Sample records for single design point

  1. Centrifugal multiplexing fixed-volume dispenser on a plastic lab-on-a-disk for parallel biochemical single-end-point assays

    PubMed Central

    La, Moonwoo; Park, Sang Min; Kim, Dong Sung

    2015-01-01

    In this study, a multiple sample dispenser for precisely metered fixed volumes was successfully designed, fabricated, and fully characterized on a plastic centrifugal lab-on-a-disk (LOD) for parallel biochemical single-end-point assays. The dispenser, namely, a centrifugal multiplexing fixed-volume dispenser (C-MUFID) was designed with microfluidic structures based on the theoretical modeling about a centrifugal circumferential filling flow. The designed LODs were fabricated with a polystyrene substrate through micromachining and they were thermally bonded with a flat substrate. Furthermore, six parallel metering and dispensing assays were conducted at the same fixed-volume (1.27 μl) with a relative variation of ±0.02 μl. Moreover, the samples were metered and dispensed at different sub-volumes. To visualize the metering and dispensing performances, the C-MUFID was integrated with a serpentine micromixer during parallel centrifugal mixing tests. Parallel biochemical single-end-point assays were successfully conducted on the developed LOD using a standard serum with albumin, glucose, and total protein reagents. The developed LOD could be widely applied to various biochemical single-end-point assays which require different volume ratios of the sample and reagent by controlling the design of the C-MUFID. The proposed LOD is feasible for point-of-care diagnostics because of its mass-producible structures, reliable metering/dispensing performance, and parallel biochemical single-end-point assays, which can identify numerous biochemical. PMID:25610516

  2. 40 CFR 29.9 - How does the Administrator receive and respond to comments?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... State office or official is designated to act as a single point of contact between a State process and... program selected under § 29.6. (b) The single point of contact is not obligated to transmit comments from.... However, if a State process recommendation is transmitted by a single point of contact, all comments from...

  3. Design of a reversible single precision floating point subtractor.

    PubMed

    Anantha Lakshmi, Av; Sudha, Gf

    2014-01-04

    In recent years, Reversible logic has emerged as a major area of research due to its ability to reduce the power dissipation which is the main requirement in the low power digital circuit design. It has wide applications like low power CMOS design, Nano-technology, Digital signal processing, Communication, DNA computing and Optical computing. Floating-point operations are needed very frequently in nearly all computing disciplines, and studies have shown floating-point addition/subtraction to be the most used floating-point operation. However, few designs exist on efficient reversible BCD subtractors but no work on reversible floating point subtractor. In this paper, it is proposed to present an efficient reversible single precision floating-point subtractor. The proposed design requires reversible designs of an 8-bit and a 24-bit comparator unit, an 8-bit and a 24-bit subtractor, and a normalization unit. For normalization, a 24-bit Reversible Leading Zero Detector and a 24-bit reversible shift register is implemented to shift the mantissas. To realize a reversible 1-bit comparator, in this paper, two new 3x3 reversible gates are proposed The proposed reversible 1-bit comparator is better and optimized in terms of the number of reversible gates used, the number of transistor count and the number of garbage outputs. The proposed work is analysed in terms of number of reversible gates, garbage outputs, constant inputs and quantum costs. Using these modules, an efficient design of a reversible single precision floating point subtractor is proposed. Proposed circuits have been simulated using Modelsim and synthesized using Xilinx Virtex5vlx30tff665-3. The total on-chip power consumed by the proposed 32-bit reversible floating point subtractor is 0.410 W.

  4. Rotor redesign for a highly loaded 1800 ft/sec tip speed fan, 2

    NASA Technical Reports Server (NTRS)

    Bolt, C. R.

    1980-01-01

    Tests were conducted on a 0.5 hub/tip ratio single-stage fan designed to produce a pressure ratio of 2.280 at an efficiency of 83.8 percent with a rotor tip speed of 548.6 m/sec (1800 ft/sec). The rotor was designed utilizing a quasi three dimensional design system and four-part, multiple-circular-arc airfoil sections. The rotor is the third in a series of single-stage fans that have included a precompression airfoil design and a multiple-circular-arc airfoil design. The stage achieved a peak efficiency of 82.8 percent after performance had deteriorated by 0.6 of a point. The design mass flow was achieved at the peak efficiency point, and the stage total pressure ratio was 2.20, which is lower than the design goal of 2.28. The surge margin of 13% from the peak efficiency point exceeded the design goal of 7%.

  5. An approach for aerodynamic optimization of transonic fan blades

    NASA Astrophysics Data System (ADS)

    Khelghatibana, Maryam

    Aerodynamic design optimization of transonic fan blades is a highly challenging problem due to the complexity of flow field inside the fan, the conflicting design requirements and the high-dimensional design space. In order to address all these challenges, an aerodynamic design optimization method is developed in this study. This method automates the design process by integrating a geometrical parameterization method, a CFD solver and numerical optimization methods that can be applied to both single and multi-point optimization design problems. A multi-level blade parameterization is employed to modify the blade geometry. Numerical analyses are performed by solving 3D RANS equations combined with SST turbulence model. Genetic algorithms and hybrid optimization methods are applied to solve the optimization problem. In order to verify the effectiveness and feasibility of the optimization method, a singlepoint optimization problem aiming to maximize design efficiency is formulated and applied to redesign a test case. However, transonic fan blade design is inherently a multi-faceted problem that deals with several objectives such as efficiency, stall margin, and choke margin. The proposed multi-point optimization method in the current study is formulated as a bi-objective problem to maximize design and near-stall efficiencies while maintaining the required design pressure ratio. Enhancing these objectives significantly deteriorate the choke margin, specifically at high rotational speeds. Therefore, another constraint is embedded in the optimization problem in order to prevent the reduction of choke margin at high speeds. Since capturing stall inception is numerically very expensive, stall margin has not been considered as an objective in the problem statement. However, improving near-stall efficiency results in a better performance at stall condition, which could enhance the stall margin. An investigation is therefore performed on the Pareto-optimal solutions to demonstrate the relation between near-stall efficiency and stall margin. The proposed method is applied to redesign NASA rotor 67 for single and multiple operating conditions. The single-point design optimization showed +0.28 points improvement of isentropic efficiency at design point, while the design pressure ratio and mass flow are, respectively, within 0.12% and 0.11% of the reference blade. Two cases of multi-point optimization are performed: First, the proposed multi-point optimization problem is relaxed by removing the choke margin constraint in order to demonstrate the relation between near-stall efficiency and stall margin. An investigation on the Pareto-optimal solutions of this optimization shows that the stall margin has been increased with improving near-stall efficiency. The second multi-point optimization case is performed with considering all the objectives and constraints. One selected optimized design on the Pareto front presents +0.41, +0.56 and +0.9 points improvement in near-peak efficiency, near-stall efficiency and stall margin, respectively. The design pressure ratio and mass flow are, respectively, within 0.3% and 0.26% of the reference blade. Moreover the optimized design maintains the required choking margin. Detailed aerodynamic analyses are performed to investigate the effect of shape optimization on shock occurrence, secondary flows, tip leakage and shock/tip-leakage interactions in both single and multi-point optimizations.

  6. Design of an omnidirectional single-point photodetector for large-scale spatial coordinate measurement

    NASA Astrophysics Data System (ADS)

    Xie, Hongbo; Mao, Chensheng; Ren, Yongjie; Zhu, Jigui; Wang, Chao; Yang, Lei

    2017-10-01

    In high precision and large-scale coordinate measurement, one commonly used approach to determine the coordinate of a target point is utilizing the spatial trigonometric relationships between multiple laser transmitter stations and the target point. A light receiving device at the target point is the key element in large-scale coordinate measurement systems. To ensure high-resolution and highly sensitive spatial coordinate measurement, a high-performance and miniaturized omnidirectional single-point photodetector (OSPD) is greatly desired. We report one design of OSPD using an aspheric lens, which achieves an enhanced reception angle of -5 deg to 45 deg in vertical and 360 deg in horizontal. As the heart of our OSPD, the aspheric lens is designed in a geometric model and optimized by LightTools Software, which enables the reflection of a wide-angle incident light beam into the single-point photodiode. The performance of home-made OSPD is characterized with working distances from 1 to 13 m and further analyzed utilizing developed a geometric model. The experimental and analytic results verify that our device is highly suitable for large-scale coordinate metrology. The developed device also holds great potential in various applications such as omnidirectional vision sensor, indoor global positioning system, and optical wireless communication systems.

  7. An antenna-pointing mechanism for the ETS-6 K-band Single Access (KSA) antenna

    NASA Technical Reports Server (NTRS)

    Takada, Noboru; Amano, Takahiro; Ohhashi, Toshiro; Wachi, Shigeo

    1991-01-01

    Both the design philosophy for the Antenna Pointing Mechanism (APM) to be used for the K-band Single Access (KSA) antenna system and experimental results of the APM Engineering Model (EM) tests are described. The KSA antenna system will be flown on the Engineering Test Satellite 6 (ETS-6).

  8. Conceptual design of single turbofan engine powered light aircraft

    NASA Technical Reports Server (NTRS)

    Snyder, F. S.; Voorhees, C. G.; Heinrich, A. M.; Baisden, D. N.

    1977-01-01

    The conceptual design of a four place single turbofan engine powered light aircraft was accomplished utilizing contemporary light aircraft conventional design techniques as a means of evaluating the NASA-Ames General Aviation Synthesis Program (GASP) as a preliminary design tool. In certain areas, disagreement or exclusion were found to exist between the results of the conventional design and GASP processes. Detail discussion of these points along with the associated contemporary design methodology are presented.

  9. Optimization of bump and blowing to control the flow through a transonic compressor blade cascade

    NASA Astrophysics Data System (ADS)

    Mazaheri, K.; Khatibirad, S.

    2018-03-01

    Shock control bump (SCB) and blowing are two flow control methods, used here to improve the aerodynamic performance of transonic compressors. Both methods are applied to a NASA rotor 67 blade section and are optimized to minimize the total pressure loss. A continuous adjoint algorithm is used for multi-point optimization of a SCB to improve the aerodynamic performance of the rotor blade section, for a range of operational conditions around its design point. A multi-point and two single-point optimizations are performed in the design and off-design conditions. It is shown that the single-point optimized shapes have the best performance for their respective operating conditions, but the multi-point one has an overall better performance over the whole operating range. An analysis is given regarding how similarly both single- and multi-point optimized SCBs change the wave structure between blade sections resulting in a more favorable flow pattern. Interactions of the SCB with the boundary layer and the wave structure, and its effects on the separation regions are also studied. We have also introduced the concept of blowing for control of shock wave and boundary-layer interaction. A geometrical model is introduced, and the geometrical and physical parameters of blowing are optimized at the design point. The performance improvements of blowing are compared with the SCB. The physical interactions of SCB with the boundary layer and the shock wave are analyzed. The effects of SCB on the wave structure in the flow domain outside the boundary-layer region are investigated. It is shown that the effects of the blowing mechanism are very similar to the SCB.

  10. A Darwinian approach to control-structure design

    NASA Technical Reports Server (NTRS)

    Zimmerman, David C.

    1993-01-01

    Genetic algorithms (GA's), as introduced by Holland (1975), are one form of directed random search. The form of direction is based on Darwin's 'survival of the fittest' theories. GA's are radically different from the more traditional design optimization techniques. GA's work with a coding of the design variables, as opposed to working with the design variables directly. The search is conducted from a population of designs (i.e., from a large number of points in the design space), unlike the traditional algorithms which search from a single design point. The GA requires only objective function information, as opposed to gradient or other auxiliary information. Finally, the GA is based on probabilistic transition rules, as opposed to deterministic rules. These features allow the GA to attack problems with local-global minima, discontinuous design spaces and mixed variable problems, all in a single, consistent framework.

  11. Lasercom system architecture with reduced complexity

    NASA Technical Reports Server (NTRS)

    Lesh, James R. (Inventor); Chen, Chien-Chung (Inventor); Ansari, Homayoon (Inventor)

    1994-01-01

    Spatial acquisition and precision beam pointing functions are critical to spaceborne laser communication systems. In the present invention, a single high bandwidth CCD detector is used to perform both spatial acquisition and tracking functions. Compared to previous lasercom hardware design, the array tracking concept offers reduced system complexity by reducing the number of optical elements in the design. Specifically, the design requires only one detector and one beam steering mechanism. It also provides the means to optically close the point-ahead control loop. The technology required for high bandwidth array tracking was examined and shown to be consistent with current state of the art. The single detector design can lead to a significantly reduced system complexity and a lower system cost.

  12. LaserCom System Architecture With Reduced Complexity

    NASA Technical Reports Server (NTRS)

    Lesh, James R. (Inventor); Chen, Chien-Chung (Inventor); Ansari, Homa-Yoon (Inventor)

    1996-01-01

    Spatial acquisition and precision beam pointing functions are critical to spaceborne laser communication systems. In the present invention a single high bandwidth CCD detector is used to perform both spatial acquisition and tracking functions. Compared to previous lasercom hardware design, the array tracking concept offers reduced system complexity by reducing the number of optical elements in the design. Specifically, the design requires only one detector and one beam steering mechanism. It also provides means to optically close the point-ahead control loop. The technology required for high bandwidth array tracking was examined and shown to be consistent with current state of the art. The single detector design can lead to a significantly reduced system complexity and a lower system cost.

  13. 25 CFR 171.210 - Where will BIA provide my irrigation service?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... water to your farm unit from a single delivery point; (2) You agree in writing to be responsible for all... Section 171.210 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER IRRIGATION... will provide service to your farm unit at a single delivery point that we designate. (b) At our...

  14. 25 CFR 171.210 - Where will BIA provide my irrigation service?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... water to your farm unit from a single delivery point; (2) You agree in writing to be responsible for all... Section 171.210 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER IRRIGATION... will provide service to your farm unit at a single delivery point that we designate. (b) At our...

  15. Single-case experimental design yielded an effect estimate corresponding to a randomized controlled trial.

    PubMed

    Shadish, William R; Rindskopf, David M; Boyajian, Jonathan G

    2016-08-01

    We reanalyzed data from a previous randomized crossover design that administered high or low doses of intravenous immunoglobulin (IgG) to 12 patients with hypogammaglobulinaemia over 12 time points, with crossover after time 6. The objective was to see if results corresponded when analyzed as a set of single-case experimental designs vs. as a usual randomized controlled trial (RCT). Two blinded statisticians independently analyzed results. One analyzed the RCT comparing mean outcomes of group A (high dose IgG) to group B (low dose IgG) at the usual trial end point (time 6 in this case). The other analyzed all 12 time points for the group B patients as six single-case experimental designs analyzed together in a Bayesian nonlinear framework. In the randomized trial, group A [M = 794.93; standard deviation (SD) = 90.48] had significantly higher serum IgG levels at time six than group B (M = 283.89; SD = 71.10) (t = 10.88; df = 10; P < 0.001), yielding a mean difference of MD = 511.05 [standard error (SE) = 46.98]. For the single-case experimental designs, the effect from an intrinsically nonlinear regression was also significant and comparable in size with overlapping confidence intervals: MD = 495.00, SE = 54.41, and t = 495.00/54.41 = 9.10. Subsequent exploratory analyses indicated that how trend was modeled made a difference to these conclusions. The results of single-case experimental designs accurately approximated results from an RCT, although more work is needed to understand the conditions under which this holds. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Annular suspension and pointing system with controlled DC electromagnets

    NASA Technical Reports Server (NTRS)

    Vu, Josephine Lynn; Tam, Kwok Hung

    1993-01-01

    The Annular Suspension and Pointing System (ASPS) developed by the Flight System division of Sperry Corporation is a six-degree of freedom payload pointing system designed for use with the space shuttle. This magnetic suspension and pointing system provides precise controlled pointing in six-degrees of freedom, isolation of payload-carrier disturbances, and end mount controlled pointing. Those are great advantages over the traditional mechanical joints for space applications. In this design, we first analyzed the assumed model of the single degree ASPS bearing actuator and obtained the plant dynamics equations. By linearizing the plant dynamics equations, we designed the cascade and feedback compensators such that a stable and satisfied result was obtained. The specified feedback compensator was computer simulated with the nonlinearized plant dynamics equations. The results indicated that an unstable output occurred. In other words, the designed feedback compensator failed. The failure of the design is due to the Taylor's series expansion not converging.

  17. A multi points ultrasonic detection method for material flow of belt conveyor

    NASA Astrophysics Data System (ADS)

    Zhang, Li; He, Rongjun

    2018-03-01

    For big detection error of single point ultrasonic ranging technology used in material flow detection of belt conveyor when coal distributes unevenly or is large, a material flow detection method of belt conveyor is designed based on multi points ultrasonic counter ranging technology. The method can calculate approximate sectional area of material by locating multi points on surfaces of material and belt, in order to get material flow according to running speed of belt conveyor. The test results show that the method has smaller detection error than single point ultrasonic ranging technology under the condition of big coal with uneven distribution.

  18. A national assessment of underground natural gas storage: identifying wells with designs likely vulnerable to a single-point-of-failure

    NASA Astrophysics Data System (ADS)

    Michanowicz, Drew R.; Buonocore, Jonathan J.; Rowland, Sebastian T.; Konschnik, Katherine E.; Goho, Shaun A.; Bernstein, Aaron S.

    2017-05-01

    The leak of processed natural gas (PNG) from October 2015 to February 2016 from the Aliso Canyon storage facility, near Los Angeles, California, was the largest single accidental release of greenhouse gases in US history. The Interagency Task Force on Natural Gas Storage Safety and California regulators recently recommended operators phase out single-point-of-failure (SPF) well designs. Here, we develop a national dataset of UGS well activity in the continental US to assess regulatory data availability and uncertainty, and to assess the prevalence of certain well design deficiencies including single-point-of-failure designs. We identified 14 138 active UGS wells associated with 317 active UGS facilities in 29 states using regulatory and company data. State-level wellbore datasets contained numerous reporting inconsistencies that limited data concatenation. We identified 2715 active UGS wells across 160 facilities that, like the failed well at Aliso Canyon, predated the storage facility, and therefore were not originally designed for gas storage. The majority (88%) of these repurposed wells are located in OH, MI, PA, NY, and WV. Repurposed wells have a median age of 74 years, and the 2694 repurposed wells constructed prior to 1979 are particularly likely to exhibit design-related deficiencies. An estimated 210 active repurposed wells were constructed before 1917—before cement zonal isolation methods were utilized. These wells are located in OH, PA, NY, and WV and represent the highest priority related to potential design deficiencies that could lead to containment loss. This national baseline assessment identifies regulatory data uncertainties, highlights a potentially widespread vulnerability of the natural gas supply chain, and can aid in prioritization and oversight for high-risk wells and facilities.

  19. Control allocation for gimballed/fixed thrusters

    NASA Astrophysics Data System (ADS)

    Servidia, Pablo A.

    2010-02-01

    Some overactuated control systems use a control distribution law between the controller and the set of actuators, usually called control allocator. Beyond the control allocator, the configuration of actuators may be designed to be able to operate after a single point of failure, for system optimization and/or decentralization objectives. For some type of actuators, a control allocation is used even without redundancy, being a good example the design and operation of thruster configurations. In fact, as the thruster mass flow direction and magnitude only can be changed under certain limits, this must be considered in the feedback implementation. In this work, the thruster configuration design is considered in the fixed (F), single-gimbal (SG) and double-gimbal (DG) thruster cases. The minimum number of thrusters for each case is obtained and for the resulting configurations a specific control allocation is proposed using a nonlinear programming algorithm, under nominal and single-point of failure conditions.

  20. Improving Treatment Plan Implementation in Schools: A Meta-Analysis of Single Subject Design Studies

    ERIC Educational Resources Information Center

    Noell, George H.; Gansle, Kristin A.; Mevers, Joanna Lomas; Knox, R. Maria; Mintz, Joslyn Cynkus; Dahir, Amanda

    2014-01-01

    Twenty-nine peer-reviewed journal articles that analyzed intervention implementation in schools using single-case experimental designs were meta-analyzed. These studies reported 171 separate data paths and provided 3,991 data points. The meta-analysis was accomplished by fitting data extracted from graphs in mixed linear growth models. This…

  1. Power in randomized group comparisons: the value of adding a single intermediate time point to a traditional pretest-posttest design.

    PubMed

    Venter, Anre; Maxwell, Scott E; Bolig, Erika

    2002-06-01

    Adding a pretest as a covariate to a randomized posttest-only design increases statistical power, as does the addition of intermediate time points to a randomized pretest-posttest design. Although typically 5 waves of data are required in this instance to produce meaningful gains in power, a 3-wave intensive design allows the evaluation of the straight-line growth model and may reduce the effect of missing data. The authors identify the statistically most powerful method of data analysis in the 3-wave intensive design. If straight-line growth is assumed, the pretest-posttest slope must assume fairly extreme values for the intermediate time point to increase power beyond the standard analysis of covariance on the posttest with the pretest as covariate, ignoring the intermediate time point.

  2. Single-Point Attachment Wind Damper for Launch Vehicle On-Pad Motion

    NASA Technical Reports Server (NTRS)

    Hrinda, Glenn A.

    2009-01-01

    A single-point-attachment wind-damper device is proposed to reduce on-pad motion of a cylindrical launch vehicle. The device is uniquely designed to attach at only one location along the vehicle and capable of damping out wind gusts from any lateral direction. The only source of damping is from two viscous dampers in the device. The effectiveness of the damper design in reducing vehicle displacements is determined from transient analysis results using an Ares I-X launch vehicle. Combinations of different spring stiffnesses and damping are used to show how the vehicle's displacement response is significantly reduced during a wind gust.

  3. Design and cold-air test of single-stage uncooled turbine with high work output

    NASA Technical Reports Server (NTRS)

    Moffitt, T. P.; Szanca, E. M.; Whitney, W. J.; Behning, F. P.

    1980-01-01

    A solid version of a 50.8 cm single stage core turbine designed for high temperature was tested in cold air over a range of speed and pressure ratio. Design equivalent specific work was 76.84 J/g at an engine turbine tip speed of 579.1 m/sec. At design speed and pressure ratio, the total efficiency of the turbine was 88.6 percent, which is 0.6 point lower than the design value of 89.2 percent. The corresponding mass flow was 4.0 percent greater than design.

  4. The Effects of Point-of-View Video Modeling on Symbolic Play Actions and Play-Associated Language Utterances in Preschoolers with Autism

    ERIC Educational Resources Information Center

    Bonnet, Lauren Kravetz

    2012-01-01

    This single-subject research study was designed to examine the effects of point-of-view video modeling (POVM) on the symbolic play actions and play-associated language of four preschool students with autism. A multiple baseline design across participants was conducted in order to evaluate the effectiveness of using POVM as an intervention for…

  5. 33 CFR 149.625 - What are the design standards?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... elsewhere in this subpart (for example, single point moorings, hoses, and aids to navigation buoys), must be... components. (c) Heliports on floating deepwater ports must be designed in compliance with the regulations at...

  6. A Comparison of Three IRT Approaches to Examinee Ability Change Modeling in a Single-Group Anchor Test Design

    ERIC Educational Resources Information Center

    Paek, Insu; Park, Hyun-Jeong; Cai, Li; Chi, Eunlim

    2014-01-01

    Typically a longitudinal growth modeling based on item response theory (IRT) requires repeated measures data from a single group with the same test design. If operational or item exposure problems are present, the same test may not be employed to collect data for longitudinal analyses and tests at multiple time points are constructed with unique…

  7. New Primary Dew-Point Generators at HMI/FSB-LPM in the Range from -70 °C to +60 °C

    NASA Astrophysics Data System (ADS)

    Zvizdic, Davor; Heinonen, Martti; Sestan, Danijel

    2012-09-01

    To extend the dew-point range and to improve the uncertainties of the humidity scale realization at HMI/FSB-LPM, new primary low- and high-range dew-point generators were developed and implemented in cooperation with MIKES, in 2009 through EUROMET Project No. 912. The low-range saturator is designed for primary realization of the dew-point temperature scale from -70 °C to + 5 °C, while the high-range saturator covers the range from 1 °C to 60 °C. The system is designed as a single-pressure, single-pass dew-point generator. MIKES designed and constructed both the saturators to be implemented in dew-point calibration systems at LPM. The LPM took care of purchasing and adapting liquid baths, of implementing the temperature and pressure measurement equipment appropriate for use in the systems, and development of gas preparation and flow control systems as well as of the computer-based automated data acquisition. The principle and the design of the generator are described in detail and schematically depicted. The tests were performed at MIKES to investigate how close both the saturators are to an ideal saturator. Results of the tests show that both the saturators are efficient enough for a primary realization of the dew-point temperature scale from -70 °C to + 60 °C, in the specified flow-rate ranges. The estimated standard uncertainties due to the non-ideal saturation efficiency are between 0.02 °C and 0.05 °C.

  8. Functional Interrupts and Destructive Failures from Single Event Effect Testing of Point-Of-Load Devices

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Phan, Anthony; Kim, Hak; Swonger, James; Musil, Paul; LaBel, Kenneth

    2013-01-01

    We show examples of single event functional interrupt and destructive failure in modern POL devices. The increasing complexity and diversity of the design and process introduce hard SEE modes that are triggered by various mechanisms.

  9. A precise pointing nanopipette for single-cell imaging via electroosmotic injection.

    PubMed

    Lv, Jian; Qian, Ruo-Can; Hu, Yong-Xu; Liu, Shao-Chuang; Cao, Yue; Zheng, Yong-Jie; Long, Yi-Tao

    2016-11-24

    The precise transportation of fluorescent probes to the designated location in living cells is still a challenge. Here, we present a new addition to nanopipettes as a powerful tool to deliver fluorescent molecules to a given place in a single cell by electroosmotic flow, indicating favorable potential for further application in single-cell imaging.

  10. NULL Convention Floating Point Multiplier

    PubMed Central

    Ramachandran, Seshasayanan

    2015-01-01

    Floating point multiplication is a critical part in high dynamic range and computational intensive digital signal processing applications which require high precision and low power. This paper presents the design of an IEEE 754 single precision floating point multiplier using asynchronous NULL convention logic paradigm. Rounding has not been implemented to suit high precision applications. The novelty of the research is that it is the first ever NULL convention logic multiplier, designed to perform floating point multiplication. The proposed multiplier offers substantial decrease in power consumption when compared with its synchronous version. Performance attributes of the NULL convention logic floating point multiplier, obtained from Xilinx simulation and Cadence, are compared with its equivalent synchronous implementation. PMID:25879069

  11. NULL convention floating point multiplier.

    PubMed

    Albert, Anitha Juliette; Ramachandran, Seshasayanan

    2015-01-01

    Floating point multiplication is a critical part in high dynamic range and computational intensive digital signal processing applications which require high precision and low power. This paper presents the design of an IEEE 754 single precision floating point multiplier using asynchronous NULL convention logic paradigm. Rounding has not been implemented to suit high precision applications. The novelty of the research is that it is the first ever NULL convention logic multiplier, designed to perform floating point multiplication. The proposed multiplier offers substantial decrease in power consumption when compared with its synchronous version. Performance attributes of the NULL convention logic floating point multiplier, obtained from Xilinx simulation and Cadence, are compared with its equivalent synchronous implementation.

  12. Insertional Mutagenesis by CRISPR/Cas9 Ribonucleoprotein Gene Editing in Cells Targeted for Point Mutation Repair Directed by Short Single-Stranded DNA Oligonucleotides.

    PubMed

    Rivera-Torres, Natalia; Banas, Kelly; Bialk, Pawel; Bloh, Kevin M; Kmiec, Eric B

    2017-01-01

    CRISPR/Cas9 and single-stranded DNA oligonucleotides (ssODNs) have been used to direct the repair of a single base mutation in human genes. Here, we examine a method designed to increase the precision of RNA guided genome editing in human cells by utilizing a CRISPR/Cas9 ribonucleoprotein (RNP) complex to initiate DNA cleavage. The RNP is assembled in vitro and induces a double stranded break at a specific site surrounding the mutant base designated for correction by the ssODN. We use an integrated mutant eGFP gene, bearing a single base change rendering the expressed protein nonfunctional, as a single copy target in HCT 116 cells. We observe significant gene correction activity of the mutant base, promoted by the RNP and single-stranded DNA oligonucleotide with validation through genotypic and phenotypic readout. We demonstrate that all individual components must be present to obtain successful gene editing. Importantly, we examine the genotype of individually sorted corrected and uncorrected clonally expanded cell populations for the mutagenic footprint left by the action of these gene editing tools. While the DNA sequence of the corrected population is exact with no adjacent sequence modification, the uncorrected population exhibits heterogeneous mutagenicity with a wide variety of deletions and insertions surrounding the target site. We designate this type of DNA aberration as on-site mutagenicity. Analyses of two clonal populations bearing specific DNA insertions surrounding the target site, indicate that point mutation repair has occurred at the level of the gene. The phenotype, however, is not rescued because a section of the single-stranded oligonucleotide has been inserted altering the reading frame and generating truncated proteins. These data illustrate the importance of analysing mutagenicity in uncorrected cells. Our results also form the basis of a simple model for point mutation repair directed by a short single-stranded DNA oligonucleotides and CRISPR/Cas9 ribonucleoprotein complex.

  13. Insertional Mutagenesis by CRISPR/Cas9 Ribonucleoprotein Gene Editing in Cells Targeted for Point Mutation Repair Directed by Short Single-Stranded DNA Oligonucleotides

    PubMed Central

    Rivera-Torres, Natalia; Bialk, Pawel; Bloh, Kevin M.; Kmiec, Eric B.

    2017-01-01

    CRISPR/Cas9 and single-stranded DNA oligonucleotides (ssODNs) have been used to direct the repair of a single base mutation in human genes. Here, we examine a method designed to increase the precision of RNA guided genome editing in human cells by utilizing a CRISPR/Cas9 ribonucleoprotein (RNP) complex to initiate DNA cleavage. The RNP is assembled in vitro and induces a double stranded break at a specific site surrounding the mutant base designated for correction by the ssODN. We use an integrated mutant eGFP gene, bearing a single base change rendering the expressed protein nonfunctional, as a single copy target in HCT 116 cells. We observe significant gene correction activity of the mutant base, promoted by the RNP and single-stranded DNA oligonucleotide with validation through genotypic and phenotypic readout. We demonstrate that all individual components must be present to obtain successful gene editing. Importantly, we examine the genotype of individually sorted corrected and uncorrected clonally expanded cell populations for the mutagenic footprint left by the action of these gene editing tools. While the DNA sequence of the corrected population is exact with no adjacent sequence modification, the uncorrected population exhibits heterogeneous mutagenicity with a wide variety of deletions and insertions surrounding the target site. We designate this type of DNA aberration as on-site mutagenicity. Analyses of two clonal populations bearing specific DNA insertions surrounding the target site, indicate that point mutation repair has occurred at the level of the gene. The phenotype, however, is not rescued because a section of the single-stranded oligonucleotide has been inserted altering the reading frame and generating truncated proteins. These data illustrate the importance of analysing mutagenicity in uncorrected cells. Our results also form the basis of a simple model for point mutation repair directed by a short single-stranded DNA oligonucleotides and CRISPR/Cas9 ribonucleoprotein complex. PMID:28052104

  14. Experimental aerodynamic performance of advanced 40 deg-swept 10-blade propeller model at Mach 0.6 to 0.85

    NASA Technical Reports Server (NTRS)

    Mitchell, Glenn A.

    1988-01-01

    A propeller designated as SR-6, designed with 40 deg of sweep and 10 blades to cruise at Mach 0.8 at an altitude of 10.7 km (35,000 ft), was tested in the NASA Lewis Research Center's 8- by 6-Foot Wind Tunnel. This propeller was one of a series of advanced single rotation propeller models designed and tested as part of the NASA Advanced Turboprop Project. Design-point net efficiency was almost constant to Mach 0.75 but fell above this speed more rapidly than that of any previously tested advanced propeller. Alternative spinners that further reduced the near-hub interblade Mach numbers and relieved the observed hub choking improved performance above Mach 0.75. One spinner attained estimated SR-6 Design-point net deficiencies of 80.6 percent at Mach 0.75 and 79.2 percent at Mach 0.8, higher than the measured performance of any previously tested advanced single-rotation propeller at these speeds.

  15. Principal component analysis of binding energies for single-point mutants of hT2R16 bound to an agonist correlate with experimental mutant cell response.

    PubMed

    Chen, Derek E; Willick, Darryl L; Ruckel, Joseph B; Floriano, Wely B

    2015-01-01

    Directed evolution is a technique that enables the identification of mutants of a particular protein that carry a desired property by successive rounds of random mutagenesis, screening, and selection. This technique has many applications, including the development of G protein-coupled receptor-based biosensors and designer drugs for personalized medicine. Although effective, directed evolution is not without challenges and can greatly benefit from the development of computational techniques to predict the functional outcome of single-point amino acid substitutions. In this article, we describe a molecular dynamics-based approach to predict the effects of single amino acid substitutions on agonist binding (salicin) to a human bitter taste receptor (hT2R16). An experimentally determined functional map of single-point amino acid substitutions was used to validate the whole-protein molecular dynamics-based predictive functions. Molecular docking was used to construct a wild-type agonist-receptor complex, providing a starting structure for single-point substitution simulations. The effects of each single amino acid substitution in the functional response of the receptor to its agonist were estimated using three binding energy schemes with increasing inclusion of solvation effects. We show that molecular docking combined with molecular mechanics simulations of single-point mutants of the agonist-receptor complex accurately predicts the functional outcome of single amino acid substitutions in a human bitter taste receptor.

  16. Multi-point objective-oriented sequential sampling strategy for constrained robust design

    NASA Astrophysics Data System (ADS)

    Zhu, Ping; Zhang, Siliang; Chen, Wei

    2015-03-01

    Metamodelling techniques are widely used to approximate system responses of expensive simulation models. In association with the use of metamodels, objective-oriented sequential sampling methods have been demonstrated to be effective in balancing the need for searching an optimal solution versus reducing the metamodelling uncertainty. However, existing infilling criteria are developed for deterministic problems and restricted to one sampling point in one iteration. To exploit the use of multiple samples and identify the true robust solution in fewer iterations, a multi-point objective-oriented sequential sampling strategy is proposed for constrained robust design problems. In this article, earlier development of objective-oriented sequential sampling strategy for unconstrained robust design is first extended to constrained problems. Next, a double-loop multi-point sequential sampling strategy is developed. The proposed methods are validated using two mathematical examples followed by a highly nonlinear automotive crashworthiness design example. The results show that the proposed method can mitigate the effect of both metamodelling uncertainty and design uncertainty, and identify the robust design solution more efficiently than the single-point sequential sampling approach.

  17. Phase-shifting point diffraction interferometer mask designs

    DOEpatents

    Goldberg, Kenneth Alan

    2001-01-01

    In a phase-shifting point diffraction interferometer, different image-plane mask designs can improve the operation of the interferometer. By keeping the test beam window of the mask small compared to the separation distance between the beams, the problem of energy from the reference beam leaking through the test beam window is reduced. By rotating the grating and mask 45.degree., only a single one-dimensional translation stage is required for phase-shifting. By keeping two reference pinholes in the same orientation about the test beam window, only a single grating orientation, and thus a single one-dimensional translation stage, is required. The use of a two-dimensional grating allows for a multiplicity of pinholes to be used about the pattern of diffracted orders of the grating at the mask. Orientation marks on the mask can be used to orient the device and indicate the position of the reference pinholes.

  18. Detection and identification of genetically modified EE-1 brinjal (Solanum melongena) by single, multiplex and SYBR® real-time PCR.

    PubMed

    Ballari, Rajashekhar V; Martin, Asha; Gowda, Lalitha R

    2013-01-01

    Brinjal is an important vegetable crop. Major crop loss of brinjal is due to insect attack. Insect-resistant EE-1 brinjal has been developed and is awaiting approval for commercial release. Consumer health concerns and implementation of international labelling legislation demand reliable analytical detection methods for genetically modified (GM) varieties. End-point and real-time polymerase chain reaction (PCR) methods were used to detect EE-1 brinjal. In end-point PCR, primer pairs specific to 35S CaMV promoter, NOS terminator and nptII gene common to other GM crops were used. Based on the revealed 3' transgene integration sequence, primers specific for the event EE-1 brinjal were designed. These primers were used for end-point single, multiplex and SYBR-based real-time PCR. End-point single PCR showed that the designed primers were highly specific to event EE-1 with a sensitivity of 20 pg of genomic DNA, corresponding to 20 copies of haploid EE-1 brinjal genomic DNA. The limits of detection and quantification for SYBR-based real-time PCR assay were 10 and 100 copies respectively. The prior development of detection methods for this important vegetable crop will facilitate compliance with any forthcoming labelling regulations. Copyright © 2012 Society of Chemical Industry.

  19. Note: A dual-channel sensor for dew point measurement based on quartz crystal microbalance.

    PubMed

    Li, Ning; Meng, Xiaofeng; Nie, Jing

    2017-05-01

    A new sensor with dual-channel was designed for eliminating the temperature effect on the frequency measurement of the quartz crystal microbalance (QCM) in dew point detection. The sensor uses active temperature control, produces condensation on the surface of QCM, and then detects the dew point. Both the single-channel and the dual-channel methods were conducted based on the device. The measurement error of the single-channel method was less than 0.5 °C at the dew point range of -2 °C-10 °C while the dual-channel was 0.3 °C. The results showed that the dual-channel method was able to eliminate the temperature effect and yield better measurement accuracy.

  20. Note: A dual-channel sensor for dew point measurement based on quartz crystal microbalance

    NASA Astrophysics Data System (ADS)

    Li, Ning; Meng, Xiaofeng; Nie, Jing

    2017-05-01

    A new sensor with dual-channel was designed for eliminating the temperature effect on the frequency measurement of the quartz crystal microbalance (QCM) in dew point detection. The sensor uses active temperature control, produces condensation on the surface of QCM, and then detects the dew point. Both the single-channel and the dual-channel methods were conducted based on the device. The measurement error of the single-channel method was less than 0.5 °C at the dew point range of -2 °C-10 °C while the dual-channel was 0.3 °C. The results showed that the dual-channel method was able to eliminate the temperature effect and yield better measurement accuracy.

  1. 24 CFR 3280.402 - Test procedures for roof trusses.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... procedures are required for new truss designs in all three wind zones and for existing truss designs used in... design loads, and actual support points, and does not restrain horizontal movement. When tested singly or in groups of two or more trusses, trusses shall be mounted on supports and positioned as intended to...

  2. Optimized Reduction of Unsteady Radial Forces in a Singlechannel Pump for Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Hyuk; Cho, Bo-Min; Choi, Young-Seok; Lee, Kyoung-Yong; Peck, Jong-Hyeon; Kim, Seon-Chang

    2016-11-01

    A single-channel pump for wastewater treatment was optimized to reduce unsteady radial force sources caused by impeller-volute interactions. The steady and unsteady Reynolds- averaged Navier-Stokes equations using the shear-stress transport turbulence model were discretized by finite volume approximations and solved on tetrahedral grids to analyze the flow in the single-channel pump. The sweep area of radial force during one revolution and the distance of the sweep-area center of mass from the origin were selected as the objective functions; the two design variables were related to the internal flow cross-sectional area of the volute. These objective functions were integrated into one objective function by applying the weighting factor for optimization. Latin hypercube sampling was employed to generate twelve design points within the design space. A response-surface approximation model was constructed as a surrogate model for the objectives, based on the objective function values at the generated design points. The optimized results showed considerable reduction in the unsteady radial force sources in the optimum design, relative to those of the reference design.

  3. Designing single- and multiple-shell sampling schemes for diffusion MRI using spherical code.

    PubMed

    Cheng, Jian; Shen, Dinggang; Yap, Pew-Thian

    2014-01-01

    In diffusion MRI (dMRI), determining an appropriate sampling scheme is crucial for acquiring the maximal amount of information for data reconstruction and analysis using the minimal amount of time. For single-shell acquisition, uniform sampling without directional preference is usually favored. To achieve this, a commonly used approach is the Electrostatic Energy Minimization (EEM) method introduced in dMRI by Jones et al. However, the electrostatic energy formulation in EEM is not directly related to the goal of optimal sampling-scheme design, i.e., achieving large angular separation between sampling points. A mathematically more natural approach is to consider the Spherical Code (SC) formulation, which aims to achieve uniform sampling by maximizing the minimal angular difference between sampling points on the unit sphere. Although SC is well studied in the mathematical literature, its current formulation is limited to a single shell and is not applicable to multiple shells. Moreover, SC, or more precisely continuous SC (CSC), currently can only be applied on the continuous unit sphere and hence cannot be used in situations where one or several subsets of sampling points need to be determined from an existing sampling scheme. In this case, discrete SC (DSC) is required. In this paper, we propose novel DSC and CSC methods for designing uniform single-/multi-shell sampling schemes. The DSC and CSC formulations are solved respectively by Mixed Integer Linear Programming (MILP) and a gradient descent approach. A fast greedy incremental solution is also provided for both DSC and CSC. To our knowledge, this is the first work to use SC formulation for designing sampling schemes in dMRI. Experimental results indicate that our methods obtain larger angular separation and better rotational invariance than the generalized EEM (gEEM) method currently used in the Human Connectome Project (HCP).

  4. Small axial compressor technology, volume 1

    NASA Technical Reports Server (NTRS)

    Holman, F. F.; Kidwell, J. R.; Ware, T. C.

    1976-01-01

    A scaled single-stage, highly-loaded, axial-flow transonic compressor was tested at speeds from 70 to 110% design equivalent speed to evaluate the effects of scaling compromises and the individual and combined effects of rotor tip running clearance and rotor shroud casing treatment on the overall and blade element performance. At design speed and 1% tip clearance the stage demonstrated an efficiency of 83.2% at 96.4% design flow and a pressure ratio of 1.865. Casing treatment increased design speed surge margin 2.0 points to 12.8%. Overall performance was essentially unchanged. An increase in rotor running clearance to 2.2%, with smooth casing, reduced design speed peak efficiency 5.7 points, flow by 7.4%, pressure ratio to 1.740, and surge margin to 5.4%. Reinstalling casing treatment regained 3.5 points in design speed peak efficiency, 4.7% flow, increased pressure ratio to 1.800 and surge margin to 8.7%.

  5. Large-scale structural optimization

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, J.

    1983-01-01

    Problems encountered by aerospace designers in attempting to optimize whole aircraft are discussed, along with possible solutions. Large scale optimization, as opposed to component-by-component optimization, is hindered by computational costs, software inflexibility, concentration on a single, rather than trade-off, design methodology and the incompatibility of large-scale optimization with single program, single computer methods. The software problem can be approached by placing the full analysis outside of the optimization loop. Full analysis is then performed only periodically. Problem-dependent software can be removed from the generic code using a systems programming technique, and then embody the definitions of design variables, objective function and design constraints. Trade-off algorithms can be used at the design points to obtain quantitative answers. Finally, decomposing the large-scale problem into independent subproblems allows systematic optimization of the problems by an organization of people and machines.

  6. The New LMK Primary Standard for Dew-Point Sensor Calibration: Evaluation of the High-Range Saturator Efficiency

    NASA Astrophysics Data System (ADS)

    Hudoklin, Domen; Drnovšek, Janko

    2008-10-01

    In the field of hygrometry, a primary dew-point standard can be realized according to several proven principles, such as single-pressure (1-P), two-pressure (2-P), or divided flow. Different realizations have been introduced by various national laboratories, each resulting in a stand-alone complex generation system. Recent trends in generator design favor the single-pressure principle without recirculation because it promises theoretically lower uncertainty and because it avoids problems regarding the leak tightness of the recirculation. Instead of recirculation, the efficiency of saturation, the key factor, is increased by preconditioning the inlet gas entering the saturator. For preconditioning, a presaturator or purifier is used to bring the dew point of the inlet stream close to the saturator temperature. The purpose of the paper is to identify the minimum requirements for the preconditioning system and the main saturator to assure efficient saturation for the LMK generator. Moreover, the aim is also to find out if the preconditioning system can be avoided despite the rather simple construction of the main saturator. If this proves to be the case, the generator design can be simplified while maintaining an accurate value of the generated dew point. Experiments were carried out within the scope of improving our existing primary generator in the above-ambient dew-point range up to +70°C. These results show the generated dew point is within the measurement uncertainty for any dew-point value of the inlet gas. Thus, the preconditioning subsystem can be avoided, which leads to a simplified generator design.

  7. An Effective and Novel Neural Network Ensemble for Shift Pattern Detection in Control Charts.

    PubMed

    Barghash, Mahmoud

    2015-01-01

    Pattern recognition in control charts is critical to make a balance between discovering faults as early as possible and reducing the number of false alarms. This work is devoted to designing a multistage neural network ensemble that achieves this balance which reduces rework and scrape without reducing productivity. The ensemble under focus is composed of a series of neural network stages and a series of decision points. Initially, this work compared using multidecision points and single-decision point on the performance of the ANN which showed that multidecision points are highly preferable to single-decision points. This work also tested the effect of population percentages on the ANN and used this to optimize the ANN's performance. Also this work used optimized and nonoptimized ANNs in an ensemble and proved that using nonoptimized ANN may reduce the performance of the ensemble. The ensemble that used only optimized ANNs has improved performance over individual ANNs and three-sigma level rule. In that respect using the designed ensemble can help in reducing the number of false stops and increasing productivity. It also can be used to discover even small shifts in the mean as early as possible.

  8. An innovative use of instant messaging technology to support a library's single-service point.

    PubMed

    Horne, Andrea S; Ragon, Bart; Wilson, Daniel T

    2012-01-01

    A library service model that provides reference and instructional services by summoning reference librarians from a single service point is described. The system utilizes Libraryh3lp, an open-source, multioperator instant messaging system. The selection and refinement of this solution and technical challenges encountered are explored, as is the design of public services around this technology, usage of the system, and best practices. This service model, while a major cultural and procedural change at first, is now a routine aspect of customer service for this library.

  9. The digital implementation of control compensators: The coefficient wordlength issue

    NASA Technical Reports Server (NTRS)

    Moroney, P.; Willsky, A. S.; Houpt, P. K.

    1979-01-01

    There exists a number of mathematical procedures for designing discrete-time compensators. However, the digital implementation of these designs, with a microprocessor for example, has not received nearly as thorough an investigation. The finite-precision nature of the digital hardware makes it necessary to choose an algorithm (computational structure) that will perform 'well-enough' with regard to the initial objectives of the design. This paper describes a procedure for estimating the required fixed-point coefficient wordlength for any given computational structure for the implementation of a single-input single-output LOG design. The results are compared to the actual number of bits necessary to achieve a specified performance index.

  10. Parallelization of Program to Optimize Simulated Trajectories (POST3D)

    NASA Technical Reports Server (NTRS)

    Hammond, Dana P.; Korte, John J. (Technical Monitor)

    2001-01-01

    This paper describes the parallelization of the Program to Optimize Simulated Trajectories (POST3D). POST3D uses a gradient-based optimization algorithm that reaches an optimum design point by moving from one design point to the next. The gradient calculations required to complete the optimization process, dominate the computational time and have been parallelized using a Single Program Multiple Data (SPMD) on a distributed memory NUMA (non-uniform memory access) architecture. The Origin2000 was used for the tests presented.

  11. Specifications of a Simulation Model for a Local Area Network Design in Support of Stock Point Logistics Integrated Communications Environment (SPLICE).

    DTIC Science & Technology

    1982-10-01

    class queueing system with a preemptive -resume priority service discipline, as depicted in Figure 4.2. Concerning a SPLICLAN configuration a node can...processor can be modeled as a single resource, multi-class queueing system with a preemptive -resume priority structure as the one given in Figure 4.2. An...LOCAL AREA NETWORK DESIGN IN SUPPORT OF STOCK POINT LOGISTICS INTEGRATED COMMUNICATIONS ENVIRONMENT (SPLICE) by Ioannis Th. Mastrocostopoulos October

  12. Teaching Discrete and Programmable Logic Design Techniques Using a Single Laboratory Board

    ERIC Educational Resources Information Center

    Debiec, P.; Byczuk, M.

    2011-01-01

    Programmable logic devices (PLDs) are used at many universities in introductory digital logic laboratories, where kits containing a single high-capacity PLD replace "standard" sets containing breadboards, wires, and small- or medium-scale integration (SSI/MSI) chips. From the pedagogical point of view, two problems arise in these…

  13. Trajectory Design Strategies for the NGST L2 Libration Point Mission

    NASA Technical Reports Server (NTRS)

    Folta, David; Cooley, Steven; Howell, Kathleen; Bauer, Frank H.

    2001-01-01

    The Origins' Next Generation Space Telescope (NGST) trajectory design is addressed in light of improved methods for attaining constrained orbit parameters and their control at the exterior collinear libration point, L2. The use of a dynamical systems approach, state-space equations for initial libration orbit control, and optimization to achieve constrained orbit parameters are emphasized. The NGST trajectory design encompasses a direct transfer and orbit maintenance under a constant acceleration. A dynamical systems approach can be used to provide a biased orbit and stationkeeping maintenance method that incorporates the constraint of a single axis correction scheme.

  14. A variable-gain output feedback control design approach

    NASA Technical Reports Server (NTRS)

    Haylo, Nesim

    1989-01-01

    A multi-model design technique to find a variable-gain control law defined over the whole operating range is proposed. The design is formulated as an optimal control problem which minimizes a cost function weighing the performance at many operating points. The solution is obtained by embedding into the Multi-Configuration Control (MCC) problem, a multi-model robust control design technique. In contrast to conventional gain scheduling which uses a curve fit of single model designs, the optimal variable-gain control law stabilizes the plant at every operating point included in the design. An iterative algorithm to compute the optimal control gains is presented. The methodology has been successfully applied to reconfigurable aircraft flight control and to nonlinear flight control systems.

  15. Theoretical Study of Wave Particle Correlation Measurement via 1-D Electromagnetic Particle Simulation

    NASA Astrophysics Data System (ADS)

    Ueda, Yoshikatsu; Omura, Yoshiharu; Kojima, Hiro

    Spacecraft observation is essentially "one-point measurement", while numerical simulation can reproduce a whole system of physical processes on a computer. By performing particle simulations of plasma wave instabilities and calculating correlation of waves and particles observed at a single point, we examine how well we can infer the characteristics of the whole system by a one-point measurement. We perform various simulation runs with different plasma parameters using one-dimensional electromagnetic particle code (KEMPO1) and calculate 'E dot v' or other moments at a single point. We find good correlation between the measurement and the macroscopic fluctuations of the total simulation region. We make use of the results of the computer experiments in our system design of new instruments 'One-chip Wave Particle Interaction Analyzer (OWPIA)'.

  16. Methods for Assessment of Species Richness and Occupancy Across Space, Time, Taxonomic Groups, and Ecoregions

    DTIC Science & Technology

    2017-03-26

    logistic constraints and associated travel time between points in the central and western Great Basin. The geographic and temporal breadth of our...surveys (MacKenzie and Royle 2005). In most cases, less time is spent traveling between sites on a given day when the single-day design is implemented...with the single-day design (110 hr). These estimates did not include return- travel time , which did not limit sampling effort. As a result, we could

  17. Brain MRI volumetry in a single patient with mild traumatic brain injury.

    PubMed

    Ross, David E; Castelvecchi, Cody; Ochs, Alfred L

    2013-01-01

    This letter to the editor describes the case of a 42 year old man with mild traumatic brain injury and multiple neuropsychiatric symptoms which persisted for a few years after the injury. Initial CT scans and MRI scans of the brain showed no signs of atrophy. Brain volume was measured using NeuroQuant®, an FDA-approved, commercially available software method. Volumetric cross-sectional (one point in time) analysis also showed no atrophy. However, volumetric longitudinal (two points in time) analysis showed progressive atrophy in several brain regions. This case illustrated in a single patient the principle discovered in multiple previous group studies, namely that the longitudinal design is more powerful than the cross-sectional design for finding atrophy in patients with traumatic brain injury.

  18. Single-Chain Folding of Synthetic Polymers: A Critical Update.

    PubMed

    Altintas, Ozcan; Barner-Kowollik, Christopher

    2015-11-23

    The current contribution serves as a critical update to a previous feature article from us (Macromol. Rapid Commun. 2012, 33, 958-971), and highlights the latest advances in the preparation of single chain polymeric nanoparticles and initial-yet promising-attempts towards mimicking the structure of natural biomacromolecules via single-chain folding of well-defined linear polymers via so-called single chain selective point folding and repeat unit folding. The contribution covers selected examples from the literature published up to ca. September 2015. Our aim is not to provide an exhaustive review but rather highlight a selection of new and exciting examples for single-chain folding based on advanced macromolecular precision chemistry. Initially, the discussion focuses on the synthesis and characterization of single-chain folded structures via selective point folding. The second part of the feature article addresses the folding of well-defined single-chain polymers by means of repeat unit folding. The current state of the art in the field of single-chain folding indicates that repeat unit folding-driven nanoparticle preparation is well-advanced, while initial encouraging steps towards building selective point folding systems have been taken. In addition, a summary of the-in our view-open key questions is provided that may guide future biomimetic design efforts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Design of Optimally Robust Control Systems.

    DTIC Science & Technology

    1980-01-01

    approach is that the optimization framework is an artificial device. While some design constraints can easily be incorporated into a single cost function...indicating that that point was indeed the solution. Also, an intellegent initial guess for k was important in order to avoid being hung up at the double

  20. Writing for Distance Education. Samples Booklet.

    ERIC Educational Resources Information Center

    International Extension Coll., Cambridge (England).

    Approaches to the format, design, and layout of printed instructional materials for distance education are illustrated in 36 samples designed to accompany the manual, "Writing for Distance Education." Each sample is presented on a single page with a note pointing out its key features. Features illustrated include use of typescript layout, a comic…

  1. Linear kinematic air bearing

    NASA Technical Reports Server (NTRS)

    Mayall, S. D.

    1974-01-01

    Bearing provides continuous, smooth movement of the cat's-eye mirror, eliminating wear and deterioration of bearing surface and resulting oscillation effects in servo system. Design features self-aligning configuration; single-point, pivotal pad mounting, having air passage through it; and design of pads that allows for precise control of discharge path of air from pads.

  2. [Single-family rooms for neonatal intensive care units impacts on preterm newborns, families, and health-care staff. A systematic literature review].

    PubMed

    Servel, A-C; Rideau Batista Novais, A

    2016-09-01

    The quality of the environment is an essential point in the care of preterm newborns. The design of neonatal intensive care units (NICUs) (open-bay, single-patient room, single-family room) directly affects both the preterm newborns and their caregivers (parents, healthcare staff). The aim of this systematic review was to evaluate the impact of single-family rooms on the preterm newborn, its parents, and the staff. Single-family rooms improve outcome for the preterm newborn, with increasing parental involvement and better control of the environment (fewer inappropriate stimulations such as high levels of noise and illumination). This kind of NICU design also improves parental and staff satisfaction. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Coastal single-beam bathymetry data collected in 2015 from Raccoon Point to Point Au Fer Island, Louisiana

    USGS Publications Warehouse

    Stalk, Chelsea A.; DeWitt, Nancy T.; Kindinger, Jack L.; Flocks, James G.; Reynolds, Billy J.; Kelso, Kyle W.; Fredericks, Joseph J.; Tuten, Thomas M.

    2017-03-10

    As part of the Barrier Island Comprehensive Monitoring Program (BICM), scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted a nearshore single-beam bathymetry survey along the south-central coast of Louisiana, from Raccoon Point to Point Au Fer Island, in July 2015. The goal of the BICM program is to provide long-term data on Louisiana’s coastline and use this data to plan, design, evaluate, and maintain current and future barrier island restoration projects. The data described in this report will provide baseline bathymetric information for future research investigating island evolution, sediment transport, and recent and long-term geomorphic change, and will support modeling of future changes in response to restoration and storm impacts. The survey area encompasses more than 300 square kilometers of nearshore environment from Raccoon Point to Point Au Fer Island. This data series serves as an archive of processed single-beam bathymetry data, collected from July 22–29, 2015, under USGS Field Activity Number 2015-320-FA. Geographic information system data products include a 200-meter-cell-size interpolated bathymetry grid, trackline maps, and point data files. Additional files include error analysis maps, Field Activity Collection System logs, and formal Federal Geographic Data Committee metadata.

  4. Internal Performance of Several Divergent-Shroud Ejector Nozzles with High Divergence Angles

    NASA Technical Reports Server (NTRS)

    Trout, Arthur M.; Papell, S. Stephen; Povolny, John H.

    1957-01-01

    Nine divergent-shroud ejector configurations were investigated to determine the effect of shroud divergence angle on ejector internal performance. Unheated dry air was used for both the primary and secondary flows. The decrease in the design-point thrust coefficient with increasing flow divergence angle (angle measured from primary exit to shroud exit) followed very closely a simple relation involving the cosine of the angle. This indicates that design-point thrust performance for divergent-shroud ejectors can be predicted with reasonable accuracy within the range investigated. The decrease in design-point thrust coefficient due to increasing the flow divergence engle from 120deg to 30deg (half-singles) was approximately 6 percent. Ejector air-handling characteristics and the primary-nozzle flow coefficient were not significantly affected by change in shroud divergence angle.

  5. Design of Single-Site Photocatalyst using Metal-Organic Framework as Matrix.

    PubMed

    Wen, Meicheng; Mori, Kohsuke; Kuwahara, Yasutaka; An, Taicheng; Yamashita, Hiromi

    2018-05-14

    Single-site photocatalyst generally displays excellent photocatalytic activtiy and considerable high stability as compared to homogeneous catalytic system. A rational structural design of single-site photocatalyst with isolated, uniform and spatially separated active sites in a given solid is of prime importance to achieve high photocatalytic activity. Intense attentions have been focused on the engineering and fabrication of single-site photocatalys by using porous materials as platform. Metal-organic frameworks (MOFs) hold great potential for the design and fabrication of single-site photocatalysts due to their remarkable porosity, ultrahigh surface area, extraordinary tailorability and significant diversity. MOFs can provide abundant number of binding sites for anchoring active sites, result in significant enhancement of photocatalytic performance. In this focus review, the development of single-site MOF photocatalysts that perform in important and challenging chemical redox reaction such as photocatalytic water splitting, photocatalytic CO₂ conversion and organic transformations is summarized thoroughly. The successful strategies applied for the construction of single-site MOF photocatalysts and major challenge toward practical application was summarized and pointed out, respectively. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Design of relative motion and attitude profiles for three-dimensional resident space object imaging with a laser rangefinder

    NASA Astrophysics Data System (ADS)

    Nayak, M.; Beck, J.; Udrea, B.

    This paper focuses on the aerospace application of a single beam laser rangefinder (LRF) for 3D imaging, shape detection, and reconstruction in the context of a space-based space situational awareness (SSA) mission scenario. The primary limitation to 3D imaging from LRF point clouds is the one-dimensional nature of the single beam measurements. A method that combines relative orbital motion and scanning attitude motion to generate point clouds has been developed and the design and characterization of multiple relative motion and attitude maneuver profiles are presented. The target resident space object (RSO) has the shape of a generic telecommunications satellite. The shape and attitude of the RSO are unknown to the chaser satellite however, it is assumed that the RSO is un-cooperative and has fixed inertial pointing. All sensors in the metrology chain are assumed ideal. A previous study by the authors used pure Keplerian motion to perform a similar 3D imaging mission at an asteroid. A new baseline for proximity operations maneuvers for LRF scanning, based on a waypoint adaptation of the Hill-Clohessy-Wiltshire (HCW) equations is examined. Propellant expenditure for each waypoint profile is discussed and combinations of relative motion and attitude maneuvers that minimize the propellant used to achieve a minimum required point cloud density are studied. Both LRF strike-point coverage and point cloud density are maximized; the capability for 3D shape registration and reconstruction from point clouds generated with a single beam LRF without catalog comparison is proven. Next, a method of using edge detection algorithms to process a point cloud into a 3D modeled image containing reconstructed shapes is presented. Weighted accuracy of edge reconstruction with respect to the true model is used to calculate a qualitative “ metric” that evaluates effectiveness of coverage. Both edge recognition algorithms and the metric are independent of point cloud densit- , therefore they are utilized to compare the quality of point clouds generated by various attitude and waypoint command profiles. The RSO model incorporates diverse irregular protruding shapes, such as open sensor covers, instrument pods and solar arrays, to test the limits of the algorithms. This analysis is used to mathematically prove that point clouds generated by a single-beam LRF can achieve sufficient edge recognition accuracy for SSA applications, with meaningful shape information extractable even from sparse point clouds. For all command profiles, reconstruction of RSO shapes from the point clouds generated with the proposed method are compared to the truth model and conclusions are drawn regarding their fidelity.

  7. Photonic crystals possessing multiple Weyl points and the experimental observation of robust surface states

    PubMed Central

    Chen, Wen-Jie; Xiao, Meng; Chan, C. T.

    2016-01-01

    Weyl points, as monopoles of Berry curvature in momentum space, have captured much attention recently in various branches of physics. Realizing topological materials that exhibit such nodal points is challenging and indeed, Weyl points have been found experimentally in transition metal arsenide and phosphide and gyroid photonic crystal whose structure is complex. If realizing even the simplest type of single Weyl nodes with a topological charge of 1 is difficult, then making a real crystal carrying higher topological charges may seem more challenging. Here we design, and fabricate using planar fabrication technology, a photonic crystal possessing single Weyl points (including type-II nodes) and multiple Weyl points with topological charges of 2 and 3. We characterize this photonic crystal and find nontrivial 2D bulk band gaps for a fixed kz and the associated surface modes. The robustness of these surface states against kz-preserving scattering is experimentally observed for the first time. PMID:27703140

  8. A MPPT Algorithm Based PV System Connected to Single Phase Voltage Controlled Grid

    NASA Astrophysics Data System (ADS)

    Sreekanth, G.; Narender Reddy, N.; Durga Prasad, A.; Nagendrababu, V.

    2012-10-01

    Future ancillary services provided by photovoltaic (PV) systems could facilitate their penetration in power systems. In addition, low-power PV systems can be designed to improve the power quality. This paper presents a single-phase PV systemthat provides grid voltage support and compensation of harmonic distortion at the point of common coupling thanks to a repetitive controller. The power provided by the PV panels is controlled by a Maximum Power Point Tracking algorithm based on the incremental conductance method specifically modified to control the phase of the PV inverter voltage. Simulation and experimental results validate the presented solution.

  9. 29 CFR 1926.450 - Scope, application and definitions applicable to this subpart.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... means a single-point adjustable suspension scaffold consisting of a seat or sling designed to support... means a design of straps which may be secured about the employee in a manner to distribute the fall... a series of interconnected braced scaffold members or supporting structures erected to form a...

  10. 29 CFR 1926.450 - Scope, application and definitions applicable to this subpart.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... means a single-point adjustable suspension scaffold consisting of a seat or sling designed to support... means a design of straps which may be secured about the employee in a manner to distribute the fall... a series of interconnected braced scaffold members or supporting structures erected to form a...

  11. 29 CFR 1926.450 - Scope, application and definitions applicable to this subpart.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... means a single-point adjustable suspension scaffold consisting of a seat or sling designed to support... means a design of straps which may be secured about the employee in a manner to distribute the fall... a series of interconnected braced scaffold members or supporting structures erected to form a...

  12. 29 CFR 1926.450 - Scope, application and definitions applicable to this subpart.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... means a single-point adjustable suspension scaffold consisting of a seat or sling designed to support... means a design of straps which may be secured about the employee in a manner to distribute the fall... a series of interconnected braced scaffold members or supporting structures erected to form a...

  13. Development of a Multi-Point Microwave Interferometry (MPMI) Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Specht, Paul Elliott; Cooper, Marcia A.; Jilek, Brook Anton

    2015-09-01

    A multi-point microwave interferometer (MPMI) concept was developed for non-invasively tracking a shock, reaction, or detonation front in energetic media. Initially, a single-point, heterodyne microwave interferometry capability was established. The design, construction, and verification of the single-point interferometer provided a knowledge base for the creation of the MPMI concept. The MPMI concept uses an electro-optic (EO) crystal to impart a time-varying phase lag onto a laser at the microwave frequency. Polarization optics converts this phase lag into an amplitude modulation, which is analyzed in a heterodyne interfer- ometer to detect Doppler shifts in the microwave frequency. A version of themore » MPMI was constructed to experimentally measure the frequency of a microwave source through the EO modulation of a laser. The successful extraction of the microwave frequency proved the underlying physical concept of the MPMI design, and highlighted the challenges associated with the longer microwave wavelength. The frequency measurements made with the current equipment contained too much uncertainty for an accurate velocity measurement. Potential alterations to the current construction are presented to improve the quality of the measured signal and enable multiple accurate velocity measurements.« less

  14. Low Cost Gas Turbine Off-Design Prediction Technique

    NASA Astrophysics Data System (ADS)

    Martinjako, Jeremy

    This thesis seeks to further explore off-design point operation of gas turbines and to examine the capabilities of GasTurb 12 as a tool for off-design analysis. It is a continuation of previous thesis work which initially explored the capabilities of GasTurb 12. The research is conducted in order to: 1) validate GasTurb 12 and, 2) predict off-design performance of the Garrett GTCP85-98D located at the Arizona State University Tempe campus. GasTurb 12 is validated as an off-design point tool by using the program to predict performance of an LM2500+ marine gas turbine. Haglind and Elmegaard (2009) published a paper detailing a second off-design point method and it includes the manufacturer's off-design point data for the LM2500+. GasTurb 12 is used to predict off-design point performance of the LM2500+ and compared to the manufacturer's data. The GasTurb 12 predictions show good correlation. Garrett has published specification data for the GTCP85-98D. This specification data is analyzed to determine the design point and to comment on off-design trends. Arizona State University GTCP85-98D off-design experimental data is evaluated. Trends presented in the data are commented on and explained. The trends match the expected behavior demonstrated in the specification data for the same gas turbine system. It was originally intended that a model of the GTCP85-98D be constructed in GasTurb 12 and used to predict off-design performance. The prediction would be compared to collected experimental data. This is not possible because the free version of GasTurb 12 used in this research does not have a module to model a single spool turboshaft. This module needs to be purchased for this analysis.

