and...my) ,,(2,y) = Fo,(=,Y)0𔃼(,Y) 5 On the other hand, if the source ring and the sensor loop always move together (and are concentric), then q = z and

  4. Analysis of temperature influence on the informative parameters of single-coil eddy current sensors

    NASA Astrophysics Data System (ADS)

    Borovik, S. Yu.; Kuteynikova, M. M.; Sekisov, Yu. N.; Skobelev, O. P.

    2017-07-01

    This paper describes the study of temperature in the flowing part of a turbine on the informative parameters (equivalent inductances of primary windings of matching transformers) of single-coil eddy-current sensors with a sensitive element in the form of a conductor section, which are used as part of automation systems for testing gas-turbine engines. In this case, the objects of temperature influences are both sensors and controlled turbine blades. The existing model of electromagnetic interaction of a sensitive element with the end part of a controlled blade is used to obtain quantitative estimates of temperature changes of equivalent inductances of sensitive elements and primary windings of matching transformers. This model is also used to determine the corresponding changes of the informative parameter of the sensor in the process of experimental studies of temperature influences on it (in the absence of blades in the sensitive region). This paper also presents transformations in the form of relationships of informative parameters with radial and axial displacements at normal (20 °C) and nominal (1000 °C) temperatures, and their difference is used to determine the families of dominant functions of temperature, which characterize possible temperature errors for any radial and axial displacements in the ranges of their variation.

  5. Magnetic susceptibility well-logging unit with single power supply thermoregulation system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seeley, R. L.

    1985-11-05

    The magnetic susceptibility well-logging unit with single power supply thermoregulation system provides power from a single surface power supply over a well-logging cable to an integrated circuit voltage regulator system downhole. This voltage regulator system supplies regulated voltages to a temperature control system and also to a Maxwell bridge sensing unit which includes the solenoid of a magnetic susceptibility probe. The temperature control system is provided with power from the voltage regulator system and operates to permit one of several predetermined temperatures to be chosen, and then operates to maintain the solenoid of a magnetic susceptibility probe at this chosenmore » temperature. The temperature control system responds to a temperature sensor mounted upon the probe solenoid to cause resistance heaters concentrically spaced from the probe solenoid to maintain the chosen temperature. A second temperature sensor on the probe solenoid provides a temperature signal to a temperature transmitting unit, which initially converts the sensed temperature to a representative voltage. This voltage is then converted to a representative current signal which is transmitted by current telemetry over the well logging cable to a surface electronic unit which then reconverts the current signal to a voltage signal.« less

  6. High Sensitivity MEMS Strain Sensor: Design and Simulation

    PubMed Central

    Mohammed, Ahmed A. S.; Moussa, Walied A.; Lou, Edmond

    2008-01-01

    In this article, we report on the new design of a miniaturized strain microsensor. The proposed sensor utilizes the piezoresistive properties of doped single crystal silicon. Employing the Micro Electro Mechanical Systems (MEMS) technology, high sensor sensitivities and resolutions have been achieved. The current sensor design employs different levels of signal amplifications. These amplifications include geometric, material and electronic levels. The sensor and the electronic circuits can be integrated on a single chip, and packaged as a small functional unit. The sensor converts input strain to resistance change, which can be transformed to bridge imbalance voltage. An analog output that demonstrates high sensitivity (0.03mV/με), high absolute resolution (1με) and low power consumption (100μA) with a maximum range of ±4000με has been reported. These performance characteristics have been achieved with high signal stability over a wide temperature range (±50°C), which introduces the proposed MEMS strain sensor as a strong candidate for wireless strain sensing applications under harsh environmental conditions. Moreover, this sensor has been designed, verified and can be easily modified to measure other values such as force, torque…etc. In this work, the sensor design is achieved using Finite Element Method (FEM) with the application of the piezoresistivity theory. This design process and the microfabrication process flow to prototype the design have been presented. PMID:27879841

  7. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.

    PubMed

    Gao, Lei; Bourke, A K; Nelson, John

    2014-06-01

    Physical activity has a positive impact on people's well-being and it had been shown to decrease the occurrence of chronic diseases in the older adult population. To date, a substantial amount of research studies exist, which focus on activity recognition using inertial sensors. Many of these studies adopt a single sensor approach and focus on proposing novel features combined with complex classifiers to improve the overall recognition accuracy. In addition, the implementation of the advanced feature extraction algorithms and the complex classifiers exceed the computing ability of most current wearable sensor platforms. This paper proposes a method to adopt multiple sensors on distributed body locations to overcome this problem. The objective of the proposed system is to achieve higher recognition accuracy with "light-weight" signal processing algorithms, which run on a distributed computing based sensor system comprised of computationally efficient nodes. For analysing and evaluating the multi-sensor system, eight subjects were recruited to perform eight normal scripted activities in different life scenarios, each repeated three times. Thus a total of 192 activities were recorded resulting in 864 separate annotated activity states. The methods for designing such a multi-sensor system required consideration of the following: signal pre-processing algorithms, sampling rate, feature selection and classifier selection. Each has been investigated and the most appropriate approach is selected to achieve a trade-off between recognition accuracy and computing execution time. A comparison of six different systems, which employ single or multiple sensors, is presented. The experimental results illustrate that the proposed multi-sensor system can achieve an overall recognition accuracy of 96.4% by adopting the mean and variance features, using the Decision Tree classifier. The results demonstrate that elaborate classifiers and feature sets are not required to achieve high recognition accuracies on a multi-sensor system. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  8. Compensation for positioning error of industrial robot for flexible vision measuring system

    NASA Astrophysics Data System (ADS)

    Guo, Lei; Liang, Yajun; Song, Jincheng; Sun, Zengyu; Zhu, Jigui

    2013-01-01

    Positioning error of robot is a main factor of accuracy of flexible coordinate measuring system which consists of universal industrial robot and visual sensor. Present compensation methods for positioning error based on kinematic model of robot have a significant limitation that it isn't effective in the whole measuring space. A new compensation method for positioning error of robot based on vision measuring technique is presented. One approach is setting global control points in measured field and attaching an orientation camera to vision sensor. Then global control points are measured by orientation camera to calculate the transformation relation from the current position of sensor system to global coordinate system and positioning error of robot is compensated. Another approach is setting control points on vision sensor and two large field cameras behind the sensor. Then the three dimensional coordinates of control points are measured and the pose and position of sensor is calculated real-timely. Experiment result shows the RMS of spatial positioning is 3.422mm by single camera and 0.031mm by dual cameras. Conclusion is arithmetic of single camera method needs to be improved for higher accuracy and accuracy of dual cameras method is applicable.

  9. A highly flexible platform for nanowire sensor assembly using a combination of optically induced and conventional dielectrophoresis.

    PubMed

    Lin, Yen-Heng; Ho, Kai-Siang; Yang, Chin-Tien; Wang, Jung-Hao; Lai, Chao-Sung

    2014-06-02

    The number and position of assembled nanowires cannot be controlled using most nanowire sensor assembling methods. In this paper, we demonstrate a high-yield, highly flexible platform for nanowire sensor assembly using a combination of optically induced dielectrophoresis (ODEP) and conventional dielectrophoresis (DEP). With the ODEP platform, optical images can be used as virtual electrodes to locally turn on a non-contact DEP force and manipulate a micron- or nano-scale substance suspended in fluid. Nanowires were first moved next to the previously deposited metal electrodes using optical images and, then, were attracted to and arranged in the gap between two electrodes through DEP forces generated by switching on alternating current signals to the metal electrodes. A single nanowire can be assembled within 24 seconds using this approach. In addition, the number of nanowires in a single nanowire sensor can be controlled, and the assembly of a single nanowire on each of the adjacent electrodes can also be achieved. The electrical properties of the assembled nanowires were characterized by IV curve measurement. Additionally, the contact resistance between the nanowires and electrodes and the stickiness between the nanowires and substrates were further investigated in this study.

  10. Design of an intelligent instrument for large direct-current measurement

    NASA Astrophysics Data System (ADS)

    Zhang, Rong; Zhang, Gang; Zhang, Zhipeng

    2000-05-01

    The principle and structure of an intelligent large direct current measurement is presented in this paper. It is of reflective type and detects signal by employing the high direct current sensor. The single-chip microcomputer of this system provides a powerful function of control and processing and greatly improves the extent of intelligence. The value can be displayed and printed automatically or manually.

  11. A glucose monitoring system for on line estimation in man of blood glucose concentration using a miniaturized glucose sensor implanted in the subcutaneous tissue and a wearable control unit.

    PubMed

    Poitout, V; Moatti-Sirat, D; Reach, G; Zhang, Y; Wilson, G S; Lemonnier, F; Klein, J C

    1993-07-01

    We have developed a miniaturized glucose sensor which has been shown previously to function adequately when implanted in the subcutaneous tissue of rats and dogs. Following a glucose load, the sensor output increases, making it possible to calculate a sensitivity coefficient to glucose in vivo, and an extrapolated background current in the absence of glucose. These parameters are used for estimating at any time the apparent subcutaneous glucose concentration from the current. In the previous studies, this calibration was performed a posteriori, on the basis of the retrospective analysis of the changes in blood glucose and in the current generated by the sensor. However, for clinical application of the system, an on line estimation of glucose concentration would be necessary. Thus, this study was undertaken in order to assess the possibility of calibrating the sensor in real time, using a novel calibration procedure and a monitoring unit which was specifically designed for this purpose. This electronic device is able to measure, to filter and to store the current. During an oral glucose challenge, when a stable current is reached, it is possible to feed the unit with two different values of blood glucose and their corresponding times. The unit calculates the in vivo parameters, transforms every single value of current into an estimation of the glucose concentration, and then displays this estimation. In this study, 11 sensors were investigated of which two did not respond to glucose. In the other nine trials, the volunteers were asked to record every 30 s what appeared on the display during the secondary decrease in blood glucose.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Continuous monitoring of large civil structures using a digital fiber optic motion sensor system

    NASA Astrophysics Data System (ADS)

    Hodge, Malcolm H.; Kausel, Theodore C., Jr.

    1998-03-01

    There is no single attribute which can always predict structural deterioration. Accordingly, we have developed a scheme for monitoring a wide range of incipient deterioration parameters, all based on a single motion sensor concept. In this presentation, we describe how an intrinsically low power- consumption fiber optic harness can be permanently deployed to poll an array of optical sensors. The function and design of these simple, durable, and naturally digital sensors is described, along with the manner in which they have been configured to collect information for changes in the most important structural aspects. The SIMS system is designed to interrogate each sensor up to five-thousand times per second for the life of the structure, and to report sensor data back to a remote computer base for current and long-term analysis, and is directed primarily towards bridges. By suitably modifying the actuation of this very precise motion sensor, SIMS is able to track bridge deck deflection and vibration, expansion joint travel, concrete and rebar corrosion, pothole development, pier scour and tilt. Other sensors will track bolt clamp load, cable tension, and metal fatigue. All of these data are received within microseconds, which means that appropriate computer algorithm manipulations can be carried out to correlate one sensor with other sensors in real time. This internal verification feature automatically enhances confidence in the system's predictive ability and alerts the user to any anomalous behavior.

  13. Detailed studies of full-size ATLAS12 sensors

    NASA Astrophysics Data System (ADS)

    Hommels, L. B. A.; Allport, P. P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J. P.; Wilson, J. A.; Kierstead, J.; Kuczewski, P.; Lynn, D.; Arratia, M.; Klein, C. T.; Ullan, M.; Fleta, C.; Fernandez-Tejero, J.; Bloch, I.; Gregor, I. M.; Lohwasser, K.; Poley, L.; Tackmann, K.; Trofimov, A.; Yildirim, E.; Hauser, M.; Jakobs, K.; Kuehn, S.; Mahboubi, K.; Mori, R.; Parzefall, U.; Clark, A.; Ferrere, D.; Gonzalez Sevilla, S.; Ashby, J.; Blue, A.; Bates, R.; Buttar, C.; Doherty, F.; McMullen, T.; McEwan, F.; O`Shea, V.; Kamada, S.; Yamamura, K.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Unno, Y.; Takashima, R.; Chilingarov, A.; Fox, H.; Affolder, A. A.; Casse, G.; Dervan, P.; Forshaw, D.; Greenall, A.; Wonsak, S.; Wormald, M.; Cindro, V.; Kramberger, G.; Mandić, I.; Mikuž, M.; Gorelov, I.; Hoeferkamp, M.; Palni, P.; Seidel, S.; Taylor, A.; Toms, K.; Wang, R.; Hessey, N. P.; Valencic, N.; Hanagaki, K.; Dolezal, Z.; Kodys, P.; Bohm, J.; Stastny, J.; Mikestikova, M.; Bevan, A.; Beck, G.; Milke, C.; Domingo, M.; Fadeyev, V.; Galloway, Z.; Hibbard-Lubow, D.; Liang, Z.; Sadrozinski, H. F.-W.; Seiden, A.; To, K.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Jinnouchi, O.; Hara, K.; Sato, K.; Sato, K.; Hagihara, M.; Iwabuchi, S.; Bernabeu, J.; Civera, J. V.; Garcia, C.; Lacasta, C.; Marti i Garcia, S.; Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila, U.

    2016-09-01

    The "ATLAS ITk Strip Sensor Collaboration" R&D group has developed a second iteration of single-sided n+-in-p type micro-strip sensors for use in the tracker upgrade of the ATLAS experiment at the High-Luminosity (HL) LHC. The full size sensors measure approximately 97 × 97mm2 and are designed for tolerance against the 1.1 ×1015neq /cm2 fluence expected at the HL-LHC. Each sensor has 4 columns of 1280 individual 23.9 mm long channels, arranged at 74.5 μm pitch. Four batches comprising 120 sensors produced by Hamamatsu Photonics were evaluated for their mechanical, and electrical bulk and strip characteristics. Optical microscopy measurements were performed to obtain the sensor surface profile. Leakage current and bulk capacitance properties were measured for each individual sensor. For sample strips across the sensor batches, the inter-strip capacitance and resistance as well as properties of the punch-through protection structure were measured. A multi-channel probecard was used to measure leakage current, coupling capacitance and bias resistance for each individual channel of 100 sensors in three batches. The compiled results for 120 unirradiated sensors are presented in this paper, including summary results for almost 500,000 strips probed. Results on the reverse bias voltage dependence of various parameters and frequency dependence of tested capacitances are included for validation of the experimental methods used. Comparing results with specified values, almost all sensors fall well within specification.

  14. Recent developments of genetically encoded optical sensors for cell biology.

    PubMed

    Bolbat, Andrey; Schultz, Carsten

    2017-01-01

    Optical sensors are powerful tools for live cell research as they permit to follow the location, concentration changes or activities of key cellular players such as lipids, ions and enzymes. Most of the current sensor probes are based on fluorescence which provides great spatial and temporal precision provided that high-end microscopy is used and that the timescale of the event of interest fits the response time of the sensor. Many of the sensors developed in the past 20 years are genetically encoded. There is a diversity of designs leading to simple or sometimes complicated applications for the use in live cells. Genetically encoded sensors began to emerge after the discovery of fluorescent proteins, engineering of their improved optical properties and the manipulation of their structure through application of circular permutation. In this review, we will describe a variety of genetically encoded biosensor concepts, including those for intensiometric and ratiometric sensors based on single fluorescent proteins, Forster resonance energy transfer-based sensors, sensors utilising bioluminescence, sensors using self-labelling SNAP- and CLIP-tags, and finally tetracysteine-based sensors. We focus on the newer developments and discuss the current approaches and techniques for design and application. This will demonstrate the power of using optical sensors in cell biology and will help opening the field to more systematic applications in the future. © 2016 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  15. Advances in Remote Sensing for Oil Spill Disaster Management: State-of-the-Art Sensors Technology for Oil Spill Surveillance

    PubMed Central

    Jha, Maya Nand; Levy, Jason; Gao, Yang

    2008-01-01

    Reducing the risk of oil spill disasters is essential for protecting the environment and reducing economic losses. Oil spill surveillance constitutes an important component of oil spill disaster management. Advances in remote sensing technologies can help to identify parties potentially responsible for pollution and to identify minor spills before they cause widespread damage. Due to the large number of sensors currently available for oil spill surveillance, there is a need for a comprehensive overview and comparison of existing sensors. Specifically, this paper examines the characteristics and applications of different sensors. A better understanding of the strengths and weaknesses of oil spill surveillance sensors will improve the operational use of these sensors for oil spill response and contingency planning. Laser fluorosensors were found to be the best available sensor for oil spill detection since they not only detect and classify oil on all surfaces but also operate in either the day or night. For example, the Scanning Laser Environmental Airborne Fluorosensor (SLEAF) sensor was identified to be a valuable tool for oil spill surveillance. However, no single sensor was able to provide all information required for oil spill contingency planning. Hence, combinations of sensors are currently used for oil spill surveillance. Specifically, satellite sensors are used for preliminary oil spill assessment while airborne sensors are used for detailed oil spill analysis. While satellite remote sensing is not suitable for tactical oil spill planning it can provide a synoptic coverage of the affected area. PMID:27879706

  16. Low-power wireless medical sensor platform.

    PubMed

    Dolgov, Arseny B; Zane, Regan

    2006-01-01

    Long-term, low duty cycle monitoring of patients with a variety of disabilities or health concerns is often required. In this paper, we discuss the design considerations and implementation of an ultra-low power wireless medical sensor platform, suitable for a wide range of medical and sports applications. A hardware demonstration prototype based on readily available components is presented with sensors for 3-axis acceleration, temperature and galvanic skin response. Detailed power measurements and operation results are shown, demonstrating a sensor life span of more than 10 years on a single 200 mAh lithium watch battery using low current standby techniques with an average power of less than 5 muW and a 10 second sample interval.

  17. Highly Sensitive Ammonia Gas Sensor Based on Single-Crystal Poly(3-hexylthiophene) (P3HT) Organic Field Effect Transistor.

    PubMed

    Mun, Seohyun; Park, Yoonkyung; Lee, Yong-Eun Koo; Sung, Myung Mo

    2017-11-28

    A highly sensitive organic field-effect transistor (OFET)-based sensor for ammonia in the range of 0.01 to 25 ppm was developed. The sensor was fabricated by employing an array of single-crystal poly(3-hexylthiophene) (P3HT) nanowires as the organic semiconductor (OSC) layer of an OFET with a top-contact geometry. The electrical characteristics (field-effect mobility, on/off current ratio) of the single-crystal P3HT nanowire OFET were about 2 orders of magnitude larger than those of the P3HT thin film OFET with the same geometry. The P3HT nanowire OFET showed excellent sensitivity to ammonia, about 3 times higher than that of the P3HT thin film OFET at 25 ppm ammonia. The ammonia response of the OFET was reversible and was not affected by changes in relative humidity from 45 to 100%. The high ammonia sensitivity of the P3HT nanowire OFET is believed to result from the single crystal nature and high surface/volume ratio of the P3HT nanowire used in the OSC layer.

  18. Evaluation of single photon and Geiger mode Lidar for the 3D Elevation Program

    USGS Publications Warehouse

    Stoker, Jason M.; Abdullah, Qassim; Nayegandhi, Amar; Winehouse, Jayna

    2016-01-01

    Data acquired by Harris Corporation’s (Melbourne, FL, USA) Geiger-mode IntelliEarth™ sensor and Sigma Space Corporation’s (Lanham-Seabrook, MD, USA) Single Photon HRQLS sensor were evaluated and compared to accepted 3D Elevation Program (3DEP) data and survey ground control to assess the suitability of these new technologies for the 3DEP. While not able to collect data currently to meet USGS lidar base specification, this is partially due to the fact that the specification was written for linear-mode systems specifically. With little effort on part of the manufacturers of the new lidar systems and the USGS Lidar specifications team, data from these systems could soon serve the 3DEP program and its users. Many of the shortcomings noted in this study have been reported to have been corrected or improved upon in the next generation sensors.

  19. An integrated microfluidic cell for detection, manipulation, and sorting of single micron-sized magnetic beads

    NASA Astrophysics Data System (ADS)

    Jiang, Z.; Llandro, J.; Mitrelias, T.; Bland, J. A. C.

    2006-04-01

    A lab-on-a-chip integrated microfluidic cell has been developed for magnetic biosensing, which is comprised of anisotropic magnetoresistance (AMR) sensors optimized for the detection of single magnetic beads and electrodes to manipulate and sort the beads, integrated into a microfluidic channel. The device is designed to read out the real-time signal from 9 μm diameter magnetic beads moving over AMR sensors patterned into 18×4.5 μm rectangles and 10 μm diameter rings and arranged in Wheatstone bridges. The beads are moved over the sensors along a 75×75 μm wide channel patterned in SU8. Beads of different magnetic moments can be sorted through a magnetostatic sorting gate into different branches of the microfluidic channel using a magnetic field gradient applied by lithographically defined 120 nm thick Cu striplines carrying 0.2 A current.

  20. Project to Study Soil Electromagnetic Properties

    DTIC Science & Technology

    2007-09-30

    transmitter loops (these may be one and the same physical loop or any combinations of loops) and w is angular frequency. M is the magnetic flux that...space, and w is angular frequency used by the sensor. In this case sensor response is frequency-dependent, even if the layer variables are real and...Consider a transmitter current in a single turn coil with angular frequency wand amplitude I. This produces a receiver voltage V (a complex phasor) in the

  1. JOVE Pilot Research Study in Astronomy and Microgravity Sciences

    NASA Technical Reports Server (NTRS)

    Strauss, Alvin M.; Hmelo, Anthony; Vlasse; Peterson, Steven

    1995-01-01

    The purpose of this project was to develop hardware and software facilities for evaluating the biomechanical interactions between human hands and space suit gloves. We have constructed a prototype of the glove to demonstrate its sensing technologies. There are two types of sensors in the glove. The positions of the fingers are measured using bend sensors based on the CyberGlove design. This sensor consists of two strain gages mounted to a 0.003 inch thick mylar sheet. The sensor is encapsulated using 0.001 inch kapton film to give it sufficient rigidity. A long gage is used to average the strain generated in the sensor due to bending. This average strain produces an output signal proportional to the angle of the bend. The force sensor, FSR, is manufactured by Interlink. It consists of conductive ink sandwiched between two plastic sheets. An electrode is printed on one of the plastic sheets using silver ink. When the electrode makes contact, current flows through the conductive ink. The resistance of the ink pad is sensitive to pressure. We have also developed circuits for exciting and measuring the sensors. The current version requires a single sided twelve volt power supply which is one inch long and 0.4 inches in diameter.

  2. Determination of crack depth in aluminum using eddy currents and GMR sensors

    NASA Astrophysics Data System (ADS)

    Lopes Ribeiro, A.; Pasadas, D.; Ramos, H. G.; Rocha, T.

    2015-03-01

    In this paper we use eddy currents to determine the depth of linear cracks in aluminum plates. A constant field probe is used to generate the spatially uniform excitation field and a single axis giant magneto-resistor (GMR) sensor is used to measure the eddy currents magnetic field. Different depths were machined in one aluminum plate with 4 mm of thickness. By scanning those cracks the magnetic field components parallel and perpendicular to the crack's line were measured when the eddy currents were launched perpendicularly to the crack's line. To characterize one crack in a plate of a given thickness and material, the experimental procedure was defined. The plate surface is scanned to detect and locate one crack. The acquired data enables the determination of the crack's length and orientation. A second scanning is performed with the excitation current perpendicular to the crack and the GMR sensing axis perpendicular and parallel to the crack's line.

  3. Efficient placement of structural dynamics sensors on the space station

    NASA Technical Reports Server (NTRS)

    Lepanto, Janet A.; Shepard, G. Dudley

    1987-01-01

    System identification of the space station dynamic model will require flight data from a finite number of judiciously placed sensors on it. The placement of structural dynamics sensors on the space station is a particularly challenging problem because the station will not be deployed in a single mission. Given that the build-up sequence and the final configuration for the space station are currently undetermined, a procedure for sensor placement was developed using the assembly flights 1 to 7 of the rephased dual keel space station as an example. The procedure presented approaches the problem of placing the sensors from an engineering, as opposed to a mathematical, point of view. In addition to locating a finite number of sensors, the procedure addresses the issues of unobserved structural modes, dominant structural modes, and the trade-offs involved in sensor placement for space station. This procedure for sensor placement will be applied to revised, and potentially more detailed, finite element models of the space station configuration and assembly sequence.

  4. Scaleable wireless web-enabled sensor networks

    NASA Astrophysics Data System (ADS)

    Townsend, Christopher P.; Hamel, Michael J.; Sonntag, Peter A.; Trutor, B.; Arms, Steven W.

    2002-06-01

    Our goal was to develop a long life, low cost, scalable wireless sensing network, which collects and distributes data from a wide variety of sensors over the internet. Time division multiple access was employed with RF transmitter nodes (each w/unique16 bit address) to communicate digital data to a single receiver (range 1/3 mile). One thousand five channel nodes can communicate to one receiver (30 minute update). Current draw (sleep) is 20 microamps, allowing 5 year battery life w/one 3.6 volt Li-Ion AA size battery. The network nodes include sensor excitation (AC or DC), multiplexer, instrumentation amplifier, 16 bit A/D converter, microprocessor, and RF link. They are compatible with thermocouples, strain gauges, load/torque transducers, inductive/capacitive sensors. The receiver (418 MHz) includes a single board computer (SBC) with Ethernet capability, internet file transfer protocols (XML/HTML), and data storage. The receiver detects data from specific nodes, performs error checking, records the data. The web server interrogates the SBC (from Microsoft's Internet Explorer or Netscape's Navigator) to distribute data. This system can collect data from thousands of remote sensors on a smart structure, and be shared by an unlimited number of users.

  5. Methane–oxygen electrochemical coupling in an ionic liquid: a robust sensor for simultaneous quantification†

    PubMed Central

    Wang, Zhe; Guo, Min; Baker, Gary A.; Stetter, Joseph R.; Lin, Lu; Mason, Andrew J.

    2017-01-01

    Current sensor devices for the detection of methane or natural gas emission are either expensive and have high power requirements or fail to provide a rapid response. This report describes an electrochemical methane sensor utilizing a non-volatile and conductive pyrrolidinium-based ionic liquid (IL) electrolyte and an innovative internal standard method for methane and oxygen dual-gas detection with high sensitivity, selectivity, and stability. At a platinum electrode in bis(trifluoromethylsulfonyl)imide (NTf2)-based ILs, methane is electro-oxidized to produce CO2 and water when an oxygen reduction process is included. The in situ generated CO2 arising from methane oxidation was shown to provide an excellent internal standard for quantification of the electrochemical oxygen sensor signal. The simultaneous quantification of both methane and oxygen in real time strengthens the reliability of the measurements by cross-validation of two ambient gases occurring within a single sample matrix and allows for the elimination of several types of random and systematic errors in the detection. We have also validated this IL-based methane sensor employing both conventional solid macroelectrodes and flexible microfabricated electrodes using single- and double-potential step chronoamperometry. PMID:25093213

  6. A Terrestrial Microbial Fuel Cell for Powering a Single-Hop Wireless Sensor Network.

    PubMed

    Zhang, Daxing; Zhu, Yingmin; Pedrycz, Witold; Guo, Yongxian

    2016-05-18

    Microbial fuel cells (MFCs) are envisioned as one of the most promising alternative renewable energy sources because they can generate electric current continuously while treating waste. Terrestrial Microbial Fuel Cells (TMFCs) can be inoculated and work on the use of soil, which further extends the application areas of MFCs. Energy supply, as a primary influential factor determining the lifetime of Wireless Sensor Network (WSN) nodes, remains an open challenge in sensor networks. In theory, sensor nodes powered by MFCs have an eternal life. However, low power density and high internal resistance of MFCs are two pronounced problems in their operation. A single-hop WSN powered by a TMFC experimental setup was designed and experimented with. Power generation performance of the proposed TMFC, the relationships between the performance of the power generation and the environment temperature, the water content of the soil by weight were measured by experiments. Results show that the TMFC can achieve good power generation performance under special environmental conditions. Furthermore, the experiments with sensor data acquisition and wireless transmission of the TMFC powering WSN were carried out. We demonstrate that the obtained experimental results validate the feasibility of TMFCs powering WSNs.

  7. A Terrestrial Microbial Fuel Cell for Powering a Single-Hop Wireless Sensor Network

    PubMed Central

    Zhang, Daxing; Zhu, Yingmin; Pedrycz, Witold; Guo, Yongxian

    2016-01-01

    Microbial fuel cells (MFCs) are envisioned as one of the most promising alternative renewable energy sources because they can generate electric current continuously while treating waste. Terrestrial Microbial Fuel Cells (TMFCs) can be inoculated and work on the use of soil, which further extends the application areas of MFCs. Energy supply, as a primary influential factor determining the lifetime of Wireless Sensor Network (WSN) nodes, remains an open challenge in sensor networks. In theory, sensor nodes powered by MFCs have an eternal life. However, low power density and high internal resistance of MFCs are two pronounced problems in their operation. A single-hop WSN powered by a TMFC experimental setup was designed and experimented with. Power generation performance of the proposed TMFC, the relationships between the performance of the power generation and the environment temperature, the water content of the soil by weight were measured by experiments. Results show that the TMFC can achieve good power generation performance under special environmental conditions. Furthermore, the experiments with sensor data acquisition and wireless transmission of the TMFC powering WSN were carried out. We demonstrate that the obtained experimental results validate the feasibility of TMFCs powering WSNs. PMID:27213346

  8. Single conducting polymer nanowire based conductometric sensors

    NASA Astrophysics Data System (ADS)

    Bangar, Mangesh Ashok

    The detection of toxic chemicals, gases or biological agents at very low concentrations with high sensitivity and selectivity has been subject of immense interest. Sensors employing electrical signal readout as transduction mechanism offer easy, label-free detection of target analyte in real-time. Traditional thin film sensors inherently suffered through loss of sensitivity due to current shunting across the charge depleted/added region upon analyte binding to the sensor surface, due to their large cross sectional area. This limitation was overcome by use of nanostructure such as nanowire/tube as transducer where current shunting during sensing was almost eliminated. Due to their benign chemical/electrochemical fabrication route along with excellent electrical properties and biocompatibility, conducting polymers offer cost-effective alternative over other nanostructures. Biggest obstacle in using these nanostructures is lack of easy, scalable and cost-effective way of assembling these nanostructures on prefabricated micropatterns for device fabrication. In this dissertation, three different approaches have been taken to fabricate individual or array of single conducting polymer (and metal) nanowire based devices and using polymer by itself or after functionalization with appropriate recognition molecule they have been applied for gas and biochemical detection. In the first approach electrochemical fabrication of multisegmented nanowires with middle functional Ppy segment along with ferromagnetic nickel (Ni) and end gold segments for better electrical contact was studied. This multi-layered nanowires were used along with ferromagnetic contact electrode for controlled magnetic assembly of nanowires into devices and were used for ammonia gas sensing. The second approach uses conducting polymer, polypyrrole (Ppy) nanowires using simple electrophoretic alignment and maskless electrodeposition to anchor nanowire which were further functionalized with antibodies against cancer marker protein (Cancer Antigen, CA 125) using covalent immobilization for detection of CA 125 in buffer and human blood plasma. Third approach combined electrochemical deposition of conducting polymer and assembly steps into a single step fabrication & functionalization using e-beam lithographically patterned nano-channels. Using this method array of Ppy nanowires were fabricated. Further during fabrication step, by entrapping recognition molecule (avidin) biofunctionalization was achieved. Subsequently these sensors were used for detection of biotinylated single stranded DNA.

  9. Detection of influenza A virus using carbon nanotubes field effect transistor based DNA sensor

    NASA Astrophysics Data System (ADS)

    Tran, Thi Luyen; Nguyen, Thi Thuy; Huyen Tran, Thi Thu; Chu, Van Tuan; Thinh Tran, Quang; Tuan Mai, Anh

    2017-09-01

    The carbon nanotubes field effect transistor (CNTFET) based DNA sensor was developed, in this paper, for detection of influenza A virus DNA. Number of factors that influence the output signal and analytical results were investigated. The initial probe DNA, decides the available DNA strands on CNTs, was 10 μM. The hybridization time for defined single helix was 120 min. The hybridization temperature was set at 30 °C to get a net change in drain current of the DNA sensor without altering properties of any biological compounds. The response time of the DNA sensor was less than one minute with a high reproducibility. In addition, the DNA sensor has a wide linear detection range from 1 pM to 10 nM, and a very low detection limit of 1 pM. Finally, after 7-month storage in 7.4 pH buffer, the output signal of DNA sensor recovered 97%.

  10. Sensitivity of optical mass sensor enhanced by optomechanical coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Yong, E-mail: hey@cczu.edu.cn

    Optical mass sensors based on cavity optomechanics employ radiation pressure force to drive mechanical resonator whose mechanical susceptibility can be described by nonlinear optical transmission spectrum. In this paper, we present an optical mass sensor based on a two-cavity optomechanical system where the mechanical damping rate can be decreased by adjusting a pump power so that the mass sensitivity which depends on the mechanical quality factor has been enhanced greatly. Compared with that of an optical mass sensor based on single-cavity optomechanics, the mass sensitivity of the optical mass sensor is improved by three orders of magnitude. This is anmore » approach to enhance the mass sensitivity by means of optomechanical coupling, which is suitable for all mass sensor based on cavity optomechanics. Finally, we illustrate the accurate measurement for the mass of a few chromosomes, which can be achieved based on the current experimental conditions.« less

  11. One-Dimensional Nanostructure Field-Effect Sensors for Gas Detection

    PubMed Central

    Zhao, Xiaoli; Cai, Bin; Tang, Qingxin; Tong, Yanhong; Liu, Yichun

    2014-01-01

    Recently; one-dimensional (1D) nanostructure field-effect transistors (FETs) have attracted much attention because of their potential application in gas sensing. Micro/nanoscaled field-effect sensors combine the advantages of 1D nanostructures and the characteristic of field modulation. 1D nanostructures provide a large surface area-volume ratio; which is an outstanding advantage for gas sensors with high sensitivity and fast response. In addition; the nature of the single crystals is favorable for the studies of the response mechanism. On the other hand; one main merit of the field-effect sensors is to provide an extra gate electrode to realize the current modulation; so that the sensitivity can be dramatically enhanced by changing the conductivity when operating the sensors in the subthreshold regime. This article reviews the recent developments in the field of 1D nanostructure FET for gas detection. The sensor configuration; the performance as well as their sensing mechanism are evaluated. PMID:25090418

  12. A novel sensor made of Antimony Doped Tin Oxide-silica composite sol on a glassy carbon electrode modified by single-walled carbon nanotubes for detection of norepinephrine.

    PubMed

    Wang, Zhao; Wang, Kai; Zhao, Lu; Chai, Shigan; Zhang, Jinzhi; Zhang, Xiuhua; Zou, Qichao

    2017-11-01

    In this study, we designed a novel molecularly imprinted polymer (MIP), Antimony Doped Tin Oxide (ATO)-silica composite sol, which was made using a sol-gel method. Then a sensitive and selective imprinted electrochemical sensor was constructed with the ATO-silica composite sol on a glassy carbon electrode modified by single-walled carbon nanotubes (SWNTs). The introduction of SWNTs increased the sensitivity of the MIP sensor. The surface morphology of the MIP and MIP/SWNTs were characterized by scanning electron microscopy (SEM), and the optimal conditions for detection were determined. The oxidative peak current increased linearly with the concentration of norepinephrine in the range of 9.99×10 -8 M to 1.50×10 -5 M, as detected by cyclic voltammetry (CV), the detection limit was 3.33×10 -8 M (S/N=3). In addition, the proposed electrochemical sensors were successfully applied to detect the norepinephrine concentration in human blood serum samples. The recoveries of the sensors varied from 99.67% to 104.17%, indicating that the sensor has potential for the determination of norepinephrine in clinical tests. Moreover, the imprinted electrochemical sensor was used to selectively detect norepinephrine. The analytical application was conducted successfully and yielded accurate and precise results. Copyright © 2017. Published by Elsevier B.V.

  13. Fabrication of a Kilopixel Array of Superconducting Microcalorimeters with Microstripline Wiring

    NASA Technical Reports Server (NTRS)

    Chervenak, James

    2012-01-01

    A document describes the fabrication of a two-dimensional microcalorimeter array that uses microstrip wiring and integrated heat sinking to enable use of high-performance pixel designs at kilopixel scales (32 X 32). Each pixel is the high-resolution design employed in small-array test devices, which consist of a Mo/Au TES (transition edge sensor) on a silicon nitride membrane and an electroplated Bi/Au absorber. The pixel pitch within the array is 300 microns, where absorbers 290 microns on a side are cantilevered over a silicon support grid with 100-micron-wide beams. The high-density wiring and heat sinking are both carried by the silicon beams to the edge of the array. All pixels are wired out to the array edge. ECR (electron cyclotron resonance) oxide underlayer is deposited underneath the sensor layer. The sensor (TES) layer consists of a superconducting underlayer and a normal metal top layer. If the sensor is deposited at high temperature, the ECR oxide can be vacuum annealed to improve film smoothness and etch characteristics. This process is designed to recover high-resolution, single-pixel x-ray microcalorimeter performance within arrays of arbitrarily large format. The critical current limiting parts of the circuit are designed to have simple interfaces that can be independently verified. The lead-to-TES interface is entirely determined in a single layer that has multiple points of interface to maximize critical current. The lead rails that overlap the TES sensor element contact both the superconducting underlayer and the TES normal metal

  14. Galfenol tactile sensor array and visual mapping system

    NASA Astrophysics Data System (ADS)

    Hale, Kathleen; Flatau, Alison

    2006-03-01

    The smart material, Galfenol, is being explored for its uses as a magnetostrictive material. This project seeks to determine if Galfenol can be used as a tactile sensor in a 2-D grid array, magnetic circuit system. When used within a magnetic circuit, Galfenol indicates induced stress and force as a change in flux, due to a change in permeability of the material. The change in flux is detected by Giant MagnetoResistive (GMR) Sensors, which produce a voltage change proportional to the field change. By using Galfenol in an array, this research attempts to create a sensory area. Galfenol is an alloy made of Iron and Gallium. Fe 100-xGa x, where 15 <= x <= 28, creates a material with useful mechanical and transduction attributes (Clark et al. and Kellogg). Galfenol is also distinguished by the crystalline structure of the material. Two types currently exist: single crystal and polycrystalline. Single crystal has higher transduction coefficients than polycrystalline, but is more costly. Polycrystalline Galfenol is currently available as either production or research grade. The designations are related to the sample growth rate with the slower rate being the research grade. The slower growth rate more closely resembles the single crystal Galfenol properties. Galfenol 17.5-18% research grade is used for this experiment, provided by Etrema Products Inc. The magnetic circuit and sensor array is first built at the macro scale so that the design can be verified. After the macro scale is proven, further development will move the system to the nano-level. Recent advances in nanofabrication have enabled Galfenol to be grown as nanowires. Using the nanowires, research will seek to create high resolution tactile sensors with spatial resolutions similar to human finger tips, but with greater force ranges and sensitivity capabilities (Flatau & Stadler). Possible uses of such systems include robotics and prosthetics.

  15. Fiber Bragg grating temperature sensors in a 6.5-MW generator exciter bridge and the development and simulation of its thermal model.

    PubMed

    de Morais Sousa, Kleiton; Probst, Werner; Bortolotti, Fernando; Martelli, Cicero; da Silva, Jean Carlos Cardozo

    2014-09-05

    This work reports the thermal modeling and characterization of a thyristor. The thyristor is used in a 6.5-MW generator excitation bridge. Temperature measurements are performed using fiber Bragg grating (FBG) sensors. These sensors have the benefits of being totally passive and immune to electromagnetic interference and also multiplexed in a single fiber. The thyristor thermal model consists of a second order equivalent electric circuit, and its power losses lead to an increase in temperature, while the losses are calculated on the basis of the excitation current in the generator. Six multiplexed FBGs are used to measure temperature and are embedded to avoid the effect of the strain sensitivity. The presented results show a relationship between field current and temperature oscillation and prove that this current can be used to determine the thermal model of a thyristor. The thermal model simulation presents an error of 1.5 °C, while the FBG used allows for the determination of the thermal behavior and the field current dependence. Since the temperature is a function of the field current, the corresponding simulation can be used to estimate the temperature in the thyristors.

  16. Fiber Bragg Grating Temperature Sensors in a 6.5-MW Generator Exciter Bridge and the Development and Simulation of Its Thermal Model

    PubMed Central

    de Morais Sousa, Kleiton; Probst, Werner; Bortolotti, Fernando; Martelli, Cicero; da Silva, Jean Carlos Cardozo

    2014-01-01

    This work reports the thermal modeling and characterization of a thyristor. The thyristor is used in a 6.5-MW generator excitation bridge. Temperature measurements are performed using fiber Bragg grating (FBG) sensors. These sensors have the benefits of being totally passive and immune to electromagnetic interference and also multiplexed in a single fiber. The thyristor thermal model consists of a second order equivalent electric circuit, and its power losses lead to an increase in temperature, while the losses are calculated on the basis of the excitation current in the generator. Six multiplexed FBGs are used to measure temperature and are embedded to avoid the effect of the strain sensitivity. The presented results show a relationship between field current and temperature oscillation and prove that this current can be used to determine the thermal model of a thyristor. The thermal model simulation presents an error of 1.5 °C, while the FBG used allows for the determination of the thermal behavior and the field current dependence. Since the temperature is a function of the field current, the corresponding simulation can be used to estimate the temperature in the thyristors. PMID:25198007

  17. Beam current sensor

    DOEpatents

    Kuchnir, M.; Mills, F.E.

    1984-09-28

    A current sensor for measuring the dc component of a beam of charged particles employs a superconducting pick-up loop probe, with twisted superconducting leads in combination with a Superconducting Quantum Interference Device (SQUID) detector. The pick-up probe is in the form of a single-turn loop, or a cylindrical toroid, through which the beam is directed and within which a first magnetic flux is excluded by the Meisner effect. The SQUID detector acts as a flux-to-voltage converter in providing a current to the pick-up loop so as to establish a second magnetic flux within the electrode which nulls out the first magnetic flux. A feedback voltage within the SQUID detector represents the beam current of the particles which transit the pick-up loop. Meisner effect currents prevent changes in the magnetic field within the toroidal pick-up loop and produce a current signal independent of the beam's cross-section and its position within the toroid, while the combination of superconducting elements provides current measurement sensitivities in the nano-ampere range.

  18. Beam current sensor

    DOEpatents

    Kuchnir, Moyses; Mills, Frederick E.

    1987-01-01

    A current sensor for measuring the DC component of a beam of charged particles employs a superconducting pick-up loop probe, with twisted superconducting leads in combination with a Superconducting Quantum Interference Device (SQUID) detector. The pick-up probe is in the form of a single-turn loop, or a cylindrical toroid, through which the beam is directed and within which a first magnetic flux is excluded by the Meisner effect. The SQUID detector acts as a flux-to-voltage converter in providing a current to the pick-up loop so as to establish a second magnetic flux within the electrode which nulls out the first magnetic flux. A feedback voltage within the SQUID detector represents the beam current of the particles which transit the pick-up loop. Meisner effect currents prevent changes in the magnetic field within the toroidal pick-up loop and produce a current signal independent of the beam's cross-section and its position within the toroid, while the combination of superconducting elements provides current measurement sensitivites in the nano-ampere range.

  19. Fiber Optic Sensors for Health Monitoring of Morphing Airframes. Part 2; Chemical Sensing Using Optical Fibers with Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Wood, Karen; Brown, Timothy; Rogowski, Robert; Jensen, Brian

    2000-01-01

    Part 1 of this two part series described the fabrication and calibration of Bragg gratings written into a single mode optical fiber for use in strain and temperature monitoring. Part 2 of the series describes the use of identical fibers and additional multimode fibers, both with and without Bragg gratings, to perform near infrared spectroscopy. The demodulation system being developed at NASA Langley Research Center currently requires the use of a single mode optical fiber. Attempts to use this single mode fiber for spectroscopic analysis are problematic given its small core diameter, resulting in low signal intensity. Nonetheless, we have conducted a preliminary investigation using a single mode fiber in conjunction with an infrared spectrometer to obtain spectra of a high-performance epoxy resin system. Spectra were obtained using single mode fibers that contained Bragg gratings; however, the peaks of interest were barely discernible above the noise. The goal of this research is to provide a multipurpose sensor in a single optical fiber capable of measuring a variety of chemical and physical properties.

  20. A Fiber-Optic Current Sensor for Lightning Measurement Applications

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.

    2015-01-01

    An optical-fiber sensor based on Faraday Effect is developed for measuring total lightning electric current. It has many unique capabilities not possible with traditional current sensors. Designed for aircraft installation, the sensor is lightweight, non-conducting, structure-conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can also be used on windmills, lightning towers, and can help validate lightning detection network measurements. Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. The broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with about 60 dB dynamic range. Three sensor systems were built with different sensitivities from different laser wavelengths. Operating at 850nm, the first system uses twisted single-mode fiber and has a 150 A - 150 KA range. The second system operates at 1550nm, uses spun polarization maintaining fiber, and can measure 400 A - 400 KA. Both systems were validated with rocket-triggered lightning measurements and achieved excellent results when compared to a resistive shunt. The third system operates at 1310nm, uses spun polarization maintaining fiber, and can measure approximately 300 A - 300 KA. High current measurements up to 200 KA were demonstrated at a commercial lightning test facility. The system was recently installed on an aircraft and flown near icing weather conditions.

  1. A fiber-optic current sensor for lightning measurement applications

    NASA Astrophysics Data System (ADS)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.

    2015-05-01

    An optical-fiber sensor based on Faraday Effect is developed for measuring total lightning electric current. It has many unique capabilities not possible with traditional current sensors. Designed for aircraft installation, the sensor is lightweight, non-conducting, structure-conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can also be used on windmills, lightning towers, and can help validate lightning detection network measurements. Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. The broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with about 60 dB dynamic range. Three sensor systems were built with different sensitivities from different laser wavelengths. Operating at 850nm, the first system uses twisted single-mode fiber and has a 150 A - 150 KA range. The second system operates at 1550nm, uses spun polarization maintaining fiber, and can measure 400 A - 400 KA. Both systems were validated with rocket-triggered lightning measurements and achieved excellent results when compared to a resistive shunt. The third system operates at 1310nm, uses spun polarization maintaining fiber, and can measure approximately 300 A - 300 KA. High current measurements up to 200 KA were demonstrated at a commercial lightning test facility. The system was recently installed on an aircraft and flown near icing weather conditions.

  2. Measuring electrically charged particle fluxes in space using a fiber optic loop sensor

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The purpose of this program was to demonstrate the potential of a fiber optic loop sensor for the measurement of electrically charged particle fluxes in space. The key elements of the sensor are a multiple turn loop of low birefringence, single mode fiber, with a laser diode light source, and a low noise optical receiver. The optical receiver is designed to be shot noise limited, with this being the limiting sensitivity factor for the sensor. The sensing element is the fiber optic loop. Under a magnetic field from an electric current flowing along the axis of the loop, there is a non-vanishing line integral along the fiber optic loop. This causes a net birefringence producing two states of polarization whose phase difference is correlated to magnetic field strength and thus, current in the optical receiver electronic processing. The objectives in this program were to develop a prototype laser diode powered fiber optic sensor. The performance specification of a minimum detectable current density of 1 (mu)amp/sq m-(radical)Hz, should be at the shot noise limit of the detection electronics. OPTRA has successfully built and tested a 3.2 m diameter loop with 137 turns of low birefringence optical fiber and achieved a minimum detectable current density of 5.4 x 10(exp-5) amps/(radical)Hz. If laboratory space considerations were not an issue, with the length of optical fiber available to us, we would have achieved a minimum detectable current density of 4 x 10(exp -7) amps/(radical)Hz.

  3. Multispectral image fusion for detecting land mines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, G.A.; Sengupta, S.K.; Aimonetti, W.D.

    1995-04-01

    This report details a system which fuses information contained in registered images from multiple sensors to reduce the effects of clutter and improve the ability to detect surface and buried land mines. The sensor suite currently consists of a camera that acquires images in six bands (400nm, 500nm, 600nm, 700nm, 800nm and 900nm). Past research has shown that it is extremely difficult to distinguish land mines from background clutter in images obtained from a single sensor. It is hypothesized, however, that information fused from a suite of various sensors is likely to provide better detection reliability, because the suite ofmore » sensors detects a variety of physical properties that are more separable in feature space. The materials surrounding the mines can include natural materials (soil, rocks, foliage, water, etc.) and some artifacts.« less

  4. Expanding the functionality and applications of nanopore sensors

    NASA Astrophysics Data System (ADS)

    Venta, Kimberly E.

    Nanopore sensors have developed into powerful tools for single-molecule studies since their inception two decades ago. Nanopore sensors function as nanoscale Coulter counters, by monitoring ionic current modulations as particles pass through a nanopore. While nanopore sensors can be used to study any nanoscale particle, their most notable application is as a low cost, fast alternative to current DNA sequencing technologies. In recent years, signifcant progress has been made toward the goal of nanopore-based DNA sequencing, which requires an ambitious combination of a low-noise and high-bandwidth nanopore measurement system and spatial resolution. In this dissertation, nanopore sensors in thin membranes are developed to improve dimensional resolution, and these membranes are used in parallel with a high-bandwidth amplfier. Using this nanopore sensor system, the signals of three DNA homopolymers are differentiated for the first time in solid-state nanopores. The nanopore noise is also reduced through the addition of a layer of SU8, a spin-on polymer, to the supporting chip structure. By increasing the temporal and spatial resolution of nanopore sensors, studies of shorter molecules are now possible. Nanopore sensors are beginning to be used for the study and characterization of nanoparticles. Nanoparticles have found many uses from biomedical imaging to next-generation solar cells. However, further insights into the formation and characterization of nanoparticles would aid in developing improved synthesis methods leading to more effective and customizable nanoparticles. This dissertation presents two methods of employing nanopore sensors to benet nanoparticle characterization and fabrication. Nanopores were used to study the formation of individual nanoparticles and serve as nanoparticle growth templates that could be exploited to create custom nanoparticle arrays. Additionally, nanopore sensors were used to characterize the surface charge density of anisotropic nanopores, which previously could not be reliably measured. Current nanopore sensor resolution levels have facilitated innovative research on nanoscale systems, including studies of DNA and nanoparticle characterization. Further nanopore system improvements will enable vastly improved DNA sequencing capabilities and open the door to additional nanopore sensing applications.

  5. Feasibility of an Orthogonal Redundant Sensor incorporating Optical plus Redundant Electrochemical Glucose Sensing.

    PubMed

    McAuley, Sybil A; Dang, Tri T; Horsburgh, Jodie C; Bansal, Anubhuti; Ward, Glenn M; Aroyan, Sarkis; Jenkins, Alicia J; MacIsaac, Richard J; Shah, Rajiv V; O'Neal, David N

    2016-05-01

    Orthogonal redundancy for glucose sensing (multiple sensing elements utilizing distinct methodologies) may enhance performance compared to nonredundant sensors, and to sensors with multiple elements utilizing the same technology (simple redundancy). We compared the performance of a prototype orthogonal redundant sensor (ORS) combining optical fluorescence and redundant electrochemical sensing via a single insertion platform to an electrochemical simple redundant sensor (SRS). Twenty-one adults with type 1 diabetes wore an ORS and an SRS concurrently for 7 days. Following sensor insertion, and on Day 4 with a standardized meal, frequent venous samples were collected for reference glucose measurement (laboratory [YSI] and meter) over 3 and 4 hours, respectively. Between study visits reference capillary blood glucose testing was undertaken. Sensor data were processed prospectively. ORS mean absolute relative difference (MARD) was (mean ± SD) 10.5 ± 13.2% versus SRS 11.0 ± 10.4% (P = .34). ORS values in Clarke error grid zones A and A+B were 88.1% and 97.6%, respectively, versus SRS 86.4% and 97.8%, respectively (P = .23 and P = .84). ORS Day 1 MARD (10.7 ± 10.7%) was superior to SRS (16.5 ± 13.4%; P < .0001), and comparable to ORS MARD for the week. ORS sensor survival (time-averaged mean) was 92.1% versus SRS 74.4% (P = .10). ORS display time (96.0 ± 5.8%) was equivalent to SRS (95.6 ± 8.9%; P = .87). Combining simple and orthogonal sensor redundancy via a single insertion is feasible, with accuracy comparing favorably to current generation nonredundant sensors. Addition of an optical component potentially improves sensor reliability compared to electrochemical sensing alone. Further improvement in optical sensing performance is required prior to clinical application. © 2016 Diabetes Technology Society.

  6. Design and characterization of a single channel two-liquid capacitor and its application to hyperelastic strain sensing.

    PubMed

    Liu, Shanliangzi; Sun, Xiaoda; Hildreth, Owen J; Rykaczewski, Konrad

    2015-03-07

    Room temperature liquid-metal microfluidic devices are attractive systems for hyperelastic strain sensing. These liquid-phase electronics are intrinsically soft and retain their functionality even when stretched to several times their original length. Currently two types of liquid metal-based strain sensors exist for in-plane measurements: single-microchannel resistive and two-microchannel capacitive devices. With a winding serpentine channel geometry, these sensors typically have a footprint of about a square centimeter. This large footprint of an individual device limits the number of sensors that can be embedded into, for example, electronic fabric or skin. In this work we introduce an alternative capacitor design consisting of two liquid metal electrodes separated by a liquid dielectric material within a single straight channel. Using a liquid insulator instead of a solid elastomer enables us to tailor the system's capacitance by selecting high or low dielectric constant liquids. We quantify the effects of the electrode geometry including the diameter, spacing, and meniscus shape as well as the dielectric constant of the insulating liquid on the overall system's capacitance. We also develop a procedure for fabricating the two-liquid capacitor within a single straight polydiemethylsiloxane channel and demonstrate that this device can have about 25 times higher capacitance per sensor's base area when compared to two-channel liquid metal capacitors. Lastly, we characterize the response of this compact device to strain and identify operational issues arising from complex hydrodynamics near liquid-liquid and liquid-elastomer interfaces.

  7. Lightweight Fiber Optic Gas Sensor for Monitoring Regenerative Food Production

    NASA Technical Reports Server (NTRS)

    Schmidlin, Edward; Goswami, Kisholoy

    1995-01-01

    In this final report, Physical Optics Corporation (POC) describes its development of sensors for oxygen, carbon dioxide, and relative humidity. POC has constructed a phase fluorometer that can detect oxygen over the full concentration range from 0 percent to 100 percent. Phase-based measurements offer distinct advantages, such as immunity to source fluctuation, photobleaching, and leaching. All optics, optoelectronics, power supply, and the printed circuit board are included in a single box; the only external connections to the fluorometer are the optical fiber sensor and a power cord. The indicator-based carbon dioxide sensor is also suitable for short-term and discrete measurements over the concentration range from 0 percent to 100 percent. The optical fiber-based humidity sensor contains a porous core for direct interaction of the light beam with water vapor within fiber pores; the detection range for the humidity sensor is 10 percent to 100 percent, and response time is under five minutes. POC is currently pursuing the commercialization of these oxygen and carbon dioxide sensors for environmental applications.

  8. Advances in Bio-Tactile Sensors for Minimally Invasive Surgery Using the Fibre Bragg Grating Force Sensor Technique:A Survey

    PubMed Central

    Abushagur, Abdulfatah A.G.; Arsad, Norhana; Ibne Reaz, Mamun; Ashrif, A.; Bakar, A.

    2014-01-01

    The large interest in utilising fibre Bragg grating (FBG) strain sensors for minimally invasive surgery (MIS) applications to replace conventional electrical tactile sensors has grown in the past few years. FBG strain sensors offer the advantages of optical fibre sensors, such as high sensitivity, immunity to electromagnetic noise, electrical passivity and chemical inertness, but are not limited by phase discontinuity or intensity fluctuations. FBG sensors feature a wavelength-encoding sensing signal that enables distributed sensing that utilises fewer connections. In addition, their flexibility and lightness allow easy insertion into needles and catheters, thus enabling localised measurements inside tissues and blood. Two types of FBG tactile sensors have been emphasised in the literature: single-point and array FBG tactile sensors. This paper describes the current design, development and research of the optical fibre tactile techniques that are based on FBGs to enhance the performance of MIS procedures in general. Providing MIS or microsurgery surgeons with accurate and precise measurements and control of the contact forces during tissues manipulation will benefit both surgeons and patients. PMID:24721774

  9. Quantum dot ternary-valued full-adder: Logic synthesis by a multiobjective design optimization based on a genetic algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klymenko, M. V.; Remacle, F., E-mail: fremacle@ulg.ac.be

    2014-10-28

    A methodology is proposed for designing a low-energy consuming ternary-valued full adder based on a quantum dot (QD) electrostatically coupled with a single electron transistor operating as a charge sensor. The methodology is based on design optimization: the values of the physical parameters of the system required for implementing the logic operations are optimized using a multiobjective genetic algorithm. The searching space is determined by elements of the capacitance matrix describing the electrostatic couplings in the entire device. The objective functions are defined as the maximal absolute error over actual device logic outputs relative to the ideal truth tables formore » the sum and the carry-out in base 3. The logic units are implemented on the same device: a single dual-gate quantum dot and a charge sensor. Their physical parameters are optimized to compute either the sum or the carry out outputs and are compatible with current experimental capabilities. The outputs are encoded in the value of the electric current passing through the charge sensor, while the logic inputs are supplied by the voltage levels on the two gate electrodes attached to the QD. The complex logic ternary operations are directly implemented on an extremely simple device, characterized by small sizes and low-energy consumption compared to devices based on switching single-electron transistors. The design methodology is general and provides a rational approach for realizing non-switching logic operations on QD devices.« less

  10. Single-sided magnetic resonance profiling in biological and materials science.

    PubMed

    Danieli, Ernesto; Blümich, Bernhard

    2013-04-01

    Single-sided NMR was inspired by the oil industry that strived to improve the performance of well-logging tools to measure the properties of fluids confined downhole. This unconventional way of implementing NMR, in which stray magnetic and radio frequency fields are used to recover information of arbitrarily large objects placed outside the magnet, motivated the development of handheld NMR sensors. These devices have moved the technique to different scientific disciplines. The current work gives a review of the most relevant magnets and methodologies developed to generate NMR information from spatially localized regions of samples placed in close proximity to the sensors. When carried out systematically, such measurements lead to 'single-sided depth profiles' or one-dimensional images. This paper presents recent and most relevant applications as well as future perspectives of this growing branch of MRI. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Magnetocardiogram measured by fundamental mode orthogonal fluxgate array

    NASA Astrophysics Data System (ADS)

    Karo, Hikaru; Sasada, Ichiro

    2015-05-01

    Magnetocardiography (MCG) of healthy volunteers has been measured by using a fundamental mode orthogonal fluxgate magnetometer array of 32 channels in a magnetic shielded room (MSR). Sensor heads, which are employed, consist of a 45 mm long U-shaped amorphous wire core and a 1000-turn solenoid pick-up coil of 30 mm in length and 3 mm in outer diameter. The excitation current of 100 kHz with large dc bias current is fed directly into wire cores, which are connected in series, whereas the signal detection circuit is provided to each of the sensor heads. A special technique to avoid mutual interaction between sensor heads is implemented, where all the sensor heads are excited synchronously by using a single ac source. A 2-D array having 32 sensors with 4 cm grid spacing was used to measure MCG signals inside an MSR. Measured data from each channel were first filtered (0.16-100 Hz pass band), then averaged for 2 min synchronously with electrocardiogram's peaks taken from both hands. Noise remaining after the average is about 1.8 pTrms for the band-width of 0.16-100 Hz. The QRS complex and the T-wave are clearly detected.

  12. Gas Sensors Based on Single-Arm Waveguide Interferometers

    NASA Technical Reports Server (NTRS)

    Sarkisov, Sergey; Curley, Michael; Diggs, Darnell; Adamovsky, Grigory

    1998-01-01

    Various optical technologies can be implemented in chemical sensing. Sensitive, rugged, and compact systems will be more likely built using interferometric waveguide sensors. Currently existing sensors comprise dual-arm systems with external reference arm, dual-arm devices with internal reference arm such as integrated Mach-Zehnder interferometer, and single-arm systems which employ the interference between different waveguide modes. These latter ones are the most compact and rugged but still sensitive enough to monitor volatile pollutants such as NH3 coming out of industrial refrigerators and fertilizer plants and stocks, NO, NO2, SO2, emitted by industrial burning processes. Single-arm devices in planar waveguide configuration most frequently use two orthogonally polarized modes TE (sub i) and TM (sub i) of the same order i. Sensing effect is based on the difference in propagation conditions for the modes caused by the environment. However, dual-mode single-order interferometers still have relatively low sensitivity with respect to the environment related changes in the waveguide core because of small difference between propagation constants of TE (sub i) and TM (sub i) modes of the same order. Substantial sensitivity improvement without significant complication can be achieved for planar waveguide interferometers using modes of different orders with much greater difference between propagation constants.

  13. Steel bridge fatigue crack detection with piezoelectric wafer active sensors

    NASA Astrophysics Data System (ADS)

    Yu, Lingyu; Giurgiutiu, Victor; Ziehl, Paul; Ozevin, Didem; Pollock, Patrick

    2010-04-01

    Piezoelectric wafer active sensors (PWAS) are well known for its dual capabilities in structural health monitoring, acting as either actuators or sensors. Due to the variety of deterioration sources and locations of bridge defects, there is currently no single method that can detect and address the potential sources globally. In our research, our use of the PWAS based sensing has the novelty of implementing both passive (as acoustic emission) and active (as ultrasonic transducers) sensing with a single PWAS network. The combined schematic is using acoustic emission to detect the presence of fatigue cracks in steel bridges in their early stage since methods such as ultrasonics are unable to quantify the initial condition of crack growth since most of the fatigue life for these details is consumed while the fatigue crack is too small to be detected. Hence, combing acoustic emission with ultrasonic active sensing will strengthen the damage detection process. The integration of passive acoustic emission detection with active sensing will be a technological leap forward from the current practice of periodic and subjective visual inspection, and bridge management based primarily on history of past performance. In this study, extensive laboratory investigation is performed supported by theoretical modeling analysis. A demonstration system will be presented to show how piezoelectric wafer active sensor is used for acoustic emission. Specimens representing complex structures are tested. The results will also be compared with traditional acoustic emission transducers to identify the application barriers.

  14. Optical Sensors Based on Single Arm Thin Film Waveguide Interferometer

    NASA Technical Reports Server (NTRS)

    Sarkisov, Sergey S.

    1997-01-01

    All the goals of the research effort for the first year were met by the accomplishments. Additional efforts were done to speed up the process of development and construction of the experimental gas chamber which will be completed by the end of 1997. This chamber incorporates vacuum sealed multimode optical fiber lines which connect the sensor to the remote light source and signal processing equipment. This optical fiber line is a prototype of actual optical communication links connecting real sensors to a control unit within an aircraft or spacecraft. An important problem which we are planning to focus on during the second year is coupling of optical fiber line to the sensor. Currently this problem is solved using focusing optics and prism couplers. More reliable solutions are planned to be investigated.

  15. Progress towards barium daughter tagging in Xe136 decay using single molecule fluorescence imaging

    NASA Astrophysics Data System (ADS)

    McDonald, Austin; NEXT Collaboration

    2017-09-01

    The existence of Majorana fermions is of great interest as it may be related to the asymmetry between matter and anti-matter particles in the universe. However, the search for them has proven to be a difficult one. Neutrino-less Double Beta decay (NLDB) offers a possible opportunity for direct observation of a Majorana Fermion. The rate for NLDB decay may be as low as 1 count /ton /year if the mass ordering is inverted. Current detector technologies have background rates between 4 to 300 count /ton /year /ROI at the 100kg scale which is much larger than the universal goal of 0.1 count /ton /year /ROI desired for ton-scale detectors. The premise of my research is to develop new detector technologies that will allow for a background-free experiment. My current work is to develop a sensor that will tag the daughter ion Ba++ from the Xe136 decay. The development of a sensor that is sensitive to single barium ion detection based on the single molecule fluorescence imaging technique is the major focus of this work. If successful, this could provide a path to a background-free experiment.

  16. Progress towards barium daughter tagging in Xe136 decay using single molecule fluorescence imaging

    NASA Astrophysics Data System (ADS)

    McDonald, Austin; Jones, Ben; Benson, Jordan; Nygren, David; NEXT Collaboration

    2017-01-01

    The existence of Majorana Fermions has been predicted, and is of great interest as it may be related to the asymmetry between matter and anti-matter particles in the universe. However, the search for them has proven to be a difficult one. Neutrino-less Double Beta decay (NLDB) offers a possible opportunity for direct observation of a Majorana Fermion. The rate for NLDB decay may be as low as 1 count / ton / year . Current detector technologies have background rates between 4 to 300 count / ton / year / ROI which is much larger than the universal goal of 0 . 1 count / ton / year / ROI desired for ton-scale detectors. The premise of my research is to develop new detector technologies that will allow for a background-free experiment. My current work is to develop a sensor that will tag the daughter ion Ba++ from the Xe136 decay. The development of a sensor that is sensitive to single barium ion detection based on the single molecule fluorescence imaging technique is the major focus of this work. If successful, this could provide a path to a background-free experiment.

