Characterizing the response of a scintillator-based detector to single electrons.
Sang, Xiahan; LeBeau, James M
2016-02-01
Here we report the response of a high angle annular dark field scintillator-based detector to single electrons. We demonstrate that care must be taken when determining the single electron intensity as significant discrepancies can occur when quantifying STEM images with different methods. To account for the detector response, we first image the detector using very low beam currents (∼8fA), and subsequently model the interval between consecutive single electrons events. We find that single electrons striking the detector present a wide distribution of intensities, which we show is not described by a simple function. Further, we present a method to accurately account for the electrons within the incident probe when conducting quantitative imaging. The role detector settings play on determining the single electron intensity is also explored. Finally, we extend our analysis to describe the response of the detector to multiple electron events within the dwell interval of each pixel. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Plemmons, Dayne A.; Flannigan, David J.
2017-09-01
We determine the instrument response of an ultrafast electron microscope equipped with a conventional thermionic electron gun and absent modifications beyond the optical ports. Using flat, graphite-encircled LaB6 cathodes, we image space-charge effects as a function of photoelectron-packet population and find that an applied Wehnelt bias has a negligible effect on the threshold levels (>103 electrons per pulse) but does appear to suppress blurring at the upper limits (∼105 electrons). Using plasma lensing, we determine the instrument-response time for 700-fs laser pulses and find that single-electron packets are laser limited (1 ps), while broadening occurs well below the space-charge limit.
RANKING TEM CAMERAS BY THEIR RESPONSE TO ELECTRON SHOT NOISE
Grob, Patricia; Bean, Derek; Typke, Dieter; Li, Xueming; Nogales, Eva; Glaeser, Robert M.
2013-01-01
We demonstrate two ways in which the Fourier transforms of images that consist solely of randomly distributed electrons (shot noise) can be used to compare the relative performance of different electronic cameras. The principle is to determine how closely the Fourier transform of a given image does, or does not, approach that of an image produced by an ideal camera, i.e. one for which single-electron events are modeled as Kronecker delta functions located at the same pixels where the electrons were incident on the camera. Experimentally, the average width of the single-electron response is characterized by fitting a single Lorentzian function to the azimuthally averaged amplitude of the Fourier transform. The reciprocal of the spatial frequency at which the Lorentzian function falls to a value of 0.5 provides an estimate of the number of pixels at which the corresponding line-spread function falls to a value of 1/e. In addition, the excess noise due to stochastic variations in the magnitude of the response of the camera (for single-electron events) is characterized by the amount to which the appropriately normalized power spectrum does, or does not, exceed the total number of electrons in the image. These simple measurements provide an easy way to evaluate the relative performance of different cameras. To illustrate this point we present data for three different types of scintillator-coupled camera plus a silicon-pixel (direct detection) camera. PMID:23747527
Multiplexed electronically programmable multimode ionization detector for chromatography
Wise, M.B.; Buchanan, M.V.
1988-05-19
Method and apparatus for detecting and differentiating organic compounds based on their electron affinity. An electron capture detector cell (ECD) is operated in a plurality of multiplexed electronically programmable operating modes to alter the detector response during a single sampling cycle to acquire multiple simultaneous chromatograms corresponding to each of the different operating modes. The cell is held at a constant subatmospheric pressure while the electron collection bias voltage applied to the cell is modulated electronically to allow acquisition of multiple chromatograms for a single sample elution from a chromatograph representing three distinctly different response modes. A system is provided which automatically controls the programmed application of bias pulses at different intervals and/or amplitudes to switch the detector from an ionization mode to the electron capture mode and various degrees therebetween to provide an improved means of tuning an ECD for multimode detection and improved specificity. 6 figs.
2014-01-01
The electrical conductance response of single ZnO microwire functionalized with amine-groups was tested upon an acid pH variation of a solution environment after integration on a customized gold electrode array chip. ZnO microwires were easily synthesized by hydrothermal route and chemically functionalized with aminopropyl groups. Single wires were deposited from the solution and then oriented through dielectrophoresis across eight nanogap gold electrodes on a platform single chip. Therefore, eight functionalized ZnO microwire-gold junctions were formed at the same time, and being integrated on an ad hoc electronic platform, they were ready for testing without any further treatment. Experimental and simulation studies confirmed the high pH-responsive behavior of the amine-modified ZnO-gold junctions, obtaining in a simple and reproducible way a ready-to-use device for pH detection in the acidic range. We also compared this performance to bare ZnO wires on the same electronic platform, showing the superiority in pH response of the amine-functionalized material. PMID:24484615
Room-temperature ultrafast nonlinear spectroscopy of a single molecule
NASA Astrophysics Data System (ADS)
Liebel, Matz; Toninelli, Costanza; van Hulst, Niek F.
2018-01-01
Single-molecule spectroscopy aims to unveil often hidden but potentially very important contributions of single entities to a system's ensemble response. Albeit contributing tremendously to our ever growing understanding of molecular processes, the fundamental question of temporal evolution, or change, has thus far been inaccessible, thus painting a static picture of a dynamic world. Here, we finally resolve this dilemma by performing ultrafast time-resolved transient spectroscopy on a single molecule. By tracing the femtosecond evolution of excited electronic state spectra of single molecules over hundreds of nanometres of bandwidth at room temperature, we reveal their nonlinear ultrafast response in an effective three-pulse scheme with fluorescence detection. A first excitation pulse is followed by a phase-locked de-excitation pulse pair, providing spectral encoding with 25 fs temporal resolution. This experimental realization of true single-molecule transient spectroscopy demonstrates that two-dimensional electronic spectroscopy of single molecules is experimentally within reach.
Multiplexed electronically programmable multimode ionization detector for chromatography
Wise, Marcus B.; Buchanan, Michelle V.
1989-01-01
Method and apparatus for detecting and differentiating organic compounds based on their electron affinity. An electron capture detector cell (ECD) is operated in a plurality of multiplexed electroncially programmable operating modes to alter the detector response during a single sampling cycle to acquire multiple simultaneous chromatograms corresponding to each of the different operating modes. The cell is held at a constant subatmospheric pressure while the electron collection bias voltage applied to the cell is modulated electronically to allow acquisition of multiple chromatograms for a single sample elution from a chromatograph representing three distinctly different response modes. A system is provided which automatically controls the programmed application of bias pulses at different intervals and/or amplitudes to switch the detector from an ionization mode to the electron capture mode and various degrees therebetween to provide an improved means of tuning an ECD for multimode detection and improved specificity.
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)
1997-01-01
Recent work on the development of single-reference perturbation theories for the study of excited electronic states will be discussed. The utility of these methods will be demonstrated by comparison to linear-response coupled-cluster excitation energies. Results for some halogen molecules of interest in stratospheric chemistry will be presented.
NASA Astrophysics Data System (ADS)
Li, L.
2013-12-01
By removing the influences of 'magnetopause shadowing' (r0>6.6RE) and geomagnetic activities, we investigated statistically the responses of magnetic field and relativistic (>0.5MeV) electrons at geosynchronous orbit to 201 interplanetary perturbations during 6 years from 2003 (solar maximum) to 2008 (solar minimum). The statistical results indicate that during geomagnetically quiet times (HSYM ≥-30nT, and AE<200nT), ~47.3% changes in the geosynchronous magnetic field and relativistic electron fluxes are caused by the combined actions of the enhancement of solar wind dynamic pressure (Pd) and the southward turning of interplanetary magnetic field (IMF) (ΔPd>0.4 nPa, and IMF Bz<0 nT), and only ~18.4% changes are due to single dynamic pressure increase (ΔPd >0.4 nPa, but IMF Bz>0 nT), and ~34.3% changes are due to single southward turning of IMF (IMF Bz<0 nT, but |ΔPd|<0.4 nPa). Although the responses of magnetic field and relativistic electrons to the southward turning of IMF are weaker than their responses to the dynamic pressure increase, the southward turning of IMF can cause the dawn-dusk asymmetric perturbations that the magnetic field and the relativistic electrons tend to increase on the dawnside (LT~00:00-12:00) but decrease on the duskside (LT~13:00-23:00). Furthermore, the variation of relativistic electron fluxes is adiabatically controlled by the magnitude and elevation angle changes of magnetic field during the single IMF southward turnings. However, the variation of relativistic electron fluxes is independent of the change in magnetic field in some compression regions during the enhancement of solar wind dynamic pressure (including the single pressure increases and the combined external perturbations), indicating that nonadiabatic dynamic processes of relativistic electrons occur there. Acknowledgments. This work is supported by NSFC (grants 41074119 and 40604018). Liuyuan Li is grateful to the staffs working for the data from GOES 8-12 satellites and OMNI database in CDAWeb.
NASA Astrophysics Data System (ADS)
Puri, Shruti; McMahon, Peter L.; Yamamoto, Yoshihisa
2014-10-01
We propose a scheme to perform single-shot quantum nondemolition (QND) readout of the spin of an electron trapped in a semiconductor quantum dot (QD). Our proposal relies on the interaction of the QD electron spin with optically excited, quantum well (QW) microcavity exciton-polaritons. The spin-dependent Coulomb exchange interaction between the QD electron and cavity polaritons causes the phase and intensity response of left circularly polarized light to be different than that of right circularly polarized light, in such a way that the QD electron's spin can be inferred from the response to a linearly polarized probe reflected or transmitted from the cavity. We show that with careful device design it is possible to essentially eliminate spin-flip Raman transitions. Thus a QND measurement of the QD electron spin can be performed within a few tens of nanoseconds with fidelity ˜99.95%. This improves upon current optical QD spin readout techniques across multiple metrics, including speed and scalability.
Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors
NASA Astrophysics Data System (ADS)
Star, Alexander; Tu, Eugene; Niemann, Joseph; Gabriel, Jean-Christophe P.; Joiner, C. Steve; Valcke, Christian
2006-01-01
We report carbon nanotube network field-effect transistors (NTNFETs) that function as selective detectors of DNA immobilization and hybridization. NTNFETs with immobilized synthetic oligonucleotides have been shown to specifically recognize target DNA sequences, including H63D single-nucleotide polymorphism (SNP) discrimination in the HFE gene, responsible for hereditary hemochromatosis. The electronic responses of NTNFETs upon single-stranded DNA immobilization and subsequent DNA hybridization events were confirmed by using fluorescence-labeled oligonucleotides and then were further explored for label-free DNA detection at picomolar to micromolar concentrations. We have also observed a strong effect of DNA counterions on the electronic response, thus suggesting a charge-based mechanism of DNA detection using NTNFET devices. Implementation of label-free electronic detection assays using NTNFETs constitutes an important step toward low-cost, low-complexity, highly sensitive and accurate molecular diagnostics. hemochromatosis | SNP | biosensor
Evaluation of RCA thinned buried channel charge-coupled devices /CCDs/ for scientific applications
NASA Technical Reports Server (NTRS)
Zucchino, P.; Long, D.; Lowrance, J. L.; Renda, G.; Crawshaw, D. D.; Battson, D. F.
1981-01-01
An experimental version of a thinned illuminated buried-channel 512 x 320 pixel CCD with reduced amplifier input capacitance has been produced which is characterized by lower readout noise. Changes made to the amplifier are discussed, and readout noise measurements obtained by several different techniques are presented. The single energetic electron response of the CCD in the electron-bombarded mode and the single 5.9 keV X-ray pulse height distribution are reported. Results are also given on the dark current versus temperature and the spatial frequency response as a function of signal level.
Strong suppression of shot noise in a feedback-controlled single-electron transistor
NASA Astrophysics Data System (ADS)
Wagner, Timo; Strasberg, Philipp; Bayer, Johannes C.; Rugeramigabo, Eddy P.; Brandes, Tobias; Haug, Rolf J.
2017-03-01
Feedback control of quantum mechanical systems is rapidly attracting attention not only due to fundamental questions about quantum measurements, but also because of its novel applications in many fields in physics. Quantum control has been studied intensively in quantum optics but progress has recently been made in the control of solid-state qubits as well. In quantum transport only a few active and passive feedback experiments have been realized on the level of single electrons, although theoretical proposals exist. Here we demonstrate the suppression of shot noise in a single-electron transistor using an exclusively electronic closed-loop feedback to monitor and adjust the counting statistics. With increasing feedback response we observe a stronger suppression and faster freezing of charge current fluctuations. Our technique is analogous to the generation of squeezed light with in-loop photodetection as used in quantum optics. Sub-Poisson single-electron sources will pave the way for high-precision measurements in quantum transport similar to optical or optomechanical equivalents.
Single-particle energies and density of states in density functional theory
NASA Astrophysics Data System (ADS)
van Aggelen, H.; Chan, G. K.-L.
2015-07-01
Time-dependent density functional theory (TD-DFT) is commonly used as the foundation to obtain neutral excited states and transition weights in DFT, but does not allow direct access to density of states and single-particle energies, i.e. ionisation energies and electron affinities. Here we show that by extending TD-DFT to a superfluid formulation, which involves operators that break particle-number symmetry, we can obtain the density of states and single-particle energies from the poles of an appropriate superfluid response function. The standard Kohn- Sham eigenvalues emerge as the adiabatic limit of the superfluid response under the assumption that the exchange- correlation functional has no dependence on the superfluid density. The Kohn- Sham eigenvalues can thus be interpreted as approximations to the ionisation energies and electron affinities. Beyond this approximation, the formalism provides an incentive for creating a new class of density functionals specifically targeted at accurate single-particle eigenvalues and bandgaps.
Zimbovskaya, Natalya A
2016-07-27
In this paper, we theoretically analyze steady-state thermoelectric transport through a single-molecule junction with a vibrating bridge. The thermally induced charge current in the system is explored using a nonequilibrium Green function formalism. We study the combined effects of Coulomb interactions between charge carriers on the bridge and electron-phonon interactions on the thermocurrent beyond the linear response regime. It is shown that electron-vibron interactions may significantly affect both the magnitude and the direction of the thermocurrent, and vibrational signatures may appear.
Acharya, Santhosh; Bhat, N N; Joseph, Praveen; Sanjeev, Ganesh; Sreedevi, B; Narayana, Y
2011-05-01
The effects of single pulses and multiple pulses of 7 MV electrons on micronuclei (MN) induction in cytokinesis-blocked human peripheral blood lymphocytes (PBLs) were investigated over a wide range of dose rates per pulse (instantaneous dose rate). PBLs were exposed to graded doses of 2, 3, 4, 6, and 8 Gy of single electron pulses of varying pulse widths at different dose rates per pulse, ranging from 1 × 10(6) Gy s(-1) to 3.2 × 10(8) Gy s(-1). Different dose rates per pulse were achieved by changing the dose per electron pulse by adjusting the beam current and pulse width. MN yields per unit absorbed dose after irradiation with single electron pulses were compared with those of multiple pulses of electrons. A significant decrease in the MN yield with increasing dose rates per pulse was observed, when dose was delivered by a single electron pulse. However, no reduction in the MN yield was observed when dose was delivered by multiple pulses of electrons. The decrease in the yield at high dose rates per pulse suggests possible radical recombination, which leads to decreased biological damage. Cellular response to the presence of very large numbers of chromosomal breaks may also alter the damage.
Quantum states and optical responses of low-dimensional electron hole systems
NASA Astrophysics Data System (ADS)
Ogawa, Tetsuo
2004-09-01
Quantum states and their optical responses of low-dimensional electron-hole systems in photoexcited semiconductors and/or metals are reviewed from a theoretical viewpoint, stressing the electron-hole Coulomb interaction, the excitonic effects, the Fermi-surface effects and the dimensionality. Recent progress of theoretical studies is stressed and important problems to be solved are introduced. We cover not only single-exciton problems but also few-exciton and many-exciton problems, including electron-hole plasma situations. Dimensionality of the Wannier exciton is clarified in terms of its linear and nonlinear responses. We also discuss a biexciton system, exciton bosonization technique, high-density degenerate electron-hole systems, gas-liquid phase separation in an excited state and the Fermi-edge singularity due to a Mahan exciton in a low-dimensional metal.
NASA Astrophysics Data System (ADS)
Puri, Shruti; McMahon, Peter; Yamamoto, Yoshihisa
2014-03-01
The quantum non-demolition (QND) measurement of a single electron spin is of great importance in measurement-based quantum computing schemes. The current single-shot readout demonstrations exhibit substantial spin-flip backaction. We propose a QND readout scheme for quantum dot (QD) electron spins in Faraday geometry, which differs from previous proposals and implementations in that it relies on a novel physical mechanism: the spin-dependent Coulomb exchange interaction between a QD spin and optically-excited quantum well (QW) microcavity exciton-polaritons. The Coulomb exchange interaction causes a spin-dependent shift in the resonance energy of the polarized polaritons, thus causing the phase and intensity response of left circularly polarized light to be different to that of the right circularly polarized light. As a result the QD electron's spin can be inferred from the response to a linearly polarized probe. We show that by a careful design of the system, any spin-flip backaction can be eliminated and a QND measurement of the QD electron spin can be performed within a few 10's of nanoseconds with fidelity 99:95%. This improves upon current optical QD spin readout techniques across multiple metrics, including fidelity, speed and scalability. National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan.
Single-crystal charge transfer interfaces for efficient photonic devices (Conference Presentation)
NASA Astrophysics Data System (ADS)
Alves, Helena; Pinto, Rui M.; Maçôas, Ermelinda M. S.; Baleizão, Carlos; Santos, Isabel C.
2016-09-01
Organic semiconductors have unique optical, mechanical and electronic properties that can be combined with customized chemical functionality. In the crystalline form, determinant features for electronic applications such as molecular purity, the charge mobility or the exciton diffusion length, reveal a superior performance when compared with materials in a more disordered form. Combining crystals of two different conjugated materials as even enable a new 2D electronic system. However, the use of organic single crystals in devices is still limited to a few applications, such as field-effect transistors. In 2013, we presented the first system composed of single-crystal charge transfer interfaces presenting photoconductivity behaviour. The system composed of rubrene and TCNQ has a responsivity reaching 1 A/W, corresponding to an external quantum efficiency of nearly 100%. A similar approach, with a hybrid structure of a PCBM film and rubrene single crystal also presents high responsivity and the possibility to extract excitons generated in acceptor materials. This strategy led to an extended action towards the near IR. By adequate material design and structural organisation of perylediimides, we demonstrate that is possible to improve exciton diffusion efficiency. More recently, we have successfully used the concept of charge transfer interfaces in phototransistors. These results open the possibility of using organic single-crystal interfaces in photonic applications.
Charging of Single Micron Sized Dust Grains by Secondary Electron Emission: A Laboratory Study
NASA Technical Reports Server (NTRS)
Spann, James F., Jr.; Venturini, Catherine C.; Comfort, R. H.
1998-01-01
We present the details of a new laboratory study whose objective is to experimentally study the interaction of micron sized particles with plasmas and electromagnetic radiation. Specifically, to investigate under what conditions and to what extent do particles of various compositions and sizes become charged, or discharged, while exposed to an electron beam and ultraviolet radiation environment The emphasis is the study of the two charging mechanisms, secondary emission of electrons and photoelectric effect. The experiment uses a technique known as electrodynamic suspension of particles. With this technique, a single charged particle is electrodynamically levitated and then exposed to a controlled environment. Its charge to mass ratio is directly measured. Viscous drag measurements and the light scattering measurements characterize its size and optical characteristics. The environment to which the particle is expose may consist of room temperature and pressure or a rarefied atmosphere where only one major gaseous constituent is present, or, as in this case, a vacuum environment under electron bombardment or UV radiation . In addition, the environment can be cycled as part of the experiment. Therefore, using this technique, a single particle can be repeatedly exposed to a controlled environment and its response measured, or a single particle can be exposed to similar environments with minor differences and its response measured as a function of only the changed environmental conditions.
Tian, Mingliang; Wang, Jinguo; Kurtz, James; Mallouk, Thomas E; Chan, M H W
2003-07-01
Metallic nanowires (Au, Ag, Cu, Ni, Co, and Rh) with an average diameter of 40 nm and a length of 3-5 μm have been fabricated by electrodeposition in the pores of track-etched polycarbonate membranes. Structural characterizations by transmission electron microscopy (TEM) and electron diffraction showed that nanowires of Au, Ag, and Cu are single-crystalline with a preferred [111] orientation, whereas Ni, Co, and Rh wires are polycrystalline. Possible mechanisms responsible for nucleation and growth for single-crystal noble metals versus polycrystalline group VIII-B metals are discussed.
NASA Astrophysics Data System (ADS)
Pérez Daroca, Diego; Roura-Bas, Pablo; Aligia, Armando A.
2018-04-01
We study the low-temperature properties of the differential response of the current to a temperature gradient at finite voltage in a single-level quantum dot including electron-electron interaction, nonsymmetric couplings to the leads, and nonlinear effects. The calculated response is significantly enhanced in setups with large asymmetries between the tunnel couplings. In the investigated range of voltages and temperatures with corresponding energies up to several times the Kondo energy scale, the maximum response is enhanced nearly an order of magnitude with respect to symmetric coupling to the leads.
Single and double photoemission and generalizations
NASA Astrophysics Data System (ADS)
Pavlyukh, Yaroslav
2016-03-01
A unified diagrammatic treatment of single and double electron photoemission currents is presented. The irreducible lesser density-density response function is the starting point of these derivations. Diagrams for higher order processes in which several electrons are observed in coincidence can likewise be obtained. For physically relevant situations, in which the photoemission cross-section can be written as the Fermi Golden rule, the diagrams from the nonequilibrium Green's function approach can be put in direct correspondence with the diagrams of the scattering theory.
NASA Astrophysics Data System (ADS)
Edwardson, C. J.; Coleman, P. G.; Paez, D. J.; Doylend, J. K.; Knights, A. P.
2013-03-01
Electron capture during forward bias and reemission at zero bias by divacancies in the depletion region of a silicon diode structure at room temperature have been studied for the first time using monoenergetic positrons. The positron response increases essentially linearly with electron current, as a result of increased positron trapping by negatively charged divacancies. The measurements indicate that ≤1% of the divacancies become negatively charged in the steady state at a forward bias of 1 V. Changes in the mean positron response when applying a square wave bias to the sample (1 V forward bias and 0 V, duty cycle 1∶4, times at 0 V in the range 0.1-100μs), were consistent with a rapid conversion of doubly to singly charged divacancies (in ˜101ns), followed by slower defilling of the singly charged divacancies with a time constant of ˜101μs. These ac measurements allow determination of the relative populations of singly and doubly charged divacancies. The results provide confirmation of consistency between the positron’s response to the silicon divacancy and previously extracted capture and emission kinetics determined through charge transient measurements and assigned to the same defect. The possibility of combining these two, orthogonal techniques suggest a promising new and powerful approach to defect spectroscopy in which the structure and electrical properties of a defect may be determined in a single measurement.
Evaluating average and atypical response in radiation effects simulations
NASA Astrophysics Data System (ADS)
Weller, R. A.; Sternberg, A. L.; Massengill, L. W.; Schrimpf, R. D.; Fleetwood, D. M.
2003-12-01
We examine the limits of performing single-event simulations using pre-averaged radiation events. Geant4 simulations show the necessity, for future devices, to supplement current methods with ensemble averaging of device-level responses to physically realistic radiation events. Initial Monte Carlo simulations have generated a significant number of extremal events in local energy deposition. These simulations strongly suggest that proton strikes of sufficient energy, even those that initiate purely electronic interactions, can initiate device response capable in principle of producing single event upset or microdose damage in highly scaled devices.
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Srinivasan, Parthiban; Head-Gordon, Martin; Huo, Winifred (Technical Monitor)
1998-01-01
Electronic excitation energies are determined using single-reference based theories derived from response equations involving perturbation theory and coupled-cluster theory. These methods are applied to the singlet manifold of excited electronic states of the HClO, HBrO, HOClO, HOBrO, HClO2, and HBrO2 molecules. The reliability of the various perturbation theory approaches is assessed by comparison to the linear-response singles and doubles coupled-cluster (LRCCSD) method. The excitation energies for the Y-XO compounds are compared and contrasted for Y=H and HO, and X=Cl and Br. A similar comparison is performed for the H-XO2 compounds.
SU-E-T-137: The Response of TLD-100 in Mixed Fields of Photons and Electrons.
Lawless, M; Junell, S; Hammer, C; DeWerd, L
2012-06-01
Thermoluminescent dosimeters are used routinely for dosimetric measurements of photon and electron fields. However, no work has been published characterizing TLDs for use in combined photon and electron fields. This work investigates the response of TLD-100 (LiF:Mg,Ti) in mixed fields of photon and electron beam qualities. TLDs were irradiated in a 6 MV photon beam, 6 MeV electron beam, and a NIST traceable cobalt-60 beam. TLDs were also irradiated in a mixed field of the electron and photon beams. All irradiations were normalized to absorbed dose to water as defined in the AAPM TG-51 report. The average response per dose (nC/Gy) for each linac beam quality was normalized to the average response per dose of the TLDs irradiated by the cobalt-60 standard.Irradiations were performed in a water tank and a Virtual Water™ phantom. Two TLD dose calibration curves for determining absorbed dose to water were generated using photon and electron field TLD response data. These individual beam quality dose calibration curves were applied to the TLDs irradiated in the mixed field. The TLD response in the mixed field was less sensitive than the response in the photon field and more sensitive than the response in the electron field. TLD determination of dose in the mixed field using the dose calibration curve generated by TLDs irradiated by photons resulted in an underestimation of the delivered dose, while the use of a dose calibration curve generated using electrons resulted in an overestimation of the delivered dose. The relative response of TLD-100 in mixed fields fell consistently between the photon nd electron relative responses. When using TLD-100 in mixed fields, the user must account for this intermediate response to avoid an over- or underestimation of the dose due to calibration in a single photon or electron field. © 2012 American Association of Physicists in Medicine.
Two in one: making electron and ion measurements using a single MCP in future top hat instruments.
NASA Astrophysics Data System (ADS)
Bedington, Robert; Saito, Yoshifumi
To allow for the reduced use of spacecraft resources in future missions, we are developing techniques to enable both electrons and ions to be measured in a single top hat instrument. Top hat energy analyser instruments typically analyse charged particles from a few eV to a few tens keV. They consist of an electrostatic, energy-analyser section and a detector. MCPs (micro-channel plates) are the most commonly used detectors, because of their high sensitivity and strong heritage in space instrumentation. To detect the lowest energies of charged particles, a pre-accelerating bias potential is applied to the front surface of the MCP, however this voltage cannot be altered quickly without drastically affecting the detector response. Any instrument that detects both electrons and ions, will therefore typically use two detectors (with fixed voltages)—one for electrons, one for ions, and will often use two separate energy analysers. Significant resource savings are available however if just a single MCP can be used. This can be achieved by having incoming ions (and optionally incoming electrons also) impact a secondary electron emitting material, and thus release secondary electrons to be detected by a positively biased (electron-detecting) MCP. Unlike MCPs, the electrostatic, energy-analyser sections are able to have their voltages cycled extremely rapidly, so that they can be made to sample electrons and then ions in quick succession with minimal design changes required. Two secondary electron conversion methods are being investigated: ultra-thin carbon foils, and dynodes. Using carbon foils in front of the MCPs, incoming ions can be detected by the secondary electrons they release, while incoming electrons pass straight through them. Using dynodes all incoming particles can be converted to secondary electrons before detection. The challenges include finding materials with uniform electron emission responses for the desired energies and particles, managing electric fields and scattered primary electrons. Experiments pertaining to this research will be discussed. These investigations are being pursued as prototype developments for the SCOPE mission for use on the EISA (Electron & Ion Spectrum Analyzer) instrument.
Mesh electronics: a new paradigm for tissue-like brain probes.
Hong, Guosong; Yang, Xiao; Zhou, Tao; Lieber, Charles M
2018-06-01
Existing implantable neurotechnologies for understanding the brain and treating neurological diseases have intrinsic properties that have limited their capability to achieve chronically-stable brain interfaces with single-neuron spatiotemporal resolution. These limitations reflect what has been dichotomy between the structure and mechanical properties of living brain tissue and non-living neural probes. To bridge the gap between neural and electronic networks, we have introduced the new concept of mesh electronics probes designed with structural and mechanical properties such that the implant begins to 'look and behave' like neural tissue. Syringe-implanted mesh electronics have led to the realization of probes that are neuro-attractive and free of the chronic immune response, as well as capable of stable long-term mapping and modulation of brain activity at the single-neuron level. This review provides a historical overview of a 10-year development of mesh electronics by highlighting the tissue-like design, syringe-assisted delivery, seamless neural tissue integration, and single-neuron level chronic recording stability of mesh electronics. We also offer insights on unique near-term opportunities and future directions for neuroscience and neurology that now are available or expected for mesh electronics neurotechnologies. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Response of TLD-100 in mixed fields of photons and electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawless, Michael J.; Junell, Stephanie; Hammer, Cliff
Purpose: Thermoluminescent dosimeters (TLDs) are routinely used for dosimetric measurements of high energy photon and electron fields. However, TLD response in combined fields of photon and electron beam qualities has not been characterized. This work investigates the response of TLD-100 (LiF:Mg,Ti) to sequential irradiation by high-energy photon and electron beam qualities. Methods: TLDs were irradiated to a known dose by a linear accelerator with a 6 MV photon beam, a 6 MeV electron beam, and a NIST-traceable {sup 60}Co beam. TLDs were also irradiated in a mixed field of the 6 MeV electron beam and the 6 MV photon beam.more » The average TLD response per unit dose of the TLDs for each linac beam quality was normalized to the average response per unit dose of the TLDs irradiated by the {sup 60}Co beam. Irradiations were performed in water and in a Virtual Water Trade-Mark-Sign phantom. The 6 MV photon beam and 6 MeV electron beam were used to create dose calibration curves relating TLD response to absorbed dose to water, which were applied to the TLDs irradiated in the mixed field. Results: TLD relative response per unit dose in the mixed field was less sensitive than the relative response in the photon field and more sensitive than the relative response in the electron field. Application of the photon dose calibration curve to the TLDs irradiated in a mixed field resulted in an underestimation of the delivered dose, while application of the electron dose calibration curve resulted in an overestimation of the dose. Conclusions: The relative response of TLD-100 in mixed fields fell between the relative response in the photon-only and electron-only fields. TLD-100 dosimetry of mixed fields must account for this intermediate response to minimize the estimation errors associated with calibration factors obtained from a single beam quality.« less
Response of TLD-100 in mixed fields of photons and electrons.
Lawless, Michael J; Junell, Stephanie; Hammer, Cliff; DeWerd, Larry A
2013-01-01
Thermoluminescent dosimeters (TLDs) are routinely used for dosimetric measurements of high energy photon and electron fields. However, TLD response in combined fields of photon and electron beam qualities has not been characterized. This work investigates the response of TLD-100 (LiF:Mg,Ti) to sequential irradiation by high-energy photon and electron beam qualities. TLDs were irradiated to a known dose by a linear accelerator with a 6 MV photon beam, a 6 MeV electron beam, and a NIST-traceable (60)Co beam. TLDs were also irradiated in a mixed field of the 6 MeV electron beam and the 6 MV photon beam. The average TLD response per unit dose of the TLDs for each linac beam quality was normalized to the average response per unit dose of the TLDs irradiated by the (60)Co beam. Irradiations were performed in water and in a Virtual Water™ phantom. The 6 MV photon beam and 6 MeV electron beam were used to create dose calibration curves relating TLD response to absorbed dose to water, which were applied to the TLDs irradiated in the mixed field. TLD relative response per unit dose in the mixed field was less sensitive than the relative response in the photon field and more sensitive than the relative response in the electron field. Application of the photon dose calibration curve to the TLDs irradiated in a mixed field resulted in an underestimation of the delivered dose, while application of the electron dose calibration curve resulted in an overestimation of the dose. The relative response of TLD-100 in mixed fields fell between the relative response in the photon-only and electron-only fields. TLD-100 dosimetry of mixed fields must account for this intermediate response to minimize the estimation errors associated with calibration factors obtained from a single beam quality.
Lasky, J B; Moran, P R
1977-09-01
The response of single crystal and extruded ribbons of TLD-100 to 5-30 keV electrons was investigated. If annealing is done in a vacuum, the sensitivity of TLD-100 single crystals to these electrons and the resultant glow curve are essentially the same as when irradiation are carried out with 137Cs gamma rays. All discrepancies in sensitivity can then be accounted for by the higher LET of electrons. The commonly used 'standard annealing' at 400 degrees C for one hour produced a change in the glow curve shape and a loss in sensitivity in contrast to the vacuum anneal results. Diffusion of hydroxyl ions into the sample during air annealing is believed to be the primary cause for this change. These results explain the source of the 'dead layer' proposed to explain the variation with particle size of the luminescent efficiency of X-ray irradiated TLD-100 powder and the low TL efficiency from low energy electron irradiations. With the use of the vacuum annealing procedure, the same sensitivity and reproducibility can be achieved for the dosimetry of low energy electrons and other shallowly penetrating radiation as is currently achieved for the dosimetry of X-rays.
Single-ion adsorption and switching in carbon nanotubes
Bushmaker, Adam W.; Oklejas, Vanessa; Walker, Don; ...
2016-01-25
Single-ion detection has, for many years, been the domain of large devices such as the Geiger counter, and studies on interactions of ionized gasses with materials have been limited to large systems. To date, there have been no reports on single gaseous ion interaction with microelectronic devices, and single neutral atom detection techniques have shown only small, barely detectable responses. Here we report the observation of single gaseous ion adsorption on individual carbon nanotubes (CNTs), which, because of the severely restricted one-dimensional current path, experience discrete, quantized resistance increases of over two orders of magnitude. Only positive ions cause changes,more » by the mechanism of ion potentialinduced carrier depletion, which is supported by density functional and Landauer transport theory. Lastly, our observations reveal a new single-ion/CNT heterostructure with novel electronic properties, and demonstrate that as electronics are ultimately scaled towards the one-dimensional limit, atomic-scale effects become increasingly important.« less
NASA Astrophysics Data System (ADS)
Kadribasic, Fedja; Mirabolfathi, Nader; Nordlund, Kai; Sand, Andrea E.; Holmström, Eero; Djurabekova, Flyura
2018-03-01
We propose a method using solid state detectors with directional sensitivity to dark matter interactions to detect low-mass weakly interacting massive particles (WIMPs) originating from galactic sources. In spite of a large body of literature for high-mass WIMP detectors with directional sensitivity, no available technique exists to cover WIMPs in the mass range <1 GeV /c2 . We argue that single-electron-resolution semiconductor detectors allow for directional sensitivity once properly calibrated. We examine the commonly used semiconductor material response to these low-mass WIMP interactions.
Electronic warfare - The next 15 years
NASA Astrophysics Data System (ADS)
Quirk, T. G.
1985-07-01
On the basis of current trends, it is projected that the EW systems available by the year 2000, including avionics, will be distinguished by their compatibility with stealthy vehicular platforms, high adaptability to combat scenarios, vehicle-conformal containers, and multifunction characteristics. Transmitters and receivers will perhaps be contained within a single IC, and AI techniques may be able to yield such capabilities as instantaneous signal digitalization. Fusion of electronic units will allow a single system to accommodate navigation, identification, communications, countermeasures, and fire control functions. VHSIC and GaAs electronics appear to be the two most fundamental technological bases for the aforementioned developments. The adaptive response of these systems is noted to radically depend on the pace of software development.
Doping evolution of spin and charge excitations in the Hubbard model
Kung, Y. F.; Nowadnick, E. A.; Jia, C. J.; ...
2015-11-05
We shed light on how electronic correlations vary across the phase diagram of the cuprate superconductors, examining the doping evolution of spin and charge excitations in the single-band Hubbard model using determinant quantum Monte Carlo (DQMC). In the single-particle response, we observe that the effects of correlations weaken rapidly with doping, such that one may expect the random phase approximation (RPA) to provide an adequate description of the two-particle response. In contrast, when compared to RPA, we find that significant residual correlations in the two-particle excitations persist up to 40% hole and 15% electron doping (the range of dopings achievedmore » in the cuprates). Ultimately, these fundamental differences between the doping evolution of single- and multi-particle renormalizations show that conclusions drawn from single-particle processes cannot necessarily be applied to multi-particle excitations. Eventually, the system smoothly transitions via a momentum-dependent crossover into a weakly correlated metallic state where the spin and charge excitation spectra exhibit similar behavior and where RPA provides an adequate description.« less
NASA Astrophysics Data System (ADS)
Chen, Zhangjin; Li, Xiaojin; Zatsarinny, Oleg; Bartschat, Klaus; Lin, C. D.
2018-01-01
We present numerical simulations of the ratio between double and single ionization of He and Ne by intense laser pulses at wavelengths of 390 and 400 nm, respectively. The yields of doubly charged ions due to nonsequential double ionization (NSDI) are obtained by employing the quantitative rescattering (QRS) model. In this model, the NSDI ionization probability is expressed as a product of the returning electron wave packet (RWP) and the total scattering cross sections for laser-free electron impact excitation and electron impact ionization of the parent ion. According to the QRS theory, the same RWP is also responsible for the emission of high-energy above-threshold ionization photoelectrons. To obtain absolute double-ionization yields, the RWP is generated by solving the time-dependent Schrödinger equation (TDSE) within a one-electron model. The same TDSE results can also be taken to obtain single-ionization yields. By using the TDSE results to calibrate single ionization and the RWP obtained from the strong-field approximation, we further simplify the calculation such that the nonuniform laser intensity distribution in the focused laser beam can be accounted for. In addition, laser-free electron impact excitation and ionization cross sections are calculated using the state-of-the-art many-electron R -matrix theory. The simulation results for double-to-single-ionization ratios are found to compare well with experimental data and support the validity of the nonsequential double-ionization mechanism for the covered intensity region.
NASA Astrophysics Data System (ADS)
Curry, M. J.; England, T. D.; Bishop, N. C.; Ten-Eyck, G.; Wendt, J. R.; Pluym, T.; Lilly, M. P.; Carr, S. M.; Carroll, M. S.
2015-05-01
We examine a silicon-germanium heterojunction bipolar transistor (HBT) for cryogenic pre-amplification of a single electron transistor (SET). The SET current modulates the base current of the HBT directly. The HBT-SET circuit is immersed in liquid helium, and its frequency response from low frequency to several MHz is measured. The current gain and the noise spectrum with the HBT result in a signal-to-noise-ratio (SNR) that is a factor of 10-100 larger than without the HBT at lower frequencies. The transition frequency defined by SNR = 1 has been extended by as much as a factor of 10 compared to without the HBT amplification. The power dissipated by the HBT cryogenic pre-amplifier is approximately 5 nW to 5 μW for the investigated range of operation. The circuit is also operated in a single electron charge read-out configuration in the time-domain as a proof-of-principle demonstration of the amplification approach for single spin read-out.
Simulation of pyroshock environments using a tunable resonant fixture
Davie, N.T.
1996-10-15
Disclosed are a method and apparatus for simulating pyrotechnic shock for the purpose of qualifying electronic components for use in weapons, satellite, and aerospace applications. According to the invention, a single resonant bar fixture has an adjustable resonant frequency in order to exhibit a desired shock response spectrum upon mechanical impact. The invention eliminates the need for availability of a large number of different fixtures, capable of exhibiting a range of shock response characteristics, in favor of a single tunable system. 32 figs.
Simulation of pyroshock environments using a tunable resonant fixture
Davie, Neil T.
1996-01-01
Disclosed are a method and apparatus for simulating pyrotechnic shock for the purpose of qualifying electronic components for use in weapons, satellite, and aerospace applications. According to the invention, a single resonant bar fixture has an adjustable resonant frequency in order to exhibit a desired shock response spectrum upon mechanical impact. The invention eliminates the need for availability of a large number of different fixtures, capable of exhibiting a range of shock response characteristics, in favor of a single tunable system.
Intrinsic Enhancement of Dielectric Permittivity in (Nb + In) co-doped TiO2 single crystals.
Kawarasaki, Masaru; Tanabe, Kenji; Terasaki, Ichiro; Fujii, Yasuhiro; Taniguchi, Hiroki
2017-07-13
The development of dielectric materials with colossal permittivity is important for the miniaturization of electronic devices and fabrication of high-density energy-storage devices. The electron-pinned defect-dipoles has been recently proposed to boost the permittivity of (Nb + In) co-doped TiO 2 to 10 5 . However, the follow-up studies suggest an extrinsic contribution to the colossal permittivity from thermally excited carriers. Herein, we demonstrate a marked enhancement in the permittivity of (Nb + In) co-doped TiO 2 single crystals at sufficiently low temperatures such that the thermally excited carriers are frozen out and exert no influence on the dielectric response. The results indicate that the permittivity attains quadruple of that for pure TiO 2 . This finding suggests that the electron-pinned defect-dipoles add an extra dielectric response to that of the TiO 2 host matrix. The results offer a novel approach for the development of functional dielectric materials with large permittivity by engineering complex defects into bulk materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weng, Q. C.; Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200241; An, Z. H., E-mail: anzhenghua@fudan.edu.cn, E-mail: luwei@mail.sitp.ac.cn
We present the photocurrent spectrum study of a quantum dot (QD) single-photon detector using a reset technique which eliminates the QD's “memory effect.” By applying a proper reset frequency and keeping the detector in linear-response region, the detector's responses to different monochromatic light are resolved which reflects different detection efficiencies. We find the reset photocurrent tails up to 1.3 μm wavelength and near-infrared (∼1100 nm) single-photon sensitivity is demonstrated due to interband transition of electrons in QDs, indicating the device a promising candidate both in quantum information applications and highly sensitive imaging applications operating in relative high temperatures (>80 K).
Operation of a quantum dot in the finite-state machine mode: Single-electron dynamic memory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klymenko, M. V.; Klein, M.; Levine, R. D.
2016-07-14
A single electron dynamic memory is designed based on the non-equilibrium dynamics of charge states in electrostatically defined metallic quantum dots. Using the orthodox theory for computing the transfer rates and a master equation, we model the dynamical response of devices consisting of a charge sensor coupled to either a single and or a double quantum dot subjected to a pulsed gate voltage. We show that transition rates between charge states in metallic quantum dots are characterized by an asymmetry that can be controlled by the gate voltage. This effect is more pronounced when the switching between charge states correspondsmore » to a Markovian process involving electron transport through a chain of several quantum dots. By simulating the dynamics of electron transport we demonstrate that the quantum box operates as a finite-state machine that can be addressed by choosing suitable shapes and switching rates of the gate pulses. We further show that writing times in the ns range and retention memory times six orders of magnitude longer, in the ms range, can be achieved on the double quantum dot system using experimentally feasible parameters, thereby demonstrating that the device can operate as a dynamic single electron memory.« less
Supramolecular Systems and Chemical Reactions in Single-Molecule Break Junctions.
Li, Xiaohui; Hu, Duan; Tan, Zhibing; Bai, Jie; Xiao, Zongyuan; Yang, Yang; Shi, Jia; Hong, Wenjing
2017-04-01
The major challenges of molecular electronics are the understanding and manipulation of the electron transport through the single-molecule junction. With the single-molecule break junction techniques, including scanning tunneling microscope break junction technique and mechanically controllable break junction technique, the charge transport through various single-molecule and supramolecular junctions has been studied during the dynamic fabrication and continuous characterization of molecular junctions. This review starts from the charge transport characterization of supramolecular junctions through a variety of noncovalent interactions, such as hydrogen bond, π-π interaction, and electrostatic force. We further review the recent progress in constructing highly conductive molecular junctions via chemical reactions, the response of molecular junctions to external stimuli, as well as the application of break junction techniques in controlling and monitoring chemical reactions in situ. We suggest that beyond the measurement of single molecular conductance, the single-molecule break junction techniques provide a promising access to study molecular assembly and chemical reactions at the single-molecule scale.
Thin film resists for registration of single-ion impacts
NASA Astrophysics Data System (ADS)
Millar, V.; Pakes, C. I.; Prawer, S.; Rout, B.; Jamieson, D. N.
2005-06-01
We demonstrate registration of the location of the impact site of single ions using a thin film polymethyl methacrylate resist on a SiO2/Si substrate. Carbon nanotube-based atomic force microscopy is used to reveal craters in the surface of chemically developed films, consistent with the development of latent damage induced by single-ion impacts. The responses of thin PMMA films to the implantation of He+ and Ga+ ions indicate the role of electronic and nuclear energy loss mechanisms at the single-ion level.
Correlation of electron and proton irradiation-induced damage in InP solar cells
NASA Technical Reports Server (NTRS)
Walters, Robert J.; Summers, Geoffrey P.; Messenger, Scott R.; Burke, Edward A.
1996-01-01
The measured degradation of epitaxial shallow homojunction n(+)/p InP solar cells under 1 MeV electron irradiation is correlated with that measured under 3 MeV proton irradiation based on 'displacement damage dose'. The measured data is analyzed as a function of displacement damage dose from which an electron to proton dose equivalency ratio is determined which enables the electron and proton degradation data to be described by a single degradation curve. It is discussed how this single curve can be used to predict the cell degradation under irradiation by any particle energy. The degradation curve is used to compare the radiation response of InP and GaAs/Ge cells on an absolute damage energy scale. The comparison shows InP to be inherently more resistant to displacement damage deposition than the GaAs/Ge.
NEPP Update of Independent Single Event Upset Field Programmable Gate Array Testing
NASA Technical Reports Server (NTRS)
Berg, Melanie; Label, Kenneth; Campola, Michael; Pellish, Jonathan
2017-01-01
This presentation provides a NASA Electronic Parts and Packaging (NEPP) Program update of independent Single Event Upset (SEU) Field Programmable Gate Array (FPGA) testing including FPGA test guidelines, Microsemi RTG4 heavy-ion results, Xilinx Kintex-UltraScale heavy-ion results, Xilinx UltraScale+ single event effect (SEE) test plans, development of a new methodology for characterizing SEU system response, and NEPP involvement with FPGA security and trust.
Electron transport in single molecules: from benzene to graphene.
Chen, F; Tao, N J
2009-03-17
Electron movement within and between molecules--that is, electron transfer--is important in many chemical, electrochemical, and biological processes. Recent advances, particularly in scanning electrochemical microscopy (SECM), scanning-tunneling microscopy (STM), and atomic force microscopy (AFM), permit the study of electron movement within single molecules. In this Account, we describe electron transport at the single-molecule level. We begin by examining the distinction between electron transport (from semiconductor physics) and electron transfer (a more general term referring to electron movement between donor and acceptor). The relation between these phenomena allows us to apply our understanding of single-molecule electron transport between electrodes to a broad range of other electron transfer processes. Electron transport is most efficient when the electron transmission probability via a molecule reaches 100%; the corresponding conductance is then 2e(2)/h (e is the charge of the electron and h is the Planck constant). This ideal conduction has been observed in a single metal atom and a string of metal atoms connected between two electrodes. However, the conductance of a molecule connected to two electrodes is often orders of magnitude less than the ideal and strongly depends on both the intrinsic properties of the molecule and its local environment. Molecular length, means of coupling to the electrodes, the presence of conjugated double bonds, and the inclusion of possible redox centers (for example, ferrocene) within the molecular wire have a pronounced effect on the conductance. This complex behavior is responsible for diverse chemical and biological phenomena and is potentially useful for device applications. Polycyclic aromatic hydrocarbons (PAHs) afford unique insight into electron transport in single molecules. The simplest one, benzene, has a conductance much less than 2e(2)/h due to its large LUMO-HOMO gap. At the other end of the spectrum, graphene sheets and carbon nanotubes--consisting of infinite numbers of aromatic rings--have small or even zero energy gaps between the conduction and valence bands. Between these two limits are intermediate molecules with rich properties, such as perylene derivatives made of seven aromatic rings; the properties of these types of molecules have yet to be fully explored. Studying PAHs is important not only in answering fundamental questions about electron transport but also in the ongoing quest for molecular-scale electronic devices. This line of research also helps bridge the gap between electron transfer phenomena in small redox molecules and electron transport properties in nanostructures.
Shimaoka, T; Kaneko, J H; Arikawa, Y; Isobe, M; Sato, Y; Tsubota, M; Nagai, T; Kojima, S; Abe, Y; Sakata, S; Fujioka, S; Nakai, M; Shiraga, H; Azechi, H; Chayahara, A; Umezawa, H; Shikata, S
2015-05-01
A neutron bang time and burn history monitor in inertial confinement fusion with fast ignition are necessary for plasma diagnostics. In the FIREX project, however, no detector attained those capabilities because high-intensity X-rays accompanied fast electrons used for plasma heating. To solve this problem, single-crystal CVD diamond was grown and fabricated into a radiation detector. The detector, which had excellent charge transportation property, was tested to obtain a response function for intense X-rays. The applicability for neutron bang time and burn history monitor was verified experimentally. Charge collection efficiency of 99.5% ± 0.8% and 97.1% ± 1.4% for holes and electrons were obtained using 5.486 MeV alpha particles. The drift velocity at electric field which saturates charge collection efficiency was 1.1 ± 0.4 × 10(7) cm/s and 1.0 ± 0.3 × 10(7) cm/s for holes and electrons. Fast response of several ns pulse width for intense X-ray was obtained at the GEKKO XII experiment, which is sufficiently fast for ToF measurements to obtain a neutron signal separately from X-rays. Based on these results, we confirmed that the single-crystal CVD diamond detector obtained neutron signal with good S/N under ion temperature 0.5-1 keV and neutron yield of more than 10(9) neutrons/shot.
Yukihara, E G; Mardirossian, G; Mirzasadeghi, M; Guduru, S; Ahmad, S
2008-01-01
This article investigates the performance of Al2O3: C optically stimulated luminescence dosimeters (OSLDs) for application in radiotherapy. Central-axis depth dose curves and optically stimulated luminescence (OSL) responses were obtained in a water phantom for 6 and 18 MV photons, and for 6, 9, 12, 16, and 20 MeV electron beams from a Varian 21EX linear accelerator. Single OSL measurements could be repeated with a precision of 0.7% (one standard deviation) and the differences between absorbed doses measured with OSLDs and an ionization chamber were within +/- 1% for photon beams. Similar results were obtained for electron beams in the low-gradient region after correction for a 1.9% photon-to-electron bias. The distance-to-agreement values were of the order of 0.5-1.0 mm for electrons in high dose gradient regions. Additional investigations also demonstrated that the OSL response dependence on dose rate, field size, and irradiation temperature is less than 1% in the conditions of the present study. Regarding the beam energy/quality dependence, the relative response of the OSLD for 18 MV was (0.51 +/- 0.48)% of the response for the 6 MV photon beam. The OSLD response for the electron beams relative to the 6 MV photon beam. The OSLD response for the electron beams relative to the 6 MV photon beam was in average 1.9% higher, but this result requires further confirmation. The relative response did not seem to vary with electron energy at dmax within the experimental uncertainties (0.5% in average) and, therefore, a fixed correction factor of 1.9% eliminated the energy dependence in our experimental conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yukihara, E. G.; Mardirossian, G.; Mirzasadeghi, M.
This article investigates the performance of Al{sub 2}O{sub 3}:C optically stimulated luminescence dosimeters (OSLDs) for application in radiotherapy. Central-axis depth dose curves and optically stimulated luminescence (OSL) responses were obtained in a water phantom for 6 and 18 MV photons, and for 6, 9, 12, 16, and 20 MeV electron beams from a Varian 21EX linear accelerator. Single OSL measurements could be repeated with a precision of 0.7% (one standard deviation) and the differences between absorbed doses measured with OSLDs and an ionization chamber were within {+-}1% for photon beams. Similar results were obtained for electron beams in the low-gradientmore » region after correction for a 1.9% photon-to-electron bias. The distance-to-agreement values were of the order of 0.5-1.0 mm for electrons in high dose gradient regions. Additional investigations also demonstrated that the OSL response dependence on dose rate, field size, and irradiation temperature is less than 1% in the conditions of the present study. Regarding the beam energy/quality dependence, the relative response of the OSLD for 18 MV was (0.51{+-}0.48)% of the response for the 6 MV photon beam. The OSLD response for the electron beams relative to the 6 MV photon beam. The OSLD response for the electron beams relative to the 6 MV photon beam was in average 1.9% higher, but this result requires further confirmation. The relative response did not seem to vary with electron energy at d{sub max} within the experimental uncertainties (0.5% in average) and, therefore, a fixed correction factor of 1.9% eliminated the energy dependence in our experimental conditions.« less
A Dual-Stimuli-Responsive Sodium-Bromine Battery with Ultrahigh Energy Density.
Wang, Faxing; Yang, Hongliu; Zhang, Jian; Zhang, Panpan; Wang, Gang; Zhuang, Xiaodong; Cuniberti, Gianaurelio; Feng, Xinliang
2018-06-01
Stimuli-responsive energy storage devices have emerged for the fast-growing popularity of intelligent electronics. However, all previously reported stimuli-responsive energy storage devices have rather low energy densities (<250 Wh kg -1 ) and single stimuli-response, which seriously limit their application scopes in intelligent electronics. Herein, a dual-stimuli-responsive sodium-bromine (Na//Br 2 ) battery featuring ultrahigh energy density, electrochromic effect, and fast thermal response is demonstrated. Remarkably, the fabricated Na//Br 2 battery exhibits a large operating voltage of 3.3 V and an energy density up to 760 Wh kg -1 , which outperforms those for the state-of-the-art stimuli-responsive electrochemical energy storage devices. This work offers a promising approach for designing multi-stimuli-responsive and high-energy rechargeable batteries without sacrificing the electrochemical performance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Non-linear effects and thermoelectric efficiency of quantum dot-based single-electron transistors.
Talbo, Vincent; Saint-Martin, Jérôme; Retailleau, Sylvie; Dollfus, Philippe
2017-11-01
By means of advanced numerical simulation, the thermoelectric properties of a Si-quantum dot-based single-electron transistor operating in sequential tunneling regime are investigated in terms of figure of merit, efficiency and power. By taking into account the phonon-induced collisional broadening of energy levels in the quantum dot, both heat and electrical currents are computed in a voltage range beyond the linear response. Using our homemade code consisting in a 3D Poisson-Schrödinger solver and the resolution of the Master equation, the Seebeck coefficient at low bias voltage appears to be material independent and nearly independent on the level broadening, which makes this device promising for metrology applications as a nanoscale standard of Seebeck coefficient. Besides, at higher voltage bias, the non-linear characteristics of the heat current are shown to be related to the multi-level effects. Finally, when considering only the electronic contribution to the thermal conductance, the single-electron transistor operating in generator regime is shown to exhibit very good efficiency at maximum power.
Tuning Charge and Correlation Effects for a Single Molecule on a Graphene Device
NASA Astrophysics Data System (ADS)
Tsai, Hsin-Zon; Wickenburg, Sebastian; Lu, Jiong; Lischner, Johannes; Omrani, Arash A.; Riss, Alexander; Karrasch, Christoph; Jung, Han Sae; Khajeh, Ramin; Wong, Dillon; Watanabe, Kenji; Taniguchi, Takashi; Zettl, Alex; Louie, Steven G.; Crommie, Michael F.
Controlling electronic devices down to the single molecule level is a grand challenge of nanotechnology. Single-molecules have been integrated into devices capable of tuning electronic response, but a drawback for these systems is that their microscopic structure remains unknown due to inability to image molecules in the junction region. Here we present a combined STM and nc-AFM study demonstrating gate-tunable control of the charge state of individual F4TCNQ molecules at the surface of a graphene field effect transistor. This is different from previous studies in that the Fermi level of the substrate was continuously tuned across the molecular orbital energy level. Using STS we have determined the resulting energy level evolution of the LUMO, its associated vibronic modes, and the graphene Dirac point (ED). We show that the energy difference between ED and the LUMO increases as EF is moved away from ED due to electron-electron interactions that renormalize the molecular quasiparticle energy. This is attributed to gate-tunable image-charge screening in graphene and corroborated by ab initio calculations.
Role of Defects in Single-Walled Carbon Nanotube Chemical Sensors
2006-07-01
Role of Defects in Single-Walled Carbon Nanotube Chemical Sensors Joshua A . Robinson, Eric S. Snow,* Ştefan C. Bǎdescu, Thomas L. Reinecke, and F...of chemical vapors. We find adsorption at defect sites produces a large electronic response that dominates the SWNT capacitance and conductance...introduction of oxidation defects can be used to enhance sensitivity of a SWNT network sensor to a variety of chemical vapors. The use of single-walled
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curry, M. J.; Center for Quantum Information and Control, University of New Mexico, Albuquerque, New Mexico 87131; Sandia National Laboratories, 1515 Eubank Blvd SE, Albuquerque, New Mexico 87123
2015-05-18
We examine a silicon-germanium heterojunction bipolar transistor (HBT) for cryogenic pre-amplification of a single electron transistor (SET). The SET current modulates the base current of the HBT directly. The HBT-SET circuit is immersed in liquid helium, and its frequency response from low frequency to several MHz is measured. The current gain and the noise spectrum with the HBT result in a signal-to-noise-ratio (SNR) that is a factor of 10–100 larger than without the HBT at lower frequencies. The transition frequency defined by SNR = 1 has been extended by as much as a factor of 10 compared to without the HBT amplification.more » The power dissipated by the HBT cryogenic pre-amplifier is approximately 5 nW to 5 μW for the investigated range of operation. The circuit is also operated in a single electron charge read-out configuration in the time-domain as a proof-of-principle demonstration of the amplification approach for single spin read-out.« less
Site-Selection in Single-Molecule Junction for Highly Reproducible Molecular Electronics.
Kaneko, Satoshi; Murai, Daigo; Marqués-González, Santiago; Nakamura, Hisao; Komoto, Yuki; Fujii, Shintaro; Nishino, Tomoaki; Ikeda, Katsuyoshi; Tsukagoshi, Kazuhito; Kiguchi, Manabu
2016-02-03
Adsorption sites of molecules critically determine the electric/photonic properties and the stability of heterogeneous molecule-metal interfaces. Then, selectivity of adsorption site is essential for development of the fields including organic electronics, catalysis, and biology. However, due to current technical limitations, site-selectivity, i.e., precise determination of the molecular adsorption site, remains a major challenge because of difficulty in precise selection of meaningful one among the sites. We have succeeded the single site-selection at a single-molecule junction by performing newly developed hybrid technique: simultaneous characterization of surface enhanced Raman scattering (SERS) and current-voltage (I-V) measurements. The I-V response of 1,4-benzenedithiol junctions reveals the existence of three metastable states arising from different adsorption sites. Notably, correlated SERS measurements show selectivity toward one of the adsorption sites: "bridge sites". This site-selectivity represents an essential step toward the reliable integration of individual molecules on metallic surfaces. Furthermore, the hybrid spectro-electric technique reveals the dependence of the SERS intensity on the strength of the molecule-metal interaction, showing the interdependence between the optical and electronic properties in single-molecule junctions.
Curry, Matthew J.; England, Troy Daniel; Bishop, Nathaniel; ...