  15. Configuration study for a 30 GHz monolithic receive array, volume 1

    NASA Technical Reports Server (NTRS)

    Nester, W. H.; Cleaveland, B.; Edward, B.; Gotkis, S.; Hesserbacker, G.; Loh, J.; Mitchell, B.

    1984-01-01

    Gregorian, Cassegrain, and single reflector systems were analyzed in configuration studies for communications satellite receive antennas. Parametric design and performance curves were generated. A preliminary design of each reflector/feed system was derived including radiating elements, beam-former network, beamsteering system, and MMIC module architecture. Performance estimates and component requirements were developed for each design. A recommended design was selected for both the scanning beam and the fixed beam case. Detailed design and performance analysis results are presented for the selected Cassegrain configurations. The final design point is characterized in detail and performance measures evaluated in terms of gain, sidelobe level, noise figure, carrier-to-interference ratio, prime power, and beamsteering. The effects of mutual coupling and excitation errors (including phase and amplitude quantization errors) are evaluated. Mechanical assembly drawings are given for the final design point. Thermal design requirements are addressed in the mechanical design.

  16. Preliminary design report, Large Space Telescope OTA/SI Phase B study: High speed area photometer. [systems analysis

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A photometer is examined which combines several features from separate instruments into a single package. The design presented has both point and area photometry capability with provision for inserting filters to provide spectral discrimination. The electronics provide for photon counting mode for the point detectors and both photon counting and analog modes for the area detector. The area detector also serves as a target locating device for the point detectors. Topics discussed include: (1) electronic equipment requirements, (2) optical properties, (3) structural housing for the instrument, (4) motors and other mechanical components, (5) ground support equipment, and (6) environment control for the instrument. Engineering drawings and block diagrams are shown.

  17. The Impact of Single-Gender Scheduling on Students in a Title I School

    ERIC Educational Resources Information Center

    Moss, Janet L.

    2011-01-01

    This dissertation was designed to examine the impact that single-gender scheduling would have on students who attend a struggling Title I middle school. The importance of the middle level cannot be denied. Strong research points to this time in a student's life as the pivotal crux on which success and failure are balanced. Middle level educators…

  18. Single-stage experimental evaluation of tandem-airfoil rotor and stator blading for compressors, part 8

    NASA Technical Reports Server (NTRS)

    Brent, J. A.; Clemmons, D. R.

    1974-01-01

    An experimental investigation was conducted with an 0.8 hub/tip ratio, single-stage, axial flow compressor to determine the potential of tandem-airfoil blading for improving the efficiency and stable operating range of compressor stages. The investigation included testing of a baseline stage with single-airfoil blading and two tandem-blade stages. The overall performance of the baseline stage and the tandem-blade stage with a 20-80% loading split was considerably below the design prediction. The other tandem-blade stage, which had a rotor with a 50-50% loading split, came within 4.5% of the design pressure rise (delta P(bar)/P(bar) sub 1) and matched the design stage efficiency. The baseline stage with single-airfoil blading, which was designed to account for the actual rotor inlet velocity profile and the effects of axial velocity ratio and secondary flow, achieved the design predicted performance. The corresponding tandem-blade stage (50-50% loading split in both blade rows) slightly exceeded the design pressure rise but was 1.5 percentage points low in efficiency. The tandem rotors tested during both phases demonstrated higher pressure rise and efficiency than the corresponding single-airfoil rotor, with identical inlet and exit airfoil angles.

  19. Using multifield measurements to eliminate alignment degeneracies in the JWST testbed telescope

    NASA Astrophysics Data System (ADS)

    Sabatke, Erin; Acton, Scott; Schwenker, John; Towell, Tim; Carey, Larkin; Shields, Duncan; Contos, Adam; Leviton, Doug

    2007-09-01

    The primary mirror of the James Webb Space Telescope (JWST) consists of 18 segments and is 6.6 meters in diameter. A sequence of commissioning steps is carried out at a single field point to align the segments. At that single field point, though, the segmented primary mirror can compensate for aberrations caused by misalignments of the remaining mirrors. The misalignments can be detected in the wavefronts of off-axis field points. The Multifield (MF) step in the commissioning process surveys five field points and uses a simple matrix multiplication to calculate corrected positions for the secondary and primary mirrors. A demonstration of the Multifield process was carried out on the JWST Testbed Telescope (TBT). The results show that the Multifield algorithm is capable of reducing the field dependency of the TBT to about 20 nm RMS, relative to the TBT design nominal field dependency.

  20. Mode Matching for Optical Antennas

    NASA Astrophysics Data System (ADS)

    Feichtner, Thorsten; Christiansen, Silke; Hecht, Bert

    2017-11-01

    The emission rate of a point dipole can be strongly increased in the presence of a well-designed optical antenna. Yet, optical antenna design is largely based on radio-frequency rules, ignoring, e.g., Ohmic losses and non-negligible field penetration in metals at optical frequencies. Here, we combine reciprocity and Poynting's theorem to derive a set of optical-frequency antenna design rules for benchmarking and optimizing the performance of optical antennas driven by single quantum emitters. Based on these findings a novel plasmonic cavity antenna design is presented exhibiting a considerably improved performance compared to a reference two-wire antenna. Our work will be useful for the design of high-performance optical antennas and nanoresonators for diverse applications ranging from quantum optics to antenna-enhanced single-emitter spectroscopy and sensing.

  1. 14 CFR 25.519 - Jacking and tie-down provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... structure must be designed for a vertical load of 1.33 times the vertical static reaction at each jacking point acting singly and in combination with a horizontal load of 0.33 times the vertical static reaction...: (i) The airplane structure must be designed for a vertical load of 1.33 times the vertical reaction...

  2. 14 CFR 25.519 - Jacking and tie-down provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... structure must be designed for a vertical load of 1.33 times the vertical static reaction at each jacking point acting singly and in combination with a horizontal load of 0.33 times the vertical static reaction...: (i) The airplane structure must be designed for a vertical load of 1.33 times the vertical reaction...

  3. 14 CFR 25.519 - Jacking and tie-down provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... structure must be designed for a vertical load of 1.33 times the vertical static reaction at each jacking point acting singly and in combination with a horizontal load of 0.33 times the vertical static reaction...: (i) The airplane structure must be designed for a vertical load of 1.33 times the vertical reaction...

  4. 14 CFR 25.519 - Jacking and tie-down provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... structure must be designed for a vertical load of 1.33 times the vertical static reaction at each jacking point acting singly and in combination with a horizontal load of 0.33 times the vertical static reaction...: (i) The airplane structure must be designed for a vertical load of 1.33 times the vertical reaction...

  5. 14 CFR 25.519 - Jacking and tie-down provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... structure must be designed for a vertical load of 1.33 times the vertical static reaction at each jacking point acting singly and in combination with a horizontal load of 0.33 times the vertical static reaction...: (i) The airplane structure must be designed for a vertical load of 1.33 times the vertical reaction...

  6. [Development of the automatic dental X-ray film processor].

    PubMed

    Bai, J; Chen, H

    1999-07-01

    This paper introduces a multiple-point detecting technique of the density of dental X-ray films. With the infrared ray multiple-point detecting technique, a single-chip microcomputer control system is used to analyze the effectiveness of the film-developing in real time in order to achieve a good image. Based on the new technology, We designed the intelligent automatic dental X-ray film processing.

  7. Thrust Deduction in Contrarotating Propellers

    DTIC Science & Technology

    1974-11-01

    nuder gavc At = 0.056 Design CR propellers (Table 2) At = 0.029 Single Screw. Stromn-Tejsen 14 Very good agreement between the experimental and... design experimental points do not lie on the theoretical curve. This is believed to be due to either experimental test accuracy. or tile rudder effect, or...propellers. Con trarotating propellers operating at off- design loading and spacing as well as the contribution of a rudder were investigated. Theli

  8. Comparison of a quasi-3D analysis and experimental performance for three compact radial turbines

    NASA Technical Reports Server (NTRS)

    Simonyi, P. S.; Boyle, R. J.

    1991-01-01

    An experimental aerodynamic evaluation of three compact radial turbine builds was performed. Two rotors which were 40-50 percent shorter in axial length than conventional state-of-the-art radial rotors were tested. A single nozzle design was used. One rotor was tested with the nozzle at two stagger angle settings. A second rotor was tested with the nozzle in only the closed down setting. Experimental results were compared to predicted results from a quasi-3D inviscid and boundary layer analysis, called MTSB (Meridl/Tsonic/Blayer). This analysis was used to predict turbine performance. It has previously been calibrated only for axial, not radial, turbomachinery. The predicted and measured efficiencies were compared at the design point for the three turbines. At the design points the analysis overpredicted the efficiency by less than 1.7 points. Comparisons were also made at off-design operating points. The results of these comparisons showed the importance of an accurate clearance model for efficiency predictions and also that there are deficiencies in the incidence loss model used.

  9. Comparison of a quasi-3D analysis and experimental performance for three compact radial turbines

    NASA Technical Reports Server (NTRS)

    Simonyi, P. S.; Boyle, R. J.

    1991-01-01

    An experimental aerodynamic evaluation of three compact radial turbine builds was performed. Two rotors which were 40 to 50 percent shorter in axial length than conventional state of the art radial rotors were tested. A single nozzle design was used. One rotor was tested with the nozzle at two stagger angle settings. A second rotor was tested with the nozzle in only the closed down setting. Experimental results were compared to predict results from a quasi-3D inviscid and boundary layer analysis, called Meridl/Tsonic/Blayer (MTSB). This analysis was used to predict turbine performance. It has previously been calibrated only for axial, not radial, turbomachinery. The predicted and measured efficiencies were compared at the design point for the three turbines. At the design points the analysis overpredicted the efficiency by less than 1.7 points. Comparisons were also made at off-design operating points. The results of these comparisons showed the importance of an accurate clearance model for efficiency predictions and also that there are deficiencies in the incidence loss model used.

  10. Array microscopy technology and its application to digital detection of Mycobacterium tuberculosis

    NASA Astrophysics Data System (ADS)

    McCall, Brian P.

    Tuberculosis causes more deaths worldwide than any other curable infectious disease. This is the case despite tuberculosis appearing to be on the verge of eradication midway through the last century. Efforts at reversing the spread of tuberculosis have intensified since the early 1990s. Since then, microscopy has been the primary frontline diagnostic. In this dissertation, advances in clinical microscopy towards array microscopy for digital detection of Mycobacterium tuberculosis are presented. Digital array microscopy separates the tasks of microscope operation and pathogen detection and will reduce the specialization needed in order to operate the microscope. Distributing the work and reducing specialization will allow this technology to be deployed at the point of care, taking the front-line diagnostic for tuberculosis from the microscopy center to the community health center. By improving access to microscopy centers, hundreds of thousands of lives can be saved. For this dissertation, a lens was designed that can be manufactured as 4x6 array of microscopes. This lens design is diffraction limited, having less than 0.071 waves of aberration (root mean square) over the entire field of view. A total area imaged onto a full-frame digital image sensor is expected to be 3.94 mm2, which according to tuberculosis microscopy guidelines is more than sufficient for a sensitive diagnosis. The design is tolerant to single point diamond turning manufacturing errors, as found by tolerance analysis and by fabricating a prototype. Diamond micro-milling, a fabrication technique for lens array molds, was applied to plastic plano-concave and plano-convex lens arrays, and found to produce high quality optical surfaces. The micro-milling technique did not prove robust enough to produce bi-convex and meniscus lens arrays in a variety of lens shapes, however, and it required lengthy fabrication times. In order to rapidly prototype new lenses, a new diamond machining technique was developed called 4-axis single point diamond machining. This technique is 2-10x faster than micro-milling, depending on how advanced the micro-milling equipment is. With array microscope fabrication still in development, a single prototype of the lens designed for an array microscope was fabricated using single point diamond turning. The prototype microscope objective was validated in a pre-clinical trial. The prototype was compared with a standard clinical microscope objective in diagnostic tests. High concordance, a Fleiss's kappa of 0.88, was found between diagnoses made using the prototype and standard microscope objectives and a reference test. With the lens designed and validated and an advanced fabrication process developed, array microscopy technology is advanced to the point where it is feasible to rapidly prototype an array microscope for detection of tuberculosis and translate array microscope from an innovative concept to a device that can save lives.

  11. eLISA Telescope In-field Pointing and Scattered Light Study

    NASA Astrophysics Data System (ADS)

    Livas, J.; Sankar, S.; West, G.; Seals, L.; Howard, J.; Fitzsimons, E.

    2017-05-01

    The orbital motion of the three spacecraft that make up the eLISA Observatory constellation causes long-arm line of sight variations of approximately ± one degree over the course of a year. The baseline solution is to package the telescope, the optical bench, and the gravitational reference sensor (GRS) into an optical assembly at each end of the measurement arm, and then to articulate the assembly. An optical phase reference is exchanged between the moving optical benches with a single mode optical fiber (“backlink” fiber). An alternative solution, referred to as in-field pointing, embeds a steering mirror into the optical design, fixing the optical benches and eliminating the backlink fiber, but requiring the additional complication of a two-stage optical design for the telescope. We examine the impact of an in-field pointing design on the scattered light performance.

  12. Multi-Objective Optimization of a Turbofan for an Advanced, Single-Aisle Transport

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.; Guynn, Mark D.

    2012-01-01

    Considerable interest surrounds the design of the next generation of single-aisle commercial transports in the Boeing 737 and Airbus A320 class. Aircraft designers will depend on advanced, next-generation turbofan engines to power these airplanes. The focus of this study is to apply single- and multi-objective optimization algorithms to the conceptual design of ultrahigh bypass turbofan engines for this class of aircraft, using NASA s Subsonic Fixed Wing Project metrics as multidisciplinary objectives for optimization. The independent design variables investigated include three continuous variables: sea level static thrust, wing reference area, and aerodynamic design point fan pressure ratio, and four discrete variables: overall pressure ratio, fan drive system architecture (i.e., direct- or gear-driven), bypass nozzle architecture (i.e., fixed- or variable geometry), and the high- and low-pressure compressor work split. Ramp weight, fuel burn, noise, and emissions are the parameters treated as dependent objective functions. These optimized solutions provide insight to the ultrahigh bypass engine design process and provide information to NASA program management to help guide its technology development efforts.

  13. Prefabricated Roof Beams for Hardened Shelters

    DTIC Science & Technology

    1993-08-01

    beam with a composite concrete slab. Based on the results of the concept evaluation, a test program was designed and conducted to validate the steel...ultimaw, strength. The results of these tests showed that the design procedure accurately predicts the response of the ste,-confined concrete composite...BENDING OF EXTERNALLY REINFORCED CONCRETE BEAMS ........ 67 TABLE 9. SINGLE POINT LOAD BEAM TEST RESULTS

  14. Single service point: it's all in the design.

    PubMed

    Bradigan, Pamela S; Rodman, Ruey L

    2008-01-01

    "Design thinking" principles from a leading design firm, IDEO, were key elements in the planning process for a one-desk service model, the ASK Desk, at the John A. Prior Health Sciences Library. The library administration and staff employed the methodology to enhance customer experiences, meet technology challenges, and compete in a changing education environment. The most recent renovations demonstrate how the principles were applied. The concept of "continuous design thinking" is important in the library's daily operations to serve customers most effectively.

  15. Experimental and Computational Investigation of a Translating-Throat Single-Expansion-Ramp Nozzle

    NASA Technical Reports Server (NTRS)

    Deere, Karen A.; Asbury, Scott C.

    1999-01-01

    An experimental and computational study was conducted on a high-speed, single-expansion-ramp nozzle (SERN) concept designed for efficient off-design performance. The translating-throat SERN concept adjusts the axial location of the throat to provide a variable expansion ratio and allow a more optimum jet exhaust expansion at various flight conditions in an effort to maximize nozzle performance. Three design points (throat locations) were investigated to simulate the operation of this concept at subsonic-transonic, low supersonic, and high supersonic flight conditions. The experimental study was conducted in the jet exit test facility at the Langley Research Center. Internal nozzle performance was obtained at nozzle pressure ratios (NPR's) up to 13 for six nozzles with design nozzle pressure ratios near 9, 42, and 102. Two expansion-ramp surfaces, one concave and one convex, were tested for each design point. Paint-oil flow and focusing schlieren flow visualization techniques were utilized to acquire additional flow data at selected NPR'S. The Navier-Stokes code, PAB3D, was used with a two-equation k-e turbulence model for the computational study. Nozzle performance characteristics were predicted at nozzle pressure ratios of 5, 9, and 13 for the concave ramp, low Mach number nozzle and at 10, 13, and 102 for the concave ramp, high Mach number nozzle.

  16. 33 CFR 274.4 - Pesticide management.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... responsibility for using personal protective equipment and clothing provided and for following established health... from pesticide hazards. Basic health and safety practices and procedures including personal protective... maintenance of pest control equipment. Field Operating Agencies (FOA) will designate a single point of contact...

  17. Guidelines for preliminary selection of the optimum interchange type for a specific location

    DOT National Transportation Integrated Search

    1999-01-01

    In Virginia, when new construction or major reconstruction is planned, the current practice is for a location and design engineer to select the interchange type (diamond interchange, single-point urban interchange, trumpet interchange, full cloverlea...

  18. A Spaceborne Synthetic Aperture Radar Partial Fixed-Point Imaging System Using a Field- Programmable Gate Array—Application-Specific Integrated Circuit Hybrid Heterogeneous Parallel Acceleration Technique

    PubMed Central

    Li, Bingyi; Chen, Liang; Wei, Chunpeng; Xie, Yizhuang; Chen, He; Yu, Wenyue

    2017-01-01

    With the development of satellite load technology and very large scale integrated (VLSI) circuit technology, onboard real-time synthetic aperture radar (SAR) imaging systems have become a solution for allowing rapid response to disasters. A key goal of the onboard SAR imaging system design is to achieve high real-time processing performance with severe size, weight, and power consumption constraints. In this paper, we analyse the computational burden of the commonly used chirp scaling (CS) SAR imaging algorithm. To reduce the system hardware cost, we propose a partial fixed-point processing scheme. The fast Fourier transform (FFT), which is the most computation-sensitive operation in the CS algorithm, is processed with fixed-point, while other operations are processed with single precision floating-point. With the proposed fixed-point processing error propagation model, the fixed-point processing word length is determined. The fidelity and accuracy relative to conventional ground-based software processors is verified by evaluating both the point target imaging quality and the actual scene imaging quality. As a proof of concept, a field- programmable gate array—application-specific integrated circuit (FPGA-ASIC) hybrid heterogeneous parallel accelerating architecture is designed and realized. The customized fixed-point FFT is implemented using the 130 nm complementary metal oxide semiconductor (CMOS) technology as a co-processor of the Xilinx xc6vlx760t FPGA. A single processing board requires 12 s and consumes 21 W to focus a 50-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384. PMID:28672813

  19. A Spaceborne Synthetic Aperture Radar Partial Fixed-Point Imaging System Using a Field- Programmable Gate Array-Application-Specific Integrated Circuit Hybrid Heterogeneous Parallel Acceleration Technique.

    PubMed

    Yang, Chen; Li, Bingyi; Chen, Liang; Wei, Chunpeng; Xie, Yizhuang; Chen, He; Yu, Wenyue

    2017-06-24

    With the development of satellite load technology and very large scale integrated (VLSI) circuit technology, onboard real-time synthetic aperture radar (SAR) imaging systems have become a solution for allowing rapid response to disasters. A key goal of the onboard SAR imaging system design is to achieve high real-time processing performance with severe size, weight, and power consumption constraints. In this paper, we analyse the computational burden of the commonly used chirp scaling (CS) SAR imaging algorithm. To reduce the system hardware cost, we propose a partial fixed-point processing scheme. The fast Fourier transform (FFT), which is the most computation-sensitive operation in the CS algorithm, is processed with fixed-point, while other operations are processed with single precision floating-point. With the proposed fixed-point processing error propagation model, the fixed-point processing word length is determined. The fidelity and accuracy relative to conventional ground-based software processors is verified by evaluating both the point target imaging quality and the actual scene imaging quality. As a proof of concept, a field- programmable gate array-application-specific integrated circuit (FPGA-ASIC) hybrid heterogeneous parallel accelerating architecture is designed and realized. The customized fixed-point FFT is implemented using the 130 nm complementary metal oxide semiconductor (CMOS) technology as a co-processor of the Xilinx xc6vlx760t FPGA. A single processing board requires 12 s and consumes 21 W to focus a 50-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384.

  20. All-fiber bandpass filter based on asymmetrical modes exciting and coupling

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Zhu, Tao; Shi, Leilei; Liu, Min

    2013-01-01

    A low cost all-fiber bandpass filter is demonstrated by fabricating an asymmetric long-period fiber grating (LPFG) in an off-set splicing fiber structure of two single mode fibers in this paper. The main principle of the filter is that the asymmetric LPFG written by single-side CO2 laser irradiation is used to couple the asymmetric cladding modes excited by the offset-coupling of the splicing point between the single mode fiber and the grating, and the left core mode of the splicing point cannot be coupled to the right fiber core, hence the interference effect is avoided. So the bandpass characteristics in the transmission spectrum are achieved. The designed filter exhibits a pass band at a central wavelength of 1565.0 nm with a full-width at half-maximum bandwidth of 12.3 nm.

  1. Apollo: Giving application developers a single point of access to public health models using structured vocabularies and Web services

    PubMed Central

    Wagner, Michael M.; Levander, John D.; Brown, Shawn; Hogan, William R.; Millett, Nicholas; Hanna, Josh

    2013-01-01

    This paper describes the Apollo Web Services and Apollo-SV, its related ontology. The Apollo Web Services give an end-user application a single point of access to multiple epidemic simulators. An end user can specify an analytic problem—which we define as a configuration and a query of results—exactly once and submit it to multiple epidemic simulators. The end user represents the analytic problem using a standard syntax and vocabulary, not the native languages of the simulators. We have demonstrated the feasibility of this design by implementing a set of Apollo services that provide access to two epidemic simulators and two visualizer services. PMID:24551417

  2. Apollo: giving application developers a single point of access to public health models using structured vocabularies and Web services.

    PubMed

    Wagner, Michael M; Levander, John D; Brown, Shawn; Hogan, William R; Millett, Nicholas; Hanna, Josh

    2013-01-01

    This paper describes the Apollo Web Services and Apollo-SV, its related ontology. The Apollo Web Services give an end-user application a single point of access to multiple epidemic simulators. An end user can specify an analytic problem-which we define as a configuration and a query of results-exactly once and submit it to multiple epidemic simulators. The end user represents the analytic problem using a standard syntax and vocabulary, not the native languages of the simulators. We have demonstrated the feasibility of this design by implementing a set of Apollo services that provide access to two epidemic simulators and two visualizer services.

  3. Propeller performance analysis and multidisciplinary optimization using a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Burger, Christoph

    A propeller performance analysis program has been developed and integrated into a Genetic Algorithm for design optimization. The design tool will produce optimal propeller geometries for a given goal, which includes performance and/or acoustic signature. A vortex lattice model is used for the propeller performance analysis and a subsonic compact source model is used for the acoustic signature determination. Compressibility effects are taken into account with the implementation of Prandtl-Glauert domain stretching. Viscous effects are considered with a simple Reynolds number based model to account for the effects of viscosity in the spanwise direction. An empirical flow separation model developed from experimental lift and drag coefficient data of a NACA 0012 airfoil is included. The propeller geometry is generated using a recently introduced Class/Shape function methodology to allow for efficient use of a wide design space. Optimizing the angle of attack, the chord, the sweep and the local airfoil sections, produced blades with favorable tradeoffs between single and multiple point optimizations of propeller performance and acoustic noise signatures. Optimizations using a binary encoded IMPROVE(c) Genetic Algorithm (GA) and a real encoded GA were obtained after optimization runs with some premature convergence. The newly developed real encoded GA was used to obtain the majority of the results which produced generally better convergence characteristics when compared to the binary encoded GA. The optimization trade-offs show that single point optimized propellers have favorable performance, but circulation distributions were less smooth when compared to dual point or multiobjective optimizations. Some of the single point optimizations generated propellers with proplets which show a loading shift to the blade tip region. When noise is included into the objective functions some propellers indicate a circulation shift to the inboard sections of the propeller as well as a reduction in propeller diameter. In addition the propeller number was increased in some optimizations to reduce the acoustic blade signature.

  4. Design and optimization of a single stage centrifugal compressor for a solar dish-Brayton system

    NASA Astrophysics Data System (ADS)

    Wang, Yongsheng; Wang, Kai; Tong, Zhiting; Lin, Feng; Nie, Chaoqun; Engeda, Abraham

    2013-10-01

    According to the requirements of a solar dish-Brayton system, a centrifugal compressor stage with a minimum total pressure ratio of 5, an adiabatic efficiency above 75% and a surge margin more than 12% needs to be designed. A single stage, which consists of impeller, radial vaned diffuser, 90° crossover and two rows of axial stators, was chosen to satisfy this system. To achieve the stage performance, an impeller with a 6:1 total pressure ratio and an adiabatic efficiency of 90% was designed and its preliminary geometry came from an in-house one-dimensional program. Radial vaned diffuser was applied downstream of the impeller. Two rows of axial stators after 90° crossover were added to guide the flow into axial direction. Since jet-wake flow, shockwave and boundary layer separation coexisted in the impeller-diffuser region, optimization on the radius ratio of radial diffuser vane inlet to impeller exit, diffuser vane inlet blade angle and number of diffuser vanes was carried out at design point. Finally, an optimized centrifugal compressor stage fulfilled the high expectations and presented proper performance. Numerical simulation showed that at design point the stage adiabatic efficiency was 79.93% and the total pressure ratio was 5.6. The surge margin was 15%. The performance map including 80%, 90% and 100% design speed was also presented.

  5. On the rational design of compressible flow ejectors

    NASA Technical Reports Server (NTRS)

    Ortwerth, P. J.

    1979-01-01

    A fluid mechanics review of chemical laser ejectors is presented. The characteristics of ejectors with single and multiple driver nozzles are discussed. Methods to compute an optimized performance map in which secondary Mach number and performance are computed versus mass ratio, to compute the flow distortion at each optimized condition, and to determine the thrust area for the design point to match diffuser impedence are examined.

  6. Spear-anvil point-contact spectroscopy in pulsed magnetic fields

    NASA Astrophysics Data System (ADS)

    Arnold, F.; Yager, B.; Kampert, E.; Putzke, C.; Nyéki, J.; Saunders, J.

    2013-11-01

    We describe a new design and experimental technique for point-contact spectroscopy in non-destructive pulsed magnetic fields up to 70 {T}. Point-contact spectroscopy uses a quasi-dc four-point measurement of the current and voltage across a spear-anvil point-contact. The contact resistance could be adjusted over three orders of magnitude by a built-in fine pitch threaded screw. The first measurements using this set-up were performed on both single-crystalline and exfoliated graphite samples in a 150 {ms}, pulse length 70 {T} coil at 4.2 {K} and reproduced the well known point-contact spectrum of graphite and showed evidence for a developing high field excitation above 35 T, the onset field of the charge-density wave instability in graphite.

  7. Designing for Annual Spacelift Performance

    NASA Technical Reports Server (NTRS)

    McCleskey, Carey M.; Zapata, Edgar

    2017-01-01

    This paper presents a methodology for approaching space launch system design from a total architectural point of view. This different approach to conceptual design is contrasted with traditional approaches that focus on a single set of metrics for flight system performance, i.e., payload lift per flight, vehicle mass, specific impulse, etc. The approach presented works with a larger set of metrics, including annual system lift, or "spacelift" performance. Spacelift performance is more inclusive of the flight production capability of the total architecture, i.e., the flight and ground systems working together as a whole to produce flights on a repeated basis. In the proposed methodology, spacelift performance becomes an important design-for-support parameter for flight system concepts and truly advanced spaceport architectures of the future. The paper covers examples of existing system spacelift performance as benchmarks, points out specific attributes of space transportation systems that must be greatly improved over these existing designs, and outlines current activity in this area.

  8. Turbopump Performance Improved by Evolutionary Algorithms

    NASA Technical Reports Server (NTRS)

    Oyama, Akira; Liou, Meng-Sing

    2002-01-01

    The development of design optimization technology for turbomachinery has been initiated using the multiobjective evolutionary algorithm under NASA's Intelligent Synthesis Environment and Revolutionary Aeropropulsion Concepts programs. As an alternative to the traditional gradient-based methods, evolutionary algorithms (EA's) are emergent design-optimization algorithms modeled after the mechanisms found in natural evolution. EA's search from multiple points, instead of moving from a single point. In addition, they require no derivatives or gradients of the objective function, leading to robustness and simplicity in coupling any evaluation codes. Parallel efficiency also becomes very high by using a simple master-slave concept for function evaluations, since such evaluations often consume the most CPU time, such as computational fluid dynamics. Application of EA's to multiobjective design problems is also straightforward because EA's maintain a population of design candidates in parallel. Because of these advantages, EA's are a unique and attractive approach to real-world design optimization problems.

  9. Single-photon routing with whispering-gallery resonators

    NASA Astrophysics Data System (ADS)

    Huang, Jin-Song; Zhang, Jia-Hao; Wei, L. F.

    2018-04-01

    Quantum routing of single photons in a system with two waveguides coupled to two whispering-gallery resonators (WGRs) are investigated theoretically. Using a real-space full quantum theory, photonic scattering amplitudes along four ports of the waveguide network are analytically obtained. It is shown that, by adjusting the geometric and physical parameters of the two-WGR configuration, the quantum routing properties of single photons along the present waveguide network can be controlled effectively. The routing capability from input waveguide to another one can significantly exceed 0.5 near the resonance point of scattering spectra, which can be achieved with only one resonator. By properly designing the distance between two WGRs and the waveguide-WGR coupling strengths, the transfer rate between the waveguides can also reach certain sufficiently high values even in the non-resonance regime. Moreover, Fano-like resonances in the scattering spectra are designable. The proposed system may provide a potential application in controlling single-photon quantum routing.

  10. Effect of single-point mutations on the stability and immunogenicity of a recombinant ricin A chain subunit vaccine antigen.

    PubMed

    Thomas, Justin C; O'Hara, Joanne M; Hu, Lei; Gao, Fei P; Joshi, Sangeeta B; Volkin, David B; Brey, Robert N; Fang, Jianwen; Karanicolas, John; Mantis, Nicholas J; Middaugh, C Russell

    2013-04-01

    There is great interest in the design and development of highly thermostable and immunogenic protein subunit vaccines for biodefense. In this study, we used two orthogonal and complementary computational protein design approaches to generate a series of single-point mutants of RiVax, an attenuated recombinant ricin A chain (RTA) protein subunit vaccine antigen. As assessed by differential scanning calorimetry, the conformational stabilities of the designed mutants ranged from 4°C less stable to 4.5°C more stable than RiVax, depending on solution pH. Two more thermostable (V18P, C171L) and two less thermostable (T13V, S89T) mutants that displayed native-like secondary and tertiary structures (as determined by circular dichroism and fluorescence spectral analysis, respectively) were tested for their capacity to elicit RTA-specific antibodies and toxin-neutralizing activity. Following a prime-boost regimen, we found qualitative differences with respect to specific antibody titers and toxin neutralizing antibody levels induced by the different mutants. Upon a second boost with the more thermostable mutant C171L, a statistically significant increase in RTA-specific antibody titers was observed when compared with RiVax-immunized mice. Notably, the results indicate that single residue changes can be made to the RiVax antigen that increase its thermal stability without adversely impacting the efficacy of the vaccine.

  11. Design and construction of a point-contact spectroscopy rig with lateral scanning capability.

    PubMed

    Tortello, M; Park, W K; Ascencio, C O; Saraf, P; Greene, L H

    2016-06-01

    The design and realization of a cryogenic rig for point-contact spectroscopy measurements in the needle-anvil configuration is presented. Thanks to the use of two piezoelectric nano-positioners, the tip can move along the vertical (z) and horizontal (x) direction and thus the rig is suitable to probe different regions of a sample in situ. Moreover, it can also form double point-contacts on different facets of a single crystal for achieving, e.g., an interferometer configuration for phase-sensitive measurements. For the later purpose, the sample holder can also host a Helmholtz coil for applying a small transverse magnetic field to the junction. A semi-rigid coaxial cable can be easily added for studying the behavior of Josephson junctions under microwave irradiation. The rig can be detached from the probe and thus used with different cryostats. The performance of this new probe has been tested in a Quantum Design PPMS system by conducting point-contact Andreev reflection measurements on Nb thin films over large areas as a function of temperature and magnetic field.

  12. Design and construction of a point-contact spectroscopy rig with lateral scanning capability

    NASA Astrophysics Data System (ADS)

    Tortello, M.; Park, W. K.; Ascencio, C. O.; Saraf, P.; Greene, L. H.

    2016-06-01

    The design and realization of a cryogenic rig for point-contact spectroscopy measurements in the needle-anvil configuration is presented. Thanks to the use of two piezoelectric nano-positioners, the tip can move along the vertical (z) and horizontal (x) direction and thus the rig is suitable to probe different regions of a sample in situ. Moreover, it can also form double point-contacts on different facets of a single crystal for achieving, e.g., an interferometer configuration for phase-sensitive measurements. For the later purpose, the sample holder can also host a Helmholtz coil for applying a small transverse magnetic field to the junction. A semi-rigid coaxial cable can be easily added for studying the behavior of Josephson junctions under microwave irradiation. The rig can be detached from the probe and thus used with different cryostats. The performance of this new probe has been tested in a Quantum Design PPMS system by conducting point-contact Andreev reflection measurements on Nb thin films over large areas as a function of temperature and magnetic field.

  13. Design and construction of a point-contact spectroscopy rig with lateral scanning capability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tortello, M.; Park, W. K., E-mail: wkpark@illinois.edu; Ascencio, C. O.

    2016-06-15

    The design and realization of a cryogenic rig for point-contact spectroscopy measurements in the needle-anvil configuration is presented. Thanks to the use of two piezoelectric nano-positioners, the tip can move along the vertical (z) and horizontal (x) direction and thus the rig is suitable to probe different regions of a sample in situ. Moreover, it can also form double point-contacts on different facets of a single crystal for achieving, e.g., an interferometer configuration for phase-sensitive measurements. For the later purpose, the sample holder can also host a Helmholtz coil for applying a small transverse magnetic field to the junction. Amore » semi-rigid coaxial cable can be easily added for studying the behavior of Josephson junctions under microwave irradiation. The rig can be detached from the probe and thus used with different cryostats. The performance of this new probe has been tested in a Quantum Design PPMS system by conducting point-contact Andreev reflection measurements on Nb thin films over large areas as a function of temperature and magnetic field.« less

  14. A New Primary Dew-Point Generator at TUBITAK UME

    NASA Astrophysics Data System (ADS)

    Oğuz Aytekin, S.; Karaböce, N.; Heinonen, M.; Sairanen, H.

    2018-05-01

    An implementation of a new low-range primary humidity generator as a part of an international collaboration between TUBITAK UME and VTT MIKES was initiated as a EURAMET Project Number 1259. The dew-point generator was designed and constructed within the scope of the cooperation between TUBITAK UME and VTT MIKES in order to extend the dew-point temperature measurement capability of Humidity Laboratory of TUBITAK UME down to - 80 °C. The system was thoroughly characterized and validated at TUBITAK UME to support the evidence for dew-point temperature uncertainties. The new generator has a capability of operating in the range of - 80 °C to +10 °C, but at the moment, it was characterized down to - 60 °C. The core of the generator system is a saturator which is fully immersed in a liquid bath. Dry air is supplied to the saturator through a temperature-controlled pre-saturator. The operation of the system is based on the single-pressure generation method with a single pass, i.e., the dew-point temperature is only controlled by the saturator temperature, and the humidity-controlled air is not returned to the system after leaving of the saturator. The metrological performance of the saturator was investigated thoroughly at both National Metrology Institutes. The pre-saturator was also tested using a thermostatic bath at VTT MIKES prior to sending them to TUBITAK UME. This paper describes the principle and design of the generator in detail. The dew-point measurement system and the corresponding uncertainty analysis of the dew-point temperature scale realized with the generator in the range from - 60 °C to 10 °C is also presented.

  15. 33 CFR 149.650 - What are the requirements for single point moorings and their attached hoses?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... designed for the protection of the environment and for durability under combined wind, wave, and current forces of the most severe storm that can be expected to occur at the port in any 100-year period. The...

  16. 49 CFR 218.93 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... button or radio control when such switch is protected by distant switch indicators, switch point... units are connected so that they may be operated from a single control stand. Locomotive means, for... one or more propelling motors designed for moving other equipment; (2) With one or more propelling...

  17. Design of Single Stage Axial Turbine with Constant Nozzle Angle Blading for Small Turbojet

    NASA Astrophysics Data System (ADS)

    Putra Adnan, F.; Hartono, Firman

    2018-04-01

    In this paper, an aerodynamic design of a single stage gas generator axial turbine for small turbojet engine is explained. As per design requirement, the turbine should be able to deliver power output of 155 kW at 0.8139 kg/s gas mass flow, inlet total temperature of 1200 K and inlet total pressure of 335330 Pa. The design phase consist of several steps, i.e.: determination of velocity triangles in 2D plane, 2D blading design and 3D flow analysis at design point using Computational Fluid Dynamics method. In the determination of velocity triangles, two conditions are applied: zero inlet swirl (i.e. the gas flow enter the turbine at axial direction) and constant nozzle angle design (i.e. the inlet and outlet angle of the nozzle blade are constant from root to tip). The 2D approach in cascade plane is used to specify airfoil type at root, mean and tip of the blade based on inlet and outlet flow conditions. The 3D approach is done by simulating the turbine in full configuration to evaluate the overall performance of the turbine. The observed parameters including axial gap, stagger angle, and tip clearance affect its output power. Based on analysis results, axial gap and stagger angle are positively correlated with output power up to a certain point at which the power decreases. Tip clearance, however, gives inversely correlation with output power.

  18. Design and Shielding of Radiotherapy Treatment Facilities; IPEM Report 75, 2nd Edition

    NASA Astrophysics Data System (ADS)

    Horton, Patrick; Eaton, David

    2017-07-01

    Design and Shielding of Radiotherapy Treatment Facilities provides readers with a single point of reference for protection advice to the construction and modification of radiotherapy facilities. The book assembles a faculty of national and international experts on all modalities including megavoltage and kilovoltage photons, brachytherapy and high-energy particles, and on conventional and Monte Carlo shielding calculations. This book is a comprehensive reference for qualified experts and radiation-shielding designers in radiation physics and also useful to anyone involved in the design of radiotherapy facilities.

  19. DSS 13 Microprocessor Antenna Controller

    NASA Technical Reports Server (NTRS)

    Gosline, R. M.

    1984-01-01

    A microprocessor based antenna controller system developed as part of the unattended station project for DSS 13 is described. Both the hardware and software top level designs are presented and the major problems encounted are discussed. Developments useful to related projects include a JPL standard 15 line interface using a single board computer, a general purpose parser, a fast floating point to ASCII conversion technique, and experience gained in using off board floating point processors with the 8080 CPU.

  20. A methodology for double patterning compliant split and design

    NASA Astrophysics Data System (ADS)

    Wiaux, Vincent; Verhaegen, Staf; Iwamoto, Fumio; Maenhoudt, Mireille; Matsuda, Takashi; Postnikov, Sergei; Vandenberghe, Geert

    2008-11-01

    Double Patterning allows to further extend the use of water immersion lithography at its maximum numerical aperture NA=1.35. Splitting of design layers to recombine through Double Patterning (DP) enables an effective resolution enhancement. Single polygons may need to be split up (cut) depending on the pattern density and its 2D content. The split polygons recombine at the so-called 'stitching points'. These stitching points may affect the yield due to the sensitivity to process variations. We describe a methodology to ensure a robust double patterning by identifying proper split- and design- guidelines. Using simulations and experimental data, we discuss in particular metal1 first interconnect layers of random LOGIC and DRAM applications at 45nm half-pitch (hp) and 32nm hp where DP may become the only timely patterning solution.

  1. Executive Cognitive Function and Food Intake in Children

    ERIC Educational Resources Information Center

    Riggs, Nathaniel R.; Spruijt-Metz, Donna; Sakuma, Kari-Lyn; Chou, Chih-Ping; Pentz, Mary Ann

    2010-01-01

    Objective: The current study investigated relations among neurocognitive skills important for behavioral regulation, and the intake of fruit, vegetables, and snack food in children. Design: Participants completed surveys at a single time point. Setting: Assessments took place during school. Participants: Participants were 107 fourth-grade children…

  2. a Thtee-Dimensional Variational Assimilation Scheme for Satellite Aod

    NASA Astrophysics Data System (ADS)

    Liang, Y.; Zang, Z.; You, W.

    2018-04-01

    A three-dimensional variational data assimilation scheme is designed for satellite AOD based on the IMPROVE (Interagency Monitoring of Protected Visual Environments) equation. The observation operator that simulates AOD from the control variables is established by the IMPROVE equation. All of the 16 control variables in the assimilation scheme are the mass concentrations of aerosol species from the Model for Simulation Aerosol Interactions and Chemistry scheme, so as to take advantage of this scheme in providing comprehensive analyses of species concentrations and size distributions as well as be calculating efficiently. The assimilation scheme can save computational resources as the IMPROVE equation is a quadratic equation. A single-point observation experiment shows that the information from the single-point AOD is effectively spread horizontally and vertically.

  3. Welfare Reform and Labor Force Exit by Young, Low-Skilled Single Males.

    PubMed

    Groves, Lincoln H

    2016-04-01

    While the labor market woes of low-skilled male workers in the United States over the past several decades have been well documented, the academic literature identifying causal factors leading to declines in labor force participation (LFP) by young, low-skilled males remains scant. To address this gap, I use the timing and characteristics of welfare-reform policies implemented during the 1990s and fixed-effects, instrumental variable regression modeling to show that policies seeking to increase LFP rates for low-skilled single mothers inadvertently led to labor force exit by young, low-skilled single males. Using data from the Current Population Survey and a bundle of work inducements enacted by states throughout the 1990s as exogenous variation in a quasi-experimental design, I find that the roughly 10 percentage point increase in LFP for low-skilled single mothers facilitated by welfare reform resulted in a statistically significant 2.8 percentage point decline in LFP for young, low-skilled single males. After conducting a series of robustness checks, I conclude that this result is driven entirely by white males, who responded to welfare-reform policies with a 3.7 percentage point decline in labor supply. Young black males, as well as other groups of potentially affected workers, appear to be uninfluenced by the labor supply response of less-educated single mothers to welfare reform. Impacts on young, single white males are large and economically significant, suggesting that nearly 150,000 males departed the formal labor market in response to directed welfare-reform policies.

  4. FireProt: web server for automated design of thermostable proteins

    PubMed Central

    Musil, Milos; Stourac, Jan; Brezovsky, Jan; Prokop, Zbynek; Zendulka, Jaroslav; Martinek, Tomas

    2017-01-01

    Abstract There is a continuous interest in increasing proteins stability to enhance their usability in numerous biomedical and biotechnological applications. A number of in silico tools for the prediction of the effect of mutations on protein stability have been developed recently. However, only single-point mutations with a small effect on protein stability are typically predicted with the existing tools and have to be followed by laborious protein expression, purification, and characterization. Here, we present FireProt, a web server for the automated design of multiple-point thermostable mutant proteins that combines structural and evolutionary information in its calculation core. FireProt utilizes sixteen tools and three protein engineering strategies for making reliable protein designs. The server is complemented with interactive, easy-to-use interface that allows users to directly analyze and optionally modify designed thermostable mutants. FireProt is freely available at http://loschmidt.chemi.muni.cz/fireprot. PMID:28449074

  5. Pointing and control system design study for the space infrared telescope facility (SIRTF)

    NASA Technical Reports Server (NTRS)

    Lorell, K. R.; Aubrun, J. N.; Sridhar, B.; Cochran, R. W.

    1984-01-01

    The design and performance of pointing and control systems for two space infrared telescope facility vehicles were examined. The need for active compensation of image jitter using the secondary mirror or other optical elements was determined. In addition, a control system to allow the telescope to perform small angle slews, and to accomplish large angle slews at the rate of 15 deg per minute was designed. Both the 98 deg and the 28 deg inclination orbits were examined, and spacecraft designs were developed for each. The results indicate that active optical compensation of line-of-sight errors is not necessary if the system is allowed to settle for roughly ten seconds after a slew maneuver. The results are contingent on the assumption of rigid body dynamics, and a single structural mode between spacecraft and telescope. Helium slosh for a half full 4000 liter tank was analyzed, and did not represent a major control problem.

  6. Design of state-feedback controllers including sensitivity reduction, with applications to precision pointing

    NASA Technical Reports Server (NTRS)

    Hadass, Z.

    1974-01-01

    The design procedure of feedback controllers was described and the considerations for the selection of the design parameters were given. The frequency domain properties of single-input single-output systems using state feedback controllers are analyzed, and desirable phase and gain margin properties are demonstrated. Special consideration is given to the design of controllers for tracking systems, especially those designed to track polynomial commands. As an example, a controller was designed for a tracking telescope with a polynomial tracking requirement and some special features such as actuator saturation and multiple measurements, one of which is sampled. The resulting system has a tracking performance comparing favorably with a much more complicated digital aided tracker. The parameter sensitivity reduction was treated by considering the variable parameters as random variables. A performance index is defined as a weighted sum of the state and control convariances that sum from both the random system disturbances and the parameter uncertainties, and is minimized numerically by adjusting a set of free parameters.

  7. Accelerated longitudinal designs: An overview of modelling, power, costs and handling missing data.

    PubMed

    Galbraith, Sally; Bowden, Jack; Mander, Adrian

    2017-02-01

    Longitudinal studies are often used to investigate age-related developmental change. Whereas a single cohort design takes a group of individuals at the same initial age and follows them over time, an accelerated longitudinal design takes multiple single cohorts, each one starting at a different age. The main advantage of an accelerated longitudinal design is its ability to span the age range of interest in a shorter period of time than would be possible with a single cohort longitudinal design. This paper considers design issues for accelerated longitudinal studies. A linear mixed effect model is considered to describe the responses over age with random effects for intercept and slope parameters. Random and fixed cohort effects are used to cope with the potential bias accelerated longitudinal designs have due to multiple cohorts. The impact of other factors such as costs and the impact of dropouts on the power of testing or the precision of estimating parameters are examined. As duration-related costs increase relative to recruitment costs the best designs shift towards shorter duration and eventually cross-sectional design being best. For designs with the same duration but differing interval between measurements, we found there was a cutoff point for measurement costs relative to recruitment costs relating to frequency of measurements. Under our model of 30% dropout there was a maximum power loss of 7%.

  8. Quadrature transmit array design using single-feed circularly polarized patch antenna for parallel transmission in MR imaging.

    PubMed

    Pang, Yong; Yu, Baiying; Vigneron, Daniel B; Zhang, Xiaoliang

    2014-02-01

    Quadrature coils are often desired in MR applications because they can improve MR sensitivity and also reduce excitation power. In this work, we propose, for the first time, a quadrature array design strategy for parallel transmission at 298 MHz using single-feed circularly polarized (CP) patch antenna technique. Each array element is a nearly square ring microstrip antenna and is fed at a point on the diagonal of the antenna to generate quadrature magnetic fields. Compared with conventional quadrature coils, the single-feed structure is much simple and compact, making the quadrature coil array design practical. Numerical simulations demonstrate that the decoupling between elements is better than -35 dB for all the elements and the RF fields are homogeneous with deep penetration and quadrature behavior in the area of interest. Bloch equation simulation is also performed to simulate the excitation procedure by using an 8-element quadrature planar patch array to demonstrate its feasibility in parallel transmission at the ultrahigh field of 7 Tesla.

  9. A Simulation Study on a Single-Unit Wireless EEG Sensor

    PubMed Central

    Luan, Bo; Sun, Mingui

    2015-01-01

    Traditional EEG systems are limited when utilized in point-of-care applications due to its immobility and tedious preparation procedures. We are designing a novel device named single-unit wireless EEG sensor to solve these problems. The sensor has a size similar to a U.S. penny. Four electrodes are installed within a 20mm diameter cylinder. It can be applied to scalp in seconds to amplify, digitize and wirelessly transmit EEG. Before the design and construction of an actual sensor, in this paper, we perform a set of simulations to quantitatively study: 1) can the sensor acquire EEG reliably? 2) will the selection of sensor orientation be an important factor to influence signal strength? Our results demonstrate positive answers to these questions. Moreover, the signal sensor acquired appears to be comparable to the signal from the standard 10-20 system. These results warrant the further design and construction of a single-unit wireless EEG sensor. PMID:26207084

  10. Methodology for the structural design of single spoke accelerating cavities at Fermilab

    NASA Astrophysics Data System (ADS)

    Passarelli, Donato; Wands, Robert H.; Merio, Margherita; Ristori, Leonardo

    2016-10-01

    Fermilab is planning to upgrade its accelerator complex to deliver a more powerful and intense proton-beam for neutrino experiments. In the framework of the so-called Proton Improvement Plan-II (PIP-II), we are designing and developing a cryomodule containing superconducting accelerating cavities, the Single Spoke Resonators of type 1 (SSR1). In this paper, we present the sequence of analysis and calculations performed for the structural design of these cavities, using the rules of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (BPVC). The lack of an accepted procedure for addressing the design, fabrication, and inspection of such unique pressure vessels makes the task demanding and challenging every time. Several factors such as exotic materials, unqualified brazing procedures, limited nondestructive examination, and the general R&D nature of these early generations of cavity design, conspire to make it impractical to obtain full compliance with all ASME BPVC requirements. However, the presented approach allowed us to validate the design of this new generation of single spoke cavities with values of maximum allowable working pressure that exceeds the safety requirements. This set of rules could be used as a starting point for the structural design and development of similar objects.

  11. An integrated circuit floating point accumulator

    NASA Technical Reports Server (NTRS)

    Goldsmith, T. C.

    1977-01-01

    Goddard Space Flight Center has developed a large scale integrated circuit (type 623) which can perform pulse counting, storage, floating point compression, and serial transmission, using a single monolithic device. Counts of 27 or 19 bits can be converted to transmitted values of 12 or 8 bits respectively. Use of the 623 has resulted in substantial savaings in weight, volume, and dollar resources on at least 11 scientific instruments to be flown on 4 NASA spacecraft. The design, construction, and application of the 623 are described.

  12. 32 CFR 525.4 - Entry authorization (policy).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... single or multiple entries. (4) Captains of ships and/or marine vessels planning to enter Kwajalein... of passengers (include list when practicable). (vi) Purpose of flight. (vii) Plan of flight route, including the point of origin of flight and its designation and estimated date and times of arrival and...

  13. 32 CFR 525.4 - Entry authorization (policy).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... single or multiple entries. (4) Captains of ships and/or marine vessels planning to enter Kwajalein... of passengers (include list when practicable). (vi) Purpose of flight. (vii) Plan of flight route, including the point of origin of flight and its designation and estimated date and times of arrival and...

  14. Laser-driven magnetized liner inertial fusion

    DOE PAGES

    Davies, J. R.

    2017-06-05

    A laser-driven, magnetized liner inertial fusion (MagLIF) experiment is designed in this paper for the OMEGA Laser System by scaling down the Z point design to provide the first experimental data on MagLIF scaling. OMEGA delivers roughly 1000× less energy than Z, so target linear dimensions are reduced by factors of ~10. Magneto-inertial fusion electrical discharge system could provide an axial magnetic field of 10 T. Two-dimensional hydrocode modeling indicates that a single OMEGA beam can preheat the fuel to a mean temperature of ~200 eV, limited by mix caused by heat flow into the wall. One-dimensional magnetohydrodynamic (MHD) modelingmore » is used to determine the pulse duration and fuel density that optimize neutron yield at a fuel convergence ratio of roughly 25 or less, matching the Z point design, for a range of shell thicknesses. A relatively thinner shell, giving a higher implosion velocity, is required to give adequate fuel heating on OMEGA compared to Z because of the increase in thermal losses in smaller targets. Two-dimensional MHD modeling of the point design gives roughly a 50% reduction in compressed density, temperature, and magnetic field from 1-D because of end losses. Finally, scaling up the OMEGA point design to the MJ laser energy available on the National Ignition Facility gives a 500-fold increase in neutron yield in 1-D modeling.« less

  15. Laser-driven magnetized liner inertial fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, J. R.

    A laser-driven, magnetized liner inertial fusion (MagLIF) experiment is designed in this paper for the OMEGA Laser System by scaling down the Z point design to provide the first experimental data on MagLIF scaling. OMEGA delivers roughly 1000× less energy than Z, so target linear dimensions are reduced by factors of ~10. Magneto-inertial fusion electrical discharge system could provide an axial magnetic field of 10 T. Two-dimensional hydrocode modeling indicates that a single OMEGA beam can preheat the fuel to a mean temperature of ~200 eV, limited by mix caused by heat flow into the wall. One-dimensional magnetohydrodynamic (MHD) modelingmore » is used to determine the pulse duration and fuel density that optimize neutron yield at a fuel convergence ratio of roughly 25 or less, matching the Z point design, for a range of shell thicknesses. A relatively thinner shell, giving a higher implosion velocity, is required to give adequate fuel heating on OMEGA compared to Z because of the increase in thermal losses in smaller targets. Two-dimensional MHD modeling of the point design gives roughly a 50% reduction in compressed density, temperature, and magnetic field from 1-D because of end losses. Finally, scaling up the OMEGA point design to the MJ laser energy available on the National Ignition Facility gives a 500-fold increase in neutron yield in 1-D modeling.« less

  16. Study of aerodynamic technology for single-cruise-engine VSTOL fighter/attack aircraft, phase 1

    NASA Technical Reports Server (NTRS)

    Foley, W. H.; Sheridan, A. E.; Smith, C. W.

    1982-01-01

    A conceptual design and analysis on a single engine VSTOL fighter/attack aircraft is completed. The aircraft combines a NASA/deHavilland ejector with vectored thrust and is capable of accomplishing the mission and point performance of type Specification 169, and a flight demonstrator could be built with an existing F101/DFE engine. The aerodynamic, aero/propulsive, and propulsive uncertainties are identified, and a wind tunnel program is proposed to address those uncertainties associated with wing borne flight.

  17. Multiple point least squares equalization in a room

    NASA Technical Reports Server (NTRS)

    Elliott, S. J.; Nelson, P. A.

    1988-01-01

    Equalization filters designed to minimize the mean square error between a delayed version of the original electrical signal and the equalized response at a point in a room have previously been investigated. In general, such a strategy degrades the response at positions in a room away from the equalization point. A method is presented for designing an equalization filter by adjusting the filter coefficients to minimize the sum of the squares of the errors between the equalized responses at multiple points in the room and delayed versions of the original, electrical signal. Such an equalization filter can give a more uniform frequency response over a greater volume of the enclosure than can the single point equalizer above. Computer simulation results are presented of equalizing the frequency responses from a loudspeaker to various typical ear positions, in a room with dimensions and acoustic damping typical of a car interior, using the two approaches outlined above. Adaptive filter algorithms, which can automatically adjust the coefficients of a digital equalization filter to achieve this minimization, will also be discussed.

  18. Ultra Small Aperture Terminal for Ka-Band SATCOM

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto; Reinhart, Richard; Lee, Richard; Simons, Rainee

    1997-01-01

    An ultra small aperture terminal (USAT) at Ka-band frequency has been developed by Lewis Research Center (LeRC) for data rates up to 1.5 Mbps in the transmit mode and 40 Mbps in receive mode. The terminal consists of a 35 cm diameter offset-fed parabolic antenna which is attached to a solid state power amplifier and low noise amplifier. A single down converter is used to convert the Ka-band frequency to 70 MHz intermediate frequency (IF). A variable rate (9.6 Kbps to 10 Mbps) commercial modem with a standard RS-449/RS-232 interface is used to provide point-to-point digital services. The terminal has been demonstrated numerous times using the Advanced Communications Technology Satellite (ACTS) and the 4.5 in Link Evaluation Terminal (LET) in Cleveland. A conceptual design for an advanced terminal has also been developed. This advanced USAT utilizes Microwave Monolithic Integrated Circuit (MMIC) and flat plate array technologies. This terminal will be self contained in a single package which will include a 1 watt solid state amplifier (SSPA), low noise amplifier (LNA) and a modem card located behind the aperture of the array. The advanced USAT will be light weight, transportable, low cost and easy to point to the satellite. This paper will introduce designs for the reflector based and array based USAT's.

  19. Injection System for Multi-Well Injection Using a Single Pump

    PubMed Central

    Wovkulich, Karen; Stute, Martin; Protus, Thomas J.; Mailloux, Brian J.; Chillrud, Steven N.

    2015-01-01

    Many hydrological and geochemical studies rely on data resulting from injection of tracers and chemicals into groundwater wells. The even distribution of liquids to multiple injection points can be challenging or expensive, especially when using multiple pumps. An injection system was designed using one chemical metering pump to evenly distribute the desired influent simultaneously to 15 individual injection points through an injection manifold. The system was constructed with only one metal part contacting the fluid due to the low pH of the injection solutions. The injection manifold system was used during a three-month pilot scale injection experiment at the Vineland Chemical Company Superfund site. During the two injection phases of the experiment (Phase I = 0.27 L/min total flow, Phase II = 0.56 L/min total flow), flow measurements were made 20 times over three months; an even distribution of flow to each injection well was maintained (RSD <4%). This durable system is expandable to at least 16 injection points and should be adaptable to other injection experiments that require distribution of air-stable liquids to multiple injection points with a single pump. PMID:26140014

  20. Accessing the exceptional points of parity-time symmetric acoustics

    PubMed Central

    Shi, Chengzhi; Dubois, Marc; Chen, Yun; Cheng, Lei; Ramezani, Hamidreza; Wang, Yuan; Zhang, Xiang

    2016-01-01

    Parity-time (PT) symmetric systems experience phase transition between PT exact and broken phases at exceptional point. These PT phase transitions contribute significantly to the design of single mode lasers, coherent perfect absorbers, isolators, and diodes. However, such exceptional points are extremely difficult to access in practice because of the dispersive behaviour of most loss and gain materials required in PT symmetric systems. Here we introduce a method to systematically tame these exceptional points and control PT phases. Our experimental demonstration hinges on an active acoustic element that realizes a complex-valued potential and simultaneously controls the multiple interference in the structure. The manipulation of exceptional points offers new routes to broaden applications for PT symmetric physics in acoustics, optics, microwaves and electronics, which are essential for sensing, communication and imaging. PMID:27025443

  1. Sparse matrix-vector multiplication on network-on-chip

    NASA Astrophysics Data System (ADS)

    Sun, C.-C.; Götze, J.; Jheng, H.-Y.; Ruan, S.-J.

    2010-12-01

    In this paper, we present an idea for performing matrix-vector multiplication by using Network-on-Chip (NoC) architecture. In traditional IC design on-chip communications have been designed with dedicated point-to-point interconnections. Therefore, regular local data transfer is the major concept of many parallel implementations. However, when dealing with the parallel implementation of sparse matrix-vector multiplication (SMVM), which is the main step of all iterative algorithms for solving systems of linear equation, the required data transfers depend on the sparsity structure of the matrix and can be extremely irregular. Using the NoC architecture makes it possible to deal with arbitrary structure of the data transfers; i.e. with the irregular structure of the sparse matrices. So far, we have already implemented the proposed SMVM-NoC architecture with the size 4×4 and 5×5 in IEEE 754 single float point precision using FPGA.

  2. The Shuttle processing contractors (SPC) reliability program at the Kennedy Space Center - The real world

    NASA Astrophysics Data System (ADS)

    McCrea, Terry

    The Shuttle Processing Contract (SPC) workforce consists of Lockheed Space Operations Co. as prime contractor, with Grumman, Thiokol Corporation, and Johnson Controls World Services as subcontractors. During the design phase, reliability engineering is instrumental in influencing the development of systems that meet the Shuttle fail-safe program requirements. Reliability engineers accomplish this objective by performing FMEA (failure modes and effects analysis) to identify potential single failure points. When technology, time, or resources do not permit a redesign to eliminate a single failure point, the single failure point information is formatted into a change request and presented to senior management of SPC and NASA for risk acceptance. In parallel with the FMEA, safety engineering conducts a hazard analysis to assure that potential hazards to personnel are assessed. The combined effort (FMEA and hazard analysis) is published as a system assurance analysis. Special ground rules and techniques are developed to perform and present the analysis. The reliability program at KSC is vigorously pursued, and has been extremely successful. The ground support equipment and facilities used to launch and land the Space Shuttle maintain an excellent reliability record.

  3. Methodology for the structural design of single spoke accelerating cavities at Fermilab

    DOE PAGES

    Passarelli, Donato; Wands, Robert H.; Merio, Margherita; ...

    2016-10-01

    Fermilab is planning to upgrade its accelerator complex to deliver a more powerful and intense proton-beam for neutrino experiments. In the framework of the so-called Proton Improvement Plan-II (PIP-II), we are designing and developing a cryomodule containing superconducting accelerating cavities, the Single Spoke Resonators of type 1 (SSR1). In this paper, we present the sequence of analysis and calculations performed for the structural de- sign of these cavities, using the rules of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (BPVC). The lack of an accepted procedure for addressing the design, fabrication, and inspection of suchmore » unique pressure vessels makes the task demanding and challenging every time. Several factors such as exotic materials, unqualified brazing procedures, limited nondestructive examination, and the general R&D nature of these early generations of cavity design, conspire to make it impractical to obtain full compliance with all ASME BPVC requirements. However, the presented approach allowed us to validate the design of these new generation of single spoke cavities with values of maximum allowable working pressure that exceed the safety requirements. This set of rules could be used as a starting point for the structural design and development of similar objects.« less

  4. Localization and force analysis at the single virus particle level using atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chih-Hao; Horng, Jim-Tong; Chang, Jeng-Shian

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Localization of single virus particle. Black-Right-Pointing-Pointer Force measurements. Black-Right-Pointing-Pointer Force mapping. -- Abstract: Atomic force microscopy (AFM) is a vital instrument in nanobiotechnology. In this study, we developed a method that enables AFM to simultaneously measure specific unbinding force and map the viral glycoprotein at the single virus particle level. The average diameter of virus particles from AFM images and the specificity between the viral surface antigen and antibody probe were integrated to design a three-stage method that sets the measuring area to a single virus particle before obtaining the force measurements, where the influenza virus was usedmore » as the object of measurements. Based on the purposed method and performed analysis, several findings can be derived from the results. The mean unbinding force of a single virus particle can be quantified, and no significant difference exists in this value among virus particles. Furthermore, the repeatability of the proposed method is demonstrated. The force mapping images reveal that the distributions of surface viral antigens recognized by antibody probe were dispersed on the whole surface of individual virus particles under the proposed method and experimental criteria; meanwhile, the binding probabilities are similar among particles. This approach can be easily applied to most AFM systems without specific components or configurations. These results help understand the force-based analysis at the single virus particle level, and therefore, can reinforce the capability of AFM to investigate a specific type of viral surface protein and its distributions.« less

  5. Confidence intervals for single-case effect size measures based on randomization test inversion.

    PubMed

    Michiels, Bart; Heyvaert, Mieke; Meulders, Ann; Onghena, Patrick

    2017-02-01

    In the current paper, we present a method to construct nonparametric confidence intervals (CIs) for single-case effect size measures in the context of various single-case designs. We use the relationship between a two-sided statistical hypothesis test at significance level α and a 100 (1 - α) % two-sided CI to construct CIs for any effect size measure θ that contain all point null hypothesis θ values that cannot be rejected by the hypothesis test at significance level α. This method of hypothesis test inversion (HTI) can be employed using a randomization test as the statistical hypothesis test in order to construct a nonparametric CI for θ. We will refer to this procedure as randomization test inversion (RTI). We illustrate RTI in a situation in which θ is the unstandardized and the standardized difference in means between two treatments in a completely randomized single-case design. Additionally, we demonstrate how RTI can be extended to other types of single-case designs. Finally, we discuss a few challenges for RTI as well as possibilities when using the method with other effect size measures, such as rank-based nonoverlap indices. Supplementary to this paper, we provide easy-to-use R code, which allows the user to construct nonparametric CIs according to the proposed method.

  6. Impact of ETO propellants on the aerothermodynamic analyses of propulsion components

    NASA Technical Reports Server (NTRS)

    Civinskas, K. C.; Boyle, R. J.; Mcconnaughey, H. V.