  17. Redundancy in Glucose Sensing: Enhanced Accuracy and Reliability of an Electrochemical Redundant Sensor for Continuous Glucose Monitoring.

    PubMed

    Sharifi, Amin; Varsavsky, Andrea; Ulloa, Johanna; Horsburgh, Jodie C; McAuley, Sybil A; Krishnamurthy, Balasubramanian; Jenkins, Alicia J; Colman, Peter G; Ward, Glenn M; MacIsaac, Richard J; Shah, Rajiv; O'Neal, David N

    2016-05-01

    Current electrochemical glucose sensors use a single electrode. Multiple electrodes (redundancy) may enhance sensor performance. We evaluated an electrochemical redundant sensor (ERS) incorporating two working electrodes (WE1 and WE2) onto a single subcutaneous insertion platform with a processing algorithm providing a single real-time continuous glucose measure. Twenty-three adults with type 1 diabetes each wore two ERSs concurrently for 168 hours. Post-insertion a frequent sampling test (FST) was performed with ERS benchmarked against a glucose meter (Bayer Contour Link). Day 4 and 7 FSTs were performed with a standard meal and venous blood collected for reference glucose measurements (YSI and meter). Between visits, ERS was worn with capillary blood glucose testing ≥8 times/day. Sensor glucose data were processed prospectively. Mean absolute relative deviation (MARD) for ERS day 1-7 (3,297 paired points with glucose meter) was (mean [SD]) 10.1 [11.5]% versus 11.4 [11.9]% for WE1 and 12.0 [11.9]% for WE2; P < .0001. ERS Clarke A and A+B were 90.2% and 99.8%, respectively. ERS day 4 plus day 7 MARD (1,237 pairs with YSI) was 9.4 [9.5]% versus 9.6 [9.7]% for WE1 and 9.9 [9.7]% for WE2; P = ns. ERS day 1-7 precision absolute relative deviation (PARD) was 9.9 [3.6]% versus 11.5 [6.2]% for WE1 and 10.1 [4.4]% for WE2; P = ns. ERS sensor display time was 97.8 [6.0]% versus 91.0 [22.3]% for WE1 and 94.1 [14.3]% for WE2; P < .05. Electrochemical redundancy enhances glucose sensor accuracy and display time compared with each individual sensing element alone. ERS performance compares favorably with 'best-in-class' of non-redundant sensors. © 2015 Diabetes Technology Society.

  18. Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Liu, Xiang; Jeffries, Jay B.; Hanson, R. K.

    2003-08-01

    The water vapour spectrum in the 1-2 µm near-infrared region is systematically analysed to find the best absorption transitions for sensitive measurement of H2O concentration and temperature in combustion environments using a single tunable diode laser with typical distributed feedback single-mode scanning range (1 cm-1). The use of a single laser, even with relatively narrow tuning range, can offer distinct advantages over wavelength-multiplexing techniques. The strategy and spectroscopic criteria for selecting optimum wavelength regions and absorption line combinations are discussed. It should be stressed that no single figure of merit can be derived to simplify the selection process, and the optimum line pair should be chosen case by case. Our investigation reveals that the 1.8 µm spectral region is especially promising, and we have identified 10 of the best water line pairs in this spectral region for temperature measurements in flames. Based on these findings, a pair of H2O transitions near 1.8 µm was targeted for the design and development of an initial single-laser sensor for simultaneously measuring H2O concentration and temperature in atmospheric-pressure flames. As part of the sensor development effort, fundamental spectroscopic parameters including the line strength, line-centre frequency and lower state energies of the probed transitions were measured experimentally to improve the current databases. We conclude with demonstration results in a steady and a forced atmospheric-pressure laboratory combustor.

  19. Size effect of optical silica microsphere pressure sensors

    NASA Astrophysics Data System (ADS)

    Jiao, Xinbing; Hao, Ruirui; Pan, Qian; Zhao, Xinwei; Bai, Xue

    2018-07-01

    Two types of optical pressure sensors with silica microspheres are proposed. The size effect of optical silica microsphere pressure sensors is studied by using a single-wavelength laser beam and polarimeters. The silica microspheres with diameters of 1.0 μm, 1.5 μm and 2.0 μm are prepared on garnet substrates by a self-assembly method. The pressure and the optical properties of the silica microspheres are measured by a resistance strain sensor and Thorlabs Stokes polarimeters as a function of the external direct current (DC) voltage. The optical silica microsphere sensor in transmission mode is suitable for pressure measuring. The results show that the pressure increases, while the diameter of the silica microspheres decreases. The maximum internal pressure can reach up to 7.3 × 107 Pa when the diameter of the silica microspheres is 1.0 μm.

  20. NASA Integrated Vehicle Health Management (NIVHM) A New Simulation Architecture. Part I; An Investigation

    NASA Technical Reports Server (NTRS)

    Sheppard, Gene

    2005-01-01

    The overall objective of this research is to explore the development of a new architecture for simulating a vehicle health monitoring system in support of NASA s on-going Integrated Vehicle Health Monitoring (IVHM) initiative. As discussed in NASA MSFC s IVHM workshop on June 29-July 1, 2004, a large number of sensors will be required for a robust IVHM system. The current simulation architecture is incapable of simulating the large number of sensors required for IVHM. Processing the data from the sensors into a format that a human operator can understand and assimilate in a timely manner will require a paradigm shift. Data from a single sensor is, at best, suspect and in order to overcome this deficiency, redundancy will be required for tomorrow s sensors. The sensor technology of tomorrow will allow for the placement of thousands of sensors per square inch. The major obstacle to overcome will then be how we can mitigate the torrent of data from raw sensor data to useful information to computer assisted decisionmaking.

  1. Lithographically defined few-electron silicon quantum dots based on a silicon-on-insulator substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horibe, Kosuke; Oda, Shunri; Kodera, Tetsuo, E-mail: kodera.t.ac@m.titech.ac.jp

    2015-02-23

    Silicon quantum dot (QD) devices with a proximal single-electron transistor (SET) charge sensor have been fabricated in a metal-oxide-semiconductor structure based on a silicon-on-insulator substrate. The charge state of the QDs was clearly read out using the charge sensor via the SET current. The lithographically defined small QDs enabled clear observation of the few-electron regime of a single QD and a double QD by charge sensing. Tunnel coupling on tunnel barriers of the QDs can be controlled by tuning the top-gate voltages, which can be used for manipulation of the spin quantum bit via exchange interaction between tunnel-coupled QDs. Themore » lithographically defined silicon QD device reported here is technologically simple and does not require electrical gates to create QD confinement potentials, which is advantageous for the integration of complicated constructs such as multiple QD structures with SET charge sensors for the purpose of spin-based quantum computing.« less

  2. Aircraft versus spacecraft for remote monitoring of water quality in U.S. coastal zones

    NASA Technical Reports Server (NTRS)

    Darnell, W. L.

    1977-01-01

    To provide guidance for conducting future water monitoring missions over U.S. coasts, aircraft and spacecraft approaches were defined and quantitatively compared. Sensors, aircraft and spacecraft were selected from current or developmental types for the hardware concepts and monitoring was assumed to begin in 1981-1983. Comparative data are presented on capabilities and costs to monitor both recognized pollution sites and broad shelf areas. For these mission requirements, a large fleet of light aircraft provided better coverage and at lower costs generally than one spacecraft, assuming a single, multi-spectral sensor on each platform. This result could change, however, should additional useful sensors with low cost penalties be found for the spacecraft.

  3. Poynting-vector based method for determining the bearing and location of electromagnetic sources

    DOEpatents

    Simons, David J.; Carrigan, Charles R.; Harben, Philip E.; Kirkendall, Barry A.; Schultz, Craig A.

    2008-10-21

    A method and apparatus is utilized to determine the bearing and/or location of sources, such as, alternating current (A.C.) generators and loads, power lines, transformers and/or radio-frequency (RF) transmitters, emitting electromagnetic-wave energy for which a Poynting-Vector can be defined. When both a source and field sensors (electric and magnetic) are static, a bearing to the electromagnetic source can be obtained. If a single set of electric (E) and magnetic (B) sensors are in motion, multiple measurements permit location of the source. The method can be extended to networks of sensors allowing determination of the location of both stationary and moving sources.

  4. Advances in optoplasmonic sensors - combining optical nano/microcavities and photonic crystals with plasmonic nanostructures and nanoparticles

    NASA Astrophysics Data System (ADS)

    Xavier, Jolly; Vincent, Serge; Meder, Fabian; Vollmer, Frank

    2018-01-01

    Nanophotonic device building blocks, such as optical nano/microcavities and plasmonic nanostructures, lie at the forefront of sensing and spectrometry of trace biological and chemical substances. A new class of nanophotonic architecture has emerged by combining optically resonant dielectric nano/microcavities with plasmonically resonant metal nanostructures to enable detection at the nanoscale with extraordinary sensitivity. Initial demonstrations include single-molecule detection and even single-ion sensing. The coupled photonic-plasmonic resonator system promises a leap forward in the nanoscale analysis of physical, chemical, and biological entities. These optoplasmonic sensor structures could be the centrepiece of miniaturised analytical laboratories, on a chip, with detection capabilities that are beyond the current state of the art. In this paper, we review this burgeoning field of optoplasmonic biosensors. We first focus on the state of the art in nanoplasmonic sensor structures, high quality factor optical microcavities, and photonic crystals separately before proceeding to an outline of the most recent advances in hybrid sensor systems. We discuss the physics of this modality in brief and each of its underlying parts, then the prospects as well as challenges when integrating dielectric nano/microcavities with metal nanostructures. In Section 5, we hint to possible future applications of optoplasmonic sensing platforms which offer many degrees of freedom towards biomedical diagnostics at the level of single molecules.

  5. Design and analysis of large-core single-mode windmill single crystal sapphire optical fiber

    DOE PAGES

    Cheng, Yujie; Hill, Cary; Liu, Bo; ...

    2016-06-01

    We present a large-core single-mode “windmill” single crystal sapphire optical fiber (SCSF) design, which exhibits single-mode operation by stripping off the higher-order modes (HOMs) while maintaining the fundamental mode. The “windmill” SCSF design was analyzed using the finite element analysis method, in which all the HOMs are leaky. The numerical simulation results show single-mode operation in the spectral range from 0.4 to 2 μm in the windmill SCSF, with an effective core diameter as large as 14 μm. Such fiber is expected to improve the performance of many of the current sapphire fiber optic sensor structures.

  6. [Development of Bluetooth wireless sensors].

    PubMed

    Moor, C; Schwaibold, M; Roth, H; Schöchlin, J; Bolz, A

    2002-01-01

    Wireless communication could help to overcome current obstacles in medical devices and could enable medical services to offer completely new scenarios in health care. The Bluetooth technology which is the upcoming global market leader in wireless communication turned out to be perfectly suited not only for consumer market products but also in the medical environment [1]. It offers a low power, low cost connection in the medium range of 1-100 m with a bandwidth of currently 723.2 kbaud. This paper describes the development of a wireless ECG device and a Pulse Oximeter. Equipped with a Bluetooth port, the measurement devices are enabled to transmit data between the sensor and a Bluetooth-monitor. Therefore, CSR's Bluetooth protocol embedded two-processor and embedded single-processor architecture has been used.

  7. Effects of electric current on individual graphene oxide sheets combining in situ transmission electron microscopy and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Martín, Gemma; Varea, Aïda; Cirera, Albert; Estradé, Sònia; Peiró, Francesca; Cornet, Albert

    2018-07-01

    Graphene oxide (GO) is currently the object of extensive research because of its potential use in mass production of graphene-based materials, but also due to its tunability which holds great promise for new nanoscale electronic devices and sensors. To obtain a better understanding of the role of GO in electronic nano-devices, the elucidation of the effects of electrical current on a single GO sheet is of great interest. In this work, in situ transmission electron microscopy is used to study the effects of the electrical current flow through single GO sheets using an scanning tunneling microscope holder. In order to correlate the applied current with the structural properties of GO, Raman spectroscopy is carried out and data analysis is used to obtain information regarding the reduction grade and the disorder degree of the GO sheets before and after the application of current.

  8. Effects of electric current on individual graphene oxide sheets combining in situ transmission electron microscopy and Raman spectroscopy.

    PubMed

    Martín, Gemma; Varea, Aïda; Cirera, Albert; Estradé, Sònia; Peiró, Francesca; Cornet, Albert

    2018-04-17

    Graphene oxide (GO) is currently the object of extensive research because of its potential use in mass production of graphene-based materials, but also due to its tunability which holds great promise for new nanoscale electronic devices and sensors. To obtain a better understanding of the role of GO in electronic nano-devices, the elucidation of the effects of electrical current on a single GO sheet is of great interest. In this work, in situ transmission electron microscopy is used to study the effects of the electrical current flow through single GO sheets using an scanning tunneling microscope holder. In order to correlate the applied current with the structural properties of GO, Raman spectroscopy is carried out and data analysis is used to obtain information regarding the reduction grade and the disorder degree of the GO sheets before and after the application of current.

  9. Context-aware system design

    NASA Astrophysics Data System (ADS)

    Chan, Christine S.; Ostertag, Michael H.; Akyürek, Alper Sinan; Šimunić Rosing, Tajana

    2017-05-01

    The Internet of Things envisions a web-connected infrastructure of billions of sensors and actuation devices. However, the current state-of-the-art presents another reality: monolithic end-to-end applications tightly coupled to a limited set of sensors and actuators. Growing such applications with new devices or behaviors, or extending the existing infrastructure with new applications, involves redesign and redeployment. We instead propose a modular approach to these applications, breaking them into an equivalent set of functional units (context engines) whose input/output transformations are driven by general-purpose machine learning, demonstrating an improvement in compute redundancy and computational complexity with minimal impact on accuracy. In conjunction with formal data specifications, or ontologies, we can replace application-specific implementations with a composition of context engines that use common statistical learning to generate output, thus improving context reuse. We implement interconnected context-aware applications using our approach, extracting user context from sensors in both healthcare and grid applications. We compare our infrastructure to single-stage monolithic implementations with single-point communications between sensor nodes and the cloud servers, demonstrating a reduction in combined system energy by 22-45%, and multiplying the battery lifetime of power-constrained devices by at least 22x, with easy deployment across different architectures and devices.

  10. A Low-Power Wide Dynamic-Range Current Readout Circuit for Ion-Sensitive FET Sensors.

    PubMed

    Son, Hyunwoo; Cho, Hwasuk; Koo, Jahyun; Ji, Youngwoo; Kim, Byungsub; Park, Hong-June; Sim, Jae-Yoon

    2017-06-01

    This paper presents an amplifier-less and digital-intensive current-to-digital converter for ion-sensitive FET sensors. Capacitance on the input node is utilized as a residue accumulator, and a clocked comparator is followed for quantization. Without any continuous-time feedback circuit, the converter performs a first-order noise shaping of the quantization error. In order to minimize static power consumption, the proposed circuit employs a single-ended current-steering digital-to-analog converter which flows only the same current as the input. By adopting a switching noise averaging algorithm, our dynamic element matching not only mitigates mismatch of current sources in the current-steering DAC, but also makes the effect of dynamic switching noise become an input-independent constant. The implemented circuit in 0.35 μm CMOS converts the current input with a range of 2.8 μ A to 15 b digital output in about 4 ms, showing a DNL of +0.24/-0.25 LSB and an INL of + 1.98/-1.98 LSB while consuming 16.8 μW.

  11. Emerging technology in fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Dyott, Richard B.

    1991-03-01

    Some recent innovations in interferoinetric fiber optic sensors include special fibers new components and sensor systems. Many of the concepts have precedents in microwaves. 1. GENERAL PRINCIPLES The application of optical fibers to sensors is diffuse compared with their application to optical communications which is essentially focused on the single problem of how to get information from A to B. A fiber sensor is viable when it can do something not possible with better than more cheaply than any existing method. The probability of the emergence of a new sensor depends on the length of time that a need for the sensor and the possibility of meeting that need have co-existed regardless of whether the need or the possibility has appeared first. 2. TYPES OF SENSOR Fiber sensors can be divided into: a) Multimode fiber sensors which depend on amplitude effects b) Single mode (single path) fiber sensors which depend on phase effects. Since multimode fiber has existed for many decades the emergence of a new multimode sensor depends mostly on the discovery of a new need for such a sensor. On the other hand single mode/single path (i. e. polarization maintaining) fiber is relatively new and so is still being applied to existing needs. This is particularly so of recent innovations in fibers and components. SPIE Vol. 1396 Applications of Optical Engineering Proceedings of OE/Midwest ''90 / 709

  12. Redundancy in Glucose Sensing

    PubMed Central

    Sharifi, Amin; Varsavsky, Andrea; Ulloa, Johanna; Horsburgh, Jodie C.; McAuley, Sybil A.; Krishnamurthy, Balasubramanian; Jenkins, Alicia J.; Colman, Peter G.; Ward, Glenn M.; MacIsaac, Richard J.; Shah, Rajiv; O’Neal, David N.

    2015-01-01

    Background: Current electrochemical glucose sensors use a single electrode. Multiple electrodes (redundancy) may enhance sensor performance. We evaluated an electrochemical redundant sensor (ERS) incorporating two working electrodes (WE1 and WE2) onto a single subcutaneous insertion platform with a processing algorithm providing a single real-time continuous glucose measure. Methods: Twenty-three adults with type 1 diabetes each wore two ERSs concurrently for 168 hours. Post-insertion a frequent sampling test (FST) was performed with ERS benchmarked against a glucose meter (Bayer Contour Link). Day 4 and 7 FSTs were performed with a standard meal and venous blood collected for reference glucose measurements (YSI and meter). Between visits, ERS was worn with capillary blood glucose testing ≥8 times/day. Sensor glucose data were processed prospectively. Results: Mean absolute relative deviation (MARD) for ERS day 1-7 (3,297 paired points with glucose meter) was (mean [SD]) 10.1 [11.5]% versus 11.4 [11.9]% for WE1 and 12.0 [11.9]% for WE2; P < .0001. ERS Clarke A and A+B were 90.2% and 99.8%, respectively. ERS day 4 plus day 7 MARD (1,237 pairs with YSI) was 9.4 [9.5]% versus 9.6 [9.7]% for WE1 and 9.9 [9.7]% for WE2; P = ns. ERS day 1-7 precision absolute relative deviation (PARD) was 9.9 [3.6]% versus 11.5 [6.2]% for WE1 and 10.1 [4.4]% for WE2; P = ns. ERS sensor display time was 97.8 [6.0]% versus 91.0 [22.3]% for WE1 and 94.1 [14.3]% for WE2; P < .05. Conclusions: Electrochemical redundancy enhances glucose sensor accuracy and display time compared with each individual sensing element alone. ERS performance compares favorably with ‘best-in-class’ of non-redundant sensors. PMID:26499476

  13. Nano- and micro-scale Bi-substituted iron garnet films for photonics and magneto-optic eddy current defectoscopy

    NASA Astrophysics Data System (ADS)

    Berzhansky, V. N.; Karavainikov, A. V.; Mikhailova, T. V.; Prokopov, A. R.; Shaposhnikov, A. N.; Shumilov, A. G.; Lugovskoy, N. V.; Semuk, E. Yu.; Kharchenko, M. F.; Lukienko, I. M.; Kharchenko, Yu. M.; Belotelov, V. I.

    2017-10-01

    Synthesis technology of nano-scale Bi-substituted iron garnets films with high magneto-optic activity for photonics and plasmonics applications were proposed. The micro-scale single-crystal garnet films with different types of magnetic anisotropy as a magneto-optic sensors were synthesized. It was shown that easy-axis anisotropy films demonstrated the best results for visualization of redistribution eddy current magnetic field near defects.

  14. Scientific Workflows and the Sensor Web for Virtual Environmental Observatories

    NASA Astrophysics Data System (ADS)

    Simonis, I.; Vahed, A.

    2008-12-01

    Virtual observatories mature from their original domain and become common practice for earth observation research and policy building. The term Virtual Observatory originally came from the astronomical research community. Here, virtual observatories provide universal access to the available astronomical data archives of space and ground-based observatories. Further on, as those virtual observatories aim at integrating heterogeneous ressources provided by a number of participating organizations, the virtual observatory acts as a coordinating entity that strives for common data analysis techniques and tools based on common standards. The Sensor Web is on its way to become one of the major virtual observatories outside of the astronomical research community. Like the original observatory that consists of a number of telescopes, each observing a specific part of the wave spectrum and with a collection of astronomical instruments, the Sensor Web provides a multi-eyes perspective on the current, past, as well as future situation of our planet and its surrounding spheres. The current view of the Sensor Web is that of a single worldwide collaborative, coherent, consistent and consolidated sensor data collection, fusion and distribution system. The Sensor Web can perform as an extensive monitoring and sensing system that provides timely, comprehensive, continuous and multi-mode observations. This technology is key to monitoring and understanding our natural environment, including key areas such as climate change, biodiversity, or natural disasters on local, regional, and global scales. The Sensor Web concept has been well established with ongoing global research and deployment of Sensor Web middleware and standards and represents the foundation layer of systems like the Global Earth Observation System of Systems (GEOSS). The Sensor Web consists of a huge variety of physical and virtual sensors as well as observational data, made available on the Internet at standardized interfaces. All data sets and sensor communication follow well-defined abstract models and corresponding encodings, mostly developed by the OGC Sensor Web Enablement initiative. Scientific progress is currently accelerated by an emerging new concept called scientific workflows, which organize and manage complex distributed computations. A scientific workflow represents and records the highly complex processes that a domain scientist typically would follow in exploration, discovery and ultimately, transformation of raw data to publishable results. The challenge is now to integrate the benefits of scientific workflows with those provided by the Sensor Web in order to leverage all resources for scientific exploration, problem solving, and knowledge generation. Scientific workflows for the Sensor Web represent the next evolutionary step towards efficient, powerful, and flexible earth observation frameworks and platforms. Those platforms support the entire process from capturing data, sharing and integrating, to requesting additional observations. Multiple sites and organizations will participate on single platforms and scientists from different countries and organizations interact and contribute to large-scale research projects. Simultaneously, the data- and information overload becomes manageable, as multiple layers of abstraction will free scientists to deal with underlying data-, processing or storage peculiarities. The vision are automated investigation and discovery mechanisms that allow scientists to pose queries to the system, which in turn would identify potentially related resources, schedules processing tasks and assembles all parts in workflows that may satisfy the query.

  15. Multispectral image-fused head-tracked vision system (HTVS) for driving applications

    NASA Astrophysics Data System (ADS)

    Reese, Colin E.; Bender, Edward J.

    2001-08-01

    Current military thermal driver vision systems consist of a single Long Wave Infrared (LWIR) sensor mounted on a manually operated gimbal, which is normally locked forward during driving. The sensor video imagery is presented on a large area flat panel display for direct view. The Night Vision and Electronics Sensors Directorate and Kaiser Electronics are cooperatively working to develop a driver's Head Tracked Vision System (HTVS) which directs dual waveband sensors in a more natural head-slewed imaging mode. The HTVS consists of LWIR and image intensified sensors, a high-speed gimbal, a head mounted display, and a head tracker. The first prototype systems have been delivered and have undergone preliminary field trials to characterize the operational benefits of a head tracked sensor system for tactical military ground applications. This investigation will address the advantages of head tracked vs. fixed sensor systems regarding peripheral sightings of threats, road hazards, and nearby vehicles. An additional thrust will investigate the degree to which additive (A+B) fusion of LWIR and image intensified sensors enhances overall driving performance. Typically, LWIR sensors are better for detecting threats, while image intensified sensors provide more natural scene cues, such as shadows and texture. This investigation will examine the degree to which the fusion of these two sensors enhances the driver's overall situational awareness.

  16. The RF-powered surface wave sensor oscillator--a successful alternative to passive wireless sensing.

    PubMed

    Avramov, Ivan D

    2004-09-01

    A novel, passive wireless surface acoustic wave (SAW) sensor providing a highly coherent measurand proportional frequency, frequency modulated (FM) with identification (ID) data and immune to interference with multiple-path signals is described. The sensor is appropriate for bandwidth-limited applications requiring high-frequency accuracy. It comprises a low-power oscillator, stabilized with the sensing SAW resonator and powered by the rectified radio frequency (RF) power of the interrogating signal received by an antenna on the sensor part. A few hundred microwatts of direct current (DC) power are enough to power the sensor oscillator and ID modulation circuit and achieve stable operation at 1.0 and 2.49 GHz. Reliable sensor interrogation was achieved over a distance of 0.45 m from a SAW-based interrogation unit providing 50 mW of continuous RF power at 915 MHz. The -30 to -35 dBm of returned sensor power was enough to receive the sensor signal over a long distance and through several walls with a simple superheterodyne FM receiver converting the sensor signal to a low measurand proportional intermediate frequency and retrieving the ID data through FM detection. Different sensor implementations, including continuous and pulsed power versions and the possibility of transmitting data from several measurands with a single sensor, are discussed.

  17. An Overview of the Landsat Data Continuity Mission

    NASA Technical Reports Server (NTRS)

    Irons, James R.; Dwyer, John L.

    2010-01-01

    The advent of the Landsat Data Continuity Mission (LDCM), currently with a launch readiness date of December, 2012, will see evolutionary changes in the Landsat data products available from the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center. The USGS initiated a revolution in 2009 when EROS began distributing Landsat data products at no cost to requestors in contrast to the past practice of charging the cost of fulfilling a request; that is, charging $600 per Landsat scene. To implement this drastic change, EROS terminated data processing options for requestors and began to produce all data products using a consistent processing recipe. EROS plans to continue this practice for the LDCM and will required new algorithms to process data from the LDCM sensors. All previous Landsat satellites flew multispectral scanners to collect image data of the global land surface. Additionally, Landsats 4, 5, and 7 flew sensors that acquired imagery for both reflective spectral bands and a single thermal band. In contrast, the LDCM will carry two pushbroom sensors; the Operational Land Imager (OLI) for reflective spectral bands and the Thermal InfraRed Sensor (TIRS) for two thermal bands. EROS is developing the ground data processing system that will both calibrate and correct the data from the thousands of detectors employed by the pushbroom sensors and that will also combine the data from the two sensors to create a single data product with registered data for all of the OLI and TIRS bands.

  18. Localization of Narrowband Single Photon Emitters in Nanodiamonds.

    PubMed

    Bray, Kerem; Sandstrom, Russell; Elbadawi, Christopher; Fischer, Martin; Schreck, Matthias; Shimoni, Olga; Lobo, Charlene; Toth, Milos; Aharonovich, Igor

    2016-03-23

    Diamond nanocrystals that host room temperature narrowband single photon emitters are highly sought after for applications in nanophotonics and bioimaging. However, current understanding of the origin of these emitters is extremely limited. In this work, we demonstrate that the narrowband emitters are point defects localized at extended morphological defects in individual nanodiamonds. In particular, we show that nanocrystals with defects such as twin boundaries and secondary nucleation sites exhibit narrowband emission that is absent from pristine individual nanocrystals grown under the same conditions. Critically, we prove that the narrowband emission lines vanish when extended defects are removed deterministically using highly localized electron beam induced etching. Our results enhance the current understanding of single photon emitters in diamond and are directly relevant to fabrication of novel quantum optics devices and sensors.

  19. Variable self-powered light detection CMOS chip with real-time adaptive tracking digital output based on a novel on-chip sensor.

    PubMed

    Wang, HongYi; Fan, Youyou; Lu, Zhijian; Luo, Tao; Fu, Houqiang; Song, Hongjiang; Zhao, Yuji; Christen, Jennifer Blain

    2017-10-02

    This paper provides a solution for a self-powered light direction detection with digitized output. Light direction sensors, energy harvesting photodiodes, real-time adaptive tracking digital output unit and other necessary circuits are integrated on a single chip based on a standard 0.18 µm CMOS process. Light direction sensors proposed have an accuracy of 1.8 degree over a 120 degree range. In order to improve the accuracy, a compensation circuit is presented for photodiodes' forward currents. The actual measurement precision of output is approximately 7 ENOB. Besides that, an adaptive under voltage protection circuit is designed for variable supply power which may undulate with temperature and process.

  20. Alcohol sensor based on single-mode-multimode-single-mode fiber structure

    NASA Astrophysics Data System (ADS)

    Mefina Yulias, R.; Hatta, A. M.; Sekartedjo, Sekartedjo

    2016-11-01

    Alcohol sensor based on Single-mode -Multimode-Single-mode (SMS) fiber structure is being proposed to sense alcohol concentration in alcohol-water mixtures. This proposed sensor uses refractive index sensing as its sensing principle. Fabricated SMS fiber structure had 40 m of multimode length. With power input -6 dBm and wavelength 1550 nm, the proposed sensor showed good response with sensitivity 1,983 dB per % v/v with measurement range 05 % v/v and measurement span 0,5% v/v.

  1. Magnetic tracking for TomoTherapy systems: gradiometer based methods to filter eddy-current magnetic fields.

    PubMed

    McGary, John E; Xiong, Zubiao; Chen, Ji

    2013-07-01

    TomoTherapy systems lack real-time, tumor tracking. A possible solution is to use electromagnetic markers; however, eddy-current magnetic fields generated in response to a magnetic source can be comparable to the signal, thus degrading the localization accuracy. Therefore, the tracking system must be designed to account for the eddy fields created along the inner bore conducting surfaces. The aim of this work is to investigate localization accuracy using magnetic field gradients to determine feasibility toward TomoTherapy applications. Electromagnetic models are used to simulate magnetic fields created by a source and its simultaneous generation of eddy currents within a conducting cylinder. The source position is calculated using a least-squares fit of simulated sensor data using the dipole equation as the model equation. To account for field gradients across the sensor area (≈ 25 cm(2)), an iterative method is used to estimate the magnetic field at the sensor center. Spatial gradients are calculated with two arrays of uniaxial, paired sensors that form a gradiometer array, where the sensors are considered ideal. Experimental measurements of magnetic fields within the TomoTherapy bore are shown to be 1%-10% less than calculated with the electromagnetic model. Localization results using a 5 × 5 array of gradiometers are, in general, 2-4 times more accurate than a planar array of sensors, depending on the solenoid orientation and position. Simulation results show that the localization accuracy using a gradiometer array is within 1.3 mm over a distance of 20 cm from the array plane. In comparison, localization errors using single array are within 5 mm. The results indicate that the gradiometer method merits further studies and work due to the accuracy achieved with ideal sensors. Future studies should include realistic sensor models and extensive numerical studies to estimate the expected magnetic tracking accuracy within a TomoTherapy system before proceeding with prototype development.

  2. Passive IR polarization sensors: a new technology for mine detection

    NASA Astrophysics Data System (ADS)

    Barbour, Blair A.; Jones, Michael W.; Barnes, Howard B.; Lewis, Charles P.

    1998-09-01

    The problem of mine and minefield detection continues to provide a significant challenge to sensor systems. Although the various sensor technologies (infrared, ground penetrating radar, etc.) may excel in certain situations there does not exist a single sensor technology that can adequately detect mines in all conditions such as time of day, weather, buried or surface laid, etc. A truly robust mine detection system will likely require the fusion of data from multiple sensor technologies. The performance of these systems, however, will ultimately depend on the performance of the individual sensors. Infrared (IR) polarimetry is a new and innovative sensor technology that adds substantial capabilities to the detection of mines. IR polarimetry improves on basic IR imaging by providing improved spatial resolution of the target, an inherent ability to suppress clutter, and the capability for zero (Delta) T imaging. Nichols Research Corporation (Nichols) is currently evaluating the effectiveness of IR polarization for mine detection. This study is partially funded by the U.S. Army Night Vision & Electronic Sensors Directorate (NVESD). The goal of the study is to demonstrate, through phenomenology studies and limited field trials, that IR polarizaton outperforms conventional IR imaging in the mine detection arena.

  3. Quantitative decoding of the response a ceramic mixed potential sensor array for engine emissions control and diagnostics

    DOE PAGES

    Tsui, Lok-kun; Benavidez, Angelica; Palanisamy, Ponnusamy; ...

    2017-04-13

    The development of on-board sensors for emissions monitoring is necessary for continuous monitoring of the performance of catalytic systems in automobiles. We have fabricated mixed potential electrochemical gas sensing devices with Pt, La 0.8Sr 0.2CrO 3 (LSCO), and Au/Pd alloy electrodes and a porous yttria-stabilized zirconia electrolyte. The three-electrode design takes advantage of the preferential selectivity of the Pt + Au/Pd and Pt + LSCO pairs towards different species of gases and has additional tunable selectivity achieved by applying a current bias to the latter pair. Voltages were recorded in single, binary, and ternary gas streams of NO, NO 2,more » C 3H 8, and CO. We have also trained artificial neural networks to examine the voltage output from sensors in biased and unbiased modes to both identify which single test gas or binary mixture of two test gases is present in a gas stream as well as extract concentration values. We were then able to identify single and binary mixtures of these gases with accuracy of at least 98%. For determining concentration, the peak in the error distribution for binary mixtures was 5% and 80% of test data fell under <12% error. The sensor stability was also evaluated over the course of over 100 days and the ability to retrain ANNs with a small dataset was demonstrated.« less

  4. Quantitative decoding of the response a ceramic mixed potential sensor array for engine emissions control and diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsui, Lok-kun; Benavidez, Angelica; Palanisamy, Ponnusamy

    The development of on-board sensors for emissions monitoring is necessary for continuous monitoring of the performance of catalytic systems in automobiles. We have fabricated mixed potential electrochemical gas sensing devices with Pt, La 0.8Sr 0.2CrO 3 (LSCO), and Au/Pd alloy electrodes and a porous yttria-stabilized zirconia electrolyte. The three-electrode design takes advantage of the preferential selectivity of the Pt + Au/Pd and Pt + LSCO pairs towards different species of gases and has additional tunable selectivity achieved by applying a current bias to the latter pair. Voltages were recorded in single, binary, and ternary gas streams of NO, NO 2,more » C 3H 8, and CO. We have also trained artificial neural networks to examine the voltage output from sensors in biased and unbiased modes to both identify which single test gas or binary mixture of two test gases is present in a gas stream as well as extract concentration values. We were then able to identify single and binary mixtures of these gases with accuracy of at least 98%. For determining concentration, the peak in the error distribution for binary mixtures was 5% and 80% of test data fell under <12% error. The sensor stability was also evaluated over the course of over 100 days and the ability to retrain ANNs with a small dataset was demonstrated.« less

  5. Transmission-Type 2-Bit Programmable Metasurface for Single-Sensor and Single-Frequency Microwave Imaging

    PubMed Central

    Li, Yun Bo; Li, Lian Lin; Xu, Bai Bing; Wu, Wei; Wu, Rui Yuan; Wan, Xiang; Cheng, Qiang; Cui, Tie Jun

    2016-01-01

    The programmable and digital metamaterials or metasurfaces presented recently have huge potentials in designing real-time-controlled electromagnetic devices. Here, we propose the first transmission-type 2-bit programmable coding metasurface for single-sensor and single- frequency imaging in the microwave frequency. Compared with the existing single-sensor imagers composed of active spatial modulators with their units controlled independently, we introduce randomly programmable metasurface to transform the masks of modulators, in which their rows and columns are controlled simultaneously so that the complexity and cost of the imaging system can be reduced drastically. Different from the single-sensor approach using the frequency agility, the proposed imaging system makes use of variable modulators under single frequency, which can avoid the object dispersion. In order to realize the transmission-type 2-bit programmable metasurface, we propose a two-layer binary coding unit, which is convenient for changing the voltages in rows and columns to switch the diodes in the top and bottom layers, respectively. In our imaging measurements, we generate the random codes by computer to achieve different transmission patterns, which can support enough multiple modes to solve the inverse-scattering problem in the single-sensor imaging. Simple experimental results are presented in the microwave frequency, validating our new single-sensor and single-frequency imaging system. PMID:27025907

  6. Transmission-Type 2-Bit Programmable Metasurface for Single-Sensor and Single-Frequency Microwave Imaging.

    PubMed

    Li, Yun Bo; Li, Lian Lin; Xu, Bai Bing; Wu, Wei; Wu, Rui Yuan; Wan, Xiang; Cheng, Qiang; Cui, Tie Jun

    2016-03-30

    The programmable and digital metamaterials or metasurfaces presented recently have huge potentials in designing real-time-controlled electromagnetic devices. Here, we propose the first transmission-type 2-bit programmable coding metasurface for single-sensor and single- frequency imaging in the microwave frequency. Compared with the existing single-sensor imagers composed of active spatial modulators with their units controlled independently, we introduce randomly programmable metasurface to transform the masks of modulators, in which their rows and columns are controlled simultaneously so that the complexity and cost of the imaging system can be reduced drastically. Different from the single-sensor approach using the frequency agility, the proposed imaging system makes use of variable modulators under single frequency, which can avoid the object dispersion. In order to realize the transmission-type 2-bit programmable metasurface, we propose a two-layer binary coding unit, which is convenient for changing the voltages in rows and columns to switch the diodes in the top and bottom layers, respectively. In our imaging measurements, we generate the random codes by computer to achieve different transmission patterns, which can support enough multiple modes to solve the inverse-scattering problem in the single-sensor imaging. Simple experimental results are presented in the microwave frequency, validating our new single-sensor and single-frequency imaging system.

  7. Single Photon Counting Performance and Noise Analysis of CMOS SPAD-Based Image Sensors.

    PubMed

    Dutton, Neale A W; Gyongy, Istvan; Parmesan, Luca; Henderson, Robert K

    2016-07-20

    SPAD-based solid state CMOS image sensors utilising analogue integrators have attained deep sub-electron read noise (DSERN) permitting single photon counting (SPC) imaging. A new method is proposed to determine the read noise in DSERN image sensors by evaluating the peak separation and width (PSW) of single photon peaks in a photon counting histogram (PCH). The technique is used to identify and analyse cumulative noise in analogue integrating SPC SPAD-based pixels. The DSERN of our SPAD image sensor is exploited to confirm recent multi-photon threshold quanta image sensor (QIS) theory. Finally, various single and multiple photon spatio-temporal oversampling techniques are reviewed.

  8. Magnetic-Field-Response Measurement-Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodward, Stanley E.; Shams, Qamar A.; Fox, Robert L.; Taylor, Bryant D.

    2006-01-01

    A measurement-acquisition system uses magnetic fields to power sensors and to acquire measurements from sensors. The system alleviates many shortcomings of traditional measurement-acquisition systems, which include a finite number of measurement channels, weight penalty associated with wires, use limited to a single type of measurement, wire degradation due to wear or chemical decay, and the logistics needed to add new sensors. Eliminating wiring for acquiring measurements can alleviate potential hazards associated with wires, such as damaged wires becoming ignition sources due to arcing. The sensors are designed as electrically passive inductive-capacitive or passive inductive-capacitive-resistive circuits that produce magnetic-field-responses. One or more electrical parameters (inductance, capacitance, and resistance) of each sensor can be variable and corresponds to a measured physical state of interest. The magnetic-field- response attributes (frequency, amplitude, and bandwidth) of the inductor correspond to the states of physical properties for which each sensor measures. For each sensor, the measurement-acquisition system produces a series of increasing magnetic-field harmonics within a frequency range dedicated to that sensor. For each harmonic, an antenna electrically coupled to an oscillating current (the frequency of which is that of the harmonic) produces an oscillating magnetic field. Faraday induction via the harmonic magnetic fields produces an electromotive force and therefore a current in the sensor. Once electrically active, the sensor produces its own harmonic magnetic field as the inductor stores and releases magnetic energy. The antenna of the measurement- acquisition system is switched from a transmitting to a receiving mode to acquire the magnetic-field response of the sensor. The rectified amplitude of the received response is compared to previous responses to prior transmitted harmonics, to ascertain if the measurement system has detected a response inflection. The "transmit-receive-compare" of sequential harmonics is repeated until the inflection is identified. The harmonic producing the amplitude inflection is the sensor resonant frequency. Resonant frequency and response amplitude are stored and then correlated to calibration data.

  9. Detection of gas atoms with carbon nanotubes

    PubMed Central

    Arash, B.; Wang, Q.

    2013-01-01

    Owning to their unparalleled sensitivity resolution, nanomechanical resonators have excellent capabilities in design of nano-sensors for gas detection. The current challenge is to develop new designs of the resonators for differentiating distinct gas atoms with a recognizably high sensitivity. In this work, the characteristics of impulse wave propagation in carbon nanotube-based sensors are investigated using molecular dynamics simulations to provide a new method for detection of noble gases. A sensitivity index based on wave velocity shifts in a single-walled carbon nanotube, induced by surrounding gas atoms, is defined to explore the efficiency of the nano-sensor. The simulation results indicate that the nano-sensor is able to differentiate distinct noble gases at the same environmental temperature and pressure. The inertia and the strengthening effects by the gases on wave characteristics of carbon nanotubes are particularly discussed, and a continuum mechanics shell model is developed to interpret the effects.

  10. Imaging mitochondrial flux in single cells with a FRET sensor for pyruvate.

    PubMed

    San Martín, Alejandro; Ceballo, Sebastián; Baeza-Lehnert, Felipe; Lerchundi, Rodrigo; Valdebenito, Rocío; Contreras-Baeza, Yasna; Alegría, Karin; Barros, L Felipe

    2014-01-01

    Mitochondrial flux is currently accessible at low resolution. Here we introduce a genetically-encoded FRET sensor for pyruvate, and methods for quantitative measurement of pyruvate transport, pyruvate production and mitochondrial pyruvate consumption in intact individual cells at high temporal resolution. In HEK293 cells, neurons and astrocytes, mitochondrial pyruvate uptake was saturated at physiological levels, showing that the metabolic rate is determined by intrinsic properties of the organelle and not by substrate availability. The potential of the sensor was further demonstrated in neurons, where mitochondrial flux was found to rise by 300% within seconds of a calcium transient triggered by a short theta burst, while glucose levels remained unaltered. In contrast, astrocytic mitochondria were insensitive to a similar calcium transient elicited by extracellular ATP. We expect the improved resolution provided by the pyruvate sensor will be of practical interest for basic and applied researchers interested in mitochondrial function.

  11. Imaging Mitochondrial Flux in Single Cells with a FRET Sensor for Pyruvate

    PubMed Central

    Baeza-Lehnert, Felipe; Lerchundi, Rodrigo; Valdebenito, Rocío; Contreras-Baeza, Yasna; Alegría, Karin; Barros, L. Felipe

    2014-01-01

    Mitochondrial flux is currently accessible at low resolution. Here we introduce a genetically-encoded FRET sensor for pyruvate, and methods for quantitative measurement of pyruvate transport, pyruvate production and mitochondrial pyruvate consumption in intact individual cells at high temporal resolution. In HEK293 cells, neurons and astrocytes, mitochondrial pyruvate uptake was saturated at physiological levels, showing that the metabolic rate is determined by intrinsic properties of the organelle and not by substrate availability. The potential of the sensor was further demonstrated in neurons, where mitochondrial flux was found to rise by 300% within seconds of a calcium transient triggered by a short theta burst, while glucose levels remained unaltered. In contrast, astrocytic mitochondria were insensitive to a similar calcium transient elicited by extracellular ATP. We expect the improved resolution provided by the pyruvate sensor will be of practical interest for basic and applied researchers interested in mitochondrial function. PMID:24465702

  12. Design, Simulation and Characteristics Research of the Interface Circuit based on nano-polysilicon thin films pressure sensor

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaosong; Zhao, Xiaofeng; Yin, Liang

    2018-03-01

    This paper presents a interface circuit for nano-polysilicon thin films pressure sensor. The interface circuit includes consist of instrument amplifier and Analog-to-Digital converter (ADC). The instrumentation amplifier with a high common mode rejection ratio (CMRR) is implemented by three stages current feedback structure. At the same time, in order to satisfy the high precision requirements of pressure sensor measure system, the 1/f noise corner of 26.5 mHz can be achieved through chopping technology at a noise density of 38.2 nV/sqrt(Hz).Ripple introduced by chopping technology adopt continuous ripple reduce circuit (RRL), which achieves the output ripple level is lower than noise. The ADC achieves 16 bits significant digit by adopting sigma-delta modulator with fourth-order single-bit structure and digital decimation filter, and finally achieves high precision integrated pressure sensor interface circuit.

  13. All-IP-Ethernet architecture for real-time sensor-fusion processing

    NASA Astrophysics Data System (ADS)

    Hiraki, Kei; Inaba, Mary; Tezuka, Hiroshi; Tomari, Hisanobu; Koizumi, Kenichi; Kondo, Shuya

    2016-03-01

    Serendipter is a device that distinguishes and selects very rare particles and cells from huge amount of population. We are currently designing and constructing information processing system for a Serendipter. The information processing system for Serendipter is a kind of sensor-fusion system but with much more difficulties: To fulfill these requirements, we adopt All IP based architecture: All IP-Ethernet based data processing system consists of (1) sensor/detector directly output data as IP-Ethernet packet stream, (2) single Ethernet/TCP/IP streams by a L2 100Gbps Ethernet switch, (3) An FPGA board with 100Gbps Ethernet I/F connected to the switch and a Xeon based server. Circuits in the FPGA include 100Gbps Ethernet MAC, buffers and preprocessing, and real-time Deep learning circuits using multi-layer neural networks. Proposed All-IP architecture solves existing problem to construct large-scale sensor-fusion systems.

  14. Architecture and applications of a high resolution gated SPAD image sensor

    PubMed Central

    Burri, Samuel; Maruyama, Yuki; Michalet, Xavier; Regazzoni, Francesco; Bruschini, Claudio; Charbon, Edoardo

    2014-01-01

    We present the architecture and three applications of the largest resolution image sensor based on single-photon avalanche diodes (SPADs) published to date. The sensor, fabricated in a high-voltage CMOS process, has a resolution of 512 × 128 pixels and a pitch of 24 μm. The fill-factor of 5% can be increased to 30% with the use of microlenses. For precise control of the exposure and for time-resolved imaging, we use fast global gating signals to define exposure windows as small as 4 ns. The uniformity of the gate edges location is ∼140 ps (FWHM) over the whole array, while in-pixel digital counting enables frame rates as high as 156 kfps. Currently, our camera is used as a highly sensitive sensor with high temporal resolution, for applications ranging from fluorescence lifetime measurements to fluorescence correlation spectroscopy and generation of true random numbers. PMID:25090572

  15. High Frequency Amplitude Detector for GMI Magnetic Sensors

    PubMed Central

    Asfour, Aktham; Zidi, Manel; Yonnet, Jean-Paul

    2014-01-01

    A new concept of a high-frequency amplitude detector and demodulator for Giant-Magneto-Impedance (GMI) sensors is presented. This concept combines a half wave rectifier, with outstanding capabilities and high speed, and a feedback approach that ensures the amplitude detection with easily adjustable gain. The developed detector is capable of measuring high-frequency and very low amplitude signals without the use of diode-based active rectifiers or analog multipliers. The performances of this detector are addressed throughout the paper. The full circuitry of the design is given, together with a comprehensive theoretical study of the concept and experimental validation. The detector has been used for the amplitude measurement of both single frequency and pulsed signals and for the demodulation of amplitude-modulated signals. It has also been successfully integrated in a GMI sensor prototype. Magnetic field and electrical current measurements in open- and closed-loop of this sensor have also been conducted. PMID:25536003

  16. Imaging Sensor Development for Scattering Atmospheres.

    DTIC Science & Technology

    1983-03-01

    subtracted out- put from a CCD imaging detector for a single frame can be written as A _ S (2-22) V B + B{ shot noise thermal noise , dark current shot ...addition, the spectral re- sponses of current devices are limited to the visible region and their sensitivities are not very high. Solid state detectors ...are generally much more sensitive than spatial light modulators, and some (e.g., HgCdTe detectors ) can re- spond up to the 10 um region. Several

  17. A new EMI system for detection and classification of challenging targets

    NASA Astrophysics Data System (ADS)

    Shubitidze, F.; Fernández, J. P.; Barrowes, B. E.; O'Neill, K.

    2013-06-01

    Advanced electromagnetic induction (EMI) sensors currently feature multi-axis illumination of targets and tri-axial vector sensing (e.g., MetalMapper), or exploit multi-static array data acquisition (e.g., TEMTADS). They produce data of high density, quality, and diversity, and have been combined with advanced EMI models to provide superb classification performance relative to the previous generation of single-axis, monostatic sensors. However, these advances yet have to improve significantly our ability to classify small, deep, and otherwise challenging targets. Particularly, recent live-site discrimination studies at Camp Butner, NC and Camp Beale, CA have revealed that it is more challenging to detect and discriminate small munitions (with calibers ranging from 20 mm to 60 mm) than larger ones. In addition, a live-site test at the Massachusetts Military Reservation, MA highlighted the difficulties for current sensors to classify large, deep, and overlapping targets with high confidence. There are two main approaches to overcome these problems: 1) adapt advanced EMI models to the existing systems and 2) improve the detection limits of current sensors by modifying their hardware. In this paper we demonstrate a combined software/hardware approach that will provide extended detection range and spatial resolution to next-generation EMI systems; we analyze and invert EMI data to extract classification features for small and deep targets; and we propose a new system that features a large transmitter coil.

  18. Data Transfer for Multiple Sensor Networks Over a Broad Temperature Range

    NASA Technical Reports Server (NTRS)

    Krasowski, Michael

    2013-01-01

    At extreme temperatures, cryogenic and over 300 C, few electronic components are available to support intelligent data transfer over a common, linear combining medium. This innovation allows many sensors to operate on the same wire bus (or on the same airwaves or optical channel: any linearly combining medium), transmitting simultaneously, but individually recoverable at a node in a cooler part of the test area. This innovation has been demonstrated using room-temperature silicon microcircuits as proxy. The microcircuits have analog functionality comparable to componentry designed using silicon carbide. Given a common, linearly combining medium, multiple sending units may transmit information simultaneously. A listening node, using various techniques, can pick out the signal from a single sender, if it has unique qualities, e.g. a voice. The problem being solved is commonly referred to as the cocktail party problem. The human brain uses the cocktail party effect when it is able to recognize and follow a single conversation in a party full of talkers and other noise sources. High-temperature sensors have been used in silicon carbide electronic oscillator circuits. The frequency of the oscillator changes as a function of the changes in the sensed parameter, such as pressure. This change is analogous to changes in the pitch of a person s voice. The output of this oscillator and many others may be superimposed onto a single medium. This medium may be the power lines supplying current to the sensors, a third wire dedicated to data transmission, the airwaves through radio transmission, an optical medium, etc. However, with nothing to distinguish the identities of each source that is, the source separation this system is useless. Using digital electronic functions, unique codes or patterns are created and used to modulate the output of the sensor.

  19. Synthesis-identification integration: One-pot hydrothermal preparation of fluorescent nitrogen-doped carbon nanodots for differentiating nucleobases with the aid of multivariate chemometrics analysis.

    PubMed

    Zhuang, Qianfen; Cao, Wei; Ni, Yongnian; Wang, Yong

    2018-08-01

    Most of the conventional multidimensional differential sensors currently need at least two-step fabrication, namely synthesis of probe(s) and identification of multiple analytes by mixing of analytes with probe(s), and were conducted using multiple sensing elements or several devices. In the study, we chose five different nucleobases (adenine, cytosine, guanine, thymine, and uracil) as model analytes, and found that under hydrothermal conditions, sodium citrate could react directly with various nucleobases to yield different nitrogen-doped carbon nanodots (CDs). The CDs synthesized from different nucleobases exhibited different fluorescent properties, leading to their respective characteristic fluorescence spectra. Hence, we combined the fluorescence spectra of the CDs with advanced chemometrics like principle component analysis (PCA), hierarchical cluster analysis (HCA), K-nearest neighbor (KNN) and soft independent modeling of class analogy (SIMCA), to present a conceptually novel "synthesis-identification integration" strategy to construct a multidimensional differential sensor for nucleobase discrimination. Single-wavelength excitation fluorescence spectral data, single-wavelength emission fluorescence spectral data, and fluorescence Excitation-Emission Matrices (EEMs) of the CDs were respectively used as input data of the differential sensor. The results showed that the discrimination ability of the multidimensional differential sensor with EEM data set as input data was superior to those with single-wavelength excitation/emission fluorescence data set, suggesting that increasing the number of the data input could improve the discrimination power. Two supervised pattern recognition methods, namely KNN and SIMCA, correctly identified the five nucleobases with a classification accuracy of 100%. The proposed "synthesis-identification integration" strategy together with a multidimensional array of experimental data holds great promise in the construction of differential sensors. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Can single empirical algorithms accurately predict inland shallow water quality status from high resolution, multi-sensor, multi-temporal satellite data?

    NASA Astrophysics Data System (ADS)

    Theologou, I.; Patelaki, M.; Karantzalos, K.

    2015-04-01

    Assessing and monitoring water quality status through timely, cost effective and accurate manner is of fundamental importance for numerous environmental management and policy making purposes. Therefore, there is a current need for validated methodologies which can effectively exploit, in an unsupervised way, the enormous amount of earth observation imaging datasets from various high-resolution satellite multispectral sensors. To this end, many research efforts are based on building concrete relationships and empirical algorithms from concurrent satellite and in-situ data collection campaigns. We have experimented with Landsat 7 and Landsat 8 multi-temporal satellite data, coupled with hyperspectral data from a field spectroradiometer and in-situ ground truth data with several physico-chemical and other key monitoring indicators. All available datasets, covering a 4 years period, in our case study Lake Karla in Greece, were processed and fused under a quantitative evaluation framework. The performed comprehensive analysis posed certain questions regarding the applicability of single empirical models across multi-temporal, multi-sensor datasets towards the accurate prediction of key water quality indicators for shallow inland systems. Single linear regression models didn't establish concrete relations across multi-temporal, multi-sensor observations. Moreover, the shallower parts of the inland system followed, in accordance with the literature, different regression patterns. Landsat 7 and 8 resulted in quite promising results indicating that from the recreation of the lake and onward consistent per-sensor, per-depth prediction models can be successfully established. The highest rates were for chl-a (r2=89.80%), dissolved oxygen (r2=88.53%), conductivity (r2=88.18%), ammonium (r2=87.2%) and pH (r2=86.35%), while the total phosphorus (r2=70.55%) and nitrates (r2=55.50%) resulted in lower correlation rates.

  1. Mobile Wireless Sensor Networks for Advanced Soil Sensing and Ecosystem Monitoring

    NASA Astrophysics Data System (ADS)

    Mollenhauer, Hannes; Schima, Robert; Remmler, Paul; Mollenhauer, Olaf; Hutschenreuther, Tino; Toepfer, Hannes; Dietrich, Peter; Bumberger, Jan

    2015-04-01

    For an adequate characterization of ecosystems it is necessary to detect individual processes with suitable monitoring strategies and methods. Due to the natural complexity of all environmental compartments, single point or temporally and spatially fixed measurements are mostly insufficient for an adequate representation. The application of mobile wireless sensor networks for soil and atmosphere sensing offers significant benefits, due to the simple adjustment of the sensor distribution, the sensor types and the sample rate (e.g. by using optimization approaches or event triggering modes) to the local test conditions. This can be essential for the monitoring of heterogeneous and dynamic environmental systems and processes. One significant advantage in the application of mobile ad-hoc wireless sensor networks is their self-organizing behavior. Thus, the network autonomously initializes and optimizes itself. Due to the localization via satellite a major reduction in installation and operation costs and time is generated. In addition, single point measurements with a sensor are significantly improved by measuring at several optimized points continuously. Since performing analog and digital signal processing and computation in the sensor nodes close to the sensors a significant reduction of the data to be transmitted can be achieved which leads to a better energy management of nodes. Furthermore, the miniaturization of the nodes and energy harvesting are current topics under investigation. First results of field measurements are given to present the potentials and limitations of this application in environmental science. In particular, collected in-situ data with numerous specific soil and atmosphere parameters per sensor node (more than 25) recorded over several days illustrates the high performance of this system for advanced soil sensing and soil-atmosphere interaction monitoring. Moreover, investigations of biotic and abiotic process interactions and optimization of sensor positioning for measuring soil moisture are scopes of this work and initial results of these issues will be presented.

  2. Distributed Detection with Collisions in a Random, Single-Hop Wireless Sensor Network

    DTIC Science & Technology

    2013-05-26

    public release; distribution is unlimited. Distributed detection with collisions in a random, single-hop wireless sensor network The views, opinions...1274 2 ABSTRACT Distributed detection with collisions in a random, single-hop wireless sensor network Report Title We consider the problem of... WIRELESS SENSOR NETWORK Gene T. Whipps?† Emre Ertin† Randolph L. Moses† ?U.S. Army Research Laboratory, Adelphi, MD 20783 †The Ohio State University

  3. Ultra-senstitive magnesium oxide-based magnetic tunnel junctions for spintronic immunoassay

    NASA Astrophysics Data System (ADS)

    Shen, Weifeng

    We systematically studied the spin-dependent tunnel properties of MgO-based magnetic tunnel junctions (MTJs). Utilizing the spin-coherent tunnel effects of the MgO (001) insulating layer, we have achieved large tunneling magnetoresistance (TMR) ratios (above 200%) at room temperature in optimized MTJ devices. We have shown that the MgO surface roughness, and therefore device magnetoresistance, depends strongly on the pressure of the Ar sputtering gas. We have investigated the characteristics of MgO-MTJs, including their dependence on barrier thickness and bias voltage, their thermal stability and resistance to electrostatic discharge (ESD). We have also fabricated MgO-MTJs with a synthetic antiferromagnetic (SAF) free layer, which exhibits a coherent, single-domain-like switching. Our data show that MgO-MTJs have superior properties for low-field magnetic field sensing applications as compared with conventional AlOx-based MTJs. Based on this giant TMR effect, we designed and developed ultra-sensitive magnetic tunnel junction (MTJ) sensors and sensor arrays for biomagnetic sensing applications. By integrating MTJ sensor arrays into microfluidic channels, we were able to detect the presence of moving, micron-size superparamagnetic beads in real time. We have obtained an average signal of 80 mV for a single Dynal M-280 bead, with a signal-to-noise ratio (SNR) of 24 dB. We also biologically treated the MTJ sensor array surfaces, and demonstrated the detection of 2.5 muM single strand target DNA labeled with 16-nm-diameter Fe3O 4 nanoparticles (NPs). Our measured signal of 72 muV indicates that the current system's detection limit for analyte DNA is better than 150 nM. We also demonstrated the detection of live HeLa cells labeled with Fe 3O4 nanoparticles, with an effective signal of 8 mV and a signal-to-noise ratio of 6 dB. These results represent an important milestone in the development of spintronics immunoassay technology: the detection of a single live cell labeled with magnetic nanoparticles. All the data show conclusively that MTJ sensors and sensor arrays are very promising candidates for future applications involving the accurate detection and identification of biomolecules tagged with magnetic labels.

  4. Process-Hardened, Multi-Analyte Sensor for Characterizing Rocket Plume Constituents

    NASA Technical Reports Server (NTRS)

    Goswami, Kisholoy

    2011-01-01

    A multi-analyte sensor was developed that enables simultaneous detection of rocket engine combustion-product molecules in a launch-vehicle ground test stand. The sensor was developed using a pin-printing method by incorporating multiple sensor elements on a single chip. It demonstrated accurate and sensitive detection of analytes such as carbon dioxide, carbon monoxide, kerosene, isopropanol, and ethylene from a single measurement. The use of pin-printing technology enables high-volume fabrication of the sensor chip, which will ultimately eliminate the need for individual sensor calibration since many identical sensors are made in one batch. Tests were performed using a single-sensor chip attached to a fiber-optic bundle. The use of a fiber bundle allows placement of the opto-electronic readout device at a place remote from the test stand. The sensors are rugged for operation in harsh environments.

  5. A source number estimation method for single optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Hu, Junpeng; Huang, Zhiping; Su, Shaojing; Zhang, Yimeng; Liu, Chunwu

    2015-10-01

    The single-channel blind source separation (SCBSS) technique makes great significance in many fields, such as optical fiber communication, sensor detection, image processing and so on. It is a wide range application to realize blind source separation (BSS) from a single optical fiber sensor received data. The performance of many BSS algorithms and signal process methods will be worsened with inaccurate source number estimation. Many excellent algorithms have been proposed to deal with the source number estimation in array signal process which consists of multiple sensors, but they can not be applied directly to the single sensor condition. This paper presents a source number estimation method dealing with the single optical fiber sensor received data. By delay process, this paper converts the single sensor received data to multi-dimension form. And the data covariance matrix is constructed. Then the estimation algorithms used in array signal processing can be utilized. The information theoretic criteria (ITC) based methods, presented by AIC and MDL, Gerschgorin's disk estimation (GDE) are introduced to estimate the source number of the single optical fiber sensor's received signal. To improve the performance of these estimation methods at low signal noise ratio (SNR), this paper make a smooth process to the data covariance matrix. By the smooth process, the fluctuation and uncertainty of the eigenvalues of the covariance matrix are reduced. Simulation results prove that ITC base methods can not estimate the source number effectively under colored noise. The GDE method, although gets a poor performance at low SNR, but it is able to accurately estimate the number of sources with colored noise. The experiments also show that the proposed method can be applied to estimate the source number of single sensor received data.

  6. Current sensor

    DOEpatents

    Yakymyshyn, Christopher Paul; Brubaker, Michael Allen; Yakymyshyn, Pamela Jane

    2007-01-16

    A current sensor is described that uses a plurality of magnetic field sensors positioned around a current carrying conductor. The sensor can be hinged to allow clamping to a conductor. The current sensor provides high measurement accuracy for both DC and AC currents, and is substantially immune to the effects of temperature, conductor position, nearby current carrying conductors and aging.

  7. Pixel pitch and particle energy influence on the dark current distribution of neutron irradiated CMOS image sensors.

    PubMed

    Belloir, Jean-Marc; Goiffon, Vincent; Virmontois, Cédric; Raine, Mélanie; Paillet, Philippe; Duhamel, Olivier; Gaillardin, Marc; Molina, Romain; Magnan, Pierre; Gilard, Olivier

    2016-02-22

    The dark current produced by neutron irradiation in CMOS Image Sensors (CIS) is investigated. Several CIS with different photodiode types and pixel pitches are irradiated with various neutron energies and fluences to study the influence of each of these optical detector and irradiation parameters on the dark current distribution. An empirical model is tested on the experimental data and validated on all the irradiated optical imagers. This model is able to describe all the presented dark current distributions with no parameter variation for neutron energies of 14 MeV or higher, regardless of the optical detector and irradiation characteristics. For energies below 1 MeV, it is shown that a single parameter has to be adjusted because of the lower mean damage energy per nuclear interaction. This model and these conclusions can be transposed to any silicon based solid-state optical imagers such as CIS or Charged Coupled Devices (CCD). This work can also be used when designing an optical imager instrument, to anticipate the dark current increase or to choose a mitigation technique.

  8. Single Photon Counting Performance and Noise Analysis of CMOS SPAD-Based Image Sensors

    PubMed Central

    Dutton, Neale A. W.; Gyongy, Istvan; Parmesan, Luca; Henderson, Robert K.

    2016-01-01

    SPAD-based solid state CMOS image sensors utilising analogue integrators have attained deep sub-electron read noise (DSERN) permitting single photon counting (SPC) imaging. A new method is proposed to determine the read noise in DSERN image sensors by evaluating the peak separation and width (PSW) of single photon peaks in a photon counting histogram (PCH). The technique is used to identify and analyse cumulative noise in analogue integrating SPC SPAD-based pixels. The DSERN of our SPAD image sensor is exploited to confirm recent multi-photon threshold quanta image sensor (QIS) theory. Finally, various single and multiple photon spatio-temporal oversampling techniques are reviewed. PMID:27447643

  9. Fiber Optic Sensors for Health Monitoring of Morphing Aircraft

    NASA Technical Reports Server (NTRS)

    Brown, Timothy; Wood, Karen; Childers, Brooks; Cano, Roberto; Jensen, Brian; Rogowski, Robert

    2001-01-01

    Fiber optic sensors are being developed for health monitoring of future aircraft. Aircraft health monitoring involves the use of strain, temperature, vibration and chemical sensors. These sensors will measure load and vibration signatures that will be used to infer structural integrity. Sine the aircraft morphing program assumes that future aircraft will be aerodynamically reconfigurable there is also a requirement for pressure, flow and shape sensors. In some cases a single fiber may be used for measuring several different parameters. The objective of the current program is to develop techniques for using optical fibers to monitor composite cure in real time during manufacture and to monitor in-service structural integrity of the composite structure. Graphite-epoxy panels were fabricated with integrated optical fibers of various types. The panels were mechanically and thermally tested to evaluate composite strength and sensor durability. Finally the performance of the fiber optic sensors was determined. Experimental results are presented evaluating the performance of embedded and surface mounted optical fibers for measuring strain, temperature and chemical composition. The performance of the fiber optic sensors was determined by direct comparison with results from more conventional instrumentation. The facilities for fabricating optical fiber and associated sensors and methods of demodulating Bragg gratings for strain measurement will be described.