2015-05-21
We examine a silicon-germanium heterojunction bipolar transistor (HBT) for cryogenic pre-amplification of a single electron transistor (SET). The SET current modulates the base current of the HBT directly. The HBT-SET circuit is immersed in liquid helium, and its frequency response from low frequency to several MHz is measured. The current gain and the noise spectrum with the HBT result in a signal-to-noise-ratio (SNR) that is a factor of 10–100 larger than without the HBT at lower frequencies. Furthermore, the transition frequency defined by SNR = 1 has been extended by as much as a factor of 10 compared to withoutmore » the HBT amplification. The power dissipated by the HBT cryogenic pre-amplifier is approximately 5 nW to 5 μW for the investigated range of operation. We found that the circuit is also operated in a single electron charge read-out configuration in the time-domain as a proof-of-principle demonstration of the amplification approach for single spin read-out.« less
NASA Astrophysics Data System (ADS)
Springborg, Michael; Molayem, Mohammad; Kirtman, Bernard
2017-09-01
A theoretical treatment for the orbital response of an infinite, periodic system to a static, homogeneous, magnetic field is presented. It is assumed that the system of interest has an energy gap separating occupied and unoccupied orbitals and a zero Chern number. In contrast to earlier studies, we do not utilize a perturbation expansion, although we do assume the field is sufficiently weak that the occurrence of Landau levels can be ignored. The theory is developed by analyzing results for large, finite systems and also by comparing with the analogous treatment of an electrostatic field. The resulting many-electron Hamilton operator is forced to be hermitian, but hermiticity is not preserved, in general, for the subsequently derived single-particle operators that determine the electronic orbitals. However, we demonstrate that when focusing on the canonical solutions to the single-particle equations, hermiticity is preserved. The issue of gauge-origin dependence of approximate solutions is addressed. Our approach is compared with several previously proposed treatments, whereby limitations in some of the latter are identified.
Unconventional molecule-resolved current rectification in diamondoid–fullerene hybrids
Randel, Jason C.; Niestemski, Francis C.; Botello-Mendez, Andrés R.; Mar, Warren; Ndabashimiye, Georges; Melinte, Sorin; Dahl, Jeremy E. P.; Carlson, Robert M. K.; Butova, Ekaterina D.; Fokin, Andrey A.; Schreiner, Peter R.; Charlier, Jean-Christophe; Manoharan, Hari C.
2014-01-01
The unimolecular rectifier is a fundamental building block of molecular electronics. Rectification in single molecules can arise from electron transfer between molecular orbitals displaying asymmetric spatial charge distributions, akin to p–n junction diodes in semiconductors. Here we report a novel all-hydrocarbon molecular rectifier consisting of a diamantane–C60 conjugate. By linking both sp3 (diamondoid) and sp2 (fullerene) carbon allotropes, this hybrid molecule opposingly pairs negative and positive electron affinities. The single-molecule conductances of self-assembled domains on Au(111), probed by low-temperature scanning tunnelling microscopy and spectroscopy, reveal a large rectifying response of the molecular constructs. This specific electronic behaviour is postulated to originate from the electrostatic repulsion of diamantane–C60 molecules due to positively charged terminal hydrogen atoms on the diamondoid interacting with the top electrode (scanning tip) at various bias voltages. Density functional theory computations scrutinize the electronic and vibrational spectroscopic fingerprints of this unique molecular structure and corroborate the unconventional rectification mechanism. PMID:25202942
NASA Astrophysics Data System (ADS)
Kinsey, J. E.; Waltz, R. E.; DeBoo, J. C.
1999-05-01
It is difficult to discriminate between various tokamak transport models using standardized statistical measures to assess the goodness of fit with steady-state density and temperature profiles in tokamaks. This motivates consideration of transient transport experiments as a technique for testing the temporal response predicted by models. Results are presented comparing the predictions from the Institute for Fusion Studies—Princeton Plasma Physics Laboratory (IFS/PPPL), gyro-Landau-fluid (GLF23), Multi-mode (MM), Current Diffusive Ballooning Mode (CDBM), and Mixed-shear (MS) transport models against data from ohmic cold pulse and modulated electron cyclotron heating (ECH) experiments. In ohmically heated discharges with rapid edge cooling due to trace impurity injection, it is found that critical gradient models containing a strong temperature ratio (Ti/Te) dependence can exhibit behavior that is qualitatively consistent both spatially and temporally with experimental observation while depending solely on local parameters. On the DIII-D tokamak [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)], off-axis modulated ECH experiments have been conducted in L-mode (low confinement mode) and the perturbed electron and ion temperature response to multiple heat pulses has been measured across the plasma core. Comparing the predicted Fourier phase of the temperature perturbations, it is found that no single model yielded agreement with both electron and ion phases for all cases. In general, it was found that the IFS/PPPL, GLF23, and MS models agreed well with the ion response, but not with the electron response. The CDBM and MM models agreed well with the electron response, but not with the ion response. For both types of transient experiments, temperature coupling between the electron and ion transport is found to be an essential feature needed in the models for reproducing the observed perturbative response.
Chudow, Joel D; Santavicca, Daniel F; Prober, Daniel E
2016-08-10
Luttinger liquid theory predicts that collective electron excitations due to strong electron-electron interactions in a one-dimensional (1D) system will result in a modification of the collective charge-propagation velocity. By utilizing a circuit model for an individual metallic single-walled carbon nanotube as a nanotransmission line, it has been shown that the frequency-dependent terahertz impedance of a carbon nanotube can probe this expected 1D Luttinger liquid behavior. We excite terahertz standing-wave resonances on individual antenna-coupled metallic single-walled carbon nanotubes. The terahertz signal is rectified using the nanotube contact nonlinearity, allowing for a low-frequency readout of the coupled terahertz current. The charge velocity on the nanotube is determined from the terahertz spectral response. Our measurements show that a carbon nanotube can behave as a Luttinger liquid system with charge-propagation velocities that are faster than the Fermi velocity. Understanding what determines the charge velocity in low-dimensional conductors is important for the development of next generation nanodevices.
NASA Astrophysics Data System (ADS)
de Blauwe, K.; Mowbray, D. J.; Miyata, Y.; Ayala, P.; Shiozawa, H.; Rubio, A.; Hoffmann, P.; Kataura, H.; Pichler, T.
2010-09-01
Narrow diameter tubes and especially (6,5) tubes with a diameter of 0.75 nm are currently one of the most studied carbon nanotubes because their unique optical and especially luminescence response makes them exceptionally suited for biomedical applications. Here we report on a detailed analysis of the electronic structure of nanotubes with (6,5) and (6,4) chiralities using a combined experimental and theoretical approach. From high-energy spectroscopy involving x-ray absorption and photoemission spectroscopy the detailed valence- and conduction-band response of these narrow diameter tubes is studied. The observed electronic structure is in sound agreement with state of the art ab initio calculations using density-functional theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimaoka, T., E-mail: t.shimaoka@eng.hokudai.ac.jp; Kaneko, J. H.; Tsubota, M.
A neutron bang time and burn history monitor in inertial confinement fusion with fast ignition are necessary for plasma diagnostics. In the FIREX project, however, no detector attained those capabilities because high-intensity X-rays accompanied fast electrons used for plasma heating. To solve this problem, single-crystal CVD diamond was grown and fabricated into a radiation detector. The detector, which had excellent charge transportation property, was tested to obtain a response function for intense X-rays. The applicability for neutron bang time and burn history monitor was verified experimentally. Charge collection efficiency of 99.5% ± 0.8% and 97.1% ± 1.4% for holes andmore » electrons were obtained using 5.486 MeV alpha particles. The drift velocity at electric field which saturates charge collection efficiency was 1.1 ± 0.4 × 10{sup 7} cm/s and 1.0 ± 0.3 × 10{sup 7} cm/s for holes and electrons. Fast response of several ns pulse width for intense X-ray was obtained at the GEKKO XII experiment, which is sufficiently fast for ToF measurements to obtain a neutron signal separately from X-rays. Based on these results, we confirmed that the single-crystal CVD diamond detector obtained neutron signal with good S/N under ion temperature 0.5–1 keV and neutron yield of more than 10{sup 9} neutrons/shot.« less
Electron-induced single event upsets in 28 nm and 45 nm bulk SRAMs
Trippe, J. M.; Reed, R. A.; Austin, R. A.; ...
2015-12-01
In this study, we present experimental evidence of single electron-induced upsets in commercial 28 nm and 45 nm CMOS SRAMs from a monoenergetic electron beam. Upsets were observed in both technology nodes when the SRAM was operated in a low power state. The experimental cross section depends strongly on both bias and technology node feature size, consistent with previous work in which SRAMs were irradiated with low energy muons and protons. Accompanying simulations demonstrate that δ-rays produced by the primary electrons are responsible for the observed upsets. Additional simulations predict the on-orbit event rates for various Earth and Jovian environmentsmore » for a set of sensitive volumes representative of current technology nodes. The electron contribution to the total upset rate for Earth environments is significant for critical charges as high as 0.2 fC. This value is comparable to that of sub-22 nm bulk SRAMs. Similarly, for the Jovian environment, the electron-induced upset rate is larger than the proton-induced upset rate for critical charges as high as 0.3 fC.« less
SEE induced in SRAM operating in a superconducting electron linear accelerator environment
NASA Astrophysics Data System (ADS)
Makowski, D.; Mukherjee, Bhaskar; Grecki, M.; Simrock, Stefan
2005-02-01
Strong fields of bremsstrahlung photons and photoneutrons are produced during the operation of high-energy electron linacs. Therefore, a mixed gamma and neutron radiation field dominates the accelerators environment. The gamma radiation induced Total Ionizing Dose (TID) effect manifests the long-term deterioration of the electronic devices operating in accelerator environment. On the other hand, the neutron radiation is responsible for Single Event Effects (SEE) and may cause a temporal loss of functionality of electronic systems. This phenomenon is known as Single Event Upset (SEU). The neutron dose (KERMA) was used to scale the neutron induced SEU in the SRAM chips. Hence, in order to estimate the neutron KERMA conversion factor for Silicon (Si), dedicated calibration experiments using an Americium-Beryllium (241Am/Be) neutron standard source was carried out. Single Event Upset (SEU) influences the short-term operation of SRAM compared to the gamma induced TID effect. We are at present investigating the feasibility of an SRAM based real-time beam-loss monitor for high-energy accelerators utilizing the SEU caused by fast neutrons. This paper highlights the effects of gamma and neutron radiations on Static Random Access Memory (SRAM), placed at selected locations near the Superconducting Linear Accelerator driving the Vacuum UV Free Electron Laser (VUVFEL) of DESY.
Nikiforov, S V; Kortov, V S
2014-11-01
The main thermoluminescent (TL) and dosimetric properties of the detectors based on anion-defective crystalline and nanostructured aluminium oxide after exposure to a high-current pulse electron beam are studied. TL peaks associated with deep-trapping centres are registered. It is shown that the use of deep-trap TL at 200-600°С allows registering absorbed doses up to 750 kGy for single-crystalline detectors and those up to 6 kGy for nanostructured ones. A wide range of the doses registered, high reproducibility of the TL signal and low fading contribute to a possibility of using single-crystalline and nanostructured aluminium oxide for the dosimetry of high-current pulse electron beams. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Klinkusch, Stefan; Tremblay, Jean Christophe
2016-05-14
In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electron ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN.
Mechanism of amperometric biosensor with electronic-type-controlled carbon nanotube
NASA Astrophysics Data System (ADS)
Hidaka, Hiroki; Nowaki, Kohei; Muguruma, Hitoshi
2016-03-01
An amperometric enzyme biosensor with electronic-type-controlled (metallic and semiconducting) single-walled carbon nanotubes (CNTs) is presented. In this research, we investigate how the electronic types of CNTs influence the amperometric response of enzyme biosensors and what their working mechanisms are. The biosensor of interest is for glucose detection using enzyme glucose oxidase (GOD). In the presence of oxygen, the response of a metallic CNT-GOD electrode was 2.5 times more sensitive than that of a semiconducting CNT-GOD electrode. In contrast, in the absence of oxygen, the response of the semiconducting CNT-GOD electrode was retained, whereas that of the metallic CNT-GOD electrode was significantly reduced. This indicates that direct electron transfer occurred with the semiconducting CNT-GOD electrode, whereas the metallic CNT-GOD electrode was dominated by a hydrogen peroxide pathway caused by an enzymatic reaction. Electrochemical impedance spectroscopy was used to show that the semiconducting CNT network has less resistance for electron transfer than the metallic CNT network. The optimized glucose biosensor revealed a sensitivity of 5.6 µA mM-1 cm-2 at +0.6 V vs Ag/AgCl, a linear dynamic range of 0.025-1.4 mM, and a response time of 8 s.
Xue, Hai-Bin; Liang, Jiu-Qing; Liu, Wu-Ming
2015-01-01
Molecular spintroinic device based on a single-molecule magnet is one of the ultimate goals of semiconductor nanofabrication technologies. It is thus necessary to understand the electron transport properties of a single-molecule magnet junction. Here we study the negative differential conductance and super-Poissonian shot noise properties of electron transport through a single-molecule magnet weakly coupled to two electrodes with either one or both of them being ferromagnetic. We predict that the negative differential conductance and super-Poissonian shot noise, which can be tuned by a gate voltage, depend sensitively on the spin polarization of the source and drain electrodes. In particular, the shot noise in the negative differential conductance region can be enhanced or decreased originating from the different formation mechanisms of negative differential conductance. The effective competition between fast and slow transport channels is responsible for the observed negative differential conductance and super-Poissonian shot noise. In addition, we further discuss the skewness and kurtosis properties of transport current in the super-Poissonian shot noise regions. Our findings suggest a tunable negative differential conductance molecular device, and the predicted properties of high-order current cumulants are very interesting for a better understanding of electron transport through single-molecule magnet junctions. PMID:25736094
Xue, Hai-Bin; Liang, Jiu-Qing; Liu, Wu-Ming
2015-03-04
Molecular spintroinic device based on a single-molecule magnet is one of the ultimate goals of semiconductor nanofabrication technologies. It is thus necessary to understand the electron transport properties of a single-molecule magnet junction. Here we study the negative differential conductance and super-Poissonian shot noise properties of electron transport through a single-molecule magnet weakly coupled to two electrodes with either one or both of them being ferromagnetic. We predict that the negative differential conductance and super-Poissonian shot noise, which can be tuned by a gate voltage, depend sensitively on the spin polarization of the source and drain electrodes. In particular, the shot noise in the negative differential conductance region can be enhanced or decreased originating from the different formation mechanisms of negative differential conductance. The effective competition between fast and slow transport channels is responsible for the observed negative differential conductance and super-Poissonian shot noise. In addition, we further discuss the skewness and kurtosis properties of transport current in the super-Poissonian shot noise regions. Our findings suggest a tunable negative differential conductance molecular device, and the predicted properties of high-order current cumulants are very interesting for a better understanding of electron transport through single-molecule magnet junctions.
Optimizing Energy Transduction of Fluctuating Signals with Nanofluidic Diodes and Load Capacitors.
Ramirez, Patricio; Cervera, Javier; Gomez, Vicente; Ali, Mubarak; Nasir, Saima; Ensinger, Wolfgang; Mafe, Salvador
2018-05-01
The design and experimental implementation of hybrid circuits is considered allowing charge transfer and energy conversion between nanofluidic diodes in aqueous ionic solutions and conventional electronic elements such as capacitors. The fundamental concepts involved are reviewed for the case of fluctuating zero-average external potentials acting on single pore and multipore membranes. This problem is relevant to electrochemical energy conversion and storage, the stimulus-response characteristics of nanosensors and actuators, and the estimation of the accumulative effects caused by external signals on biological ion channels. Half-wave and full-wave voltage doublers and quadruplers can scale up the transduction between ionic and electronic signals. The network designs discussed here should be useful to convert the weak signals characteristic of the micro and nanoscale into robust electronic responses by interconnecting iontronics and electronic elements. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Quantum Point Contact Single-Nucleotide Conductance for DNA and RNA Sequence Identification.
Afsari, Sepideh; Korshoj, Lee E; Abel, Gary R; Khan, Sajida; Chatterjee, Anushree; Nagpal, Prashant
2017-11-28
Several nanoscale electronic methods have been proposed for high-throughput single-molecule nucleic acid sequence identification. While many studies display a large ensemble of measurements as "electronic fingerprints" with some promise for distinguishing the DNA and RNA nucleobases (adenine, guanine, cytosine, thymine, and uracil), important metrics such as accuracy and confidence of base calling fall well below the current genomic methods. Issues such as unreliable metal-molecule junction formation, variation of nucleotide conformations, insufficient differences between the molecular orbitals responsible for single-nucleotide conduction, and lack of rigorous base calling algorithms lead to overlapping nanoelectronic measurements and poor nucleotide discrimination, especially at low coverage on single molecules. Here, we demonstrate a technique for reproducible conductance measurements on conformation-constrained single nucleotides and an advanced algorithmic approach for distinguishing the nucleobases. Our quantum point contact single-nucleotide conductance sequencing (QPICS) method uses combed and electrostatically bound single DNA and RNA nucleotides on a self-assembled monolayer of cysteamine molecules. We demonstrate that by varying the applied bias and pH conditions, molecular conductance can be switched ON and OFF, leading to reversible nucleotide perturbation for electronic recognition (NPER). We utilize NPER as a method to achieve >99.7% accuracy for DNA and RNA base calling at low molecular coverage (∼12×) using unbiased single measurements on DNA/RNA nucleotides, which represents a significant advance compared to existing sequencing methods. These results demonstrate the potential for utilizing simple surface modifications and existing biochemical moieties in individual nucleobases for a reliable, direct, single-molecule, nanoelectronic DNA and RNA nucleotide identification method for sequencing.
NASA Astrophysics Data System (ADS)
Craco, L.; Laad, M. S.; Müller-Hartmann, E.
2003-12-01
Motivated by a study of various experiments describing the electronic and magnetic properties of the diluted magnetic semiconductor Ga1-xMnxAs, we investigate its physical response in detail using a combination of first-principles band structure with methods based on dynamical mean field theory to incorporate strong, dynamical correlations, and intrinsic as well as extrinsic disorder in one single theoretical picture. We show how ferromagnetism is driven by double exchange (DE), in agreement with very recent observations, along with a good quantitative description of the details of the electronic structure, as probed by scanning tunneling microscopy and optical conductivity. Our results show how ferromagnetism can be driven by DE even in diluted magnetic semiconductors with small carrier concentration.
Signature properties of water: Their molecular electronic origins
Jones, Andrew P.; Cipcigan, Flaviu S.; Crain, Jason; Martyna, Glenn J.
2015-01-01
Water challenges our fundamental understanding of emergent materials properties from a molecular perspective. It exhibits a uniquely rich phenomenology including dramatic variations in behavior over the wide temperature range of the liquid into water’s crystalline phases and amorphous states. We show that many-body responses arising from water’s electronic structure are essential mechanisms harnessed by the molecule to encode for the distinguishing features of its condensed states. We treat the complete set of these many-body responses nonperturbatively within a coarse-grained electronic structure derived exclusively from single-molecule properties. Such a “strong coupling” approach generates interaction terms of all symmetries to all orders, thereby enabling unique transferability to diverse local environments such as those encountered along the coexistence curve. The symmetries of local motifs that can potentially emerge are not known a priori. Consequently, electronic responses unfiltered by artificial truncation are then required to embody the terms that tip the balance to the correct set of structures. Therefore, our fully responsive molecular model produces, a simple, accurate, and intuitive picture of water’s complexity and its molecular origin, predicting water’s signature physical properties from ice, through liquid–vapor coexistence, to the critical point. PMID:25941394
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muliyati, Dewi, E-mail: dmuliyati@unj.ac.id; Dept. of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta; Wella, Sasfan A.
2015-09-30
In this research, we performed first-principles calculations by means of density functional theory (DFT) to investigate the interaction of H{sub 2}S gas on the surface of single-walled carbon nanotubes (SWNTs). In order to understand the effect of chirality to the electronic structure of SWNTs/H{sub 2}S, the pristine SWNTs was varied to become SWNTs (5,0), (6,0), (7,0), (8,0), (9,0), and (10,0). From the calculation we found that after H{sub 2}S adsorbed on surface of SWNTs, the electronic properties of system changes from semiconductor to metal but not vice versa. It was only SWNTs (5,0), (7,0), (8,0), and (10,0) occuring the changingmore » on its electronic properties behavior, others were remain similar with its initial behavior. In the degassing process, metal return to semiconductor behavior, which is an indication that SWNTs is a good gas sensors, responsive and reversible.« less
Tatum, James M; White, Terris; Kang, Christopher; Ley, Eric J; Melo, Nicolas; Bloom, Matthew; Alban, Rodrigo F
The objective of the study was to characterize house staff time to response and intervention when notified of a patient care issue by pager vs. smartphone. We hypothesized that smartphones would reduce house staff time to response and intervention. Prospective study of all electronic communications was conducted between nurses and house staff between September 2015 and October 2015. The 4-week study period was randomly divided into two 2-week study periods where all electronic communications between intensive care unit nurses and intensive care unit house staff were exclusively by smartphone or by pager, respectively. Time of communication initiation, time of house staff response, and time from response to clinical intervention for each communication were recorded. Outcomes are time from nurse contact to house staff response and intervention. Single-center surgical intensive care unit of Cedars-Sinai Medical Center in Los Angeles, California, an academic tertiary care and level I trauma center. All electronic communications occurring between nurses and house staff in the study unit during the study period were considered. During the study period, 205 nurse-house staff electronic communications occurred, 100 in the phone group and 105 in the pager group. House staff response to communication time was significantly shorter in the phone group (0.5 [interquartile range = 1.7] vs. 2 [3]min, p < 0.001). Time to house staff intervention after response was also significantly more rapid in the phone group (0.8 [1.7] vs. 1 [2]min, p = 0.003). Dedicated clinical smartphones significantly decrease time to house staff response after electronic nursing communications compared with pagers. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Sugiyama, Issei; Kim, Yunseok; Jesse, Stephen; ...
2014-10-22
Bias-induced oxygen ion dynamics underpins a broad spectrum of electroresistive and memristive phenomena in oxide materials. Although widely studied by device-level and local voltage-current spectroscopies, the relationship between electroresistive phenomena, local electrochemical behaviors, and microstructures remains elusive. Here, the interplay between history-dependent electronic transport and electrochemical phenomena in a NiO single crystalline thin film with a number of well-defined defect types is explored on the nanometer scale using an atomic force microscopy-based technique. A variety of electrochemically-active regions were observed and spatially resolved relationship between the electronic and electrochemical phenomena was revealed. The regions with pronounced electroresistive activity were furthermore » correlated with defects identified by scanning transmission electron microscopy. Using fully coupled mechanical-electrochemical modeling, we illustrate that the spatial distribution of strain plays an important role in electrochemical and electroresistive phenomena. In conclusion, these studies illustrate an approach for simultaneous mapping of the electronic and ionic transport on a single defective structure level such as dislocations or interfaces, and pave the way for creating libraries of defect-specific electrochemical responses.« less
Stable long-term chronic brain mapping at the single-neuron level.
Fu, Tian-Ming; Hong, Guosong; Zhou, Tao; Schuhmann, Thomas G; Viveros, Robert D; Lieber, Charles M
2016-10-01
Stable in vivo mapping and modulation of the same neurons and brain circuits over extended periods is critical to both neuroscience and medicine. Current electrical implants offer single-neuron spatiotemporal resolution but are limited by such factors as relative shear motion and chronic immune responses during long-term recording. To overcome these limitations, we developed a chronic in vivo recording and stimulation platform based on flexible mesh electronics, and we demonstrated stable multiplexed local field potentials and single-unit recordings in mouse brains for at least 8 months without probe repositioning. Properties of acquired signals suggest robust tracking of the same neurons over this period. This recording and stimulation platform allowed us to evoke stable single-neuron responses to chronic electrical stimulation and to carry out longitudinal studies of brain aging in freely behaving mice. Such advantages could open up future studies in mapping and modulating changes associated with learning, aging and neurodegenerative diseases.
Growth of single wall carbon nanotubes using PECVD technique: An efficient chemiresistor gas sensor
NASA Astrophysics Data System (ADS)
Lone, Mohd Yaseen; Kumar, Avshish; Husain, Samina; Zulfequar, M.; Harsh; Husain, Mushahid
2017-03-01
In this work, the uniform and vertically aligned single wall carbon nanotubes (SWCNTs) have been grown on Iron (Fe) deposited Silicon (Si) substrate by plasma enhanced chemical vapor deposition (PECVD) technique at very low temperature of 550 °C. The as-grown samples of SWCNTS were characterized by field emission scanning electron microscope (FESEM), high resolution transmission electron microscope (HRTEM) and Raman spectrometer. SWCNT based chemiresistor gas sensing device was fabricated by making the proper gold contacts on the as-grown SWCNTs. The electrical conductance and sensor response of grown SWCNTs have been investigated. The fabricated SWCNT sensor was exposed to ammonia (NH3) gas at 200 ppm in a self assembled apparatus. The sensor response was measured at room temperature which was discussed in terms of adsorption of NH3 gas molecules on the surface of SWCNTs. The achieved results are used to develope a miniaturized gas sensor device for monitoring and control of environment pollutants.
Response of dosemeters in the radiation field generated by a TW-class laser system.
Olšovcová, V; Klír, D; Krása, J; Krůs, M; Velyhan, A; Zelenka, Z; Rus, B
2014-10-01
State-of-the-art laser systems are able to generate ionising radiation of significantly high energies by focusing ultra-short and intense pulses onto targets. Thus, measures ensuring the radiation protection of both working personnel and the general public are required. However, commercially available dosemeters are primarily designed for measurement in continuous fields. Therefore, it is important to explore their response to very short pulses. In this study, the responses of dosemeters in a radiation field generated by iodine high-power and Ti:Sapphire laser systems are examined in proton and electron acceleration experiments. Within these experiments, electron bunches of femtosecond pulse duration and 100-MeV energy and proton bunches with sub-nanosecond pulse duration and energy of several megaelectronvolts were generated in single-shot regimes. Responses of typical detectors (TLD, films and electronic personal dosemeter) were analysed and compared. Further, a first attempt was carried out to characterise the radiation field generated by TW-class laser systems. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Stacking fault induced tunnel barrier in platelet graphite nanofiber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lan, Yann-Wen, E-mail: chiidong@phys.sinica.edu.tw, E-mail: ywlan@phys.sinica.edu.tw; Chang, Yuan-Chih; Chang, Chia-Seng
A correlation study using image inspection and electrical characterization of platelet graphite nanofiber devices is conducted. Close transmission electron microscopy and diffraction pattern inspection reveal layers with inflection angles appearing in otherwise perfectly stacked graphene platelets, separating nanofibers into two domains. Electrical measurement gives a stability diagram consisting of alternating small-large Coulomb blockade diamonds, suggesting that there are two charging islands coupled together through a tunnel junction. Based on these two findings, we propose that a stacking fault can behave as a tunnel barrier for conducting electrons and is responsible for the observed double-island single electron transistor characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giapintzakis, J.; Lee, W.C.; Rice, J.P.
Single crystals of R{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7-{delta}}, (R=Y, Eu and Gd), have been irradiated with 0.4--1.0 MeV electrons in directions near the c-axis. An incident threshold electron energy for producing flux pinning defects has been found. In-situ TEM studies found no visible defects induced by electron irradiation. This means that point defects or small clusters ({le} 20 {Angstrom}) are responsible for the extra pinning. A consistent interpretation of the data suggests that the most likely pinning defect is the displacement of a Cu atom from the CuO{sub 2} planes.
Thermally induced charge current through long molecules
NASA Astrophysics Data System (ADS)
Zimbovskaya, Natalya A.; Nitzan, Abraham
2018-01-01
In this work, we theoretically study steady state thermoelectric transport through a single-molecule junction with a long chain-like bridge. Electron transmission through the system is computed using a tight-binding model for the bridge. We analyze dependences of thermocurrent on the bridge length in unbiased and biased systems operating within and beyond the linear response regime. It is shown that the length-dependent thermocurrent is controlled by the lineshape of electron transmission in the interval corresponding to the HOMO/LUMO transport channel. Also, it is demonstrated that electron interactions with molecular vibrations may significantly affect the length-dependent thermocurrent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le, Hai P.; Cambier, Jean -Luc
Here, we present a numerical model and a set of conservative algorithms for Non-Maxwellian plasma kinetics with inelastic collisions. These algorithms self-consistently solve for the time evolution of an isotropic electron energy distribution function interacting with an atomic state distribution function of an arbitrary number of levels through collisional excitation, deexcitation, as well as ionization and recombination. Electron-electron collisions, responsible for thermalization of the electron distribution, are also included in the model. The proposed algorithms guarantee mass/charge and energy conservation in a single step, and is applied to the case of non-uniform gridding of the energy axis in the phasemore » space of the electron distribution function. Numerical test cases are shown to demonstrate the accuracy of the method and its conservation properties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwerdtfeger, Christine A.; Soudackov, Alexander V.; Hammes-Schiffer, Sharon, E-mail: shs3@illinois.edu
2014-01-21
The development of efficient theoretical methods for describing electron transfer (ET) reactions in condensed phases is important for a variety of chemical and biological applications. Previously, dynamical dielectric continuum theory was used to derive Langevin equations for a single collective solvent coordinate describing ET in a polar solvent. In this theory, the parameters are directly related to the physical properties of the system and can be determined from experimental data or explicit molecular dynamics simulations. Herein, we combine these Langevin equations with surface hopping nonadiabatic dynamics methods to calculate the rate constants for thermal ET reactions in polar solvents formore » a wide range of electronic couplings and reaction free energies. Comparison of explicit and implicit solvent calculations illustrates that the mapping from explicit to implicit solvent models is valid even for solvents exhibiting complex relaxation behavior with multiple relaxation time scales and a short-time inertial response. The rate constants calculated for implicit solvent models with a single solvent relaxation time scale corresponding to water, acetonitrile, and methanol agree well with analytical theories in the Golden rule and solvent-controlled regimes, as well as in the intermediate regime. The implicit solvent models with two relaxation time scales are in qualitative agreement with the analytical theories but quantitatively overestimate the rate constants compared to these theories. Analysis of these simulations elucidates the importance of multiple relaxation time scales and the inertial component of the solvent response, as well as potential shortcomings of the analytical theories based on single time scale solvent relaxation models. This implicit solvent approach will enable the simulation of a wide range of ET reactions via the stochastic dynamics of a single collective solvent coordinate with parameters that are relevant to experimentally accessible systems.« less
Mbagwu, Michael; French, Dustin D; Gill, Manjot; Mitchell, Christopher; Jackson, Kathryn; Kho, Abel; Bryar, Paul J
2016-05-04
Visual acuity is the primary measure used in ophthalmology to determine how well a patient can see. Visual acuity for a single eye may be recorded in multiple ways for a single patient visit (eg, Snellen vs. Jäger units vs. font print size), and be recorded for either distance or near vision. Capturing the best documented visual acuity (BDVA) of each eye in an individual patient visit is an important step for making electronic ophthalmology clinical notes useful in research. Currently, there is limited methodology for capturing BDVA in an efficient and accurate manner from electronic health record (EHR) notes. We developed an algorithm to detect BDVA for right and left eyes from defined fields within electronic ophthalmology clinical notes. We designed an algorithm to detect the BDVA from defined fields within 295,218 ophthalmology clinical notes with visual acuity data present. About 5668 unique responses were identified and an algorithm was developed to map all of the unique responses to a structured list of Snellen visual acuities. Visual acuity was captured from a total of 295,218 ophthalmology clinical notes during the study dates. The algorithm identified all visual acuities in the defined visual acuity section for each eye and returned a single BDVA for each eye. A clinician chart review of 100 random patient notes showed a 99% accuracy detecting BDVA from these records and 1% observed error. Our algorithm successfully captures best documented Snellen distance visual acuity from ophthalmology clinical notes and transforms a variety of inputs into a structured Snellen equivalent list. Our work, to the best of our knowledge, represents the first attempt at capturing visual acuity accurately from large numbers of electronic ophthalmology notes. Use of this algorithm can benefit research groups interested in assessing visual acuity for patient centered outcome. All codes used for this study are currently available, and will be made available online at https://phekb.org.
French, Dustin D; Gill, Manjot; Mitchell, Christopher; Jackson, Kathryn; Kho, Abel; Bryar, Paul J
2016-01-01
Background Visual acuity is the primary measure used in ophthalmology to determine how well a patient can see. Visual acuity for a single eye may be recorded in multiple ways for a single patient visit (eg, Snellen vs. Jäger units vs. font print size), and be recorded for either distance or near vision. Capturing the best documented visual acuity (BDVA) of each eye in an individual patient visit is an important step for making electronic ophthalmology clinical notes useful in research. Objective Currently, there is limited methodology for capturing BDVA in an efficient and accurate manner from electronic health record (EHR) notes. We developed an algorithm to detect BDVA for right and left eyes from defined fields within electronic ophthalmology clinical notes. Methods We designed an algorithm to detect the BDVA from defined fields within 295,218 ophthalmology clinical notes with visual acuity data present. About 5668 unique responses were identified and an algorithm was developed to map all of the unique responses to a structured list of Snellen visual acuities. Results Visual acuity was captured from a total of 295,218 ophthalmology clinical notes during the study dates. The algorithm identified all visual acuities in the defined visual acuity section for each eye and returned a single BDVA for each eye. A clinician chart review of 100 random patient notes showed a 99% accuracy detecting BDVA from these records and 1% observed error. Conclusions Our algorithm successfully captures best documented Snellen distance visual acuity from ophthalmology clinical notes and transforms a variety of inputs into a structured Snellen equivalent list. Our work, to the best of our knowledge, represents the first attempt at capturing visual acuity accurately from large numbers of electronic ophthalmology notes. Use of this algorithm can benefit research groups interested in assessing visual acuity for patient centered outcome. All codes used for this study are currently available, and will be made available online at https://phekb.org. PMID:27146002
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Tarita O.; Agrawal, Priya; Guitart, Joan
2013-03-01
Purpose: Cutaneous T-cell lymphoma (CTCL) is a radiosensitive tumor. Presently, treatment with radiation is given in multiple fractions. The current literature lacks data that support single-fraction treatment for CTCL. This retrospective review assesses the clinical response in patients treated with a single fraction of radiation. Methods and Materials: This study reviewed the records of 58 patients with CTCL, primarily mycosis fungoides, treated with a single fraction of palliative radiation therapy (RT) between October 1991 and January 2011. Patient and tumor characteristics were reviewed. Response rates were compared using Fisher's exact test and multiple logistic regressions. Survival rates were determined usingmore » the Kaplan-Meier method. Cost-effectiveness analysis was performed to assess the cost of a single vs a multifractionated treatment regimen. Results: Two hundred seventy individual lesions were treated, with the majority (97%) treated with ≥700 cGy; mean follow-up was 41.3 months (range, 3-180 months). Response rate by lesion was assessed, with a complete response (CR) in 255 (94.4%) lesions, a partial response in 10 (3.7%) lesions, a partial response converted to a CR after a second treatment in 4 (1.5%) lesions, and no response in 1 (0.4%) lesion. The CR in lower extremity lesions was lower than in other sites (P=.0016). Lesions treated with photons had lower CR than those treated with electrons (P=.017). Patients with lesions exhibiting large cell transformation and tumor morphology had lower CR (P=.04 and P=.035, respectively). Immunophenotype did not impact response rate (P=.23). Overall survival was significantly lower for patients with Sézary syndrome (P=.0003) and erythroderma (P<.0001). The cost of multifractionated radiation was >200% higher than that for single-fraction radiation. Conclusions: A single fraction of 700 cGy-800 cGy provides excellent palliation for CTCL lesions and is cost effective and convenient for the patient.« less
Shannon entropies and Fisher information of K-shell electrons of neutral atoms
NASA Astrophysics Data System (ADS)
Sekh, Golam Ali; Saha, Aparna; Talukdar, Benoy
2018-02-01
We represent the two K-shell electrons of neutral atoms by Hylleraas-type wave function which fulfils the exact behavior at the electron-electron and electron-nucleus coalescence points and, derive a simple method to construct expressions for single-particle position- and momentum-space charge densities, ρ (r) and γ (p) respectively. We make use of the results for ρ (r) and γ (p) to critically examine the effect of correlation on bare (uncorrelated) values of Shannon information entropies (S) and of Fisher information (F) for the K-shell electrons of atoms from helium to neon. Due to inter-electronic repulsion the values of the uncorrelated Shannon position-space entropies are augmented while those of the momentum-space entropies are reduced. The corresponding Fisher information are found to exhibit opposite behavior in respect of this. Attempts are made to provide some plausible explanation for the observed response of S and F to electronic correlation.
Wavelength-Controlled Photodetector Based on Single CdSSe Nanobelt
NASA Astrophysics Data System (ADS)
Li, Xinmin; Tan, Qiuhong; Feng, Xiaobo; Wang, Qianjin; Liu, Yingkai
2018-06-01
CdSSe nanobelts (NBs) are synthesized by thermal evaporation and then characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL), and cathodoluminescence (CL). It is found that the CdSSe NBs have a good morphology and microstructure without defects. CL is sensitive to the defects of CdSSe NBs; thus, we can select single nanobelt with homogeneous CL emission to prepare a detector. Based on it, the photodetector of single CdSSe NB was developed and its photoelectric properties were investigated in detail. It is found that under illumination of white light and at the bias voltage of 1 V, the photocurrent of a single CdSSe nanobelt device is 1.60 × 10-7 A, the dark current is 1.96 × 10-10 A, and the ratio of light current to dark one is 816. In addition, the CdSSe nanobelt detector has high photoelectric performance with spectral responsivity of 10.4 AW-1 and external quantum efficiency (EQE) of 19.1%. Its rise/decay time is about 1.62/4.70 ms. This work offers a novel strategy for design wavelength-controlled photodetectors by adjusting their compositions.
Wavelength-Controlled Photodetector Based on Single CdSSe Nanobelt.
Li, Xinmin; Tan, Qiuhong; Feng, Xiaobo; Wang, Qianjin; Liu, Yingkai
2018-06-07
CdSSe nanobelts (NBs) are synthesized by thermal evaporation and then characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL), and cathodoluminescence (CL). It is found that the CdSSe NBs have a good morphology and microstructure without defects. CL is sensitive to the defects of CdSSe NBs; thus, we can select single nanobelt with homogeneous CL emission to prepare a detector. Based on it, the photodetector of single CdSSe NB was developed and its photoelectric properties were investigated in detail. It is found that under illumination of white light and at the bias voltage of 1 V, the photocurrent of a single CdSSe nanobelt device is 1.60 × 10 -7 A, the dark current is 1.96 × 10 -10 A, and the ratio of light current to dark one is 816. In addition, the CdSSe nanobelt detector has high photoelectric performance with spectral responsivity of 10.4 AW -1 and external quantum efficiency (EQE) of 19.1%. Its rise/decay time is about 1.62/4.70 ms. This work offers a novel strategy for design wavelength-controlled photodetectors by adjusting their compositions.
Extending a Lippmann style seismometer's dynamic range by using a non-linear feedback circuit
NASA Astrophysics Data System (ADS)
Romeo, Giovanni; Spinelli, Giuseppe
2013-04-01
A Lippmann style seismometer uses a single-coil velocity-feedback method in order to extend toward lower frequencies a geophone's frequency response. Strong seismic signals may saturate the electronics, sometimes producing a characteristic whale-shaped recording. Adding a non linear feedback in the electronic circuit may avoid saturation, allowing the strong-motion use of the seismometer without affecting the usual performance. We show results from both simulations and experiments, using a Teledyne Geotech s13 as a mechanical part.
Wang, Xuewen; Gu, Yang; Xiong, Zuoping; Cui, Zheng; Zhang, Ting
2014-03-05
Flexible and transparent E-skin devices are achieved by combining silk-molded micro-patterned polydimethylsiloxane (PDMS) with single-walled carbon nanotube (SWNT) ultrathin films. The E-skin sensing device demonstrates superior sensitivity, a very low detectable pressure limit, a fast response time, and a high stability for the detection of superslight pressures, which may broaden their potential use as cost-effective wearable electronics for healthcare applications. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klinkusch, Stefan; Tremblay, Jean Christophe
In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electronmore » ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN.« less
NASA Astrophysics Data System (ADS)
Imai, Shigeru; Ito, Masato
2018-06-01
In this paper, anomalous single-electron transfer in common-gate quadruple-dot turnstile devices with asymmetric junction capacitances is revealed. That is, the islands have the same total number of excess electrons at high and low gate voltages of the swing that transfers a single electron. In another situation, two electrons enter the islands from the source and two electrons leave the islands for the source and drain during a gate voltage swing cycle. First, stability diagrams of the turnstile devices are presented. Then, sequences of single-electron tunneling events by gate voltage swings are investigated, which demonstrate the above-mentioned anomalous single-electron transfer between the source and the drain. The anomalous single-electron transfer can be understood by regarding the four islands as “three virtual islands and a virtual source or drain electrode of a virtual triple-dot device”. The anomalous behaviors of the four islands are explained by the normal behavior of the virtual islands transferring a single electron and the behavior of the virtual electrode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nanda, Kaushik D.; Krylov, Anna I.
The equation-of-motion coupled-cluster (EOM-CC) methods provide a robust description of electronically excited states and their properties. Here, we present a formalism for two-photon absorption (2PA) cross sections for the equation-of-motion for excitation energies CC with single and double substitutions (EOM-CC for electronically excited states with single and double substitutions) wave functions. Rather than the response theory formulation, we employ the expectation-value approach which is commonly used within EOM-CC, configuration interaction, and algebraic diagrammatic construction frameworks. In addition to canonical implementation, we also exploit resolution-of-the-identity (RI) and Cholesky decomposition (CD) for the electron-repulsion integrals to reduce memory requirements and to increasemore » parallel efficiency. The new methods are benchmarked against the CCSD and CC3 response theories for several small molecules. We found that the expectation-value 2PA cross sections are within 5% from the quadratic response CCSD values. The RI and CD approximations lead to small errors relative to the canonical implementation (less than 4%) while affording computational savings. RI/CD successfully address the well-known issue of large basis set requirements for 2PA cross sections calculations. The capabilities of the new code are illustrated by calculations of the 2PA cross sections for model chromophores of the photoactive yellow and green fluorescent proteins.« less
NASA Astrophysics Data System (ADS)
Dixit, Vijay; Vyas, Chirag; Patel, Abhishek; Pathak, V. M.; Solanki, G. K.; Patel, K. D.
2018-05-01
Molybednum Di Telluride of group VI belongs to the family of layered transition metal di-chalcogenides (TMDCs). These TMDCs show good potential for applications in the field of optoelectronic devices as they are chemically inert trilayered structure of MX2 type. In the present investigation crystals of MoTe2 are grown by direct vapor transport technique in a dual zone horizontal furnace. The grown crystals were characterized by Energy Dispersive Analysis of X-rays (EDAX) to study its elemental and stoichiometric composition, Selected Area Electron Diffraction (SAED) confirms the hexagonal structure. Spot pattern of electron diffraction shows formation of single phase. Scanning Electron Microscope (SEM) shows the layer by layer growth of the crystals, Thermo Electric Power (TEP) reflects the p-type semiconducting nature of the grown crystals. As this material is photosensitive material having band gap of approximately 1.0 eV, a transient photo response against polychromatic radiation (40 mW/cm2) of photodetector is also measured which showed slow decay in generated photocurrent due to low trapping density within the active area of the prepared device. Thus, it shows that this material can be a good photovoltaic material for constructing a solar cell also.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camden, Jon P.
2013-07-12
A major component of this proposal is to elucidate the connection between optical and electron excitation of plasmon modes in metallic nanostructures. These accomplishments are reported: developed a routine protocol for obtaining spatially resolved, low energy EELS spectra, and resonance Rayleigh scattering spectra from the same nanostructures; correlated optical scattering spectra and plasmon maps obtained using STEM/EELS; and imaged electromagnetic hot spots responsible for single-molecule surface-enhanced Raman scattering (SMSERS).
Conservative algorithms for non-Maxwellian plasma kinetics
Le, Hai P.; Cambier, Jean -Luc
2017-12-08
Here, we present a numerical model and a set of conservative algorithms for Non-Maxwellian plasma kinetics with inelastic collisions. These algorithms self-consistently solve for the time evolution of an isotropic electron energy distribution function interacting with an atomic state distribution function of an arbitrary number of levels through collisional excitation, deexcitation, as well as ionization and recombination. Electron-electron collisions, responsible for thermalization of the electron distribution, are also included in the model. The proposed algorithms guarantee mass/charge and energy conservation in a single step, and is applied to the case of non-uniform gridding of the energy axis in the phasemore » space of the electron distribution function. Numerical test cases are shown to demonstrate the accuracy of the method and its conservation properties.« less
Spall Response of Additive Manufactured Ti-6Al-4V
NASA Astrophysics Data System (ADS)
Brown, Andrew; Gregg, Adam; Escobedo, Jp; Hazell, Paul; East, Daniel; Quadir, Zakaria
2017-06-01
Additive manufactured (AM) Ti-6Al-4V was produced via electron beam melting (EBM) and laser melting deposition (LMD) techniques. The dynamic response of AM varieties of common aerospace and infrastructure metals are yet to be fully characterized and compared to their traditionally processed counterparts. Spall damage is one of the primary failure modes in metals subjected to shock loading from high velocity impact. Both EBM and LMD Ti-6Al-4V were shock loaded via flyer-target plate impact using a single-stage light gas gun. Target plates were subjected to pressures just above the spall strength of the material (3-5 GPa) to investigate the early onset of damage nucleation as a function of processing technique and shock orientation with respect to the AM-build direction. Post-mortem characterization of the spall damage and surrounding microstructure was performed using a combination of optical microscopy, scanning electron microscopy, and electron backscatter diffraction.
Stokes paradox in electronic Fermi liquids
NASA Astrophysics Data System (ADS)
Lucas, Andrew
2017-03-01
The Stokes paradox is the statement that in a viscous two-dimensional fluid, the "linear response" problem of fluid flow around an obstacle is ill posed. We present a simple consequence of this paradox in the hydrodynamic regime of a Fermi liquid of electrons in two-dimensional metals. Using hydrodynamics and kinetic theory, we estimate the contribution of a single cylindrical obstacle to the global electrical resistance of a material, within linear response. Momentum relaxation, present in any realistic electron liquid, resolves the classical paradox. Nonetheless, this paradox imprints itself in the resistance, which can be parametrically larger than predicted by Ohmic transport theory. We find a remarkably rich set of behaviors, depending on whether or not the quasiparticle dynamics in the Fermi liquid should be treated as diffusive, hydrodynamic, or ballistic on the length scale of the obstacle. We argue that all three types of behavior are observable in present day experiments.
Software electron counting for low-dose scanning transmission electron microscopy.
Mittelberger, Andreas; Kramberger, Christian; Meyer, Jannik C
2018-05-01
The performance of the detector is of key importance for low-dose imaging in transmission electron microscopy, and counting every single electron can be considered as the ultimate goal. In scanning transmission electron microscopy, low-dose imaging can be realized by very fast scanning, however, this also introduces artifacts and a loss of resolution in the scan direction. We have developed a software approach to correct for artifacts introduced by fast scans, making use of a scintillator and photomultiplier response that extends over several pixels. The parameters for this correction can be directly extracted from the raw image. Finally, the images can be converted into electron counts. This approach enables low-dose imaging in the scanning transmission electron microscope via high scan speeds while retaining the image quality of artifact-free slower scans. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wright, Andrew N.; Allan, W.; Ruderman, Michael S.; Elphic, R. C.
2002-07-01
The acceleration of current carriers in an Alfvén wave current system is considered. The model incorporates a dipole magnetic field geometry, and we present an analytical solution of the two-fluid equations by successive approximations. The leading solution corresponds to the familiar single-fluid toroidal oscillations. The next order describes the nonlinear dynamics of electrons responsible for carrying a few μAm-2 field aligned current into the ionosphere. The solution shows how most of the electron acceleration in the magnetosphere occurs within 1 RE of the ionosphere, and that a parallel electric field of the order of 1 mVm-1 is responsible for energising the electrons to 1 keV. The limitations of the electron fluid approximation are considered, and a qualitative solution including electron beams and a modified E∥ is developed in accord with observations. We find that the electron acceleration can be nonlinear, (ve∥∇∥)ve∥ > ωve∥, as a result of our nonuniform equilibrium field geometry even when ve∥ is less than the Alfvén speed. Our calculation also elucidates the processes through which E∥ is generated and supported.
Response of Helical Luttinger Liquid in InAs/GaSb Edges to a Magnetic Field
NASA Astrophysics Data System (ADS)
Li, Tingxin; Tong, Bingbing; Liu, Xiaoxue; Han, Zhongdong; Zhang, Chi; Sullivan, Gerard; Du, Rui-Rui
Electron-electron interactions have been shown to play an important role in InAs/GaSb quantum spin Hall (QSH) edge states, leading to power-law behaviors of the helical edge conductance as a function of temperature and bias voltage (Li et al., Phys. Rev. Lett. 115 136804). A variety of inelastic and/or multiparticle backscattering processes could occur in helical edges when taking electron-electron interactions into account. On the other hand, in the presence of an external magnetic field, single-particle elastic backscattering is also allowed in QSH edge due to the breaking of time-reversal symmetry (TRS). It would be interesting to pursue experimental investigations for the combined effect of electron-electron interactions and TRS breaking on QSH edge transport. We report work in progress for low temperature conductance measurements of the helical edge in InAs/GaSb under perpendicular or in-plane magnetic fields. We found that the magnetic field responses are generally correlated with the interaction strength in the edge states. The work at Peking University were supported by NBRPC Grants (No. 2012CB921301 and No. 2014CB920901), and by Collaborative Innovation Center of Quantum Matter.
Liu, Wei; Tan, Zhenyu; Zhang, Liming; Champion, Christophe
2017-03-01
In this work, direct DNA damage induced by low-energy electrons (sub-keV) is simulated using a Monte Carlo method. The characteristics of the present simulation are to consider the new mechanism of DNA damage due to dissociative electron attachment (DEA) and to allow determining damage to specific bases (i.e., adenine, thymine, guanine, or cytosine). The electron track structure in liquid water is generated, based on the dielectric response model for describing electron inelastic scattering and on a free-parameter theoretical model and the NIST database for calculating electron elastic scattering. Ionization cross sections of DNA bases are used to generate base radicals, and available DEA cross sections of DNA components are applied for determining DNA-strand breaks and base damage induced by sub-ionization electrons. The electron elastic scattering from DNA components is simulated using cross sections from different theoretical calculations. The resulting yields of various strand breaks and base damage in cellular environment are given. Especially, the contributions of sub-ionization electrons to various strand breaks and base damage are quantitatively presented, and the correlation between complex clustered DNA damage and the corresponding damaged bases is explored. This work shows that the contribution of sub-ionization electrons to strand breaks is substantial, up to about 40-70%, and this contribution is mainly focused on single-strand break. In addition, the base damage induced by sub-ionization electrons contributes to about 20-40% of the total base damage, and there is an evident correlation between single-strand break and damaged base pair A-T.
Farah, Nicolas; Francis, Ziad; Abboud, Marie
2014-09-01
We explore in our study the effects of electrons and X-rays irradiations on the newest version of the Gafchromic EBT3 film. Experiments are performed using the Varian "TrueBeam 1.6" medical accelerator delivering 6 MV X-ray photons and 6 MeV electron beams as desired. The main interest is to compare the responses of EBT3 films exposed to two separate beams of electrons and photons, for radiation doses ranging up to 500 cGy. The analysis is done on a flatbed EPSON 10000 XL scanner and cross checked on a HP Scanjet 4850 scanner. Both scanners are used in reflection mode taking into account landscape and portrait scanning positions. After thorough verifications, the reflective scanning method can be used on EBT3 as an economic alternative to the transmission method which was also one of the goals of this study. A comparison is also done between single scan configuration including all samples in a single A4 (HP) or A3 (EPSON) format area and multiple scan procedure where each sample is scanned separately on its own. The images analyses are done using the ImageJ software. Results show significant influence of the scanning configuration but no significant differences between electron and photon irradiations for both single and multiple scan configurations. In conclusion, the film provides a reliable relative dose measurement method for electrons and photons irradiations in the medical field applications. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Evaluation of LiF:Mg,Ti (TLD-100) for Intraoperative Electron Radiation Therapy Quality Assurance
Liuzzi, Raffaele; Savino, Federica; D’Avino, Vittoria; Pugliese, Mariagabriella; Cella, Laura
2015-01-01
Background Purpose of the present work was to investigate thermoluminescent dosimeters (TLDs) response to intraoperative electron radiation therapy (IOERT) beams. In an IOERT treatment, a large single radiation dose is delivered with a high dose-per-pulse electron beam (2–12 cGy/pulse) during surgery. To verify and to record the delivered dose, in vivo dosimetry is a mandatory procedure for quality assurance. The TLDs feature many advantages such as a small detector size and close tissue equivalence that make them attractive for IOERT as in vivo dosimeters. Methods LiF:Mg,Ti dosimeters (TLD-100) were irradiated with different IOERT electron beam energies (5, 7 and 9 MeV) and with a 6 MV conventional photon beam. For each energy, the TLDs were irradiated in the dose range of 0–10 Gy in step of 2Gy. Regression analysis was performed to establish the response variation of thermoluminescent signals with dose and energy. Results The TLD-100 dose-response curves were obtained. In the dose range of 0–10 Gy, the calibration curve was confirmed to be linear for the conventional photon beam. In the same dose region, the quadratic model performs better than the linear model when high dose-per-pulse electron beams were used (F test; p<0.05). Conclusions This study demonstrates that the TLD dose response, for doses ≤10Gy, has a parabolic behavior in high dose-per-pulse electron beams. TLD-100 can be useful detectors for IOERT patient dosimetry if a proper calibration is provided. PMID:26427065
Evaluation of LiF:Mg,Ti (TLD-100) for Intraoperative Electron Radiation Therapy Quality Assurance.
Liuzzi, Raffaele; Savino, Federica; D'Avino, Vittoria; Pugliese, Mariagabriella; Cella, Laura
2015-01-01
Purpose of the present work was to investigate thermoluminescent dosimeters (TLDs) response to intraoperative electron radiation therapy (IOERT) beams. In an IOERT treatment, a large single radiation dose is delivered with a high dose-per-pulse electron beam (2-12 cGy/pulse) during surgery. To verify and to record the delivered dose, in vivo dosimetry is a mandatory procedure for quality assurance. The TLDs feature many advantages such as a small detector size and close tissue equivalence that make them attractive for IOERT as in vivo dosimeters. LiF:Mg,Ti dosimeters (TLD-100) were irradiated with different IOERT electron beam energies (5, 7 and 9 MeV) and with a 6 MV conventional photon beam. For each energy, the TLDs were irradiated in the dose range of 0-10 Gy in step of 2 Gy. Regression analysis was performed to establish the response variation of thermoluminescent signals with dose and energy. The TLD-100 dose-response curves were obtained. In the dose range of 0-10 Gy, the calibration curve was confirmed to be linear for the conventional photon beam. In the same dose region, the quadratic model performs better than the linear model when high dose-per-pulse electron beams were used (F test; p<0.05). This study demonstrates that the TLD dose response, for doses ≤10 Gy, has a parabolic behavior in high dose-per-pulse electron beams. TLD-100 can be useful detectors for IOERT patient dosimetry if a proper calibration is provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, C.; et al.
The single-phase liquid argon time projection chamber (LArTPC) provides a large amount of detailed information in the form of fine-grained drifted ionization charge from particle traces. To fully utilize this information, the deposited charge must be accurately extracted from the raw digitized waveforms via a robust signal processing chain. Enabled by the ultra-low noise levels associated with cryogenic electronics in the MicroBooNE detector, the precise extraction of ionization charge from the induction wire planes in a single-phase LArTPC is qualitatively demonstrated on MicroBooNE data with event display images, and quantitatively demonstrated via waveform-level and track-level metrics. Improved performance of inductionmore » plane calorimetry is demonstrated through the agreement of extracted ionization charge measurements across different wire planes for various event topologies. In addition to the comprehensive waveform-level comparison of data and simulation, a calibration of the cryogenic electronics response is presented and solutions to various MicroBooNE-specific TPC issues are discussed. This work presents an important improvement in LArTPC signal processing, the foundation of reconstruction and therefore physics analyses in MicroBooNE.« less
NASA Astrophysics Data System (ADS)
Mukherjee, Bablu; Tok, Eng Soon; Haur Sow, Chorng
2013-03-01
Single crystal GeSe2 nanobelts were grown using chemical vapor deposition techniques. Morphology of the nanostructures was characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffractometry (XRD) and Raman spectroscopy. Electronic transport properties, impedance spectroscopy, photoconductive characteristics and temperature-dependent electrical resistivity measurements were carried out on individual GeSe2 nanobelt devices. The photosensitivity of single GeSe2 nanobelt (NB) devices was examined with two different excitation wavelengths of laser beams with photon energies above band gap and at sub-band gap of the NB. A maximum photoconductive gain 106 % was achieved at a wavelength of 808 nm. The magnitude of the photocurrent and response time of the individual GeSe2 NB device indicate that the photoresponse could be attributed to the presence of isolated mid band gap defect levels. Temperature dependent photocurrent measurements indicate the rough estimation of the energy levels for the defect states. Localized photostudy shows that the large photoresponse of the device primarily occurs at the metal-NB contact regions. Department of Physics, 2 Science Drive 3, National University of Singapore (NUS), Singapore 117542
How to probe transverse magnetic anisotropy of a single-molecule magnet by electronic transport?
NASA Astrophysics Data System (ADS)
Misiorny, M.; Burzuri, E.; Gaudenzi, R.; Park, K.; Leijnse, M.; Wegewijs, M.; Paaske, J.; Cornia, A.; van der Zant, H.
We propose an approach for in-situ determination of the transverse magnetic anisotropy (TMA) of an individual molecule by electronic transport measurements, see Phys. Rev. B 91, 035442 (2015). We study a Fe4 single-molecule magnet (SMM) captured in a gateable junction, a unique tool for addressing the spin in different redox states of a molecule. We show that, due to mixing of the spin eigenstates of the SMM, the TMA significantly manifests itself in transport. We predict and experimentally observe the pronounced intensity modulation of the Coulomb peak amplitude with the magnetic field in the linear-response transport regime, from which the TMA parameter E can be estimated. Importantly, the method proposed here does not rely on the small induced tunnelling effects and, hence, works well at temperatures and electron tunnel broadenings by far exceeding the tunnel splittings and even E itself. We deduce that the TMA for a single Fe4 molecule captured in a junction is substantially larger than the bulk value. Work supported by the Polish Ministry of Science and Education as `Iuventus Plus' project (IP2014 030973) in years 2015-2016.
Correction of complex nonlinear signal response from a pixel array detector
van Driel, Tim Brandt; Herrmann, Sven; Carini, Gabriella; Nielsen, Martin Meedom; Lemke, Henrik Till
2015-01-01
The pulsed free-electron laser light sources represent a new challenge to photon area detectors due to the intrinsic spontaneous X-ray photon generation process that makes single-pulse detection necessary. Intensity fluctuations up to 100% between individual pulses lead to high linearity requirements in order to distinguish small signal changes. In real detectors, signal distortions as a function of the intensity distribution on the entire detector can occur. Here a robust method to correct this nonlinear response in an area detector is presented for the case of exposures to similar signals. The method is tested for the case of diffuse scattering from liquids where relevant sub-1% signal changes appear on the same order as artifacts induced by the detector electronics. PMID:25931072
Correction of complex nonlinear signal response from a pixel array detector.
van Driel, Tim Brandt; Herrmann, Sven; Carini, Gabriella; Nielsen, Martin Meedom; Lemke, Henrik Till
2015-05-01
The pulsed free-electron laser light sources represent a new challenge to photon area detectors due to the intrinsic spontaneous X-ray photon generation process that makes single-pulse detection necessary. Intensity fluctuations up to 100% between individual pulses lead to high linearity requirements in order to distinguish small signal changes. In real detectors, signal distortions as a function of the intensity distribution on the entire detector can occur. Here a robust method to correct this nonlinear response in an area detector is presented for the case of exposures to similar signals. The method is tested for the case of diffuse scattering from liquids where relevant sub-1% signal changes appear on the same order as artifacts induced by the detector electronics.