    1988-01-01

    The operating conditions and the propellant transport properties used in Earth-to-Orbit (ETO) applications affect the aerothermodynamic design of ETO turbomachinery in a number of ways. Some aerodynamic and heat transfer implications of the low molecular weight fluids and high Reynolds number operating conditions on future ETO turbomachinery are discussed. Using the current SSME high pressure fuel turbine as a baseline, the aerothermodynamic comparisons are made for two alternate fuel turbine geometries. The first is a revised first stage rotor blade designed to reduce peak heat transfer. This alternate design resulted in a 23 percent reduction in peak heat transfer. The second design concept was a single stage rotor to yield the same power output as the baseline two stage rotor. Since the rotor tip speed was held constant, the turbine work factor doubled. In this alternate design, the peak heat transfer remained the same as the baseline. While the efficiency of the single stage design was 3.1 points less than the baseline two stage turbine, the design was aerothermodynamically feasible, and may be structurally desirable.

  7. Design of a 1500 Ft/Sec, Transonic, High-through-Flow, Single-Stage Axial-Flow Compressor with Low Hub/Tip Ratio

    DTIC Science & Technology

    1976-10-01

    aerodynamic flow field pertaining to the design point is defined on twenty-one stream surfaces, and radial and meridional distributions of significant...full radial equilibrium analysis of the compressor flow field using the streamline curvature solution technique. Through a series of iterations, it...one can assume the blade geometry, solving for the equilibriwn flow field using specified relative flow aigles as input to the aerodynamic program. In

  8. Start Up Application Concerns with Field Programmable Gate Arrays (FPGAs)

    NASA Technical Reports Server (NTRS)

    Katz, Richard B.

    1999-01-01

    This note is being published to improve the visibility of this subject, as we continue to see problems surface in designs, as well as to add additional information to the previously published note for design engineers. The original application note focused on designing systems with no single point failures using Actel Field Programmable Gate Arrays (FPGAs) for critical applications. Included in that note were the basic principles of operation of the Actel FPGA and a discussion of potential single-point failures. The note also discussed the issue of startup transients for that class of device. It is unfortunate that we continue to see some design problems using these devices. This note will focus on the startup properties of certain electronic components, in general, and current Actel FPGAs, in particular. Devices that are "power-on friendly" are currently being developed by Actel, as a variant of the new SX series of FPGAs. In the ideal world, electronic components would behave much differently than they do in the real world, The chain, of course, starts with the power supply. Ideally, the voltage will immediately rise to a stable V(sub cc) level, of course, it does not. Aside from practical design considerations, inrush current limits of certain capacitors must be observed and the power supply's output may be intentionally slew rate limited to prevent a large current spike on the system power bus. In any event, power supply rise time may range from less than I msec to 100 msec or more.

  9. Data retrieval system provides unlimited hardware design information

    NASA Technical Reports Server (NTRS)

    Rawson, R. D.; Swanson, R. L.

    1967-01-01

    Data is input to magnetic tape on a single format card that specifies the system, location, and component, the test point identification number, the operators initial, the date, a data code, and the data itself. This method is efficient for large volume data storage and retrieval, and permits output variations without continuous program modifications.

  10. Using FTIR-ATR Spectroscopy to Teach the Internal Standard Method

    ERIC Educational Resources Information Center

    Bellamy, Michael K.

    2010-01-01

    The internal standard method is widely applied in quantitative analyses. However, most analytical chemistry textbooks either omit this topic or only provide examples of a single-point internal standardization. An experiment designed to teach students how to prepare an internal standard calibration curve is described. The experiment is a modified…

  11. Reproducibility of preclinical animal research improves with heterogeneity of study samples

    PubMed Central

    Vogt, Lucile; Sena, Emily S.; Würbel, Hanno

    2018-01-01

    Single-laboratory studies conducted under highly standardized conditions are the gold standard in preclinical animal research. Using simulations based on 440 preclinical studies across 13 different interventions in animal models of stroke, myocardial infarction, and breast cancer, we compared the accuracy of effect size estimates between single-laboratory and multi-laboratory study designs. Single-laboratory studies generally failed to predict effect size accurately, and larger sample sizes rendered effect size estimates even less accurate. By contrast, multi-laboratory designs including as few as 2 to 4 laboratories increased coverage probability by up to 42 percentage points without a need for larger sample sizes. These findings demonstrate that within-study standardization is a major cause of poor reproducibility. More representative study samples are required to improve the external validity and reproducibility of preclinical animal research and to prevent wasting animals and resources for inconclusive research. PMID:29470495

  12. Comparing Single Case Design Overlap-Based Effect Size Metrics From Studies Examining Speech Generating Device Interventions

    PubMed Central

    Chen, Mo; Hyppa-Martin, Jolene K.; Reichle, Joe E.; Symons, Frank J.

    2017-01-01

    Meaningfully synthesizing single case experimental data from intervention studies comprised of individuals with low incidence conditions and generating effect size estimates remains challenging. Seven effect size metrics were compared for single case design (SCD) data focused on teaching speech generating device use to individuals with intellectual and developmental disabilities (IDD) with moderate to profound levels of impairment. The effect size metrics included percent of data points exceeding the median (PEM), percent of nonoverlapping data (PND), improvement rate difference (IRD), percent of all nonoverlapping data (PAND), Phi, nonoverlap of all pairs (NAP), and Taunovlap. Results showed that among the seven effect size metrics, PAND, Phi, IRD, and PND were more effective in quantifying intervention effects for the data sample (N = 285 phase or condition contrasts). Results are discussed with respect to issues concerning extracting and calculating effect sizes, visual analysis, and SCD intervention research in IDD. PMID:27119210

  13. Surgical robot for single-incision laparoscopic surgery.

    PubMed

    Choi, Hyundo; Kwak, Ho-Seong; Lim, Yo-An; Kim, Hyung-Joo

    2014-09-01

    This paper introduces a novel surgical robot for single-incision laparoscopic surgeries. The robot system includes the cone-type remote center-of-motion (RCM) mechanism and two articulated instruments having a flexible linkage-driven elbow. The RCM mechanism, which has two revolute joints and one prismatic joint, is designed to maintain a stationary point at the apex of the cone shape. By placing the stationary point on the incision area, the mechanism allows a surgical instrument to explore the abdominal area through a small incision point. The instruments have six articulated joints, including an elbow pitch joint, which make the triangulation position for the surgery possible inside of the abdominal area. The presented elbow pitch structure is similar to the slider-crank mechanism but the connecting rod is composed of a flexible leaf spring for high payload and small looseness error. We verified the payload of the robot is more than 10 N and described preliminary experiments on peg transfer and suture motion by using the proposed surgical robot.

  14. Highly efficient maximum power point tracking using DC-DC coupled inductor single-ended primary inductance converter for photovoltaic power systems

    NASA Astrophysics Data System (ADS)

    Quamruzzaman, M.; Mohammad, Nur; Matin, M. A.; Alam, M. R.

    2016-10-01

    Solar photovoltaics (PVs) have nonlinear voltage-current characteristics, with a distinct maximum power point (MPP) depending on factors such as solar irradiance and operating temperature. To extract maximum power from the PV array at any environmental condition, DC-DC converters are usually used as MPP trackers. This paper presents the performance analysis of a coupled inductor single-ended primary inductance converter for maximum power point tracking (MPPT) in a PV system. A detailed model of the system has been designed and developed in MATLAB/Simulink. The performance evaluation has been conducted on the basis of stability, current ripple reduction and efficiency at different operating conditions. Simulation results show considerable ripple reduction in the input and output currents of the converter. Both the MPPT and converter efficiencies are significantly improved. The obtained simulation results validate the effectiveness and suitability of the converter model in MPPT and show reasonable agreement with the theoretical analysis.

  15. Identifying, Assessing, and Mitigating Risk of Single-Point Inspections on the Space Shuttle Reusable Solid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Greenhalgh, Phillip O.

    2004-01-01

    In the production of each Space Shuttle Reusable Solid Rocket Motor (RSRM), over 100,000 inspections are performed. ATK Thiokol Inc. reviewed these inspections to ensure a robust inspection system is maintained. The principal effort within this endeavor was the systematic identification and evaluation of inspections considered to be single-point. Single-point inspections are those accomplished on components, materials, and tooling by only one person, involving no other check. The purpose was to more accurately characterize risk and ultimately address and/or mitigate risk associated with single-point inspections. After the initial review of all inspections and identification/assessment of single-point inspections, review teams applied risk prioritization methodology similar to that used in a Process Failure Modes Effects Analysis to derive a Risk Prioritization Number for each single-point inspection. After the prioritization of risk, all single-point inspection points determined to have significant risk were provided either with risk-mitigating actions or rationale for acceptance. This effort gave confidence to the RSRM program that the correct inspections are being accomplished, that there is appropriate justification for those that remain as single-point inspections, and that risk mitigation was applied to further reduce risk of higher risk single-point inspections. This paper examines the process, results, and lessons learned in identifying, assessing, and mitigating risk associated with single-point inspections accomplished in the production of the Space Shuttle RSRM.

  16. Detection of single nano-defects in photonic crystals between crossed polarizers.

    PubMed

    Grepstad, Jon Olav; Kaspar, Peter; Johansen, Ib-Rune; Solgaard, Olav; Sudbø, Aasmund

    2013-12-16

    We investigate, by simulations and experiments, the light scattering of small particles trapped in photonic crystal membranes supporting guided resonance modes. Our results show that, due to amplified Rayleigh small particle scattering, such membranes can be utilized to make a sensor that can detect single nano-particles. We have designed a biomolecule sensor that uses cross-polarized excitation and detection for increased sensitivity. Estimated using Rayleigh scattering theory and simulation results, the current fabricated sensor has a detection limit of 26 nm, corresponding to the size of a single virus. The sensor can potentially be made both cheap and compact, to facilitate use at point-of-care.

  17. Development of a single-axis ultrasonic levitator and the study of the radial particle oscillations

    NASA Astrophysics Data System (ADS)

    Baer, Sebastian; Andrade, Marco A. B.; Esen, Cemal; Adamowski, Julio Cezar; Ostendorf, Andreas

    2012-05-01

    This work describes the development and analysis of a new single-axis acoustic levitator, which consists of a 38 kHz Langevin-type piezoelectric transducer with a concave radiating surface and a concave reflector. The new levitator design allows to significantly reducing the electric power necessary to levitate particles and to stabilize the levitated sample in both radial and axial directions. In this investigation the lateral oscillations of a levitated particle were measured with a single point Laser Doppler Vibrometer (LDV) and an image evaluation technique. The lateral oscillations were measured for different values of particle diameter, particle density and applied electrical power.

  18. Design optimization of a viscoelastic dynamic vibration absorber using a modified fixed-points theory.

    PubMed

    Wong, W O; Fan, R P; Cheng, F

    2018-02-01

    A viscoelastic dynamic vibration absorber (VDVA) is proposed for suppressing infrasonic vibrations of heavy structures because the traditional dynamic vibration absorber equipped with a viscous damper is not effective in suppressing low frequency vibrations. The proposed VDVA has an elastic spring and a viscoelastic damper with frequency dependent modulus and damping properties. The standard fixed-points theory cannot be applied to derive the optimum design parameters of the VDVA because both its stiffness and damping are frequency dependent. A modified fixed-points theory is therefore proposed to solve this problem. H ∞ design optimization of the proposed VDVA have been derived for the minimization of resonant vibration amplitude of a single degree-of-freedom system excited by harmonic forces or due to ground motions. The stiffness and damping of the proposed VDVA can be decoupled such that both of these two properties of the absorber can be tuned independently to their optimal values by following a specified procedure. The proposed VDVA with optimized design is tested numerically using two real commercial viscoelastic damping materials. It is found that the proposed viscoelastic absorber can provide much stronger vibration reduction effect than the conventional VDVA without the elastic spring.

  19. Hydrodynamic and Aerodynamic Tests of Models of Floats for Single-float Seaplanes NACA Models 41-D, 41-E, 61-A, 73, and 73-A

    NASA Technical Reports Server (NTRS)

    Parkinson, J B; HOUSE R O

    1938-01-01

    Tests were made in the NACA tank and in the NACA 7 by 10 foot wind tunnel on two models of transverse step floats and three models of pointed step floats considered to be suitable for use with single float seaplanes. The object of the program was the reduction of water resistance and spray of single float seaplanes without reducing the angle of dead rise believed to be necessary for the satisfactory absorption of the shock loads. The results indicated that all the models have less resistance and spray than the model of the Mark V float and that the pointed step floats are somewhat superior to the transverse step floats in these respects. Models 41-D, 61-A, and 73 were tested by the general method over a wide range of loads and speeds. The results are presented in the form of curves and charts for use in design calculations.

  20. Structured FBG filters for 10-Gb/s DPSK signal demodulation in single ended applications

    NASA Astrophysics Data System (ADS)

    Marazzi, L.; Boffi, P.; Parolari, P.; Martinelli, M.; Gatti, D.; Coluccelli, N.; Longhi, S.

    2011-05-01

    Differential phase-shift keying (DPSK) demodulations operated by a structured fiber Bragg grating (FBG) filter and by a Mach-Zehnder delay interferometer (MZDI) in a single-ended configuration are compared. Experimental measurements at 10 Gb/s demonstrate that a specially designed FBG outperforms an integrated-optic MZDI of ˜4 dB and ˜3.5 dB in back-to-back and after 25-km propagation, respectively. Both demodulators show low polarization sensitivity and signal frequency detuning dependence, but only MZDI operating point requires a thermal control. FBG filter proves an interesting solution for DPSK demodulation in low-cost applications and, moreover, can be designed to match colorless requirements of wave division multiplexed passive optical network (WDM-PON) applications.

  1. Spatial and Temporal Analysis of Bias HAST System Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfeifer, Kent B.; Furrer, III, Clint T; Sandoval, Paul Anthony

    2017-03-01

    High-reliability components for high-consequence systems require detailed testing of operation after having undergone highly accelerated stress testing (HAST) under unusual conditions of high-temperature and humidity. This paper describes the design and operation of a system called "Wormwood" that is a highly multiplexed temperature measurement system that is designed to operate under HAST conditions to allow measurement of the temperature as a function of time and position in a HAST chamber. HAST chambers have single-point temperature measurements that can be traceable to NIST standards. The objective of these "Wormwood" measurements is to verify the uniformity and stability of the remaining volumemore » of the HAST chamber with respect to the single traceable standard.« less

  2. Growth, and magnetic study of Sm0.4Er0.6FeO3 single crystal grown by optical floating zone technique

    NASA Astrophysics Data System (ADS)

    Wu, Anhua; Zhao, Xiangyang; Man, Peiwen; Su, Liangbi; Kalashnikova, A. M.; Pisarev, R. V.

    2018-03-01

    Sm0.4Er0.6FeO3 single crystals were successfully grown by optical floating zone method; high quality samples with various orientations were manufactured. Based on these samples, Magnetic property of Sm0.4Er0.6FeO3 single crystals were investigated systemically by means of the temperature dependence of magnetization. It indicated that compositional variations not only alter the spin reorientation temperature, but also the compensation temperature of the orthoferrites. Unlike single rare earth orthoferrites, the reversal transition temperature point of Sm0.4Er0.6FeO3 increases as magnetic field increases, which is positive for designing novel spin switching or magnetic sensor device.

  3. Design and optimization of integrated gas/condensate plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Root, C.R.; Wilson, J.L.

    1995-11-01

    An optimized design is demonstrated for combining gas processing and condensate stabilization plants into a single integrated process facility. This integrated design economically provides improved condensate recovery versus use of a simple stabilizer design. A selection matrix showing likely application of this integrated process is presented for use on future designs. Several methods for developing the fluid characterization and for using a process simulator to predict future design compositions are described, which could be useful in other designs. Optimization of flowsheet equipment choices and of design operating pressures and temperatures is demonstrated including the effect of both continuous and discretemore » process equipment size changes. Several similar designs using a turboexpander to provide refrigeration for liquids recovery and stabilizer reflux are described. Operating overthrust and from the P/15-D platform in the Dutch sector of the North Sea has proven these integrated designs are effective. Concerns do remain around operation near or above the critical pressure that should be addressed in future work including providing conservative separator designs, providing sufficient process design safety margin to meet dew point specifications, selecting the most conservative design values of predicted gas dew point and equipment size calculated with different Equations-of-State, and possibly improving the accuracy of PVT calculations in the near critical area.« less

  4. Optical performance of multifocal soft contact lenses via a single-pass method.

    PubMed

    Bakaraju, Ravi C; Ehrmann, Klaus; Falk, Darrin; Ho, Arthur; Papas, Eric

    2012-08-01

    A physical model eye capable of carrying soft contact lenses (CLs) was used as a platform to evaluate optical performance of several commercial multifocals (MFCLs) with high- and low-add powers and a single-vision control. Optical performance was evaluated at three pupil sizes, six target vergences, and five CL-correcting positions using a spatially filtered monochromatic (632.8 nm) light source. The various target vergences were achieved by using negative trial lenses. A photosensor in the retinal plane recorded the image point-spread that enabled the computation of visual Strehl ratios. The centration of CLs was monitored by an additional integrated en face camera. Hydration of the correcting lens was maintained using a humidity chamber and repeated instillations of rewetting saline drops. All the MFCLs reduced performance for distance but considerably improved performance along the range of distance to near target vergences, relative to the single-vision CL. Performance was dependent on add power, design, pupil, and centration of the correcting CLs. Proclear (D) design produced good performance for intermediate vision, whereas Proclear (N) design performed well at near vision (p < 0.05). AirOptix design exhibited good performance for distance and intermediate vision. PureVision design showed improved performance across the test vergences, but only for pupils ≥4 mm in diameter. Performance of Acuvue bifocal was comparable with other MFCLs, but only for pupils >4 mm in diameter. Acuvue Oasys bifocal produced performance comparable with single-vision CL for most vergences. Direct measurement of single-pass images at the retinal plane of a physical model eye used in conjunction with various MFCLs is demonstrated. This method may have utility in evaluating the relative effectiveness of commercial and prototype designs.

  5. Launch Window Trade Analysis for the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Yu, Wayne H.; Richon, Karen

    2014-01-01

    The James Webb Space Telescope (JWST) is a large-scale space telescope mission designed to study fundamental astrophysical questions ranging from the formation of the universe to the origin of planetary systems and the origins of life. JWSTs orbit design is a Libration Point Orbit (LPO) around the Sun-Earth/Moon (SEM) L2 point for a planned mission lifetime of 10.5 years. The launch readiness period for JWST is from Oct 1st, 2018 November 30th, 2018. This paper presents the first launch window analysis for the JWST observatory using finite-burn modeling; previous analysis assumed a single impulsive midcourse correction to achieve the mission orbit. The physical limitations of the JWST hardware stemming primarily from propulsion, communication and thermal requirements alongside updated mission design requirements result in significant launch window within the launch readiness period. Future plans are also discussed.

  6. James Webb Space Telescope Launch Window Trade Analysis

    NASA Technical Reports Server (NTRS)

    Yu, Wayne; Richon, Karen

    2014-01-01

    The James Webb Space Telescope (JWST) is a large-scale space telescope mission designed to study fundamental astrophysical questions ranging from the formation of the universe to the origin of planetary systems and the origins of life. JWSTs orbit design is a Libration Point Orbit (LPO) around the Sun-EarthMoon (SEM) L2 point for a planned mission lifetime of 10.5 years. The launch readiness period for JWST is from Oct 1st, 2018 November 30th, 2018. This paper presents the first launch window analysis for the JWST observatory using finite-burn modeling; previous analysis assumed a single impulsive midcourse correction to achieve the mission orbit. The physical limitations of the JWST hardware stemming primarily from propulsion, communication and thermal requirements alongside updated mission design requirements result in significant launch window within the launch readiness period. Future plans are also discussed.

  7. Control system design for the large space systems technology reference platform

    NASA Technical Reports Server (NTRS)

    Edmunds, R. S.

    1982-01-01

    Structural models and classical frequency domain control system designs were developed for the large space systems technology (LSST) reference platform which consists of a central bus structure, solar panels, and platform arms on which a variety of experiments may be mounted. It is shown that operation of multiple independently articulated payloads on a single platform presents major problems when subarc second pointing stability is required. Experiment compatibility will be an important operational consideration for systems of this type.

  8. A Standalone Solar Photovoltaic Power Generation using Cuk Converter and Single Phase Inverter

    NASA Astrophysics Data System (ADS)

    Verma, A. K.; Singh, B.; Kaushika, S. C.

    2013-03-01

    In this paper, a standalone solar photovoltaic (SPV) power generating system is designed and modeled using a Cuk dc-dc converter and a single phase voltage source inverter (VSI). In this system, a dc-dc boost converter boosts a low voltage of a PV array to charge a battery at 24 V using a maximum power point tracking control algorithm. To step up a 24 V battery voltage to 360 V dc, a high frequency transformer based isolated dc-dc Cuk converter is used to reduce size, weight and losses. The dc voltage of 360 V is fed to a single phase VSI with unipolar switching to achieve a 230 Vrms, 50 Hz ac. The main objectives of this investigation are on efficiency improvement, reduction in cost, weight and size of the system and to provide an uninterruptible power to remotely located consumers. The complete SPV system is designed and it is modeled in MATLAB/Simulink. The simulated results are presented to demonstrate its satisfactory performance for validating the proposed design and control algorithm.

  9. Advanced solar concentrator: Preliminary and detailed design

    NASA Technical Reports Server (NTRS)

    Bell, D. M.; Maraschin, R. A.; Matsushita, M. T.; Erskine, D.; Carlton, R.; Jakovcevic, A.; Yasuda, A. K.

    1981-01-01

    A single reflection point focusing two-axis tracking paraboloidal dish with a reflector aperture diameter of approximately 11 m has a reflective surface made up of 64 independent, optical quality gores. Each gore is a composite of a thin backsilvered mirror glass face sheet continuously bonded to a contoured substrate of lightweight, rigid cellular glass. The use of largely self-supporting gores allows a significant reduction in the weight of the steel support structure as compared to alternate design concepts. Primary emphasis in the preliminary design package for the low-cost, low-weight, mass producible concentrator was placed on the design of the higher cost subsystems. The outer gore element was sufficiently designed to allow fabrication of prototype gores.

  10. Full potential methods for analysis/design of complex aerospace configurations

    NASA Technical Reports Server (NTRS)

    Shankar, Vijaya; Szema, Kuo-Yen; Bonner, Ellwood

    1986-01-01

    The steady form of the full potential equation, in conservative form, is employed to analyze and design a wide variety of complex aerodynamic shapes. The nonlinear method is based on the theory of characteristic signal propagation coupled with novel flux biasing concepts and body-fitted mapping procedures. The resulting codes are vectorized for the CRAY XMP and the VPS-32 supercomputers. Use of the full potential nonlinear theory is demonstrated for a single-point supersonic wing design and a multipoint design for transonic maneuver/supersonic cruise/maneuver conditions. Achievement of high aerodynamic efficiency through numerical design is verified by wind tunnel tests. Other studies reported include analyses of a canard/wing/nacelle fighter geometry.

  11. Video-Based Intervention in Teaching Fraction Problem-Solving to Students with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Yakubova, Gulnoza; Hughes, Elizabeth M.; Hornberger, Erin

    2015-01-01

    The purpose of this study was to determine the effectiveness of a point-of-view video modeling intervention to teach mathematics problem-solving when working on word problems involving subtracting mixed fractions with uncommon denominators. Using a multiple-probe across students design of single-case methodology, three high school students with…

  12. System Design and Cataloging Meet the User: User Interfaces to Online Public Access Catalogs.

    ERIC Educational Resources Information Center

    Yee, Martha M.

    1991-01-01

    Discusses features of online public access catalogs: (1) demonstration of relationships between records; (2) provision of entry vocabularies; (3) arrangement of multiple entries on the screen; (4) provision of access points; (5) display of single records; and (6) division of catalogs into separate files or indexes. User studies and other research…

  13. A Districtwide Commitment to Arts Integration

    ERIC Educational Resources Information Center

    Mackin, Eileen; Mackin, Robert; Obremski, John; McKie, Katherine

    2017-01-01

    Like many school systems in economically stressed parts of the country, the Everett, Mass., school district had cut back on arts instruction over the years, to the point where most students were getting only a single art class per week. But since 2013, and thanks to a grant from the U.S. Department of Education, Everett has designed and…

  14. Nuclear thermionic power plants in the 50-300 kWe range.

    NASA Technical Reports Server (NTRS)

    Van Hoomissen, J. E.; Sawyer, C. D.; Prickett, W. Z.

    1972-01-01

    This paper reviews the results of recent studies performed by General Electric on in-core thermionic reactor power plants in the 50-300 kWe range. In particular, a 100 kWe manned Space Base mission and a 240 kWe unmanned electric propulsion mission are singled out as representative design points for this concept.

  15. Computer numeric control generation of toric surfaces

    NASA Astrophysics Data System (ADS)

    Bradley, Norman D.; Ball, Gary A.; Keller, John R.

    1994-05-01

    Until recently, the manufacture of toric ophthalmic lenses relied largely upon expensive, manual techniques for generation and polishing. Recent gains in computer numeric control (CNC) technology and tooling enable lens designers to employ single- point diamond, fly-cutting methods in the production of torics. Fly-cutting methods continue to improve, significantly expanding lens design possibilities while lowering production costs. Advantages of CNC fly cutting include precise control of surface geometry, rapid production with high throughput, and high-quality lens surface finishes requiring minimal polishing. As accessibility and affordability increase within the ophthalmic market, torics promise to dramatically expand lens design choices available to consumers.

  16. No-hardware-signature cybersecurity-crypto-module: a resilient cyber defense agent

    NASA Astrophysics Data System (ADS)

    Zaghloul, A. R. M.; Zaghloul, Y. A.

    2014-06-01

    We present an optical cybersecurity-crypto-module as a resilient cyber defense agent. It has no hardware signature since it is bitstream reconfigurable, where single hardware architecture functions as any selected device of all possible ones of the same number of inputs. For a two-input digital device, a 4-digit bitstream of 0s and 1s determines which device, of a total of 16 devices, the hardware performs as. Accordingly, the hardware itself is not physically reconfigured, but its performance is. Such a defense agent allows the attack to take place, rendering it harmless. On the other hand, if the system is already infected with malware sending out information, the defense agent allows the information to go out, rendering it meaningless. The hardware architecture is immune to side attacks since such an attack would reveal information on the attack itself and not on the hardware. This cyber defense agent can be used to secure a point-to-point, point-to-multipoint, a whole network, and/or a single entity in the cyberspace. Therefore, ensuring trust between cyber resources. It can provide secure communication in an insecure network. We provide the hardware design and explain how it works. Scalability of the design is briefly discussed. (Protected by United States Patents No.: US 8,004,734; US 8,325,404; and other National Patents worldwide.)

  17. Effect of differing PowerPoint slide design on multiple-choice test scores for assessment of knowledge and retention in a theriogenology course.

    PubMed

    Root Kustritz, Margaret V

    2014-01-01

    Third-year veterinary students in a required theriogenology diagnostics course were allowed to self-select attendance at a lecture in either the evening or the next morning. One group was presented with PowerPoint slides in a traditional format (T group), and the other group was presented with PowerPoint slides in the assertion-evidence format (A-E group), which uses a single sentence and a highly relevant graphic on each slide to ensure attention is drawn to the most important points in the presentation. Students took a multiple-choice pre-test, attended lecture, and then completed a take-home assignment. All students then completed an online multiple-choice post-test and, one month later, a different online multiple-choice test to evaluate retention. Groups did not differ on pre-test, assignment, or post-test scores, and both groups showed significant gains from pre-test to post-test and from pre-test to retention test. However, the T group showed significant decline from post-test to retention test, while the A-E group did not. Short-term differences between slide designs were most likely unaffected due to required coursework immediately after lecture, but retention of material was superior with the assertion-evidence slide design.

  18. Using single-case experimental design methodology to evaluate the effects of the ABC method for nursing staff on verbal aggressive behaviour after acquired brain injury.

    PubMed

    Winkens, Ieke; Ponds, Rudolf; Pouwels, Climmy; Eilander, Henk; van Heugten, Caroline

    2014-01-01

    The ABC method is a basic and simplified form of behavioural modification therapy for use by nurses. ABC refers to the identification of Antecedent events, target Behaviours, and Consequent events. A single-case experimental AB design was used to evaluate the effects of the ABC method on a woman diagnosed with olivo-ponto-cerebellar ataxia. Target behaviour was verbal aggressive behaviour during ADL care, assessed at 9 time points immediately before implementation of the ABC method and at 36 time points after implementation. A randomisation test showed a significant treatment effect between the baseline and intervention phases (t = .58, p = .03; ES [Nonoverlap All Pairs] = .62). Visual analysis, however, showed that the target behaviour was still present after implementation of the method and that on some days the nurses even judged the behaviour to be more severe than at baseline. Although the target behaviour was still present after treatment, the ABC method seems to be a promising tool for decreasing problem behaviour in patients with acquired brain injury. It is worth investigating the effects of this method in future studies. When interpreting single-subject data, both visual inspection and statistical analysis are needed to determine whether treatment is effective and whether the effects lead to clinically desirable results.

  19. Precise aircraft single-point positioning using GPS post-mission orbits and satellite clock corrections

    NASA Astrophysics Data System (ADS)

    Lachapelle, G.; Cannon, M. E.; Qiu, W.; Varner, C.

    1996-09-01

    Aircraft single point position accuracy is assessed through a comparison of the single point coordinates with corresponding DGPS-derived coordinates. The platform utilized for this evaluation is a Naval Air Warfare Center P-3 Orion aircraft. Data was collected over a period of about 40 hours, spread over six days, off Florida's East Coast in July 94, using DGPS reference stations in Jacksonville, FL, and Warminster, PA. The analysis of results shows that the consistency between aircraft single point and DGPS coordinates obtained in single point positioning mode and DGPS mode is about 1 m (rms) in latitude and longitude, and 2 m (rms) in height, with instantaneous errors of up to a few metres due to the effect of the ionosphere on the single point L1 solutions.

  20. A high speed buffer for LV data acquisition

    NASA Technical Reports Server (NTRS)

    Cavone, Angelo A.; Sterlina, Patrick S.; Clemmons, James I., Jr.; Meyers, James F.

    1987-01-01

    The laser velocimeter (autocovariance) buffer interface is a data acquisition subsystem designed specifically for the acquisition of data from a laser velocimeter. The subsystem acquires data from up to six laser velocimeter components in parallel, measures the times between successive data points for each of the components, establishes and maintains a coincident condition between any two or three components, and acquires data from other instrumentation systems simultaneously with the laser velocimeter data points. The subsystem is designed to control the entire data acquisition process based on initial setup parameters obtained from a host computer and to be independent of the computer during the acquisition. On completion of the acquisition cycle, the interface transfers the contents of its memory to the host under direction of the host via a single 16-bit parallel DMA channel.

  1. Satellite-based quantum communication terminal employing state-of-the-art technology

    NASA Astrophysics Data System (ADS)

    Pfennigbauer, Martin; Aspelmeyer, Markus; Leeb, Walter R.; Baister, Guy; Dreischer, Thomas; Jennewein, Thomas; Neckamm, Gregor; Perdigues, Josep M.; Weinfurter, Harald; Zeilinger, Anton

    2005-09-01

    Feature Issue on Optical Wireless Communications (OWC) We investigate the design and the accommodation of a quantum communication transceiver in an existing classical optical communication terminal on board a satellite. Operation from a low earth orbit (LEO) platform (e.g., the International Space Station) would allow transmission of single photons and pairs of entangled photons to ground stations and hence permit quantum communication applications such as quantum cryptography on a global scale. Integration of a source generating entangled photon pairs and single-photon detection into existing optical terminal designs is feasible. Even more, major subunits of the classical terminals such as those for pointing, acquisition, and tracking as well as those providing the required electronic, thermal, and structural backbone can be adapted so as to meet the quantum communication terminal needs.

  2. Single rotor turbine engine

    DOEpatents

    Platts, David A.

    2002-01-01

    There has been invented a turbine engine with a single rotor which cools the engine, functions as a radial compressor, pushes air through the engine to the ignition point, and acts as an axial turbine for powering the compressor. The invention engine is designed to use a simple scheme of conventional passage shapes to provide both a radial and axial flow pattern through the single rotor, thereby allowing the radial intake air flow to cool the turbine blades and turbine exhaust gases in an axial flow to be used for energy transfer. In an alternative embodiment, an electric generator is incorporated in the engine to specifically adapt the invention for power generation. Magnets are embedded in the exhaust face of the single rotor proximate to a ring of stationary magnetic cores with windings to provide for the generation of electricity. In this alternative embodiment, the turbine is a radial inflow turbine rather than an axial turbine as used in the first embodiment. Radial inflow passages of conventional design are interleaved with radial compressor passages to allow the intake air to cool the turbine blades.

  3. An Array of Optical Receivers for Deep-Space Communications

    NASA Technical Reports Server (NTRS)

    Vilnrotter, Chi-Wung; Srinivasan, Meera; Andrews, Kenneth

    2007-01-01

    An array of small optical receivers is proposed as an alternative to a single large optical receiver for high-data-rate communications in NASA s Deep Space Network (DSN). Because the telescope for a single receiver capable of satisfying DSN requirements must be greater than 10 m in diameter, the design, building, and testing of the telescope would be very difficult and expensive. The proposed array would utilize commercially available telescopes of 1-m or smaller diameter and, therefore, could be developed and verified with considerably less difficulty and expense. The essential difference between a single-aperture optical-communications receiver and an optical-array receiver is that a single-aperture receiver focuses all of the light energy it collects onto the surface of an optical detector, whereas an array receiver focuses portions of the total collected energy onto separate detectors, optically detects each fractional energy component, then combines the electrical signal from the array of detector outputs to form the observable, or "decision statistic," used to decode the transmitted data. A conceptual block diagram identifying the key components of the optical-array receiver suitable for deep-space telemetry reception is shown in the figure. The most conspicuous feature of the receiver is the large number of small- to medium-size telescopes, with individual apertures and number of telescopes selected to make up the desired total collecting area. This array of telescopes is envisioned to be fully computer- controlled via the user interface and prediction-driven to achieve rough pointing and tracking of the desired spacecraft. Fine-pointing and tracking functions then take over to keep each telescope pointed toward the source, despite imperfect pointing predictions, telescope-drive errors, and vibration caused by wind.

  4. A Double-Blind, Double-Dummy, Flexible-Design Randomized Multicenter Trial: Early Safety of Single- Versus Divided-Dose Rabbit Anti-Thymocyte Globulin Induction in Renal Transplantation.

    PubMed

    Stevens, R B; Wrenshall, L E; Miles, C D; Farney, A C; Jie, T; Sandoz, J P; Rigley, T H; Osama Gaber, A

    2016-06-01

    A previous nonblinded, randomized, single-center renal transplantation trial of single-dose rabbit anti-thymocyte globulin induction (SD-rATG) showed improved efficacy compared with conventional divided-dose (DD-rATG) administration. The present multicenter, double-blind/double-dummy STAT trial (Single dose vs. Traditional Administration of Thymoglobulin) evaluated SD-rATG versus DD-rATG induction for noninferiority in early (7-day) safety and tolerability. Ninety-five patients (randomized 1:1) received 6 mg/kg SD-rATG or 1.5 mg/kg/dose DD-rATG, with tacrolimus-mycophenolate maintenance immunosuppression. The primary end point was a composite of fever, hypoxia, hypotension, cardiac complications, and delayed graft function. Secondary end points included 12-month patient survival, graft survival, and rejection. Target enrollment was 165 patients with an interim analysis scheduled after 80 patients. Interim analysis showed primary end point noninferiority of SD-rATG induction (p = 0.6), and a conditional probability of <1.73% of continued enrollment producing a significant difference (futility analysis), leading to early trial termination. Final analysis (95 patients) showed no differences in occurrence of primary end point events (p = 0.58) or patients with no, one, or more than one event (p = 0.81), or rejection, graft, or patient survival (p = 0.78, 0.47, and 0.35, respectively). In this rigorously blinded trial in adult renal transplantation, we have shown SD-rATG induction to be noninferior to DD-rATG induction in early tolerability and equivalent in 12-month safety. (Clinical Trials.gov #NCT00906204.). © Copyright 2016 The Authors. American Journal of Transplantation published by Wiley Periodicals, Inc. on behalf of the American Society of Transplantation and the American Society of Transplant Surgeons.

  5. Combined contactless conductometric, photometric, and fluorimetric single point detector for capillary separation methods.

    PubMed

    Ryvolová, Markéta; Preisler, Jan; Foret, Frantisek; Hauser, Peter C; Krásenský, Pavel; Paull, Brett; Macka, Mirek

    2010-01-01

    This work for the first time combines three on-capillary detection methods, namely, capacitively coupled contactless conductometric (C(4)D), photometric (PD), and fluorimetric (FD), in a single (identical) point of detection cell, allowing concurrent measurements at a single point of detection for use in capillary electrophoresis, capillary electrochromatography, and capillary/nanoliquid chromatography. The novel design is based on a standard 6.3 mm i.d. fiber-optic SMA adapter with a drilled opening for the separation capillary to go through, to which two concentrically positioned C(4)D detection electrodes with a detection gap of 7 mm were added on each side acting simultaneously as capillary guides. The optical fibers in the SMA adapter were used for the photometric signal (absorbance), and another optical fiber at a 45 degrees angle to the capillary was applied to collect the emitted light for FD. Light emitting diodes (255 and 470 nm) were used as light sources for the PD and FD detection modes. LOD values were determined under flow-injection conditions to exclude any stacking effects: For the 470 nm LED limits of detection (LODs) for FD and PD were for fluorescein (1 x 10(-8) mol/L) and tartrazine (6 x 10(-6) mol/L), respectively, and the LOD for the C(4)D was for magnesium chloride (5 x 10(-7) mol/L). The advantage of the three different detection signals in a single point is demonstrated in capillary electrophoresis using model mixtures and samples including a mixture of fluorescent and nonfluorescent dyes and common ions, underivatized amino acids, and a fluorescently labeled digest of bovine serum albumin.

  6. Orientation and Mobility with Persons Who Are Deaf-Blind: An Initial Examination of Single-Subject Design Research

    ERIC Educational Resources Information Center

    Parker, Amy T.

    2009-01-01

    Persons who are deaf-blind represent a heterogeneous, low-incidence population of children and adults who, at some point in life, regardless of the presence of additional disabilities, may benefit from formal orientation and mobility (O&M) instruction. Current national policies, such as the No Child Left Behind Act, which emphasize that…

  7. Multidisciplinary Analysis of a Hypersonic Engine

    NASA Technical Reports Server (NTRS)

    Stewart, M. E. M.; Suresh, A.; Liou, M. S.; Owen, A. K.; Messitt, D. G.

    2002-01-01

    This paper describes implementation of a technique used to obtain a high fidelity fluid-thermal-structural solution of a combined cycle engine at its scram design point. Single-discipline simulations are insufficient here since interactions from other disciplines are significant. Using off-the-shelf, validated solvers for the fluid, chemistry, thermal, and structural solutions, this approach couples together their results to obtain consistent solutions.

  8. Special-purpose computer for holography HORN-2

    NASA Astrophysics Data System (ADS)

    Ito, Tomoyoshi; Eldeib, Hesham; Yoshida, Kenji; Takahashi, Shinya; Yabe, Takashi; Kunugi, Tomoaki

    1996-01-01

    We designed and built a special-purpose computer for holography, HORN-2 (HOlographic ReconstructioN). HORN-2 calculates light intensity at high speed of 0.3 Gflops per one board with single (32-bit floating point) precision. The cost of the board is 500 000 Japanese yen (5000 US dollar). We made three boards. Operating them in parallel, we get about 1 Gflops.

  9. Perceived Barriers and Facilitators of Exercise and Healthy Dietary Choices: A Study of Employees and Managers within a Large Transport Organisation

    ERIC Educational Resources Information Center

    Donaldson-Feilder, Emma; Lewis, Rachel; Pavey, Louisa; Jones, Bethan; Green, Melanie; Webster, Angela

    2017-01-01

    Objective: The objective of this study was to examine employees' perceived barriers and facilitators of physical activity and healthy dietary choices, and managers' perceptions of how best to facilitate physical activity and healthy dietary choices among their team members. Design: Single time-point survey with categorical and open-ended…

  10. Integrated design of the CSI evolutionary structure: A verification of the design methodology

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Joshi, S. M.; Elliott, Kenny B.; Walz, J. E.

    1993-01-01

    One of the main objectives of the Controls-Structures Interaction (CSI) program is to develop and evaluate integrated controls-structures design methodology for flexible space structures. Thus far, integrated design methodologies for a class of flexible spacecraft, which require fine attitude pointing and vibration suppression with no payload articulation, have been extensively investigated. Various integrated design optimization approaches, such as single-objective optimization, and multi-objective optimization, have been implemented with an array of different objectives and constraints involving performance and cost measures such as total mass, actuator mass, steady-state pointing performance, transient performance, control power, and many more. These studies have been performed using an integrated design software tool (CSI-DESIGN CODE) which is under development by the CSI-ADM team at the NASA Langley Research Center. To date, all of these studies, irrespective of the type of integrated optimization posed or objectives and constraints used, have indicated that integrated controls-structures design results in an overall spacecraft design which is considerably superior to designs obtained through a conventional sequential approach. Consequently, it is believed that validation of some of these results through fabrication and testing of a structure which is designed through an integrated design approach is warranted. The objective of this paper is to present and discuss the efforts that have been taken thus far for the validation of the integrated design methodology.

  11. Testing single point incremental forming moulds for rotomoulding operations

    NASA Astrophysics Data System (ADS)

    Afonso, Daniel; de Sousa, Ricardo Alves; Torcato, Ricardo

    2017-10-01

    Low pressure polymer processes as thermoforming or rotational moulding use much simpler moulds than high pressure processes like injection. However, despite the low forces involved in the process, moulds manufacturing for these applications is still a very material, energy and time consuming operation. Particularly in rotational moulding there is no standard for the mould manufacture and very different techniques are applicable. The goal of this research is to develop and validate a method for manufacturing plastically formed sheet metal moulds by single point incremental forming (SPIF) for rotomoulding and rotocasting operations. A Stewart platform based SPIF machine allow the forming of thick metal sheets, granting the required structural stiffness for the mould surface, and keeping a short manufacture lead time and low thermal inertia. The experimental work involves the proposal of a hollow part, design and fabrication of a sheet metal mould using dieless incremental forming techniques and testing its operation in the production of prototype parts.

  12. Full Body Loading for Small Exercise Devices Project

    NASA Technical Reports Server (NTRS)

    Downs, Meghan; Hanson, Andrea; Newby, Nathaniel

    2015-01-01

    Protecting astronauts' spine, hip, and lower body musculoskeletal strength will be critical to safely and efficiently perform physically demanding vehicle egress, exploration, and habitat building activities necessary to expand human presence in the solar system. Functionally limiting decrements in musculoskeletal health are likely during Mars proving-ground and Earth-independent missions given extended transit times and the vehicle limitations for exercise devices (low-mass, small volume). Most small exercise device concepts are designed with single-cable loading, which inhibits the ability to perform full body exercises requiring two-point loading at the shoulders. Shoulder loading is critical to protect spine, hip, and lower body musculoskeletal strength. We propose a novel low-mass, low-maintenance, and rapid deploy pulley-based system that can attach to a single-cable small exercise device to enable two-point loading at the shoulders. This attachment could protect astronauts' health and save cost, space, and energy during all phases of the Journey to Mars.

  13. [Development of residual voltage testing equipment].

    PubMed

    Zeng, Xiaohui; Wu, Mingjun; Cao, Li; He, Jinyi; Deng, Zhensheng

    2014-07-01

    For the existing measurement methods of residual voltage which can't turn the power off at peak voltage exactly and simultaneously display waveforms, a new residual voltage detection method is put forward in this paper. First, the zero point of the power supply is detected with zero cross detection circuit and is inputted to a single-chip microcomputer in the form of pulse signal. Secend, when the zero point delays to the peak voltage, the single-chip microcomputer sends control signal to power off the relay. At last, the waveform of the residual voltage is displayed on a principal computer or oscilloscope. The experimental results show that the device designed in this paper can turn the power off at peak voltage and is able to accurately display the voltage waveform immediately after power off and the standard deviation of the residual voltage is less than 0.2 V at exactly one second and later.

  14. Engineering hurdles in contact and intraocular lens lathe design: the view ahead

    NASA Astrophysics Data System (ADS)

    Bradley, Norman D.; Keller, John R.; Ball, Gary A.

    1994-05-01

    Current trends in and intraocular lens design suggest ever- increasing demand for aspheric lens geometries - multisurface and/or toric surfaces - in a variety of new materials. As computer numeric controls (CNC) lathes and mills continue to evolve with he ophthalmic market, engineering hurdles present themselves to designers: Can hardware based upon single-point diamond turning accommodate the demands of software-driven designs? What are the limits of CNC resolution and repeatability in high-throughput production? What are the controlling factors in lathed, polish-free surface production? Emerging technologies in the lathed biomedical optics field are discussed along with their limitations, including refined diamond tooling, vibrational control, automation, and advanced motion control systems.

  15. Development of an Interdisciplinary STEM Classroom Activity for Radio Receiver Technology

    NASA Astrophysics Data System (ADS)

    Davis, Kristina

    2015-01-01

    Introduction The development of a mini STEM-based classroom activity designed to integrate these two fields into one project for middle school aged students is presented here. This lesson involves small groups of students constructing a small AM radio receivers. The lesson surrounding the activity focuses on both the physical nature of electromagnetic and AC waves, circuit design, practical applications to AM radio broadcasting, and research applications of radio telescopes. These tools have shown a significant increase in the lesson's primary concept understanding among 6th grade students, as well as net positive STEM awareness and enthusiasm.Content The primary teaching point for the students to consider and learn during this lesson is 'How does scientific application influence engineering design, and vice versa?' The lesson surrounds the hands-on activity of having students construct their own AM radio receiver. Wave theory and the use of radio instruments for astronomy research are also taught in a traditional lecture format. The activity is designed to complement middle school curriculum, although it has been tested and found suitable for high school and older students as well as the general public.Evaluation and ImpactThe evaluation tool that used for the student groups in this project was a Fryer chart, which is a four panel chart with the main topic listed in the center and a single question in each of the four panels. The students are asked to answer the questions in the chart before and after they participate in the lesson activity, each time in a different colored pencil so that the scores can be given to each student before and after they participated in the activity. Student scores improved from 4.5 to 17.9 out of a total of 20 possible points. This is an overall increase of 67% of the total possible points. The questions asked on the quiz cover the range of wave theory, circuit design, and scientific explanation. This factor of improvement shows that the lesson designed for this fellowship project is effective at teaching students about each of those concepts with a single teaching activity.

  16. Novel point estimation from a semiparametric ratio estimator (SPRE): long-term health outcomes from short-term linear data, with application to weight loss in obesity.

    PubMed

    Weissman-Miller, Deborah

    2013-11-02

    Point estimation is particularly important in predicting weight loss in individuals or small groups. In this analysis, a new health response function is based on a model of human response over time to estimate long-term health outcomes from a change point in short-term linear regression. This important estimation capability is addressed for small groups and single-subject designs in pilot studies for clinical trials, medical and therapeutic clinical practice. These estimations are based on a change point given by parameters derived from short-term participant data in ordinary least squares (OLS) regression. The development of the change point in initial OLS data and the point estimations are given in a new semiparametric ratio estimator (SPRE) model. The new response function is taken as a ratio of two-parameter Weibull distributions times a prior outcome value that steps estimated outcomes forward in time, where the shape and scale parameters are estimated at the change point. The Weibull distributions used in this ratio are derived from a Kelvin model in mechanics taken here to represent human beings. A distinct feature of the SPRE model in this article is that initial treatment response for a small group or a single subject is reflected in long-term response to treatment. This model is applied to weight loss in obesity in a secondary analysis of data from a classic weight loss study, which has been selected due to the dramatic increase in obesity in the United States over the past 20 years. A very small relative error of estimated to test data is shown for obesity treatment with the weight loss medication phentermine or placebo for the test dataset. An application of SPRE in clinical medicine or occupational therapy is to estimate long-term weight loss for a single subject or a small group near the beginning of treatment.

  17. Design and fabrication of single-crystal GaN nano-bridge on homogeneous substrate for nanoindentation

    NASA Astrophysics Data System (ADS)

    Hung, Shang-Chao

    2014-12-01

    This study reports a simple method to design and fabricate a freestanding GaN nano-bridge over a homogeneous short column as supporting leg. Test samples were fabricated from MOCVD-grown single-crystal GaN films over sapphire substrate using a FIB milling to leave freestanding short spans. We also investigated the nanoindentation characteristics and the corresponding nanoscopic mechanism of the GaN nano-bridge and its short column with a conical indenter inside transmission electron microscopy. The stress-strain mechanical properties and Young's modulus have also been examined and calculated as 108 GPa ± 4.8 % by the strain energy method. The significant slope switch of the L- D curve corresponds to the transition from the single-point bending indentation to the surface stretching indentation and has been interpreted with the evolution of TEM images. This freestanding fabrication and test have key advantages to characterize nanoscale behavior of one-dimensional bridge structure and greater ease of sample preparation over other micro-fabrication techniques.

  18. Investigation of L-band shipboard antennas for maritime satellite applications

    NASA Technical Reports Server (NTRS)

    Heckert, G. P.

    1972-01-01

    A basic conceptual investigation of low cost L-band antenna subsystems for shipboard use was conducted by identifying the various pertinent design trade-offs and related performance characteristics peculiar to the civilian maritime application, and by comparing alternate approaches for their simplicity and general suitability. The study was not directed at a single specific proposal, but was intended to be parametric in nature. Antenna system concepts were to be investigated for a range of gain of 3 to 18 dB, with a value of about 10 dB considered as a baseline reference. As the primary source of potential complexity in shipboard antennas, which have beamwidths less than hemispherical as the beam pointing or selecting mechanism, major emphasis was directed at this aspect. Three categories of antenna system concepts were identified: (1) mechanically pointed, single-beam antennas; (2) fixed antennas with switched-beams; and (3) electronically-steered phased arrays. It is recommended that an L-band short backfire antenna subsystem, including a two-axis motor driven gimbal mount, and necessary single channel monopulse tracking receiver portions be developed for demonstration of performance and subsystem simplicity.

  19. Improving the Patron Experience: Sterling Memorial Library's Single Service Point

    ERIC Educational Resources Information Center

    Sider, Laura Galas

    2016-01-01

    This article describes the planning process and implementation of a single service point at Yale University's Sterling Memorial Library. While much recent scholarship on single service points (SSPs) has focused on the virtues or hazards of eliminating reference desks in libraries nationwide, this essay explores the ways in which single service…

  20. Efficient determination of the uncertainty for the optimization of SPECT system design: a subsampled fisher information matrix.

    PubMed

    Fuin, Niccolo; Pedemonte, Stefano; Arridge, Simon; Ourselin, Sebastien; Hutton, Brian F

    2014-03-01

    System designs in single photon emission tomography (SPECT) can be evaluated based on the fundamental trade-off between bias and variance that can be achieved in the reconstruction of emission tomograms. This trade off can be derived analytically using the Cramer-Rao type bounds, which imply the calculation and the inversion of the Fisher information matrix (FIM). The inverse of the FIM expresses the uncertainty associated to the tomogram, enabling the comparison of system designs. However, computing, storing and inverting the FIM is not practical with 3-D imaging systems. In order to tackle the problem of the computational load in calculating the inverse of the FIM, a method based on the calculation of the local impulse response and the variance, in a single point, from a single row of the FIM, has been previously proposed for system design. However this approximation (circulant approximation) does not capture the global interdependence between the variables in shift-variant systems such as SPECT, and cannot account e.g., for data truncation or missing data. Our new formulation relies on subsampling the FIM. The FIM is calculated over a subset of voxels arranged in a grid that covers the whole volume. Every element of the FIM at the grid points is calculated exactly, accounting for the acquisition geometry and for the object. This new formulation reduces the computational complexity in estimating the uncertainty, but nevertheless accounts for the global interdependence between the variables, enabling the exploration of design spaces hindered by the circulant approximation. The graphics processing unit accelerated implementation of the algorithm reduces further the computation times, making the algorithm a good candidate for real-time optimization of adaptive imaging systems. This paper describes the subsampled FIM formulation and implementation details. The advantages and limitations of the new approximation are explored, in comparison with the circulant approximation, in the context of design optimization of a parallel-hole collimator SPECT system and of an adaptive imaging system (similar to the commercially available D-SPECT).

  1. Surface-electrode point Paul trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Tony Hyun; Herskind, Peter F.; Chuang, Isaac L.

    2010-10-15

    We present a model as well as experimental results for a surface electrode radiofrequency Paul trap that has a circular electrode geometry well suited for trapping single ions and two-dimensional planar ion crystals. The trap design is compatible with microfabrication and offers a simple method by which the height of the trapped ions above the surface may be changed in situ. We demonstrate trapping of single {sup 88}Sr{sup +} ions over an ion height range of 200-1000 {mu}m for several hours under Doppler laser cooling and use these to characterize the trap, finding good agreement with our model.

  2. Multi-Objective Hybrid Optimal Control for Multiple-Flyby Interplanetary Mission Design Using Chemical Propulsion

    NASA Technical Reports Server (NTRS)

    Englander, Jacob; Vavrina, Matthew

    2015-01-01

    The customer (scientist or project manager) most often does not want just one point solution to the mission design problem Instead, an exploration of a multi-objective trade space is required. For a typical main-belt asteroid mission the customer might wish to see the trade-space of: Launch date vs. Flight time vs. Deliverable mass, while varying the destination asteroid, planetary flybys, launch year, etcetera. To address this question we use a multi-objective discrete outer-loop which defines many single objective real-valued inner-loop problems.

  3. Low and medium heating value coal gas catalytic combustor characterization

    NASA Technical Reports Server (NTRS)

    Schwab, J. A.

    1982-01-01

    Catalytic combustion with both low and medium heating value coal gases obtained from an operating gasifier was demonstrated. A practical operating range for efficient operation was determined, and also to identify potential problem areas were identified for consideration during stationary gas turbine engine design. The test rig consists of fuel injectors, a fuel-air premixing section, a catalytic reactor with thermocouple instrumentation and a single point, water cooled sample probe. The test rig included inlet and outlet transition pieces and was designed for installation into an existing test loop.

  4. Real-Time Spaceborne Synthetic Aperture Radar Float-Point Imaging System Using Optimized Mapping Methodology and a Multi-Node Parallel Accelerating Technique

    PubMed Central

    Li, Bingyi; Chen, Liang; Yu, Wenyue; Xie, Yizhuang; Bian, Mingming; Zhang, Qingjun; Pang, Long

    2018-01-01

    With the development of satellite load technology and very large-scale integrated (VLSI) circuit technology, on-board real-time synthetic aperture radar (SAR) imaging systems have facilitated rapid response to disasters. A key goal of the on-board SAR imaging system design is to achieve high real-time processing performance under severe size, weight, and power consumption constraints. This paper presents a multi-node prototype system for real-time SAR imaging processing. We decompose the commonly used chirp scaling (CS) SAR imaging algorithm into two parts according to the computing features. The linearization and logic-memory optimum allocation methods are adopted to realize the nonlinear part in a reconfigurable structure, and the two-part bandwidth balance method is used to realize the linear part. Thus, float-point SAR imaging processing can be integrated into a single Field Programmable Gate Array (FPGA) chip instead of relying on distributed technologies. A single-processing node requires 10.6 s and consumes 17 W to focus on 25-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384. The design methodology of the multi-FPGA parallel accelerating system under the real-time principle is introduced. As a proof of concept, a prototype with four processing nodes and one master node is implemented using a Xilinx xc6vlx315t FPGA. The weight and volume of one single machine are 10 kg and 32 cm × 24 cm × 20 cm, respectively, and the power consumption is under 100 W. The real-time performance of the proposed design is demonstrated on Chinese Gaofen-3 stripmap continuous imaging. PMID:29495637

  5. Properties of large nearly perfect crystals at very low temperatures

    NASA Technical Reports Server (NTRS)

    Davis, W.; Krack, K. R.; Richard, J. P.; Weber, J.

    1983-01-01

    A liquid helium cryostat of a size and construction unavailable commercially, was built for use in measuring the Q of several materials at milli-Kelvin temperatures. The design and testing of the cryostat is described as well as the design of the experiment vacuum chamber and adaptor for the dilution refrigerator insert. Theory, design, and testing are also discussed for the magnetic coils built to levitate the materials so as to isolate them and increase the measured Q. A four point suspension with capacitor end plates as the transducer was used to obtain preliminary Q measurements of 6061 aluminum alloy and single crystal silicon. Results are tabulated.

  6. Output Feedback Slewing Control of Flewible Spacecraft by

    NASA Astrophysics Data System (ADS)

    Kim, Daesik; Kim, Chun-Hwey; Bang, Hyochoong

    1997-12-01

    Slewing maneuver and vibration suppression control of flexible spacecraft model by Lyapunov stability theory are considered. The specific model considered in this paper consists of a rigid hub with an elastic appendage attached to the central hub and tip mass. Attitude control to point and stabilize single axis using reaction wheel type device is tested. To control all flexible modes is so critical to designing an active control law. We therefore considered an direct output feeback control design by using Lyapunov stability theory. It is shown that the ouput feedback control law design with proposed configuration gives satisfactory result in slewing performance and vibration suppression control.

  7. Quantitative optical imaging and sensing by joint design of point spread functions and estimation algorithms

    NASA Astrophysics Data System (ADS)

    Quirin, Sean Albert

    The joint application of tailored optical Point Spread Functions (PSF) and estimation methods is an important tool for designing quantitative imaging and sensing solutions. By enhancing the information transfer encoded by the optical waves into an image, matched post-processing algorithms are able to complete tasks with improved performance relative to conventional designs. In this thesis, new engineered PSF solutions with image processing algorithms are introduced and demonstrated for quantitative imaging using information-efficient signal processing tools and/or optical-efficient experimental implementations. The use of a 3D engineered PSF, the Double-Helix (DH-PSF), is applied as one solution for three-dimensional, super-resolution fluorescence microscopy. The DH-PSF is a tailored PSF which was engineered to have enhanced information transfer for the task of localizing point sources in three dimensions. Both an information- and optical-efficient implementation of the DH-PSF microscope are demonstrated here for the first time. This microscope is applied to image single-molecules and micro-tubules located within a biological sample. A joint imaging/axial-ranging modality is demonstrated for application to quantifying sources of extended transverse and axial extent. The proposed implementation has improved optical-efficiency relative to prior designs due to the use of serialized cycling through select engineered PSFs. This system is demonstrated for passive-ranging, extended Depth-of-Field imaging and digital refocusing of random objects under broadband illumination. Although the serialized engineered PSF solution is an improvement over prior designs for the joint imaging/passive-ranging modality, it requires the use of multiple PSFs---a potentially significant constraint. Therefore an alternative design is proposed, the Single-Helix PSF, where only one engineered PSF is necessary and the chromatic behavior of objects under broadband illumination provides the necessary information transfer. The matched estimation algorithms are introduced along with an optically-efficient experimental system to image and passively estimate the distance to a test object. An engineered PSF solution is proposed for improving the sensitivity of optical wave-front sensing using a Shack-Hartmann Wave-front Sensor (SHWFS). The performance limits of the classical SHWFS design are evaluated and the engineered PSF system design is demonstrated to enhance performance. This system is fabricated and the mechanism for additional information transfer is identified.

  8. Improved method for selection of the NOAEL.

    PubMed

    Calabrese, E J; Baldwin, L A

    1994-02-01

    The paper proposes that the NOAEL be defined as the highest dosage tested that is statistically significantly different from the control group while also being statistically significantly different from the LOAEL. This new definition requires that the NOAEL be defined from two points of reference rather than the current approach (i.e., single point of reference) in which the NOAEL represents only the highest dosage not statistically significantly different from the control group. This proposal is necessary in order to differentiate NOAELs which are statistically distinguishable from the LOAEL. Under the new regime only those satisfying both criteria would be designated a true NOAEL while those satisfying only one criteria (i.e., not statistically significant different from the control group) would be designated a "quasi" NOAEL and handled differently (i.e., via an uncertainty factor) for risk assessment purposes.

  9. Structural Optimization of a Force Balance Using a Computational Experiment Design

    NASA Technical Reports Server (NTRS)

    Parker, P. A.; DeLoach, R.

    2002-01-01

    This paper proposes a new approach to force balance structural optimization featuring a computational experiment design. Currently, this multi-dimensional design process requires the designer to perform a simplification by executing parameter studies on a small subset of design variables. This one-factor-at-a-time approach varies a single variable while holding all others at a constant level. Consequently, subtle interactions among the design variables, which can be exploited to achieve the design objectives, are undetected. The proposed method combines Modern Design of Experiments techniques to direct the exploration of the multi-dimensional design space, and a finite element analysis code to generate the experimental data. To efficiently search for an optimum combination of design variables and minimize the computational resources, a sequential design strategy was employed. Experimental results from the optimization of a non-traditional force balance measurement section are presented. An approach to overcome the unique problems associated with the simultaneous optimization of multiple response criteria is described. A quantitative single-point design procedure that reflects the designer's subjective impression of the relative importance of various design objectives, and a graphical multi-response optimization procedure that provides further insights into available tradeoffs among competing design objectives are illustrated. The proposed method enhances the intuition and experience of the designer by providing new perspectives on the relationships between the design variables and the competing design objectives providing a systematic foundation for advancements in structural design.

  10. A geometric projection method for designing three-dimensional open lattices with inverse homogenization

    DOE PAGES

    Watts, Seth; Tortorelli, Daniel A.

    2017-04-13

    Topology optimization is a methodology for assigning material or void to each point in a design domain in a way that extremizes some objective function, such as the compliance of a structure under given loads, subject to various imposed constraints, such as an upper bound on the mass of the structure. Geometry projection is a means to parameterize the topology optimization problem, by describing the design in a way that is independent of the mesh used for analysis of the design's performance; it results in many fewer design parameters, necessarily resolves the ill-posed nature of the topology optimization problem, andmore » provides sharp descriptions of the material interfaces. We extend previous geometric projection work to 3 dimensions and design unit cells for lattice materials using inverse homogenization. We perform a sensitivity analysis of the geometric projection and show it has smooth derivatives, making it suitable for use with gradient-based optimization algorithms. The technique is demonstrated by designing unit cells comprised of a single constituent material plus void space to obtain light, stiff materials with cubic and isotropic material symmetry. Here, we also design a single-constituent isotropic material with negative Poisson's ratio and a light, stiff material comprised of 2 constituent solids plus void space.« less

  11. A geometric projection method for designing three-dimensional open lattices with inverse homogenization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watts, Seth; Tortorelli, Daniel A.

    Topology optimization is a methodology for assigning material or void to each point in a design domain in a way that extremizes some objective function, such as the compliance of a structure under given loads, subject to various imposed constraints, such as an upper bound on the mass of the structure. Geometry projection is a means to parameterize the topology optimization problem, by describing the design in a way that is independent of the mesh used for analysis of the design's performance; it results in many fewer design parameters, necessarily resolves the ill-posed nature of the topology optimization problem, andmore » provides sharp descriptions of the material interfaces. We extend previous geometric projection work to 3 dimensions and design unit cells for lattice materials using inverse homogenization. We perform a sensitivity analysis of the geometric projection and show it has smooth derivatives, making it suitable for use with gradient-based optimization algorithms. The technique is demonstrated by designing unit cells comprised of a single constituent material plus void space to obtain light, stiff materials with cubic and isotropic material symmetry. Here, we also design a single-constituent isotropic material with negative Poisson's ratio and a light, stiff material comprised of 2 constituent solids plus void space.« less

  12. THE SCREENING AND RANKING ALGORITHM FOR CHANGE-POINTS DETECTION IN MULTIPLE SAMPLES

    PubMed Central

    Song, Chi; Min, Xiaoyi; Zhang, Heping

    2016-01-01

    The chromosome copy number variation (CNV) is the deviation of genomic regions from their normal copy number states, which may associate with many human diseases. Current genetic studies usually collect hundreds to thousands of samples to study the association between CNV and diseases. CNVs can be called by detecting the change-points in mean for sequences of array-based intensity measurements. Although multiple samples are of interest, the majority of the available CNV calling methods are single sample based. Only a few multiple sample methods have been proposed using scan statistics that are computationally intensive and designed toward either common or rare change-points detection. In this paper, we propose a novel multiple sample method by adaptively combining the scan statistic of the screening and ranking algorithm (SaRa), which is computationally efficient and is able to detect both common and rare change-points. We prove that asymptotically this method can find the true change-points with almost certainty and show in theory that multiple sample methods are superior to single sample methods when shared change-points are of interest. Additionally, we report extensive simulation studies to examine the performance of our proposed method. Finally, using our proposed method as well as two competing approaches, we attempt to detect CNVs in the data from the Primary Open-Angle Glaucoma Genes and Environment study, and conclude that our method is faster and requires less information while our ability to detect the CNVs is comparable or better. PMID:28090239

  13. Triana Safehold: A New Gyroless, Sun-Pointing Attitude Controller

    NASA Technical Reports Server (NTRS)

    Chen, J.; Morgenstern, Wendy; Garrick, Joseph

    2001-01-01

    Triana is a single-string spacecraft to be placed in a halo orbit about the sun-earth Ll Lagrangian point. The Attitude Control Subsystem (ACS) hardware includes four reaction wheels, ten thrusters, six coarse sun sensors, a star tracker, and a three-axis Inertial Measuring Unit (IMU). The ACS Safehold design features a gyroless sun-pointing control scheme using only sun sensors and wheels. With this minimum hardware approach, Safehold increases mission reliability in the event of a gyroscope anomaly. In place of the gyroscope rate measurements, Triana Safehold uses wheel tachometers to help provide a scaled estimation of the spacecraft body rate about the sun vector. Since Triana nominally performs momentum management every three months, its accumulated system momentum can reach a significant fraction of the wheel capacity. It is therefore a requirement for Safehold to maintain a sun-pointing attitude even when the spacecraft system momentum is reasonably large. The tachometer sun-line rate estimation enables the controller to bring the spacecraft close to its desired sun-pointing attitude even with reasonably high system momentum and wheel drags. This paper presents the design rationale behind this gyroless controller, stability analysis, and some time-domain simulation results showing performances with various initial conditions. Finally, suggestions for future improvements are briefly discussed.