  10. Multiple Sensor Camera for Enhanced Video Capturing

    NASA Astrophysics Data System (ADS)

    Nagahara, Hajime; Kanki, Yoshinori; Iwai, Yoshio; Yachida, Masahiko

    A resolution of camera has been drastically improved under a current request for high-quality digital images. For example, digital still camera has several mega pixels. Although a video camera has the higher frame-rate, the resolution of a video camera is lower than that of still camera. Thus, the high-resolution is incompatible with the high frame rate of ordinary cameras in market. It is difficult to solve this problem by a single sensor, since it comes from physical limitation of the pixel transfer rate. In this paper, we propose a multi-sensor camera for capturing a resolution and frame-rate enhanced video. Common multi-CCDs camera, such as 3CCD color camera, has same CCD for capturing different spectral information. Our approach is to use different spatio-temporal resolution sensors in a single camera cabinet for capturing higher resolution and frame-rate information separately. We build a prototype camera which can capture high-resolution (2588×1958 pixels, 3.75 fps) and high frame-rate (500×500, 90 fps) videos. We also proposed the calibration method for the camera. As one of the application of the camera, we demonstrate an enhanced video (2128×1952 pixels, 90 fps) generated from the captured videos for showing the utility of the camera.

  11. Powering embedded electronics for wind turbine monitoring using multi-source energy harvesting techniques

    NASA Astrophysics Data System (ADS)

    Anton, S. R.; Taylor, S. G.; Raby, E. Y.; Farinholt, K. M.

    2013-03-01

    With a global interest in the development of clean, renewable energy, wind energy has seen steady growth over the past several years. Advances in wind turbine technology bring larger, more complex turbines and wind farms. An important issue in the development of these complex systems is the ability to monitor the state of each turbine in an effort to improve the efficiency and power generation. Wireless sensor nodes can be used to interrogate the current state and health of wind turbine structures; however, a drawback of most current wireless sensor technology is their reliance on batteries for power. Energy harvesting solutions present the ability to create autonomous power sources for small, low-power electronics through the scavenging of ambient energy; however, most conventional energy harvesting systems employ a single mode of energy conversion, and thus are highly susceptible to variations in the ambient energy. In this work, a multi-source energy harvesting system is developed to power embedded electronics for wind turbine applications in which energy can be scavenged simultaneously from several ambient energy sources. Field testing is performed on a full-size, residential scale wind turbine where both vibration and solar energy harvesting systems are utilized to power wireless sensing systems. Two wireless sensors are investigated, including the wireless impedance device (WID) sensor node, developed at Los Alamos National Laboratory (LANL), and an ultra-low power RF system-on-chip board that is the basis for an embedded wireless accelerometer node currently under development at LANL. Results indicate the ability of the multi-source harvester to successfully power both sensors.

  12. Temperature and Voltage Coupling to Channel Opening in Transient Receptor Potential Melastatin 8 (TRPM8)*♦

    PubMed Central

    Raddatz, Natalia; Castillo, Juan P.; Gonzalez, Carlos; Alvarez, Osvaldo; Latorre, Ramon

    2014-01-01

    Expressed in somatosensory neurons of the dorsal root and trigeminal ganglion, the transient receptor potential melastatin 8 (TRPM8) channel is a Ca2+-permeable cation channel activated by cold, voltage, phosphatidylinositol 4,5-bisphosphate, and menthol. Although TRPM8 channel gating has been characterized at the single channel and macroscopic current levels, there is currently no consensus regarding the extent to which temperature and voltage sensors couple to the conduction gate. In this study, we extended the range of voltages where TRPM8-induced ionic currents were measured and made careful measurements of the maximum open probability the channel can attain at different temperatures by means of fluctuation analysis. The first direct measurements of TRPM8 channel temperature-driven conformational rearrangements provided here suggest that temperature alone is able to open the channel and that the opening reaction is voltage-independent. Voltage is a partial activator of TRPM8 channels, because absolute open probability values measured with fully activated voltage sensors are less than 1, and they decrease as temperature rises. By unveiling the fast temperature-dependent deactivation process, we show that TRPM8 channel deactivation is well described by a double exponential time course. The fast and slow deactivation processes are temperature-dependent with enthalpy changes of 27.2 and 30.8 kcal mol−1. The overall Q10 for the closing reaction is about 33. A three-tiered allosteric model containing four voltage sensors and four temperature sensors can account for the complex deactivation kinetics and coupling between voltage and temperature sensor activation and channel opening. PMID:25352597

  13. Real-time, wide-area hyperspectral imaging sensors for standoff detection of explosives and chemical warfare agents

    NASA Astrophysics Data System (ADS)

    Gomer, Nathaniel R.; Tazik, Shawna; Gardner, Charles W.; Nelson, Matthew P.

    2017-05-01

    Hyperspectral imaging (HSI) is a valuable tool for the detection and analysis of targets located within complex backgrounds. HSI can detect threat materials on environmental surfaces, where the concentration of the target of interest is often very low and is typically found within complex scenery. Unfortunately, current generation HSI systems have size, weight, and power limitations that prohibit their use for field-portable and/or real-time applications. Current generation systems commonly provide an inefficient area search rate, require close proximity to the target for screening, and/or are not capable of making real-time measurements. ChemImage Sensor Systems (CISS) is developing a variety of real-time, wide-field hyperspectral imaging systems that utilize shortwave infrared (SWIR) absorption and Raman spectroscopy. SWIR HSI sensors provide wide-area imagery with at or near real time detection speeds. Raman HSI sensors are being developed to overcome two obstacles present in standard Raman detection systems: slow area search rate (due to small laser spot sizes) and lack of eye-safety. SWIR HSI sensors have been integrated into mobile, robot based platforms and handheld variants for the detection of explosives and chemical warfare agents (CWAs). In addition, the fusion of these two technologies into a single system has shown the feasibility of using both techniques concurrently to provide higher probability of detection and lower false alarm rates. This paper will provide background on Raman and SWIR HSI, discuss the applications for these techniques, and provide an overview of novel CISS HSI sensors focusing on sensor design and detection results.

  14. Transverse load sensor based on Mach-Zehnder interferometer constructed by a bowknot type taper

    NASA Astrophysics Data System (ADS)

    Lou, Weimin; Shentu, Fengying; Wang, Youqing; Shen, Changyu; Dong, Xinyong

    2018-01-01

    A transverse load fiber sensor based on Mach-Zehnder interferometer constructed by a Bowknot-type taper between a single mode fiber (SMF) and a polarization maintaining fiber (PMF) was proposed. Due to the polarization maintaining fiber's birefringence, intensities of the two peaks which are corresponding to the fast and slow axis modes changed with the transverse load applied on the PMF. The experimental results showed that the structure with a 2 cm-long PMF has the sensitivities of 104.52 and -102.94 dB/(N/mm) for the fast and slow axis spectral dip wavelengths of 1485 and 1545 nm in the interference pattern, respectively, which are almost 7 times higher than that of the current similar existing transverse load sensor.

  15. Capability assessment and challenges for quantum technology gravity sensors for near surface terrestrial geophysical surveying

    NASA Astrophysics Data System (ADS)

    Boddice, Daniel; Metje, Nicole; Tuckwell, George

    2017-11-01

    Geophysical surveying is widely used for the location of subsurface features. Current technology is limited in terms of its resolution (thus size of features it can detect) and penetration depth and a suitable technique is needed to bridge the gap between shallow near surface investigation using techniques such as EM conductivity mapping and GPR commonly used to map the upper 5 m below ground surface, and large features at greater depths detectable using conventional microgravity (> 5 m below ground surface). This will minimise the risks from unknown features buried in and conditions of the ground during civil engineering work. Quantum technology (QT) gravity sensors potentially offer a step-change in technology for locating features which lie outside of the currently detectable range in terms of size and depth, but that potential is currently unknown as field instruments have not been developed. To overcome this, a novel computer simulation was developed for a large range of different targets of interest. The simulation included realistic noise modelling of instrumental, environmental and location sources of noise which limit the accuracy of current microgravity measurements, in order to assess the potential capability of the new QT instruments in realistic situations and determine some of the likely limitations on their implementation. The results of the simulations for near surface features showed that the new technology is best employed in a gradiometer configuration as opposed to the traditional single sensor gravimeter used by current instruments due to the ability to suppress vibrational environmental noise effects due to common mode rejection between the sensors. A significant improvement in detection capability of 1.5-2 times was observed, putting targets such as mineshafts into the detectability zone which would be a major advantage for subsurface surveying. Thus this research, for the first time, has demonstrated clearly the benefits of QT gravity gradiometer sensors thereby increasing industry's confidence in this new technology.

  16. Drain Current Modulation of a Single Drain MOSFET by Lorentz Force for Magnetic Sensing Application.

    PubMed

    Chatterjee, Prasenjit; Chow, Hwang-Cherng; Feng, Wu-Shiung

    2016-08-30

    This paper reports a detailed analysis of the drain current modulation of a single-drain normal-gate n channel metal-oxide semiconductor field effect transistor (n-MOSFET) under an on-chip magnetic field. A single-drain n-MOSFET has been fabricated and placed in the center of a square-shaped metal loop which generates the on-chip magnetic field. The proposed device designed is much smaller in size with respect to the metal loop, which ensures that the generated magnetic field is approximately uniform. The change of drain current and change of bulk current per micron device width has been measured. The result shows that the difference drain current is about 145 µA for the maximum applied magnetic field. Such changes occur from the applied Lorentz force to push out the carriers from the channel. Based on the drain current difference, the change in effective mobility has been detected up to 4.227%. Furthermore, a detailed investigation reveals that the device behavior is quite different in subthreshold and saturation region. A change of 50.24 µA bulk current has also been measured. Finally, the device has been verified for use as a magnetic sensor with sensitivity 4.084% (29.6 T(-1)), which is very effective as compared to other previously reported works for a single device.

  17. Development of integrated semiconductor optical sensors for functional brain imaging

    NASA Astrophysics Data System (ADS)

    Lee, Thomas T.

    Optical imaging of neural activity is a widely accepted technique for imaging brain function in the field of neuroscience research, and has been used to study the cerebral cortex in vivo for over two decades. Maps of brain activity are obtained by monitoring intensity changes in back-scattered light, called Intrinsic Optical Signals (IOS), that correspond to fluctuations in blood oxygenation and volume associated with neural activity. Current imaging systems typically employ bench-top equipment including lamps and CCD cameras to study animals using visible light. Such systems require the use of anesthetized or immobilized subjects with craniotomies, which imposes limitations on the behavioral range and duration of studies. The ultimate goal of this work is to overcome these limitations by developing a single-chip semiconductor sensor using arrays of sources and detectors operating at near-infrared (NIR) wavelengths. A single-chip implementation, combined with wireless telemetry, will eliminate the need for immobilization or anesthesia of subjects and allow in vivo studies of free behavior. NIR light offers additional advantages because it experiences less absorption in animal tissue than visible light, which allows for imaging through superficial tissues. This, in turn, reduces or eliminates the need for traumatic surgery and enables long-term brain-mapping studies in freely-behaving animals. This dissertation concentrates on key engineering challenges of implementing the sensor. This work shows the feasibility of using a GaAs-based array of vertical-cavity surface emitting lasers (VCSELs) and PIN photodiodes for IOS imaging. I begin with in-vivo studies of IOS imaging through the skull in mice, and use these results along with computer simulations to establish minimum performance requirements for light sources and detectors. I also evaluate the performance of a current commercial VCSEL for IOS imaging, and conclude with a proposed prototype sensor.

  18. Gear Damage Detection Integrating Oil Debris and Vibration Measurement Technologies Developed

    NASA Technical Reports Server (NTRS)

    Gyekeyeski, Andrew L.; Sawicki, Jerzy T.

    2001-01-01

    The development of highly reliable health-monitoring systems is one technology area recommended for reducing the number of helicopter accidents. Helicopter transmission diagnostics are an important part of a helicopter health-monitoring system because helicopters depend on the power train for propulsion, lift, and flight maneuvering. One technique currently being tested for increasing the reliability and decreasing the false alarm rate of current transmission diagnostic tools is the replacement of simple single-sensor limits with multisensor systems integrating different measurement technologies.

  19. Application of High-Temperature Extrinsic Fabry-Perot Interferometer Strain Sensor

    NASA Technical Reports Server (NTRS)

    Piazza, Anthony

    2008-01-01

    In this presentation to the NASA Aeronautics Sensor Working Group the application of a strain sensor is outlined. The high-temperature extrinsic Fabry-Perot interferometer (EFPI) strain sensor was developed due to a need for robust strain sensors that operate accurately and reliably beyond 1800 F. Specifically, the new strain sensor would provide data for validating finite element models and thermal-structural analyses. Sensor attachment techniques were also developed to improve methods of handling and protecting the fragile sensors during the harsh installation process. It was determined that thermal sprayed attachments are preferable even though cements are simpler to apply as cements are more prone to bond failure and are often corrosive. Previous thermal/mechanical cantilever beam testing of EFPI yielded very little change to 1200 F, with excellent correlation with SG to 550 F. Current combined thermal/mechanical loading for sensitivity testing is accomplished by a furnace/cantilever beam loading system. Dilatometer testing has can also be used in sensor characterization to evaluate bond integrity, evaluate sensitivity and accuracy and to evaluate sensor-to-sensor scatter, repeatability, hysteresis and drift. Future fiber optic testing will examine single-mode silica EFPIs in a combined thermal/mechanical load fixture on C-C and C-SiC substrates, develop a multi-mode Sapphire strain-sensor, test and evaluate high-temperature fiber Bragg Gratings for use as strain and temperature sensors and attach and evaluate a high-temperature heat flux gauge.

  20. New technologies for HWIL testing of WFOV, large-format FPA sensor systems

    NASA Astrophysics Data System (ADS)

    Fink, Christopher

    2016-05-01

    Advancements in FPA density and associated wide-field-of-view infrared sensors (>=4000x4000 detectors) have outpaced the current-art HWIL technology. Whether testing in optical projection or digital signal injection modes, current-art technologies for infrared scene projection, digital injection interfaces, and scene generation systems simply lack the required resolution and bandwidth. For example, the L3 Cincinnati Electronics ultra-high resolution MWIR Camera deployed in some UAV reconnaissance systems features 16MP resolution at 60Hz, while the current upper limit of IR emitter arrays is ~1MP, and single-channel dual-link DVI throughput of COTs graphics cards is limited to 2560x1580 pixels at 60Hz. Moreover, there are significant challenges in real-time, closed-loop, physics-based IR scene generation for large format FPAs, including the size and spatial detail required for very large area terrains, and multi - channel low-latency synchronization to achieve the required bandwidth. In this paper, the author's team presents some of their ongoing research and technical approaches toward HWIL testing of large-format FPAs with wide-FOV optics. One approach presented is a hybrid projection/injection design, where digital signal injection is used to augment the resolution of current-art IRSPs, utilizing a multi-channel, high-fidelity physics-based IR scene simulator in conjunction with a novel image composition hardware unit, to allow projection in the foveal region of the sensor, while non-foveal regions of the sensor array are simultaneously stimulated via direct injection into the post-detector electronics.

  1. Dual output acoustic wave sensor for molecular identification

    DOEpatents

    Frye, Gregory C.; Martin, Stephen J.

    1991-01-01

    A method of identification and quantification of absorbed chemical species by measuring changes in both the velocity and the attenuation of an acoustic wave traveling through a thin film into which the chemical species is sorbed. The dual output response provides two independent sensor responses from a single sensing device thereby providing twice as much information as a single output sensor. This dual output technique and analysis allows a single sensor to provide both the concentration and the identity of a chemical species or permits the number of sensors required for mixtures to be reduced by a factor of two.

  2. Measurements of CO, CO2, OH, and H2O in room-temperature and combustion gases by use of a broadly current-tuned multisection InGaAsP diode laser.

    PubMed

    Upschulte, B L; Sonnenfroh, D M; Allen, M G

    1999-03-20

    A new laser technology that achieves nearly 100-nm quasi-continuous tuning with only injection-current control in a four-section grating-coupler sampled-reflector laser was used to detect CO and CO(2) simultaneously in room-temperature gas mixtures. The same grating-coupler sampled-reflector laser was used to perform in situ measurements of CO, H(2)O, and OH in the exhaust gases of a CH(4)-air flame. This laser is being evaluated for inclusion in a multispecies combustion-emissions exhaust-analysis sensor, and its operational characteristics as they have an impact on gas sensing are described. Preliminary results suggest that this single laser can be used to replace multilaser sensor configurations for some combustion-emissions monitoring applications.

  3. Selected examples of intelligent (micro) sensor systems: state-of-the-art and tendencies

    NASA Astrophysics Data System (ADS)

    Hauptmann, Peter R.

    2006-03-01

    The capability of intelligent sensors to have more intelligence built into them continues to drive their application in areas including automotive, aerospace and defense, industrial, intelligent house and wear, medical and homeland security. In principle it is difficult to overestimate the importance of intelligent (micro) sensors or sensor systems within advanced societies but one characteristic feature is the global market for sensors, which is now about 20 billion annually. Therefore sensors or sensor systems play a dominant role in many fields from the macro sensor in manufacturing industry down to the miniaturized sensor for medical applications. The diversity of sensors precludes a complete description of the state-of-the-art; selected examples will illustrate the current situation. MEMS (microelectromechanical systems) devices are of special interest in the context of micro sensor systems. In past the main requirements of a sensor were in terms of metrological performance. The electrical (or optical) signal produced by the sensor needed to match the measure relatively accurately. Such basic functionality is no longer sufficient. Data processing near the sensor, the extraction of more information than just the direct sensor information by signal analysis, system aspects and multi-sensor information are the new demands. A shifting can be observed away from aiming to design perfect single-function transducers and towards the utilization of system-based sensors as system components. In the ideal case such systems contain sensors, actuators and electronics. They can be realized in monolithic, hybrid or discrete form—which kind is used depends on the application. In this article the state-of-the-art of intelligent sensors or sensor systems is reviewed using selected examples. Future trends are deduced.

  4. Chemiresistor Devices for Chemical Warfare Agent Detection Based on Polymer Wrapped Single-Walled Carbon Nanotubes

    PubMed Central

    Fennell, John F.; Hamaguchi, Hitoshi; Yoon, Bora; Swager, Timothy M.

    2017-01-01

    Chemical warfare agents (CWA) continue to present a threat to civilian populations and military personnel in operational areas all over the world. Reliable measurements of CWAs are critical to contamination detection, avoidance, and remediation. The current deployed systems in United States and foreign militaries, as well as those in the private sector offer accurate detection of CWAs, but are still limited by size, portability and fabrication cost. Herein, we report a chemiresistive CWA sensor using single-walled carbon nanotubes (SWCNTs) wrapped with poly(3,4-ethylenedioxythiophene) (PEDOT) derivatives. We demonstrate that a pendant hexafluoroisopropanol group on the polymer that enhances sensitivity to a nerve agent mimic, dimethyl methylphosphonate, in both nitrogen and air environments to concentrations as low as 5 ppm and 11 ppm, respectively. Additionally, these PEDOT/SWCNT derivative sensor systems experience negligible device performance over the course of two weeks under ambient conditions. PMID:28452929

  5. Chemiresistor Devices for Chemical Warfare Agent Detection Based on Polymer Wrapped Single-Walled Carbon Nanotubes.

    PubMed

    Fennell, John F; Hamaguchi, Hitoshi; Yoon, Bora; Swager, Timothy M

    2017-04-28

    Chemical warfare agents (CWA) continue to present a threat to civilian populations and military personnel in operational areas all over the world. Reliable measurements of CWAs are critical to contamination detection, avoidance, and remediation. The current deployed systems in United States and foreign militaries, as well as those in the private sector offer accurate detection of CWAs, but are still limited by size, portability and fabrication cost. Herein, we report a chemiresistive CWA sensor using single-walled carbon nanotubes (SWCNTs) wrapped with poly(3,4-ethylenedioxythiophene) (PEDOT) derivatives. We demonstrate that a pendant hexafluoroisopropanol group on the polymer that enhances sensitivity to a nerve agent mimic, dimethyl methylphosphonate, in both nitrogen and air environments to concentrations as low as 5 ppm and 11 ppm, respectively. Additionally, these PEDOT/SWCNT derivative sensor systems experience negligible device performance over the course of two weeks under ambient conditions.

  6. Multimode-singlemode-multimode fiber sensor for alcohol sensing application

    NASA Astrophysics Data System (ADS)

    Rofi'ah, Iftihatur; Hatta, A. M.; Sekartedjo, Sekartedjo

    2016-11-01

    Alcohol is volatile and flammable liquid which is soluble substances both on polar and non polar substances that has been used in some industrial sectors. Alcohol detection method now widely used one of them is the optical fiber sensor. In this paper used fiber optic sensor based on Multimode-Single-mode-Multimode (MSM) to detect alcohol solution at a concentration range of 0-3%. The working principle of sensor utilizes the modal interference between the core modes and the cladding modes, thus make the sensor sensitive to environmental changes. The result showed that characteristic of the sensor not affect the length of the single-mode fiber (SMF). We obtain that the sensor with a length of 5 mm of single-mode can sensing the alcohol with a sensitivity of 0.107 dB/v%.

  7. MEMS based highly sensitive dual FET gas sensor using graphene decorated Pd-Ag alloy nanoparticles for H2 detection.

    PubMed

    Sharma, Bharat; Kim, Jung-Sik

    2018-04-12

    A low power, dual-gate field-effect transistor (FET) hydrogen gas sensor with graphene decorated Pd-Ag for hydrogen sensing applications was developed. The FET hydrogen sensor was integrated with a graphene-Pd-Ag-gate FET (GPA-FET) as hydrogen sensor coupled with Pt-gate FET as a reference sensor on a single sensor platform. The sensing gate electrode was modified with graphene by an e-spray technique followed by Pd-Ag DC/MF sputtering. Morphological and structural properties were studied by FESEM and Raman spectroscopy. FEM simulations were performed to confirm the uniform temperature control at the sensing gate electrode. The GPA-FET showed a high sensing response to hydrogen gas at the temperature of 25~254.5 °C. The as-proposed FET H 2 sensor showed the fast response time and recovery time of 16 s, 14 s, respectively at the operating temperature of 245 °C. The variation in drain current was positively related with increased working temperature and hydrogen concentration. The proposed dual-gate FET gas sensor in this study has potential applications in various fields, such as electronic noses and automobiles, owing to its low-power consumption, easy integration, good thermal stability and enhanced hydrogen sensing properties.

  8. Analysis and modeling of leakage current sensor under pulsating direct current

    NASA Astrophysics Data System (ADS)

    Li, Kui; Dai, Yihua; Wang, Yao; Niu, Feng; Chen, Zhao; Huang, Shaopo

    2017-05-01

    In this paper, the transformation characteristics of current sensor under pulsating DC leakage current is investigated. The mathematical model of current sensor is proposed to accurately describe the secondary side current and excitation current. The transformation process of current sensor is illustrated in details and the transformation error is analyzed from multi aspects. A simulation model is built and a sensor prototype is designed to conduct comparative evaluation, and both simulation and experimental results are presented to verify the correctness of theoretical analysis.

  9. Analysis of electrical tomography sensitive field based on multi-terminal network and electric field

    NASA Astrophysics Data System (ADS)

    He, Yongbo; Su, Xingguo; Xu, Meng; Wang, Huaxiang

    2010-08-01

    Electrical tomography (ET) aims at the study of the conductivity/permittivity distribution of the interested field non-intrusively via the boundary voltage/current. The sensor is usually regarded as an electric field, and finite element method (FEM) is commonly used to calculate the sensitivity matrix and to optimize the sensor architecture. However, only the lumped circuit parameters can be measured by the data acquisition electronics, it's very meaningful to treat the sensor as a multi terminal network. Two types of multi terminal network with common node and common loop topologies are introduced. Getting more independent measurements and making more uniform current distribution are the two main ways to minimize the inherent ill-posed effect. By exploring the relationships of network matrixes, a general formula is proposed for the first time to calculate the number of the independent measurements. Additionally, the sensitivity distribution is analyzed with FEM. As a result, quasi opposite mode, an optimal single source excitation mode, that has the advantages of more uniform sensitivity distribution and more independent measurements, is proposed.

  10. Nano Sensors for Gas Detection in Space and Ground Support Applications

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J.

    2006-01-01

    Personnel living in a space environment as well as technicians and engineers preparing spacecraft for launch can potentially be exposed to small amounts of hazardous gases. It is therefore important to be able to detect, identify and quantify the presence of a gas especially when its presence could lead to a fatal situation. The use of small and sensitive sensors can allow for the placement of these devices over a large area, thus allowing for a more precise and timely determination of a gas leak. ASRC Aerospace and its research partners are developing nano sensors for detection of various gases, including but not limited to: H2, NH3, N2O4, hydrazine and others. Initial laboratory testing has demonstrated the capability to detect the gases in concentrations lower than parts per million. Testing and development is continuing to improve the response and recovery times, to increase the sensitivity of the devices. Different coatings and electrodes are currently being evaluated to determine the optimum configuration of a variety of gases. The small footprint of the Nano sensors allows for several devices, each responsive in a different way to different gases, to be placed into a single substrate. Multiple devices embedded into a single substrate results in increased reliability and in a decrease for periodic calibrations. The use of different coatings will result in a small electronic nose capable of distinguishing between different gases. A multi-channel signal conditioner amplifier built on a small multi chip module is used to process the output of the sensors and to deliver a signal that can be remotely monitored. All the data is digitized and transmitted over the same cable pair used to power the amplifier. Multiple outputs can be connected to a single cable pair in order to minimize the added weight and expense associated with cabling in a spacecraft. The sensors will be run through a qualification process to evaluate their suitability for space applications we are expecting to have fully functional sensors available for initial field deployment and testing by the end of the year 2006.

  11. Magnetic current sensor

    NASA Technical Reports Server (NTRS)

    Black, Jr., William C. (Inventor); Hermann, Theodore M. (Inventor)

    1998-01-01

    A current determiner having an output at which representations of input currents are provided having an input conductor for the input current and a current sensor supported on a substrate electrically isolated from one another but with the sensor positioned in the magnetic fields arising about the input conductor due to any input currents. The sensor extends along the substrate in a direction primarily perpendicular to the extent of the input conductor and is formed of at least a pair of thin-film ferromagnetic layers separated by a non-magnetic conductive layer. The sensor can be electrically connected to a electronic circuitry formed in the substrate including a nonlinearity adaptation circuit to provide representations of the input currents of increased accuracy despite nonlinearities in the current sensor, and can include further current sensors in bridge circuits.

  12. A fiber optic multi-stress monitoring system for power transformer

    NASA Astrophysics Data System (ADS)

    Kim, Dae-gil; Sampath, Umesh; Kim, Hyunjin; Song, Minho

    2017-04-01

    A fiber-optic multi-stress monitoring system which uses 4 FBG sensors and a fiber-optic mandrel acoustic emission sensor is proposed. FBG sensors and a mandrel sensor measure different types of stresses occurring in electrical power transformer, such as temperature and acoustic signals. The sensor system uses single broadband light source to address the outputs of both sensors using single fiber-optic circuitry. An athermal-packaged FBG is used to supply quasi-coherent light for the Sagnac interferometer demodulation which processes the mandrel sensor output. The proposed sensor system could simplify the optical circuit for the multi-stress measurements and enhance the cost-effectiveness of the sensor system.

  13. Photon Counting Imaging with an Electron-Bombarded Pixel Image Sensor

    PubMed Central

    Hirvonen, Liisa M.; Suhling, Klaus

    2016-01-01

    Electron-bombarded pixel image sensors, where a single photoelectron is accelerated directly into a CCD or CMOS sensor, allow wide-field imaging at extremely low light levels as they are sensitive enough to detect single photons. This technology allows the detection of up to hundreds or thousands of photon events per frame, depending on the sensor size, and photon event centroiding can be employed to recover resolution lost in the detection process. Unlike photon events from electron-multiplying sensors, the photon events from electron-bombarded sensors have a narrow, acceleration-voltage-dependent pulse height distribution. Thus a gain voltage sweep during exposure in an electron-bombarded sensor could allow photon arrival time determination from the pulse height with sub-frame exposure time resolution. We give a brief overview of our work with electron-bombarded pixel image sensor technology and recent developments in this field for single photon counting imaging, and examples of some applications. PMID:27136556

  14. Growth of nanotubes and chemical sensor applications

    NASA Astrophysics Data System (ADS)

    Hone, James; Kim, Philip; Huang, X. M. H.; Chandra, B.; Caldwell, R.; Small, J.; Hong, B. H.; Someya, T.; Huang, L.; O'Brien, S.; Nuckolls, Colin P.

    2004-12-01

    We have used a number of methods to grow long aligned single-walled carbon nanotubes. Geometries include individual long tubes, dense parallel arrays, and long freely suspended nanotubes. We have fabricated a variety of devices for applications such as multiprobe resistance measurement and high-current field effect transistors. In addition, we have measured conductance of single-walled semiconducting carbon nanotubes in field-effect transistor geometry and investigated the device response to water and alcoholic vapors. We observe significant changes in FET drain current when the device is exposed to various kinds of different solvent. These responses are reversible and reproducible over many cycles of vapor exposure. Our experiments demonstrate that carbon nanotube FETs are sensitive to a wide range of solvent vapors at concentrations in the ppm range.

  15. A novel capacitive absolute positioning sensor based on time grating with nanometer resolution

    NASA Astrophysics Data System (ADS)

    Pu, Hongji; Liu, Hongzhong; Liu, Xiaokang; Peng, Kai; Yu, Zhicheng

    2018-05-01

    The present work proposes a novel capacitive absolute positioning sensor based on time grating. The sensor includes a fine incremental-displacement measurement component combined with a coarse absolute-position measurement component to obtain high-resolution absolute positioning measurements. A single row type sensor was proposed to achieve fine displacement measurement, which combines the two electrode rows of a previously proposed double-row type capacitive displacement sensor based on time grating into a single row. To achieve absolute positioning measurement, the coarse measurement component is designed as a single-row type displacement sensor employing a single spatial period over the entire measurement range. In addition, this component employs a rectangular induction electrode and four groups of orthogonal discrete excitation electrodes with half-sinusoidal envelope shapes, which were formed by alternately extending the rectangular electrodes of the fine measurement component. The fine and coarse measurement components are tightly integrated to form a compact absolute positioning sensor. A prototype sensor was manufactured using printed circuit board technology for testing and optimization of the design in conjunction with simulations. Experimental results show that the prototype sensor achieves a ±300 nm measurement accuracy with a 1 nm resolution over a displacement range of 200 mm when employing error compensation. The proposed sensor is an excellent alternative to presently available long-range absolute nanometrology sensors owing to its low cost, simple structure, and ease of manufacturing.

  16. Realization of rapid debugging for detection circuit of optical fiber gas sensor: Using an analog signal source

    NASA Astrophysics Data System (ADS)

    Tian, Changbin; Chang, Jun; Wang, Qiang; Wei, Wei; Zhu, Cunguang

    2015-03-01

    An optical fiber gas sensor mainly consists of two parts: optical part and detection circuit. In the debugging for the detection circuit, the optical part usually serves as a signal source. However, in the debugging condition, the optical part can be easily influenced by many factors, such as the fluctuation of ambient temperature or driving current resulting in instability of the wavelength and intensity for the laser; for dual-beam sensor, the different bends and stresses of the optical fiber will lead to the fluctuation of the intensity and phase; the intensity noise from the collimator, coupler, and other optical devices in the system will also result in the impurity of the optical part based signal source. In order to dramatically improve the debugging efficiency of the detection circuit and shorten the period of research and development, this paper describes an analog signal source, consisting of a single chip microcomputer (SCM), an amplifier circuit, and a voltage-to-current conversion circuit. It can be used to realize the rapid debugging detection circuit of the optical fiber gas sensor instead of optical part based signal source. This analog signal source performs well with many other advantages, such as the simple operation, small size, and light weight.

  17. Fusion solution for soldier wearable gunfire detection systems

    NASA Astrophysics Data System (ADS)

    Cakiades, George; Desai, Sachi; Deligeorges, Socrates; Buckland, Bruce E.; George, Jemin

    2012-06-01

    Currently existing acoustic based Gunfire Detection Systems (GDS) such as soldier wearable, vehicle mounted, and fixed site devices provide enemy detection and localization capabilities to the user. However, the solution to the problem of portability versus performance tradeoff remains elusive. The Data Fusion Module (DFM), described herein, is a sensor/platform agnostic software supplemental tool that addresses this tradeoff problem by leveraging existing soldier networks to enhance GDS performance across a Tactical Combat Unit (TCU). The DFM software enhances performance by leveraging all available acoustic GDS information across the TCU synergistically to calculate highly accurate solutions more consistently than any individual GDS in the TCU. The networked sensor architecture provides additional capabilities addressing the multiple shooter/fire-fight problems in addition to sniper detection/localization. The addition of the fusion solution to the overall Size, Weight and Power & Cost (SWaP&C) is zero to negligible. At the end of the first-year effort, the DFM integrated sensor network's performance was impressive showing improvements upwards of 50% in comparison to a single sensor solution. Further improvements are expected when the networked sensor architecture created in this effort is fully exploited.

  18. Technologies for Assessment of Motor Disorders in Parkinson’s Disease: A Review

    PubMed Central

    Oung, Qi Wei; Muthusamy, Hariharan; Lee, Hoi Leong; Basah, Shafriza Nisha; Yaacob, Sazali; Sarillee, Mohamed; Lee, Chia Hau

    2015-01-01

    Parkinson’s Disease (PD) is characterized as the commonest neurodegenerative illness that gradually degenerates the central nervous system. The goal of this review is to come out with a summary of the recent progress of numerous forms of sensors and systems that are related to diagnosis of PD in the past decades. The paper reviews the substantial researches on the application of technological tools (objective techniques) in the PD field applying different types of sensors proposed by previous researchers. In addition, this also includes the use of clinical tools (subjective techniques) for PD assessments, for instance, patient self-reports, patient diaries and the international gold standard reference scale, Unified Parkinson Disease Rating Scale (UPDRS). Comparative studies and critical descriptions of these approaches have been highlighted in this paper, giving an insight on the current state of the art. It is followed by explaining the merits of the multiple sensor fusion platform compared to single sensor platform for better monitoring progression of PD, and ends with thoughts about the future direction towards the need of multimodal sensor integration platform for the assessment of PD. PMID:26404288

  19. Integrated waveguide and nanostructured sensor platform for surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Pearce, Stuart J.; Pollard, Michael E.; Oo, SweZin; Chen, Ruiqi; Kalsi, Sumit; Charlton, Martin D. B.

    2014-01-01

    Limitations of current sensors include large dimensions, sometimes limited sensitivity and inherent single-parameter measurement capability. Surface-enhanced Raman spectroscopy can be utilized for environment and pharmaceutical applications with the intensity of the Raman scattering enhanced by a factor of 10. By fabricating and characterizing an integrated optical waveguide beneath a nanostructured precious metal coated surface a new surface-enhanced Raman spectroscopy sensing arrangement can be achieved. Nanostructured sensors can provide both multiparameter and high-resolution sensing. Using the slab waveguide core to interrogate the nanostructures at the base allows for the emission to reach discrete sensing areas effectively and should provide ideal parameters for maximum Raman interactions. Thin slab waveguide films of silicon oxynitride were etched and gold coated to create localized nanostructured sensing areas of various pitch, diameter, and shape. These were interrogated using a Ti:Sapphire laser tuned to 785-nm end coupled into the slab waveguide. The nanostructured sensors vertically projected a Raman signal, which was used to actively detect a thin layer of benzyl mercaptan attached to the sensors.

  20. Magnetic microfluidic system for isolation of single cells

    NASA Astrophysics Data System (ADS)

    Mitterboeck, Richard; Kokkinis, Georgios; Berris, Theocharis; Keplinger, Franz; Giouroudi, Ioanna

    2015-06-01

    This paper presents the design and realization of a compact, portable and cost effective microfluidic system for isolation and detection of rare circulating tumor cells (CTCs) in suspension. The innovative aspect of the proposed isolation method is that it utilizes superparamagnetic particles (SMPs) to label CTCs and then isolate those using microtraps with integrated current carrying microconductors. The magnetically labeled and trapped CTCs can then be detected by integrated magnetic microsensors e.g. giant magnetoresistive (GMR) or giant magnetoimpedance (GMI) sensors. The channel and trap dimensions are optimized to protect the cells from shear stress and achieve high trapping efficiency. These intact single CTCs can then be used for additional analysis, testing and patient specific drug screening. Being able to analyze the CTCs metastasis-driving capabilities on the single cell level is considered of great importance for developing patient specific therapies. Experiments showed that it is possible to capture single labeled cells in multiple microtraps and hold them there without permanent electric current and magnetic field.

  1. Detection of gas molecules on single Mn adatom adsorbed graphyne: a DFT-D study

    NASA Astrophysics Data System (ADS)

    Lu, Zhansheng; Lv, Peng; Ma, Dongwei; Yang, Xinwei; Li, Shuo; Yang, Zongxian

    2018-02-01

    As one of the prominent applications in intelligent systems, gas sensing technology has attracted great interest in both industry and academia. In the current study, the pristine graphyne (GY) without and with a single Mn atom is investigated to detect the gas molecules (CO, CH4, CO2, NH3, NO and O2). The pristine GY is promising to detect O2 molecules because of its chemical adsorption on GY with large electron transfer. The great stability of the Mn/GY is found, and the Mn atom prefers to anchor at the alkyne ring as a single atom. Upon single Mn atom anchoring, the sensitivity and selectivity of GY based gas sensors is significantly improved for various molecules, except CH4. The recovery time of the Mn/GY after detecting the gas molecules may help to appraise the detection efficiency for the Mn/GY. The current study will help to understand the mechanism of detecting the gas molecules, and extend the potentially fascinating applications of GY-based materials.

  2. Self-Powered Wind Sensor System for Detecting Wind Speed and Direction Based on a Triboelectric Nanogenerator.

    PubMed

    Wang, Jiyu; Ding, Wenbo; Pan, Lun; Wu, Changsheng; Yu, Hua; Yang, Lijun; Liao, Ruijin; Wang, Zhong Lin

    2018-04-24

    The development of the Internet of Things has brought new challenges to the corresponding distributed sensor systems. Self-powered sensors that can perceive and respond to environmental stimuli without an external power supply are highly desirable. In this paper, a self-powered wind sensor system based on an anemometer triboelectric nanogenerator (a-TENG, free-standing mode) and a wind vane triboelectric nanogenerator (v-TENG, single-electrode mode) is proposed for simultaneously detecting wind speed and direction. A soft friction mode is adopted instead of a typical rigid friction for largely enhancing the output performance of the TENG. The design parameters including size, unit central angle, and applied materials are optimized to enhance sensitivity, resolution, and wide measurement scale. The optimized a-TENG could deliver an open-circuit voltage of 88 V and short-circuit current of 6.3 μA, corresponding to a maximum power output of 0.47 mW (wind speed of 6.0 m/s), which is capable of driving electronics for data transmission and storage. The current peak value of the a-TENG signal is used for analyzing wind speed for less energy consumption. Moreover, the output characteristics of a v-TENG are further explored, with six actual operation situations, and the v-TENG delivers fast response to the incoming wind and accurately outputs the wind direction data. As a wind sensor system, wind speed ranging from 2.7 to 8.0 m/s can be well detected (consistent with a commercial sensor) and eight regular directions can be monitored. Therefore, the fabricated wind sensor system has great potential in wireless environmental monitoring applications.

  3. Mixing-Chamber Preamplifier for Spin Qubit Readout

    NASA Astrophysics Data System (ADS)

    Curry, Matthew; Mounce, Andrew; England, Troy; Manginell, Ronald; Wendt, Joel; Pluym, Tammy; Carr, Stephen; Carroll, Malcolm

    Spin qubit states are often read out with a nearby charge sensor. To improve signal-to-noise ratio (SNR) and bandwidth, we amplify a charge sensor with a low-current-bias, silicon-germanium heterojunction-bipolar-transistor (HBT). The HBT is located at the mixing chamber of a dilution refrigerator, which minimizes parasitic capacitance and amplifies signal before fridge noise is introduced. Using the HBT-charge-sensor circuit, we tune a few-electron quantum dot (QD) into resonance with a donor-like object and observe singlet-triplet (ST) behavior. ST separation in this MOS donor-implanted-QD molecular system is measured using magnetospectroscopy to be approximately 100 μeV. The low current bias of the HBT minimizes both heating of the charge-sensed QD as well as maintains an overall low power at the mixing chamber. HBT bias impact on QD electron temperature is examined and we find that the HBT preamplifier can operate at around 100 nW with a current gain of around 500 without influencing the electron temperature, which is around 150 mK. We will also examine single-shot readout of a charge state using the HBT preamplifier. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  4. Real-time measurement of biomagnetic vector fields in functional syncytium using amorphous metal.

    PubMed

    Nakayama, Shinsuke; Uchiyama, Tusyoshi

    2015-03-06

    Magnetic field detection of biological electric activities would provide a non-invasive and aseptic estimate of the functional state of cellular organization, namely a syncytium constructed with cell-to-cell electric coupling. In this study, we investigated the properties of biomagnetic waves which occur spontaneously in gut musculature as a typical functional syncytium, by applying an amorphous metal-based gradio-magneto sensor operated at ambient temperature without a magnetic shield. The performance of differentiation was improved by using a single amorphous wire with a pair of transducer coils. Biomagnetic waves of up to several nT were recorded ~1 mm below the sample in a real-time manner. Tetraethyl ammonium (TEA) facilitated magnetic waves reflected electric activity in smooth muscle. The direction of magnetic waves altered depending on the relative angle of the muscle layer and magneto sensor, indicating the existence of propagating intercellular currents. The magnitude of magnetic waves rapidly decreased to ~30% by the initial and subsequent 1 mm separations between sample and sensor. The large distance effect was attributed to the feature of bioelectric circuits constructed by two reverse currents separated by a small distance. This study provides a method for detecting characteristic features of biomagnetic fields arising from a syncytial current.

  5. Real-time Measurement of Biomagnetic Vector Fields in Functional Syncytium Using Amorphous Metal

    NASA Astrophysics Data System (ADS)

    Nakayama, Shinsuke; Uchiyama, Tusyoshi

    2015-03-01

    Magnetic field detection of biological electric activities would provide a non-invasive and aseptic estimate of the functional state of cellular organization, namely a syncytium constructed with cell-to-cell electric coupling. In this study, we investigated the properties of biomagnetic waves which occur spontaneously in gut musculature as a typical functional syncytium, by applying an amorphous metal-based gradio-magneto sensor operated at ambient temperature without a magnetic shield. The performance of differentiation was improved by using a single amorphous wire with a pair of transducer coils. Biomagnetic waves of up to several nT were recorded ~1 mm below the sample in a real-time manner. Tetraethyl ammonium (TEA) facilitated magnetic waves reflected electric activity in smooth muscle. The direction of magnetic waves altered depending on the relative angle of the muscle layer and magneto sensor, indicating the existence of propagating intercellular currents. The magnitude of magnetic waves rapidly decreased to ~30% by the initial and subsequent 1 mm separations between sample and sensor. The large distance effect was attributed to the feature of bioelectric circuits constructed by two reverse currents separated by a small distance. This study provides a method for detecting characteristic features of biomagnetic fields arising from a syncytial current.

  6. Ti:Pt:Au:Ni thin-film CVD diamond sensor ability for charged particle detection.

    PubMed

    Kasiwattanawut, Haruetai; Tchouaso, Modeste Tchakoua; Prelas, Mark A

    2018-05-22

    This work demonstrates the development of diamond sensors with reliable contacts using a new metallization formula, which can operate under high-pressure gas environment. The metallization was created using thin film layers of titanium, platinum, gold and nickel deposited on a single crystal electronic grade CVD diamond chip. The contacts were 2 mm in diameter with thickness of 50/5/20/150 nm of Ti:Pt:Au:Ni. The optimum operating voltage of the sensor was determined from the current-voltage measurements. The sensor was calibrated with 239 Pu and 241 Am alpha radiation sources at 300 V. The energy resolution of the Ti:Pt:Au:Ni diamond sensor was determined to be 7.6% at 5.2 MeV of 239 Pu and 2.2% at 5.48 MeV of 241 Am. The high-pressure gas loading environment under which this sensor was used is discussed. Specifically, experimental observations are described using hydrogen loading of nickel as a means of initiating low energy nuclear reactions. No neutrons, electrons, ions or other ionizing radiations were observed in these experiments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Updates to SCORPION persistent surveillance system with universal gateway

    NASA Astrophysics Data System (ADS)

    Coster, Michael; Chambers, Jon; Winters, Michael; Brunck, Al

    2008-10-01

    This paper addresses benefits derived from the universal gateway utilized in Northrop Grumman Systems Corporation's (NGSC) SCORPION, a persistent surveillance and target recognition system produced by the Xetron campus in Cincinnati, Ohio. SCORPION is currently deployed in Operations Iraqi Freedom (OIF) and Enduring Freedom (OEF). The SCORPION universal gateway is a flexible, field programmable system that provides integration of over forty Unattended Ground Sensor (UGS) types from a variety of manufacturers, multiple visible and thermal electro-optical (EO) imagers, and numerous long haul satellite and terrestrial communications links, including the Army Research Lab (ARL) Blue Radio. Xetron has been integrating best in class sensors with this universal gateway to provide encrypted data exfiltration to Common Operational Picture (COP) systems and remote sensor command and control since 1998. In addition to being fed to COP systems, SCORPION data can be visualized in the Common sensor Status (CStat) graphical user interface that allows for viewing and analysis of images and sensor data from up to seven hundred SCORPION system gateways on single or multiple displays. This user friendly visualization enables a large amount of sensor data and imagery to be used as actionable intelligence by a minimum number of analysts.

  8. Detection of Avian Influenza Virus from Cloacal Swabs Using a Disposable Well Gate FET Sensor.

    PubMed

    Park, Sungwook; Choi, Jaebin; Jeun, Minhong; Kim, Yongdeok; Yuk, Seong-Su; Kim, Sang Kyung; Song, Chang-Seon; Lee, Seok; Lee, Kwan Hyi

    2017-07-01

    Current methods to detect avian influenza viruses (AIV) are time consuming and lo inw sensitivity, necessitating a faster and more sensitive sensor for on-site epidemic detection in poultry farms and urban population centers. This study reports a field effect transistor (FET) based AIV sensor that detects nucleoproteins (NP) within 30 minutes, down to an LOD of 10 3 EID 50 mL -1 from a live animal cloacal swab. Previously reported FET sensors for AIV detection have not targeted NPs, an internal protein shared across multiple strains, due to the difficulty of field-effect sensing in a highly ionic lysis buffer. The AIV sensor overcomes the sensitivity limit with an FET-based platform enhanced with a disposable well gate (DWG) that is readily replaceable after each measurement. In a single procedure, the virus-containing sample is immersed in a lysis buffer mixture to expose NPs to the DWG surface. In comparison with commercial AIV rapid kits, the AIV sensor is proved to be highly sensitive, fast, and compact, proving its potential effectiveness as a portable biosensor. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Carbon nanostructures as immobilization platform for DNA: A review on current progress in electrochemical DNA sensors.

    PubMed

    Rasheed, P Abdul; Sandhyarani, N

    2017-11-15

    Development of a sensitive, specific and cost-effective DNA detection method is motivated by increasing demand for the early stage diagnosis of genetic diseases. Recent developments in the design and fabrication of efficient sensor platforms based on nanostructures make the highly sensitive sensors which could indicate very low detection limit to the level of few molecules, a realistic possibility. Electrochemical detection methods are widely used in DNA diagnostics as it provide simple, accurate and inexpensive platform for DNA detection. In addition, the electrochemical DNA sensors provide direct electronic signal without the use of expensive signal transduction equipment and facilitates the immobilization of single stranded DNA (ssDNA) probe sequences on a wide variety of electrode substrates. It has been found that a range of nanomaterials such as metal nanoparticles (MNPs), carbon based nanomaterials, quantum dots (QDs), magnetic nanoparticles and polymeric NPs have been introduced in the sensor design to enhance the sensing performance of electrochemical DNA sensor. In this review, we discuss recent progress in the design and fabrication of efficient electrochemical genosensors based on carbon nanostructures such as carbon nanotubes, graphene, graphene oxide and nanodiamonds. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Bedside arterial blood gas monitoring system using fluorescent optical sensors

    NASA Astrophysics Data System (ADS)

    Bartnik, Daniel J.; Rymut, Russell A.

    1995-05-01

    We describe a bedside arterial blood gas (ABG) monitoring system which uses fluorescent optical sensors in the measurement of blood pH, PCO2 and PO2. The Point-of-Care Arterial Blood Gas Monitoring System consists of the SensiCathTM optical sensor unit manufactured by Optical Sensors Incorporated and the TramTM Critical Care Monitoring System with ABG Module manufactured by Marquette Electronics Incorporated. Current blood gas measurement techniques require a blood sample to be removed from the patient and transported to an electrochemical analyzer for analysis. The ABG system does not require removal of blood from the patient or transport of the sample. The sensor is added to the patient's existing arterial line. ABG measurements are made by drawing a small blood sample from the arterial line in sufficient quantity to ensure an undiluted sample at the sensor. Measurements of pH, PCO2 and PO2 are made within 60 seconds. The blood is then returned to the patient, the line flushed and results appear on the bedside monitor. The ABG system offers several advantages over traditional electrochemical analyzers. Since the arterial line remains closed during the blood sampling procedure the patient's risk of infection is reduced and the caregiver's exposure to blood is eliminated. The single-use, disposable sensor can be measure 100 blood samples over 72 hours after a single two-point calibration. Quality Assurance checks are also available and provide the caregiver the ability to assess system performance even after the sensor is patient attached. The ABG module integrates with an existing bedside monitoring system. This allows ABG results to appear on the same display as ECG, respiration, blood pressure, cardiac output, SpO2, and other clinical information. The small module takes up little space in the crowded intensive care unit. Performance studies compare the ABG system with an electrochemical blood gas analyzer. Study results demonstrated accurate and precise blood gas measurement of 100 samples and 72 hour performance without need for re-calibration.

  11. High-Sensitivity Fiber-Optic Ultrasound Sensors for Medical Imaging Applications

    PubMed Central

    Wen, H.; Wiesler, D.G.; Tveten, A.; Danver, B.; Dandridge, A.

    2010-01-01

    This paper presents several designs of high-sensitivity, compact fiber-optic ultrasound sensors that may be used for medical imaging applications. These sensors translate ultrasonic pulses into strains in single-mode optical fibers, which are measured with fiber-based laser interferometers at high precision. The sensors are simpler and less expensive to make than piezoelectric sensors, and are not susceptible to electromagnetic interference. It is possible to make focal sensors with these designs, and several schemes are discussed. Because of the minimum bending radius of optical fibers, the designs are suitable for single element sensors rather than for arrays. PMID:9691368

  12. Germanium ``hexa'' detector: production and testing

    NASA Astrophysics Data System (ADS)

    Sarajlić, M.; Pennicard, D.; Smoljanin, S.; Hirsemann, H.; Struth, B.; Fritzsch, T.; Rothermund, M.; Zuvic, M.; Lampert, M. O.; Askar, M.; Graafsma, H.

    2017-01-01

    Here we present new result on the testing of a Germanium sensor for X-ray radiation. The system is made of 3 × 2 Medipix3RX chips, bump-bonded to a monolithic sensor, and is called ``hexa''. Its dimensions are 45 × 30 mm2 and the sensor thickness was 1.5 mm. The total number of the pixels is 393216 in the matrix 768 × 512 with pixel pitch 55 μ m. Medipix3RX read-out chip provides photon counting read-out with single photon sensitivity. The sensor is cooled to -126°C and noise levels together with flat field response are measured. For -200 V polarization bias, leakage current was 4.4 mA (3.2 μ A/mm2). Due to higher leakage around 2.5% of all pixels stay non-responsive. More than 99% of all pixels are bump bonded correctly. In this paper we present the experimental set-up, threshold equalization procedure, image acquisition and the technique for bump bond quality estimate.

  13. Failure detection and correction for turbofan engines

    NASA Technical Reports Server (NTRS)

    Corley, R. C.; Spang, H. A., III

    1977-01-01

    In this paper, a failure detection and correction strategy for turbofan engines is discussed. This strategy allows continuing control of the engines in the event of a sensor failure. An extended Kalman filter is used to provide the best estimate of the state of the engine based on currently available sensor outputs. Should a sensor failure occur the control is based on the best estimate rather than the sensor output. The extended Kalman filter consists of essentially two parts, a nonlinear model of the engine and up-date logic which causes the model to track the actual engine. Details on the model and up-date logic are presented. To allow implementation, approximations are made to the feedback gain matrix which result in a single feedback matrix which is suitable for use over the entire flight envelope. The effect of these approximations on stability and response is discussed. Results from a detailed nonlinear simulation indicate that good control can be maintained even under multiple failures.

  14. 3D shape measurements with a single interferometric sensor for in-situ lathe monitoring

    NASA Astrophysics Data System (ADS)

    Kuschmierz, R.; Huang, Y.; Czarske, J.; Metschke, S.; Löffler, F.; Fischer, A.

    2015-05-01

    Temperature drifts, tool deterioration, unknown vibrations as well as spindle play are major effects which decrease the achievable precision of computerized numerically controlled (CNC) lathes and lead to shape deviations between the processed work pieces. Since currently no measurement system exist for fast, precise and in-situ 3d shape monitoring with keyhole access, much effort has to be made to simulate and compensate these effects. Therefore we introduce an optical interferometric sensor for absolute 3d shape measurements, which was integrated into a working lathe. According to the spindle rotational speed, a measurement rate of 2,500 Hz was achieved. In-situ absolute shape, surface profile and vibration measurements are presented. While thermal drifts of the sensor led to errors of several mµm for the absolute shape, reference measurements with a coordinate machine show, that the surface profile could be measured with an uncertainty below one micron. Additionally, the spindle play of 0.8 µm was measured with the sensor.

  15. Circuits and Systems for Low-Power Miniaturized Wireless Sensors

    NASA Astrophysics Data System (ADS)

    Nagaraju, Manohar

    The field of electronic sensors has witnessed a tremendous growth over the last decade particularly with the proliferation of mobile devices. New applications in Internet of Things (IoT), wearable technology, are further expected to fuel the demand for sensors from current numbers in the range of billions to trillions in the next decade. The main challenges for a trillion sensors are continued miniaturization, low-cost and large-scale manufacturing process, and low power consumption. Traditional integration and circuit design techniques in sensor systems are not suitable for applications in smart dust, IoT etc. The first part of this thesis demonstrates an example sensor system for biosignal recording and illustrates the tradeoffs in the design of low-power miniaturized sensors. The different components of the sensor system are integrated at the board level. The second part of the thesis demonstrates fully integrated sensors that enable extreme miniaturization of a sensing system with the sensor element, processing circuitry, a frequency reference for communication and the communication circuitry in a single hermetically sealed die. Design techniques to reduce the power consumption of the sensor interface circuitry at the architecture and circuit level are demonstrated. The principles are used to design sensors for two of the most common physical variables, mass and pressure. A low-power wireless mass and pressure sensor suitable for a wide variety of biological/chemical sensing applications and Tire Pressure Monitoring Systems (TPMS) respectively are demonstrated. Further, the idea of using high-Q resonators for a Voltage Controlled Oscillator (VCO) is proposed and a low-noise, wide bandwidth FBAR-based VCO is presented.

  16. A Method to Simultaneously Detect the Current Sensor Fault and Estimate the State of Energy for Batteries in Electric Vehicles

    PubMed Central

    Xu, Jun; Wang, Jing; Li, Shiying; Cao, Binggang

    2016-01-01

    Recently, State of energy (SOE) has become one of the most fundamental parameters for battery management systems in electric vehicles. However, current information is critical in SOE estimation and current sensor is usually utilized to obtain the latest current information. However, if the current sensor fails, the SOE estimation may be confronted with large error. Therefore, this paper attempts to make the following contributions: Current sensor fault detection and SOE estimation method is realized simultaneously. Through using the proportional integral observer (PIO) based method, the current sensor fault could be accurately estimated. By taking advantage of the accurate estimated current sensor fault, the influence caused by the current sensor fault can be eliminated and compensated. As a result, the results of the SOE estimation will be influenced little by the fault. In addition, the simulation and experimental workbench is established to verify the proposed method. The results indicate that the current sensor fault can be estimated accurately. Simultaneously, the SOE can also be estimated accurately and the estimation error is influenced little by the fault. The maximum SOE estimation error is less than 2%, even though the large current error caused by the current sensor fault still exists. PMID:27548183

  17. A Method to Simultaneously Detect the Current Sensor Fault and Estimate the State of Energy for Batteries in Electric Vehicles.

    PubMed

    Xu, Jun; Wang, Jing; Li, Shiying; Cao, Binggang

    2016-08-19

    Recently, State of energy (SOE) has become one of the most fundamental parameters for battery management systems in electric vehicles. However, current information is critical in SOE estimation and current sensor is usually utilized to obtain the latest current information. However, if the current sensor fails, the SOE estimation may be confronted with large error. Therefore, this paper attempts to make the following contributions: Current sensor fault detection and SOE estimation method is realized simultaneously. Through using the proportional integral observer (PIO) based method, the current sensor fault could be accurately estimated. By taking advantage of the accurate estimated current sensor fault, the influence caused by the current sensor fault can be eliminated and compensated. As a result, the results of the SOE estimation will be influenced little by the fault. In addition, the simulation and experimental workbench is established to verify the proposed method. The results indicate that the current sensor fault can be estimated accurately. Simultaneously, the SOE can also be estimated accurately and the estimation error is influenced little by the fault. The maximum SOE estimation error is less than 2%, even though the large current error caused by the current sensor fault still exists.

  18. Performance assessment of an opto-fluidic phantom mimicking porcine liver parenchyma

    NASA Astrophysics Data System (ADS)

    Akl, Tony J.; King, Travis J.; Long, Ruiqi; McShane, Michael J.; Nance Ericson, M.; Wilson, Mark A.; Coté, Gerard L.

    2012-07-01

    An implantable, optical oxygenation and perfusion sensor to monitor liver transplants during the two-week period following the transplant procedure is currently being developed. In order to minimize the number of animal experiments required for this research, a phantom that mimics the optical, anatomical, and physiologic flow properties of liver parenchyma is being developed as well. In this work, the suitability of this phantom for liver parenchyma perfusion research was evaluated by direct comparison of phantom perfusion data with data collected from in vivo porcine studies, both using the same prototype perfusion sensor. In vitro perfusion and occlusion experiments were performed on a single-layer and on a three-layer phantom perfused with a dye solution possessing the absorption properties of oxygenated hemoglobin. While both phantoms exhibited response patterns similar to the liver parenchyma, the signal measured from the multilayer phantom was three times higher than the single layer phantom and approximately 21 percent more sensitive to in vitro changes in perfusion. Although the multilayer phantom replicated the in vivo flow patterns more closely, the data suggests that both phantoms can be used in vitro to facilitate sensor design.

  19. Chem/bio sensing with non-classical light and integrated photonics.

    PubMed

    Haas, J; Schwartz, M; Rengstl, U; Jetter, M; Michler, P; Mizaikoff, B

    2018-01-29

    Modern quantum technology currently experiences extensive advances in applicability in communications, cryptography, computing, metrology and lithography. Harnessing this technology platform for chem/bio sensing scenarios is an appealing opportunity enabling ultra-sensitive detection schemes. This is further facilliated by the progress in fabrication, miniaturization and integration of visible and infrared quantum photonics. Especially, the combination of efficient single-photon sources together with waveguiding/sensing structures, serving as active optical transducer, as well as advanced detector materials is promising integrated quantum photonic chem/bio sensors. Besides the intrinsic molecular selectivity and non-destructive character of visible and infrared light based sensing schemes, chem/bio sensors taking advantage of non-classical light sources promise sensitivities beyond the standard quantum limit. In the present review, recent achievements towards on-chip chem/bio quantum photonic sensing platforms based on N00N states are discussed along with appropriate recognition chemistries, facilitating the detection of relevant (bio)analytes at ultra-trace concentration levels. After evaluating recent developments in this field, a perspective for a potentially promising sensor testbed is discussed for reaching integrated quantum sensing with two fiber-coupled GaAs chips together with semiconductor quantum dots serving as single-photon sources.

  20. The Combination of Micro Diaphragm Pumps and Flow Sensors for Single Stroke Based Liquid Flow Control

    PubMed Central

    Jenke, Christoph; Pallejà Rubio, Jaume; Kibler, Sebastian; Häfner, Johannes; Richter, Martin; Kutter, Christoph

    2017-01-01

    With the combination of micropumps and flow sensors, highly accurate and secure closed-loop controlled micro dosing systems for liquids are possible. Implementing a single stroke based control mode with piezoelectrically driven micro diaphragm pumps can provide a solution for dosing of volumes down to nanoliters or variable average flow rates in the range of nL/min to μL/min. However, sensor technologies feature a yet undetermined accuracy for measuring highly pulsatile micropump flow. Two miniaturizable in-line sensor types providing electrical readout—differential pressure based flow sensors and thermal calorimetric flow sensors—are evaluated for their suitability of combining them with mircopumps. Single stroke based calibration of the sensors was carried out with a new method, comparing displacement volumes and sensor flow volumes. Limitations of accuracy and performance for single stroke based flow control are described. Results showed that besides particle robustness of sensors, controlling resistive and capacitive damping are key aspects for setting up reproducible and reliable liquid dosing systems. Depending on the required average flow or defined volume, dosing systems with an accuracy of better than 5% for the differential pressure based sensor and better than 6.5% for the thermal calorimeter were achieved. PMID:28368344

  1. Gust prediction via artificial hair sensor array and neural network

    NASA Astrophysics Data System (ADS)

    Pankonien, Alexander M.; Thapa Magar, Kaman S.; Beblo, Richard V.; Reich, Gregory W.

    2017-04-01

    Gust Load Alleviation (GLA) is an important aspect of flight dynamics and control that reduces structural loadings and enhances ride quality. In conventional GLA systems, the structural response to aerodynamic excitation informs the control scheme. A phase lag, imposed by inertia, between the excitation and the measurement inherently limits the effectiveness of these systems. Hence, direct measurement of the aerodynamic loading can eliminate this lag, providing valuable information for effective GLA system design. Distributed arrays of Artificial Hair Sensors (AHS) are ideal for surface flow measurements that can be used to predict other necessary parameters such as aerodynamic forces, moments, and turbulence. In previous work, the spatially distributed surface flow velocities obtained from an array of artificial hair sensors using a Single-State (or feedforward) Neural Network were found to be effective in estimating the steady aerodynamic parameters such as air speed, angle of attack, lift and moment coefficient. This paper extends the investigation of the same configuration to unsteady force and moment estimation, which is important for active GLA control design. Implementing a Recurrent Neural Network that includes previous-timestep sensor information, the hair sensor array is shown to be capable of capturing gust disturbances with a wide range of periods, reducing predictive error in lift and moment by 68% and 52% respectively. The L2 norms of the first layer of the weight matrices were compared showing a 23% emphasis on prior versus current information. The Recurrent architecture also improves robustness, exhibiting only a 30% increase in predictive error when undertrained as compared to a 170% increase by the Single-State NN. This diverse, localized information can thus be directly implemented into a control scheme that alleviates the gusts without waiting for a structural response or requiring user-intensive sensor calibration.

  2. Wake Vortex Advisory System (WakeVAS) Concept of Operations

    NASA Technical Reports Server (NTRS)

    Rutishauser, David; Lohr, Gary; Hamilton, David; Powers, Robert; McKissick, Burnell; Adams, Catherine; Norris, Edward

    2003-01-01

    NASA Langley Research Center has a long history of aircraft wake vortex research, with the most recent accomplishment of demonstrating the Aircraft VOrtex Spacing System (AVOSS) at Dallas/Forth Worth International Airport in July 2000. The AVOSS was a concept for an integration of technologies applied to providing dynamic wake-safe reduced spacing for single runway arrivals, as compared to current separation standards applied during instrument approaches. AVOSS included state-of-the-art weather sensors, wake sensors, and a wake behavior prediction algorithm. Using real-time data AVOSS averaged a 6% potential throughput increase over current standards. This report describes a Concept of Operations for applying the technologies demonstrated in the AVOSS to a variety of terminal operations to mitigate wake vortex capacity constraints. A discussion of the technological issues and open research questions that must be addressed to design a Wake Vortex Advisory System (WakeVAS) is included.

  3. Experimental single-chip color HDTV image acquisition system with 8M-pixel CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Shimamoto, Hiroshi; Yamashita, Takayuki; Funatsu, Ryohei; Mitani, Kohji; Nojiri, Yuji

    2006-02-01

    We have developed an experimental single-chip color HDTV image acquisition system using 8M-pixel CMOS image sensor. The sensor has 3840 × 2160 effective pixels and is progressively scanned at 60 frames per second. We describe the color filter array and interpolation method to improve image quality with a high-pixel-count single-chip sensor. We also describe an experimental image acquisition system we used to measured spatial frequency characteristics in the horizontal direction. The results indicate good prospects for achieving a high quality single chip HDTV camera that reduces pseudo signals and maintains high spatial frequency characteristics within the frequency band for HDTV.