Rezaee, Mohammad; Hunting, Darel J; Sanche, Léon
2014-07-01
The present study introduces a new method to establish a direct correlation between biologically related physical parameters (i.e., stopping and damaging cross sections, respectively) for an Auger-electron emitting radionuclide decaying within a target molecule (e.g., DNA), so as to evaluate the efficacy of the radionuclide at the molecular level. These parameters can be applied to the dosimetry of Auger electrons and the quantification of their biological effects, which are the main criteria to assess the therapeutic efficacy of Auger-electron emitting radionuclides. Absorbed dose and stopping cross section for the Auger electrons of 5-18 eV emitted by(125)I within DNA were determined by developing a nanodosimetric model. The molecular damages induced by these Auger electrons were investigated by measuring damaging cross section, including that for the formation of DNA single- and double-strand breaks. Nanoscale films of pure plasmid DNA were prepared via the freeze-drying technique and subsequently irradiated with low-energy electrons at various fluences. The damaging cross sections were determined by employing a molecular survival model to the measured exposure-response curves for induction of DNA strand breaks. For a single decay of(125)I within DNA, the Auger electrons of 5-18 eV deposit the energies of 12.1 and 9.1 eV within a 4.2-nm(3) volume of a hydrated or dry DNA, which results in the absorbed doses of 270 and 210 kGy, respectively. DNA bases have a major contribution to the deposited energies. Ten-electronvolt and high linear energy transfer 100-eV electrons have a similar cross section for the formation of DNA double-strand break, while 100-eV electrons are twice as efficient as 10 eV in the induction of single-strand break. Ultra-low-energy electrons (<18 eV) substantially contribute to the absorbed dose and to the molecular damage from Auger-electron emitting radionuclides; hence, they should be considered in the dosimetry calculation of such radionuclides. Moreover, absorbed dose is not an appropriate physical parameter for nanodosimetry. Instead, stopping cross section, which describes the probability of energy deposition in a target molecule can be an appropriate nanodosimetric parameter. The stopping cross section is correlated with a damaging cross section (e.g., cross section for the double-strand break formation) to quantify the number of each specific lesion in a target molecule for each nuclear decay of a single Auger-electron emitting radionuclide.
NASA Technical Reports Server (NTRS)
Berg, Melanie D.; LaBel, Kenneth A.
2018-01-01
The following are updated or new subjects added to the FPGA SEE Test Guidelines manual: academic versus mission specific device evaluation, single event latch-up (SEL) test and analysis, SEE response visibility enhancement during radiation testing, mitigation evaluation (embedded and user-implemented), unreliable design and its affects to SEE Data, testing flushable architectures versus non-flushable architectures, intellectual property core (IP Core) test and evaluation (addresses embedded and user-inserted), heavy-ion energy and linear energy transfer (LET) selection, proton versus heavy-ion testing, fault injection, mean fluence to failure analysis, and mission specific system-level single event upset (SEU) response prediction. Most sections within the guidelines manual provide information regarding best practices for test structure and test system development. The scope of this manual addresses academic versus mission specific device evaluation and visibility enhancement in IP Core testing.
NASA Technical Reports Server (NTRS)
Berg, Melanie D.; LaBel, Kenneth A.
2018-01-01
The following are updated or new subjects added to the FPGA SEE Test Guidelines manual: academic versus mission specific device evaluation, single event latch-up (SEL) test and analysis, SEE response visibility enhancement during radiation testing, mitigation evaluation (embedded and user-implemented), unreliable design and its affects to SEE Data, testing flushable architectures versus non-flushable architectures, intellectual property core (IP Core) test and evaluation (addresses embedded and user-inserted), heavy-ion energy and linear energy transfer (LET) selection, proton versus heavy-ion testing, fault injection, mean fluence to failure analysis, and mission specific system-level single event upset (SEU) response prediction. Most sections within the guidelines manual provide information regarding best practices for test structure and test system development. The scope of this manual addresses academic versus mission specific device evaluation and visibility enhancement in IP Core testing.
Yoosefian, Mehdi; Etminan, Nazanin
2018-06-01
We have designed a novel nanobiosensor for in silico detecting proteins based on leucine/Pd-loaded single-walled carbon nanotube matrix. Density functional theory at the B3LYP/6-31G (d) level of theory was realized to analyze the geometrical and electronic structure of the proposed nanobiosensor. The solvent effects were investigated using the Tomasi's polarized continuum model. Atoms-in-molecules theory was used to study the nature of interactions by calculating the electron density ρ(r) and Laplacian at the bond critical points. Natural bond orbital analysis was performed to achieve a deep understanding of the nature of the interactions. The biosensor has potential application for high sensitive and rapid response to protein due to the chemical adsorption of L-leucine amino acid onto Pd-loaded single-walled carbon nanotube and reactive functional groups that can incorporate in hydrogen binding, hydrophobic interactions and van der Waals forces with the protein surface in detection process.
2012-08-01
unlimited 3.1.2. Fractography Figure 5: SEM images of a 3.18mm thick sheet specimen tested at 760◦C/758MPa. (a) The region near the fracture surface... fractography using secondary electron imaging (SE) in a scanning electron microscope (SEM). No surface oxidation was observed at this temperature. The...ruptured after 210 hours. 3.2.3. Fractography The SEM image of the reconstructed creep ruptured specimen with thickness h = 3.18mm is shown in Fig. 18a
Healthcare Reimbursement and Quality Improvement: Integration Using the Electronic Medical Record
Britton, John R.
2015-01-01
Reimbursement for healthcare has utilized a variety of payment mechanisms with varying degrees of effectiveness. Whether these mechanisms are used singly or in combination, it is imperative that the resulting systems remunerate on the basis of the quantity, complexity, and quality of care provided. Expanding the role of the electronic medical record (EMR) to monitor provider practice, patient responsiveness, and functioning of the healthcare organization has the potential to not only enhance the accuracy and efficiency of reimbursement mechanisms but also to improve the quality of medical care. PMID:26340397
Multicomponent Time-Dependent Density Functional Theory: Proton and Electron Excitation Energies.
Yang, Yang; Culpitt, Tanner; Hammes-Schiffer, Sharon
2018-04-05
The quantum mechanical treatment of both electrons and protons in the calculation of excited state properties is critical for describing nonadiabatic processes such as photoinduced proton-coupled electron transfer. Multicomponent density functional theory enables the consistent quantum mechanical treatment of more than one type of particle and has been implemented previously for studying ground state molecular properties within the nuclear-electronic orbital (NEO) framework, where all electrons and specified protons are treated quantum mechanically. To enable the study of excited state molecular properties, herein the linear response multicomponent time-dependent density functional theory (TDDFT) is derived and implemented within the NEO framework. Initial applications to FHF - and HCN illustrate that NEO-TDDFT provides accurate proton and electron excitation energies within a single calculation. As its computational cost is similar to that of conventional electronic TDDFT, the NEO-TDDFT approach is promising for diverse applications, particularly nonadiabatic proton transfer reactions, which may exhibit mixed electron-proton vibronic excitations.
Coherent control of single electrons: a review of current progress
NASA Astrophysics Data System (ADS)
Bäuerle, Christopher; Glattli, D. Christian; Meunier, Tristan; Portier, Fabien; Roche, Patrice; Roulleau, Preden; Takada, Shintaro; Waintal, Xavier
2018-05-01
In this report we review the present state of the art of the control of propagating quantum states at the single-electron level and its potential application to quantum information processing. We give an overview of the different approaches that have been developed over the last few years in order to gain full control over a propagating single-electron in a solid-state system. After a brief introduction of the basic concepts, we present experiments on flying qubit circuits for ensemble of electrons measured in the low frequency (DC) limit. We then present the basic ingredients necessary to realise such experiments at the single-electron level. This includes a review of the various single-electron sources that have been developed over the last years and which are compatible with integrated single-electron circuits. This is followed by a review of recent key experiments on electron quantum optics with single electrons. Finally we will present recent developments in the new physics that has emerged using ultrashort voltage pulses. We conclude our review with an outlook and future challenges in the field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruggiero, Steven T.
Financial support for this project has led to advances in the science of single-electron phenomena. Our group reported the first observation of the so-called ''Coulomb Staircase'', which was produced by tunneling into ultra-small metal particles. This work showed well-defined tunneling voltage steps of width e/C and height e/RC, demonstrating tunneling quantized on the single-electron level. This work was published in a now well-cited Physical Review Letter. Single-electron physics is now a major sub-field of condensed-matter physics, and fundamental work in the area continues to be conducted by tunneling in ultra-small metal particles. In addition, there are now single-electron transistors thatmore » add a controlling gate to modulate the charge on ultra-small photolithographically defined capacitive elements. Single-electron transistors are now at the heart of at least one experimental quantum-computer element, and single-electron transistor pumps may soon be used to define fundamental quantities such as the farad (capacitance) and the ampere (current). Novel computer technology based on single-electron quantum dots is also being developed. In related work, our group played the leading role in the explanation of experimental results observed during the initial phases of tunneling experiments with the high-temperature superconductors. When so-called ''multiple-gap'' tunneling was reported, the phenomenon was correctly identified by our group as single-electron tunneling in small grains in the material. The main focus throughout this project has been to explore single electron phenomena both in traditional tunneling formats of the type metal/insulator/particles/insulator/metal and using scanning tunneling microscopy to probe few-particle systems. This has been done under varying conditions of temperature, applied magnetic field, and with different materials systems. These have included metals, semi-metals, and superconductors. Amongst a number of results, we have verified that clusters of down to one, two, and three metal atoms can be identified with single-electron techniques. We have also, extended the regime of single-electron phenomenology through the observation of single-electron effects in metal droplets in the high-conductance regime.« less
Sketched oxide single-electron transistor
NASA Astrophysics Data System (ADS)
Cheng, Guanglei; Siles, Pablo F.; Bi, Feng; Cen, Cheng; Bogorin, Daniela F.; Bark, Chung Wung; Folkman, Chad M.; Park, Jae-Wan; Eom, Chang-Beom; Medeiros-Ribeiro, Gilberto; Levy, Jeremy
2011-06-01
Devices that confine and process single electrons represent an important scaling limit of electronics. Such devices have been realized in a variety of materials and exhibit remarkable electronic, optical and spintronic properties. Here, we use an atomic force microscope tip to reversibly `sketch' single-electron transistors by controlling a metal-insulator transition at the interface of two oxides. In these devices, single electrons tunnel resonantly between source and drain electrodes through a conducting oxide island with a diameter of ~1.5 nm. We demonstrate control over the number of electrons on the island using bottom- and side-gate electrodes, and observe hysteresis in electron occupation that is attributed to ferroelectricity within the oxide heterostructure. These single-electron devices may find use as ultradense non-volatile memories, nanoscale hybrid piezoelectric and charge sensors, as well as building blocks in quantum information processing and simulation platforms.
Vacuum ultraviolet radiation effects on two-dimensional MoS2 field-effect transistors
NASA Astrophysics Data System (ADS)
McMorrow, Julian J.; Cress, Cory D.; Arnold, Heather N.; Sangwan, Vinod K.; Jariwala, Deep; Schmucker, Scott W.; Marks, Tobin J.; Hersam, Mark C.
2017-02-01
Atomically thin MoS2 has generated intense interest for emerging electronics applications. Its two-dimensional nature and potential for low-power electronics are particularly appealing for space-bound electronics, motivating the need for a fundamental understanding of MoS2 electronic device response to the space radiation environment. In this letter, we quantify the response of MoS2 field-effect transistors (FETs) to vacuum ultraviolet (VUV) total ionizing dose radiation. Single-layer (SL) and multilayer (ML) MoS2 FETs are compared to identify differences that arise from thickness and band structure variations. The measured evolution of the FET transport properties is leveraged to identify the nature of VUV-induced trapped charge, isolating the effects of the interface and bulk oxide dielectric. In both the SL and ML cases, oxide trapped holes compete with interface trapped electrons, exhibiting an overall shift toward negative gate bias. Raman spectroscopy shows no variation in the MoS2 signatures as a result of VUV exposure, eliminating significant crystalline damage or oxidation as possible radiation degradation mechanisms. Overall, this work presents avenues for achieving radiation-hard MoS2 devices through dielectric engineering that reduces oxide and interface trapped charge.
Di Venanzio, C; Marinelli, Marco; Milani, E; Prestopino, G; Verona, C; Verona-Rinati, G; Falco, M D; Bagalà, P; Santoni, R; Pimpinella, M
2013-02-01
To investigate the dosimetric properties of synthetic single crystal diamond based Schottky diodes under irradiation with therapeutic electron beams from linear accelerators. A single crystal diamond detector was fabricated and tested under 6, 8, 10, 12, and 15 MeV electron beams. The detector performances were evaluated using three types of commercial detectors as reference dosimeters: an Advanced Markus plane parallel ionization chamber, a Semiflex cylindrical ionization chamber, and a p-type silicon detector. Preirradiation, linearity with dose, dose rate dependence, output factors, lateral field profiles, and percentage depth dose profiles were investigated and discussed. During preirradiation the diamond detector signal shows a weak decrease within 0.7% with respect to the plateau value and a final signal stability of 0.1% (1σ) is observed after about 5 Gy. A good linear behavior of the detector response as a function of the delivered dose is observed with deviations below ±0.3% in the dose range from 0.02 to 10 Gy. In addition, the detector response is dose rate independent, with deviations below 0.3% in the investigated dose rate range from 0.17 to 5.45 Gy∕min. Percentage depth dose curves obtained from the diamond detector are in good agreement with the ones from the reference dosimeters. Lateral beam profile measurements show an overall good agreement among detectors, taking into account their respective geometrical features. The spatial resolution of solid state detectors is confirmed to be better than that of ionization chambers, being the one from the diamond detector comparable to that of the silicon diode. A good agreement within experimental uncertainties was also found in terms of output factor measurements between the diamond detector and reference dosimeters. The observed dosimetric properties indicate that the tested diamond detector is a suitable candidate for clinical electron beam dosimetry.
Theory of plasmonic effects in nonlinear optics: the case of graphene
NASA Astrophysics Data System (ADS)
Rostami, Habib; Katsnelson, Mikhail I.; Polini, Marco; Mikhail I. Katsnelson Collaboration; Habib Rostami; Marco Polini Collaboration
The nonlinear optical properties of two-dimensional electronic systems are beginning to attract considerable interest both in the theoretical and experimental sectors. Recent experiments on the nonlinear optical properties of graphene reveal considerably strong third harmonic generation and four-wave mixing of this single-atomic-layer electronic system. We develop a large-N theory of electron-electron interaction corrections to multi-legged Feynman diagrams describing second- and third-order nonlinear response functions. Our theory is completely general and is useful to understand all second- and third-order nonlinear effects, including harmonic generation, wave mixing, and photon drag. We apply our theoretical framework to the case of graphene, by carrying out microscopic calculations of the second- and third-order nonlinear response functions of an interacting two-dimensional gas of massless Dirac fermions. We compare our results with recent measurements, where all-optical launching of graphene plasmons has been achieved. This work was supported by Fondazione Istituto Italiano di Tecnologia, the European Union's Horizon 2020 research and innovation programme under Grant agreement No. 696656 GrapheneCore, and the ERC Advanced Grant 338957 FEMTO/NANO (M.I.K.).
Electronics and Algorithms for HOM Based Beam Diagnostics
NASA Astrophysics Data System (ADS)
Frisch, Josef; Baboi, Nicoleta; Eddy, Nathan; Nagaitsev, Sergei; Hensler, Olaf; McCormick, Douglas; May, Justin; Molloy, Stephen; Napoly, Olivier; Paparella, Rita; Petrosyan, Lyudvig; Ross, Marc; Simon, Claire; Smith, Tonee
2006-11-01
The signals from the Higher Order Mode (HOM) ports on superconducting cavities can be used as beam position monitors and to do survey structure alignment. A HOM-based diagnostic system has been installed to instrument both couplers on each of the 40 cryogenic accelerating structures in the DESY TTF2 Linac. The electronics uses a single stage down conversion from the 1.7 GHz HOM spectral line to a 20MHz IF which has been digitized. The electronics is based on low cost surface mount components suitable for large scale production. The analysis of the HOM data is based on Singular Value Decomposition. The response of the OM modes is calibrated using conventional BPMs.
Application of the Hardman methodology to the Single Channel Ground-Airborne Radio System (SINCGARS)
NASA Technical Reports Server (NTRS)
1984-01-01
The HARDMAN methodology was applied to the various configurations of employment for an emerging Army multipurpose communications system. The methodology was used to analyze the manpower, personnel and training (MPT) requirements and associated costs, of the system concepts responsive to the Army's requirement for the Single Channel Ground-Airborne Radio System (SINCGARS). The scope of the application includes the analysis of two conceptual designs Cincinnati Electronics and ITT Aerospace/Optical Division for operating and maintenance support addressed through the general support maintenance echelon.
Liu, Mengkun; Sternbach, Aaron J.; Wagner, Martin; ...
2015-06-29
We have systematically studied a variety of vanadium dioxide (VO 2) crystalline forms, including bulk single crystals and oriented thin films, using infrared (IR) near-field spectroscopic imaging techniques. By measuring the IR spectroscopic responses of electrons and phonons in VO 2 with sub-grain-size spatial resolution (~20nm), we show that epitaxial strain in VO 2 thin films not only triggers spontaneous local phase separations, but leads to intermediate electronic and lattice states that are intrinsically different from those found in bulk. Generalized rules of strain- and symmetry-dependent mesoscopic phase inhomogeneity are also discussed. Furthermore, these results set the stage for amore » comprehensive understanding of complex energy landscapes that may not be readily determined by macroscopic approaches.« less
Anti-site defected MoS2 sheet-based single electron transistor as a gas sensor
NASA Astrophysics Data System (ADS)
Sharma, Archana; Husain, Mushahid; Srivastava, Anurag; Khan, Mohd. Shahid
2018-05-01
To prevent harmful and poisonous CO gas molecules, catalysts are needed for converting them into benign substances. Density functional theory (DFT) calculations have been used to study the adsorption of CO and CO2 gas molecules on the surface of MoS2 monolayer with Mo atom embedded at S-vacancy site (MoS). The strong interaction between Mo metal with pristine MoS2 sheet suggests its strong binding nature. Doping Mo into MoS2 sheet enhances CO and CO2 adsorption strength. The sensing response of MoS-doped MoS2 system to CO and CO2 gas molecules is obtained in the single electron transistor (SET) environment by varying bias voltage. Doping reduces charging energy of the device which results in fast switching of the device from OFF to ON state.
Muguruma, Hitoshi; Hoshino, Tatsuya; Nowaki, Kohei
2015-01-14
An electrochemical enzyme biosensor with electronically type-sorted (metallic and semiconducting) single-walled carbon nanotubes (SWNTs) for use in aqueous media is presented. This research investigates how the electronic types of SWNTs influence the amperometric response of enzyme biosensors. To conduct a clear evaluation, a simple layer-by-layer process based on a plasma-polymerized nano thin film (PPF) was adopted because a PPF is an inactive matrix that can form a well-defined nanostructure composed of SWNTs and enzyme. For a biosensor with the glucose oxidase (GOx) enzyme in the presence of oxygen, the response of a metallic SWNT-GOx electrode was 2 times larger than that of a semiconducting SWNT-GOx electrode. In contrast, in the absence of oxygen, the response of the semiconducting SWNT-GOx electrode was retained, whereas that of the metallic SWNT-GOx electrode was significantly reduced. This indicates that direct electron transfer occurred with the semiconducting SWNT-GOx electrode, whereas the metallic SWNT-GOx electrode was dominated by a hydrogen peroxide pathway caused by an enzymatic reaction. For a biosensor with the glucose dehydrogenase (GDH; oxygen-independent catalysis) enzyme, the response of the semiconducting SWNT-GDH electrode was 4 times larger than that of the metallic SWNT-GDH electrode. Electrochemical impedance spectroscopy was used to show that the semiconducting SWNT network has less resistance for electron transfer than the metallic SWNT network. Therefore, it was concluded that semiconducting SWNTs are more suitable than metallic SWNTs for electrochemical enzyme biosensors in terms of direct electron transfer as a detection mechanism. This study makes a valuable contribution toward the development of electrochemical biosensors that employ sorted SWNTs and various enzymes.
NASA Technical Reports Server (NTRS)
Schmahl, E. J.; Kundu, M. R.; Dennis, B. R.
1985-01-01
A solar limb flare was mapped using the Very Large Array (VLA) together with hard X-ray (HXR) spectral and spatial observations of the Solar Maximum Mission satellite. Microwave flux records from 2.8 to 19.6 GHz were instrumental in determining the burst spectrum, which has a maximum at 10 GHz. The flux spectrum and area of the burst sources were used to determine the number of electrons producing gyrosynchrotron emission, magnetic field strength, and the energy distribution of gyrosynchrotron-emitting electrons. Applying the thick target model to the HXR spectrum, the number of high energy electrons responsible for the X-ray bursts was found to be 10 to the 36th, and the electron energy distribution was approximately E exp -5, significantly different from the parameters derived from the microwave observations. The HXR imaging observations exhibit some similiarities in size and structure o the first two burst sources mapped with the VLA. However, during the initial burst, the HXR source was single and lower in the corona than the double 6 cm source. The observations are explained in terms of a single loop with an isotropic high-energy electron distribution which produced the microwaves, and a larger beamed component which produced the HXR at the feet of the loop.
Fast-Response Single-Nanowire Photodetector Based on ZnO/WS2 Core/Shell Heterostructures.
Butanovs, Edgars; Vlassov, Sergei; Kuzmin, Alexei; Piskunov, Sergei; Butikova, Jelena; Polyakov, Boris
2018-04-25
The surface plays an exceptionally important role in nanoscale materials, exerting a strong influence on their properties. Consequently, even a very thin coating can greatly improve the optoelectronic properties of nanostructures by modifying the light absorption and spatial distribution of charge carriers. To use these advantages, 1D/1D heterostructures of ZnO/WS 2 core/shell nanowires with a-few-layers-thick WS 2 shell were fabricated. These heterostructures were thoroughly characterized by scanning and transmission electron microscopy, X-ray diffraction, and Raman spectroscopy. Then, a single-nanowire photoresistive device was assembled by mechanically positioning ZnO/WS 2 core/shell nanowires onto gold electrodes inside a scanning electron microscope. The results show that a few layers of WS 2 significantly enhance the photosensitivity in the short wavelength range and drastically (almost 2 orders of magnitude) improve the photoresponse time of pure ZnO nanowires. The fast response time of ZnO/WS 2 core/shell nanowire was explained by electrons and holes sinking from ZnO nanowire into WS 2 shell, which serves as a charge carrier channel in the ZnO/WS 2 heterostructure. First-principles calculations suggest that the interface layer i-WS 2 , bridging ZnO nanowire surface and WS 2 shell, might play a role of energy barrier, preventing the backward diffusion of charge carriers into ZnO nanowire.
How To Identify Plasmons from the Optical Response of Nanostructures
2017-01-01
A promising trend in plasmonics involves shrinking the size of plasmon-supporting structures down to a few nanometers, thus enabling control over light–matter interaction at extreme-subwavelength scales. In this limit, quantum mechanical effects, such as nonlocal screening and size quantization, strongly affect the plasmonic response, rendering it substantially different from classical predictions. For very small clusters and molecules, collective plasmonic modes are hard to distinguish from other excitations such as single-electron transitions. Using rigorous quantum mechanical computational techniques for a wide variety of physical systems, we describe how an optical resonance of a nanostructure can be classified as either plasmonic or nonplasmonic. More precisely, we define a universal metric for such classification, the generalized plasmonicity index (GPI), which can be straightforwardly implemented in any computational electronic-structure method or classical electromagnetic approach to discriminate plasmons from single-particle excitations and photonic modes. Using the GPI, we investigate the plasmonicity of optical resonances in a wide range of systems including: the emergence of plasmonic behavior in small jellium spheres as the size and the number of electrons increase; atomic-scale metallic clusters as a function of the number of atoms; and nanostructured graphene as a function of size and doping down to the molecular plasmons in polycyclic aromatic hydrocarbons. Our study provides a rigorous foundation for the further development of ultrasmall nanostructures based on molecular plasmonics. PMID:28651057
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordienko, A V; Mavritskii, O B; Egorov, A N
2014-12-31
The statistics of the ionisation response amplitude measured at selected points and their surroundings within sensitive regions of integrated circuits (ICs) under focused femtosecond laser irradiation is obtained for samples chosen from large batches of two types of ICs. A correlation between these data and the results of full-chip scanning is found for each type. The criteria for express validation of IC single-event effect (SEE) hardness based on ionisation response measurements at selected points are discussed. (laser applications and other topics in quantum electronics)
Linear and ultrafast nonlinear plasmonics of single nano-objects
NASA Astrophysics Data System (ADS)
Crut, Aurélien; Maioli, Paolo; Vallée, Fabrice; Del Fatti, Natalia
2017-03-01
Single-particle optical investigations have greatly improved our understanding of the fundamental properties of nano-objects, avoiding the spurious inhomogeneous effects that affect ensemble experiments. Correlation with high-resolution imaging techniques providing morphological information (e.g. electron microscopy) allows a quantitative interpretation of the optical measurements by means of analytical models and numerical simulations. In this topical review, we first briefly recall the principles underlying some of the most commonly used single-particle optical techniques: near-field, dark-field, spatial modulation and photothermal microscopies/spectroscopies. We then focus on the quantitative investigation of the surface plasmon resonance (SPR) of metallic nano-objects using linear and ultrafast optical techniques. While measured SPR positions and spectral areas are found in good agreement with predictions based on Maxwell’s equations, SPR widths are strongly influenced by quantum confinement (or, from a classical standpoint, surface-induced electron scattering) and, for small nano-objects, cannot be reproduced using the dielectric functions of bulk materials. Linear measurements on single nano-objects (silver nanospheres and gold nanorods) allow a quantification of the size and geometry dependences of these effects in confined metals. Addressing the ultrafast response of an individual nano-object is also a powerful tool to elucidate the physical mechanisms at the origin of their optical nonlinearities, and their electronic, vibrational and thermal relaxation processes. Experimental investigations of the dynamical response of gold nanorods are shown to be quantitatively modeled in terms of modifications of the metal dielectric function enhanced by plasmonic effects. Ultrafast spectroscopy can also be exploited to unveil hidden physical properties of more complex nanosystems. In this context, two-color femtosecond pump-probe experiments performed on individual bimetallic heterodimers are discussed in the last part of the review, demonstrating the existence of Fano interferences in the optical absorption of a gold nanoparticle under the influence of a nearby silver one.
Kinetic theory for strongly coupled Coulomb systems
NASA Astrophysics Data System (ADS)
Dufty, James; Wrighton, Jeffrey
2018-01-01
The calculation of dynamical properties for matter under extreme conditions is a challenging task. The popular Kubo-Greenwood model exploits elements from equilibrium density-functional theory (DFT) that allow a detailed treatment of electron correlations, but its origin is largely phenomenological; traditional kinetic theories have a more secure foundation but are limited to weak ion-electron interactions. The objective here is to show how a combination of the two evolves naturally from the short-time limit for the generator of the effective single-electron dynamics governing time correlation functions without such limitations. This provides a theoretical context for the current DFT-related approach, the Kubo-Greenwood model, while showing the nature of its corrections. The method is to calculate the short-time dynamics in the single-electron subspace for a given configuration of the ions. This differs from the usual kinetic theory approach in which an average over the ions is performed as well. In this way the effective ion-electron interaction includes strong Coulomb coupling and is shown to be determined from DFT. The correlation functions have the form of the random-phase approximation for an inhomogeneous system but with renormalized ion-electron and electron-electron potentials. The dynamic structure function, density response function, and electrical conductivity are calculated as examples. The static local field corrections in the dielectric function are identified in this way. The current analysis is limited to semiclassical electrons (quantum statistical potentials), so important quantum conditions are excluded. However, a quantization of the kinetic theory is identified for broader application while awaiting its detailed derivation.
Sketched Oxide Single-Electron Transistor
NASA Astrophysics Data System (ADS)
Cheng, Guanglei
2012-02-01
Devices that confine and process single electrons represent an important scaling limit of electronics. Such devices have been realized in a variety of materials and exhibit remarkable electronic, optical and spintronic properties. Here, we use an atomic force microscope tip to reversibly ``sketch'' single-electron transistors by controlling a metal-insulator transition at the interface of two oxides.ootnotetextCheng et al., Nature Nanotechnology 6, 343 (2011). In these devices, single electrons tunnel resonantly between source and drain electrodes through a conducting oxide island with a diameter of ˜1.5 nm. We demonstrate control over the number of electrons on the island using bottom- and side-gate electrodes, and observe hysteresis in electron occupation that is attributed to ferroelectricity within the oxide heterostructure. These single-electron devices may find use as ultradense non-volatile memories, nanoscale hybrid piezoelectric and charge sensors, as well as building blocks in quantum information processing and simulation platforms.
NASA Astrophysics Data System (ADS)
Wang, Ying; Gao, Peng; Sha, Linna; Chi, Qianqian; Yang, Lei; Zhang, Jianjiao; Chen, Yujin; Zhang, Milin
2018-04-01
The construction of semiconductor composites is known as a powerful method used to realize the spatial separation of electrons and the holes in them, which can result in more electrons or holes and increase the dispersion of oxygen ions ({{{{O}}}2}- and O - ) (one of the most critical factors for their gas-sensing properties) on the surface of the semiconductor gas sensor. In this work, using 1D ZnO/ZnSnO3 nanoarrays as an example, which are prepared through a hetero-epitaxial growing process to construct a chemically bonded interface, the above strategy to attain a better semiconductor gas-sensing property has been realized. Compared with single ZnSnO3 nanotubes and no-matching ZnO/ZnSnO3 nanoarrays gas sensors, it has been proven by x-ray photoelectron spectroscopy and photoluminescence spectrum examination that the as-obtained ZnO/ZnSnO3 sensor showed a greatly increased quantity of active surface electrons with exceptional responses to trace target gases and much lower optimum working temperatures (less than about 170 °C). For example, the as-obtained ZnO/ZnSnO3 sensor exhibited an obvious response and short response/recovery time (less than 10 s) towards trace H2S gas (a detection limit down to 700 ppb). The high responses and dynamic repeatability observed in these sensors reveal that the strategy based on the as-presented electron and hole separation is reliable for improving the gas-sensing properties of semiconductors.
Correction of complex nonlinear signal response from a pixel array detector
van Driel, Tim Brandt; Herrmann, Sven; Carini, Gabriella; ...
2015-04-22
The pulsed free-electron laser light sources represent a new challenge to photon area detectors due to the intrinsic spontaneous X-ray photon generation process that makes single-pulse detection necessary. Intensity fluctuations up to 100% between individual pulses lead to high linearity requirements in order to distinguish small signal changes. In real detectors, signal distortions as a function of the intensity distribution on the entire detector can occur. Here a robust method to correct this nonlinear response in an area detector is presented for the case of exposures to similar signals. The method is tested for the case of diffuse scattering frommore » liquids where relevant sub-1% signal changes appear on the same order as artifacts induced by the detector electronics.« less
Chen, Yi-Ju; Tzeng, Hsin-Yu; Fan, Hsiu-Fang; Chen, Ming-Shiang; Huang, Jer-Shing; Lin, King-Chuen
2010-06-01
Kinetics of photoinduced electron transfer (ET) from oxazine 1 dye to TiO(2) nanoparticles (NPs) surface is studied at a single molecule level by using confocal fluorescence microscopy. Upon irradiation with a pulsed laser at 630 nm, the fluorescence lifetimes sampled among 100 different dye molecules are determined to yield an average lifetime of 2.9 +/- 0.3 ns, which is close to the value of 3.0 +/- 0.6 ns measured on the bare coverslip. The lifetime proximity suggests that most interfacial electron transfer (IFET) processes for the current system are inefficient, probably caused by physisorption between dye and the TiO(2) film. However, there might exist some molecules which are quenched before fluorescing and fail to be detected. With the aid of autocorrelation analysis under a three-level energy system, the IFET kinetics of single dye molecules in the conduction band of TiO(2) NPs is evaluated to be (1.0 +/- 0.1) x 10(4) s(-1) averaged over 100 single molecules and the back ET rate constant is 4.7 +/- 0.9 s(-1). When a thicker TiO(2) film is substituted, the resultant kinetic data do not make a significant difference. The trend of IFET efficacy agrees with the method of fluorescence lifetime measurements. The obtained forward ET rate constants are about ten times smaller than the photovoltage response measured in an assembled dye-sensitized solar cell. The discrepancy is discussed. The inhomogeneous and fluctuation characters for the IFET process are attributed to microenvironment variation for each single molecule. The obtained ET rates are much slower than the fluorescence relaxation. Such a small ET quantum yield is yet feasibly detectable at a single molecule level.
Fabrication and single-electron-transfer operation of a triple-dot single-electron transistor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jo, Mingyu, E-mail: mingyujo@eis.hokudai.ac.jp; Uchida, Takafumi; Tsurumaki-Fukuchi, Atsushi
2015-12-07
A triple-dot single-electron transistor was fabricated on silicon-on-insulator wafer using pattern-dependent oxidation. A specially designed one-dimensional silicon wire having small constrictions at both ends was converted to a triple-dot single-electron transistor by means of pattern-dependent oxidation. The fabrication of the center dot involved quantum size effects and stress-induced band gap reduction, whereas that of the two side dots involved thickness modulation because of the complex edge structure of two-dimensional silicon. Single-electron turnstile operation was confirmed at 8 K when a 100-mV, 1-MHz square wave was applied. Monte Carlo simulations indicated that such a device with inhomogeneous tunnel and gate capacitances canmore » exhibit single-electron transfer.« less
Single-electron random-number generator (RNG) for highly secure ubiquitous computing applications
NASA Astrophysics Data System (ADS)
Uchida, Ken; Tanamoto, Tetsufumi; Fujita, Shinobu
2007-11-01
Since the security of all modern cryptographic techniques relies on unpredictable and irreproducible digital keys generated by random-number generators (RNGs), the realization of high-quality RNG is essential for secure communications. In this report, a new RNG, which utilizes single-electron phenomena, is proposed. A room-temperature operating silicon single-electron transistor (SET) having nearby an electron pocket is used as a high-quality, ultra-small RNG. In the proposed RNG, stochastic single-electron capture/emission processes to/from the electron pocket are detected with high sensitivity by the SET, and result in giant random telegraphic signals (GRTS) on the SET current. It is experimentally demonstrated that the single-electron RNG generates extremely high-quality random digital sequences at room temperature, in spite of its simple configuration. Because of its small-size and low-power properties, the single-electron RNG is promising as a key nanoelectronic device for future ubiquitous computing systems with highly secure mobile communication capabilities.
NASA Astrophysics Data System (ADS)
Nishiguchi, Katsuhiko; Ono, Yukinori; Fujiwara, Akira
2014-07-01
We report the observation of thermal noise in the motion of single electrons in an ultimately small dynamic random access memory (DRAM). The nanometer-scale transistors that compose the DRAM resolve the thermal noise in single-electron motion. A complete set of fundamental tests conducted on this single-electron thermal noise shows that the noise perfectly follows all the aspects predicted by statistical mechanics, which include the occupation probability, the law of equipartition, a detailed balance, and the law of kT/C. In addition, the counting statistics on the directional motion (i.e., the current) of the single-electron thermal noise indicate that the individual electron motion follows the Poisson process, as it does in shot noise.
Single-electron thermal noise.
Nishiguchi, Katsuhiko; Ono, Yukinori; Fujiwara, Akira
2014-07-11
We report the observation of thermal noise in the motion of single electrons in an ultimately small dynamic random access memory (DRAM). The nanometer-scale transistors that compose the DRAM resolve the thermal noise in single-electron motion. A complete set of fundamental tests conducted on this single-electron thermal noise shows that the noise perfectly follows all the aspects predicted by statistical mechanics, which include the occupation probability, the law of equipartition, a detailed balance, and the law of kT/C. In addition, the counting statistics on the directional motion (i.e., the current) of the single-electron thermal noise indicate that the individual electron motion follows the Poisson process, as it does in shot noise.
Single-electron pulses for ultrafast diffraction
Aidelsburger, M.; Kirchner, F. O.; Krausz, F.; Baum, P.
2010-01-01
Visualization of atomic-scale structural motion by ultrafast electron diffraction and microscopy requires electron packets of shortest duration and highest coherence. We report on the generation and application of single-electron pulses for this purpose. Photoelectric emission from metal surfaces is studied with tunable ultraviolet pulses in the femtosecond regime. The bandwidth, efficiency, coherence, and electron pulse duration are investigated in dependence on excitation wavelength, intensity, and laser bandwidth. At photon energies close to the cathode’s work function, the electron pulse duration shortens significantly and approaches a threshold that is determined by interplay of the optical pulse width and the acceleration field. An optimized choice of laser wavelength and bandwidth results in sub-100-fs electron pulses. We demonstrate single-electron diffraction from polycrystalline diamond films and reveal the favorable influences of matched photon energies on the coherence volume of single-electron wave packets. We discuss the consequences of our findings for the physics of the photoelectric effect and for applications of single-electron pulses in ultrafast 4D imaging of structural dynamics. PMID:21041681
Exploring size and state dynamics in CdSe quantum dots using two-dimensional electronic spectroscopy
Caram, Justin R.; Zheng, Haibin; Dahlberg, Peter D.; Rolczynski, Brian S.; Griffin, Graham B.; Dolzhnikov, Dmitriy S.; Talapin, Dmitri V.; Engel, Gregory S.
2014-01-01
Development of optoelectronic technologies based on quantum dots depends on measuring, optimizing, and ultimately predicting charge carrier dynamics in the nanocrystal. In such systems, size inhomogeneity and the photoexcited population distribution among various excitonic states have distinct effects on electron and hole relaxation, which are difficult to distinguish spectroscopically. Two-dimensional electronic spectroscopy can help to untangle these effects by resolving excitation energy and subsequent nonlinear response in a single experiment. Using a filament-generated continuum as a pump and probe source, we collect two-dimensional spectra with sufficient spectral bandwidth to follow dynamics upon excitation of the lowest three optical transitions in a polydisperse ensemble of colloidal CdSe quantum dots. We first compare to prior transient absorption studies to confirm excitation-state-dependent dynamics such as increased surface-trapping upon excitation of hot electrons. Second, we demonstrate fast band-edge electron-hole pair solvation by ligand and phonon modes, as the ensemble relaxes to the photoluminescent state on a sub-picosecond time-scale. Third, we find that static disorder due to size polydispersity dominates the nonlinear response upon excitation into the hot electron manifold; this broadening mechanism stands in contrast to that of the band-edge exciton. Finally, we demonstrate excitation-energy dependent hot-carrier relaxation rates, and we describe how two-dimensional electronic spectroscopy can complement other transient nonlinear techniques. PMID:24588185
NASA Astrophysics Data System (ADS)
Bonev, Stanimir; Ashcroft, Neil W.
2000-03-01
We have studied a system of protons (with compensating additional electrons) embedded in a previously neutral electron gas (the standard jellium problem) at densities corresponding to rs = 0.8 - 3.4. This expands on the study of a single proton in an interacting electron gas(C.O. Almbladh, U. von Barth, Z.D. Popovic, and M.J. Scott, Phys. Rev. B \\underline14), 2250 (1976), and in particular, it permits a detailed study of a proton pairing in a many-electron environment. Ab initio (LSDA) simulations show the appearance of a bond proton-pair at rs >= 3.2 and with a dimer length R ≈ 1.5 a_0. At larger separations, the preferred state is a pair of H^- - like ions, i.e. electrons are captured from jellium. This is in accordance with an analysis of the situation where the charge surrounding a proton is determined jointly by the cusp condition and linear response.
NASA Astrophysics Data System (ADS)
Takeya, J.
2008-10-01
The environment of surface electrons at 'solid-to-liquid' interfaces is somewhat extreme, subjected to intense local electric fields or harsh chemical pressures that high-density ionic charge or polarization of mobile molecules create. In this proceedings, we argue functions of electronic carriers generated at the surface of organic semiconductor crystals in response to the local electric fields in the very vicinity of the interface to ionic liquid. The ionic liquids (ILs), or room temperature molten salts, are gaining considerable interest in the recent decade at the prospect of nonvolatile 'green solvents', with the development of chemically stable and nontoxic compounds. Moreover, such materials are also applied to electrolytes for lithium ion batteries and electric double-layer (EDL) capacitors. Our present solid-to-liquid interfaces of rubrene single crystals and ionic liquids work as fast-switching organic field-effect transistors (OFETs) with the highest transconductance, i.e. the most efficient response of the output current to the input voltage, among the OFETs ever built.
Batista, Marcelo B; Sfeir, Michelle Z T; Faoro, Helisson; Wassem, Roseli; Steffens, Maria B R; Pedrosa, Fábio O; Souza, Emanuel M; Dixon, Ray; Monteiro, Rose A
2013-01-01
The transcriptional regulatory protein Fnr, acts as an intracellular redox sensor regulating a wide range of genes in response to changes in oxygen levels. Genome sequencing of Herbaspirillum seropedicae SmR1 revealed the presence of three fnr-like genes. In this study we have constructed single, double and triple fnr deletion mutant strains of H. seropedicae. Transcriptional profiling in combination with expression data from reporter fusions, together with spectroscopic analysis, demonstrates that the Fnr1 and Fnr3 proteins not only regulate expression of the cbb3-type respiratory oxidase, but also control the cytochrome content and other component complexes required for the cytochrome c-based electron transport pathway. Accordingly, in the absence of the three Fnr paralogs, growth is restricted at low oxygen tensions and nitrogenase activity is impaired. Our results suggest that the H. seropedicae Fnr proteins are major players in regulating the composition of the electron transport chain in response to prevailing oxygen concentrations.
Batista, Marcelo B.; Sfeir, Michelle Z. T.; Faoro, Helisson; Wassem, Roseli; Steffens, Maria B. R.; Pedrosa, Fábio O.; Souza, Emanuel M.; Dixon, Ray; Monteiro, Rose A.
2013-01-01
The transcriptional regulatory protein Fnr, acts as an intracellular redox sensor regulating a wide range of genes in response to changes in oxygen levels. Genome sequencing of Herbaspirillum seropedicae SmR1 revealed the presence of three fnr-like genes. In this study we have constructed single, double and triple fnr deletion mutant strains of H. seropedicae. Transcriptional profiling in combination with expression data from reporter fusions, together with spectroscopic analysis, demonstrates that the Fnr1 and Fnr3 proteins not only regulate expression of the cbb3-type respiratory oxidase, but also control the cytochrome content and other component complexes required for the cytochrome c-based electron transport pathway. Accordingly, in the absence of the three Fnr paralogs, growth is restricted at low oxygen tensions and nitrogenase activity is impaired. Our results suggest that the H. seropedicae Fnr proteins are major players in regulating the composition of the electron transport chain in response to prevailing oxygen concentrations. PMID:23996052
Kalimuthu, Palraj; Heath, Matthew D; Santini, Joanne M; Kappler, Ulrike; Bernhardt, Paul V
2014-01-01
We describe the catalytic voltammograms of the periplasmic arsenite oxidase (Aio) from the chemolithoautotrophic bacterium Rhizobium sp. str. NT-26 that oxidizes arsenite to arsenate. Electrochemistry of the enzyme was accomplished using its native electron transfer partner, cytochrome c552 (cyt c552), as a mediator. The protein cyt c552 adsorbed on a mercaptoundecanoic acid (MUA) modified Au electrode exhibited a stable, reversible one-electron voltammetric response at +275mV vs NHE (pH6). In the presence of arsenite and Aio the voltammetry of cyt c552 is transformed from a transient response to an amplified sigmoidal (steady state) wave consistent with an electro-catalytic system. Digital simulation was performed using a single set of parameters for all catalytic voltammetries obtained at different sweep rates and various substrate concentrations. The obtained kinetic constants from digital simulation provide new insight into the kinetics of the NT-26 Aio catalytic mechanism. © 2013.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rezaee, Mohammad, E-mail: Mohammad.Rezaee@USherbrooke.ca; Hunting, Darel J.; Sanche, Léon
2014-07-15
Purpose: The present study introduces a new method to establish a direct correlation between biologically related physical parameters (i.e., stopping and damaging cross sections, respectively) for an Auger-electron emitting radionuclide decaying within a target molecule (e.g., DNA), so as to evaluate the efficacy of the radionuclide at the molecular level. These parameters can be applied to the dosimetry of Auger electrons and the quantification of their biological effects, which are the main criteria to assess the therapeutic efficacy of Auger-electron emitting radionuclides. Methods: Absorbed dose and stopping cross section for the Auger electrons of 5–18 eV emitted by{sup 125}I withinmore » DNA were determined by developing a nanodosimetric model. The molecular damages induced by these Auger electrons were investigated by measuring damaging cross section, including that for the formation of DNA single- and double-strand breaks. Nanoscale films of pure plasmid DNA were prepared via the freeze-drying technique and subsequently irradiated with low-energy electrons at various fluences. The damaging cross sections were determined by employing a molecular survival model to the measured exposure–response curves for induction of DNA strand breaks. Results: For a single decay of{sup 125}I within DNA, the Auger electrons of 5–18 eV deposit the energies of 12.1 and 9.1 eV within a 4.2-nm{sup 3} volume of a hydrated or dry DNA, which results in the absorbed doses of 270 and 210 kGy, respectively. DNA bases have a major contribution to the deposited energies. Ten-electronvolt and high linear energy transfer 100-eV electrons have a similar cross section for the formation of DNA double-strand break, while 100-eV electrons are twice as efficient as 10 eV in the induction of single-strand break. Conclusions: Ultra-low-energy electrons (<18 eV) substantially contribute to the absorbed dose and to the molecular damage from Auger-electron emitting radionuclides; hence, they should be considered in the dosimetry calculation of such radionuclides. Moreover, absorbed dose is not an appropriate physical parameter for nanodosimetry. Instead, stopping cross section, which describes the probability of energy deposition in a target molecule can be an appropriate nanodosimetric parameter. The stopping cross section is correlated with a damaging cross section (e.g., cross section for the double-strand break formation) to quantify the number of each specific lesion in a target molecule for each nuclear decay of a single Auger-electron emitting radionuclide.« less
Rezaee, Mohammad; Hunting, Darel J.; Sanche, Léon
2015-01-01
Purpose The present study introduces a new method to establish a direct correlation between biologically related physical parameters (i.e., stopping and damaging cross sections, respectively) for an Auger-electron emitting radionuclide decaying within a target molecule (e.g., DNA), so as to evaluate the efficacy of the radionuclide at the molecular level. These parameters can be applied to the dosimetry of Auger electrons and the quantification of their biological effects, which are the main criteria to assess the therapeutic efficacy of Auger-electron emitting radionuclides. Methods Absorbed dose and stopping cross section for the Auger electrons of 5–18 eV emitted by 125I within DNA were determined by developing a nanodosimetric model. The molecular damages induced by these Auger electrons were investigated by measuring damaging cross section, including that for the formation of DNA single- and double-strand breaks. Nanoscale films of pure plasmid DNA were prepared via the freeze-drying technique and subsequently irradiated with low-energy electrons at various fluences. The damaging cross sections were determined by employing a molecular survival model to the measured exposure–response curves for induction of DNA strand breaks. Results For a single decay of 125I within DNA, the Auger electrons of 5–18 eV deposit the energies of 12.1 and 9.1 eV within a 4.2-nm3 volume of a hydrated or dry DNA, which results in the absorbed doses of 270 and 210 kGy, respectively. DNA bases have a major contribution to the deposited energies. Ten-electronvolt and high linear energy transfer 100-eV electrons have a similar cross section for the formation of DNA double-strand break, while 100-eV electrons are twice as efficient as 10 eV in the induction of single-strand break. Conclusions Ultra-low-energy electrons (<18 eV) substantially contribute to the absorbed dose and to the molecular damage from Auger-electron emitting radionuclides; hence, they should be considered in the dosimetry calculation of such radionuclides. Moreover, absorbed dose is not an appropriate physical parameter for nanodosimetry. Instead, stopping cross section, which describes the probability of energy deposition in a target molecule can be an appropriate nanodosimetric parameter. The stopping cross section is correlated with a damaging cross section (e.g., cross section for the double-strand break formation) to quantify the number of each specific lesion in a target molecule for each nuclear decay of a single Auger-electron emitting radionuclide. PMID:24989405
Highly scalable multichannel mesh electronics for stable chronic brain electrophysiology
Fu, Tian-Ming; Hong, Guosong; Viveros, Robert D.; Zhou, Tao
2017-01-01
Implantable electrical probes have led to advances in neuroscience, brain−machine interfaces, and treatment of neurological diseases, yet they remain limited in several key aspects. Ideally, an electrical probe should be capable of recording from large numbers of neurons across multiple local circuits and, importantly, allow stable tracking of the evolution of these neurons over the entire course of study. Silicon probes based on microfabrication can yield large-scale, high-density recording but face challenges of chronic gliosis and instability due to mechanical and structural mismatch with the brain. Ultraflexible mesh electronics, on the other hand, have demonstrated negligible chronic immune response and stable long-term brain monitoring at single-neuron level, although, to date, it has been limited to 16 channels. Here, we present a scalable scheme for highly multiplexed mesh electronics probes to bridge the gap between scalability and flexibility, where 32 to 128 channels per probe were implemented while the crucial brain-like structure and mechanics were maintained. Combining this mesh design with multisite injection, we demonstrate stable 128-channel local field potential and single-unit recordings from multiple brain regions in awake restrained mice over 4 mo. In addition, the newly integrated mesh is used to validate stable chronic recordings in freely behaving mice. This scalable scheme for mesh electronics together with demonstrated long-term stability represent important progress toward the realization of ideal implantable electrical probes allowing for mapping and tracking single-neuron level circuit changes associated with learning, aging, and neurodegenerative diseases. PMID:29109247
Antibiotic use during the intracoelomic implantation of electronic tags into fish
Mulcahy, D.M.
2011-01-01
The use of antibiotics, in particular, the use of a single dose of antibiotics during electronic tag implantation is of unproven value, and carries with it the potential for the development of antibiotic resistance in bacteria and the alteration of the immune response of the fish. Antibiotic use during electronic tag implantation must conform to relevant drug laws and regulations in the country where work is being done, including the requirements for withdrawal times before human consumption is a possibility. Currently, the choice of antibiotics (most often tetracycline or oxytetracycline) and the use of a single dose of the drug are decisions made without knowledge of the basic need for antibiotic usage and of the bacteria involved in infections that occur following electronic tag implantation. Correct perioperative use of an antibiotic is to apply the drug to the animal before surgery begins, to assure serum and tissue levels of the drug are adequate before the incision is made. However, the most common perioperative application of antibiotics during implantation of an electronic tag is to delay the administration of the drug, injecting it into the coelom after the electronic tag is inserted, just prior to closure of the incision. There is little empirical evidence that the present application of antibiotics in fish being implanted with electronic tags is of value. Improvements should first be made to surgical techniques, especially the use of aseptic techniques and sterilized instruments and electronic tags, before resorting to antibiotics. ?? 2010 Springer Science+Business Media B.V.(outside the USA).
Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot
NASA Astrophysics Data System (ADS)
Kawakami, Erika
2015-03-01
Electron spins in Si/SiGe quantum dots are one of the most promising candidates for a quantum bit for their potential to scale up and their long dephasing time. We realized coherent control of single electron spin in a single quantum dot (QD) defined in a Si/SiGe 2D electron gas. Spin rotations are achieved by applying microwave excitation to one of the gates, which oscillates the electron wave function back and forth in the gradient field produced by cobalt micromagnets fabricated near the dot. The electron spin is read out in single-shot mode via spin-to-charge conversion and a QD charge sensor. In earlier work, both the fidelity of single-spin rotations and the spin echo decay time were limited by a small splitting of the lowest two valleys. By changing the direction and magnitude of the external magnetic field as well as the gate voltages that define the dot potential, we were able to increase the valley splitting and also the difference in Zeeman splittings associated with these two valleys. This has resulted in considerable improvements in the gate fidelity and spin echo decay times. Thanks to the long intrinsic dephasing time T2* = 900 ns and Rabi frequency of 1.4 MHz, we now obtain an average single qubit gate fidelity of an electron spin in a Si/SiGe quantum dot of 99 percent, measured via randomized benchmarking. The dephasing time is extended to 70 us for the Hahn echo and up to 400 us with CPMG80. From the dynamical decoupling data, we extract the noise spectral density in the range of 30 kHz-3 MHz. We will discuss the mechanism that induces this noise and is responsible for decoherence. In parallel, we also realized electron spin resonance and coherent single-spin control by second harmonic generation, which means we can drive an electron spin at half the Larmor frequency. Finally, we observe not only single-spin transitions but also transitions whereby both the spin and the valley state are flipped. Altogether, these measurements have significantly increased our understanding and raised the prospects of spin qubits in Si/SiGe quantum dots. This work has been done in collaboration with T.M. J. Jullien, P. Scarlino, V.V. Dobrovitski, D.R. Ward, D. E. Savage, M. G. Lagally, Mark Friesen, S. N. Coppersmith, M. A. Eriksson, and L. M. K. Vandersypen. This work was supported in part by the Army Research Office (ARO) (W911NF-12-0607), the Foundation for Fundamental Research on Matter (FOM) and the European Research Council (ERC). Development and maintenance of the growth facilities used for fabricating samples was supported by the Department of Energy (DOE) (DE-FG02-03ER46028). E.K. was supported by a fellowship from the Nakajima Foundation. This research utilized NSF-supported shared facilities at the University of Wisconsin-Madison.
Spin dynamics, electronic, and thermal transport properties of two-dimensional CrPS4 single crystal
NASA Astrophysics Data System (ADS)
Pei, Q. L.; Luo, X.; Lin, G. T.; Song, J. Y.; Hu, L.; Zou, Y. M.; Yu, L.; Tong, W.; Song, W. H.; Lu, W. J.; Sun, Y. P.
2016-01-01
2-Dimensional (2D) CrPS4 single crystals have been grown by the chemical vapor transport method. The crystallographic, magnetic, electronic, and thermal transport properties of the single crystals were investigated by the room-temperature X-ray diffraction, electrical resistivity ρ(T), specific heat CP(T), and the electronic spin response (ESR) measurements. CrPS4 crystals crystallize into a monoclinic structure. The electrical resistivity ρ(T) shows a semiconducting behavior with an energy gap Ea = 0.166 eV. The antiferromagnetic transition temperature is about TN = 36 K. The spin flipping induced by the applied magnetic field is observed along the c axis. The magnetic phase diagram of CrPS4 single crystal has been discussed. The extracted magnetic entropy at TN is about 10.8 J/mol K, which is consistent with the theoretical value R ln(2S + 1) for S = 3/2 of the Cr3+ ion. Based on the mean-field theory, the magnetic exchange constants J1 and Jc corresponding to the interactions of the intralayer and between layers are about 0.143 meV and -0.955 meV are obtained based on the fitting of the susceptibility above TN, which agree with the results obtained from the ESR measurements. With the help of the strain for tuning the magnetic properties, monolayer CrPS4 may be a promising candidate to explore 2D magnetic semiconductors.
NASA Astrophysics Data System (ADS)
Jin, Xiao-Bo; Li, Yi-Xiang; Su, Yao; Guo, Zheng; Gu, Cui-Ping; Huang, Jia-Rui; Meng, Fan-Li; Huang, Xing-Jiu; Li, Min-Qiang; Liu, Jin-Huai
2016-09-01
Porous and single-crystalline ZnO nanobelts have been prepared through annealing precursors of ZnSe · 0.5N2H4 well-defined and smooth nanobelts, which have been synthesized via a simple hydrothermal method. The composition and morphology evolutions with the calcination temperatures have been investigated in detail for as-prepared precursor nanobelts, suggesting that they can be easily transformed into ZnO nanobelts by preserving their initial morphology via calcination in air. In contrast, the obtained ZnO nanobelts are densely porous, owing to the thermal decomposition and oxidization of the precursor nanobelts. More importantly, the achieved porous ZnO nanobelts are single-crystalline, different from previously reported ones. Motivated by the intrinsic properties of the porous structure and good electronic transporting ability of single crystals, their gas-sensing performance has been further explored. It is demonstrated that porous ZnO single-crystalline nanobelts exhibit high response and repeatability toward volatile organic compounds, such as ethanol and acetone, with a short response/recovery time. Furthermore, their optoelectronic behaviors indicate that they can be promisingly employed to fabricate photoelectrochemical sensors.
High-speed electronic beam steering using injection locking of a laser-diode array
NASA Astrophysics Data System (ADS)
Swanson, E. A.; Abbas, G. L.; Yang, S.; Chan, V. W. S.; Fujimoto, J. G.
1987-01-01
High-speed electronic steering of the output beam of a 10-stripe laser-diode array is reported. The array was injection locked to a single-frequency laser diode. High-speed steering of the locked 0.5-deg-wide far-field lobe is demonstrated either by modulating the injection current of the array or by modulating the frequency of the master laser. Closed-loop tracking bandwidths of 70 kHz and 3 MHz, respectively, were obtained. The beam-steering bandwidths are limited by the FM responses of the modulated devices for both techniques.
NASA Astrophysics Data System (ADS)
Lin, Jia-He; Zhang, Hong; Cheng, Xin-Lu; Miyamoto, Yoshiyuki
2017-07-01
Recently, single-layer group III monochalcogenides have attracted both theoretical and experimental interest at their potential applications in photonic devices, electronic devices, and solar energy conversion. Excited by this, we theoretically design two kinds of highly stable single-layer group IV-V (IV =Si ,Ge , and Sn; V =N and P) and group V-IV-III-VI (IV =Si ,Ge , and Sn; V =N and P; III =Al ,Ga , and In; VI =O and S) compounds with the same structures with single-layer group III monochalcogenides via first-principles simulations. By using accurate hybrid functional and quasiparticle methods, we show the single-layer group IV-V and group V-IV-III-VI are indirect bandgap semiconductors with their bandgaps and band edge positions conforming to the criteria of photocatalysts for water splitting. By applying a biaxial strain on single-layer group IV-V, single-layer group IV nitrides show a potential on mechanical sensors due to their bandgaps showing an almost linear response for strain. Furthermore, our calculations show that both single-layer group IV-V and group V-IV-III-VI have absorption from the visible light region to far-ultraviolet region, especially for single-layer SiN-AlO and SnN-InO, which have strong absorption in the visible light region, resulting in excellent potential for solar energy conversion and visible light photocatalytic water splitting. Our research provides valuable insight for finding more potential functional two-dimensional semiconductors applied in optoelectronics, solar energy conversion, and photocatalytic water splitting.
An investigation into the feasibility of myoglobin-based single-electron transistors
Li, Debin; Gannett, Peter M.; Lederman, David
2016-01-01
Myoglobin single-electron transistors were investigated using nanometer-gap platinum electrodes fabricated by electromigration at cryogenic temperatures. Apomyoglobin (myoglobin without heme group) was used as a reference. The results suggest single electron transport is mediated by resonant tunneling with the electronic and vibrational levels of the heme group in a single protein. They also represent a proof-of-principle that proteins with redox centers across nanometer-gap electrodes can be utilized to fabricate single-electron transistors. The protein orientation and conformation may significantly affect the conductance of these devices. Future improvements in device reproducibility and yield will require control of these factors. PMID:22972432
Electrical and optical transport properties of single layer WSe2
NASA Astrophysics Data System (ADS)
Tahir, M.