  14. Investigation of Primary Dew-Point Saturator Efficiency in Two Different Thermal Environments

    NASA Astrophysics Data System (ADS)

    Zvizdic, D.; Heinonen, M.; Sestan, D.

    2015-08-01

    The aim of this paper is to describe the evaluation process of the performance of the low-range saturator (LRS), when exposed to two different thermal environments. The examined saturator was designed, built, and tested at MIKES (Centre for Metrology and Accreditation, Finland), and then transported to the Laboratory for Process Measurement (LPM) in Croatia, where it was implemented in a new dew-point calibration system. The saturator works on a single-pressure-single-pass generation principle in the dew/frost-point temperature range between and . The purpose of the various tests performed at MIKES was to examine the efficiency and non-ideality of the saturator. As a test bath facility in Croatia differs from the one used in Finland, the same tests were repeated at LPM, and the effects of different thermal conditions on saturator performance were examined. Thermometers, pressure gauges, an air preparation system, and water for filling the saturator at LPM were also different than those used at MIKES. Results obtained by both laboratories indicate that the efficiency of the examined saturator was not affected either by the thermal conditions under which it was tested or by equipment used for the tests. Both laboratories concluded that LRS is efficient enough for a primary realization of the dew/frost-point temperature scale in the range from to , with flow rates between and . It is also shown that a considerable difference of the pre-saturator efficiency, indicated by two laboratories, did not have influence to the overall performance of the saturator. The results of the research are presented in graphical and tabular forms. This paper also gives a brief description of the design and operation principle of the investigated low-range saturator.

  15. Precision Adjustable Liquid Regulator (ALR)

    NASA Astrophysics Data System (ADS)

    Meinhold, R.; Parker, M.

    2004-10-01

    A passive mechanical regulator has been developed for the control of fuel or oxidizer flow to a 450N class bipropellant engine for use on commercial and interplanetary spacecraft. There are several potential benefits to the propulsion system, depending on mission requirements and spacecraft design. This system design enables more precise control of main engine mixture ratio and inlet pressure, and simplifies the pressurization system by transferring the function of main engine flow rate control from the pressurization/propellant tank assemblies, to a single component, the ALR. This design can also reduce the thermal control requirements on the propellant tanks, avoid costly Qualification testing of biprop engines for missions with more stringent requirements, and reduce the overall propulsion system mass and power usage. In order to realize these benefits, the ALR must meet stringent design requirements. The main advantage of this regulator over other units available in the market is that it can regulate about its nominal set point to within +/-0.85%, and change its regulation set point in flight +/-4% about that nominal point. The set point change is handled actively via a stepper motor driven actuator, which converts rotary into linear motion to affect the spring preload acting on the regulator. Once adjusted to a particular set point, the actuator remains in its final position unpowered, and the regulator passively maintains outlet pressure. The very precise outlet regulation pressure is possible due to new technology developed by Moog, Inc. which reduces typical regulator mechanical hysteresis to near zero. The ALR requirements specified an outlet pressure set point range from 225 to 255 psi, and equivalent water flow rates required were in the 0.17 lb/sec range. The regulation output pressure is maintained at +/-2 psi about the set point from a P (delta or differential pressure) of 20 to over 100 psid. Maximum upstream system pressure was specified at 320 psi. The regulator is fault tolerant in that it was purposely designed with no shutoff capability, such that the minimum flow position of the poppet still allows the subsystem to provide adequate flow to the main engine for basic operation.

  16. Managing Risk to Ensure a Successful Cassini/Huygens Saturn Orbit Insertion (SOI)

    NASA Technical Reports Server (NTRS)

    Witkowski, Mona M.; Huh, Shin M.; Burt, John B.; Webster, Julie L.

    2004-01-01

    I. Design: a) S/C designed to be largely single fault tolerant; b) Operate in flight demonstrated envelope, with margin; and c) Strict compliance with requirements & flight rules. II. Test: a) Baseline, fault & stress testing using flight system testbeds (H/W & S/W); b) In-flight checkout & demos to remove first time events. III. Failure Analysis: a) Critical event driven fault tree analysis; b) Risk mitigation & development of contingencies. IV) Residual Risks: a) Accepted pre-launch waivers to Single Point Failures; b) Unavoidable risks (e.g. natural disaster). V) Mission Assurance: a) Strict process for characterization of variances (ISAs, PFRs & Waivers; b) Full time Mission Assurance Manager reports to Program Manager: 1) Independent assessment of compliance with institutional standards; 2) Oversight & risk assessment of ISAs, PFRs & Waivers etc.; and 3) Risk Management Process facilitator.

  17. Integrated Vertical Bloch Line (VBL) memory

    NASA Technical Reports Server (NTRS)

    Katti, R. R.; Wu, J. C.; Stadler, H. L.

    1991-01-01

    Vertical Bloch Line (VBL) Memory is a recently conceived, integrated, solid state, block access, VLSI memory which offers the potential of 1 Gbit/sq cm areal storage density, data rates of hundreds of megabits/sec, and submillisecond average access time simultaneously at relatively low mass, volume, and power values when compared to alternative technologies. VBLs are micromagnetic structures within magnetic domain walls which can be manipulated using magnetic fields from integrated conductors. The presence or absence of BVL pairs are used to store binary information. At present, efforts are being directed at developing a single chip memory using 25 Mbit/sq cm technology in magnetic garnet material which integrates, at a single operating point, the writing, storage, reading, and amplification functions needed in a memory. The current design architecture, functional elements, and supercomputer simulation results are described which are used to assist the design process.

  18. Constrained Multipoint Aerodynamic Shape Optimization Using an Adjoint Formulation and Parallel Computers

    NASA Technical Reports Server (NTRS)

    Reuther, James; Jameson, Antony; Alonso, Juan Jose; Rimlinger, Mark J.; Saunders, David

    1997-01-01

    An aerodynamic shape optimization method that treats the design of complex aircraft configurations subject to high fidelity computational fluid dynamics (CFD), geometric constraints and multiple design points is described. The design process will be greatly accelerated through the use of both control theory and distributed memory computer architectures. Control theory is employed to derive the adjoint differential equations whose solution allows for the evaluation of design gradient information at a fraction of the computational cost required by previous design methods. The resulting problem is implemented on parallel distributed memory architectures using a domain decomposition approach, an optimized communication schedule, and the MPI (Message Passing Interface) standard for portability and efficiency. The final result achieves very rapid aerodynamic design based on a higher order CFD method. In order to facilitate the integration of these high fidelity CFD approaches into future multi-disciplinary optimization (NW) applications, new methods must be developed which are capable of simultaneously addressing complex geometries, multiple objective functions, and geometric design constraints. In our earlier studies, we coupled the adjoint based design formulations with unconstrained optimization algorithms and showed that the approach was effective for the aerodynamic design of airfoils, wings, wing-bodies, and complex aircraft configurations. In many of the results presented in these earlier works, geometric constraints were satisfied either by a projection into feasible space or by posing the design space parameterization such that it automatically satisfied constraints. Furthermore, with the exception of reference 9 where the second author initially explored the use of multipoint design in conjunction with adjoint formulations, our earlier works have focused on single point design efforts. Here we demonstrate that the same methodology may be extended to treat complete configuration designs subject to multiple design points and geometric constraints. Examples are presented for both transonic and supersonic configurations ranging from wing alone designs to complex configuration designs involving wing, fuselage, nacelles and pylons.

  19. Antenna Pointing Mechanisms for Solar Orbiter High and Medium Gain Antennas

    NASA Astrophysics Data System (ADS)

    Vazquez, Jorge; Pinto, Inaki; Gabiola, Iker; Ibargoyen, I.; Martin, Fernando

    2015-09-01

    The ESA Solar Orbiter is an interdisciplinary mission to the Sun. It consists of a single spacecraft which will orbit the Sun in a moderately elliptical orbit, using a suite of advanced Remote-Sensing and In-Situ instruments to perform a detailed observation of the Sun and surrounding space. Sener is contractor for the delivery of the Antennas subsystems.The pointing mechanism from HGAMA is a dual-axes gimbal providing azimuth and elevation steering capability. The azimuth axis is driven by the GHM geared to a rotating bracket which supports the elevation actuator and is linked to the HGAMA boom. Both are based on stepper motors with planetary reducers geared to the corresponding output brackets. An integrated X- band dual axes Rotary Joint Assembly (HGA-RJA) routes the RF energy through the APM in both TX and RX directions. The MGAMA APM is a single-axis gimbal providing elevation steering capability, with one built-in actuator and has been design to share many of the components with the elevation axis from HGAMA APM, including a single axis Rotary Joint Assembly (MGA-RJA).Based on BEPI-Colombo heritage, some aspects of the design have been developed specifically for the SolO mission and are presented in this paper.- High temperature ranges in the APM.- Dedicated output shaft support with dedicated flexible coupling.- High accuracy required, with a potentiometer as coarse sensor and inductosyn for fine positioning.- Elevation twist capsule concept based on spiral configuration.- High solar radiation and contamination requirements.

  20. Dual-mode disturbance-accommodating pointing controller for Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Addington, Stewart I.; Johnson, C. D.

    1995-03-01

    Cyclic thermal expansions and mechanical stiction effects in the solar arrays on the Hubble Space Telescope (HST) are triggering repeated occurrences of damped, relaxation-type flex-body vibrations of the solar arrays. Those solar array vibrations are, in turn, causing unwanted deviations of the telescope from its specified pointing direction. In this paper we propose two strategies one can adopt in designing a telescope-pointing controller to cope with the aforementioned disturbances: 1) a total isolation (TI) control strategy whereby the HST controller torques are designed to adaptively counteract and cancel out the persistent disturbing torques that are causing the unwanted telescope motions and 2) an array damping (AD) control strategy whereby the HST controller torques are used to actively augment the natural dampening of the solar array vibrations and the attendant telescope motions, between triggerings of the stiction-related flex-body relaxation oscillations. Using the principles of disturbance accommodation control theory, a dual-mode controller for a generic, planar-motion (single-axis) model of the HST is proposed. This controller incorporates both the TI and AD modes of disturbance accommodation. Simulation studies of the closed-loop system using generic parameter values clearly indicate, qualitatively, the enhanced pointing performance such a controller can achieve.

  1. Video Modeling for Teaching Daily Living Skills to Children with Autism Spectrum Disorder: A Pilot Study

    ERIC Educational Resources Information Center

    Meister, Christine; Salls, Joyce

    2015-01-01

    This pilot study investigated the efficacy of point-of-view video modeling as an intervention strategy to improve self-help skills in children with autism spectrum disorder (ASD). A single-subject A-B design was implemented with eight school-aged children ages 7.5 years to 13.5 years. Six of the students participated in general education classes…

  2. Exercisers achieve greater acute exercise-induced mood enhancement than nonexercisers.

    PubMed

    Hoffman, Martin D; Hoffman, Debi Rufi

    2008-02-01

    To determine whether a single session of exercise of appropriate intensity and duration for aerobic conditioning has a different acute effect on mood for nonexercisers than regular exercisers. Repeated-measures design. Research laboratory. Adult nonexercisers, moderate exercisers, and ultramarathon runners (8 men, 8 women in each group). Treadmill exercise at self-selected speeds to induce a rating of perceived exertion (RPE) of 13 (somewhat hard) for 20 minutes, preceded and followed by 5 minutes at an RPE of 9 (very light). Profile of Mood States before and 5 minutes after exercise. Vigor increased by a mean +/- standard deviation of 8+/-7 points (95% confidence interval [CI], 5-12) among the ultramarathon runners and 5+/-4 points (95% CI, 2-9) among the moderate exercisers, with no improvement among the nonexercisers. Fatigue decreased by 5+/-6 points (95% CI, 2-8) for the ultramarathon runners and 4+/-4 points (95% CI, 1-7) for the moderate exercisers, with no improvement among the nonexercisers. Postexercise total mood disturbance decreased by a mean of 21+/-16 points (95% CI, 12-29) among the ultramarathon runners, 16+/-10 points (95% CI, 7-24) among the moderate exercisers, and 9+/-13 points (95% CI, 1-18) among the nonexercisers. A single session of moderate aerobic exercise improves vigor and decreases fatigue among regular exercisers but causes no change in these scores for nonexercisers. Although total mood disturbance improves postexercise in exercisers and nonexercisers, regular exercisers have approximately twice the effect as nonexercisers. This limited postexercise mood improvement among nonexercisers may be an important deterrent for persistence with an exercise program.

  3. MPIRUN: A Portable Loader for Multidisciplinary and Multi-Zonal Applications

    NASA Technical Reports Server (NTRS)

    Fineberg, Samuel A.; Woodrow, Thomas S. (Technical Monitor)

    1994-01-01

    Multidisciplinary and multi-zonal applications are an important class of applications in the area of Computational Aerosciences. In these codes, two or more distinct parallel programs or copies of a single program are utilized to model a single problem. To support such applications, it is common to use a programming model where a program is divided into several single program multiple data stream (SPMD) applications, each of which solves the equations for a single physical discipline or grid zone. These SPMD applications are then bound together to form a single multidisciplinary or multi-zonal program in which the constituent parts communicate via point-to-point message passing routines. One method for implementing the message passing portion of these codes is with the new Message Passing Interface (MPI) standard. Unfortunately, this standard only specifies the message passing portion of an application, but does not specify any portable mechanisms for loading an application. MPIRUN was developed to provide a portable means for loading MPI programs, and was specifically targeted at multidisciplinary and multi-zonal applications. Programs using MPIRUN for loading and MPI for message passing are then portable between all machines supported by MPIRUN. MPIRUN is currently implemented for the Intel iPSC/860, TMC CM5, IBM SP-1 and SP-2, Intel Paragon, and workstation clusters. Further, MPIRUN is designed to be simple enough to port easily to any system supporting MPI.

  4. Attitude Control System Design for the Solar Dynamics Observatory

    NASA Technical Reports Server (NTRS)

    Starin, Scott R.; Bourkland, Kristin L.; Kuo-Chia, Liu; Mason, Paul A. C.; Vess, Melissa F.; Andrews, Stephen F.; Morgenstern, Wendy M.

    2005-01-01

    The Solar Dynamics Observatory mission, part of the Living With a Star program, will place a geosynchronous satellite in orbit to observe the Sun and relay data to a dedicated ground station at all times. SDO remains Sun- pointing throughout most of its mission for the instruments to take measurements of the Sun. The SDO attitude control system is a single-fault tolerant design. Its fully redundant attitude sensor complement includes 16 coarse Sun sensors, a digital Sun sensor, 3 two-axis inertial reference units, 2 star trackers, and 4 guide telescopes. Attitude actuation is performed using 4 reaction wheels and 8 thrusters, and a single main engine nominally provides velocity-change thrust. The attitude control software has five nominal control modes-3 wheel-based modes and 2 thruster-based modes. A wheel-based Safehold running in the attitude control electronics box improves the robustness of the system as a whole. All six modes are designed on the same basic proportional-integral-derivative attitude error structure, with more robust modes setting their integral gains to zero. The paper details the mode designs and their uses.

  5. A coaxial slot antenna with frequency of 433 MHz for microwave ablation therapies: design, simulation, and experimental research.

    PubMed

    Jiang, Yingxu; Zhao, Jinzhe; Li, Weitao; Yang, Yamin; Liu, Jia; Qian, Zhiyu

    2017-11-01

    Investigation of the structures and properties of antennas is important in the design of microwave ablation (MWA) system. In this study, we studied the performance of the novel tri- and single-slot antennas with frequency of 433 MHz in ex vivo conditions. The dielectric properties of liver tissue under different thermal coagulation levels were explored, which was beneficial to evaluate ablation condition of tissue and simulate temperature field. Then, the performances of the antennas were analyzed by using numerical method based on finite element method (FEM). It indicated that the present antennas with frequency of 433 MHz could produce a gourd-shaped MWA area with a longer length. Compared to antenna with frequency of 2450 MHz, the designed single-slot antenna could obtain the larger MWA area. In addition, the multiple-point ablations and a larger MWA area could be achieved simultaneously by using the present tri-slot antenna. This study has a potential for the innovative design of MWA antenna for treatment of liver tumor with a large range and a long length.

  6. An ultra-precision tool nanoindentation instrument for replication of single point diamond tool cutting edges

    NASA Astrophysics Data System (ADS)

    Cai, Yindi; Chen, Yuan-Liu; Xu, Malu; Shimizu, Yuki; Ito, So; Matsukuma, Hiraku; Gao, Wei

    2018-05-01

    Precision replication of the diamond tool cutting edge is required for non-destructive tool metrology. This paper presents an ultra-precision tool nanoindentation instrument designed and constructed for replication of the cutting edge of a single point diamond tool onto a selected soft metal workpiece by precisely indenting the tool cutting edge into the workpiece surface. The instrument has the ability to control the indentation depth with a nanometric resolution, enabling the replication of tool cutting edges with high precision. The motion of the diamond tool along the indentation direction is controlled by the piezoelectric actuator of a fast tool servo (FTS). An integrated capacitive sensor of the FTS is employed to detect the displacement of the diamond tool. The soft metal workpiece is attached to an aluminum cantilever whose deflection is monitored by another capacitive sensor, referred to as an outside capacitive sensor. The indentation force and depth can be accurately evaluated from the diamond tool displacement, the cantilever deflection and the cantilever spring constant. Experiments were carried out by replicating the cutting edge of a single point diamond tool with a nose radius of 2.0 mm on a copper workpiece surface. The profile of the replicated tool cutting edge was measured using an atomic force microscope (AFM). The effectiveness of the instrument in precision replication of diamond tool cutting edges is well-verified by the experimental results.

  7. Application of Modern Design of Experiments to CARS Thermometry in a Model Scramjet Engine

    NASA Technical Reports Server (NTRS)

    Danehy, P. M.; DeLoach, R.; Cutler, A. D.

    2002-01-01

    We have applied formal experiment design and analysis to optimize the measurement of temperature in a supersonic combustor at NASA Langley Research Center. We used the coherent anti-Stokes Raman spectroscopy (CARS) technique to map the temperature distribution in the flowfield downstream of an 1160 K, Mach 2 freestream into which supersonic hydrogen fuel is injected at an angle of 30 degrees. CARS thermometry is inherently a single-point measurement technique; it was used to map thc flow by translating the measurement volume through the flowfield. The method known as "Modern Design of Experiments" (MDOE) was used to estimate the data volume required, design the test matrix, perform the experiment and analyze the resulting data. MDOE allowed us to match the volume of data acquired to the precision requirements of the customer. Furthermore, one aspect of MDOE, known as response surface methodology, allowed us to develop precise maps of the flowfield temperature, allowing interpolation between measurement points. An analytic function in two spatial variables was fit to the data from a single measurement plane. Fitting with a Cosine Series Bivariate Function allowed the mean temperature to be mapped with 95% confidence interval half-widths of +/- 30 Kelvin, comfortably meeting the confidence of +/- 50 Kelvin specified prior to performing the experiments. We estimate that applying MDOE to the present experiment saved a factor of 5 in data volume acquired, compared to experiments executed in the traditional manner. Furthermore, the precision requirements could have been met with less than half the data acquired.

  8. Ranging error analysis of single photon satellite laser altimetry under different terrain conditions

    NASA Astrophysics Data System (ADS)

    Huang, Jiapeng; Li, Guoyuan; Gao, Xiaoming; Wang, Jianmin; Fan, Wenfeng; Zhou, Shihong

    2018-02-01

    Single photon satellite laser altimeter is based on Geiger model, which has the characteristics of small spot, high repetition rate etc. In this paper, for the slope terrain, the distance of error's formula and numerical calculation are carried out. Monte Carlo method is used to simulate the experiment of different terrain measurements. The experimental results show that ranging accuracy is not affected by the spot size under the condition of the flat terrain, But the inclined terrain can influence the ranging error dramatically, when the satellite pointing angle is 0.001° and the terrain slope is about 12°, the ranging error can reach to 0.5m. While the accuracy can't meet the requirement when the slope is more than 70°. Monte Carlo simulation results show that single photon laser altimeter satellite with high repetition rate can improve the ranging accuracy under the condition of complex terrain. In order to ensure repeated observation of the same point for 25 times, according to the parameters of ICESat-2, we deduce the quantitative relation between the footprint size, footprint, and the frequency repetition. The related conclusions can provide reference for the design and demonstration of the domestic single photon laser altimetry satellite.

  9. The Unified Floating Point Vector Coprocessor for Reconfigurable Hardware

    NASA Astrophysics Data System (ADS)

    Kathiara, Jainik

    There has been an increased interest recently in using embedded cores on FPGAs. Many of the applications that make use of these cores have floating point operations. Due to the complexity and expense of floating point hardware, these algorithms are usually converted to fixed point operations or implemented using floating-point emulation in software. As the technology advances, more and more homogeneous computational resources and fixed function embedded blocks are added to FPGAs and hence implementation of floating point hardware becomes a feasible option. In this research we have implemented a high performance, autonomous floating point vector Coprocessor (FPVC) that works independently within an embedded processor system. We have presented a unified approach to vector and scalar computation, using a single register file for both scalar operands and vector elements. The Hybrid vector/SIMD computational model of FPVC results in greater overall performance for most applications along with improved peak performance compared to other approaches. By parameterizing vector length and the number of vector lanes, we can design an application specific FPVC and take optimal advantage of the FPGA fabric. For this research we have also initiated designing a software library for various computational kernels, each of which adapts FPVC's configuration and provide maximal performance. The kernels implemented are from the area of linear algebra and include matrix multiplication and QR and Cholesky decomposition. We have demonstrated the operation of FPVC on a Xilinx Virtex 5 using the embedded PowerPC.

  10. Dosimetric evaluation of two treatment planning systems for high dose rate brachytherapy applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shwetha, Bondel; Ravikumar, Manickam, E-mail: drravikumarm@gmail.com; Supe, Sanjay S.

    2012-04-01

    Various treatment planning systems are used to design plans for the treatment of cervical cancer using high-dose-rate brachytherapy. The purpose of this study was to make a dosimetric comparison of the 2 treatment planning systems from Varian medical systems, namely ABACUS and BrachyVision. The dose distribution of Ir-192 source generated with a single dwell position was compared using ABACUS (version 3.1) and BrachyVision (version 6.5) planning systems. Ten patients with intracavitary applications were planned on both systems using orthogonal radiographs. Doses were calculated at the prescription points (point A, right and left) and reference points RU, LU, RM, LM, bladder,more » and rectum. For single dwell position, little difference was observed in the doses to points along the perpendicular bisector. The mean difference between ABACUS and BrachyVision for these points was 1.88%. The mean difference in the dose calculated toward the distal end of the cable by ABACUS and BrachyVision was 3.78%, whereas along the proximal end the difference was 19.82%. For the patient case there was approximately 2% difference between ABACUS and BrachyVision planning for dose to the prescription points. The dose difference for the reference points ranged from 0.4-1.5%. For bladder and rectum, the differences were 5.2% and 13.5%, respectively. The dose difference between the rectum points was statistically significant. There is considerable difference between the dose calculations performed by the 2 treatment planning systems. It is seen that these discrepancies are caused by the differences in the calculation methodology adopted by the 2 systems.« less

  11. Conceptual phase A design of a cryogenic shutter mechanism for the SAFARI flight instrument

    NASA Astrophysics Data System (ADS)

    Eigenmann, Max; Wehmeier, Udo J.; Vuilleumier, Aurèle; Messina, Gabriele; Meyer, Michael R.

    2012-09-01

    We present a conceptual design for a cryogenic optical mechanism for the SAFARI instrument. SAFARI is a long wavelength (34-210 micron) Imaging Fourier Transform Spectrometer (FTS) to fly as an ESA instrument on the JAXA SPICA mission projected to launch in 2021. SPICA is a large 3m class space telescope which will have an operating temperature of less than 7K. The SAFARI shutter is a single point of failure flight mechanism designed to operate in space at a temperature of 4K which meets redundancy and reliability requirements of this challenging mission. The conceptual design is part of a phase A study led by ETH Institute for Astronomy and conducted by RUAG Space AG.

  12. Energy efficient engine high-pressure turbine component rig performance test report

    NASA Technical Reports Server (NTRS)

    Leach, K. P.

    1983-01-01

    A rig test of the cooled high-pressure turbine component for the Energy Efficient Engine was successfully completed. The principal objective of this test was to substantiate the turbine design point performance as well as determine off-design performance with the interaction of the secondary flow system. The measured efficiency of the cooled turbine component was 88.5 percent, which surpassed the rig design goal of 86.5 percent. The secondary flow system in the turbine performed according to the design intent. Characterization studies showed that secondary flow system performance is insensitive to flow and pressure variations. Overall, this test has demonstrated that a highly-loaded, transonic, single-stage turbine can achieve a high level of operating efficiency.

  13. Vibration isolation and dual-stage actuation pointing system for space precision payloads

    NASA Astrophysics Data System (ADS)

    Kong, Yongfang; Huang, Hai

    2018-02-01

    Pointing and stability requirements for future space missions are becoming more and more stringent. This work follows the pointing control method which consists of a traditional spacecraft attitude control system and a payload active pointing loop, further proposing a vibration isolation and dual-stage actuation pointing system for space precision payloads based on a soft Stewart platform. Central to the concept is using the dual-stage actuator instead of the traditional voice coil motor single-stage actuator to improve the payload active pointing capability. Based on a specified payload, the corresponding platform was designed to be installed between the spacecraft bus and the payload. The performance of the proposed system is demonstrated by preliminary closed-loop control investigations in simulations. With the ordinary spacecraft bus, the line-of-sight pointing accuracy can be controlled to below a few milliarcseconds in tip and tilt. Meanwhile, utilizing the voice coil motor with the softening spring in parallel, which is a portion of the dual-stage actuator, the system effectively achieves low-frequency motion transmission and high-frequency vibration isolation along the other four degree-of-freedom directions.

  14. In Vitro Evaluation and Mechanism Analysis of the Fiber Shedding Property of Textile Pile Debridement Materials

    PubMed Central

    Fu, Yijun; Xie, Qixue; Lao, Jihong; Wang, Lu

    2016-01-01

    Fiber shedding is a critical problem in biomedical textile debridement materials, which leads to infection and impairs wound healing. In this work, single fiber pull-out test was proposed as an in vitro evaluation for the fiber shedding property of a textile pile debridement material. Samples with different structural design (pile densities, numbers of ground yarns and coating times) were prepared and estimated under this testing method. Results show that single fiber pull-out test offers an appropriate in vitro evaluation for the fiber shedding property of textile pile debridement materials. Pull-out force for samples without back-coating exhibited a slight escalating trend with the supplement in pile density and number of ground yarn plies, while back-coating process significantly raised the single fiber pull-out force. For fiber shedding mechanism analysis, typical pull-out behavior and failure modes of the single fiber pull-out test were analyzed in detail. Three failure modes were found in this study, i.e., fiber slippage, coating point rupture and fiber breakage. In summary, to obtain samples with desirable fiber shedding property, fabric structural design, preparation process and raw materials selection should be taken into full consideration. PMID:28773428

  15. Novel Musculoskeletal Loading and Assessment System

    NASA Technical Reports Server (NTRS)

    Downs, Meghan E.

    2017-01-01

    Ground based and ISS (International Space Station) exercise research have shown that axial loading via two-point loading at the shoulders and load quality (i.e. consistent load and at least 1:1 concentric to eccentric ratio) are extremely important to optimize musculoskeletal adaptations to resistance exercise. The Advanced Resistance Exercise Device (ARED) is on ISS now and is the "state of the art" for resistance exercise capabilities in microgravity; however, the ARED is far too large and power consuming for exploration vehicles. The single cable exercise device design selected for MPCV (Multi-Purpose Crew Vehicle), does not readily allow for the two-point loading at the shoulders.

  16. Development of an Open Rotor Cycle Model in NPSS Using a Multi-Design Point Approach

    NASA Technical Reports Server (NTRS)

    Hendricks, Eric S.

    2011-01-01

    NASA's Environmentally Responsible Aviation Project and Subsonic Fixed Wing Project are focused on developing concepts and technologies which may enable dramatic reductions to the environmental impact of future generation subsonic aircraft (Refs. 1 and 2). The open rotor concept (also referred to as the Unducted Fan or advanced turboprop) may allow the achievement of this objective by reducing engine emissions and fuel consumption. To evaluate its potential impact, an open rotor cycle modeling capability is needed. This paper presents the initial development of an open rotor cycle model in the Numerical Propulsion System Simulation (NPSS) computer program which can then be used to evaluate the potential benefit of this engine. The development of this open rotor model necessitated addressing two modeling needs within NPSS. First, a method for evaluating the performance of counter-rotating propellers was needed. Therefore, a new counter-rotating propeller NPSS component was created. This component uses propeller performance maps developed from historic counter-rotating propeller experiments to determine the thrust delivered and power required. Second, several methods for modeling a counter-rotating power turbine within NPSS were explored. These techniques used several combinations of turbine components within NPSS to provide the necessary power to the propellers. Ultimately, a single turbine component with a conventional turbine map was selected. Using these modeling enhancements, an open rotor cycle model was developed in NPSS using a multi-design point approach. The multi-design point (MDP) approach improves the engine cycle analysis process by making it easier to properly size the engine to meet a variety of thrust targets throughout the flight envelope. A number of design points are considered including an aerodynamic design point, sea-level static, takeoff and top of climb. The development of this MDP model was also enabled by the selection of a simple power management scheme which schedules propeller blade angles with the freestream Mach number. Finally, sample open rotor performance results and areas for further model improvements are presented.

  17. Exploration of clinical changes following a novel mobilisation technique for treatment of chronic low back pain: A single cohort design.

    PubMed

    Hanson, Gail C; Jones, Bruce; Bacon, Catherine J; Moran, Robert W

    2016-07-01

    To explore clinical changes following a novel manual mobilisation technique, 24 participants who experienced 'moderate' to 'severe' chronic low back pain were recruited from new patients attending a suburban osteopathy clinic. The intervention was a previously undescribed side-lying mobilisation technique targeting the lumbosacral spine (median of 6 treatment sessions). After 8 weeks reductions were shown in Oswestry Disability Index of 15 points (95% CI: 9.3, 22.7; p < 0.0001 for overall ANOVA); Quadruple Visual Analogue Scale of 2.0 points (95% CI: 1.0, 3.0; p < 0.0001); and Patient Specific Functional Scale of 3.1 points (95% CI: 1.9, 4.3; p < 0.0001). The results indicate that pain intensity, disability and function improved in most participants following treatment. Further investigation is indicated using more robust research designs to compare this approach with other treatment approaches and usual care for the treatment of chronic low back pain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Geoscience laser altimeter system-stellar reference system

    NASA Astrophysics Data System (ADS)

    Millar, Pamela S.; Sirota, J. Marcos

    1998-01-01

    GLAS is an EOS space-based laser altimeter being developed to profile the height of the Earth's ice sheets with ~15 cm single shot accuracy from space under NASA's Mission to Planet Earth (MTPE). The primary science goal of GLAS is to determine if the ice sheets are increasing or diminishing for climate change modeling. This is achieved by measuring the ice sheet heights over Greenland and Antarctica to 1.5 cm/yr over 100 km×100 km areas by crossover analysis (Zwally 1994). This measurement performance requires the instrument to determine the pointing of the laser beam to ~5 urad (1 arcsecond), 1-sigma, with respect to the inertial reference frame. The GLAS design incorporates a stellar reference system (SRS) to relate the laser beam pointing angle to the star field with this accuracy. This is the first time a spaceborne laser altimeter is measuring pointing to such high accuracy. The design for the stellar reference system combines an attitude determination system (ADS) with a laser reference system (LRS) to meet this requirement. The SRS approach and expected performance are described in this paper.

  19. Low-NA single-mode LMA photonic crystal rod fiber amplifier

    NASA Astrophysics Data System (ADS)

    Alkeskjold, Thomas Tanggaard; Laurila, Marko; Scolari, Lara; Broeng, Jes

    2011-02-01

    Enabling Single-Mode (SM) operation in Large-Mode-Area (LMA) fiber amplifiers and lasers is critical, since a SM output ensures high beam quality and excellent pointing stability. In this paper, we demonstrate and test a new design approach for achieving ultra-low NA SM rod fibers by using a spatially Distributed Mode Filter (DMF). This approach achieves SM performance in a short and straight rod fiber and allows preform tolerances to be compensated during draw. A low-NA SM rod fiber amplifier having a mode field diameter of ~60μm at 1064nm and a pump absorption of 27dB/m at 976nm is demonstrated.

  20. Label-free and high-sensitive detection for genetic point mutation based on hyperspectral interferometry

    NASA Astrophysics Data System (ADS)

    Fu, Rongxin; Li, Qi; Zhang, Junqi; Wang, Ruliang; Lin, Xue; Xue, Ning; Su, Ya; Jiang, Kai; Huang, Guoliang

    2016-10-01

    Label free point mutation detection is particularly momentous in the area of biomedical research and clinical diagnosis since gene mutations naturally occur and bring about highly fatal diseases. In this paper, a label free and high sensitive approach is proposed for point mutation detection based on hyperspectral interferometry. A hybridization strategy is designed to discriminate a single-base substitution with sequence-specific DNA ligase. Double-strand structures will take place only if added oligonucleotides are perfectly paired to the probe sequence. The proposed approach takes full use of the inherent conformation of double-strand DNA molecules on the substrate and a spectrum analysis method is established to point out the sub-nanoscale thickness variation, which benefits to high sensitive mutation detection. The limit of detection reach 4pg/mm2 according to the experimental result. A lung cancer gene point mutation was demonstrated, proving the high selectivity and multiplex analysis capability of the proposed biosensor.

  1. Design of a laser system for instantaneous location of a longwall shearer

    NASA Technical Reports Server (NTRS)

    Stein, R.

    1981-01-01

    Calculations and measurements for the design of a laser system for instantaneous location of a longwall shearer were made. The designs determine shearer location to approximately one foot. The roll, pitch, and yaw angles of the shearer track are determined to approximately two degrees. The first technique uses the water target system. A single silicon sensor system and three gallium arsenide laser beams are used in this technique. The second technique is based on an arrangement similar to that employed in aircraft omnidirectional position finding. The angle between two points is determined by combining information in an onmidirectional flash with a scanned, narrow beam beacon. It is concluded that this approach maximizes the signal levels.

  2. CCD correlation techniques

    NASA Technical Reports Server (NTRS)

    Hewes, C. R.; Bosshart, P. W.; Eversole, W. L.; Dewit, M.; Buss, D. D.

    1976-01-01

    Two CCD techniques were discussed for performing an N-point sampled data correlation between an input signal and an electronically programmable reference function. The design and experimental performance of an implementation of the direct time correlator utilizing two analog CCDs and MOS multipliers on a single IC were evaluated. The performance of a CCD implementation of the chirp z transform was described, and the design of a new CCD integrated circuit for performing correlation by multiplication in the frequency domain was presented. This chip provides a discrete Fourier transform (DFT) or inverse DFT, multipliers, and complete support circuitry for the CCD CZT. The two correlation techniques are compared.

  3. Development of Multi-Beam Long Trace Profiler

    NASA Technical Reports Server (NTRS)

    Kilaru, Kiranmayee; Merthe, Daniel J.; Ali, Zulfiqar; Gubarev, Mikhail V.; Kester, Thomas; McKinney, Wayne R.; Takacs, Peter Z.; Yashchuk, Valeriy V.

    2011-01-01

    In order to fulfill the angular resolution requirements and make the performance goals for future NASA missions feasible, it is crucial to develop instruments capable of fast and precise figure metrology of x-ray optical elements for further correction of the surface errors. The Long Trace Profilometer (LTP) is an instrument widely used for measuring the surface figure of grazing incidence X-ray mirrors. In the case of replicated optics designed for x-ray astronomy applications, such as mirrors and the corresponding mandrels have a cylindrical shape and their tangential profile is parabolic or hyperbolic. Modern LTPs have sub-microradian accuracy, but the measuring speed is very low, because the profilometer measures surface figure point by point using a single laser beam. The measurement rate can be significantly improved by replacing the single optical beam with multiple beams. The goal of this study is to demonstrate the viability of multi-beam metrology as a way of significantly improving the quality and affordability of replicated x-ray optics. The multi-beam LTP would allow one- and two-dimensional scanning with sub-microradian resolution and a measurement rate of about ten times faster compared to the current LTP. The design details of the instrument's optical layout and the status of optical tests will be presented.

  4. Development of the High-Temperature Dew-Point Generator Over the Past 15 Years

    NASA Astrophysics Data System (ADS)

    Bosma, R.; Nielsen, J.; Peruzzi, A.

    2017-10-01

    At VSL a humidity generator was designed and constructed in the early 1990s. This generator was of the re-circulating-single-pressure type. Over the years, the generator has been thoroughly revised and several critical components have been replaced. Among others the pre-saturator and the change from re-circulation to single-pass mode. Validating experiments showed that the range of the new setup could be extended from 70 {°}C to 95 {°}C dew-point temperature, and the last modification allows an uncertainty of 0.048 {°}C (k = 2) at the maximum temperature. In 2009 the setup was used in the Euramet-T-K8 humidity intercomparison at temperatures up to 95 {°}C. In the period from 2003 to 2015, four state-of-the-art chilled mirror hygrometers were regularly calibrated with the generator. One of these was also calibrated with the primary dew-point standards of several other European National Metrology Institutes, which made it possible to link the VSL generator to the generators used in these institutes. An analysis of the results of these calibrations shows an agreement in calibration capabilities within 0.01 {°}C with PTB and NPL.

  5. [The Munich Attachment and Effectiveness Study: Study Design and a Case Example].

    PubMed

    Hörz-Sagstetter, Susanne; Minow, Anna-Rahel; Erhardt, Ingrid; Barten-Hohn, Julia; Denscherz, Claudia; Buchheim, Anna; Taubner, Svenja; Mertens, Wolfgang

    2016-03-01

    The "Munich Attachment and Effectiveness Study" is a prospective psychotherapy study examining process and outcome of psychoanalytic psychotherapies. The study design and results are exemplified in a single case. At 6 points in time audio-taped and transcribed therapy sessions are evaluated using process instruments (e. g. Psychotherapy Process Q-Set PQS) and interviews (e. g. Operationalized Psychodynamic Diagnostics OPD, Heidelberg Structural Change Scale HSCS, Adult Attachment Interview AAI). In the single case, findings from the psychotherapeutic process (e. g. "therapist is empathic" according to PQS) complement the achieved changes. 5 HSCS problem foci reached level of "restructuring", on the Reflective Functioning Scale a marked change of RF took place and the attachment classification changed over time. The instruments employed in this study corresponded well in assessing change processes in spite of differing theoretical background. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Analysis and design of segment control system in segmented primary mirror

    NASA Astrophysics Data System (ADS)

    Yu, Wenhao; Li, Bin; Chen, Mo; Xian, Hao

    2017-10-01

    Segmented primary mirror will be adopted widely in giant telescopes in future, such as TMT, E-ELT and GMT. High-performance control technology of the segmented primary mirror is one of the difficult technologies for telescopes using segmented primary mirror. The control of each segment is the basis of control system in segmented mirror. Correcting the tilt and tip of single segment is the main work of this paper which is divided into two parts. Firstly, harmonic response done in finite element model of single segment matches the Bode diagram of a two-order system whose natural frequency is 45 hertz and damping ratio is 0.005. Secondly, a control system model is established, and speed feedback is introduced in control loop to suppress resonance point gain and increase the open-loop bandwidth, up to 30Hz or even higher. Corresponding controller is designed based on the control system model described above.

  7. Towards microfluidic reactors for cell-free protein synthesis at the point-of-care

    DOE PAGES

    Timm, Andrea C.; Shankles, Peter G.; Foster, Carmen M.; ...

    2015-12-22

    Cell-free protein synthesis (CFPS) is a powerful technology that allows for optimization of protein production without maintenance of a living system. Integrated within micro- and nano-fluidic architectures, CFPS can be optimized for point-of care use. Here, we describe the development of a microfluidic bioreactor designed to facilitate the production of a single-dose of a therapeutic protein, in a small footprint device at the point-of-care. This new design builds on the use of a long, serpentine channel bioreactor and is enhanced by integrating a nanofabricated membrane to allow exchange of materials between parallel reactor and feeder channels. This engineered membrane facilitatesmore » the exchange of metabolites, energy, and inhibitory species, prolonging the CFPS reaction and increasing protein yield. Membrane permeability can be altered by plasma-enhanced chemical vapor deposition and atomic layer deposition to tune the exchange rate of small molecules. This allows for extended reaction times and improved yields. Further, the reaction product and higher molecular weight components of the transcription/translation machinery in the reactor channel can be retained. As a result, we show that the microscale bioreactor design produces higher protein yields than conventional tube-based batch formats, and that product yields can be dramatically improved by facilitating small molecule exchange within the dual-channel bioreactor.« less

  8. Towards microfluidic reactors for cell-free protein synthesis at the point-of-care

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timm, Andrea C.; Shankles, Peter G.; Foster, Carmen M.

    Cell-free protein synthesis (CFPS) is a powerful technology that allows for optimization of protein production without maintenance of a living system. Integrated within micro- and nano-fluidic architectures, CFPS can be optimized for point-of care use. Here, we describe the development of a microfluidic bioreactor designed to facilitate the production of a single-dose of a therapeutic protein, in a small footprint device at the point-of-care. This new design builds on the use of a long, serpentine channel bioreactor and is enhanced by integrating a nanofabricated membrane to allow exchange of materials between parallel reactor and feeder channels. This engineered membrane facilitatesmore » the exchange of metabolites, energy, and inhibitory species, prolonging the CFPS reaction and increasing protein yield. Membrane permeability can be altered by plasma-enhanced chemical vapor deposition and atomic layer deposition to tune the exchange rate of small molecules. This allows for extended reaction times and improved yields. Further, the reaction product and higher molecular weight components of the transcription/translation machinery in the reactor channel can be retained. As a result, we show that the microscale bioreactor design produces higher protein yields than conventional tube-based batch formats, and that product yields can be dramatically improved by facilitating small molecule exchange within the dual-channel bioreactor.« less

  9. Human Movement Recognition Based on the Stochastic Characterisation of Acceleration Data

    PubMed Central

    Munoz-Organero, Mario; Lotfi, Ahmad

    2016-01-01

    Human activity recognition algorithms based on information obtained from wearable sensors are successfully applied in detecting many basic activities. Identified activities with time-stationary features are characterised inside a predefined temporal window by using different machine learning algorithms on extracted features from the measured data. Better accuracy, precision and recall levels could be achieved by combining the information from different sensors. However, detecting short and sporadic human movements, gestures and actions is still a challenging task. In this paper, a novel algorithm to detect human basic movements from wearable measured data is proposed and evaluated. The proposed algorithm is designed to minimise computational requirements while achieving acceptable accuracy levels based on characterising some particular points in the temporal series obtained from a single sensor. The underlying idea is that this algorithm would be implemented in the sensor device in order to pre-process the sensed data stream before sending the information to a central point combining the information from different sensors to improve accuracy levels. Intra- and inter-person validation is used for two particular cases: single step detection and fall detection and classification using a single tri-axial accelerometer. Relevant results for the above cases and pertinent conclusions are also presented. PMID:27618063

  10. A dialectical behavior therapy skills intervention for women with suicidal behaviors in rural Nepal: A single-case experimental design series.

    PubMed

    Ramaiya, Megan K; McLean, Caitlin; Regmi, Upasana; Fiorillo, Devika; Robins, Clive J; Kohrt, Brandon A

    2018-07-01

    Suicide in low- and middle-income countries (LMICs) accounts for 75% of the world's burden of suicide mortality and is the leading single cause of death among Nepali reproductive age women. To advance treatment for suicidal behaviors in LMICs, a single-case experimental design (SCED) was conducted of a culturally adapted Dialectical Behavior Therapy skills intervention for Nepali populations (DBT-N). Ten Nepali women with histories of suicidality participated in the 10-session intervention. Outcomes of emotion regulation, suicidal ideation, depression, anxiety, resilience, and coping skills use were measured at multiple time points pre-intervention, during, and at follow-up. Qualitative interviewing assessed DBT-N's feasibility and acceptability. Participants showed improvements in emotion regulation over the course of treatment, which were associated with increased skills use. Rapid, sustained reductions in suicidal ideation and improvements in resilience were observed after DBT-N initiation. This SCED supports conducting further evaluation of DBT-N through controlled trials with emotion regulation as a target mechanism of action for reducing suicidal behaviors in LMICs. © 2018 Wiley Periodicals, Inc.

  11. Strategies for enhanced deammonification performance and reduced nitrous oxide emissions.

    PubMed

    Leix, Carmen; Drewes, Jörg E; Ye, Liu; Koch, Konrad

    2017-07-01

    Deammonification's performance and associated nitrous oxide emissions (N 2 O) depend on operational conditions. While studies have investigated factors for high performances and low emissions separately, this study investigated optimizing deammonification performance while simultaneously reducing N 2 O emissions. Using a design of experiment (DoE) method, two models were developed for the prediction of the nitrogen removal rate and N 2 O emissions during single-stage deammonification considering three operational factors (i.e., pH value, feeding and aeration strategy). The emission factor varied between 0.7±0.5% and 4.1±1.2% at different DoE-conditions. The nitrogen removal rate was predicted to be maximized at settings of pH 7.46, intermittent feeding and aeration. Conversely, emissions were predicted to be minimized at the design edges at pH 7.80, single feeding, and continuous aeration. Results suggested a weak positive correlation between the nitrogen removal rate and N 2 O emissions, thus, a single optimizing operational set-point for maximized performance and minimized emissions did not exist. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. A novel, cost-effective, multi-point Thomson scattering system on the Pegasus Toroidal Experiment (invited)

    DOE PAGES

    Schlossberg, David J.; Bodner, Grant M.; Bongard, Michael W.; ...

    2016-09-16

    Here, a novel, cost-effective, multi-point Thomson scattering system has been designed, implemented, and operated on the Pegasus Toroidal Experiment. Leveraging advances in Nd:YAG lasers, high-efficiency volume phase holographic transmission gratings, and increased quantum-efficiency Generation 3 image-intensified charge coupled device (ICCD) cameras, the system provides Thomson spectra at eight spatial locations for a single grating/camera pair. The on-board digitization of the ICCD camera enables easy modular expansion, evidenced by recent extension from 4 to 12 plasma/background spatial location pairs. Stray light is rejected using time-of-flight methods suited to gated ICCDs, and background light is blocked during detector readout by a fastmore » shutter. This –10 3 reduction in background light enables further expansion to up to 24 spatial locations. The implementation now provides single-shot T e(R) for n e > 5 × 10 18 m –3.« less

  13. Using Deep Space Climate Observatory Measurements to Study the Earth as an Exoplanet

    NASA Astrophysics Data System (ADS)

    Jiang, Jonathan H.; Zhai, Albert J.; Herman, Jay; Zhai, Chengxing; Hu, Renyu; Su, Hui; Natraj, Vijay; Li, Jiazheng; Xu, Feng; Yung, Yuk L.

    2018-07-01

    Even though it was not designed as an exoplanetary research mission, the Deep Space Climate Observatory ( DSCOVR ) has been opportunistically used for a novel experiment in which Earth serves as a proxy exoplanet. More than 2 yr of DSCOVR Earth images were employed to produce time series of multiwavelength, single-point light sources in order to extract information on planetary rotation, cloud patterns, surface type, and orbit around the Sun. In what follows, we assume that these properties of the Earth are unknown and instead attempt to derive them from first principles. These conclusions are then compared with known data about our planet. We also used the DSCOVR data to simulate phase-angle changes, as well as the minimum data collection rate needed to determine the rotation period of an exoplanet. This innovative method of using the time evolution of a multiwavelength, reflected single-point light source can be deployed for retrieving a range of intrinsic properties of an exoplanet around a distant star.

  14. Definition of a Robust Supervisory Control Scheme for Sodium-Cooled Fast Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponciroli, R.; Passerini, S.; Vilim, R. B.

    In this work, an innovative control approach for metal-fueled Sodium-cooled Fast Reactors is proposed. With respect to the classical approach adopted for base-load Nuclear Power Plants, an alternative control strategy for operating the reactor at different power levels by respecting the system physical constraints is presented. In order to achieve a higher operational flexibility along with ensuring that the implemented control loops do not influence the system inherent passive safety features, a dedicated supervisory control scheme for the dynamic definition of the corresponding set-points to be supplied to the PID controllers is designed. In particular, the traditional approach based onmore » the adoption of tabulated lookup tables for the set-point definition is found not to be robust enough when failures of the implemented SISO (Single Input Single Output) actuators occur. Therefore, a feedback algorithm based on the Reference Governor approach, which allows for the optimization of reference signals according to the system operating conditions, is proposed.« less

  15. Gaseous detonation initiation via wave implosion

    NASA Astrophysics Data System (ADS)

    Jackson, Scott Irving

    Efficient detonation initiation is a topic of intense interest to designers of pulse detonation engines. This experimental work is the first to detonate propane-air mixtures with an imploding detonation wave and to detonate a gas mixture with a non-reflected, imploding shock. In order to do this, a unique device has been developed that is capable of generating an imploding toroidal detonation wave inside of a tube from a single ignition point without any obstruction to the tube flow path. As part of this study, an initiator that creates a large-aspect-ratio planar detonation wave in gas-phase explosive from a single ignition point has also been developed. The effectiveness of our initiation devices has been evaluated. The minimum energy required by the imploding shock for initiation was determined to scale linearly with the induction zone length, indicating the presence of a planar initiation mode. The imploding toroidal detonation initiator was found to be more effective at detonation initiation than the imploding shock initiator, using a comparable energy input to that of current initiator tubes.

  16. Near-Infrared Spatially Resolved Spectroscopy for Tablet Quality Determination.

    PubMed

    Igne, Benoît; Talwar, Sameer; Feng, Hanzhou; Drennen, James K; Anderson, Carl A

    2015-12-01

    Near-infrared (NIR) spectroscopy has become a well-established tool for the characterization of solid oral dosage forms manufacturing processes and finished products. In this work, the utility of a traditional single-point NIR measurement was compared with that of a spatially resolved spectroscopic (SRS) measurement for the determination of tablet assay. Experimental designs were used to create samples that allowed for calibration models to be developed and tested on both instruments. Samples possessing a poor distribution of ingredients (highly heterogeneous) were prepared by under-blending constituents prior to compaction to compare the analytical capabilities of the two NIR methods. The results indicate that SRS can provide spatial information that is usually obtainable only through imaging experiments for the determination of local heterogeneity and detection of abnormal tablets that would not be detected with single-point spectroscopy, thus complementing traditional NIR measurement systems for in-line, and in real-time tablet analysis. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  17. Mathematical modeling of a single stage ultrasonically assisted distillation process.

    PubMed

    Mahdi, Taha; Ahmad, Arshad; Ripin, Adnan; Abdullah, Tuan Amran Tuan; Nasef, Mohamed M; Ali, Mohamad W

    2015-05-01

    The ability of sonication phenomena in facilitating separation of azeotropic mixtures presents a promising approach for the development of more intensified and efficient distillation systems than conventional ones. To expedite the much-needed development, a mathematical model of the system based on conservation principles, vapor-liquid equilibrium and sonochemistry was developed in this study. The model that was founded on a single stage vapor-liquid equilibrium system and enhanced with ultrasonic waves was coded using MATLAB simulator and validated with experimental data for ethanol-ethyl acetate mixture. The effects of both ultrasonic frequency and intensity on the relative volatility and azeotropic point were examined, and the optimal conditions were obtained using genetic algorithm. The experimental data validated the model with a reasonable accuracy. The results of this study revealed that the azeotropic point of the mixture can be totally eliminated with the right combination of sonication parameters and this can be utilized in facilitating design efforts towards establishing a workable ultrasonically intensified distillation system. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Point-of-care rare cell cancer diagnostics.

    PubMed

    Issadore, David

    2015-01-01

    The sparse cells that are shed from tumors into peripheral circulation are an increasingly promising resource for noninvasive monitoring of cancer progression, early diagnosis of disease, and serve as a tool for improving our understanding of cancer metastasis. However, the extremely sparse concentration of circulating tumor cells (CTCs) in blood (~1-100 CTC in 7.5 mL of blood) as well as their heterogeneous biomarker expression has limited their detection using conventional laboratory techniques. To overcome these challenges, we have developed a microfluidic chip-based micro-Hall detector (μHD), which can directly measure single, immunomagnetically tagged cells in whole blood. The μHD can detect individual cells even in the presence of vast numbers of blood cells and unbound reactants, and does not require any washing or purification steps. Furthermore, this cost-effective, single-cell analytical technique is well suited for miniaturization into a mobile platform for low-cost point-of-care use. In this chapter, we describe the methodology used to design, fabricate, and apply these chips to cancer diagnostics.

  19. Zero-Point Spin-Fluctuations of Single Adatoms.

    PubMed

    Ibañez-Azpiroz, Julen; Dos Santos Dias, Manuel; Blügel, Stefan; Lounis, Samir

    2016-07-13

    Stabilizing the magnetic signal of single adatoms is a crucial step toward their successful usage in widespread technological applications such as high-density magnetic data storage devices. The quantum mechanical nature of these tiny objects, however, introduces intrinsic zero-point spin-fluctuations that tend to destabilize the local magnetic moment of interest by dwindling the magnetic anisotropy potential barrier even at absolute zero temperature. Here, we elucidate the origins and quantify the effect of the fundamental ingredients determining the magnitude of the fluctuations, namely, the (i) local magnetic moment, (ii) spin-orbit coupling, and (iii) electron-hole Stoner excitations. Based on a systematic first-principles study of 3d and 4d adatoms, we demonstrate that the transverse contribution of the fluctuations is comparable in size to the magnetic moment itself, leading to a remarkable ≳50% reduction of the magnetic anisotropy energy. Our analysis gives rise to a comprehensible diagram relating the fluctuation magnitude to characteristic features of adatoms, providing practical guidelines for designing magnetically stable nanomagnets with minimal quantum fluctuations.

  20. Experimental Design for Hanford Low-Activity Waste Glasses with High Waste Loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piepel, Gregory F.; Cooley, Scott K.; Vienna, John D.

    This report discusses the development of an experimental design for the initial phase of the Hanford low-activity waste (LAW) enhanced glass study. This report is based on a manuscript written for an applied statistics journal. Appendices A, B, and E include additional information relevant to the LAW enhanced glass experimental design that is not included in the journal manuscript. The glass composition experimental region is defined by single-component constraints (SCCs), linear multiple-component constraints (MCCs), and a nonlinear MCC involving 15 LAW glass components. Traditional methods and software for designing constrained mixture experiments with SCCs and linear MCCs are not directlymore » applicable because of the nonlinear MCC. A modification of existing methodology to account for the nonlinear MCC was developed and is described in this report. One of the glass components, SO 3, has a solubility limit in glass that depends on the composition of the balance of the glass. A goal was to design the experiment so that SO 3 would not exceed its predicted solubility limit for any of the experimental glasses. The SO 3 solubility limit had previously been modeled by a partial quadratic mixture model expressed in the relative proportions of the 14 other components. The partial quadratic mixture model was used to construct a nonlinear MCC in terms of all 15 components. In addition, there were SCCs and linear MCCs. This report describes how a layered design was generated to (i) account for the SCCs, linear MCCs, and nonlinear MCC and (ii) meet the goals of the study. A layered design consists of points on an outer layer, and inner layer, and a center point. There were 18 outer-layer glasses chosen using optimal experimental design software to augment 147 existing glass compositions that were within the LAW glass composition experimental region. Then 13 inner-layer glasses were chosen with the software to augment the existing and outer-layer glasses. The experimental design was completed by a center-point glass, a Vitreous State Laboratory glass, and replicates of the center point and Vitreous State Laboratory glasses.« less

  1. Observing Mode Attitude Controller for the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Calhourn, Philip C.; Garrick, Joseph C.

    2007-01-01

    The Lunar Reconnaissance Orbiter (LRO) mission is the first of a series of lunar robotic spacecraft scheduled for launch in Fall 2008. LRO will spend at least one year in a low altitude polar orbit around the Moon, collecting lunar environment science and mapping data to enable future human exploration. The LRO employs a 3-axis stabilized attitude control system (ACS) whose primary control mode, the "Observing mode", provides Lunar Nadir, off-Nadir, and Inertial fine pointing for the science data collection and instrument calibration. The controller combines the capability of fine pointing with that of on-demand large angle full-sky attitude reorientation into a single ACS mode, providing simplicity of spacecraft operation as well as maximum flexibility for science data collection. A conventional suite of ACS components is employed in this mode to meet the pointing and control objectives. This paper describes the design and analysis of the primary LRO fine pointing and attitude re-orientation controller function, known as the "Observing mode" of the ACS subsystem. The control design utilizes quaternion feedback, augmented with a unique algorithm that ensures accurate Nadir tracking during large angle yaw maneuvers in the presence of high system momentum and/or maneuver rates. Results of system stability analysis and Monte Carlo simulations demonstrate that the observing mode controller can meet fine pointing and maneuver performance requirements.

  2. The vectorization of a ray tracing program for image generation

    NASA Technical Reports Server (NTRS)

    Plunkett, D. J.; Cychosz, J. M.; Bailey, M. J.

    1984-01-01

    Ray tracing is a widely used method for producing realistic computer generated images. Ray tracing involves firing an imaginary ray from a view point, through a point on an image plane, into a three dimensional scene. The intersections of the ray with the objects in the scene determines what is visible at the point on the image plane. This process must be repeated many times, once for each point (commonly called a pixel) in the image plane. A typical image contains more than a million pixels making this process computationally expensive. A traditional ray tracing program processes one ray at a time. In such a serial approach, as much as ninety percent of the execution time is spent computing the intersection of a ray with the surface in the scene. With the CYBER 205, many rays can be intersected with all the bodies im the scene with a single series of vector operations. Vectorization of this intersection process results in large decreases in computation time. The CADLAB's interest in ray tracing stems from the need to produce realistic images of mechanical parts. A high quality image of a part during the design process can increase the productivity of the designer by helping him visualize the results of his work. To be useful in the design process, these images must be produced in a reasonable amount of time. This discussion will explain how the ray tracing process was vectorized and gives examples of the images obtained.

  3. Development of a Power Electronics Controller for the Advanced Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Leland, Douglas K.; Priest, Joel F.; Keiter, Douglas E.; Schreiber, Jeffrey G.

    2008-01-01

    Under a U.S. Department of Energy program for radioisotope power systems, Lockheed Martin is developing an Engineering Unit of the Advanced Stirling Radioisotope Generator (ASRG). This is an advanced version of the previously reported SRG110 generator. The ASRG uses Advanced Stirling Convertors (ASCs) developed by Sunpower Incorporated under a NASA Research Announcement contract. The ASRG makes use of a Stirling controller based on power electronics that eliminates the tuning capacitors. The power electronics controller synchronizes dual-opposed convertors and maintains a fixed frequency operating point. The controller is single-fault tolerant and uses high-frequency pulse width modulation to create the sinusoidal currents that are nearly in phase with the piston velocity, eliminating the need for large series tuning capacitors. Sunpower supports this effort through an extension of their controller development intended for other applications. Glenn Research Center (GRC) supports this effort through system dynamic modeling, analysis and test support. The ASRG design arrived at a new baseline based on a system-level trade study and extensive feedback from mission planners on the necessity of single-fault tolerance. This paper presents the baseline design with an emphasis on the power electronics controller detailed design concept that will meet space mission requirements including single fault tolerance.

  4. Design and Analysis of a Single-Camera Omnistereo Sensor for Quadrotor Micro Aerial Vehicles (MAVs).

    PubMed

    Jaramillo, Carlos; Valenti, Roberto G; Guo, Ling; Xiao, Jizhong

    2016-02-06

    We describe the design and 3D sensing performance of an omnidirectional stereo (omnistereo) vision system applied to Micro Aerial Vehicles (MAVs). The proposed omnistereo sensor employs a monocular camera that is co-axially aligned with a pair of hyperboloidal mirrors (a vertically-folded catadioptric configuration). We show that this arrangement provides a compact solution for omnidirectional 3D perception while mounted on top of propeller-based MAVs (not capable of large payloads). The theoretical single viewpoint (SVP) constraint helps us derive analytical solutions for the sensor's projective geometry and generate SVP-compliant panoramic images to compute 3D information from stereo correspondences (in a truly synchronous fashion). We perform an extensive analysis on various system characteristics such as its size, catadioptric spatial resolution, field-of-view. In addition, we pose a probabilistic model for the uncertainty estimation of 3D information from triangulation of back-projected rays. We validate the projection error of the design using both synthetic and real-life images against ground-truth data. Qualitatively, we show 3D point clouds (dense and sparse) resulting out of a single image captured from a real-life experiment. We expect the reproducibility of our sensor as its model parameters can be optimized to satisfy other catadioptric-based omnistereo vision under different circumstances.

  5. Application of variable-gain output feedback for high-alpha control

    NASA Technical Reports Server (NTRS)

    Ostroff, Aaron J.

    1990-01-01

    A variable-gain, optimal, discrete, output feedback design approach that is applied to a nonlinear flight regime is described. The flight regime covers a wide angle-of-attack range that includes stall and post stall. The paper includes brief descriptions of the variable-gain formulation, the discrete-control structure and flight equations used to apply the design approach, and the high performance airplane model used in the application. Both linear and nonlinear analysis are shown for a longitudinal four-model design case with angles of attack of 5, 15, 35, and 60 deg. Linear and nonlinear simulations are compared for a single-point longitudinal design at 60 deg angle of attack. Nonlinear simulations for the four-model, multi-mode, variable-gain design include a longitudinal pitch-up and pitch-down maneuver and high angle-of-attack regulation during a lateral maneuver.

  6. Stress analysis at bone-implant interface of single- and two-implant-retained mandibular overdenture using three-dimensional finite element analysis.

    PubMed

    Lahoti, Krishnakumar; Pathrabe, Anup; Gade, Jaykumar

    2016-01-01

    The purpose of this research was to compare stress distribution on the bone between single implant-retained and two-implant-retained mandibular overdentures using three-dimensional (3D) finite element analysis. Two 3D finite element models were designed. The first model included single implant-supported mandibular overdenture placed in the midline of the mandible while the second model included two-implant-supported mandibular overdenture placed in the intra-foramen region, retained by ball attachment of the same diameter. The bone was modeled on the D2 bone depending on the classification given by Misch. A computed tomography scan of the mandible was used to model the bone by plotting the key points on the graph and generating the identical key points on the ANSYS Software (ANSYS, Inc., USA). The implant was modeled using appropriate dimensions as provided by the manufacturer. Stresses were calculated based on the von Mises criteria. Stresses produced in the hard bone (HB) and soft bone (SB) were higher in single implant-retained mandibular overdenture while stresses produced around the denture as well as implant were higher in two-implant-retained mandibular overdenture. Within the limitations of the study, it had been seen that stresses produced were the highest on HB and SB in single implant-retained mandibular overdenture while stresses produced across the denture as well as implant were the highest in two-implant-retained mandibular overdenture.

  7. Research in the design of high-performance reconfigurable systems

    NASA Technical Reports Server (NTRS)

    Slotnick, D. L.; Mcewan, S. D.; Spry, A. J.

    1984-01-01

    An initial design for the Bit Processor (BP) referred to in prior reports as the Processing Element or PE has been completed. Eight BP's, together with their supporting random-access memory, a 64 k x 9 ROM to perform addition, routing logic, and some additional logic, constitute the components of a single stage. An initial stage design is given. Stages may be combined to perform high-speed fixed or floating point arithmetic. Stages can be configured into a range of arithmetic modules that includes bit-serial one or two-dimensional arrays; one or two dimensional arrays fixed or floating point processors; and specialized uniprocessors, such as long-word arithmetic units. One to eight BP's represent a likely initial chip level. The Stage would then correspond to a first-level pluggable module. As both this project and VLSI CAD/CAM progress, however, it is expected that the chip level would migrate upward to the stage and, perhaps, ultimately the box level. The BP RAM, consisting of two banks, holds only operands and indices. Programs are at the box (high-level function) and system level. At the system level initial effort has been concentrated on specifying the tools needed to evaluate design alternatives.

  8. Enzyme Sequestration as a Tuning Point in Controlling Response Dynamics of Signalling Networks

    PubMed Central

    Ollivier, Julien F.; Soyer, Orkun S.