  4. Inertial Sensor-Based Gait Recognition: A Review

    PubMed Central

    Sprager, Sebastijan; Juric, Matjaz B.

    2015-01-01

    With the recent development of microelectromechanical systems (MEMS), inertial sensors have become widely used in the research of wearable gait analysis due to several factors, such as being easy-to-use and low-cost. Considering the fact that each individual has a unique way of walking, inertial sensors can be applied to the problem of gait recognition where assessed gait can be interpreted as a biometric trait. Thus, inertial sensor-based gait recognition has a great potential to play an important role in many security-related applications. Since inertial sensors are included in smart devices that are nowadays present at every step, inertial sensor-based gait recognition has become very attractive and emerging field of research that has provided many interesting discoveries recently. This paper provides a thorough and systematic review of current state-of-the-art in this field of research. Review procedure has revealed that the latest advanced inertial sensor-based gait recognition approaches are able to sufficiently recognise the users when relying on inertial data obtained during gait by single commercially available smart device in controlled circumstances, including fixed placement and small variations in gait. Furthermore, these approaches have also revealed considerable breakthrough by realistic use in uncontrolled circumstances, showing great potential for their further development and wide applicability. PMID:26340634

  5. Design and characterization of single photon avalanche diodes arrays

    NASA Astrophysics Data System (ADS)

    Neri, L.; Tudisco, S.; Lanzanò, L.; Musumeci, F.; Privitera, S.; Scordino, A.; Condorelli, G.; Fallica, G.; Mazzillo, M.; Sanfilippo, D.; Valvo, G.

    2010-05-01

    During the last years, in collaboration with ST-Microelectronics, we developed a new avalanche photo sensor, single photon avalanche diode (SPAD) see Ref.[S. Privitera, et al., Sensors 8 (2008) 4636 [1];S. Tudisco et al., IEEE Sensors Journal 8 (2008) 1324 [2

  6. Single walled carbon nanotubes functionally adsorbed to biopolymers for use as chemical sensors

    DOEpatents

    Johnson, Jr., Alan T.; Gelperin, Alan [Princeton, NJ; Staii, Cristian [Madison, WI

    2011-07-12

    Chemical field effect sensors comprising nanotube field effect devices having biopolymers such as single stranded DNA functionally adsorbed to the nanotubes are provided. Also included are arrays comprising the sensors and methods of using the devices to detect volatile compounds.

  7. Temperature compensated and self-calibrated current sensor using reference current

    DOEpatents

    Yakymyshyn, Christopher Paul [Seminole, FL; Brubaker, Michael Allen [Loveland, CO; Yakymyshyn, Pamela Jane [Seminole, FL

    2008-01-22

    A method is described to provide temperature compensation and self-calibration of a current sensor based on a plurality of magnetic field sensors positioned around a current carrying conductor. A reference electrical current carried by a conductor positioned within the sensing window of the current sensor is used to correct variations in the output signal due to temperature variations and aging.

  8. Synthesis and Gas Sensing Properties of Single La-Doped SnO2 Nanobelts

    PubMed Central

    Wu, Yuemei; Zhang, Heng; Liu, Yingkai; Chen, Weiwu; Ma, Jiang; Li, Shuanghui; Qin, Zhaojun

    2015-01-01

    Single crystal SnO2 nanobelts (SnO2 NBs) and La-SnO2 nanobelts (La-SnO2 NBs) were synthesized by thermal evaporation. Both a single SnO2 NB sensor and a single La-SnO2 NB sensor were developed and their sensing properties were investigated. It is found that the single La-SnO2 NB sensor had a high sensitivity of 8.76 to ethanediol at a concentration of 100 ppm at 230 °C, which is the highest sensitivity of a single SnO2 NB to ethanediol among three kinds of volatile organic (VOC) liquids studied, including ethanediol, ethanol, and acetone. The La-SnO2 NBs sensor also exhibits a high sensitivity, good selectivity and long-term stability with prompt response time to ethanediol. The mechanism behind the enhanced sensing performance of La-doped SnO2 nanobelts is discussed. PMID:26087374

  9. A minimally invasive displacement sensor for measuring brain micromotion in 3D with nanometer scale resolution.

    PubMed

    Vähäsöyrinki, Mikko; Tuukkanen, Tuomas; Sorvoja, Hannu; Pudas, Marko

    2009-06-15

    Electrophysiological recordings from a single or population of neurons are currently the standard method for investigating neural mechanisms with high spatio-temporal resolution. It is often difficult or even impossible to obtain stable recordings because of brain movements generated by the cardiac and respiratory functions and/or motor activity. An alternative approach to extensive surgical procedures aimed to reduce these movements would be to develop a control system capable of compensating the relative movement between the recording site and the electrode. As a first step towards such a system, an accurate method capable of measuring brain micromotion, preferably in 3D, in a non-invasive manner is required. A wide variety of technical solutions exist for displacement measurement. However, increased sensitivity in the measurement is often accompanied by strict limitations to sensor handling, implementation and external environment. In addition, majority of the current methods are limited to measurement along only one axis. We present a novel, minimally invasive, 3D displacement sensor with displacement resolution exceeding 70 nm along each axis. The sensor is based on optoelectronic detection of movements of a spring-like element with three degrees of freedom. It is remarkably compact with needle-like probe and can be packaged to withstand considerable mishandling, which allow easy implementation to existing measurement systems. We quantify the sensor performance and demonstrate its capabilities with an in vivo measurement of blowfly brain micromotion in a preparation commonly used for electrophysiology.

  10. High-content analysis of single cells directly assembled on CMOS sensor based on color imaging.

    PubMed

    Tanaka, Tsuyoshi; Saeki, Tatsuya; Sunaga, Yoshihiko; Matsunaga, Tadashi

    2010-12-15

    A complementary metal oxide semiconductor (CMOS) image sensor was applied to high-content analysis of single cells which were assembled closely or directly onto the CMOS sensor surface. The direct assembling of cell groups on CMOS sensor surface allows large-field (6.66 mm×5.32 mm in entire active area of CMOS sensor) imaging within a second. Trypan blue-stained and non-stained cells in the same field area on the CMOS sensor were successfully distinguished as white- and blue-colored images under white LED light irradiation. Furthermore, the chemiluminescent signals of each cell were successfully visualized as blue-colored images on CMOS sensor only when HeLa cells were placed directly on the micro-lens array of the CMOS sensor. Our proposed approach will be a promising technique for real-time and high-content analysis of single cells in a large-field area based on color imaging. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. A Simulation Study on a Single-Unit Wireless EEG Sensor

    PubMed Central

    Luan, Bo; Sun, Mingui

    2015-01-01

    Traditional EEG systems are limited when utilized in point-of-care applications due to its immobility and tedious preparation procedures. We are designing a novel device named single-unit wireless EEG sensor to solve these problems. The sensor has a size similar to a U.S. penny. Four electrodes are installed within a 20mm diameter cylinder. It can be applied to scalp in seconds to amplify, digitize and wirelessly transmit EEG. Before the design and construction of an actual sensor, in this paper, we perform a set of simulations to quantitatively study: 1) can the sensor acquire EEG reliably? 2) will the selection of sensor orientation be an important factor to influence signal strength? Our results demonstrate positive answers to these questions. Moreover, the signal sensor acquired appears to be comparable to the signal from the standard 10-20 system. These results warrant the further design and construction of a single-unit wireless EEG sensor. PMID:26207084

  12. Disposable, Autonomic, Energy-Converting Ion Channel Sensor Materials

    DTIC Science & Technology

    2018-07-02

    variant forms well-defined pores _____________________________ 26 4.2. Another pore-forming peptide, Ceratotoxin A, displays alamethicin-like activity ...bilayer recordings to examine the activity of these compounds on the single-pore level. We plan to use modified CtxA for targeted cell killing...strongly dependent on entropy of activation . Tethering is one strategy towards achieving this goal. A manuscript regarding this work is currently in

  13. An SOI CMOS-Based Multi-Sensor MEMS Chip for Fluidic Applications.

    PubMed

    Mansoor, Mohtashim; Haneef, Ibraheem; Akhtar, Suhail; Rafiq, Muhammad Aftab; De Luca, Andrea; Ali, Syed Zeeshan; Udrea, Florin

    2016-11-04

    An SOI CMOS multi-sensor MEMS chip, which can simultaneously measure temperature, pressure and flow rate, has been reported. The multi-sensor chip has been designed keeping in view the requirements of researchers interested in experimental fluid dynamics. The chip contains ten thermodiodes (temperature sensors), a piezoresistive-type pressure sensor and nine hot film-based flow rate sensors fabricated within the oxide layer of the SOI wafers. The silicon dioxide layers with embedded sensors are relieved from the substrate as membranes with the help of a single DRIE step after chip fabrication from a commercial CMOS foundry. Very dense sensor packing per unit area of the chip has been enabled by using technologies/processes like SOI, CMOS and DRIE. Independent apparatuses were used for the characterization of each sensor. With a drive current of 10 µA-0.1 µA, the thermodiodes exhibited sensitivities of 1.41 mV/°C-1.79 mV/°C in the range 20-300 °C. The sensitivity of the pressure sensor was 0.0686 mV/(V excit kPa) with a non-linearity of 0.25% between 0 and 69 kPa above ambient pressure. Packaged in a micro-channel, the flow rate sensor has a linearized sensitivity of 17.3 mV/(L/min) -0.1 in the tested range of 0-4.7 L/min. The multi-sensor chip can be used for simultaneous measurement of fluid pressure, temperature and flow rate in fluidic experiments and aerospace/automotive/biomedical/process industries.

  14. An SOI CMOS-Based Multi-Sensor MEMS Chip for Fluidic Applications †

    PubMed Central

    Mansoor, Mohtashim; Haneef, Ibraheem; Akhtar, Suhail; Rafiq, Muhammad Aftab; De Luca, Andrea; Ali, Syed Zeeshan; Udrea, Florin

    2016-01-01

    An SOI CMOS multi-sensor MEMS chip, which can simultaneously measure temperature, pressure and flow rate, has been reported. The multi-sensor chip has been designed keeping in view the requirements of researchers interested in experimental fluid dynamics. The chip contains ten thermodiodes (temperature sensors), a piezoresistive-type pressure sensor and nine hot film-based flow rate sensors fabricated within the oxide layer of the SOI wafers. The silicon dioxide layers with embedded sensors are relieved from the substrate as membranes with the help of a single DRIE step after chip fabrication from a commercial CMOS foundry. Very dense sensor packing per unit area of the chip has been enabled by using technologies/processes like SOI, CMOS and DRIE. Independent apparatuses were used for the characterization of each sensor. With a drive current of 10 µA–0.1 µA, the thermodiodes exhibited sensitivities of 1.41 mV/°C–1.79 mV/°C in the range 20–300 °C. The sensitivity of the pressure sensor was 0.0686 mV/(Vexcit kPa) with a non-linearity of 0.25% between 0 and 69 kPa above ambient pressure. Packaged in a micro-channel, the flow rate sensor has a linearized sensitivity of 17.3 mV/(L/min)−0.1 in the tested range of 0–4.7 L/min. The multi-sensor chip can be used for simultaneous measurement of fluid pressure, temperature and flow rate in fluidic experiments and aerospace/automotive/biomedical/process industries. PMID:27827904

  15. Single walled carbon nanotubes with functionally adsorbed biopolymers for use as chemical sensors

    DOEpatents

    Johnson, Jr., Alan T

    2013-12-17

    Chemical field effect sensors comprising nanotube field effect devices having biopolymers such as single stranded DNA or RNA functionally adsorbed to the nanotubes are provided. Also included are arrays comprising the sensors and methods of using the devices to detect volatile compounds.

  16. Temperature compensated and self-calibrated current sensor using reference magnetic field

    DOEpatents

    Yakymyshyn, Christopher Paul; Brubaker, Michael Allen; Yakymyshyn, Pamela Jane

    2007-10-09

    A method is described to provide temperature compensation and self-calibration of a current sensor based on a plurality of magnetic field sensors positioned around a current carrying conductor. A reference magnetic field generated within the current sensor housing is detected by the magnetic field sensors and is used to correct variations in the output signal due to temperature variations and aging.

  17. Temperature compensated current sensor using reference magnetic field

    DOEpatents

    Yakymyshyn, Christopher Paul; Brubaker, Michael Allen; Yakymyshyn, Pamela Jane

    2007-10-09

    A method is described to provide temperature compensation and self-calibration of a current sensor based on a plurality of magnetic field sensors positioned around a current carrying conductor. A reference magnetic field generated within the current sensor housing is detected by a separate but identical magnetic field sensor and is used to correct variations in the output signal due to temperature variations and aging.

  18. Tomographic wavefront retrieval by combined use of geometric and plenoptic sensors

    NASA Astrophysics Data System (ADS)

    Trujillo-Sevilla, J. M.; Rodríguez-Ramos, L. F.; Fernández-Valdivia, Juan J.; Marichal-Hernández, José G.; Rodríguez-Ramos, J. M.

    2014-05-01

    Modern astronomic telescopes take advantage of multi-conjugate adaptive optics, in which wavefront sensors play a key role. A single sensor capable of measuring wavefront phases at any angle of observation would be helpful when improving atmospheric tomographic reconstruction. A new sensor combining both geometric and plenoptic arrangements is proposed, and a simulation demonstrating its working principle is also shown. Results show that this sensor is feasible, and also that single extended objects can be used to perform tomography of atmospheric turbulence.

  19. A novel method for multiparameter physiological phenotype characterization at the single-cell level

    NASA Astrophysics Data System (ADS)

    Kelbauskas, Laimonas; Ashili, Shashanka; Houkal, Jeff; Smith, Dean; Mohammadreza, Aida; Lee, Kristen; Kumar, Ashok; Anis, Yasser; Paulson, Tom; Youngbull, Cody; Tian, Yanqing; Johnson, Roger; Holl, Mark; Meldrum, Deirdre

    2011-02-01

    Non-genetic intercellular heterogeneity has been increasingly recognized as one of the key factors in a variety of core cellular processes including proliferation, stimulus response, carcinogenesis and drug resistance. Many diseases, including cancer, originate in a single or a few cells. Early detection and characterization of these abnormal cells can provide new insights into the pathogenesis and serve as a tool for better disease diagnosis and treatment. We report on a novel technology for multiparameter physiological phenotype characterization at the single-cell level. It is based on real-time measurements of concentrations of several metabolites by means of extracellular optical sensors in microchambers of sub-nL volume containing single cells. In its current configuration, the measurement platform features the capability to detect oxygen consumption rate and pH changes under normoxic and hypoxic conditions at the single-cell level. We have conceived, designed and developed a semi-automated method for single-cell manipulation and loading into microwells utilizing custom, high-precision fluid handling at the nanoliter scale. We present the results of a series of measurements of oxygen consumption rates (OCRs) of single human metaplastic esophageal epithelial cells. In addition, to assess the effects of cell-to-cell interactions, we have measured OCRs of two and three cells placed in a single well. The major advantages of the approach are a) multiplexed characterization of cell phenotype at the single-cell level, b) minimal invasiveness due to the distant positioning of sensors, and c) flexibility in terms of accommodating measurements of other metabolites or biomolecules of interest.

  20. Single transmission line interrogated multiple channel data acquisition system

    DOEpatents

    Fasching, George E.; Keech, Jr., Thomas W.

    1980-01-01

    A single transmission line interrogated multiple channel data acquisition system is provided in which a plurality of remote station/sensor circuits each monitors a specific process variable and each transmits measurement values over a single transmission line to a master interrogating station when addressed by said master interrogating station. Typically, as many as 330 remote stations may be parallel connected to the transmission line which may exceed 7,000 feet. The interrogation rate is typically 330 stations/second. The master interrogating station samples each station according to a shared, charging transmit-receive cycle. All remote station address signals, all data signals from the remote stations/sensors and all power for all of the remote station/sensors are transmitted via a single continuous terminated coaxial cable. A means is provided for periodically and remotely calibrating all remote sensors for zero and span. A provision is available to remotely disconnect any selected sensor station from the main transmission line.

  1. Laser-assisted fabrication of single-layer flexible touch sensor

    PubMed Central

    Son, Seokwoo; Park, Jong Eun; Lee, Joohyung; Yang, Minyang; Kang, Bongchul

    2016-01-01

    Single-layer flexible touch sensor that is designed for the indium-tin-oxide (ITO)-free, bendable, durable, multi-sensible, and single layer transparent touch sensor was developed via a low-cost and one-step laser-induced fabrication technology. To this end, an entirely novel approach involving material, device structure, and even fabrication method was adopted. Conventional metal oxides based multilayer touch structure was substituted by the single layer structure composed of integrated silver wire networks of sensors and bezel interconnections. This structure is concurrently fabricated on a glass substitutive plastic film via the laser-induced fabrication method using the low-cost organometallic/nanoparticle hybrid complex. In addition, this study addresses practical solutions to heterochromia and interference problem with a color display unit. As a result, a practical touch sensor is successfully demonstrated through resolving the heterochromia and interference problems with color display unit. This study could provide the breakthrough for early realization of wearable device. PMID:27703204

  2. Magnetoelectric Current Sensors

    PubMed Central

    Bichurin, Mirza; Petrov, Roman; Leontiev, Viktor; Semenov, Gennadiy; Sokolov, Oleg

    2017-01-01

    In this work a magnetoelectric (ME) current sensor design based on a magnetoelectric effect is presented and discussed. The resonant and non-resonant type of ME current sensors are considered. Theoretical calculations of the ME current sensors by the equivalent circuit method were conducted. The application of different sensors using the new effects, for example, the ME effect, is made possible with the development of new ME composites. A large number of studies conducted in the field of new composites, allowed us to obtain a high magnetostrictive-piezoelectric laminate sensitivity. An optimal ME structure composition was matched. The characterization of a non-resonant current sensor showed that in the operation range to 5 A, the sensor had a sensitivity of 0.34 V/A, non-linearity less than 1% and for a resonant current sensor in the same operation range, the sensitivity was of 0.53 V/A, non-linearity less than 0.5%. PMID:28574486

  3. Micromachined lab-on-a-tube sensors for simultaneous brain temperature and cerebral blood flow measurements.

    PubMed

    Li, Chunyan; Wu, Pei-Ming; Hartings, Jed A; Wu, Zhizhen; Cheyuo, Cletus; Wang, Ping; LeDoux, David; Shutter, Lori A; Ramaswamy, Bharat Ram; Ahn, Chong H; Narayan, Raj K

    2012-08-01

    This work describes the development of a micromachined lab-on-a-tube device for simultaneous measurement of brain temperature and regional cerebral blood flow. The device consists of two micromachined gold resistance temperature detectors with a 4-wire configuration. One is used as a temperature sensor and the other as a flow sensor. The temperature sensor operates with AC excitation current of 500 μA and updates its outputs at a rate of 5 Hz. The flow sensor employs a periodic heating and cooling technique under constant-temperature mode and updates its outputs at a rate of 0.1 Hz. The temperature sensor is also used to compensate for temperature changes during the heating period of the flow sensor to improve the accuracy of flow measurements. To prevent thermal and electronic crosstalk between the sensors, the temperature sensor is located outside the "thermal influence" region of the flow sensor and the sensors are separated into two different layers with a thin-film Copper shield. We evaluated the sensors for accuracy, crosstalk and long-term drift in human blood-stained cerebrospinal fluid. These in vitro experiments showed that simultaneous temperature and flow measurements with a single lab-on-a-tube device are accurate and reliable over the course of 5 days. It has a resolution of 0.013 °C and 0.18 ml/100 g/min; and achieves an accuracy of 0.1 °C and 5 ml/100 g/min for temperature and flow sensors respectively. The prototype device and techniques developed here establish a foundation for a multi-sensor lab-on-a-tube, enabling versatile multimodality monitoring applications.

  4. High speed demodulation systems for fiber optic grating sensors

    NASA Technical Reports Server (NTRS)

    Udd, Eric (Inventor); Weisshaar, Andreas (Inventor)

    2002-01-01

    Fiber optic grating sensor demodulation systems are described that offer high speed and multiplexing options for both single and multiple parameter fiber optic grating sensors. To attain very high speeds for single parameter fiber grating sensors ratio techniques are used that allow a series of sensors to be placed in a single fiber while retaining high speed capability. These methods can be extended to multiparameter fiber grating sensors. Optimization of speeds can be obtained by minimizing the number of spectral peaks that must be processed and it is shown that two or three spectral peak measurements may in specific multiparameter applications offer comparable or better performance than processing four spectral peaks. Combining the ratio methods with minimization of peak measurements allows very high speed measurement of such important environmental effects as transverse strain and pressure.

  5. Magnetoresistive Current Sensors for High Accuracy, High Bandwidth Current Measurement in Spacecraft Power Electronics

    NASA Astrophysics Data System (ADS)

    Slatter, Rolf; Goffin, Benoit

    2014-08-01

    The usage of magnetoresistive (MR) current sensors is increasing steadily in the field of power electronics. Current sensors must not only be accurate and dynamic, but must also be compact and robust. The MR effect is the basis for current sensors with a unique combination of precision and bandwidth in a compact package. A space-qualifiable magnetoresistive current sensor with high accuracy and high bandwidth is being jointly developed by the sensor manufacturer Sensitec and the spacecraft power electronics supplier Thales Alenia Space (T AS) Belgium. Test results for breadboards incorporating commercial-off-the-shelf (COTS) sensors are presented as well as an application example in the electronic control and power unit for the thrust vector actuators of the Ariane5-ME launcher.

  6. The Rogowski Coil Sensor in High Current Application: A Review

    NASA Astrophysics Data System (ADS)

    Nazmy Nanyan, Ayob; Isa, Muzamir; Hamid, Haziah Abdul; Nur Khairul Hafizi Rohani, Mohamad; Ismail, Baharuddin

    2018-03-01

    Rogowski coil is used for measuring the alternating current (AC) and high-speed current pulses. However, the technology makes the Rogowski coil (RC) come out with more improvement, modification and until today it’s still being studied for the new application. The Rogowski coil has a few advantages compared to the high frequency current transformer (HFCT). A brief review on the basic theory and the application of Rogowski coil as a current sensor measurement that been done by previous researchers are presented and discussed in this paper. Additionally, the review also focused on the capability of Rogowski coil for high current sensor measurement and their application for fault detection, over voltage current sensor, lightning current sensor and high impulse current detection. The experimental set up, techniques and measurement parameters in models also been discussed. Finally, a brief review on the performance analysis of current sensor measurement of Rogowski coil likes sensitivity, the maximum and current detection which could be used as a guideline to another researcher in order to develop an advanced RC as high current sensor in future is presented. This review reveal that the RC has a very good performance in high current sensor detection in term of sensitivity which is up to a few nanosecond, higher bandwidth, excellent in detection of high fault and also could measuring lightning current up to 400kA and has many advantages compare to conventional current transformer(CT).

  7. Shuttle-promoted nano-mechanical current switch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Taegeun, E-mail: tsong@ictp.it; Kiselev, Mikhail N.; Gorelik, Leonid Y.

    2015-09-21

    We investigate electron shuttling in three-terminal nanoelectromechanical device built on a movable metallic rod oscillating between two drains. The device shows a double-well shaped electromechanical potential tunable by a source-drain bias voltage. Four stationary regimes controllable by the bias are found for this device: (i) single stable fixed point, (ii) two stable fixed points, (iii) two limit cycles, and (iv) single limit cycle. In the presence of perpendicular magnetic field, the Lorentz force makes possible switching from one electromechanical state to another. The mechanism of tunable transitions between various stable regimes based on the interplay between voltage controlled electromechanical instabilitymore » and magnetically controlled switching is suggested. The switching phenomenon is implemented for achieving both a reliable active current switch and sensoring of small variations of magnetic field.« less

  8. Overview of Piezoelectric Biosensors, Immunosensors and DNA Sensors and Their Applications.

    PubMed

    Pohanka, Miroslav

    2018-03-19

    Piezoelectric biosensors are a group of analytical devices working on a principle of affinity interaction recording. A piezoelectric platform or piezoelectric crystal is a sensor part working on the principle of oscillations change due to a mass bound on the piezoelectric crystal surface. In this review, biosensors having their surface modified with an antibody or antigen, with a molecularly imprinted polymer, with genetic information like single stranded DNA, and biosensors with bound receptors of organic of biochemical origin, are presented and discussed. The mentioned recognition parts are frequently combined with use of nanoparticles and applications in this way are also introduced. An overview of the current literature is given and the methods presented are commented upon.

  9. One Single Graphene Oxide Film for Responsive Actuation.

    PubMed

    Cheng, Huhu; Zhao, Fei; Xue, Jiangli; Shi, Gaoquan; Jiang, Lan; Qu, Liangti

    2016-09-22

    Graphene, because of its superior electrical/thermal conductivity, high surface area, excellent mechanical flexibility, and stability, is currently receiving significant attention and benefit to fabricate actuator devices. Here, a sole graphene oxide (GO) film responsive actuator with an integrated self-detecting sensor has been developed. The film exhibits an asymmetric surface structure on its two sides, creating a promising actuation ability triggered by multistimuli, such as moisture, thermals, and infrared light. Meanwhile, the built-in laser-writing reduced graphene oxide (rGO) sensor in the film can detect its own deformation in real time. Smart perceptual fingers in addition to rectangular-shaped and even four-legged walking robots have been developed based on the responsive GO film.

  10. Noise-cancelling quadrature magnetic position, speed and direction sensor

    DOEpatents

    Preston, Mark A.; King, Robert D.

    1996-01-01

    An array of three magnetic sensors in a single package is employed with a single bias magnet for sensing shaft position, speed and direction of a motor in a high magnetic noise environment. Two of the three magnetic sensors are situated in an anti-phase relationship (i.e., 180.degree. out-of-phase) with respect to the relationship between the other of the two sensors and magnetically salient target, and the third magnetic sensor is situated between the anti-phase sensors. The result is quadrature sensing with noise immunity for accurate relative position, speed and direction measurements.

  11. Single mode variable-sensitivity fiber optic sensors

    NASA Technical Reports Server (NTRS)

    Murphy, K. A.; Fogg, B. R.; Gunther, M. F.; Claus, R. O.

    1992-01-01

    We review spatially-weighted optical fiber sensors that filter specific vibration modes from one dimensional beams placed in clamped-free and clamped-clamped configurations. The sensitivity of the sensor is varied along the length of the fiber by tapering circular-core, dual-mode optical fibers. Selective vibration mode suppression on the order of 10 dB was obtained. We describe experimental results and propose future extensions to single mode sensor applications.

  12. A single sensor and single actuator approach to performance tailoring over a prescribed frequency band.

    PubMed

    Wang, Jiqiang

    2016-03-01

    Restricted sensing and actuation control represents an important area of research that has been overlooked in most of the design methodologies. In many practical control engineering problems, it is necessitated to implement the design through a single sensor and single actuator for multivariate performance variables. In this paper, a novel approach is proposed for the solution to the single sensor and single actuator control problem where performance over any prescribed frequency band can also be tailored. The results are obtained for the broad band control design based on the formulation for discrete frequency control. It is shown that the single sensor and single actuator control problem over a frequency band can be cast into a Nevanlinna-Pick interpolation problem. An optimal controller can then be obtained via the convex optimization over LMIs. Even remarkable is that robustness issues can also be tackled in this framework. A numerical example is provided for the broad band attenuation of rotor blade vibration to illustrate the proposed design procedures. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Solar powered hybrid sensor module program

    NASA Technical Reports Server (NTRS)

    Johnson, J. M.; Holmes, H. K.

    1985-01-01

    Geo-orbital systems of the near future will require more sophisticated electronic and electromechanical monitoring and control systems than current satellite systems with an emphasis in the design on the electronic density and autonomy of the subsystem components. Results of a project to develop, design, and implement a proof-of-concept sensor system for space applications, with hybrids forming the active subsystem components are described. The design of the solar power hybrid sensor modules is discussed. Module construction and function are described. These modules combined low power CMOS electronics, GaAs solar cells, a crystal oscillatory standard UART data formatting, and a bidirectional optical data link into a single 1.25 x 1.25 x 0.25 inch hybrid package which has no need for electrical input or output. Several modules were built and tested. Applications of such a system for future space missions are also discussed.

  14. Lab-on-chip components for molecular detection

    NASA Astrophysics Data System (ADS)

    Adam, Tijjani; Dhahi, Th S.; Mohammed, Mohammed; Hashim, U.; Noriman, N. Z.; Dahham, Omar S.

    2017-09-01

    We successfully fabricated Lab on chip components and integrated for possible use in biomedical application. The sensor was fabricated by using conventional photolithography method integrated with PDMS micro channels for smooth delivery of sample to the sensing domain. The sensor was silanized and aminated with 3-Aminopropyl triethoxysilane (APTES) to functionalize the surface with biomolecules and create molecular binding chemistry. The resulting Si-O-Si- components were functionalized with oligonucleotides probe of HPV, which interacted with the single stranded HPV DNA target to create a field across on the device. The fabrication, immobilization and hybridization processes were characterized with current voltage (I-V) characterization (KEITHLEY, 6487). The sensor show selectivity for the HPV DNA target in a linear range from concentration 0.1 nM to 1 µM. This strategy presented a simple, rapid and sensitive platform for HPV detection and would become a powerful tool for pathogenic microorganisms screening in clinical diagnosis.

  15. The Development of Wireless Body Area Network for Motion Sensing Application

    NASA Astrophysics Data System (ADS)

    Puspitaningayu, P.; Widodo, A.; Yundra, E.; Ramadhany, F.; Arianto, L.; Habibie, D.

    2018-04-01

    The information era has driven the society into the digitally-controlled lifestyle. Wireless body area networks (WBAN) as the specific scope of wireless sensor networks (WSN) is consistently growing into bigger applications. Currently, people are able to monitor their medical parameters by simply using small electronics devices attached to their body and connected to the authorities. On top of that, this time, smart phones are typically equipped with sensors such as accelerometer, gyroscope, barometric pressure, heart rate monitor, etc. It means that the sensing yet the signal processing can be performed by a single device. Moreover, Android opens lot wider opportunities for new applications as the most popular open-sourced smart phone platform. This paper is intended to show the development of motion sensing application which focused on analysing data from accelerometer and gyroscope. Beside reads the sensors, this application also has the ability to convert the sensors’ numerical value into graphs.

  16. pHlash: a new genetically encoded and ratiometric luminescence sensor of intracellular pH.

    PubMed

    Zhang, Yunfei; Xie, Qiguang; Robertson, J Brian; Johnson, Carl Hirschie

    2012-01-01

    We report the development of a genetically encodable and ratiometic pH probe named "pHlash" that utilizes Bioluminescence Resonance Energy Transfer (BRET) rather than fluorescence excitation. The pHlash sensor-composed of a donor luciferase that is genetically fused to a Venus fluorophore-exhibits pH dependence of its spectral emission in vitro. When expressed in either yeast or mammalian cells, pHlash reports basal pH and cytosolic acidification in vivo. Its spectral ratio response is H(+) specific; neither Ca(++), Mg(++), Na(+), nor K(+) changes the spectral form of its luminescence emission. Moreover, it can be used to image pH in single cells. This is the first BRET-based sensor of H(+) ions, and it should allow the approximation of pH in cytosolic and organellar compartments in applications where current pH probes are inadequate.

  17. Characterization of simple wireless neurostimulators and sensors.

    PubMed

    Gulick, Daniel W; Towe, Bruce C

    2014-01-01

    A single diode with a wireless power source and electrodes can act as an implantable stimulator or sensor. We have built such devices using RF and ultrasound power coupling. These simple devices could drastically reduce the size, weight, and cost of implants for applications where efficiency is not critical. However, a shortcoming has been a lack of control: any movement of the external power source would change the power coupling, thereby changing the stimulation current or modulating the sensor response. To correct for changes in power and signal coupling, we propose to use harmonic signals from the device. The diode acts as a frequency multiplier, and the harmonics it emits contain information about the drive level and bias. A simplified model suggests that estimation of power, electrode bias, and electrode resistance is possible from information contained in radiated harmonics even in the presence of significant noise. We also built a simple RF-powered stimulator with an onboard voltage limiter.

  18. Ultrananocrystalline Diamond Cantilever Wide Dynamic Range Acceleration/Vibration /Pressure Sensor

    DOEpatents

    Krauss, Alan R.; Gruen, Dieter M.; Pellin, Michael J.; Auciello, Orlando

    2003-09-02

    An ultrananocrystalline diamond (UNCD) element formed in a cantilever configuration is used in a highly sensitive, ultra-small sensor for measuring acceleration, shock, vibration and static pressure over a wide dynamic range. The cantilever UNCD element may be used in combination with a single anode, with measurements made either optically or by capacitance. In another embodiment, the cantilever UNCD element is disposed between two anodes, with DC voltages applied to the two anodes. With a small AC modulated voltage applied to the UNCD cantilever element and because of the symmetry of the applied voltage and the anode-cathode gap distance in the Fowler-Nordheim equation, any change in the anode voltage ratio V1/V2 required to maintain a specified current ratio precisely matches any displacement of the UNCD cantilever element from equilibrium. By measuring changes in the anode voltage ratio required to maintain a specified current ratio, the deflection of the UNCD cantilever can be precisely determined. By appropriately modulating the voltages applied between the UNCD cantilever and the two anodes, or limit electrodes, precise independent measurements of pressure, uniaxial acceleration, vibration and shock can be made. This invention also contemplates a method for fabricating the cantilever UNCD structure for the sensor.

  19. Ultrananocrystalline diamond cantilever wide dynamic range acceleration/vibration/pressure sensor

    DOEpatents

    Krauss, Alan R [Naperville, IL; Gruen, Dieter M [Downers Grove, IL; Pellin, Michael J [Naperville, IL; Auciello, Orlando [Bolingbrook, IL

    2002-07-23

    An ultrananocrystalline diamond (UNCD) element formed in a cantilever configuration is used in a highly sensitive, ultra-small sensor for measuring acceleration, shock, vibration and static pressure over a wide dynamic range. The cantilever UNCD element may be used in combination with a single anode, with measurements made either optically or by capacitance. In another embodiment, the cantilever UNCD element is disposed between two anodes, with DC voltages applied to the two anodes. With a small AC modulated voltage applied to the UNCD cantilever element and because of the symmetry of the applied voltage and the anode-cathode gap distance in the Fowler-Nordheim equation, any change in the anode voltage ratio V1/N2 required to maintain a specified current ratio precisely matches any displacement of the UNCD cantilever element from equilibrium. By measuring changes in the anode voltage ratio required to maintain a specified current ratio, the deflection of the UNCD cantilever can be precisely determined. By appropriately modulating the voltages applied between the UNCD cantilever and the two anodes, or limit electrodes, precise independent measurements of pressure, uniaxial acceleration, vibration and shock can be made. This invention also contemplates a method for fabricating the cantilever UNCD structure for the sensor.

  20. Aptamer-Based Carboxyl-Terminated Nanocrystalline Diamond Sensing Arrays for Adenosine Triphosphate Detection.

    PubMed

    Suaebah, Evi; Naramura, Takuro; Myodo, Miho; Hasegawa, Masataka; Shoji, Shuichi; Buendia, Jorge J; Kawarada, Hiroshi

    2017-07-21

    Here, we propose simple diamond functionalization by carboxyl termination for adenosine triphosphate (ATP) detection by an aptamer. The high-sensitivity label-free aptamer sensor for ATP detection was fabricated on nanocrystalline diamond (NCD). Carboxyl termination of the NCD surface by vacuum ultraviolet excimer laser and fluorine termination of the background region as a passivated layer were investigated by X-ray photoelectron spectroscopy. Single strand DNA (amide modification) was used as the supporting biomolecule to immobilize into the diamond surface via carboxyl termination and become a double strand with aptamer. ATP detection by aptamer was observed as a 66% fluorescence signal intensity decrease of the hybridization intensity signal. The sensor operation was also investigated by the field-effect characteristics. The shift of the drain current-drain voltage characteristics was used as the indicator for detection of ATP. From the field-effect characteristics, the shift of the drain current-drain voltage was observed in the negative direction. The negative charge direction shows that the aptamer is capable of detecting ATP. The ability of the sensor to detect ATP was investigated by fabricating a field-effect transistor on the modified NCD surface.

  1. Role of Defects in Single-Walled Carbon Nanotube Chemical Sensors

    DTIC Science & Technology

    2006-07-01

    Role of Defects in Single-Walled Carbon Nanotube Chemical Sensors Joshua A . Robinson, Eric S. Snow,* Ştefan C. Bǎdescu, Thomas L. Reinecke, and F...of chemical vapors. We find adsorption at defect sites produces a large electronic response that dominates the SWNT capacitance and conductance...introduction of oxidation defects can be used to enhance sensitivity of a SWNT network sensor to a variety of chemical vapors. The use of single-walled

  2. Single-cell analysis of radiotracers' uptake by fluorescence microscopy: direct and droplet approach

    NASA Astrophysics Data System (ADS)

    Gallina, M. E.; Kim, T. J.; Vasquez, J.; Tuerkcan, S.; Abbyad, P.; Pratx, G.

    2017-02-01

    Radionuclides are used for sensitive and specific detection of small molecules in vivo and in vitro. Recently, radioluminescence microscopy extended their use to single-cell studies. Here we propose a new single-cell radioisotopic assay that improves throughput while adding sorting capabilities. The new method uses fluorescence-based sensor for revealing single-cell interactions with radioactive molecular markers. This study focuses on comparing two different experimental approaches. Several probes were tested and Dihydrorhodamine 123 was selected as the best compromise between sensitivity, brightness and stability. The sensor was incorporated either directly within the cell cytoplasm (direct approach), or it was coencapsulated with radiolabeled single-cells in oil-dispersed water droplets (droplet approach). Both approaches successfully activated the fluorescence signal following cellular uptake of 18F-fluorodeoxyglucose (FDG) and external Xrays exposure. The direct approach offered single-cell resolution and longtime stability ( > 20 hours), moreover it could discriminate FDG uptake at labelling concentration as low as 300 μCi/ml. In cells incubated with Dihydrorhodamine 123 after exposure to high radiation doses (8-16 Gy), the fluorescence signal was found to increase with the depletion of ROS quenchers. On the other side, the droplet approach required higher labelling concentrations (1.00 mCi/ml), and, at the current state of art, three cells per droplet are necessary to produce a fluorescent signal. This approach, however, is independent on cellular oxidative stress and, with further improvements, will be more suitable for studying heterogeneous populations. We anticipate this technology to pave the way for the analysis of single-cell interactions with radiomarkers by radiofluorogenic-activated single-cell sorting.

  3. An Improved Model Predictive Current Controller of Switched Reluctance Machines Using Time-Multiplexed Current Sensor

    PubMed Central

    Li, Bingchu; Ling, Xiao; Huang, Yixiang; Gong, Liang; Liu, Chengliang

    2017-01-01

    This paper presents a fixed-switching-frequency model predictive current controller using multiplexed current sensor for switched reluctance machine (SRM) drives. The converter was modified to distinguish currents from simultaneously excited phases during the sampling period. The only current sensor installed in the converter was time division multiplexing for phase current sampling. During the commutation stage, the control steps of adjacent phases were shifted so that sampling time was staggered. The maximum and minimum duty ratio of pulse width modulation (PWM) was limited to keep enough sampling time for analog-to-digital (A/D) conversion. Current sensor multiplexing was realized without complex adjustment of either driver circuit nor control algorithms, while it helps to reduce the cost and errors introduced in current sampling due to inconsistency between sensors. The proposed controller is validated by both simulation and experimental results with a 1.5 kW three-phase 12/8 SRM. Satisfied current sampling is received with little difference compared with independent phase current sensors for each phase. The proposed controller tracks the reference current profile as accurately as the model predictive current controller with independent phase current sensors, while having minor tracking errors compared with a hysteresis current controller. PMID:28513554

  4. A zonal wavefront sensor with multiple detector planes

    NASA Astrophysics Data System (ADS)

    Pathak, Biswajit; Boruah, Bosanta R.

    2018-03-01

    A conventional zonal wavefront sensor estimates the wavefront from the data captured in a single detector plane using a single camera. In this paper, we introduce a zonal wavefront sensor which comprises multiple detector planes instead of a single detector plane. The proposed sensor is based on an array of custom designed plane diffraction gratings followed by a single focusing lens. The laser beam whose wavefront is to be estimated is incident on the grating array and one of the diffracted orders from each grating is focused on the detector plane. The setup, by employing a beam splitter arrangement, facilitates focusing of the diffracted beams on multiple detector planes where multiple cameras can be placed. The use of multiple cameras in the sensor can offer several advantages in the wavefront estimation. For instance, the proposed sensor can provide superior inherent centroid detection accuracy that can not be achieved by the conventional system. It can also provide enhanced dynamic range and reduced crosstalk performance. We present here the results from a proof of principle experimental arrangement that demonstrate the advantages of the proposed wavefront sensing scheme.

  5. Detecting single-electron events in TEM using low-cost electronics and a silicon strip sensor.

    PubMed

    Gontard, Lionel C; Moldovan, Grigore; Carmona-Galán, Ricardo; Lin, Chao; Kirkland, Angus I

    2014-04-01

    There is great interest in developing novel position-sensitive direct detectors for transmission electron microscopy (TEM) that do not rely in the conversion of electrons into photons. Direct imaging improves contrast and efficiency and allows the operation of the microscope at lower energies and at lower doses without loss in resolution, which is especially important for studying soft materials and biological samples. We investigate the feasibility of employing a silicon strip detector as an imaging detector for TEM. This device, routinely used in high-energy particle physics, can detect small variations in electric current associated with the impact of a single charged particle. The main advantages of using this type of sensor for direct imaging in TEM are its intrinsic radiation hardness and large detection area. Here, we detail design, simulation, fabrication and tests in a TEM of the front-end electronics developed using low-cost discrete components and discuss the limitations and applications of this technology for TEM.

  6. Infrared engineering for the advancement of science: A UK perspective

    NASA Astrophysics Data System (ADS)

    Baker, Ian M.

    2017-02-01

    Leonardo MW (formerly Selex ES) has been developing infrared sensors and cameras for over 62 years at two main sites at Southampton and Basildon. Funding mainly from UK MOD has seen the technology progress from single element PbSe sensors to advanced, high definition, HgCdTe cameras, widely deployed in many fields today. However, in the last 10 years the major challenges and research funding has come from projects within the scientific sphere, particularly: astronomy and space. Low photon flux, high resolution spectroscopy and fast frame rates are the motivation to drive the sensitivity of infrared detectors to the single photon level. These detectors make use of almost noiseless avalanche gain in HgCdTe to achieve the sensitivity and speed of response. Metal Organic Vapour Phase Epitaxy, MOVPE, grown on low-cost GaAs substrates, provides the capability for crucial bandgap engineering to suppress breakdown currents and allow high avalanche gain even in very low background conditions. This paper describes the progress so far and provides a glimpse of the future.

  7. Inflammable Gas Mixture Detection with a Single Catalytic Sensor Based on the Electric Field Effect

    PubMed Central

    Tong, Ziyuan; Tong, Min-Ming; Meng, Wen; Li, Meng

    2014-01-01

    This paper introduces a new way to analyze mixtures of inflammable gases with a single catalytic sensor. The analysis technology was based on a new finding that an electric field on the catalytic sensor can change the output sensitivity of the sensor. The analysis of mixed inflammable gases results from processing the output signals obtained by adjusting the electric field parameter of the catalytic sensor. For the signal process, we designed a group of equations based on the heat balance of catalytic sensor expressing the relationship between the output signals and the concentration of gases. With these equations and the outputs of different electric fields, the gas concentration in a mixture could be calculated. In experiments, a mixture of methane, butane and ethane was analyzed by this new method, and the results showed that the concentration of each gas in the mixture could be detected with a single catalytic sensor, and the maximum relative error was less than 5%. PMID:24717635

  8. Triangulation-based edge measurement using polyview optics

    NASA Astrophysics Data System (ADS)

    Li, Yinan; Kästner, Markus; Reithmeier, Eduard

    2018-04-01

    Laser triangulation sensors as non-contact measurement devices are widely used in industry and research for profile measurements and quantitative inspections. Some technical applications e.g. edge measurements usually require a configuration of a single sensor and a translation stage or a configuration of multiple sensors, so that they can measure a large measurement range that is out of the scope of a single sensor. However, the cost of both configurations is high, due to the additional rotational axis or additional sensor. This paper provides a special measurement system for measurement of great curved surfaces based on a single sensor configuration. Utilizing a self-designed polyview optics and calibration process, the proposed measurement system allows an over 180° FOV (field of view) with a precise measurement accuracy as well as an advantage of low cost. The detailed capability of this measurement system based on experimental data is discussed in this paper.

  9. Liquid level sensor based on fiber ring laser with single-mode-offset coreless-single-mode fiber structure

    NASA Astrophysics Data System (ADS)

    Wang, Zixiao; Tan, Zhongwei; Xing, Rui; Liang, Linjun; Qi, Yanhui; Jian, Shuisheng

    2016-10-01

    A novel reflective liquid level sensor based on single-mode-offset coreless-single-mode (SOCS) fiber structure is proposed and experimentally demonstrated. Theory analyses and experimental results indicate that offset fusion can remarkably enhance the sensitivity of sensor. Ending-reflecting structure makes the sensor compact and easy to deploy. Meanwhile, we propose a laser sensing system, and the SOCS structure is used as sensing head and laser filter simultaneously. Experimental results show that laser spectra with high optical signal-to-noise ratio (-30 dB) and narrow 3-dB bandwidth (<0.15 nm) are achieved. Various liquids with different indices are used for liquid level sensing, besides, the refractive index sensitivity is also investigated. In measurement range, the sensing system presents steady laser output.

  10. A High-Sensitivity Flexible Eddy Current Array Sensor for Crack Monitoring of Welded Structures under Varying Environment.

    PubMed

    Chen, Tao; He, Yuting; Du, Jinqiang

    2018-06-01

    This paper develops a high-sensitivity flexible eddy current array (HS-FECA) sensor for crack monitoring of welded structures under varying environment. Firstly, effects of stress, temperature and crack on output signals of the traditional flexible eddy current array (FECA) sensor were investigated by experiments that show both stress and temperature have great influences on the crack monitoring performance of the sensor. A 3-D finite element model was established using Comsol AC/DC module to analyze the perturbation effects of crack on eddy currents and output signals of the sensor, which showed perturbation effect of cracks on eddy currents is reduced by the current loop when crack propagates. Then, the HS-FECA sensor was proposed to boost the sensitivity to cracks. Simulation results show that perturbation effect of cracks on eddy currents excited by the HS-FECA sensor gradually grows stronger when the crack propagates, resulting in much higher sensitivity to cracks. Experimental result further shows that the sensitivity of the new sensor is at least 19 times that of the original one. In addition, both stress and temperature variations have little effect on signals of the new sensor.

  11. Polydimethylsiloxane pressure sensors for force analysis in tension band wiring of the olecranon.

    PubMed

    Zens, Martin; Goldschmidtboeing, Frank; Wagner, Ferdinand; Reising, Kilian; Südkamp, Norbert P; Woias, Peter

    2016-11-14

    Several different surgical techniques are used in the treatment of olecranon fractures. Tension band wiring is one of the most preferred options by surgeons worldwide. The concept of this technique is to transform a tensile force into a compression force that adjoins two surfaces of a fractured bone. Currently, little is known about the resulting compression force within a fracture. Sensor devices are needed that directly transduce the compression force into a measurement quality. This allows the comparison of different surgical techniques. Ideally the sensor devices ought to be placed in the gap between the fractured segments. The design, development and characterization of miniaturized pressure sensors fabricated entirely from polydimethylsiloxane (PDMS) for a placement within a fracture is presented. The pressure sensors presented in this work are tested, calibrated and used in an experimental in vitro study. The pressure sensors are highly sensitive with an accuracy of approximately 3 kPa. A flexible fabrication process for various possible applications is described. The first in vitro study shows that using a single-twist or double-twist technique in tension band wiring of the olecranon has no significant effect on the resulting compression forces. The in vitro study shows the feasibility of the proposed measurement technique and the results of a first exemplary study.

  12. A Novel Sensor for Attitude Determination Using Global Positioning System Signals

    NASA Technical Reports Server (NTRS)

    Crassidis, John L.; Quinn, David A.; Markley, F. Landis; McCullough, Jon D.

    1998-01-01

    An entirely new sensor approach for attitude determination using Global Positioning System (GPS) signals is developed. The concept involves the use of multiple GPS antenna elements arrayed on a single sensor head to provide maximum GPS space vehicle availability. A number of sensor element configurations are discussed. In addition to the navigation function, the array is used to find which GPS space vehicles are within the field-of-view of each antenna element. Attitude determination is performed by considering the sightline vectors of the found GPS space vehicles together with the fixed boresight vectors of the individual antenna elements. This approach has clear advantages over the standard differential carrier-phase approach. First, errors induced by multipath effects can be significantly reduced or eliminated altogether. Also, integer ambiguity resolution is not required, nor do line biases need to be determined through costly and cumbersome self-surveys. Furthermore, the new sensor does not require individual antennas to be physically separated to form interferometric baselines to determine attitude. Finally, development potential of the new sensor is limited only by antenna and receiver technology development unlike the physical limitations of the current interferometric attitude determination scheme. Simulation results indicate that accuracies of about 1 degree (3 omega) are possible.

  13. A Universal Intelligent System-on-Chip Based Sensor Interface

    PubMed Central

    Mattoli, Virgilio; Mondini, Alessio; Mazzolai, Barbara; Ferri, Gabriele; Dario, Paolo

    2010-01-01

    The need for real-time/reliable/low-maintenance distributed monitoring systems, e.g., wireless sensor networks, has been becoming more and more evident in many applications in the environmental, agro-alimentary, medical, and industrial fields. The growing interest in technologies related to sensors is an important indicator of these new needs. The design and the realization of complex and/or distributed monitoring systems is often difficult due to the multitude of different electronic interfaces presented by the sensors available on the market. To address these issues the authors propose the concept of a Universal Intelligent Sensor Interface (UISI), a new low-cost system based on a single commercial chip able to convert a generic transducer into an intelligent sensor with multiple standardized interfaces. The device presented offers a flexible analog and/or digital front-end, able to interface different transducer typologies (such as conditioned, unconditioned, resistive, current output, capacitive and digital transducers). The device also provides enhanced processing and storage capabilities, as well as a configurable multi-standard output interface (including plug-and-play interface based on IEEE 1451.3). In this work the general concept of UISI and the design of reconfigurable hardware are presented, together with experimental test results validating the proposed device. PMID:22163624

  14. Angstrom-Resolution Magnetic Resonance Imaging of Single Molecules via Wave-Function Fingerprints of Nuclear Spins

    NASA Astrophysics Data System (ADS)

    Ma, Wen-Long; Liu, Ren-Bao

    2016-08-01

    Single-molecule sensitivity of nuclear magnetic resonance (NMR) and angstrom resolution of magnetic resonance imaging (MRI) are the highest challenges in magnetic microscopy. Recent development in dynamical-decoupling- (DD) enhanced diamond quantum sensing has enabled single-nucleus NMR and nanoscale NMR. Similar to conventional NMR and MRI, current DD-based quantum sensing utilizes the "frequency fingerprints" of target nuclear spins. The frequency fingerprints by their nature cannot resolve different nuclear spins that have the same noise frequency or differentiate different types of correlations in nuclear-spin clusters, which limit the resolution of single-molecule MRI. Here we show that this limitation can be overcome by using "wave-function fingerprints" of target nuclear spins, which is much more sensitive than the frequency fingerprints to the weak hyperfine interaction between the targets and a sensor under resonant DD control. We demonstrate a scheme of angstrom-resolution MRI that is capable of counting and individually localizing single nuclear spins of the same frequency and characterizing the correlations in nuclear-spin clusters. A nitrogen-vacancy-center spin sensor near a diamond surface, provided that the coherence time is improved by surface engineering in the near future, may be employed to determine with angstrom resolution the positions and conformation of single molecules that are isotope labeled. The scheme in this work offers an approach to breaking the resolution limit set by the "frequency gradients" in conventional MRI and to reaching the angstrom-scale resolution.

  15. Leonardo (formerly Selex ES) infrared sensors for astronomy: present and future

    NASA Astrophysics Data System (ADS)

    Baker, Ian; Maxey, Chris; Hipwood, Les; Barnes, Keith

    2016-07-01

    Many branches of science require infrared detectors sensitive to individual photons. Applications range from low background astronomy to high speed imaging. Leonardo in Southampton, UK, has been developing HgCdTe avalanche photodiode (APD) sensors for astronomy in collaboration with European Southern Observatory (ESO) since 2008 and more recently the University of Hawaii. The devices utilise Metal Organic Vapour Phase Epitaxy, MOVPE, grown on low-cost GaAs substrates and in combination with a mesa device structure achieve very low dark current and near-ideal MTF. MOVPE provides the ability to grow complex HgCdTe heterostructures and these have proved crucial to suppress breakdown currents and allow high avalanche gain in low background situations. A custom device called Saphira (320x256/24μm) has been developed for wavefront sensors, interferometry and transient event imaging. This device has achieved read noise as low as 0.26 electrons rms and single photon imaging with avalanche gain up to x450. It is used in the ESO Gravity program for adaptive optics and fringe tracking and has been successfully trialled on the 3m NASA IRTF, 8.2m Subaru and 60 inch Mt Palomar for lucky imaging and wavefront sensing. In future the technology offers much shorter observation times for read-noise limited instruments, particularly spectroscopy. The paper will describe the MOVPE APD technology and current performance status.

  16. The constant current loop: A new paradigm for resistance signal conditioning

    NASA Astrophysics Data System (ADS)

    Anderson, Karl F.

    1994-02-01

    A practical single constant current loop circuit for the signal conditioning of variable-resistance transducers has been synthesized, analyzed, and demonstrated. The strain gage and the resistance temperature detector are examples of variable-resistance sensors. Lead wires connect variable-resistance sensors to remotely located signal-conditioning hardware. The presence of lead wires in the conventional Wheatstone bridge signal-conditioning circuit introduces undesired effects that reduce the quality of the data from the remote sensors. A practical approach is presented for suppressing essentially all lead wire resistance effects while indicating only the change in resistance value. Theoretical predictions supported by laboratory testing confirm the following features of the approach: (1) dc response; (2) the electrical output is unaffected by extremely large variation in the resistance of any or all lead wires; (3) the electrical output remains zero for no change in gage resistance; (4) the electrical output is inherently linear with respect to gage resistance change; (5) the sensitivity is double that of a Wheatstone bridge circuit; and (6) the same excitation wires can serve multiple independent gages. An adaptation of current loop circuit is presented that simultaneously provides an output signal voltage directly proportional to transducer resistance change and provides temperature information that is unaffected by transducer and lead wire resistance variations. These innovations are the subject of NASA patent applications.

  17. The constant current loop: A new paradigm for resistance signal conditioning

    NASA Astrophysics Data System (ADS)

    Anderson, Karl F.

    1992-10-01

    A practical single constant current loop circuit for the signal conditioning of variable resistance transducers has been synthesized, analyzed, and demonstrated. The strain gage and the resistance temperature device are examples of variable resistance sensors. Lead wires connect variable resistance sensors to remotely located signal conditioning hardware. The presence of lead wires in the conventional Wheatstone bridge signal conditioning circuit introduces undesired effects that reduce the quality of the data from the remote sensors. A practical approach is presented for suppressing essentially all lead wire resistance effects while indicating only the change in resistance value. Theoretical predictions supported by laboratory testing confirm the following features of the approach: (1) dc response; (2) the electrical output is unaffected by extremely large variations in the resistance of any or all lead wires; (3) the electrical output remains zero for no change in gage resistance; (4) the electrical output is inherently linear with respect to gage resistance change; (5) the sensitivity is double that of a Wheatstone bridge circuit; and (6) the same excitation wires can serve multiple independent gages. An adaptation of current loop circuit is presented that simultaneously provides an output signal voltage directly proportional to transducer resistance change and provides temperature information that is unaffected by transducer and lead wire resistance variations. These innovations are the subject of NASA patent applications.

  18. The constant current loop: A new paradigm for resistance signal conditioning

    NASA Astrophysics Data System (ADS)

    Anderson, Karl F.

    A practical, single, constant-current loop circuit for the signal conditioning of variable-resistance transducers was synthesized, analyzed, and demonstrated. The strain gage and the resistance temperature device are examples of variable-resistance sensors. Lead wires connect variable-resistance sensors to remotely located signal-conditioning hardware. The presence of lead wires in the conventional Wheatstone bridge signal-conditioning circuit introduces undesired effects that reduce the quality of the data from the remote sensors. A practical approach is presented for suppressing essentially all lead wire resistance effects while indicating only the change in resistance value. Theoretical predictions supported by laboratory testing confirm the following features of the approach: (1) the dc response; (2) the electrical output is unaffected by extremely large variations in the resistance of any or all lead wires; (3) the electrical output remains zero for no change in gage resistance; (4) the electrical output is inherently linear with respect to gage resistance change; (5) the sensitivity is double that of a Wheatstone bridge circuit; and (6) the same excitation and sense wires can serve multiple independent gages. An adaptation of the current loop circuit is presented that simultaneously provides an output signal voltage directly proportional to transducer resistance change and provides temperature information that is unaffected by transducer and lead wire resistance variations. These innovations are the subject of NASA patent applications.

  19. The constant current loop: A new paradigm for resistance signal conditioning

    NASA Technical Reports Server (NTRS)

    Anderson, Karl F.

    1994-01-01

    A practical single constant current loop circuit for the signal conditioning of variable-resistance transducers has been synthesized, analyzed, and demonstrated. The strain gage and the resistance temperature detector are examples of variable-resistance sensors. Lead wires connect variable-resistance sensors to remotely located signal-conditioning hardware. The presence of lead wires in the conventional Wheatstone bridge signal-conditioning circuit introduces undesired effects that reduce the quality of the data from the remote sensors. A practical approach is presented for suppressing essentially all lead wire resistance effects while indicating only the change in resistance value. Theoretical predictions supported by laboratory testing confirm the following features of the approach: (1) dc response; (2) the electrical output is unaffected by extremely large variation in the resistance of any or all lead wires; (3) the electrical output remains zero for no change in gage resistance; (4) the electrical output is inherently linear with respect to gage resistance change; (5) the sensitivity is double that of a Wheatstone bridge circuit; and (6) the same excitation wires can serve multiple independent gages. An adaptation of current loop circuit is presented that simultaneously provides an output signal voltage directly proportional to transducer resistance change and provides temperature information that is unaffected by transducer and lead wire resistance variations. These innovations are the subject of NASA patent applications.

  20. The constant current loop: A new paradigm for resistance signal conditioning

    NASA Technical Reports Server (NTRS)

    Anderson, Karl F.

    1993-01-01

    A practical, single, constant-current loop circuit for the signal conditioning of variable-resistance transducers was synthesized, analyzed, and demonstrated. The strain gage and the resistance temperature device are examples of variable-resistance sensors. Lead wires connect variable-resistance sensors to remotely located signal-conditioning hardware. The presence of lead wires in the conventional Wheatstone bridge signal-conditioning circuit introduces undesired effects that reduce the quality of the data from the remote sensors. A practical approach is presented for suppressing essentially all lead wire resistance effects while indicating only the change in resistance value. Theoretical predictions supported by laboratory testing confirm the following features of the approach: (1) the dc response; (2) the electrical output is unaffected by extremely large variations in the resistance of any or all lead wires; (3) the electrical output remains zero for no change in gage resistance; (4) the electrical output is inherently linear with respect to gage resistance change; (5) the sensitivity is double that of a Wheatstone bridge circuit; and (6) the same excitation and sense wires can serve multiple independent gages. An adaptation of the current loop circuit is presented that simultaneously provides an output signal voltage directly proportional to transducer resistance change and provides temperature information that is unaffected by transducer and lead wire resistance variations. These innovations are the subject of NASA patent applications.

  1. A ratiometric strategy -based electrochemical sensing interface for the sensitive and reliable detection of imidacloprid.

    PubMed

    Li, Xueyan; Kan, Xianwen

    2018-04-30

    In this study, a ratiometric strategy-based electrochemical sensor was developed by electropolymerization of thionine (THI) and β-cyclodextrin (β-CD) composite films on a glassy carbon electrode surface for imidacloprid (IMI) detection. THI played the role of an inner reference element to provide a built-in correction. In addition, the modified β-CD showed good selective enrichment for IMI to improve the sensitivity and anti-interference ability of the sensor. The current ratio between IMI and THI was calculated as the detected signal for IMI sensing. Compared with common single-signal sensing, the proposed ratiometric strategy showed a higher linear range and a lower limit of detection of 4.0 × 10-8-1.0 × 10-5 mol L-1 and 1.7 × 10-8 mol L-1, respectively, for IMI detection. On the other hand, the ratiometric strategy endowed the sensor with good accuracy, reproducibility, and stability. The sensor was also used for IMI determination in real samples with satisfactory results. The simple, effective, and reliable way reported in this study can be further used to prepare ratiometric strategy-based electrochemical sensors for the selective and sensitive detection of other compounds with good accuracy and stability.

  2. Single stage AC-DC converter for Galfenol-based micro-power energy harvesters

    NASA Astrophysics Data System (ADS)

    Cavaroc, Peyton; Curtis, Chandra; Naik, Suketu; Cooper, James

    2014-06-01

    Military based sensor systems are often hindered in operational deployment and/or other capabilities due to limitations in their energy storage elements. Typically operating from lithium based batteries, there is a finite amount of stored energy which the sensor can use to collect and transmit data. As a result, the sensors have reduced sensing and transmission rates. However, coupled with the latest advancements in energy harvesting, these sensors could potentially operate at standard sensing and transition rates as well as dramatically extend lifetimes. Working with the magnetostrictive material Galfenol, we demonstrate the production of enough energy to supplement and recharge a solid state battery thereby overcoming the deficiencies faced by unattended sensors. As with any vibration-based energy harvester, this solution produces an alternating current which needs to be rectified and boosted to a level conducive to recharge the storage element. This paper presents a power converter capable of efficiently converting an ultra-low AC voltage to a solid state charging voltage of 4.1VDC. While we are working with Galfenol transducers as our energy source, this converter may also be applied with any AC producing energy harvester, particularly at operating levels less than 2mW and 200mVAC.

  3. Optical fiber evanescent absorption sensors for high-temperature gas sensing in advanced coal-fired power plants

    NASA Astrophysics Data System (ADS)

    Buric, Michael P.; Ohodnicky, Paul R.; Duy, Janice

    2012-10-01

    Modern advanced energy systems such as coal-fired power plants, gasifiers, or similar infrastructure present some of the most challenging harsh environments for sensors. The power industry would benefit from new, ultra-high temperature devices capable of surviving in hot and corrosive environments for embedded sensing at the highest value locations. For these applications, we are currently exploring optical fiber evanescent wave absorption spectroscopy (EWAS) based sensors consisting of high temperature core materials integrated with novel high temperature gas sensitive cladding materials. Mathematical simulations can be used to assist in sensor development efforts, and we describe a simulation code that assumes a single thick cladding layer with gas sensitive optical constants. Recent work has demonstrated that Au nanoparticle-incorporated metal oxides show a potentially useful response for high temperature optical gas sensing applications through the sensitivity of the localized surface plasmon resonance absorption peak to ambient atmospheric conditions. Hence, the simulation code has been applied to understand how such a response can be exploited in an optical fiber based EWAS sensor configuration. We demonstrate that interrogation can be used to optimize the sensing response in such materials.

  4. Fiber optic sensors for sub-centimeter spatially resolved measurements: Review and biomedical applications

    NASA Astrophysics Data System (ADS)

    Tosi, Daniele; Schena, Emiliano; Molardi, Carlo; Korganbayev, Sanzhar

    2018-07-01

    One of the current frontier of optical fiber sensors, and a unique asset of this sensing technology is the possibility to use a whole optical fiber, or optical fiber device, as a sensor. This solution allows shifting the whole sensing paradigm, from the measurement of a single physical parameter (such as temperature, strain, vibrations, pressure) to the measurement of a spatial distribution, or profiling, of a physical parameter along the fiber length. In the recent years, several technologies are achieving this task with unprecedentedly narrow spatial resolution, ranging from the sub-millimeter to the centimeter-level. In this work, we review the main fiber optic sensing technologies that achieve a narrow spatial resolution: Fiber Bragg Grating (FBG) dense arrays, chirped FBG (CFBG) sensors, optical frequency domain reflectometry (OFDR) based on either Rayleigh scattering or reflective elements, and microwave photonics (MWP). In the second part of the work, we present the impact of spatially dense fiber optic sensors in biomedical applications, where they find the main impact, presenting the key results obtained in thermo-therapies monitoring, high-resolution diagnostic, catheters monitoring, smart textiles, and other emerging applicative fields.

  5. Microfluidic platform for detection and quantification of magnetic markers

    NASA Astrophysics Data System (ADS)

    Kokkinis, Georgios; Cardoso, Susana; Giouroudi, Ioanna

    2017-05-01

    This paper reports on a microfluidic platform with an integrated spin valve giant magneto-resistance (GMR) sensor used for the detection and quantification of single magnetic micromarkers. A microfluidic channel containing the magnetic fluid, microconductors (MCs) for collection of the magnetic markers and a spin valve GMR sensor for detecting the presence of their magnetic stray field were integrated on a single chip. The results show that the sensor is capable of detecting a single magnetic marker with 2.8 μm diameter.