2018-03-01
The electronic properties of single layer WSe2 are distinct from the famous graphene due to strong spin orbit coupling, a huge band gap and an anisotropic lifting of the degeneracy of the valley degree of freedom under Zeeman field. In this work, band structure of the monolayer WSe2 is evaluated in the presence of spin and valley Zeeman fields to study the electrical and optical transport properties. Using Kubo formalism, an explicit expression for the electrical Hall conductivity is examined at finite temperatures. The electrical longitudinal conductivity is also evaluated. Further, the longitudinal and Hall optical conductivities are analyzed. It is observed that the contributions of the spin-up and spin-down states to the power absorption spectrum depend on the valley index. The numerical results exhibit absorption peaks as a function of photon energy, ℏ ω, in the range ∼ 1.5 -2 eV. Also, the optical response lies in the visible frequency range in contrast to the conventional two-dimensional electron gas or graphene where the response is limited to terahertz regime. This ability to isolate carriers in spin-valley coupled structures may make WSe2 a promising candidate for future spintronics, valleytronics and optical devices.
Weaver, Jordan S.; Priddy, Matthew W.; McDowell, David L.; ...
2016-09-01
Here, spherical nanoindentation combined with electron back-scattered diffraction has been employed to characterize the grain-scale elastic and plastic anisotropy of single crystal alpha-Ti of two different compositions (in two different titanium alloys). Data analyses protocols needed to reliably extract the desired properties of interest are extended and demonstrated in this paper. Specifically, the grain-scale mechanical response is extracted in the form of indentation stress-strain curves for commercially pure (CP-Ti) alpha-Ti and alloyed (Ti-64) titanium from measurements on polycrystalline samples. The results are compared with responses of single crystals and nanoindentation tests (hardness and modulus) from the literature, and the measuredmore » indentation moduli are validated using crystal-elastic finite element simulations. The results obtained in this study show that (i) it is possible to characterize reliably the elastic and plastic anisotropy of alpha-Ti (hcp) of varying alloying contents with spherical nanoindentation stress-strain curves, (ii) the indentation modulus of alpha-Ti-64 is 5–10% less than CP-Ti, and (iii) the indentation yield strength of alpha-Ti-64 is 50–80% higher than CP-Ti.« less
Chen, Hua-Pin
2014-01-01
This paper presents a versatile tunable current-mode universal biquadratic filter with four-input and three-output employing only two multioutput differential voltage current conveyors (MO-DVCCs), two grounded capacitors, and a well-known method for replacement of three grounded resistors by MOSFET-based electronic resistors. The proposed configuration exhibits high-output impedance which is important for easy cascading in the current-mode operations. The proposed circuit can be used as either a two-input three-output circuit or a three-input single-output circuit. In the operation of two-input three-output circuit, the bandpass, highpass, and bandreject filtering responses can be realized simultaneously while the allpass filtering response can be easily obtained by connecting appropriated output current directly without using additional stages. In the operation of three-input single-output circuit, all five generic filtering functions can be easily realized by selecting different three-input current signals. The filter permits orthogonal controllability of the quality factor and resonance angular frequency, and no inverting-type input current signals are imposed. All the passive and active sensitivities are low. Postlayout simulations were carried out to verify the functionality of the design.
2014-01-01
This paper presents a versatile tunable current-mode universal biquadratic filter with four-input and three-output employing only two multioutput differential voltage current conveyors (MO-DVCCs), two grounded capacitors, and a well-known method for replacement of three grounded resistors by MOSFET-based electronic resistors. The proposed configuration exhibits high-output impedance which is important for easy cascading in the current-mode operations. The proposed circuit can be used as either a two-input three-output circuit or a three-input single-output circuit. In the operation of two-input three-output circuit, the bandpass, highpass, and bandreject filtering responses can be realized simultaneously while the allpass filtering response can be easily obtained by connecting appropriated output current directly without using additional stages. In the operation of three-input single-output circuit, all five generic filtering functions can be easily realized by selecting different three-input current signals. The filter permits orthogonal controllability of the quality factor and resonance angular frequency, and no inverting-type input current signals are imposed. All the passive and active sensitivities are low. Postlayout simulations were carried out to verify the functionality of the design. PMID:24982963
Cavity-coupled double-quantum dot at finite bias: Analogy with lasers and beyond
NASA Astrophysics Data System (ADS)
Kulkarni, Manas; Cotlet, Ovidiu; Türeci, Hakan E.
2014-09-01
We present a theoretical and experimental study of photonic and electronic transport properties of a voltage biased InAs semiconductor double quantum dot (DQD) that is dipole coupled to a superconducting transmission line resonator. We obtain the master equation for the reduced density matrix of the coupled system of cavity photons and DQD electrons accounting systematically for both the presence of phonons and the effect of leads at finite voltage bias. We subsequently derive analytical expressions for transmission, phase response, photon number, and the nonequilibrium steady-state electron current. We show that the coupled system under finite bias realizes an unconventional version of a single-atom laser and analyze the spectrum and the statistics of the photon flux leaving the cavity. In the transmission mode, the system behaves as a saturable single-atom amplifier for the incoming photon flux. Finally, we show that the back action of the photon emission on the steady-state current can be substantial. Our analytical results are compared to exact master equation results establishing regimes of validity of various analytical models. We compare our findings to available experimental measurements.
Spin-orbit coupling and the static polarizability of single-wall carbon nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diniz, Ginetom S., E-mail: ginetom@gmail.com; Ulloa, Sergio E.
2014-07-14
We calculate the static longitudinal polarizability of single-wall carbon tubes in the long wavelength limit taking into account spin-orbit effects. We use a four-orbital orthogonal tight-binding formalism to describe the electronic states and the random phase approximation to calculate the dielectric function. We study the role of both the Rashba as well as the intrinsic spin-orbit interactions on the longitudinal dielectric response, i.e., when the probing electric field is parallel to the nanotube axis. The spin-orbit interaction modifies the nanotube electronic band dispersions, which may especially result in a small gap opening in otherwise metallic tubes. The bandgap size andmore » state features, the result of competition between Rashba and intrinsic spin-orbit interactions, result in drastic changes in the longitudinal static polarizability of the system. We discuss results for different nanotube types and the dependence on nanotube radius and spin-orbit couplings.« less
NASA Technical Reports Server (NTRS)
Pongratz, M. B.
1972-01-01
The results of high time-resolution measurements of energetic electrons in an auroral break up are presented. Electrons with energies from 500 eV to over 100 keV and pitch angles from 0 to 150 deg were detected with two detectors onboard sounding rocket 18:63 UE. Complete energy spectra were taken every 0.1 seconds. The procedure for cleaning and activating the BeCu dynodes of a small, rugged, high gain electron multiplier is described. A theoretical study of the energy-angular response of a spherical plate electrostatic analyzer is compared to experimental results. An energy spectrum unfolding technique which does not require the assumption of a histogram-type energy spectrum is presented. A method of determining sounding rocket orientation from the output of a single magnetometer is described.
Single n+-i-n+ InP nanowires for highly sensitive terahertz detection.
Peng, Kun; Parkinson, Patrick; Gao, Qian; Boland, Jessica L; Li, Ziyuan; Wang, Fan; Mokkapati, Sudha; Fu, Lan; Johnston, Michael B; Tan, Hark Hoe; Jagadish, Chennupati
2017-03-24
Developing single-nanowire terahertz (THz) electronics and employing them as sub-wavelength components for highly-integrated THz time-domain spectroscopy (THz-TDS) applications is a promising approach to achieve future low-cost, highly integrable and high-resolution THz tools, which are desirable in many areas spanning from security, industry, environmental monitoring and medical diagnostics to fundamental science. In this work, we present the design and growth of n + -i-n + InP nanowires. The axial doping profile of the n + -i-n + InP nanowires has been calibrated and characterized using combined optical and electrical approaches to achieve nanowire devices with low contact resistances, on which the highly-sensitive InP single-nanowire photoconductive THz detectors have been demonstrated. While the n + -i-n + InP nanowire detector has a only pA-level response current, it has a 2.5 times improved signal-to-noise ratio compared with the undoped InP nanowire detector and is comparable to traditional bulk THz detectors. This performance indicates a promising path to nanowire-based THz electronics for future commercial applications.
Low-Dimensional Nanomaterials and Molecular Dielectrics for Radiation-Hard Electronics
NASA Astrophysics Data System (ADS)
McMorrow, Julian
The electronic materials research driving Moore's law has provided several decades of increasingly powerful yet simultaneously miniaturized computer technologies. As we approach the physical and practical limits of what can be accomplished with silicon electronics, we look to new materials to drive innovation in future electronic applications. New materials paradigms require the development of understanding from first principles to the demonstration of applications that comes with mature technologies. Semiconducting single-walled carbon nanotubes (SWCNTs), single- and few-layer molybdenum disulfide (MoS2) and self-assembled nanodielectric (SAND) gate materials have all made significant impacts in the research field of unconventional electronic materials. The materials selection, interfaces between materials, processing steps to assemble them, and their interaction with their environment all have significant bearing on the operation of the overall device. Operating in harsh radiation environments, like those of satellites orbiting the Earth, present unique challenges to the functionality and reliability of electronic devices. Because the future of space-bound electronics is often informed by the technology of terrestrial devices, a proactive approach is adopted to identify and understand the radiation response of new materials systems as they emerge and develop. The work discussed here drives the innovation and development of multiple nanomaterial based electronic technologies while simultaneously exploring their relevant radiation response mechanisms. First, collaborative efforts result in the demonstration of a SWCNT-based circuit technology that is solution processed, large-area, and compatible with flexible substrates. The statistical characterization of SWCNT transistors enables the development of robust doping and encapsulation schemes, which make the SWCNT circuits stable, scalable, and low-power. These SWCNTs are then integrated into static random access memory (SRAM) cells, an accomplishment that illustrates the technological relevance of this work by implementing a highly utilized component of modern day computing. Next, these SRAM devices demonstrate functionality as true random number generators (TRNGs), which are critical components in cryptography and encryption. The randomness of these SWCNT TRNGs is verified by a suite of statistical tests. This achievement has implications for securing data and communication in future solution-processed, large-area, flexible electronics. The unprecedented integration achieved by the underlying SWCNT doping and encapsulation motivates the study of this technology in a radiation environment. Doing so results in an understanding of the fundamental charge trapping mechanisms responsible for the radiation response in this system. The integrated nature of these devices enables, for the first time, the observation of system-level effects in a SWCNT integrated circuit technology. This technology is found to be total ionizing dose-hard, a promising result for the adoption of SWCNTs in future space-bound applications. Compared to SWCNTs, the field of MoS2 electronics is relatively nascent. As a result, studies of radiation effects in MoS2 devices focus on the fundamental mechanisms at play in the materials system. Here, we reveal the critical role of atmospheric adsorbates in the radiation effects of MoS2 transistors by measuring their response to vacuum ultraviolet radiation. These results highlight the importance of controlling the atmosphere of MoS2 devices during irradiation. Furthermore, we make recommendations for radiation-hard MoS2-based devices in the future as the technology continues to mature. One such recommendation is the incorporation of specialized dielectrics with proven radiation hardness. To this end, we address the materials integration challenge of incorporating SAND gate dielectrics on arbitrary substrates. We explore a novel approach for preparing metal substrates for SAND deposition, supporting the SAND superlattice structure and its superlative electronic properties on a metal surface. This result is critical for conducting fundamental transport studies when integrating SAND with novel semiconductor materials, as well as enabling complex circuit integration and SAND on flexible substrates. Altogether, these works drive the integration of novel nanoelectronic materials for future electronics while providing an understanding of their varying radiation response mechanisms to enable their adoption in future space-bound applications.
Optothermal response of a single silicon nanotip
NASA Astrophysics Data System (ADS)
Vella, A.; Shinde, D.; Houard, J.; Silaeva, E.; Arnoldi, L.; Blum, I.; Rigutti, L.; Pertreux, E.; Maioli, P.; Crut, A.; Del Fatti, N.
2018-02-01
The optical properties and thermal dynamics of conical single silicon nanotips are experimentally and theoretically investigated. The spectral and spatial dependencies of their optical extinction are quantitatively measured by spatial modulation spectroscopy (SMS). A nonuniform optical extinction along the tip axis and an enhanced near-infrared absorption, as compared to bulk crystalline silicon, are evidenced. This information is a key input for computing the thermal response of single silicon nanotips under ultrafast laser illumination, which is investigated by laser assisted atom probe tomography (La-APT) used as a highly sensitive temperature probe. A combination of these two experimental techniques and comparison with modeling also permits us to elucidate the impact of thermal effects on the laser assisted field evaporation process. Extension of this coupled approach opens up future perspectives for the quantitative study of the optical and thermal properties of a wide class of individual nano-objects, in particular elongated ones such as nanotubes, nanowires, and nanocones, which constitute promising nanosources for electron and/or ion emission.
Physical response of gold nanoparticles to single self-ion bombardment
Bufford, Daniel C.; Hattar, Khalid
2014-09-23
The reliability of nanomaterials depends on maintaining their specific sizes and structures. However, the stability of many nanomaterials in radiation environments remains uncertain due to the lack of a fully developed fundamental understanding of the radiation response on the nanoscale. To provide an insight into the dynamic aspects of single ion effects in nanomaterials, gold nanoparticles (NPs) with nominal diameters of 5, 20, and 60 nm were subjected to self-ion irradiation at energies of 46 keV, 2.8 MeV, and 10 MeV in situ inside of a transmission electron microscope. Ion interactions created a variety of far-from-equilibrium structures including small (~1more » nm) sputtered nanoclusters from the parent NPs of all sizes. Single ions created surface bumps and elongated nanofilaments in the 60 nm NPs. As a result, similar shape changes were observed in the 20 nm nanoparticles, while the 5 nm nanoparticles were transiently melted or explosively broken apart.« less
NASA Astrophysics Data System (ADS)
Singh, Swati; Kumar, Ashok; Khare, Shashi; Mulchandani, Ashok; Rajesh
2014-11-01
A specific and ultrasensitive, label free single-walled carbon nanotubes (SWNTs) based chemiresistive genosensor was fabricated for the early detection of Streptococcus pyogenes infection in human causing rheumatic heart disease. The mga gene of S. pyogenes specific 24 mer ssDNA probe was covalently immobilized on SWNT through a molecular bilinker, 1-pyrenemethylamine, using carbodiimide coupling reaction. The sensor was characterized by the current-voltage (I-V) characteristic curve and scanning electron microscopy. The sensing performance of the sensor was studied with respect to changes in conductance in SWNT channel based on hybridization of the target S. pyogenes single stranded genomic DNA (ssG-DNA) to its complementary 24 mer ssDNA probe. The sensor shows negligible response to non-complementary Staphylococcus aureus ssG-DNA, confirming the specificity of the sensor only with S. pyogenes. The genosensor exhibited a linear response to S. pyogenes G-DNA from 1 to1000 ng ml-1 with a limit of detection of 0.16 ng ml-1.
Ultrafast dynamics and decoherence of quasiparticles in surface bands: Development of the formalism
NASA Astrophysics Data System (ADS)
Gumhalter, Branko
2005-10-01
We describe a formalism suitable for studying the ultrafast dynamics and nonadiabatic effects associated with propagation of a single electron injected into an empty band. Within the band the electron is coupled to vibrational or electronic excitations that can be modeled by bosons. The formalism is based on the application of cumulant expansion to calculations of diagonal single particle propagators that are used in the interpretations of time resolved measurements of the surface electronic structure. Second and fourth order cumulants which arise from linear coupling to bosonic excitations and give leading contributions to the renormalization of propagators are explicitly calculated in the real time domain and their properties analyzed. This approach enables the assessment of transient effects and energy transfer associated with nonadiabatic response of the system to promotion of electrons into unoccupied bands, as well as of higher order corrections to the lifetimes and energy shifts of the initial electronic states that in the adiabatic regime are obtained from Fermi’s golden rule approach or its improvements such as the GW approximation. In the form presented the formalism is particularly suitable for studying the non-Markovian evolution and ultrafast decoherence of electronic states encountered in electron spectroscopies of quasi-two-dimensional bands on metal surfaces whose descriptions are inaccessible to the approaches based on the adiabatic hypothesis. The fast convergence of the results obtained by this procedure is demonstrated for a simple model system relevant to surface problems. On the basis of this and some general properties of cumulants it is argued that in the majority of surface problems involving electron-boson interactions the ultrafast dynamics of quasiparticles is accurately described by the second order cumulant, which can be calculated with the effort not exceeding those encountered in the standard GW approximation calculations.
Interplay of hot electrons from localized and propagating plasmons.
Hoang, Chung V; Hayashi, Koki; Ito, Yasuo; Gorai, Naoki; Allison, Giles; Shi, Xu; Sun, Quan; Cheng, Zhenzhou; Ueno, Kosei; Goda, Keisuke; Misawa, Hiroaki
2017-10-03
Plasmon-induced hot-electron generation has recently received considerable interest and has been studied to develop novel applications in optoelectronics, photovoltaics and green chemistry. Such hot electrons are typically generated from either localized plasmons in metal nanoparticles or propagating plasmons in patterned metal nanostructures. Here we simultaneously generate these heterogeneous plasmon-induced hot electrons and exploit their cooperative interplay in a single metal-semiconductor device to demonstrate, as an example, wavelength-controlled polarity-switchable photoconductivity. Specifically, the dual-plasmon device produces a net photocurrent whose polarity is determined by the balance in population and directionality between the hot electrons from localized and propagating plasmons. The current responsivity and polarity-switching wavelength of the device can be varied over the entire visible spectrum by tailoring the hot-electron interplay in various ways. This phenomenon may provide flexibility to manipulate the electrical output from light-matter interaction and offer opportunities for biosensors, long-distance communications, and photoconversion applications.Plasmon-induced hot electrons have potential applications spanning photodetection and photocatalysis. Here, Hoang et al. study the interplay between hot electrons generated by localized and propagating plasmons, and demonstrate wavelength-controlled polarity-switchable photoconductivity.
Jiang, Xiaocheng; Hu, Jinsong; Fitzgerald, Lisa A.; Biffinger, Justin C.; Xie, Ping; Ringeisen, Bradley R.; Lieber, Charles M.
2010-01-01
Microbial fuel cells (MFCs) represent a promising approach for sustainable energy production as they generate electricity directly from metabolism of organic substrates without the need for catalysts. However, the mechanisms of electron transfer between microbes and electrodes, which could ultimately limit power extraction, remain controversial. Here we demonstrate optically transparent nanoelectrodes as a platform to investigate extracellular electron transfer in Shewanella oneidensis MR-1, where an array of nanoholes precludes or single window allows for direct microbe-electrode contacts. Following addition of cells, short-circuit current measurements showed similar amplitude and temporal response for both electrode configurations, while in situ optical imaging demonstrates that the measured currents were uncorrelated with the cell number on the electrodes. High-resolution imaging showed the presence of thin, 4- to 5-nm diameter filaments emanating from cell bodies, although these filaments do not appear correlated with current generation. Both types of electrodes yielded similar currents at longer times in dense cell layers and exhibited a rapid drop in current upon removal of diffusible mediators. Reintroduction of the original cell-free media yielded a rapid increase in current to ∼80% of original level, whereas imaging showed that the positions of > 70% of cells remained unchanged during solution exchange. Together, these measurements show that electron transfer occurs predominantly by mediated mechanism in this model system. Last, simultaneous measurements of current and cell positions showed that cell motility and electron transfer were inversely correlated. The ability to control and image cell/electrode interactions down to the single-cell level provide a powerful approach for advancing our fundamental understanding of MFCs. PMID:20837546
Single-aliquot EPR dosimetry of wallboard (drywall).
Mistry, R; Thompson, J W; Boreham, D R; Rink, W J
2011-11-01
Electron paramagnetic resonance spectra and dose-response curves are presented for a variety of wallboard samples obtained from different manufacturing facilities, as well as for source gypsum and anhydrite. The intensity of the CO(3)(-) paramagnetic centre (G2) is enhanced with gamma radiation. Isothermal decay curves are used to propose annealing methods for the removal of the radiosensitive CO(3)(-) radical without affecting the unirradiated baseline. Post-irradiation annealing of wallboard prevents recuperation of the radiosensitive CO(3)(-) radical with additional irradiation. A single-aliquot additive dose procedure is developed that successfully measures test doses as low as 0.76 Gy.
pH-dependent electron-transport properties of carbon nanotubes.
Back, Ju Hee; Shim, Moonsub
2006-11-30
Carbon nanotube electrochemical transistors integrated with microfluidic channels are utilized to examine the effects of aqueous electrolyte solutions on the electron-transport properties of single isolated carbon nanotubes. In particular, pH and concentration of supporting inert electrolytes are examined. A systematic threshold voltage shift with pH is observed while the transconductance and subthreshold swing remain independent of pH and concentration. Decreasing pH leads to a negative shift of the threshold voltage, indicating that protonation does not lead to hole doping. Changing the type of contact metal does not alter the observed pH response. The pH-dependent charging of SiO2 substrate is ruled out as the origin based on measurements with suspended nanotube transistors. Increasing the ionic strength leads to reduced pH response. Contributions from possible surface chargeable chemical groups are considered.
Seebeck coefficient of one electron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durrani, Zahid A. K., E-mail: z.durrani@imperial.ac.uk
2014-03-07
The Seebeck coefficient of one electron, driven thermally into a semiconductor single-electron box, is investigated theoretically. With a finite temperature difference ΔT between the source and charging island, a single electron can charge the island in equilibrium, directly generating a Seebeck effect. Seebeck coefficients for small and finite ΔT are calculated and a thermally driven Coulomb staircase is predicted. Single-electron Seebeck oscillations occur with increasing ΔT, as one electron at a time charges the box. A method is proposed for experimental verification of these effects.
Enhancing electronic and optoelectronic performances of tungsten diselenide by plasma treatment.
Xie, Yuan; Wu, Enxiu; Hu, Ruixue; Qian, Shuangbei; Feng, Zhihong; Chen, Xuejiao; Zhang, Hao; Xu, Linyan; Hu, Xiaodong; Liu, Jing; Zhang, Daihua
2018-06-21
Transition metal dichalcogenides (TMDCs) have recently become spotlighted as nanomaterials for future electronic and optoelectronic devices. In this work, we develop an effective approach to enhance the electronic and optoelectronic performances of WSe2-based devices by N2O plasma treatment. The hole mobility and sheet density increase by 2 and 5 orders of magnitude, reaching 110 cm2 V-1 s-1 and 2.2 × 1012 cm-2, respectively, after the treatment. At the same time, the contact resistance (Rc) between WSe2 and its metal electrode drop by 5 orders of magnitude from 1.0 GΩ μm to 28.4 kΩ μm. The WSe2 photoconductor exhibits superior performance with high responsivity (1.5 × 105 A W-1), short response time (<2 ms), high detectivity (3.6 × 1013 Jones) and very large photoconductive gain (>106). We have also built a lateral p-n junction on a single piece of WSe2 flake by selective plasma exposure. The junction reaches an exceedingly high rectifying ratio of 106, an excellent photoresponsivity of 2.49 A W-1 and a fast response of 8 ms. The enhanced optoelectronic performance is attributed to band-engineering through the N2O plasma treatment, which can potentially serve as an effective and versatile approach for device engineering and optimization in a wide range of electronic and optoelectronic devices based on 2D materials.
Hall viscosity and electromagnetic response of electrons in graphene
NASA Astrophysics Data System (ADS)
Sherafati, Mohammad; Principi, Alessandro; Vignale, Giovanni
The Hall viscosity is a dissipationless component of the viscosity tensor of an electron liquid with broken time- reversal symmetry, such as a two-dimensional electron gas (2DEG) in the quantum Hall state. Similar to the Hall conductivity, the Hall viscosity is an anomalous transport coefficient; however, while the former is connected with the current response, the latter stems from the stress response to a geometric deformation. For a Galilean-invariant system such as 2DEG, the current density is indeed the generator of the geometric deformation: therefore a connection between the Hall connectivity and viscosity is expected and by now well established. In the case of graphene, a non-Galilean-invariant system, the existence of such a connection is far from obvious, as the current operator is essentially different from the momentum operator. In this talk, I will first present our results of the geometric Hall viscosity of electrons in single-layer graphene. Then, from the expansion of the nonlocal Hall conductivity for small wave vectors, I demonstrate that, in spite of the lack of Galilean invariance, an effective mass can be defined such that the relationship between the Hall conductivity and the viscosity retains the form it has in Galilean-invariant systems, not only for a large number of occupied Landau levels, but also, with very high accuracy, for the undoped system.
Fabrications and application of single crystalline GaN for high-performance deep UV photodetectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velazquez, R.; Rivera, M.; Feng, P., E-mail: p.feng@upr.edu
2016-08-15
High-quality single crystalline Gallium Nitride (GaN) semiconductor has been synthesized using molecule beam epitaxy (MBE) technique for development of high-performance deep ultraviolet (UV) photodetectors. Thickness of the films was estimated by using surface profile meter and scanning electron microscope. Electronic states and elemental composition of the films were obtained using Raman scattering spectroscopy. The orientation, crystal structure and phase purity of the films were examined using a Siemens x-ray diffractometer radiation. The surface microstructure was studied using high resolution scanning electron microscopy (SEM). Two types of metal pairs: Al-Al, Al-Cu or Cu-Cu were used for interdigital electrodes on GaN filmmore » in order to examine the Schottky properties of the GaN based photodetector. The characterizations of the fabricated prototype include the stability, responsivity, response and recovery times. Typical time dependent photoresponsivity by switching different UV light source on and off five times for each 240 seconds at a bias of 2V, respectively, have been obtained. The detector appears to be highly sensitive to various UV wavelengths of light with very stable baseline and repeatability. The obtained photoresponsivity was up to 354 mA/W at the bias 2V. Higher photoresponsivity could be obtained if higher bias was applied but it would unavoidably result in a higher dark current. Thermal effect on the fabricated GaN based prototype was discussed.« less
Harada, Ken; Akashi, Tetsuya; Niitsu, Kodai; Shimada, Keiko; Ono, Yoshimasa A; Shindo, Daisuke; Shinada, Hiroyuki; Mori, Shigeo
2018-01-17
Advanced electron microscopy technologies have made it possible to perform precise double-slit interference experiments. We used a 1.2-MV field emission electron microscope providing coherent electron waves and a direct detection camera system enabling single-electron detections at a sub-second exposure time. We developed a method to perform the interference experiment by using an asymmetric double-slit fabricated by a focused ion beam instrument and by operating the microscope under a "pre-Fraunhofer" condition, different from the Fraunhofer condition of conventional double-slit experiments. Here, pre-Fraunhofer condition means that each single-slit observation was performed under the Fraunhofer condition, while the double-slit observations were performed under the Fresnel condition. The interference experiments with each single slit and with the asymmetric double slit were carried out under two different electron dose conditions: high-dose for calculation of electron probability distribution and low-dose for each single electron distribution. Finally, we exemplified the distribution of single electrons by color-coding according to the above three types of experiments as a composite image.
Otte, Douglas A L; Woerpel, K A
2015-08-07
Addition of allylmagnesium reagents to an aliphatic aldehyde bearing a radical clock gave only addition products and no evidence of ring-opened products that would suggest single-electron-transfer reactions. The analogous Barbier reaction also did not provide evidence for a single-electron-transfer mechanism in the addition step. Other Grignard reagents (methyl-, vinyl-, t-Bu-, and triphenylmethylmagnesium halides) also do not appear to add to an alkyl aldehyde by a single-electron-transfer mechanism.
Electronic properties of doped and defective NiO: A quantum Monte Carlo study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Hyeondeok; Luo, Ye; Ganesh, Panchapakesan
NiO is a canonical Mott (or charge-transfer) insulator and as such is notoriously difficult to describe using density functional theory (DFT) based electronic structure methods. Doped Mott insulators such as NiO are of interest for various applications but rigorous theoretical descriptions are lacking. Here, we use quantum Monte Carlo methods, which very accurately include electron-electron interactions, to examine energetics, charge- and spin-structures of NiO with various point defects, such as vacancies or substitutional doping with potassium. The formation energy of a potassium dopant is significantly lower than for a Ni vacancy, making potassium an attractive monovalent dopant for NiO. Wemore » compare our results with DFT results that include an on-site Hubbard U (DFT+U) to account for correlations and find relatively large discrepancies for defect formation energies as well as for charge and spin redistributions in the presence of point defects. Finally, it is unlikely that single-parameter fixes of DFT may be able to obtain accurate accounts of anything but a single parameter, e.g., band gap; responses that, maybe in addition to the band gap, depend in subtle and complex ways on ground state properties, such as charge and spin densities, are likely to contain quantitative and qualitative errors.« less
Electronic properties of doped and defective NiO: A quantum Monte Carlo study
Shin, Hyeondeok; Luo, Ye; Ganesh, Panchapakesan; ...
2017-12-28
NiO is a canonical Mott (or charge-transfer) insulator and as such is notoriously difficult to describe using density functional theory (DFT) based electronic structure methods. Doped Mott insulators such as NiO are of interest for various applications but rigorous theoretical descriptions are lacking. Here, we use quantum Monte Carlo methods, which very accurately include electron-electron interactions, to examine energetics, charge- and spin-structures of NiO with various point defects, such as vacancies or substitutional doping with potassium. The formation energy of a potassium dopant is significantly lower than for a Ni vacancy, making potassium an attractive monovalent dopant for NiO. Wemore » compare our results with DFT results that include an on-site Hubbard U (DFT+U) to account for correlations and find relatively large discrepancies for defect formation energies as well as for charge and spin redistributions in the presence of point defects. Finally, it is unlikely that single-parameter fixes of DFT may be able to obtain accurate accounts of anything but a single parameter, e.g., band gap; responses that, maybe in addition to the band gap, depend in subtle and complex ways on ground state properties, such as charge and spin densities, are likely to contain quantitative and qualitative errors.« less
Fracto-emission from graphite/epoxy composites
NASA Technical Reports Server (NTRS)
Dickinson, J. T.
1983-01-01
Fracto-emission (FE) is the emission of particles and photons during and following crack propagation. Electrons (EE), positive ions (PIE), and excited and ground state neutrals (NE) were observed. Results of a number of experiments involving principally graphite/epoxy composites and Kevlar single fibers are presented. The physical processes responsible for EE and PIE are discussed as well as FE from fiber- and particulate-reinforced composites.
Functionalization-Free Microfluidic Electronic Tongue Based on a Single Response.
Shimizu, Flavio M; Todão, Fagner R; Gobbi, Angelo L; Oliveira, Osvaldo N; Garcia, Carlos D; Lima, Renato S
2017-07-28
Electronic tongues (e-tongues) are promising analytical devices for a variety of applications to address the challenges of quality control in water monitoring and industries of foods, beverages, and pharmaceuticals. A crucial drawback in the current e-tongues is the need to recalibrate the device when one or more sensing units (usually with modified surface) are replaced. Another downside is the necessity to perform subsequent surface modifications and analyses to each of the diverse sensing units, undermining the simplicity and velocity of the method. These features have prevented widespread commercial use of the e-tongues. In this paper, we introduce a microfluidic e-tongue that overcomes all such limitations. The key principle of global selectivity of the e-tongue was achieved by recording only a single response, namely, the equivalent admittance spectrum of an association of resistors in parallel. Such resistors consisted of five nonfunctionalized stainless steel microwires (sensing units), which were short-circuited and coated with gold, platinum, nickel, iron, and aluminum oxide films. The microwires were inserted in a chip composed of a single piece of polydimethylsiloxane (PDMS). Using impedance spectroscopy, the e-tongue was successfully applied in classification of basic tastes at a concentration below the threshold for the human tongue. In addition, our chip allowed the distinction of various chemicals used in oil industry. Finally, our cleanroom-free prototyping allows the mass production of chips with easily replaceable and reproducible sensing units. Hence, one can now envisage the widespread dissemination of e-tongues with fast and reproducible data.
Compendium of Current Single Event Effects for Candidate Spacecraft Electronics for NASA
NASA Technical Reports Server (NTRS)
O'Bryan, Martha V.; Label, Kenneth A.; Chen, Dakai; Campola, Michael J.; Casey, Megan C.; Lauenstein, Jean-Marie; Pellish, Jonathan A.; Ladbury, Raymond L.; Berg, Melanie D.
2015-01-01
NASA spacecraft are subjected to a harsh space environment that includes exposure to various types of ionizing radiation. The performance of electronic devices in a space radiation environment are often limited by their susceptibility to single event effects (SEE). Ground-based testing is used to evaluate candidate spacecraft electronics to determine risk to spaceflight applications. Interpreting the results of radiation testing of complex devices is and adequate understanding of the test condition is critical. Studies discussed herein were undertaken to establish the application-specific sensitivities of candidate spacecraft and emerging electronic devices to single-event upset (SEU), single-event latchup (SEL), single-event gate rupture (SEGR), single-event burnout (SEB), and single-event transient (SET). For total ionizing dose (TID) and displacement damage dose (DDD) results, see a companion paper submitted to the 2015 Institute of Electrical and Electronics Engineers (IEEE) Nuclear and Space Radiation Effects Conference (NSREC) Radiation Effects Data Workshop (REDW) entitled "compendium of Current Total Ionizing Dose and Displacement Damage for Candidate Spacecraft Electronics for NASA by M. Campola, et al.
Electronic spectrum of trilayer graphene
NASA Astrophysics Data System (ADS)
Kumar, S.; Ajay
2014-08-01
Present work deals with the analysis of the single particle electronic spectral function in trilayer (ABC-, ABA- and AAA-stacked) graphene. Tight binding Hamiltonian containing intralayer nearest-neighbor and next-nearest neighbor hopping along-with the interlayer coupling parameter within two triangular sub-lattice approach for trilayer graphene has been employed. The expression of single particle spectral functions A(kw) is obtained within mean-field Green's function equations of motion approach. Spectral function at Γ, M and K points of the Brillouin zone has been numerically computed. It is pointed out that the nature of electronic states at different points of Brillouin zone is found to be influenced by stacking order and Coulomb interactions. At Γ and M points, a trilayer splitting is predicted while at K point a bilayer splitting effect is observed due to crossing of two bands (at K point). Interlayer coupling ( t_{ bot } ) is found to be responsible for the splitting of quasi-particle peaks at each point of Brillouin zone. The influence of t_{ bot } in trilayer graphene is prominent for AAA-stacking compared to ABC- and ABA-stacking. On the other hand, onsite Coulomb interaction reduces the trilayer splitting effect into bilayer splitting at Γ and M points of Brillouin zone and bilayer splitting into single peak spectral function at K point with a shifting of the peak away from Fermi level.
NASA Astrophysics Data System (ADS)
Chang, Wen-Chi; Chen, Yu-Chi; Chien, Chih-Jen; Wang, An-Bang; Lee, Chih-Kung
2011-04-01
A testing system contains an advanced vibrometer/interferometer device (AVID) and a high-speed electronic speckle pattern interferometer (ESPI) was developed. AVID is a laser Doppler vibrometer that can be used to detect single-point linear and angular velocity with DC to 20 MHz bandwidth and with nanometer resolution. In swept frequency mode, frequency response from mHz to MHz of the structure of interest can be measured. The ESPI experimental setup can be used to measure full-field out-of-plane displacement. A 5-1 phase shifting method and a correlation algorithm were used to analyze the phase difference between the reference signal and the speckle signal scattered from the sample surface. In order to show the efficiency and effectiveness of AVID and ESPI, we designed a micro-speaker composed of a plate with fixed boundaries and two piezo-actuators attached to the sides of the plate. The AVID was used to measure the vibration of one of the piezo-actuators and the ESPI was adopted to measure the two-dimensional out-of-plane displacement of the plate. A microphone was used to measure the acoustic response created by the micro-speaker. Driving signal includes random signal, sinusoidal signal, amplitude modulated high-frequency carrier signal, etc. Angular response induced by amplitude modulated high-frequency carrier signal was found to be significantly narrower than the frequency responses created by other types of driving signals. The validity of our newly developed NDE system are detailed by comparing the relationship between the vibration signal of the micro-speaker and the acoustic field generated.
Highly scalable multichannel mesh electronics for stable chronic brain electrophysiology.
Fu, Tian-Ming; Hong, Guosong; Viveros, Robert D; Zhou, Tao; Lieber, Charles M
2017-11-21
Implantable electrical probes have led to advances in neuroscience, brain-machine interfaces, and treatment of neurological diseases, yet they remain limited in several key aspects. Ideally, an electrical probe should be capable of recording from large numbers of neurons across multiple local circuits and, importantly, allow stable tracking of the evolution of these neurons over the entire course of study. Silicon probes based on microfabrication can yield large-scale, high-density recording but face challenges of chronic gliosis and instability due to mechanical and structural mismatch with the brain. Ultraflexible mesh electronics, on the other hand, have demonstrated negligible chronic immune response and stable long-term brain monitoring at single-neuron level, although, to date, it has been limited to 16 channels. Here, we present a scalable scheme for highly multiplexed mesh electronics probes to bridge the gap between scalability and flexibility, where 32 to 128 channels per probe were implemented while the crucial brain-like structure and mechanics were maintained. Combining this mesh design with multisite injection, we demonstrate stable 128-channel local field potential and single-unit recordings from multiple brain regions in awake restrained mice over 4 mo. In addition, the newly integrated mesh is used to validate stable chronic recordings in freely behaving mice. This scalable scheme for mesh electronics together with demonstrated long-term stability represent important progress toward the realization of ideal implantable electrical probes allowing for mapping and tracking single-neuron level circuit changes associated with learning, aging, and neurodegenerative diseases. Copyright © 2017 the Author(s). Published by PNAS.
Single or functionalized fullerenes interacting with heme group
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costa, Wallison Chaves; Diniz, Eduardo Moraes, E-mail: eduardo.diniz@ufma.br
The heme group is responsible for iron transportation through the bloodstream, where iron participates in redox reactions, electron transfer, gases detection etc. The efficiency of such processes can be reduced if the whole heme molecule or even the iron is somehow altered from its original oxidation state, which can be caused by interactions with nanoparticles as fullerenes. To verify how such particles alter the geometry and electronic structure of heme molecule, here we report first principles calculations based on density functional theory of heme group interacting with single C{sub 60} fullerene or with C{sub 60} functionalized with small functional groupsmore » (−CH{sub 3}, −COOH, −NH{sub 2}, −OH). The calculations shown that the system heme + nanoparticle has a different spin state in comparison with heme group if the fullerene is functionalized. Also a functional group can provide a stronger binding between nanoparticle and heme molecule or inhibit the chemical bonding in comparison with single fullerene results. In addition heme molecule loses electrons to the nanoparticles and some systems exhibited a geometry distortion in heme group, depending on the binding energy. Furthermore, one find that such nanoparticles induce a formation of spin up states in heme group. Moreover, there exist modifications in density of states near the Fermi energy. Although of such changes in heme electronic structure and geometry, the iron atom remains in the heme group with the same oxidation state, so that processes that involve the iron might not be affected, only those that depend on the whole heme molecule.« less
NASA Astrophysics Data System (ADS)
Kisielowski, Christian; Wang, Lin-Wang; Specht, Petra; Calderon, Hector A.; Barton, Bastian; Jiang, Bin; Kang, Joo H.; Cieslinski, Robert
2013-07-01
The dynamic responses of a rhodium catalyst and a graphene sheet are investigated upon random excitation with 80 kV electrons. An extraordinary electron microscope stability and resolution allow studying temporary atom displacements from their equilibrium lattice sites into metastable sites across projected distances as short as 60 pm. In the rhodium catalyst, directed and reversible atom displacements emerge from excitations into metastable interstitial sites and surface states that can be explained by single atom trajectories. Calculated energy barriers of 0.13 eV and 1.05 eV allow capturing single atom trapping events at video rates that are stabilized by the Rh [110] surface corrugation. Molecular dynamics simulations reveal that randomly delivered electrons can also reversibly enhance the sp3 and the sp1 characters of the sp2-bonded carbon atoms in graphene. The underlying collective atom motion can dynamically stabilize characteristic atom displacements that are unpredictable by single atom trajectories. We detect three specific displacements and use two of them to propose a path for the irreversible phase transformation of a graphene nanoribbon into carbene. Collectively stabilized atom displacements greatly exceed the thermal vibration amplitudes described by Debye-Waller factors and their measured dose rate dependence is attributed to tunable phonon contributions to the internal energy of the systems. Our experiments suggest operating electron microscopes with beam currents as small as zepto-amperes/nm2 in a weak-excitation approach to improve on sample integrity and allow for time-resolved studies of conformational object changes that probe for functional behavior of catalytic surfaces or molecules.
Parker, Antony R
2003-12-01
The interaction of several dehydrogenases with the electron transferring flavoprotein (ETF) is a crucial step required for the successful transfer of electrons into the electron transport chain. The exact determinants regarding the interaction of ETF with its dehydrogenase partners are still unknown. Chemical modification of ETF with arginine-specific reagents resulted in the loss, to varying degrees, of activity with medium chain acyl-coenzyme A dehydrogenase (MCAD). The kinetic profiles showed the inactivations followed pseudo-first-order kinetics for all reagents used. For activity with MCAD, maximum inactivation of ETF was accomplished by 2,3-butanedione (4% residual activity after 120 min) and it was shown that modification of one arginine residue was responsible for the inactivation. Almost 100% restoration of this ETF activity was achieved upon incubation with free arginine. However, the same 2,3-butanedione modified ETF only possessed decreased activity with dimethylglycine-(DMGDH, 44%) and sarcosine- (SDH, 27%) dehydrogenases unlike the abolition with MCAD. Full protection of ETF from arginine modification by 2,3-butanedione was achieved using substrate-protected DMGDH, MCAD and SDH respectively. Cross-protection studies of ETF with the three dehydrogenases implied use of the same single arginine residue in the binding of all three dehydrogenases. These results lead us to conclude that this single arginine residue is essential in the binding of the ETF to MCAD, but only contributes partially to the binding of ETF to SDH and DMGDH and thus, the determinants of the dehydrogenase binding sites overlap but are not identical.
Electron holography on HfO2/HfO2-x bilayer structures with multilevel resistive switching properties
NASA Astrophysics Data System (ADS)
Niu, G.; Schubert, M. A.; Sharath, S. U.; Zaumseil, P.; Vogel, S.; Wenger, C.; Hildebrandt, E.; Bhupathi, S.; Perez, E.; Alff, L.; Lehmann, M.; Schroeder, T.; Niermann, T.
2017-05-01
Unveiling the physical nature of the oxygen-deficient conductive filaments (CFs) that are responsible for the resistive switching of the HfO2-based resistive random access memory (RRAM) devices represents a challenging task due to the oxygen vacancy related defect nature and nanometer size of the CFs. As a first important step to this goal, we demonstrate in this work direct visualization and a study of physico-chemical properties of oxygen-deficient amorphous HfO2-x by carrying out transmission electron microscopy electron holography as well as energy dispersive x-ray spectroscopy on HfO2/HfO2-x bilayer heterostructures, which are realized by reactive molecular beam epitaxy. Furthermore, compared to single layer devices, Pt/HfO2/HfO2-x /TiN bilayer devices show enhanced resistive switching characteristics with multilevel behavior, indicating their potential as electronic synapses in future neuromorphic computing applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Idrobo Tapia, Juan Carlos; Zhou, Wu
Here we present a short historical account of when single adatom impurities where first identified in two-dimensional materials by scanning transmission electron microscopy (STEM). We also present a study of the graphene low-loss (below 50 eV) response as a function of number of layers using electron energy-loss spectroscopy (EELS). The study shows that as few as three layers of graphene behave as bulk graphite for losses above 10 eV We also show examples of how point and extended defects can easily be resolved and structural dynamics can be readily capture by using aberration-corrected STEM imaging. Lastly, we show that themore » new generation of monochromators has opened up possibilities to explore new physics with an electron microscope. All these capabilities were enabled by the development of spherical aberration correctors and monochromators, where Ondrej Krivanek has played a key role.« less
Fabbris, G.; Hücker, M.; Gu, G. D.; ...
2016-07-14
Some of the most exotic material properties derive from electronic states with short correlation length (~10-500 Å), suggesting that the local structural symmetry may play a relevant role in their behavior. In this study, we discuss the combined use of polarized x-ray absorption fine structure and x-ray diffraction at high pressure as a powerful method to tune and probe structural and electronic orders at multiple length scales. Besides addressing some of the technical challenges associated with such experiments, we illustrate this approach with results obtained in the cuprate La 1.875Ba 0.125CuO 4, in which the response of electronic order tomore » pressure can only be understood by probing the structure at the relevant length scales.« less
Idrobo Tapia, Juan Carlos; Zhou, Wu
2017-03-01
Here we present a short historical account of when single adatom impurities where first identified in two-dimensional materials by scanning transmission electron microscopy (STEM). We also present a study of the graphene low-loss (below 50 eV) response as a function of number of layers using electron energy-loss spectroscopy (EELS). The study shows that as few as three layers of graphene behave as bulk graphite for losses above 10 eV We also show examples of how point and extended defects can easily be resolved and structural dynamics can be readily capture by using aberration-corrected STEM imaging. Lastly, we show that themore » new generation of monochromators has opened up possibilities to explore new physics with an electron microscope. All these capabilities were enabled by the development of spherical aberration correctors and monochromators, where Ondrej Krivanek has played a key role.« less
NASA Astrophysics Data System (ADS)
Enoki, Toshiaki; Kiguchi, Manabu
2018-03-01
Interest in utilizing organic molecules to fabricate electronic materials has existed ever since organic (molecular) semiconductors were first discovered in the 1950s. Since then, scientists have devoted serious effort to the creation of various molecule-based electronic systems, such as molecular metals and molecular superconductors. Single-molecule electronics and the associated basic science have emerged over the past two decades and provided hope for the development of highly integrated molecule-based electronic devices in the future (after the Si-based technology era has ended). Here, nanographenes (nano-sized graphene) with atomically precise structures are among the most promising molecules that can be utilized for electronic/spintronic devices. To manipulate single small molecules for an electronic device, a single molecular junction has been developed. It is a powerful tool that allows even small molecules to be utilized. External electric, magnetic, chemical, and mechanical perturbations can change the physical and chemical properties of molecules in a way that is different from bulk materials. Therefore, the various functionalities of molecules, along with changes induced by external perturbations, allows us to create electronic devices that we cannot create using current top-down Si-based technology. Future challenges that involve the incorporation of condensed matter physics, quantum chemistry calculations, organic synthetic chemistry, and electronic device engineering are expected to open a new era in single-molecule device electronic technology.
NASA Technical Reports Server (NTRS)
Mcfadden, J. J.; Dezelick, R. A.; Barrows, R. R.
1983-01-01
Test results from a high pressure electronically controlled fuel injection system are compared with a commercial mechanical injection system on a single cylinder, diesel test engine using an inlet boost pressure of 2.6:1. The electronic fuel injection system achieved high pressure by means of a fluid intensifier with peak injection pressures of 47 to 69 MPa. Reduced exhaust emissions were demonstrated with an increasing rate of injection followed by a fast cutoff of injection. The reduction in emissions is more responsive to the rate of injection and injection timing than to high peak injection pressure.
Single Molecule Electronics and Devices
Tsutsui, Makusu; Taniguchi, Masateru
2012-01-01
The manufacture of integrated circuits with single-molecule building blocks is a goal of molecular electronics. While research in the past has been limited to bulk experiments on self-assembled monolayers, advances in technology have now enabled us to fabricate single-molecule junctions. This has led to significant progress in understanding electron transport in molecular systems at the single-molecule level and the concomitant emergence of new device concepts. Here, we review recent developments in this field. We summarize the methods currently used to form metal-molecule-metal structures and some single-molecule techniques essential for characterizing molecular junctions such as inelastic electron tunnelling spectroscopy. We then highlight several important achievements, including demonstration of single-molecule diodes, transistors, and switches that make use of electrical, photo, and mechanical stimulation to control the electron transport. We also discuss intriguing issues to be addressed further in the future such as heat and thermoelectric transport in an individual molecule. PMID:22969345
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trippe, J. M.; Reed, R. A.; Austin, R. A.
In this study, we present experimental evidence of single electron-induced upsets in commercial 28 nm and 45 nm CMOS SRAMs from a monoenergetic electron beam. Upsets were observed in both technology nodes when the SRAM was operated in a low power state. The experimental cross section depends strongly on both bias and technology node feature size, consistent with previous work in which SRAMs were irradiated with low energy muons and protons. Accompanying simulations demonstrate that δ-rays produced by the primary electrons are responsible for the observed upsets. Additional simulations predict the on-orbit event rates for various Earth and Jovian environmentsmore » for a set of sensitive volumes representative of current technology nodes. The electron contribution to the total upset rate for Earth environments is significant for critical charges as high as 0.2 fC. This value is comparable to that of sub-22 nm bulk SRAMs. Similarly, for the Jovian environment, the electron-induced upset rate is larger than the proton-induced upset rate for critical charges as high as 0.3 fC.« less
NASA Astrophysics Data System (ADS)
Kurkuchekov, V.; Kandaurov, I.; Trunev, Y.
2018-05-01
A simple and inexpensive X-ray diagnostic tool was designed for measuring the cross-sectional current density distribution in a low-relativistic pulsed electron beam produced in a source based on an arc-discharge plasma cathode and multiaperture diode-type electron optical system. The beam parameters were as follows: Uacc = 50–110 kV, Ibeam = 20–100 A, τbeam = 0.1–0.3 ms. The beam effective diameter was ca. 7 cm. Based on a pinhole camera, the diagnostic allows one to obtain a 2D profile of electron beam flux distribution on a flat metal target in a single shot. The linearity of the diagnostic system response to the electron flux density was established experimentally. Spatial resolution of the diagnostic was also estimated in special test experiments. The optimal choice of the main components of the diagnostic technique is discussed.
A preparation for studying electrical stimulation of the retina in vivo in rat
NASA Astrophysics Data System (ADS)
Baig-Silva, M. S.; Hathcock, C. D.; Hetling, J. R.
2005-03-01
A remaining challenge to the development of electronic prostheses for vision is improving the effectiveness of retinal stimulation. Electrode design and stimulus parameters need to be optimized such that the neural output from the retina conveys information to the mind's eye that aids the patient in interpreting his or her environment. This optimization will require a detailed understanding of the response of the retina to electrical stimulation. The identity and response characteristics of the cellular targets of stimulation need to be defined and evaluated. Described here is an in vivo preparation for studying electrical stimulation of the retina in rat at the cellular level. The use of rat makes available a number of well-described models of retinal disease that motivate prosthesis development. Artificial stimulation can be investigated by adapting techniques traditionally employed to study the response of the retina to photic stimuli, such as recording at the cornea, single-cell recording, and pharmacological dissection of the response. Pilot studies include amplitude-intensity response data for subretinal and transretinal stimulation paradigms recorded in wild-type rats and a transgenic rat model of autosomal dominant retinitis pigmentosa. The ability to record single-unit ganglion cell activity in vivo is also demonstrated.
Fast-moving soft electronic fish.
Li, Tiefeng; Li, Guorui; Liang, Yiming; Cheng, Tingyu; Dai, Jing; Yang, Xuxu; Liu, Bangyuan; Zeng, Zedong; Huang, Zhilong; Luo, Yingwu; Xie, Tao; Yang, Wei
2017-04-01
Soft robots driven by stimuli-responsive materials have unique advantages over conventional rigid robots, especially in their high adaptability for field exploration and seamless interaction with humans. The grand challenge lies in achieving self-powered soft robots with high mobility, environmental tolerance, and long endurance. We are able to advance a soft electronic fish with a fully integrated onboard system for power and remote control. Without any motor, the fish is driven solely by a soft electroactive structure made of dielectric elastomer and ionically conductive hydrogel. The electronic fish can swim at a speed of 6.4 cm/s (0.69 body length per second), which is much faster than previously reported untethered soft robotic fish driven by soft responsive materials. The fish shows consistent performance in a wide temperature range and permits stealth sailing due to its nearly transparent nature. Furthermore, the fish is robust, as it uses the surrounding water as the electric ground and can operate for 3 hours with one single charge. The design principle can be potentially extended to a variety of flexible devices and soft robots.
Fast-moving soft electronic fish
Li, Tiefeng; Li, Guorui; Liang, Yiming; Cheng, Tingyu; Dai, Jing; Yang, Xuxu; Liu, Bangyuan; Zeng, Zedong; Huang, Zhilong; Luo, Yingwu; Xie, Tao; Yang, Wei
2017-01-01
Soft robots driven by stimuli-responsive materials have unique advantages over conventional rigid robots, especially in their high adaptability for field exploration and seamless interaction with humans. The grand challenge lies in achieving self-powered soft robots with high mobility, environmental tolerance, and long endurance. We are able to advance a soft electronic fish with a fully integrated onboard system for power and remote control. Without any motor, the fish is driven solely by a soft electroactive structure made of dielectric elastomer and ionically conductive hydrogel. The electronic fish can swim at a speed of 6.4 cm/s (0.69 body length per second), which is much faster than previously reported untethered soft robotic fish driven by soft responsive materials. The fish shows consistent performance in a wide temperature range and permits stealth sailing due to its nearly transparent nature. Furthermore, the fish is robust, as it uses the surrounding water as the electric ground and can operate for 3 hours with one single charge. The design principle can be potentially extended to a variety of flexible devices and soft robots. PMID:28435879
Effect of Surface Termination on the Electonic Properties of LaNiO₃ Films
Kumah, Divine P.; Malashevich, Andrei; Disa, Ankit S.; ...
2014-11-06
The electronic and structural properties of thin LaNiO₃ films grown by using molecular beam epitaxy are studied as a function of the net ionic charge of the surface terminating layer. We demonstrate that electronic transport in nickelate heterostructures can be manipulated through changes in the surface termination due to a strong coupling of the surface electrostatic properties to the structural properties of the Ni—O bonds that govern electronic conduction. We observe experimentally and from first-principles theory an asymmetric response of the structural properties of the films to the sign of the surface charge, which results from a strong interplay betweenmore » electrostatic and mechanical boundary conditions governing the system. The structural response results in ionic buckling in the near-surface NiO₂ planes for films terminated with negatively charged NiO₂ and bulklike NiO₂ planes for films terminated with positively charged LaO planes. The ability to modify transport properties by the deposition of a single atomic layer can be used as a guiding principle for nanoscale device fabrication.« less
Response of single junction GaAs/GaAs and GaAs/Ge solar cells to multiple doses of 1 MeV electrons
NASA Technical Reports Server (NTRS)
Meier, D. L.; Szedon, J. R.; Bartko, J.; Chung, M. A.
1989-01-01
A comparison of the radiation tolerance of MOCVD-grown GaAs cells and GaAs/Ge cells was undertaken using 1 MeV electrons. The GaAs/Ge cells are somewhat more tolerant of 1 MeV electron irradiation and more responsive to annealing than are the GaAs/GaAs cells examined in this study. However, both types of cells suffer a greater degradation in efficiency than has been observed in other recent studies. The reason for this is not certain, but it may be associated with an emitter thickness which appears to be greater than desired. The deep level transient spectroscopy (DLTS) spectra following irradiation are not significantly different for the GaAs/Ge and the GaAs/GaAs cells, with each having just two peaks. The annealing behavior of these peaks is also similar in the two samples examined. It appears that no penalty in radiation tolerance, and perhaps some benefit, is associated with fabricating MOCVD GaAs cells on Ge substrates rather than GaAs substrates.
Training a Network of Electronic Neurons for Control of a Mobile Robot
NASA Astrophysics Data System (ADS)
Vromen, T. G. M.; Steur, E.; Nijmeijer, H.
An adaptive training procedure is developed for a network of electronic neurons, which controls a mobile robot driving around in an unknown environment while avoiding obstacles. The neuronal network controls the angular velocity of the wheels of the robot based on the sensor readings. The nodes in the neuronal network controller are clusters of neurons rather than single neurons. The adaptive training procedure ensures that the input-output behavior of the clusters is identical, even though the constituting neurons are nonidentical and have, in isolation, nonidentical responses to the same input. In particular, we let the neurons interact via a diffusive coupling, and the proposed training procedure modifies the diffusion interaction weights such that the neurons behave synchronously with a predefined response. The working principle of the training procedure is experimentally validated and results of an experiment with a mobile robot that is completely autonomously driving in an unknown environment with obstacles are presented.
NASA Astrophysics Data System (ADS)
Gondek, E.; Kityk, I. V.; Danel, A.; Sanetra, J.
2008-06-01
We report the photovoltaic response of composite films formed by polymer transport matrices poly(3-octylthiophene) (P3OT) and poly(3-decylthiophene) (PDT) with incorporated 1 H-pyrazolo[3,4- b]quinoline (PAQ) chromophore (see the first figure). The photovoltage (PV) data were obtained for different substituted PAQ possessing different state dipole moments. The photovoltaic cells were formed between ITO and aluminum electrodes. We found that the PV signal of polymer/PAQ substantially depends on the state dipole moments of the pyrazoloquinoline chromophore. This fact indicates on a possibility of significant enhancement of PV efficiency by appropriate variations of the state dipole moments of chromophore. This results in photoinduced electron transfer from polymer serving as donors to PAQ being the electron acceptor. Despite an efficiency of the PV devices is below 1%, however, it may be substantially enhanced in future varying the chromophore state dipole moments appropriately.
Gondek, E; Kityk, I V; Danel, A; Sanetra, J
2008-06-01
We report the photovoltaic response of composite films formed by polymer transport matrices poly(3-octylthiophene) (P3OT) and poly(3-decylthiophene) (PDT) with incorporated 1H-pyrazolo[3,4-b]quinoline (PAQ) chromophore (see the first figure). The photovoltage (PV) data were obtained for different substituted PAQ possessing different state dipole moments. The photovoltaic cells were formed between ITO and aluminum electrodes. We found that the PV signal of polymer/PAQ substantially depends on the state dipole moments of the pyrazoloquinoline chromophore. This fact indicates on a possibility of significant enhancement of PV efficiency by appropriate variations of the state dipole moments of chromophore. This results in photoinduced electron transfer from polymer serving as donors to PAQ being the electron acceptor. Despite an efficiency of the PV devices is below 1%, however, it may be substantially enhanced in future varying the chromophore state dipole moments appropriately.
Anomalously large anisotropic magnetoresistance in a perovskite manganite
Li, Run-Wei; Wang, Huabing; Wang, Xuewen; Yu, X. Z.; Matsui, Y.; Cheng, Zhao-Hua; Shen, Bao-Gen; Plummer, E. Ward; Zhang, Jiandi
2009-01-01
The signature of correlated electron materials (CEMs) is the coupling between spin, charge, orbital and lattice resulting in exotic functionality. This complexity is directly responsible for their tunability. We demonstrate here that the broken symmetry, through cubic to orthorhombic distortion in the lattice structure in a prototype manganite single crystal, La0.69Ca0.31MnO3, leads to an anisotropic magneto-elastic response to an external field, and consequently to remarkable magneto-transport behavior. An anomalous anisotropic magnetoresistance (AMR) effect occurs close to the metal-insulator transition (MIT) in the system, showing a direct correlation with the anisotropic field-tuned MIT in the system and can be understood by means of a simple phenomenological model. A small crystalline anisotropy stimulates a “colossal” AMR near the MIT phase boundary of the system, thus revealing the intimate interplay between magneto- and electronic-crystalline couplings. PMID:19706504
Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae.