    2016-01-01

    Signalling networks result from combinatorial interactions among many enzymes and scaffolding proteins. These complex systems generate response dynamics that are often essential for correct decision-making in cells. Uncovering biochemical design principles that underpin such response dynamics is a prerequisite to understand evolved signalling networks and to design synthetic ones. Here, we use in silico evolution to explore the possible biochemical design space for signalling networks displaying ultrasensitive and adaptive response dynamics. By running evolutionary simulations mimicking different biochemical scenarios, we find that enzyme sequestration emerges as a key mechanism for enabling such dynamics. Inspired by these findings, and to test the role of sequestration, we design a generic, minimalist model of a signalling cycle, featuring two enzymes and a single scaffolding protein. We show that this simple system is capable of displaying both ultrasensitive and adaptive response dynamics. Furthermore, we find that tuning the concentration or kinetics of the sequestering protein can shift system dynamics between these two response types. These empirical results suggest that enzyme sequestration through scaffolding proteins is exploited by evolution to generate diverse response dynamics in signalling networks and could provide an engineering point in synthetic biology applications. PMID:27163612

  9. System Sensitivity Analysis Applied to the Conceptual Design of a Dual-Fuel Rocket SSTO

    NASA Technical Reports Server (NTRS)

    Olds, John R.

    1994-01-01

    This paper reports the results of initial efforts to apply the System Sensitivity Analysis (SSA) optimization method to the conceptual design of a single-stage-to-orbit (SSTO) launch vehicle. SSA is an efficient, calculus-based MDO technique for generating sensitivity derivatives in a highly multidisciplinary design environment. The method has been successfully applied to conceptual aircraft design and has been proven to have advantages over traditional direct optimization methods. The method is applied to the optimization of an advanced, piloted SSTO design similar to vehicles currently being analyzed by NASA as possible replacements for the Space Shuttle. Powered by a derivative of the Russian RD-701 rocket engine, the vehicle employs a combination of hydrocarbon, hydrogen, and oxygen propellants. Three primary disciplines are included in the design - propulsion, performance, and weights & sizing. A complete, converged vehicle analysis depends on the use of three standalone conceptual analysis computer codes. Efforts to minimize vehicle dry (empty) weight are reported in this paper. The problem consists of six system-level design variables and one system-level constraint. Using SSA in a 'manual' fashion to generate gradient information, six system-level iterations were performed from each of two different starting points. The results showed a good pattern of convergence for both starting points. A discussion of the advantages and disadvantages of the method, possible areas of improvement, and future work is included.

  10. Fully Convolutional Networks for Ground Classification from LIDAR Point Clouds

    NASA Astrophysics Data System (ADS)

    Rizaldy, A.; Persello, C.; Gevaert, C. M.; Oude Elberink, S. J.

    2018-05-01

    Deep Learning has been massively used for image classification in recent years. The use of deep learning for ground classification from LIDAR point clouds has also been recently studied. However, point clouds need to be converted into an image in order to use Convolutional Neural Networks (CNNs). In state-of-the-art techniques, this conversion is slow because each point is converted into a separate image. This approach leads to highly redundant computation during conversion and classification. The goal of this study is to design a more efficient data conversion and ground classification. This goal is achieved by first converting the whole point cloud into a single image. The classification is then performed by a Fully Convolutional Network (FCN), a modified version of CNN designed for pixel-wise image classification. The proposed method is significantly faster than state-of-the-art techniques. On the ISPRS Filter Test dataset, it is 78 times faster for conversion and 16 times faster for classification. Our experimental analysis on the same dataset shows that the proposed method results in 5.22 % of total error, 4.10 % of type I error, and 15.07 % of type II error. Compared to the previous CNN-based technique and LAStools software, the proposed method reduces the total error and type I error (while type II error is slightly higher). The method was also tested on a very high point density LIDAR point clouds resulting in 4.02 % of total error, 2.15 % of type I error and 6.14 % of type II error.

  11. Design of TIR collimating lens for ordinary differential equation of extended light source

    NASA Astrophysics Data System (ADS)

    Zhan, Qianjing; Liu, Xiaoqin; Hou, Zaihong; Wu, Yi

    2017-10-01

    The source of LED has been widely used in our daily life. The intensity angle distribution of single LED is lambert distribution, which does not satisfy the requirement of people. Therefore, we need to distribute light and change the LED's intensity angle distribution. The most commonly method to change its intensity angle distribution is the free surface. Generally, using ordinary differential equations to calculate free surface can only be applied in a point source, but it will lead to a big error for the expand light. This paper proposes a LED collimating lens based on the ordinary differential equation, combined with the LED's light distribution curve, and adopt the method of calculating the center gravity of the extended light to get the normal vector. According to the law of Snell, the ordinary differential equations are constructed. Using the runge-kutta method for solution of ordinary differential equation solution, the curve point coordinates are gotten. Meanwhile, the edge point data of lens are imported into the optical simulation software TracePro. Based on 1mm×1mm single lambert body for light conditions, The degrees of collimating light can be close to +/-3. Furthermore, the energy utilization rate is higher than 85%. In this paper, the point light source is used to calculate partial differential equation method and compared with the simulation of the lens, which improve the effect of 1 degree of collimation.

  12. Electrical Grounding Architecture for Unmanned Spacecraft

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This handbook is approved for use by NASA Headquarters and all NASA Centers and is intended to provide a common framework for consistent practices across NASA programs. This handbook was developed to describe electrical grounding design architecture options for unmanned spacecraft. This handbook is written for spacecraft system engineers, power engineers, and electromagnetic compatibility (EMC) engineers. Spacecraft grounding architecture is a system-level decision which must be established at the earliest point in spacecraft design. All other grounding design must be coordinated with and be consistent with the system-level architecture. This handbook assumes that there is no one single 'correct' design for spacecraft grounding architecture. There have been many successful satellite and spacecraft programs from NASA, using a variety of grounding architectures with different levels of complexity. However, some design principles learned over the years apply to all types of spacecraft development. This handbook summarizes those principles to help guide spacecraft grounding architecture design for NASA and others.

  13. Synthesis and optimization of four bar mechanism with six design parameters

    NASA Astrophysics Data System (ADS)

    Jaiswal, Ankur; Jawale, H. P.

    2018-04-01

    Function generation is synthesis of mechanism for specific task, involves complexity for specially synthesis above five precision of coupler points. Thus pertains to large structural error. The methodology for arriving to better precision solution is to use the optimization technique. Work presented herein considers methods of optimization of structural error in closed kinematic chain with single degree of freedom, for generating functions like log(x), ex, tan(x), sin(x) with five precision points. The equation in Freudenstein-Chebyshev method is used to develop five point synthesis of mechanism. The extended formulation is proposed and results are obtained to verify existing results in literature. Optimization of structural error is carried out using least square approach. Comparative structural error analysis is presented on optimized error through least square method and extended Freudenstein-Chebyshev method.

  14. Development of a Dew-Point Generator for Gases Other than Air and Nitrogen and Pressures up to 6 MPa

    NASA Astrophysics Data System (ADS)

    Bosma, R.; Peruzzi, A.

    2012-09-01

    A new primary humidity standard is currently being developed at VSL that, in addition to ordinary operation with air and nitrogen at atmospheric pressure, can be operated also with special carrier gases such as natural gas and SF6 and at pressures up to 6 MPa. In this paper, the design and construction of this new primary dew-point generator and the preliminary tests performed on the generator are reported. The results of the first efficiency tests, performed for the dew-point temperature range from -50 °C to 20°C, for pressures up to 0.7MPa and for carrier gas flow rates up to 4L· min-1, showed satisfactory generator performance when used in the single-pass mode, i.e., with no recirculation of the carrier gas.

  15. Evaluating the "TOEFL Junior"® Standard Test as a Measure of Progress for Young English Language Learners. Research Report. ETS RR-15-22

    ERIC Educational Resources Information Center

    Gu, Lin; Lockwood, John; Powers, Donald E.

    2015-01-01

    Standardized tests are often designed to provide only a snapshot of test takers' knowledge, skills, or abilities at a single point in time. Sometimes, however, they are expected to serve more demanding functions, one of them is assessing change in knowledge, skills, or ability over time because of learning effects.The latter is the case for the…

  16. Handbook of the optical, thermal and mechanical properties of six polycrystalline dielectric materials

    NASA Technical Reports Server (NTRS)

    Dewitt, D. P.

    1972-01-01

    The design data for six polycrystalline dielectric materials are presented to describe the optical, thermal, and mechanical properties. The materials are aluminum oxide, calcium fluoride, magnesium fluoride, magnesium oxide, silicon dioxide, and titanium dioxide. The primary interest is in the polycrystalline state, although single crystal data are included when appropriate. The temperature range is room temperature to melting point. The wavelength range is from near ultraviolet to near infrared.

  17. Some design issues in trials of microbicides for the prevention of HIV infection.

    PubMed

    Fleming, Thomas R; Richardson, Barbra A

    2004-08-15

    Trials for the prevention of human immunodeficiency virus (HIV) infection that evaluate microbicides provide significant design challenges. Three of these design issues deserve more careful consideration. The first issue relates to the benefits of using both blinded and unblinded control groups when the placebo regimen may not be inert and when the effectiveness of an intervention heavily depends on behavioral, as well as biological, factors. The second issue relates to the strength of evidence required for regulatory approval for the marketing of drugs and biologics when only a single pivotal phase 3 clinical trial has provided such evidence. The third issue relates to the appropriate next step after the completion of phase 1 trials, as well as the specific merits of conducting phase 2b screening trials that assess the effects on the same clinical efficacy end point that will be the primary end point in a phase 3 trial. The issues considered in microbicide trials for the prevention of HIV infection are also of importance in many other clinical scenarios.

  18. Comparison of Two Multidisciplinary Optimization Strategies for Launch-Vehicle Design

    NASA Technical Reports Server (NTRS)

    Braun, R. D.; Powell, R. W.; Lepsch, R. A.; Stanley, D. O.; Kroo, I. M.

    1995-01-01

    The investigation focuses on development of a rapid multidisciplinary analysis and optimization capability for launch-vehicle design. Two multidisciplinary optimization strategies in which the analyses are integrated in different manners are implemented and evaluated for solution of a single-stage-to-orbit launch-vehicle design problem. Weights and sizing, propulsion, and trajectory issues are directly addressed in each optimization process. Additionally, the need to maintain a consistent vehicle model across the disciplines is discussed. Both solution strategies were shown to obtain similar solutions from two different starting points. These solutions suggests that a dual-fuel, single-stage-to-orbit vehicle with a dry weight of approximately 1.927 x 10(exp 5)lb, gross liftoff weight of 2.165 x 10(exp 6)lb, and length of 181 ft is attainable. A comparison of the two approaches demonstrates that treatment or disciplinary coupling has a direct effect on optimization convergence and the required computational effort. In comparison with the first solution strategy, which is of the general form typically used within the launch vehicle design community at present, the second optimization approach is shown to he 3-4 times more computationally efficient.

  19. Design and Study of a LOX/GH2 Throttleable Swirl Injector for Rocket Applications

    NASA Technical Reports Server (NTRS)

    Greene, Christopher; Woodward, Roger; Pal, Sibtosh; Santoro, Robert; Garcia, Roberto (Technical Monitor)

    2002-01-01

    A LOX/GH2 swirl injector was designed for a 10:1 propellant throttling range. To accomplish this, a dual LOX (liquid oxygen) manifold was used feeding a single common vortex chamber of the swirl element. Hot-fire experiments were conducting for rocket chamber pressures from 80 to 800 psia at a mixture ratio of nominally 6.0 using steady flow, single-point-per-firing cases as well as dynamic throttling conditions. Low frequency (mean) and high frequency (fluctuating) pressure transducer data, flow meter measurements, and Raman spectroscopy images for mixing information were obtained. The injector design, experimental setup, low frequency pressure data, and injector performance analysis will be presented. C efficiency was very high (approximately 100%) at the middle of the throttle-able range with somewhat lower performance at the high and low ends. From the analysis of discreet steady state operating conditions, injector pressure drop was slightly higher than predicted with an inviscid analysis, but otherwise agreed well across the design throttling range. Analysis of the dynamic throttling data indicates that the injector may experience transient conditions that effect pressure drop and performance when compared to steady state results.

  20. [Development of a simultaneous strain and temperature sensor with small-diameter FBG].

    PubMed

    Liu, Rong-mei; Liang, Da-kai

    2011-03-01

    Manufacture of the small diameter FBG was designed. Cross sensitivity of temperature and strain at sensing point was solved. Based on coupled-mode theory, optical properties of the designed FBG were studied. The reflection and transmission spectra of the designed FBG in small diameter were studied A single mode optical fiber, whose cladding diameter is 80 microm, was manufactured to a fiber Bragg grating (phi80FBG). According to spectrum simulation, the grating length and period were chosen as the wavelength was 1528 nm. The connector of the small diameter FBG with demodulation was designed too. In applications, the FBG measures the total deformation including strain due to forces applied to the structures as well as thermal expansion. In order to overcome this inconvenience and to measure both parameters at the same time and location, a novel scheme for simultaneous strain and temperature sensor was presented. Since the uniform strength beam has same deformation at all points, a pair of phi80 FBG was attached on a uniform strength cantilever. One of the FBG was on the upper surface, with the other one on the below. Therefore, the strains at the monitoring points were equal in magnitude but of opposite sign. The strain and temperature in sensing point could be discriminated by matrix equation. The determination of the K is not null and thus matrix inversion is well conditioned, even the values for the K elements are close. Consequently, the cross sensitivity of the FBG with temperature and strain can be experimentally solved. Experiments were carried out to study the strain discriminability of small-diameter FBG sensors. The temperature and strain were calculated and the errors were, respectively, 5% and 6%.

  1. Flight Mechanics and Control Requirements for a Modular Solar Electric Tug Operating in Earth-Moon Space

    NASA Astrophysics Data System (ADS)

    Woodcock, Gordon; Wingo, Dennis

    2006-01-01

    A modular design for a solar-electric tug was analyzed to establish flight control requirements and methods. Thrusters are distributed around the periphery of the solar array. This design enables modules to be berthed together to create a larger system from smaller modules. It requires a different flight mode than traditional design and a different thrust direction scheme, to achieve net thrust in the desired direction, observe thruster pointing constraints that avoid plume impingement on the tug, and balance moments. The array is perpendicular to the Sun vector for maximum electric power. The tug may maintain a constant inertial attitude or rotate around the Sun vector once per orbit. Either non-rotating or constant angular velocity rotation offers advantages over the conventional flight mode, which has highly variable roll rates. The baseline single module has 12 thrusters: two 2-axis gimbaling main thrusters, one at each ``end'', and two back-to-back Z axis thrusters at each corner of the array. Thruster pointing and throttling were optimized to maximize net thrust effectiveness while observing constraints. Control design used a spread sheet with Excel Solver to calculate nominal thruster pointing and throttling. These results are used to create lookup tables. A conventional control system generates a thruster pointing and throttling overlay on the nominals to maintain active attitude control. Gravity gradients can cause major attitude perturbations during occultation periods if thrust is off during these periods. Thrust required to maintain attitude is about 4% of system rated power. This amount of power can be delivered by a battery system, avoiding the performance penalty if chemical propulsion thrusters were used to maintain attitude.

  2. Axial and Centrifugal Compressor Mean Line Flow Analysis Method

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    2009-01-01

    This paper describes a method to estimate key aerodynamic parameters of single and multistage axial and centrifugal compressors. This mean-line compressor code COMDES provides the capability of sizing single and multistage compressors quickly during the conceptual design process. Based on the compressible fluid flow equations and the Euler equation, the code can estimate rotor inlet and exit blade angles when run in the design mode. The design point rotor efficiency and stator losses are inputs to the code, and are modeled at off design. When run in the off-design analysis mode, it can be used to generate performance maps based on simple models for losses due to rotor incidence and inlet guide vane reset angle. The code can provide an improved understanding of basic aerodynamic parameters such as diffusion factor, loading levels and incidence, when matching multistage compressor blade rows at design and at part-speed operation. Rotor loading levels and relative velocity ratio are correlated to the onset of compressor surge. NASA Stage 37 and the three-stage NASA 74-A axial compressors were analyzed and the results compared to test data. The code has been used to generate the performance map for the NASA 76-B three-stage axial compressor featuring variable geometry. The compressor stages were aerodynamically matched at off-design speeds by adjusting the variable inlet guide vane and variable stator geometry angles to control the rotor diffusion factor and incidence angles.

  3. Using a shock control bump to improve the performance of an axial compressor blade section

    NASA Astrophysics Data System (ADS)

    Mazaheri, K.; Khatibirad, S.

    2017-03-01

    Here, we use numerical analysis to study the effects of a shock control bump (SCB) on the performance of a transonic axial compressor blade section and to optimize its shape and location to improve the compressor performance. A section of the NASA rotor 67 blade is used for this study. Two Bézier curves, each consisting of seven control points, are used to model the suction and pressure surfaces of the blade section. The SCB is modeled with the Hicks-Henne function and, using five design parameters, is added to the suction side. The total pressure loss through a cascade of blade sections is selected as the cost function. A continuous adjoint optimization method is used along with a RANS solver to find a new blade section shape. A grid independence study is performed, and all optimization and flow solver algorithms are validated. Two single-point optimizations are performed in the design condition and in an off-design condition. It is shown that both optimized shapes have overall better performance for both on-design and off-design conditions. An analysis is given regarding how the SCB has changed the wave structure between blade sections resulting in a more favorable flow pattern.

  4. Reliability analysis of single crystal NiAl turbine blades

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan; Noebe, Ronald; Wheeler, Donald R.; Holland, Fred; Palko, Joseph; Duffy, Stephen; Wright, P. Kennard

    1995-01-01

    As part of a co-operative agreement with General Electric Aircraft Engines (GEAE), NASA LeRC is modifying and validating the Ceramic Analysis and Reliability Evaluation of Structures algorithm for use in design of components made of high strength NiAl based intermetallic materials. NiAl single crystal alloys are being actively investigated by GEAE as a replacement for Ni-based single crystal superalloys for use in high pressure turbine blades and vanes. The driving force for this research lies in the numerous property advantages offered by NiAl alloys over their superalloy counterparts. These include a reduction of density by as much as a third without significantly sacrificing strength, higher melting point, greater thermal conductivity, better oxidation resistance, and a better response to thermal barrier coatings. The current drawback to high strength NiAl single crystals is their limited ductility. Consequently, significant efforts including the work agreement with GEAE are underway to develop testing and design methodologies for these materials. The approach to validation and component analysis involves the following steps: determination of the statistical nature and source of fracture in a high strength, NiAl single crystal turbine blade material; measurement of the failure strength envelope of the material; coding of statistically based reliability models; verification of the code and model; and modeling of turbine blades and vanes for rig testing.

  5. The effects of prospective mate quality on investments in healthy body weight among single women.

    PubMed

    Harris, Matthew C; Cronin, Christopher J

    2017-02-01

    This paper examines how a single female's investment in healthy body weight is affected by the quality of single males in her marriage market. A principle concern in estimation is the presence of market-level unobserved heterogeneity that may be correlated with changes in single male quality, measured as earning potential. To address this concern, we employ a differencing strategy that normalizes the exercise behaviors of single women to those of their married counterparts. Our main results suggest that when potential mate quality in a marriage market decreases, single black women invest less in healthy body weight. For example, we find that a 10 percentage point increase in the proportion of low quality single black males leads to a 5-10% decrease in vigorous exercise taken by single black females. Results for single white women are qualitatively similar, but not consistent across specifications. These results highlight the relationship between male and female human capital acquisition that is driven by participation in the marriage market. Our results suggest that programs designed to improve the economic prospects of single males may yield positive externalities in the form of improved health behaviors, such as more exercise, particularly for single black females. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Rational design of therapeutic mAbs against aggregation through protein engineering and incorporation of glycosylation motifs applied to bevacizumab.

    PubMed

    Courtois, Fabienne; Agrawal, Neeraj J; Lauer, Timothy M; Trout, Bernhardt L

    2016-01-01

    The aggregation of biotherapeutics is a major hindrance to the development of successful drug candidates; however, the propensity to aggregate is often identified too late in the development phase to permit modification to the protein's sequence. Incorporating rational design for the stability of proteins in early discovery has numerous benefits. We engineered out aggregation-prone regions on the Fab domain of a therapeutic monoclonal antibody, bevacizumab, to rationally design a biobetter drug candidate. With the purpose of stabilizing bevacizumab with respect to aggregation, 2 strategies were undertaken: single point mutations of aggregation-prone residues and engineering a glycosylation site near aggregation-prone residues to mask these residues with a carbohydrate moiety. Both of these approaches lead to comparable decreases in aggregation, with an up to 4-fold reduction in monomer loss. These single mutations and the new glycosylation pattern of the Fab domain do not modify binding to the target. Biobetters with increased stability against aggregation can therefore be generated in a rational manner, by either removing or masking the aggregation-prone region or crowding out protein-protein interactions.

  7. Radioisotope Electric Propulsion Missions Utilizing a Common Spacecraft Design

    NASA Technical Reports Server (NTRS)

    Fiehler, Douglas; Oleson, Steven

    2004-01-01

    A study was conducted that shows how a single Radioisotope Electric Propulsion (REP) spacecraft design could be used for various missions throughout the solar system. This spacecraft design is based on a REP feasibility design from a study performed by NASA Glenn Research Center and the Johns Hopkins University Applied Physics Laboratory. The study also identifies technologies that need development to enable these missions. The mission baseline for the REP feasibility design study is a Trojan asteroid orbiter. This mission sends an REP spacecraft to Jupiter s leading Lagrange point where it would orbit and examine several Trojan asteroids. The spacecraft design from the REP feasibility study would also be applicable to missions to the Centaurs, and through some change of payload configuration, could accommodate a comet sample-return mission. Missions to small bodies throughout the outer solar system are also within reach of this spacecraft design. This set of missions, utilizing the common REP spacecraft design, is examined and required design modifications for specific missions are outlined.

  8. The LIFE Laser Design in Context: A Comparison to the State-of-the-Art

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deri, R J; Bayramian, A J; Erlandson, A C

    2011-03-21

    The current point design for the LIFE laser leverages decades of solid-state laser development in order to achieve the performance and attributes required for inertial fusion energy. This document provides a brief comparison of the LIFE laser point design to other state-of-the-art solid-state lasers. Table I compares the attributes of the current LIFE laser point design to other systems. the state-of-the-art for single-shot performance at fusion-relevant beamline energies is exemplified by performance observed on the National Ignition Facility. The state-of-the-art for high average power is exemplified by the Northrup Grumman JHPSSL laser. Several items in Table I deal with themore » laser efficiency; a more detailed discussion of efficiency can be found in reference 5. The electrical-to-optical efficiency of the LIFE design exceeds that of reference 4 due to the availability of higher efficiency laser diode pumps (70% vs. {approx}50% used in reference 4). LIFE diode pumps are discussed in greater detail in reference 6. The 'beam steering' state of the art is represented by the deflection device that will be used in the LIFE laser, not a laser system. Inspection of Table I shows that most LIFE laser attributes have already been experimentally demonstrated. The two cases where the LIFE design is somewhat better than prior experimental work do not involve the development of new concepts: beamline power is increased simply by increasing aperture (as demonstrated by the power/aperture comparison in Table I), and efficiency increases are achieved by employing state-of-the-art diode pumps. In conclusion, the attributes anticipated for the LIFE laser are consistent with the demonstrated performance of existing solid-state lasers.« less

  9. reaxFF Reactive Force Field for Disulfide Mechanochemistry, Fitted to Multireference ab Initio Data.

    PubMed

    Müller, Julian; Hartke, Bernd

    2016-08-09

    Mechanochemistry, in particular in the form of single-molecule atomic force microscopy experiments, is difficult to model theoretically, for two reasons: Covalent bond breaking is not captured accurately by single-determinant, single-reference quantum chemistry methods, and experimental times of milliseconds or longer are hard to simulate with any approach. Reactive force fields have the potential to alleviate both problems, as demonstrated in this work: Using nondeterministic global parameter optimization by evolutionary algorithms, we have fitted a reaxFF force field to high-level multireference ab initio data for disulfides. The resulting force field can be used to reliably model large, multifunctional mechanochemistry units with disulfide bonds as designed breaking points. Explorative calculations show that a significant part of the time scale gap between AFM experiments and dynamical simulations can be bridged with this approach.

  10. Development of a drive system for a sequential space camera

    NASA Technical Reports Server (NTRS)

    Sharpsteen, J. T.; Solheim, C. D.; Stoap, L. J.

    1976-01-01

    Breadboard models of single and dual motor drives for the shutter, claw and magazine of a space camera system were designed and tested. The single motor technique utilizes a single electronically commutated motor to drive the claw and shutter without resorting to a solenoid actuated clutch for pulse operation. Shutter speed is established by a combination of the cinemode speed and the opening of the conventional DAC two piece shutter. Pulse mode operation is obtained by applying power at a fixed clock rate and removing power at an appropriate point in the mechanical cycle such that the motor comes to rest by system friction. The dual motor approach utilizes a stepper motor to drive the shutter and an electronically commutated dc motor to drive the claw and magazine functions. The motors are synchronized electronically.

  11. Spin Seebeck effect in a metal-single-molecule-magnet-metal junction

    NASA Astrophysics Data System (ADS)

    Niu, Pengbin; Liu, Lixiang; Su, Xiaoqiang; Dong, Lijuan; Luo, Hong-Gang

    2018-01-01

    We investigate the nonlinear regime of temperature-driven spin-related currents through a single molecular magnet (SMM), which is connected with two metal electrodes. Under a large spin approximation, the SMM is simplified to a natural two-channel model possessing spin-opposite configuration and Coulomb interaction. We find that in temperature-driven case the system can generate spin-polarized currents. More interestingly, at electron-hole symmetry point, the competition of the two channels induces a temperature-driven pure spin current. This device demonstrates that temperature-driven SMM junction shows some results different from the usual quantum dot model, which may be useful in the future design of thermal-based molecular spintronic devices.

  12. 47 CFR 68.105 - Minimum point of entry (MPOE) and demarcation point.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... be either the closest practicable point to where the wiring crosses a property line or the closest practicable point to where the wiring enters a multiunit building or buildings. The reasonable and... situations. (c) Single unit installations. For single unit installations existing as of August 13, 1990, and...

  13. A novel method for sampling the suspended sediment load in the tidal environment using bi-directional time-integrated mass-flux sediment (TIMS) samplers

    NASA Astrophysics Data System (ADS)

    Elliott, Emily A.; Monbureau, Elaine; Walters, Glenn W.; Elliott, Mark A.; McKee, Brent A.; Rodriguez, Antonio B.

    2017-12-01

    Identifying the source and abundance of sediment transported within tidal creeks is essential for studying the connectivity between coastal watersheds and estuaries. The fine-grained suspended sediment load (SSL) makes up a substantial portion of the total sediment load carried within an estuarine system and efficient sampling of the SSL is critical to our understanding of nutrient and contaminant transport, anthropogenic influence, and the effects of climate. Unfortunately, traditional methods of sampling the SSL, including instantaneous measurements and automatic samplers, can be labor intensive, expensive and often yield insufficient mass for comprehensive geochemical analysis. In estuaries this issue is even more pronounced due to bi-directional tidal flow. This study tests the efficacy of a time-integrated mass sediment sampler (TIMS) design, originally developed for uni-directional flow within the fluvial environment, modified in this work for implementation the tidal environment under bi-directional flow conditions. Our new TIMS design utilizes an 'L' shaped outflow tube to prevent backflow, and when deployed in mirrored pairs, each sampler collects sediment uniquely in one direction of tidal flow. Laboratory flume experiments using dye and particle image velocimetry (PIV) were used to characterize the flow within the sampler, specifically, to quantify the settling velocities and identify stagnation points. Further laboratory tests of sediment indicate that bidirectional TIMS capture up to 96% of incoming SSL across a range of flow velocities (0.3-0.6 m s-1). The modified TIMS design was tested in the field at two distinct sampling locations within the tidal zone. Single-time point suspended sediment samples were collected at high and low tide and compared to time-integrated suspended sediment samples collected by the bi-directional TIMS over the same four-day period. Particle-size composition from the bi-directional TIMS were representative of the array of single time point samples, but yielded greater mass, representative of flow and sediment-concentration conditions at the site throughout the deployment period. This work proves the efficacy of the modified bi-directional TIMS design, offering a novel tool for collection of suspended sediment in the tidally-dominated portion of the watershed.

  14. PHYSICAL MODELING OF CONTRACTED FLOW.

    USGS Publications Warehouse

    Lee, Jonathan K.

    1987-01-01

    Experiments on steady flow over uniform grass roughness through centered single-opening contractions were conducted in the Flood Plain Simulation Facility at the U. S. Geological Survey's Gulf Coast Hydroscience Center near Bay St. Louis, Miss. The experimental series was designed to provide data for calibrating and verifying two-dimensional, vertically averaged surface-water flow models used to simulate flow through openings in highway embankments across inundated flood plains. Water-surface elevations, point velocities, and vertical velocity profiles were obtained at selected locations for design discharges ranging from 50 to 210 cfs. Examples of observed water-surface elevations and velocity magnitudes at basin cross-sections are presented.

  15. Optimization design of energy deposition on single expansion ramp nozzle

    NASA Astrophysics Data System (ADS)

    Ju, Shengjun; Yan, Chao; Wang, Xiaoyong; Qin, Yupei; Ye, Zhifei

    2017-11-01

    Optimization design has been widely used in the aerodynamic design process of scramjets. The single expansion ramp nozzle is an important component for scramjets to produces most of thrust force. A new concept of increasing the aerodynamics of the scramjet nozzle with energy deposition is presented. The essence of the method is to create a heated region in the inner flow field of the scramjet nozzle. In the current study, the two-dimensional coupled implicit compressible Reynolds Averaged Navier-Stokes and Menter's shear stress transport turbulence model have been applied to numerically simulate the flow fields of the single expansion ramp nozzle with and without energy deposition. The numerical results show that the proposal of energy deposition can be an effective method to increase force characteristics of the scramjet nozzle, the thrust coefficient CT increase by 6.94% and lift coefficient CN decrease by 26.89%. Further, the non-dominated sorting genetic algorithm coupled with the Radial Basis Function neural network surrogate model has been employed to determine optimum location and density of the energy deposition. The thrust coefficient CT and lift coefficient CN are selected as objective functions, and the sampling points are obtained numerically by using a Latin hypercube design method. The optimized thrust coefficient CT further increase by 1.94%, meanwhile, the optimized lift coefficient CN further decrease by 15.02% respectively. At the same time, the optimized performances are in good and reasonable agreement with the numerical predictions. The findings suggest that scramjet nozzle design and performance can benefit from the application of energy deposition.

  16. Programmable growth of branched silicon nanowires using a focused ion beam.

    PubMed

    Jun, Kimin; Jacobson, Joseph M

    2010-08-11

    Although significant progress has been made in being able to spatially define the position of material layers in vapor-liquid-solid (VLS) grown nanowires, less work has been carried out in deterministically defining the positions of nanowire branching points to facilitate more complicated structures beyond simple 1D wires. Work to date has focused on the growth of randomly branched nanowire structures. Here we develop a means for programmably designating nanowire branching points by means of focused ion beam-defined VLS catalytic points. This technique is repeatable without losing fidelity allowing multiple rounds of branching point definition followed by branch growth resulting in complex structures. The single crystal nature of this approach allows us to describe resulting structures with linear combinations of base vectors in three-dimensional (3D) space. Finally, by etching the resulting 3D defined wire structures branched nanotubes were fabricated with interconnected nanochannels inside. We believe that the techniques developed here should comprise a useful tool for extending linear VLS nanowire growth to generalized 3D wire structures.

  17. V/STOL model fan stage rig design report

    NASA Technical Reports Server (NTRS)

    Cheatham, J. G.; Creason, T. L.

    1983-01-01

    A model single-stage fan with variable inlet guide vanes (VIGV) was designed to demonstrate efficient point operation while providing flow and pressure ratio modulation capability required for a V/STOL propulsion system. The fan stage incorporates a split-flap VIGV with an independently actuated ID flap to permit independent modulation of fan and core engine airstreams, a flow splitter integrally designed into the blade and vanes to completely segregate fan and core airstreams in order to maximize core stream supercharging for V/STOL operation, and an EGV with a variable leading edge fan flap for rig performance optimization. The stage was designed for a maximum flow size of 37.4 kg/s (82.3 lb/s) for compatibility with LeRC test facility requirements. Design values at maximum flow for blade tip velocity and stage pressure ratio are 472 m/s (1550 ft/s) and 1.68, respectively.

  18. Reliability-based design optimization using a generalized subset simulation method and posterior approximation

    NASA Astrophysics Data System (ADS)

    Ma, Yuan-Zhuo; Li, Hong-Shuang; Yao, Wei-Xing

    2018-05-01

    The evaluation of the probabilistic constraints in reliability-based design optimization (RBDO) problems has always been significant and challenging work, which strongly affects the performance of RBDO methods. This article deals with RBDO problems using a recently developed generalized subset simulation (GSS) method and a posterior approximation approach. The posterior approximation approach is used to transform all the probabilistic constraints into ordinary constraints as in deterministic optimization. The assessment of multiple failure probabilities required by the posterior approximation approach is achieved by GSS in a single run at all supporting points, which are selected by a proper experimental design scheme combining Sobol' sequences and Bucher's design. Sequentially, the transformed deterministic design optimization problem can be solved by optimization algorithms, for example, the sequential quadratic programming method. Three optimization problems are used to demonstrate the efficiency and accuracy of the proposed method.

  19. City of San Antonio, Texas Better Buildings Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Liza C.; Hammer, Mary C.

    2014-06-30

    The San Antonio Better Buildings Program is a unified single-point-of-service energy efficiency delivery mechanism targeting residential, commercial, institutional, industrial and public buildings. This comprehensive and replicable energy efficiency program is designed to be an effective demand side management initiative to provide a seamless process for program participants to have turn-key access to expert analysis, support and incentives to improve the performance of their in-place energy using systems, while reducing electrical energy use and demand.

  20. Ku-band multiple beam antenna

    NASA Technical Reports Server (NTRS)

    Chen, C. C.; Franklin, C. F.

    1980-01-01

    The frequency reuse capability is demonstrated for a Ku-band multiple beam antenna which provides contiguous low sidelobe spot beams for point-to-point communications between any two points within the continental United States (CONUS), or regional coverage beams for direct broadcast systems. A spot beam antenna in the 14/21 GHz band which provides contiguous overlapping beams covering CONUS and two discrete beams covering Hawaii and Alaska were designed, developed, and tested. Two reflector antennas are required for providing contiguous coverage of CONUS. Each is comprised of one offset parabolic reflector, one flat polarization diplexer, and two separate planar array feeds. This antenna system provides contiguous spot beam coverage of CONUS, utilizing 15 beams. Also designed, developed and demonstrated was a shaped contoured beam antenna system which provides contiguous four time zone coverage of CONUS from a single offset parabolic reflector incorporating one flat polarization diplexer and two separate planar array feeds. The beams which illuminate the eastern time zone and the mountain time zone are horizontally polarized, while the beams which illuminate the central time zone and the pacific time zone are vertically polarized. Frequency reuse is achieved by amplitude and polarization isolation.

  1. Suitable configurations for triangular formation flying about collinear libration points under the circular and elliptic restricted three-body problems

    NASA Astrophysics Data System (ADS)

    Ferrari, Fabio; Lavagna, Michèle

    2018-06-01

    The design of formations of spacecraft in a three-body environment represents one of the most promising challenges for future space missions. Two or more cooperating spacecraft can greatly answer some very complex mission goals, not achievable by a single spacecraft. The dynamical properties of a low acceleration environment such as the vicinity of libration points associated to a three-body system, can be effectively exploited to design spacecraft configurations able of satisfying tight relative position and velocity requirements. This work studies the evolution of an uncontrolled formation orbiting in the proximity of periodic orbits about collinear libration points under the Circular and Elliptic Restricted Three-Body Problems. A three spacecraft triangularly-shaped formation is assumed as a representative geometry to be investigated. The study identifies initial configurations that provide good performance in terms of formation keeping, and investigates key parameters that control the relative dynamics between the spacecraft within the three-body system. Formation keeping performance is quantified by monitoring shape and size changes of the triangular formation. The analysis has been performed under five degrees of freedom to define the geometry, the orientation and the location of the triangle in the synodic rotating frame.

  2. Subjective evaluation of HEVC in mobile devices

    NASA Astrophysics Data System (ADS)

    Garcia, Ray; Kalva, Hari

    2013-03-01

    Mobile compute environments provide a unique set of user needs and expectations that designers must consider. With increased multimedia use in mobile environments, video encoding methods within the smart phone market segment are key factors that contribute to positive user experience. Currently available display resolutions and expected cellular bandwidth are major factors the designer must consider when determining which encoding methods should be supported. The desired goal is to maximize the consumer experience, reduce cost, and reduce time to market. This paper presents a comparative evaluation of the quality of user experience when HEVC and AVC/H.264 video coding standards were used. The goal of the study was to evaluate any improvements in user experience when using HEVC. Subjective comparisons were made between H.264/AVC and HEVC encoding standards in accordance with Doublestimulus impairment scale (DSIS) as defined by ITU-R BT.500-13. Test environments are based on smart phone LCD resolutions and expected cellular bit rates, such as 200kbps and 400kbps. Subjective feedback shows both encoding methods are adequate at 400kbps constant bit rate. However, a noticeable consumer experience gap was observed for 200 kbps. Significantly less H.264 subjective quality is noticed with video sequences that have multiple objects moving and no single point of visual attraction. Video sequences with single points of visual attraction or few moving objects tended to have higher H.264 subjective quality.

  3. Presymptomatic atrophy in autosomal dominant Alzheimer's disease: A serial magnetic resonance imaging study.

    PubMed

    Kinnunen, Kirsi M; Cash, David M; Poole, Teresa; Frost, Chris; Benzinger, Tammie L S; Ahsan, R Laila; Leung, Kelvin K; Cardoso, M Jorge; Modat, Marc; Malone, Ian B; Morris, John C; Bateman, Randall J; Marcus, Daniel S; Goate, Alison; Salloway, Stephen P; Correia, Stephen; Sperling, Reisa A; Chhatwal, Jasmeer P; Mayeux, Richard P; Brickman, Adam M; Martins, Ralph N; Farlow, Martin R; Ghetti, Bernardino; Saykin, Andrew J; Jack, Clifford R; Schofield, Peter R; McDade, Eric; Weiner, Michael W; Ringman, John M; Thompson, Paul M; Masters, Colin L; Rowe, Christopher C; Rossor, Martin N; Ourselin, Sebastien; Fox, Nick C

    2018-01-01

    Identifying at what point atrophy rates first change in Alzheimer's disease is important for informing design of presymptomatic trials. Serial T1-weighted magnetic resonance imaging scans of 94 participants (28 noncarriers, 66 carriers) from the Dominantly Inherited Alzheimer Network were used to measure brain, ventricular, and hippocampal atrophy rates. For each structure, nonlinear mixed-effects models estimated the change-points when atrophy rates deviate from normal and the rates of change before and after this point. Atrophy increased after the change-point, which occurred 1-1.5 years (assuming a single step change in atrophy rate) or 3-8 years (assuming gradual acceleration of atrophy) before expected symptom onset. At expected symptom onset, estimated atrophy rates were at least 3.6 times than those before the change-point. Atrophy rates are pathologically increased up to seven years before "expected onset". During this period, atrophy rates may be useful for inclusion and tracking of disease progression. Copyright © 2017 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  4. Description of CASCOMP Comprehensive Airship Sizing and Performance Computer Program, Volume 2

    NASA Technical Reports Server (NTRS)

    Davis, J.

    1975-01-01

    The computer program CASCOMP, which may be used in comparative design studies of lighter than air vehicles by rapidly providing airship size and mission performance data, was prepared and documented. The program can be used to define design requirements such as weight breakdown, required propulsive power, and physical dimensions of airships which are designed to meet specified mission requirements. The program is also useful in sensitivity studies involving both design trade-offs and performance trade-offs. The input to the program primarily consists of a series of single point values such as hull overall fineness ratio, number of engines, airship hull and empennage drag coefficients, description of the mission profile, and weights of fixed equipment, fixed useful load and payload. In order to minimize computation time, the program makes ample use of optional computation paths.

  5. The worth of data in predicting aquitard continuity in hydrogeological design

    NASA Astrophysics Data System (ADS)

    James, Bruce R.; Freeze, R. Allan

    1993-07-01

    A Bayesian decision framework is developed for addressing questions of hydrogeological data worth associated with engineering design at sites in heterogeneous geological environments. The specific case investigated is one of remedial contaminant containment in an aquifer underlain by an aquitard of uncertain continuity. The framework is used to evaluate the worth of hard and soft data in investigating the aquitard's continuity. The analysis consists of four modules: (1) an aquitard realization generator based on indicator kriging, (2) a procedure for the Bayesian updating of the uncertainty with respect to aquitard windows, (3) a Monte Carlo simulation model for advective contaminant transport, and (4) an economic decision model. A sensitivity analysis for a generic design example involving a design decision between a no-action alternative and a containment alternative indicates that the data worth of a single borehole providing a hard point datum was more sensitive to economic parameters than to hydrogeological or geostatistical parameters. For this case, data worth is very sensitive to the projected cost of containment, the discount rate, and the estimated cost of failure. When it comes to hydrogeological parameters, such as the representative hydraulic conductivity of the aquitard or underlying aquifer, the sensitivity analysis indicates that it is more important to know whether the field value is above or below some threshold value than it is to know its actual numerical value. A good conceptual understanding of the site geology is important in estimating prior uncertainties. The framework was applied in a retrospective fashion to the design of a remediation program for soil contaminated by radioactive waste disposal at the Savannah River site in South Carolina. The cost-effectiveness of different patterns of boreholes was studied. A contour map is presented for the net expected value of sample information (EVSI) for a single borehole. The net EVSI of patterns of precise point measurements is also compared to that of an imprecise seismic survey.

  6. Impact resistance of composite fan blades

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Results are presented of a program to determine the impact resistance of composite fan blades subjected to foreign object damage (FOD) while operating under conditions simulating a short take-off and landing (STOL) engine at takeoff. The full-scale TF39 first-stage fan blade was chosen as the base design for the demonstration component since its configuration and operating tip speeds are similar to a typical STOL fan blade several composite configurations had already been designed and evaluated under previous programs. The first portion of the program was devoted toward fabricating and testing high impact resistant, aerodynamically acceptable composite blades which utilized only a single material system in any given blade. In order to increase the blade impact capability beyond this point, several mixed material (hybrid) designs were investigated using S-glass and Kevlar as well as boron and graphite fibers. These hybrid composite blades showed a marked improvement in resistance to bird impact over those blades made of a single composite material. The work conducted under this program has demonstrated substantial improvement in composite fan blades with respect to FOD resistance and has indicated that the hybrid design concept, which utilizes different types of fibers in various portions of a fan blade design depending on the particular requirements of the different areas and the characteristics of the different fibers involved, shows a significant improvement over those designs utilizing only one material system.

  7. The Predictive Value of Preoperative Health-Related Quality-of-Life Scores on Postoperative Patient-Reported Outcome Scores in Lumbar Spine Surgery

    PubMed Central

    Hey, Hwee Weng Dennis; Luo, Nan; Chin, Sze Yung; Lau, Eugene Tze Chun; Wang, Pei; Kumar, Naresh; Lau, Leok-Lim; Ruiz, John Nathaniel; Thambiah, Joseph Shanthakumar; Liu, Ka-Po Gabriel; Wong, Hee-Kit

    2017-01-01

    Study Design: A single-center, retrospective cohort study. Objective: To predict patient-reported outcomes (PROs) using preoperative health-related quality-of-life (HRQoL) scores by quantifying the correlation between them, so as to aid selection of surgical candidates and preoperative counselling. Methods: All patients who underwent single-level elective lumbar spine surgery over a 2-year period were divided into 3 diagnosis groups: spondylolisthesis, spinal stenosis, and disc herniation. Patient characteristics and health scores (Oswestry Low Back Pain and Disability Index [ODI], EQ-5D, and Short Form-36 version 2 [SF-36v2]) were collected at 6 and 24 months and compared between the 3 diagnosis groups. Multivariate modelling was performed to investigate the predictive value of each parameter, particularly preoperative ODI and EQ-5D, on postoperative ODI and EQ-5D scores for all the patients. Results: ODI and EQ-5D at 6 and 24 months improved significantly for all patients, especially in the disc herniation group, compared to the baseline. The magnitude of improvement in ODI and EQ-5D was predictable using preoperative ODI, EQ-5D, and SF-36v2 Mental Component Score. At 6 months, 1-point baseline ODI predicts for 0.7-point increase in changed ODI, and a 0.01-point increase in baseline EQ-5D predicts for 0.01-point decrease in changed EQ-5D score. At 24 months, 1-point baseline ODI predicts for 1-point increase in changed ODI, and a 0.01-point increase in baseline EQ-5D predicts for 0.009-point decrease in changed EQ-5D. A younger age is shown to be a positive predictor of ODI at 24 months. Conclusions: Poorer baseline health scores predict greater improvement in postoperative PROs at 6 and 24 months after the surgery. HRQoL scores can be used to decide on surgery and in preoperative counselling. PMID:29662746

  8. A Novel Health Evaluation Strategy for Multifunctional Self-Validating Sensors

    PubMed Central

    Shen, Zhengguang; Wang, Qi

    2013-01-01

    The performance evaluation of sensors is very important in actual application. In this paper, a theory based on multi-variable information fusion is studied to evaluate the health level of multifunctional sensors. A novel conception of health reliability degree (HRD) is defined to indicate a quantitative health level, which is different from traditional so-called qualitative fault diagnosis. To evaluate the health condition from both local and global perspectives, the HRD of a single sensitive component at multiple time points and the overall multifunctional sensor at a single time point are defined, respectively. The HRD methodology is emphasized by using multi-variable data fusion technology coupled with a grey comprehensive evaluation method. In this method, to acquire the distinct importance of each sensitive unit and the sensitivity of different time points, the information entropy and analytic hierarchy process method are used, respectively. In order to verify the feasibility of the proposed strategy, a health evaluating experimental system for multifunctional self-validating sensors was designed. The five different health level situations have been discussed. Successful results show that the proposed method is feasible, the HRD could be used to quantitatively indicate the health level and it does have a fast response to the performance changes of multifunctional sensors. PMID:23291576

  9. Laparoendoscopic single-site surgery (LESS) versus conventional laparoscopic surgery for adnexal preservation: a randomized controlled study

    PubMed Central

    Cho, Yeon Jean; Kim, Mi-La; Lee, Soo Yoon; Lee, Hee Suk; Kim, Joo Myoung; Joo, Kwan Young

    2012-01-01

    Objective To compare the operative outcomes, postoperative pain, and subsequent convalescence after laparoendoscopic single-site surgery (LESS) or conventional laparoscopic surgery for adnexal preservation. Study design From December 2009 to September 2010, 63 patients underwent LESS (n = 33) or a conventional laparoscopic surgery (n = 30) for cyst enucleation. The overall operative outcomes including postoperative pain measurement using the visual analog scale (VAS) were evaluated (time points 6, 24, and 24 hours). The convalescence data included data obtained from questionnaires on the need for analgesics and on patient-reported time to recovery end points. Results The preoperative characteristics did not significantly differ between the two groups. The postoperative hemoglobin drop was higher in the LESS group than in the conventional laparoscopic surgery group (P = 0.048). Postoperative pain at each VAS time point, oral analgesic requirement, intramuscular analgesic requirement, and the number of days until return to work were similar in both groups. Conclusion In adnexa-preserving surgery performed in reproductive-age women, the operative outcomes, including satisfaction of the patients and convalescence after surgery, are comparable for LESS and conventional laparoscopy. LESS may be a feasible and a promising alternative method for scarless abdominal surgery in the treatment of young women with adnexal cysts PMID:22448110

  10. Converging Redundant Sensor Network Information for Improved Building Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale Tiller; D. Phil; Gregor Henze

    2007-09-30

    This project investigated the development and application of sensor networks to enhance building energy management and security. Commercial, industrial and residential buildings often incorporate systems used to determine occupancy, but current sensor technology and control algorithms limit the effectiveness of these systems. For example, most of these systems rely on single monitoring points to detect occupancy, when more than one monitoring point could improve system performance. Phase I of the project focused on instrumentation and data collection. During the initial project phase, a new occupancy detection system was developed, commissioned and installed in a sample of private offices and open-planmore » office workstations. Data acquisition systems were developed and deployed to collect data on space occupancy profiles. Phase II of the project demonstrated that a network of several sensors provides a more accurate measure of occupancy than is possible using systems based on single monitoring points. This phase also established that analysis algorithms could be applied to the sensor network data stream to improve the accuracy of system performance in energy management and security applications. In Phase III of the project, the sensor network from Phase I was complemented by a control strategy developed based on the results from the first two project phases: this controller was implemented in a small sample of work areas, and applied to lighting control. Two additional technologies were developed in the course of completing the project. A prototype web-based display that portrays the current status of each detector in a sensor network monitoring building occupancy was designed and implemented. A new capability that enables occupancy sensors in a sensor network to dynamically set the 'time delay' interval based on ongoing occupant behavior in the space was also designed and implemented.« less

  11. Development of a low frost-point generator operating at sub-atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Cuccaro, R.; Rosso, L.; Smorgon, D.; Beltramino, G.; Tabandeh, S.; Fernicola, V.

    2018-05-01

    A low frost-point generator (INRIM 03) operating at sub-atmospheric pressure has been designed and constructed at the Istituto Nazionale di Ricerca Metrologica (INRIM) as part of a calibration facility for upper-air sounding instruments. This new humidity generator covers the frost-point temperature range between  ‑99 °C and  ‑20 °C and works at any controlled pressure between 200 hPa and 1100 hPa, achieving a complete saturation of the carrier gas (nitrogen) in a single passage through a stainless steel isothermal saturator. The generated humid gas contains a water vapour amount fraction between 14  ×  10‑9 mol mol‑1 and 5  ×  10‑3 mol mol‑1. In this work the design of the generator is reported together with characterisation and performance evaluation tests. A preliminary validation of the INRIM 03 against one of the INRIM humidity standards in the common region is also included. Based on experimental test results, an initial uncertainty evaluation of the generated frost-point temperature, T fp, and water vapour amount fraction, x w, in the limited range down to  ‑75 °C at atmospheric pressure is reported. For the frost-point temperature, the uncertainty budget yields a total expanded uncertainty (k  =  2) of less than 0.028 °C, while for the mole fraction the budget yields a total expanded uncertainty of less than 10‑6 mol mol‑1.

  12. FRACTURE STRENGTH AND TIME DEPENDENT PROPERTIES OF 0/90 AND ±55-BRAIDED WEAVE SiC/SiC TYPE-S FIBER COMPOSITES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henager, Charles H.

    PNNL has performed mechanical property tests on two types of Hi-Nicalon Type-S fiber SiC/SiC composites for the general purpose of evaluating such composites for control rod guide tube applications in the NGNP high-temperature gas-cooled reactor design. The mechanical testing consisted of 4-point bend strength, 4-point single-edge notched bend fracture toughness, and 4-point bend slow crack growth testing on both composites from ambient to 1600°C (1873K). The two composite materials that were tested included a ±55°-braided-weave composite with Type-S fibers inclined at 55° to the principal composite axes to simulate a braided tube architecture and a Type-S 0/90 satin-weave composite asmore » a reference material.« less

  13. Evaluation of selective vs. point-source perforating for hydraulic fracturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Underwood, P.J.; Kerley, L.

    1996-12-31

    This paper is a case history comparing and evaluating the effects of fracturing the Reef Ridge Diatomite formation in the Midway-Sunset Field, Kern County, California, using {open_quotes}select-fire{close_quotes} and {open_quotes}point-source{close_quotes} perforating completions. A description of the reservoir, production history, and fracturing techniques used leading up to this study is presented. Fracturing treatment analysis and production history matching were used to evaluate the reservoir and fracturing parameters for both completion types. The work showed that single fractures were created with the point-source (PS) completions, and multiple fractures resulted from many of the select-fire (SF) completions. A good correlation was developed between productivitymore » and the product of formation permeability, net fracture height, bottomhole pressure, and propped fracture length. Results supported the continued development of 10 wells using the PS concept with a more efficient treatment design, resulting in substantial cost savings.« less

  14. Parametric Human Body Reconstruction Based on Sparse Key Points.

    PubMed

    Cheng, Ke-Li; Tong, Ruo-Feng; Tang, Min; Qian, Jing-Ye; Sarkis, Michel

    2016-11-01

    We propose an automatic parametric human body reconstruction algorithm which can efficiently construct a model using a single Kinect sensor. A user needs to stand still in front of the sensor for a couple of seconds to measure the range data. The user's body shape and pose will then be automatically constructed in several seconds. Traditional methods optimize dense correspondences between range data and meshes. In contrast, our proposed scheme relies on sparse key points for the reconstruction. It employs regression to find the corresponding key points between the scanned range data and some annotated training data. We design two kinds of feature descriptors as well as corresponding regression stages to make the regression robust and accurate. Our scheme follows with dense refinement where a pre-factorization method is applied to improve the computational efficiency. Compared with other methods, our scheme achieves similar reconstruction accuracy but significantly reduces runtime.

  15. Analgesic effects of treatments for non-specific low back pain: a meta-analysis of placebo-controlled randomized trials.

    PubMed

    Machado, L A C; Kamper, S J; Herbert, R D; Maher, C G; McAuley, J H

    2009-05-01

    Estimates of treatment effects reported in placebo-controlled randomized trials are less subject to bias than those estimates provided by other study designs. The objective of this meta-analysis was to estimate the analgesic effects of treatments for non-specific low back pain reported in placebo-controlled randomized trials. Medline, Embase, Cinahl, PsychInfo and Cochrane Central Register of Controlled Trials databases were searched for eligible trials from earliest records to November 2006. Continuous pain outcomes were converted to a common 0-100 scale and pooled using a random effects model. A total of 76 trials reporting on 34 treatments were included. Fifty percent of the investigated treatments had statistically significant effects, but for most the effects were small or moderate: 47% had point estimates of effects of <10 points on the 100-point scale, 38% had point estimates from 10 to 20 points and 15% had point estimates of >20 points. Treatments reported to have large effects (>20 points) had been investigated only in a single trial. This meta-analysis revealed that the analgesic effects of many treatments for non-specific low back pain are small and that they do not differ in populations with acute or chronic symptoms.

  16. Experimental validation of a newly designed 6 degrees of freedom scanning laser head: Application to three-dimensional beam structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Maio, D., E-mail: dario.dimaio@bristol.ac.uk; Copertaro, E.

    2013-12-15

    A new scanning laser head is designed to use single Laser Doppler Vibrometer (LDV) for performing measurements up to 6 degrees of freedom (DOF) at a target. The scanning head is supported by a rotating hollow shaft, which allows the laser beam to travel up to the scanning head from an opposite direction where an LDV is set up. The scanning head is made of a set of two mirrors, which deflects the laser beam with an angle so that the rotation of the scanning head produces a conical scan. When measurements are performed at the focal point of themore » conical scan then three translational vibration components can be measured, otherwise the very small circle scan, before and after the focal point, can measure up to 6 degrees of freedom, including three translations and three rotations. This paper presents the 6DOF scanning head and the measurements of 3D operational deflection shapes of a test structure.« less

  17. Design with limited anthropometric data: A method of interpreting sums of percentiles in anthropometric design.

    PubMed

    Albin, Thomas J

    2017-07-01

    Occasionally practitioners must work with single dimensions defined as combinations (sums or differences) of percentile values, but lack information (e.g. variances) to estimate the accommodation achieved. This paper describes methods to predict accommodation proportions for such combinations of percentile values, e.g. two 90th percentile values. Kreifeldt and Nah z-score multipliers were used to estimate the proportions accommodated by combinations of percentile values of 2-15 variables; two simplified versions required less information about variance and/or correlation. The estimates were compared to actual observed proportions; for combinations of 2-15 percentile values the average absolute differences ranged between 0.5 and 1.5 percentage points. The multipliers were also used to estimate adjusted percentile values, that, when combined, estimate a desired proportion of the combined measurements. For combinations of two and three adjusted variables, the average absolute difference between predicted and observed proportions ranged between 0.5 and 3.0 percentage points. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Conceptual design of the CZMIL data processing system (DPS): algorithms and software for fusing lidar, hyperspectral data, and digital images

    NASA Astrophysics Data System (ADS)

    Park, Joong Yong; Tuell, Grady

    2010-04-01

    The Data Processing System (DPS) of the Coastal Zone Mapping and Imaging Lidar (CZMIL) has been designed to automatically produce a number of novel environmental products through the fusion of Lidar, spectrometer, and camera data in a single software package. These new products significantly transcend use of the system as a bathymeter, and support use of CZMIL as a complete coastal and benthic mapping tool. The DPS provides a spinning globe capability for accessing data files; automated generation of combined topographic and bathymetric point clouds; a fully-integrated manual editor and data analysis tool; automated generation of orthophoto mosaics; automated generation of reflectance data cubes from the imaging spectrometer; a coupled air-ocean spectral optimization model producing images of chlorophyll and CDOM concentrations; and a fusion based capability to produce images and classifications of the shallow water seafloor. Adopting a multitasking approach, we expect to achieve computation of the point clouds, DEMs, and reflectance images at a 1:1 processing to acquisition ratio.

  19. Single axis control of ball position in magnetic levitation system using fuzzy logic control

    NASA Astrophysics Data System (ADS)

    Sahoo, Narayan; Tripathy, Ashis; Sharma, Priyaranjan

    2018-03-01

    This paper presents the design and real time implementation of Fuzzy logic control(FLC) for the control of the position of a ferromagnetic ball by manipulating the current flowing in an electromagnet that changes the magnetic field acting on the ball. This system is highly nonlinear and open loop unstable. Many un-measurable disturbances are also acting on the system, making the control of it highly complex but interesting for any researcher in control system domain. First the system is modelled using the fundamental laws, which gives a nonlinear equation. The nonlinear model is then linearized at an operating point. Fuzzy logic controller is designed after studying the system in closed loop under PID control action. The controller is then implemented in real time using Simulink real time environment. The controller is tuned manually to get a stable and robust performance. The set point tracking performance of FLC and PID controllers were compared and analyzed.

  20. Thermal design, analysis and comparison on three concepts of space solar power satellite

    NASA Astrophysics Data System (ADS)

    Yang, Chen; Hou, Xinbin; Wang, Li

    2017-08-01

    Space solar power satellites (SSPS) have been widely studied as systems for collecting solar energy in space and transmitting it wirelessly to earth. A previously designed planar SSPS concept collects solar power in two huge arrays and then transmits it through one side of the power-conduction joint to the antenna. However, the system's one group of power-conduction joints may induce a single point of failure. As an SSPS concept, the module symmetrical concentrator (MSC) architecture has many advantages. This architecture can help avoid the need for a large, potentially failure-prone conductive rotating joint and limit wiring mass. However, the thermal control system has severely restricted the rapid development of MSC, especially in the sandwich module. Because of the synchronous existence of five suns concentration and solar external heat flux, the sandwich module will have a very high temperature, which will surpass the permissible temperature of the solar cells. Recently, an alternate multi-rotary joints (MR) SSPS concept was designed by the China Academy of Space Technology (CAST). This system has multiple joints to avoid the problem of a single point of failure. Meanwhile, this concept has another advantage for reducing the high power and heat removal in joints. It is well known to us that, because of the huge external flux in SSPS, the thermal management sub-system is an important component that cannot be neglected. Based on the three SSPS concepts, this study investigated the thermal design and analysis of a 1-km, gigawatt-level transmitting antenna in SSPS. This study compares the thermal management sub-systems of power-conduction joints in planar and MR SSPS. Moreover, the study considers three classic thermal control architectures of the MSC's sandwich module: tile, step, and separation. The study also presents an elaborate parameter design, analysis and discussion of step architecture. Finally, the results show the thermal characteristics of each SSPS concept, and the three concepts are compared. The design layouts, analysis results and parameter discussions of the thermal management sub-system proposed in this study can help inform future SSPS thermal designs.

  1. Clinical Outcome of Inter-Proximal Papilla between a Tooth and a Single Implant Treated with CAD/CAM Abutments: a Cross-Sectional Study

    PubMed Central

    Lima, Tiago; Carvalho, Ágata; Carvalho, Vasco

    2012-01-01

    ABSTRACT Objectives The aim of this study was to assess the clinical outcomes achieved with Computer-Assisted Design/Computer-Assisted Manufacturing implant abutments in the anterior maxilla. Material and Methods Nineteen patients with a mean age of 41 (range form 26 to 63) years, treated with 21 single tooth implants and 21 Computer-Assisted Design/Computer-Assisted Manufacturing (CAD/CAM) abutments in the anterior maxillary region were included in this study. The patients followed 4 criteria of inclusion: (1) had a single-tooth implant in the anterior maxilla, (2) had a CAD/CAM abutment, (3) had a contralateral natural tooth, (4) the implant was restored and in function for at least 6 months up to 2 years. Cases without contact point were excluded. Presence/absence of the interproximal papilla, inter tooth-implant distance (ITD) and distance from the base of the contact point to dental crest bone of adjacent tooth (CPB) were accessed. Results Forty interproximal spaces were evaluated, with an average mesial CPB of 5.65 (SD 1.65) mm and distal CPB of 4.65 (SD 1.98) mm. An average mesial ITD of 2.49 (SD 0.69) mm and an average distal ITD of 1.89 (SD 0.63) mm were achieved. Papilla was present in all the interproximal spaces accessed. Conclusions The restoration of dental implants using CAD/CAM abutments is a predictable treatment with improved aesthetic results. These type of abutments seem to help maintaining a regular papillary filling although the variations of the implant positioning or the restoration teeth relation. PMID:24422016

  2. Multibody aircraft study, volume 2

    NASA Technical Reports Server (NTRS)

    Moore, J. W.; Craven, E. P.; Farmer, B. T.; Honrath, J. F.; Stephens, R. E.; Bronson, C. E., Jr.; Meyer, R. T.; Hogue, J. G.

    1981-01-01

    The potential benefits of a multibody aircraft when compared to a single body aircraft are presented. The analyses consist principally of a detailed point design analysis of three multibody and one single body aircraft, based on a selected payload of 350,000 kg (771,618 lb), for final aircraft definitions; sensitivity studies to evaluate the effects of variations in payload, wing semispan body locations, and fuel price; recommendations as to the research and technology requirements needed to validate the multibody concept. Two, two body, one, three body, and one single body aircraft were finalized for the selected payload, with DOC being the prime figure of merit. When compared to the single body, the multibody aircraft showed a reduction in DOC by as much as 11.3 percent. Operating weight was reduced up to 14 percent, and fly away cost reductions ranged from 8.6 to 13.4 percent. Weight reduction, hence cost, of the multibody aircraft resulted primarily from the wing bending relief afforded by the bodies being located outboard on the wing.

  3. Multibody aircraft study, volume 1

    NASA Technical Reports Server (NTRS)

    Moore, J. W.; Craven, E. P.; Farmer, B. T.; Honrath, J. F.; Stephens, R. E.; Bronson, C. E., Jr.; Meyer, R. T.; Hogue, J. H.

    1982-01-01

    The potential benefits of a multibody aircraft when compared to a single body aircraft are presented. The analyses consist principally of a detailed point design analysis of three multibody and one single body aircraft, based on a selected payload of 350,000 kg (771,618 lb), for final aircraft definitions; sensitivity studies to evaluate the effects of variations in payload, wing semispan body locations, and fuel price; recommendations as to the research and technology requirements needed to validate the multibody concept. Two, two body, one, three body, and one single body aircraft were finalized for the selected payload, with DOC being the prime figure of merit. When compared to the single body, the multibody aircraft showed a reduction in DOC by as much as 11.3 percent. Operating weight was reduced up to 14 percent, and fly away cost reductions ranged from 8.6 to 13.4 percent. Weight reduction, hence cost, of the multibody aircraft resulted primarily from the wing bending relief afforded by the bodies being located outboard on the wing.

  4. Effect of Chlorine Substitution on Sulfide Reactivity with OH Radicals

    DTIC Science & Technology

    2008-09-01

    Single point energy: MP2/6-311+G(3df,2p) (LRG) • Zero Point Energy from a vibrational frequency analysis: MP2/6-31++G** ( ZPE ) • Extrapolated energy...E(QCI) + E(LARG) – E(SML) + ZPE • Characterize the TS • Use a three-point fit methodology – fit a harmonic potential to three CCSD single point

  5. 49 CFR 172.315 - Packages containing limited quantities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... applicable, for the entry as shown in the § 172.101 Table, and placed within a square-on-point border in... to the package as to be readily visible. The width of line forming the square-on-point must be at... square-on-points bearing a single ID number, or a single square-on-point large enough to include each...

  6. Evaluating statistical and clinical significance of intervention effects in single-case experimental designs: an SPSS method to analyze univariate data.