  6. Nanosensors for Evaluating Hazardous Environments

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Personnel working in a confined environment can be exposed to hazardous gases, and certain gases can be extremely dangerous even in concentrations as low as a few parts per billion. Nanosensors can be placed in multiple locations over a large area, thus allowing for more precise and timely detection of gas leaks. ASRC Aerospace and its research partners are developing nanosensors to detect various gases, including hydrogen, ammonia, nitrogen tetroxide, and hydrazine. Initial laboratory testing demonstrated the capability to detect these gases in concentrations lower than parts per million, and current testing is evaluating sensitivity at concentration levels three orders of magnitude lower. Testing and development continue to improve the response and recovery times and to increase the sensitivity of the devices. The development team is evaluating different coatings and electrodes to determine the optimum configuration for detecting and identifying a variety of gases. The small footprint of the nanosensors allows several devices to be placed into a single substrate. Each sensor is responsive in a different way to different gases. Embedding multiple devices into a single substrate results in better reliability and less frequent calibrations. The use of different coatings for individual elements of a multichannel sensor allows different gases to be identified. The sensor system is implemented by the use of a custom multichannel signal conditioner amplifier built on a small multichip module. This device processes the output of the sensors and transmits a signal that can be monitored and analyzed remotely.

  7. Statistically significant performance results of a mine detector and fusion algorithm from an x-band high-resolution SAR

    NASA Astrophysics Data System (ADS)

    Williams, Arnold C.; Pachowicz, Peter W.

    2004-09-01

    Current mine detection research indicates that no single sensor or single look from a sensor will detect mines/minefields in a real-time manner at a performance level suitable for a forward maneuver unit. Hence, the integrated development of detectors and fusion algorithms are of primary importance. A problem in this development process has been the evaluation of these algorithms with relatively small data sets, leading to anecdotal and frequently over trained results. These anecdotal results are often unreliable and conflicting among various sensors and algorithms. Consequently, the physical phenomena that ought to be exploited and the performance benefits of this exploitation are often ambiguous. The Army RDECOM CERDEC Night Vision Laboratory and Electron Sensors Directorate has collected large amounts of multisensor data such that statistically significant evaluations of detection and fusion algorithms can be obtained. Even with these large data sets care must be taken in algorithm design and data processing to achieve statistically significant performance results for combined detectors and fusion algorithms. This paper discusses statistically significant detection and combined multilook fusion results for the Ellipse Detector (ED) and the Piecewise Level Fusion Algorithm (PLFA). These statistically significant performance results are characterized by ROC curves that have been obtained through processing this multilook data for the high resolution SAR data of the Veridian X-Band radar. We discuss the implications of these results on mine detection and the importance of statistical significance, sample size, ground truth, and algorithm design in performance evaluation.

  8. Single Pixel Characterization of X-Ray TES Microcalorimeter Under AC Bias at MHz Frequencies

    NASA Technical Reports Server (NTRS)

    Gottardi, L.; Blandler, S. R.; Porter, F. S.; Sadleir, J. E.; Kilbourne, C. A.; Bailey, C. N.; Finkbeiner, F. M.; Chervenak, J. A.; Adams, J. S.; Eckart, M. E.; hide

    2012-01-01

    In this paper we present the progress made at SRON in the read-out of GSFC x-ray transition-edge sensor (TES) micro-calorimeters in the frequency domain. The experiments reported so far, whose aim was to demonstrate an energy resolution of 2eV at 6 keV with a TES acting as a modulator, were carried out at frequencies below 700 kHz using a standard flux locked loop (FLL) SQUID read-out scheme. The TES read-out suffered from the use of sub-optimal circuit components, large parasitic inductances, low quality factor resonators and poor magnetic field shielding. We have developed a novel experimental set-up, which allows us to test several read-out schemes in a single cryogenic run. In this set-up, the TES pixels are coupled via superconducting transformers to 18 high-Q lithographic LC filters with resonant frequencies ranging between 2 and 5 MHz. The signal is amplified by a two-stage SQUID current sensor and baseband feedback is used to overcome the limited SQUID dynamic range. We study the single pixel performance as a function of TES bias frequency, voltage and perpendicular magnetic field.

  9. New single-aircraft integrated atmospheric observation capabilities

    NASA Astrophysics Data System (ADS)

    Wang, Z.

    2011-12-01

    Improving current weather and climate model capabilities requires better understandings of many atmospheric processes. Thus, advancing atmospheric observation capabilities has been regarded as the highest imperatives to advance the atmospheric science in the 21st century. Under the NSF CAREER support, we focus on developing new airborne observation capabilities through the developments of new instrumentations and the single-aircraft integration of multiple remote sensors with in situ probes. Two compact Wyoming cloud lidars were built to work together with a 183 GHz microwave radiometer, a multi-beam Wyoming cloud radar and in situ probes for cloud studies. The synergy of these remote sensor measurements allows us to better resolve the vertical structure of cloud microphysical properties and cloud scale dynamics. Together with detailed in situ data for aerosol, cloud, water vapor and dynamics, we developed the most advanced observational capability to study cloud-scale properties and processes from a single aircraft (Fig. 1). A compact Raman lidar was also built to work together with in situ sampling to characterize boundary layer aerosol and water vapor distributions for many important atmospheric processes studies, such as, air-sea interaction and convective initialization. Case studies will be presented to illustrate these new observation capabilities.

  10. Advances in NO2 sensing with individual single-walled carbon nanotube transistors.

    PubMed

    Chikkadi, Kiran; Muoth, Matthias; Roman, Cosmin; Haluska, Miroslav; Hierold, Christofer

    2014-01-01

    The charge carrier transport in carbon nanotubes is highly sensitive to certain molecules attached to their surface. This property has generated interest for their application in sensing gases, chemicals and biomolecules. With over a decade of research, a clearer picture of the interactions between the carbon nanotube and its surroundings has been achieved. In this review, we intend to summarize the current knowledge on this topic, focusing not only on the effect of adsorbates but also the effect of dielectric charge traps on the electrical transport in single-walled carbon nanotube transistors that are to be used in sensing applications. Recently, contact-passivated, open-channel individual single-walled carbon nanotube field-effect transistors have been shown to be operational at room temperature with ultra-low power consumption. Sensor recovery within minutes through UV illumination or self-heating has been shown. Improvements in fabrication processes aimed at reducing the impact of charge traps have reduced the hysteresis, drift and low-frequency noise in carbon nanotube transistors. While open challenges such as large-scale fabrication, selectivity tuning and noise reduction still remain, these results demonstrate considerable progress in transforming the promise of carbon nanotube properties into functional ultra-low power, highly sensitive gas sensors.

  11. An Amperometric Glucose Sensor Integrated into an Insulin Delivery Cannula: In Vitro and In Vivo Evaluation

    PubMed Central

    Heinrich, Gabriel; Breen, Matthew; Benware, Sheila; Vollum, Nicole; Morris, Kristin; Knutsen, Chad; Kowalski, Joseph D.; Campbell, Scott; Biehler, Jerry; Vreeke, Mark S.; Vanderwerf, Scott M.; Castle, Jessica R.; Cargill, Robert S.

    2017-01-01

    Abstract Background: Labeling prohibits delivery of insulin at the site of subcutaneous continuous glucose monitoring (CGM). Integration of the sensing and insulin delivery functions into a single device would likely increase the usage of CGM in persons with type 1 diabetes. Methods: To understand the nature of such interference, we measured glucose at the site of bolus insulin delivery in swine using a flexible electrode strip that was laminated to the outer wall of an insulin delivery cannula. In terms of sensing design, we compared H2O2-measuring sensors biased at 600 mV with redox mediator-type sensors biased at 175 mV. Results: In H2O2-measuring sensors, but not in sensors with redox-mediated chemistry, a spurious rise in current was seen after insulin lis-pro boluses. This prolonged artifact was accompanied by electrode poisoning. In redox-mediated sensors, the patterns of sensor signals acquired during delivery of saline and without any liquid delivery were similar to those acquired during insulin delivery. Conclusion: Considering in vitro and in vivo findings together, it became clear that the mechanism of interference is the oxidation, at high bias potentials, of phenolic preservatives present in insulin formulations. This effect can be avoided by the use of redox mediator chemistry using a low bias potential. PMID:28221814

  12. Dielectrophoresis-Assisted Integration of 1024 Carbon Nanotube Sensors into a CMOS Microsystem.

    PubMed

    Seichepine, Florent; Rothe, Jörg; Dudina, Alexandra; Hierlemann, Andreas; Frey, Urs

    2017-05-01

    Carbon-nanotube (CNT)-based sensors offer the potential to detect single-molecule events and picomolar analyte concentrations. An important step toward applications of such nanosensors is their integration in large arrays. The availability of large arrays would enable multiplexed and parallel sensing, and the simultaneously obtained sensor signals would facilitate statistical analysis. A reliable method to fabricate an array of 1024 CNT-based sensors on a fully processed complementary-metal-oxide-semiconductor microsystem is presented. A high-yield process for the deposition of CNTs from a suspension by means of liquid-coupled floating-electrode dielectrophoresis (DEP), which yielded 80% of the sensor devices featuring between one and five CNTs, is developed. The mechanism of floating-electrode DEP on full arrays and individual devices to understand its self-limiting behavior is studied. The resistance distributions across the array of CNT devices with respect to different DEP parameters are characterized. The CNT devices are then operated as liquid-gated CNT field-effect-transistors (LG-CNTFET) in liquid environment. Current dependency to the gate voltage of up to two orders of magnitude is recorded. Finally, the sensors are validated by studying the pH dependency of the LG-CNTFET conductance and it is demonstrated that 73% of the CNT sensors of a given microsystem show a resistance decrease upon increasing the pH value. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Evaluation and Improvement of Eddy Current Position Sensors in Magnetically Suspended Flywheel Systems

    NASA Technical Reports Server (NTRS)

    Dever, Timothy P.; Palazzolo, Alan B.; Thomas, Erwin M., III; Jansen, Ralph H.; McLallin, Kerry (Technical Monitor); Soeder, James (Technical Monitor)

    2001-01-01

    Eddy current position sensor performance is evaluated for use in a high-speed flywheel development system. The flywheel utilizes a five axis active magnetic bearing system. The eddy current sensors are used for position feedback for the bearing controller. Measured characteristics include sensitivity to multiple target materials and susceptibility to noise from the magnetic bearings and from sensor-to-sensor crosstalk. Improvements in axial sensor configuration and techniques for noise reduction are described.

  14. Single Locked Nucleic Acid-Enhanced Nanopore Genetic Discrimination of Pathogenic Serotypes and Cancer Driver Mutations.

    PubMed

    Tian, Kai; Chen, Xiaowei; Luan, Binquan; Singh, Prashant; Yang, Zhiyu; Gates, Kent S; Lin, Mengshi; Mustapha, Azlin; Gu, Li-Qun

    2018-05-22

    Accurate and rapid detection of single-nucleotide polymorphism (SNP) in pathogenic mutants is crucial for many fields such as food safety regulation and disease diagnostics. Current detection methods involve laborious sample preparations and expensive characterizations. Here, we investigated a single locked nucleic acid (LNA) approach, facilitated by a nanopore single-molecule sensor, to accurately determine SNPs for detection of Shiga toxin producing Escherichia coli (STEC) serotype O157:H7, and cancer-derived EGFR L858R and KRAS G12D driver mutations. Current LNA applications that require incorporation and optimization of multiple LNA nucleotides. But we found that in the nanopore system, a single LNA introduced in the probe is sufficient to enhance the SNP discrimination capability by over 10-fold, allowing accurate detection of the pathogenic mutant DNA mixed in a large amount of the wild-type DNA. Importantly, the molecular mechanistic study suggests that such a significant improvement is due to the effect of the single-LNA that both stabilizes the fully matched base-pair and destabilizes the mismatched base-pair. This sensitive method, with a simplified, low cost, easy-to-operate LNA design, could be generalized for various applications that need rapid and accurate identification of single-nucleotide variations.

  15. Nanostructured biosensors built by layer-by-layer electrostatic assembly of enzyme-coated single-walled carbon nanotubes and redox polymers.

    PubMed

    Wang, Youdan; Joshi, Pratixa P; Hobbs, Kevin L; Johnson, Matthew B; Schmidtke, David W

    2006-11-07

    In this study, we describe the construction of glucose biosensors based on an electrostatic layer-by-layer (LBL) technique. Gold electrodes were initially functionalized with negatively charged 11-mercaptoundecanoic acid followed by alternate immersion in solutions of a positively charged redox polymer, poly[(vinylpyridine)Os(bipyridyl)2Cl(2+/3+)], and a negatively charged enzyme, glucose oxidase (GOX), or a GOX solution containing single-walled carbon nanotubes (SWNTs). The LBL assembly of the multilayer films were characterized by UV-vis spectroscopy, ellipsometry, and cyclic voltammetry, while characterization of the single-walled nanotubes was performed with transmission electron microscopy, Raman spectroscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy. When the GOX solution contained single-walled carbon nanotubes (GOX-SWNTs), the oxidation peak currents during cyclic voltammetry increased 1.4-4.0 times, as compared to films without SWNTs. Similarly the glucose electro-oxidation current also increased (6-17 times) when SWNTs were present. By varying the number of multilayers, the sensitivity of the sensors could be controlled.

  16. Radiation damage in the diamond based beam condition monitors of the CMS experiment at the Large Hadron Collider (LHC) at CERN

    NASA Astrophysics Data System (ADS)

    Guthoff, Moritz; Afanaciev, Konstantin; Dabrowski, Anne; de Boer, Wim; Lange, Wolfgang; Lohmann, Wolfgang; Stickland, David

    2013-12-01

    The Beam Condition Monitor (BCM) of the CMS detector at the LHC is a protection device similar to the LHC Beam Loss Monitor system. While the electronics used is the same, poly-crystalline Chemical Vapor Deposition (pCVD) diamonds are used instead of ionization chambers as the BCM sensor material. The main purpose of the system is the protection of the silicon Pixel and Strip tracking detectors by inducing a beam dump, if the beam losses are too high in the CMS detector. By comparing the detector current with the instantaneous luminosity, the BCM detector efficiency can be monitored. The number of radiation-induced defects in the diamond, reduces the charge collection distance, and hence lowers the signal. The number of these induced defects can be simulated using the FLUKA Monte Carlo simulation. The cross-section for creating defects increases with decreasing energies of the impinging particles. This explains, why diamond sensors mounted close to heavy calorimeters experience more radiation damage, because of the high number of low energy neutrons in these regions. The signal decrease was stronger than expected from the number of simulated defects. Here polarization from trapped charge carriers in the defects is a likely candidate for explaining the difference, as suggested by Transient Current Technique (TCT) measurements. A single-crystalline (sCVD) diamond sensor shows a faster relative signal decrease than a pCVD sensor mounted at the same location. This is expected, since the relative increase in the number of defects is larger in sCVD than in pCVD sensors.

  17. Retinal fundus imaging with a plenoptic sensor

    NASA Astrophysics Data System (ADS)

    Thurin, Brice; Bloch, Edward; Nousias, Sotiris; Ourselin, Sebastien; Keane, Pearse; Bergeles, Christos

    2018-02-01

    Vitreoretinal surgery is moving towards 3D visualization of the surgical field. This require acquisition system capable of recording such 3D information. We propose a proof of concept imaging system based on a light-field camera where an array of micro-lenses is placed in front of a conventional sensor. With a single snapshot, a stack of images focused at different depth are produced on the fly, which provides enhanced depth perception for the surgeon. Difficulty in depth localization of features and frequent focus-change during surgery are making current vitreoretinal heads-up surgical imaging systems cumbersome to use. To improve the depth perception and eliminate the need to manually refocus on the instruments during the surgery, we designed and implemented a proof-of-concept ophthalmoscope equipped with a commercial light-field camera. The sensor of our camera is composed of an array of micro-lenses which are projecting an array of overlapped micro-images. We show that with a single light-field snapshot we can digitally refocus between the retina and a tool located in front of the retina or display an extended depth-of-field image where everything is in focus. The design and system performances of the plenoptic fundus camera are detailed. We will conclude by showing in vivo data recorded with our device.

  18. Highly Selective and Sensitive Detection of Acetylcholine Using Receptor-Modified Single-Walled Carbon Nanotube Sensors

    NASA Astrophysics Data System (ADS)

    Xu, Shihong; Kim, Byeongju; Song, Hyun Seok; Jin, Hye Jun; Park, Eun Jin; Lee, Sang Hun; Lee, Byung Yang; Park, Tai Hyun; Hong, Seunghun

    2015-03-01

    Acetylcholine (ACh) is a neurotransmitter in a human central nervous system and is related to various neural functions such as memory, learning and muscle contractions. Dysfunctional ACh regulations in a brain can induce several neuropsychiatric diseases such as Alzheimer's disease, Parkinson's disease and myasthenia gravis. In researching such diseases, it is important to measure the concentration of ACh in the extracellular fluid of the brain. Herein, we developed a highly sensitive and selective ACh sensor based on single-walled carbon nanotube-field effect transistors (swCNT-FETs). In our work, M1 mAChR protein, an ACh receptor, was expressed in E.coli and coated on swCNT-FETs with lipid membranes. Here, the binding of ACh onto the receptors could be detected by monitoring the change of electrical currents in the underlying swCNT-FETs, allowing the real-time detection of ACh at a 100 pM concentration. Furthermore, our sensor could selectively detect ACh from other neurotransmitters. This is the first report of the real-time sensing of ACh utilizing specific binding between the ACh and M1 mAChR, and it may lead to breakthroughs in various biomedical applications such as drug screening and disease diagnosis.

  19. Noise-immune multisensor transduction of speech

    NASA Astrophysics Data System (ADS)

    Viswanathan, Vishu R.; Henry, Claudia M.; Derr, Alan G.; Roucos, Salim; Schwartz, Richard M.

    1986-08-01

    Two types of configurations of multiple sensors were developed, tested and evaluated in speech recognition application for robust performance in high levels of acoustic background noise: One type combines the individual sensor signals to provide a single speech signal input, and the other provides several parallel inputs. For single-input systems, several configurations of multiple sensors were developed and tested. Results from formal speech intelligibility and quality tests in simulated fighter aircraft cockpit noise show that each of the two-sensor configurations tested outperforms the constituent individual sensors in high noise. Also presented are results comparing the performance of two-sensor configurations and individual sensors in speaker-dependent, isolated-word speech recognition tests performed using a commercial recognizer (Verbex 4000) in simulated fighter aircraft cockpit noise.

  20. Reproducible fashion of the HSP70B' promoter-induced cytotoxic response on a live cell-based biosensor by cell cycle synchronization.

    PubMed

    Migita, Satoshi; Wada, Ken-Ichi; Taniguchi, Akiyoshi

    2010-10-15

    Live cell-based sensors potentially provide functional information about the cytotoxic effect of reagents on various signaling cascades. Cells transfected with a reporter vector derived from a cytotoxic response promoter can be used as intelligent cytotoxicity sensors (i.e., sensor cells). We have combined sensor cells and a microfluidic cell culture system that can achieve several laminar flows, resulting in a reliable high-throughput cytotoxicity detection system. These sensor cells can also be applied to single cell arrays. However, it is difficult to detect a cellular response in a single cell array, due to the heterogeneous response of sensor cells. The objective of this study was cell homogenization with cell cycle synchronization to enhance the response of cell-based biosensors. Our previously established stable sensor cells were brought into cell cycle synchronization under serum-starved conditions and we then investigated the cadmium chloride-induced cytotoxic response at the single cell level. The GFP positive rate of synchronized cells was approximately twice as high as that of the control cells, suggesting that cell homogenization is an important step when using cell-based biosensors with microdevices, such as a single cell array. Copyright 2010 Wiley Periodicals, Inc.

  1. Observation of sediment resuspension in Old Tampa Bay, Florida

    USGS Publications Warehouse

    Schoellhamer, David H.; ,

    1990-01-01

    Equipment and methodology have been developed to monitor sediment resuspension at two sites in Old Tampa Bay. Velocities are measured with electromagnetic current meters and suspended solids and turbidity are monitored with optical backscatterance sensors. In late November 1989, a vertical array of instrument pairs was deployed from a permanent platform at a deep-water site, and a submersible instrument package with a single pair of instruments was deployed at a shallow-water site. Wind waves caused resuspension at the shallow-water site, but not at the deeper platform site, and spring tidal currents did not cause resuspension at either site.

  2. Design of Force Sensor Leg for a Rocket Thrust Detector

    NASA Astrophysics Data System (ADS)

    Woten, Douglas; McGehee, Tripp; Wright, Anne

    2005-03-01

    A hybrid rocket is composed of a solid fuel and a separate liquid or gaseous oxidizer. These rockets may be throttled like liquid rockets, are safer than solid rockets, and are much less complex than liquid rockets. However, hybrid rockets produce thrust oscillations that are not practical for large scale use. A lab scale hybrid rocket at the University of Arkansas at Little Rock (UALR) Hybrid Rocket Facility is used to develop sensors to measure physical properties of hybrid rockets. Research is currently being conducted to design a six degree of freedom force sensor to measure the thrust and torque in all three spacial dimensions. The detector design uses six force sensor legs. Each leg utilizes strain gauges and a Wheatstone bridge to produce a voltage propotional to the force on the leg. The leg was designed using the CAD software ProEngineer and ProMechanica. Computer models of the strains on the single leg will be presented. A prototype leg was built and was tested in an INSTRON and results will be presented.

  3. Improved sensing characteristics of dual-gate transistor sensor using silicon nanowire arrays defined by nanoimprint lithography.

    PubMed

    Lim, Cheol-Min; Lee, In-Kyu; Lee, Ki Joong; Oh, Young Kyoung; Shin, Yong-Beom; Cho, Won-Ju

    2017-01-01

    This work describes the construction of a sensitive, stable, and label-free sensor based on a dual-gate field-effect transistor (DG FET), in which uniformly distributed and size-controlled silicon nanowire (SiNW) arrays by nanoimprint lithography act as conductor channels. Compared to previous DG FETs with a planar-type silicon channel layer, the constructed SiNW DG FETs exhibited superior electrical properties including a higher capacitive-coupling ratio of 18.0 and a lower off-state leakage current under high-temperature stress. In addition, while the conventional planar single-gate (SG) FET- and planar DG FET-based pH sensors showed the sensitivities of 56.7 mV/pH and 439.3 mV/pH, respectively, the SiNW DG FET-based pH sensors showed not only a higher sensitivity of 984.1 mV/pH, but also a lower drift rate of 0.8% for pH-sensitivity. This demonstrates that the SiNW DG FETs simultaneously achieve high sensitivity and stability, with significant potential for future biosensing applications.

  4. Activity Monitoring and Heart Rate Variability as Indicators of Fall Risk: Proof-of-Concept for Application of Wearable Sensors in the Acute Care Setting.

    PubMed

    Razjouyan, Javad; Grewal, Gurtej Singh; Rishel, Cindy; Parthasarathy, Sairam; Mohler, Jane; Najafi, Bijan

    2017-07-01

    Growing concern for falls in acute care settings could be addressed with objective evaluation of fall risk. The current proof-of-concept study evaluated the feasibility of using a chest-worn sensor during hospitalization to determine fall risk. Physical activity and heart rate variability (HRV) of 31 volunteers admitted to a 29-bed adult inpatient unit were recorded using a single chest-worn sensor. Sensor data during the first 24-hour recording were analyzed. Participants were stratified using the Hendrich II fall risk assessment into high and low fall risk groups. Univariate analysis revealed age, daytime activity, nighttime side lying posture, and HRV were significantly different between groups. Results suggest feasibility of wearable technology to consciously monitor physical activity, sleep postures, and HRV as potential markers of fall risk in the acute care setting. Further study is warranted to confirm the results and examine the efficacy of the proposed wearable technology to manage falls in hospitals. [Journal of Gerontological Nursing, 43(7), 53-62.]. Copyright 2017, SLACK Incorporated.

  5. An NFC-Enabled CMOS IC for a Wireless Fully Implantable Glucose Sensor.

    PubMed

    DeHennis, Andrew; Getzlaff, Stefan; Grice, David; Mailand, Marko

    2016-01-01

    This paper presents an integrated circuit (IC) that merges integrated optical and temperature transducers, optical interface circuitry, and a near-field communication (NFC)-enabled digital, wireless readout for a fully passive implantable sensor platform to measure glucose in people with diabetes. A flip-chip mounted LED and monolithically integrated photodiodes serve as the transduction front-end to enable fluorescence readout. A wide-range programmable transimpedance amplifier adapts the sensor signals to the input of an 11-bit analog-to-digital converter digitizing the measurements. Measurement readout is enabled by means of wireless backscatter modulation to a remote NFC reader. The system is able to resolve current levels of less than 10 pA with a single fluorescent measurement energy consumption of less than 1 μJ. The wireless IC is fabricated in a 0.6-μm-CMOS process and utilizes a 13.56-MHz-based ISO15693 for passive wireless readout through a NFC interface. The IC is utilized as the core interface to a fluorescent, glucose transducer to enable a fully implantable sensor-based continuous glucose monitoring system.

  6. Bio-integrated electronics and sensor systems

    NASA Astrophysics Data System (ADS)

    Yeo, Woon-Hong; Webb, R. Chad; Lee, Woosik; Jung, Sungyoung; Rogers, John A.

    2013-05-01

    Skin-mounted epidermal electronics, a strategy for bio-integrated electronics, provide an avenue to non-invasive monitoring of clinically relevant physiological signals for healthcare applications. Current conventional systems consist of single-point sensors fastened to the skin with adhesives, and sometimes with conducting gels, which limits their use outside of clinical settings due to loss of adhesion and irritation to the user. In order to facilitate extended use of skin-mounted healthcare sensors without disrupting everyday life, we envision electronic monitoring systems that integrate seamlessly with the skin below the notice of the user. This manuscript reviews recent significant results towards our goal of wearable electronic sensor systems for long-term monitoring of physiological signals. Ultra-thin epidermal electronic systems (EES) are demonstrated for extended use on the skin, in a conformal manner, including during everyday bathing and sleeping activities. We describe the assessment of clinically relevant physiological parameters, such as electrocardiograms (ECG), electromyograms (EMG), electroencephalograms (EEG), temperature, mechanical strain and thermal conductivity, using examples of multifunctional EES devices. Additionally, we demonstrate capability for real life application of EES by monitoring the system functionality, which has no discernible change, during cyclic fatigue testing.

  7. Room temperature infrared imaging sensors based on highly purified semiconducting carbon nanotubes.

    PubMed

    Liu, Yang; Wei, Nan; Zhao, Qingliang; Zhang, Dehui; Wang, Sheng; Peng, Lian-Mao

    2015-04-21

    High performance infrared (IR) imaging systems usually require expensive cooling systems, which are highly undesirable. Here we report the fabrication and performance characteristics of room temperature carbon nanotube (CNT) IR imaging sensors. The CNT IR imaging sensor is based on aligned semiconducting CNT films with 99% purity, and each pixel or device of the imaging sensor consists of aligned strips of CNT asymmetrically contacted by Sc and Pd. We found that the performance of the device is dependent on the CNT channel length. While short channel devices provide a large photocurrent and a rapid response of about 110 μs, long channel length devices exhibit a low dark current and a high signal-to-noise ratio which are critical for obtaining high detectivity. In total, 36 CNT IR imagers are constructed on a single chip, each consists of 3 × 3 pixel arrays. The demonstrated advantages of constructing a high performance IR system using purified semiconducting CNT aligned films include, among other things, fast response, excellent stability and uniformity, ideal linear photocurrent response, high imaging polarization sensitivity and low power consumption.

  8. Improved sensing characteristics of dual-gate transistor sensor using silicon nanowire arrays defined by nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Lim, Cheol-Min; Lee, In-Kyu; Lee, Ki Joong; Oh, Young Kyoung; Shin, Yong-Beom; Cho, Won-Ju

    2017-12-01

    This work describes the construction of a sensitive, stable, and label-free sensor based on a dual-gate field-effect transistor (DG FET), in which uniformly distributed and size-controlled silicon nanowire (SiNW) arrays by nanoimprint lithography act as conductor channels. Compared to previous DG FETs with a planar-type silicon channel layer, the constructed SiNW DG FETs exhibited superior electrical properties including a higher capacitive-coupling ratio of 18.0 and a lower off-state leakage current under high-temperature stress. In addition, while the conventional planar single-gate (SG) FET- and planar DG FET-based pH sensors showed the sensitivities of 56.7 mV/pH and 439.3 mV/pH, respectively, the SiNW DG FET-based pH sensors showed not only a higher sensitivity of 984.1 mV/pH, but also a lower drift rate of 0.8% for pH-sensitivity. This demonstrates that the SiNW DG FETs simultaneously achieve high sensitivity and stability, with significant potential for future biosensing applications.

  9. Single particle electrochemical sensors and methods of utilization

    DOEpatents

    Schoeniger, Joseph [Oakland, CA; Flounders, Albert W [Berkeley, CA; Hughes, Robert C [Albuquerque, NM; Ricco, Antonio J [Los Gatos, CA; Wally, Karl [Lafayette, CA; Kravitz, Stanley H [Placitas, NM; Janek, Richard P [Oakland, CA

    2006-04-04

    The present invention discloses an electrochemical device for detecting single particles, and methods for using such a device to achieve high sensitivity for detecting particles such as bacteria, viruses, aggregates, immuno-complexes, molecules, or ionic species. The device provides for affinity-based electrochemical detection of particles with single-particle sensitivity. The disclosed device and methods are based on microelectrodes with surface-attached, affinity ligands (e.g., antibodies, combinatorial peptides, glycolipids) that bind selectively to some target particle species. The electrodes electrolyze chemical species present in the particle-containing solution, and particle interaction with a sensor element modulates its electrolytic activity. The devices may be used individually, employed as sensors, used in arrays for a single specific type of particle or for a range of particle types, or configured into arrays of sensors having both these attributes.

  10. Analyzing spatial coherence using a single mobile field sensor.

    PubMed

    Fridman, Peter

    2007-04-01

    According to the Van Cittert-Zernike theorem, the intensity distribution of a spatially incoherent source and the mutual coherence function of the light impinging on two wave sensors are related. It is the comparable relationship using a single mobile sensor moving at a certain velocity relative to the source that is calculated in this paper. The auto-corelation function of the electric field at the sensor contains information about the intensity distribution. This expression could be employed in aperture synthesis.

  11. Insulation of Nitrocellulose Boiling Tubs at Radford Army Ammunition Plant

    DTIC Science & Technology

    1982-03-01

    control system. The amount of steam usea for the on-boil cycle with the single-sensor autocontrol averaged 647 kg/hr (1426 lb/hr) (test 1, table 2...This was a reduc- tion of 210 kg/hr (463 lb/hr) over the manually controlled uninsulated tub. Steam usage with the single sensor autocontrol and...uninsulated tub. At times durin)g the on- boil cycle of tests I and 2, the temperature of the manual sensor was different from the autocontrol sensor indicating

  12. Hybrid Structure Multichannel All-Fiber Current Sensor.

    PubMed

    Jiang, Junzhen; Zhang, Hao; He, Youwu; Qiu, Yishen

    2017-08-02

    We have experimentally developed a hybrid-structure multi-channel all-fiber current sensor with ordinary silica fiber using fiber loop architecture. According to the rationale of time division multiplexing, the sensor combines parallel and serial structures. The purpose of the hybrid-structure multi-channel all-fiber current sensor is to get more information from the different measured points simultaneously. In addition, the hybrid-structure fiber current sensor exhibited a good linear response for each channel. A three-channel experiment was performed in the study and showed that the system could detect different current positions. Each channel could individually detect the current and needed a separate calibration system. Furthermore, the three channels will not affect each other.

  13. New diesel injection nozzle flow measuring device

    NASA Astrophysics Data System (ADS)

    Marčič, Milan

    2000-04-01

    A new measuring device has been developed for diesel injection nozzle testing, allowing measuring of the steady flow through injection nozzle and the injection rate. It can be best applied for measuring the low and high injection rates of the pintle and single hole nozzle. In steady flow measuring the fuel pressure at the inlet of the injection nozzle is 400 bar. The sensor of the measuring device measures the fuel charge, resulting from fuel rubbing in the fuel injection system, as well as from the temperature gradient in the sensor electrode. The electric charge is led to the charge amplifier, where it is converted into electric current and amplified. The amplifier can be used also to measure the mean injection rate value.

  14. Nanoneedle transistor-based sensors for the selective detection of intracellular calcium ions.

    PubMed

    Son, Donghee; Park, Sung Young; Kim, Byeongju; Koh, Jun Tae; Kim, Tae Hyun; An, Sangmin; Jang, Doyoung; Kim, Gyu Tae; Jhe, Wonho; Hong, Seunghun

    2011-05-24

    We developed a nanoneedle transistor-based sensor (NTS) for the selective detection of calcium ions inside a living cell. In this work, a single-walled carbon nanotube-based field effect transistor (swCNT-FET) was first fabricated at the end of a glass nanopipette and functionalized with Fluo-4-AM probe dye. The selective binding of calcium ions onto the dye molecules altered the charge state of the dye molecules, resulting in the change of the source-drain current of the swCNT-FET as well as the fluorescence intensity from the dye. We demonstrated the electrical and fluorescence detection of the concentration change of intracellular calcium ions inside a HeLa cell using the NTS.

  15. Solar bus regulator and battery charger for IMP's H, I, and J

    NASA Technical Reports Server (NTRS)

    Paulkovich, J.

    1972-01-01

    Interplanetary Monitoring Probe (IMP) spacecrafts H, I, and J utilize a direct energy transfer (DET) type of power system operating from a solar array source. A shunt type of regulator prevents the bus voltage from exceeding a preset voltage level. The power system utilizes a single differential amplifier with dual outputs to control the battery charge/shunt regulator and the discharge regulator. A two-voltage level, current limited, series charger and a current sensor control battery state of charge of the silver-cadmium battery pack. Premature termination of the battery charge is prevented by a power available gate that also initiates charge current to the battery upon availability of excess power.

  16. Design of Inkjet-Printed RFID-Based Sensor on Paper: Single- and Dual-Tag Sensor Topologies.

    PubMed

    Kim, Sangkil; Georgiadis, Apostolos; Tentzeris, Manos M

    2018-06-17

    The detailed design considerations for the printed RFID-based sensor system is presented in this paper. Starting from material selection and metallization method, this paper discusses types of RFID-based sensors (single- & dual-tag sensor topologies), design procedures, and performance evaluation methods for the wireless sensor system. The electrical properties of the paper substrates (cellulose-based and synthetic papers) and the silver nano-particle-based conductive film are thoroughly characterized for RF applications up to 8 GHz. The reported technology could potentially set the foundation for truly “green”, low-cost, scalable wireless topologies for autonomous Internet-of-Things (IoT), bio-monitoring, and “smart skin” applications.

  17. Directly amplified redox sensor for on-chip chemical analysis

    NASA Astrophysics Data System (ADS)

    Takahashi, Sou; Futagawa, Masato; Ishida, Makoto; Sawada, Kazuaki

    2014-03-01

    In recent years, many groups have studied redox sensors for chemical analysis. A redox sensor has certain powerful advantages, such as its ability to detect multiple ions inside the sensing area, and its ability to measure concentrations of materials by using voltage and current signals. However, the output current signal of a redox sensor decreases when either concentration or sensing area decreases. Therefore, we propose the use of an amplified redox sensor (ARS) for measuring small current signals. The proposed sensor consists of a working electrode combined with a bipolar transistor. In this study, we fabricated an ARS sensor and performed low-concentration measurements using current signal amplification with an integrated bipolar transistor. The sensor chip successfully detected a potassium ferricyanide (K3[Fe(CN)6]) concentration of as low as 10 µM using cyclic voltammetry.

  18. Sensitive thermal microsensor with pn junction for heat measurement of a single cell

    NASA Astrophysics Data System (ADS)

    Yamada, Taito; Inomata, Naoki; Ono, Takahito

    2016-02-01

    A sensitive thermal microsensor based on a pn junction diode for heat measurements of biological single cells is developed and evaluated. Using a fabricated device, we demonstrated the heat measurement of a single brown fat cell. The principle of the sensor relies on the temperature dependence of the pn junction diode resistance. This method has a capability of the highly thermal sensitivity by downsizing and the advantage of a simple experimental setup using electrical circuits without any special equipment. To achieve highly sensitive heat measurement of single cells, downsizing of the sensor is necessary to reduce the heat capacity of the sensor itself. The sensor with the pn junction diode can be downsized by microfabrication. A bridge beam structure with the pn junction diode as a thermal sensor is placed in vacuum using a microfludic chip to decrease the heat loss to the surroundings. A temperature coefficient of resistance of 1.4%/K was achieved. The temperature and thermal resolutions of the fabricated device are 1.1 mK and 73.6 nW, respectively. The heat measurements of norepinephrine stimulated and nonstimulated single brown fat cells were demonstrated, and different behaviors in heat generation were observed.

  19. Alkali vapor pressure modulation on the 100 ms scale in a single-cell vacuum system for cold atom experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dugrain, Vincent; Reichel, Jakob; Rosenbusch, Peter

    2014-08-15

    We describe and characterize a device for alkali vapor pressure modulation on the 100 ms timescale in a single-cell cold atom experiment. Its mechanism is based on optimized heat conduction between a current-modulated alkali dispenser and a heat sink at room temperature. We have studied both the short-term behavior during individual pulses and the long-term pressure evolution in the cell. The device combines fast trap loading and relatively long trap lifetime, enabling high repetition rates in a very simple setup. These features make it particularly suitable for portable atomic sensors.

  20. Wearable-Sensor-Based Classification Models of Faller Status in Older Adults.

    PubMed

    Howcroft, Jennifer; Lemaire, Edward D; Kofman, Jonathan

    2016-01-01

    Wearable sensors have potential for quantitative, gait-based, point-of-care fall risk assessment that can be easily and quickly implemented in clinical-care and older-adult living environments. This investigation generated models for wearable-sensor based fall-risk classification in older adults and identified the optimal sensor type, location, combination, and modelling method; for walking with and without a cognitive load task. A convenience sample of 100 older individuals (75.5 ± 6.7 years; 76 non-fallers, 24 fallers based on 6 month retrospective fall occurrence) walked 7.62 m under single-task and dual-task conditions while wearing pressure-sensing insoles and tri-axial accelerometers at the head, pelvis, and left and right shanks. Participants also completed the Activities-specific Balance Confidence scale, Community Health Activities Model Program for Seniors questionnaire, six minute walk test, and ranked their fear of falling. Fall risk classification models were assessed for all sensor combinations and three model types: multi-layer perceptron neural network, naïve Bayesian, and support vector machine. The best performing model was a multi-layer perceptron neural network with input parameters from pressure-sensing insoles and head, pelvis, and left shank accelerometers (accuracy = 84%, F1 score = 0.600, MCC score = 0.521). Head sensor-based models had the best performance of the single-sensor models for single-task gait assessment. Single-task gait assessment models outperformed models based on dual-task walking or clinical assessment data. Support vector machines and neural networks were the best modelling technique for fall risk classification. Fall risk classification models developed for point-of-care environments should be developed using support vector machines and neural networks, with a multi-sensor single-task gait assessment.

  1. Quantum efficiency and dark current evaluation of a backside illuminated CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Vereecke, Bart; Cavaco, Celso; De Munck, Koen; Haspeslagh, Luc; Minoglou, Kyriaki; Moore, George; Sabuncuoglu, Deniz; Tack, Klaas; Wu, Bob; Osman, Haris

    2015-04-01

    We report on the development and characterization of monolithic backside illuminated (BSI) imagers at imec. Different surface passivation, anti-reflective coatings (ARCs), and anneal conditions were implemented and their effect on dark current (DC) and quantum efficiency (QE) are analyzed. Two different single layer ARC materials were developed for visible light and near UV applications, respectively. QE above 75% over the entire visible spectrum range from 400 to 700 nm is measured. In the spectral range from 260 to 400 nm wavelength, QE values above 50% over the entire range are achieved. A new technique, high pressure hydrogen anneal at 20 atm, was applied on photodiodes and improvement in DC of 30% for the BSI imager with HfO2 as ARC as well as for the front side imager was observed. The entire BSI process was developed 200 mm wafers and evaluated on test diode structures. The knowhow is then transferred to real imager sensors arrays.

  2. Conductive Polymer Synthesis with Single-Crystallinity via a Novel Plasma Polymerization Technique for Gas Sensor Applications.

    PubMed

    Park, Choon-Sang; Kim, Dong Ha; Shin, Bhum Jae; Kim, Do Yeob; Lee, Hyung-Kun; Tae, Heung-Sik

    2016-09-30

    This study proposes a new nanostructured conductive polymer synthesis method that can grow the single-crystalline high-density plasma-polymerized nanoparticle structures by enhancing the sufficient nucleation and fragmentation of the pyrrole monomer using a novel atmospheric pressure plasma jet (APPJ) technique. Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and field emission scanning electron microscopy (FE-SEM) results show that the plasma-polymerized pyrrole (pPPy) nanoparticles have a fast deposition rate of 0.93 µm·min -1 under a room-temperature process and have single-crystalline characteristics with porous properties. In addition, the single-crystalline high-density pPPy nanoparticle structures were successfully synthesized on the glass, plastic, and interdigitated gas sensor electrode substrates using a novel plasma polymerization technique at room temperature. To check the suitability of the active layer for the fabrication of electrochemical toxic gas sensors, the resistance variations of the pPPy nanoparticles grown on the interdigitated gas sensor electrodes were examined by doping with iodine. As a result, the proposed APPJ device could obtain the high-density and ultra-fast single-crystalline pPPy thin films for various gas sensor applications. This work will contribute to the design of highly sensitive gas sensors adopting the novel plasma-polymerized conductive polymer as new active layer.

  3. A copper-coated fiber Bragg grating current sensor

    NASA Astrophysics Data System (ADS)

    Jia, Danping; Zhao, Limin; Lin, Yingwen

    2005-01-01

    Conventional current transformer (CT) is based on the principles of electric magnetic induction with copper wire windings and iron cores, it is widely used in power systems. But it emerges more weakness as the applied voltage and power capacity more and more increase. Over the past 20 years optical current sensors have received significant attention by a number of groups around the world as next generation high voltage measurement devices, with a view to replacing iron-corn current transformers in the electric power industry. In the opposite side of conventional current transformer, optical fiber current sensor provides a solution of the existed problems. It brings the significant advantages that they are non-conductive and lightweight, which can allow for much simpler insulation and mounting designs as the application voltage increase to1000kV or more to day. In addition, optical sensors do not exhibit hysteresis and provide a much large dynamic range and frequency response than iron-core CT. Optical fiber Bragg grating current sensor is the most potential important one among the optical current sensors, but its current transferred sensibility and the capability of anti-variance of temperature and stress still in a lower level. In this paper, a copper coated Bragg grating current sensor are described. The sensibility is improved significantly.

  4. A structural health monitoring fastener for tracking fatigue crack growth in bolted metallic joints

    NASA Astrophysics Data System (ADS)

    Rakow, Alexi Schroder

    Fatigue cracks initiating at fastener hole locations in metallic components are among the most common form of airframe damage. The fastener hole site has been surveyed as the second leading initiation site for fatigue related accidents of fixed wing aircraft. Current methods for inspecting airframes for these cracks are manual, whereby inspectors rely on non-destructive inspection equipment or hand-held probes to scan over areas of a structure. Use of this equipment often demands disassembly of the vehicle to search appropriate hole locations for cracks, which elevates the complexity and cost of these maintenance inspections. Improved reliability, safety, and reduced cost of such maintenance can be realized by the permanent integration of sensors with a structure to detect this damage. Such an integrated system of sensors would form a structural health monitoring (SHM) system. In this study, an Additive, Interleaved, Multi-layer Electromagnetic (AIME) sensor was developed and integrated with the shank of a fastener to form a SHM Fastener, a new SHM technology targeted at detection of fastener hole cracks. The major advantages of the SHM Fastener are its installation, which does not require joint layer disassembly, its capability to detect inner layer cracks, and its capability to operate in a continuous autonomous mode. Two methods for fabricating the proposed SHM Fastener were studied. The first option consisted of a thin flexible printed circuit film that was bonded around a thin metallic sleeve placed around the fastener shank. The second option consisted of coating sensor materials directly to the shank of a part in an effort to increase the durability of the sensor under severe loading conditions. Both analytical and numerical models were developed to characterize the capability of the sensors and provide a design tool for the sensor layout. A diagnostic technique for crack growth monitoring was developed to complete the SHM system, which consists of the sensor, data acquisition hardware, algorithm, and diagnostic display. The AIME sensor design, SHM Fastener, and complete SHM system are presented along with experimental results from a series of single-layer and bolted double lap joint aluminum laboratory specimens to validate the capability of these sensors to monitor metallic joints for fastener hole cracks. Fatigue cracks were successfully tracked to over 0.7 inches from the fastener hole in these tests. Sensor output obtained from single-layer fatigue specimens was compared with analytical predictions for fatigue crack growth versus cycle number showing a good correlation in trend between sensor output and predicted crack size.

  5. Reversible gating of smart plasmonic molecular traps using thermoresponsive polymers for single-molecule detection

    PubMed Central

    Zheng, Yuanhui; Soeriyadi, Alexander H.; Rosa, Lorenzo; Ng, Soon Hock; Bach, Udo; Justin Gooding, J.

    2015-01-01

    Single-molecule surface-enhanced Raman spectroscopy (SERS) has attracted increasing interest for chemical and biochemical sensing. Many conventional substrates have a broad distribution of SERS enhancements, which compromise reproducibility and result in slow response times for single-molecule detection. Here we report a smart plasmonic sensor that can reversibly trap a single molecule at hotspots for rapid single-molecule detection. The sensor was fabricated through electrostatic self-assembly of gold nanoparticles onto a gold/silica-coated silicon substrate, producing a high yield of uniformly distributed hotspots on the surface. The hotspots were isolated with a monolayer of a thermoresponsive polymer (poly(N-isopropylacrylamide)), which act as gates for molecular trapping at the hotspots. The sensor shows not only a good SERS reproducibility but also a capability to repetitively trap and release molecules for single-molecular sensing. The single-molecule sensitivity is experimentally verified using SERS spectral blinking and bianalyte methods. PMID:26549539

  6. Clustering approaches to improve the performance of low cost air pollution sensors.

    PubMed

    Smith, Katie R; Edwards, Peter M; Evans, Mathew J; Lee, James D; Shaw, Marvin D; Squires, Freya; Wilde, Shona; Lewis, Alastair C

    2017-08-24

    Low cost air pollution sensors have substantial potential for atmospheric research and for the applied control of pollution in the urban environment, including more localized warnings to the public. The current generation of single-chemical gas sensors experience degrees of interference from other co-pollutants and have sensitivity to environmental factors such as temperature, wind speed and supply voltage. There are uncertainties introduced also because of sensor-to-sensor response variability, although this is less well reported. The sensitivity of Metal Oxide Sensors (MOS) to volatile organic compounds (VOCs) changed with relative humidity (RH) by up to a factor of five over the range of 19-90% RH and with an uncertainty in the correction of a factor of two at any given RH. The short-term (second to minute) stabilities of MOS and electrochemical CO sensor responses were reasonable. During more extended use, inter-sensor quantitative comparability was degraded due to unpredictable variability in individual sensor responses (to either measurand or interference or both) drifting over timescales of several hours to days. For timescales longer than a week identical sensors showed slow, often downwards, drifts in their responses which diverged across six CO sensors by up to 30% after two weeks. The measurement derived from the median sensor within clusters of 6, 8 and up to 21 sensors was evaluated against individual sensor performance and external reference values. The clustered approach maintained the cost competitiveness of a sensor device, but the median concentration from the ensemble of sensor signals largely eliminated the randomised hour-to-day response drift seen in individual sensors and excluded the effects of small numbers of poorly performing sensors that drifted significantly over longer time periods. The results demonstrate that for individual sensors to be optimally comparable to one another, and to reference instruments, they would likely require frequent calibration. The use of a cluster median value eliminates unpredictable medium term response changes, and other longer term outlier behaviours, extending the likely period needed between calibration and making a linear interpolation between calibrations more appropriate. Through the use of sensor clusters rather than individual sensors, existing low cost technologies could deliver significantly improved quality of observations.

  7. Single-shot and single-sensor high/super-resolution microwave imaging based on metasurface.

    PubMed

    Wang, Libo; Li, Lianlin; Li, Yunbo; Zhang, Hao Chi; Cui, Tie Jun

    2016-06-01

    Real-time high-resolution (including super-resolution) imaging with low-cost hardware is a long sought-after goal in various imaging applications. Here, we propose broadband single-shot and single-sensor high-/super-resolution imaging by using a spatio-temporal dispersive metasurface and an imaging reconstruction algorithm. The metasurface with spatio-temporal dispersive property ensures the feasibility of the single-shot and single-sensor imager for super- and high-resolution imaging, since it can convert efficiently the detailed spatial information of the probed object into one-dimensional time- or frequency-dependent signal acquired by a single sensor fixed in the far-field region. The imaging quality can be improved by applying a feature-enhanced reconstruction algorithm in post-processing, and the desired imaging resolution is related to the distance between the object and metasurface. When the object is placed in the vicinity of the metasurface, the super-resolution imaging can be realized. The proposed imaging methodology provides a unique means to perform real-time data acquisition, high-/super-resolution images without employing expensive hardware (e.g. mechanical scanner, antenna array, etc.). We expect that this methodology could make potential breakthroughs in the areas of microwave, terahertz, optical, and even ultrasound imaging.

  8. Temperature compensated and self-calibrated current sensor

    DOEpatents

    Yakymyshyn, Christopher Paul; Brubaker, Michael Allen; Yakymyshyn, Pamela Jane

    2007-09-25

    A method is described to provide temperature compensation and reduction of drift due to aging for a current sensor based on a plurality of magnetic field sensors positioned around a current carrying conductor. The offset voltage signal generated by each magnetic field sensor is used to correct variations in the output signal due to temperature variations and aging.

  9. Single Nanoparticle Plasmonic Sensors

    PubMed Central

    Sriram, Manish; Zong, Kelly; Vivekchand, S. R. C.; Gooding, J. Justin

    2015-01-01

    The adoption of plasmonic nanomaterials in optical sensors, coupled with the advances in detection techniques, has opened the way for biosensing with single plasmonic particles. Single nanoparticle sensors offer the potential to analyse biochemical interactions at a single-molecule level, thereby allowing us to capture even more information than ensemble measurements. We introduce the concepts behind single nanoparticle sensing and how the localised surface plasmon resonances of these nanoparticles are dependent upon their materials, shape and size. Then we outline the different synthetic approaches, like citrate reduction, seed-mediated and seedless growth, that enable the synthesis of gold and silver nanospheres, nanorods, nanostars, nanoprisms and other nanostructures with tunable sizes. Further, we go into the aspects related to purification and functionalisation of nanoparticles, prior to the fabrication of sensing surfaces. Finally, the recent developments in single nanoparticle detection, spectroscopy and sensing applications are discussed. PMID:26473866

  10. Measurement of impulse current using polarimetric fiber optic sensor

    NASA Astrophysics Data System (ADS)

    Ginter, Mariusz

    2017-08-01

    In the paper the polarimetric current sensing solution used for measurements of high amplitude currents and short durations is presented. This type of sensor does not introduce additional resistance and inductance into the circuit, which is a desirable phenomenon in this type of measurement. The magneto element is a fiber optic coil made of spun fiber optic. The fiber in which the core is twisted around its axis is characterized by a small effect of interfering magnitudes, ie mechanical vibrations and pressure changes on the polarimeter. The presented polarimetric current sensor is completely fiber optic. Experimental results of a proposed sensor construction solution operating at 1550 nm and methods of elimination of influence values on the fiber optic current sensor were presented. The sensor was used to measure the impulse current. The generated current pulses are characterized by a duration of 23μs and amplitudes ranging from 1 to 3.5 kA. The currents in the discharge circuit are shown. The measurement uncertainty of the amplitude of the electric current in the range of measured impulses was determined and estimated to be no more than 2%.

  11. Titanium Dioxide Nanoparticle-Based Interdigitated Electrodes: A Novel Current to Voltage DNA Biosensor Recognizes E. coli O157:H7.

    PubMed

    Nadzirah, Sh; Azizah, N; Hashim, Uda; Gopinath, Subash C B; Kashif, Mohd

    2015-01-01

    Nanoparticle-mediated bio-sensing promoted the development of novel sensors in the front of medical diagnosis. In the present study, we have generated and examined the potential of titanium dioxide (TiO2) crystalline nanoparticles with aluminium interdigitated electrode biosensor to specifically detect single-stranded E.coli O157:H7 DNA. The performance of this novel DNA biosensor was measured the electrical current response using a picoammeter. The sensor surface was chemically functionalized with (3-aminopropyl) triethoxysilane (APTES) to provide contact between the organic and inorganic surfaces of a single-stranded DNA probe and TiO2 nanoparticles while maintaining the sensing system's physical characteristics. The complement of the target DNA of E. coli O157:H7 to the carboxylate-probe DNA could be translated into electrical signals and confirmed by the increased conductivity in the current-to-voltage curves. The specificity experiments indicate that the biosensor can discriminate between the complementary sequences from the base-mismatched and the non-complementary sequences. After duplex formation, the complementary target sequence can be quantified over a wide range with a detection limit of 1.0 x 10(-13)M. With target DNA from the lysed E. coli O157:H7, we could attain similar sensitivity. Stability of DNA immobilized surface was calculated with the relative standard deviation (4.6%), displayed the retaining with 99% of its original response current until 6 months. This high-performance interdigitated DNA biosensor with high sensitivity, stability and non-fouling on a novel sensing platform is suitable for a wide range of biomolecular interactive analyses.

  12. Titanium Dioxide Nanoparticle-Based Interdigitated Electrodes: A Novel Current to Voltage DNA Biosensor Recognizes E. coli O157:H7

    PubMed Central

    Nadzirah, Sh.; Azizah, N.; Hashim, Uda; Gopinath, Subash C. B.; Kashif, Mohd

    2015-01-01

    Nanoparticle-mediated bio-sensing promoted the development of novel sensors in the front of medical diagnosis. In the present study, we have generated and examined the potential of titanium dioxide (TiO2) crystalline nanoparticles with aluminium interdigitated electrode biosensor to specifically detect single-stranded E.coli O157:H7 DNA. The performance of this novel DNA biosensor was measured the electrical current response using a picoammeter. The sensor surface was chemically functionalized with (3-aminopropyl) triethoxysilane (APTES) to provide contact between the organic and inorganic surfaces of a single-stranded DNA probe and TiO2 nanoparticles while maintaining the sensing system’s physical characteristics. The complement of the target DNA of E. coli O157:H7 to the carboxylate-probe DNA could be translated into electrical signals and confirmed by the increased conductivity in the current-to-voltage curves. The specificity experiments indicate that the biosensor can discriminate between the complementary sequences from the base-mismatched and the non-complementary sequences. After duplex formation, the complementary target sequence can be quantified over a wide range with a detection limit of 1.0 x 10-13M. With target DNA from the lysed E. coli O157:H7, we could attain similar sensitivity. Stability of DNA immobilized surface was calculated with the relative standard deviation (4.6%), displayed the retaining with 99% of its original response current until 6 months. This high-performance interdigitated DNA biosensor with high sensitivity, stability and non-fouling on a novel sensing platform is suitable for a wide range of biomolecular interactive analyses. PMID:26445455

  13. The optical slit sensor as a standard sensor for spacecraft attitude determination

    NASA Technical Reports Server (NTRS)

    Wertz, J.

    1975-01-01

    The basic concept of an optical slit sensor as a standard altitude sensor is considered for any missions using a spinning spacecraft or where rotating sensors or mirrors could be used. Information available from a single sensor or from two sensors is analyzed. A standard slit sensor package is compared with the altitude package flown on the first synchronous meteorological satellite.

  14. Autonomous identification of freezing of gait in Parkinson's disease from lower-body segmental accelerometry

    PubMed Central

    2013-01-01

    Background We have previously published a technique for objective assessment of freezing of gait (FOG) in Parkinson's disease (PD) from a single shank-mounted accelerometer. Here we extend this approach to evaluate the optimal configuration of sensor placement and signal processing parameters using seven sensors attached to the lumbar back, thighs, shanks and feet. Methods Multi-segmental acceleration data was obtained from 25 PD patients performing 134 timed up and go tasks, and clinical assessment of FOG was performed by two experienced raters from video. Four metrics were used to compare objective and clinical measures; the intraclass correlation coefficient (ICC) for number of FOG episodes and the percent time frozen per trial; and the sensitivity and specificity of FOG detection. Results The seven-sensor configuration was the most robust, scoring highly on all measures of performance (ICC number of FOG 0.75; ICC percent time frozen 0.80; sensitivity 84.3%; specificity 78.4%). A simpler single-shank sensor approach provided similar ICC values and exhibited a high sensitivity to FOG events, but specificity was lower at 66.7%. Recordings from the lumbar sensor offered only moderate agreement with the clinical raters in terms of absolute number and duration of FOG events (likely due to musculoskeletal attenuation of lower-limb 'trembling' during FOG), but demonstrated a high sensitivity (86.2%) and specificity (82.4%) when considered as a binary test for the presence/absence of FOG within a single trial. Conclusions The seven-sensor approach was the most accurate method for quantifying FOG, and is best suited to demanding research applications. A single shank sensor provided measures comparable to the seven-sensor approach but is relatively straightforward in execution, facilitating clinical use. A single lumbar sensor may provide a simple means of objective FOG detection given the ubiquitous nature of accelerometers in mobile telephones and other belt-worn devices. PMID:23405951

  15. The IRIS Data Management Center: An international "network of networks", providing open, automated access to geographically distributed sensors of geophysical and environmental data.

    NASA Astrophysics Data System (ADS)

    Benson, R. B.; Ahern, T. K.; Trabant, C.

    2006-12-01

    The IRIS Data Management System has long supported international collaboration for seismology by both deploying a global network of seismometers and creating and maintaining an open and accessible archive in Seattle, WA, known as the Data Management Center (DMC). With sensors distributed on a global scale spanning more than 30 years of digital data, the DMC provides a rich repository of observations across broad time and space domains. Primary seismological data types include strong motion and broadband seismometers, conventional and superconducting gravimeters, tilt and creep meters, GPS measurements, along with other similar sensors that record accurate and calibrated ground motion. What may not be as well understood is the volume of environmental data that accompanies typical seismological data these days. This poster will review the types of time-series data that are currently being collected, how they are collected, and made freely available for download at the IRIS DMC. Environmental sensor data that is often co-located with geophysical data sensors include temperature, barometric pressure, wind direction and speed, humidity, insolation, rain gauge, and sometimes hydrological data like water current, level, temperature and depth. As the primary archival institution of the International Federation of Digital Seismograph Networks (FDSN), the IRIS DMC collects approximately 13,600 channels of real-time data from 69 different networks, from close to 1600 individual stations, currently averaging 10Tb per year in total. A major contribution to the IRIS archive currently is the EarthScope project data, a ten-year science undertaking that is collecting data from a high-resolution, multi-variate sensor network. Data types include magnetotelluric, high-sample rate seismics from a borehole drilled into the San Andreas fault (SAFOD) and various types of strain data from the Plate Boundary Observatory (PBO). In addition to the DMC, data centers located in other countries are networked seamlessly, and are providing access for researchers to these data from national networks around the world utilizing the IRIS developed Data Handling Interface (DHI) system. This poster will highlight some of the DHI enabled clients that allow geophysical information to be directly transferred to the clients. This ability allows one to construct a virtual network of data centers providing the illusion of a single virtual observatory. Furthermore, some of the features that will be shown include direct connections to MATLAB and the ability to access globally distributed sensor data in real time. We encourage discussion and participation from network operators who would like to leverage existing technology, as well as enabling collaboration.

  16. Giant Magnetoresistance Sensors: A Review on Structures and Non-Destructive Eddy Current Testing Applications

    PubMed Central

    Rifai, Damhuji; Abdalla, Ahmed N.; Ali, Kharudin; Razali, Ramdan

    2016-01-01

    Non-destructive eddy current testing (ECT) is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR) sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper. PMID:26927123

  17. Giant Magnetoresistance Sensors: A Review on Structures and Non-Destructive Eddy Current Testing Applications.

    PubMed

    Rifai, Damhuji; Abdalla, Ahmed N; Ali, Kharudin; Razali, Ramdan

    2016-02-26

    Non-destructive eddy current testing (ECT) is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR) sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper.

  18. Hybrid Integrated Label-Free Chemical and Biological Sensors

    PubMed Central

    Mehrabani, Simin; Maker, Ashley J.; Armani, Andrea M.

    2014-01-01

    Label-free sensors based on electrical, mechanical and optical transduction methods have potential applications in numerous areas of society, ranging from healthcare to environmental monitoring. Initial research in the field focused on the development and optimization of various sensor platforms fabricated from a single material system, such as fiber-based optical sensors and silicon nanowire-based electrical sensors. However, more recent research efforts have explored designing sensors fabricated from multiple materials. For example, synthetic materials and/or biomaterials can also be added to the sensor to improve its response toward analytes of interest. By leveraging the properties of the different material systems, these hybrid sensing devices can have significantly improved performance over their single-material counterparts (better sensitivity, specificity, signal to noise, and/or detection limits). This review will briefly discuss some of the methods for creating these multi-material sensor platforms and the advances enabled by this design approach. PMID:24675757

  19. Hybrid integrated label-free chemical and biological sensors.

    PubMed

    Mehrabani, Simin; Maker, Ashley J; Armani, Andrea M

    2014-03-26

    Label-free sensors based on electrical, mechanical and optical transduction methods have potential applications in numerous areas of society, ranging from healthcare to environmental monitoring. Initial research in the field focused on the development and optimization of various sensor platforms fabricated from a single material system, such as fiber-based optical sensors and silicon nanowire-based electrical sensors. However, more recent research efforts have explored designing sensors fabricated from multiple materials. For example, synthetic materials and/or biomaterials can also be added to the sensor to improve its response toward analytes of interest. By leveraging the properties of the different material systems, these hybrid sensing devices can have significantly improved performance over their single-material counterparts (better sensitivity, specificity, signal to noise, and/or detection limits). This review will briefly discuss some of the methods for creating these multi-material sensor platforms and the advances enabled by this design approach.

  20. Development of living cell force sensors for the interrogation of cell surface interactions

    NASA Astrophysics Data System (ADS)

    Brown, Scott Chang

    The measurement of cell surface interactions, or cell interaction forces, are critical for the early diagnosis and prevention of disease, the design of targeted drug and gene delivery vehicles, the development of next-generation implant materials, and much more. However, the technologies and devices that are currently available are highly limited with respect to the dynamic force range over which they can measure cell-cell or cell-substratum interactions, and with their ability to adequately mimic biologically relevant systems. Consequently, research efforts that involve cell surface interactions have been limited. In this dissertation, existing tools for research at the nanoscale (i.e., atomic force microscopy microcantilevers) are modified to develop living cell force sensors that allow for the highly sensitive measurement of cell-mediated interactions over the entire range of forces expected in biotechnology (and nano-biotechnology) research (from a single to millions of receptor-ligand bonds). Several force sensor motifs have been developed that can be used to measure interactions using single adherent cells, single suspension culture cell, and cell monolayers (tissues) over a wide range of interaction conditions (e.g., approach velocity, shear rate, contact time) using a conventional atomic force microscope. This new tool has been applied to study the pathogenesis of spontaneous pneumothorax and the interaction of cells with 14 man-made interfaces. Consequently, a new hypothesis of the interactions that manifest spontaneous pneumothorax has been developed. Additionally, these findings have the potential to lead to the development of tools for data mining materials and surfaces for unique cell interactions that could have an immense societal impact.

  1. The Quanta Image Sensor: Every Photon Counts

    PubMed Central

    Fossum, Eric R.; Ma, Jiaju; Masoodian, Saleh; Anzagira, Leo; Zizza, Rachel

    2016-01-01

    The Quanta Image Sensor (QIS) was conceived when contemplating shrinking pixel sizes and storage capacities, and the steady increase in digital processing power. In the single-bit QIS, the output of each field is a binary bit plane, where each bit represents the presence or absence of at least one photoelectron in a photodetector. A series of bit planes is generated through high-speed readout, and a kernel or “cubicle” of bits (x, y, t) is used to create a single output image pixel. The size of the cubicle can be adjusted post-acquisition to optimize image quality. The specialized sub-diffraction-limit photodetectors in the QIS are referred to as “jots” and a QIS may have a gigajot or more, read out at 1000 fps, for a data rate exceeding 1 Tb/s. Basically, we are trying to count photons as they arrive at the sensor. This paper reviews the QIS concept and its imaging characteristics. Recent progress towards realizing the QIS for commercial and scientific purposes is discussed. This includes implementation of a pump-gate jot device in a 65 nm CIS BSI process yielding read noise as low as 0.22 e− r.m.s. and conversion gain as high as 420 µV/e−, power efficient readout electronics, currently as low as 0.4 pJ/b in the same process, creating high dynamic range images from jot data, and understanding the imaging characteristics of single-bit and multi-bit QIS devices. The QIS represents a possible major paradigm shift in image capture. PMID:27517926

  2. Multiple channel optical data acquisition system

    DOEpatents

    Fasching, G.E.; Goff, D.R.