Jiang, L; Hodges, J S; Maze, J R; Maurer, P; Taylor, J M; Cory, D G; Hemmer, P R; Walsworth, R L; Yacoby, A; Zibrov, A S; Lukin, M D
2009-10-09
Robust measurement of single quantum bits plays a key role in the realization of quantum computation and communication as well as in quantum metrology and sensing. We have implemented a method for the improved readout of single electronic spin qubits in solid-state systems. The method makes use of quantum logic operations on a system consisting of a single electronic spin and several proximal nuclear spin ancillae in order to repetitively readout the state of the electronic spin. Using coherent manipulation of a single nitrogen vacancy center in room-temperature diamond, full quantum control of an electronic-nuclear system consisting of up to three spins was achieved. We took advantage of a single nuclear-spin memory in order to obtain a 10-fold enhancement in the signal amplitude of the electronic spin readout. We also present a two-level, concatenated procedure to improve the readout by use of a pair of nuclear spin ancillae, an important step toward the realization of robust quantum information processors using electronic- and nuclear-spin qubits. Our technique can be used to improve the sensitivity and speed of spin-based nanoscale diamond magnetometers.
NASA Astrophysics Data System (ADS)
Rodriguez, Alvar; Singh, Simranjeet; Haque, Firoze; Del Barco, Enrique; Nguyen, Tu; Christou, George
2012-02-01
Dependence of magnetic field and electronic transport of Mn4 Single-molecule magnet in a Single-Electron Transistor A. Rodriguez, S. Singh, F. Haque and E. del Barco Department of Physics, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816 USA T. Nguyen and G. Christou Department of Chemistry, University of Florida, Gainesville, Florida 32611 USA Abstract We have performed single-electron transport measurements on a series of Mn-based low-nuclearity single-molecule magnets (SMM) observing Coulomb blockade. SMMs with well isolated and low ground spin states, i.e. S = 9/2 (Mn4) and S = 6 (Mn3) were chosen for these studies, such that the ground spin multiplet does not mix with levels of other excited spin states for the magnetic fields (H = 0-8 T) employed in the experiments. Different functionalization groups were employed to change the mechanical, geometrical and transport characteristics of the molecules when deposited from liquid solution on the transistors. Electromigration-broken three-terminal single-electron transistors were used. Results obtained at temperatures down to 240 mK and in the presence of high magnetic fields will be shown.
Oxidative Carbocation Formation in Macrocycles: Synthesis of the Neopeltolide Macrocycle**
Tu, Wangyang
2009-01-01
Processes for the functionalization of carbon–hydrogen bonds are the focus of significant attention in organic synthesis[1] in response to the need to streamline molecular assembly. As a continuation of our efforts to generate carbocations through single-electron oxidation reactions,[2] we recently reported[3] DDQ-mediated cyclization reactions of benzylic and allylic ethers (Scheme 1; DDQ =2,3-dichloro-4,5-dicyanoquinone). PMID:19455526
Sreeprasad, T. S.; Nguyen, Phong; Alshogeathri, Ahmed; Hibbeler, Luke; Martinez, Fabian; McNeil, Nolan; Berry, Vikas
2015-01-01
The nanoarchitecture and micromachinery of a cell can be leveraged to fabricate sophisticated cell-driven devices. This requires a coherent strategy to derive cell's mechanistic abilities, microconstruct, and chemical-texture towards such microtechnologies. For example, a microorganism's hydrophobic membrane encapsulating hygroscopic constituents allows it to sustainably withhold a high aquatic pressure. Further, it provides a rich surface chemistry available for nano-interfacing and a strong mechanical response to humidity. Here we demonstrate a route to incorporate a complex cellular structure into microelectromechanics by interfacing compatible graphene quantum dots (GQDs) with a highly responsive single spore microstructure. A sensitive and reproducible electron-tunneling width modulation of 1.63 nm within a network of GQDs chemically-secured on a spore was achieved via sporal hydraulics with a driving force of 299.75 Torrs (21.7% water at GQD junctions). The electron-transport activation energy and the Coulomb blockade threshold for the GQD network were 35 meV and 31 meV, respectively; while the inter-GQD capacitance increased by 1.12 folds at maximum hydraulic force. This is the first example of nano/bio interfacing with spores and will lead to the evolution of next-generation bio-derived microarchitectures, probes for cellular/biochemical processes, biomicrorobotic-mechanisms, and membranes for micromechanical actuation. PMID:25774962
Weng, Qianchun; An, Zhenghua; Zhang, Bo; Chen, Pingping; Chen, Xiaoshuang; Zhu, Ziqiang; Lu, Wei
2015-01-01
Low-noise single-photon detectors that can resolve photon numbers are used to monitor the operation of quantum gates in linear-optical quantum computation. Exactly 0, 1 or 2 photons registered in a detector should be distinguished especially in long-distance quantum communication and quantum computation. Here we demonstrate a photon-number-resolving detector based on quantum dot coupled resonant tunneling diodes (QD-cRTD). Individual quantum-dots (QDs) coupled closely with adjacent quantum well (QW) of resonant tunneling diode operate as photon-gated switches- which turn on (off) the RTD tunneling current when they trap photon-generated holes (recombine with injected electrons). Proposed electron-injecting operation fills electrons into coupled QDs which turn “photon-switches” to “OFF” state and make the detector ready for multiple-photons detection. With proper decision regions defined, 1-photon and 2-photon states are resolved in 4.2 K with excellent propabilities of accuracy of 90% and 98% respectively. Further, by identifying step-like photon responses, the photon-number-resolving capability is sustained to 77 K, making the detector a promising candidate for advanced quantum information applications where photon-number-states should be accurately distinguished. PMID:25797442
Weng, Qianchun; An, Zhenghua; Zhang, Bo; Chen, Pingping; Chen, Xiaoshuang; Zhu, Ziqiang; Lu, Wei
2015-03-23
Low-noise single-photon detectors that can resolve photon numbers are used to monitor the operation of quantum gates in linear-optical quantum computation. Exactly 0, 1 or 2 photons registered in a detector should be distinguished especially in long-distance quantum communication and quantum computation. Here we demonstrate a photon-number-resolving detector based on quantum dot coupled resonant tunneling diodes (QD-cRTD). Individual quantum-dots (QDs) coupled closely with adjacent quantum well (QW) of resonant tunneling diode operate as photon-gated switches- which turn on (off) the RTD tunneling current when they trap photon-generated holes (recombine with injected electrons). Proposed electron-injecting operation fills electrons into coupled QDs which turn "photon-switches" to "OFF" state and make the detector ready for multiple-photons detection. With proper decision regions defined, 1-photon and 2-photon states are resolved in 4.2 K with excellent propabilities of accuracy of 90% and 98% respectively. Further, by identifying step-like photon responses, the photon-number-resolving capability is sustained to 77 K, making the detector a promising candidate for advanced quantum information applications where photon-number-states should be accurately distinguished.
NASA Astrophysics Data System (ADS)
Choi, Sun-Woo; Byun, Young Tae
2018-03-01
The correlation between platinum (Pt) functionalization and chlorine (Cl2) sensing capability in single-walled carbon nanotubes (SWCNTs) was investigated. Utilizing a photoreduction technique via ultraviolet (UV) irradiation, the Pt nanoparticles (NPs) with various diameters of 7-80 nm, which were controlled by Pt precursor concentrations, were successfully functionalized on the sidewalls of SWCNTs. The discrete Pt NP-loaded SWCNTs exhibited significantly enhanced response value (-(ΔR/R0) × 100 = 33.8%) for 1 ppm Cl2 at room temperature (25 °C) compared with that (no response) of pure SWCNTs. On the other hand, in case of continuous Pt NP-loaded SWCNTs, Cl2 sensing capabilities were significantly degraded. The Cl2 sensing capabilities of fabricated sensors tended to correlate with geometric configurations of the catalytic Pt NPs on the sidewalls of SWCNTs, due to differences in the electron pathway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orellana, Walter, E-mail: worellana@unab.cl
2014-07-14
The stability, electronic, and optical properties of (6,5) single-walled carbon nanotubes (CNTs) functionalized with free-base tetraphenylporphyrin (TPP) molecules through π-stacking interactions are studied by ab-initio calculations. The stability and optical response of the CNT-TPP compounds for increasing CNT-surface coverage are investigated. Our results show that four TPP molecules forming a ring around the CNT is the most stable configuration, showing strong binding energies of about 2.5 eV/TPP. However, this binding energy can increase even more after additional molecules assemble side by side along the CNT, favoring the formation of a full single layer of TPP, as experimentally suggested. The strong π-πmore » attractive forces induce molecular distortions that move the TPP higher-occupied molecular orbital levels inside the CNT bandgap, changing the optical response of the TPP molecules stacked on the CNT.« less
Lee, S-H; Bae, J; Lee, S W; Jang, J-W
2015-11-07
In this study, improvement of the opto-electronic properties of non-single crystallized nanowire devices with space charges generated by localized surface plasmon resonance (LSPR) is demonstrated. The photocurrent and spectral response of single polypyrrole (PPy) nanowire (NW) devices are increased by electrostatically attached Ag nanoparticles (Ag NPs). To take advantage of plasmon-exciton coupling in the photocurrent of the device, 80 nm of Ag NPs (454 nm = λmax) were chosen for matching the maximum absorption with PPy NWs (442 nm = λmax). The photocurrent density is remarkably improved, up to 25.3 times (2530%), by the Ag NP decoration onto the PPy NW (PPyAgNPs NW) under blue light (λ = 425-475 nm) illumination. In addition, the PPyAgNPs NW shows a photocurrent decay time twice that of PPy NW, as well as an improved spectral response of the photocurrent. The improved photocurrent efficiency, decay time, and spectral response resulted from the space charges generated by the LSPR of Ag NPs. Furthermore, the increasing exponent (m) of the photocurrent (JPC ∼ V(m)) and finite-differential time domain (FDTD) simulation straightforwardly indicate relatively large plasmonic space charge generation under blue light illumination. These results prove that the performance of non-single crystallized polymer nanowire devices can also be improved by plasmonic enhancement.
Comprehensive analyses of core-shell InGaN/GaN single nanowire photodiodes
NASA Astrophysics Data System (ADS)
Zhang, H.; Guan, N.; Piazza, V.; Kapoor, A.; Bougerol, C.; Julien, F. H.; Babichev, A. V.; Cavassilas, N.; Bescond, M.; Michelini, F.; Foldyna, M.; Gautier, E.; Durand, C.; Eymery, J.; Tchernycheva, M.
2017-12-01
Single nitride nanowire core/shell n-p photodetectors are fabricated and analyzed. Nanowires consisting of an n-doped GaN stem, a radial InGaN/GaN multiple quantum well system and a p-doped GaN external shell were grown by catalyst-free metal-organic vapour phase epitaxy on sapphire substrates. Single nanowires were dispersed and the core and the shell regions were contacted with a metal and an ITO deposition, respectively, defined using electron beam lithography. The single wire photodiodes present a response in the visible to UV spectral range under zero external bias. The detector operation speed has been analyzed under different bias conditions. Under zero bias, the -3 dB cut-off frequency is ~200 Hz for small light modulations. The current generation was modeled using non-equilibrium Green function formalism, which evidenced the importance of phonon scattering for carrier extraction from the quantum wells.
Study of GaN nanowires converted from β-Ga2O3 and photoconduction in a single nanowire
NASA Astrophysics Data System (ADS)
Kumar, Mukesh; Kumar, Sudheer; Chauhan, Neha; Sakthi Kumar, D.; Kumar, Vikram; Singh, R.
2017-08-01
The formation of GaN nanowires from β-Ga2O3 nanowires and photoconduction in a fabricated single GaN nanowire device has been studied. Wurtzite phase GaN were formed from monoclinic β-Ga2O3 nanowires with or without catalyst particles at their tips. The formation of faceted nanostructures from catalyst droplets presented on a nanowire tip has been discussed. The nucleation of GaN phases in β-Ga2O3 nanowires and their subsequent growth due to interfacial strain energy has been examined using a high resolution transmission electron microscope. The high quality of the converted GaN nanowire is confirmed by fabricating single nanowire photoconducting devices which showed ultra high responsivity under ultra-violet illumination.
Resonance fluorescence revival in a voltage-controlled semiconductor quantum dot
NASA Astrophysics Data System (ADS)
Reigue, Antoine; Lemaître, Aristide; Gomez Carbonell, Carmen; Ulysse, Christian; Merghem, Kamel; Guilet, Stéphane; Hostein, Richard; Voliotis, Valia
2018-02-01
We demonstrate systematic resonance fluorescence recovery with near-unity emission efficiency in single quantum dots embedded in a charge-tunable device in a wave-guiding geometry. The quantum dot charge state is controlled by a gate voltage, through carrier tunneling from a close-lying Fermi sea, stabilizing the resonantly photocreated electron-hole pair. The electric field cancels out the charging/discharging mechanisms from nearby traps toward the quantum dots, responsible for the usually observed inhibition of the resonant fluorescence. Fourier transform spectroscopy as a function of the applied voltage shows a strong increase in the coherence time though not reaching the radiative limit. These charge controlled quantum dots can act as quasi-perfect deterministic single-photon emitters, with one laser pulse converted into one emitted single photon.
Molecular electronics with single molecules in solid-state devices.
Moth-Poulsen, Kasper; Bjørnholm, Thomas
2009-09-01
The ultimate aim of molecular electronics is to understand and master single-molecule devices. Based on the latest results on electron transport in single molecules in solid-state devices, we focus here on new insights into the influence of metal electrodes on the energy spectrum of the molecule, and on how the electron transport properties of the molecule depend on the strength of the electronic coupling between it and the electrodes. A variety of phenomena are observed depending on whether this coupling is weak, intermediate or strong.
Platoni, Kalliopi; Diamantopoulos, Stefanos; Dilvoi, Maria; Delinikolas, Panagiotis; Kypraiou, Efrosyni; Efstathopoulos, Efstathios; Kouloulias, Vassilis
2018-01-01
Kaposi's sarcoma (KS) is a systemic neoplastic disease that can present cutaneous symptoms and is usually treated with a systematic approach due to its extent. Due to its radiosensitivity, radiotherapy is considered one of its main treatments, for palliation and local control of the skin and mucosal lesions. The aim of this paper was to report the first case of KS treated by hemi-body electron irradiation protocol in Greece. A fractionated 40 Gy hemi-body electron irradiation was prescribed to a 60-year-old male patient with KS at his legs. Dose uniformity was verified on a daily basis by thermoluminescence dosimetry (TLD). The treatment resulted to complete clinical response. Limited irradiation-derived side effects appeared. This is the first case ever to be treated with hemi-body electron irradiation protocol in Greece. To the best of our knowledge, this is also the first time that a single field hemi-body electron beam irradiation at a total skin electron beam (TSEB)-like configuration is reported to be used for KS.
Lateral hopping of CO on Cu(111) induced by femtosecond laser pulses
NASA Astrophysics Data System (ADS)
Ueba, H.; Ootsuka, Y.; Paulsson, M.; Persson, B. N. J.
2010-09-01
We present a theoretical study of the lateral hopping of a single CO molecule on Cu(111) induced by femtosecond laser pulses by Mehlhorn [Phys. Rev. Lett. 104, 076101 (2010)]10.1103/PhysRevLett.104.076101. Our model assumes an intermode coupling between the CO frustrated translation (FT) and frustrated rotation (FR) modes with a weak and strong electronic friction coupling to hot electrons, respectively, and heat transfer between the FT mode and the substrate phonons. In this model the effective electronic friction coupling of the FT mode depends on the absorbed laser fluence F through the temperature of the FR mode. The calculated hopping yield as a function of F nicely reproduces the nonlinear increase observed above F=4.0J/m2 . It is found that the electronic heating via friction coupling nor the phonon coupling alone cannot explain the experimental result. Both heatings are cooperatively responsible for CO hopping on Cu(111). The electronic heat transfer dominates over the phononic one at high F , where the effective electronic friction coupling becomes larger than the phononic coupling.
Electron correlations in L-subshell photoionization of intermediate-Z elements (47<=Z<=51)
NASA Astrophysics Data System (ADS)
Jitschin, W.; Stötzel, R.
1998-08-01
The x-ray mass attenuation of 48Cd, 49In, 50Sn, and 51Sb in the energy regime of the L-subshell edges has been measured. For a comparison of the data of neighboring elements, these were scaled to 47Ag. The scaled data were compared with theoretical calculations of photoionization cross sections by Scofield, which use the common single electron approach. The comparison reveals minor but significant deviations between measurement and calculation: The measured cross sections are smaller than the prediction in the regime between the L3 and L2 edges, they have a flatter slope in the regime between the L2 and L1 edges, and they exhibit a decrease just above the L3 and L2 edges. All observed deviations can be explained as electron correlation effects originating from a polarization of the whole electron cloud by the ionizing radiation, since they are qualitatively reproduced by comparative calculations of the ionization process either omitting (independent particle approach) or including (in the linear response approximation) the electron correlations. However, the comparative calculations quantitatively overestimate the electron correlation effects.
NASA Astrophysics Data System (ADS)
Dong, Shuwen; Yan, Shuang; Gao, Wenyuan; Liu, Guishan; Hao, Hongshun
2018-07-01
A facile and economic procedure was provided to synthesize α-Fe2O3 nanofibers. In this procedure, porous α-Fe2O3 nanofibers were obtained by a single-polymer/binary-solvent system, while solid α-Fe2O3 nanofibers were prepared by a single-polymer/single-solvent system. The crystal structure and morphology of both samples were characterized by x-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption/desorption isotherms. The formation mechanism of porous structure was based on solvent evaporation-induced phase separation by the use of mixed solvents with different volatility. Furthermore, ethanol-sensing performance of the porous α-Fe2O3 nanofibers was evaluated and compared with solid α-Fe2O3 nanofibers. Results from gas-sensing measurements reveal that porous α-Fe2O3 nanofibers exhibit higher sensitivity and slightly longer recovery time than solid α-Fe2O3 nanofibers. Over all, the gas sensor based on porous α-Fe2O3 nanofibers shows excellent ethanol-sensing capability with high sensitivity and ultrafast response/recovery behaviors, indicating its potential application as a real-time monitoring gas sensor.
NASA Astrophysics Data System (ADS)
Dong, Shuwen; Yan, Shuang; Gao, Wenyuan; Liu, Guishan; Hao, Hongshun
2018-04-01
A facile and economic procedure was provided to synthesize α-Fe2O3 nanofibers. In this procedure, porous α-Fe2O3 nanofibers were obtained by a single-polymer/binary-solvent system, while solid α-Fe2O3 nanofibers were prepared by a single-polymer/single-solvent system. The crystal structure and morphology of both samples were characterized by x-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption/desorption isotherms. The formation mechanism of porous structure was based on solvent evaporation-induced phase separation by the use of mixed solvents with different volatility. Furthermore, ethanol-sensing performance of the porous α-Fe2O3 nanofibers was evaluated and compared with solid α-Fe2O3 nanofibers. Results from gas-sensing measurements reveal that porous α-Fe2O3 nanofibers exhibit higher sensitivity and slightly longer recovery time than solid α-Fe2O3 nanofibers. Over all, the gas sensor based on porous α-Fe2O3 nanofibers shows excellent ethanol-sensing capability with high sensitivity and ultrafast response/recovery behaviors, indicating its potential application as a real-time monitoring gas sensor.
Wang, Jiale; Alves, Tiago V; Trindade, Fabiane J; de Aquino, Caroline B; Pieretti, Joana C; Domingues, Sergio H; Ando, Romulo A; Ornellas, Fernando R; Camargo, Pedro H C
2015-11-23
By a combination of theoretical and experimental design, we probed the effect of a quasi-single electron on the surface plasmon resonance (SPR)-mediated catalytic activities of Ag nanoparticles. Specifically, we started by theoretically investigating how the E-field distribution around the surface of a Ag nanosphere was influenced by static electric field induced by one, two, or three extra fixed electrons embedded in graphene oxide (GO) next to the Ag nanosphere. We found that the presence of the extra electron(s) changed the E-field distributions and led to higher electric field intensities. Then, we experimentally observed that a quasi-single electron trapped at the interface between GO and Ag NPs in Ag NPs supported on graphene oxide (GO-Ag NPs) led to higher catalytic activities as compared to Ag and GO-Ag NPs without electrons trapped at the interface, representing the first observation of catalytic enhancement promoted by a quasi-single electron. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Sha; Jones, R. R.
2016-01-01
Electrons ejected from atoms and subsequently driven to high energies in strong laser fields enable techniques from attosecond pulse generation to imaging with rescattered electrons. Analogous processes govern strong-field electron emission from nanostructures, where long wavelength radiation and large local field enhancements hold the promise for producing electrons with substantially higher energies, allowing for higher resolution time-resolved imaging. Here we report on the use of single-cycle terahertz pulses to drive electron emission from unbiased nano-tips. Energies exceeding 5 keV are observed, substantially greater than previously attained at higher drive frequencies. Despite large differences in the magnitude of the respective local fields, we find that the maximum electron energies are only weakly dependent on the tip radius, for 10 nm
Single-Nanoparticle Photoelectrochemistry at a Nanoparticulate TiO2 -Filmed Ultramicroelectrode.
Peng, Yue-Yi; Ma, Hui; Ma, Wei; Long, Yi-Tao; Tian, He
2018-03-26
An ultrasensitive photoelectrochemical method for achieving real-time detection of single nanoparticle collision events is presented. Using a micrometer-thick nanoparticulate TiO 2 -filmed Au ultra-microelectrode (TiO 2 @Au UME), a sub-millisecond photocurrent transient was observed for an individual N719-tagged TiO 2 (N719@TiO 2 ) nanoparticle and is due to the instantaneous collision process. Owing to a trap-limited electron diffusion process as the rate-limiting step, a random three-dimensional diffusion model was developed to simulate electron transport dynamics in TiO 2 film. The combination of theoretical simulation and high-resolution photocurrent measurement allow electron-transfer information of a single N719@TiO 2 nanoparticle to be quantified at single-molecule accuracy and the electron diffusivity and the electron-collection efficiency of TiO 2 @Au UME to be estimated. This method provides a test for studies of photoinduced electron transfer at the single-nanoparticle level. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Accurate X-ray diffraction studies of KTiOPO{sub 4} single crystals doped with niobium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novikova, N. E., E-mail: natnov@ns.crys.ras.ru; Sorokina, N. I.; Alekseeva, O. A.
2017-01-15
Single crystals of potassium titanyl phosphate doped with 4% of niobium (КТР:4%Nb) and 6% of niobium (KTP:6%Nb) are studied by accurate X-ray diffraction at room temperature. The niobium atoms are localized near the Ti1 and Ti2 atomic positions, and their positions are for the first time refined independent of the titanium atomic positions. Maps of difference electron density in the vicinity of K1 and K2 atomic positions are analyzed. It is found that in the structure of crystal КТР:4%Nb, additional positions of K atoms are located farther from the main positions and from each other than in КТРand KTP:6%Nbmore » crystals. The nonuniform distribution of electron density found in the channels of the КТР:4%Nb structure is responsible for ~20% increase in the signal of second harmonic generation.« less
Progress on micromechanical inertial guidance system
NASA Astrophysics Data System (ADS)
Poth, Tim; Elwell, John
1992-02-01
The development of a lightweight inertial measurement units (IMUs) is described which uses micromechanical gyroscopes and accelerometers. The IMU concept is described in terms of the silicon components of the instrument and the projected size, cost, and accuracies. The gyroscopes and accelerometers are chemically etched from wafers of single-crystal silicon that can yield up to 4000 single instruments from one 4-inch wafer. Particular emphasis is placed on the control-loop analysis, designing the electronics, and increasing the instrument signal. Attention is given to the development of a buffer amplifier that is fabricated on the same substrate as the instrument to minimize readout noise. These advances are important for improving the signal-to-noise ratio, and 12 hrs of testing data show that the control and readout electronics are responsible for most of the residual walk. The IMUs have potential applications in automobile skid detectors and airbags, GPS navigation systems, and in aerospace guidance systems where weight is a primary concern.
Trimethylamine Sensors Based on Au-Modified Hierarchical Porous Single-Crystalline ZnO Nanosheets.
Meng, Fanli; Zheng, Hanxiong; Sun, Yufeng; Li, Minqiang; Liu, Jinhuai
2017-06-22
It is of great significance for dynamic monitoring of foods in storage or during the transportation process through on-line detecting trimethylamine (TMA). Here, TMA were sensitively detected by Au-modified hierarchical porous single-crystalline ZnO nanosheets (HPSCZNs)-based sensors. The HPSCZNs were synthesized through a one-pot wet-chemical method followed by an annealing treatment. Polyethyleneimine (PEI) was used to modify the surface of the HPSCZNs, and then the PEI-modified samples were mixed with Au nanoparticles (NPs) sol solution. Electrostatic interactions drive Au nanoparticles loading onto the surface of the HPSCZNs. The Au-modified HPSCZNs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectrum (EDS), respectively. The results show that Au-modified HPSCZNs-based sensors exhibit a high response to TMA. The linear range is from 10 to 300 ppb; while the detection limit is 10 ppb, which is the lowest value to our knowledge.
Tuning the conductance of H2O@C60 by position of the encapsulated H2O
Zhu, Chengbo; Wang, Xiaolin
2015-01-01
The change of conductance of single-molecule junction in response to various external stimuli is the fundamental mechanism for the single-molecule electronic devices with multiple functionalities. We propose the concept that the conductance of molecular systems can be tuned from inside. The conductance is varied in C60 with encapsulated H2O, H2O@C60. The transport properties of the H2O@C60-based nanostructure sandwiched between electrodes are studied using first-principles calculations combined with the non-equilibrium Green’s function formalism. Our results show that the conductance of the H2O@C60 is sensitive to the position of the H2O and its dipole direction inside the cage with changes in conductance up to 20%. Our study paves a way for the H2O@C60 molecule to be a new platform for novel molecule-based electronics and sensors. PMID:26643873
Boomerang-type substitution reaction: reactivity of fullerene epoxides and a halofullerenol.
Jia, Zhenshan; Zhang, Xiang; Zhang, Gaihong; Huang, Shaohua; Fang, Hao; Hu, Xiangqing; Li, Yuliang; Gan, Liangbing; Zhang, Shiwei; Zhu, Daoben
2007-02-05
The C(s)-symmetric fullerene chlorohydrin C60(Cl)(OH)(OOtBu)4 reacts with 4-dimethylaminopyridine (DMAP) and 1,4-diazabicyclo[2.2.2]octane (DABCO) to yield two isomers with the formula C60(O)(OOtBu)4 in good yields. These isomers differ with respect to the location of the epoxy functionality. The one from DMAP is C(s) symmetric, whereas that from DABCO is C1 symmetric with the epoxy group on the central pentagon. Two different mechanisms are proposed to explain the chemoselectivity of these reactions. The reaction with DMAP involves single-electron transfer as the key step; DMAP acts as the electron donor. A combination of an oxygen-atom shift and S(N)2'' processes (boomerang substitution) are responsible for the formation of isomer with DACBO. Various related reactions support the proposed mechanisms. The structures of new fullerene derivatives were determined by spectroscopy, single-crystal X-ray analysis, and chemical correlation experiments.
Trimethylamine Sensors Based on Au-Modified Hierarchical Porous Single-Crystalline ZnO Nanosheets
Zheng, Hanxiong; Sun, Yufeng; Li, Minqiang; Liu, Jinhuai
2017-01-01
It is of great significance for dynamic monitoring of foods in storage or during the transportation process through on-line detecting trimethylamine (TMA). Here, TMA were sensitively detected by Au-modified hierarchical porous single-crystalline ZnO nanosheets (HPSCZNs)-based sensors. The HPSCZNs were synthesized through a one-pot wet-chemical method followed by an annealing treatment. Polyethyleneimine (PEI) was used to modify the surface of the HPSCZNs, and then the PEI-modified samples were mixed with Au nanoparticles (NPs) sol solution. Electrostatic interactions drive Au nanoparticles loading onto the surface of the HPSCZNs. The Au-modified HPSCZNs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectrum (EDS), respectively. The results show that Au-modified HPSCZNs-based sensors exhibit a high response to TMA. The linear range is from 10 to 300 ppb; while the detection limit is 10 ppb, which is the lowest value to our knowledge. PMID:28640226
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Y., E-mail: yxc238@psu.edu; Randall, C. A.; Chen, L. Q.
2014-05-05
A self-consistent model has been proposed to study the switchable current-voltage (I-V) characteristics in Cu/BaTiO{sub 3}/Cu sandwiched structure combining the phase-field model of ferroelectric domains and diffusion equations for ionic/electronic transport. The electrochemical transport equations and Ginzburg-Landau equations are solved using the Chebyshev collocation algorithm. We considered a single parallel plate capacitor configuration which consists of a single layer BaTiO{sub 3} containing a single tetragonal domain orientated normal to the plate electrodes (Cu) and is subject to a sweep of ac bias from −1.0 to 1.0 V at 25 °C. Our simulation clearly shows rectifying I-V response with rectification ratios amount tomore » 10{sup 2}. The diode characteristics are switchable with an even larger rectification ratio after the polarization direction is flipped. The effects of interfacial polarization charge, dopant concentration, and dielectric constant on current responses were investigated. The switchable I-V behavior is attributed to the polarization bound charges that modulate the bulk conduction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Swati; Kumar, Ashok, E-mail: rajesh-csir@yahoo.com, E-mail: ashokigib@rediffmail.com; Academy of Scientific and Innovative Research
A specific and ultrasensitive, label free single-walled carbon nanotubes (SWNTs) based chemiresistive genosensor was fabricated for the early detection of Streptococcus pyogenes infection in human causing rheumatic heart disease. The mga gene of S. pyogenes specific 24 mer ssDNA probe was covalently immobilized on SWNT through a molecular bilinker, 1-pyrenemethylamine, using carbodiimide coupling reaction. The sensor was characterized by the current-voltage (I-V) characteristic curve and scanning electron microscopy. The sensing performance of the sensor was studied with respect to changes in conductance in SWNT channel based on hybridization of the target S. pyogenes single stranded genomic DNA (ssG-DNA) to itsmore » complementary 24 mer ssDNA probe. The sensor shows negligible response to non-complementary Staphylococcus aureus ssG-DNA, confirming the specificity of the sensor only with S. pyogenes. The genosensor exhibited a linear response to S. pyogenes G-DNA from 1 to1000 ng ml{sup −1} with a limit of detection of 0.16 ng ml{sup −1}.« less
Photon gating in four-dimensional ultrafast electron microscopy.
Hassan, Mohammed T; Liu, Haihua; Baskin, John Spencer; Zewail, Ahmed H
2015-10-20
Ultrafast electron microscopy (UEM) is a pivotal tool for imaging of nanoscale structural dynamics with subparticle resolution on the time scale of atomic motion. Photon-induced near-field electron microscopy (PINEM), a key UEM technique, involves the detection of electrons that have gained energy from a femtosecond optical pulse via photon-electron coupling on nanostructures. PINEM has been applied in various fields of study, from materials science to biological imaging, exploiting the unique spatial, energy, and temporal characteristics of the PINEM electrons gained by interaction with a "single" light pulse. The further potential of photon-gated PINEM electrons in probing ultrafast dynamics of matter and the optical gating of electrons by invoking a "second" optical pulse has previously been proposed and examined theoretically in our group. Here, we experimentally demonstrate this photon-gating technique, and, through diffraction, visualize the phase transition dynamics in vanadium dioxide nanoparticles. With optical gating of PINEM electrons, imaging temporal resolution was improved by a factor of 3 or better, being limited only by the optical pulse widths. This work enables the combination of the high spatial resolution of electron microscopy and the ultrafast temporal response of the optical pulses, which provides a promising approach to attain the resolution of few femtoseconds and attoseconds in UEM.
LOW CONDUCTANCE HCN1 ION CHANNELS AUGMENT THE FREQUENCY RESPONSE OF ROD AND CONE PHOTORECEPTORS
Barrow, Andrew J.; Wu, Samuel M.
2009-01-01
Hyperpolarization-activated cyclic nucleotide gated (HCN) ion channels are expressed in several tissues throughout the body, including the heart, the CNS, and the retina. HCN channels are found in many neurons in the retina, but their most established role is in generating the hyperpolarization-activated current, Ih, in photoreceptors. This current makes the light response of rod and cone photoreceptors more transient, an effect similar to that of a high-pass filter. A unique property of HCN channels is their small single channel current, which is below the thermal noise threshold of measuring electronics. We use nonstationary fluctuation analysis (NSFA) in the intact retina to estimate the conductance of single HCN channels, revealing a conductance of approximately 650 fS in both rod and cone photoreceptors. We also analyze the properties of HCN channels in salamander rods and cones, from the biophysical to the functional level, showing that HCN1 is the predominant isoform in both cells, and demonstrate how HCN1 channels speed up the light response of both rods and cones under distinct adaptational conditions. We show that in rods and cones, HCN channels increase the natural frequency response of single cells by modifying the photocurrent input, which is limited in its frequency response by the speed of a molecular signaling cascade. In doing so, HCN channels form the first of several systems in the retina that augment the speed of the visual response, allowing an animal to perceive visual stimuli that change more quickly than the underlying photocurrent. PMID:19420251
Radio-frequency reflectometry on an undoped AlGaAs/GaAs single electron transistor
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacLeod, S. J.; See, A. M.; Keane, Z. K.
2014-01-06
Radio frequency reflectometry is demonstrated in a sub-micron undoped AlGaAs/GaAs device. Undoped single electron transistors (SETs) are attractive candidates to study single electron phenomena, due to their charge stability and robust electronic properties after thermal cycling. However, these devices require a large top-gate, which is unsuitable for the fast and sensitive radio frequency reflectometry technique. Here, we demonstrate that rf reflectometry is possible in an undoped SET.
NASA Technical Reports Server (NTRS)
LaBel, Kenneth A.; OBryan, Martha V.; Chen, Dakai; Campola, Michael J.; Casey, Megan C.; Pellish, Jonathan A.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Topper, Alyson D.; Ladbury, Raymond L.;
2014-01-01
We present results and analysis investigating the effects of radiation on a variety of candidate spacecraft electronics to proton and heavy ion induced single event effects (SEE), proton-induced displacement damage (DD), and total ionizing dose (TID). Introduction: This paper is a summary of test results.NASA spacecraft are subjected to a harsh space environment that includes exposure to various types of ionizing radiation. The performance of electronic devices in a space radiation environment is often limited by its susceptibility to single event effects (SEE), total ionizing dose (TID), and displacement damage (DD). Ground-based testing is used to evaluate candidate spacecraft electronics to determine risk to spaceflight applications. Interpreting the results of radiation testing of complex devices is quite difficult. Given the rapidly changing nature of technology, radiation test data are most often application-specific and adequate understanding of the test conditions is critical. Studies discussed herein were undertaken to establish the application-specific sensitivities of candidate spacecraft and emerging electronic devices to single-event upset (SEU), single-event latchup (SEL), single-event gate rupture (SEGR), single-event burnout (SEB), single-event transient (SET), TID, enhanced low dose rate sensitivity (ELDRS), and DD effects.
Gül, O. Tolga; Pugliese, Kaitlin M.; Choi, Yongki; Sims, Patrick C.; Pan, Deng; Rajapakse, Arith J.; Weiss, Gregory A.; Collins, Philip G.
2016-01-01
As biosensing devices shrink smaller and smaller, they approach a scale in which single molecule electronic sensing becomes possible. Here, we review the operation of single-enzyme transistors made using single-walled carbon nanotubes. These novel hybrid devices transduce the motions and catalytic activity of a single protein into an electronic signal for real-time monitoring of the protein’s activity. Analysis of these electronic signals reveals new insights into enzyme function and proves the electronic technique to be complementary to other single-molecule methods based on fluorescence. As one example of the nanocircuit technique, we have studied the Klenow Fragment (KF) of DNA polymerase I as it catalytically processes single-stranded DNA templates. The fidelity of DNA polymerases makes them a key component in many DNA sequencing techniques, and here we demonstrate that KF nanocircuits readily resolve DNA polymerization with single-base sensitivity. Consequently, template lengths can be directly counted from electronic recordings of KF’s base-by-base activity. After measuring as few as 20 copies, the template length can be determined with <1 base pair resolution, and different template lengths can be identified and enumerated in solutions containing template mixtures. PMID:27348011
Gül, O Tolga; Pugliese, Kaitlin M; Choi, Yongki; Sims, Patrick C; Pan, Deng; Rajapakse, Arith J; Weiss, Gregory A; Collins, Philip G
2016-06-24
As biosensing devices shrink smaller and smaller, they approach a scale in which single molecule electronic sensing becomes possible. Here, we review the operation of single-enzyme transistors made using single-walled carbon nanotubes. These novel hybrid devices transduce the motions and catalytic activity of a single protein into an electronic signal for real-time monitoring of the protein's activity. Analysis of these electronic signals reveals new insights into enzyme function and proves the electronic technique to be complementary to other single-molecule methods based on fluorescence. As one example of the nanocircuit technique, we have studied the Klenow Fragment (KF) of DNA polymerase I as it catalytically processes single-stranded DNA templates. The fidelity of DNA polymerases makes them a key component in many DNA sequencing techniques, and here we demonstrate that KF nanocircuits readily resolve DNA polymerization with single-base sensitivity. Consequently, template lengths can be directly counted from electronic recordings of KF's base-by-base activity. After measuring as few as 20 copies, the template length can be determined with <1 base pair resolution, and different template lengths can be identified and enumerated in solutions containing template mixtures.
Márquez, G.; Pinto, A.; Alamo, L.; Baumann, B.; Ye, F.; Winkler, H.; Taylor, K.; Padrón, R.
2014-01-01
Summary Myosin interacting-heads (MIH) motifs are visualized in 3D-reconstructions of thick filaments from striated muscle. These reconstructions are calculated by averaging methods using images from electron micrographs of grids prepared using numerous filament preparations. Here we propose an alternative method to calculate the 3D-reconstruction of a single thick filament using only a tilt series images recorded by electron tomography. Relaxed thick filaments, prepared from tarantula leg muscle homogenates, were negatively stained. Single-axis tilt series of single isolated thick filaments were obtained with the electron microscope at a low electron dose, and recorded on a CCD camera by electron tomography. An IHRSR 3D-recontruction was calculated from the tilt series images of a single thick filament. The reconstruction was enhanced by including in the search stage dual tilt image segments while only single tilt along the filament axis is usually used, as well as applying a band pass filter just before the back projection. The reconstruction from a single filament has a 40 Å resolution and clearly shows the presence of MIH motifs. In contrast, the electron tomogram 3D-reconstruction of the same thick filament –calculated without any image averaging and/or imposition of helical symmetry- only reveals MIH motifs infrequently. This is –to our knowledge- the first application of the IHRSR method to calculate a 3D reconstruction from tilt series images. This single filament IHRSR reconstruction method (SF-IHRSR) should provide a new tool to assess structural differences between well-ordered thick (or thin) filaments in a grid by recording separately their electron tomograms. PMID:24727133
Márquez, G; Pinto, A; Alamo, L; Baumann, B; Ye, F; Winkler, H; Taylor, K; Padrón, R
2014-05-01
Myosin interacting-heads (MIH) motifs are visualized in 3D-reconstructions of thick filaments from striated muscle. These reconstructions are calculated by averaging methods using images from electron micrographs of grids prepared using numerous filament preparations. Here we propose an alternative method to calculate the 3D-reconstruction of a single thick filament using only a tilt series images recorded by electron tomography. Relaxed thick filaments, prepared from tarantula leg muscle homogenates, were negatively stained. Single-axis tilt series of single isolated thick filaments were obtained with the electron microscope at a low electron dose, and recorded on a CCD camera by electron tomography. An IHRSR 3D-recontruction was calculated from the tilt series images of a single thick filament. The reconstruction was enhanced by including in the search stage dual tilt image segments while only single tilt along the filament axis is usually used, as well as applying a band pass filter just before the back projection. The reconstruction from a single filament has a 40 Å resolution and clearly shows the presence of MIH motifs. In contrast, the electron tomogram 3D-reconstruction of the same thick filament - calculated without any image averaging and/or imposition of helical symmetry - only reveals MIH motifs infrequently. This is - to our knowledge - the first application of the IHRSR method to calculate a 3D reconstruction from tilt series images. This single filament IHRSR reconstruction method (SF-IHRSR) should provide a new tool to assess structural differences between well-ordered thick (or thin) filaments in a grid by recording separately their electron tomograms. Copyright © 2014 Elsevier Inc. All rights reserved.
Trung, Tran Quang; Le, Hoang Sinh; Dang, Thi My Linh; Ju, Sanghyun; Park, Sang Yoon; Lee, Nae-Eung
2018-06-01
Fiber-based sensors integrated on textiles or clothing systems are required for the next generation of wearable electronic platforms. Fiber-based physical sensors are developed, but the development of fiber-based temperature sensors is still limited. Herein, a new approach to develop wearable temperature sensors that use freestanding single reduction graphene oxide (rGO) fiber is proposed. A freestanding and wearable temperature-responsive rGO fiber with tunable thermal index is obtained using simple wet spinning and a controlled graphene oxide reduction time. The freestanding fiber-based temperature sensor shows high responsivity, fast response time (7 s), and good recovery time (20 s) to temperature. It also maintains its response under an applied mechanical deformation. The fiber device fabricated by means of a simple process is easily integrated into fabric such as socks or undershirts and can be worn by a person to monitor the temperature of the environment and skin temperature without interference during movement and various activities. These results demonstrate that the freestanding fiber-based temperature sensor has great potential for fiber-based wearable electronic platforms. It is also promising for applications in healthcare and biomedical monitoring. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Observation of Hamiltonian chaos and its control in wave particle interaction
NASA Astrophysics Data System (ADS)
Doveil, F.; Macor, A.; Aïssi, A.
2007-12-01
Wave-particle interactions are central in plasma physics. They can be studied in a traveling wave tube (TWT) to avoid intrinsic plasma noise. This led to detailed experimental analysis of the self-consistent interaction between unstable waves and an either cold or warm beam. More recently a test cold electron beam has been used to observe its non-self-consistent interaction with externally excited wave(s). The velocity distribution function of the electron beam is recorded with a trochoidal energy analyzer at the output of the TWT. An arbitrary waveform generator is used to launch a prescribed spectrum of waves along the slow wave structure (a 4 m long helix) of the TWT. The nonlinear synchronization of particles by a single wave responsible for Landau damping is observed. The resonant velocity domain associated with a single wave is also observed, as well as the transition to large scale chaos when the resonant domains of two waves and their secondary resonances overlap. This transition exhibits a 'devil's staircase' behavior when increasing the excitation amplitude in agreement with numerical simulation. A new strategy for control of chaos by building barriers of transport which prevent electrons from escaping from a given velocity region as well as its robustness are successfully tested. The underlying concepts extend far beyond the field of electron devices and plasma physics.
Controlled chain polymerisation and chemical soldering for single-molecule electronics.
Okawa, Yuji; Akai-Kasaya, Megumi; Kuwahara, Yuji; Mandal, Swapan K; Aono, Masakazu
2012-05-21
Single functional molecules offer great potential for the development of novel nanoelectronic devices with capabilities beyond today's silicon-based devices. To realise single-molecule electronics, the development of a viable method for connecting functional molecules to each other using single conductive polymer chains is required. The method of initiating chain polymerisation using the tip of a scanning tunnelling microscope (STM) is very useful for fabricating single conductive polymer chains at designated positions and thereby wiring single molecules. In this feature article, developments in the controlled chain polymerisation of diacetylene compounds and the properties of polydiacetylene chains are summarised. Recent studies of "chemical soldering", a technique enabling the covalent connection of single polydiacetylene chains to single functional molecules, are also introduced. This represents a key step in advancing the development of single-molecule electronics.
Modeling of Nonlinear Optical Response in Gaseous Media and Its Comparison with Experiment
NASA Astrophysics Data System (ADS)
Xia, Yi
This thesis demonstrates the model and application of nonlinear optical response with Metastable Electronic State Approach (MESA) in ultrashort laser propagation and verifies accuracy of MESA through extensive comparison with experimental data. The MESA is developed from quantum mechanics to describe the nonlinear off-resonant optical response together with strong-field ionization in gaseous medium. The conventional light-matter interaction models are based on a piece-wise approach where Kerr effect and multi-photon ionization are treated as independent nonlinear responses. In contrast, MESA is self-consistent as the response from freed electrons and bound electrons are microscopically linked. It also can be easily coupled to the Unidirectional Pulse Propagation Equations (UPPE) for large scale simulation of experiments. This work tests the implementation of MESA model in simulation of nonlinear phase transients of ultrashort pulse propagation in a gaseous medium. The phase transient has been measured through Single-Shot Supercontinuum Spectral Interferometry. This technique can achieve high temporal resolution (10 fs) and spatial resolution (5 mum). Our comparison between simulation and experiment gives a quantitive test of MESA model including post-adiabatic corrections. This is the first time such a comparison was achieved for a theory suitable for large scale numerical simulation of modern nonlinear-optics experiments. In more than one respect, ours is a first-of-a-kind achievement. In particular, • Large amount of data are compared. We compare the data of nonlinear response induced by different pump intensity in Ar and Nitrogen. The data sets are three dimensions including two transverse spacial dimensions and one axial temporal dimension which reflect the whole structure of nonlinear response including the interplay between Kerr and plasma-induced effects. The resolutions of spatial and temporal dimension are about a few micrometer and several femtosecond. • The regime of light-matter interaction investigated here is between the strong and perturbative, where the pulse intensity can induce nonlinear refractive index change and partial ionization of dielectric medium. Obviously, such regimes are difficult to study both experimentally and theoretically. • MESA is a quantum based model, but it retains the same computation complexity as conventional light-matter interaction model. MESA contains the response from both bound and continuum states in a single self-consistent "Package". So, it is fair to say that this experiment-theory comparison sets a new standard for nonlinear light-matter interaction models and their verification in the area of extreme nonlinear optics.
A singly charged ion source for radioactive {sup 11}C ion acceleration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katagiri, K.; Noda, A.; Nagatsu, K.
2016-02-15
A new singly charged ion source using electron impact ionization has been developed to realize an isotope separation on-line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive {sup 11}C ion beams. Low-energy electron beams are used in the electron impact ion source to produce singly charged ions. Ionization efficiency was calculated in order to decide the geometric parameters of the ion source and to determine the required electron emission current for obtaining high ionization efficiency. Based on these considerations, the singly charged ion source was designed and fabricated. In testing, the fabricated ion source wasmore » found to have favorable performance as a singly charged ion source.« less
Broadband dielectric response of CaCu3Ti4O12 : From dc to the electronic transition regime
NASA Astrophysics Data System (ADS)
Kant, Ch.; Rudolf, T.; Mayr, F.; Krohns, S.; Lunkenheimer, P.; Ebbinghaus, S. G.; Loidl, A.
2008-01-01
We report on phonon properties and electronic transitions in CaCu3Ti4O12 , a material which reveals a colossal dielectric constant at room temperature without any ferroelectric transition. The results of far- and midinfrared measurements are compared to those obtained by broadband dielectric and millimeter-wave spectroscopy on the same single crystal. The unusual temperature dependence of phonon eigenfrequencies, dampings, and ionic plasma frequencies of low-lying phonon modes is analyzed and discussed in detail. Electronic excitations below 4eV are identified as transitions between full and empty hybridized oxygen-copper bands and between oxygen-copper and unoccupied Ti3d bands. The unusually small band gap determined from the dc conductivity (˜200meV) compares well with the optical results.
A bootstrapped, low-noise, and high-gain photodetector for shot noise measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Haijun; Yang, Wenhai; Li, Zhixiu
2014-01-15
We presented a low-noise, high-gain photodetector based on the bootstrap structure and the L-C (inductance and capacitance) combination. Electronic characteristics of the photodetector, including electronic noise, gain and frequency response, and dynamic range, were verified through a single-frequency Nd:YVO{sub 4} laser at 1064 nm with coherent output. The measured shot noise of 50 μW laser was 13 dB above the electronic noise at the analysis frequency of 2 MHz, and 10 dB at 3 MHz. And a maximum clearance of 28 dB at 2 MHz was achieved when 1.52 mW laser was illuminated. In addition, the photodetector showed excellent linearitiesmore » for both DC and AC amplifications in the laser power range between 12.5 μW and 1.52 mW.« less
ELECTRONIC PHASE CONTROL CIRCUIT
Salisbury, J.D.; Klein, W.W.; Hansen, C.F.
1959-04-21
An electronic circuit is described for controlling the phase of radio frequency energy applied to a multicavity linear accelerator. In one application of the circuit two cavities are excited from a single radio frequency source, with one cavity directly coupled to the source and the other cavity coupled through a delay line of special construction. A phase detector provides a bipolar d-c output signal proportional to the difference in phase between the voltage in the two cavities. This d-c signal controls a bias supply which provides a d-c output for varying the capacitnce of voltage sensitive capacitors in the delay line. The over-all operation of the circuit is completely electronic, overcoming the time response limitations of the electromechanical control systems, and the relative phase relationship of the radio frequency voltages in the two caviiies is continuously controlled to effect particle acceleration.
Binding configurations and intramolecular strain in single-molecule devices.
Rascón-Ramos, Habid; Artés, Juan Manuel; Li, Yuanhui; Hihath, Joshua
2015-05-01
The development of molecular-scale electronic devices has made considerable progress over the past decade, and single-molecule transistors, diodes and wires have all been demonstrated. Despite this remarkable progress, the agreement between theoretically predicted conductance values and those measured experimentally remains limited. One of the primary reasons for these discrepancies lies in the difficulty to experimentally determine the contact geometry and binding configuration of a single-molecule junction. In this Article, we apply a small-amplitude, high-frequency, sinusoidal mechanical signal to a series of single-molecule devices during junction formation and breakdown. By measuring the current response at this frequency, it is possible to determine the most probable binding and contact configurations for the molecular junction at room temperature in solution, and to obtain information about how an applied strain is distributed within the molecular junction. These results provide insight into the complex configuration of single-molecule devices, and are in excellent agreement with previous predictions from theoretical models.
Castellano, María; Ruiz-García, Rafael; Cano, Joan; Ferrando-Soria, Jesús; Pardo, Emilio; Fortea-Pérez, Francisco R; Stiriba, Salah-Eddine; Julve, Miguel; Lloret, Francesc
2015-03-17
Metallosupramolecular complexes constitute an important advance in the emerging fields of molecular spintronics and quantum computation and a useful platform in the development of active components of spintronic circuits and quantum computers for applications in information processing and storage. The external control of chemical reactivity (electro- and photochemical) and physical properties (electronic and magnetic) in metallosupramolecular complexes is a current challenge in supramolecular coordination chemistry, which lies at the interface of several other supramolecular disciplines, including electro-, photo-, and magnetochemistry. The specific control of current flow or spin delocalization through a molecular assembly in response to one or many input signals leads to the concept of developing a molecule-based spintronics that can be viewed as a potential alternative to the classical molecule-based electronics. A great variety of factors can influence over these electronically or magnetically coupled, metallosupramolecular complexes in a reversible manner, electronic or photonic external stimuli being the most promising ones. The response ability of the metal centers and/or the organic bridging ligands to the application of an electric field or light irradiation, together with the geometrical features that allow the precise positioning in space of substituent groups, make these metal-organic systems particularly suitable to build highly integrated molecular spintronic circuits. In this Account, we describe the chemistry and physics of dinuclear copper(II) metallacyclophanes with oxamato-containing dinucleating ligands featuring redox- and photoactive aromatic spacers. Our recent works on dicopper(II) metallacyclophanes and earlier ones on related organic cyclophanes are now compared in a critical manner. Special focus is placed on the ligand design as well as in the combination of experimental and computational methods to demonstrate the multifunctionality nature of these metallosupramolecular complexes. This new class of oxamato-based dicopper(II) metallacyclophanes affords an excellent synthetic and theoretical set of models for both chemical and physical fundamental studies on redox- and photo-triggered, long-distance electron exchange phenomena, which are two major topics in molecular magnetism and molecular electronics. Apart from their use as ground tests for the fundamental research on the relative importance of the spin delocalization and spin polarization mechanisms of the electron exchange interaction through extended π-conjugated aromatic ligands in polymetallic complexes, oxamato-based dicopper(II) metallacyclophanes possessing spin-containing electro- and chromophores at the metal and/or the ligand counterparts emerge as potentially active (magnetic and electronic) molecular components to build a metal-based spintronic circuit. They are thus unique examples of multifunctional magnetic complexes to get single-molecule spintronic devices by controlling and allowing the spin communication, when serving as molecular magnetic couplers and wires, or by exhibiting bistable spin behavior, when acting as molecular magnetic rectifiers and switches. Oxamato-based dicopper(II) metallacyclophanes also emerge as potential candidates for the study of coherent electron transport through single molecules, both experimentally and theoretically. The results presented herein, which are a first step in the metallosupramolecular approach to molecular spintronics, intend to attract the attention of physicists and materials scientists with a large expertice in the manipulation and measurement of single-molecule electron transport properties, as well as in the processing and addressing of molecules on different supports.
Harling, Guy; Gumede, Dumile; Mutevedzi, Tinofa; McGrath, Nuala; Seeley, Janet; Pillay, Deenan; Bärnighausen, Till W; Herbst, Abraham J
2017-08-17
Self-interviews, where the respondent rather than the interviewer enters answers to questions, have been proposed as a way to reduce social desirability bias associated with interviewer-led interviews. Computer-assisted self-interviews (CASI) are commonly proposed since the computer programme can guide respondents; however they require both language and computer literacy. We evaluated the feasibility and acceptability of using electronic methods to administer quantitative sexual behaviour questionnaires in the Somkhele demographic surveillance area (DSA) in rural KwaZulu-Natal, South Africa. We conducted a four-arm randomized trial of paper-and-pen-interview, computer-assisted personal-interview (CAPI), CASI and audio-CASI with an age-sex-urbanicity stratified sample of 504 adults resident in the DSA in 2015. We compared respondents' answers to their responses to the same questions in previous surveillance rounds. We also conducted 48 cognitive interviews, dual-coding responses using the Framework approach. Three hundred forty (67%) individuals were interviewed and covariates and participation rates were balanced across arms. CASI and audio-CASI were significantly slower than interviewer-led interviews. Item non-response rates were higher in self-interview arms. In single-paper meta-analysis, self-interviewed individuals reported more socially undesirable sexual behaviours. Cognitive interviews found high acceptance of both self-interviews and the use of electronic methods, with some concerns that self-interview methods required more participant effort and literacy. Electronic data collection methods, including self-interview methods, proved feasible and acceptable for completing quantitative sexual behaviour questionnaires in a poor, rural South African setting. However, each method had both benefits and costs, and the choice of method should be based on context-specific criteria.
Single-Molecule Interfacial Electron Transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, H. Peter
This project is focused on the use of single-molecule high spatial and temporal resolved techniques to study molecular dynamics in condensed phase and at interfaces, especially, the complex reaction dynamics associated with electron and energy transfer rate processes. The complexity and inhomogeneity of the interfacial ET dynamics often present a major challenge for a molecular level comprehension of the intrinsically complex systems, which calls for both higher spatial and temporal resolutions at ultimate single-molecule and single-particle sensitivities. Combined single-molecule spectroscopy and electrochemical atomic force microscopy approaches are unique for heterogeneous and complex interfacial electron transfer systems because the static andmore » dynamic inhomogeneities can be identified and characterized by studying one molecule at a specific nanoscale surface site at a time. The goal of our project is to integrate and apply these spectroscopic imaging and topographic scanning techniques to measure the energy flow and electron flow between molecules and substrate surfaces as a function of surface site geometry and molecular structure. We have been primarily focusing on studying interfacial electron transfer under ambient condition and electrolyte solution involving both single crystal and colloidal TiO 2 and related substrates. The resulting molecular level understanding of the fundamental interfacial electron transfer processes will be important for developing efficient light harvesting systems and broadly applicable to problems in fundamental chemistry and physics. We have made significant advancement on deciphering the underlying mechanism of the complex and inhomogeneous interfacial electron transfer dynamics in dyesensitized TiO 2 nanoparticle systems that strongly involves with and regulated by molecule-surface interactions. We have studied interfacial electron transfer on TiO 2 nanoparticle surfaces by using ultrafast single-molecule spectroscopy and electrochemical AFM metal tip scanning microscopy, focusing on understanding the interfacial electron transfer dynamics at specific nanoscale electron transfer sites with high-spatially and temporally resolved topographic-and-spectroscopic characterization at individual molecule basis, characterizing single-molecule rate processes, reaction driving force, and molecule-substrate electronic coupling. One of the most significant characteristics of our new approach is that we are able to interrogate the complex interfacial electron transfer dynamics by actively pin-point energetic manipulation of the surface interaction and electronic couplings, beyond the conventional excitation and observation.« less
Soft Thermal Sensor with Mechanical Adaptability.
Yang, Hui; Qi, Dianpeng; Liu, Zhiyuan; Chandran, Bevita K; Wang, Ting; Yu, Jiancan; Chen, Xiaodong
2016-11-01
A soft thermal sensor with mechanical adaptability is fabricated by the combination of single-wall carbon nanotubes with carboxyl groups and self-healing polymers. This study demonstrates that this soft sensor has excellent thermal response and mechanical adaptability. It shows tremendous promise for improving the service life of soft artificial-intelligence robots and protecting thermally sensitive electronics from the risk of damage by high temperature. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Evidence for Defect-Mediated Tunneling in Hexagonal Boron Nitride-Based Junctions.
Chandni, U; Watanabe, K; Taniguchi, T; Eisenstein, J P
2015-11-11
We investigate electron tunneling through atomically thin layers of hexagonal boron nitride (hBN). Metal (Cr/Au) and semimetal (graphite) counter-electrodes are employed. While the direct tunneling resistance increases nearly exponentially with barrier thickness as expected, the thicker junctions also exhibit clear signatures of Coulomb blockade, including strong suppression of the tunnel current around zero bias and step-like features in the current at larger biases. The voltage separation of these steps suggests that single-electron charging of nanometer-scale defects in the hBN barrier layer are responsible for these signatures. We find that annealing the metal-hBN-metal junctions removes these defects and the Coulomb blockade signatures in the tunneling current.
Britton, John R
2015-05-08
Reimbursement for healthcare has utilized a variety of payment mechanisms with varying degrees of effectiveness. Whether these mechanisms are used singly or in combination, it is imperative that the resulting systems remunerate on the basis of the quantity, complexity, and quality of care provided. Expanding the role of the electronic medical record (EMR) to monitor provider practice, patient responsiveness, and functioning of the healthcare organization has the potential to not only enhance the accuracy and efficiency of reimbursement mechanisms but also to improve the quality of medical care. © 2015 by Kerman University of Medical Sciences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Driel, Tim Brandt; Herrmann, Sven; Carini, Gabriella
The pulsed free-electron laser light sources represent a new challenge to photon area detectors due to the intrinsic spontaneous X-ray photon generation process that makes single-pulse detection necessary. Intensity fluctuations up to 100% between individual pulses lead to high linearity requirements in order to distinguish small signal changes. In real detectors, signal distortions as a function of the intensity distribution on the entire detector can occur. Here a robust method to correct this nonlinear response in an area detector is presented for the case of exposures to similar signals. The method is tested for the case of diffuse scattering frommore » liquids where relevant sub-1% signal changes appear on the same order as artifacts induced by the detector electronics.« less
Single-Electron Detection and Spectroscopy via Relativistic Cyclotron Radiation.