    PubMed

    Maric, Marija; de Haan, Else; Hogendoorn, Sanne M; Wolters, Lidewij H; Huizenga, Hilde M

    2015-03-01

    Single-case experimental designs are useful methods in clinical research practice to investigate individual client progress. Their proliferation might have been hampered by methodological challenges such as the difficulty applying existing statistical procedures. In this article, we describe a data-analytic method to analyze univariate (i.e., one symptom) single-case data using the common package SPSS. This method can help the clinical researcher to investigate whether an intervention works as compared with a baseline period or another intervention type, and to determine whether symptom improvement is clinically significant. First, we describe the statistical method in a conceptual way and show how it can be implemented in SPSS. Simulation studies were performed to determine the number of observation points required per intervention phase. Second, to illustrate this method and its implications, we present a case study of an adolescent with anxiety disorders treated with cognitive-behavioral therapy techniques in an outpatient psychotherapy clinic, whose symptoms were regularly assessed before each session. We provide a description of the data analyses and results of this case study. Finally, we discuss the advantages and shortcomings of the proposed method. Copyright © 2014. Published by Elsevier Ltd.

  7. Design and Analysis of a Single-Camera Omnistereo Sensor for Quadrotor Micro Aerial Vehicles (MAVs) †

    PubMed Central

    Jaramillo, Carlos; Valenti, Roberto G.; Guo, Ling; Xiao, Jizhong

    2016-01-01

    We describe the design and 3D sensing performance of an omnidirectional stereo (omnistereo) vision system applied to Micro Aerial Vehicles (MAVs). The proposed omnistereo sensor employs a monocular camera that is co-axially aligned with a pair of hyperboloidal mirrors (a vertically-folded catadioptric configuration). We show that this arrangement provides a compact solution for omnidirectional 3D perception while mounted on top of propeller-based MAVs (not capable of large payloads). The theoretical single viewpoint (SVP) constraint helps us derive analytical solutions for the sensor’s projective geometry and generate SVP-compliant panoramic images to compute 3D information from stereo correspondences (in a truly synchronous fashion). We perform an extensive analysis on various system characteristics such as its size, catadioptric spatial resolution, field-of-view. In addition, we pose a probabilistic model for the uncertainty estimation of 3D information from triangulation of back-projected rays. We validate the projection error of the design using both synthetic and real-life images against ground-truth data. Qualitatively, we show 3D point clouds (dense and sparse) resulting out of a single image captured from a real-life experiment. We expect the reproducibility of our sensor as its model parameters can be optimized to satisfy other catadioptric-based omnistereo vision under different circumstances. PMID:26861351

  8. New nucleic acid testing devices to diagnose infectious diseases in resource-limited settings.

    PubMed

    Maffert, P; Reverchon, S; Nasser, W; Rozand, C; Abaibou, H

    2017-10-01

    Point-of-care diagnosis based on nucleic acid testing aims to incorporate all the analytical steps, from sample preparation to nucleic acid amplification and detection, in a single device. This device needs to provide a low-cost, robust, sensitive, specific, and easily readable analysis. Microfluidics has great potential for handling small volumes of fluids on a single platform. Microfluidic technology has recently been applied to paper, which is already used in low-cost lateral flow tests. Nucleic acid extraction from a biological specimen usually requires cell filtration and lysis on specific membranes, while affinity matrices, such as chitosan or polydiacetylene, are well suited to concentrating nucleic acids for subsequent amplification. Access to electricity is often difficult in resource-limited areas, so the amplification step needs to be equipment-free. Consequently, the reaction has to be isothermal to alleviate the need for a thermocycler. LAMP, NASBA, HDA, and RPA are examples of the technologies available. Nucleic acid detection techniques are currently based on fluorescence, colorimetry, or chemiluminescence. For point-of-care diagnostics, the results should be readable with the naked eye. Nowadays, interpretation and communication of results to health professionals could rely on a smartphone, used as a telemedicine device. The major challenge of creating an "all-in-one" diagnostic test involves the design of an optimal solution and a sequence for each analytical step, as well as combining the execution of all these steps on a single device. This review provides an overview of available materials and technologies which seem to be adapted to point-of-care nucleic acid-based diagnosis, in low-resource areas.

  9. Control of broadband optically generated ultrasound pulses using binary amplitude holograms.

    PubMed

    Brown, Michael D; Jaros, Jiri; Cox, Ben T; Treeby, Bradley E

    2016-04-01

    In this work, the use of binary amplitude holography is investigated as a mechanism to focus broadband acoustic pulses generated by high peak-power pulsed lasers. Two algorithms are described for the calculation of the binary holograms; one using ray-tracing, and one using an optimization based on direct binary search. It is shown using numerical simulations that when a binary amplitude hologram is excited by a train of laser pulses at its design frequency, the acoustic field can be focused at a pre-determined distribution of points, including single and multiple focal points, and line and square foci. The numerical results are validated by acoustic field measurements from binary amplitude holograms, excited by a high peak-power laser.

  10. New laser design for NIR lidar applications

    NASA Astrophysics Data System (ADS)

    Vogelmann, H.; Trickl, T.; Perfahl, M.; Biggel, S.

    2018-04-01

    Recently, we quantified the very high spatio-temporal short term variability of tropospheric water vapor in a three dimensional study [1]. From a technical point of view this also depicted the general requirement of short integration times for recording water-vapor profiles with lidar. For this purpose, the only suitable technique is the differential absorption lidar (DIAL) working in the near-infrared (NIR) spectral region. The laser emission of most water vapor DIAL systems is generated by Ti:sapphire or alexandrite lasers. The water vapor absorption band at 817 nm is predominated for the use of Ti:sapphire. We present a new concept of transversely pumping in a Ti:Sapphire amplification stage as well as a compact laser design for the generation of single mode NIR pulses with two different DIAL wavelengths inside a single resonator. This laser concept allows for high output power due to repetitions rates up to 100Hz or even more. It is, because of its compactness, also suitable for mobile applications.

  11. Security analysis with improved design of post-confirmation mechanism for quantum sealed-bid auction with single photons

    NASA Astrophysics Data System (ADS)

    Zhang, Ke-Jia; Kwek, Leong-Chuan; Ma, Chun-Guang; Zhang, Long; Sun, Hong-Wei

    2018-02-01

    Quantum sealed-bid auction (QSA) has been widely studied in quantum cryptography. For a successful auction, post-confirmation is regarded as an important mechanism to make every bidder verify the identity of the winner after the auctioneer has announced the result. However, since the auctioneer may be dishonest and collude with malicious bidders in practice, some potential loopholes could exist. In this paper, we point out two types of collusion attacks for a particular post-confirmation technique with EPR pairs. And it is not difficult to see that there exists no unconditionally secure post-confirmation mechanism in the existing QSA model, if the dishonest participants have the ability to control multiparticle entanglement. In the view of this, we note that some secure implementation could exist if the participants are supposed to be semi-quantum, i.e., they can only control single photons. Finally, two potential methods to design post-confirmation mechanism are presented in this restricted scenario.

  12. A linear refractive photovoltaic concentrator solar array flight experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, P.A.; Murphy, D.M.; Piszczor, M.F.

    1995-12-31

    Concentrator arrays deliver a number of generic benefits for space including high array efficiency, protection from space radiation effects, and minimized plasma interactions. The line focus concentrator concept delivers two added advantages: (1) low-cost mass production of the lens material and, (2) relaxation of precise array tracking requirements to only a single axis. New array designs emphasize lightweight, high stiffness, stow-ability and ease of manufacture and assembly. The linear refractive concentrator can be designed to provide an essentially flat response over a wide range of longitudinal pointing errors for satellites having only single-axis tracking capability. In this paper the authorsmore » address the current status of the SCARLET linear concentrator program with special emphasis on hardware development of an array-level linear refractive concentrator flight experiment. An aggressive, 6-month development and flight validation program, sponsored by the Ballistic Missile Defense Organization (BMDO) and NASA Lewis Research Center, will quantify and verify SCARLET benefits with in-orbit performance measurements.« less

  13. Multispot single-molecule FRET: High-throughput analysis of freely diffusing molecules

    PubMed Central

    Panzeri, Francesco

    2017-01-01

    We describe an 8-spot confocal setup for high-throughput smFRET assays and illustrate its performance with two characteristic experiments. First, measurements on a series of freely diffusing doubly-labeled dsDNA samples allow us to demonstrate that data acquired in multiple spots in parallel can be properly corrected and result in measured sample characteristics consistent with those obtained with a standard single-spot setup. We then take advantage of the higher throughput provided by parallel acquisition to address an outstanding question about the kinetics of the initial steps of bacterial RNA transcription. Our real-time kinetic analysis of promoter escape by bacterial RNA polymerase confirms results obtained by a more indirect route, shedding additional light on the initial steps of transcription. Finally, we discuss the advantages of our multispot setup, while pointing potential limitations of the current single laser excitation design, as well as analysis challenges and their solutions. PMID:28419142

  14. Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy.

    PubMed

    Iwamoto, Shinichiro; Kai, Weihua; Isogai, Akira; Iwata, Tadahisa

    2009-09-14

    The elastic modulus of single microfibrils from tunicate ( Halocynthia papillosa ) cellulose was measured by atomic force microscopy (AFM). Microfibrils with cross-sectional dimensions 8 x 20 nm and several micrometers in length were obtained by oxidation of cellulose with 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) as a catalyst and subsequent mechanical disintegration in water and by sulfuric acid hydrolysis. The nanocellulosic materials were deposited on a specially designed silicon wafer with grooves 227 nm in width, and a three-point bending test was applied to determine the elastic modulus using an AFM cantilever. The elastic moduli of single microfibrils prepared by TEMPO-oxidation and acid hydrolysis were 145.2 +/- 31.3 and 150.7 +/- 28.8 GPa, respectively. The result showed that the experimentally determined modulus of the highly crystalline tunicate microfibrils was in agreement with the elastic modulus of native cellulose crystals.

  15. Molecular Dynamics Simulation of the Crystallizable Fragment of IgG1—Insights for the Design of Fcabs

    PubMed Central

    Lai, Balder; Hasenhindl, Christoph; Obinger, Christian; Oostenbrink, Chris

    2014-01-01

    An interesting format in the development of therapeutic monoclonal antibodies uses the crystallizable fragment of IgG1 as starting scaffold. Engineering of its structural loops allows generation of an antigen binding site. However, this might impair the molecule’s conformational stability, which can be overcome by introducing stabilizing point mutations in the CH3 domains. These point mutations often affect the stability and unfolding behavior of both the CH2 and CH3 domains. In order to understand this cross-talk, molecular dynamics simulations of the domains of the Fc fragment of human IgG1 are reported. The structure of human IgG1-Fc obtained from X-ray crystallography is used as a starting point for simulations of the wild-type protein at two different pH values. The stabilizing effect of a single point mutation in the CH3 domain as well as the impact of the hinge region and the glycan tree structure connected to the CH2 domains is investigated. Regions of high local flexibility were identified as potential sites for engineering antigen binding sites. Obtained data are discussed with respect to the available X-ray structure of IgG1-Fc, directed evolution approaches that screen for stability and use of the scaffold IgG1-Fc in the design of antigen binding Fc proteins. PMID:24451126

  16. An elevated neutrophil-lymphocyte ratio is associated with adverse outcomes following single time-point paracetamol (acetaminophen) overdose: a time-course analysis.

    PubMed

    Craig, Darren G; Kitto, Laura; Zafar, Sara; Reid, Thomas W D J; Martin, Kirsty G; Davidson, Janice S; Hayes, Peter C; Simpson, Kenneth J

    2014-09-01

    The innate immune system is profoundly dysregulated in paracetamol (acetaminophen)-induced liver injury. The neutrophil-lymphocyte ratio (NLR) is a simple bedside index with prognostic value in a number of inflammatory conditions. To evaluate the prognostic accuracy of the NLR in patients with significant liver injury following single time-point and staggered paracetamol overdoses. Time-course analysis of 100 single time-point and 50 staggered paracetamol overdoses admitted to a tertiary liver centre. Timed laboratory samples were correlated with time elapsed after overdose or admission, respectively, and the NLR was calculated. A total of 49/100 single time-point patients developed hepatic encephalopathy (HE). Median NLRs were higher at both 72 (P=0.0047) and 96 h after overdose (P=0.0041) in single time-point patients who died or were transplanted. Maximum NLR values by 96 h were associated with increasing HE grade (P=0.0005). An NLR of more than 16.7 during the first 96 h following overdose was independently associated with the development of HE [odds ratio 5.65 (95% confidence interval 1.67-19.13), P=0.005]. Maximum NLR values by 96 h were strongly associated with the requirement for intracranial pressure monitoring (P<0.0001), renal replacement therapy (P=0.0002) and inotropic support (P=0.0005). In contrast, in the staggered overdose cohort, the NLR was not associated with adverse outcomes or death/transplantation either at admission or subsequently. The NLR is a simple test which is strongly associated with adverse outcomes following single time-point, but not staggered, paracetamol overdoses. Future studies should assess the value of incorporating the NLR into existing prognostic and triage indices of single time-point paracetamol overdose.

  17. Generation of radio vortex beams with designable polarization using anisotropic frequency selective surface

    NASA Astrophysics Data System (ADS)

    Yang, Jin; Zhang, Cheng; Ma, Hui Feng; Zhao, Jie; Dai, Jun Yan; Yuan, Wei; Yang, Liu Xi; Cheng, Qiang; Cui, Tie Jun

    2018-05-01

    We propose a strategy to convert a linearly polarized wave from a single point source to an orbital angular momentum (OAM) wave by arbitrary polarization via an anisotropic frequency selective surface (FSS) in the microwave frequency. By tailoring the geometries of FSS elements, reflection-phases in x and y polarizations are engineered and encoded independently, which allows us to design the eventual polarization state of the generated OAM vortex beam by elaborately selecting individual coding sequences for each polarization. Two types of FSSs are designed and experimentally characterized to demonstrate the capability of OAM generation with circular and linear polarizations, respectively, showing excellent performance in a wide bandwidth from 14 to 16 GHz. This method provides opportunities for polarization multiplexing in microwave OAM communication systems.

  18. Feature-fused SSD: fast detection for small objects

    NASA Astrophysics Data System (ADS)

    Cao, Guimei; Xie, Xuemei; Yang, Wenzhe; Liao, Quan; Shi, Guangming; Wu, Jinjian

    2018-04-01

    Small objects detection is a challenging task in computer vision due to its limited resolution and information. In order to solve this problem, the majority of existing methods sacrifice speed for improvement in accuracy. In this paper, we aim to detect small objects at a fast speed, using the best object detector Single Shot Multibox Detector (SSD) with respect to accuracy-vs-speed trade-off as base architecture. We propose a multi-level feature fusion method for introducing contextual information in SSD, in order to improve the accuracy for small objects. In detailed fusion operation, we design two feature fusion modules, concatenation module and element-sum module, different in the way of adding contextual information. Experimental results show that these two fusion modules obtain higher mAP on PASCAL VOC2007 than baseline SSD by 1.6 and 1.7 points respectively, especially with 2-3 points improvement on some small objects categories. The testing speed of them is 43 and 40 FPS respectively, superior to the state of the art Deconvolutional single shot detector (DSSD) by 29.4 and 26.4 FPS.

  19. Low cost sensing of vegetation volume and structure with a Microsoft Kinect sensor

    NASA Astrophysics Data System (ADS)

    Azzari, G.; Goulden, M.

    2011-12-01

    The market for videogames and digital entertainment has decreased the cost of advanced technology to affordable levels. The Microsoft Kinect sensor for Xbox 360 is an infrared time of flight camera designed to track body position and movement at a single-articulation level. Using open source drivers and libraries, we acquired point clouds of vegetation directly from the Kinect sensor. The data were filtered for outliers, co-registered, and cropped to isolate the plant of interest from the surroundings and soil. The volume of single plants was then estimated with several techniques, including fitting with solid shapes (cylinders, spheres, boxes), voxel counts, and 3D convex/concave hulls. Preliminary results are presented here. The volume of a series of wild artichoke plants was measured from nadir using a Kinect on a 3m-tall tower. The calculated volumes were compared with harvested biomass; comparisons and derived allometric relations will be presented, along with examples of the acquired point clouds. This Kinect sensor shows promise for ground-based, automated, biomass measurement systems, and possibly for comparison/validation of remotely sensed LIDAR.

  20. Application of a single-objective, hybrid genetic algorithm approach to pharmacokinetic model building.

    PubMed

    Sherer, Eric A; Sale, Mark E; Pollock, Bruce G; Belani, Chandra P; Egorin, Merrill J; Ivy, Percy S; Lieberman, Jeffrey A; Manuck, Stephen B; Marder, Stephen R; Muldoon, Matthew F; Scher, Howard I; Solit, David B; Bies, Robert R

    2012-08-01

    A limitation in traditional stepwise population pharmacokinetic model building is the difficulty in handling interactions between model components. To address this issue, a method was previously introduced which couples NONMEM parameter estimation and model fitness evaluation to a single-objective, hybrid genetic algorithm for global optimization of the model structure. In this study, the generalizability of this approach for pharmacokinetic model building is evaluated by comparing (1) correct and spurious covariate relationships in a simulated dataset resulting from automated stepwise covariate modeling, Lasso methods, and single-objective hybrid genetic algorithm approaches to covariate identification and (2) information criteria values, model structures, convergence, and model parameter values resulting from manual stepwise versus single-objective, hybrid genetic algorithm approaches to model building for seven compounds. Both manual stepwise and single-objective, hybrid genetic algorithm approaches to model building were applied, blinded to the results of the other approach, for selection of the compartment structure as well as inclusion and model form of inter-individual and inter-occasion variability, residual error, and covariates from a common set of model options. For the simulated dataset, stepwise covariate modeling identified three of four true covariates and two spurious covariates; Lasso identified two of four true and 0 spurious covariates; and the single-objective, hybrid genetic algorithm identified three of four true covariates and one spurious covariate. For the clinical datasets, the Akaike information criterion was a median of 22.3 points lower (range of 470.5 point decrease to 0.1 point decrease) for the best single-objective hybrid genetic-algorithm candidate model versus the final manual stepwise model: the Akaike information criterion was lower by greater than 10 points for four compounds and differed by less than 10 points for three compounds. The root mean squared error and absolute mean prediction error of the best single-objective hybrid genetic algorithm candidates were a median of 0.2 points higher (range of 38.9 point decrease to 27.3 point increase) and 0.02 points lower (range of 0.98 point decrease to 0.74 point increase), respectively, than that of the final stepwise models. In addition, the best single-objective, hybrid genetic algorithm candidate models had successful convergence and covariance steps for each compound, used the same compartment structure as the manual stepwise approach for 6 of 7 (86 %) compounds, and identified 54 % (7 of 13) of covariates included by the manual stepwise approach and 16 covariate relationships not included by manual stepwise models. The model parameter values between the final manual stepwise and best single-objective, hybrid genetic algorithm models differed by a median of 26.7 % (q₁ = 4.9 % and q₃ = 57.1 %). Finally, the single-objective, hybrid genetic algorithm approach was able to identify models capable of estimating absorption rate parameters for four compounds that the manual stepwise approach did not identify. The single-objective, hybrid genetic algorithm represents a general pharmacokinetic model building methodology whose ability to rapidly search the feasible solution space leads to nearly equivalent or superior model fits to pharmacokinetic data.

  1. Molecular threading: mechanical extraction, stretching and placement of DNA molecules from a liquid-air interface.

    PubMed

    Payne, Andrew C; Andregg, Michael; Kemmish, Kent; Hamalainen, Mark; Bowell, Charlotte; Bleloch, Andrew; Klejwa, Nathan; Lehrach, Wolfgang; Schatz, Ken; Stark, Heather; Marblestone, Adam; Church, George; Own, Christopher S; Andregg, William

    2013-01-01

    We present "molecular threading", a surface independent tip-based method for stretching and depositing single and double-stranded DNA molecules. DNA is stretched into air at a liquid-air interface, and can be subsequently deposited onto a dry substrate isolated from solution. The design of an apparatus used for molecular threading is presented, and fluorescence and electron microscopies are used to characterize the angular distribution, straightness, and reproducibility of stretched DNA deposited in arrays onto elastomeric surfaces and thin membranes. Molecular threading demonstrates high straightness and uniformity over length scales from nanometers to micrometers, and represents an alternative to existing DNA deposition and linearization methods. These results point towards scalable and high-throughput precision manipulation of single-molecule polymers.

  2. Lymphocyte signaling : beyond knockouts

    PubMed Central

    Saveliev, Alexander; Tybulewicz, Victor L. J.

    2016-01-01

    The analysis of lymphocyte signaling was greatly enhanced by the advent of gene targeting, which allows the selective inactivation of a single gene. Whereas this gene ‘knockout’ approach is often informative, in many cases the phenotype resulting from gene ablation might not provide a complete picture of the function of the corresponding protein. If a protein has multiple functions within a single or several signaling pathways, or stabilizes other proteins in a complex, the phenotypic consequences of a gene knockout may manifest as a combination of several different perturbations. In these cases, gene targeting to ‘knockin’ subtle point mutations might provide more accurate insight into protein function. However, to be informative, such mutations must be carefully designed based on structural and biophysical data. PMID:19295633

  3. CHARACTERIZATION OF POLED SINGLE-LAYER PZT FOR PIEZO STACK IN FUEL INJECTION SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hong; Matsunaga, Tadashi; Lin, Hua-Tay

    2010-01-01

    Poled single-layer PZT has been characterized in as-extracted and as-received states. PZT plate specimens in the former were extracted from a stack. Flexure strength of PZT was evaluated by using ball-on-ring and 4-point bend tests. Fractography showed that intergranular fractures dominated the fracture surface and that volume pores were the primary strength-limiting flaws. The electric field effect was investigated by testing the PZT in open circuit and coercive field levels. An asymmetrical response on the biaxial flexure strength with respect to the electric field direction was observed. These experimental results will assist reliability design of the piezo stack that ismore » being considered in fuel injection system.« less

  4. Combining System Safety and Reliability to Ensure NASA CoNNeCT's Success

    NASA Technical Reports Server (NTRS)

    Havenhill, Maria; Fernandez, Rene; Zampino, Edward

    2012-01-01

    Hazard Analysis, Failure Modes and Effects Analysis (FMEA), the Limited-Life Items List (LLIL), and the Single Point Failure (SPF) List were applied by System Safety and Reliability engineers on NASA's Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT) Project. The integrated approach involving cross reviews of these reports by System Safety, Reliability, and Design engineers resulted in the mitigation of all identified hazards. The outcome was that the system met all the safety requirements it was required to meet.

  5. The motion control of a statically stable biped robot on an uneven floor.

    PubMed

    Shih, C L; Chiou, C J

    1998-01-01

    This work studies the motion control of a statically stable biped robot having seven degrees of freedom. Statically stable walking of the biped robot is realized by maintaining the center-of-gravity inside the convex region of the supporting foot and/or feet during both single-support and double-support phases. The main points of this work are framing the stability in an easy and correct way, the design of a bipedal statically stable walker, and walking on sloping surfaces and stairs.

  6. Video-Based Intervention in Teaching Fraction Problem-Solving to Students with Autism Spectrum Disorder.

    PubMed

    Yakubova, Gulnoza; Hughes, Elizabeth M; Hornberger, Erin

    2015-09-01

    The purpose of this study was to determine the effectiveness of a point-of-view video modeling intervention to teach mathematics problem-solving when working on word problems involving subtracting mixed fractions with uncommon denominators. Using a multiple-probe across students design of single-case methodology, three high school students with ASD completed the study. All three students demonstrated greater accuracy in solving fraction word problems and maintained accuracy levels at a 1-week follow-up.

  7. SCMOS (Scalable Complementary Metal Oxide Silicon) Silicon Compiler Organelle Design and Insertion.

    DTIC Science & Technology

    1987-12-01

    polysilicon running horizontally), with the p-type toward Vdd and the n-type toward GND. * Substrate contacts are connected by metal to supply rails...IN’) + (CIN’) Note: The single quote (’) represents the ’not’ of the variable. Figure 2.3 Logic Expressions.. * First metal and polysilicon are... polysilicon . *All external connections to 1,10, CLOCK, Vdd and G.ND end at least 2 units past first metal that is not an 1,0 point. *All external

  8. Cooperative dual catalysis: application to the highly enantioselective conjugate cyanation of unsaturated imides.

    PubMed

    Sammis, Glenn M; Danjo, Hiroshi; Jacobsen, Eric N

    2004-08-18

    Cooperative heterobimetallic catalysis was used as a design principle to achieve a highly reactive system for the enantioselective conjugate addition of cyanide to alpha,beta-unsaturated imides. A dual-catalyst pathway involving chiral (salen)Al complex 1b and chiral (pybox)Er complex 4b provides measurable improvements in rates and enantioselectivities relative to single-catalyst systems. Mechanistic studies point to a cooperative bimetallic mechanism involving activation of the imide by the Al complex and activation of cyanide by the Er complex.

  9. Multi-beam and single-chip LIDAR with discrete beam steering by digital micromirror device

    NASA Astrophysics Data System (ADS)

    Rodriguez, Joshua; Smith, Braden; Hellman, Brandon; Gin, Adley; Espinoza, Alonzo; Takashima, Yuzuru

    2018-02-01

    A novel Digital Micromirror Device (DMD) based beam steering enables a single chip Light Detection and Ranging (LIDAR) system for discrete scanning points. We present increasing number of scanning point by using multiple laser diodes for Multi-beam and Single-chip DMD-based LIDAR.

  10. Satellite switched FDMA advanced communication technology satellite program

    NASA Technical Reports Server (NTRS)

    Atwood, S.; Higton, G. H.; Wood, K.; Kline, A.; Furiga, A.; Rausch, M.; Jan, Y.

    1982-01-01

    The satellite switched frequency division multiple access system provided a detailed system architecture that supports a point to point communication system for long haul voice, video and data traffic between small Earth terminals at Ka band frequencies at 30/20 GHz. A detailed system design is presented for the space segment, small terminal/trunking segment at network control segment for domestic traffic model A or B, each totaling 3.8 Gb/s of small terminal traffic and 6.2 Gb/s trunk traffic. The small terminal traffic (3.8 Gb/s) is emphasized, for the satellite router portion of the system design, which is a composite of thousands of Earth stations with digital traffic ranging from a single 32 Kb/s CVSD voice channel to thousands of channels containing voice, video and data with a data rate as high as 33 Mb/s. The system design concept presented, effectively optimizes a unique frequency and channelization plan for both traffic models A and B with minimum reorganization of the satellite payload transponder subsystem hardware design. The unique zoning concept allows multiple beam antennas while maximizing multiple carrier frequency reuse. Detailed hardware design estimates for an FDMA router (part of the satellite transponder subsystem) indicate a weight and dc power budget of 353 lbs, 195 watts for traffic model A and 498 lbs, 244 watts for traffic model B.

  11. Using Design Capability Indices to Satisfy Ranged Sets of Design Requirements

    NASA Technical Reports Server (NTRS)

    Chen, Wei; Allen, Janet K.; Simpson, Timothy W.; Mistree, Farrokh

    1996-01-01

    For robust design it is desirable to allow the design requirements to vary within a certain range rather than setting point targets. This is particularly important during the early stages of design when little is known about the system and its requirements. Toward this end, design capability indices are developed in this paper to assess the capability of a family of designs, represented by a range of top-level design specifications, to satisfy a ranged set of design requirements. Design capability indices are based on process capability indices from statistical process control and provide a single objective, alternate approach to the use of Taguchi's signal-to- noise ratio which is often used for robust design. Successful implementation of design capability indices ensures that a family of designs conforms to a given ranged set of design requirements. To demonstrate an application and the usefulness of design capability indices, the design of a solar powered irrigation system is presented. Our focus in this paper is on the development and implementation of design capability indices as an alternate approach to the use of the signal-to-noise ratio and not on the results of the example problem, per se.

  12. Analysis of data from NASA B-57B gust gradient program

    NASA Technical Reports Server (NTRS)

    Frost, W.; Lin, M. C.; Chang, H. P.; Ringnes, E.

    1985-01-01

    Statistical analysis of the turbulence measured in flight 6 of the NASA B-57B over Denver, Colorado, from July 7 to July 23, 1982 included the calculations of average turbulence parameters, integral length scales, probability density functions, single point autocorrelation coefficients, two point autocorrelation coefficients, normalized autospectra, normalized two point autospectra, and two point cross sectra for gust velocities. The single point autocorrelation coefficients were compared with the theoretical model developed by von Karman. Theoretical analyses were developed which address the effects spanwise gust distributions, using two point spatial turbulence correlations.

  13. Design and Study of a LOX/GH2 Throttleable Swirl Injector for Rocket Applications

    NASA Technical Reports Server (NTRS)

    Greene, Christopher; Woodward, Roger; Pal, Sibtosh; Santoro, Robert

    2002-01-01

    A LOX/GH2 swirl injector was designed for a 10:1 propellant throttling range. To accomplish this, a dual LOX manifold was used feeding a single common vortex chamber of the swirl element. Hot-fire experiments were conducted for rocket chamber pressures from 80 to 800 psia at a mixture ratio of nominally 6.0 using steady flow, single-point-per-firing cases as well as dynamic throttling conditions. Low frequency (mean) and high frequency (fluctuating) pressure transducer data, flow meter measurements, and Raman spectroscopy images for mixing information were obtained. The injector design, experimental setup, low frequency pressure data, and injector performance analysis are presented. C* efficiency was very high (approx. 100%) at the middle of the throttleable range with somewhat lower performance at the high and low ends. From the analysis of discreet steady state operating conditions, injector pressure drop was slightly higher than predicted with an inviscid analysis, but otherwise agreed well across the design throttling range. Dynamic throttling of this injector was attempted with marginal success due to the immaturity of the throttling control system. Although the targeted mixture ratio of 6.0 was not maintained throughout the dynamic throttling profile, the injector behaved well over the wide range of conditions.

  14. Seat Capacity Selection for an Advanced Short-Haul Aircraft Design

    NASA Technical Reports Server (NTRS)

    Marien, Ty V.

    2016-01-01

    A study was performed to determine the target seat capacity for a proposed advanced short-haul aircraft concept projected to enter the fleet by 2030. This analysis projected the potential demand in the U.S. for a short-haul aircraft using a transportation theory approach, rather than selecting a target seat capacity based on recent industry trends or current market demand. A transportation systems model was used to create a point-to-point network of short-haul trips and then predict the number of annual origin-destination trips on this network. Aircraft of varying seat capacities were used to meet the demand on this network, assuming a single aircraft type for the entire short-haul fleet. For each aircraft size, the ticket revenue and operational costs were used to calculate a total market profitability metric for all feasible flights. The different aircraft sizes were compared, based on this market profitability metric and also the total number of annual round trips and markets served. Sensitivity studies were also performed to determine the effect of changing the aircraft cruise speed and maximum trip length. Using this analysis, the advanced short-haul aircraft design team was able to select a target seat capacity for their design.

  15. Detection of kinetic change points in piece-wise linear single molecule motion

    NASA Astrophysics Data System (ADS)

    Hill, Flynn R.; van Oijen, Antoine M.; Duderstadt, Karl E.

    2018-03-01

    Single-molecule approaches present a powerful way to obtain detailed kinetic information at the molecular level. However, the identification of small rate changes is often hindered by the considerable noise present in such single-molecule kinetic data. We present a general method to detect such kinetic change points in trajectories of motion of processive single molecules having Gaussian noise, with a minimum number of parameters and without the need of an assumed kinetic model beyond piece-wise linearity of motion. Kinetic change points are detected using a likelihood ratio test in which the probability of no change is compared to the probability of a change occurring, given the experimental noise. A predetermined confidence interval minimizes the occurrence of false detections. Applying the method recursively to all sub-regions of a single molecule trajectory ensures that all kinetic change points are located. The algorithm presented allows rigorous and quantitative determination of kinetic change points in noisy single molecule observations without the need for filtering or binning, which reduce temporal resolution and obscure dynamics. The statistical framework for the approach and implementation details are discussed. The detection power of the algorithm is assessed using simulations with both single kinetic changes and multiple kinetic changes that typically arise in observations of single-molecule DNA-replication reactions. Implementations of the algorithm are provided in ImageJ plugin format written in Java and in the Julia language for numeric computing, with accompanying Jupyter Notebooks to allow reproduction of the analysis presented here.

  16. The hospital library and the enterprise portal.

    PubMed

    Bandy, Margaret; Fosmire, Brenda

    2004-01-01

    At Exempla Healthcare, the medical librarians and the e-Business staff are creating an enterprise information portal where medical reference is targeted, easily accessible, and supported by the medical librarians. A team approach has been essential. The e-Business department has worked for nine months coordinating technical challenges required to support personalization, targeted communications, and a single access point for clinical patient data. Exempla medical librarians have been involved in the definition and design of information access needs from the very beginning. The Clinicians Portal was the first developed, with other customizations to follow. Many challenges remain, but by definition, a portal is designed to be flexible and adapt to the changing needs of the enterprise it supports.

  17. Optimizing cryopreservation of human spermatogonial stem cells: comparing the effectiveness of testicular tissue and single cell suspension cryopreservation

    PubMed Central

    Yango, Pamela; Altman, Eran; Smith, James F.; Klatsky, Peter C.; Tran, Nam D.

    2015-01-01

    Objective To determine whether optimal human spermatogonial stem cell (SSC) cryopreservation is best achieved with testicular tissue or single cell suspension cryopreservation. This study compares the effectiveness between these two approaches by using testicular SSEA-4+ cells, a known population containing SSCs. Design In vitro human testicular tissues. Setting Academic research unit. Patients Adult testicular tissues (n = 4) collected from subjects with normal spermatogenesis and normal fetal testicular tissues (n = 3). Intervention(s) Testicular tissue vs. single cell suspension cryopreservation. Main Outcome Measures Cell viability, total cell recovery per milligram of tissue, as well as, viable and SSEA-4+ cell recovery. Results Single cell suspension cryopreservation yielded higher recovery of SSEA-4+ cells enriched in adult SSCs whereas fetal SSEA-4+ cell recovery was similar between testicular tissue and single cell suspension cryopreservation. Conclusions Adult and fetal human SSEA-4+ populations exhibited differential sensitivity to cryopreservation based on whether they were cryopreserved in situ as testicular tissues or as single cells. Thus, optimal preservation of human SSCs depends on the patient age, type of samples cryopreserved, and end points of therapeutic applications. PMID:25241367

  18. Order of accuracy of QUICK and related convection-diffusion schemes

    NASA Technical Reports Server (NTRS)

    Leonard, B. P.

    1993-01-01

    This report attempts to correct some misunderstandings that have appeared in the literature concerning the order of accuracy of the QUICK scheme for steady-state convective modeling. Other related convection-diffusion schemes are also considered. The original one-dimensional QUICK scheme written in terms of nodal-point values of the convected variable (with a 1/8-factor multiplying the 'curvature' term) is indeed a third-order representation of the finite volume formulation of the convection operator average across the control volume, written naturally in flux-difference form. An alternative single-point upwind difference scheme (SPUDS) using node values (with a 1/6-factor) is a third-order representation of the finite difference single-point formulation; this can be written in a pseudo-flux difference form. These are both third-order convection schemes; however, the QUICK finite volume convection operator is 33 percent more accurate than the single-point implementation of SPUDS. Another finite volume scheme, writing convective fluxes in terms of cell-average values, requires a 1/6-factor for third-order accuracy. For completeness, one can also write a single-point formulation of the convective derivative in terms of cell averages, and then express this in pseudo-flux difference form; for third-order accuracy, this requires a curvature factor of 5/24. Diffusion operators are also considered in both single-point and finite volume formulations. Finite volume formulations are found to be significantly more accurate. For example, classical second-order central differencing for the second derivative is exactly twice as accurate in a finite volume formulation as it is in single-point.

  19. Hercules Single-Stage Reusable Vehicle (HSRV) Operating Base

    NASA Technical Reports Server (NTRS)

    Moon, Michael J.; McCleskey, Carey M.

    2017-01-01

    Conceptual design for the layout of lunar-planetary surface support systems remains an important area needing further master planning. This paper explores a structured approach to organize the layout of a Mars-based site equipped for routinely flying a human-scale reusable taxi system. The proposed Hercules Transportation System requires a surface support capability to sustain its routine, affordable, and dependable operation. The approach organizes a conceptual Hercules operating base through functional station sets. The station set approach will allow follow-on work to trade design approaches and consider technologies for more efficient flow of material, energy, and information at future Mars bases and settlements. The station set requirements at a Mars site point to specific capabilities needed. By drawing from specific Hercules design characteristics, the technology requirements for surface-based systems will come into greater focus. This paper begins a comprehensive process for documenting functional needs, architectural design methods, and analysis techniques necessary for follow-on concept studies.

  20. A contribution to the design specification of single-cell multi-resonant converters

    NASA Astrophysics Data System (ADS)

    Franck, F.; Schroeder, D.

    The state plane technique is used to develop a design-specification procedure that enables the designer to directly calculate the stresses on all elements of the different topologies for quasi-resonant converters. If parasitic elements are considered, multiresonant topologies are obtained. These topologies can be calculated for the design specification if the procedure for quasi-resonant topologies is adapted to this situation. A novel theoretical approach for describing the internal behavior of multiresonant converters and for visualizing the switching conditions and the points of maximum component stresses is proposed. The multiresonant switching technique combines two advantages: the lossless snubbing of both the transistor and the diode is achieved by only three reactive elements, and a controllable no-load operation is possible. This analysis procedure is well suited for calculating dc-dc converter with an output power up to several hundred watts.

  1. Fault-Tolerant Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Crowley, Christopher J.

    2005-01-01

    A compact, lightweight heat exchanger has been designed to be fault-tolerant in the sense that a single-point leak would not cause mixing of heat-transfer fluids. This particular heat exchanger is intended to be part of the temperature-regulation system for habitable modules of the International Space Station and to function with water and ammonia as the heat-transfer fluids. The basic fault-tolerant design is adaptable to other heat-transfer fluids and heat exchangers for applications in which mixing of heat-transfer fluids would pose toxic, explosive, or other hazards: Examples could include fuel/air heat exchangers for thermal management on aircraft, process heat exchangers in the cryogenic industry, and heat exchangers used in chemical processing. The reason this heat exchanger can tolerate a single-point leak is that the heat-transfer fluids are everywhere separated by a vented volume and at least two seals. The combination of fault tolerance, compactness, and light weight is implemented in a unique heat-exchanger core configuration: Each fluid passage is entirely surrounded by a vented region bridged by solid structures through which heat is conducted between the fluids. Precise, proprietary fabrication techniques make it possible to manufacture the vented regions and heat-conducting structures with very small dimensions to obtain a very large coefficient of heat transfer between the two fluids. A large heat-transfer coefficient favors compact design by making it possible to use a relatively small core for a given heat-transfer rate. Calculations and experiments have shown that in most respects, the fault-tolerant heat exchanger can be expected to equal or exceed the performance of the non-fault-tolerant heat exchanger that it is intended to supplant (see table). The only significant disadvantages are a slight weight penalty and a small decrease in the mass-specific heat transfer.

  2. Imaging laser radar for high-speed monitoring of the environment

    NASA Astrophysics Data System (ADS)

    Froehlich, Christoph; Mettenleiter, M.; Haertl, F.

    1998-01-01

    In order to establish mobile robot operations and to realize survey and inspection tasks, robust and precise measurements of the geometry of the 3D environment is the basis sensor technology. For visual inspection, surface classification, and documentation purposes, however, additional information concerning reflectance of measured objects is necessary. High-speed acquisition of both geometric and visual information is achieved by means of an active laser radar, supporting consistent range and reflectance images. The laser radar developed at Zoller + Froehlich (ZF) is an optical-wavelength system measuring the range between sensor and target surface as well as the reflectance of the target surface, which corresponds to the magnitude of the back scattered laser energy. In contrast to other range sensing devices, the ZF system is designed for high-speed and high- performance operation in real indoor and outdoor environments, emitting a minimum of near-IR laser energy. It integrates a single-point laser measurement system and a mechanical deflection system for 3D environmental measurements. This paper reports details of the laser radar which is designed to cover requirements with medium range applications. It outlines the performance requirements and introduces the two-frequency phase-shift measurement principle. The hardware design of the single-point laser measurement system, including the main modulates, such as the laser head, the high frequency unit and the signal processing unit are discussed in detail. The paper focuses on performance data of the laser radar, including noise, drift over time, precision, and accuracy with measurements. It discusses the influences of ambient light, surface material of the target, and ambient temperature for range accuracy and range precision. Furthermore, experimental results from inspection of tunnels, buildings, monuments and industrial environments are presented. The paper concludes by summarizing results and gives a short outlook to future work.

  3. Controlled release of functional proteins through designer self-assembling peptide nanofiber hydrogel scaffold

    PubMed Central

    Koutsopoulos, Sotirios; Unsworth, Larry D.; Nagai, Yusuke; Zhang, Shuguang

    2009-01-01

    The release kinetics for a variety of proteins of a wide range of molecular mass, hydrodynamic radii, and isoelectric points through a nanofiber hydrogel scaffold consisting of designer self-assembling peptides were studied by using single-molecule fluorescence correlation spectroscopy (FCS). In contrast to classical diffusion experiments, the single-molecule approach allowed for the direct determination of diffusion coefficients for lysozyme, trypsin inhibitor, BSA, and IgG both inside the hydrogel and after being released into the solution. The results of the FCS analyses and the calculated pristine in-gel diffusion coefficients were compared with the values obtained from the Stokes–Einstein equation, Fickian diffusion models, and the literature. The release kinetics suggested that protein diffusion through nanofiber hydrogels depended primarily on the size of the protein. Protein diffusivities decreased, with increasing hydrogel nanofiber density providing a means of controlling the release kinetics. Secondary and tertiary structure analyses and biological assays of the released proteins showed that encapsulation and release did not affect the protein conformation and functionality. Our results show that this biocompatible and injectable designer self-assembling peptide hydrogel system may be useful as a carrier for therapeutic proteins for sustained release applications. PMID:19273853

  4. Rational design of therapeutic mAbs against aggregation through protein engineering and incorporation of glycosylation motifs applied to bevacizumab

    PubMed Central

    Courtois, Fabienne; Agrawal, Neeraj J; Lauer, Timothy M; Trout, Bernhardt L

    2016-01-01

    The aggregation of biotherapeutics is a major hindrance to the development of successful drug candidates; however, the propensity to aggregate is often identified too late in the development phase to permit modification to the protein's sequence. Incorporating rational design for the stability of proteins in early discovery has numerous benefits. We engineered out aggregation-prone regions on the Fab domain of a therapeutic monoclonal antibody, bevacizumab, to rationally design a biobetter drug candidate. With the purpose of stabilizing bevacizumab with respect to aggregation, 2 strategies were undertaken: single point mutations of aggregation-prone residues and engineering a glycosylation site near aggregation-prone residues to mask these residues with a carbohydrate moiety. Both of these approaches lead to comparable decreases in aggregation, with an up to 4-fold reduction in monomer loss. These single mutations and the new glycosylation pattern of the Fab domain do not modify binding to the target. Biobetters with increased stability against aggregation can therefore be generated in a rational manner, by either removing or masking the aggregation-prone region or crowding out protein-protein interactions. PMID:26514585

  5. Homogeneous Entropy-Driven Amplified Detection of Biomolecular Interactions.

    PubMed

    Kim, Donghyuk; Garner, Omai B; Ozcan, Aydogan; Di Carlo, Dino

    2016-08-23

    While a range of artificial biochemical circuits is likely to play a significant role in biological engineering, one of the challenges in the field is the design of circuits that can transduce between biomolecule classes (e.g., moving beyond nucleic acid only circuits). Herein, we design a transduction mechanism whereby a protein signal is transduced into an amplified nucleic acid output using DNA nanotechnology. In this system, a protein is recognized by nucleic acid bound recognition elements to form a catalytic complex that drives a hybridization/displacement reaction on a multicomponent nucleic acid substrate, releasing multiple target single-stranded oligonucleotides in an amplified fashion. Amplification power and simple one-pot reaction conditions lead us to apply the scheme in an assay format, achieving homogeneous and rapid (∼10 min) analyte detection that is also robust (operable in whole blood and plasma). In addition, we demonstrate the assay in a microfluidic digital assay format leading to improved quantification and sensitivity approaching single-molecule levels. The present scheme we believe will have a significant impact on a range of applications from fundamental molecular interaction studies to design of artificial circuits in vivo to high-throughput, multiplexed assays for screening or point-of-care diagnostics.

  6. Numerical and In Vitro Experimental Investigation of the Hemolytic Performance at the Off-Design Point of an Axial Ventricular Assist Pump.

    PubMed

    Liu, Guang-Mao; Jin, Dong-Hai; Jiang, Xi-Hang; Zhou, Jian-Ye; Zhang, Yan; Chen, Hai-Bo; Hu, Sheng-Shou; Gui, Xing-Min

    The ventricular assist pumps do not always function at the design point; instead, these pumps may operate at unfavorable off-design points. For example, the axial ventricular assist pump FW-2, in which the design point is 5 L/min flow rate against 100 mm Hg pressure increase at 8,000 rpm, sometimes works at off-design flow rates of 1 to 4 L/min. The hemolytic performance of the FW-2 at both the design point and at off-design points was estimated numerically and tested in vitro. Flow characteristics in the pump were numerically simulated and analyzed with special attention paid to the scalar sheer stress and exposure time. An in vitro hemolysis test was conducted to verify the numerical results. The simulation results showed that the scalar shear stress in the rotor region at the 1 L/min off-design point was 70% greater than at the 5 L/min design point. The hemolysis index at the 1 L/min off-design point was 3.6 times greater than at the 5 L/min design point. The in vitro results showed that the normalized index of hemolysis increased from 0.017 g/100 L at the 5 L/min design point to 0.162 g/100 L at the 1 L/min off-design point. The hemolysis comparison between the different blood pump flow rates will be helpful for future pump design point selection and will guide the usage of ventricular assist pumps. The hemolytic performance of the blood pump at the working point in the clinic should receive more focus.

  7. Estimating Total Heliospheric Magnetic Flux from Single-Point in Situ Measurements

    NASA Technical Reports Server (NTRS)

    Owens, M. J.; Arge, C. N.; Crooker, N. U.; Schwardron, N. A.; Horbury, T. S.

    2008-01-01

    A fraction of the total photospheric magnetic flux opens to the heliosphere to form the interplanetary magnetic field carried by the solar wind. While this open flux is critical to our understanding of the generation and evolution of the solar magnetic field, direct measurements are generally limited to single-point measurements taken in situ by heliospheric spacecraft. An observed latitude invariance in the radial component of the magnetic field suggests that extrapolation from such single-point measurements to total heliospheric magnetic flux is possible. In this study we test this assumption using estimates of total heliospheric flux from well-separated heliospheric spacecraft and conclude that single-point measurements are indeed adequate proxies for the total heliospheric magnetic flux, though care must be taken when comparing flux estimates from data collected at different heliocentric distances.

  8. A Comparative Analysis of Speed Profile Models for Ankle Pointing Movements: Evidence that Lower and Upper Extremity Discrete Movements are Controlled by a Single Invariant Strategy

    PubMed Central

    Michmizos, Konstantinos P.; Vaisman, Lev; Krebs, Hermano Igo

    2014-01-01

    Little is known about whether our knowledge of how the central nervous system controls the upper extremities (UE), can generalize, and to what extent to the lower limbs. Our continuous efforts to design the ideal adaptive robotic therapy for the lower limbs of stroke patients and children with cerebral palsy highlighted the importance of analyzing and modeling the kinematics of the lower limbs, in general, and those of the ankle joints, in particular. We recruited 15 young healthy adults that performed in total 1,386 visually evoked, visually guided, and target-directed discrete pointing movements with their ankle in dorsal–plantar and inversion–eversion directions. Using a non-linear, least-squares error-minimization procedure, we estimated the parameters for 19 models, which were initially designed to capture the dynamics of upper limb movements of various complexity. We validated our models based on their ability to reconstruct the experimental data. Our results suggest a remarkable similarity between the top-performing models that described the speed profiles of ankle pointing movements and the ones previously found for the UE both during arm reaching and wrist pointing movements. Among the top performers were the support-bounded lognormal and the beta models that have a neurophysiological basis and have been successfully used in upper extremity studies with normal subjects and patients. Our findings suggest that the same model can be applied to different “human” hardware, perhaps revealing a key invariant in human motor control. These findings have a great potential to enhance our rehabilitation efforts in any population with lower extremity deficits by, for example, assessing the level of motor impairment and improvement as well as informing the design of control algorithms for therapeutic ankle robots. PMID:25505881

  9. SU-E-T-167: Characterization of In-House Plastic Scintillator Detectors Array for Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, T; Liu, H; Dimofte, A

    Purpose: To characterize basic performance of plastic scintillator detectors (PSD) array designed for dosimetry of radiation therapy. Methods: An in-house PSD array has been developed by placing single point PSD into customized 2D holder. Each point PSD is a plastic scintillating fiber-based detector designed for highly accurate measurement of small radiotherapy fields used in patient plan verification and machine commissioning and QA procedures. A parallel fiber without PSD is used for Cerenkov separation by subtracting from PSD readings. Cerenkov separation was confirmed by optical spectroscopy. Alternative Cerenkov separation approaches are also investigated. The optical signal was converted to electronic signalmore » with a photodiode and then subsequently amplified. We measured its dosimetry performance, including percentage depth dose and output factor, and compared with reference ion chamber measurements. The PSD array is then placed along the radiation beam for multiple point dose measurement, representing subsets of PDD measurements, or perpendicular to the beam for profile measurements. Results: The dosimetry results of PSD point measurements agree well with reference ion chamber measurements. For percentage depth dose, the maximal differences between PSD and ion chamber results are 3.5% and 2.7% for 6MV and 15MV beams, respectively. For the output factors, PSD measurements are within 3% from ion chamber results. PDD and profile measurement with PSD array are also performed. Conclusions: The current design of multichannel PSD array is feasible for the dosimetry measurement in radiation therapy. Dose distribution along or perpendicular to the beam path could be measured. It might as well be used as range verification in proton therapy.A PS hollow fiber detector will be investigated to eliminate the Cerenkov radiation effect so that all 32 channels can be used.« less

  10. Lymphatic Drainage from Renal Tumors In Vivo: A Prospective Sentinel Node Study Using SPECT/CT Imaging.

    PubMed

    Kuusk, Teele; De Bruijn, Roderick; Brouwer, Oscar R; De Jong, Jeroen; Donswijk, Maarten; Grivas, Nikolaos; Hendricksen, Kees; Horenblas, Simon; Prevoo, Warner; Valdés Olmos, Renato A; Van Der Poel, Henk G; Van Rhijn, Bas W G; Wit, Esther M; Bex, Axel

    2018-06-01

    Lymphatic drainage from renal tumors is unpredictable. In vivo drainage studies of primary lymphatic landing sites may reveal the variability and dynamics of lymphatic connections. The purpose of this study was to investigate the lymphatic drainage pattern of renal tumors in vivo with single photon emission/computerized tomography after intratumor radiotracer injection. We performed a phase II, prospective, single arm study to investigate the distribution of sentinel nodes from renal tumors on single photon emission/computerized tomography. Patients with cT1-3 (less than 10 cm) cN0M0 renal tumors of any subtype were enrolled in analysis. After intratumor ultrasound guided injection of 0.4 ml 99m Tc-nanocolloid we performed preoperative imaging of sentinel nodes with lymphoscintigraphy and single photon emission/computerized tomography. Sentinel and locoregional nonsentinel nodes were resected with a γ probe combined with a mobile γ camera. The primary study end point was the location of sentinel nodes outside the locoregional retroperitoneal templates on single photon emission/computerized tomography. Using a Simon minimax 2-stage design to detect a 25% extralocoregional retroperitoneal template location of sentinel nodes on imaging at α = 0.05 and 80% power at least 40 patients with sentinel node imaging on single photon emission/computerized tomography were needed. Of the 68 patients 40 underwent preoperative single photon emission/computerized tomography of sentinel nodes and were included in primary end point analysis. Lymphatic drainage outside the locoregional retroperitoneal templates was observed in 14 patients (35%). Eight patients (20%) had supradiaphragmatic sentinel nodes. Sentinel nodes from renal tumors were mainly located in the respective locoregional retroperitoneal templates. Simultaneous sentinel nodes were located outside the suggested lymph node dissection templates, including supradiaphragmatic sentinel nodes in more than a third of the patients. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  11. The validity of multiphase DNS initialized on the basis of single--point statistics

    NASA Astrophysics Data System (ADS)

    Subramaniam, Shankar

    1999-11-01

    A study of the point--process statistical representation of a spray reveals that single--point statistical information contained in the droplet distribution function (ddf) is related to a sequence of single surrogate--droplet pdf's, which are in general different from the physical single--droplet pdf's. The results of this study have important consequences for the initialization and evolution of direct numerical simulations (DNS) of multiphase flows, which are usually initialized on the basis of single--point statistics such as the average number density in physical space. If multiphase DNS are initialized in this way, this implies that even the initial representation contains certain implicit assumptions concerning the complete ensemble of realizations, which are invalid for general multiphase flows. Also the evolution of a DNS initialized in this manner is shown to be valid only if an as yet unproven commutation hypothesis holds true. Therefore, it is questionable to what extent DNS that are initialized in this manner constitute a direct simulation of the physical droplets.

  12. Preliminary Design Optimization For A Supersonic Turbine For Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Papila, Nilay; Shyy, Wei; Griffin, Lisa; Huber, Frank; Tran, Ken; McConnaughey, Helen (Technical Monitor)

    2000-01-01

    In this study, we present a method for optimizing, at the preliminary design level, a supersonic turbine for rocket propulsion system application. Single-, two- and three-stage turbines are considered with the number of design variables increasing from 6 to 11 then to 15, in accordance with the number of stages. Due to its global nature and flexibility in handling different types of information, the response surface methodology (RSM) is applied in the present study. A major goal of the present Optimization effort is to balance the desire of maximizing aerodynamic performance and minimizing weight. To ascertain required predictive capability of the RSM, a two-level domain refinement approach has been adopted. The accuracy of the predicted optimal design points based on this strategy is shown to he satisfactory. Our investigation indicates that the efficiency rises quickly from single stage to 2 stages but that the increase is much less pronounced with 3 stages. A 1-stage turbine performs poorly under the engine balance boundary condition. A portion of fluid kinetic energy is lost at the turbine discharge of the 1-stage design due to high stage pressure ratio and high-energy content, mostly hydrogen, of the working fluid. Regarding the optimization technique, issues related to the design of experiments (DOE) has also been investigated. It is demonstrated that the criteria for selecting the data base exhibit significant impact on the efficiency and effectiveness of the construction of the response surface.

  13. RPA using a multiplexed cartridge for low cost point of care diagnostics in the field.

    PubMed

    Ereku, Luck Tosan; Mackay, Ruth E; Craw, Pascal; Naveenathayalan, Angel; Stead, Thomas; Branavan, Manorharanehru; Balachandran, Wamadeva

    2018-04-15

    A point of care device utilising Lab-on-a-Chip technologies that is applicable for biological pathogens was designed, fabricated and tested showing sample in to answer out capabilities. The purpose of the design was to develop a cartridge with the capability to perform nucleic acid extraction and purification from a sample using a chitosan membrane at an acidic pH. Waste was stored within the cartridge with the use of sodium polyacrylate to solidify or gelate the sample in a single chamber. Nucleic acid elution was conducted using the RPA amplification reagents (alkaline pH). Passive valves were used to regulate the fluid flow and a multiplexer was designed to distribute the fluid into six microchambers for amplification reactions. Cartridges were produced using soft lithography of silicone from 3D printed moulds, bonded to glass substrates. The isothermal technique, RPA is employed for amplification. This paper shows the results from two separate experiments: the first using the RPA control nucleic acid, the second showing successful amplification from Chlamydia Trachomatis. Endpoint analysis conducted for the RPA analysis was gel electrophoresis that showed 143 base pair DNA was amplified successfully for positive samples whilst negative samples did not show amplification. End point analysis for Chlamydia Trachomatis samples was fluorescence detection that showed successful detection of 1 copy/μL and 10 copies/μL spiked in a MES buffer. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  14. A reanalysis of cluster randomized trials showed interrupted time-series studies were valuable in health system evaluation.

    PubMed

    Fretheim, Atle; Zhang, Fang; Ross-Degnan, Dennis; Oxman, Andrew D; Cheyne, Helen; Foy, Robbie; Goodacre, Steve; Herrin, Jeph; Kerse, Ngaire; McKinlay, R James; Wright, Adam; Soumerai, Stephen B

    2015-03-01

    There is often substantial uncertainty about the impacts of health system and policy interventions. Despite that, randomized controlled trials (RCTs) are uncommon in this field, partly because experiments can be difficult to carry out. An alternative method for impact evaluation is the interrupted time-series (ITS) design. Little is known, however, about how results from the two methods compare. Our aim was to explore whether ITS studies yield results that differ from those of randomized trials. We conducted single-arm ITS analyses (segmented regression) based on data from the intervention arm of cluster randomized trials (C-RCTs), that is, discarding control arm data. Secondarily, we included the control group data in the analyses, by subtracting control group data points from intervention group data points, thereby constructing a time series representing the difference between the intervention and control groups. We compared the results from the single-arm and controlled ITS analyses with results based on conventional aggregated analyses of trial data. The findings were largely concordant, yielding effect estimates with overlapping 95% confidence intervals (CI) across different analytical methods. However, our analyses revealed the importance of a concurrent control group and of taking baseline and follow-up trends into account in the analysis of C-RCTs. The ITS design is valuable for evaluation of health systems interventions, both when RCTs are not feasible and in the analysis and interpretation of data from C-RCTs. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Microfluidic point-of-care blood panel based on a novel technique: Reversible electroosmotic flow

    PubMed Central

    Mohammadi, Mahdi; Madadi, Hojjat; Casals-Terré, Jasmina

    2015-01-01

    A wide range of diseases and conditions are monitored or diagnosed from blood plasma, but the ability to analyze a whole blood sample with the requirements for a point-of-care device, such as robustness, user-friendliness, and simple handling, remains unmet. Microfluidics technology offers the possibility not only to work fresh thumb-pricked whole blood but also to maximize the amount of the obtained plasma from the initial sample and therefore the possibility to implement multiple tests in a single cartridge. The microfluidic design presented in this paper is a combination of cross-flow filtration with a reversible electroosmotic flow that prevents clogging at the filter entrance and maximizes the amount of separated plasma. The main advantage of this design is its efficiency, since from a small amount of sample (a single droplet ∼10 μl) almost 10% of this (approx 1 μl) is extracted and collected with high purity (more than 99%) in a reasonable time (5–8 min). To validate the quality and quantity of the separated plasma and to show its potential as a clinical tool, the microfluidic chip has been combined with lateral flow immunochromatography technology to perform a qualitative detection of the thyroid-stimulating hormone and a blood panel for measuring cardiac Troponin and Creatine Kinase MB. The results from the microfluidic system are comparable to previous commercial lateral flow assays that required more sample for implementing fewer tests. PMID:26396660

  16. The Effects of Specialization and Sex on Anterior Y-Balance Performance in High School Athletes

    PubMed Central

    Miller, Madeline M.; Trapp, Jessica L.; Post, Eric G.; Trigsted, Stephanie M.; McGuine, Timothy A.; Brooks, M. Alison; Bell, David R.

    2017-01-01

    Background: Sport specialization and movement asymmetry have been separately discussed as potential risk factors for lower extremity injury. Early specialization may lead to the development of movement asymmetries that can predispose an athlete to injury, but this has not been thoroughly examined. Hypothesis: Athletes rated as specialized would exhibit greater between-limb anterior reach asymmetry and decreased anterior reach distance on the Y-balance test (YBT) as compared with nonspecialized high school athletes, and these differences would not be dependent on sex. Study Design: Cross-sectional study. Level of Evidence: Level 3. Methods: Two hundred ninety-five athletes (117 male, 178 female; mean age, 15.6 ± 1.2 years) from 2 local high schools participating in basketball, soccer, volleyball, and tennis responded to a questionnaire regarding sport specialization status and performed trials of the YBT during preseason testing. Specialization was categorized according to 3 previously utilized specialization classification methods (single/multisport, 3-point scale, and 6-point scale), and interactions between specialization and sex with Y-balance performance were calculated using 2-way analyses of variance. Results: Single-sport male athletes displayed greater anterior reach asymmetry than other interaction groups. A consistent main effect was observed for sex, with men displaying greater anterior asymmetry and decreased anterior reach distance than women. However, the interaction effects of specialization and sex on anterior Y-balance performance varied based on the classification method used. Conclusion: Single-sport male athletes displayed greater anterior reach asymmetry on the YBT than multisport and female athletes. Specialization classification method is important because the 6- and 3-point scales may not accurately identify balance abnormalities. Male athletes performed worse than female athletes on both of the Y-balance tasks. Clinical Relevance: Clinicians should be aware that single-sport male athletes may display deficits in dynamic balance, potentially increasing their risk of injury. PMID:28447871

  17. Understanding Single-Thread Meandering Rivers with High Sinuosity on Mars through Chemical Precipitation Experiments

    NASA Astrophysics Data System (ADS)

    Lim, Y.; Kim, W.

    2015-12-01

    Meandering rivers are extremely ubiquitous on Earth, yet it is only recently that single-thread experimental channels with low sinuosity have been created. In these recent experiments, as well as in natural rivers, vegetation plays a crucial role in maintaining a meandering pattern by adding cohesion to the bank and inhibiting erosion. The ancient, highly sinuous channels found on Mars are enigmatic because presumably vegetation did not exist on ancient Mars. Under the hypothesis that Martian meandering rivers formed by chemical precipitation on levees and flood plain deposits, we conducted carbonate flume experiments to investigate the formation and evolution of a single-thread meander pattern without vegetation. The flow recirculating in the flume is designed to accelerate chemical reactions - dissolution of limestone using CO2 gas to produce artificial spring water and precipitation of carbonates to increase cohesion- with precise control of water discharge, sediment discharge, and temperature. Preliminary experiments successfully created a single-thread meandering pattern through chemical processes. Carbonate deposits focused along the channel sides improved the bank stability and made them resistant to erosion, which led to a stream confined in a narrow path. The experimental channels showed lateral migration of the bend through cut bank and point bar deposits; intermittent floods created overbank flow and encouraged cut bank erosion, which enhanced lateral migration of the channel, while increase in sediment supply improved lateral point bar deposition, which balanced erosion and deposition rates. This mechanism may be applied to terrestrial single-thread and/or meandering rivers with little to no vegetation or before its introduction to Earth and also provide the link between meandering river records on Mars to changes in Martian surface conditions.

  18. Conceptual Mean-Line Design of Single and Twin-Shaft Oxy-Fuel Gas Turbine in a Semiclosed Oxy-Fuel Combustion Combined Cycle.

    PubMed

    Sammak, Majed; Thorbergsson, Egill; Grönstedt, Tomas; Genrup, Magnus

    2013-08-01

    The aim of this study was to compare single- and twin-shaft oxy-fuel gas turbines in a semiclosed oxy-fuel combustion combined cycle (SCOC-CC). This paper discussed the turbomachinery preliminary mean-line design of oxy-fuel compressor and turbine. The conceptual turbine design was performed using the axial through-flow code luax-t, developed at Lund University. A tool for conceptual design of axial compressors developed at Chalmers University was used for the design of the compressor. The modeled SCOC-CC gave a net electrical efficiency of 46% and a net power of 106 MW. The production of 95% pure oxygen and the compression of CO 2 reduced the gross efficiency of the SCOC-CC by 10 and 2 percentage points, respectively. The designed oxy-fuel gas turbine had a power of 86 MW. The rotational speed of the single-shaft gas turbine was set to 5200 rpm. The designed turbine had four stages, while the compressor had 18 stages. The turbine exit Mach number was calculated to be 0.6 and the calculated value of AN 2 was 40 · 10 6 rpm 2 m 2 . The total calculated cooling mass flow was 25% of the compressor mass flow, or 47 kg/s. The relative tip Mach number of the compressor at the first rotor stage was 1.15. The rotational speed of the twin-shaft gas generator was set to 7200 rpm, while that of the power turbine was set to 4800 rpm. A twin-shaft turbine was designed with five turbine stages to maintain the exit Mach number around 0.5. The twin-shaft turbine required a lower exit Mach number to maintain reasonable diffuser performance. The compressor turbine was designed with two stages while the power turbine had three stages. The study showed that a four-stage twin-shaft turbine produced a high exit Mach number. The calculated value of AN 2 was 38 · 10 6 rpm 2 m 2 . The total calculated cooling mass flow was 23% of the compressor mass flow, or 44 kg/s. The compressor was designed with 14 stages. The preliminary design parameters of the turbine and compressor were within established industrial ranges. From the results of this study, it was concluded that both single- and twin-shaft oxy-fuel gas turbines have advantages. The choice of a twin-shaft gas turbine can be motivated by the smaller compressor size and the advantage of greater flexibility in operation, mainly in the off-design mode. However, the advantages of a twin-shaft design must be weighed against the inherent simplicity and low cost of the simple single-shaft design.