    1985-02-22

    A multiple channel optical data acquisition system is provided in which a plurality of remote sensors monitoring specific process variable are interrogated by means of a single optical fiber connecting the remote station/sensors to a base station. The remote station/sensors derive all power from light transmitted through the fiber from the base station. Each station/sensor is individually accessed by means of a light modulated address code sent over the fiber. The remote station/sensors use a single light emitting diode to both send and receive light signals to communicate with the base station and provide power for the remote station. The system described can power at least 100 remote station/sensors over an optical fiber one mile in length.

  3. Optimizing the sensing performance of a single-rod fluxgate magnetometer using thin magnetic wires

    NASA Astrophysics Data System (ADS)

    Can, Hava; Svec, Peter, Jr.; Tanrıseven, Sercan; Bydzovsky, Jan; Birlikseven, Cengiz; Sözeri, Hüseyin; Svec, Peter, Sr.; Topal, Uğur

    2015-11-01

    This paper presents the optimal conditions for the design of a single-rod fluxgate magnetometer using Co-based amorphous magnetic wires with reduced geometrical dimensions of 100 μm in diameter. In order to enhance the performance of the current sensor (i.e. the noise level, the sensitivity, the dynamical range, the scaling factor, etc), the core materials were subjected to annealing at different annealing temperatures in a longitudinal magnetic field ranging from 0 to 0.5 T. The B-H measurements have shown that the heat treatments significantly change the magnetic parameters of the cores (the saturation field, the initial and apparent permeabilities). For instance, the initial permeability μ i attains values of between 3500 and 4700 depending on the treatment conditions. These magnetic parameters were subsequently correlated with the sensor performance by using the principles of the fluxgate physics. Consequently, the enhanced fluxgate effect with improved sensing characteristics has been obtained by annealing the wire core at 250 °C (B  =  0 T). It is shown that this magnetic wire with a sensing area of 0.00785 mm2 is suitable as a sensor core for the nondestructive testing of metallic objects and the surfaces of magnetic cards. The sensor signal shows perfect linear dependence to dc or low frequency fields up to ~1 Oe. The fitting parameters R 2 of 0.9998 could be achieved in a dc field interval of  -1.0 Oe and 1.0 Oe (when R 2  =1.0, all points lie exactly on the curve with no scatter). Such linearity has not been seen in such a large dynamical range until now in the rod-type single-core fluxgates. It is also shown that there is no hysteresis on the V 2f -H dc graphs (the V 2f is the sensor signal) even after applying fields as high as 100 Oe. Besides, the cross-field effect is almost zero due to the geometry of the long-thin wire.

  4. Incremental Support Vector Machine Framework for Visual Sensor Networks

    NASA Astrophysics Data System (ADS)

    Awad, Mariette; Jiang, Xianhua; Motai, Yuichi

    2006-12-01

    Motivated by the emerging requirements of surveillance networks, we present in this paper an incremental multiclassification support vector machine (SVM) technique as a new framework for action classification based on real-time multivideo collected by homogeneous sites. The technique is based on an adaptation of least square SVM (LS-SVM) formulation but extends beyond the static image-based learning of current SVM methodologies. In applying the technique, an initial supervised offline learning phase is followed by a visual behavior data acquisition and an online learning phase during which the cluster head performs an ensemble of model aggregations based on the sensor nodes inputs. The cluster head then selectively switches on designated sensor nodes for future incremental learning. Combining sensor data offers an improvement over single camera sensing especially when the latter has an occluded view of the target object. The optimization involved alleviates the burdens of power consumption and communication bandwidth requirements. The resulting misclassification error rate, the iterative error reduction rate of the proposed incremental learning, and the decision fusion technique prove its validity when applied to visual sensor networks. Furthermore, the enabled online learning allows an adaptive domain knowledge insertion and offers the advantage of reducing both the model training time and the information storage requirements of the overall system which makes it even more attractive for distributed sensor networks communication.

  5. New optical sensor systems for high-resolution satellite, airborne and terrestrial imaging systems

    NASA Astrophysics Data System (ADS)

    Eckardt, Andreas; Börner, Anko; Lehmann, Frank

    2007-10-01

    The department of Optical Information Systems (OS) at the Institute of Robotics and Mechatronics of the German Aerospace Center (DLR) has more than 25 years experience with high-resolution imaging technology. The technology changes in the development of detectors, as well as the significant change of the manufacturing accuracy in combination with the engineering research define the next generation of spaceborne sensor systems focusing on Earth observation and remote sensing. The combination of large TDI lines, intelligent synchronization control, fast-readable sensors and new focal-plane concepts open the door to new remote-sensing instruments. This class of instruments is feasible for high-resolution sensor systems regarding geometry and radiometry and their data products like 3D virtual reality. Systemic approaches are essential for such designs of complex sensor systems for dedicated tasks. The system theory of the instrument inside a simulated environment is the beginning of the optimization process for the optical, mechanical and electrical designs. Single modules and the entire system have to be calibrated and verified. Suitable procedures must be defined on component, module and system level for the assembly test and verification process. This kind of development strategy allows the hardware-in-the-loop design. The paper gives an overview about the current activities at DLR in the field of innovative sensor systems for photogrammetric and remote sensing purposes.

  6. Whole Wafer Design and Fabrication for the Alignment of Nanostructures for Chemical Sensor Applications

    NASA Technical Reports Server (NTRS)

    Biaggi-Labiosa, Azlin M.; Hunter, Gary W.

    2013-01-01

    A major objective in aerospace sensor development is to produce sensors that are small in size, easy to batch fabricate and low in cost, and have low power consumption The fabrication of chemical sensors involving nanostructured materials can provide these properties as well as the potential for the development of sensor systems with unique properties and improved performance. However, the fabrication and processing of nanostructures for sensor applications currently is limited in the ability to control their location on the sensor. Currently, our group at NASA Glenn Research Center has demonstrated the controlled placement of nanostructures in sensors using a sawtooth patterned electrode design. With this design the nanostructures are aligned between opposing sawtooth electrodes by applying an alternating current.

  7. Fiber Optic Sensors for Health Monitoring of Morphing Airframes. Part 1; Bragg Grating Strain and Temperature Sensor

    NASA Technical Reports Server (NTRS)

    Wood, Karen; Brown, Timothy; Rogowski, Robert; Jensen, Brian

    2000-01-01

    Fiber optic sensors are being developed for health monitoring of future aircraft. Aircraft health monitoring involves the use of strain, temperature, vibration and chemical sensors to infer integrity of the aircraft structure. Part 1 of this two part series describes sensors that will measure load and temperature signatures of these structures. In some cases a single fiber may be used for measuring these parameters. Part 2 will describe techniques for using optical fibers to monitor composite cure in real time during manufacture and to monitor in-service integrity of composite structures using a single fiber optic sensor capable of measuring multiple chemical and physical parameters. The facilities for fabricating optical fiber and associated sensors and the methods of demodulating Bragg gratings for strain measurement will be described.

  8. Electrophysiological Features of Single Store-Operated Calcium Channels in HEK S4 Cell Line with Stable STIM1 Protein Knockdown.

    PubMed

    Shalygin, A V; Vigont, V A; Glushankova, L N; Zimina, O A; Kolesnikov, D O; Skopin, A Yu; Kaznacheeva, E V

    2017-07-01

    An important role in intracellular calcium signaling is played by store-operated channels activated by STIM proteins, calcium sensors of the endoplasmic reticulum. In stable STIM1 knockdown HEK S4 cells, single channels activated by depletion of intracellular calcium stores were detected by cell-attached patch-clamp technique and their electrophysiological parameters were described. Comparison of the properties of single channels in HEK293 and HEK S4 cells revealed no significant differences in their current-voltage curves, while regulation of store-operated calcium channels in these cell lines depended on the level of STIM1 expression. We can conclude that electrophysiological peculiarities of store-regulated calcium entry observed in different cells can be explained by differences in STIM1 expression.

  9. The Reusable Handheld Electrolyte and Lab Technology for Humans (rHEALTH) Sensor

    NASA Technical Reports Server (NTRS)

    Chan, Eugene

    2015-01-01

    The DNA Medicine Institute has produced a reusable microfluidic device that performs rapid, low-cost cell counts and measurements of electrolytes, proteins, and other biomarkers. The rHEALTH sensor is compact and portable, and it employs cutting-edge fluorescence detection optics, innovative microfluidics, and nanostrip reagents to perform a suite of hematology, chemistry, and biomarker assays from a single drop of blood. A handful of current portable POC devices provide generalized blood analysis, but they perform only a few tests at a time. These devices also rely on disposable components and depend on diverse detection technologies to complete routine tests-all ill-suited for space travelers on extended missions. In contrast, the rHEALTH sensor integrates sample introduction, processing, and detection with a compact, resource-conscious, and efficient design. Developed to monitor astronaut health on the International Space Station and during long-term space flight, this microscale lab analysis tool also has terrestrial applications that include POC diagnostics conducted at a patient's bedside, in a doctor's office, and in a hospital.

  10. A Novel Strain-Based Method to Estimate Tire Conditions Using Fuzzy Logic for Intelligent Tires.

    PubMed

    Garcia-Pozuelo, Daniel; Olatunbosun, Oluremi; Yunta, Jorge; Yang, Xiaoguang; Diaz, Vicente

    2017-02-10

    The so-called intelligent tires are one of the most promising research fields for automotive engineers. These tires are equipped with sensors which provide information about vehicle dynamics. Up to now, the commercial intelligent tires only provide information about inflation pressure and their contribution to stability control systems is currently very limited. Nowadays one of the major problems for intelligent tire development is how to embed feasible and low cost sensors to obtain reliable information such as inflation pressure, vertical load or rolling speed. These parameters provide key information for vehicle dynamics characterization. In this paper, we propose a novel algorithm based on fuzzy logic to estimate the mentioned parameters by means of a single strain-based system. Experimental tests have been carried out in order to prove the suitability and durability of the proposed on-board strain sensor system, as well as its low cost advantages, and the accuracy of the obtained estimations by means of fuzzy logic.

  11. Photon-Number-Resolving Transition-Edge Sensors for the Metrology of Quantum Light Sources

    NASA Astrophysics Data System (ADS)

    Schmidt, M.; von Helversen, M.; López, M.; Gericke, F.; Schlottmann, E.; Heindel, T.; Kück, S.; Reitzenstein, S.; Beyer, J.

    2018-05-01

    Low-temperature photon-number-resolving detectors allow for direct access to the photon number distribution of quantum light sources and can thus be exploited to explore the photon statistics, e.g., solid-state-based non-classical light sources. In this work, we report on the setup and calibration of a detection system based on fiber-coupled tungsten transition-edge sensors (W-TESs). Our stand-alone system comprises two W-TESs, read out by two 2-stage-SQUID current sensors, operated in a compact detector unit that is integrated in an adiabatic demagnetization refrigerator. Fast low-noise analog amplifiers and digitizers are used for signal acquisition. The detection efficiency of the single-mode fiber-coupled detector system in the spectral region of interest (850-950 nm) is determined to be larger than 87 %. The presented detector system opens up new routes in the characterization of quantum light sources for quantum information, quantum-enhanced sensing and quantum metrology.

  12. Improving CAR Navigation with a Vision-Based System

    NASA Astrophysics Data System (ADS)

    Kim, H.; Choi, K.; Lee, I.

    2015-08-01

    The real-time acquisition of the accurate positions is very important for the proper operations of driver assistance systems or autonomous vehicles. Since the current systems mostly depend on a GPS and map-matching technique, they show poor and unreliable performance in blockage and weak areas of GPS signals. In this study, we propose a vision oriented car navigation method based on sensor fusion with a GPS and in-vehicle sensors. We employed a single photo resection process to derive the position and attitude of the camera and thus those of the car. This image georeferencing results are combined with other sensory data under the sensor fusion framework for more accurate estimation of the positions using an extended Kalman filter. The proposed system estimated the positions with an accuracy of 15 m although GPS signals are not available at all during the entire test drive of 15 minutes. The proposed vision based system can be effectively utilized for the low-cost but high-accurate and reliable navigation systems required for intelligent or autonomous vehicles.

  13. Improving Car Navigation with a Vision-Based System

    NASA Astrophysics Data System (ADS)

    Kim, H.; Choi, K.; Lee, I.

    2015-08-01

    The real-time acquisition of the accurate positions is very important for the proper operations of driver assistance systems or autonomous vehicles. Since the current systems mostly depend on a GPS and map-matching technique, they show poor and unreliable performance in blockage and weak areas of GPS signals. In this study, we propose a vision oriented car navigation method based on sensor fusion with a GPS and in-vehicle sensors. We employed a single photo resection process to derive the position and attitude of the camera and thus those of the car. This image georeferencing results are combined with other sensory data under the sensor fusion framework for more accurate estimation of the positions using an extended Kalman filter. The proposed system estimated the positions with an accuracy of 15 m although GPS signals are not available at all during the entire test drive of 15 minutes. The proposed vision based system can be effectively utilized for the low-cost but high-accurate and reliable navigation systems required for intelligent or autonomous vehicles.

  14. Exploiting the speckle-correlation scattering matrix for a compact reference-free holographic image sensor

    PubMed Central

    Lee, KyeoReh; Park, YongKeun

    2016-01-01

    The word ‘holography' means a drawing that contains all of the information for light—both amplitude and wavefront. However, because of the insufficient bandwidth of current electronics, the direct measurement of the wavefront of light has not yet been achieved. Though reference-field-assisted interferometric methods have been utilized in numerous applications, introducing a reference field raises several fundamental and practical issues. Here we demonstrate a reference-free holographic image sensor. To achieve this, we propose a speckle-correlation scattering matrix approach; light-field information passing through a thin disordered layer is recorded and retrieved from a single-shot recording of speckle intensity patterns. Self-interference via diffusive scattering enables access to impinging light-field information, when light transport in the diffusive layer is precisely calibrated. As a proof-of-concept, we demonstrate direct holographic measurements of three-dimensional optical fields using a compact device consisting of a regular image sensor and a diffusor. PMID:27796290

  15. Exploiting the speckle-correlation scattering matrix for a compact reference-free holographic image sensor.

    PubMed

    Lee, KyeoReh; Park, YongKeun

    2016-10-31

    The word 'holography' means a drawing that contains all of the information for light-both amplitude and wavefront. However, because of the insufficient bandwidth of current electronics, the direct measurement of the wavefront of light has not yet been achieved. Though reference-field-assisted interferometric methods have been utilized in numerous applications, introducing a reference field raises several fundamental and practical issues. Here we demonstrate a reference-free holographic image sensor. To achieve this, we propose a speckle-correlation scattering matrix approach; light-field information passing through a thin disordered layer is recorded and retrieved from a single-shot recording of speckle intensity patterns. Self-interference via diffusive scattering enables access to impinging light-field information, when light transport in the diffusive layer is precisely calibrated. As a proof-of-concept, we demonstrate direct holographic measurements of three-dimensional optical fields using a compact device consisting of a regular image sensor and a diffusor.

  16. Bioinspired design of a polymer gel sensor for the realization of extracellular Ca2+ imaging

    NASA Astrophysics Data System (ADS)

    Ishiwari, Fumitaka; Hasebe, Hanako; Matsumura, Satoko; Hajjaj, Fatin; Horii-Hayashi, Noriko; Nishi, Mayumi; Someya, Takao; Fukushima, Takanori

    2016-04-01

    Although the role of extracellular Ca2+ draws increasing attention as a messenger in intercellular communications, there is currently no tool available for imaging Ca2+ dynamics in extracellular regions. Here we report the first solid-state fluorescent Ca2+ sensor that fulfills the essential requirements for realizing extracellular Ca2+ imaging. Inspired by natural extracellular Ca2+-sensing receptors, we designed a particular type of chemically-crosslinked polyacrylic acid gel, which can undergo single-chain aggregation in the presence of Ca2+. By attaching aggregation-induced emission luminogen to the polyacrylic acid as a pendant, the conformational state of the main chain at a given Ca2+ concentration is successfully translated into fluorescence property. The Ca2+ sensor has a millimolar-order apparent dissociation constant compatible with extracellular Ca2+ concentrations, and exhibits sufficient dynamic range and excellent selectivity in the presence of physiological concentrations of biologically relevant ions, thus enabling monitoring of submillimolar fluctuations of Ca2+ in flowing analytes containing millimolar Ca2+ concentrations.

  17. An artificial arm/hand system with a haptic sensory function using electric stimulation of peripheral sensory nerve fibers.

    PubMed

    Mabuchi, Kunihiko

    2013-01-01

    We are currently developing an artificial arm/hand system which is capable of sensing stimuli and then transferring these stimuli to users as somatic sensations. Presently, we are evoking the virtual somatic sensations by electrically stimulating a sensory nerve fiber which innervates a single mechanoreceptor unit at the target area; this is done using a tungsten microelectrode that was percutaneously inserted into the use's peripheral nerve (a microstimulation method). The artificial arm/hand system is composed of a robot hand equipped with a pressure sensor system on its fingers. The sensor system detects mechanical stimuli, which are transferred to the user by means of the microstimulation method so that the user experiences the stimuli as the corresponding somatic sensations. In trials, the system worked satisfactorily and there was a good correlation between the pressure applied to the pressure sensors on the robot fingers and the subjective intensities of the evoked pressure sensations.

  18. A Novel Strain-Based Method to Estimate Tire Conditions Using Fuzzy Logic for Intelligent Tires

    PubMed Central

    Garcia-Pozuelo, Daniel; Olatunbosun, Oluremi; Yunta, Jorge; Yang, Xiaoguang; Diaz, Vicente

    2017-01-01

    The so-called intelligent tires are one of the most promising research fields for automotive engineers. These tires are equipped with sensors which provide information about vehicle dynamics. Up to now, the commercial intelligent tires only provide information about inflation pressure and their contribution to stability control systems is currently very limited. Nowadays one of the major problems for intelligent tire development is how to embed feasible and low cost sensors to obtain reliable information such as inflation pressure, vertical load or rolling speed. These parameters provide key information for vehicle dynamics characterization. In this paper, we propose a novel algorithm based on fuzzy logic to estimate the mentioned parameters by means of a single strain-based system. Experimental tests have been carried out in order to prove the suitability and durability of the proposed on-board strain sensor system, as well as its low cost advantages, and the accuracy of the obtained estimations by means of fuzzy logic. PMID:28208631

  19. Experimental implementation of a Pyramid WFS: Towards the first SCAO systems for E-ELT

    NASA Astrophysics Data System (ADS)

    Bond, C.; El Hadi, K.; Sauvage, J. F.; Correia, C.; Fauvarque, O.; Rabaud, D.; Neichel, B.; Fusco, T.

    2015-12-01

    Investigations into the Pyramid wavefront sensor (P-WFS) have experimentally demonstrated the ability to achieve a better performance than with a standard Shack-Hartmann sensor (SH-WFS). Implementation on the Large Binocular Telescope (LBT) provided the first operational demonstration on a facility-class instrument of a P-WFS on sky. The desire to implement a Pyramid on an Extremely Large Telescope (ELT) requires further characterisation in order to optimise the performance and match our knowledge and understanding of other wave-front sensors (WFSs). Within the framework of the European Extremely Large Telescope (E-ELT), the Laboratoire d'Astrophysique de Marseille (LAM) is involved in the preparation of the Single Conjugate Adaptive Optics (SCAO) system of HARMONI, E-ELT's 1st light integral field spectrograph (IFU). The current baseline WFS for this adaptive optics system is a Pyramid WFS using a high speed and sensitive OCAM2 camera. At LAM we are currently carrying out laboratory demonstrations of a Pyramid-WFS, with the aim to fully characterise the behaviour of the Pyramid in terms of sensitivity and linear range. This will lead to a full operational procedure for the use of the Pyramid on-sky, assisting with current designs and future implementations. The final goal is to provide an on sky comparison between the Pyramid and Shack-Hartmann at Observatoire de la Côte d'Azur (OCA). Here we present our experimental setup and preliminary results.

  20. High Frequency Magnetic Field Direction Finding Using MGL-S9A B-dot Sensors

    DTIC Science & Technology

    2013-03-21

    relationship for incident plane wave on a linear array . . . . . . . . . . . 26 3.1 B-dot sensor design in CST Microwave Studio...CST Microwave Studio with an infinite PEC ground plane. . . . . . . . . . . . . . . 50 4.2 Radiation pattern of a single B-dot sensor at 32 MHz...simulated in CST Microwave Studio with an infinite PEC ground plane. . . . . . . . . . . . . . . 50 4.3 Radiation efficiency of single loop versus B-dot

  1. Dual spherical single-mode-multimode-single-mode optical fiber temperature sensor based on a Mach–Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Tan, Jianchang; Feng, Guoying; Zhang, Shulin; Liang, Jingchuan; Li, Wei; Luo, Yun

    2018-07-01

    A dual spherical single-mode-multimode-single-mode (DSSMS) optical fiber temperature sensor based on a Mach–Zehnder interferometer (MZI) was designed and implemented in this paper. Theoretical and experimental results indicated that the LP01 mode in the core and the LP09 mode excited by the spherical structure were maintained and transmitted via multimode fiber and interfered at the second spherical structure, resulting in the interference spectrum. An increase or decrease in temperature can cause significant red-shift or blue-shift of the spectrum, respectively. The linearity of the spectral shift due to the temperature change is ~0.999, the sensitivity at 30 °C–540 °C is ~37.372 pm °C‑3, and at  ‑25 °C–25 °C is ~37.28 pm °C‑1. The reproducibility error of this all-fiber temperature sensor at 30 °C–540 °C is less than 0.15%. Compared with the optical fiber sensor with a tapered structure and fiber core offset structure, this MZI-based DSSMS optical fiber temperature sensor has higher mechanical strength. Moreover, benefiting from low-cost and environmentally friendly materials, it is expected to be a novel micro-nano all-fiber sensor.

  2. A DMAP Program for the Selection of Accelerometer Locations in MSC/NASTRAN

    NASA Technical Reports Server (NTRS)

    Peck, Jeff; Torres, Isaias

    2004-01-01

    A new program for selecting sensor locations has been written in the DMAP (Direct Matrix Abstraction Program) language of MSC/NASTRAN. The program implements the method of Effective Independence for selecting sensor locations, and is executed within a single NASTRAN analysis as a "rigid format alter" to the normal modes solution sequence (SOL 103). The user of the program is able to choose among various analysis options using Case Control and Bulk Data entries. Algorithms tailored for the placement of both uni-axial and tri- axial accelerometers are available, as well as several options for including the model s mass distribution into the calculations. Target modes for the Effective Independence analysis are selected from the MSC/NASTRAN ASET modes calculated by the "SOL 103" solution sequence. The initial candidate sensor set is also under user control, and is selected from the ASET degrees of freedom. Analysis results are printed to the MSCINASTRAN output file (*.f06), and may include the current candidate sensors set, and their associated Effective Independence distribution, at user specified iteration intervals. At the conclusion of the analysis, the model is reduced to the final sensor set, and frequencies and orthogonality checks are printed. Example results are given for a pre-test analysis of NASA s five-segment solid rocket booster modal test.

  3. VIIRS captures phytoplankton vertical migration in the NE Gulf of Mexico.

    PubMed

    Qi, Lin; Hu, Chuanmin; Barnes, Brian B; Lee, Zhongping

    2017-06-01

    In summer 2014, a toxic Karenia brevis bloom (red tide) occurred in the NE Gulf of Mexico, during which vertical migration of K. brevis has been observed from glider measurements. The current study shows that satellite observations from the Visible Infrared Imaging Radiometer Suite (VIIRS) can capture changes in surface reflectance and chlorophyll concentration occurring within 2h, which may be attributed this K. brevis vertical migration. The argument is supported by earlier glider measurements in the same bloom, by the dramatic changes in the VIIRS-derived surface chlorophyll, and by the consistency between the short-term reflectance changes and those reported earlier from field-measured K. brevis vertical migration. Estimates using the quasi-analytical algorithm also indicate significant increases in both total absorption coefficient and backscattering coefficient in two hours. The two observations in a day from a single polar-orbiting satellite sensor are thus shown to be able to infer phytoplankton vertical movement within a short timeframe, a phenomenon difficult to capture with other sensors as each sensor can provide at most one observation per day, and cross-sensor inconsistency may make interpretation of merged-sensor data difficult. These findings strongly support geostationary satellite missions to study short-term bloom dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Real-time distributed video coding for 1K-pixel visual sensor networks

    NASA Astrophysics Data System (ADS)

    Hanca, Jan; Deligiannis, Nikos; Munteanu, Adrian

    2016-07-01

    Many applications in visual sensor networks (VSNs) demand the low-cost wireless transmission of video data. In this context, distributed video coding (DVC) has proven its potential to achieve state-of-the-art compression performance while maintaining low computational complexity of the encoder. Despite their proven capabilities, current DVC solutions overlook hardware constraints, and this renders them unsuitable for practical implementations. This paper introduces a DVC architecture that offers highly efficient wireless communication in real-world VSNs. The design takes into account the severe computational and memory constraints imposed by practical implementations on low-resolution visual sensors. We study performance-complexity trade-offs for feedback-channel removal, propose learning-based techniques for rate allocation, and investigate various simplifications of side information generation yielding real-time decoding. The proposed system is evaluated against H.264/AVC intra, Motion-JPEG, and our previously designed DVC prototype for low-resolution visual sensors. Extensive experimental results on various data show significant improvements in multiple configurations. The proposed encoder achieves real-time performance on a 1k-pixel visual sensor mote. Real-time decoding is performed on a Raspberry Pi single-board computer or a low-end notebook PC. To the best of our knowledge, the proposed codec is the first practical DVC deployment on low-resolution VSNs.

  5. Gas Main Sensor and Communications Network System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagen Schempf

    Automatika, Inc. was contracted by the Department of Energy (DOE) and with co-funding from the Northeast Gas Association (NGA), to develop an in-pipe natural gas prototype measurement and wireless communications system for assessing and monitoring distribution networks. This projected was completed in April 2006, and culminated in the installation of more than 2 dozen GasNet nodes in both low- and high-pressure cast-iron and steel mains owned by multiple utilities in the northeastern US. Utilities are currently logging data (off-line) and monitoring data in real time from single and multiple networked sensors over cellular networks and collecting data using wireless bluetoothmore » PDA systems. The system was designed to be modular, using in-pipe sensor-wands capable of measuring, flow, pressure, temperature, water-content and vibration. Internal antennae allowed for the use of the pipe-internals as a waveguide for setting up a sensor network to collect data from multiple nodes simultaneously. Sensor nodes were designed to be installed with low- and no-blow techniques and tools. Using a multi-drop bus technique with a custom protocol, all electronics were designed to be buriable and allow for on-board data-collection (SD-card), wireless relaying and cellular network forwarding. Installation options afforded by the design included direct-burial and external polemounted variants. Power was provided by one or more batteries, direct AC-power (Class I Div.2) and solar-array. The utilities are currently in a data-collection phase and intend to use the collected (and processed) data to make capital improvement decisions, compare it to Stoner model predictions and evaluate the use of such a system for future expansion, technology-improvement and commercialization starting later in 2006.« less

  6. Using Wind Driven Tumbleweed Rovers to Explore Martian Gully Features

    NASA Technical Reports Server (NTRS)

    Antol, Jeffrey; Woodard, Stanley E.; Hajos, Gregory A.; Heldmann, Jennifer L.; Taylor, Bryant D.

    2004-01-01

    Gully features have been observed on the slopes of numerous Martian crater walls, valleys, pits, and graben. Several mechanisms for gully formation have been proposed, including: liquid water aquifers (shallow and deep), melting ground ice, snow melt, CO2 aquifers, and dry debris flow. Remote sensing observations indicate that the most likely erosional agent is liquid water. Debate concerns the source of this water. Observations favor a liquid water aquifer as the primary candidate. The current strategy in the search for life on Mars is to "follow the water." A new vehicle known as a Tumbleweed rover may be able to conduct in-situ investigations in the gullies, which are currently inaccessible by conventional rovers. Deriving mobility through use of the surface winds on Mars, Tumbleweed rovers would be lightweight and relatively inexpensive thus allowing multiple rovers to be deployed in a single mission to survey areas for future exploration. NASA Langley Research Center (LaRC) is developing deployable structure Tumbleweed concepts. An extremely lightweight measurement acquisition system and sensors are proposed for the Tumbleweed rover that greatly increases the number of measurements performed while having negligible mass increase. The key to this method is the use of magnetic field response sensors designed as passive inductor-capacitor circuits that produce magnetic field responses whose attributes correspond to values of physical properties for which the sensors measure. The sensors do not need a physical connection to a power source or to data acquisition equipment resulting in additional weight reduction. Many of the sensors and interrogating antennae can be directly placed on the Tumbleweed using film deposition methods such as photolithography thus providing further weight reduction. Concepts are presented herein for methods to measure subsurface water, subsurface metals, planetary winds and environmental gases.

  7. Using Wind Driven Tumbleweed Rovers to Explore Martian Gully Features

    NASA Technical Reports Server (NTRS)

    Antol, Jeffrey; Woodard, Stanley E.; Hajos, Gregory A.; Heldmann, Jennifer L.; Taylor, Bryant D.

    2005-01-01

    Gully features have been observed on the slopes of numerous Martian crater walls, valleys, pits, and graben. Several mechanisms for gully formation have been proposed, including: liquid water aquifers (shallow and deep), melting ground ice, snow melt, CO2 aquifers, and dry debris flow. Remote sensing observations indicate that the most likely erosional agent is liquid water. Debate concerns the source of this water. Observations favor a liquid water aquifer as the primary candidate. The current strategy in the search for life on Mars is to "follow the water." A new vehicle known as a Tumbleweed rover may be able to conduct in-situ investigations in the gullies, which are currently inaccessible by conventional rovers. Deriving mobility through use of the surface winds on Mars, Tumbleweed rovers would be lightweight and relatively inexpensive thus allowing multiple rovers to be deployed in a single mission to survey areas for future exploration. NASA Langley Research Center (LaRC) is developing deployable structure Tumbleweed concepts. An extremely lightweight measurement acquisition system and sensors are proposed for the Tumbleweed rover that greatly increases the number of measurements performed while having negligible mass increase. The key to this method is the use of magnetic field response sensors designed as passive inductor-capacitor circuits that produce magnetic field responses whose attributes correspond to values of physical properties for which the sensors measure. The sensors do not need a physical connection to a power source or to data acquisition equipment resulting in additional weight reduction. Many of the sensors and interrogating antennae can be directly placed on the Tumbleweed using film deposition methods such as photolithography thus providing further weight reduction. Concepts are presented herein for methods to measure subsurface water, subsurface metals, planetary winds and environmental gases.

  8. Current LWIR HSI Remote Sensing Activities at Defence R&D Canada - Valcartier

    DTIC Science & Technology

    2009-10-01

    measures the IR radiation from a target scene which is optically combined onto a single detector out-of-phase with the IR radiation from a corresponding...Hyper-Cam-LW. The MODDIFS project involves the development of a leading edge infrared ( IR ) hyperspectral sensor optimized for the standoff detection...essentially offer the optical subtraction capability of the CATSI system but at high-spatial resolution using an MCT focal plane array of 8484

  9. E-O Sensor Signal Recognition Simulation: Computer Code SPOT I.

    DTIC Science & Technology

    1978-10-01

    scattering phase function PDCO , defined at the specified wavelength, given for each of the scattering angles defined. Currently, a maximum of sixty-four...PHASE MATRIX DATA IS DEFINED PDCO AVERAGE PROBABILITY FOR PHASE MATRIX DEFINITION NPROB PROBLEM NUMBER 54 Fig. 12. FLOWCHART for the SPOT Computer Code...El0.1 WLAM(N) Wavelength at which the aerosol single-scattering phase function set is defined (microns) 3 8El0.1 PDCO (N,I) Average probability for

  10. Exploitation of Smart Materials and Sensors as Disruptive Technologies

    DTIC Science & Technology

    2010-03-01

    commercially available SMA, with current work aimed at new NiTi–X (X = Fe, Nb, Cu) alloys to further extend their range of properties and potential...ultra-light and micro-air vehicles. However, in common with alloy systems challenges exist regarding the long-term properties of polymeric-based SM... properties of single crystals of Ni-Mn-Ga magnetic shape memory alloys ", in Proc. SPIE, 186–197 (2004). 41 Gharghouri, M. A., Elsawy, A., & Hyatt

  11. Sheath-Core Graphite/Silk Fiber Made by Dry-Meyer-Rod-Coating for Wearable Strain Sensors.

    PubMed

    Zhang, Mingchao; Wang, Chunya; Wang, Qi; Jian, Muqiang; Zhang, Yingying

    2016-08-17

    Recent years have witnessed the explosive development of flexible strain sensors. Nanomaterials have been widely utilized to fabricate flexible strain sensors, because of their high flexibility and electrical conductivity. However, the fabrication processes for nanomaterials and the subsequent strain sensors are generally complicated and are manufactured at high cost. In this work, we developed a facile dry-Meyer-rod-coating process to fabricate sheath-core-structured single-fiber strain sensors using ultrafine graphite flakes as the sheath and silk fibers as the core by virtue of their flexibility, high production, and low cost. The fabricated strain sensor exhibits a high sensitivity with a gauge factor of 14.5 within wide workable strain range up to 15%, and outstanding stability (up to 3000 cycles). The single-fiber-based strain sensors could be attached to a human body to detect joint motions or easily integrated into the multidirectional strain sensor for monitoring multiaxial strain, showing great potential applications as wearable strain sensors.

  12. Development, Test, and Evaluation of Microwave Radar Water Level (MWWL) Sensors' Wave Measurement Capability

    NASA Astrophysics Data System (ADS)

    Iyer, S. K.; Heitsenrether, R.

    2015-12-01

    Waves can have a significant impact on many coastal operations including navigational safety, recreation, and even the economy. Despite this, as of 2009, there were only 181 in situ real-time wave observation networks nationwide (IOOS 2009). There has recently been interest in adding real-time wave measurement systems to already existing NOAA Center for Operational Oceanographic Products and Services (CO-OPS) stations. Several steps have already been taken in order to achieve this, such as integrating information from existing wave measurement buoys and initial testing of multiple different wave measurement systems (Heitsenrether et al. 2012). Since wave observations can be derived from high frequency water level changes, we will investigate water level sensors' capability to measure waves. Recently, CO-OPS has been transitioning to new microwave radar water level (MWWL) sensors which have higher resolution and theoretically a greater potential wave measurement capability than the acoustic sensors in stilling wells. In this study, we analyze the wave measurement capability of MWWL sensors at two high energy wave environments, Duck, NC and La Jolla, CA, and compare results to two "reference" sensors (A Nortek acoustic waves and currents profiler (AWAC) at Duck and a single point pressure sensor at La Jolla). A summary of results from the two field test sites will be presented, including comparisons of wave energy spectra, significant wave height, and peak period measured by the test MWWL sensors and both reference AWAC and pressure sensors. In addition, relationships between MWWL versus reference wave sensor differences and specific wave conditions will be discussed. Initial results from spectral analysis and the calculation of bulk wave parameters indicate that MWWL sensors set to the "NoFilter" processing setting can produce wave measurements capability that compare well to the two reference sensors. These results support continued development to enable the installation of MWWL sensors at CO-OPS locations as a method of measuring waves.

  13. Next-Generation Psychiatric Assessment: Using Smartphone Sensors to Monitor Behavior and Mental Health

    PubMed Central

    Ben-Zeev, Dror; Scherer, Emily A.; Wang, Rui; Xie, Haiyi; Campbell, Andrew T.

    2015-01-01

    Objective Optimal mental health care is dependent upon sensitive and early detection of mental health problems. The current study introduces a state-of-the-art method for remote behavioral monitoring that transports assessment out of the clinic and into the environments in which individuals negotiate their daily lives. The objective of this study was examine whether the information captured with multi-modal smartphone sensors can serve as behavioral markers for one’s mental health. We hypothesized that: a) unobtrusively collected smartphone sensor data would be associated with individuals’ daily levels of stress, and b) sensor data would be associated with changes in depression, stress, and subjective loneliness over time. Methods A total of 47 young adults (age range: 19–30 y.o.) were recruited for the study. Individuals were enrolled as a single cohort and participated in the study over a 10-week period. Participants were provided with smartphones embedded with a range of sensors and software that enabled continuous tracking of their geospatial activity (using GPS and WiFi), kinesthetic activity (using multi-axial accelerometers), sleep duration (modeled using device use data, accelerometer inferences, ambient sound features, and ambient light levels), and time spent proximal to human speech (i.e., speech duration using microphone and speech detection algorithms). Participants completed daily ratings of stress, as well as pre/post measures of depression (Patient Health Questionnaire-9), stress (Perceived Stress Scale), and loneliness (Revised UCLA Loneliness Scale). Results Mixed-effects linear modeling showed that sensor-derived geospatial activity (p<.05), sleep duration (p<.05), and variability in geospatial activity (p<.05), were associated with daily stress levels. Penalized functional regression showed associations between changes in depression and sensor-derived speech duration (p<.05), geospatial activity (p<.05), and sleep duration (p<.05). Changes in loneliness were associated with sensor-derived kinesthetic activity (p<.01). Conclusions and implications for practice Smartphones can be harnessed as instruments for unobtrusive monitoring of several behavioral indicators of mental health. Creative leveraging of smartphone sensing will create novel opportunities for close-to-invisible psychiatric assessment at a scale and efficiency that far exceed what is currently feasible with existing assessment technologies. PMID:25844912

  14. Wavefront detection method of a single-sensor based adaptive optics system.

    PubMed

    Wang, Chongchong; Hu, Lifa; Xu, Huanyu; Wang, Yukun; Li, Dayu; Wang, Shaoxin; Mu, Quanquan; Yang, Chengliang; Cao, Zhaoliang; Lu, Xinghai; Xuan, Li

    2015-08-10

    In adaptive optics system (AOS) for optical telescopes, the reported wavefront sensing strategy consists of two parts: a specific sensor for tip-tilt (TT) detection and another wavefront sensor for other distortions detection. Thus, a part of incident light has to be used for TT detection, which decreases the light energy used by wavefront sensor and eventually reduces the precision of wavefront correction. In this paper, a single Shack-Hartmann wavefront sensor based wavefront measurement method is presented for both large amplitude TT and other distortions' measurement. Experiments were performed for testing the presented wavefront method and validating the wavefront detection and correction ability of the single-sensor based AOS. With adaptive correction, the root-mean-square of residual TT was less than 0.2 λ, and a clear image was obtained in the lab. Equipped on a 1.23-meter optical telescope, the binary stars with angle distance of 0.6″ were clearly resolved using the AOS. This wavefront measurement method removes the separate TT sensor, which not only simplifies the AOS but also saves light energy for subsequent wavefront sensing and imaging, and eventually improves the detection and imaging capability of the AOS.

  15. Free-energy landscape of ion-channel voltage-sensor-domain activation.

    PubMed

    Delemotte, Lucie; Kasimova, Marina A; Klein, Michael L; Tarek, Mounir; Carnevale, Vincenzo

    2015-01-06

    Voltage sensor domains (VSDs) are membrane-bound protein modules that confer voltage sensitivity to membrane proteins. VSDs sense changes in the transmembrane voltage and convert the electrical signal into a conformational change called activation. Activation involves a reorganization of the membrane protein charges that is detected experimentally as transient currents. These so-called gating currents have been investigated extensively within the theoretical framework of so-called discrete-state Markov models (DMMs), whereby activation is conceptualized as a series of transitions across a discrete set of states. Historically, the interpretation of DMM transition rates in terms of transition state theory has been instrumental in shaping our view of the activation process, whose free-energy profile is currently envisioned as composed of a few local minima separated by steep barriers. Here we use atomistic level modeling and well-tempered metadynamics to calculate the configurational free energy along a single transition from first principles. We show that this transition is intrinsically multidimensional and described by a rough free-energy landscape. Remarkably, a coarse-grained description of the system, based on the use of the gating charge as reaction coordinate, reveals a smooth profile with a single barrier, consistent with phenomenological models. Our results bridge the gap between microscopic and macroscopic descriptions of activation dynamics and show that choosing the gating charge as reaction coordinate masks the topological complexity of the network of microstates participating in the transition. Importantly, full characterization of the latter is a prerequisite to rationalize modulation of this process by lipids, toxins, drugs, and genetic mutations.

  16. Measurements of the reverse current of highly irradiated silicon sensors to determine the effective energy and current related damage rate

    NASA Astrophysics Data System (ADS)

    Wiehe, Moritz; Wonsak, S.; Kuehn, S.; Parzefall, U.; Casse, G.

    2018-01-01

    The reverse current of irradiated silicon sensors leads to self heating of the sensor and degrades the signal to noise ratio of a detector. Precise knowledge of the expected reverse current during detector operation is crucial for planning and running experiments in High Energy Physics. The dependence of the reverse current on sensor temperature and irradiation fluence is parametrized by the effective energy and the current related damage rate, respectively. In this study 18 n-in-p mini silicon strip sensors from companies Hamamatsu Photonics and Micron Semiconductor Ltd. were deployed. Measurements of the reverse current for different bias voltages were performed at temperatures of -32 ° C, -27 ° C and -23 ° C. The sensors were irradiated with reactor neutrons in Ljubljana to fluences ranging from 2 × 1014neq /cm2 to 2 × 1016neq /cm2. The measurements were performed directly after irradiation and after 10 and 30 days of room temperature annealing. The aim of the study presented in this paper is to investigate the reverse current of silicon sensors for high fluences of up to 2 × 1016neq /cm2 and compare the measurements to the parametrization models.

  17. Thin Film Sensors for Surface Measurements

    NASA Technical Reports Server (NTRS)

    Martin, Lisa C.; Wrbanek, John D.; Fralick, Gustave C.

    2001-01-01

    Advanced thin film sensors that can provide accurate surface temperature, strain, and heat flux measurements have been developed at NASA Glenn Research Center. These sensors provide minimally intrusive characterization of advanced propulsion materials and components in hostile, high-temperature environments as well as validation of propulsion system design codes. The sensors are designed for applications on different material systems and engine components for testing in engine simulation facilities. Thin film thermocouples and strain gauges for the measurement of surface temperature and strain have been demonstrated on metals, ceramics and advanced ceramic-based composites of various component configurations. Test environments have included both air-breathing and space propulsion-based engine and burner rig environments at surface temperatures up to 1100 C and under high gas flow and pressure conditions. The technologies developed for these sensors as well as for a thin film heat flux gauge have been integrated into a single multifunctional gauge for the simultaneous real-time measurement of surface temperature, strain, and heat flux. This is the first step toward the development of smart sensors with integrated signal conditioning and high temperature electronics that would have the capability to provide feedback to the operating system in real-time. A description of the fabrication process for the thin film sensors and multifunctional gauge will be provided. In addition, the material systems on which the sensors have been demonstrated, the test facilities and the results of the tests to-date will be described. Finally, the results will be provided of the current effort to demonstrate the capabilities of the multifunctional gauge.

  18. In Vivo Detection of Reactive Oxygen Species and Redox Status in Caenorhabditis elegans.

    PubMed

    Braeckman, Bart P; Smolders, Arne; Back, Patricia; De Henau, Sasha

    2016-10-01

    Due to its large families of redox-active enzymes, genetic amenability, and complete transparency, the nematode Caenorhabditis elegans has the potential to become an important model for the in vivo study of redox biology. The recent development of several genetically encoded ratiometric reactive oxygen species (ROS) and redox sensors has revolutionized the quantification and precise localization of ROS and redox signals in living organisms. Only few exploratory studies have applied these sensors in C. elegans and undoubtedly much remains to be discovered in this model. As a follow-up to our recent findings that the C. elegans somatic gonad uses superoxide and hydrogen peroxide (H2O2) signals to communicate with the germline, we here analyze the patterns of H2O2 inside the C. elegans germline. Despite the advantages of genetically encoded ROS and redox sensors over classic chemical sensors, still several general as well as C. elegans-specific issues need to be addressed. The major concerns for the application of these sensors in C. elegans are (i) decreased vitality of some reporter strains, (ii) interference of autofluorescent compartments with the sensor signal, and (iii) the use of immobilization methods that do not influence the worm's redox physiology. We propose that several of the current issues may be solved by designing reporter strains carrying single copies of codon-optimized sensors. Preferably, these sensors should have their emission wavelengths in the red region, where autofluorescence is absent. Worm analysis could be optimized using four-dimensional ratiometric fluorescence microscopy of worms immobilized in microfluidic chips. Antioxid. Redox Signal. 25, 577-592.

  19. Sensitizing Carbon Nanotube Transistors for Single Molecule Sensor Applications

    NASA Astrophysics Data System (ADS)

    Collins, Philip G.; Akhterov, Maxim; Sims, Patrick C.; Fuller, Elliot J.; Gul, O. Tolga; Pan, Deng

    2015-03-01

    Recent work has demonstrated single-charge sensitivity in two types of carbon nanotube transistors. In one case, a two-level system near the nanotube or noncovalently attached to the nanotube perturbs the current electrostatically. In a second case, a sidewall defect or other covalent modification sensitizes one site along the conductor. Comparative research has helped reveal differences in the transduction mechanisms of the two cases and provides design rules for maximizing reliable signals for sensing applications. The covalent modifications are not mere perturbations and they are far more sensitive than noncovalent attachments, for example. However, the new degrees of freedom that accompany covalent disorder often have similar energy scales, leading to multiple independent fluctuations that degrade the overall signal-to-noise. Noncovalent sensitization generally produces a smaller signal amplitude in a background of other low-energy fluctuators, but a well-designed noncovalent linker can result in a highly predictable signal amplitudes. Furthermore, noncovalent fabrication methods are scalable, so that wafer-scale arrays of molecular sensors are most likely to follow this path. This work was supported by NSF (ECCS-1231910).

  20. Electrochemical detection of single molecules using abiotic nanopores having electrically tunable dimensions

    DOEpatents

    Sansinena, Jose-Maria [Los Alamos, NM; Redondo, Antonio [Los Alamos, NM; Olazabal, Virginia [Los Alamos, NM; Hoffbauer, Mark A [Los Alamos, NM; Akhadov, Elshan A [Los Alamos, NM

    2009-12-29

    A barrier structure for use in an electrochemical stochastic membrane sensor for single molecule detection. The sensor is based upon inorganic nanopores having electrically tunable dimensions. The inorganic nanopores are formed from inorganic materials and an electrically conductive polymer. Methods of making the barrier structure and sensing single molecules using the barrier structure are also described.

  1. Electrochemical detection of single molecules using abiotic nanopores having electrically tunable dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sansinena, Jose-Maria; Redondo, Antonio; Olazabal, Virginia

    2017-09-12

    A barrier structure for use in an electrochemical stochastic membrane sensor for single molecule detection. The sensor is based upon inorganic nanopores having electrically tunable dimensions. The inorganic nanopores are formed from inorganic materials and an electrically conductive polymer. Methods of making the barrier structure and sensing single molecules using the barrier structure are also described.

  2. Electrochemical detection of single molecules using abiotic nanopores having electrically tunable dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sansinena, Jose-Maria; Redondo, Antonio; Olazabal, Virginia

    2017-07-18

    A barrier structure for use in an electrochemical stochastic membrane sensor for single molecule detection. The sensor is based upon inorganic nanopores having electrically tunable dimensions. The inorganic nanopores are formed from inorganic materials and an electrically conductive polymer. Methods of making the barrier structure and sensing single molecules using the barrier structure are also described.

  3. Electrochemical detection of single molecules using abiotic nanopores having electrically tunable dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sansinena, Jose-Maria; Redondo, Antonio; Olazabal, Virginia

    A barrier structure for use in an electrochemical stochastic membrane sensor for single molecule detection. The sensor is based upon inorganic nanopores having electrically tunable dimensions. The inorganic nanopores are formed from inorganic materials and an electrically conductive polymer. Methods of making the barrier structure and sensing single molecules using the barrier structure are also described.

  4. Mechanisms of Current Transfer in Electrodeposited Layers of Submicron Semiconductor Particles

    NASA Astrophysics Data System (ADS)

    Zhukov, N. D.; Mosiyash, D. S.; Sinev, I. V.; Khazanov, A. A.; Smirnov, A. V.; Lapshin, I. V.

    2017-12-01

    Current-voltage ( I- V) characteristics of conductance in multigrain layers of submicron particles of silicon, gallium arsenide, indium arsenide, and indium antimonide have been studied. Nanoparticles of all semiconductors were obtained by processing initial single crystals in a ball mill and applied after sedimentation onto substrates by means of electrodeposition. Detailed analysis of the I- V curves of electrodeposited layers shows that their behavior is determined by the mechanism of intergranular tunneling emission from near-surface electron states of submicron particles. Parameters of this emission process have been determined. The proposed multigrain semiconductor structures can be used in gas sensors, optical detectors, IR imagers, etc.

  5. A quantum spin-probe molecular microscope

    NASA Astrophysics Data System (ADS)

    Perunicic, V. S.; Hill, C. D.; Hall, L. T.; Hollenberg, L. C. L.

    2016-10-01

    Imaging the atomic structure of a single biomolecule is an important challenge in the physical biosciences. Whilst existing techniques all rely on averaging over large ensembles of molecules, the single-molecule realm remains unsolved. Here we present a protocol for 3D magnetic resonance imaging of a single molecule using a quantum spin probe acting simultaneously as the magnetic resonance sensor and source of magnetic field gradient. Signals corresponding to specific regions of the molecule's nuclear spin density are encoded on the quantum state of the probe, which is used to produce a 3D image of the molecular structure. Quantum simulations of the protocol applied to the rapamycin molecule (C51H79NO13) show that the hydrogen and carbon substructure can be imaged at the angstrom level using current spin-probe technology. With prospects for scaling to large molecules and/or fast dynamic conformation mapping using spin labels, this method provides a realistic pathway for single-molecule microscopy.

  6. Evaluation of a single-pixel one-transistor active pixel sensor for fingerprint imaging

    NASA Astrophysics Data System (ADS)

    Xu, Man; Ou, Hai; Chen, Jun; Wang, Kai

    2015-08-01

    Since it first appeared in iPhone 5S in 2013, fingerprint identification (ID) has rapidly gained popularity among consumers. Current fingerprint-enabled smartphones unanimously consists of a discrete sensor to perform fingerprint ID. This architecture not only incurs higher material and manufacturing cost, but also provides only static identification and limited authentication. Hence as the demand for a thinner, lighter, and more secure handset grows, we propose a novel pixel architecture that is a photosensitive device embedded in a display pixel and detects the reflected light from the finger touch for high resolution, high fidelity and dynamic biometrics. To this purpose, an amorphous silicon (a-Si:H) dual-gate photo TFT working in both fingerprint-imaging mode and display-driving mode will be developed.

  7. Potentiometric sensors with carbon black supporting platinum nanoparticles.

    PubMed

    Paczosa-Bator, Beata; Cabaj, Leszek; Piech, Robert; Skupień, Krzysztof

    2013-11-05

    For the first time, a single-piece, all-solid-state ion-selective electrode was fabricated with carbon black supporting platinum nanoparticles (PtNPs-CB) and a polymeric membrane. The PtNPs-CB, as an intermediate layer, was drop-casted directly on the solid substrate, and then an ionophore-doped solvent polymeric membrane was added in order to form a sensor. The performance of the newly developed electrodes was evaluated on the basis of potassium and nitrate ions. The stability of the electrical potential for the electrodes was examined by performing current-reversal chronopotentiometry, and the influence of the interfacial water film was assessed by the potentiometric aqueous-layer test. Fabricated potassium- and nitrate-selective electrodes displayed a Nernstian slope and several outstanding properties such as high long-term potential stability, potential repeatability, and reproducibility.

  8. Non-contact current and voltage sensor having detachable housing incorporating multiple ferrite cylinder portions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, Gary D.; El-Essawy, Wael; Ferreira, Alexandre Peixoto

    2016-04-26

    A detachable current and voltage sensor provides an isolated and convenient device to measure current passing through a conductor such as an AC branch circuit wire, as well as providing an indication of an electrostatic potential on the wire, which can be used to indicate the phase of the voltage on the wire, and optionally a magnitude of the voltage. The device includes a housing formed from two portions that mechanically close around the wire and that contain the current and voltage sensors. The current sensor is a ferrite cylinder formed from at least three portions that form the cylindermore » when the sensor is closed around the wire with a hall effect sensor disposed in a gap between two of the ferrite portions along the circumference to measure current. A capacitive plate or wire is disposed adjacent to, or within, the ferrite cylinder to provide the indication of the voltage.« less

  9. Numerical analysis of a 3D optical sensor based on single mode fiber to multimode interference graphene design

    NASA Astrophysics Data System (ADS)

    Mutter, Kussay N.; Jafri, Zubir M.; Tan, Kok Chooi

    2016-04-01

    In this paper, the simulation and design of a waveguide for water turbidity sensing are presented. The structure of the proposed sensor uses a 2x2 array of multimode interference (MMI) coupler based on micro graphene waveguide for high sensitivity. The beam propagation method (BPM) are used to efficiently design the sensor structure. The structure is consist of an array of two by two elements of sensors. Each element has three sections of single mode for field input tapered to MMI as the main core sensor without cladding which is graphene based material, and then a single mode fiber as an output. In this configuration MMI responses to any change in the environment. We validate and present the results by implementing the design on a set of sucrose solution and showing how these samples lead to a sensitivity change in the sensor based on the MMI structures. Overall results, the 3D design has a feasible and effective sensing by drawing topographical distribution of suspended particles in the water.

  10. Single-shot and single-sensor high/super-resolution microwave imaging based on metasurface

    PubMed Central

    Wang, Libo; Li, Lianlin; Li, Yunbo; Zhang, Hao Chi; Cui, Tie Jun

    2016-01-01

    Real-time high-resolution (including super-resolution) imaging with low-cost hardware is a long sought-after goal in various imaging applications. Here, we propose broadband single-shot and single-sensor high-/super-resolution imaging by using a spatio-temporal dispersive metasurface and an imaging reconstruction algorithm. The metasurface with spatio-temporal dispersive property ensures the feasibility of the single-shot and single-sensor imager for super- and high-resolution imaging, since it can convert efficiently the detailed spatial information of the probed object into one-dimensional time- or frequency-dependent signal acquired by a single sensor fixed in the far-field region. The imaging quality can be improved by applying a feature-enhanced reconstruction algorithm in post-processing, and the desired imaging resolution is related to the distance between the object and metasurface. When the object is placed in the vicinity of the metasurface, the super-resolution imaging can be realized. The proposed imaging methodology provides a unique means to perform real-time data acquisition, high-/super-resolution images without employing expensive hardware (e.g. mechanical scanner, antenna array, etc.). We expect that this methodology could make potential breakthroughs in the areas of microwave, terahertz, optical, and even ultrasound imaging. PMID:27246668

  11. Advances in NO2 sensing with individual single-walled carbon nanotube transistors

    PubMed Central

    Muoth, Matthias; Roman, Cosmin; Haluska, Miroslav; Hierold, Christofer

    2014-01-01

    Summary The charge carrier transport in carbon nanotubes is highly sensitive to certain molecules attached to their surface. This property has generated interest for their application in sensing gases, chemicals and biomolecules. With over a decade of research, a clearer picture of the interactions between the carbon nanotube and its surroundings has been achieved. In this review, we intend to summarize the current knowledge on this topic, focusing not only on the effect of adsorbates but also the effect of dielectric charge traps on the electrical transport in single-walled carbon nanotube transistors that are to be used in sensing applications. Recently, contact-passivated, open-channel individual single-walled carbon nanotube field-effect transistors have been shown to be operational at room temperature with ultra-low power consumption. Sensor recovery within minutes through UV illumination or self-heating has been shown. Improvements in fabrication processes aimed at reducing the impact of charge traps have reduced the hysteresis, drift and low-frequency noise in carbon nanotube transistors. While open challenges such as large-scale fabrication, selectivity tuning and noise reduction still remain, these results demonstrate considerable progress in transforming the promise of carbon nanotube properties into functional ultra-low power, highly sensitive gas sensors. PMID:25551046

  12. Ratiometric Matryoshka biosensors from a nested cassette of green- and orange-emitting fluorescent proteins.

    PubMed

    Ast, Cindy; Foret, Jessica; Oltrogge, Luke M; De Michele, Roberto; Kleist, Thomas J; Ho, Cheng-Hsun; Frommer, Wolf B

    2017-09-05

    Sensitivity, dynamic and detection range as well as exclusion of expression and instrumental artifacts are critical for the quantitation of data obtained with fluorescent protein (FP)-based biosensors in vivo. Current biosensors designs are, in general, unable to simultaneously meet all these criteria. Here, we describe a generalizable platform to create dual-FP biosensors with large dynamic ranges by employing a single FP-cassette, named GO-(Green-Orange) Matryoshka. The cassette nests a stable reference FP (large Stokes shift LSSmOrange) within a reporter FP (circularly permuted green FP). GO- Matryoshka yields green and orange fluorescence upon blue excitation. As proof of concept, we converted existing, single-emission biosensors into a series of ratiometric calcium sensors (MatryoshCaMP6s) and ammonium transport activity sensors (AmTryoshka1;3). We additionally identified the internal acid-base equilibrium as a key determinant of the GCaMP dynamic range. Matryoshka technology promises flexibility in the design of a wide spectrum of ratiometric biosensors and expanded in vivo applications.Single fluorescent protein biosensors are susceptible to expression and instrumental artifacts. Here Ast et al. describe a dual fluorescent protein design whereby a reference fluorescent protein is nested within a reporter fluorescent protein to control for such artifacts while preserving sensitivity and dynamic range.

  13. A Wireless Fiber Photometry System Based on a High-Precision CMOS Biosensor With Embedded Continuous-Time Modulation.

    PubMed

    Khiarak, Mehdi Noormohammadi; Martianova, Ekaterina; Bories, Cyril; Martel, Sylvain; Proulx, Christophe D; De Koninck, Yves; Gosselin, Benoit

    2018-06-01

    Fluorescence biophotometry measurements require wide dynamic range (DR) and high-sensitivity laboratory apparatus. Indeed, it is often very challenging to accurately resolve the small fluorescence variations in presence of noise and high-background tissue autofluorescence. There is a great need for smaller detectors combining high linearity, high sensitivity, and high-energy efficiency. This paper presents a new biophotometry sensor merging two individual building blocks, namely a low-noise sensing front-end and a order continuous-time modulator (CTSDM), into a single module for enabling high-sensitivity and high energy-efficiency photo-sensing. In particular, a differential CMOS photodetector associated with a differential capacitive transimpedance amplifier-based sensing front-end is merged with an incremental order 1-bit CTSDM to achieve a large DR, low hardware complexity, and high-energy efficiency. The sensor leverages a hardware sharing strategy to simplify the implementation and reduce power consumption. The proposed CMOS biosensor is integrated within a miniature wireless head mountable prototype for enabling biophotometry with a single implantable fiber in the brain of live mice. The proposed biophotometry sensor is implemented in a 0.18- CMOS technology, consuming from a 1.8- supply voltage, while achieving a peak dynamic range of over a 50- input bandwidth, a sensitivity of 24 mV/nW, and a minimum detectable current of 2.46- at a 20- sampling rate.

  14. Snow drift: acoustic sensors for avalanche warning and research

    NASA Astrophysics Data System (ADS)

    Lehning, M.; Naaim, F.; Naaim, M.; Brabec, B.; Doorschot, J.; Durand, Y.; Guyomarc'h, G.; Michaux, J.-L.; Zimmerli, M.

    Based on wind tunnel measurements at the CSTB (Jules Verne) facility in Nantes and based on field observations at the SLF experimental site Versuchsfeld Weissfluhjoch, two acoustic wind drift sensors are evaluated against different mechanical snow traps and one optical snow particle counter. The focus of the work is the suitability of the acoustic sensors for applications such as avalanche warning and research. Although the acoustic sensors have not yet reached the accuracy required for typical research applications, they can, however, be useful for snow drift monitoring to help avalanche forecasters. The main problem of the acoustic sensors is a difficult calibration that has to take into account the variable snow properties. Further difficulties arise from snow fall and high wind speeds. However, the sensor is robust and can be operated remotely under harsh conditions. It is emphasized that due to the lack of an accurate reference method for snow drift measurements, all sensors play a role in improving and evaluating snow drift models. Finally, current operational snow drift models and snow drift sensors are compared with respect to their usefulness as an aid for avalanche warning. While drift sensors always make a point measurement, the models are able to give a more representative drift index that is valid for a larger area. Therefore, models have the potential to replace difficult observations such as snow drift in operational applications. Current models on snow drift are either only applicable in flat terrain, are still too complex for an operational application (Lehning et al., 2000b), or offer only limited information on snow drift, such as the SNOWPACK drift index (Lehning et al., 2000a). On the other hand, snow drift is also difficult to measure. While mechanical traps (Mellor 1960; Budd et al., 1966) are probably still the best reference, they require more or less continuous manual operation and are thus not suitable for remote locations or long-term monitoring. Optical sensors (Schmidt, 1977; Brown and Pomeroy, 1989; Sato and Kimura, 1993) have been very successful for research applications, but suffer from the fact that they give a single flux value at one specific height. In addition, they have not been used, to our knowledge, for long-term monitoring applications or at remote sites. New developments of acoustic sensors have taken place recently (Chritin et al., 1999; Font et al., 1998). Jaedicke (2001) gives examples of possible applications of acoustic snow drift sensors. He emphasizes the advantages of acoustic sensors for snow drift monitoring at remote locations, but could not present any evaluation of the accuracy of the measurements. We present a complete evaluation of the new acoustic sensors for snow drift and discuss their applications for research or avalanche warning. We compare the suitability of sensors for operational applications.

  15. A Novel Multi-Aperture Based Sun Sensor Based on a Fast Multi-Point MEANSHIFT (FMMS) Algorithm

    PubMed Central

    You, Zheng; Sun, Jian; Xing, Fei; Zhang, Gao-Fei

    2011-01-01

    With the current increased widespread interest in the development and applications of micro/nanosatellites, it was found that we needed to design a small high accuracy satellite attitude determination system, because the star trackers widely used in large satellites are large and heavy, and therefore not suitable for installation on micro/nanosatellites. A Sun sensor + magnetometer is proven to be a better alternative, but the conventional sun sensor has low accuracy, and cannot meet the requirements of the attitude determination systems of micro/nanosatellites, so the development of a small high accuracy sun sensor with high reliability is very significant. This paper presents a multi-aperture based sun sensor, which is composed of a micro-electro-mechanical system (MEMS) mask with 36 apertures and an active pixels sensor (APS) CMOS placed below the mask at a certain distance. A novel fast multi-point MEANSHIFT (FMMS) algorithm is proposed to improve the accuracy and reliability, the two key performance features, of an APS sun sensor. When the sunlight illuminates the sensor, a sun spot array image is formed on the APS detector. Then the sun angles can be derived by analyzing the aperture image location on the detector via the FMMS algorithm. With this system, the centroid accuracy of the sun image can reach 0.01 pixels, without increasing the weight and power consumption, even when some missing apertures and bad pixels appear on the detector due to aging of the devices and operation in a harsh space environment, while the pointing accuracy of the single-aperture sun sensor using the conventional correlation algorithm is only 0.05 pixels. PMID:22163770

  16. Functionalization and Characterization of Nanomaterial Gated Field-Effect Transistor-Based Biosensors and the Design of a Multi-Analyte Implantable Biosensing Platform

    NASA Astrophysics Data System (ADS)

    Croce, Robert A., Jr.

    Advances in semiconductor research and complementary-metal-oxide semiconductor fabrication allow for the design and implementation of miniaturized metabolic monitoring systems, as well as advanced biosensor design. The first part of this dissertation will focus on the design and fabrication of nanomaterial (single-walled carbon nanotube and quantum dot) gated field-effect transistors configured as protein sensors. These novel device structures have been functionalized with single-stranded DNA aptamers, and have shown sensor operation towards the protein Thrombin. Such advanced transistor-based sensing schemes present considerable advantages over traditional sensing methodologies in view of its miniaturization, low cost, and facile fabrication, paving the way for the ultimate realization of a multi-analyte lab-on-chip. The second part of this dissertation focuses on the design and fabrication of a needle-implantable glucose sensing platform which is based solely on photovoltaic powering and optical communication. By employing these powering and communication schemes, this design negates the need for bulky on-chip RF-based transmitters and batteries in an effort to attain extreme miniaturization required for needle-implantable/extractable applications. A complete single-sensor system coupled with a miniaturized amperometric glucose sensor has been demonstrated to exhibit reality of this technology. Furthermore, an optical selection scheme of multiple potentiostats for four different analytes (glucose, lactate, O 2 and CO2) as well as the optical transmission of sensor data has been designed for multi-analyte applications. The last part of this dissertation will focus on the development of a computational model for the amperometric glucose sensors employed in the aforementioned implantable platform. This model has been applied to single-layer single-enzyme systems, as well as multi-layer (single enzyme) systems utilizing glucose flux limiting layer-by-layer assembled outer membranes. The concentration of glucose and hydrogen peroxide within the sensor geometry, the transient response and the device response time has been simulated for both systems.