Asner, D M; Bradley, R F; de Viveiros, L; Doe, P J; Fernandes, J L; Fertl, M; Finn, E C; Formaggio, J A; Furse, D; Jones, A M; Kofron, J N; LaRoque, B H; Leber, M; McBride, E L; Miller, M L; Mohanmurthy, P; Monreal, B; Oblath, N S; Robertson, R G H; Rosenberg, L J; Rybka, G; Rysewyk, D; Sternberg, M G; Tedeschi, J R; Thümmler, T; VanDevender, B A; Woods, N L
2015-04-24
It has been understood since 1897 that accelerating charges must emit electromagnetic radiation. Although first derived in 1904, cyclotron radiation from a single electron orbiting in a magnetic field has never been observed directly. We demonstrate single-electron detection in a novel radio-frequency spectrometer. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay end point, and this work demonstrates a fundamentally new approach to precision beta spectroscopy for future neutrino mass experiments.
Ultrafast lattice dynamics of single crystal and polycrystalline gold nanofilms☆
NASA Astrophysics Data System (ADS)
Hu, Jianbo; Karam, Tony E.; Blake, Geoffrey A.; Zewail, Ahmed H.
2017-09-01
Ultrafast electron diffraction is employed to spatiotemporally visualize the lattice dynamics of 11 nm-thick single-crystal and 2 nm-thick polycrystalline gold nanofilms. Surprisingly, the electron-phonon coupling rates derived from two temperature simulations of the data reveal a faster interaction between electrons and the lattice in the case of the single-crystal sample. We interpret this unexpected behavior as arising from quantum confinement of the electrons in the 2 nm-thick gold nanofilm, as supported by absorption spectra, an effect that counteracts the expected increase in the electron scattering off surfaces and grain boundaries in the polycrystalline materials.
Dopant-controlled single-electron pumping through a metallic island
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenz, Tobias, E-mail: tobias.wenz@ptb.de; Hohls, Frank, E-mail: frank.hohls@ptb.de; Jehl, Xavier
We investigate a hybrid metallic island/single dopant electron pump based on fully depleted silicon-on-insulator technology. Electron transfer between the central metallic island and the leads is controlled by resonant tunneling through single phosphorus dopants in the barriers. Top gates above the barriers are used to control the resonance conditions. Applying radio frequency signals to the gates, non-adiabatic quantized electron pumping is achieved. A simple deterministic model is presented and confirmed by comparing measurements with simulations.
Digital processing with single electrons for arbitrary waveform generation of current
NASA Astrophysics Data System (ADS)
Okazaki, Yuma; Nakamura, Shuji; Onomitsu, Koji; Kaneko, Nobu-Hisa
2018-03-01
We demonstrate arbitrary waveform generation of current using a GaAs-based single-electron pump. In our experiment, a digital processing algorithm known as delta-sigma modulation is incorporated into single-electron pumping to generate a density-modulated single-electron stream, by which we demonstrate the generation of arbitrary waveforms of current including sinusoidal, square, and triangular waves with a peak-to-peak amplitude of approximately 10 pA and an output bandwidth ranging from dc to close to 1 MHz. The developed current generator can be used as the precise and calculable current reference required for measurements of current noise in low-temperature experiments.
Using granular film to suppress charge leakage in a single-electron latch.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orlov, A. O.; Luo, X.; Yadavalli, K. K.
2008-01-01
A single-electron latch is a device that can be used as a building block for quantum-dot cellular automata circuits. It consists of three nanoscale metal 'dots' connected in series by tunnel junctions; charging of the dots is controlled by three electrostatic gates. One very important feature of a single-electron latch is its ability to store ('latch') information represented by the location of a single electron within the three dots. To obtain latching, the undesirable leakage of charge during the retention time must be suppressed. Previously, to achieve this goal, multiple tunnel junctions were used to connect the three dots. However,more » this method of charge leakage suppression requires an additional compensation of the background charges affecting each parasitic dot in the array of junctions. We report a single-electron latch where a granular metal film is used to fabricate the middle dot in the latch which concurrently acts as a charge leakage suppressor. This latch has no parasitic dots, therefore the background charge compensation procedure is greatly simplified. We discuss the origins of charge leakage suppression and possible applications of granular metal dots for various single-electron circuits.« less
NASA Astrophysics Data System (ADS)
Smith, Clare L.; Ankers, Elizabeth; Best, Stephen P.; Gagliardi, Frank; Katahira, Kai; Tsunei, Yseu; Tominaga, Takahiro; Geso, Moshi
2017-12-01
The suitability of IRGANOX®1076 in paraffin wax as a near-tissue equivalent radiation dosimeter was investigated for various radiotherapy beam types; kV and MV X-rays, electrons and protons over clinically-relevant doses (2 -20 Gy). The radical formed upon exposure to ionising radiations was measured by Electron Paramagnetic Resonance (EPR) spectroscopy, and the single peak signal obtained for solid solutions of IRGANOX®1076 in wax is attributed to the phenoxyl radical obtained by net loss of H•. Irradiation of solid IRGANOX®1076 gives a doublet consistent with the formation of the phenol cation radical, obtained by electron loss. Solid solutions of IRGANOX®1076 in paraffin wax give a linear dose response for all types of radiations examined, which was energy independent for MV, electron and proton beams, and energy-dependent for kV X-ray irradiation. Reliable dose measurements were obtained with exposures as low as 2 Gy, and comparisons with alanine wax-pellets containing the same amount of dosimeter material (w/w) gave similar responses for all beam types investigated. Post-irradiation measurements (up to 77 days for proton irradiation for samples stored in the dark and at room temperature) indicate good signal stability with minimal signal fading (between 1.6 to 3.8%). Relative to alanine dosimeters, solid solutions of IRGANOX®1076 in wax give EPR signals with better sensitivity at low dose and do not significantly change with the orientation of the sample. Solid solutions of IRGANOX®1076 are ideal for applications in radiotherapy dosimetry for X-rays and charged particles, as IRGANOX®1076 is relatively cheap, can easily and reproducibly prepared in wax and be moulded to different shapes.
Structural, Optical and Ethanol Sensing Properties of Dy-Doped SnO2 Nanoparticles
NASA Astrophysics Data System (ADS)
Shaikh, F. I.; Chikhale, L. P.; Nadargi, D. Y.; Mulla, I. S.; Suryavanshi, S. S.
2018-04-01
We report a facile co-precipitation synthesis of dysprosium (Dy3+) doped tin oxide (SnO2) thick films and their use as gas sensors. The doping percentage (Dy3+) was varied from 1 mol.% to 4 mol.% with the step of 1 mol.%. As-produced material with varying doping levels were sintered in air; and by using a screen printing technique, their thick films were developed. Prior to sensing performance investigations, the films were examined for structural, morphological and compositional properties using x-ray diffraction, a field emission scanning electron microscope, a transmission electron microscope, selected area electron diffraction, energy dispersive analysis by x-rays, Fourier transform infrared spectroscopy and Raman spectroscopic techniques. The structural analyses revealed formation of single phase nanocrystalline material with tetragonal rutile structure of SnO2. The morphological analyses confirmed the nanocrystalline porous morphology of as-developed material. Elemental analysis defined the composition of material in accordance with the doping concentration. The produced sensor material exhibited good response towards different reducing gases (acetone, ethanol, LPG, and ammonia) at different operating temperatures. The present study confirms that the Dy3+ doping in SnO2 enhances the response towards ethanol with reduction in operating temperature. Particularly, 3 mol.% Dy3+ doped sensor exhibited the highest response (˜ 92%) at an operating temperature of 300°C with better selectivity, fast response (˜ 13 s) and recovery (˜ 22 s) towards ethanol.
Doping dependence of charge order in electron-doped cuprate superconductors
NASA Astrophysics Data System (ADS)
Mou, Yingping; Feng, Shiping
2017-12-01
In the recent studies of the unconventional physics in cuprate superconductors, one of the central issues is the interplay between charge order and superconductivity. Here the mechanism of the charge-order formation in the electron-doped cuprate superconductors is investigated based on the t-J model. The experimentally observed momentum dependence of the electron quasiparticle scattering rate is qualitatively reproduced, where the scattering rate is highly anisotropic in momentum space, and is intriguingly related to the charge-order gap. Although the scattering strength appears to be weakest at the hot spots, the scattering in the antinodal region is stronger than that in the nodal region, which leads to the original electron Fermi surface is broken up into the Fermi pockets and their coexistence with the Fermi arcs located around the nodal region. In particular, this electron Fermi surface instability drives the charge-order correlation, with the charge-order wave vector that matches well with the wave vector connecting the hot spots, as the charge-order correlation in the hole-doped counterparts. However, in a striking contrast to the hole-doped case, the charge-order wave vector in the electron-doped side increases in magnitude with the electron doping. The theory also shows the existence of a quantitative link between the single-electron fermiology and the collective response of the electron density.
NASA Technical Reports Server (NTRS)
Van Dyke, Michael B.
2014-01-01
During random vibration testing of electronic boxes there is often a desire to know the dynamic response of certain internal printed wiring boards (PWBs) for the purpose of monitoring the response of sensitive hardware or for post-test forensic analysis in support of anomaly investigation. Due to restrictions on internally mounted accelerometers for most flight hardware there is usually no means to empirically observe the internal dynamics of the unit, so one must resort to crude and highly uncertain approximations. One common practice is to apply Miles Equation, which does not account for the coupled response of the board in the chassis, resulting in significant over- or under-prediction. This paper explores the application of simple multiple-degree-of-freedom lumped parameter modeling to predict the coupled random vibration response of the PWBs in their fundamental modes of vibration. A simple tool using this approach could be used during or following a random vibration test to interpret vibration test data from a single external chassis measurement to deduce internal board dynamics by means of a rapid correlation analysis. Such a tool might also be useful in early design stages as a supplemental analysis to a more detailed finite element analysis to quickly prototype and analyze the dynamics of various design iterations. After developing the theoretical basis, a lumped parameter modeling approach is applied to an electronic unit for which both external and internal test vibration response measurements are available for direct comparison. Reasonable correlation of the results demonstrates the potential viability of such an approach. Further development of the preliminary approach presented in this paper will involve correlation with detailed finite element models and additional relevant test data.
Quantum logic readout and cooling of a single dark electron spin
NASA Astrophysics Data System (ADS)
Shi, Fazhan; Zhang, Qi; Naydenov, Boris; Jelezko, Fedor; Du, Jiangfeng; Reinhard, Friedemann; Wrachtrup, Jörg
2013-05-01
We study a single dark N2 electron spin defect in diamond, which is magnetically coupled to a nearby nitrogen-vacancy (NV) center. We perform pulsed electron spin resonance on this single spin by mapping its state to the NV center spin and optically reading out the latter. Moreover, we show that the NV center's spin polarization can be transferred to the electron spin by combined two decoupling control-NOT gates. These two results allow us to extend the NV center's two key properties—optical spin polarization and detection—to any electron spin in its vicinity. This enables dark electron spins to be used as local quantum registers and engineerable memories.
GAGG:ce single crystalline films: New perspective scintillators for electron detection in SEM.
Bok, Jan; Lalinský, Ondřej; Hanuš, Martin; Onderišinová, Zuzana; Kelar, Jakub; Kučera, Miroslav
2016-04-01
Single crystal scintillators are frequently used for electron detection in scanning electron microscopy (SEM). We report gadolinium aluminum gallium garnet (GAGG:Ce) single crystalline films as a new perspective scintillators for the SEM. For the first time, the epitaxial garnet films were used in a practical application: the GAGG:Ce scintillator was incorporated into a SEM scintillation electron detector and it showed improved image quality. In order to prove the GAGG:Ce quality accurately, the scintillation properties were examined using electron beam excitation and compared with frequently used scintillators in the SEM. The results demonstrate excellent emission efficiency of the GAGG:Ce single crystalline films together with their very fast scintillation decay useful for demanding SEM applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Electronic components embedded in a single graphene nanoribbon.
Jacobse, P H; Kimouche, A; Gebraad, T; Ervasti, M M; Thijssen, J M; Liljeroth, P; Swart, I
2017-07-25
The use of graphene in electronic devices requires a band gap, which can be achieved by creating nanostructures such as graphene nanoribbons. A wide variety of atomically precise graphene nanoribbons can be prepared through on-surface synthesis, bringing the concept of graphene nanoribbon electronics closer to reality. For future applications it is beneficial to integrate contacts and more functionality directly into single ribbons by using heterostructures. Here, we use the on-surface synthesis approach to fabricate a metal-semiconductor junction and a tunnel barrier in a single graphene nanoribbon consisting of 5- and 7-atom wide segments. We characterize the atomic scale geometry and electronic structure by combined atomic force microscopy, scanning tunneling microscopy, and conductance measurements complemented by density functional theory and transport calculations. These junctions are relevant for developing contacts in all-graphene nanoribbon devices and creating diodes and transistors, and act as a first step toward complete electronic devices built into a single graphene nanoribbon.Adding functional electronic components to graphene nanoribbons requires precise control over their atomic structure. Here, the authors use a bottom-up approach to build a metal-semiconductor junction and a tunnel barrier directly into a single graphene nanoribbon, an exciting development for graphene-based electronic devices.
Dual-Gate p-GaN Gate High Electron Mobility Transistors for Steep Subthreshold Slope.
Bae, Jong-Ho; Lee, Jong-Ho
2016-05-01
A steep subthreshold slope characteristic is achieved through p-GaN gate HEMT with dual-gate structure. Obtained subthreshold slope is less than 120 μV/dec. Based on the measured and simulated data obtained from single-gate device, breakdown of parasitic floating-base bipolar transistor and floating gate charged with holes are responsible to increase abruptly in drain current. In the dual-gate device, on-current degrades with high temperature but subthreshold slope is not changed. To observe the switching speed of dual-gate device and transient response of drain current are measured. According to the transient responses of drain current, switching speed of the dual-gate device is about 10(-5) sec.
High-resolution, high-throughput imaging with a multibeam scanning electron microscope.
Eberle, A L; Mikula, S; Schalek, R; Lichtman, J; Knothe Tate, M L; Zeidler, D
2015-08-01
Electron-electron interactions and detector bandwidth limit the maximal imaging speed of single-beam scanning electron microscopes. We use multiple electron beams in a single column and detect secondary electrons in parallel to increase the imaging speed by close to two orders of magnitude and demonstrate imaging for a variety of samples ranging from biological brain tissue to semiconductor wafers. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Görl, Daniel; Soberats, Bartolome; Herbst, Stefanie; Stepanenko, Vladimir
2016-01-01
The self-assembly of perylene bisimide (PBI) dyes bearing oligo ethylene glycol (OEG) units in water affords responsive functional nanostructures characterized by their lower critical solution temperature (LCST). Tuning of the LCST is realized by a supramolecular approach that relies on two structurally closely related PBI–OEG molecules. The two PBIs socially co-assemble in water and the resulting nanostructures exhibit a single LCST in between the transition temperatures of the aggregates formed by single components. This permits to precisely tune the transition from a hydrogel to a lyotropic liquid crystal state at temperatures between 26 and 51 °C by adjusting the molar fraction of the two PBIs. Owing to concomitant changes in PBI–PBI interactions this phase transition affords a pronounced color change with “fluorescence-on” response that can be utilized as a smart temperature sensory system. PMID:28451124
A single-walled carbon nanotube thin film-based pH-sensing microfluidic chip.
Li, Cheng Ai; Han, Kwi Nam; Pham, Xuan-Hung; Seong, Gi Hun
2014-04-21
A novel microfluidic pH-sensing chip was developed based on pH-sensitive single-walled carbon nanotubes (SWCNTs). In this study, the SWCNT thin film acted both as an electrode and a pH-sensitive membrane. The potentiometric pH response was observed by electronic structure changes in the semiconducting SWCNTs in response to the pH level. In a microfluidic chip consisting of a SWCNT pH-sensing working electrode and an Ag/AgCl reference electrode, the calibration plot exhibited promising pH-sensing performance with an ideal Nernstian response of 59.71 mV pH(-1) between pH 3 and 11 (standard deviation of the sensitivity is 1.5 mV pH(-1), R(2) = 0.985). Moreover, the SWCNT electrode in the microfluidic device showed no significant variation at any pH value in the range of the flow rate between 0.1 and 15 μl min(-1). The selectivity coefficients of the SWCNT electrode revealed good selectivity against common interfering ions.
A Dose-Rate Effect in Single-Particle Electron Microscopy
Chen, James Z.; Sachse, Carsten; Xu, Chen; Mielke, Thorsten; Spahn, Christian M. T.; Grigorieff, Nikolaus
2008-01-01
A low beam-intensity, low electron-dose imaging method has been developed for single-particle electron cryo-microscopy (cryo-EM). Experiments indicate that the new technique can reduce beam-induced specimen movement and secondary radiolytic effects, such as “bubbling”. The improvement in image quality, especially for multiple-exposure data collection, will help single-particle cryo-EM to reach higher resolution. PMID:17977018
Field tuning the g factor in InAs nanowire double quantum dots.
Schroer, M D; Petersson, K D; Jung, M; Petta, J R
2011-10-21
We study the effects of magnetic and electric fields on the g factors of spins confined in a two-electron InAs nanowire double quantum dot. Spin sensitive measurements are performed by monitoring the leakage current in the Pauli blockade regime. Rotations of single spins are driven using electric-dipole spin resonance. The g factors are extracted from the spin resonance condition as a function of the magnetic field direction, allowing determination of the full g tensor. Electric and magnetic field tuning can be used to maximize the g-factor difference and in some cases altogether quench the electric-dipole spin resonance response, allowing selective single spin control. © 2011 American Physical Society
Cazzaniga, C; Sundén, E Andersson; Binda, F; Croci, G; Ericsson, G; Giacomelli, L; Gorini, G; Griesmayer, E; Grosso, G; Kaveney, G; Nocente, M; Perelli Cippo, E; Rebai, M; Syme, B; Tardocchi, M
2014-04-01
First simultaneous measurements of deuterium-deuterium (DD) and deuterium-tritium neutrons from deuterium plasmas using a Single crystal Diamond Detector are presented in this paper. The measurements were performed at JET with a dedicated electronic chain that combined high count rate capabilities and high energy resolution. The deposited energy spectrum from DD neutrons was successfully reproduced by means of Monte Carlo calculations of the detector response function and simulations of neutron emission from the plasma, including background contributions. The reported results are of relevance for the development of compact neutron detectors with spectroscopy capabilities for installation in camera systems of present and future high power fusion experiments.
Braeken, Dries; Huys, Roeland; Loo, Josine; Bartic, Carmen; Borghs, Gustaaf; Callewaert, Geert; Eberle, Wolfgang
2010-12-15
The investigation of single-neuron parameters is of great interest because many aspects in the behavior and communication of neuronal networks still remain unidentified. However, the present available techniques for single-cell measurements are slow and do not allow for a high-throughput approach. We present here a CMOS compatible microelectrode array with 84 electrodes (with diameters ranging from 1.2 to 4.2 μm) that are smaller than the size of cell, thereby supporting single-cell addressability. We show controllable electroporation of a single cell by an underlying electrode while monitoring changes in the intracellular membrane potential. Further, by applying a localized electrical field between two electrodes close to a neuron while recording changes in the intracellular calcium concentration, we demonstrate activation of a single cell (∼270%, DF/F(0)), followed by a network response of the neighboring cells. The technology can be easily scaled up to larger electrode arrays (theoretically up to 137,000 electrodes/mm(2)) with active CMOS electronics integration able to perform high-throughput measurements on single cells. Copyright © 2010 Elsevier B.V. All rights reserved.
Targeting excited states in all-trans polyenes with electron-pair states.
Boguslawski, Katharina
2016-12-21
Wavefunctions restricted to electron pair states are promising models for strongly correlated systems. Specifically, the pair Coupled Cluster Doubles (pCCD) ansatz allows us to accurately describe bond dissociation processes and heavy-element containing compounds with multiple quasi-degenerate single-particle states. Here, we extend the pCCD method to model excited states using the equation of motion (EOM) formalism. As the cluster operator of pCCD is restricted to electron-pair excitations, EOM-pCCD allows us to target excited electron-pair states only. To model singly excited states within EOM-pCCD, we modify the configuration interaction ansatz of EOM-pCCD to contain also single excitations. Our proposed model represents a simple and cost-effective alternative to conventional EOM-CC methods to study singly excited electronic states. The performance of the excited state models is assessed against the lowest-lying excited states of the uranyl cation and the two lowest-lying excited states of all-trans polyenes. Our numerical results suggest that EOM-pCCD including single excitations is a good starting point to target singly excited states.
Theoretical Calculation of the Gas-Sensing Properties of Pt-Decorated Carbon Nanotubes
Zhang, Xiaoxing; Dai, Ziqiang; Wei, Li; Liang, Naifeng; Wu, Xiaoqing
2013-01-01
The gas-sensing properties of Pt-decorated carbon nanotubes (CNTs), which provide a foundation for the fabrication of sensors, have been evaluated. In this study, we calculated the gas adsorption of Pt-decorated (8,0) single-wall CNTs (Pt-SWCNTs) with SO2, H2S, and CO using GGA/PW91 method based on density functional theory. The adsorption energies and the changes in geometric and electronic structures after absorption were comprehensively analyzed to estimate the responses of Pt-SWCNTs. Results indicated that Pt-SWCNTs can respond to the three gases. The electrical characteristics of Pt-SWCNTs show different changes after adsorption. Pt-SWCNTs donate electrons and increase the number of hole carriers after adsorbing SO2, thereby enhancing its conductivity. When H2S is adsorbed on CNTs, electrons are transferred from H2S to Pt-SWCNTs, converting Pt-SWCNTs from p-type to n-type sensors with improved conductivity. However, Pt-SWCNTs obtain electrons and show decreased conductivity when reacted with CO gas. PMID:24201317
Idrobo, Juan C; Zhou, Wu
2017-09-01
Here we present a short historical account of when single adatom impurities where first identified in two-dimensional materials by scanning transmission electron microscopy (STEM). We also present a study of the graphene low-loss (below 50eV) response as a function of number of layers using electron energy-loss spectroscopy (EELS). The study shows that as few as three layers of graphene behave as bulk graphite for losses above 10eV We also show examples of how point and extended defects can easily be resolved and structural dynamics can be readily capture by using aberration-corrected STEM imaging. Finally, we show that the new generation of monochromators has opened up possibilities to explore new physics with an electron microscope. All these capabilities were enabled by the development of spherical aberration correctors and monochromators, where Ondrej Krivanek has played a key role. Copyright © 2017. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mafi, Elham; Tao, Xin; Zhu, Wenguang
2016-07-08
Using single crystalline In2Se3 nanowires as a platform, we have studied the RESET switching (from low to high electrical resistance) in this phase-change material under electric pulses. Particularly, we correlated the atomic-scale structural evolutions with local electrical resistance variations, by performing transmission electron microscopy and scanning Kelvin probe microscopy on the same nanowires. By coupling the experimental results with density functional theory calculations, we show that the immobile dislocations generated via vacancy condensations are responsible for the RESET switching and that the material maintains the single crystallinity during the process. This new mechanism is fundamentally different from the crystalline-amorphous transition,more » which is commonly understood as the underlying process for the RESET switching in similar phase-change materials.« less
NASA Technical Reports Server (NTRS)
Wade, Lawrence A. (Inventor); Shapiro, Ian R. (Inventor); Bittner, Jr., Vern Garrett (Inventor); Collier, Charles Patrick (Inventor); Esplandiu, Maria J. (Inventor); Giapis, Konstantinos P. (Inventor)
2009-01-01
Embodiments in accordance with the present invention relate to techniques for the growth and attachment of single wall carbon nanotubes (SWNT), facilitating their use as robust and well-characterized tools for AFM imaging and other applications. In accordance with one embodiment, SWNTs attached to an AFM tip can function as a structural scaffold for nanoscale device fabrication on a scanning probe. Such a probe can trigger, with nanometer precision, specific biochemical reactions or conformational changes in biological systems. The consequences of such triggering can be observed in real time by single-molecule fluorescence, electrical, and/or AFM sensing. Specific embodiments in accordance with the present invention utilize sensing and manipulation of individual molecules with carbon nanotubes, coupled with single-molecule fluorescence imaging, to allow observation of spectroscopic signals in response to mechanically induced molecular changes. Biological macromolecules such as proteins or DNA can be attached to nanotubes to create highly specific single-molecule probes for investigations of intermolecular dynamics, for assembling hybrid biological and nanoscale materials, or for developing molecular electronics. In one example, electrical wiring of single redox enzymes to carbon nanotube scanning probes allows observation and electrochemical control over single enzymatic reactions by monitoring fluorescence from a redox-active cofactor or the formation of fluorescent products. Enzymes ''nanowired'' to the tips of carbon nanotubes in accordance with embodiments of the present invention, may enable extremely sensitive probing of biological stimulus-response with high spatial resolution, including product-induced signal transduction.
Hou, Jin-Le; Luo, Wen; Guo, Yao; Zhang, Ping; Yang, Shen; Zhu, Qin-Yu; Dai, Jie
2017-06-05
A unique titanium oxo cluster with a ferrocene ligand was synthesized and characterized by single crystal X-ray analysis. Six ferrocene carboxylates coordinate to a D 3d Ti 6 O 6 core to be a redox active cluster 1, [Ti 6 O 6 (O i Pr) 6 (O 2 CFc) 6 ]. An analogue 2, [Ti 6 O 6 (O i Pr) 6 (O 2 C i Bu) 6 ], where the redox active ferrocene group is replaced by isobutyrate, is also reported as a contrast. The six ferrocene moieties in 1 are structurally identical to give a main redox wave at E 1/2 = 0.62 V in dichloromethane investigated by cyclic voltammetry. Photocurrent responses using electrodes of clusters 1 and 2 were studied, and the response properties of 1 are better than those of 2. The electronic spectra and theoretical calculations indicate that charge transfer occurs from ferrocene to Ti(IV) in 1, and the presence of the ferrocene moiety gives efficient electron excitation and charge separation. Cluster 1 is a cooperative system of TiO cluster and redox active ferrocene. Photocurrent response properties of an electrode of 1 for four saccharides, glucose, fructose, maltose, and sucrose, were tested, and only reducing sugars were responsive. The electrode of 2 is also photocurrent responsive to saccharides, but the current densities are lower than those of redox active 1.
Ultrashort electron pulses as a four-dimensional diagnosis of plasma dynamics.
Zhu, P F; Zhang, Z C; Chen, L; Li, R Z; Li, J J; Wang, X; Cao, J M; Sheng, Z M; Zhang, J
2010-10-01
We report an ultrafast electron imaging system for real-time examination of ultrafast plasma dynamics in four dimensions. It consists of a femtosecond pulsed electron gun and a two-dimensional single electron detector. The device has an unprecedented capability of acquiring a high-quality shadowgraph image with a single ultrashort electron pulse, thus permitting the measurement of irreversible processes using a single-shot scheme. In a prototype experiment of laser-induced plasma of a metal target under moderate pump intensity, we demonstrated its unique capability of acquiring high-quality shadowgraph images on a micron scale with a-few-picosecond time resolution.
Positron source position sensing detector and electronics
Burnham, Charles A.; Bradshaw, Jr., John F.; Kaufman, David E.; Chesler, David A.; Brownell, Gordon L.
1985-01-01
A positron source, position sensing device, particularly with medical applications, in which positron induced gamma radiation is detected using a ring of stacked, individual scintillation crystals, a plurality of photodetectors, separated from the scintillation crystals by a light guide, and high resolution position interpolation electronics. Preferably the scintillation crystals are several times more numerous than the photodetectors with each crystal being responsible for a single scintillation event from a received gamma ray. The light guide will disperse the light emitted from gamma ray absorption over several photodetectors. Processing electronics for the output of the photodetectors resolves the location of the scintillation event to a fraction of the dimension of each photodetector. Because each positron absorption results in two 180.degree. oppositely traveling gamma rays, the detection of scintillation in pairs permits location of the positron source in a manner useful for diagnostic purposes. The processing electronics simultaneously responds to the outputs of the photodetectors to locate the scintillations to the source crystal. While it is preferable that the scintillation crystal include a plurality of stacked crystal elements, the resolving power of the processing electronics is also applicable to continuous crystal scintillators.
The Dynamics of Current Carriers In Standing Alfven Waves
NASA Astrophysics Data System (ADS)
Wright, A. N.; Allan, W.; Ruderman, M. S.; Elphic, R. C.
The acceleration of current carriers in an Alfvén wave current system is considered. The model incorporates a dipole magnetic field geometry, and we present an analyt- ical solution of the two-fluid equations by successive approximations. The leading solution corresponds to the familiar single-fluid toroidal oscillations. The next order describes the nonlinear dynamics of electrons responsible for carrying a few µAm-2 field aligned current into the ionosphere. The solution shows how most of the elec- tron acceleration in the magnetosphere occurs within 1 RE of the ionosphere, and that a parallel electric field of the order of 1 mVm-1 is reponsible for energising the electrons to 1 keV. The limitations of the electron fluid approximation are considered, and a qualitative solution including electron beams and a modified E is developed in accord with observations. We find that the electron acceleration can be nonlinear, (ve )ve > ve , as a result of our nonuniform equilibrium field geometry even when ve is less than the Alfvén speed. Our calculation also elucidates the processes through which E is generated and supported.
Emergence of superconductivity in heavy-electron materials
Yang, Yi-feng; Pines, David
2014-01-01
Although the pairing glue for the attractive quasiparticle interaction responsible for unconventional superconductivity in heavy-electron materials has been identified as the spin fluctuations that arise from their proximity to a magnetic quantum critical point, there has been no model to describe their superconducting transition at temperature Tc that is comparable to that found by Bardeen, Cooper, and Schrieffer (BCS) for conventional superconductors, where phonons provide the pairing glue. Here we propose such a model: a phenomenological BCS-like expression for Tc in heavy-electron materials that is based on a simple model for the effective range and strength of the spin-fluctuation-induced quasiparticle interaction and reflects the unusual properties of the heavy-electron normal state from which superconductivity emerges. We show that it provides a quantitative understanding of the pressure-induced variation of Tc in the “hydrogen atoms” of unconventional superconductivity, CeCoIn5 and CeRhIn5, predicts scaling behavior and a dome-like structure for Tc in all heavy-electron quantum critical superconductors, provides unexpected connections between members of this family, and quantifies their variations in Tc with a single parameter. PMID:25489102
Multipactor experiment on a dielectric surface
NASA Astrophysics Data System (ADS)
Anderson, Rex Beach, III
2001-12-01
Multipactor is an electron multiplication process, or electron avalanche, that occurs on metallic and dielectric surfaces in the presence of rf microwave fields. Just as a rock avalanche only needs one rock to cause a larger slide of destruction, one electron under multipactor conditions can cause a tremendous amount of damage to electrical components. Multipactor is a nuisance that can cause excessive noise in communication satellites and radar, and damage to vacuum windows in particle accelerators. Single-surface multipactor on dielectrics is responsible for poor transmission properties of vacuum windows and can eventually lead to vacuum window failure. The repercussions of multipactor affect a wide range of people. For example, a civilian placing a call on a cell phone, or a captain dependent on radar for his ship's safety could both be affected by multipactor. In order to combat this expensive annoyance, a unique experiment to investigate single-surface multipactor on a dielectric surface was developed and tested. The motivation of this thesis is to introduce a novel experiment for multipactor that is designed to verify theoretical calculations and explore the physics behind the phenomenon. The compact apparatus consists of a small brass microwave cavity in a high vacuum system. Most single-surface multipactor experiments consist of a large resonant ring wave guide with a MW power supply. This experiment is the first to utilize a high Q resonant cavity and kW-level power supply to create multipactor on a dielectric surface. The small brass resonant cavity has an inner length of 9.154 cm with an inner diameter of 9.045 cm. A pulsed, variable frequency microwave source at ˜2.4 GHz, 2 kW peak excites the TE111 mode with a strong electric field parallel to a dielectric plate (˜0.2 cm thickness) that is inserted at the mid-plane of the cavity. The microwave pulses from the power supply are monitored by calibrated microwave diodes. These calibrated diodes along with a bead pull perturbation method are used to calculate the threshold rf fields at the dielectric surface when multipactor occurs. This experiment is the first to measure electron current from the dielectric using an electron probe. The electron probe provides temporal measurements of the multipactor electron current with respect to the microwave pulses. Another unique electron diagnostic utilized in this multipactor experiment is phosphor. Phosphor on the dielectric surface is used to detect multipactor electrons by photoemission. Phosphors with different excitation energies are used as a crude electron energy analyzer. Experimental results from these diagnostics match well with theoretical calculations.
Soft Ultrathin Electronics Innervated Adaptive Fully Soft Robots.
Wang, Chengjun; Sim, Kyoseung; Chen, Jin; Kim, Hojin; Rao, Zhoulyu; Li, Yuhang; Chen, Weiqiu; Song, Jizhou; Verduzco, Rafael; Yu, Cunjiang
2018-03-01
Soft robots outperform the conventional hard robots on significantly enhanced safety, adaptability, and complex motions. The development of fully soft robots, especially fully from smart soft materials to mimic soft animals, is still nascent. In addition, to date, existing soft robots cannot adapt themselves to the surrounding environment, i.e., sensing and adaptive motion or response, like animals. Here, compliant ultrathin sensing and actuating electronics innervated fully soft robots that can sense the environment and perform soft bodied crawling adaptively, mimicking an inchworm, are reported. The soft robots are constructed with actuators of open-mesh shaped ultrathin deformable heaters, sensors of single-crystal Si optoelectronic photodetectors, and thermally responsive artificial muscle of carbon-black-doped liquid-crystal elastomer (LCE-CB) nanocomposite. The results demonstrate that adaptive crawling locomotion can be realized through the conjugation of sensing and actuation, where the sensors sense the environment and actuators respond correspondingly to control the locomotion autonomously through regulating the deformation of LCE-CB bimorphs and the locomotion of the robots. The strategy of innervating soft sensing and actuating electronics with artificial muscles paves the way for the development of smart autonomous soft robots. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Extremely high frequency RF effects on electronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale
The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit boardmore » traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.« less
NASA Astrophysics Data System (ADS)
Rahman, Mohammed M.; Jamal, A.; Khan, Sher Bahadar; Faisal, M.
2011-10-01
Hydrothermally prepared as-grown low-dimensional nano-particles (NPs) have been characterized using UV-vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and electron dispersion spectroscopy (EDS). The uniformity of the nano-material was executed by the scanning electron microscopy, where the single phase of the nano-crystalline β-Fe 2O 3 was characterized using XRD techniques. β-Fe 2O 3 nanoparticles fabricated glassy carbon electrode (GCE) have improved chloroform-sensing performances in terms of electrical response ( I- V technique) for detecting analyte in liquid phase. The analytical performances were investigated, which showed that the better sensitivity, stability, and reproducibility of the sensor improved significantly by using Fe 2O 3 NPs thin-film on GCE. The calibration plot was linear ( R = 0.9785) over the large range of 12.0 μM to 12.0 mM. The sensitivity was calculated as 2.1792 μA cm -2 mM -1 with a detection limit of 4.4 ± 0.10 μM in short response time (10.0 s).
NASA Astrophysics Data System (ADS)
Kehayias, Christopher; Kybert, Nicholas; Yodh, Jeremy; Johnson, A. T. Charlie
Carbon nanotubes are low-dimensional materials that exhibit remarkable chemical and bio-sensing properties and have excellent compatibility with electronic systems. Here, we present a study that uses an electronic olfaction system based on a large array of DNA-carbon nanotube field effect transistors vapor sensors to analyze the VOCs of blood plasma samples collected from patients with malignant ovarian cancer, patients with benign ovarian lesions, and age-matched healthy subjects. Initial investigations involved coating each CNT sensor with single-stranded DNA of a particular base sequence. 10 distinct DNA oligomers were used to functionalize the carbon nanotube field effect transistors, providing a 10-dimensional sensor array output response. Upon performing a statistical analysis of the 10-dimensional sensor array responses, we showed that blood samples from patients with malignant cancer can be reliably differentiated from those of healthy control subjects with a p-value of 3 x 10-5. The results provide preliminary evidence that the blood of ovarian cancer patients contains a discernable volatile chemical signature that can be detected using DNA-CNT nanoelectronic vapor sensors, a first step towards a minimally invasive electronic diagnostic technology for ovarian cancer.
Three-dimensional resistivity and switching between correlated electronic states in 1T-TaS2
NASA Astrophysics Data System (ADS)
Svetin, Damjan; Vaskivskyi, Igor; Brazovskii, Serguei; Mihailovic, Dragan
2017-04-01
Recent demonstrations of controlled switching between different ordered macroscopic states by impulsive electromagnetic perturbations in complex materials have opened some fundamental questions on the mechanisms responsible for such remarkable behavior. Here we experimentally address the question of whether two-dimensional (2D) Mott physics can be responsible for unusual switching between states of different electronic order in the layered dichalcogenide 1T-TaS2, or it is a result of subtle inter-layer “orbitronic” re-ordering of its stacking structure. We report on in-plane (IP) and out-of-plane (OP) resistance switching by current-pulse injection at low temperatures. Elucidating the controversial theoretical predictions, we also report on measurements of the anisotropy of the electrical resistivity below room temperature. From the T-dependence of ρ⊥ and ρ||, we surmise that the resistivity is more consistent with collective motion than single particle diffusive or band-like transport. The relaxation dynamics of the metastable state for both IP and OP electron transport are seemingly governed by the same mesoscopic quantum re-ordering process. We conclude that 1T-TaS2 shows resistance switching arising from an interplay of both IP and OP correlations.
Kim, Dae-Hyeong; Song, Jizhou; Choi, Won Mook; Kim, Hoon-Sik; Kim, Rak-Hwan; Liu, Zhuangjian; Huang, Yonggang Y; Hwang, Keh-Chih; Zhang, Yong-wei; Rogers, John A
2008-12-02
Electronic systems that offer elastic mechanical responses to high-strain deformations are of growing interest because of their ability to enable new biomedical devices and other applications whose requirements are impossible to satisfy with conventional wafer-based technologies or even with those that offer simple bendability. This article introduces materials and mechanical design strategies for classes of electronic circuits that offer extremely high stretchability, enabling them to accommodate even demanding configurations such as corkscrew twists with tight pitch (e.g., 90 degrees in approximately 1 cm) and linear stretching to "rubber-band" levels of strain (e.g., up to approximately 140%). The use of single crystalline silicon nanomaterials for the semiconductor provides performance in stretchable complementary metal-oxide-semiconductor (CMOS) integrated circuits approaching that of conventional devices with comparable feature sizes formed on silicon wafers. Comprehensive theoretical studies of the mechanics reveal the way in which the structural designs enable these extreme mechanical properties without fracturing the intrinsically brittle active materials or even inducing significant changes in their electrical properties. The results, as demonstrated through electrical measurements of arrays of transistors, CMOS inverters, ring oscillators, and differential amplifiers, suggest a valuable route to high-performance stretchable electronics.
Single electron beam rf feedback free electron laser
Brau, C.A.; Stein, W.E.; Rockwood, S.D.
1981-02-11
A free electron laser system and electron beam system for a free electron laser which uses rf feedback to enhance efficiency are described. Rf energy is extracted from a single electron beam by decelerating cavities and energy is returned to accelerating cavities using rf returns, such as rf waveguides, rf feedthroughs, resonant feedthroughs, etc. This rf energy is added to rf klystron energy to reduce the required input energy and thereby enhance energy efficiency of the system.
Electron attachment to DNA single strands: gas phase and aqueous solution.
Gu, Jiande; Xie, Yaoming; Schaefer, Henry F
2007-01-01
The 2'-deoxyguanosine-3',5'-diphosphate, 2'-deoxyadenosine-3',5'-diphosphate, 2'-deoxycytidine-3',5'-diphosphate and 2'-deoxythymidine-3',5'-diphosphate systems are the smallest units of a DNA single strand. Exploring these comprehensive subunits with reliable density functional methods enables one to approach reasonable predictions of the properties of DNA single strands. With these models, DNA single strands are found to have a strong tendency to capture low-energy electrons. The vertical attachment energies (VEAs) predicted for 3',5'-dTDP (0.17 eV) and 3',5'-dGDP (0.14 eV) indicate that both the thymine-rich and the guanine-rich DNA single strands have the ability to capture electrons. The adiabatic electron affinities (AEAs) of the nucleotides considered here range from 0.22 to 0.52 eV and follow the order 3',5'-dTDP > 3',5'-dCDP > 3',5'-dGDP > 3',5'-dADP. A substantial increase in the AEA is observed compared to that of the corresponding nucleic acid bases and the corresponding nucleosides. Furthermore, aqueous solution simulations dramatically increase the electron attracting properties of the DNA single strands. The present investigation illustrates that in the gas phase, the excess electron is situated both on the nucleobase and on the phosphate moiety for DNA single strands. However, the distribution of the extra negative charge is uneven. The attached electron favors the base moiety for the pyrimidine, while it prefers the 3'-phosphate subunit for the purine DNA single strands. In contrast, the attached electron is tightly bound to the base fragment for the cytidine, thymidine and adenosine nucleotides, while it almost exclusively resides in the vicinity of the 3'-phosphate group for the guanosine nucleotides due to the solvent effects. The comparatively low vertical detachment energies (VDEs) predicted for 3',5'-dADP(-) (0.26 eV) and 3',5'-dGDP(-) (0.32 eV) indicate that electron detachment might compete with reactions having high activation barriers such as glycosidic bond breakage. However, the radical anions of the pyrimidine nucleotides with high VDE are expected to be electronically stable. Thus the base-centered radical anions of the pyrimidine nucleotides might be the possible intermediates for DNA single-strand breakage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bondarenko, A. S., E-mail: AntonBondarenko@ymail.com; Schaeffer, D. B.; Everson, E. T.
The collision-less transfer of momentum and energy from explosive debris plasma to magnetized background plasma is a salient feature of various astrophysical and space environments. While much theoretical and computational work has investigated collision-less coupling mechanisms and relevant parameters, an experimental validation of the results demands the measurement of the complex, collective electric fields associated with debris-background plasma interaction. Emission spectroscopy offers a non-interfering diagnostic of electric fields via the Stark effect. A unique experiment at the University of California, Los Angeles, that combines the Large Plasma Device (LAPD) and the Phoenix laser facility has investigated the marginally super-Alfvénic, quasi-perpendicularmore » expansion of a laser-produced carbon (C) debris plasma through a preformed, magnetized helium (He) background plasma via emission spectroscopy. Spectral profiles of the He II 468.6 nm line measured at the maximum extent of the diamagnetic cavity are observed to intensify, broaden, and develop equally spaced modulations in response to the explosive C debris, indicative of an energetic electron population and strong oscillatory electric fields. The profiles are analyzed via time-dependent Stark effect models corresponding to single-mode and multi-mode monochromatic (single frequency) electric fields, yielding temporally resolved magnitudes and frequencies. The proximity of the measured frequencies to the expected electron plasma frequency suggests the development of the electron beam-plasma instability, and a simple saturation model demonstrates that the measured magnitudes are feasible provided that a sufficiently fast electron population is generated during C debris–He background interaction. Potential sources of the fast electrons, which likely correspond to collision-less coupling mechanisms, are briefly considered.« less
Advance of Mechanically Controllable Break Junction for Molecular Electronics.
Wang, Lu; Wang, Ling; Zhang, Lei; Xiang, Dong
2017-06-01
Molecular electronics stands for the ultimate size of functional elements, keeping up with an unstoppable trend over the past few decades. As a vital component of molecular electronics, single molecular junctions have attracted significant attention from research groups all over the world. Due to its pronounced superiority, the mechanically controllable break junctions (MCBJ) technique has been widely applied to characterize the dynamic performance of single molecular junctions. This review presents a system analysis for single-molecule junctions and offers an overview of four test-beds for single-molecule junctions, thus offering more insight into the mechanisms of electron transport. We mainly focus on the development of state-of-the-art mechanically controlled break junctions. The three-terminal gated MCBJ approaches are introduced to manipulate the electron transport of molecules, and MCBJs are combined with characterization techniques. Additionally, applications of MCBJs and remarkable properties of single molecules are addressed. Finally, the challenges and perspective for the mechanically controllable break junctions technique are provided.
High quality single shot ultrafast MeV electron diffraction from a photocathode radio-frequency gun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Feichao; Liu, Shengguang; Zhu, Pengfei
2014-08-15
A compact ultrafast electron diffractometer, consisting of an s-band 1.6 cell photocathode radio-frequency gun, a multi-function changeable sample chamber, and a sensitive relativistic electron detector, was built at Shanghai Jiao Tong University. High-quality single-shot transmission electron diffraction patterns have been recorded by scattering 2.5 MeV electrons off single crystalline gold and polycrystalline aluminum samples. The high quality diffraction pattern indicates an excellent spatial resolution, with the ratio of the diffraction ring radius over the ring rms width beyond 10. The electron pulse width is estimated to be about 300 fs. The high temporal and spatial resolution may open new opportunities inmore » various areas of sciences.« less
High quality single shot ultrafast MeV electron diffraction from a photocathode radio-frequency gun.
Fu, Feichao; Liu, Shengguang; Zhu, Pengfei; Xiang, Dao; Zhang, Jie; Cao, Jianming
2014-08-01
A compact ultrafast electron diffractometer, consisting of an s-band 1.6 cell photocathode radio-frequency gun, a multi-function changeable sample chamber, and a sensitive relativistic electron detector, was built at Shanghai Jiao Tong University. High-quality single-shot transmission electron diffraction patterns have been recorded by scattering 2.5 MeV electrons off single crystalline gold and polycrystalline aluminum samples. The high quality diffraction pattern indicates an excellent spatial resolution, with the ratio of the diffraction ring radius over the ring rms width beyond 10. The electron pulse width is estimated to be about 300 fs. The high temporal and spatial resolution may open new opportunities in various areas of sciences.
Sun, Qi-Bin; Liu, Shi-Dong; Meng, Qin-Jun; Qu, Hua-Zheng; Zhang, Zheng
2015-02-10
Single administration of intra-articular (IA) bupivacaine for pain relief after arthroscopic knee surgery is effective, but its active duration and dose-response relationship is unclear. We conducted this meta-analysis to summarize all published randomized controlled trials (RCTs), thus providing the most recent information on the safety and efficacy of single-administration IA bupivacaine for pain relief after arthroscopic knee surgery, and to determine whether a dose-response relationship exists. A systematic electronic literature search (through April 2014) was conducted to identify those RCTs that addressed the safety and efficacy of a single administration of IA bupivacaine for pain management after arthroscopic knee surgery. Subgroup analysis was conducted to determine changes in visual analog scale (VAS) scores at seven postoperative time points. Meta-regression and subgroup analyses were carried out to assess the effects of various treatment factors on efficacy and to evaluate the dose-response relationship of bupivacaine. Weighted mean differences or relative risks were calculated and pooled using a random-effects model. Twenty-eight trials involving 1,560 patients who underwent arthroscopic knee surgery met the inclusion criteria. The trials were subject to medium risk of bias. VAS scores at 2, 4, 6, 12, and 24 h postoperatively were significantly lower, the number of patients requiring supplementary analgesia was smaller, and the time to first request for analgesia was longer in the IA bupivacaine group than in the placebo group. The analgesic effect of single-administration IA bupivacaine may be associated with the effect of concomitant administration of epinephrine and concentration of bupivacaine, and no dose-response relationship was identified. No significant difference in side effects was detected between groups. Current evidence shows that the use of single-administration IA bupivacaine is effective for postoperative pain management in patients undergoing arthroscopic knee surgery, with satisfactory short-term safety. Low-dose administration of IA bupivacaine 0.5% combined with epinephrine adjuvant in clinical practice should be performed. Additional high-quality RCTs with longer follow-up periods are required to examine the safety of single-administration IA bupivacaine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puczkarski, Paweł; Gehring, Pascal, E-mail: pascal.gehring@materials.ox.ac.uk; Lau, Chit S.
2015-09-28
We report room-temperature Coulomb blockade in a single layer graphene three-terminal single-electron transistor fabricated using feedback-controlled electroburning. The small separation between the side gate electrode and the graphene quantum dot results in a gate coupling up to 3 times larger compared to the value found for the back gate electrode. This allows for an effective tuning between the conductive and Coulomb blocked state using a small side gate voltage of about 1 V. The technique can potentially be used in the future to fabricate all-graphene based room temperature single-electron transistors or three terminal single molecule transistors with enhanced gate coupling.
The Present State of Amperometric Nanowire Sensors for Chemical and Biological Detection
2006-10-01
reported for a multi(nano)wire carbon monoxide 6 sensor (17). A single gallium oxide nanowire ethanol sensor with a 2.5 second response time has also...Covington, J. A.; Gardner, J. W.; Bartlett, P. N.; Toh, C-S. Conductive polymer gate FET devices for vapour sensing. IEE Proceedings - Circuits...detecting organic vapours . Sensors and Actuators B 2001, 77 (1–2), 155–162. 48. Malliaras G.; Friend, R. An organic electronics primer. Physics
Single-electron detection and spectroscopy via relativistic cyclotron radiation
Asner, D. M.; Bradley, R. F.; de Viveiros, L.; ...
2015-04-20
Since 1897, we've understood that accelerating charges must emit electromagnetic radiation. Cyclotron radiation, the particular form of radiation emitted by an electron orbiting in a magnetic field, was first derived in 1904. Despite the simplicity of this concept, and the enormous utility of electron spectroscopy in nuclear and particle physics, single-electron cyclotron radiation has never been observed directly. We demonstrate single-electron detection in a novel radiofrequency spec- trometer. Here, we observe the cyclotron radiation emitted by individual magnetically-trapped electrons that are produced with mildly-relativistic energies by a gaseous radioactive source. The relativistic shift in the cyclotron frequency permits a precisemore » electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay endpoint, and this work demonstrates a fundamentally new approach to precision beta spectroscopy for future neutrino mass experiments.« less
Data quality assurance: an analysis of patient non-response.
Derby, Dustin C; Haan, Andrea; Wood, Kurt
2011-01-01
Patient satisfaction is paramount to maintaining high clinical quality assurance. This study seeks to compare response rates, response bias, and the completeness of data between paper and electronic collection modes of a chiropractic patient satisfaction survey. A convenience sample of 206 patients presenting to a chiropractic college clinic were surveyed concerning satisfaction with their chiropractic care. Paper (in-clinic and postal) and electronic modes of survey administration were compared for response rates and non-response bias. The online data collection mode resulted in fewer non-responses and a higher response rate, and did not evince response bias when compared to paper modes. The postal paper mode predicted non-response rates over the in-clinic paper and online modalities and exhibited a gender bias. This current study was a single clinic study; future studies should consider multi-clinic data collections. Busy clinic operations and available staff resources restricted the ability to conduct a random sampling of patients or to invite all eligible patients, therefore limiting the generalizability of collected survey data. Results of this study will provide data to aid development of survey protocols that efficiently, account for available human resources, and are convenient for patients while allowing for the most complete and accurate data collection possible in an educational clinic setting. Understanding patient responses across survey modes is critical for the cultivation of quality business intelligence within college teaching clinic settings. This study bridges measurement evidence from three popular data collection modalities and offers support for higher levels of quality for web-based data collection.
Super-Joule heating in graphene and silver nanowire network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maize, Kerry; Das, Suprem R.; Sadeque, Sajia
Transistors, sensors, and transparent conductors based on randomly assembled nanowire networks rely on multi-component percolation for unique and distinctive applications in flexible electronics, biochemical sensing, and solar cells. While conduction models for 1-D and 1-D/2-D networks have been developed, typically assuming linear electronic transport and self-heating, the model has not been validated by direct high-resolution characterization of coupled electronic pathways and thermal response. In this letter, we show the occurrence of nonlinear “super-Joule” self-heating at the transport bottlenecks in networks of silver nanowires and silver nanowire/single layer graphene hybrid using high resolution thermoreflectance (TR) imaging. TR images at the microscopicmore » self-heating hotspots within nanowire network and nanowire/graphene hybrid network devices with submicron spatial resolution are used to infer electrical current pathways. The results encourage a fundamental reevaluation of transport models for network-based percolating conductors.« less
NASA Astrophysics Data System (ADS)
Wells, R. P.; Ghiorso, W.; Staples, J.; Huang, T. M.; Sannibale, F.; Kramasz, T. D.
2016-02-01
A high repetition rate, MHz-class, high-brightness electron source is a key element in future high-repetition-rate x-ray free electron laser-based light sources. The VHF-gun, a novel low frequency radio-frequency gun, is the Lawrence Berkeley National Laboratory (LBNL) response to that need. The gun design is based on a normal conducting, single cell cavity resonating at 186 MHz in the VHF band and capable of continuous wave operation while still delivering the high accelerating fields at the cathode required for the high brightness performance. The VHF-gun was fabricated and successfully commissioned in the framework of the Advanced Photo-injector EXperiment, an injector built at LBNL to demonstrate the capability of the gun to deliver the required beam quality. The basis for the selection of the VHF-gun technology, novel design features, and fabrication techniques are described.
Wells, R P; Ghiorso, W; Staples, J; Huang, T M; Sannibale, F; Kramasz, T D
2016-02-01
A high repetition rate, MHz-class, high-brightness electron source is a key element in future high-repetition-rate x-ray free electron laser-based light sources. The VHF-gun, a novel low frequency radio-frequency gun, is the Lawrence Berkeley National Laboratory (LBNL) response to that need. The gun design is based on a normal conducting, single cell cavity resonating at 186 MHz in the VHF band and capable of continuous wave operation while still delivering the high accelerating fields at the cathode required for the high brightness performance. The VHF-gun was fabricated and successfully commissioned in the framework of the Advanced Photo-injector EXperiment, an injector built at LBNL to demonstrate the capability of the gun to deliver the required beam quality. The basis for the selection of the VHF-gun technology, novel design features, and fabrication techniques are described.
Low-temperature thermoelectric properties of the electron-doped perovskites SrTi1-xNbxO3
NASA Astrophysics Data System (ADS)
Okuda, Tetsuji; Fukuyado, Junichi; Narikiyo, Kuraihito; Akaki, Mitsuru; Kuwahara, Hideki
2014-03-01
Electron-doped perovskite SrTiO3 is one of the candidates of the n-type oxide thermoelectric materials. In this study, we have investigated thermoelectric (TE) properties for single crystals of SrTi1-xNbxO3 for 0 <= x <= 0.03 below room temperature. We found that SrTi0.99Nb0.01O3 shows a large power factor at low temperature (PF = 50 μW/K2 cm at 100 K - 90 μW/K2 cm at 50 K) and the largest dimensionless TE figure-of-merit below 40 K (ZT ~ 0.07) among the reported materials. Such a large low-temperature TE response around a carrier concentration of 1020 cm-3 is due to a distinct phonon drag effect, i.e., a distinct electron-phonon interaction, which could relate to the superconducting state.
Magneto-optical fingerprints of distinct graphene multilayers using the giant infrared Kerr effect
NASA Astrophysics Data System (ADS)
Ellis, Chase T.; Stier, Andreas V.; Kim, Myoung-Hwan; Tischler, Joseph G.; Glaser, Evan R.; Myers-Ward, Rachael L.; Tedesco, Joseph L.; Eddy, Charles R.; Gaskill, D. Kurt; Cerne, John
2013-11-01
The remarkable electronic properties of graphene strongly depend on the thickness and geometry of graphene stacks. This wide range of electronic tunability is of fundamental interest and has many applications in newly proposed devices. Using the mid-infrared, magneto-optical Kerr effect, we detect and identify over 18 interband cyclotron resonances (CR) that are associated with ABA and ABC stacked multilayers as well as monolayers that coexist in graphene that is epitaxially grown on 4H-SiC. Moreover, the magnetic field and photon energy dependence of these features enable us to explore the band structure, electron-hole band asymmetries, and mechanisms that activate a CR response in the Kerr effect for various multilayers that coexist in a single sample. Surprisingly, we find that the magnitude of monolayer Kerr effect CRs is not temperature dependent. This unexpected result reveals new questions about the underlying physics that makes such an effect possible.
Yang, Xiaozhou; Li, Yanxiao
2016-01-15
This paper reported a diamine ligand and its Re(I) complex for potential application in oxygen sensing. The novelty of this diamine ligand localized at its increased conjugation chain which had a typical electron-withdrawing group of 1,3,4-oxadiazole. Electronic distribution of excited electrons and their lifetime were supposed to be increased, favoring oxygen sensing collision. This hypothesis was confirmed by single crystal analysis, theoretical calculation and photophysical measurement. It was found that this Re(I) complex had a long-lived emission peaking at 545 nm, favoring sensing application. By doping this complex into a silica matrix MCM-41, oxygen sensing performance and mechanism of the resulting composites were discussed in detail. Non-linear Stern-Volmer working curves were observed with maximum sensitivity of 5.54 and short response time of ~6 s. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, S.; Li, Y.; Liu, C.
2015-08-15
This paper presents a statistical theory for the initial onset of multipactor breakdown in coaxial transmission lines, taking both the nonuniform electric field and random electron emission velocity into account. A general numerical method is first developed to construct the joint probability density function based on the approximate equation of the electron trajectory. The nonstationary dynamics of the multipactor process on both surfaces of coaxial lines are modelled based on the probability of various impacts and their corresponding secondary emission. The resonant assumption of the classical theory on the independent double-sided and single-sided impacts is replaced by the consideration ofmore » their interaction. As a result, the time evolutions of the electron population for exponential growth and absorption on both inner and outer conductor, in response to the applied voltage above and below the multipactor breakdown level, are obtained to investigate the exact mechanism of multipactor discharge in coaxial lines. Furthermore, the multipactor threshold predictions of the presented model are compared with experimental results using measured secondary emission yield of the tested samples which shows reasonable agreement. Finally, the detailed impact scenario reveals that single-surface multipactor is more likely to occur with a higher outer to inner conductor radius ratio.« less
Single Crystal Diamond Beam Position Monitors with Radiofrequency Electronic Readout
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solar, B.; Graafsma, H.; Potdevin, G.
2010-06-23
Over the energy range 5{approx}30 keV a suitably contacted, thin ({approx}100 {mu}m) diamond plate can be operated in situ as a continuous monitor of X-ray beam intensity and position as the diamond absorbs only a small percentage of the incident beam. Single crystal diamond is a completely homogeneous material showing fast (ns), spatially uniform signal response and negligible (
Secure communications using nonlinear silicon photonic keys.
Grubel, Brian C; Bosworth, Bryan T; Kossey, Michael R; Cooper, A Brinton; Foster, Mark A; Foster, Amy C
2018-02-19
We present a secure communication system constructed using pairs of nonlinear photonic physical unclonable functions (PUFs) that harness physical chaos in integrated silicon micro-cavities. Compared to a large, electronically stored one-time pad, our method provisions large amounts of information within the intrinsically complex nanostructure of the micro-cavities. By probing a micro-cavity with a rapid sequence of spectrally-encoded ultrafast optical pulses and measuring the lightwave responses, we experimentally demonstrate the ability to extract 2.4 Gb of key material from a single micro-cavity device. Subsequently, in a secure communication experiment with pairs of devices, we achieve bit error rates below 10 -5 at code rates of up to 0.1. The PUFs' responses are never transmitted over the channel or stored in digital memory, thus enhancing the security of the system. Additionally, the micro-cavity PUFs are extremely small, inexpensive, robust, and fully compatible with telecommunications infrastructure, components, and electronic fabrication. This approach can serve one-time pad or public key exchange applications where high security is required.