  19. FireProt: Energy- and Evolution-Based Computational Design of Thermostable Multiple-Point Mutants.

    PubMed

    Bednar, David; Beerens, Koen; Sebestova, Eva; Bendl, Jaroslav; Khare, Sagar; Chaloupkova, Radka; Prokop, Zbynek; Brezovsky, Jan; Baker, David; Damborsky, Jiri

    2015-11-01

    There is great interest in increasing proteins' stability to enhance their utility as biocatalysts, therapeutics, diagnostics and nanomaterials. Directed evolution is a powerful, but experimentally strenuous approach. Computational methods offer attractive alternatives. However, due to the limited reliability of predictions and potentially antagonistic effects of substitutions, only single-point mutations are usually predicted in silico, experimentally verified and then recombined in multiple-point mutants. Thus, substantial screening is still required. Here we present FireProt, a robust computational strategy for predicting highly stable multiple-point mutants that combines energy- and evolution-based approaches with smart filtering to identify additive stabilizing mutations. FireProt's reliability and applicability was demonstrated by validating its predictions against 656 mutations from the ProTherm database. We demonstrate that thermostability of the model enzymes haloalkane dehalogenase DhaA and γ-hexachlorocyclohexane dehydrochlorinase LinA can be substantially increased (ΔTm = 24°C and 21°C) by constructing and characterizing only a handful of multiple-point mutants. FireProt can be applied to any protein for which a tertiary structure and homologous sequences are available, and will facilitate the rapid development of robust proteins for biomedical and biotechnological applications.

  20. A computer-aided telescope pointing system utilizing a video star tracker

    NASA Technical Reports Server (NTRS)

    Murphy, J. P.; Lorell, K. R.; Swift, C. D.

    1975-01-01

    The Video Inertial Pointing (VIP) System developed to satisfy the acquisition and pointing requirements of astronomical telescopes is described. A unique feature of the system is the use of a single sensor to provide information for the generation of three axis pointing error signals and for a cathode ray tube (CRT) display of the star field. The pointing error signals are used to update the telescope's gyro stabilization and the CRT display is used by an operator to facilitate target acquisition and to aid in manual positioning of the telescope optical axis. A model of the system using a low light level vidicon built and flown on a balloon-borne infrared telescope is briefly described from a state of the art charge coupled device (CCD) sensor. The advanced system hardware is described and an analysis of the multi-star tracking and three axis error signal generation, along with an analysis and design of the gyro update filter, are presented. Results of a hybrid simulation are described in which the advanced VIP system hardware is driven by a digital simulation of the star field/CCD sensor and an analog simulation of the telescope and gyro stabilization dynamics.

  1. Proteins evolve on the edge of supramolecular self-assembly.

    PubMed

    Garcia-Seisdedos, Hector; Empereur-Mot, Charly; Elad, Nadav; Levy, Emmanuel D

    2017-08-10

    The self-association of proteins into symmetric complexes is ubiquitous in all kingdoms of life. Symmetric complexes possess unique geometric and functional properties, but their internal symmetry can pose a risk. In sickle-cell disease, the symmetry of haemoglobin exacerbates the effect of a mutation, triggering assembly into harmful fibrils. Here we examine the universality of this mechanism and its relation to protein structure geometry. We introduced point mutations solely designed to increase surface hydrophobicity among 12 distinct symmetric complexes from Escherichia coli. Notably, all responded by forming supramolecular assemblies in vitro, as well as in vivo upon heterologous expression in Saccharomyces cerevisiae. Remarkably, in four cases, micrometre-long fibrils formed in vivo in response to a single point mutation. Biophysical measurements and electron microscopy revealed that mutants self-assembled in their folded states and so were not amyloid-like. Structural examination of 73 mutants identified supramolecular assembly hot spots predictable by geometry. A subsequent structural analysis of 7,471 symmetric complexes showed that geometric hot spots were buffered chemically by hydrophilic residues, suggesting a mechanism preventing mis-assembly of these regions. Thus, point mutations can frequently trigger folded proteins to self-assemble into higher-order structures. This potential is counterbalanced by negative selection and can be exploited to design nanomaterials in living cells.

  2. Proteins evolve on the edge of supramolecular self-assembly

    NASA Astrophysics Data System (ADS)

    Garcia-Seisdedos, Hector; Empereur-Mot, Charly; Elad, Nadav; Levy, Emmanuel D.

    2017-08-01

    The self-association of proteins into symmetric complexes is ubiquitous in all kingdoms of life. Symmetric complexes possess unique geometric and functional properties, but their internal symmetry can pose a risk. In sickle-cell disease, the symmetry of haemoglobin exacerbates the effect of a mutation, triggering assembly into harmful fibrils. Here we examine the universality of this mechanism and its relation to protein structure geometry. We introduced point mutations solely designed to increase surface hydrophobicity among 12 distinct symmetric complexes from Escherichia coli. Notably, all responded by forming supramolecular assemblies in vitro, as well as in vivo upon heterologous expression in Saccharomyces cerevisiae. Remarkably, in four cases, micrometre-long fibrils formed in vivo in response to a single point mutation. Biophysical measurements and electron microscopy revealed that mutants self-assembled in their folded states and so were not amyloid-like. Structural examination of 73 mutants identified supramolecular assembly hot spots predictable by geometry. A subsequent structural analysis of 7,471 symmetric complexes showed that geometric hot spots were buffered chemically by hydrophilic residues, suggesting a mechanism preventing mis-assembly of these regions. Thus, point mutations can frequently trigger folded proteins to self-assemble into higher-order structures. This potential is counterbalanced by negative selection and can be exploited to design nanomaterials in living cells.

  3. A dual-mode disturbance-accommodating controller for the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Addington, Stewart; Johnson, C. D.

    Cyclic thermal expansions and mechanical stiction effects in the Solar Arrays on the Hubble Space Telescope (HST) are triggering repeated occurrences of damped, relaxation-type flex-body vibrations of the solar arrays. Those solar array vibrations are, in turn, causing unwanted, oscillating disturbance torques on the HST main body, which cause unwanted deviations of the telescope from its specified pointing direction. In this paper we propose two strategies one can adopt in designing a telescope-pointing controller to cope with the aforementioned disturbances: (1) a `total isolation' (TI) control strategy whereby the HST controller torques are designed to adaptively counteract and cancel-out the persistent disturbing torques that are causing the unwanted telescope motions, and (2) an `array damping' (AD) control strategy whereby the HST controller torques are used to actively augment the natural dampening of the solar array vibrations and the attendant telescope motions, between triggerings of the stiction-related flex-body relaxation oscillations. Using the principles of Disturbance-Accommodating Control (DAC) Theory a dual-mode controller for a generic, planar-motion (single-axis) model of the HST is proposed. This controller incorporates both the TI and AD modes of disturbance-accommodation. Simulation studies of the closed-loop system using generic parameter values clearly indicate, qualitatively, the enhanced pointing-performance such a controller can achieve.

  4. SEE Transient Response of Crane Interpoint Single Output Point of Load DC-DC Converters

    NASA Technical Reports Server (NTRS)

    Sanders, Anthony B.; Chen, Dakai; Kim, Hak S.; Phan, Anthony M.

    2011-01-01

    This study was undertaken to determine the single event effect and transient susceptibility of the Crane Interpoint Maximum Flexible Power (MFP) Single Output Point of Load DC/DC Converters for transient interruptions in the output signal and for destructive and non destructive events induced by exposing it to a heavy ion beam..

  5. Optimized knock-in of point mutations in zebrafish using CRISPR/Cas9.

    PubMed

    Prykhozhij, Sergey V; Fuller, Charlotte; Steele, Shelby L; Veinotte, Chansey J; Razaghi, Babak; Robitaille, Johane M; McMaster, Christopher R; Shlien, Adam; Malkin, David; Berman, Jason N

    2018-06-14

    We have optimized point mutation knock-ins into zebrafish genomic sites using clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 reagents and single-stranded oligodeoxynucleotides. The efficiency of knock-ins was assessed by a novel application of allele-specific polymerase chain reaction and confirmed by high-throughput sequencing. Anti-sense asymmetric oligo design was found to be the most successful optimization strategy. However, cut site proximity to the mutation and phosphorothioate oligo modifications also greatly improved knock-in efficiency. A previously unrecognized risk of off-target trans knock-ins was identified that we obviated through the development of a workflow for correct knock-in detection. Together these strategies greatly facilitate the study of human genetic diseases in zebrafish, with additional applicability to enhance CRISPR-based approaches in other animal model systems.

  6. Exploration of operator method digital optical computers for application to NASA

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Digital optical computer design has been focused primarily towards parallel (single point-to-point interconnection) implementation. This architecture is compared to currently developing VHSIC systems. Using demonstrated multichannel acousto-optic devices, a figure of merit can be formulated. The focus is on a figure of merit termed Gate Interconnect Bandwidth Product (GIBP). Conventional parallel optical digital computer architecture demonstrates only marginal competitiveness at best when compared to projected semiconductor implements. Global, analog global, quasi-digital, and full digital interconnects are briefly examined as alternative to parallel digital computer architecture. Digital optical computing is becoming a very tough competitor to semiconductor technology since it can support a very high degree of three dimensional interconnect density and high degrees of Fan-In without capacitive loading effects at very low power consumption levels.

  7. The effectiveness of intervention on the behavior of individuals with autism: a meta-analysis using percentage of data points exceeding the median of baseline phase (PEM).

    PubMed

    Ma, Hsen-Hsing

    2009-05-01

    The aim of the present study is to demonstrate the percentage of data points exceeding the median of baseline phase (PEM) approach using data on autism treatment for illustrative purposes to compare the effectiveness of different interventions on the problem behaviors of individuals with autism. Electronic databases such as The ProQuest and Google were searched. A total of 163 articles were located, producing 1,502 effect sizes. The results demonstrate that five highly effective intervention strategies were priming, self-control, training, positive reinforcement and punishment, and presenting preferential activities. The least effective strategy was to teach perspective-taking skills. The PEM approach is recommended for use in meta-analysis for single-case experimental designs.

  8. Rise to SUMMIT: the Sydney University Multiple-Mirror Telescope

    NASA Astrophysics Data System (ADS)

    Moore, Anna M.; Davis, John

    2000-07-01

    The Sydney University Multiple Mirror Telescope (SUMMIT) is a medium-sized telescope designed specifically for high resolution stellar spectroscopy. Throughout the design emphasis has been placed on high efficiency at low cost. The telescope consists of four 0.46 m diameter mirrors mounted on a single welded steel frame. Specially designed mirror cells support and point each mirror, allowing accurate positioning of the images on optical fibers located at the foci of the mirrors. Four fibers convey the light to the future location of a high resolution spectrograph away from the telescope in a stable environment. An overview of the commissioning of the telescope is presented, including the guidance and automatic mirror alignment and focussing systems. SUMMIT is located alongside the Sydney University Stellar Interferometer at the Paul Wild Observatory, near Narrabri, Northern New South Wales.

  9. A radiation tolerant Data link board for the ATLAS Tile Cal upgrade

    NASA Astrophysics Data System (ADS)

    Åkerstedt, H.; Bohm, C.; Muschter, S.; Silverstein, S.; Valdes, E.

    2016-01-01

    This paper describes the latest, full-functionality revision of the high-speed data link board developed for the Phase-2 upgrade of ATLAS hadronic Tile Calorimeter. The link board design is highly redundant, with digital functionality implemented in two Xilinx Kintex-7 FPGAs, and two Molex QSFP+ electro-optic modules with uplinks run at 10 Gbps. The FPGAs are remotely configured through two radiation-hard CERN GBTx deserialisers (GBTx), which also provide the LHC-synchronous system clock. The redundant design eliminates virtually all single-point error modes, and a combination of triple-mode redundancy (TMR), internal and external scrubbing will provide adequate protection against radiation-induced errors. The small portion of the FPGA design that cannot be protected by TMR will be the dominant source of radiation-induced errors, even if that area is small.

  10. Computational design of variants for cephalosporin C acylase from Pseudomonas strain N176 with improved stability and activity.

    PubMed

    Tian, Ye; Huang, Xiaoqiang; Li, Qing; Zhu, Yushan

    2017-01-01

    In this report, redesigning cephalosporin C acylase from the Pseudomonas strain N176 revealed that the loss of stability owing to the introduced mutations at the active site can be recovered by repacking the nearby hydrophobic core regions. Starting from a quadruple mutant M31βF/H57βS/V68βA/H70βS, whose decrease in stability is largely owing to the mutation V68βA at the active site, we employed a computational enzyme design strategy that integrated design both at hydrophobic core regions for stability enhancement and at the active site for activity improvement. Single-point mutations L154βF, Y167βF, L180βF and their combinations L154βF/L180βF and L154βF/Y167βF/L180βF were found to display improved stability and activity. The two-point mutant L154βF/L180βF increased the protein melting temperature (T m ) by 11.7 °C and the catalytic efficiency V max /K m by 57 % compared with the values of the starting quadruple mutant. The catalytic efficiency of the resulting sixfold mutant M31βF/H57βS/V68βA/H70βS/L154βF/L180βF is recovered to become comparable to that of the triple mutant M31βF/H57βS/H70βS, but with a higher T m . Further experiments showed that single-point mutations L154βF, L180βF, and their combination contribute no stability enhancement to the triple mutant M31βF/H57βS/H70βS. These results verify that the lost stability because of mutation V68βA at the active site was recovered by introducing mutations L154βF and L180βF at hydrophobic core regions. Importantly, mutation V68βA in the six-residue mutant provides more space to accommodate the bulky side chain of cephalosporin C, which could help in designing cephalosporin C acylase mutants with higher activities and the practical one-step enzymatic route to prepare 7-aminocephalosporanic acid at industrial-scale levels.

  11. Electrically generated eddies at an eightfold stagnation point within a nanopore

    PubMed Central

    Sherwood, J. D.; Mao, M.; Ghosal, S.

    2014-01-01

    Electrically generated flows around a thin dielectric plate pierced by a cylindrical hole are computed numerically. The geometry represents that of a single nanopore in a membrane. When the membrane is uncharged, flow is due solely to induced charge electroosmosis, and eddies are generated by the high fields at the corners of the nanopore. These eddies meet at stagnation points. If the geometry is chosen correctly, the stagnation points merge to form a single stagnation point at which four streamlines cross at a point and eight eddies meet. PMID:25489206

  12. Experimental and numerical study on optimization of the single point incremental forming of AINSI 304L stainless steel sheet

    NASA Astrophysics Data System (ADS)

    Saidi, B.; Giraud-Moreau, L.; Cherouat, A.; Nasri, R.

    2017-09-01

    AINSI 304L stainless steel sheets are commonly formed into a variety of shapes for applications in the industrial, architectural, transportation and automobile fields, it’s also used for manufacturing of denture base. In the field of dentistry, there is a need for personalized devises that are custom made for the patient. The single point incremental forming process is highly promising in this area for manufacturing of denture base. The single point incremental forming process (ISF) is an emerging process based on the use of a spherical tool, which is moved along CNC controlled tool path. One of the major advantages of this process is the ability to program several punch trajectories on the same machine in order to obtain different shapes. Several applications of this process exist in the medical field for the manufacturing of personalized titanium prosthesis (cranial plate, knee prosthesis...) due to the need of product customization to each patient. The objective of this paper is to study the incremental forming of AISI 304L stainless steel sheets for future applications in the dentistry field. During the incremental forming process, considerable forces can occur. The control of the forming force is particularly important to ensure the safe use of the CNC milling machine and preserve the tooling and machinery. In this paper, the effect of four different process parameters on the maximum force is studied. The proposed approach consists in using an experimental design based on experimental results. An analysis of variance was conducted with ANOVA to find the input parameters allowing to minimize the maximum forming force. A numerical simulation of the incremental forming process is performed with the optimal input process parameters. Numerical results are compared with the experimental ones.

  13. Thomson scattering diagnostic on the Compact Toroidal Hybrid Experiment

    NASA Astrophysics Data System (ADS)

    Traverso, P. J.; Ennis, D. A.; Hartwell, G. J.; Kring, J. D.; Maurer, D. A.

    2017-10-01

    A Thomson scattering system is being commissioned for the non-axisymmetric plasmas of the Compact Toroidal Hybrid (CTH), a five-field period current-carrying torsatron. The system takes a single point measurement at the magnetic axis to both calibrate the two-color soft x-ray Te system and serve as an additional diagnostic for the V3FIT 3D equilibrium reconstruction code. A single point measurement will reduce the uncertainty in the reconstructed peak pressure by an order of magnitude for both current-carrying plasmas and future gyrotron-heated stellarator plasmas. The beam, generated by a frequency doubled Continuum 2 J, Nd:YAG laser, is passed vertically through an entrance Brewster window and a two-aperture optical baffle system to minimize stray light. Thomson scattered light is collected by two adjacent f/2 plano-convex condenser lenses and routed via a fiber bundle through a Holospec f/1.8 spectrograph. The red-shifted scattered light from 533-563 nm will be collected by an array of Hamamatsu H11706-40 PMTs. The system has been designed to measure plasmas with core Te of 100 to 200 eV and densities of 5 ×1018 to 5 ×1019 m-3. Stray light and calibration data for a single wavelength channel will be presented. This work is supported by U.S. Department of Energy Grant No. DE-FG02-00ER54610.

  14. Research on the transfers to Halo orbits from the view of invariant manifolds

    NASA Astrophysics Data System (ADS)

    Xu, Ming; Tan, Tian; Xu, ShiJie

    2012-04-01

    This paper discusses the evolutions of invariant manifolds of Halo orbits by low-thrust and lunar gravity. The possibility of applying all these manifolds in designing low-thrust transfer, and the presence of single-impulse trajectories under lunar gravity are also explained. The relationship between invariant manifolds and the altitude of the perigee is investigated using a Poincaré map. Six types of single-impulse transfer trajectories are then attained from the geometry of the invariant manifolds. The evolutions of controlled manifolds are surveyed by the gradient law of Jacobi energy, and the following conclusions are drawn. First, the low thrust (acceleration or deceleration) near the libration point is very inefficient that the spacecraft free-flies along the invariant manifolds. The purpose is to increase its velocity and avoid stagnation near the libration point. Second, all controlled manifolds are captured because they lie inside the boundary of Earth's gravity trap in the configuration space. The evolutions of invariant manifolds under lunar gravity are indicated from the relationship between the lunar phasic angle and the altitude of the perigee. Third and last, most of the manifolds have preserved their topologies in the circular restricted three-body problem. However, the altitudes of the perigee of few manifolds are quite non-continuous, which can be used to generate single- impulse flyby trajectories.

  15. Gas dynamic design of the pipe line compressor with 90% efficiency. Model test approval

    NASA Astrophysics Data System (ADS)

    Galerkin, Y.; Rekstin, A.; Soldatova, K.

    2015-08-01

    Gas dynamic design of the pipe line compressor 32 MW was made for PAO SMPO (Sumy, Ukraine). The technical specification requires compressor efficiency of 90%. The customer offered favorable scheme - single-stage design with console impeller and axial inlet. The authors used the standard optimization methodology of 2D impellers. The original methodology of internal scroll profiling was used to minimize efficiency losses. Radically improved 5th version of the Universal modeling method computer programs was used for precise calculation of expected performances. The customer fulfilled model tests in a 1:2 scale. Tests confirmed the calculated parameters at the design point (maximum efficiency of 90%) and in the whole range of flow rates. As far as the authors know none of compressors have achieved such efficiency. The principles and methods of gas-dynamic design are presented below. The data of the 32 MW compressor presented by the customer in their report at the 16th International Compressor conference (September 2014, Saint- Petersburg) and later transferred to the authors.

  16. Multidisciplinary Analysis of the NEXUS Precursor Space Telescope

    NASA Astrophysics Data System (ADS)

    de Weck, Olivier L.; Miller, David W.; Mosier, Gary E.

    2002-12-01

    A multidisciplinary analysis is demonstrated for the NEXUS space telescope precursor mission. This mission was originally designed as an in-space technology testbed for the Next Generation Space Telescope (NGST). One of the main challenges is to achieve a very tight pointing accuracy with a sub-pixel line-of-sight (LOS) jitter budget and a root-mean-square (RMS) wavefront error smaller than λ/50 despite the presence of electronic and mechanical disturbances sources. The analysis starts with the assessment of the performance for an initial design, which turns out not to meet the requirements. Twentyfive design parameters from structures, optics, dynamics and controls are then computed in a sensitivity and isoperformance analysis, in search of better designs. Isoperformance allows finding an acceptable design that is well "balanced" and does not place undue burden on a single subsystem. An error budget analysis shows the contributions of individual disturbance sources. This paper might be helpful in analyzing similar, innovative space telescope systems in the future.

  17. Design and development of a brushless, direct drive solar array reorientation system

    NASA Technical Reports Server (NTRS)

    Jessee, R. D.

    1972-01-01

    This report covers the design and development of the laboratory model, and is essentially a compilation of reports covering the system and its various parts. To enhance completeness, the final report of Phase 1 covering circuit development of the controller is also included. A controller was developed for a brushless, direct-drive, single axis solar array reorientation system for earth-pointed, passively-stabilized spacecraft. A control systems was designed and breadboard circuits were built and tested for performance. The controller is designed to take over automatic control of the array on command after the spacecraft is stabilized in orbit. The controller will orient the solar array to the sun vector and automatically track to maintain proper orientation. So long as the orbit is circular, orientation toward the sun is maintained even though the spacecraft goes into the shadow of the earth. Particular attention was given in the design to limit reaction between the array and the spacecraft.

  18. Cascade Optimization Strategy with Neural Network and Regression Approximations Demonstrated on a Preliminary Aircraft Engine Design

    NASA Technical Reports Server (NTRS)

    Hopkins, Dale A.; Patnaik, Surya N.

    2000-01-01

    A preliminary aircraft engine design methodology is being developed that utilizes a cascade optimization strategy together with neural network and regression approximation methods. The cascade strategy employs different optimization algorithms in a specified sequence. The neural network and regression methods are used to approximate solutions obtained from the NASA Engine Performance Program (NEPP), which implements engine thermodynamic cycle and performance analysis models. The new methodology is proving to be more robust and computationally efficient than the conventional optimization approach of using a single optimization algorithm with direct reanalysis. The methodology has been demonstrated on a preliminary design problem for a novel subsonic turbofan engine concept that incorporates a wave rotor as a cycle-topping device. Computations of maximum thrust were obtained for a specific design point in the engine mission profile. The results (depicted in the figure) show a significant improvement in the maximum thrust obtained using the new methodology in comparison to benchmark solutions obtained using NEPP in a manual design mode.

  19. 3D micro-mapping: Towards assessing the quality of crowdsourcing to support 3D point cloud analysis

    NASA Astrophysics Data System (ADS)

    Herfort, Benjamin; Höfle, Bernhard; Klonner, Carolin

    2018-03-01

    In this paper, we propose a method to crowdsource the task of complex three-dimensional information extraction from 3D point clouds. We design web-based 3D micro tasks tailored to assess segmented LiDAR point clouds of urban trees and investigate the quality of the approach in an empirical user study. Our results for three different experiments with increasing complexity indicate that a single crowdsourcing task can be solved in a very short time of less than five seconds on average. Furthermore, the results of our empirical case study reveal that the accuracy, sensitivity and precision of 3D crowdsourcing are high for most information extraction problems. For our first experiment (binary classification with single answer) we obtain an accuracy of 91%, a sensitivity of 95% and a precision of 92%. For the more complex tasks of the second Experiment 2 (multiple answer classification) the accuracy ranges from 65% to 99% depending on the label class. Regarding the third experiment - the determination of the crown base height of individual trees - our study highlights that crowdsourcing can be a tool to obtain values with even higher accuracy in comparison to an automated computer-based approach. Finally, we found out that the accuracy of the crowdsourced results for all experiments is hardly influenced by characteristics of the input point cloud data and of the users. Importantly, the results' accuracy can be estimated using agreement among volunteers as an intrinsic indicator, which makes a broad application of 3D micro-mapping very promising.

  20. A sled push stimulus potentiates subsequent 20-m sprint performance.

    PubMed

    Seitz, Laurent B; Mina, Minas A; Haff, G Gregory

    2017-08-01

    The objective of this study was to examine the potentiating effects of performing a single sprint-style sled push on subsequent unresisted 20m sprint performance. Randomized crossover design. Following a familiarization session, twenty rugby league players performed maximal unresisted 20m sprints before and 15s, 4, 8 and 12min after a single sled push stimulus loaded with either 75 or 125% body mass. The two sled push conditions were performed in a randomized order over a one-week period. The fastest sprint time recorded before each sled push was compared to that recorded at each time point after to determine the post-activation potentiation (PAP) effect. After the 75% body mass sled push, sprint time was 0.26±1.03% slower at the 15s time point (effect size [ES]=0.07) but faster at the 4 (-0.95±2.00%; ES=-0.22), 8 (-1.80±1.43%; ES=-0.42) and 12 (-1.54±1.54%; ES=-0.36)min time points. Sprint time was slower at all the time points after the 125% body mass sled (1.36±2.36%-2.59±2.90%; ESs=0.34-0.64). Twenty-meter sprint performance is potentiated 4-12min following a sled push loaded with 75% body mass while it is impaired after a 125% body mass sled. These results are of great importance for coaches seeking to potentiate sprint performance with the sled push exercise. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  1. DETAIL VIEW OF SINGLE PANEL POINTS TAKEN FROM BRIDGE DECK, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF SINGLE PANEL POINTS TAKEN FROM BRIDGE DECK, SHOWING CONNECTION BETWEEN VERTICAL AND UPPER CHORD MEMBER - White Bowstring Arch Truss Bridge, Spanning Yellow Creek at Cemetery Drive (Riverside Drive), Poland, Mahoning County, OH

  2. 76 FR 67200 - Prospective Grant of Exclusive License: Electron Paramagnetic Resonance Devices and Systems for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ... that is a unique combination of: (1) multi-gradient Single Point Imaging involving global phase...-encoding gradients. The combination approach of single point imaging with the spin-echo signal detection...

  3. Development of CFD model for augmented core tripropellant rocket engine

    NASA Astrophysics Data System (ADS)

    Jones, Kenneth M.

    1994-10-01

    The Space Shuttle era has made major advances in technology and vehicle design to the point that the concept of a single-stage-to-orbit (SSTO) vehicle appears more feasible. NASA presently is conducting studies into the feasibility of certain advanced concept rocket engines that could be utilized in a SSTO vehicle. One such concept is a tripropellant system which burns kerosene and hydrogen initially and at altitude switches to hydrogen. This system will attain a larger mass fraction because LOX-kerosene engines have a greater average propellant density and greater thrust-to-weight ratio. This report describes the investigation to model the tripropellant augmented core engine. The physical aspects of the engine, the CFD code employed, and results of the numerical model for a single modular thruster are discussed.

  4. A Portable Solid-State Moisture Meter For Agricultural And Food Products

    NASA Astrophysics Data System (ADS)

    Bull, C. R.; Stafford, J. V.; Weaving, G. S.

    1988-10-01

    This paper reports on the development of a small, robust, battery operated near infra-red (NIR) reflectance device, designed for rapid on-farm measurement of the moisture content of forage crops without prior sample preparation. It has potential application to other agricultural or food materials. The instrument is based on two light emitting diodes (LEDs), a germanium detector and a control CMOS single chip microcomputer. The meter has been calibrated to give a direct read out of moisture content for 4 common grass varieties at 3 stages of development. The accuracy of a single point measurement on a grass sample is approximately +/- 6% over a range of 40-80% (wet basis). However, the potential accuracy on a homogeous sample may be as goon as 0.15%.

  5. Further improvement of hydrostatic pressure sample injection for microchip electrophoresis.

    PubMed

    Luo, Yong; Zhang, Qingquan; Qin, Jianhua; Lin, Bingcheng

    2007-12-01

    Hydrostatic pressure sample injection method is able to minimize the number of electrodes needed for a microchip electrophoresis process; however, it neither can be applied for electrophoretic DNA sizing, nor can be implemented on the widely used single-cross microchip. This paper presents an injector design that makes the hydrostatic pressure sample injection method suitable for DNA sizing. By introducing an assistant channel into the normal double-cross injector, a rugged DNA sample plug suitable for sizing can be successfully formed within the cross area during the sample loading. This paper also demonstrates that the hydrostatic pressure sample injection can be performed in the single-cross microchip by controlling the radial position of the detection point in the separation channel. Rhodamine 123 and its derivative as model sample were successfully separated.

  6. Quantitative analysis of single- vs. multiple-set programs in resistance training.

    PubMed

    Wolfe, Brian L; LeMura, Linda M; Cole, Phillip J

    2004-02-01

    The purpose of this study was to examine the existing research on single-set vs. multiple-set resistance training programs. Using the meta-analytic approach, we included studies that met the following criteria in our analysis: (a) at least 6 subjects per group; (b) subject groups consisting of single-set vs. multiple-set resistance training programs; (c) pretest and posttest strength measures; (d) training programs of 6 weeks or more; (e) apparently "healthy" individuals free from orthopedic limitations; and (f) published studies in English-language journals only. Sixteen studies generated 103 effect sizes (ESs) based on a total of 621 subjects, ranging in age from 15-71 years. Across all designs, intervention strategies, and categories, the pretest to posttest ES in muscular strength was (chi = 1.4 +/- 1.4; 95% confidence interval, 0.41-3.8; p < 0.001). The results of 2 x 2 analysis of variance revealed simple main effects for age, training status (trained vs. untrained), and research design (p < 0.001). No significant main effects were found for sex, program duration, and set end point. Significant interactions were found for training status and program duration (6-16 weeks vs. 17-40 weeks) and number of sets performed (single vs. multiple). The data indicated that trained individuals performing multiple sets generated significantly greater increases in strength (p < 0.001). For programs with an extended duration, multiple sets were superior to single sets (p < 0.05). This quantitative review indicates that single-set programs for an initial short training period in untrained individuals result in similar strength gains as multiple-set programs. However, as progression occurs and higher gains are desired, multiple-set programs are more effective.

  7. [Comparative evaluation of the marginal accuracy of single crowns fabricated computer using aided design/computer aided manufacturing methods, self-curing resin and Luxatemp].

    PubMed

    Jianming, Yuan; Ying, Tang; Feng, Pan; Weixing, Xu

    2016-12-01

    This study aims to compare the marginal accuracy of single crowns fabricated using self-curing resin, Luxatemp, and computer aided design/computer aided manufacturing (CAD/CAM) methods in clinical application. A total of 30 working dies, which were obtained from 30 clinical teeth prepared with full crown as standard, were created and made into 30 self-curing resin, Luxatemp, and CAD/CAM single crowns. The restorations were seated on the working dies, and stereomicroscope was used to observe and measure the thickness of reference points. One-way analysis of variance, which was performed using SPSS 19.0 software package, compared the marginal gap widths of self-curing resin, Luxatemp, and CAD/CAM provisional crowns. The mean marginal gap widths of the fabricated self-curing resin, Luxatemp, and CAD/CAM were (179.06±33.24), (88.83±9.56), and (43.61±7.27) μm, respectively. A significant difference was observed among the three provisional crowns (P<0.05). The marginal gap width of CAD/CAM provisional crown was lower than that of the self-curing resin and Luxatemp. Thus, the CAD/CAM provisional crown offers a better remediation effect in clinical application.

  8. Performance Evaluation of Reduced-Chord Rotor Blading as Applied to J73 Two-Stage Turbine

    NASA Technical Reports Server (NTRS)

    Schurn, Harold J.

    1957-01-01

    The multistage turbine from the J73 turbojet engine has previously been investigated with standard and with reduced-chord rotor blading in order to determine the individual performance characteristics of each configuration over a range of over-all pressure ratio and speed. Because both turbine configurations exhibited peak efficiencies of over 90 percent, and because both units had relatively wide efficient operating ranges, it was considered of interest to determine the performance of the first stage of the turbine as a separate component. Accordingly, the standard-bladed multistage turbine was modified by removing the second-stage rotor disk and stator and altering the flow passage so that the first stage of the unit could be operated independently. The modified single-stage turbine was then operated over a range of stage pressure ratio and speed. The single-stage turbine operated at a peak brake internal efficiency of over 90 percent at an over-all stage pressure ratio of 1.4 and at 90 percent of design equivalent speed. Furthermore, the unit operated at high efficiencies over a relatively wide operating range. When the single-stage results were compared with the multistage results at the design operating point, it was found that the first stage produced approximately half the total multistage-turbine work output.

  9. Arc fusion splicing of photonic crystal fibers to standard single mode fibers

    NASA Astrophysics Data System (ADS)

    Borzycki, Krzysztof; Kobelke, Jens; Schuster, Kay; Wójcik, Jan

    2010-04-01

    Coupling a photonic crystal fiber (PCF) to measuring instruments or optical subsystems is often done by splicing it to short lengths of single mode fiber (SMF) used for interconnections, as SMF is standardized, widely available and compatible with most fiber optic components and measuring instruments. This paper presents procedures and results of loss measurements during fusion splicing of five PCFs tested at NIT laboratory within activities of COST Action 299 "FIDES". Investigated silica-based fibers had 80-200 μm cladding diameter and were designed as single mode. A standard splicing machine designed for telecom fibers was used, but splicing procedure and arc power were tailored to each PCF. Splice loss varied between 0.7 and 2.8 dB at 1550 nm. Splices protected with heat-shrinkable sleeves served well for gripping fibers during mechanical tests and survived temperature cycling from -30°C to +70°C with stable loss. Collapse of holes in the PCF was limited by reducing fusion time to 0.2-0.5 s; additional measures included reduction of discharge power and shifting SMF-PCF contact point away from the axis of electrodes. Unfortunately, short fusion time sometimes precluded proper smoothing of glass surface, leading to a trade-off between splice loss and strength.

  10. Borehole flowmeter logging for the accurate design and analysis of tracer tests.

    PubMed

    Basiricò, Stefano; Crosta, Giovanni B; Frattini, Paolo; Villa, Alberto; Godio, Alberto

    2015-04-01

    Tracer tests often give ambiguous interpretations that may be due to the erroneous location of sampling points and/or the lack of flow rate measurements through the sampler. To obtain more reliable tracer test results, we propose a methodology that optimizes the design and analysis of tracer tests in a cross borehole mode by using vertical borehole flow rate measurements. Experiments using this approach, herein defined as the Bh-flow tracer test, have been performed by implementing three sequential steps: (1) single-hole flowmeter test, (2) cross-hole flowmeter test, and (3) tracer test. At the experimental site, core logging, pumping tests, and static water-level measurements were previously carried out to determine stratigraphy, fracture characteristics, and bulk hydraulic conductivity. Single-hole flowmeter testing makes it possible to detect the presence of vertical flows as well as inflow and outflow zones, whereas cross-hole flowmeter testing detects the presence of connections along sets of flow conduits or discontinuities intercepted by boreholes. Finally, the specific pathways and rates of groundwater flow through selected flowpaths are determined by tracer testing. We conclude that the combined use of single and cross-borehole flowmeter tests is fundamental to the formulation of the tracer test strategy and interpretation of the tracer test results. © 2014, National Ground Water Association.

  11. Alternative methods for CYP2D6 phenotyping: comparison of dextromethorphan metabolic ratios from AUC, single point plasma, and urine.

    PubMed

    Chen, Rui; Wang, Haotian; Shi, Jun; Hu, Pei

    2016-05-01

    CYP2D6 is a high polymorphic enzyme. Determining its phenotype before CYP2D6 substrate treatment can avoid dose-dependent adverse events or therapeutic failures. Alternative phenotyping methods of CYP2D6 were compared to aluate the appropriate and precise time points for phenotyping after single-dose and ultiple-dose of 30-mg controlled-release (CR) dextromethorphan (DM) and to explore the antimodes for potential sampling methods. This was an open-label, single and multiple-dose study. 21 subjects were assigned to receive a single dose of CR DM 30 mg orally, followed by a 3-day washout period prior to oral administration of CR DM 30 mg every 12 hours for 6 days. Metabolic ratios (MRs) from AUC∞ after single dosing and from AUC0-12h at steady state were taken as the gold standard. The correlations of metabolic ratios of DM to dextrorphan (MRDM/DX) values based on different phenotyping methods were assessed. Linear regression formulas were derived to calculate the antimodes for potential sample methods. In the single-dose part of the study statistically significant correlations were found between MRDM/DX from AUC∞ and from serial plasma points from 1 to 30 hours or from urine (all p-values < 0.001). In the multiple-dose part, statistically significant correlations were found between MRDM/DX from AUC0-12h on day 6 and MRDM/DX from serial plasma points from 0 to 36 hours after the last dosing (all p-values < 0.001). Based on reported urinary antimode and linear regression analysis, the antimodes of AUC and plasma points were derived to profile the trend of antimodes as the drug concentrations changed. MRDM/DX from plasma points had good correlations with MRDM/DX from AUC. Plasma points from 1 to 30 hours after single dose of 30-mg CR DM and any plasma point at steady state after multiple doses of CR DM could potentially be used for phenotyping of CYP2D6.

  12. Systematic design of membership functions for fuzzy-logic control: A case study on one-stage partial nitritation/anammox treatment systems.

    PubMed

    Boiocchi, Riccardo; Gernaey, Krist V; Sin, Gürkan

    2016-10-01

    A methodology is developed to systematically design the membership functions of fuzzy-logic controllers for multivariable systems. The methodology consists of a systematic derivation of the critical points of the membership functions as a function of predefined control objectives. Several constrained optimization problems corresponding to different qualitative operation states of the system are defined and solved to identify, in a consistent manner, the critical points of the membership functions for the input variables. The consistently identified critical points, together with the linguistic rules, determine the long term reachability of the control objectives by the fuzzy logic controller. The methodology is highlighted using a single-stage side-stream partial nitritation/Anammox reactor as a case study. As a result, a new fuzzy-logic controller for high and stable total nitrogen removal efficiency is designed. Rigorous simulations are carried out to evaluate and benchmark the performance of the controller. The results demonstrate that the novel control strategy is capable of rejecting the long-term influent disturbances, and can achieve a stable and high TN removal efficiency. Additionally, the controller was tested, and showed robustness, against measurement noise levels typical for wastewater sensors. A feedforward-feedback configuration using the present controller would give even better performance. In comparison, a previously developed fuzzy-logic controller using merely expert and intuitive knowledge performed worse. This proved the importance of using a systematic methodology for the derivation of the membership functions for multivariable systems. These results are promising for future applications of the controller in real full-scale plants. Furthermore, the methodology can be used as a tool to help systematically design fuzzy logic control applications for other biological processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. N-of-1-pathways MixEnrich: advancing precision medicine via single-subject analysis in discovering dynamic changes of transcriptomes.

    PubMed

    Li, Qike; Schissler, A Grant; Gardeux, Vincent; Achour, Ikbel; Kenost, Colleen; Berghout, Joanne; Li, Haiquan; Zhang, Hao Helen; Lussier, Yves A

    2017-05-24

    Transcriptome analytic tools are commonly used across patient cohorts to develop drugs and predict clinical outcomes. However, as precision medicine pursues more accurate and individualized treatment decisions, these methods are not designed to address single-patient transcriptome analyses. We previously developed and validated the N-of-1-pathways framework using two methods, Wilcoxon and Mahalanobis Distance (MD), for personal transcriptome analysis derived from a pair of samples of a single patient. Although, both methods uncover concordantly dysregulated pathways, they are not designed to detect dysregulated pathways with up- and down-regulated genes (bidirectional dysregulation) that are ubiquitous in biological systems. We developed N-of-1-pathways MixEnrich, a mixture model followed by a gene set enrichment test, to uncover bidirectional and concordantly dysregulated pathways one patient at a time. We assess its accuracy in a comprehensive simulation study and in a RNA-Seq data analysis of head and neck squamous cell carcinomas (HNSCCs). In presence of bidirectionally dysregulated genes in the pathway or in presence of high background noise, MixEnrich substantially outperforms previous single-subject transcriptome analysis methods, both in the simulation study and the HNSCCs data analysis (ROC Curves; higher true positive rates; lower false positive rates). Bidirectional and concordant dysregulated pathways uncovered by MixEnrich in each patient largely overlapped with the quasi-gold standard compared to other single-subject and cohort-based transcriptome analyses. The greater performance of MixEnrich presents an advantage over previous methods to meet the promise of providing accurate personal transcriptome analysis to support precision medicine at point of care.

  14. Real-time feedback control of three-dimensional Tollmien-Schlichting waves using a dual-slot actuator geometry

    NASA Astrophysics Data System (ADS)

    Vemuri, SH. S.; Bosworth, R.; Morrison, J. F.; Kerrigan, E. C.

    2018-05-01

    The growth of Tollmien-Schlichting (TS) waves is experimentally attenuated using a single-input and single-output (SISO) feedback system, where the TS wave packet is generated by a surface point source in a flat-plate boundary layer. The SISO system consists of a single wall-mounted hot wire as the sensor and a miniature speaker as the actuator. The actuation is achieved through a dual-slot geometry to minimize the cavity near-field effects on the sensor. The experimental setup to generate TS waves or wave packets is very similar to that used by Li and Gaster [J. Fluid Mech. 550, 185 (2006), 10.1017/S0022112005008219]. The aim is to investigate the performance of the SISO control system in attenuating single-frequency, two-dimensional disturbances generated by these configurations. The necessary plant models are obtained using system identification, and the controllers are then designed based on the models and implemented in real-time to test their performance. Cancellation of the rms streamwise velocity fluctuation of TS waves is evident over a significant domain.

  15. A dark-field microscope for background-free detection of resonance fluorescence from single semiconductor quantum dots operating in a set-and-forget mode

    NASA Astrophysics Data System (ADS)

    Kuhlmann, Andreas V.; Houel, Julien; Brunner, Daniel; Ludwig, Arne; Reuter, Dirk; Wieck, Andreas D.; Warburton, Richard J.

    2013-07-01

    Optically active quantum dots, for instance self-assembled InGaAs quantum dots, are potentially excellent single photon sources. The fidelity of the single photons is much improved using resonant rather than non-resonant excitation. With resonant excitation, the challenge is to distinguish between resonance fluorescence and scattered laser light. We have met this challenge by creating a polarization-based dark-field microscope to measure the resonance fluorescence from a single quantum dot at low temperature. We achieve a suppression of the scattered laser exceeding a factor of 107 and background-free detection of resonance fluorescence. The same optical setup operates over the entire quantum dot emission range (920-980 nm) and also in high magnetic fields. The major development is the outstanding long-term stability: once the dark-field point has been established, the microscope operates for days without alignment. The mechanical and optical designs of the microscope are presented, as well as exemplary resonance fluorescence spectroscopy results on individual quantum dots to underline the microscope's excellent performance.

  16. Theoretical design and analysis of multivolume digital assays with wide dynamic range validated experimentally with microfluidic digital PCR.

    PubMed

    Kreutz, Jason E; Munson, Todd; Huynh, Toan; Shen, Feng; Du, Wenbin; Ismagilov, Rustem F

    2011-11-01

    This paper presents a protocol using theoretical methods and free software to design and analyze multivolume digital PCR (MV digital PCR) devices; the theory and software are also applicable to design and analysis of dilution series in digital PCR. MV digital PCR minimizes the total number of wells required for "digital" (single molecule) measurements while maintaining high dynamic range and high resolution. In some examples, multivolume designs with fewer than 200 total wells are predicted to provide dynamic range with 5-fold resolution similar to that of single-volume designs requiring 12,000 wells. Mathematical techniques were utilized and expanded to maximize the information obtained from each experiment and to quantify performance of devices and were experimentally validated using the SlipChip platform. MV digital PCR was demonstrated to perform reliably, and results from wells of different volumes agreed with one another. No artifacts due to different surface-to-volume ratios were observed, and single molecule amplification in volumes ranging from 1 to 125 nL was self-consistent. The device presented here was designed to meet the testing requirements for measuring clinically relevant levels of HIV viral load at the point-of-care (in plasma, <500 molecules/mL to >1,000,000 molecules/mL), and the predicted resolution and dynamic range was experimentally validated using a control sequence of DNA. This approach simplifies digital PCR experiments, saves space, and thus enables multiplexing using separate areas for each sample on one chip, and facilitates the development of new high-performance diagnostic tools for resource-limited applications. The theory and software presented here are general and are applicable to designing and analyzing other digital analytical platforms including digital immunoassays and digital bacterial analysis. It is not limited to SlipChip and could also be useful for the design of systems on platforms including valve-based and droplet-based platforms. In a separate publication by Shen et al. (J. Am. Chem. Soc., 2011, DOI: 10.1021/ja2060116), this approach is used to design and test digital RT-PCR devices for quantifying RNA.

  17. Study protocol to examine the effects of spaceflight and a spaceflight analog on neurocognitive performance: extent, longevity, and neural bases

    PubMed Central

    2013-01-01

    Background Long duration spaceflight (i.e., 22 days or longer) has been associated with changes in sensorimotor systems, resulting in difficulties that astronauts experience with posture control, locomotion, and manual control. The microgravity environment is an important causal factor for spaceflight induced sensorimotor changes. Whether spaceflight also affects other central nervous system functions such as cognition is yet largely unknown, but of importance in consideration of the health and performance of crewmembers both in- and post-flight. We are therefore conducting a controlled prospective longitudinal study to investigate the effects of spaceflight on the extent, longevity and neural bases of sensorimotor and cognitive performance changes. Here we present the protocol of our study. Methods/design This study includes three groups (astronauts, bed rest subjects, ground-based control subjects) for which each the design is single group with repeated measures. The effects of spaceflight on the brain will be investigated in astronauts who will be assessed at two time points pre-, at three time points during-, and at four time points following a spaceflight mission of six months. To parse out the effect of microgravity from the overall effects of spaceflight, we investigate the effects of seventy days head-down tilted bed rest. Bed rest subjects will be assessed at two time points before-, two time points during-, and three time points post-bed rest. A third group of ground based controls will be measured at four time points to assess reliability of our measures over time. For all participants and at all time points, except in flight, measures of neurocognitive performance, fine motor control, gait, balance, structural MRI (T1, DTI), task fMRI, and functional connectivity MRI will be obtained. In flight, astronauts will complete some of the tasks that they complete pre- and post flight, including tasks measuring spatial working memory, sensorimotor adaptation, and fine motor performance. Potential changes over time and associations between cognition, motor-behavior, and brain structure and function will be analyzed. Discussion This study explores how spaceflight induced brain changes impact functional performance. This understanding could aid in the design of targeted countermeasures to mitigate the negative effects of long-duration spaceflight. PMID:24350728

  18. 6. DETAIL VIEW OF SINGLE PANEL POINTS TAKEN FROM BRIDGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DETAIL VIEW OF SINGLE PANEL POINTS TAKEN FROM BRIDGE DECK, SHOWING CONNECTION BETWEEN VERTICAL AND UPPER CHORD MEMBER. - White Bowstring Arch Truss Bridge, Spanning Yellow Creek at Cemetery Drive (Riverside Drive), Poland, Mahoning County, OH

  19. The 1982 control network of Mars

    NASA Technical Reports Server (NTRS)

    Davies, M. E.; Katayama, F. Y.

    1983-01-01

    Attention is given to a planet-wide control network of Mars that was computed in September 1982 using a large single-block analytical triangulation with 47,524 measurements of 6853 control points on 1054 Mariner 9 and 757 Viking pictures. In all, 19,139 normal equations were solved, with a resulting standard error of measurement of 18.06 microns. The control points identified by name and letter designation are given, as are the aerographic coordinates of the control points. In addition, the coordinates of the Viking I lander site are given: latitude, 22.480 deg; longitude, 47.962 deg (radius, 3389.32 km). This study expands and updates the previously published network (1978). It is noted that the computation differs in many respects from standard aerial mapping photogrammetric practice. In comparison with aerial mapping photography, the television formats are small and the focal lengths are long; stereo coverage is rare, the scale of the pictures varies greatly, and the residual camera distortions are large.

  20. The effect of fine and grapho-motor skill demands on preschoolers' decoding skill.

    PubMed

    Suggate, Sebastian; Pufke, Eva; Stoeger, Heidrun

    2016-01-01

    Previous correlational research has found indications that fine motor skills (FMS) link to early reading development, but the work has not demonstrated causality. We manipulated 51 preschoolers' FMS while children learned to decode letters and nonsense words in a within-participants, randomized, and counterbalanced single-factor design with pre- and posttesting. In two conditions, children wrote with a pencil that had a conical shape fitted to the end filled with either steel (impaired writing condition) or polystyrene (normal writing condition). In a third control condition, children simply pointed at the letters with the light pencil as they learned to read the words (pointing condition). Results indicate that children learned the most decoding skills in the normal writing condition, followed by the pointing and impaired writing conditions. In addition, working memory, phonemic awareness, and grapho-motor skills were generally predictors of decoding skill development. The findings provide experimental evidence that having lower FMS is disadvantageous for reading development. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. The Role of the Strutjet Engine in New Global and Space Markets

    NASA Technical Reports Server (NTRS)

    Siebenhaar, A.; Bulman, M. J.; Bonnar, D. K.

    1998-01-01

    The Strutjet, discussed in previous IAF papers, was originally introduced as an enabling propulsion concept for single stage to orbit applications. Recent design considerations indicate that this systems also provides benefits supportive of other commercial non-space applications. This paper describes the technical progress of the Strutjet since 1997 together with a rationale why Rocket Based Combined Cycle Engines in general, and the Strutjet in particular, lend themselves uniquely to systems having the ability to expand current space and open new global 'rapid delivery' markets. During this decade, Strutjet technology has been evaluated in over 1000 tests. Its design maturity has been continuously improved and desired features, like simple variable geometry and low drag flowpath resulting in high performance, have been verified. In addition, data is now available which allows the designer, who is challenged to maximize system operability and economic feasibility, to choose between hydrogen or hydrocarbon fuels for a variety of application. The ability exists now to apply this propulsion system to various vehicles with a multitude of missions. In this paper, storable hydrocarbon and gaseous hydrogen Strutjet RBCC test data as accomplished to date and as planned for the future is presented, and the degree of required technology maturity achieved so far is assessed. Two vehicles, using cryogenic propane fuel Strutjet engines, and specifically designed for rapid point-to-point cargo delivery between Pacific rim locations are introduced, discussed, and compared.

  2. The Role of the Strutjet Engine in New Global and Space Markets

    NASA Technical Reports Server (NTRS)

    Siebenhaar, A.; Bonar, D.; Sarmont, E.

    1998-01-01

    The Strutjet, discussed in previous IAF papers, was originally introduced as an enabling propulsion concept for single stage to orbit applications. Recent design considerations indicate that this systems also provides benefits supportive of other commercial non-space applications. This paper describes the technical progress of the Strutjet since 1997 together with a rationale why Rocket Based Combined Cycle Engines in general, and the Strutjet in particular, lend themselves uniquely to systems having the ability to expand current space and open new global "rapid delivery" markets. During this decade, Strutjet technology has been evaluated in over 1000 tests. Its design maturity has been continuously improved and desired features, like simple variable geometry and low drag flowpath resulting in high performance, are verified. In addition, data is now available which allows the designer, who is challenged to maximize system operability and economic feasibility, to choose between hydrogen or hydrocarbon fuels for these application. The ability exists now to apply this propulsion system to various vehicles with a multitude of missions. In this paper, the previously presented earth-to-orbit hydrogen powered vehicle is up3ated and another vehicle, specifically designed for rapid point-to-point delivery, is introduced and discussed. High payoff propulsion technologies required for these vehicles are identified and laid out in a roadmap spanning over the next decade.

  3. Design and Optimization of the SPOT Primary Mirror Segment

    NASA Technical Reports Server (NTRS)

    Budinoff, Jason G.; Michaels, Gregory J.

    2005-01-01

    The 3m Spherical Primary Optical Telescope (SPOT) will utilize a single ring of 0.86111 point-to-point hexagonal mirror segments. The f2.85 spherical mirror blanks will be fabricated by the same replication process used for mass-produced commercial telescope mirrors. Diffraction-limited phasing will require segment-to-segment radius of curvature (ROC) variation of approx.1 micron. Low-cost, replicated segment ROC variations are estimated to be almost 1 mm, necessitating a method for segment ROC adjustment & matching. A mechanical architecture has been designed that allows segment ROC to be adjusted up to 400 microns while introducing a minimum figure error, allowing segment-to-segment ROC matching. A key feature of the architecture is the unique back profile of the mirror segments. The back profile of the mirror was developed with shape optimization in MSC.Nastran(TradeMark) using optical performance response equations written with SigFit. A candidate back profile was generated which minimized ROC-adjustment-induced surface error while meeting the constraints imposed by the fabrication method. Keywords: optimization, radius of curvature, Pyrex spherical mirror, Sigfit

  4. NASA Constellation Program (CxP) Key Driving Requirements and Element Descriptions for International Architecture Working Group (IAWG) Functional Teams Human Transportation Cargo Transportation

    NASA Technical Reports Server (NTRS)

    Martinez, Roland M.

    2009-01-01

    The NASA Constellation uncrewed cargo mission delivers cargo to any designated location on the lunar surface (or other staging point) in a single mission. This capability is used to deliver surface infrastructure needed for lunar outpost construction, to provide periodic logistics resupply to support a continuous human lunar presence, and potentially deliver other assets to various locations.In the nominal mission mode, the Altair lunar lander is launched on Ares V into Low Earth Orbit (LEO), following a short Low Earth Orbit (LEO) loiter period, the Earth Departure Stage (EDS) performs the Trans Lunar Injection (TLI) burn and is then jettisoned. The Altair performs translunar trajectory correction maneuvers as necessary and performs the Lunar Orbit Insertion (LOI) burn. Altair then descends to the surface to land near a designated target, presumably in proximity to an Outpost location or another site of interest for exploration.Alternatively, the EDS and Altair Descent Stage could deliver assets to various staging points within their propulsive capabilities.

  5. Design of the EO-1 Pulsed Plasma Thruster Attitude Control Experiment

    NASA Technical Reports Server (NTRS)

    Zakrzwski, Charles; Sanneman, Paul; Hunt, Teresa; Blackman, Kathie; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    The Pulsed Plasma Thruster (PPT) Experiment on the Earth Observing 1 (EO-1) spacecraft has been designed to demonstrate the capability of a new generation PPT to perform spacecraft attitude control. The PPT is a small, self-contained pulsed electromagnetic Propulsion system capable of delivering high specific impulse (900-1200 s), very small impulse bits (10-1000 micro N-s) at low average power (less than 1 to 100 W). EO-1 has a single PPT that can produce torque in either the positive or negative pitch direction. For the PPT in-flight experiment, the pitch reaction wheel will be replaced by the PPT during nominal EO-1 nadir pointing. A PPT specific proportional-integral-derivative (PID) control algorithm was developed for the experiment. High fidelity simulations of the spacecraft attitude control capability using the PPT were conducted. The simulations, which showed PPT control performance within acceptable mission limits, will be used as the benchmark for on-orbit performance. The flight validation will demonstrate the ability of the PPT to provide precision pointing resolution. response and stability as an attitude control actuator.

  6. Camera processing with chromatic aberration.

    PubMed

    Korneliussen, Jan Tore; Hirakawa, Keigo

    2014-10-01

    Since the refractive index of materials commonly used for lens depends on the wavelengths of light, practical camera optics fail to converge light to a single point on an image plane. Known as chromatic aberration, this phenomenon distorts image details by introducing magnification error, defocus blur, and color fringes. Though achromatic and apochromatic lens designs reduce chromatic aberration to a degree, they are complex and expensive and they do not offer a perfect correction. In this paper, we propose a new postcapture processing scheme designed to overcome these problems computationally. Specifically, the proposed solution is comprised of chromatic aberration-tolerant demosaicking algorithm and post-demosaicking chromatic aberration correction. Experiments with simulated and real sensor data verify that the chromatic aberration is effectively corrected.

  7. Guidance and control 1989; Proceedings of the Annual Rocky Mountain Guidance and Control Conference, Keystone, CO, Feb. 4-8, 1989

    NASA Astrophysics Data System (ADS)

    Culp, Robert D.; Lewis, Robert A.

    1989-05-01

    Papers are presented on advances in guidance, navigation, and control; guidance and control storyboard displays; attitude referenced pointing systems; guidance, navigation, and control for specialized missions; and recent experiences. Other topics of importance to support the application of guidance and control to the space community include concept design and performance test of a magnetically suspended single-gimbal control moment gyro; design, fabrication and test of a prototype double gimbal control moment gyroscope for the NASA Space Station; the Circumstellar Imaging Telescope Image Motion Compensation System providing ultra-precise control on the Space Station platform; pinpointing landing concepts for the Mars Rover Sample Return mission; and space missile guidance and control simulation and flight testing.

  8. What we call what we do affects how we do it: a new nomenclature for simulation research in medical education.

    PubMed

    Haji, Faizal A; Hoppe, Daniel J; Morin, Marie-Paule; Giannoulakis, Konstantine; Koh, Jansen; Rojas, David; Cheung, Jeffrey J H

    2014-05-01

    Rapid technological advances and concern for patient safety have increased the focus on simulation as a pedagogical tool for educating health care providers. To date, simulation research scholarship has focused on two areas; evaluating instructional designs of simulation programs, and the integration of simulation into a broader educational context. However, these two categories of research currently exist under a single label-Simulation-Based Medical Education. In this paper we argue that introducing a more refined nomenclature within which to frame simulation research is necessary for researchers, to appropriately design research studies and describe their findings, and for end-point users (such as program directors and educators), to more appropriately understand and utilize this evidence.

  9. The development of an air Brayton and a steam Rankine solar receiver

    NASA Technical Reports Server (NTRS)

    Greeven, M. V.

    1980-01-01

    An air Brayton and a steam Rankine solar receiver now under development are described. These cavity receivers accept concentrated insolation from a single point focus, parabolic concentrator, and use this energy to heat the working fluid. Both receivers were designed for a solar input of 85 kw. The air Brayton receiver heats the air to 816 C. A metallic plate-fin heat transfer surface is used in this unit to effect the energy transfer. The steam Rankine receiver was designed as a once-through boiler with reheat. The receiver heats the water to 704 C to produce steam at 17.22 MPa in the boiler section. The reheat section operates at 1.2 MPA, reheating the steam to 704 C.

  10. Tissue-Engineered Fibrin-Based Heart Valve with a Tubular Leaflet Design

    PubMed Central

    Weber, Miriam; Heta, Eriona; Moreira, Ricardo; Gesche, Valentine N.; Schermer, Thomas; Frese, Julia

    2014-01-01

    The general approach in heart valve tissue engineering is to mimic the shape of the native valve in the attempt to recreate the natural haemodynamics. In this article, we report the fabrication of the first tissue-engineered heart valve (TEHV) based on a tubular leaflet design, where the function of the leaflets of semilunar heart valves is performed by a simple tubular construct sutured along a circumferential line at the root and at three single points at the sinotubular junction. The tubular design is a recent development in pericardial (nonviable) bioprostheses, which has attracted interest because of the simplicity of the construction and the reliability of the implantation technique. Here we push the potential of the concept further from the fabrication and material point of view to realize the tube-in-tube valve: an autologous, living HV with remodelling and growing capability, physiological haemocompatibility, simple to construct and fast to implant. We developed two different fabrication/conditioning procedures and produced fibrin-based constructs embedding cells from the ovine umbilical cord artery according to the two different approaches. Tissue formation was confirmed by histology and immunohistology. The design of the tube-in-tube foresees the possibility of using a textile coscaffold (here demonstrated with a warp-knitted mesh) to achieve enhanced mechanical properties in vision of implantation in the aortic position. The tube-in-tube represents an attractive alternative to the conventional design of TEHVs aiming at reproducing the valvular geometry. PMID:23829551

  11. Program For Engineering Electrical Connections

    NASA Technical Reports Server (NTRS)

    Billitti, Joseph W.

    1990-01-01

    DFACS is interactive multiuser computer-aided-engineering software tool for system-level electrical integration and cabling engineering. Purpose of program to provide engineering community with centralized data base for putting in and gaining access to data on functional definition of system, details of end-circuit pinouts in systems and subsystems, and data on wiring harnesses. Objective, to provide instantaneous single point of interchange of information, thus avoiding error-prone, time-consuming, and costly shuttling of data along multiple paths. Designed to operate on DEC VAX mini or micro computer using Version 5.0/03 of INGRES.

  12. Feasibility study on the ultra-small launch vehicle

    NASA Astrophysics Data System (ADS)

    Hayashi, T.; Matsuo, H.; Yamamoto, H.; Orii, T.; Kimura, A.

    1986-10-01

    An idea for a very small satellite launcher and a very small satellite is presented. The launcher is a three staged solid rocket based on a Japanese single stage sounding rocket S-520. Its payload capability is estimated to be 17 kg into 200 x 1000 km elliptical orbit. The spin-stabilized satellite with sun-pointing capability, though small, has almost all functions necessary for usual satellites. In its design, universality is stressed to meet various kinds of mission interface requirements; it can afford 5 kg to mission instruments.

  13. Application of information theory to the design of line-scan imaging systems

    NASA Technical Reports Server (NTRS)

    Huck, F. O.; Park, S. K.; Halyo, N.; Stallman, S.

    1981-01-01

    Information theory is used to formulate a single figure of merit for assessing the performance of line scan imaging systems as a function of their spatial response (point spread function or modulation transfer function), sensitivity, sampling and quantization intervals, and the statistical properties of a random radiance field. Computational results for the information density and efficiency (i.e., the ratio of information density to data density) are intuitively satisfying and compare well with experimental and theoretical results obtained by earlier investigators concerned with the performance of TV systems.

  14. Science operations management. [with Infrared Astronomy Satellite project

    NASA Technical Reports Server (NTRS)

    Squibb, G. F.

    1984-01-01

    The operation teams engaged in the IR Astronomical Satellite (IRAS) project included scientists from the IRAS International Science Team. The detailed involvement of these scientists in the design, testing, validation, and operations phases of the IRAS mission contributed to the success of this project. The Project Management Group spent a substantial amount of time discussing science-related issues, because science team coleaders were members from the outset. A single scientific point-of-contact for the Management Group enhanced the depth and continuity of agreement reached in decision-making.

  15. DLP NIRscan Nano: an ultra-mobile DLP-based near-infrared Bluetooth spectrometer

    NASA Astrophysics Data System (ADS)

    Gelabert, Pedro; Pruett, Eric; Perrella, Gavin; Subramanian, Sreeram; Lakshminarayanan, Aravind

    2016-02-01

    The DLP NIRscan Nano is an ultra-portable spectrometer evaluation module utilizing DLP technology to meet lower cost, smaller size, and higher performance than traditional architectures. The replacement of a linear array detector with DLP digital micromirror device (DMD) in conjunction with a single point detector adds the functionality of programmable spectral filters and sampling techniques that were not previously available on NIR spectrometers. This paper presents the hardware, software, and optical systems of the DLP NIRscan Nano and its design considerations on the implementation of a DLP-based spectrometer.

  16. Decentralized learning in Markov games.

    PubMed

    Vrancx, Peter; Verbeeck, Katja; Nowé, Ann

    2008-08-01

    Learning automata (LA) were recently shown to be valuable tools for designing multiagent reinforcement learning algorithms. One of the principal contributions of the LA theory is that a set of decentralized independent LA is able to control a finite Markov chain with unknown transition probabilities and rewards. In this paper, we propose to extend this algorithm to Markov games--a straightforward extension of single-agent Markov decision problems to distributed multiagent decision problems. We show that under the same ergodic assumptions of the original theorem, the extended algorithm will converge to a pure equilibrium point between agent policies.

  17. Polynomial expansions of single-mode motions around equilibrium points in the circular restricted three-body problem

    NASA Astrophysics Data System (ADS)

    Lei, Hanlun; Xu, Bo; Circi, Christian

    2018-05-01

    In this work, the single-mode motions around the collinear and triangular libration points in the circular restricted three-body problem are studied. To describe these motions, we adopt an invariant manifold approach, which states that a suitable pair of independent variables are taken as modal coordinates and the remaining state variables are expressed as polynomial series of them. Based on the invariant manifold approach, the general procedure on constructing polynomial expansions up to a certain order is outlined. Taking the Earth-Moon system as the example dynamical model, we construct the polynomial expansions up to the tenth order for the single-mode motions around collinear libration points, and up to order eight and six for the planar and vertical-periodic motions around triangular libration point, respectively. The application of the polynomial expansions constructed lies in that they can be used to determine the initial states for the single-mode motions around equilibrium points. To check the validity, the accuracy of initial states determined by the polynomial expansions is evaluated.

  18. Applying Human Factors Evaluation and Design Guidance to a Nuclear Power Plant Digital Control System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas Ulrich; Ronald Boring; William Phoenix

    2012-08-01

    The United States (U.S.) nuclear industry, like similar process control industries, has moved toward upgrading its control rooms. The upgraded control rooms typically feature digital control system (DCS) displays embedded in the panels. These displays gather information from the system and represent that information on a single display surface. In this manner, the DCS combines many previously separate analog indicators and controls into a single digital display, whereby the operators can toggle between multiple windows to monitor and control different aspects of the plant. The design of the DCS depends on the function of the system it monitors, but revolvesmore » around presenting the information most germane to an operator at any point in time. DCSs require a carefully designed human system interface. This report centers on redesigning existing DCS displays for an example chemical volume control system (CVCS) at a U.S. nuclear power plant. The crucial nature of the CVCS, which controls coolant levels and boration in the primary system, requires a thorough human factors evaluation of its supporting DCS. The initial digital controls being developed for the DCSs tend to directly mimic the former analog controls. There are, however, unique operator interactions with a digital vs. analog interface, and the differences have not always been carefully factored in the translation of an analog interface to a replacement DCS. To ensure safety, efficiency, and usability of the emerging DCSs, a human factors usability evaluation was conducted on a CVCS DCS currently being used and refined at an existing U.S. nuclear power plant. Subject matter experts from process control engineering, software development, and human factors evaluated the DCS displays to document potential usability issues and propose design recommendations. The evaluation yielded 167 potential usability issues with the DCS. These issues should not be considered operator performance problems but rather opportunities identified by experts to improve upon the design of the DCS. A set of nine design recommendations was developed to address these potential issues. The design principles addressed the following areas: (1) color, (2) pop-up window structure, (3) navigation, (4) alarms, (5) process control diagram, (6) gestalt grouping, (7) typography, (8) terminology, and (9) data entry. Visuals illustrating the improved DCS displays accompany the design recommendations. These nine design principles serve as the starting point to a planned general DCS style guide that can be used across the U.S. nuclear industry to aid in the future design of effective DCS interfaces.« less

  19. PRO_LIGAND: An approach to de novo molecular design. 4. Application to the design of peptides

    NASA Astrophysics Data System (ADS)

    Frenkel, David; Clark, David E.; Li, Jin; Murray, Christopher W.; Robson, Barry; Waszkowycz, Bohdan; Westhead, David R.