  17. Automated Cryocooler Monitor and Control System

    NASA Technical Reports Server (NTRS)

    Britcliffe, Michael J.; Hanscon, Theodore R.; Fowler, Larry E.

    2011-01-01

    A system was designed to automate cryogenically cooled low-noise amplifier systems used in the NASA Deep Space Network. It automates the entire operation of the system including cool-down, warm-up, and performance monitoring. The system is based on a single-board computer with custom software and hardware to monitor and control the cryogenic operation of the system. The system provides local display and control, and can be operated remotely via a Web interface. The system controller is based on a commercial single-board computer with onboard data acquisition capability. The commercial hardware includes a microprocessor, an LCD (liquid crystal display), seven LED (light emitting diode) displays, a seven-key keypad, an Ethernet interface, 40 digital I/O (input/output) ports, 11 A/D (analog to digital) inputs, four D/A (digital to analog) outputs, and an external relay board to control the high-current devices. The temperature sensors used are commercial silicon diode devices that provide a non-linear voltage output proportional to temperature. The devices are excited with a 10-microamp bias current. The system is capable of monitoring and displaying three temperatures. The vacuum sensors are commercial thermistor devices. The output of the sensors is a non-linear voltage proportional to vacuum pressure in the 1-Torr to 1-millitorr range. Two sensors are used. One measures the vacuum pressure in the cryocooler and the other the pressure at the input to the vacuum pump. The helium pressure sensor is a commercial device that provides a linear voltage output from 1 to 5 volts, corresponding to a gas pressure from 0 to 3.5 MPa (approx. = 500 psig). Control of the vacuum process is accomplished with a commercial electrically operated solenoid valve. A commercial motor starter is used to control the input power of the compressor. The warm-up heaters are commercial power resistors sized to provide the appropriate power for the thermal mass of the particular system, and typically provide 50 watts of heat. There are four basic operating modes. "Cool " mode commands the system to cool to normal operating temperature. "Heat " mode is used to warm the device to a set temperature near room temperature. "Pump " mode is a maintenance function that allows the vacuum system to be operated alone to remove accumulated contaminants from the vacuum area. In "Off " mode, no power is applied to the system.

  18. Distributed temperature sensor testing in liquid sodium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerardi, Craig; Bremer, Nathan; Lisowski, Darius

    Rayleigh-backscatter-based distributed fiber optic sensors were immersed in sodium to obtain high-resolution liquid-sodium temperature measurements. Distributed temperature sensors (DTSs) functioned well up to 400°C in a liquid sodium environment. The DTSs measured sodium column temperature and the temperature of a complex geometrical pattern that leveraged the flexibility of fiber optics. A single Ø 360 lm OD sensor registered dozens of temperatures along a length of over one meter at 100 Hz. We also demonstrated the capability to use a single DTS to simultaneously detect thermal interfaces (e.g. sodium level) and measure temperature.

  19. Driving in traffic: short-range sensing for urban collision avoidance

    NASA Astrophysics Data System (ADS)

    Thorpe, Chuck E.; Duggins, David F.; Gowdy, Jay W.; MacLaughlin, Rob; Mertz, Christoph; Siegel, Mel; Suppe, Arne; Wang, Chieh-Chih; Yata, Teruko

    2002-07-01

    Intelligent vehicles are beginning to appear on the market, but so far their sensing and warning functions only work on the open road. Functions such as runoff-road warning or adaptive cruise control are designed for the uncluttered environments of open highways. We are working on the much more difficult problem of sensing and driver interfaces for driving in urban areas. We need to sense cars and pedestrians and curbs and fire plugs and bicycles and lamp posts; we need to predict the paths of our own vehicle and of other moving objects; and we need to decide when to issue alerts or warnings to both the driver of our own vehicle and (potentially) to nearby pedestrians. No single sensor is currently able to detect and track all relevant objects. We are working with radar, ladar, stereo vision, and a novel light-stripe range sensor. We have installed a subset of these sensors on a city bus, driving through the streets of Pittsburgh on its normal runs. We are using different kinds of data fusion for different subsets of sensors, plus a coordinating framework for mapping objects at an abstract level.

  20. A carbon nanotube based resettable sensor for measuring free chlorine in drinking water

    NASA Astrophysics Data System (ADS)

    Hsu, Leo H. H.; Hoque, Enamul; Kruse, Peter; Ravi Selvaganapathy, P.

    2015-02-01

    Free chlorine from dissolved chlorine gas is widely used as a disinfectant for drinking water. The residual chlorine concentration has to be continuously monitored and accurately controlled in a certain range around 0.5-2 mg/l to ensure drinking water safety and quality. However, simple, reliable, and reagent free monitoring devices are currently not available. Here, we present a free chlorine sensor that uses oxidation of a phenyl-capped aniline tetramer (PCAT) to dope single wall carbon nanotubes (SWCNTs) and to change their resistance. The oxidation of PCAT by chlorine switches the PCAT-SWCNT system into a low resistance (p-doped) state which can be detected by probing it with a small voltage. The change in resistance is found to be proportional to the log-scale concentration of the free chlorine in the sample. The p-doping of the PCAT-SWCNT film then can be electrochemically reversed by polarizing it cathodically. This sensor not only shows good sensing response in the whole concentration range of free chlorine in drinking water but is also able to be electrochemically reset back many times without the use of any reagents. This simple sensor is ideally suited for measuring free chlorine in drinking water continuously.

  1. Augmented switching linear dynamical system model for gas concentration estimation with MOX sensors in an open sampling system.

    PubMed

    Di Lello, Enrico; Trincavelli, Marco; Bruyninckx, Herman; De Laet, Tinne

    2014-07-11

    In this paper, we introduce a Bayesian time series model approach for gas concentration estimation using Metal Oxide (MOX) sensors in Open Sampling System (OSS). Our approach focuses on the compensation of the slow response of MOX sensors, while concurrently solving the problem of estimating the gas concentration in OSS. The proposed Augmented Switching Linear System model allows to include all the sources of uncertainty arising at each step of the problem in a single coherent probabilistic formulation. In particular, the problem of detecting on-line the current sensor dynamical regime and estimating the underlying gas concentration under environmental disturbances and noisy measurements is formulated and solved as a statistical inference problem. Our model improves, with respect to the state of the art, where system modeling approaches have been already introduced, but only provided an indirect relative measures proportional to the gas concentration and the problem of modeling uncertainty was ignored. Our approach is validated experimentally and the performances in terms of speed of and quality of the gas concentration estimation are compared with the ones obtained using a photo-ionization detector.

  2. Augmented Switching Linear Dynamical System Model for Gas Concentration Estimation with MOX Sensors in an Open Sampling System

    PubMed Central

    Di Lello, Enrico; Trincavelli, Marco; Bruyninckx, Herman; De Laet, Tinne

    2014-01-01

    In this paper, we introduce a Bayesian time series model approach for gas concentration estimation using Metal Oxide (MOX) sensors in Open Sampling System (OSS). Our approach focuses on the compensation of the slow response of MOX sensors, while concurrently solving the problem of estimating the gas concentration in OSS. The proposed Augmented Switching Linear System model allows to include all the sources of uncertainty arising at each step of the problem in a single coherent probabilistic formulation. In particular, the problem of detecting on-line the current sensor dynamical regime and estimating the underlying gas concentration under environmental disturbances and noisy measurements is formulated and solved as a statistical inference problem. Our model improves, with respect to the state of the art, where system modeling approaches have been already introduced, but only provided an indirect relative measures proportional to the gas concentration and the problem of modeling uncertainty was ignored. Our approach is validated experimentally and the performances in terms of speed of and quality of the gas concentration estimation are compared with the ones obtained using a photo-ionization detector. PMID:25019637

  3. Haptic seat for fuel economy feedback

    DOEpatents

    Bobbitt, III, John Thomas

    2016-08-30

    A process of providing driver fuel economy feedback is disclosed in which vehicle sensors provide for haptic feedback on fuel usage. Such sensors may include one or more of a speed sensors, global position satellite units, vehicle pitch/roll angle sensors, suspension displacement sensors, longitudinal accelerometer sensors, throttle position in sensors, steering angle sensors, break pressure sensors, and lateral accelerometer sensors. Sensors used singlely or collectively can provide enhanced feedback as to various environmental conditions and operating conditions such that a more accurate assessment of fuel economy information can be provided to the driver.

  4. The Design of a Single-Bit CMOS Image Sensor for Iris Recognition Applications

    PubMed Central

    Park, Keunyeol; Song, Minkyu

    2018-01-01

    This paper presents a single-bit CMOS image sensor (CIS) that uses a data processing technique with an edge detection block for simple iris segmentation. In order to recognize the iris image, the image sensor conventionally captures high-resolution image data in digital code, extracts the iris data, and then compares it with a reference image through a recognition algorithm. However, in this case, the frame rate decreases by the time required for digital signal conversion of multi-bit digital data through the analog-to-digital converter (ADC) in the CIS. In order to reduce the overall processing time as well as the power consumption, we propose a data processing technique with an exclusive OR (XOR) logic gate to obtain single-bit and edge detection image data instead of multi-bit image data through the ADC. In addition, we propose a logarithmic counter to efficiently measure single-bit image data that can be applied to the iris recognition algorithm. The effective area of the proposed single-bit image sensor (174 × 144 pixel) is 2.84 mm2 with a 0.18 μm 1-poly 4-metal CMOS image sensor process. The power consumption of the proposed single-bit CIS is 2.8 mW with a 3.3 V of supply voltage and 520 frame/s of the maximum frame rates. The error rate of the ADC is 0.24 least significant bit (LSB) on an 8-bit ADC basis at a 50 MHz sampling frequency. PMID:29495273

  5. The Design of a Single-Bit CMOS Image Sensor for Iris Recognition Applications.

    PubMed

    Park, Keunyeol; Song, Minkyu; Kim, Soo Youn

    2018-02-24

    This paper presents a single-bit CMOS image sensor (CIS) that uses a data processing technique with an edge detection block for simple iris segmentation. In order to recognize the iris image, the image sensor conventionally captures high-resolution image data in digital code, extracts the iris data, and then compares it with a reference image through a recognition algorithm. However, in this case, the frame rate decreases by the time required for digital signal conversion of multi-bit digital data through the analog-to-digital converter (ADC) in the CIS. In order to reduce the overall processing time as well as the power consumption, we propose a data processing technique with an exclusive OR (XOR) logic gate to obtain single-bit and edge detection image data instead of multi-bit image data through the ADC. In addition, we propose a logarithmic counter to efficiently measure single-bit image data that can be applied to the iris recognition algorithm. The effective area of the proposed single-bit image sensor (174 × 144 pixel) is 2.84 mm² with a 0.18 μm 1-poly 4-metal CMOS image sensor process. The power consumption of the proposed single-bit CIS is 2.8 mW with a 3.3 V of supply voltage and 520 frame/s of the maximum frame rates. The error rate of the ADC is 0.24 least significant bit (LSB) on an 8-bit ADC basis at a 50 MHz sampling frequency.

  6. Estimation of Image Sensor Fill Factor Using a Single Arbitrary Image

    PubMed Central

    Wen, Wei; Khatibi, Siamak

    2017-01-01

    Achieving a high fill factor is a bottleneck problem for capturing high-quality images. There are hardware and software solutions to overcome this problem. In the solutions, the fill factor is known. However, this is an industrial secrecy by most image sensor manufacturers due to its direct effect on the assessment of the sensor quality. In this paper, we propose a method to estimate the fill factor of a camera sensor from an arbitrary single image. The virtual response function of the imaging process and sensor irradiance are estimated from the generation of virtual images. Then the global intensity values of the virtual images are obtained, which are the result of fusing the virtual images into a single, high dynamic range radiance map. A non-linear function is inferred from the original and global intensity values of the virtual images. The fill factor is estimated by the conditional minimum of the inferred function. The method is verified using images of two datasets. The results show that our method estimates the fill factor correctly with significant stability and accuracy from one single arbitrary image according to the low standard deviation of the estimated fill factors from each of images and for each camera. PMID:28335459

  7. Broadband electromagnetic sensors for aircraft lightning research. [electromagnetic effects of lightning on aircraft digital equipment

    NASA Technical Reports Server (NTRS)

    Trost, T. F.; Zaepfel, K. P.

    1980-01-01

    A set of electromagnetic sensors, or electrically-small antennas, is described. The sensors are designed for installation on an F-106 research aircraft for the measurement of electric and magnetic fields and currents during a lightning strike. The electric and magnetic field sensors mount on the aircraft skin. The current sensor mounts between the nose boom and the fuselage. The sensors are all on the order of 10 cm in size and should produce up to about 100 V for the estimated lightning fields. The basic designs are the same as those developed for nuclear electromagnetic pulse studies. The most important electrical parameters of the sensors are the sensitivity, or equivalent area, and the bandwidth (or rise time). Calibration of sensors with simple geometries is reliably accomplished by a geometric analysis; all the sensors discussed possess geometries for which the sensitivities have been calculated. For the calibration of sensors with more complex geometries and for general testing of all sensors, two transmission lines were constructed to transmit known pulsed fields and currents over the sensors.

  8. Eddy Current Testing with Giant Magnetoresistance (GMR) Sensors and a Pipe-Encircling Excitation for Evaluation of Corrosion under Insulation

    PubMed Central

    Bailey, Joseph; Hunze, Arvid

    2017-01-01

    This work investigates an eddy current-based non-destructive testing (NDT) method to characterize corrosion of pipes under thermal insulation, one of the leading failure mechanisms for insulated pipe infrastructure. Artificial defects were machined into the pipe surface to simulate the effect of corrosion wall loss. We show that by using a giant magnetoresistance (GMR) sensor array and a high current (300 A), single sinusoidal low frequency (5–200 Hz) pipe-encircling excitation scheme it is possible to quantify wall loss defects without removing the insulation or weather shield. An analysis of the magnetic field distribution and induced currents was undertaken using the finite element method (FEM) and analytical calculations. Simple algorithms to remove spurious measured field variations not associated with defects were developed and applied. The influence of an aluminium weather shield with discontinuities and dents was ascertained and found to be small for excitation frequency values below 40 Hz. The signal dependence on the defect dimensions was analysed in detail. The excitation frequency at which the maximum field amplitude change occurred increased linearly with the depth of the defect by about 3 Hz/mm defect depth. The change in magnetic field amplitude due to defects for sensors aligned in the azimuthal and radial directions were measured and found to be linearly dependent on the defect volume between 4400–30,800 mm3 with 1.2 × 10−3−1.6 × 10−3 µT/mm3. The results show that our approach is well suited for measuring wall loss defects similar to the defects from corrosion under insulation. PMID:28956855

  9. Eddy Current Testing with Giant Magnetoresistance (GMR) Sensors and a Pipe-Encircling Excitation for Evaluation of Corrosion under Insulation.

    PubMed

    Bailey, Joseph; Long, Nicholas; Hunze, Arvid

    2017-09-28

    This work investigates an eddy current-based non-destructive testing (NDT) method to characterize corrosion of pipes under thermal insulation, one of the leading failure mechanisms for insulated pipe infrastructure. Artificial defects were machined into the pipe surface to simulate the effect of corrosion wall loss. We show that by using a giant magnetoresistance (GMR) sensor array and a high current (300 A), single sinusoidal low frequency (5-200 Hz) pipe-encircling excitation scheme it is possible to quantify wall loss defects without removing the insulation or weather shield. An analysis of the magnetic field distribution and induced currents was undertaken using the finite element method (FEM) and analytical calculations. Simple algorithms to remove spurious measured field variations not associated with defects were developed and applied. The influence of an aluminium weather shield with discontinuities and dents was ascertained and found to be small for excitation frequency values below 40 Hz. The signal dependence on the defect dimensions was analysed in detail. The excitation frequency at which the maximum field amplitude change occurred increased linearly with the depth of the defect by about 3 Hz/mm defect depth. The change in magnetic field amplitude due to defects for sensors aligned in the azimuthal and radial directions were measured and found to be linearly dependent on the defect volume between 4400-30,800 mm³ with 1.2 × 10 -3 -1.6 × 10 -3 µT/mm³. The results show that our approach is well suited for measuring wall loss defects similar to the defects from corrosion under insulation.

  10. Few-mode fiber based distributed curvature sensor through quasi-single-mode Brillouin frequency shift.

    PubMed

    Wu, Hao; Wang, Ruoxu; Liu, Deming; Fu, Songnian; Zhao, Can; Wei, Huifeng; Tong, Weijun; Shum, Perry Ping; Tang, Ming

    2016-04-01

    We proposed and demonstrated a few-mode fiber (FMF) based optical-fiber sensor for distributed curvature measurement through quasi-single-mode Brillouin frequency shift (BFS). By central-alignment splicing FMF and single-mode fiber (SMF) with a fusion taper, a SMF-components-compatible distributed curvature sensor based on FMF is realized using the conventional Brillouin optical time-domain analysis system. The distributed BFS change induced by bending in FMF has been theoretically and experimentally investigated. The precise BFS response to the curvature along the fiber link has been calibrated. A proof-of-concept experiment is implemented to validate its effectiveness in distributed curvature measurement.

  11. Planar SiC MEMS flame ionization sensor for in-engine monitoring

    NASA Astrophysics Data System (ADS)

    Rolfe, D. A.; Wodin-Schwartz, S.; Alonso, R.; Pisano, A. P.

    2013-12-01

    A novel planar silicon carbide (SiC) MEMS flame ionization sensor was developed, fabricated and tested to measure the presence of a flame from the surface of an engine or other cooled surface while withstanding the high temperature and soot of a combustion environment. Silicon carbide, a ceramic semiconductor, was chosen as the sensor material because it has low surface energy and excellent mechanical and electrical properties at high temperatures. The sensor measures the conductivity of scattered charge carriers in the flame's quenching layer. This allows for flame detection, even when the sensor is situated several millimetres from the flame region. The sensor has been shown to detect the ionization of premixed methane and butane flames in a wide temperature range starting from room temperature. The sensors can measure both the flame chemi-ionization and the deposition of water vapour on the sensor surface. The width and speed of a premixed methane laminar flame front were measured with a series of two sensors fabricated on a single die. This research points to the feasibility of using either single sensors or arrays in internal combustion engine cylinders to optimize engine performance, or for using sensors to monitor flame stability in gas turbine applications.

  12. Hybrid Raman/Brillouin-optical-time-domain-analysis-distributed optical fiber sensors based on cyclic pulse coding.

    PubMed

    Taki, M; Signorini, A; Oton, C J; Nannipieri, T; Di Pasquale, F

    2013-10-15

    We experimentally demonstrate the use of cyclic pulse coding for distributed strain and temperature measurements in hybrid Raman/Brillouin optical time-domain analysis (BOTDA) optical fiber sensors. The highly integrated proposed solution effectively addresses the strain/temperature cross-sensitivity issue affecting standard BOTDA sensors, allowing for simultaneous meter-scale strain and temperature measurements over 10 km of standard single mode fiber using a single narrowband laser source only.

  13. NEET Micro-Pocket Fission Detector. Final Project report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unruh, T.; Rempe, Joy; McGregor, Douglas

    2014-09-01

    A collaboration between the Idaho National Laboratory (INL), the Kansas State University (KSU), and the French Alternative Energies and Atomic Energy Commission, Commissariat à l'Énergie Atomique et aux Energies Alternatives, (CEA), is funded by the Nuclear Energy Enabling Technologies (NEET) program to develop and test Micro-Pocket Fission Detectors (MPFDs), which are compact fission chambers capable of simultaneously measuring thermal neutron flux, fast neutron flux and temperature within a single package. When deployed, these sensors will significantly advance flux detection capabilities for irradiation tests in US Material Test Reactors (MTRs). Ultimately, evaluations may lead to a more compact, more accurate, andmore » longer lifetime flux sensor for critical mock-ups, and high performance reactors, allowing several Department of Energy Office of Nuclear Energy (DOE-NE) programs to obtain higher accuracy/higher resolution data from irradiation tests of candidate new fuels and materials. Specifically, deployment of MPFDs will address several challenges faced in irradiations performed at MTRs: Current fission chamber technologies do not offer the ability to measure fast flux, thermal flux and temperature within a single compact probe; MPFDs offer this option. MPFD construction is very different than current fission chamber construction; the use of high temperature materials allow MPFDs to be specifically tailored to survive harsh conditions encountered in-core of high performance MTRs. The higher accuracy, high fidelity data available from the compact MPFD will significantly enhance efforts to validate new high-fidelity reactor physics codes and new multi-scale, multi-physics codes. MPFDs can be built with variable sensitivities to survive the lifetime of an experiment or fuel assembly in some MTRs, allowing for more efficient and cost effective power monitoring. The small size of the MPFDs allows multiple sensors to be deployed, offering the potential to accurately measure the flux and temperature profiles in the reactor. This report summarizes the status at the end of year two of this three year project. As documented in this report, all planned accomplishments for developing this unique new, compact, multipurpose sensor have been completed.« less

  14. Near Real-Time Monitoring of Forest Disturbance: A Multi-Sensor Remote Sensing Approach and Assessment Framework

    NASA Astrophysics Data System (ADS)

    Tang, Xiaojing

    Fast and accurate monitoring of tropical forest disturbance is essential for understanding current patterns of deforestation as well as helping eliminate illegal logging. This dissertation explores the use of data from different satellites for near real-time monitoring of forest disturbance in tropical forests, including: development of new monitoring methods; development of new assessment methods; and assessment of the performance and operational readiness of existing methods. Current methods for accuracy assessment of remote sensing products do not address the priority of near real-time monitoring of detecting disturbance events as early as possible. I introduce a new assessment framework for near real-time products that focuses on the timing and the minimum detectable size of disturbance events. The new framework reveals the relationship between change detection accuracy and the time needed to identify events. In regions that are frequently cloudy, near real-time monitoring using data from a single sensor is difficult. This study extends the work by Xin et al. (2013) and develops a new time series method (Fusion2) based on fusion of Landsat and MODIS (Moderate Resolution Imaging Spectroradiometer) data. Results of three test sites in the Amazon Basin show that Fusion2 can detect 44.4% of the forest disturbance within 13 clear observations (82 days) after the initial disturbance. The smallest event detected by Fusion2 is 6.5 ha. Also, Fusion2 detects disturbance faster and has less commission error than more conventional methods. In a comparison of coarse resolution sensors, MODIS Terra and Aqua combined provides faster and more accurate detection of disturbance events than VIIRS (Visible Infrared Imaging Radiometer Suite) and MODIS single sensor data. The performance of near real-time monitoring using VIIRS is slightly worse than MODIS Terra but significantly better than MODIS Aqua. New monitoring methods developed in this dissertation provide forest protection organizations the capacity to monitor illegal logging events promptly. In the future, combining two Landsat and two Sentinel-2 satellites will provide global coverage at 30 m resolution every 4 days, and routine monitoring may be possible at high resolution. The methods and assessment framework developed in this dissertation are adaptable to newly available datasets.

  15. RF current sensor

    DOEpatents

    Moore, James A.; Sparks, Dennis O.

    1998-11-10

    An RF sensor having a novel current sensing probe and a voltage sensing probe to measure voltage and current. The current sensor is disposed in a transmission line to link all of the flux generated by the flowing current in order to obtain an accurate measurement. The voltage sensor is a flat plate which operates as a capacitive plate to sense voltage on a center conductor of the transmission line, in which the measured voltage is obtained across a resistance leg of a R-C differentiator circuit formed by the characteristic impedance of a connecting transmission line and a capacitance of the plate, which is positioned proximal to the center conductor.

  16. Foam-machining tool with eddy-current transducer

    NASA Technical Reports Server (NTRS)

    Copper, W. P.

    1975-01-01

    Three-cutter machining system for foam-covered tanks incorporates eddy-current sensor. Sensor feeds signal to numerical controller which programs rotational and vertical axes of sensor travel, enabling cutterhead to profile around tank protrusions.

  17. Multisite Study of an Implanted Continuous Glucose Sensor Over 90 Days in Patients With Diabetes Mellitus.

    PubMed

    Dehennis, Andrew; Mortellaro, Mark A; Ioacara, Sorin

    2015-07-29

    Continuous glucose monitoring (CGM), which enables real-time glucose display and trend information as well as real-time alarms, can improve glycemic control and quality of life in patients with diabetes mellitus. Previous reports have described strategies to extend the useable lifetime of a single sensor from 1-2 weeks to 28 days. The present multisite study describes the characterization of a sensing platform achieving 90 days of continuous use for a single, fully implanted sensor. The Senseonics CGM system is composed of a long-term implantable glucose sensor and a wearable smart transmitter. Study subjects underwent subcutaneous implantation of sensors in the upper arm. Eight-hour clinic sessions were performed every 14 days, during which sensor glucose values were compared against venous blood lab reference measurements collected every 15 minutes using mean absolute relative differences (MARDs). All subjects (mean ± standard deviation age: 43.5 ± 11.0 years; with 10 sensors inserted in men and 14 in women) had type 1 diabetes mellitus. Most (22 of 24) sensors reported glucose values for the entire 90 days. The MARD value was 11.4 ± 2.7% (range, 8.1-19.5%) for reference glucose values between 40-400 mg/dl. There was no significant difference in MARD throughout the 90-day study (P = .31). No serious adverse events were noted. The Senseonics CGM, composed of an implantable sensor, external smart transmitter, and smartphone app, is the first system that uses a single sensor for continuous display of accurate glucose values for 3 months. © 2015 Diabetes Technology Society.

  18. Safe Glycemic Management during Closed-Loop Treatment of Type 1 Diabetes: The Role of Glucagon, Use of Multiple Sensors, and Compensation for Stress Hyperglycemia

    PubMed Central

    Ward, W Kenneth; Castle, Jessica R; Youssef, Joseph El

    2011-01-01

    Patients with type 1 diabetes mellitus (T1DM) must make frequent decisions and lifestyle adjustments in order to manage their disorder. Automated treatment would reduce the need for these self-management decisions and reduce the risk for long-term complications. Investigators in the field of closed-loop glycemic control systems are now moving from inpatient to outpatient testing of such systems. As outpatient systems are developed, the element of safety increases in importance. One such concern is the risk for hypoglycemia, due in part to the delayed onset and prolonged action duration of currently available subcutaneous insulin preparations. We found that, as compared to an insulin-only closed-loop system, a system that also delivers glucagon when needed led to substantially less hypoglycemia. Though the capability of glucagon delivery would mandate the need for a second hormone chamber, glucagon in small doses is tolerated very well. People with T1DM often develop hyperglycemia from emotional stress or medical stress. Automated closed-loop systems should be able to detect such changes in insulin sensitivity and adapt insulin delivery accordingly. We recently verified the adaptability of a model-based closed-loop system in which the gain factors that govern a proportional-integral-derivative-like system are adjusted according to frequently measured insulin sensitivity. Automated systems can be tested by physical exercise to increase glucose uptake and insulin sensitivity or by administering corticosteroids to reduce insulin sensitivity. Another source of risk in closed-loop systems is suboptimal performance of amperometric glucose sensors. Inaccuracy can result from calibration error, biofouling, and current drift. We found that concurrent use of more than one sensor typically leads to better sensor accuracy than use of a single sensor. For example, using the average of two sensors substantially reduces the proportion of large sensor errors. The use of more than two allows the use of voting algorithms, which can temporarily exclude a sensor whose signal is outlying. Elements such as the use of glucagon to minimize hypoglycemia, adaptation to changes in insulin sensitivity, and sensor redundancy will likely increase safety during outpatient use of closed-loop glycemic control systems. PMID:22226254

  19. Predictive sensor method and apparatus

    NASA Technical Reports Server (NTRS)

    Nail, William L. (Inventor); Koger, Thomas L. (Inventor); Cambridge, Vivien (Inventor)

    1990-01-01

    A predictive algorithm is used to determine, in near real time, the steady state response of a slow responding sensor such as hydrogen gas sensor of the type which produces an output current proportional to the partial pressure of the hydrogen present. A microprocessor connected to the sensor samples the sensor output at small regular time intervals and predicts the steady state response of the sensor in response to a perturbation in the parameter being sensed, based on the beginning and end samples of the sensor output for the current sample time interval.

  20. Toward a New Generation of Photonic Humidity Sensors

    PubMed Central

    Kolpakov, Stanislav A.; Gordon, Neil T.; Mou, Chengbo; Zhou, Kaiming

    2014-01-01

    This review offers new perspectives on the subject and highlights an area in need of further research. It includes an analysis of current scientific literature mainly covering the last decade and examines the trends in the development of electronic, acoustic and optical-fiber humidity sensors over this period. The major findings indicate that a new generation of sensor technology based on optical fibers is emerging. The current trends suggest that electronic humidity sensors could soon be replaced by sensors that are based on photonic structures. Recent scientific advances are expected to allow dedicated systems to avoid the relatively high price of interrogation modules that is currently a major disadvantage of fiber-based sensors. PMID:24577524

  1. Measurement of longitudinal strain and estimation of peel stress in adhesive-bonded single-lap joint of CFRP adherend using embedded FBG sensor

    NASA Astrophysics Data System (ADS)

    Ning, X.; Murayama, H.; Kageyama, K.; Uzawa, K.; Wada, D.

    2012-04-01

    In this research, longitudinal strain and peel stress in adhesive-bonded single-lap joint of carbon fiber reinforced plastics (CFRP) were measured and estimated by embedded fiber Bragg grating (FBG) sensor. Two unidirectional CFRP substrates were bonded by epoxy to form a single-lap configuration. The distributed strain measurement system is used. It is based on optical frequency domain reflectometry (OFDR), which can provide measurement at an arbitrary position along FBG sensors with the high spatial resolution. The longitudinal strain was measured based on Bragg grating effect and the peel stress was estimated based on birefringence effect. Special manufacturing procedure was developed to ensure the embedded location of FBG sensor. A portion of the FBG sensor was embedded into one of CFRP adherends along fiber direction and another portion was kept free for temperature compensation. Photomicrograph of cross-section of specimen was taken to verify the sensor was embedded into proper location after adherend curing. The residual strain was monitored during specimen curing and adhesive joint bonding process. Tensile tests were carried out and longitudinal strain and peel stress of the bondline are measured and estimated by the embedded FBG sensor. A two-dimensional geometrically nonlinear finite element analysis was performed by ANSYS to evaluate the measurement precision.

  2. A Carbon Nanotube Reporter of miRNA Hybridization Events In Vivo

    PubMed Central

    Harvey, Jackson D.; Jena, Prakrit V.; Baker, Hanan A.; Zerze, Gül H.; Williams, Ryan M.; Galassi, Thomas V.; Roxbury, Daniel; Mittal, Jeetain

    2017-01-01

    MicroRNAs and other small oligonucleotides in biofluids are promising disease biomarkers, yet conventional assays require complex processing steps that are unsuitable for point-of-care testing or for implantable or wearable sensors. Single-walled carbon nanotubes are an ideal material for implantable sensors, owing to their emission in the near-infrared spectral region, photostability and exquisite sensitivity. Here, we report an engineered carbon-nanotube-based sensor capable of real-time optical quantification of hybridization events of microRNA and other oligonucleotides. The mechanism of the sensor arises from competitive effects between displacement of both oligonucleotide charge groups and water from the nanotube surface, which result in a solvatochromism-like response. The sensor, which allows for detection via single-molecule sensor elements and for multiplexing by using multiple nanotube chiralities, can monitor toehold-based strand-displacement events, which reverse the sensor response and regenerate the sensor complex. We also show that the sensor functions in whole urine and serum, and can non-invasively measure DNA and microRNA after implantation in live mice. PMID:28845337

  3. A Carbon Nanotube Reporter of miRNA Hybridization Events In Vivo.

    PubMed

    Harvey, Jackson D; Jena, Prakrit V; Baker, Hanan A; Zerze, Gül H; Williams, Ryan M; Galassi, Thomas V; Roxbury, Daniel; Mittal, Jeetain; Heller, Daniel A

    2017-01-01

    MicroRNAs and other small oligonucleotides in biofluids are promising disease biomarkers, yet conventional assays require complex processing steps that are unsuitable for point-of-care testing or for implantable or wearable sensors. Single-walled carbon nanotubes are an ideal material for implantable sensors, owing to their emission in the near-infrared spectral region, photostability and exquisite sensitivity. Here, we report an engineered carbon-nanotube-based sensor capable of real-time optical quantification of hybridization events of microRNA and other oligonucleotides. The mechanism of the sensor arises from competitive effects between displacement of both oligonucleotide charge groups and water from the nanotube surface, which result in a solvatochromism-like response. The sensor, which allows for detection via single-molecule sensor elements and for multiplexing by using multiple nanotube chiralities, can monitor toehold-based strand-displacement events, which reverse the sensor response and regenerate the sensor complex. We also show that the sensor functions in whole urine and serum, and can non-invasively measure DNA and microRNA after implantation in live mice.

  4. A monolithic 640 × 512 CMOS imager with high-NIR sensitivity

    NASA Astrophysics Data System (ADS)

    Lauxtermann, Stefan; Fisher, John; McDougal, Michael

    2014-06-01

    In this paper we present first results from a backside illuminated CMOS image sensor that we fabricated on high resistivity silicon. Compared to conventional CMOS imagers, a thicker photosensitive membrane can be depleted when using silicon with low background doping concentration while maintaining low dark current and good MTF performance. The benefits of such a fully depleted silicon sensor are high quantum efficiency over a wide spectral range and a fast photo detector response. Combining these characteristics with the circuit complexity and manufacturing maturity available from a modern, mixed signal CMOS technology leads to a new type of sensor, with an unprecedented performance spectrum in a monolithic device. Our fully depleted, backside illuminated CMOS sensor was designed to operate at integration times down to 100nsec and frame rates up to 1000Hz. Noise in Integrate While Read (IWR) snapshot shutter operation for these conditions was simulated to be below 10e- at room temperature. 2×2 binning with a 4× increase in sensitivity and a maximum frame rate of 4000 Hz is supported. For application in hyperspectral imaging systems the full well capacity in each row can individually be programmed between 10ke-, 60ke- and 500ke-. On test structures we measured a room temperature dark current of 360pA/cm2 at a reverse bias of 3.3V. A peak quantum efficiency of 80% was measured with a single layer AR coating on the backside. Test images captured with the 50μm thick VGA imager between 30Hz and 90Hz frame rate show a strong response at NIR wavelengths.

  5. Tuned-circuit dual-mode Johnson noise thermometers

    NASA Astrophysics Data System (ADS)

    Shepard, R. L.; Carroll, R. M.; Falter, D. D.; Blalock, T. V.; Roberts, M. J.

    1992-02-01

    Dual-mode Johnson noise and direct current (DC) resistance thermometers can be used in control systems where prompt indications of temperature changes and long-term accuracy are needed. Such a thermometer is being developed for the SP-100 space nuclear electric power system that requires temperature measurement at 1400 K in space for 10 years, of which 7 are expected to be at full reactor power. Several direct coupled and transformer coupled, tuned resistance inductance capacitance (RLC) circuits that produce a single, continuous voltage signal were evaluated for noise temperature measurement. The simple direct coupled RLC circuit selected provides a mean squared noise voltage that depends only on the capacitance used and the temperature of the sensor, and it is independent of the value of or changes in the sensor resistance. These circuits provide a noise signal with long term accuracy but require integrating noise signals for a finite length of time. The four wire resistor for the noise temperature sensor allows simultaneous DC resistance measurements to be made that provide a prompt, continuous temperature indication signal. The DC current mode is employed continuously, and a noise voltage measurement is made periodically to correct the temperature indication. The differential noise voltage preamplifier used substantially reduces electromagnetic interference (EMI) in the system. A sensor has been tested that should provide good performance (+/- 1 percent accuracy) and long-term (10 year) reliability in space environments. Accurate noise temperature measurements were made at temperatures above 1300 K, where significant insulator shunting occurs, even though shunting does affect the dc resistance measurements and makes the system more susceptible to EMI.

  6. Scalable sensor management for automated fusion and tactical reconnaissance

    NASA Astrophysics Data System (ADS)

    Walls, Thomas J.; Wilson, Michael L.; Partridge, Darin C.; Haws, Jonathan R.; Jensen, Mark D.; Johnson, Troy R.; Petersen, Brad D.; Sullivan, Stephanie W.

    2013-05-01

    The capabilities of tactical intelligence, surveillance, and reconnaissance (ISR) payloads are expanding from single sensor imagers to integrated systems-of-systems architectures. Increasingly, these systems-of-systems include multiple sensing modalities that can act as force multipliers for the intelligence analyst. Currently, the separate sensing modalities operate largely independent of one another, providing a selection of operating modes but not an integrated intelligence product. We describe here a Sensor Management System (SMS) designed to provide a small, compact processing unit capable of managing multiple collaborative sensor systems on-board an aircraft. Its purpose is to increase sensor cooperation and collaboration to achieve intelligent data collection and exploitation. The SMS architecture is designed to be largely sensor and data agnostic and provide flexible networked access for both data providers and data consumers. It supports pre-planned and ad-hoc missions, with provisions for on-demand tasking and updates from users connected via data links. Management of sensors and user agents takes place over standard network protocols such that any number and combination of sensors and user agents, either on the local network or connected via data link, can register with the SMS at any time during the mission. The SMS provides control over sensor data collection to handle logging and routing of data products to subscribing user agents. It also supports the addition of algorithmic data processing agents for feature/target extraction and provides for subsequent cueing from one sensor to another. The SMS architecture was designed to scale from a small UAV carrying a limited number of payloads to an aircraft carrying a large number of payloads. The SMS system is STANAG 4575 compliant as a removable memory module (RMM) and can act as a vehicle specific module (VSM) to provide STANAG 4586 compliance (level-3 interoperability) to a non-compliant sensor system. The SMS architecture will be described and results from several flight tests and simulations will be shown.

  7. Fiber-Optic Sensor for Aircraft Lightning Current Measurement

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George G.; Mata, Carlos T.; Mata,Angel G.; Snyder, Gary P.

    2012-01-01

    An electric current sensor based on Faraday rotation effect in optical fiber was developed for measuring aircraft lightning current. Compared to traditional sensors, the design has many advantages including the ability to measure total current and to conform to structure geometries. The sensor is also small, light weight, non-conducting, safe from interference, and free of hysteresis and saturation. Potential applications include characterization of lightning current waveforms, parameters and paths, and providing environmental data for aircraft certifications. In an optical fiber as the sensing medium, light polarization rotates when exposed to a magnetic field in the direction of light propagation. By forming closed fiber loops around a conductor and applying Ampere s law, measuring the total light rotation yields the enclosed current. A reflective polarimetric scheme is used, where polarization change is measured after the polarized light travels round-trip through the sensing fiber. The sensor system was evaluated measuring rocket-triggered lightning over the 2011 summer. Early results compared very well against a reference current shunt resistor, demonstrating the sensor's accuracy and feasibility in a lightning environment. While later comparisons show gradually increasing amplitude deviations for an undetermined cause, the overall waveforms still compared very well.

  8. Fiber-Optic Sensor for Aircraft Lightning Current Measurement

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George G.; Mata, Carlos T.; Mata, Angel G.; Snyder, Gary P.

    2012-01-01

    An electric current sensor based on Faraday rotation effect in optical fiber was developed for measuring aircraft lightning current. Compared to traditional sensors, the design has many advantages including the ability to measure total current and to conform to structure geometries. The sensor is also small, light weight, non-conducting, safe from interference, and free of hysteresis and saturation. Potential applications include characterization of lightning current waveforms, parameters and paths, and providing environmental data for aircraft certifications. In an optical fiber as the sensing medium, light polarization rotates when exposed to a magnetic field in the direction of light propagation. By forming closed fiber loops around a conductor and applying Ampere s law, measuring the total light rotation yields the enclosed current. A reflective polarimetric scheme is used, where polarization change is measured after the polarized light travels round-trip through the sensing fiber. The sensor system was evaluated measuring rocket-triggered lightning over the 2011 summer. Early results compared very well against a reference current shunt resistor, demonstrating the sensor s accuracy and feasibility in a lightning environment. While later comparisons show gradually increasing amplitude deviations for an undetermined cause, the overall waveforms still compared very well.

  9. Validation of a new micro-manometer pressure sensor for cardiovascular measurements in mice.

    PubMed

    Trevino, Rodolfo J; Jones, Douglas L; Escobedo, Daniel; Porterfield, John; Larson, Erik; Chisholm, Gary B; Barton, Amanda; Feldman, Marc D

    2010-01-01

    Abstract The Scisense (London, ON, Canada) micro-manometer pressure sensor is currently being used by investigators to evaluate cardiovascular physiology in mice, but has not been validated to date. The purpose of the current study is to compare the 1.2 F Scisense pressure sensor to the current gold standard produced by Millar Instruments (Houston, TX) (1.4 F). In vitro comparisons were preformed including temperature drift, frequency response analysis up to 250 Hz, and damping coefficient and natural frequency determined via a pop test. The authors also performed in vivo comparisons including pressure drift, dose-response studies to IV isoproterenol, maximum adrenergic stimulation with IV dobutamine, and simultaneous placement of both micro-manometer pressure sensors in the same intact murine hearts. The authors conclude that both sensors are equivalent, and that the Scisense pressure sensor represents an alternative to the current gold standard, the Millar micro-manometer pressure sensor for in vivo pressure measurements in the mouse.

  10. Backside illuminated CMOS-TDI line scan sensor for space applications

    NASA Astrophysics Data System (ADS)

    Cohen, Omer; Ofer, Oren; Abramovich, Gil; Ben-Ari, Nimrod; Gershon, Gal; Brumer, Maya; Shay, Adi; Shamay, Yaron

    2018-05-01

    A multi-spectral backside illuminated Time Delayed Integration Radiation Hardened line scan sensor utilizing CMOS technology was designed for continuous scanning Low Earth Orbit small satellite applications. The sensor comprises a single silicon chip with 4 independent arrays of pixels where each array is arranged in 2600 columns with 64 TDI levels. A multispectral optical filter whose spectral responses per array are adjustable per system requirement is assembled at the package level. A custom 4T Pixel design provides the required readout speed, low-noise, very low dark current, and high conversion gains. A 2-phase internally controlled exposure mechanism improves the sensor's dynamic MTF. The sensor high level of integration includes on-chip 12 bit per pixel analog to digital converters, on-chip controller, and CMOS compatible voltage levels. Thus, the power consumption and the weight of the supporting electronics are reduced, and a simple electrical interface is provided. An adjustable gain provides a Full Well Capacity ranging from 150,000 electrons up to 500,000 electrons per column and an overall readout noise per column of less than 120 electrons. The imager supports line rates ranging from 50 to 10,000 lines/sec, with power consumption of less than 0.5W per array. Thus, the sensor is characterized by a high pixel rate, a high dynamic range and a very low power. To meet a Latch-up free requirement RadHard architecture and design rules were utilized. In this paper recent electrical and electro-optical measurements of the sensor's Flight Models will be presented for the first time.

  11. High Neutron Fluence Survivability Testing of Advanced Fiber Bragg Grating Sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fielder, Robert S.; Klemer, Daniel; Stinson-Bagby, Kelly L.

    2004-02-04

    The motivation for the reported research was to support NASA space nuclear power initiatives through the development of advanced fiber optic sensors for space-based nuclear power applications. The purpose of the high-neutron fluence testing was to demonstrate the survivability of fiber Bragg grating (FBG) sensors in a fission reactor environment. 520 FBGs were installed in the Ford reactor at the University of Michigan. The reactor was operated for 1012 effective full power hours resulting in a maximum neutron fluence of approximately 5x1019 n/cm2, and a maximum gamma dose of 2x103 MGy gamma. This work is significant in that, to themore » knowledge of the authors, the exposure levels obtained are approximately 1000 times higher than for any previously published experiment. Four different fiber compositions were evaluated. An 87% survival rate was observed for fiber Bragg gratings located at the fuel centerline. Optical Frequency Domain Reflectometry (OFDR), originally developed at the NASA Langley Research Center, can be used to interrogate several thousand low-reflectivity FBG strain and/or temperature sensors along a single optical fiber. A key advantage of the OFDR sensor technology for space nuclear power is the extremely low mass of the sensor, which consists of only a silica fiber 125{mu}m in diameter. The sensors produced using this technology will fill applications in nuclear power for current reactor plants, emerging Generation-IV reactors, and for space nuclear power. The reported research was conducted by Luna Innovations and was funded through a Small Business Innovative Research (SBIR) contract with the NASA Glenn Research Center.« less

  12. High Neutron Fluence Survivability Testing of Advanced Fiber Bragg Grating Sensors

    NASA Astrophysics Data System (ADS)

    Fielder, Robert S.; Klemer, Daniel; Stinson-Bagby, Kelly L.

    2004-02-01

    The motivation for the reported research was to support NASA space nuclear power initiatives through the development of advanced fiber optic sensors for space-based nuclear power applications. The purpose of the high-neutron fluence testing was to demonstrate the survivability of fiber Bragg grating (FBG) sensors in a fission reactor environment. 520 FBGs were installed in the Ford reactor at the University of Michigan. The reactor was operated for 1012 effective full power hours resulting in a maximum neutron fluence of approximately 5×1019 n/cm2, and a maximum gamma dose of 2×103 MGy gamma. This work is significant in that, to the knowledge of the authors, the exposure levels obtained are approximately 1000 times higher than for any previously published experiment. Four different fiber compositions were evaluated. An 87% survival rate was observed for fiber Bragg gratings located at the fuel centerline. Optical Frequency Domain Reflectometry (OFDR), originally developed at the NASA Langley Research Center, can be used to interrogate several thousand low-reflectivity FBG strain and/or temperature sensors along a single optical fiber. A key advantage of the OFDR sensor technology for space nuclear power is the extremely low mass of the sensor, which consists of only a silica fiber 125μm in diameter. The sensors produced using this technology will fill applications in nuclear power for current reactor plants, emerging Generation-IV reactors, and for space nuclear power. The reported research was conducted by Luna Innovations and was funded through a Small Business Innovative Research (SBIR) contract with the NASA Glenn Research Center.

  13. An Optical Method for Measuring Injection Timing in Diesel Engines, Using a Single Port

    DTIC Science & Technology

    2014-09-01

    23  2.  Displacement Sensor ..........................................................................24...29  5.  Laser ....................................................................................................31  6.  Lens- Sensor ...33  b.  Sensor ......................................................................................33  c.  Filter

  14. Single-sensor system for spatially resolved, continuous, and multiparametric optical mapping of cardiac tissue

    PubMed Central

    Lee, Peter; Bollensdorff, Christian; Quinn, T. Alexander; Wuskell, Joseph P.; Loew, Leslie M.; Kohl, Peter

    2011-01-01

    Background Simultaneous optical mapping of multiple electrophysiologically relevant parameters in living myocardium is desirable for integrative exploration of mechanisms underlying heart rhythm generation under normal and pathophysiologic conditions. Current multiparametric methods are technically challenging, usually involving multiple sensors and moving parts, which contributes to high logistic and economic thresholds that prevent easy application of the technique. Objective The purpose of this study was to develop a simple, affordable, and effective method for spatially resolved, continuous, simultaneous, and multiparametric optical mapping of the heart, using a single camera. Methods We present a new method to simultaneously monitor multiple parameters using inexpensive off-the-shelf electronic components and no moving parts. The system comprises a single camera, commercially available optical filters, and light-emitting diodes (LEDs), integrated via microcontroller-based electronics for frame-accurate illumination of the tissue. For proof of principle, we illustrate measurement of four parameters, suitable for ratiometric mapping of membrane potential (di-4-ANBDQPQ) and intracellular free calcium (fura-2), in an isolated Langendorff-perfused rat heart during sinus rhythm and ectopy, induced by local electrical or mechanical stimulation. Results The pilot application demonstrates suitability of this imaging approach for heart rhythm research in the isolated heart. In addition, locally induced excitation, whether stimulated electrically or mechanically, gives rise to similar ventricular propagation patterns. Conclusion Combining an affordable camera with suitable optical filters and microprocessor-controlled LEDs, single-sensor multiparametric optical mapping can be practically implemented in a simple yet powerful configuration and applied to heart rhythm research. The moderate system complexity and component cost is destined to lower the threshold to broader application of functional imaging and to ease implementation of more complex optical mapping approaches, such as multiparametric panoramic imaging. A proof-of-principle application confirmed that although electrically and mechanically induced excitation occur by different mechanisms, their electrophysiologic consequences downstream from the point of activation are not dissimilar. PMID:21459161

  15. Design of a 0-50 mbar pressure measurement channel compatible with the LHC tunnel radiation environment

    NASA Astrophysics Data System (ADS)

    Casas, Juan; Jelen, Dorota; Trikoupis, Nikolaos

    2017-02-01

    The monitoring of cryogenic facilities often require the measurement of pressure in the sub 5’000 Pa range that are used for flow metering applications, for saturated superfluid helium, etc. The pressure measurement is based on the minute displacement of a sensing diaphragm often through contactless techniques by using capacitive or inductive methods. The LHC radiation environment forbid the use of standard commercial sensors because of the embedded electronics that are affected both by radiation induced drift and transient Single Event Effects (SEE). Passive pressure sensors from two manufacturers were investigated and a CERN designed radiation-tolerant electronics has been developed for measuring variable-reluctance sensors. During the last maintenance stop of the LHC accelerator, four absolute pressure sensors were installed in some of the low pressure bayonet heat exchangers and four differential pressure sensors on the venturi flowmeters that monitor the cooling flow of the 20.5 kA current leads of the ATLAS end-cap superconducting toroids. The pressure sensors operating range is about 1000 to 5000 Pa and the targeted uncertainty is +/- 50 Pa which would permit to measure the equivalent saturation temperature at 1.8 K within better than 0.01 K. This paper describes the radiation hard measuring head that is based on an inductive bridge, its associated radiation-tolerant electronics that is installed under the LHC superconducting magnets or the ATLAS detector cavern; and the first operational experience.

  16. DNA-mediated strand displacement facilitates sensitive electronic detection of antibodies in human serums.

    PubMed

    Dou, Baoting; Yang, Jianmei; Shi, Kai; Yuan, Ruo; Xiang, Yun

    2016-09-15

    We describe here the development of a sensitive and convenient electronic sensor for the detection of antibodies in human serums. The sensor is constructed by self-assembly formation of a mixed monolayer containing the small molecule epitope conjugated double stranded DNA probes on gold electrode. The target antibody binds the epitope on the dsDNA probe and lowers the melting temperature of the duplex, which facilitates the displacement of the antibody-linked strand of the duplex probe by an invading methylene blue-tagged single stranded DNA (MB-ssDNA) through the strand displacement reaction and leads to the capture of many MB-ssDNA on the sensor surface. Subsequent electrochemical oxidation of the methylene blue labels results in amplified current response for sensitive monitoring of the antibodies. The antibody assay conditions are optimized and the sensor exhibits a linear range between 1.0 and 25.0nM with a detection limit of 0.67nM for the target antibody. The sensor is also selective and can be employed to detect the target antibodies in human serum samples. With the advantages of using small molecule epitope as the antibody recognition element over traditional antigen, the versatile manipulability of the DNA probes and the unique properties of the electrochemical transduction technique, the developed sensor thus hold great potential for simple and sensitive detection of different antibodies and other proteins in real samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. A robust approach for a filter-based monocular simultaneous localization and mapping (SLAM) system.

    PubMed

    Munguía, Rodrigo; Castillo-Toledo, Bernardino; Grau, Antoni

    2013-07-03

    Simultaneous localization and mapping (SLAM) is an important problem to solve in robotics theory in order to build truly autonomous mobile robots. This work presents a novel method for implementing a SLAM system based on a single camera sensor. The SLAM with a single camera, or monocular SLAM, is probably one of the most complex SLAM variants. In this case, a single camera, which is freely moving through its environment, represents the sole sensor input to the system. The sensors have a large impact on the algorithm used for SLAM. Cameras are used more frequently, because they provide a lot of information and are well adapted for embedded systems: they are light, cheap and power-saving. Nevertheless, and unlike range sensors, which provide range and angular information, a camera is a projective sensor providing only angular measurements of image features. Therefore, depth information (range) cannot be obtained in a single step. In this case, special techniques for feature system-initialization are needed in order to enable the use of angular sensors (as cameras) in SLAM systems. The main contribution of this work is to present a novel and robust scheme for incorporating and measuring visual features in filtering-based monocular SLAM systems. The proposed method is based in a two-step technique, which is intended to exploit all the information available in angular measurements. Unlike previous schemes, the values of parameters used by the initialization technique are derived directly from the sensor characteristics, thus simplifying the tuning of the system. The experimental results show that the proposed method surpasses the performance of previous schemes.

  18. An Architecture Framework for Orchestrating Context-Aware IT Ecosystems: A Case Study for Quantitative Evaluation †.

    PubMed

    Park, Soojin; Park, Sungyong; Park, Young B

    2018-02-12

    With the emergence of various forms of smart devices and new paradigms such as the Internet of Things (IoT) concept, the IT (Information Technology) service areas are expanding explosively compared to the provision of services by single systems. A new system operation concept that has emerged in accordance with such technical trends is the IT ecosystem. The IT ecosystem can be considered a special type of system of systems in which multiple systems with various degrees of autonomy achieve common goals while adapting to the given environment. The single systems that participate in the IT ecosystem adapt autonomously to the current situation based on collected data from sensors. Furthermore, to maintain the services supported by the whole IT ecosystem sustainably, the configuration of single systems that participate in the IT ecosystem also changes appropriately in accordance with the changed situation. In order to support the IT ecosystem, this paper proposes an architecture framework that supports dynamic configuration changes to achieve the goal of the whole IT ecosystem, while ensuring the autonomy of single systems through the collection of data from sensors so as to recognize the situational context of individual participating systems. For the feasibility evaluation of the proposed framework, a simulated example of an IT ecosystem for unmanned forest management was constructed, and the quantitative evaluation results are discussed in terms of the extent to which the proposed architecture framework can continuously provide sustainable services in response to diverse environmental context changes.

  19. An Architecture Framework for Orchestrating Context-Aware IT Ecosystems: A Case Study for Quantitative Evaluation †

    PubMed Central

    Park, Young B.

    2018-01-01

    With the emergence of various forms of smart devices and new paradigms such as the Internet of Things (IoT) concept, the IT (Information Technology) service areas are expanding explosively compared to the provision of services by single systems. A new system operation concept that has emerged in accordance with such technical trends is the IT ecosystem. The IT ecosystem can be considered a special type of system of systems in which multiple systems with various degrees of autonomy achieve common goals while adapting to the given environment. The single systems that participate in the IT ecosystem adapt autonomously to the current situation based on collected data from sensors. Furthermore, to maintain the services supported by the whole IT ecosystem sustainably, the configuration of single systems that participate in the IT ecosystem also changes appropriately in accordance with the changed situation. In order to support the IT ecosystem, this paper proposes an architecture framework that supports dynamic configuration changes to achieve the goal of the whole IT ecosystem, while ensuring the autonomy of single systems through the collection of data from sensors so as to recognize the situational context of individual participating systems. For the feasibility evaluation of the proposed framework, a simulated example of an IT ecosystem for unmanned forest management was constructed, and the quantitative evaluation results are discussed in terms of the extent to which the proposed architecture framework can continuously provide sustainable services in response to diverse environmental context changes. PMID:29439540

  20. Laser-induced forward transfer of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Palla-Papavlu, A.; Dinescu, M.; Wokaun, A.; Lippert, T.

    2014-10-01

    The objective of this work is the application of laser-induced forward transfer (LIFT) for the fabrication of chemiresistor sensors. The receiver substrate is an array with metal electrodes and the active materials placed by LIFT are single-walled carbon nanotubes (SWCNT). The functionality of such sensors depends on the geometry of the active material onto the metallic electrodes. First the best geometry for the sensing materials and electrodes was determined, including the optimization of the process parameters for printing uniform pixels of SWCNT onto the sensor electrodes. The sensors were characterized in terms of their sensing characteristics, i.e., upon exposure to ammonia, proving the feasibility of LIFT.

  1. Pointing Reference Scheme for Free-Space Optical Communications Systems

    NASA Technical Reports Server (NTRS)

    Wright, Malcolm; Ortiz, Gerardo; Jeganathan, Muthu

    2006-01-01

    A scheme is proposed for referencing the propagation direction of the transmit laser signal in pointing a free-space optical communications terminal. This recently developed scheme enables the use of low-cost, commercial silicon-based sensors for tracking the direction of the transmit laser, regardless of the transmit wavelength. Compared with previous methods, the scheme offers some advantages of less mechanical and optical complexity and avoids expensive and exotic sensor technologies. In free-space optical communications, the transmit beam must be accurately pointed toward the receiver in order to maintain the communication link. The current approaches to achieve this function call for part of the transmit beam to be split off and projected onto an optical sensor used to infer the pointed direction. This requires that the optical sensor be sensitive to the wavelength of the transmit laser. If a different transmit wavelength is desired, for example to obtain a source capable of higher data rates, this can become quite impractical because of the unavailability or inefficiency of sensors at these wavelengths. The innovation proposed here decouples this requirement by allowing any transmit wavelength to be used with any sensor. We have applied this idea to a particular system that transmits at the standard telecommunication wavelength of 1,550 nm and uses a silicon-based sensor, sensitive from 0.5 to 1.0 micrometers, to determine the pointing direction. The scheme shown in the figure involves integrating a low-power 980-nm reference or boresight laser beam coupled to the 1,550-nm transmit beam via a wavelength-division-multiplexed fiber coupler. Both of these signals propagate through the optical fiber where they achieve an extremely high level of co-alignment before they are launched into the telescope. The telescope uses a dichroic beam splitter to reflect the 980- nm beam onto the silicon image sensor (a quad detector, charge-coupled device, or active-pixel-sensor array) while the 1,550- nm signal beam is transmitted through the optical assembly toward the remotely located receiver. Since the 980-nm reference signal originates from the same single-mode fiber-coupled source as the transmit signal, its position on the sensor is used to accurately determine the propagation direction of the transmit signal. The optics are considerably simpler in the proposed scheme due to the use of a single aperture for transmitting and receiving. Moreover, the issue of mechanical misalignment does not arise because the reference signal and transmitted laser beams are inherently co-aligned. The beam quality of the 980-nm reference signal used for tracking is required to be circularly symmetric and stable at the tracking-plane sensor array in order to minimize error in the centroiding algorithm of the pointing system. However, since the transmit signal is delivered through a fiber that supports a single mode at 1,550 nm, propagation of higher order 980-nm modes is possible. Preliminary analysis shows that the overall mode profile is dominated by the fundamental mode, giving a near symmetric profile. The instability of the mode was also measured and found to be negligible in comparison to the other error contributions in the centroid position on the sensor array.

  2. Development and applications of 3-dimensional integration nanotechnologies.

    PubMed

    Kim, Areum; Choi, Eunmi; Son, Hyungbin; Pyo, Sung Gyu

    2014-02-01

    Unlike conventional two-dimensional (2D) planar structures, signal or power is supplied through through-silicon via (TSV) in three-dimensional (3D) integration technology to replace wires for binding the chip/wafer. TSVs have becomes an essential technology, as they satisfy Moore's law. This 3D integration technology enables system and sensor functions at a nanoscale via the implementation of a highly integrated nano-semiconductor as well as the fabrication of a single chip with multiple functions. Thus, this technology is considered to be a new area of development for the systemization of the nano-bio area. In this review paper, the basic technology required for such 3D integration is described and methods to measure the bonding strength in order to measure the void occurring during bonding are introduced. Currently, CMOS image sensors and memory chips associated with nanotechnology are being realized on the basis of 3D integration technology. In this paper, we intend to describe the applications of high-performance nano-biosensor technology currently under development and the direction of development of a high performance lab-on-a-chip (LOC).

  3. Direct Electrodeposition of Gold Nanoparticles on Glassy Carbon Electrode for Selective Determination Catechol in the Presence of Hydroquinone.

    PubMed

    Jayakumar, C; Magdalane, C Maria; Kaviyarasu, K; Kulandainathan, M Anbu; Jeyaraj, Boniface; Maaza, M

    2018-07-01

    A simple and reliable voltammetric sensor for simultaneous determination of Catechol (CT) and Hydroquinone (HQ) was developed by electrodepositing the gold nanoparticles on the surface of the Glassy Carbon Electrode (GCE). The cyclic voltammograms in a mixed solution of CT and HQ have shown that the oxidation peaks become well resolved and were separated by 110 mV, although the bare GCE gave a single broad oxidation peak. Moreover, the oxidation peak currents of both CT and HQ were remarkably increased three times in comparison with the bare GCE. This makes gold nanoparticles deposited GCE a suitable candidate for the determination of these isomers. In the presence of 1 mM HQ isomer, the oxidation peak currents of differential pulse voltammograms are proportional to the concentration of CT in the range of 21 μM to 323 μM with limit of detection 3.0 μM (S/N = 3). The proposed sensor has some important advantages such as low cost, ease of preparation, good stability and high reproducibility.

  4. A Novel, High-Resolution, High-Speed Fiber-Optic Temperature Sensor for Oceanographic Applications

    DTIC Science & Technology

    2015-05-11

    attached to the endface of a cleaved single-mode fiber using UV curable glue . A novel signal processing method has also been developed for the...thick Si wafer was bonded onto the tip of a single mode optical fiber using UV -curable glue . In addition to the sensor shown in Fig. 1(b), sensor...we developed a process to introduce much thicker silicon pieces onto the optical fiber tip. UV curable glue was first attached to the endface of

  5. Retrieving Land Surface Temperature and Emissivity from Multispectral and Hyperspectral Thermal Infrared Instruments

    NASA Astrophysics Data System (ADS)

    Hook, Simon; Hulley, Glynn; Nicholson, Kerry

    2017-04-01

    Land Surface Temperature and Emissivity (LST&E) data are critical variables for studying a variety of Earth surface processes and surface-atmosphere interactions such as evapotranspiration, surface energy balance and water vapor retrievals. LST&E have been identified as an important Earth System Data Record (ESDR) by NASA and many other international organizations Accurate knowledge of the LST&E is a key requirement for many energy balance models to estimate important surface biophysical variables such as evapotranspiration and plant-available soil moisture. LST&E products are currently generated from sensors in low earth orbit (LEO) such as the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the Terra and Aqua satellites as well as from sensors in geostationary Earth orbit (GEO) such as the Geostationary Operational Environmental Satellites (GOES) and airborne sensors such as the Hyperspectral Thermal Emission Spectrometer (HyTES). LST&E products are generated with varying accuracies depending on the input data, including ancillary data such as atmospheric water vapor, as well as algorithmic approaches. NASA has identified the need to develop long-term, consistent, and calibrated data and products that are valid across multiple missions and satellite sensors. We will discuss the different approaches that can be used to retrieve surface temperature and emissivity from multispectral and hyperspectral thermal infrared sensors using examples from a variety of different sensors such as those mentioned, and planned new sensors like the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) and the Hyperspectral Infrared Imager (HyspIRI). We will also discuss a project underway at NASA to develop a single unified product from some the individual sensor products and assess the errors associated with the product.

  6. Cryogenic High Pressure Sensor Module

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Shams, Qamar A. (Inventor); Powers, William T. (Inventor)

    1999-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  7. Cryogenic, Absolute, High Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  8. Simulation Study of the Localization of a Near-Surface Crack Using an Air-Coupled Ultrasonic Sensor Array

    PubMed Central

    Delrue, Steven; Aleshin, Vladislav; Sørensen, Mikael; De Lathauwer, Lieven

    2017-01-01

    The importance of Non-Destructive Testing (NDT) to check the integrity of materials in different fields of industry has increased significantly in recent years. Actually, industry demands NDT methods that allow fast (preferably non-contact) detection and localization of early-stage defects with easy-to-interpret results, so that even a non-expert field worker can carry out the testing. The main challenge is to combine as many of these requirements into one single technique. The concept of acoustic cameras, developed for low frequency NDT, meets most of the above-mentioned requirements. These cameras make use of an array of microphones to visualize noise sources by estimating the Direction Of Arrival (DOA) of the impinging sound waves. Until now, however, because of limitations in the frequency range and the lack of integrated nonlinear post-processing, acoustic camera systems have never been used for the localization of incipient damage. The goal of the current paper is to numerically investigate the capabilities of locating incipient damage by measuring the nonlinear airborne emission of the defect using a non-contact ultrasonic sensor array. We will consider a simple case of a sample with a single near-surface crack and prove that after efficient excitation of the defect sample, the nonlinear defect responses can be detected by a uniform linear sensor array. These responses are then used to determine the location of the defect by means of three different DOA algorithms. The results obtained in this study can be considered as a first step towards the development of a nonlinear ultrasonic camera system, comprising the ultrasonic sensor array as the hardware and nonlinear post-processing and source localization software. PMID:28441738

  9. Simulation and fabrication of a new novel 3D injectable biosensor for high throughput genomics and proteomics in a lab-on-a-chip device.