Characterizing Plasmonic Excitations of Quasi-2D Chains
NASA Astrophysics Data System (ADS)
Townsend, Emily; Bryant, Garnett
A quantum description of the optical response of nanostructures and other atomic-scale systems is desirable for modeling systems that use plasmons for quantum information transfer, or coherent transport and interference of quantum states, as well as systems small enough for electron tunneling or quantum confinement to affect the electronic states of the system. Such a quantum description is complicated by the fact that collective and single-particle excitations can have similar energies and thus will mix. We seek to better understand the excitations of nanosystems to identify which characteristics of the excitations are most relevant to modeling their behavior. In this work we use a quasi 2-dimensional linear atomic chain as a model system, and exact diagonalization of the many-body Hamiltonian to obtain its excitations. We compare this to previous work in 1-d chains which used a combination of criteria involving a many-body state's transfer dipole moment, balance, transfer charge, dynamical response, and induced-charge distribution to identify which excitations are plasmonic in character.
Tracing Single Electrons in a Disordered Polymer Film at Room Temperature.
Wilma, Kevin; Issac, Abey; Chen, Zhijian; Würthner, Frank; Hildner, Richard; Köhler, Jürgen
2016-04-21
The transport of charges lies at the heart of essentially all modern (opto-) electronic devices. Although inorganic semiconductors built the basis for current technologies, organic materials have become increasingly important in recent years. However, organic matter is often highly disordered, which directly impacts the charge carrier dynamics. To understand and optimize device performance, detailed knowledge of the transport mechanisms of charge carriers in disordered matter is therefore of crucial importance. Here we report on the observation of the motion of single electrons within a disordered polymer film at room temperature, using single organic chromophores as probe molecules. The migration of a single electron gives rise to a varying electric field in its vicinity, which is registered via a shift of the emission spectra (Stark shift) of a chromophore. The spectral shifts allow us to determine the electron mobility and reveal for each nanoenvironment a distinct number of different possible electron-transfer pathways within the rugged energy landscape of the disordered polymer matrix.
Giant current fluctuations in an overheated single-electron transistor
NASA Astrophysics Data System (ADS)
Laakso, M. A.; Heikkilä, T. T.; Nazarov, Yuli V.
2010-11-01
Interplay of cotunneling and single-electron tunneling in a thermally isolated single-electron transistor leads to peculiar overheating effects. In particular, there is an interesting crossover interval where the competition between cotunneling and single-electron tunneling changes to the dominance of the latter. In this interval, the current exhibits anomalous sensitivity to the effective electron temperature of the transistor island and its fluctuations. We present a detailed study of the current and temperature fluctuations at this interesting point. The methods implemented allow for a complete characterization of the distribution of the fluctuating quantities, well beyond the Gaussian approximation. We reveal and explore the parameter range where, for sufficiently small transistor islands, the current fluctuations become gigantic. In this regime, the optimal value of the current, its expectation value, and its standard deviation differ from each other by parametrically large factors. This situation is unique for transport in nanostructures and for electron transport in general. The origin of this spectacular effect is the exponential sensitivity of the current to the fluctuating effective temperature.
NASA Astrophysics Data System (ADS)
Arseev, Petr I.; Maslova, N. S.
2011-02-01
It is shown how effective Hamiltonians are constructed in the framework of the adiabatic approach to the electron-vibration interaction in electron tunneling through single molecules. Methods for calculating tunneling characteristics are discussed and possible features resulting from the electron-vibration coupling are described. The intensity of vibrations excited by a tunneling current in various systems is examined.
Xiao, Fei; Zhao, Faqiong; Li, Jiangwen; Yan, Rui; Yu, Jingjing; Zeng, Baizhao
2007-07-16
A novel composite film modified glassy carbon electrode has been fabricated and characterized by scanning electron microscope (SEM) and voltammetry. The composite film comprises of single-wall carbon nanotube (SWNT), gold nanoparticle (GNP) and ionic liquid (i.e. 1-octyl-3-methylimidazolium hexafluorophosphate), thus has the characteristics of them. The resulting electrode shows good stability, high accumulation efficiency and strong promotion to electron transfer. On it, chloramphenicol can produce a sensitive cathodic peak at -0.66 V (versus SCE) in pH 7.0 phosphate buffer solutions. Parameters influencing the voltammetric response of chloramphenicol are optimized, which include the composition of the film and the operation conditions. Under the optimized conditions, the peak current is linear to chloramphenicol concentration in the range of 1.0x10(-8)-6.0x10(-6) M, and the detection limit is estimated to be 5.0x10(-9) M after an accumulation for 150 s on open circuit. The electrode is applied to the determination of chloramphenicol in milk samples, and the recoveries for the standards added are 97.0% and 100.3%. In addition, the electrochemical reaction of chloramphenicol and the effect of single-wall carbon nanotube, gold nanoparticle and ionic liquid are discussed.
Single electron counting using a dual MCP assembly
NASA Astrophysics Data System (ADS)
Yang, Yuzhen; Liu, Shulin; Zhao, Tianchi; Yan, Baojun; Wang, Peiliang; Yu, Yang; Lei, Xiangcui; Yang, Luping; Wen, Kaile; Qi, Ming; Heng, Yuekun
2016-09-01
The gain, pulse height resolution and peak-to-valley ratio of single electrons detected by using a Chevron configured Microchannel Plate (MCP) assembly are studied. The two MCPs are separated by a 280 μm gap and are biased by four electrodes. The purpose of the study is to determine the optimum bias voltage arrangements for single electron counting. By comparing the results of various bias voltage combinations, we conclude that good performance for the electron counting can be achieved by operating the MCP assembly in saturation mode. In addition, by applying a small reverse bias voltage across the gap while adjusting the bias voltages of the MCPs, optimum performance of electron counting can be obtained.
DNA-Based Single-Molecule Electronics: From Concept to Function.
Wang, Kun
2018-01-17
Beyond being the repository of genetic information, DNA is playing an increasingly important role as a building block for molecular electronics. Its inherent structural and molecular recognition properties render it a leading candidate for molecular electronics applications. The structural stability, diversity and programmability of DNA provide overwhelming freedom for the design and fabrication of molecular-scale devices. In the past two decades DNA has therefore attracted inordinate amounts of attention in molecular electronics. This review gives a brief survey of recent experimental progress in DNA-based single-molecule electronics with special focus on single-molecule conductance and I-V characteristics of individual DNA molecules. Existing challenges and exciting future opportunities are also discussed.
DNA-Based Single-Molecule Electronics: From Concept to Function
2018-01-01
Beyond being the repository of genetic information, DNA is playing an increasingly important role as a building block for molecular electronics. Its inherent structural and molecular recognition properties render it a leading candidate for molecular electronics applications. The structural stability, diversity and programmability of DNA provide overwhelming freedom for the design and fabrication of molecular-scale devices. In the past two decades DNA has therefore attracted inordinate amounts of attention in molecular electronics. This review gives a brief survey of recent experimental progress in DNA-based single-molecule electronics with special focus on single-molecule conductance and I–V characteristics of individual DNA molecules. Existing challenges and exciting future opportunities are also discussed. PMID:29342091
NASA Astrophysics Data System (ADS)
Cesar, D.; Maxson, J.; Musumeci, P.; Sun, Y.; Harrison, J.; Frigola, P.; O'Shea, F. H.; To, H.; Alesini, D.; Li, R. K.
2016-07-01
We present the results of an experiment where a short focal length (˜1.3 cm ), permanent magnet electron lens is used to image micron-size features (of a metal sample) with a single shot from an ultrahigh brightness picosecond-long 4 MeV electron beam emitted by a radio-frequency photoinjector. Magnification ratios in excess of 30 × were obtained using a triplet of compact, small gap (3.5 mm), Halbach-style permanent magnet quadrupoles with nearly 600 T /m field gradients. These results pave the way towards single-shot time-resolved electron microscopy and open new opportunities in the applications of high brightness electron beams.
Gao, Zheng-Yang; Yang, Wei-Jie; Ding, Xun-Lei; Lv, Gang; Yan, Wei-Ping
2018-03-07
The adsorption and catalytic activation of O 2 on single atom iron catalysts with graphene-based substrates were investigated systematically by density functional theory calculation. It is found that the support effects of graphene-based substrates have a significant influence on the stability of the single atom catalysts, the adsorption configuration, the electron transfer mechanism, the adsorption energy and the energy barrier. The differences in the stable adsorption configuration of O 2 on single atom iron catalysts with different graphene-based substrates can be well understood by the symmetrical matching principle based on frontier molecular orbital analysis. There are two different mechanisms of electron transfer, in which the Fe atom acts as the electron donor in single vacancy graphene-based substrates while the Fe atom mainly acts as the bridge for electron transfer in double vacancy graphene-based substrates. The Fermi softness and work function are good descriptors of the adsorption energy and they can well reveal the relationship between electronic structure and adsorption energy. This single atom iron catalyst with single vacancy graphene modified by three nitrogen atoms is a promising non-noble metal single atom catalyst in the adsorption and catalytic oxidation of O 2 . Furthermore, the findings can lay the foundation for the further study of graphene-based support effects and provide a guideline for the development and design of new non-noble-metal single atom catalysts.
Suga, Hiroshi; Sumiya, Touru; Furuta, Shigeo; Ueki, Ryuichi; Miyazawa, Yosuke; Nishijima, Takuya; Fujita, Jun-ichi; Tsukagoshi, Kazuhito; Shimizu, Tetsuo; Naitoh, Yasuhisa
2012-10-24
A method for fabricating single-crystalline nanogaps on Si substrates was developed. Polycrystalline Pt nanowires on Si substrates were broken down by current flow under various gaseous environments. The crystal structure of the nanogap electrode was evaluated using scanning electron microscopy and transmission electron microscopy. Nanogap electrodes sandwiched between Pt-large-crystal-grains were obtained by the breakdown of the wire in an O(2) or H(2) atmosphere. These nanogap electrodes show intense spots in the electron diffraction pattern. The diffraction pattern corresponds to Pt (111), indicating that single-crystal grains are grown by the electrical wire breakdown process in an O(2) or H(2) atmosphere. The Pt wires that have (111)-texture and coherent boundaries can be considered ideal as interconnectors for single molecular electronics. The simple method for fabrication of a single-crystalline nanogap is one of the first steps toward standard nanogap electrodes for single molecular instruments and opens the door to future research on physical phenomena in nanospaces.
NASA Astrophysics Data System (ADS)
Oiwa, Nestor; Cordeiro, Claudette; Heermann, Dieter
2016-05-01
Instead of ATCG letter alignments, typically used in bioinformatics, we propose a new alignment method using the probability distribution function of the bottom of the occupied molecular orbital (BOMO), highest occupied molecular orbital (HOMO) and lowest unoccupied orbital (LUMO). We apply the technique to transcription factors with Cys2His2 zinc fingers. These transcription factors search for binding sites, probing for the electronic patterns at the minor and major DNA groves. The eukaryotic Cys2His2 zinc finger proteins bind to DNA ubiquitously at highly conserved domains. They are responsible for gene regulation and the spatial organization of DNA. To study and understand these zinc finger DNA-protein interactions, we use the extended ladder in the DNA model proposed by Zhu, Rasmussen, Balatsky & Bishop (2007) te{Zhu-2007}. Considering one single spinless electron in each nucleotide π-orbital along a double DNA chain (dDNA), we find a typical pattern for the bottom of BOMO, HOMO and LUMO along the binding sites. We specifically looked at two members of zinc finger protein family: specificity protein 1 (SP1) and early grown response 1 transcription factors (EGR1). When the valence band is filled, we find electrons in the purines along the nucleotide sequence, compatible with the electric charges of the binding amino acids in SP1 and EGR1 zinc finger.
NASA Astrophysics Data System (ADS)
Tracy, L. A.; Luhman, D. R.; Carr, S. M.; Bishop, N. C.; Ten Eyck, G. A.; Pluym, T.; Wendt, J. R.; Lilly, M. P.; Carroll, M. S.
2016-02-01
We use a cryogenic high-electron-mobility transistor circuit to amplify the current from a single electron transistor, allowing for demonstration of single shot readout of an electron spin on a single P donor in Si with 100 kHz bandwidth and a signal to noise ratio of ˜9. In order to reduce the impact of cable capacitance, the amplifier is located adjacent to the Si sample, at the mixing chamber stage of a dilution refrigerator. For a current gain of ˜ 2.7 × 10 3 , the power dissipation of the amplifier is 13 μW, the bandwidth is ˜ 1.3 MHz, and for frequencies above 300 kHz the current noise referred to input is ≤ 70 fA/ √{ Hz } . With this amplification scheme, we are able to observe coherent oscillations of a P donor electron spin in isotopically enriched 28Si with 96% visibility.
Padula, Daniele; Pescitelli, Gennaro
2018-01-09
Chiroptical spectra such as electronic circular dichroism (ECD) are said to be much more sensitive to conformation than their non-chiroptical counterparts, however, it is difficult to demonstrate such a common notion in a clear-cut way. We run DFT and TDDFT calculations on two closely related 1,1-diarylmethanols which show mirror-image ECD spectra for the same absolute configuration. We demonstrate that the main reason for the different chiroptical response of the two compounds lies in different conformational ensembles, caused by a single hydrogen-to-methyl substitution. We conclude that two compounds, having the same configuration but different conformation, may exhibit mirror-image ECD signals, stressing the importance and impact of conformational factors on ECD spectra.
Role of strained nano-regions in the formation of subgrains in CaCu3Ti4O12
NASA Astrophysics Data System (ADS)
Fang, Tsang-Tse; Wang, Yong-Huei; Kuo, Jui-Chao
2011-07-01
Single-phase CaCu3Ti4O12 (CCTO) was synthesized by solid-state reaction. Electron backscatter diffraction, scanning electron microscopy, and atomic force microscopy were adopted to characterize the grain orientation, microstructure, and surface morphology of the CCTO samples with or without thermal etching. Bump strained nano-regions induced by the local compositional disorder at a nano-scale have been discovered, being the origin of the formation of subgrains in CCTO. The proposed mechanism for the formation of subgrains involves the formation of etched pits and subboundaries pertaining to the strained nano-regions rather than dislocation displacement. The dielectric response inside the grains of CCTO relevant to the strained nano-regions is also discussed.
The Ni and Co substitutions in iron chalcogenide single crystals
NASA Astrophysics Data System (ADS)
Bezusyy, V. L.; Gawryluk, D. J.; Malinowski, A.; Berkowski, M.; Cieplak, Marta Z.
2015-03-01
We study the ab-plane resistivity and Hall effect in Fe1-yMyTe0.65Se0.35 single crystals with M =Co or Ni, and y up to 0.2. The crystals are grown by Bridgman's method. The low-temperature Hall coefficient RH changes sign to negative for crystals with y exceeding 0.135 (Co) and 0.06 (Ni), consistent with the electron doping induced by these impurities. However, the RH remains positive for all samples at high T, suggesting that remnant hole pockets survive the doping, but the holes become localized at low T in heavily doped crystals. Superconducting transition temperature (Tc) approaches zero for y = 0.14 (Co), and 0.03 (Ni), while the resistivity at the Tc onset is only weakly affected by Co doping, but it increases strongly for the Ni. These results suggest that in case of Co impurity the Tc suppression may be attributed to electron doping. On the other hand, the Ni substitution, in addition to electron doping, induces strong localization effects at small impurity contents. Using two-band conduction model we argue that the localization of electron carriers is responsible for strong superconductivity suppression by Ni impurity. Supported by EC through the FunDMS Advanced Grant of the ERC (FP7 Ideas), by the Polish NCS Grant 2011/01/B/ST3/00462, and by the French-Polish Program PICS 2012. Performed in the laboratories co-financed by NanoFun Project POIG.02.02.00-00-025/09.
Fiáth, Richárd; Beregszászi, Patrícia; Horváth, Domonkos; Wittner, Lucia; Aarts, Arno A. A.; Ruther, Patrick; Neves, Hercules P.; Bokor, Hajnalka; Acsády, László
2016-01-01
Recording simultaneous activity of a large number of neurons in distributed neuronal networks is crucial to understand higher order brain functions. We demonstrate the in vivo performance of a recently developed electrophysiological recording system comprising a two-dimensional, multi-shank, high-density silicon probe with integrated complementary metal-oxide semiconductor electronics. The system implements the concept of electronic depth control (EDC), which enables the electronic selection of a limited number of recording sites on each of the probe shafts. This innovative feature of the system permits simultaneous recording of local field potentials (LFP) and single- and multiple-unit activity (SUA and MUA, respectively) from multiple brain sites with high quality and without the actual physical movement of the probe. To evaluate the in vivo recording capabilities of the EDC probe, we recorded LFP, MUA, and SUA in acute experiments from cortical and thalamic brain areas of anesthetized rats and mice. The advantages of large-scale recording with the EDC probe are illustrated by investigating the spatiotemporal dynamics of pharmacologically induced thalamocortical slow-wave activity in rats and by the two-dimensional tonotopic mapping of the auditory thalamus. In mice, spatial distribution of thalamic responses to optogenetic stimulation of the neocortex was examined. Utilizing the benefits of the EDC system may result in a higher yield of useful data from a single experiment compared with traditional passive multielectrode arrays, and thus in the reduction of animals needed for a research study. PMID:27535370
High-mobility strained organic semiconductors (Conference Presentation)
NASA Astrophysics Data System (ADS)
Takeya, Jun; Matsui, H.; Kubo, T.; Hausermann, Roger
2016-11-01
Small molecular organic semiconductor crystals form interesting electronic systems of periodically arranged "charge clouds" whose mutual electronic coupling determines whether or not electronic states can be coherent over fluctuating molecules. This presentation focuses on two methods to reduce molecular fluctuation, which strongly restricts mobility of highly mobile charge in single-crystal organic transistors. The first example is to apply external hydrostatic pressure. Using Hall-effect measurement for pentacene FETs, which tells us the extent of the electronic coherence, we found a crossover from hopping-like transport of nearly localized charge to band transport of delocalized charge with full coherence. As the result of temperature dependence measurement, it turned out that reduced molecular fluctuation is mainly responsible for the crossover. The second is to apply uniaxial strain to single-crystal organic FETs. We applied stain by bending thin films of newly synthesized decyldinaphthobenzodithiophene (C10-DNBDT) on plastic substrate so that 3% strain is uniaxially applied. As the result, the room-temperature mobility increased by the factor of 1.7. In-depth analysis using X-ray diffraction (XRD) measurements and density functional theory (DFT) calculations reveal the origin to be the suppression of the thermal fluctuation of the individual molecules, which is confirmed by temperature dependent measurements. Our findings show that compressing the crystal structure directly restricts the vibration of the molecules, thus suppressing dynamic disorder, a unique mechanism in organic semiconductors. Since strain can easily be induced during the fabrication process, these findings can directly be exploited to build high performance organic devices.
Experimental realization of a Szilard engine with a single electron.
Koski, Jonne V; Maisi, Ville F; Pekola, Jukka P; Averin, Dmitri V
2014-09-23
The most succinct manifestation of the second law of thermodynamics is the limitation imposed by the Landauer principle on the amount of heat a Maxwell demon (MD) can convert into free energy per single bit of information obtained in a measurement. We propose and realize an electronic MD based on a single-electron box operated as a Szilard engine, where kBT ln 2 of heat is extracted from the reservoir at temperature T per one bit of created information. The information is encoded in the position of an extra electron in the box.
Electric field imaging of single atoms
Shibata, Naoya; Seki, Takehito; Sánchez-Santolino, Gabriel; Findlay, Scott D.; Kohno, Yuji; Matsumoto, Takao; Ishikawa, Ryo; Ikuhara, Yuichi
2017-01-01
In scanning transmission electron microscopy (STEM), single atoms can be imaged by detecting electrons scattered through high angles using post-specimen, annular-type detectors. Recently, it has been shown that the atomic-scale electric field of both the positive atomic nuclei and the surrounding negative electrons within crystalline materials can be probed by atomic-resolution differential phase contrast STEM. Here we demonstrate the real-space imaging of the (projected) atomic electric field distribution inside single Au atoms, using sub-Å spatial resolution STEM combined with a high-speed segmented detector. We directly visualize that the electric field distribution (blurred by the sub-Å size electron probe) drastically changes within the single Au atom in a shape that relates to the spatial variation of total charge density within the atom. Atomic-resolution electric field mapping with single-atom sensitivity enables us to examine their detailed internal and boundary structures. PMID:28555629
Wei, Hai-Rui; Deng, Fu-Guo
2014-01-13
We present some compact quantum circuits for a deterministic quantum computing on electron-spin qubits assisted by quantum dots inside single-side optical microcavities, including the CNOT, Toffoli, and Fredkin gates. They are constructed by exploiting the giant optical Faraday rotation induced by a single-electron spin in a quantum dot inside a single-side optical microcavity as a result of cavity quantum electrodynamics. Our universal quantum gates have some advantages. First, all the gates are accomplished with a success probability of 100% in principle. Second, our schemes require no additional electron-spin qubits and they are achieved by some input-output processes of a single photon. Third, our circuits for these gates are simple and economic. Moreover, our devices for these gates work in both the weak coupling and the strong coupling regimes, and they are feasible in experiment.
NASA Astrophysics Data System (ADS)
Blancon, Jean-Christophe; Paillet, Matthieu; Tran, Huy Nam; Than, Xuan Tinh; Guebrou, Samuel Aberra; Ayari, Anthony; Miguel, Alfonso San; Phan, Ngoc-Minh; Zahab, Ahmed-Azmi; Sauvajol, Jean-Louis; Fatti, Natalia Del; Vallée, Fabrice
2013-09-01
The optical properties of single-wall carbon nanotubes are very promising for developing novel opto-electronic components and sensors with applications in many fields. Despite numerous studies performed using photoluminescence or Raman and Rayleigh scattering, knowledge of their optical response is still partial. Here we determine using spatial modulation spectroscopy, over a broad optical spectral range, the spectrum and amplitude of the absorption cross-section of individual semiconducting single-wall carbon nanotubes. These quantitative measurements permit determination of the oscillator strength of the different excitonic resonances and their dependencies on the excitonic transition and type of semiconducting nanotube. A non-resonant background is also identified and its cross-section comparable to the ideal graphene optical absorbance. Furthermore, investigation of the same single-wall nanotube either free standing or lying on a substrate shows large broadening of the excitonic resonances with increase of oscillator strength, as well as stark weakening of polarization-dependent antenna effects, due to nanotube-substrate interaction.
Single Mode ZnO Whispering-Gallery Submicron Cavity and Graphene Improved Lasing Performance.
Li, Jitao; Lin, Yi; Lu, Junfeng; Xu, Chunxiang; Wang, Yueyue; Shi, Zengliang; Dai, Jun
2015-07-28
Single-mode ultraviolet (UV) laser of ZnO is still in challenge so far, although it has been paid great attention along the past decades. In this work, single-mode lasing resonance was realized in a submicron-sized ZnO rod based on serially varying the dimension of the whispering-gallery mode (WGM) cavities. The lasing performance, such as the lasing quality factor (Q) and the lasing intensity, was remarkably improved by facilely covering monolayer graphene on the ZnO submicron-rod. The mode structure evolution from multimodes to single-mode was investigated systematically based on the total internal-wall reflection of the ZnO microcavities. Graphene-induced optical field confinement and lasing emission enhancement were revealed, indicating an energy coupling between graphene SP and ZnO exciton emission. This result demonstrated the response of graphene in the UV wavelength region and extended its potential applications besides many previous reports on the multifunctional graphene/semiconductor hybrid materials and devices in advanced electronics and optoelectronics areas.
NASA Astrophysics Data System (ADS)
Manjunatha, M.; Kumar, Rajeev; Sahoo, Balaram; Damle, Ramakrishna; Ramesh, K. P.
2018-05-01
The magnetic domain state of carbon coated iron nanopowder (Fe@C) was studied by the internal field nuclear magnetic resonance (IFNMR) at 77 K using the spin echo technique. The structure and magnetic properties of the sample were further characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Mössbauer spectroscopy, vibrating sample magnetometry (VSM), thermogravimetric analysis (TGA) and Raman Spectroscopy. The obtained IFNMR results of Fe@C powder were compared with that of micron sized carbonyl iron (CI) and electrolytic iron (EI) powders. The calculated critical size of the single domain iron particles in Fe@C is ∼ 16 nm. A higher enhancement in echo amplitude was observed due to better response of the domain walls of multidomain particles in comparison to the single domain particles. The echo signal of CI and EI particles exhibit a single narrow intense peak corresponding to the domain walls, whereas Fe@C exhibits two low amplitude peaks at two different frequencies: a low frequency (46.6 MHz) peak corresponds to the response of the domain walls of the multidomain particles and the other high frequency (47.2 MHz) signal (a shoulder) corresponding to the response of the magnetic nuclei inside the domain. Our results help in determining the domain state of iron-based magnetic particles using 57Fe-IFNMR.
NASA Astrophysics Data System (ADS)
Krooß, P.; Niendorf, T.; Kadletz, P. M.; Somsen, C.; Gutmann, M. J.; Chumlyakov, Y. I.; Schmahl, W. W.; Eggeler, G.; Maier, H. J.
2015-03-01
Conventional shape memory alloys cannot be employed for applications in the elevated temperature regime due to rapid functional degradation. Co-Ni-Ga has shown the potential to be used up to temperatures of about 400 °C due to a fully reversible superelastic stress-strain response. However, available results only highlight the superelastic response for single cycle tests. So far, no data addressing cyclic loading and functional fatigue are available. In order to close this gap, the current study reports on the cyclic degradation behavior and tension-compression asymmetry in [001]-oriented Co49Ni21Ga30 single crystals at elevated temperatures. The cyclic stress-strain response of the material under displacement controlled superelastic loading conditions was found to be dictated by the number of active martensite variants and different resulting stabilization effects. Co-Ni-Ga shows a large superelastic temperature window of about 400 °C under tension and compression, but a linear Clausius-Clapeyron relationship could only be observed up to a temperature of 200 °C. In the present experiments, the samples were subjected to 1000 cycles at different temperatures. Degradation mechanisms were characterized by neutron diffraction and transmission electron microscopy. The results in this study confirm the potential of these alloys for damping applications at elevated temperatures.
Qu, Liangti; Vaia, Rich A; Dai, Liming
2011-02-22
A simple multiple contact transfer technique has been developed for controllable fabrication of multilevel, multicomponent microarchitectures of vertically aligned carbon nanotubes (VA-CNTs). Three dimensional (3-D) multicomponent micropatterns of aligned single-walled carbon nanotubes (SWNTs) and multiwalled carbon nanotubes (MWNTs) have been fabricated, which can be used to develop a newly designed touch sensor with reversible electrical responses for potential applications in electronic devices, as demonstrated in this study. The demonstrated dependence of light diffraction on structural transfiguration of the resultant CNT micropattern also indicates their potential for optical devices. Further introduction of various components with specific properties (e.g., ZnO nanorods) into the CNT micropatterns enabled us to tailor such surface characteristics as wettability and light response. Owing to the highly generic nature of the multiple contact transfer strategy, the methodology developed here could provide a general approach for interposing a large variety of multicomponent elements (e.g., nanotubes, nanorods/wires, photonic crystals, etc.) onto a single chip for multifunctional device applications.
NASA Astrophysics Data System (ADS)
Gaur, Ankit; Kumar, Ashok; Naimuddin, Md.
2018-01-01
The recently approved India-based Neutrino Observatory will use the world's largest magnet to study atmospheric muon neutrinos. The 50 kiloton Iron Calorimeter consists of iron alternating with single-gap resistive plate chambers. A uniform magnetic field of ∼1.5 T is produced in the iron using toroidal-shaped copper coils. Muon neutrinos interact with the iron target to produce charged muons, which are detected by the resistive plate chambers, and tracked using orthogonal pick up strips. Timing information for each layer is used to discriminate between upward and downward traveling muons. The design of the readout electronics for the detector depends critically on an accurate model of the charge induced by the muons, and the dependence on bias voltages. In this paper, we present timing and charge response measurements using prototype detectors under different operating conditions. We also report the effect of varying gas mixture, particularly SF6, on the timing response.
Carbon nanohorn sensitized electrochemical immunosensor for rapid detection of microcystin-LR.
Zhang, Jing; Lei, Jianping; Xu, Chuanlai; Ding, Lin; Ju, Huangxian
2010-02-01
A sensitive electrochemical immunosensor was proposed by functionalizing single-walled carbon nanohorns (SWNHs) with analyte for microcystin-LR (MC-LR) detection. The functionalization of SWNHs was performed by covalently binding MC-LR to the abundant carboxylic groups on the cone-shaped tips of SWNHs in the presence of linkage reagents and characterized with Raman spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and a transmission electron micrograph. Compared with single-walled carbon nanotubes, SWNHs as immobilization matrixes showed a better sensitizing effect. Using home-prepared horseradish peroxidase-labeled MC-LR antibody for the competitive immunoassay, under optimal conditions, the immunosensor exhibited a wide linear response to MC-LR ranging from 0.05 to 20 microg/L with a detection limit of 0.03 microg/L at a signal-to-noise of 3. This method showed good accuracy, acceptable precision, and reproducibility. The assay results of MC-LR in polluted water were in a good agreement with the reference values. The proposed strategy provided a biocompatible immobilization and sensitized recognition platform for analytes as small antigens and possessed promising application in food and environmental monitoring.
Ubiquitous strong electron–phonon coupling at the interface of FeSe/SrTiO3
Zhang, Chaofan; Liu, Zhongkai; Chen, Zhuoyu; Xie, Yanwu; He, Ruihua; Tang, Shujie; He, Junfeng; Li, Wei; Jia, Tao; Rebec, Slavko N.; Ma, Eric Yue; Yan, Hao; Hashimoto, Makoto; Lu, Donghui; Mo, Sung-Kwan; Hikita, Yasuyuki; Moore, Robert G.; Hwang, Harold Y.; Lee, Dunghai; Shen, Zhixun
2017-01-01
The observation of replica bands in single-unit-cell FeSe on SrTiO3 (STO)(001) by angle-resolved photoemission spectroscopy (ARPES) has led to the conjecture that the coupling between FeSe electrons and the STO phonons are responsible for the enhancement of Tc over other FeSe-based superconductors. However the recent observation of a similar superconducting gap in single-unit-cell FeSe/STO(110) raised the question of whether a similar mechanism applies. Here we report the ARPES study of the electronic structure of FeSe/STO(110). Similar to the results in FeSe/STO(001), clear replica bands are observed. We also present a comparative study of STO(001) and STO(110) bare surfaces, and observe similar replica bands separated by approximately the same energy, indicating this coupling is a generic feature of the STO surfaces and interfaces. Our findings suggest that the large superconducting gaps observed in FeSe films grown on different STO surface terminations are likely enhanced by a common mechanism. PMID:28186084
Ubiquitous strong electron–phonon coupling at the interface of FeSe/SrTiO 3
Zhang, Chaofan; Liu, Zhongkai; Chen, Zhuoyu; ...
2017-02-10
The observation of replica bands in single-unit-cell FeSe on SrTiO 3 (STO)(001) by angle-resolved photoemission spectroscopy (ARPES) has led to the conjecture that the coupling between FeSe electrons and the STO phonons are responsible for the enhancement of T c over other FeSe-based superconductors. However the recent observation of a similar superconducting gap in single-unit-cell FeSe/STO(110) raised the question of whether a similar mechanism applies. Here we report the ARPES study of the electronic structure of FeSe/STO(110). Similar to the results in FeSe/STO(001), clear replica bands are observed. We also present a comparative study of STO(001) and STO(110) bare surfaces,more » and observe similar replica bands separated by approximately the same energy, indicating this coupling is a generic feature of the STO surfaces and interfaces. Lastly, our findings suggest that the large superconducting gaps observed in FeSe films grown on different STO surface terminations are likely enhanced by a common mechanism.« less
NASA Astrophysics Data System (ADS)
Merzougui, Moufida; Ouari, Kamel; Weiss, Jean
2016-09-01
The oxovanadium (IV) complex ;VOL; of a tetradentate Schiff base ligand derived from the condensation of diaminoethane and 2-hydroxy-1-naphthaldehyde was efficiently prepared via ultrasound irradiation and the template effect of VO(acac)2. The resulting product was characterized by elemental analysis, infrared, electronic absorption and molar conductance measurement. Single X-ray structure analysis showed that the complex is a monomeric five-coordinate with a distorted square pyramidal geometry. It crystallizes in monoclinic system having unit cell parameters a = 8.3960 (5) Å; b = 12.5533 (8) Å and c = 18.7804 (11) Å; α = γ = 90°; β = 104.843°(2), with P 21/c space group. Cyclic voltammetry of the complex, carried out on a glassy carbon (GC) electrode in DMF, showed reversible cyclic voltammograms response in the potential range 0.15-0.60 V involving a single electron redox wave VV/VIV, the diffusion coefficient is determinedusing GC rotating disk electrode. The Levich plot Ilim = f(ω1/2), was used to calculate the diffusion-convection controlled currents.
Mechanical gate control for atom-by-atom cluster assembly with scanning probe microscopy.
Sugimoto, Yoshiaki; Yurtsever, Ayhan; Hirayama, Naoki; Abe, Masayuki; Morita, Seizo
2014-07-11
Nanoclusters supported on substrates are of great importance in physics and chemistry as well as in technical applications, such as single-electron transistors and nanocatalysts. The properties of nanoclusters differ significantly from those of either the constituent atoms or the bulk solid, and are highly sensitive to size and chemical composition. Here we propose a novel atom gating technique to assemble various atom clusters composed of a defined number of atoms at room temperature. The present gating operation is based on the transfer of single diffusing atoms among nanospaces governed by gates, which can be opened in response to the chemical interaction force with a scanning probe microscope tip. This method provides an alternative way to create pre-designed atom clusters with different chemical compositions and to evaluate their chemical stabilities, thus enabling investigation into the influence that a single dopant atom incorporated into the host clusters has on a given cluster stability.
NASA Technical Reports Server (NTRS)
Sutherland, Betsy M.; Georgakilas, Alexandros G.; Bennett, Paula V.; Laval, Jacques; Sutherland, John C.; Gewirtz, A. M. (Principal Investigator)
2003-01-01
Assessing DNA damage induction, repair and consequences of such damages requires measurement of specific DNA lesions by methods that are independent of biological responses to such lesions. Lesions affecting one DNA strand (altered bases, abasic sites, single strand breaks (SSB)) as well as damages affecting both strands (clustered damages, double strand breaks) can be quantified by direct measurement of DNA using gel electrophoresis, gel imaging and number average length analysis. Damage frequencies as low as a few sites per gigabase pair (10(9)bp) can be quantified by this approach in about 50ng of non-radioactive DNA, and single molecule methods may allow such measurements in DNA from single cells. This review presents the theoretical basis, biochemical requirements and practical aspects of this approach, and shows examples of their applications in identification and quantitation of complex clustered damages.
Single-Gap Superconductivity and Dome of Superfluid Density in Nb-Doped SrTiO 3
NASA Astrophysics Data System (ADS)
Thiemann, Markus; Beutel, Manfred H.; Dressel, Martin; Lee-Hone, Nicholas R.; Broun, David M.; Fillis-Tsirakis, Evangelos; Boschker, Hans; Mannhart, Jochen; Scheffler, Marc
2018-06-01
SrTiO3 exhibits a superconducting dome upon doping with Nb, with a maximum critical temperature Tc≈0.4 K . Using microwave stripline resonators at frequencies from 2 to 23 GHz and temperatures down to 0.02 K, we probe the low-energy optical response of superconducting SrTiO3 with a charge carrier concentration from 0.3 to 2.2 ×1020 cm-3 , covering the majority of the superconducting dome. We find single-gap electrodynamics even though several electronic bands are superconducting. This is explained by a single energy gap 2 Δ due to gap homogenization over the Fermi surface consistent with the low level of defect scattering in Nb-doped SrTiO3 . Furthermore, we determine Tc, 2 Δ , and the superfluid density as a function of charge carrier concentration, and all three quantities exhibit the characteristic dome shape.
Optical studies of quantum confined nanostructures
NASA Astrophysics Data System (ADS)
Vamivakas, Anthony Nickolas
Recent advances in material growth techniques have led to the laboratory realization of quantum confined nanostructures. By engineering the geometry of these systems it is possible to tailor their optical, electrical and vibrational properties. We now envision integrated electronic and optical devices potentially harnessing quantum mechanical properties of photons, electrons or even phonons. The realization of these next generation devices requires parallel advances in both electrical and optical characterization techniques. In this dissertation we study the optical properties of both zero-dimensional (0D) InAs/GaAs semiconductor quantum dots (QDs) and one-dimensional (1D) single wall carbon nanotubes (SWNTs). We utilize high resolution optical microscopy and spectroscopy techniques to experimentally study both individual QDs and SWNTs. The effect of quantum confinement on light-matter interaction in SWNTs is theoretically investigated. InAs QDs grown by Stranski-Krastanow self-assembly are buried in a GaAs matrix. The planar barriers presented by the dielectric boundary between the GaAs and the host medium limits the optical access to the InAs QDs. Incorporating a numerical aperture increasing microlens (NAIL) into a fiber-based confocal microscope we demonstrate improved ability to couple photons to and from a single InAs QD. With such immersion lens techniques we measure a record 12% extinction of a far-field laser by a single InAs QD. Even typical QD extinction of 6% is visible using a dc power-meter without the need for phase sensitive lock-in detection. This experimental advance will make possible the study of single QDs interacting with engineered vector laser beams. In the optical characterization of SWNTs, one-phonon resonant Raman scattering is employed to measure a tube's electronic resonances and determine the physical diameter and chirality of the tube under study. Recent work has determined excitons dominate the optical response of semiconducting SWNTs. We develop a theory to model the exciton mediated resonant Raman scattering cross-section from a 1D system looking for excitonic signatures in the scattering line shape. Additionally, we theoretically study phonon confinement to a 1D SWNT and use these results to extract the electron-phonon coupling in SWNTs from our Raman measurements. Knowledge of the electron-phonon coupling is a crucial piece of information to characterize a SWNTs electrical transport properties.
Control of single-electron charging of metallic nanoparticles onto amorphous silicon surface.
Weis, Martin; Gmucová, Katarína; Nádazdy, Vojtech; Capek, Ignác; Satka, Alexander; Kopáni, Martin; Cirák, Július; Majková, Eva
2008-11-01
Sequential single-electron charging of iron oxide nanoparticles encapsulated in oleic acid/oleyl amine envelope and deposited by the Langmuir-Blodgett technique onto Pt electrode covered with undoped hydrogenated amorphous silicon film is reported. Single-electron charging (so-called quantized double-layer charging) of nanoparticles is detected by cyclic voltammetry as current peaks and the charging effect can be switched on/off by the electric field in the surface region induced by the excess of negative/positive charged defect states in the amorphous silicon layer. The particular charge states in amorphous silicon are created by the simultaneous application of a suitable bias voltage and illumination before the measurement. The influence of charged states on the electric field in the surface region is evaluated by the finite element method. The single-electron charging is analyzed by the standard quantized double layer model as well as two weak-link junctions model. Both approaches are in accordance with experiment and confirm single-electron charging by tunnelling process at room temperature. This experiment illustrates the possibility of the creation of a voltage-controlled capacitor for nanotechnology.
Zhao, Lin; Liang, Aiji; Yuan, Dongna; Hu, Yong; Liu, Defa; Huang, Jianwei; He, Shaolong; Shen, Bing; Xu, Yu; Liu, Xu; Yu, Li; Liu, Guodong; Zhou, Huaxue; Huang, Yulong; Dong, Xiaoli; Zhou, Fang; Liu, Kai; Lu, Zhongyi; Zhao, Zhongxian; Chen, Chuangtian; Xu, Zuyan; Zhou, X J
2016-02-08
The mechanism of high-temperature superconductivity in the iron-based superconductors remains an outstanding issue in condensed matter physics. The electronic structure plays an essential role in dictating superconductivity. Recent revelation of distinct electronic structure and high-temperature superconductivity in the single-layer FeSe/SrTiO3 films provides key information on the role of Fermi surface topology and interface in inducing or enhancing superconductivity. Here we report high-resolution angle-resolved photoemission measurements on the electronic structure and superconducting gap of an FeSe-based superconductor, (Li0.84Fe0.16)OHFe0.98Se, with a Tc at 41 K. We find that this single-phase bulk superconductor shows remarkably similar electronic behaviours to that of the superconducting single-layer FeSe/SrTiO3 films in terms of Fermi surface topology, band structure and the gap symmetry. These observations provide new insights in understanding high-temperature superconductivity in the single-layer FeSe/SrTiO3 films and the mechanism of superconductivity in the bulk iron-based superconductors.
2009-03-01
the background, which manifests itself as shot noise ; the second term is dark current noise ; the third is electronics noise ; the fourth is...quantization noise ; and the fifth is spatial noise . Because of the ease at which one can increase the number of frames collected, within the limitations of...a computer and monitor. The FTS, a Bruker OPAG 22, was equipped with a mercury cadmium telluride ( MCT ) single- pixel detector responsive in the
Test of Electric Charge Conservation with Borexino
NASA Astrophysics Data System (ADS)
Agostini, M.; Appel, S.; Bellini, G.; Benziger, J.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Caminata, A.; Cavalcante, P.; Chepurnov, A.; D'Angelo, D.; Davini, S.; Derbin, A.; Di Noto, L.; Drachnev, I.; Empl, A.; Etenko, A.; Fomenko, K.; Franco, D.; Gabriele, F.; Galbiati, C.; Ghiano, C.; Giammarchi, M.; Goeger-Neff, M.; Goretti, A.; Gromov, M.; Hagner, C.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jedrzejczak, K.; Kaiser, M.; Kobychev, V.; Korablev, D.; Korga, G.; Kryn, D.; Laubenstein, M.; Lehnert, B.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Marcocci, S.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Mosteiro, P.; Muratova, V.; Neumair, B.; Oberauer, L.; Obolensky, M.; Ortica, F.; Otis, K.; Pallavicini, M.; Papp, L.; Perasso, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Roncin, R.; Rossi, N.; Schönert, S.; Semenov, D.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Thurn, J.; Toropova, M.; Unzhakov, E.; Vishneva, A.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Weinz, S.; Winter, J.; Wojcik, M.; Wurm, M.; Yokley, Z.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.; Borexino Collaboration
2015-12-01
Borexino is a liquid scintillation detector located deep underground at the Laboratori Nazionali del Gran Sasso (LNGS, Italy). Thanks to the unmatched radio purity of the scintillator, and to the well understood detector response at low energy, a new limit on the stability of the electron for decay into a neutrino and a single monoenergetic photon was obtained. This new bound, τ ≥6.6 ×1028 yr at 90% C.L., is 2 orders of magnitude better than the previous limit.
Ranzieri, Paolo; Campanini, Marco; Fabbrici, Simone; Nasi, Lucia; Casoli, Francesca; Cabassi, Riccardo; Buffagni, Elisa; Grillo, Vincenzo; Magén, Cesar; Celegato, Federica; Barrera, Gabriele; Tiberto, Paola; Albertini, Franca
2015-08-26
Giant magnetically induced twin variant reorientation, comparable in intensity with bulk single crystals, is obtained in epitaxial magnetic shape-memory thin films. It is found to be tunable in intensity and spatial response by the fine control of microstructural patterns at the nanoscopic and microscopic scales. A thorough experimental study (including electron holography) allows a multiscale comprehension of the phenomenon. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Balliou, Angelika; Bouroushian, Mirtat; Douvas, Antonios M.; Skoulatakis, George; Kennou, Stella; Glezos, Nikos
2018-07-01
All-inorganic self-arranged molecular transition metal oxide hyperstructures based on polyoxometalate molecules (POMs) are fabricated and tested as electronically tunable components in emerging electronic devices. POM hyperstructures reveal great potential as charging nodes of tunable charging level for molecular memories and as enhancers of interfacial electron/hole injection for photovoltaic stacks. STM, UPS, UV–vis spectroscopy and AFM measurements show that this functionality stems from the films’ ability to structurally tune their HOMO–LUMO levels and electron localization length at room temperature. By adapting POM nanocluster size in solution, self-doping and current modulation of four orders of magnitude is monitored on a single nanocluster on SiO2 at voltages as low as 3 Volt. Structurally driven insulator-to-semi-metal transitions and size-dependent current regulation through single electron tunneling are demonstrated and examined with respect to the stereochemical and electronic structure of the molecular entities. This extends the value of self-assembly as a tool for correlation length and electronic properties tuning and demonstrate POM hyperstructures’ plausibility for on-chip molecular electronics operative at room temperature.
Balliou, Angelika; Bouroushian, Mirtat; Douvas, Antonios M; Skoulatakis, George; Kennou, Stella; Glezos, Nikos
2018-07-06
All-inorganic self-arranged molecular transition metal oxide hyperstructures based on polyoxometalate molecules (POMs) are fabricated and tested as electronically tunable components in emerging electronic devices. POM hyperstructures reveal great potential as charging nodes of tunable charging level for molecular memories and as enhancers of interfacial electron/hole injection for photovoltaic stacks. STM, UPS, UV-vis spectroscopy and AFM measurements show that this functionality stems from the films' ability to structurally tune their HOMO-LUMO levels and electron localization length at room temperature. By adapting POM nanocluster size in solution, self-doping and current modulation of four orders of magnitude is monitored on a single nanocluster on SiO 2 at voltages as low as 3 Volt. Structurally driven insulator-to-semi-metal transitions and size-dependent current regulation through single electron tunneling are demonstrated and examined with respect to the stereochemical and electronic structure of the molecular entities. This extends the value of self-assembly as a tool for correlation length and electronic properties tuning and demonstrate POM hyperstructures' plausibility for on-chip molecular electronics operative at room temperature.
Electron attachment to DNA single strands: gas phase and aqueous solution
Gu, Jiande; Xie, Yaoming; Schaefer, Henry F.
2007-01-01
The 2′-deoxyguanosine-3′,5′-diphosphate, 2′-deoxyadenosine-3′,5′-diphosphate, 2′-deoxycytidine-3′,5′-diphosphate and 2′-deoxythymidine-3′,5′-diphosphate systems are the smallest units of a DNA single strand. Exploring these comprehensive subunits with reliable density functional methods enables one to approach reasonable predictions of the properties of DNA single strands. With these models, DNA single strands are found to have a strong tendency to capture low-energy electrons. The vertical attachment energies (VEAs) predicted for 3′,5′-dTDP (0.17 eV) and 3′,5′-dGDP (0.14 eV) indicate that both the thymine-rich and the guanine-rich DNA single strands have the ability to capture electrons. The adiabatic electron affinities (AEAs) of the nucleotides considered here range from 0.22 to 0.52 eV and follow the order 3′,5′-dTDP > 3′,5′-dCDP > 3′,5′-dGDP > 3′,5′-dADP. A substantial increase in the AEA is observed compared to that of the corresponding nucleic acid bases and the corresponding nucleosides. Furthermore, aqueous solution simulations dramatically increase the electron attracting properties of the DNA single strands. The present investigation illustrates that in the gas phase, the excess electron is situated both on the nucleobase and on the phosphate moiety for DNA single strands. However, the distribution of the extra negative charge is uneven. The attached electron favors the base moiety for the pyrimidine, while it prefers the 3′-phosphate subunit for the purine DNA single strands. In contrast, the attached electron is tightly bound to the base fragment for the cytidine, thymidine and adenosine nucleotides, while it almost exclusively resides in the vicinity of the 3′-phosphate group for the guanosine nucleotides due to the solvent effects. The comparatively low vertical detachment energies (VDEs) predicted for 3′,5′-dADP− (0.26 eV) and 3′,5′-dGDP− (0.32 eV) indicate that electron detachment might compete with reactions having high activation barriers such as glycosidic bond breakage. However, the radical anions of the pyrimidine nucleotides with high VDE are expected to be electronically stable. Thus the base-centered radical anions of the pyrimidine nucleotides might be the possible intermediates for DNA single-strand breakage. PMID:17660189
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munira A Kadhim
2010-03-05
To accurately define the risks associated with human exposure to relevant environmental doses of low LET ionizing radiation, it is necessary to completely understand the biological effects at very low doses (i.e., less than 0.1 Gy), including the lowest possible dose, that of a single electron track traversal. At such low doses, a range of studies have shown responses in biological systems which are not related to the direct interaction of radiation tracks with DNA. The role of these “non-targeted” responses in critical tissues is poorly understood and little is known regarding the underlying mechanisms. Although critical for dosimetry andmore » risk assessment, the role of individual genetic susceptibility in radiation risk is not satisfactorily defined at present. The aim of the proposed grant is to critically evaluate radiation-induced genomic instability and bystander responses in key stem cell populations from haemopoietic tissue. Using stem cells from two mouse strains (CBA/H and C57BL/6J) known to differ in their susceptibility to radiation effects, we plan to carefully dissect the role of genetic predisposition on two non-targeted radiation responses in these models; the bystander effect and genomic instability, which we believe are closely related. We will specifically focus on the effects of low doses of low LET radiation, down to doses approaching a single electron traversal. Using conventional X-ray and γ-ray sources, novel dish separation and targeted irradiation approaches, we will be able to assess the role of genetic variation under various bystander conditions at doses down to a few electron tracks. Irradiations will be carried out using facilities in routine operation for bystander targeted studies. Mechanistic studies of instability and the bystander response in different cell lineages will focus initially on the role of cytokines which have been shown to be involved in bystander signaling and the initiation of instability. These studies also aim to uncover protein mediators of the bystander responses using advanced proteomic screening of factors released from irradiated, bystander and unstable cells. Integral to these studies will be an assessment of the role of genetic susceptibility in these responses, using CBA/H and C57BL/6J mice. The relevance of in vivo interactions between stem cells and the stem cell niche will be explored in the future by re-implantation techniques of previously irradiated cells. The above studies will provide fundamental mechanistic information relating genetic predisposition to important low dose phenomena, and will aid in the development of Department of Energy policy, as well as radiation risk policy for the public and the workplace. We believe the proposed studies accurately reflect the goals of the DOE low dose program.« less
Liu, Shanliangzi; Sun, Xiaoda; Hildreth, Owen J; Rykaczewski, Konrad
2015-03-07
Room temperature liquid-metal microfluidic devices are attractive systems for hyperelastic strain sensing. These liquid-phase electronics are intrinsically soft and retain their functionality even when stretched to several times their original length. Currently two types of liquid metal-based strain sensors exist for in-plane measurements: single-microchannel resistive and two-microchannel capacitive devices. With a winding serpentine channel geometry, these sensors typically have a footprint of about a square centimeter. This large footprint of an individual device limits the number of sensors that can be embedded into, for example, electronic fabric or skin. In this work we introduce an alternative capacitor design consisting of two liquid metal electrodes separated by a liquid dielectric material within a single straight channel. Using a liquid insulator instead of a solid elastomer enables us to tailor the system's capacitance by selecting high or low dielectric constant liquids. We quantify the effects of the electrode geometry including the diameter, spacing, and meniscus shape as well as the dielectric constant of the insulating liquid on the overall system's capacitance. We also develop a procedure for fabricating the two-liquid capacitor within a single straight polydiemethylsiloxane channel and demonstrate that this device can have about 25 times higher capacitance per sensor's base area when compared to two-channel liquid metal capacitors. Lastly, we characterize the response of this compact device to strain and identify operational issues arising from complex hydrodynamics near liquid-liquid and liquid-elastomer interfaces.
Heavy-ion induced single-event upset in integrated circuits
NASA Technical Reports Server (NTRS)
Zoutendyk, J. A.
1991-01-01
The cosmic ray environment in space can affect the operation of Integrated Circuit (IC) devices via the phenomenon of Single Event Upset (SEU). In particular, heavy ions passing through an IC can induce sufficient integrated current (charge) to alter the state of a bistable circuit, for example a memory cell. The SEU effect is studied in great detail in both static and dynamic memory devices, as well as microprocessors fabricated from bipolar, Complementary Metal Oxide Semiconductor (CMOS) and N channel Metal Oxide Semiconductor (NMOS) technologies. Each device/process reflects its individual characteristics (minimum scale geometry/process parameters) via a unique response to the direct ionization of electron hole pairs by heavy ion tracks. A summary of these analytical and experimental SEU investigations is presented.
NASA Astrophysics Data System (ADS)
Chen, Y.; Jayasekera, T.; Calzolari, A.; Kim, K. W.; Buongiorno Nardelli, M.
2010-09-01
Using model interaction Hamiltonians for both electrons and phonons and Green's function formalism for ballistic transport, we have studied the thermal conductance and the thermoelectric properties of graphene nanoribbons (GNR), GNR junctions and periodic superlattices. Among our findings we have established the role that interfaces play in determining the thermoelectric response of GNR systems both across single junctions and in periodic superlattices. In general, increasing the number of interfaces in a single GNR system increases the peak ZT values that are thus maximized in a periodic superlattice. Moreover, we proved that the thermoelectric behavior is largely controlled by the width of the narrower component of the junction. Finally, we have demonstrated that chevron-type GNRs recently synthesized should display superior thermoelectric properties.
NASA Technical Reports Server (NTRS)
Milligan, W. W.; Jayaraman, N.
1984-01-01
Twenty three high temperature low-cycle fatigue tests were conducted on single crystals of the nickel-based superalloy Mar-M 200. Tests were conducted at 760 and 870 C. SEM fractography and transmission electron microscopy were used to determine mechanisms responsible for the observed orientation dependent fatigue behavior. It has been concluded that the plastic characteristics of the alloy lead to orientation-dependent strain hardening and fatigue lives at 760 C. At 870 C, the elastic characteristics of the alloy dominated the behavior, even though the plastic strain ranges were about the same as they were at 760 C. This led to orientation-dependent fatigue lives, but the trends were not the same as they were at 760 C.
Kushwaha, Manvir S
2011-09-28
We report on the theoretical investigation of the elementary electronic excitations in a quantum wire made up of vertically stacked self-assembled InAs/GaAs quantum dots. The length scales (of a few nanometers) involved in the experimental setups prompt us to consider an infinitely periodic system of two-dimensionally confined (InAs) quantum dot layers separated by GaAs spacers. The resultant quantum wire is characterized by a two-dimensional harmonic confining potential in the x-y plane and a periodic (Kronig-Penney) potential along the z (or the growth) direction within the tight-binding approximation. Since the wells and barriers are formed from two different materials, we employ the Bastard's boundary conditions in order to determine the eigenfunctions along the z direction. These wave functions are then used to generate the Wannier functions, which, in turn, constitute the legitimate Bloch functions that govern the electron dynamics along the direction of periodicity. Thus, the Bloch functions and the Hermite functions together characterize the whole system. We then make use of the Bohm-Pines' (full) random-phase approximation in order to derive a general nonlocal, dynamic dielectric function. Thus, developed theoretical framework is then specified to work within a (lowest miniband and) two-subband model that enables us to scrutinize the single-particle as well as collective responses of the system. We compute and discuss the behavior of the eigenfunctions, band-widths, density of states, Fermi energy, single-particle and collective excitations, and finally size up the importance of studying the inverse dielectric function in relation with the quantum transport phenomena. It is remarkable to notice how the variation in the barrier- and well-widths can allow us to tailor the excitation spectrum in the desired energy range. Given the advantage of the vertically stacked quantum dots over the planar ones and the foreseen applications in the single-electron devices and in the quantum computation, it is quite interesting and important to explore the electronic, optical, and transport phenomena in such systems. © 2011 American Institute of Physics
Experimental determination of the elastic cotunneling rate in a hybrid single-electron box
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Chia-Heng; Tai, Po-Chen; Chen, Yung-Fu, E-mail: yfuchen@ncu.edu.tw
2014-06-09
We report measurements of charge configurations and charge transfer dynamics in a hybrid single-electron box composed of aluminum and copper. We used two single-electron transistors (SETs) to simultaneously read out different parts of the box, enabling us to map out stability diagrams of the box and identify various charge transfer processes in the box. We further characterized the elastic cotunneling in the box, which is an important source of error in electron turnstiles consisting of hybrid SETs, and found that the rate was as low as 1 Hz at degeneracy and compatible with theoretical estimates for electron tunneling via virtual statesmore » in the central superconducting island of the box.« less
Bogolon-mediated electron capture by impurities in hybrid Bose-Fermi systems
NASA Astrophysics Data System (ADS)
Boev, M. V.; Kovalev, V. M.; Savenko, I. G.
2018-04-01
We investigate the processes of electron capture by a Coulomb impurity center residing in a hybrid system consisting of spatially separated two-dimensional layers of electron and Bose-condensed dipolar exciton gases coupled via the Coulomb forces. We calculate the probability of the electron capture accompanied by the emission of a single Bogoliubov excitation (bogolon), similar to regular phonon-mediated scattering in solids. Furthermore, we study the electron capture mediated by the emission of a pair of bogolons in a single capture event and show that these processes not only should be treated in the same order of the perturbation theory, but also they give a more important contribution than single-bogolon-mediated capture, in contrast with regular phonon scattering.
NASA Astrophysics Data System (ADS)
Nakamura, N.; Anno, K.; Kono, S.
1991-10-01
A single-domain Si(111)4 × 1-In surface has been studied by μ-probe reflection high-energy electron diffraction (RHEED) to elucidate the symmetry of the 4 × 1 surface. Azimuthal diffraction patterns of In MNN Auger electron have been obtained by a μ-probe Auger electron diffraction (AED) apparatus from the single-domain Si(111)4 × 1-In surface. On the basis of information from scanning tunneling microscopy [J. Microsc. 152 (1988) 727] and under the assumption that the 4 × 1 surface is composed of In-overlayers, the μ-probe AED patterns were kinematically analyzed to reach a concrete model of indium arrangement.
Cesar, D; Maxson, J; Musumeci, P; Sun, Y; Harrison, J; Frigola, P; O'Shea, F H; To, H; Alesini, D; Li, R K
2016-07-08
We present the results of an experiment where a short focal length (∼1.3 cm), permanent magnet electron lens is used to image micron-size features (of a metal sample) with a single shot from an ultrahigh brightness picosecond-long 4 MeV electron beam emitted by a radio-frequency photoinjector. Magnification ratios in excess of 30× were obtained using a triplet of compact, small gap (3.5 mm), Halbach-style permanent magnet quadrupoles with nearly 600 T/m field gradients. These results pave the way towards single-shot time-resolved electron microscopy and open new opportunities in the applications of high brightness electron beams.
NASA Technical Reports Server (NTRS)
Stevenson, T. R.; Hsieh, W.-T.; Li, M. J.; Stahle, C. M.; Rhee, K. W.; Teufel, J.; Schoelkopf, R. J.
2002-01-01
This paper will describe the fabrication of small aluminum tunnel junctions for applications in astronomy. Antenna-coupled superconducting tunnel junctions with integrated single-electron transistor readout have the potential for photon-counting sensitivity at sub-millimeter wavelengths. The junctions for the detector and single-electron transistor can be made with electron-beam lithography and a standard self-aligned double-angle deposition process. However, high yield and uniformity of the junctions is required for large-format detector arrays. This paper will describe how measurement and modification of the sensitivity ratio in the resist bilayer was used to greatly improve the reliability of forming devices with uniform, sub-micron size, low-leakage junctions.
Lag and anticipating synchronization without time-delay coupling.
Corron, Ned J; Blakely, Jonathan N; Pethel, Shawn D
2005-06-01
We describe a new method for achieving approximate lag and anticipating synchronization in unidirectionally coupled chaotic oscillators. The method uses a specific parameter mismatch between the drive and response that is a first-order approximation to true time-delay coupling. As a result, an adjustable lag or anticipation effect can be achieved without the need for a variable delay line, making the method simpler and more economical to implement in many physical systems. We present a stability analysis, demonstrate the method numerically, and report experimental observation of the effect in radio-frequency electronic oscillators. In the circuit experiments, both lag and anticipation are controlled by tuning a single capacitor in the response oscillator.
NASA Astrophysics Data System (ADS)
Martinenghi, E.; Di Sieno, L.; Contini, D.; Sanzaro, M.; Pifferi, A.; Dalla Mora, A.