    1995-06-01

    In some instances, peptides can play an important role in the discovery of lead compounds. This paper describes the peptide design facility of the de novo drug design package, PRO_LIGAND. The package provides a unified framework for the design of peptides that are similar or complementary to a specified target. The approach uses single amino acid residues, selected from preconstructed libraries of different residues and conformations, and places them on top of predefined target interaction sites. This approach is a well-tested methodology for the design of organics but has not been used for peptides before. Peptides represent a difficulty because of their great conformational flexibility and a study of the advantages and disavantages of this simple approach is an important step in the development of design tools. After a description of our general approach, a more detailed discussion of its adaptation to peptides is given. The method is then applied to the design of peptide-based inhibitors to HIV-1 protease and the design of structural mimics of the surface region of lysozyme. The results are encouraging and point the way towards further development of interaction site-based approaches for peptide design.

  20. Self-locking degree-4 vertex origami structures

    PubMed Central

    Li, Suyi; Wang, K. W.

    2016-01-01

    A generic degree-4 vertex (4-vertex) origami possesses one continuous degree-of-freedom for rigid folding, and this folding process can be stopped when two of its facets bind together. Such facet-binding will induce self-locking so that the overall structure stays at a pre-specified configuration without additional locking elements or actuators. Self-locking offers many promising properties, such as programmable deformation ranges and piecewise stiffness jumps, that could significantly advance many adaptive structural systems. However, despite its excellent potential, the origami self-locking features have not been well studied, understood, and used. To advance the state of the art, this research conducts a comprehensive investigation on the principles of achieving and harnessing self-locking in 4-vertex origami structures. Especially, for the first time, this study expands the 4-vertex structure construction from single-component to dual-component designs and investigates their self-locking behaviours. By exploiting various tessellation designs, this research discovers that the dual-component designs offer the origami structures with extraordinary attributes that the single-component structures do not have, which include the existence of flat-folded locking planes, programmable locking points and deformability. Finally, proof-of-concept experiments investigate how self-locking can effectively induce piecewise stiffness jumps. The results of this research provide new scientific knowledge and a systematic framework for the design, analysis and utilization of self-locking origami structures for many potential engineering applications. PMID:27956889

  1. Self-locking degree-4 vertex origami structures.

    PubMed

    Fang, Hongbin; Li, Suyi; Wang, K W

    2016-11-01

    A generic degree-4 vertex (4-vertex) origami possesses one continuous degree-of-freedom for rigid folding, and this folding process can be stopped when two of its facets bind together. Such facet-binding will induce self-locking so that the overall structure stays at a pre-specified configuration without additional locking elements or actuators. Self-locking offers many promising properties, such as programmable deformation ranges and piecewise stiffness jumps, that could significantly advance many adaptive structural systems. However, despite its excellent potential, the origami self-locking features have not been well studied, understood, and used. To advance the state of the art, this research conducts a comprehensive investigation on the principles of achieving and harnessing self-locking in 4-vertex origami structures. Especially, for the first time, this study expands the 4-vertex structure construction from single-component to dual-component designs and investigates their self-locking behaviours. By exploiting various tessellation designs, this research discovers that the dual-component designs offer the origami structures with extraordinary attributes that the single-component structures do not have, which include the existence of flat-folded locking planes, programmable locking points and deformability. Finally, proof-of-concept experiments investigate how self-locking can effectively induce piecewise stiffness jumps. The results of this research provide new scientific knowledge and a systematic framework for the design, analysis and utilization of self-locking origami structures for many potential engineering applications.

  2. Telephoto axicon

    NASA Astrophysics Data System (ADS)

    Burvall, Anna; Goncharov, Alexander; Dainty, Chris

    2005-09-01

    The axicon is an optical element which creates a narrow focal line along the optical axis, unlike the single focal point produced by a lens. The long and precisely defined axicon focal line is used e.g. in alignment, or to extend the depth of focus of existing methods such as optical coherence tomography or light sectioning. Axicons are generally manufactured as refractive cones or diffractive circular gratings. They are also made as lens systems or doublet lenses, which are easier to produce. We present a design in the form of a reflective-refractive single-element device with annular aperture. This very compact system has only two surfaces, which can be spherical or aspheric depending on the quality required of the focal line. Both surfaces have reflective coatings at specific zones, providing an annular beam suitable for generating extended focal lines. One draw-back of a normal axicon is its sensitivity to the angle of illumination. Even for relatively small angles, astigmatism will broaden the focus and give it an asteroid shape. For our design, with spherical surfaces concentric about the center of the entrance pupil, the focal line remains unchanged in off-axis illumination.

  3. Optimizing the performance of dual-axis confocal microscopes via Monte-Carlo scattering simulations and diffraction theory.

    PubMed

    Chen, Ye; Liu, Jonathan T C

    2013-06-01

    Dual-axis confocal (DAC) microscopy has been found to exhibit superior rejection of out-of-focus and multiply scattered background light compared to conventional single-axis confocal microscopy. DAC microscopes rely on the use of separated illumination and collection beam paths that focus and intersect at a single focal volume (voxel) within tissue. While it is generally recognized that the resolution and contrast of a DAC microscope depends on both the crossing angle of the DAC beams, 2θ, and the focusing numerical aperture of the individual beams, α, a detailed study to investigate these dependencies has not been performed. Contrast and resolution are considered as two main criteria to assess the performance of a point-scanned DAC microscope (DAC-PS) and a line-scanned DAC microscope (DAC-LS) as a function of θ and α. The contrast and resolution of these designs are evaluated by Monte-Carlo scattering simulations and diffraction theory calculations, respectively. These results can be used for guiding the optimal designs of DAC-PS and DAC-LS microscopes.

  4. PACS—Realization of an adaptive concept using pressure actuated cellular structures

    NASA Astrophysics Data System (ADS)

    Gramüller, B.; Boblenz, J.; Hühne, C.

    2014-10-01

    A biologically inspired concept is investigated which can be utilized to develop energy efficient, lightweight and applicational flexible adaptive structures. Building a real life morphing unit is an ambitious task as the numerous works in the particular field show. Summarizing fundamental demands and barriers regarding shape changing structures, the basic challenges of designing morphing structures are listed. The concept of Pressure Actuated Cellular Structures (PACS) is arranged within the recent morphing activities and it is shown that it complies with the underlying demands. Systematically divided into energy-related and structural subcomponents the working principle is illuminated and relationships between basic design parameters are expressed. The analytical background describing the physical mechanisms of PACS is presented in concentrated manner. This work focuses on the procedure of dimensioning, realizing and experimental testing of a single cell and a single row cantilever made of PACS. The experimental outcomes as well as the results from the FEM computations are used for evaluating the analytical methods. The functionality of the basic principle is thus validated and open issues are determined pointing the way ahead.

  5. Thin-film optoacoustic transducers for subcellular Brillouin oscillation imaging of individual biological cells.

    PubMed

    Pérez-Cota, Fernando; Smith, Richard J; Moradi, Emilia; Marques, Leonel; Webb, Kevin F; Clark, Matt

    2015-10-01

    At low frequencies ultrasound is a valuable tool to mechanically characterize and image biological tissues. There is much interest in using high-frequency ultrasound to investigate single cells. Mechanical characterization of vegetal and biological cells by measurement of Brillouin oscillations has been demonstrated using ultrasound in the GHz range. This paper presents a method to extend this technique from the previously reported single-point measurements and line scans into a high-resolution acoustic imaging tool. Our technique uses a three-layered metal-dielectric-metal film as a transducer to launch acoustic waves into the cell we want to study. The design of this transducer and measuring system is optimized to overcome the vulnerability of a cell to the exposure of laser light and heat without sacrificing the signal-to-noise ratio. The transducer substrate shields the cell from the laser radiation, efficiently generates acoustic waves, facilitates optical detection in transmission, and aids with heat dissipation away from the cell. This paper discusses the design of the transducers and instrumentation and presents Brillouin frequency images on phantom, fixed, and living cells.

  6. Using dried blood spot sampling to improve data quality and reduce animal use in mouse pharmacokinetic studies.

    PubMed

    Wickremsinhe, Enaksha R; Perkins, Everett J

    2015-03-01

    Traditional pharmacokinetic analysis in nonclinical studies is based on the concentration of a test compound in plasma and requires approximately 100 to 200 μL blood collected per time point. However, the total blood volume of mice limits the number of samples that can be collected from an individual animal-often to a single collection per mouse-thus necessitating dosing multiple mice to generate a pharmacokinetic profile in a sparse-sampling design. Compared with traditional methods, dried blood spot (DBS) analysis requires smaller volumes of blood (15 to 20 μL), thus supporting serial blood sampling and the generation of a complete pharmacokinetic profile from a single mouse. Here we compare plasma-derived data with DBS-derived data, explain how to adopt DBS sampling to support discovery mouse studies, and describe how to generate pharmacokinetic and pharmacodynamic data from a single mouse. Executing novel study designs that use DBS enhances the ability to identify and streamline better drug candidates during drug discovery. Implementing DBS sampling can reduce the number of mice needed in a drug discovery program. In addition, the simplicity of DBS sampling and the smaller numbers of mice needed translate to decreased study costs. Overall, DBS sampling is consistent with 3Rs principles by achieving reductions in the number of animals used, decreased restraint-associated stress, improved data quality, direct comparison of interanimal variability, and the generation of multiple endpoints from a single study.

  7. Using Dried Blood Spot Sampling to Improve Data Quality and Reduce Animal Use in Mouse Pharmacokinetic Studies

    PubMed Central

    Wickremsinhe, Enaksha R; Perkins, Everett J

    2015-01-01

    Traditional pharmacokinetic analysis in nonclinical studies is based on the concentration of a test compound in plasma and requires approximately 100 to 200 µL blood collected per time point. However, the total blood volume of mice limits the number of samples that can be collected from an individual animal—often to a single collection per mouse—thus necessitating dosing multiple mice to generate a pharmacokinetic profile in a sparse-sampling design. Compared with traditional methods, dried blood spot (DBS) analysis requires smaller volumes of blood (15 to 20 µL), thus supporting serial blood sampling and the generation of a complete pharmacokinetic profile from a single mouse. Here we compare plasma-derived data with DBS-derived data, explain how to adopt DBS sampling to support discovery mouse studies, and describe how to generate pharmacokinetic and pharmacodynamic data from a single mouse. Executing novel study designs that use DBS enhances the ability to identify and streamline better drug candidates during drug discovery. Implementing DBS sampling can reduce the number of mice needed in a drug discovery program. In addition, the simplicity of DBS sampling and the smaller numbers of mice needed translate to decreased study costs. Overall, DBS sampling is consistent with 3Rs principles by achieving reductions in the number of animals used, decreased restraint-associated stress, improved data quality, direct comparison of interanimal variability, and the generation of multiple endpoints from a single study. PMID:25836959

  8. Label-free in-flow detection of single DNA molecules using glass nanopipettes.

    PubMed

    Gong, Xiuqing; Patil, Amol V; Ivanov, Aleksandar P; Kong, Qingyuan; Gibb, Thomas; Dogan, Fatma; deMello, Andrew J; Edel, Joshua B

    2014-01-07

    With the view of enhancing the functionality of label-free single molecule nanopore-based detection, we have designed and developed a highly robust, mechanically stable, integrated nanopipette-microfluidic device which combines the recognized advantages of microfluidic systems and the unique properties/advantages of nanopipettes. Unlike more typical planar solid-state nanopores, which have inherent geometrical constraints, nanopipettes can be easily positioned at any point within a microfluidic channel. This is highly advantageous, especially when taking into account fluid flow properties. We show that we are able to detect and discriminate between DNA molecules of varying lengths when motivated through a microfluidic channel, upon the application of appropriate voltage bias across the nanopipette. The effects of applied voltage and volumetric flow rates have been studied to ascertain translocation event frequency and capture rate. Additionally, by exploiting the advantages associated with microfluidic systems (such as flow control and concomitant control over analyte concentration/presence), we show that the technology offers a new opportunity for single molecule detection and recognition in microfluidic devices.

  9. Leucine/Pd-loaded (5,5) single-walled carbon nanotube matrix as a novel nanobiosensors for in silico detection of protein.

    PubMed

    Yoosefian, Mehdi; Etminan, Nazanin

    2018-06-01

    We have designed a novel nanobiosensor for in silico detecting proteins based on leucine/Pd-loaded single-walled carbon nanotube matrix. Density functional theory at the B3LYP/6-31G (d) level of theory was realized to analyze the geometrical and electronic structure of the proposed nanobiosensor. The solvent effects were investigated using the Tomasi's polarized continuum model. Atoms-in-molecules theory was used to study the nature of interactions by calculating the electron density ρ(r) and Laplacian at the bond critical points. Natural bond orbital analysis was performed to achieve a deep understanding of the nature of the interactions. The biosensor has potential application for high sensitive and rapid response to protein due to the chemical adsorption of L-leucine amino acid onto Pd-loaded single-walled carbon nanotube and reactive functional groups that can incorporate in hydrogen binding, hydrophobic interactions and van der Waals forces with the protein surface in detection process.

  10. Psychological distress among employed fathers: associations with family structure, work quality, and the work-family interface.

    PubMed

    Janzen, Bonnie L; Kelly, Ivan W

    2012-07-01

    The aim of this study was to compare levels of psychological distress in employed single fathers relative to partnered fathers and to explore the role of psychosocial job quality, work-family conflict, and work-family facilitation as explanations for differences in distress. The data were collected from a cross-sectional telephone survey conducted in a Canadian city. Participants were 486 employed fathers with children living in the household. In addition to experiencing higher levels of psychological distress than partnered fathers (p = .057), single fathers reported greater work-family conflict, poorer work quality, and lower family-to-work facilitation. Adjusting for the strain-based work-family conflict variables in the regression analysis resulted in the largest reduction to the association between partner status and psychological distress. Future research employing a longitudinal design and subject to lower selection biases is required to tease out the interrelationship between these exposures and to point to the most appropriate policies to support employed single fathers.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhlmann, Andreas V.; Houel, Julien; Warburton, Richard J.

    Optically active quantum dots, for instance self-assembled InGaAs quantum dots, are potentially excellent single photon sources. The fidelity of the single photons is much improved using resonant rather than non-resonant excitation. With resonant excitation, the challenge is to distinguish between resonance fluorescence and scattered laser light. We have met this challenge by creating a polarization-based dark-field microscope to measure the resonance fluorescence from a single quantum dot at low temperature. We achieve a suppression of the scattered laser exceeding a factor of 10{sup 7} and background-free detection of resonance fluorescence. The same optical setup operates over the entire quantum dotmore » emission range (920–980 nm) and also in high magnetic fields. The major development is the outstanding long-term stability: once the dark-field point has been established, the microscope operates for days without alignment. The mechanical and optical designs of the microscope are presented, as well as exemplary resonance fluorescence spectroscopy results on individual quantum dots to underline the microscope's excellent performance.« less

  12. Terrain Model Registration for Single Cycle Instrument Placement

    NASA Technical Reports Server (NTRS)

    Deans, Matthew; Kunz, Clay; Sargent, Randy; Pedersen, Liam

    2003-01-01

    This paper presents an efficient and robust method for registration of terrain models created using stereo vision on a planetary rover. Our approach projects two surface models into a virtual depth map, rendering the models as they would be seen from a single range sensor. Correspondence is established based on which points project to the same location in the virtual range sensor. A robust norm of the deviations in observed depth is used as the objective function, and the algorithm searches for the rigid transformation which minimizes the norm. An initial coarse search is done using rover pose information from odometry and orientation sensing. A fine search is done using Levenberg-Marquardt. Our method enables a planetary rover to keep track of designated science targets as it moves, and to hand off targets from one set of stereo cameras to another. These capabilities are essential for the rover to autonomously approach a science target and place an instrument in contact in a single command cycle.

  13. New adaptive method to optimize the secondary reflector of linear Fresnel collectors

    DOE PAGES

    Zhu, Guangdong

    2017-01-16

    Performance of linear Fresnel collectors may largely depend on the secondary-reflector profile design when small-aperture absorbers are used. Optimization of the secondary-reflector profile is an extremely challenging task because there is no established theory to ensure superior performance of derived profiles. In this work, an innovative optimization method is proposed to optimize the secondary-reflector profile of a generic linear Fresnel configuration. The method correctly and accurately captures impacts of both geometric and optical aspects of a linear Fresnel collector to secondary-reflector design. The proposed method is an adaptive approach that does not assume a secondary shape of any particular form,more » but rather, starts at a single edge point and adaptively constructs the next surface point to maximize the reflected power to be reflected to absorber(s). As a test case, the proposed optimization method is applied to an industrial linear Fresnel configuration, and the results show that the derived optimal secondary reflector is able to redirect more than 90% of the power to the absorber in a wide range of incidence angles. Here, the proposed method can be naturally extended to other types of solar collectors as well, and it will be a valuable tool for solar-collector designs with a secondary reflector.« less

  14. Fractional Programming for Communication Systems—Part I: Power Control and Beamforming

    NASA Astrophysics Data System (ADS)

    Shen, Kaiming; Yu, Wei

    2018-05-01

    This two-part paper explores the use of FP in the design and optimization of communication systems. Part I of this paper focuses on FP theory and on solving continuous problems. The main theoretical contribution is a novel quadratic transform technique for tackling the multiple-ratio concave-convex FP problem--in contrast to conventional FP techniques that mostly can only deal with the single-ratio or the max-min-ratio case. Multiple-ratio FP problems are important for the optimization of communication networks, because system-level design often involves multiple signal-to-interference-plus-noise ratio terms. This paper considers the applications of FP to solving continuous problems in communication system design, particularly for power control, beamforming, and energy efficiency maximization. These application cases illustrate that the proposed quadratic transform can greatly facilitate the optimization involving ratios by recasting the original nonconvex problem as a sequence of convex problems. This FP-based problem reformulation gives rise to an efficient iterative optimization algorithm with provable convergence to a stationary point. The paper further demonstrates close connections between the proposed FP approach and other well-known algorithms in the literature, such as the fixed-point iteration and the weighted minimum mean-square-error beamforming. The optimization of discrete problems is discussed in Part II of this paper.

  15. New adaptive method to optimize the secondary reflector of linear Fresnel collectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Guangdong

    Performance of linear Fresnel collectors may largely depend on the secondary-reflector profile design when small-aperture absorbers are used. Optimization of the secondary-reflector profile is an extremely challenging task because there is no established theory to ensure superior performance of derived profiles. In this work, an innovative optimization method is proposed to optimize the secondary-reflector profile of a generic linear Fresnel configuration. The method correctly and accurately captures impacts of both geometric and optical aspects of a linear Fresnel collector to secondary-reflector design. The proposed method is an adaptive approach that does not assume a secondary shape of any particular form,more » but rather, starts at a single edge point and adaptively constructs the next surface point to maximize the reflected power to be reflected to absorber(s). As a test case, the proposed optimization method is applied to an industrial linear Fresnel configuration, and the results show that the derived optimal secondary reflector is able to redirect more than 90% of the power to the absorber in a wide range of incidence angles. Here, the proposed method can be naturally extended to other types of solar collectors as well, and it will be a valuable tool for solar-collector designs with a secondary reflector.« less

  16. Design of a motion JPEG (M/JPEG) adapter card

    NASA Astrophysics Data System (ADS)

    Lee, D. H.; Sudharsanan, Subramania I.

    1994-05-01

    In this paper we describe a design of a high performance JPEG (Joint Photographic Experts Group) Micro Channel adapter card. The card, tested on a range of PS/2 platforms (models 50 to 95), can complete JPEG operations on a 640 by 240 pixel image within 1/60 of a second, thus enabling real-time capture and display of high quality digital video. The card accepts digital pixels for either a YUV 4:2:2 or an RGB 4:4:4 pixel bus and has been shown to handle up to 2.05 MBytes/second of compressed data. The compressed data is transmitted to a host memory area by Direct Memory Access operations. The card uses a single C-Cube's CL550 JPEG processor that complies with the baseline JPEG. We give broad descriptions of the hardware that controls the video interface, CL550, and the system interface. Some critical design points that enhance the overall performance of the M/JPEG systems are pointed out. The control of the adapter card is achieved by an interrupt driven software that runs under DOS. The software performs a variety of tasks that include change of color space (RGB or YUV), change of quantization and Huffman tables, odd and even field control and some diagnostic operations.

  17. Digging deeper into noise. Reply to comment on "Extracting physics of life at the molecular level: A review of single-molecule data analyses"

    NASA Astrophysics Data System (ADS)

    Colomb, Warren; Sarkar, Susanta K.

    2015-06-01

    We would like to thank all the commentators for their constructive comments on our paper. Commentators agree that a proper analysis of noisy single-molecule data is important for extracting meaningful and accurate information about the system. We concur with their views and indeed, motivating an accurate analysis of experimental data is precisely the point of our paper. After a model about the system of interest is constructed based on the experimental single-molecule data, it is very helpful to simulate the model to generate theoretical single-molecule data and analyze exactly the same way. In our experience, such self-consistent approach involving experiments, simulations, and analyses often forces us to revise our model and make experimentally testable predictions. In light of comments from the commentators with different expertise, we would also like to point out that a single model should be able to connect different experimental techniques because the underlying science does not depend on the experimental techniques used. Wohland [1] has made a strong case for fluorescence correlation spectroscopy (FCS) as an important experimental technique to bridge single-molecule and ensemble experiments. FCS is a very powerful technique that can measure ensemble parameters with single-molecule sensitivity. Therefore, it is logical to simulate any proposed model and predict both single-molecule data and FCS data, and confirm with experimental data. Fitting the diffraction-limited point spread function (PSF) of an isolated fluorescent marker to localize a labeled biomolecule is a critical step in many single-molecule tracking experiments. Flyvbjerg et al. [2] have rigorously pointed out some important drawbacks of the prevalent practice of fitting diffraction-limited PSF with 2D Gaussian. As we try to achieve more accurate and precise localization of biomolecules, we need to consider subtle points as mentioned by Flyvbjerg et al. Shepherd [3] has mentioned specific examples of PSF that have been used for localization and has rightly mentioned the importance of detector noise in single-molecule localization. Meroz [4] has pointed out more clearly that the signal itself could be noisy and it is necessary to distinguish the noise of interest from the background noise. Krapf [5] has pointed out different origins of fluctuations in biomolecular systems and commented on their possible Gaussian and non-Gaussian nature. Importance of noise along with the possibility that the noise itself can be the signal of interest has been discussed in our paper [6]. However, Meroz [4] and Krapf [5] have provided specific examples to guide the readers in a better way. Sachs et al. [7] have discussed kinetic analysis in the presence of indistinguishable states and have pointed to the free software for the general kinetic analysis that originated from their research.

  18. NDARC - NASA Design and Analysis of Rotorcraft Validation and Demonstration

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2010-01-01

    Validation and demonstration results from the development of the conceptual design tool NDARC (NASA Design and Analysis of Rotorcraft) are presented. The principal tasks of NDARC are to design a rotorcraft to satisfy specified design conditions and missions, and then analyze the performance of the aircraft for a set of off-design missions and point operating conditions. The aircraft chosen as NDARC development test cases are the UH-60A single main-rotor and tail-rotor helicopter, the CH-47D tandem helicopter, the XH-59A coaxial lift-offset helicopter, and the XV-15 tiltrotor. These aircraft were selected because flight performance data, a weight statement, detailed geometry information, and a correlated comprehensive analysis model are available for each. Validation consists of developing the NDARC models for these aircraft by using geometry and weight information, airframe wind tunnel test data, engine decks, rotor performance tests, and comprehensive analysis results; and then comparing the NDARC results for aircraft and component performance with flight test data. Based on the calibrated models, the capability of the code to size rotorcraft is explored.

  19. Implosion Dynamics and Mix in Double-Shell ICF Capsule Designs

    NASA Astrophysics Data System (ADS)

    Gunderson, Mark; Daughton, William; Simakov, Andrei; Wilson, Douglas; Watt, Robert; Delamater, Norman; Montgomery, David

    2015-11-01

    From an implosion dynamics perspective, double-shell ICF capsule designs have several advantages over the single-shell NIF ICF capsule point design. Double shell designs do not require precise shock sequencing, do not rely on hot spot ignition, have lower peak implosion speed requirements, and have lower convergence ratio requirements. However, there are still hurdles that must be overcome. The timing of the two main shocks in these designs is important in achieving sufficient compression of the DT fuel. Instability of the inner gold shell due to preheat from the hohlraum environment can disrupt the implosion of the inner pill. Mix, in addition to quenching burn in the DT fuel, also decreases the transfer of energy between the beryllium ablator and the inner gold shell during collision thus decreasing the implosion speed of the inner shell along with compression of the DT fuel. Herein, we will discuss practical implications of these effects on double-shell design we carry out in preparation for the NIF double-shell campaign. Work performed under the auspices of DOE by LANL under contract DE-AC52-06NA25396.

  20. Digital robust active control law synthesis for large order systems using constrained optimization

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    1987-01-01

    This paper presents a direct digital control law synthesis procedure for a large order, sampled data, linear feedback system using constrained optimization techniques to meet multiple design requirements. A linear quadratic Gaussian type cost function is minimized while satisfying a set of constraints on the design loads and responses. General expressions for gradients of the cost function and constraints, with respect to the digital control law design variables are derived analytically and computed by solving a set of discrete Liapunov equations. The designer can choose the structure of the control law and the design variables, hence a stable classical control law as well as an estimator-based full or reduced order control law can be used as an initial starting point. Selected design responses can be treated as constraints instead of lumping them into the cost function. This feature can be used to modify a control law, to meet individual root mean square response limitations as well as minimum single value restrictions. Low order, robust digital control laws were synthesized for gust load alleviation of a flexible remotely piloted drone aircraft.

  1. Application of formal optimization techniques in thermal/structural design of a heat-pipe-cooled panel for a hypersonic vehicle

    NASA Technical Reports Server (NTRS)

    Camarda, Charles J.; Riley, Michael F.

    1987-01-01

    Nonlinear mathematical programming methods are used to design a radiantly cooled and heat-pipe-cooled panel for a Mach 6.7 transport. The cooled portion of the panel is a hybrid heat-pipe/actively cooled design which uses heat pipes to transport the absorbed heat to the ends of the panel where it is removed by active cooling. The panels are optimized for minimum mass and to satisfy a set of heat-pipe, structural, geometric, and minimum-gage constraints. Two panel concepts are investigated: cylindrical heat pipes embedded in a honeycomb core and an integrated design which uses a web-core heat-pipe sandwich concept. The latter was lighter and resulted in a design which was less than 10 percent heavier than an all actively cooled concept. The heat-pipe concept, however, is redundant and can sustain a single-point failure, whereas the actively cooled concept cannot. An additional study was performed to determine the optimum number of coolant manifolds per panel for a minimum-mass design.

  2. Statistical representation of a spray as a point process

    NASA Astrophysics Data System (ADS)

    Subramaniam, S.

    2000-10-01

    The statistical representation of a spray as a finite point process is investigated. One objective is to develop a better understanding of how single-point statistical information contained in descriptions such as the droplet distribution function (ddf), relates to the probability density functions (pdfs) associated with the droplets themselves. Single-point statistical information contained in the droplet distribution function (ddf) is shown to be related to a sequence of single surrogate-droplet pdfs, which are in general different from the physical single-droplet pdfs. It is shown that the ddf contains less information than the fundamental single-point statistical representation of the spray, which is also described. The analysis shows which events associated with the ensemble of spray droplets can be characterized by the ddf, and which cannot. The implications of these findings for the ddf approach to spray modeling are discussed. The results of this study also have important consequences for the initialization and evolution of direct numerical simulations (DNS) of multiphase flows, which are usually initialized on the basis of single-point statistics such as the droplet number density in physical space. If multiphase DNS are initialized in this way, this implies that even the initial representation contains certain implicit assumptions concerning the complete ensemble of realizations, which are invalid for general multiphase flows. Also the evolution of a DNS initialized in this manner is shown to be valid only if an as yet unproven commutation hypothesis holds true. Therefore, it is questionable to what extent DNS that are initialized in this manner constitute a direct simulation of the physical droplets. Implications of these findings for large eddy simulations of multiphase flows are also discussed.

  3. Can a strain yield a qubit?

    NASA Astrophysics Data System (ADS)

    Benjamin, Colin

    2015-03-01

    A Josepshon qubit is designed via the application of a tensile strain to a topological insulator surface, sandwiched between two s-wave superconductors. The strain applied leads to a shift in Dirac point without changing the conducting states existing on the surface of a topological insulator. This strain applied can be tuned to form a π-junction in such a structure. Combining two such junctions in a ring architecture leads to the ground state of the ring being in a doubly degenerate state- ``0'' and ``1'' states of the qubit. A qubit designed this way is easily controlled via the tunable strain. We report on the conditions necessary to design such a qubit. Finally the operating time of a single qubit phase gate is derived. This work was supported by funds from Dept. of Science and Technology (Nanomission), Govt. of India, Grant No. SR/NM/NS-1101/2011.

  4. Harnessing bistability for directional propulsion of soft, untethered robots.

    PubMed

    Chen, Tian; Bilal, Osama R; Shea, Kristina; Daraio, Chiara

    2018-05-29

    In most macroscale robotic systems, propulsion and controls are enabled through a physical tether or complex onboard electronics and batteries. A tether simplifies the design process but limits the range of motion of the robot, while onboard controls and power supplies are heavy and complicate the design process. Here, we present a simple design principle for an untethered, soft swimming robot with preprogrammed, directional propulsion without a battery or onboard electronics. Locomotion is achieved by using actuators that harness the large displacements of bistable elements triggered by surrounding temperature changes. Powered by shape memory polymer (SMP) muscles, the bistable elements in turn actuate the robot's fins. Our robots are fabricated using a commercially available 3D printer in a single print. As a proof of concept, we show the ability to program a vessel, which can autonomously deliver a cargo and navigate back to the deployment point.

  5. Design of a lock-amplifier circuit

    NASA Astrophysics Data System (ADS)

    Liu, H.; Huang, W. J.; Song, X.; Zhang, W. Y.; Sa, L. B.

    2017-01-01

    The lock-in amplifier is recovered by phase sensitive detection technique for the weak signal submerged in the noise background. This design is based on the TI ultra low power LM358, INA129, OPA227, OP07 and other chips as the core design and production of the lock-in amplifier. Signal generator by 10m ohms /1K ohm resistance points pressure network 10 mu V 1mV adjustable sine wave signal s (T). The concomitant interference signal together through the AC amplifier and band-pass filter signal x (T), on the other hand reference signal R (T) driven by square wave phase shift etc. steps to get the signal R (T), two signals and by phase sensitive detector are a DC full wave, again through its low pass filter and a DC amplifier to be measured signal more accurate detection, the final circuit through the AD conversion and the use of single-chip will display the output.

  6. Two-phase flows within systems with ambient pressure

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Braun, M. J.; Wheeler, R. L., III; Mullen, R. L.

    1985-01-01

    In systems where the design inlet and outlet pressures are maintained above the thermodynamic critical pressure, it is often assumed that two phase flows within the system cannot occur. Designers rely on this simple rule of thumb to circumvent problems associated with a highly compressible two phase flow occurring within the supercritical pressure system along with the uncertainties in rotordynamics, load capacity, heat transfer, fluid mechanics, and thermophysical property variations. The simple rule of thumb is adequate in many low power designs but is inadequate for high performance turbomachines and linear systems, where two phase regions can exist even though outlet pressure is greater than critical pressure. Rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two phase zone can differ significantly from those for a single-phase zone. Using the Reynolds equation the angular velocity, eccentricity, geometry, and ambient conditions are varied to determine the point of two phase flow incipience.

  7. High-speed two-dimensional laser scanner based on Bragg gratings stored in photothermorefractive glass.

    PubMed

    Yaqoob, Zahid; Arain, Muzammil A; Riza, Nabeel A

    2003-09-10

    A high-speed free-space wavelength-multiplexed optical scanner with high-speed wavelength selection coupled with narrowband volume Bragg gratings stored in photothermorefractive (PTR) glass is reported. The proposed scanner with no moving parts has a modular design with a wide angular scan range, accurate beam pointing, low scanner insertion loss, and two-dimensional beam scan capabilities. We present a complete analysis and design procedure for storing multiple tilted Bragg-grating structures in a single PTR glass volume (for normal incidence) in an optimal fashion. Because the scanner design is modular, many PTR glass volumes (each having multiple tilted Bragg-grating structures) can be stacked together, providing an efficient throughput with operations in both the visible and the infrared (IR) regions. A proof-of-concept experimental study is conducted with four Bragg gratings in independent PTR glass plates, and both visible and IR region scanner operations are demonstrated.

  8. [Design of warm-acupuncture technique training evaluation device].

    PubMed

    Gao, Ming; Xu, Gang; Yang, Huayuan; Liu, Tangyi; Tang, Wenchao

    2017-01-12

    To design a warm-acupuncture teaching instrument to train and evaluate its manipulation. We refer to the principle and technical operation characteristics of traditional warm-acupuncture, as well as the mechanical design and single-chip microcomputer technology. The device is consisted of device noumenon, universal acupoints simulator, vibration reset system and circuit control system, including frame, platform framework, the swing framework, universal acupoints simulator, vibration reset outfit, operation time circuit, acupuncture sensation display, and vibration control circuit, etc. It can be used to train needle inserting with different angles and moxa rubbing and loading. It displays whether a needle point meets the location required. We determine whether the moxa group on a needle handle is easy to fall off through vibration test, and operation time is showed. The device can objectively help warm-acupuncture training and evaluation so as to promote its clinical standardization manipulation.

  9. Parallel, stochastic measurement of molecular surface area.

    PubMed

    Juba, Derek; Varshney, Amitabh

    2008-08-01

    Biochemists often wish to compute surface areas of proteins. A variety of algorithms have been developed for this task, but they are designed for traditional single-processor architectures. The current trend in computer hardware is towards increasingly parallel architectures for which these algorithms are not well suited. We describe a parallel, stochastic algorithm for molecular surface area computation that maps well to the emerging multi-core architectures. Our algorithm is also progressive, providing a rough estimate of surface area immediately and refining this estimate as time goes on. Furthermore, the algorithm generates points on the molecular surface which can be used for point-based rendering. We demonstrate a GPU implementation of our algorithm and show that it compares favorably with several existing molecular surface computation programs, giving fast estimates of the molecular surface area with good accuracy.

  10. Phase 1 of the First Solar Small Power System Experiment (experimental System No. 1). Volume 1: Technical Studies for Solar Point-focusing, Distributed Collector System, with Energy Conversion at the Collector, Category C

    NASA Technical Reports Server (NTRS)

    Clark, T. B. (Editor)

    1979-01-01

    The technical and economic feasibility of a solar electric power plant for a small community is evaluated and specific system designs for development and demonstration are selected. All systems investigated are defined as point focusing, distributed receiver concepts, with energy conversion at the collector. The preferred system is comprised of multiple parabolic dish concentrators employing Stirling cycle engines for power conversion. The engine, AC generator, cavity receiver, and integral sodium pool boiler/heat transport system are combined in a single package and mounted at the focus of each concentrator. The output of each concentrator is collected by a conventional electrical distribution system which permits grid-connected or stand-alone operation, depending on the storage system selected.

  11. Implementation of kernels on the Maestro processor

    NASA Astrophysics Data System (ADS)

    Suh, Jinwoo; Kang, D. I. D.; Crago, S. P.

    Currently, most microprocessors use multiple cores to increase performance while limiting power usage. Some processors use not just a few cores, but tens of cores or even 100 cores. One such many-core microprocessor is the Maestro processor, which is based on Tilera's TILE64 processor. The Maestro chip is a 49-core, general-purpose, radiation-hardened processor designed for space applications. The Maestro processor, unlike the TILE64, has a floating point unit (FPU) in each core for improved floating point performance. The Maestro processor runs at 342 MHz clock frequency. On the Maestro processor, we implemented several widely used kernels: matrix multiplication, vector add, FIR filter, and FFT. We measured and analyzed the performance of these kernels. The achieved performance was up to 5.7 GFLOPS, and the speedup compared to single tile was up to 49 using 49 tiles.

  12. Comparison of two stand-alone CADe systems at multiple operating points

    NASA Astrophysics Data System (ADS)

    Sahiner, Berkman; Chen, Weijie; Pezeshk, Aria; Petrick, Nicholas

    2015-03-01

    Computer-aided detection (CADe) systems are typically designed to work at a given operating point: The device displays a mark if and only if the level of suspiciousness of a region of interest is above a fixed threshold. To compare the standalone performances of two systems, one approach is to select the parameters of the systems to yield a target false-positive rate that defines the operating point, and to compare the sensitivities at that operating point. Increasingly, CADe developers offer multiple operating points, which necessitates the comparison of two CADe systems involving multiple comparisons. To control the Type I error, multiple-comparison correction is needed for keeping the family-wise error rate (FWER) less than a given alpha-level. The sensitivities of a single modality at different operating points are correlated. In addition, the sensitivities of the two modalities at the same or different operating points are also likely to be correlated. It has been shown in the literature that when test statistics are correlated, well-known methods for controlling the FWER are conservative. In this study, we compared the FWER and power of three methods, namely the Bonferroni, step-up, and adjusted step-up methods in comparing the sensitivities of two CADe systems at multiple operating points, where the adjusted step-up method uses the estimated correlations. Our results indicate that the adjusted step-up method has a substantial advantage over other the two methods both in terms of the FWER and power.

  13. Design of the Annular Suspension and Pointing System (ASPS) (including design addendum)

    NASA Technical Reports Server (NTRS)

    Cunningham, D.; Gismondi, T.; Hamilton, B.; Kendig, J.; Kiedrowski, J.; Vroman, A.; Wilson, G.

    1980-01-01

    The Annular Suspension and Pointing System is an experiment pointing mount designed for extremely precise 3 axis orientation of shuttle experiments. It utilizes actively controlled magnetic bearing to provide noncontacting vernier pointing and translational isolation of the experiment. The design of the system is presented and analyzed.

  14. Effectiveness and feasibility of Socratic feedback to increase awareness of deficits in patients with acquired brain injury: Four single-case experimental design (SCED) studies.

    PubMed

    Schrijnemaekers, Anne-Claire M C; Winkens, Ieke; Rasquin, Sascha M C; Verhaeg, Annette; Ponds, Rudolf W H M; van Heugten, Caroline M

    2018-06-29

    To investigate the effectiveness and feasibility of a Socratic feedback programme to improve awareness of deficits in patients with acquired brain injury (ABI). Rehabilitation centre. Four patients with ABI with awareness problems. A series of single-case experimental design studies with random intervention starting points (A-B + maintenance design). Rate of trainer-feedback and self-control behaviour on everyday tasks, patient competency rating scale (PCRS), self-regulating skills interview (SRSI), hospital anxiety and depression scale. All patients needed less trainer feedback, the change was significant in 3 out of 4. One patient increased in overt self-corrective behaviour. SRSI performance increased in all patients (medium to strong effect size), and PCRS performance increased in two patients (medium and strong effect size). Mood and anxiety levels were elevated in one patient at the beginning of the training and decreased to normal levels at the end of the training. The feasibility of the programme was scored 9 out of 10. The Socratic feedback method is a promising intervention for improving awareness of deficits in patients with ABI. Controlled studies with larger populations are needed to draw more solid conclusions about the effect of this method.

  15. A computerized tomography system for transcranial ultrasound imaging.

    PubMed

    Tang, Sai Chun; Clement, Gregory T

    Hardware for tomographic imaging presents both challenge and opportunity for simplification when compared with traditional pulse-echo imaging systems. Specifically, point diffraction tomography does not require simultaneous powering of elements, in theory allowing just a single transmit channel and a single receive channel to be coupled with a switching or multiplexing network. In our ongoing work on transcranial imaging, we have developed a 512-channel system designed to transmit and/or receive a high voltage signal from/to arbitrary elements of an imaging array. The overall design follows a hierarchy of modules including a software interface, microcontroller, pulse generator, pulse amplifier, high-voltage power converter, switching mother board, switching daughter board, receiver amplifier, analog-to-digital converter, peak detector, memory, and USB communication. Two pulse amplifiers are included, each capable of producing up to 400Vpp via power MOSFETS. Switching is based around mechanical relays that allow passage of 200V, while still achieving switching times of under 2ms, with an operating frequency ranging from below 100kHz to 10MHz. The system is demonstrated through ex vivo human skulls using 1MHz transducers. The overall system design is applicable to planned human studies in transcranial image acquisition, and may have additional tomographic applications for other materials necessitating a high signal output.

  16. Developing a methodology to assess the impact of research grant funding: a mixed methods approach.

    PubMed

    Bloch, Carter; Sørensen, Mads P; Graversen, Ebbe K; Schneider, Jesper W; Schmidt, Evanthia Kalpazidou; Aagaard, Kaare; Mejlgaard, Niels

    2014-04-01

    This paper discusses the development of a mixed methods approach to analyse research funding. Research policy has taken on an increasingly prominent role in the broader political scene, where research is seen as a critical factor in maintaining and improving growth, welfare and international competitiveness. This has motivated growing emphasis on the impacts of science funding, and how funding can best be designed to promote socio-economic progress. Meeting these demands for impact assessment involves a number of complex issues that are difficult to fully address in a single study or in the design of a single methodology. However, they point to some general principles that can be explored in methodological design. We draw on a recent evaluation of the impacts of research grant funding, discussing both key issues in developing a methodology for the analysis and subsequent results. The case of research grant funding, involving a complex mix of direct and intermediate effects that contribute to the overall impact of funding on research performance, illustrates the value of a mixed methods approach to provide a more robust and complete analysis of policy impacts. Reflections on the strengths and weaknesses of the methodology are used to examine refinements for future work. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Comparison of the operational and safety characteristics of the single point urban and diamond interchanges.

    DOT National Transportation Integrated Search

    1996-01-01

    The purpose of this study was to evaluate and compare the safety and operational characteristics of the single point urban interchange (SPUI) and the diamond interchange (DI) and develop guidelines that identify traffic and/or geometric conditions th...

  18. Implementing Multidisciplinary and Multi-Zonal Applications Using MPI

    NASA Technical Reports Server (NTRS)

    Fineberg, Samuel A.

    1995-01-01

    Multidisciplinary and multi-zonal applications are an important class of applications in the area of Computational Aerosciences. In these codes, two or more distinct parallel programs or copies of a single program are utilized to model a single problem. To support such applications, it is common to use a programming model where a program is divided into several single program multiple data stream (SPMD) applications, each of which solves the equations for a single physical discipline or grid zone. These SPMD applications are then bound together to form a single multidisciplinary or multi-zonal program in which the constituent parts communicate via point-to-point message passing routines. Unfortunately, simple message passing models, like Intel's NX library, only allow point-to-point and global communication within a single system-defined partition. This makes implementation of these applications quite difficult, if not impossible. In this report it is shown that the new Message Passing Interface (MPI) standard is a viable portable library for implementing the message passing portion of multidisciplinary applications. Further, with the extension of a portable loader, fully portable multidisciplinary application programs can be developed. Finally, the performance of MPI is compared to that of some native message passing libraries. This comparison shows that MPI can be implemented to deliver performance commensurate with native message libraries.

  19. Global design of satellite constellations: a multi-criteria performance comparison of classical walker patterns and new design patterns

    NASA Astrophysics Data System (ADS)

    Lansard, Erick; Frayssinhes, Eric; Palmade, Jean-Luc

    Basically, the problem of designing a multisatellite constellation exhibits a lot of parameters with many possible combinations: total number of satellites, orbital parameters of each individual satellite, number of orbital planes, number of satellites in each plane, spacings between satellites of each plane, spacings between orbital planes, relative phasings between consecutive orbital planes. Hopefully, some authors have theoretically solved this complex problem under simplified assumptions: the permanent (or continuous) coverage by a single and multiple satellites of the whole Earth and zonal areas has been entirely solved from a pure geometrical point of view. These solutions exhibit strong symmetry properties (e.g. Walker, Ballard, Rider, Draim constellations): altitude and inclination are identical, orbital planes and satellites are regularly spaced, etc. The problem with such constellations is their oversimplified and restricted geometrical assumption. In fact, the evaluation function which is used implicitly only takes into account the point-to-point visibility between users and satellites and does not deal with very important constraints and considerations that become mandatory when designing a real satellite system (e.g. robustness to satellite failures, total system cost, common view between satellites and ground stations, service availability and satellite reliability, launch and early operations phase, production constraints, etc.). An original and global methodology relying on a powerful optimization tool based on genetic algorithms has been developed at ALCATEL ESPACE. In this approach, symmetrical constellations can be used as initial conditions of the optimization process together with specific evaluation functions. A multi-criteria performance analysis is conducted and presented here in a parametric way in order to identify and evaluate the main sensitive parameters. Quantitative results are given for three examples in the fields of navigation, telecommunication and multimedia satellite systems. In particular, a new design pattern with very efficient properties in terms of robustness to satellite failures is presented and compared with classical Walker patterns.

  20. Dynamic balance control in elders: gait initiation assessment as a screening tool

    NASA Technical Reports Server (NTRS)

    Chang, H.; Krebs, D. E.; Wall, C. C. (Principal Investigator)

    1999-01-01

    OBJECTIVE: To determine whether measurements of center of gravity-center of pressure separation (CG-CP moment arm) during gait initiation can differentiate healthy from disabled subjects with sufficient specificity and sensitivity to be useful as a screening test for dynamic balance in elderly patients. SUBJECTS: Three groups of elderly subjects (age, 74.97+/-6.56 yrs): healthy elders (HE, n = 21), disabled elders (DE, n = 20), and elders with vestibular hypofunction (VH, n = 18). DESIGN: Cross-sectional, intact-groups research design. Peak CG-CP moment arm measures how far the subject will tolerate the whole-body CG to deviate from the ground reaction force's CP; it represents dynamic balance control. Screening test cutoff points at 16 to 18 cm peak CG-CP moment arm predicted group membership. RESULTS: The magnitude of peak CG-CP moment arm was significantly greater in HE than in DE and VH subjects (p<.01) and was not different between the DE and VH groups. The peak CG-CP moment arm occurred at the end of single stance phase in all groups. As a screening test, the peak moment arm has greater than 50% sensitivity and specificity to discriminate the HE group from the DE and VH groups with peak CG-CP moment arm cutoff points between 16 and 18 cm. CONCLUSIONS: Examining dynamic balance through the use of the CG-CP moment arm during single stance in gait initiation discriminates between nondisabled and disabled older persons and warrants further investigation as a potential tool to identify people with balance dysfunction.

  1. Design and modeling of a prototype fiber scanning CARS endoscope

    NASA Astrophysics Data System (ADS)

    Veilleux, Isra"l.; Doucet, Michel; Coté, Patrice; Verreault, Sonia; Fortin, Michel; Paradis, Patrick; Leclair, Sébastien; Da Costa, Ralph S.; Wilson, Brian C.; Seibel, Eric; Mermut, Ozzy; Cormier, Jean-François

    2010-02-01

    An endoscope capable of Coherent Anti-Stokes Raman scattering (CARS) imaging would be of significant clinical value for improving early detection of endoluminal cancers. However, developing this technology is challenging for many reasons. First, nonlinear imaging techniques such as CARS are single point measurements thus requiring fast scanning in a small footprint if video rate is to be achieved. Moreover, the intrinsic nonlinearity of this modality imposes several technical constraints and limitations, mainly related to pulse and beam distortions that occur within the optical fiber and the focusing objective. Here, we describe the design and report modeling results of a new CARS endoscope. The miniature microscope objective design and its anticipated performance are presented, along with its compatibility with a new spiral scanningfiber imaging technology developed at the University of Washington. This technology has ideal attributes for clinical use, with its small footprint, adjustable field-of-view and high spatial-resolution. This compact hybrid fiber-based endoscopic CARS imaging design is anticipated to have a wide clinical applicability.

  2. Inner structural vibration isolation method for a single control moment gyroscope

    NASA Astrophysics Data System (ADS)

    Zhang, Jingrui; Guo, Zixi; Zhang, Yao; Tang, Liang; Guan, Xin

    2016-01-01

    Assembling and manufacturing errors of control moment gyros (CMG) often generate high frequency vibrations which are detrimental to spacecrafts with high precision pointing requirement. In this paper, some design methods of vibration isolation between CMG and spacecraft is dealt with. As a first step, the dynamic model of the CMG with and without supporting isolation structures is studied and analyzed. Subsequently, the frequency domain analysis of CMG with isolation system is performed and the effectiveness of the designed system is ascertained. Based on the above studies, an adaptive design suitable with appropriate design parameters are carried out. A numerical analysis is also performed to understand the effectiveness of the system and the comparison made. The simulation results clearly indicate that when the ideal isolation structure was implemented in the spacecraft, the vibrations generated by the rotor were found to be greatly reduced, while the capacity of the output torque was not lost, which means that the isolation system will not affect the performance of attitude control.

  3. Advanced integrated life support system update

    NASA Technical Reports Server (NTRS)

    Whitley, Phillip E.

    1994-01-01

    The Advanced Integrated Life Support System Program (AILSS) is an advanced development effort to integrate the life support and protection requirements using the U.S. Navy's fighter/attack mission as a starting point. The goal of AILSS is to optimally mate protection from altitude, acceleration, chemical/biological agent, thermal environment (hot, cold, and cold water immersion) stress as well as mission enhancement through improved restraint, night vision, and head-mounted reticules and displays to ensure mission capability. The primary emphasis to date has been to establish garment design requirements and tradeoffs for protection. Here the garment and the human interface are treated as a system. Twelve state-off-the-art concepts from government and industry were evaluated for design versus performance. On the basis of a combination of centrifuge, thermal manikin data, thermal modeling, and mobility studies, some key design parameters have been determined. Future efforts will concentrate on the integration of protection through garment design and the use of a single layer, multiple function concept to streamline the garment system.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watchorn, Steven

    Because this was a Phase I project, it did not add extensively to the body of A-band knowledge. There was no basic research performed on that subject. The principal addition was that a mechanical and optical design for a triple-etalon Fabry-Perot interferometer (FABSOAR) capable of A-band sensing was sketched out and shown to be within readily feasible instrument fabrication parameters. The parameters for the proposed triple-etalon Fabry-Perot were shown to be very similar to existing Fabry-Perots built by Scientific Solutions. The mechanical design for the FABSOAR instrument incorporated the design of previous Scientific Solutions imagers, condensing the three three-inch-diameter etalonsmore » into a single, sturdy tube. The design allowed for the inclusion of a commercial off-the-shelf (COTS) filter wheel and a thermocooled CCD detector from Andor. The tube has supports to mount to a horizontal or vertical opticaltable surface, and was to be coupled to a Scientific Solutions pointing head at the Millstone Hill Observatory in Massachusetts for Phase II calibration and testing.« less

  5. Pointing control for the International Comet Mission

    NASA Technical Reports Server (NTRS)

    Leblanc, D. R.; Schumacher, L. L.

    1980-01-01

    The design of the pointing control system for the proposed International Comet Mission, intended to fly by Comet Halley and rendezvous with Comet Tempel-2 is presented. Following a review of mission objectives and the spacecraft configuration, design constraints on the pointing control system controlling the two-axis gimballed scan platform supporting the science instruments are discussed in relation to the scientific requirements of the mission. The primary design options considered for the pointing control system design for the baseline spacecraft are summarized, and the design selected, which employs a target-referenced, inertially stabilized control system, is described in detail. The four basic modes of operation of the pointing control subsystem (target acquisition, inertial hold, target track and slew) are discussed as they relate to operations at Halley and Tempel-2. It is pointed that the pointing control system design represents a significant advance in the state of the art of pointing controls for planetary missions.

  6. Computer-Aided Engineering Of Cabling

    NASA Technical Reports Server (NTRS)

    Billitti, Joseph W.

    1989-01-01

    Program generates data sheets, drawings, and other information on electrical connections. DFACS program, centered around single data base, has built-in menus providing easy input of, and access to, data for all personnel involved in system, subsystem, and cabling. Enables parallel design of circuit-data sheets and drawings of harnesses. Also recombines raw information to generate automatically various project documents and drawings, including index of circuit-data sheets, list of electrical-interface circuits, lists of assemblies and equipment, cabling trees, and drawings of cabling electrical interfaces and harnesses. Purpose of program to provide engineering community with centralized data base for putting in, and gaining access to, functional definition of system as specified in terms of details of pin connections of end circuits of subsystems and instruments and data on harnessing. Primary objective to provide instantaneous single point of interchange of information, thus avoiding

  7. Adaptive fuzzy sliding control of single-phase PV grid-connected inverter.

    PubMed

    Fei, Juntao; Zhu, Yunkai

    2017-01-01

    In this paper, an adaptive fuzzy sliding mode controller is proposed to control a two-stage single-phase photovoltaic (PV) grid-connected inverter. Two key technologies are discussed in the presented PV system. An incremental conductance method with adaptive step is adopted to track the maximum power point (MPP) by controlling the duty cycle of the controllable power switch of the boost DC-DC converter. An adaptive fuzzy sliding mode controller with an integral sliding surface is developed for the grid-connected inverter where a fuzzy system is used to approach the upper bound of the system nonlinearities. The proposed strategy has strong robustness for the sliding mode control can be designed independently and disturbances can be adaptively compensated. Simulation results of a PV grid-connected system verify the effectiveness of the proposed method, demonstrating the satisfactory robustness and performance.

  8. a Global Registration Algorithm of the Single-Closed Ring Multi-Stations Point Cloud

    NASA Astrophysics Data System (ADS)

    Yang, R.; Pan, L.; Xiang, Z.; Zeng, H.

    2018-04-01

    Aimed at the global registration problem of the single-closed ring multi-stations point cloud, a formula in order to calculate the error of rotation matrix was constructed according to the definition of error. The global registration algorithm of multi-station point cloud was derived to minimize the error of rotation matrix. And fast-computing formulas of transformation matrix with whose implementation steps and simulation experiment scheme was given. Compared three different processing schemes of multi-station point cloud, the experimental results showed that the effectiveness of the new global registration method was verified, and it could effectively complete the global registration of point cloud.

  9. Floating point only SIMD instruction set architecture including compare, select, Boolean, and alignment operations

    DOEpatents

    Gschwind, Michael K [Chappaqua, NY

    2011-03-01

    Mechanisms for implementing a floating point only single instruction multiple data instruction set architecture are provided. A processor is provided that comprises an issue unit, an execution unit coupled to the issue unit, and a vector register file coupled to the execution unit. The execution unit has logic that implements a floating point (FP) only single instruction multiple data (SIMD) instruction set architecture (ISA). The floating point vector registers of the vector register file store both scalar and floating point values as vectors having a plurality of vector elements. The processor may be part of a data processing system.

  10. Intensive care unit mobility practices in Australia and New Zealand: a point prevalence study.

    PubMed

    Berney, Susan C; Harrold, Megan; Webb, Steven A; Seppelt, Ian; Patman, Shane; Thomas, Peter J; Denehy, Linda

    2013-12-01

    To develop a comprehensive set of items describing physiotherapy mobilisation practices for critically ill patients, and to document current practices in intensive care units in Australia and New Zealand, focusing on patients having > 48 hours of mechanical ventilation. Prospective, observational, multicentre, single-day, point prevalence study. All patients in 38 Australian and New Zealand ICUs at 10 am on one of three designated days in 2009 and 2010. Demographic data, admission diagnosis and mobilisation practices that had occurred in the previous 24 hours. 514 patients were enrolled, with 498 complete datasets. Mean age was 59.2 years (SD, 16.7 years) and 45% were mechanically ventilated. Mobilisation activities were classified into five categories that were not mutually exclusive: 140 patients (28%) completed an in-bed exercise regimen, 93 (19%) sat over the side of the bed, 182 (37%) sat out of bed, 124 (25%) stood and 89 (18%) walked. Predefined adverse events occurred on 24 occasions (5%). No patient requiring mechanical ventilation sat out of bed or walked. On the study day, 391 patients had been in ICU for > 48 hours. There were 384 complete datasets available for analysis and, of these, 332 patients (86%) were not walked. Of those not walked, 76 (23%) were in the ICU for ≥ 7 days. Patient mobilisation was shown to be low in a single-day point prevalence study. Future observational studies are required to confirm the results.

  11. Fixed-Rate Compressed Floating-Point Arrays.

    PubMed

    Lindstrom, Peter

    2014-12-01

    Current compression schemes for floating-point data commonly take fixed-precision values and compress them to a variable-length bit stream, complicating memory management and random access. We present a fixed-rate, near-lossless compression scheme that maps small blocks of 4(d) values in d dimensions to a fixed, user-specified number of bits per block, thereby allowing read and write random access to compressed floating-point data at block granularity. Our approach is inspired by fixed-rate texture compression methods widely adopted in graphics hardware, but has been tailored to the high dynamic range and precision demands of scientific applications. Our compressor is based on a new, lifted, orthogonal block transform and embedded coding, allowing each per-block bit stream to be truncated at any point if desired, thus facilitating bit rate selection using a single compression scheme. To avoid compression or decompression upon every data access, we employ a software write-back cache of uncompressed blocks. Our compressor has been designed with computational simplicity and speed in mind to allow for the possibility of a hardware implementation, and uses only a small number of fixed-point arithmetic operations per compressed value. We demonstrate the viability and benefits of lossy compression in several applications, including visualization, quantitative data analysis, and numerical simulation.

  12. 14 CFR 417.309 - Flight safety system analysis.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... system anomaly occurring and all of its effects as determined by the single failure point analysis and... termination system. (c) Single failure point. A command control system must undergo an analysis that... fault tree analysis or a failure modes effects and criticality analysis; (2) Identify all possible...

  13. 14 CFR 417.309 - Flight safety system analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... system anomaly occurring and all of its effects as determined by the single failure point analysis and... termination system. (c) Single failure point. A command control system must undergo an analysis that... fault tree analysis or a failure modes effects and criticality analysis; (2) Identify all possible...

  14. 14 CFR 417.309 - Flight safety system analysis.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... system anomaly occurring and all of its effects as determined by the single failure point analysis and... termination system. (c) Single failure point. A command control system must undergo an analysis that... fault tree analysis or a failure modes effects and criticality analysis; (2) Identify all possible...

  15. 14 CFR 417.309 - Flight safety system analysis.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... system anomaly occurring and all of its effects as determined by the single failure point analysis and... termination system. (c) Single failure point. A command control system must undergo an analysis that... fault tree analysis or a failure modes effects and criticality analysis; (2) Identify all possible...

  16. 14 CFR 417.309 - Flight safety system analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... system anomaly occurring and all of its effects as determined by the single failure point analysis and... termination system. (c) Single failure point. A command control system must undergo an analysis that... fault tree analysis or a failure modes effects and criticality analysis; (2) Identify all possible...

  17. Effects of Ayurvedic Oil-Dripping Treatment with Sesame Oil vs. with Warm Water on Sleep: A Randomized Single-Blinded Crossover Pilot Study.

    PubMed

    Tokinobu, Akiko; Yorifuji, Takashi; Tsuda, Toshihide; Doi, Hiroyuki

    2016-01-01

    Ayurvedic oil-dripping treatment (Shirodhara) is often used for treating sleep problems. However, few properly designed studies have been conducted, and the quantitative effect of Shirodhara is unclear. This study sought to quantitatively evaluate the effect of sesame oil Shirodhara (SOS) against warm water Shirodhara (WWS) on improving sleep quality and quality of life (QOL) among persons reporting sleep problems. This randomized, single-blinded, crossover study recruited 20 participants. Each participant received seven 30-minute sessions within 2 weeks with either liquid. The washout period was at least 2 months. The Shirodhara procedure was conducted by a robotic oil-drip system. The outcomes were assessed by the Pittsburgh Sleep Quality Index (PSQI) for sleep quality, Epworth Sleepiness Scale (ESS) for daytime sleepiness, World Health Organization Quality of Life 26 (WHO-QOL26) for QOL, and a sleep monitor instrument for objective sleep measures. Changes between baseline and follow-up periods were compared between the two types of Shirodhara. Analysis was performed with generalized estimating equations. Of 20 participants, 15 completed the study. SOS improved sleep quality, as measured by PSQI. The SOS score was 1.83 points lower (95% confidence interval [CI], -3.37 to -0.30) at 2-week follow-up and 1.73 points lower (95% CI, -3.84 to 0.38) than WWS at 6-week follow-up. Although marginally significant, SOS also improved QOL by 0.22 points at 2-week follow-up and 0.19 points at 6-week follow-up compared with WWS. After SOS, no beneficial effects were observed on daytime sleepiness or objective sleep measures. This pilot study demonstrated that SOS may be a safe potential treatment to improve sleep quality and QOL in persons with sleep problems.

  18. Improvements in Health Behaviors, Eating Self-Efficacy, and Goal-Setting Skills Following Participation in Wellness Coaching.

    PubMed

    Clark, Matthew M; Bradley, Karleah L; Jenkins, Sarah M; Mettler, Emily A; Larson, Brent G; Preston, Heather R; Liesinger, Juliette T; Werneburg, Brooke L; Hagen, Philip T; Harris, Ann M; Riley, Beth A; Olsen, Kerry D; Vickers Douglas, Kristin S

    2016-07-01

    Purpose . This project examined potential changes in health behaviors following wellness coaching. Design . In a single cohort study design, wellness coaching participants were recruited in 2011, data were collected through July 2012, and were analyzed through December 2013. Items in the study questionnaire used requested information about 11 health behaviors, self-efficacy for eating, and goal-setting skills. Setting . Worksite wellness center. Participants . One-hundred employee wellness center members with an average age of 42 years; 90% were female and most were overweight or obese. Intervention . Twelve weeks of in-person, one-on-one wellness coaching. Method . Participants completed study questionnaires when they started wellness coaching (baseline), after 12 weeks of wellness coaching, and at a 3-month follow-up. Results . From baseline to week 12, these 100 wellness coaching participants improved their self-reported health behaviors (11 domains, 0- to 10-point scale) from an average of 6.4 to 7.7 (p < .001), eating self-efficacy from an average of 112 to 142 (on a 0- to 180-point scale; p < .001), and goal-setting skills from an average of 49 to 55 (on a 16- to 80-point scale; p < .001). Conclusion . These results suggest that participants improved their current health behaviors and learned skills for continued healthy living. Future studies that use randomized controlled trials are needed to establish causality for wellness coaching.

  19. Analysis of the kinematics of different hip simulators used to study wear of candidate materials for the articulation of total hip arthroplasties.

    PubMed

    Ramamurti, B S; Estok, D M; Jasty, M; Harris, W H

    1998-05-01

    We developed an analytical technique to determine the paths traced by specific points on the femoral head against the acetabulum in the human hip joint during gait. The purpose of the study was to apply this technique to the mechanical hip simulators chosen to conduct wear tests on polymeric acetabular liners used in total hip replacements. These simulators differ from one another in the type of motion produced, apart from other variables such as type of lubricant and head position. Due to the variation in the kinematics between the machines, the paths traced by the points on the femoral head against the acetabular liner ranged from simple linear traces to figure-8 loops and quasi-elliptical paths during a single simulator cycle. The distances traveled by these points during the same period also varied appreciably among the different hip simulator designs. These results are important when combined with other studies that have shown that kinematics can play an important role in the outcome of in vitro wear experiments. The kinematic differences quantified in this study can partially explain the substantial differences in wear data reported from different simulator designs and also underscore the usefulness of the technique described in this study in judging the results from different hip simulator experiments.

  20. A numerical analysis on forming limits during spiral and concentric single point incremental forming

    NASA Astrophysics Data System (ADS)

    Gipiela, M. L.; Amauri, V.; Nikhare, C.; Marcondes, P. V. P.

    2017-01-01

    Sheet metal forming is one of the major manufacturing industries, which are building numerous parts for aerospace, automotive and medical industry. Due to the high demand in vehicle industry and environmental regulations on less fuel consumption on other hand, researchers are innovating new methods to build these parts with energy efficient sheet metal forming process instead of conventionally used punch and die to form the parts to achieve the lightweight parts. One of the most recognized manufacturing process in this category is Single Point Incremental Forming (SPIF). SPIF is the die-less sheet metal forming process in which the single point tool incrementally forces any single point of sheet metal at any process time to plastic deformation zone. In the present work, finite element method (FEM) is applied to analyze the forming limits of high strength low alloy steel formed by single point incremental forming (SPIF) by spiral and concentric tool path. SPIF numerical simulations were model with 24 and 29 mm cup depth, and the results were compare with Nakajima results obtained by experiments and FEM. It was found that the cup formed with Nakajima tool failed at 24 mm while cups formed by SPIF surpassed the limit for both depths with both profiles. It was also notice that the strain achieved in concentric profile are lower than that in spiral profile.

Top