    PubMed

    Esfandyarpour, Rahim; Esfandyarpour, Hesaam; Harris, James S; Davis, Ronald W

    2013-11-22

    Biosensors are used for the detection of biochemical molecules such as proteins and nucleic acids. Traditional techniques, such as enzyme-linked immuno-sorbent assay (ELISA), are sensitive but require several hours to yield a result and usually require the attachment of a fluorophore molecule to the target molecule. Micromachined biosensors that employ electrical detection are now being developed. Here we describe one such device, which is ultrasensitive, real-time, label free and localized. It is called the nanoneedle biosensor and shows promise to overcome some of the current limitations of biosensors. The key element of this device is a 10 nm wide annular gap at the end of the needle, which is the sensitive part of the sensor. The total diameter of the sensor is about 100 nm. Any change in the population of molecules in this gap results in a change of impedance across the gap. Single molecule detection should be possible because the sensory part of the sensor is in the range of bio-molecules of interest. To increase throughput we can flow the solution containing the target molecules over an array of such structures, each with its own integrated read-out circuitry to allow 'real-time' detection (i.e. several minutes) of label free molecules without sacrificing sensitivity. To fabricate the arrays we used electron beam lithography together with associated pattern transfer techniques. Preliminary measurements on individual needle structures in water are consistent with the design. Since the proposed sensor has a rigid nano-structure, this technology, once fully developed, could ultimately be used to directly monitor protein quantities within a single living cell, an application that would have significant utility for drug screening and studying various intracellular signaling pathways.

  10. Simulation and fabrication of a new novel 3D injectable biosensor for high throughput genomics and proteomics in a lab-on-a-chip device

    NASA Astrophysics Data System (ADS)

    Esfandyarpour, Rahim; Esfandyarpour, Hesaam; Harris, James S.; Davis, Ronald W.

    2013-11-01

    Biosensors are used for the detection of biochemical molecules such as proteins and nucleic acids. Traditional techniques, such as enzyme-linked immuno-sorbent assay (ELISA), are sensitive but require several hours to yield a result and usually require the attachment of a fluorophore molecule to the target molecule. Micromachined biosensors that employ electrical detection are now being developed. Here we describe one such device, which is ultrasensitive, real-time, label free and localized. It is called the nanoneedle biosensor and shows promise to overcome some of the current limitations of biosensors. The key element of this device is a 10 nm wide annular gap at the end of the needle, which is the sensitive part of the sensor. The total diameter of the sensor is about 100 nm. Any change in the population of molecules in this gap results in a change of impedance across the gap. Single molecule detection should be possible because the sensory part of the sensor is in the range of bio-molecules of interest. To increase throughput we can flow the solution containing the target molecules over an array of such structures, each with its own integrated read-out circuitry to allow ‘real-time’ detection (i.e. several minutes) of label free molecules without sacrificing sensitivity. To fabricate the arrays we used electron beam lithography together with associated pattern transfer techniques. Preliminary measurements on individual needle structures in water are consistent with the design. Since the proposed sensor has a rigid nano-structure, this technology, once fully developed, could ultimately be used to directly monitor protein quantities within a single living cell, an application that would have significant utility for drug screening and studying various intracellular signaling pathways.

  11. Nanopore sensing of individual transcription factors bound to DNA

    PubMed Central

    Squires, Allison; Atas, Evrim; Meller, Amit

    2015-01-01

    Transcription factor (TF)-DNA interactions are the primary control point in regulation of gene expression. Characterization of these interactions is essential for understanding genetic regulation of biological systems and developing novel therapies to treat cellular malfunctions. Solid-state nanopores are a highly versatile class of single-molecule sensors that can provide rich information about local properties of long charged biopolymers using the current blockage patterns generated during analyte translocation, and provide a novel platform for characterization of TF-DNA interactions. The DNA-binding domain of the TF Early Growth Response Protein 1 (EGR1), a prototypical zinc finger protein known as zif268, is used as a model system for this study. zif268 adopts two distinct bound conformations corresponding to specific and nonspecific binding, according to the local DNA sequence. Here we implement a solid-state nanopore platform for direct, label- and tether-free single-molecule detection of zif268 bound to DNA. We demonstrate detection of single zif268 TFs bound to DNA according to current blockage sublevels and duration of translocation through the nanopore. We further show that the nanopore can detect and discriminate both specific and nonspecific binding conformations of zif268 on DNA via the distinct current blockage patterns corresponding to each of these two known binding modes. PMID:26109509

  12. Virtual reality visual feedback for hand-controlled scanning probe microscopy manipulation of single molecules.

    PubMed

    Leinen, Philipp; Green, Matthew F B; Esat, Taner; Wagner, Christian; Tautz, F Stefan; Temirov, Ruslan

    2015-01-01

    Controlled manipulation of single molecules is an important step towards the fabrication of single molecule devices and nanoscale molecular machines. Currently, scanning probe microscopy (SPM) is the only technique that facilitates direct imaging and manipulations of nanometer-sized molecular compounds on surfaces. The technique of hand-controlled manipulation (HCM) introduced recently in Beilstein J. Nanotechnol. 2014, 5, 1926-1932 simplifies the identification of successful manipulation protocols in situations when the interaction pattern of the manipulated molecule with its environment is not fully known. Here we present a further technical development that substantially improves the effectiveness of HCM. By adding Oculus Rift virtual reality goggles to our HCM set-up we provide the experimentalist with 3D visual feedback that displays the currently executed trajectory and the position of the SPM tip during manipulation in real time, while simultaneously plotting the experimentally measured frequency shift (Δf) of the non-contact atomic force microscope (NC-AFM) tuning fork sensor as well as the magnitude of the electric current (I) flowing between the tip and the surface. The advantages of the set-up are demonstrated by applying it to the model problem of the extraction of an individual PTCDA molecule from its hydrogen-bonded monolayer grown on Ag(111) surface.

  13. Nanopore sensing of individual transcription factors bound to DNA

    NASA Astrophysics Data System (ADS)

    Squires, Allison; Atas, Evrim; Meller, Amit

    2015-06-01

    Transcription factor (TF)-DNA interactions are the primary control point in regulation of gene expression. Characterization of these interactions is essential for understanding genetic regulation of biological systems and developing novel therapies to treat cellular malfunctions. Solid-state nanopores are a highly versatile class of single-molecule sensors that can provide rich information about local properties of long charged biopolymers using the current blockage patterns generated during analyte translocation, and provide a novel platform for characterization of TF-DNA interactions. The DNA-binding domain of the TF Early Growth Response Protein 1 (EGR1), a prototypical zinc finger protein known as zif268, is used as a model system for this study. zif268 adopts two distinct bound conformations corresponding to specific and nonspecific binding, according to the local DNA sequence. Here we implement a solid-state nanopore platform for direct, label- and tether-free single-molecule detection of zif268 bound to DNA. We demonstrate detection of single zif268 TFs bound to DNA according to current blockage sublevels and duration of translocation through the nanopore. We further show that the nanopore can detect and discriminate both specific and nonspecific binding conformations of zif268 on DNA via the distinct current blockage patterns corresponding to each of these two known binding modes.

  14. A design of optical measurement laboratory for space-based illumination condition emulation

    NASA Astrophysics Data System (ADS)

    Xu, Rong; Zhao, Fei; Yang, Xin

    2015-10-01

    Space Objects Identification(SOI) and related technology have aroused wide attention from spacefaring nations due to the increasingly severe space environment. Multiple ground-based assets have been employed to acquire statistical survey data, detect faint debris, acquire photometric and spectroscopic data. Great efforts have been made to characterize different space objects using the statistical data acquired by telescopes. Furthermore, detailed laboratory data are needed to optimize the characterization of orbital debris and satellites via material composition and potential rotation axes, which calls for a high-precision and flexible optical measurement system. A typical method of taking optical measurements of a space object(or model) is to move light source and sensors through every possible orientation around it and keep the target still. However, moving equipments to accurate orientations in the air is difficult, especially for those large precise instruments sensitive to vibrations. Here, a rotation structure of "3+1" axes, with a three-axis turntable manipulating attitudes of the target and the sensor revolving around a single axis, is utilized to emulate every possible illumination condition in space, which can also avoid the inconvenience of moving large aparatus. Firstly, the source-target-sensor orientation of a real satellite was analyzed with vectors and coordinate systems built to illustrate their spatial relationship. By bending the Reference Coordinate Frame to the Phase Angle plane, the sensor only need to revolve around a single axis while the other three degrees of freedom(DOF) are associated with the Euler's angles of the satellite. Then according to practical engineering requirements, an integrated rotation system of four-axis structure is brought forward. Schemetic diagrams of the three-axis turntable and other equipments show an overview of the future laboratory layout. Finally, proposals on evironment arrangements, light source precautions and sensor selections are provided. Comparing to current methods, this design shows better effects on device simplication, automatic control and high-precision measurement.

  15. Fiber optic and laser sensors IX; Proceedings of the Meeting, Boston, MA, Sept. 3-5, 1991

    NASA Technical Reports Server (NTRS)

    Depaula, Ramon P. (Editor); Udd, Eric (Editor)

    1991-01-01

    The present volume on fiber-optic and laser sensors discusses industrial applications of fiber-optic sensors, fiber-optic temperature sensors, fiber-optic current sensors, fiber-optic pressure/displacement/vibration sensors, and generic fiber-optic systems. Attention is given to a fiber-sensor design for turbine engines, fiber-optic remote Fourier transform IR spectroscopy, near-IR fiber-optic temperature sensors, and an intensity-type fiber-optic electric current sensor. Topics addressed include fiber-optic magnetic field sensors based on the Faraday effect in new materials, diaphragm size and sensitivity for fiber-optic pressure sensors, a microbend pressure sensor for high-temperature environments, and linear position sensing by light exchange between two lossy waveguides. Also discussed are two-mode elliptical-core fiber sensors for measurement of strain and temperature, a fiber-optic interferometric X-ray dosimeter, fiber-optic interferometric sensors using multimode fibers, and optical fiber sensing of corona discharges.

  16. Circular Array of Magnetic Sensors for Current Measurement: Analysis for Error Caused by Position of Conductor.

    PubMed

    Yu, Hao; Qian, Zheng; Liu, Huayi; Qu, Jiaqi

    2018-02-14

    This paper analyzes the measurement error, caused by the position of the current-carrying conductor, of a circular array of magnetic sensors for current measurement. The circular array of magnetic sensors is an effective approach for AC or DC non-contact measurement, as it is low-cost, light-weight, has a large linear range, wide bandwidth, and low noise. Especially, it has been claimed that such structure has excellent reduction ability for errors caused by the position of the current-carrying conductor, crosstalk current interference, shape of the conduction cross-section, and the Earth's magnetic field. However, the positions of the current-carrying conductor-including un-centeredness and un-perpendicularity-have not been analyzed in detail until now. In this paper, for the purpose of having minimum measurement error, a theoretical analysis has been proposed based on vector inner and exterior product. In the presented mathematical model of relative error, the un-center offset distance, the un-perpendicular angle, the radius of the circle, and the number of magnetic sensors are expressed in one equation. The comparison of the relative error caused by the position of the current-carrying conductor between four and eight sensors is conducted. Tunnel magnetoresistance (TMR) sensors are used in the experimental prototype to verify the mathematical model. The analysis results can be the reference to design the details of the circular array of magnetic sensors for current measurement in practical situations.

  17. The use of a gas chromatograph coupled to a metal oxide sensor for rapid assessment of stool samples from irritable bowel syndrome and inflammatory bowel disease patients

    PubMed Central

    Shepherd, S F; McGuire, N D; de Lacy Costello, B P J; Ewen, R J; Jayasena, D H; Vaughan, K; Ahmed, I; Probert, C S; Ratcliffe, N M

    2016-01-01

    There is much clinical interest in the development of a low cost and reliable test for diagnosing inflammatory bowel disease and irritable bowel syndrome, two very distinct diseases that can present with similar symptoms. The assessment of stool samples for the diagnosis of gastro-intestinal diseases is in principle an ideal non-invasive testing method. This paper presents an approach to stool analysis using headspace gas chromatography and a single metal oxide sensor coupled to artificial neural network (ANN) software. Currently the system is able to distinguish samples from patients with irritable bowel syndrome (IBS) from patients with inflammatory bowel disease (IBD) with a sensitivity and specificity of 76% and 88% respectively, with an overall mean predictive accuracy of 76%. PMID:24674940

  18. Innovative Embedded Fiber Sensor System for Spacecraft's Health in Situ Monitoring

    NASA Astrophysics Data System (ADS)

    Haddad, E.; Kruzelecky, R.; Zou, J.; Wong, B.; Mohammad, N.; Thatte, G.; Jamroz, W.; Riendeau, S.

    2009-01-01

    Monitoring of various parameters in satellites is desirable to provide the necessary information on the condition and status of the spacecraft and its various subsystems (AOCS, thermal, propulsion, power, mechanisms etc.) throughout its lifecycle. Fiber-Optic Bragg Grating (FBG) sensors represent an alternative to current technological approaches, enabling in situ distributed dynamic health monitoring, to provide a mapping of the spacecraft strain and temperature distributions, for varying operating and orbital conditions. In addition, these sensors may be implemented in the very early spacecraft fabrication stages, as built-in testing and diagnostic tools, and then used continuously through the mission phases until the end of the spacecraft mission. This can substantially reduce the cost of ground qualification and facilitate improved spacecraft design. MPBC has developed and ground qualified a demonstrator fiber sensor network, the Fiber Sensor Demonstrator (FSD) that has been successfully integrated with ESA's Proba-2. This is scheduled to launch in the fall of 2008, and will be the first complete fiber-optic sensing system in space. The advantages of the MPBC approach include a central interrogation system that can be used to control a multi-parameter sensing incorporating various types of sensors. Using a combination of both parallel signal distribution and serial wavelength division sensor multiplexing along single strands of optical fiber enables a high sensor capacity. In a continuous effort, MPB Communications (MPBC) is developing an innovative Embedded Distributed Fiber Sensor (EDFOS) within space composite structures. It addresses the challenges of embedding very thin fiber sensors within a selected material matrix, the decoupling of the strain and temperature effects on the fiber, and the sensor distribution. The embedded sensor approach allows the sensor system to follow the status of the space structure through its entire life cycle; from fabrication and assembly, to ground testing, to the space mission itself. By providing a history of the structure, any changes are more readily discernable, and the in situ sensor information can be used to further improve the design and reliability of the structure.

  19. Multiplexed Simultaneous High Sensitivity Sensors with High-Order Mode Based on the Integration of Photonic Crystal 1 × 3 Beam Splitter and Three Different Single-Slot PCNCs.

    PubMed

    Zhou, Jian; Huang, Lijun; Fu, Zhongyuan; Sun, Fujun; Tian, Huiping

    2016-07-07

    We simulated an efficient method for the sensor array of high-sensitivity single-slot photonic crystal nanobeam cavities (PCNCs) on a silicon platform. With the combination of a well-designed photonic crystal waveguide (PhCW) filter and an elaborate single-slot PCNC, a specific high-order resonant mode was filtered for sensing. A 1 × 3 beam splitter carefully established was implemented to split channels and integrate three sensors to realize microarrays. By applying the three-dimensional finite-difference-time-domain (3D-FDTD) method, the sensitivities calculated were S₁ = 492 nm/RIU, S₂ = 244 nm/RIU, and S₃ = 552 nm/RIU, respectively. To the best of our knowledge, this is the first multiplexing design in which each sensor cite features such a high sensitivity simultaneously.

  20. Multiplexed Simultaneous High Sensitivity Sensors with High-Order Mode Based on the Integration of Photonic Crystal 1 × 3 Beam Splitter and Three Different Single-Slot PCNCs

    PubMed Central

    Zhou, Jian; Huang, Lijun; Fu, Zhongyuan; Sun, Fujun; Tian, Huiping

    2016-01-01

    We simulated an efficient method for the sensor array of high-sensitivity single-slot photonic crystal nanobeam cavities (PCNCs) on a silicon platform. With the combination of a well-designed photonic crystal waveguide (PhCW) filter and an elaborate single-slot PCNC, a specific high-order resonant mode was filtered for sensing. A 1 × 3 beam splitter carefully established was implemented to split channels and integrate three sensors to realize microarrays. By applying the three-dimensional finite-difference-time-domain (3D-FDTD) method, the sensitivities calculated were S1 = 492 nm/RIU, S2 = 244 nm/RIU, and S3 = 552 nm/RIU, respectively. To the best of our knowledge, this is the first multiplexing design in which each sensor cite features such a high sensitivity simultaneously. PMID:27399712

  1. Integration of an optical CMOS sensor with a microfluidic channel allows a sensitive readout for biological assays in point-of-care tests.

    PubMed

    Van Dorst, Bieke; Brivio, Monica; Van Der Sar, Elfried; Blom, Marko; Reuvekamp, Simon; Tanzi, Simone; Groenhuis, Roelf; Adojutelegan, Adewole; Lous, Erik-Jan; Frederix, Filip; Stuyver, Lieven J

    2016-04-15

    In this manuscript, a microfluidic detection module, which allows a sensitive readout of biological assays in point-of-care (POC) tests, is presented. The proposed detection module consists of a microfluidic flow cell with an integrated Complementary Metal-Oxide-Semiconductor (CMOS)-based single photon counting optical sensor. Due to the integrated sensor-based readout, the detection module could be implemented as the core technology in stand-alone POC tests, for use in mobile or rural settings. The performance of the detection module was demonstrated in three assays: a peptide, a protein and an antibody detection assay. The antibody detection assay with readout in the detection module proved to be 7-fold more sensitive that the traditional colorimetric plate-based ELISA. The protein and peptide assay showed a lower limit of detection (LLOD) of 200 fM and 460 fM respectively. Results demonstrate that the sensitivity of the immunoassays is comparable with lab-based immunoassays and at least equal or better than current mainstream POC devices. This sensitive readout holds the potential to develop POC tests, which are able to detect low concentrations of biomarkers. This will broaden the diagnostic capabilities at the clinician's office and at patient's home, where currently only the less sensitive lateral flow and dipstick POC tests are implemented. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Ionization signals from diamond detectors in fast-neutron fields

    NASA Astrophysics Data System (ADS)

    Weiss, C.; Frais-Kölbl, H.; Griesmayer, E.; Kavrigin, P.

    2016-09-01

    In this paper we introduce a novel analysis technique for measurements with single-crystal chemical vapor deposition (sCVD) diamond detectors in fast-neutron fields. This method exploits the unique electronic property of sCVD diamond sensors that the signal shape of the detector current is directly proportional to the initial ionization profile. In fast-neutron fields the diamond sensor acts simultaneously as target and sensor. The interaction of neutrons with the stable isotopes 12 C and 13 C is of interest for fast-neutron diagnostics. The measured signal shapes of detector current pulses are used to identify individual types of interactions in the diamond with the goal to select neutron-induced reactions in the diamond and to suppress neutron-induced background reactions as well as γ-background. The method is verified with experimental data from a measurement in a 14.3 MeV neutron beam at JRC-IRMM, Geel/Belgium, where the 13C(n, α)10Be reaction was successfully extracted from the dominating background of recoil protons and γ-rays and the energy resolution of the 12C(n, α)9Be reaction was substantially improved. The presented analysis technique is especially relevant for diagnostics in harsh radiation environments, like fission and fusion reactors. It allows to extract the neutron spectrum from the background, and is particularly applicable to neutron flux monitoring and neutron spectroscopy.

  3. Sensor Compromise Detection in Multiple-Target Tracking Systems

    PubMed Central

    Doucette, Emily A.; Curtis, Jess W.

    2018-01-01

    Tracking multiple targets using a single estimator is a problem that is commonly approached within a trusted framework. There are many weaknesses that an adversary can exploit if it gains control over the sensors. Because the number of targets that the estimator has to track is not known with anticipation, an adversary could cause a loss of information or a degradation in the tracking precision. Other concerns include the introduction of false targets, which would result in a waste of computational and material resources, depending on the application. In this work, we study the problem of detecting compromised or faulty sensors in a multiple-target tracker, starting with the single-sensor case and then considering the multiple-sensor scenario. We propose an algorithm to detect a variety of attacks in the multiple-sensor case, via the application of finite set statistics (FISST), one-class classifiers and hypothesis testing using nonparametric techniques. PMID:29466314

  4. Low-cost rapid miniature optical pressure sensors for blast wave measurements.

    PubMed

    Wu, Nan; Wang, Wenhui; Tian, Ye; Zou, Xiaotian; Maffeo, Michael; Niezrecki, Christopher; Chen, Julie; Wang, Xingwei

    2011-05-23

    This paper presents an optical pressure sensor based on a Fabry-Perot (FP) interferometer formed by a 45° angle polished single mode fiber and an external silicon nitride diaphragm. The sensor is comprised of two V-shape grooves with different widths on a silicon chip, a silicon nitride diaphragm released on the surface of the wider V-groove, and a 45° angle polished single mode fiber. The sensor is especially suitable for blast wave measurements: its compact structure ensures a high spatial resolution; its thin diaphragm based design and the optical demodulation scheme allow a fast response to the rapid changing signals experienced during blast events. The sensor shows linearity with the correlation coefficient of 0.9999 as well as a hysteresis of less than 0.3%. The shock tube test demonstrated that the sensor has a rise time of less than 2 µs from 0 kPa to 140 kPa.

  5. A Glucose Biosensor Using CMOS Potentiostat and Vertically Aligned Carbon Nanofibers.

    PubMed

    Al Mamun, Khandaker A; Islam, Syed K; Hensley, Dale K; McFarlane, Nicole

    2016-08-01

    This paper reports a linear, low power, and compact CMOS based potentiostat for vertically aligned carbon nanofibers (VACNF) based amperometric glucose sensors. The CMOS based potentiostat consists of a single-ended potential control unit, a low noise common gate difference-differential pair transimpedance amplifier and a low power VCO. The potentiostat current measuring unit can detect electrochemical current ranging from 500 nA to 7 [Formula: see text] from the VACNF working electrodes with high degree of linearity. This current corresponds to a range of glucose, which depends on the fiber forest density. The potentiostat consumes 71.7 [Formula: see text] of power from a 1.8 V supply and occupies 0.017 [Formula: see text] of chip area realized in a 0.18 [Formula: see text] standard CMOS process.

  6. A Fully Integrated Sensor SoC with Digital Calibration Hardware and Wireless Transceiver at 2.4 GHz

    PubMed Central

    Kim, Dong-Sun; Jang, Sung-Joon; Hwang, Tae-Ho

    2013-01-01

    A single-chip sensor system-on-a-chip (SoC) that implements radio for 2.4 GHz, complete digital baseband physical layer (PHY), 10-bit sigma-delta analog-to-digital converter and dedicated sensor calibration hardware for industrial sensing systems has been proposed and integrated in a 0.18-μm CMOS technology. The transceiver's building block includes a low-noise amplifier, mixer, channel filter, receiver signal-strength indicator, frequency synthesizer, voltage-controlled oscillator, and power amplifier. In addition, the digital building block consists of offset quadrature phase-shift keying (OQPSK) modulation, demodulation, carrier frequency offset compensation, auto-gain control, digital MAC function, sensor calibration hardware and embedded 8-bit microcontroller. The digital MAC function supports cyclic redundancy check (CRC), inter-symbol timing check, MAC frame control, and automatic retransmission. The embedded sensor signal processing block consists of calibration coefficient calculator, sensing data calibration mapper and sigma-delta analog-to-digital converter with digital decimation filter. The sensitivity of the overall receiver and the error vector magnitude (EVM) of the overall transmitter are −99 dBm and 18.14%, respectively. The proposed calibration scheme has a reduction of errors by about 45.4% compared with the improved progressive polynomial calibration (PPC) method and the maximum current consumption of the SoC is 16 mA. PMID:23698271

  7. Asymmetric nanopore membranes: Single molecule detection and unique transport properties

    NASA Astrophysics Data System (ADS)

    Bishop, Gregory William

    Biological systems rely on the transport properties of transmembrane channels. Such pores can display selective transport by allowing the passage of certain ions or molecules while rejecting others. Recent advances in nanoscale fabrication have allowed the production of synthetic analogs of such channels. Synthetic nanopores (pores with a limiting dimension of 1--100 nm) can be produced in a variety of materials by several different methods. In the Martin group, we have been exploring the track-etch method to produce asymmetric nanopores in thin films of polymeric or crystalline materials. Asymmetric nanopores are of particular interest due to their ability to serve as ion-current rectifiers. This means that when a membrane that contains such a pore or collection of pores is used to separate identical portions of electrolyte solution, the magnitude of the ionic current will depend not only on the magnitude of the applied potential (as expected) but also the polarity. Ion-current rectification is characterized by an asymmetric current--potential response. Here, the interesting transport properties of asymmetric nanopores (ion-current rectification and the related phenomenon of electroosmotic flow rectification) are explored. The effects of pore shape and pore density on these phenomena are investigated. Membranes that contain a single nanopore can serve as platforms for the single-molecule sensing technique known as resistive pulse sensing. The resistive-pulse sensing method is based on the Coulter principle. Thus, the selectivity of the technique is based largely upon size, making the analysis of mixtures by this method difficult in many cases. Here, the surface of a single nanopore membrane is modified with a molecular recognition agent in an attempt to obtain a more selective resistive-pulse sensor for a specific analyte.

  8. A Bionic Camera-Based Polarization Navigation Sensor

    PubMed Central

    Wang, Daobin; Liang, Huawei; Zhu, Hui; Zhang, Shuai

    2014-01-01

    Navigation and positioning technology is closely related to our routine life activities, from travel to aerospace. Recently it has been found that Cataglyphis (a kind of desert ant) is able to detect the polarization direction of skylight and navigate according to this information. This paper presents a real-time bionic camera-based polarization navigation sensor. This sensor has two work modes: one is a single-point measurement mode and the other is a multi-point measurement mode. An indoor calibration experiment of the sensor has been done under a beam of standard polarized light. The experiment results show that after noise reduction the accuracy of the sensor can reach up to 0.3256°. It is also compared with GPS and INS (Inertial Navigation System) in the single-point measurement mode through an outdoor experiment. Through time compensation and location compensation, the sensor can be a useful alternative to GPS and INS. In addition, the sensor also can measure the polarization distribution pattern when it works in multi-point measurement mode. PMID:25051029

  9. Flexible surface acoustic wave strain sensor based on single crystalline LiNbO3 thin film

    NASA Astrophysics Data System (ADS)

    Xu, Hongsheng; Dong, Shurong; Xuan, Weipeng; Farooq, Umar; Huang, Shuyi; Li, Menglu; Wu, Ting; Jin, Hao; Wang, Xiaozhi; Luo, Jikui

    2018-02-01

    A flexible surface acoustic wave (SAW) strain sensor in the frequency range of 162-325 MHz was developed based on a single crystalline LiNbO3 thin film with dual resonance modes, namely, the Rayleigh mode and the thickness shear mode (TSM). This SAW sensor could handle a wide strain range up to ±3500 μɛ owing to its excellent flexibility, which is nearly six times the detecting range of bulk piezoelectric substrate based SAW strain sensors. The sensor exhibited a high sensitivity of 193 Hz/ μɛ with a maximum hysteresis less than 1.5%. The temperature coefficients of frequency, for Rayleigh and TSM modes, were -85 and -59 ppm/ °C , respectively. No visible deterioration was observed after cyclic bending for hundreds of times, showing its desirable stability and reliability. By utilizing the dual modes, the strain sensor with a self-temperature calibrated capability can be achieved. The results demonstrate that the sensor is an excellent candidate for strain sensing.

  10. Lightning Current Measurement with Fiber-Optic Sensor

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.; Mata, Carlos T.; Mata, Angel G.; Snyder, Gary P.

    2014-01-01

    A fiber-optic current sensor is successfully developed with many potential applications for electric current measurement. Originally developed for in-flight lightning measurement, the sensor utilizes Faraday Effect in an optical fiber. The Faraday Effect causes linear light polarization in a fiber to rotate when the fiber is exposed to a magnetic field. The polarization change is detected using a reflective polarimetric scheme. Forming fiber loops and applying Ampere's law, measuring the total light rotation results in the determination of the total current enclosed. The sensor is conformable to complex structure geometry. It is also non-conductive and immune to electromagnetic interference, saturation or hysteresis. Installation is non-intrusive, and the sensor can be safely routed through flammable areas. Two similar sensor systems are described in this paper. The first system operates at 1310nm laser wavelength and is capable of measuring approximately 300 A - 300 kA, a 60 dB range. Laboratory validation results of aircraft lighting direct and in-direct effect current amplitudes are reported for this sensor. The second system operates at 1550nm wavelength and can measure about 400 A - 400 kA. Triggered-lightning measurement data are presented for this system. Good results are achieved in all cases.

  11. Sensor Technology and Performance Characteristics

    EPA Science Inventory

    The US EPA is currently involved in detailed laboratory and/or field studies involving a wide variety of low cost air quality sensors currently being made available to potential citizen scientists. These devices include sensors associated with the monitoring of nitrogen dioxide (...

  12. The PIX-2 experiment: An overview

    NASA Astrophysics Data System (ADS)

    Purvis, C. K.

    1985-03-01

    The second Plasma Interactions Experiment (PIX-2) was launched in January 1983 as a piggyback on the second stage of the Delta launch vehicle that carried IRAS into orbit. Placed in a 870 km circular polar orbit, it returned 18 hrs of data on the plasma current collection and arcing behavior of solar arrays biased to +/-1000 V in steps. The four 500 sq cm solar array segments were biased singly and in combinations. In addition to the array segments PIX-2 carried a Sun sensor, a Langmuir probe to measure electron currents, and a hot-wire filament electron emitter to control vehicle potential during positive array bias sequences. The PIX-2 experiment is reviewed from program and operational perspectives.

  13. Methods for use in detecting seismic waves in a borehole

    DOEpatents

    West, Phillip B.; Fincke, James R.; Reed, Teddy R.

    2007-02-20

    The invention provides methods and apparatus for detecting seismic waves propagating through a subterranean formation surrounding a borehole. In a first embodiment, a sensor module uses the rotation of bogey wheels to extend and retract a sensor package for selective contact and magnetic coupling to casing lining the borehole. In a second embodiment, a sensor module is magnetically coupled to the casing wall during its travel and dragged therealong while maintaining contact therewith. In a third embodiment, a sensor module is interfaced with the borehole environment to detect seismic waves using coupling through liquid in the borehole. Two or more of the above embodiments may be combined within a single sensor array to provide a resulting seismic survey combining the optimum of the outputs of each embodiment into a single data set.

  14. A Single Electrochemical Probe Used for Analysis of Multiple Nucleic Acid Sequences

    PubMed Central

    Mills, Dawn M.; Calvo-Marzal, Percy; Pinzon, Jeffer M.; Armas, Stephanie; Kolpashchikov, Dmitry M.; Chumbimuni-Torres, Karin Y.

    2017-01-01

    Electrochemical hybridization sensors have been explored extensively for analysis of specific nucleic acids. However, commercialization of the platform is hindered by the need for attachment of separate oligonucleotide probes complementary to a RNA or DNA target to an electrode’s surface. Here we demonstrate that a single probe can be used to analyze several nucleic acid targets with high selectivity and low cost. The universal electrochemical four-way junction (4J)-forming (UE4J) sensor consists of a universal DNA stem-loop (USL) probe attached to the electrode’s surface and two adaptor strands (m and f) which hybridize to the USL probe and the analyte to form a 4J associate. The m adaptor strand was conjugated with a methylene blue redox marker for signal ON sensing and monitored using square wave voltammetry. We demonstrated that a single sensor can be used for detection of several different DNA/RNA sequences and can be regenerated in 30 seconds by a simple water rinse. The UE4J sensor enables a high selectivity by recognition of a single base substitution, even at room temperature. The UE4J sensor opens a venue for a re-useable universal platform that can be adopted at low cost for the analysis of DNA or RNA targets. PMID:29371782

  15. Integrated-optic current sensors with a multimode interference waveguide device.

    PubMed

    Kim, Sung-Moon; Chu, Woo-Sung; Kim, Sang-Guk; Oh, Min-Cheol

    2016-04-04

    Optical current sensors based on polarization-rotated reflection interferometry are demonstrated using polymeric integrated optics and various functional optical waveguide devices. Interferometric sensors normally require bias feedback control for maintaining the operating point, which increases the cost. In order to resolve this constraint of feedback control, a multimode interference (MMI) waveguide device is integrated onto the current-sensor optical chip in this work. From the multiple outputs of the MMI, a 90° phase-shifted transfer function is obtained. Using passive quadrature demodulation, we demonstrate that the sensor could maintain the output signal regardless of the drift in the operating bias-point.

  16. Optical fiber-based sensors: application to chemical biology.

    PubMed

    Brogan, Kathryn L; Walt, David R

    2005-10-01

    Optical fibers have been used to develop sensors based on nucleic acids and cells. Sensors employing DNA probes have been developed for various genomics applications and microbial pathogen detection. Live cell-based sensors have enabled the monitoring of environmental toxins, and have been used for fundamental studies on populations of individual cells. Both single-core optical fiber sensors and optical fiber sensor arrays have been used for sensing based on nucleic acids and live cells.

  17. [Electrochemical detection of toxin gene in Listeria monocytogenes].

    PubMed

    Wu, Ling-Wei; Liu, Quan-Jun; Wu, Zhong-Wei; Lu, Zu-Hong

    2010-05-01

    Listeria monocytogenes (LM) is a food-borne pathogen inducing listeriosis, an illness characterized by encephalitis, septicaemia, and meningitis. Listeriolysin O (LLO) is absolutely required for virulence by L. monocytogenes, and is found only in virulent strains of the species. One of the best ways to detect and confirm the pathogen is detection of one of the virulence factors, LLO, produced by the microorganism. This paper focused on the electrical method used to detect the LLO toxin gene in food products and organism without labeling the target DNA. The electrochemical sensor was obtained by immobilizing single-stranded oligonucleotides onto the gold electrode with the mercaptan activated by N-hydroxysulfosuccinimide (NHS) and N-(3-dimethylamion)propyl-N'-ethyl carbodiimidehydrochloride (EDC). The hy-bridization reaction that occurred on the electrode surface was evidenced by Cyclic Voltammetry (CV) analysis using [Co(phen)3](ClO4)3 as an indicator. The covalently immobilized single-stranded DNA could selectively hybridize to its complementary DNA in solution to form double-stranded DNA on the gold surface. A significant increase of the peak cur-rent of Cyclic Voltammetry (CV) upon hybridization of immobilized ssDNA with PCR amplification products in the solu-tion was observed. This peak current change was used to monitor the amount of PCR amplification products. Factors deter-mining the sensitivity of the electrochemical assay, such as DNA target concentration and hybridization conditions, were investigated. The coupling of DNA to the electrochemical sensors has the potential of the quantitative evaluation of gene.

  18. Flexible one-structure arched triboelectric nanogenerator based on common electrode for high efficiency energy harvesting and self-powered motion sensing

    NASA Astrophysics Data System (ADS)

    Chen, Xi; He, Jian; Song, Linlin; Zhang, Zengxing; Tian, Zhumei; Wen, Tao; Zhai, Cong; Chen, Yi; Cho, Jundong; Chou, Xiujian; Xue, Chenyang

    2018-04-01

    Triboelectric nanogenerators are widely used because of low cost, simple manufacturing process and high output performance. In this work, a flexible one-structure arched triboelectric nanogenerator (FOAT), based on common electrode to combine the single-electrode mode and contact-separation, was designed using silicone rubber, epoxy resin and flexible electrode. The peak-to-peak short circuit current of 18μ A and the peak-to-peak open circuit voltage of 570V can be obtained from the FOAT with the size of 5×7 cm2 under the frequency of 3Hz and the pressure of 300N. The peak-to-peak short circuit current of FOAT is increased by 29% and 80%, and the peak-to-peak open circuit voltage is increased by 33% and 54% compared with single-electrode mode and contact-separation mode, respectively. FOAT realizes the combination of two generation modes, which improves the output performance of triboelectric nanogenerator (TENG). 62 light-emitting-diodes (LEDs) can be completely lit up and 2.2μ F capacitor can be easily charged to 1.2V in 9s. When the FOAT is placed at different parts of the human body, the human motion energy can be harvested and be the sensing signal for motion monitoring sensor. Based on the above characteristics, FOAT exhibits great potential in illumination, power supplies for wearable electronic devices and self-powered motion monitoring sensor via harvesting the energy of human motion.

  19. Single calcium channel domain gating of synaptic vesicle fusion at fast synapses; analysis by graphic modeling

    PubMed Central

    Stanley, Elise F

    2015-01-01

    At fast-transmitting presynaptic terminals Ca2+ enter through voltage gated calcium channels (CaVs) and bind to a synaptic vesicle (SV) -associated calcium sensor (SV-sensor) to gate fusion and discharge. An open CaV generates a high-concentration plume, or nanodomain of Ca2+ that dissipates precipitously with distance from the pore. At most fast synapses, such as the frog neuromuscular junction (NMJ), the SV sensors are located sufficiently close to individual CaVs to be gated by single nanodomains. However, at others, such as the mature rodent calyx of Held (calyx of Held), the physiology is more complex with evidence that CaVs that are both close and distant from the SV sensor and it is argued that release is gated primarily by the overlapping Ca2+ nanodomains from many CaVs. We devised a 'graphic modeling' method to sum Ca2+ from individual CaVs located at varying distances from the SV-sensor to determine the SV release probability and also the fraction of that probability that can be attributed to single domain gating. This method was applied first to simplified, low and high CaV density model release sites and then to published data on the contrasting frog NMJ and the rodent calyx of Held native synapses. We report 3 main predictions: the SV-sensor is positioned very close to the point at which the SV fuses with the membrane; single domain-release gating predominates even at synapses where the SV abuts a large cluster of CaVs, and even relatively remote CaVs can contribute significantly to single domain-based gating. PMID:26457441

  20. Bayesian Estimation of Fugitive Methane Point Source Emission Rates from a SingleDownwind High-Frequency Gas Sensor

    EPA Science Inventory

    Bayesian Estimation of Fugitive Methane Point Source Emission Rates from a Single Downwind High-Frequency Gas Sensor With the tremendous advances in onshore oil and gas exploration and production (E&P) capability comes the realization that new tools are needed to support env...

  1. Methanol sensor operated in a passive mode

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2002-01-01

    A sensor outputs a signal related to a concentration of methanol in an aqueous solution adjacent the sensor. A membrane electrode assembly (MEA) is included with an anode side and a cathode side. An anode current collector supports the anode side of the MEA and has a flow channel therethrough for flowing a stream of the aqueous solution and forms a physical barrier to control access of the methanol to the anode side of the MEA. A cathode current collector supports the cathode side of the MEA and is configured for air access to the cathode side of the MEA. A current sensor is connected to measure the current in a short circuit across the sensor electrodes to provide an output signal functionally related to the concentration of methanol in the aqueous solution.

  2. Dynamic Steering for Improved Sensor Autonomy and Catalogue Maintenance

    NASA Astrophysics Data System (ADS)

    Hobson, T.; Gordon, N.; Clarkson, I.; Rutten, M.; Bessell, T.

    A number of international agencies endeavour to maintain catalogues of the man-made resident space objects (RSOs) currently orbiting the Earth. Such catalogues are primarily created to anticipate and avoid destructive collisions involving important space assets such as manned missions and active satellites. An agencys ability to achieve this objective is dependent on the accuracy, reliability and timeliness of the information used to update its catalogue. A primary means for gathering this information is by regularly making direct observations of the tens-of-thousands of currently detectable RSOs via networks of space surveillance sensors. But operational constraints sometimes prevent accurate and timely reacquisition of all known RSOs, which can cause them to become lost to the tracking system. Furthermore, when comprehensive acquisition of new objects does not occur, these objects, in addition to the lost RSOs, result in uncorrelated detections when next observed. Due to the rising number of space-missions and the introduction of newer, more capable space-sensors, the number of uncorrelated targets is at an all-time high. The process of differentiating uncorrelated detections caused by once-acquired now-lost RSOs from newly detected RSOs is a difficult and often labour intensive task. Current methods for overcoming this challenge focus on advancements in orbit propagation and object characterisation to improve prediction accuracy and target identification. In this paper, we describe a complementary approach that incorporates increased awareness of error and failed observations into the RSO tracking solution. Our methodology employs a technique called dynamic steering to improve the autonomy and capability of a space surveillance networks steerable sensors. By co-situating each sensor with a low-cost high-performance computer, the steerable sensor can quickly and intelligently decide how to steer itself. The sensor-system uses a dedicated parallel-processing architecture to enable it to compute a high-fidelity estimate of the targets prior state error distribution in real-time. Negative information, such as when an RSO is targeted for observation but it is not observed, is incorporated to improve the likelihood of reacquiring the target when attempting to observe the target in future. The sensor is consequently capable of improving its utility by planning each observation using a sensor steering solution that is informed by all prior attempts at observing the target. We describe the practical implementation of a single experimental sensor and offer the results of recent field trials. These trials involved reacquisition and constrained Initial Orbit Determination of RSOs, a number of months after prior observation and initial detection. Using the proposed approach, the system is capable of using targeting information that would be unusable by existing space surveillance networks. The system consequently offers a means of enhancing space surveillance for SSA via increased system capacity, a higher degree of autonomy and the ability to reacquire objects whose dynamics are insufficiently modelled to cue a conventional space surveillance system for observation and tracking.

  3. A self-timed multipurpose delay sensor for Field Programmable Gate Arrays (FPGAs).

    PubMed

    Osuna, Carlos Gómez; Ituero, Pablo; López-Vallejo, Marisa

    2013-12-20

    This paper presents a novel self-timed multi-purpose sensor especially conceived for Field Programmable Gate Arrays (FPGAs). The aim of the sensor is to measure performance variations during the life-cycle of the device, such as process variability, critical path timing and temperature variations. The proposed topology, through the use of both combinational and sequential FPGA elements, amplifies the time of a signal traversing a delay chain to produce a pulse whose width is the sensor's measurement. The sensor is fully self-timed, avoiding the need for clock distribution networks and eliminating the limitations imposed by the system clock. One single off- or on-chip time-to-digital converter is able to perform digitization of several sensors in a single operation. These features allow for a simplified approach for designers wanting to intertwine a multi-purpose sensor network with their application logic. Employed as a temperature sensor, it has been measured to have an error of  ±0.67 °C, over the range of 20-100 °C, employing 20 logic elements with a 2-point calibration.

  4. A Self-Timed Multipurpose Delay Sensor for Field Programmable Gate Arrays (FPGAs)

    PubMed Central

    Osuna, Carlos Gómez; Ituero, Pablo; López-Vallejo, Marisa

    2014-01-01

    This paper presents a novel self-timed multi-purpose sensor especially conceived for Field Programmable Gate Arrays (FPGAs). The aim of the sensor is to measure performance variations during the life-cycle of the device, such as process variability, critical path timing and temperature variations. The proposed topology, through the use of both combinational and sequential FPGA elements, amplifies the time of a signal traversing a delay chain to produce a pulse whose width is the sensor's measurement. The sensor is fully self-timed, avoiding the need for clock distribution networks and eliminating the limitations imposed by the system clock. One single off- or on-chip time-to-digital converter is able to perform digitization of several sensors in a single operation. These features allow for a simplified approach for designers wanting to intertwine a multi-purpose sensor network with their application logic. Employed as a temperature sensor, it has been measured to have an error of ±0.67 °C, over the range of 20–100 °C, employing 20 logic elements with a 2-point calibration. PMID:24361927

  5. High precision silicon piezo resistive SMART pressure sensor

    NASA Astrophysics Data System (ADS)

    Brown, Rod

    2005-01-01

    Instruments for test and calibration require a pressure sensor that is precise and stable. Market forces also dictate a move away from single measurand test equipment and, certainly in the case of pressure, away from single range equipment. A pressure `module' is required which excels in pressure measurement but is interchangble with sensors for other measurands. A communications interface for such a sensor has been specified. Instrument Digital Output Sensor (IDOS) that permits this interchanagability and allows the sensor to be inside or outside the measuring instrument. This paper covers the design and specification of a silicon diaphragm piezo resistive SMART sensor using this interface. A brief history of instrument sensors will be given to establish the background to this development. Design choices of the silicon doping, bridge energisation method, temperature sensing, signal conversion, data processing, compensation method, communications interface will be discussed. The physical format of the `in-instrument' version will be shown and then extended to the packaging design for the external version. Test results will show the accuracy achieved exceeds the target of 0.01%FS over a range of temperatures.

  6. Photo-conductance of a single Quantum Dot

    NASA Astrophysics Data System (ADS)

    Zimmers, Alexandre; Wang, Hongyue; Lhuillier, Emmanuel; Yu, Qian; Dubertret, Benoit; Aubin, Herve; Ulysse, Christian; LPEM Collaboration

    One promising strategy for the development of nanoscale resonant spin sensors is to measure the spin-dependent photo-current in Quantum Dots (QDots) containing spin-dependent recombination centers. To reach single spin sensitivity will require measurements of the photo-conductance of single QDots. We present here an experimental study of the conductance and photo-conductance of single HgSe QDots as function of drain and gate voltage. The evolution of the differential conductance dI/dV spectrum with the gate voltage demonstrates that single HgSe QDots are forming the junction. The amplitude of the gap measured in the differential conductance spectrum changes with the occupation level. A large inter-band gap, 0,85eV, is observed for the empty QDot, a smaller intra-band gap 0,25eV is observed for the doubly occupied QDot. These gap energies are consistent with the values extracted from the optical absorption spectrum. Upon illuminating the QDot junction, we show that the photo-conductive signal produced by this single QDot can be measured with a simple demodulation method. ANR Grant ''QUANTICON'' 10-0409-01 / DIM Nano-K / Chinese Scholarship Council.

  7. Raytheon's next generation compact inline cryocooler architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.

    2014-01-29

    Since the 1970s, Raytheon has developed, built, tested and integrated high performance cryocoolers. Our versatile designs for single and multi-stage cryocoolers provide reliable operation for temperatures from 10 to 200 Kelvin with power levels ranging from 50 W to nearly 600 W. These advanced cryocoolers incorporate clearance seals, flexure suspensions, hermetic housings and dynamic balancing to provide long service life and reliable operation in all relevant environments. Today, sensors face a multitude of cryocooler integration challenges such as exported disturbance, efficiency, scalability, maturity, and cost. As a result, cryocooler selection is application dependent, oftentimes requiring extensive trade studies to determinemore » the most suitable architecture. To optimally meet the needs of next generation passive IR sensors, the Compact Inline Raytheon Stirling 1-Stage (CI-RS1), Compact Inline Raytheon Single Stage Pulse Tube (CI-RP1) and Compact Inline Raytheon Hybrid Stirling/Pulse Tube 2-Stage (CI-RSP2) cryocoolers are being developed to satisfy this suite of requirements. This lightweight, compact, efficient, low vibration cryocooler combines proven 1-stage (RS1 or RP1) and 2-stage (RSP2) cold-head architectures with an inventive set of warm-end mechanisms into a single cooler module, allowing the moving mechanisms for the compressor and the Stirling displacer to be consolidated onto a common axis and in a common working volume. The CI cryocooler is a significant departure from the current Stirling cryocoolers in which the compressor mechanisms are remote from the Stirling displacer mechanism. Placing all of the mechanisms in a single volume and on a single axis provides benefits in terms of package size (30% reduction), mass (30% reduction), thermodynamic efficiency (>20% improvement) and exported vibration performance (≤25 mN peak in all three orthogonal axes at frequencies from 1 to 500 Hz). The main benefit of axial symmetry is that proven balancing techniques and hardware can be utilized to null all motion along the common axis. Low vibration translates to better sensor performance resulting in simpler, more direct mechanical mounting configurations, eliminating the need for convoluted, expensive, massive, long lead damping hardware.« less

  8. Raytheon's next generation compact inline cryocooler architecture

    NASA Astrophysics Data System (ADS)

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.; Conrad, T.

    2014-01-01

    Since the 1970s, Raytheon has developed, built, tested and integrated high performance cryocoolers. Our versatile designs for single and multi-stage cryocoolers provide reliable operation for temperatures from 10 to 200 Kelvin with power levels ranging from 50 W to nearly 600 W. These advanced cryocoolers incorporate clearance seals, flexure suspensions, hermetic housings and dynamic balancing to provide long service life and reliable operation in all relevant environments. Today, sensors face a multitude of cryocooler integration challenges such as exported disturbance, efficiency, scalability, maturity, and cost. As a result, cryocooler selection is application dependent, oftentimes requiring extensive trade studies to determine the most suitable architecture. To optimally meet the needs of next generation passive IR sensors, the Compact Inline Raytheon Stirling 1-Stage (CI-RS1), Compact Inline Raytheon Single Stage Pulse Tube (CI-RP1) and Compact Inline Raytheon Hybrid Stirling/Pulse Tube 2-Stage (CI-RSP2) cryocoolers are being developed to satisfy this suite of requirements. This lightweight, compact, efficient, low vibration cryocooler combines proven 1-stage (RS1 or RP1) and 2-stage (RSP2) cold-head architectures with an inventive set of warm-end mechanisms into a single cooler module, allowing the moving mechanisms for the compressor and the Stirling displacer to be consolidated onto a common axis and in a common working volume. The CI cryocooler is a significant departure from the current Stirling cryocoolers in which the compressor mechanisms are remote from the Stirling displacer mechanism. Placing all of the mechanisms in a single volume and on a single axis provides benefits in terms of package size (30% reduction), mass (30% reduction), thermodynamic efficiency (>20% improvement) and exported vibration performance (≤25 mN peak in all three orthogonal axes at frequencies from 1 to 500 Hz). The main benefit of axial symmetry is that proven balancing techniques and hardware can be utilized to null all motion along the common axis. Low vibration translates to better sensor performance resulting in simpler, more direct mechanical mounting configurations, eliminating the need for convoluted, expensive, massive, long lead damping hardware.

  9. High sensitivity refractive index sensor based on a tapered small core single-mode fiber structure.

    PubMed

    Liu, Dejun; Mallik, Arun Kumar; Yuan, Jinhui; Yu, Chongxiu; Farrell, Gerald; Semenova, Yuliya; Wu, Qiang

    2015-09-01

    A high sensitivity refractive index (RI) sensor based on a tapered small core single-mode fiber (SCSMF) structure sandwiched between two traditional single-mode fibers (SMF28) is reported. The microheater brushing technique was employed to fabricate the tapered fiber structures with different waist diameters of 12.5, 15.0, and 18.8 μm. Experiments demonstrate that the fiber sensor with a waist diameter of 12.5 μm offers the best sensitivity of 19212.5  nm/RIU (RI unit) in the RI range of 1.4304 to 1.4320. All sensors fabricated in this Letter show good linearity in terms of the spectral wavelength shift versus changes in RI. Furthermore, the sensor with the best sensitivity to RI was also used to measure relative humidity (RH) without any coating materials applied to the fiber surface. Experimental results show that the spectral wavelength shift changes exponentially as the RH varies from 60% to 95%. A maximum sensitivity of 18.3 nm per relative humidity unit (RHU) was achieved in the RH range of 90.4% to 94.5% RH.

  10. Research and development program in fiber optic sensors and distributed sensing for high temperature harsh environment energy applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Romanosky, Robert R.

    2017-05-01

    he National Energy Technology Laboratory (NETL) under the Department of Energy (DOE) Fossil Energy (FE) Program is leading the effort to not only develop near zero emission power generation systems, but to increaser the efficiency and availability of current power systems. The overarching goal of the program is to provide clean affordable power using domestic resources. Highly efficient, low emission power systems can have extreme conditions of high temperatures up to 1600 oC, high pressures up to 600 psi, high particulate loadings, and corrosive atmospheres that require monitoring. Sensing in these harsh environments can provide key information that directly impacts process control and system reliability. The lack of suitable measurement technology serves as a driver for the innovations in harsh environment sensor development. Advancements in sensing using optical fibers are key efforts within NETL's sensor development program as these approaches offer the potential to survive and provide critical information about these processes. An overview of the sensor development supported by the National Energy Technology Laboratory (NETL) will be given, including research in the areas of sensor materials, designs, and measurement types. New approaches to intelligent sensing, sensor placement and process control using networked sensors will be discussed as will novel approaches to fiber device design concurrent with materials development research and development in modified and coated silica and sapphire fiber based sensors. The use of these sensors for both single point and distributed measurements of temperature, pressure, strain, and a select suite of gases will be addressed. Additional areas of research includes novel control architecture and communication frameworks, device integration for distributed sensing, and imaging and other novel approaches to monitoring and controlling advanced processes. The close coupling of the sensor program with process modeling and control will be discussed for the overarching goal of clean power production.

  11. Detection of Obstacles in Monocular Image Sequences

    NASA Technical Reports Server (NTRS)

    Kasturi, Rangachar; Camps, Octavia

    1997-01-01

    The ability to detect and locate runways/taxiways and obstacles in images captured using on-board sensors is an essential first step in the automation of low-altitude flight, landing, takeoff, and taxiing phase of aircraft navigation. Automation of these functions under different weather and lighting situations, can be facilitated by using sensors of different modalities. An aircraft-based Synthetic Vision System (SVS), with sensors of different modalities mounted on-board, complements the current ground-based systems in functions such as detection and prevention of potential runway collisions, airport surface navigation, and landing and takeoff in all weather conditions. In this report, we address the problem of detection of objects in monocular image sequences obtained from two types of sensors, a Passive Millimeter Wave (PMMW) sensor and a video camera mounted on-board a landing aircraft. Since the sensors differ in their spatial resolution, and the quality of the images obtained using these sensors is not the same, different approaches are used for detecting obstacles depending on the sensor type. These approaches are described separately in two parts of this report. The goal of the first part of the report is to develop a method for detecting runways/taxiways and objects on the runway in a sequence of images obtained from a moving PMMW sensor. Since the sensor resolution is low and the image quality is very poor, we propose a model-based approach for detecting runways/taxiways. We use the approximate runway model and the position information of the camera provided by the Global Positioning System (GPS) to define regions of interest in the image plane to search for the image features corresponding to the runway markers. Once the runway region is identified, we use histogram-based thresholding to detect obstacles on the runway and regions outside the runway. This algorithm is tested using image sequences simulated from a single real PMMW image.

  12. Development of a Portable Oxygen Monitoring System for Operations in the International Space Station Airlock

    NASA Technical Reports Server (NTRS)

    Graf, John

    2009-01-01

    NASA is currently engaged in an activity to facilitate effective operations on the International Space Station (ISS) after the Space Shuttle retires. Currently, the Space Shuttle delivers crew and cargo to and from ISS. The Space Shuttle provides the only large scale method of hardware return from ISS to the ground. Hardware that needs to be periodically repaired, refurbished, or recalibrated must come back from ISS on the Shuttle. One example of NASA flight hardware that is used on ISS and refurbished on the ground is the Compound Specific Analyzer for Oxygen (CSA-O2). The CSA-O2 is an electrochemical sensor that is used on orbit for about 12 months (depending on Shuttle launch schedules), then returned to the ground for sensor replacement. The shuttle is scheduled to retire in 2010, and the ISS is scheduled to operate until 2016. NASA needs a hand held sensor that measures oxygen in the ISS environment and has a 5-10 year service life. After conducting a survey of oxygen sensor systems, NASA selected a Tunable Diode Laser Absorption Spectrometer (TDLAS) as the method of measurement that best addresses the needs for ISS. These systems are compact, meet ISS accuracy requirements, and because they use spectroscopic techniques, the sensors are not consumed or altered after making a measurement. TDLAS systems have service life ratings of 5-10 years, based on the lifetime of the laser. NASA is engaged in modifying a commercially available sensor, the Vaisala OMT 355, for the ISS application. The Vaisala OMT 355 requires three significant modifications to meet ISS needs. The commercial sensor uses a wall mount power supply, and the ISS sensor needs to use a rechargeable battery as its source of power. The commercial sensor has a pressure correction setpoint: the sensor can be adjusted to operate at reduced pressure conditions, but the sensor does not self correct dynamically and automatically. The ISS sensor needs to operate in the airlock, and make accurate measurements in an environment that can change from 14.7 psia to 10.2 psia in 15 minutes. The commercial sensor needs to be repackaged into a configuration that is more compact, and better suited for ISS airlock operations. NASA has recently completed a prototype of the reconfigured system. The unit has been repackaged in a way that the optical path of the spectrometer is unchanged, but the electronics has been integrated into a case measuring 10.7 X 7.2 X 3.0 inches. Two flight qualified rechargeable batteries have been integrated into system. The batteries can power the sensor for 10 hours on a single charge. A pressure sensor has been added to the system. The modified unit automatically compensates for changes in pressure, and meets 0.2% accuracy requirements for oxygen measurements in an environment with 18 to 32% oxygen across a pressure range of 10.0 to 15.0 psia.

  13. Low Cost Sensors-Current Capabilities and Gaps

    EPA Science Inventory

    1. Present the findings from the a recent technology review of gas and particulate phase sensors 2. Focus on the lower-cost sensors 3. Discuss current capabilities, estimated range of measurement, selectivity, deployment platforms, response time, and expected range of acceptabl...

  14. Reducing Size, Weight, and Power (SWaP) of Perception Systems in Small Autonomous Aerial Systems

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H.; Gross, Jason

    2014-01-01

    The objectives are to examine recent trends in the reduction of size, weight, and power (SWaP) requirements of sensor systems for environmental perception and to explore new technology that may overcome limitations in current systems. Improving perception systems to facilitate situation awareness is critical in the move to introduce increasing autonomy in aerial systems. Whether the autonomy is in the current state-of-the-art of increasing automation or is enabling cognitive decisions that facilitate adaptive behavior, collection of environmental information and fusion of that information into knowledge that can direct actuation is imperative to decisions resulting in appropriate behavior. Artificial sensory systems such as cameras, radar, LIDAR, and acoustic sensors have been in use on aircraft for many years but, due to the large size and weight of the airplane and electrical power made available through powerful engines, the SWaP requirements of these sensors was inconsequential. With the proliferation of Remote Piloted Vehicles (RPV), the trend is in significant reduction in SWaP of the vehicles. This requires at least an equivalent reduction in SWaP for the sensory systems. A survey of some currently available sensor systems and changing technology will reveal the trend toward reduction of SWaP of these systems and will predict future reductions. A new technology will be introduced that provides an example of a desirable new trend. A new device replaces multiple conventional sensory devices facilitating synchronization, localization, altimetry, collision avoidance, terrain mapping, and data communication in a single integrated, small form-factor, extremely lightweight, and low power device that it is practical for integration into small autonomous vehicles and can facilitate cooperative behavior. The technology is based on Ultra WideBand (UWB) radio using short pulses of energy rather than continuous sine waves. The characteristics of UWB yield several desirable characteristics to facilitate integration of perception for autonomous activities. The capabilities of this device and its limitations will be assessed.

  15. Adapting Wireless Technology to Lighting Control and Environmental Sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dana Teasdale; Francis Rubinstein; Dave Watson

    The high cost of retrofitting buildings with advanced lighting control systems is a barrier to adoption of this energy-saving technology. Wireless technology, however, offers a solution to mounting installation costs since it requires no additional wiring to implement. To demonstrate the feasibility of such a system, a prototype wirelessly-controlled advanced lighting system was designed and built. The system includes the following components: a wirelessly-controllable analog circuit module (ACM), a wirelessly-controllable electronic dimmable ballast, a T8 3-lamp fixture, an environmental multi-sensor, a current transducer, and control software. The ACM, dimmable ballast, multi-sensor, and current transducer were all integrated with SmartMesh{trademark} wirelessmore » mesh networking nodes, called motes, enabling wireless communication, sensor monitoring, and actuator control. Each mote-enabled device has a reliable communication path to the SmartMesh Manager, a single board computer that controls network functions and connects the wireless network to a PC running lighting control software. The ACM is capable of locally driving one or more standard 0-10 Volt electronic dimmable ballasts through relay control and a 0-10 Volt controllable output. The mote-integrated electronic dimmable ballast is designed to drive a standard 3-lamp T8 light fixture. The environmental multi-sensor measures occupancy, light level and temperature. The current transducer is used to measure the power consumed by the fixture. Control software was developed to implement advanced lighting algorithms, including daylight ramping, occupancy control, and demand response. Engineering prototypes of each component were fabricated and tested in a bench-scale system. Based on standard industry practices, a cost analysis was conducted. It is estimated that the installation cost of a wireless advanced lighting control system for a retrofit application is at least 30% lower than a comparable wired system for a typical 16,000 square-foot office building, with a payback period of less than 3 years.« less

  16. Fiber Fabry-Perot Interferometric Sensor for the Measurement of Electric Current Flowing through a Fuse

    NASA Astrophysics Data System (ADS)

    Park, Jaehee

    2007-06-01

    A fiber Fabry-Perot inteferometric sensor bonded close to a fusing element has been studied for the measurement of electric current flowing through a fuse. The phase shift of the sensor output signal is proportional to the square of the electric current passing through the fuse and the sensitivity is 0.827°/mA2.

  17. A passive optical fibre hydrophone array utilising fibre Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Karas, Andrew R.; Papageorgiou, Anthony W.; Cook, Peter R.; Arkwright, John W.

    2018-02-01

    Many current high performance hydrophones use piezo-electric technology to measure sound pressure in water. These hydrophones are sensitive enough to detect any sound above the lowest ambient ocean acoustic noise, however cost of manufacture, weight and storage volume of the array as well as deployment and maintenance costs can limit their largescale application. Piezo-electric systems also have issues with electro-magnetic interference and the signature of the electrical cabling required in a large array. A fibre optic hydrophone array has advantages over the piezo-electric technology in these areas. This paper presents the operating principle of a passive optical fibre hydrophone array utilising Fibre Bragg Gratings (FBGs). The multiple FBG sensors are interrogated using a single solid state spectrometer which further reduces the cost of the deployed system. A noise equivalent power (NEP) comparison of the developed FBG hydrophone versus an existing piezo-electric hydrophone is presented as well as a comparison to the lowest ambient ocean acoustic noise (sea state zero). This research provides an important first step towards a cost effective multi sensor hydrophone array using FBGs.

  18. Differential in vivo urodynamic measurement in a single thin catheter based on two optical fiber pressure sensors

    NASA Astrophysics Data System (ADS)

    Poeggel, Sven; Duraibabu, Dineshbabu; Tosi, Daniele; Leen, Gabriel; Lewis, Elfed; McGrath, Deirdre; Fusco, Ferdinando; Sannino, Simone; Lupoli, Laura; Ippolito, Juliet; Mirone, Vincenzo

    2015-03-01

    Urodynamic analysis is the predominant method for evaluating dysfunctions in the lower urinary tract. The exam measures the pressure during the filling and voiding process of the bladder and is mainly interested in the contraction of the bladder muscles. The data arising out of these pressure measurements enables the urologist to arrive at a precise diagnosis and prescribe an adequate treatment. A technique based on two optical fiber pressure and temperature sensors with a resolution of better than 0.1 cm H2O (˜10 Pa), a stability better than 1 cm H2O/hour, and a diameter of 0.2 mm in a miniature catheter with a diameter of only 5 Fr (1.67 mm), was used. This technique was tested in vivo on four patients with a real-time urodynamic measurement system. The optical system presented showed a very good correlation to two commercially available medical reference sensors. Furthermore, the optical urodynamic system demonstrated a higher dynamic and better sensitivity to detect small obstructions than both pre-existing medical systems currently in use in the urodynamic field.

  19. Differential in vivo urodynamic measurement in a single thin catheter based on two optical fiber pressure sensors.

    PubMed

    Poeggel, Sven; Duraibabu, Dineshbabu; Tosi, Daniele; Leen, Gabriel; Lewis, Elfed; McGrath, Deirdre; Fusco, Ferdinando; Sannino, Simone; Lupoli, Laura; Ippolito, Juliet; Mirone, Vincenzo

    2015-03-01

    Urodynamic analysis is the predominant method for evaluating dysfunctions in the lower urinary tract. The exam measures the pressure during the filling and voiding process of the bladder and is mainly interested in the contraction of the bladder muscles. The data arising out of these pressure measurements enables the urologist to arrive at a precise diagnosis and prescribe an adequate treatment. A technique based on two optical fiber pressure and temperature sensors with a resolution of better than 0.1 cm H₂O (∼10 Pa), a stability better than 1 cm H₂O/hour, and a diameter of 0.2 mm in a miniature catheter with a diameter of only 5 Fr (1.67 mm), was used. This technique was tested in vivo on four patients with a real-time urodynamic measurement system. The optical system presented showed a very good correlation to two commercially available medical reference sensors. Furthermore, the optical urodynamic system demonstrated a higher dynamic and better sensitivity to detect small obstructions than both pre-existing medical systems currently in use in the urodynamic field.

  20. Rainfall and River Currents Retrieved from Microwave Backscatter

    USGS Publications Warehouse

    Plant, W.J.; Keller, W.C.; Hayes, K.; Nystuen, J.; Spicer, K.

    2003-01-01

    The use of CW microwave sensors in yielding information on both river surface velocities and rain rates was discussed. Eight CW microwave sensors were installed at Cowlitz river in Western Washington State in the US. The sensors measured the river surface velocity via Doppler shifts at eight locations across the river. Comparison of the surface velocities derived from the sensors mounted on the bridge with those measured by current meters and acoustic sensors demonstrated good agreement.

Top