2016-07-01
We present the design and preliminary characterization of the first detection module based on Silicon Photomultiplier (SiPM) tailored for single-photon timing applications. The aim of this work is to demonstrate, thanks to the design of a suitable module, the possibility to easily exploit SiPM in many applications as an interesting detector featuring large active area, similarly to photomultipliers tubes, but keeping the advantages of solid state detectors (high quantum efficiency, low cost, compactness, robustness, low bias voltage, and insensitiveness to magnetic field). The module integrates a cooled SiPM with a total photosensitive area of 1 mm2 together with the suitable avalanche signal read-out circuit, the signal conditioning, the biasing electronics, and a Peltier cooler driver for thermal stabilization. It is able to extract the single-photon timing information with resolution better than 100 ps full-width at half maximum. We verified the effective stabilization in response to external thermal perturbations, thus proving the complete insensitivity of the module to environment temperature variations, which represents a fundamental parameter to profitably use the instrument for real-field applications. We also characterized the single-photon timing resolution, the background noise due to both primary dark count generation and afterpulsing, the single-photon detection efficiency, and the instrument response function shape. The proposed module can become a reliable and cost-effective building block for time-correlated single-photon counting instruments in applications requiring high collection capability of isotropic light and detection efficiency (e.g., fluorescence decay measurements or time-domain diffuse optics systems).
Maxwell's demons realized in electronic circuits
NASA Astrophysics Data System (ADS)
Koski, Jonne V.; Pekola, Jukka P.
2016-12-01
We review recent progress in making the former gedanken experiments of Maxwell's demon [1] into real experiments in a lab. In particular, we focus on realizations based on single-electron tunneling in electronic circuits. We first present how stochastic thermodynamics can be investigated in these circuits. Next we review recent experiments on an electron-based Szilard engine. Finally, we report on experiments on single-electron tunneling-based cooling, overviewing the recent realization of a Coulomb gap refrigerator, as well as an autonomous Maxwell's demon.
Low-energy electron-impact single ionization of helium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colgan, J.; Pindzola, M. S.; Childers, G.
2006-04-15
A study is made of low-energy electron-impact single ionization of ground-state helium. The time-dependent close-coupling method is used to calculate total integral, single differential, double differential, and triple differential ionization cross sections for impact electron energies ranging from 32 to 45 eV. For all quantities, the calculated cross sections are found to be in very good agreement with experiment, and for the triple differential cross sections, good agreement is also found with calculations made using the convergent close-coupling technique.
A review of how to conduct a surgical survey using a questionnaire.
Hing, C B; Smith, T O; Hooper, L; Song, F; Donell, S T
2011-08-01
Health surveys using questionnaires facilitate the acquisition of information on the knowledge, behaviour, attitudes, perceptions and clinical history of a selected population. Their internal and external validities are threatened by poor design and low response rates. Numerous studies have investigated survey design and administration but care should be taken when generalising findings in different clinical and cultural settings. The current evidence-base suggests that no single mode of survey administration, such as postal, electronic or telephone, is superior to another. Whilst there is no evidence of an ideal response rate relationship to survey validity, response rates can be enhanced by including monetary incentives, providing a time cue, and repeat contact with non-responders. Unlike other modes of experimental data collection, few guidelines currently exist for survey and questionnaire design and response rate should not be considered a direct measure of a survey's quality. Copyright © 2010 Elsevier B.V. All rights reserved.
Single electron relativistic clock interferometer
NASA Astrophysics Data System (ADS)
Bushev, P. A.; Cole, J. H.; Sholokhov, D.; Kukharchyk, N.; Zych, M.
2016-09-01
Although time is one of the fundamental notions in physics, it does not have a unique description. In quantum theory time is a parameter ordering the succession of the probability amplitudes of a quantum system, while according to relativity theory each system experiences in general a different proper time, depending on the system's world line, due to time dilation. It is therefore of fundamental interest to test the notion of time in the regime where both quantum and relativistic effects play a role, for example, when different amplitudes of a single quantum clock experience different magnitudes of time dilation. Here we propose a realization of such an experiment with a single electron in a Penning trap. The clock can be implemented in the electronic spin precession and its time dilation then depends on the radial (cyclotron) state of the electron. We show that coherent manipulation and detection of the electron can be achieved already with present day technology. A single electron in a Penning trap is a technologically ready platform where the notion of time can be probed in a hitherto untested regime, where it requires a relativistic as well as quantum description.
Nuclear-driven electron spin rotations in a coupled silicon quantum dot and single donor system
NASA Astrophysics Data System (ADS)
Harvey-Collard, Patrick; Jacobson, Noah Tobias; Rudolph, Martin; Ten Eyck, Gregory A.; Wendt, Joel R.; Pluym, Tammy; Lilly, Michael P.; Pioro-Ladrière, Michel; Carroll, Malcolm S.
Single donors in silicon are very good qubits. However, a central challenge is to couple them to one another. To achieve this, many proposals rely on using a nearby quantum dot (QD) to mediate an interaction. In this work, we demonstrate the coherent coupling of electron spins between a single 31P donor and an enriched 28Si metal-oxide-semiconductor few-electron QD. We show that the electron-nuclear spin interaction can drive coherent rotations between singlet and triplet electron spin states. Moreover, we are able to tune electrically the exchange interaction between the QD and donor electrons. The combination of single-nucleus-driven rotations and voltage-tunable exchange provides all elements for future all-electrical control of a spin qubit, and requires only a single dot and no additional magnetic field gradients. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Investigating the Response of Loop Plasma to Nanoflare Heating Using RADYN Simulations
NASA Astrophysics Data System (ADS)
Polito, V.; Testa, P.; Allred, J.; De Pontieu, B.; Carlsson, M.; Pereira, T. M. D.; Gošić, Milan; Reale, Fabio
2018-04-01
We present the results of 1D hydrodynamic simulations of coronal loops that are subject to nanoflares, caused by either in situ thermal heating or nonthermal electron (NTE) beams. The synthesized intensity and Doppler shifts can be directly compared with Interface Region Imaging Spectrograph (IRIS) and Atmospheric Imaging Assembly (AIA) observations of rapid variability in the transition region (TR) of coronal loops, associated with transient coronal heating. We find that NTEs with high enough low-energy cutoff ({E}{{C}}) deposit energy in the lower TR and chromosphere, causing blueshifts (up to ∼20 km s‑1) in the IRIS Si IV lines, which thermal conduction cannot reproduce. The {E}{{C}} threshold value for the blueshifts depends on the total energy of the events (≈5 keV for 1024 erg, up to 15 keV for 1025 erg). The observed footpoint emission intensity and flows, combined with the simulations, can provide constraints on both the energy of the heating event and {E}{{C}}. The response of the loop plasma to nanoflares depends crucially on the electron density: significant Si IV intensity enhancements and flows are observed only for initially low-density loops (<109 cm‑3). This provides a possible explanation of the relative scarcity of observations of significant moss variability. While the TR response to single heating episodes can be clearly observed, the predicted coronal emission (AIA 94 Å) for single strands is below current detectability and can only be observed when several strands are heated closely in time. Finally, we show that the analysis of the IRIS Mg II chromospheric lines can help further constrain the properties of the heating mechanisms.
Strong-Field Driven Dynamics of Metal and Dielectric Nanoparticles
NASA Astrophysics Data System (ADS)
Powell, Jeffrey
The motion of electrons in atoms, molecules, and solids in the presence of intense electromagnetic radiation is an important research topic in physics and physical chemistry because of its fundamental nature and numerous practical applications, ranging from precise machining of materials to optical control of chemical reactions and light-driven electronic devices. Mechanisms of light-matter interactions critically depend on the dimensions of the irradiated system and evolve significantly from single atoms or molecules to the macroscopic bulk. Nanoparticles provide the link between these two extremes. In this thesis, I take advantage of this bridge to study light-matter interactions as a function of nanoparticle size, shape, and composition. I present here three discrete, but interconnected, experiments contributing to our knowledge of nanoparticle properties and their response to intense, short-pulsed light fields. First, I investigate how individual nanoparticles interact with each other in solution, studying their temperature-dependent solubility. The interaction potential between 5.5nm gold nanoparticles, ligated by an alkanethiol was found to be -0.165eV, in reasonable agreement with a phenomenological model. The other two experiments explore ultrafast dynamics driven by intense femtosecond lasers in isolated, gas-phase metallic and dielectric nanoparticles. Photoelectron momentum imaging is applied to study the response of gold, silica, and gold-shell/silica-core nanoparticles (ranging from single to several hundred nanometers in size) with near-infrared (NIR), 25 fs laser pulses in the intensity range of 1011 - 1014 W/cm2. These measurements, which constitute the bulk of my graduate work, reveal the complex interplay between the external optical field and the induced near-field of the nanoparticle, resulting in the emission of very energetic electrons that are much faster than those emitted from isolated atoms or molecules exposed to the same light pulses. The highest photoelectron energies ("cutoffs") were measured as a function of laser intensity, nanoparticle material and size. We found that the energy cutoffs increase monotonically with laser intensity and nanoparticle size, except for the gold/silica hybrid where the plasmon resonance response modifies this behavior at low intensities. The measured photoelectron spectra for metallic nanoparticles display a large energy enhancement over silica. Finally, the last part of this thesis explores the possibility to apply time-resolved x-ray scattering as a probe of the ultrafast dynamics in isolated nanoparticles driven by very intense ( 1015 W/cm2) NIR laser radiation. To do this, I developed and built a nanoparticle source capable of injecting single, gas-phase nanoparticles with a narrow size distribution into the laser focus. We used femtosecond x-ray pulses from an x-ray free electron laser (XFEL) to map the evolution of the laser-irradiated nanoparticle. The ultrafast dynamics were observed in the single-shot x-ray diffraction patterns measured as a function of delay between the NIR and x-ray pulses, which allows for femtosecond temporal and nanometer spatial resolution. We found that the intense IR laser pulse rapidly ionizes the nanoparticle, effectively turning it into a nanoplasma within less than a picosecond, and observed signatures of the nanoparticle surface softening on a few hundred-femtosecond time scale.
Single-Molecule Bioelectronics
Rosenstein, Jacob K.; Lemay, Serge G.; Shepard, Kenneth L.
2014-01-01
Experimental techniques which interface single biomolecules directly with microelectronic systems are increasingly being used in a wide range of powerful applications, from fundamental studies of biomolecules to ultra-sensitive assays. Here we review several technologies which can perform electronic measurements of single molecules in solution: ion channels, nanopore sensors, carbon nanotube field-effect transistors, electron tunneling gaps, and redox cycling. We discuss the shared features among these techniques that enable them to resolve individual molecules, and discuss their limitations. Recordings from each of these methods all rely on similar electronic instrumentation, and we discuss the relevant circuit implementations and potential for scaling these single-molecule bioelectronic interfaces to high-throughput arrayed sensing platforms. PMID:25529538
NASA Astrophysics Data System (ADS)
Despoja, Vito; Djordjević, Tijana; Karbunar, Lazar; Radović, Ivan; Mišković, Zoran L.
2017-08-01
The propagator of a dynamically screened Coulomb interaction W in a sandwichlike structure consisting of two graphene layers separated by a slab of Al2O3 (or vacuum) is derived from single-layer graphene response functions and by using a local dielectric function for the bulk Al2O3 . The response function of graphene is obtained using two approaches within the random phase approximation (RPA): an ab initio method that includes all electronic bands in graphene and a computationally less demanding method based on the massless Dirac fermion (MDF) approximation for the low-energy excitations of electrons in the π bands. The propagator W is used to derive an expression for the effective dielectric function of our sandwich structure, which is relevant for the reflection electron energy loss spectroscopy of its surface. Focusing on the range of frequencies from THz to mid-infrared, special attention is paid to finding an accurate optical limit in the ab initio method, where the response function is expressed in terms of a frequency-dependent conductivity of graphene. It was shown that the optical limit suffices for describing hybridization between the Dirac plasmons in graphene layers and the Fuchs-Kliewer phonons in both surfaces of the Al2O3 slab, and that the spectra obtained from both the ab initio method and the MDF approximation in the optical limit agree perfectly well for wave numbers up to about 0.1 nm-1. Going beyond the optical limit, the agreement between the full ab initio method and the MDF approximation was found to extend to wave numbers up to about 0.3 nm-1 for doped graphene layers with the Fermi energy of 0.2 eV.
NASA Astrophysics Data System (ADS)
Caliskan, Betul; Caliskan, Ali Cengiz; Er, Emine
2017-09-01
Succinic anhydride single crystals were exposed to 60Co-gamma irradiation at room temperature. The irradiated single crystals were investigated at 125 K by Electron Paramagnetic Resonance (EPR) Spectroscopy. The investigation of EPR spectra of irradiated single crystals of succinic anhydride showed the presence of two succinic anhydride anion radicals. The anion radicals observed in gamma-irradiated succinic anhydride single crystal were created by the scission of the carbon-oxygen double bond. The structure of EPR spectra demonstrated that the hyperfine splittings arise from the same radical species. The reduction of succinic anhydride was identified which is formed by the addition of an electron to oxygen of the Csbnd O bond. The g values, the hyperfine structure constants and direction cosines of the radiation damage centers observed in succinic anhydride single crystal were obtained.
Structural changes induced by lattice-electron interactions: SiO2 stishovite and FeTiO3 ilmenite.
Yamanaka, Takamitsu
2005-09-01
The bright source and highly collimated beam of synchrotron radiation offers many advantages for single-crystal structure analysis under non-ambient conditions. The structure changes induced by the lattice-electron interaction under high pressure have been investigated using a diamond anvil pressure cell. The pressure dependence of electron density distributions around atoms is elucidated by a single-crystal diffraction study using deformation electron density analysis and the maximum entropy method. In order to understand the bonding electrons under pressure, diffraction intensity measurements of FeTiO3 ilmenite and gamma-SiO2 stishovite single crystals at high pressures were made using synchrotron radiation. Both diffraction studies describe the electron density distribution including bonding electrons and provide the effective charge of the cations. In both cases the valence electrons are more localized around the cations with increasing pressure. This is consistent with molecular orbital calculations, proving that the bonding electron density becomes smaller with pressure. The thermal displacement parameters of both samples are reduced with increasing pressure.
Arc-melting preparation of single crystal LaB.sub.6 cathodes
Gibson, Edwin D.; Verhoeven, John D.
1977-06-21
A method for preparing single crystals of lanthanum hexaboride (LaB.sub.6) by arc melting a rod of compacted LaB.sub.6 powder. The method is especially suitable for preparing single crystal LaB.sub.6 cathodes for use in scanning electron microscopes (SEM) and scanning transmission electron microscopes (STEM).
Hong, Juree; Lee, Sanggeun; Seo, Jungmok; Pyo, Soonjae; Kim, Jongbaeg; Lee, Taeyoon
2015-02-18
A polymer membrane-coated palladium (Pd) nanoparticle (NP)/single-layer graphene (SLG) hybrid sensor was fabricated for highly sensitive hydrogen gas (H2) sensing with gas selectivity. Pd NPs were deposited on SLG via the galvanic displacement reaction between graphene-buffered copper (Cu) and Pd ion. During the galvanic displacement reaction, graphene was used as a buffer layer, which transports electrons from Cu for Pd to nucleate on the SLG surface. The deposited Pd NPs on the SLG surface were well-distributed with high uniformity and low defects. The Pd NP/SLG hybrid was then coated with polymer membrane layer for the selective filtration of H2. Because of the selective H2 filtration effect of the polymer membrane layer, the sensor had no responses to methane, carbon monoxide, or nitrogen dioxide gas. On the contrary, the PMMA/Pd NP/SLG hybrid sensor exhibited a good response to exposure to 2% H2: on average, 66.37% response within 1.81 min and recovery within 5.52 min. In addition, reliable and repeatable sensing behaviors were obtained when the sensor was exposed to different H2 concentrations ranging from 0.025 to 2%.
Severi, E; Dabrera, G; Boxall, N; Harvey-Vince, L; Booth, L; Balasegaram, S
2014-01-01
Nonparatyphoidal and nontyphoidal Salmonella (NTS) infections are major causes of food poisoning in England. Diagnostic laboratories and clinicians have a statutory responsibility to report NTS infection cases to the Health Protection Agency via various means, with electronic reporting encouraged as the universal method. The Health Protection Agency (Public Health England since 1 April 2013) refers cases to environmental health departments for follow-up. Timeliness of reporting and adequacy of NTS infection case follow-up are key factors in the implementation of public health actions. Laboratories, health protection units, and environmental health departments in London and South East (SE) regions of England completed three surveys between December 2010 and April 2011, collecting data about the NTS infection case reporting methods and the time elapsed between symptom onset and public health actions. The median period between symptom onset and public health investigation was 25 days in London and 23 days in SE when electronic reporting was used and 12 days in London and 11 days in SE when other means of reporting were used. The most common follow-up method was a telephone questionnaire in London (53%) and a postal questionnaire in SE (52%). The telephone questionnaire had the highest response rate (98% in London; 96% in SE). Timeliness and efficiency of electronic NTS infection case reports can be improved by decreasing the electronic laboratory report period and using telephone-administered questionnaires to maximize the public health benefit when following up single cases of NTS infection.
NASA Astrophysics Data System (ADS)
Liu, Ranran; Li, Qiyao; Smith, Lloyd M.
2014-08-01
In time-of-flight mass spectrometry (TOF-MS), ion detection is typically accomplished by the generation and amplification of secondary electrons produced by ions colliding with a microchannel plate (MCP) detector. Here, the response of an MCP detector as a function of ion mass and acceleration voltage is characterized, for singly charged peptide/protein ions ranging from 1 to 290 kDa in mass, and for acceleration voltages from 5 to 25 kV. A nondestructive inductive charge detector (ICD) employed in parallel with MCP detection provides a reliable reference signal to allow accurate calibration of the MCP response. MCP detection efficiencies were very close to unity for smaller ions at high acceleration voltages (e.g., angiotensin, 1046.5 Da, at 25 kV acceleration voltage), but decreased to ~11% for the largest ions examined (immunoglobulin G (IgG) dimer, 290 kDa) even at the highest acceleration voltage employed (25 kV). The secondary electron yield γ (average number of electrons produced per ion collision) is found to be proportional to mv3.1 (m: ion mass, v: ion velocity) over the entire mass range examined, and inversely proportional to the square root of m in TOF-MS analysis. The results indicate that although MCP detectors indeed offer superlative performance in the detection of smaller peptide/protein species, their performance does fall off substantially for larger proteins, particularly under conditions of low acceleration voltage.
New experimental measurements of electron clouds in ion beams with large tune depression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molvik, A W; Covo, M K; Cohen, R H
We study electron clouds in high perveance beams (K = 8E-4) with a large tune depression of 0.2 (defined as the ratio of a single particle oscillation response to the applied focusing fields, with and without space charge). These 1 MeV, 180 mA, K+ beams have a beam potential of +2 kV when electron clouds are minimized. Simulation results are discussed in a companion paper [J-L. Vay, this Conference]. We have developed the first diagnostics that quantitatively measure the accumulation of electrons in a beam [1]. This, together with measurements of electron sources, will enable the electron particle balance tomore » be measured, and electron-trapping efficiencies determined. We, along with colleagues from GSI and CERN, have also measured the scaling of gas desorption with beam energy and dE/dx [2]. Experiments where the heavy-ion beam is transported with solenoid magnetic fields, rather than with quadrupole magnetic or electrostatic fields, are being initiated. We will discuss initial results from experiments using electrode sets (in the middle and at the ends of magnets) to either expel or to trap electrons within the magnets. We observe electron oscillations in the last quadrupole magnet when we flood the beam with electrons from an end wall. These oscillations, of order 10 MHz, are observed to grow from the center of the magnet while drifting upstream against the beam, in good agreement with simulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tracy, Lisa A.; Luhman, Dwight R.; Carr, Stephen M.
We use a cryogenic high-electron-mobility transistor circuit to amplify the current from a single electron transistor, allowing for demonstration of single shot readout of an electron spin on a single P donor in Si with 100 kHz bandwidth and a signal to noise ratio of ~9. In order to reduce the impact of cable capacitance, the amplifier is located adjacent to the Si sample, at the mixing chamber stage of a dilution refrigerator. For a current gain of ~2.7 x 10 3 the power dissipation of the amplifier is 13 μW, the bandwidth is ~1.3 MHz, and for frequencies abovemore » 300 kHz the current noise referred to input is ≤ 70 fA/√Hz. Furthermore, with this amplification scheme, we are able to observe coherent oscillations of a P donor electron spin in isotopically enriched 28Si with 96% visibility.« less
Tracy, Lisa A.; Luhman, Dwight R.; Carr, Stephen M.; ...
2016-02-08
We use a cryogenic high-electron-mobility transistor circuit to amplify the current from a single electron transistor, allowing for demonstration of single shot readout of an electron spin on a single P donor in Si with 100 kHz bandwidth and a signal to noise ratio of ~9. In order to reduce the impact of cable capacitance, the amplifier is located adjacent to the Si sample, at the mixing chamber stage of a dilution refrigerator. For a current gain of ~2.7 x 10 3 the power dissipation of the amplifier is 13 μW, the bandwidth is ~1.3 MHz, and for frequencies abovemore » 300 kHz the current noise referred to input is ≤ 70 fA/√Hz. Furthermore, with this amplification scheme, we are able to observe coherent oscillations of a P donor electron spin in isotopically enriched 28Si with 96% visibility.« less
Quantum-Sequencing: Fast electronic single DNA molecule sequencing
NASA Astrophysics Data System (ADS)
Casamada Ribot, Josep; Chatterjee, Anushree; Nagpal, Prashant
2014-03-01
A major goal of third-generation sequencing technologies is to develop a fast, reliable, enzyme-free, high-throughput and cost-effective, single-molecule sequencing method. Here, we present the first demonstration of unique ``electronic fingerprint'' of all nucleotides (A, G, T, C), with single-molecule DNA sequencing, using Quantum-tunneling Sequencing (Q-Seq) at room temperature. We show that the electronic state of the nucleobases shift depending on the pH, with most distinct states identified at acidic pH. We also demonstrate identification of single nucleotide modifications (methylation here). Using these unique electronic fingerprints (or tunneling data), we report a partial sequence of beta lactamase (bla) gene, which encodes resistance to beta-lactam antibiotics, with over 95% success rate. These results highlight the potential of Q-Seq as a robust technique for next-generation sequencing.
Probe-based measurement of lateral single-electron transfer between individual molecules
Steurer, Wolfram; Fatayer, Shadi; Gross, Leo; Meyer, Gerhard
2015-01-01
The field of molecular electronics aims at using single molecules as functional building blocks for electronics components, such as switches, rectifiers or transistors. A key challenge is to perform measurements with atomistic control over the alignment of the molecule and its contacting electrodes. Here we use atomic force microscopy to examine charge transfer between weakly coupled pentacene molecules on insulating films with single-electron sensitivity and control over the atomistic details. We show that, in addition to the imaging capability, the probe tip can be used to control the charge state of individual molecules and to detect charge transfers to/from the tip, as well as between individual molecules. Our approach represents a novel route for molecular charge transfer studies with a host of opportunities, especially in combination with single atom/molecule manipulation and nanopatterning techniques. PMID:26387533
Conditional Dispersive Readout of a CMOS Single-Electron Memory Cell
NASA Astrophysics Data System (ADS)
Schaal, S.; Barraud, S.; Morton, J. J. L.; Gonzalez-Zalba, M. F.
2018-05-01
Quantum computers require interfaces with classical electronics for efficient qubit control, measurement, and fast data processing. Fabricating the qubit and the classical control layer using the same technology is appealing because it will facilitate the integration process, improving feedback speeds and offering potential solutions to wiring and layout challenges. Integrating classical and quantum devices monolithically, using complementary metal-oxide-semiconductor (CMOS) processes, enables the processor to profit from the most mature industrial technology for the fabrication of large-scale circuits. We demonstrate a CMOS single-electron memory cell composed of a single quantum dot and a transistor that locks charge on the quantum-dot gate. The single-electron memory cell is conditionally read out by gate-based dispersive sensing using a lumped-element L C resonator. The control field-effect transistor (FET) and quantum dot are fabricated on the same chip using fully depleted silicon-on-insulator technology. We obtain a charge sensitivity of δ q =95 ×10-6e Hz-1 /2 when the quantum-dot readout is enabled by the control FET, comparable to results without the control FET. Additionally, we observe a single-electron retention time on the order of a second when storing a single-electron charge on the quantum dot at millikelvin temperatures. These results demonstrate first steps towards time-based multiplexing of gate-based dispersive readout in CMOS quantum devices opening the path for the development of an all-silicon quantum-classical processor.
Review of Electronics Based on Single-Walled Carbon Nanotubes.
Cao, Yu; Cong, Sen; Cao, Xuan; Wu, Fanqi; Liu, Qingzhou; Amer, Moh R; Zhou, Chongwu
2017-08-14
Single-walled carbon nanotubes (SWNTs) are extremely promising materials for building next-generation electronics due to their unique physical and electronic properties. In this article, we will review the research efforts and achievements of SWNTs in three electronic fields, namely analog radio-frequency electronics, digital electronics, and macroelectronics. In each SWNT-based electronic field, we will present the major challenges, the evolutions of the methods to overcome these challenges, and the state-of-the-art of the achievements. At last, we will discuss future directions which could lead to the broad applications of SWNTs. We hope this review could inspire more research on SWNT-based electronics, and accelerate the applications of SWNTs.
VO{sub 2} (A): Reinvestigation of crystal structure, phase transition and crystal growth mechanisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao Popuri, Srinivasa; University of Bordeaux, ICMCB, UPR 9048, F-33608 Pessac; National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Plautius Andronescu Str. No. 1, 300224 Timisoara
2014-05-01
Well crystallized VO{sub 2} (A) microrods were grown via a single step hydrothermal reaction in the presence of V{sub 2}O{sub 5} and oxalic acid. With the advantage of high crystalline samples, we propose P4/ncc as an appropriate space group at room temperature. From morphological studies, we found that the oriented attachment and layer by layer growth mechanisms are responsible for the formation of VO{sub 2} (A) micro rods. The structural and electronic transitions in VO{sub 2} (A) are strongly first order in nature, and a marked difference between the structural transition temperatures and electronic transitions temperature was evidenced. The reversiblemore » intra- (LTP-A to HTP-A) and irreversible inter- (HTP-A to VO{sub 2} (M1)) structural phase transformations were studied by in-situ powder X-ray diffraction. Attempts to increase the size of the VO{sub 2} (A) microrods are presented and the possible formation steps for the flower-like morphologies of VO{sub 2} (M1) are described. - Graphical abstract: Using a single step and template free hydrothermal synthesis, well crystallized VO{sub 2} (A) microrods were prepared and the P4/ncc space group was assigned to the room temperature crystal structure. Reversible and irreversible phase transitions among different VO{sub 2} polymorphs were identified and their progressive nature was highlighted. Attempts to increase the microrods size, involving layer by layer formation mechanisms, are presented. - Highlights: • Highly crystallized VO{sub 2} (A) microrods were grown via a single step hydrothermal process. • The P4/ncc space group was determined for VO{sub 2} (A) at room temperature. • The electronic structure and progressive nature of the structural phase transition were investigated. • A weak coupling between structural and electronic phase transitions was identified. • Different crystallite morphologies were discussed in relation with growth mechanisms.« less
Single-layer 1T‧-MoS2 under electron irradiation from ab initio molecular dynamics
NASA Astrophysics Data System (ADS)
Pizzochero, Michele; Yazyev, Oleg V.
2018-04-01
Irradiation with high-energy particles has recently emerged as an effective tool for tailoring the properties of two-dimensional transition metal dichalcogenides. In order to carry out an atomically-precise manipulation of the lattice, a detailed understanding of the beam-induced events occurring at the atomic scale is necessary. Here, we investigate the response of 1T' -MoS2 to the electron irradiation by ab initio molecular dynamics means. Our simulations suggest that an electron beam with energy smaller than 75 keV does not result in any knock-on damage. The displacement threshold energies are different for the two nonequivalent sulfur atoms in 1T' -MoS2 and strongly depend on whether the top or bottom chalcogen layer is considered. As a result, a careful tuning of the beam energy can promote the formation of ordered defects in the sample. We further discuss the effect of the electron irradiation in the neighborhood of a defective site, the mobility of the sulfur vacancies created and their tendency to aggregate. Overall, our work provides useful guidelines for the imaging and the defect engineering of 1T' -MoS2 using electron microscopy.
Polska, Katarzyna; Rak, Janusz; Bass, Andrew D.; Cloutier, Pierre; Sanche, Léon
2013-01-01
We measured the low energy electron stimulated desorption (ESD) of anions from thin films of native (TXT) and bromine monosubstituted (TBrXT) oligonucleotide trimers deposited on a gold surface (T = thymidine, X = T, deoxycytidine (C), deoxyadenosine (A) or deoxyguanosine (G), Br = bromine). The desorption of H−, CH3−/NH−, O−/NH2−, OH−, CN−, and Br− was induced by 0 to 20 eV electrons. Dissociative electron attachment, below 12 eV, and dipolar dissociation, above 12 eV, are responsible for the formation of these anions. The comparison of the results obtained for the native and brominated trimers suggests that the main pathways of TBrXT degradation correspond to the release of the hydride and bromide anions. Significantly, the presence of bromine in oligonucleotide trimers blocks the electron-induced degradation of nuclobases as evidenced by a dramatic decrease in CN− desorption. An increase in the yields of OH− is also observed. The debromination yield of particular oligonucleotides diminishes in the following order: BrdU > BrdA > BrdG > BrdC. Based on these results, 5-bromo-2′-deoxyuridine appears to be the best radiosensitizer among the studied bromonucleosides. PMID:22360262
Polska, Katarzyna; Rak, Janusz; Bass, Andrew D; Cloutier, Pierre; Sanche, Léon
2012-02-21
We measured the low energy electron stimulated desorption (ESD) of anions from thin films of native (TXT) and bromine monosubstituted (TBrXT) oligonucleotide trimers deposited on a gold surface (T = thymidine, X = T, deoxycytidine (C), deoxyadenosine (A) or deoxyguanosine (G), Br = bromine). The desorption of H(-), CH(3)(-)/NH(-), O(-)/NH(2)(-), OH(-), CN(-), and Br(-) was induced by 0 to 20 eV electrons. Dissociative electron attachment, below 12 eV, and dipolar dissociation, above 12 eV, are responsible for the formation of these anions. The comparison of the results obtained for the native and brominated trimers suggests that the main pathways of TBrXT degradation correspond to the release of the hydride and bromide anions. Significantly, the presence of bromine in oligonucleotide trimers blocks the electron-induced degradation of nuclobases as evidenced by a dramatic decrease in CN(-) desorption. An increase in the yields of OH(-) is also observed. The debromination yield of particular oligonucleotides diminishes in the following order: BrdU > BrdA > BrdG > BrdC. Based on these results, 5-bromo-2(')-deoxyuridine appears to be the best radiosensitizer among the studied bromonucleosides. © 2012 American Institute of Physics
NASA Astrophysics Data System (ADS)
Polska, Katarzyna; Rak, Janusz; Bass, Andrew D.; Cloutier, Pierre; Sanche, Léon
2012-02-01
We measured the low energy electron stimulated desorption (ESD) of anions from thin films of native (TXT) and bromine monosubstituted (TBrXT) oligonucleotide trimers deposited on a gold surface (T = thymidine, X = T, deoxycytidine (C), deoxyadenosine (A) or deoxyguanosine (G), Br = bromine). The desorption of H-, CH3-/NH-, O-/NH2-, OH-, CN-, and Br- was induced by 0 to 20 eV electrons. Dissociative electron attachment, below 12 eV, and dipolar dissociation, above 12 eV, are responsible for the formation of these anions. The comparison of the results obtained for the native and brominated trimers suggests that the main pathways of TBrXT degradation correspond to the release of the hydride and bromide anions. Significantly, the presence of bromine in oligonucleotide trimers blocks the electron-induced degradation of nuclobases as evidenced by a dramatic decrease in CN- desorption. An increase in the yields of OH- is also observed. The debromination yield of particular oligonucleotides diminishes in the following order: BrdU > BrdA > BrdG > BrdC. Based on these results, 5-bromo-2'-deoxyuridine appears to be the best radiosensitizer among the studied bromonucleosides.
NASA Astrophysics Data System (ADS)
Villa, F.; Anania, M. P.; Artioli, M.; Bacci, A.; Bellaveglia, M.; Bisesto, F. G.; Biagioni, A.; Carpanese, M.; Cardelli, F.; Castorina, G.; Chiadroni, E.; Cianchi, A.; Ciocci, F.; Croia, M.; Curcio, A.; Dattoli, G.; Gallo, A.; Di Giovenale, D.; Di Palma, E.; Di Pirro, G.; Ferrario, M.; Filippi, F.; Giannessi, L.; Giribono, A.; Marocchino, A.; Massimo, F.; Mostacci, A.; Petralia, A.; Petrarca, M.; Petrillo, V.; Piersanti, L.; Pioli, S.; Pompili, R.; Romeo, S.; Rossi, A. R.; Scifo, J.; Shpakov, V.; Vaccarezza, C.
2017-09-01
The technique for producing and measuring few tens of femtosecond electron beams, and the consequent generation of few tens femtoseconds single spike FEL radiation pulses at SPARC_LAB is presented. The undulator has been used in the double role of radiation source and diagnostic tool for the characterization of the electron beam. The connection between the electron bunch length and the radiation bandwidth is analyzed.
User-interactive electronic skin for instantaneous pressure visualization
NASA Astrophysics Data System (ADS)
Wang, Chuan; Hwang, David; Yu, Zhibin; Takei, Kuniharu; Park, Junwoo; Chen, Teresa; Ma, Biwu; Javey, Ali
2013-10-01
Electronic skin (e-skin) presents a network of mechanically flexible sensors that can conformally wrap irregular surfaces and spatially map and quantify various stimuli. Previous works on e-skin have focused on the optimization of pressure sensors interfaced with an electronic readout, whereas user interfaces based on a human-readable output were not explored. Here, we report the first user-interactive e-skin that not only spatially maps the applied pressure but also provides an instantaneous visual response through a built-in active-matrix organic light-emitting diode display with red, green and blue pixels. In this system, organic light-emitting diodes (OLEDs) are turned on locally where the surface is touched, and the intensity of the emitted light quantifies the magnitude of the applied pressure. This work represents a system-on-plastic demonstration where three distinct electronic components—thin-film transistor, pressure sensor and OLED arrays—are monolithically integrated over large areas on a single plastic substrate. The reported e-skin may find a wide range of applications in interactive input/control devices, smart wallpapers, robotics and medical/health monitoring devices.
Probing the electronic and defect structure of perovskite superconductors
NASA Astrophysics Data System (ADS)
Fluss, M. J.; Wachs, A. L.; Turchi, P. E. A.; Howell, R. H.; Jean, Y. C.; Kyle, J.; Nakanishi, H.; Chu, C. W.; Meng, R. L.; Hor, H. P.
1988-02-01
Positrons, either localized or delocalized, in the perovskite superconductors are sensitive to changes in electron density accompanying the normal-to-superconducting transition. We have been using this probe in our laboratory to study the nature of this new phenomena. Our work to date, which is briefly reviewed here, has consisted of a series of lifetime studies on La(sub 1.85)Sr(sub 0.15)CuO4 and YBa2Cu3O(sub 7-d) superconducting samples, the determination of the positron wave function in the perfect crystal, and a direct measurement of the electron momentum density in single crystal La2CuO4. Several important observations have resulted from this early work: the similar response of the positron annihilation lifetime to superconductivity in both La(sub 1.85)Sr(sub 0.15)CuO4 and YBa2Cu3O7, and a quantitative description of the electronic structure for La(sub 1.85)Sr(sub 0.15)CuO4 in terms of a linear combination of atomic orbital-molecular orbital (LCAO-MO) model.
User-interactive electronic skin for instantaneous pressure visualization.
Wang, Chuan; Hwang, David; Yu, Zhibin; Takei, Kuniharu; Park, Junwoo; Chen, Teresa; Ma, Biwu; Javey, Ali
2013-10-01
Electronic skin (e-skin) presents a network of mechanically flexible sensors that can conformally wrap irregular surfaces and spatially map and quantify various stimuli. Previous works on e-skin have focused on the optimization of pressure sensors interfaced with an electronic readout, whereas user interfaces based on a human-readable output were not explored. Here, we report the first user-interactive e-skin that not only spatially maps the applied pressure but also provides an instantaneous visual response through a built-in active-matrix organic light-emitting diode display with red, green and blue pixels. In this system, organic light-emitting diodes (OLEDs) are turned on locally where the surface is touched, and the intensity of the emitted light quantifies the magnitude of the applied pressure. This work represents a system-on-plastic demonstration where three distinct electronic components--thin-film transistor, pressure sensor and OLED arrays--are monolithically integrated over large areas on a single plastic substrate. The reported e-skin may find a wide range of applications in interactive input/control devices, smart wallpapers, robotics and medical/health monitoring devices.
Trap-state-dominated suppression of electron conduction in carbon nanotube thin-film transistors.
Qian, Qingkai; Li, Guanhong; Jin, Yuanhao; Liu, Junku; Zou, Yuan; Jiang, Kaili; Fan, Shoushan; Li, Qunqing
2014-09-23
The often observed p-type conduction of single carbon nanotube field-effect transistors is usually attributed to the Schottky barriers at the metal contacts induced by the work function differences or by the doping effect of the oxygen adsorption when carbon nanotubes are exposed to air, which cause the asymmetry between electron and hole injections. However, for carbon nanotube thin-film transistors, our contrast experiments between oxygen doping and electrostatic doping demonstrate that the doping-generated transport barriers do not introduce any observable suppression of electron conduction, which is further evidenced by the perfect linear behavior of transfer characteristics with the channel length scaling. On the basis of the above observation, we conclude that the environmental adsorbates work by more than simply shifting the Fermi level of the CNTs; more importantly, these adsorbates cause a poor gate modulation efficiency of electron conduction due to the relatively large trap state density near the conduction band edge of the carbon nanotubes, for which we further propose quantitatively that the adsorbed oxygen-water redox couple is responsible.
Two-screen single-shot electron spectrometer for laser wakefield accelerated electron beams.
Soloviev, A A; Starodubtsev, M V; Burdonov, K F; Kostyukov, I Yu; Nerush, E N; Shaykin, A A; Khazanov, E A
2011-04-01
The laser wakefield acceleration electron beams can essentially deviate from the axis of the system, which distinguishes them greatly from beams of conventional accelerators. In case of energy measurements by means of a permanent-magnet electron spectrometer, the deviation angle can affect accuracy, especially for high energies. A two-screen single-shot electron spectrometer that correctly allows for variations of the angle of entry is considered. The spectrometer design enables enhancing accuracy of measuring narrow electron beams significantly as compared to a one-screen spectrometer with analogous magnetic field, size, and angular acceptance. © 2011 American Institute of Physics
System for cooling hybrid vehicle electronics, method for cooling hybrid vehicle electronics
France, David M.; Yu, Wenhua; Singh, Dileep; Zhao, Weihuan
2017-11-21
The invention provides a single radiator cooling system for use in hybrid electric vehicles, the system comprising a surface in thermal communication with electronics, and subcooled boiling fluid contacting the surface. The invention also provides a single radiator method for simultaneously cooling electronics and an internal combustion engine in a hybrid electric vehicle, the method comprising separating a coolant fluid into a first portion and a second portion; directing the first portion to the electronics and the second portion to the internal combustion engine for a time sufficient to maintain the temperature of the electronics at or below 175.degree. C.; combining the first and second portion to reestablish the coolant fluid; and treating the reestablished coolant fluid to the single radiator for a time sufficient to decrease the temperature of the reestablished coolant fluid to the temperature it had before separation.
Photon Counting Imaging with an Electron-Bombarded Pixel Image Sensor
Hirvonen, Liisa M.; Suhling, Klaus
2016-01-01
Electron-bombarded pixel image sensors, where a single photoelectron is accelerated directly into a CCD or CMOS sensor, allow wide-field imaging at extremely low light levels as they are sensitive enough to detect single photons. This technology allows the detection of up to hundreds or thousands of photon events per frame, depending on the sensor size, and photon event centroiding can be employed to recover resolution lost in the detection process. Unlike photon events from electron-multiplying sensors, the photon events from electron-bombarded sensors have a narrow, acceleration-voltage-dependent pulse height distribution. Thus a gain voltage sweep during exposure in an electron-bombarded sensor could allow photon arrival time determination from the pulse height with sub-frame exposure time resolution. We give a brief overview of our work with electron-bombarded pixel image sensor technology and recent developments in this field for single photon counting imaging, and examples of some applications. PMID:27136556
Molecular Diode Studies Based on a Highly Sensitive Molecular Measurement Technique.
Iwane, Madoka; Fujii, Shintaro; Kiguchi, Manabu
2017-04-26
In 1974, molecular electronics pioneers Mark Ratner and Arieh Aviram predicted that a single molecule could act as a diode, in which electronic current can be rectified. The electronic rectification property of the diode is one of basic functions of electronic components and since then, the molecular diode has been investigated as a first single-molecule device that would have a practical application. In this review, we first describe the experimental fabrication and electronic characterization techniques of molecular diodes consisting of a small number of molecules or a single molecule. Then, two main mechanisms of the rectification property of the molecular diode are discussed. Finally, representative results for the molecular diode are reviewed and a brief outlook on crucial issues that need to be addressed in future research is discussed.
Molecular Diode Studies Based on a Highly Sensitive Molecular Measurement Technique
Iwane, Madoka; Fujii, Shintaro; Kiguchi, Manabu
2017-01-01
In 1974, molecular electronics pioneers Mark Ratner and Arieh Aviram predicted that a single molecule could act as a diode, in which electronic current can be rectified. The electronic rectification property of the diode is one of basic functions of electronic components and since then, the molecular diode has been investigated as a first single-molecule device that would have a practical application. In this review, we first describe the experimental fabrication and electronic characterization techniques of molecular diodes consisting of a small number of molecules or a single molecule. Then, two main mechanisms of the rectification property of the molecular diode are discussed. Finally, representative results for the molecular diode are reviewed and a brief outlook on crucial issues that need to be addressed in future research is discussed. PMID:28445393
Managing information and knowledge within maternity services: Privacy and consent issues.
Baskaran, Vikraman; Davis, Kim; Bali, Rajeev K; Naguib, Raouf N G; Wickramasinghe, Nilmini
2013-09-01
Electronic Patient Records have improved vastly the quality and efficiency of care delivered. However, the formation of single demographic database and the ease of electronic information sharing give rise to many concerns including issues of consent, by whom and how data are accessed and used. This paper examines the organizational and socio-technical issues related to privacy, confidentiality and security when employing electronic records within a maternity service hospital in England. A preliminary questionnaire was administered (n = 52), in total, 24 responses were received. Sixteen responses were from personnel in the information technology department, 5 from health information department and 3 from midwifery managers. This was followed by a semi-structured interview with representatives from the clinical and technological side. A number of issues related to information governance (IG) have been identified, especially breaches on sharing personal information without consent from the patients have been identified as one immediate challenge that needs to be fixed. There is an immediate need for more robust, realistic, built-in accountability both locally and nationally on data sharing. A culture of ownership and strict adherence to IG principles is paramount. Focused training in the area of data, information and knowledge sharing will bring in a balance of legitimate usage against the individual's rights to confidentiality and privacy.
High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe
NASA Astrophysics Data System (ADS)
Bandurin, Denis A.; Tyurnina, Anastasia V.; Yu, Geliang L.; Mishchenko, Artem; Zólyomi, Viktor; Morozov, Sergey V.; Kumar, Roshan Krishna; Gorbachev, Roman V.; Kudrynskyi, Zakhar R.; Pezzini, Sergio; Kovalyuk, Zakhar D.; Zeitler, Uli; Novoselov, Konstantin S.; Patanè, Amalia; Eaves, Laurence; Grigorieva, Irina V.; Fal'Ko, Vladimir I.; Geim, Andre K.; Cao, Yang
2017-03-01
A decade of intense research on two-dimensional (2D) atomic crystals has revealed that their properties can differ greatly from those of the parent compound. These differences are governed by changes in the band structure due to quantum confinement and are most profound if the underlying lattice symmetry changes. Here we report a high-quality 2D electron gas in few-layer InSe encapsulated in hexagonal boron nitride under an inert atmosphere. Carrier mobilities are found to exceed 103 cm2 V-1 s-1 and 104 cm2 V-1 s-1 at room and liquid-helium temperatures, respectively, allowing the observation of the fully developed quantum Hall effect. The conduction electrons occupy a single 2D subband and have a small effective mass. Photoluminescence spectroscopy reveals that the bandgap increases by more than 0.5 eV with decreasing the thickness from bulk to bilayer InSe. The band-edge optical response vanishes in monolayer InSe, which is attributed to the monolayer's mirror-plane symmetry. Encapsulated 2D InSe expands the family of graphene-like semiconductors and, in terms of quality, is competitive with atomically thin dichalcogenides and black phosphorus.
Kim, Dae-Hyeong; Song, Jizhou; Choi, Won Mook; Kim, Hoon-Sik; Kim, Rak-Hwan; Liu, Zhuangjian; Huang, Yonggang Y.; Hwang, Keh-Chih; Zhang, Yong-wei; Rogers, John A.
2008-01-01
Electronic systems that offer elastic mechanical responses to high-strain deformations are of growing interest because of their ability to enable new biomedical devices and other applications whose requirements are impossible to satisfy with conventional wafer-based technologies or even with those that offer simple bendability. This article introduces materials and mechanical design strategies for classes of electronic circuits that offer extremely high stretchability, enabling them to accommodate even demanding configurations such as corkscrew twists with tight pitch (e.g., 90° in ≈1 cm) and linear stretching to “rubber-band” levels of strain (e.g., up to ≈140%). The use of single crystalline silicon nanomaterials for the semiconductor provides performance in stretchable complementary metal-oxide-semiconductor (CMOS) integrated circuits approaching that of conventional devices with comparable feature sizes formed on silicon wafers. Comprehensive theoretical studies of the mechanics reveal the way in which the structural designs enable these extreme mechanical properties without fracturing the intrinsically brittle active materials or even inducing significant changes in their electrical properties. The results, as demonstrated through electrical measurements of arrays of transistors, CMOS inverters, ring oscillators, and differential amplifiers, suggest a valuable route to high-performance stretchable electronics. PMID:19015528
NASA Technical Reports Server (NTRS)
Beers, B. L.; Pine, V. W.; Hwang, H. C.; Bloomberg, H. W.; Lin, D. L.; Schmidt, M. J.; Strickland, D. J.
1979-01-01
The model consists of four phases: single electron dynamics, single electron avalanche, negative streamer development, and tree formation. Numerical algorithms and computer code implementations are presented for the first three phases. An approach to developing a code description of fourth phase is discussed. Numerical results are presented for a crude material model of Teflon.
Economic analysis of crystal growth in space
NASA Technical Reports Server (NTRS)
Ulrich, D. R.; Chung, A. M.; Yan, C. S.; Mccreight, L. R.
1972-01-01
Many advanced electronic technologies and devices for the 1980's are based on sophisticated compound single crystals, i.e. ceramic oxides and compound semiconductors. Space processing of these electronic crystals with maximum perfection, purity, and size is suggested. No ecomonic or technical justification was found for the growth of silicon single crystals for solid state electronic devices in space.
Comment on 'The diatomic dication CuZn{sup 2+} in the gas phase' [J. Chem. Phys. 135, 034306 (2011)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiser, Jiri; Diez, Reinaldo Pis; Franzreb, Klaus
2013-02-21
In this Comment, the density functional theory (DFT) calculations carried out by Diez et al. [J. Chem. Phys. 135, 034306 (2011)] are revised within the framework of the coupled-cluster single double triple method. These more sophisticated calculations allow us to show that the {sup 2}{Sigma}{sup +} electronic ground state of CuZn{sup 2+}, characterized as the metastable ground state by DFT calculations, is a repulsive state instead. The {sup 2}{Delta} and {sup 2}{Pi} metastable states of CuZn{sup 2+}, on the other hand, should be responsible for the formation mechanism of the dication through the near-resonant electron transfer CuZn{sup +}+ Ar{sup +}{yields}more » CuZn{sup 2+}+ Ar reaction.« less
Hiraka, Kentaro; Kojima, Katsuhiro; Lin, Chi-En; Tsugawa, Wakako; Asano, Ryutaro; La Belle, Jeffrey T; Sode, Koji
2018-04-30
l-lactate biosensors employing l-lactate oxidase (LOx) have been developed mainly to measure l-lactate concentration for clinical diagnostics, sports medicine, and the food industry. Some l-lactate biosensors employ artificial electron mediators, but these can negatively impact the detection of l-lactate by competing with the primary electron acceptor: molecular oxygen. In this paper, a strategic approach to engineering an AvLOx that minimizes the effects of oxygen interference on sensor strips was reported. First, we predicted an oxygen access pathway in Aerococcus viridans LOx (AvLOx) based on its crystal structure. This was subsequently blocked by a bulky amino acid substitution. The resulting Ala96Leu mutant showed a drastic reduction in oxidase activity using molecular oxygen as the electron acceptor and a small increase in dehydrogenase activity employing an artificial electron acceptor. Secondly, the Ala96Leu mutant was immobilized on a screen-printed carbon electrode using glutaraldehyde cross-linking method. Amperometric analysis was performed with potassium ferricyanide as an electron mediator under argon or atmospheric conditions. Under argon condition, the response current increased linearly from 0.05 to 0.5mM l-lactate for both wild-type and Ala96Leu. However, under atmospheric conditions, the response of wild-type AvLOx electrode was suppressed by 9-12% due to oxygen interference. The Ala96Leu mutant maintained 56-69% of the response current at the same l-lactate level and minimized the relative bias error to -19% from -49% of wild-type. This study provided significant insight into the enzymatic reaction mechanism of AvLOx and presented a novel approach to minimize oxygen interference in sensor applications, which will enable accurate detection of l-lactate concentrations. Copyright © 2017 Elsevier B.V. All rights reserved.
Freire, Sergio Miranda; Teodoro, Douglas; Wei-Kleiner, Fang; Sundvall, Erik; Karlsson, Daniel; Lambrix, Patrick
2016-01-01
This study provides an experimental performance evaluation on population-based queries of NoSQL databases storing archetype-based Electronic Health Record (EHR) data. There are few published studies regarding the performance of persistence mechanisms for systems that use multilevel modelling approaches, especially when the focus is on population-based queries. A healthcare dataset with 4.2 million records stored in a relational database (MySQL) was used to generate XML and JSON documents based on the openEHR reference model. Six datasets with different sizes were created from these documents and imported into three single machine XML databases (BaseX, eXistdb and Berkeley DB XML) and into a distributed NoSQL database system based on the MapReduce approach, Couchbase, deployed in different cluster configurations of 1, 2, 4, 8 and 12 machines. Population-based queries were submitted to those databases and to the original relational database. Database size and query response times are presented. The XML databases were considerably slower and required much more space than Couchbase. Overall, Couchbase had better response times than MySQL, especially for larger datasets. However, Couchbase requires indexing for each differently formulated query and the indexing time increases with the size of the datasets. The performances of the clusters with 2, 4, 8 and 12 nodes were not better than the single node cluster in relation to the query response time, but the indexing time was reduced proportionally to the number of nodes. The tested XML databases had acceptable performance for openEHR-based data in some querying use cases and small datasets, but were generally much slower than Couchbase. Couchbase also outperformed the response times of the relational database, but required more disk space and had a much longer indexing time. Systems like Couchbase are thus interesting research targets for scalable storage and querying of archetype-based EHR data when population-based use cases are of interest. PMID:26958859
Freire, Sergio Miranda; Teodoro, Douglas; Wei-Kleiner, Fang; Sundvall, Erik; Karlsson, Daniel; Lambrix, Patrick
2016-01-01
This study provides an experimental performance evaluation on population-based queries of NoSQL databases storing archetype-based Electronic Health Record (EHR) data. There are few published studies regarding the performance of persistence mechanisms for systems that use multilevel modelling approaches, especially when the focus is on population-based queries. A healthcare dataset with 4.2 million records stored in a relational database (MySQL) was used to generate XML and JSON documents based on the openEHR reference model. Six datasets with different sizes were created from these documents and imported into three single machine XML databases (BaseX, eXistdb and Berkeley DB XML) and into a distributed NoSQL database system based on the MapReduce approach, Couchbase, deployed in different cluster configurations of 1, 2, 4, 8 and 12 machines. Population-based queries were submitted to those databases and to the original relational database. Database size and query response times are presented. The XML databases were considerably slower and required much more space than Couchbase. Overall, Couchbase had better response times than MySQL, especially for larger datasets. However, Couchbase requires indexing for each differently formulated query and the indexing time increases with the size of the datasets. The performances of the clusters with 2, 4, 8 and 12 nodes were not better than the single node cluster in relation to the query response time, but the indexing time was reduced proportionally to the number of nodes. The tested XML databases had acceptable performance for openEHR-based data in some querying use cases and small datasets, but were generally much slower than Couchbase. Couchbase also outperformed the response times of the relational database, but required more disk space and had a much longer indexing time. Systems like Couchbase are thus interesting research targets for scalable storage and querying of archetype-based EHR data when population-based use cases are of interest.
Zhao, Lin; Liang, Aiji; Yuan, Dongna; Hu, Yong; Liu, Defa; Huang, Jianwei; He, Shaolong; Shen, Bing; Xu, Yu; Liu, Xu; Yu, Li; Liu, Guodong; Zhou, Huaxue; Huang, Yulong; Dong, Xiaoli; Zhou, Fang; Liu, Kai; Lu, Zhongyi; Zhao, Zhongxian; Chen, Chuangtian; Xu, Zuyan; Zhou, X. J.
2016-01-01
The mechanism of high-temperature superconductivity in the iron-based superconductors remains an outstanding issue in condensed matter physics. The electronic structure plays an essential role in dictating superconductivity. Recent revelation of distinct electronic structure and high-temperature superconductivity in the single-layer FeSe/SrTiO3 films provides key information on the role of Fermi surface topology and interface in inducing or enhancing superconductivity. Here we report high-resolution angle-resolved photoemission measurements on the electronic structure and superconducting gap of an FeSe-based superconductor, (Li0.84Fe0.16)OHFe0.98Se, with a Tc at 41 K. We find that this single-phase bulk superconductor shows remarkably similar electronic behaviours to that of the superconducting single-layer FeSe/SrTiO3 films in terms of Fermi surface topology, band structure and the gap symmetry. These observations provide new insights in understanding high-temperature superconductivity in the single-layer FeSe/SrTiO3 films and the mechanism of superconductivity in the bulk iron-based superconductors. PMID:26853801
Imaging the Ultrafast Photoelectron Transfer Process in Alizarin-TiO2.
Gomez, Tatiana; Hermann, Gunter; Zarate, Ximena; Pérez-Torres, Jhon Fredy; Tremblay, Jean Christophe
2015-07-30
In this work, we adopt a quantum mechanical approach based on time-dependent density functional theory (TDDFT) to study the optical and electronic properties of alizarin supported on TiO2 nano-crystallites, as a prototypical dye-sensitized solar cell. To ensure proper alignment of the donor (alizarin) and acceptor (TiO2 nano-crystallite) levels, static optical excitation spectra are simulated using time-dependent density functional theory in response. The ultrafast photoelectron transfer from the dye to the cluster is simulated using an explicitly time-dependent, one-electron TDDFT ansatz. The model considers the δ-pulse excitation of a single active electron localized in the dye to the complete set of energetically accessible, delocalized molecular orbitals of the dye/nano-crystallite complex. A set of quantum mechanical tools derived from the transition electronic flux density is introduced to visualize and analyze the process in real time. The evolution of the created wave packet subject to absorbing boundary conditions at the borders of the cluster reveal that, while the electrons of the aromatic rings of alizarin are heavily involved in an ultrafast charge redistribution between the carbonyl groups of the dye molecule, they do not contribute positively to the electron injection and, overall, they delay the process.
Musumeci, P; Moody, J T; Scoby, C M; Gutierrez, M S; Bender, H A; Wilcox, N S
2010-01-01
Single shot diffraction patterns using a 250-fs-long electron beam have been obtained at the UCLA Pegasus laboratory. High quality images with spatial resolution sufficient to distinguish closely spaced peaks in the Debye-Scherrer ring pattern have been recorded by scattering the 1.6 pC 3.5 MeV electron beam generated in the rf photoinjector off a 100-nm-thick Au foil. Dark current and high emittance particles are removed from the beam before sending it onto the diffraction target using a 1 mm diameter collimating hole. These results open the door to the study of irreversible phase transformations by single shot MeV electron diffraction.
Spray printing of organic semiconducting single crystals
NASA Astrophysics Data System (ADS)
Rigas, Grigorios-Panagiotis; Payne, Marcia M.; Anthony, John E.; Horton, Peter N.; Castro, Fernando A.; Shkunov, Maxim
2016-11-01
Single-crystal semiconductors have been at the forefront of scientific interest for more than 70 years, serving as the backbone of electronic devices. Inorganic single crystals are typically grown from a melt using time-consuming and energy-intensive processes. Organic semiconductor single crystals, however, can be grown using solution-based methods at room temperature in air, opening up the possibility of large-scale production of inexpensive electronics targeting applications ranging from field-effect transistors and light-emitting diodes to medical X-ray detectors. Here we demonstrate a low-cost, scalable spray-printing process to fabricate high-quality organic single crystals, based on various semiconducting small molecules on virtually any substrate by combining the advantages of antisolvent crystallization and solution shearing. The crystals' size, shape and orientation are controlled by the sheer force generated by the spray droplets' impact onto the antisolvent's surface. This method demonstrates the feasibility of a spray-on single-crystal organic electronics.
Fiáth, Richárd; Beregszászi, Patrícia; Horváth, Domonkos; Wittner, Lucia; Aarts, Arno A A; Ruther, Patrick; Neves, Hercules P; Bokor, Hajnalka; Acsády, László; Ulbert, István
2016-11-01
Recording simultaneous activity of a large number of neurons in distributed neuronal networks is crucial to understand higher order brain functions. We demonstrate the in vivo performance of a recently developed electrophysiological recording system comprising a two-dimensional, multi-shank, high-density silicon probe with integrated complementary metal-oxide semiconductor electronics. The system implements the concept of electronic depth control (EDC), which enables the electronic selection of a limited number of recording sites on each of the probe shafts. This innovative feature of the system permits simultaneous recording of local field potentials (LFP) and single- and multiple-unit activity (SUA and MUA, respectively) from multiple brain sites with high quality and without the actual physical movement of the probe. To evaluate the in vivo recording capabilities of the EDC probe, we recorded LFP, MUA, and SUA in acute experiments from cortical and thalamic brain areas of anesthetized rats and mice. The advantages of large-scale recording with the EDC probe are illustrated by investigating the spatiotemporal dynamics of pharmacologically induced thalamocortical slow-wave activity in rats and by the two-dimensional tonotopic mapping of the auditory thalamus. In mice, spatial distribution of thalamic responses to optogenetic stimulation of the neocortex was examined. Utilizing the benefits of the EDC system may result in a higher yield of useful data from a single experiment compared with traditional passive multielectrode arrays, and thus in the reduction of animals needed for a research study. Copyright © 2016 the American Physiological Society.
The timing resolution of scintillation-detector systems: Monte Carlo analysis
NASA Astrophysics Data System (ADS)
Choong, Woon-Seng
2009-11-01
Recent advancements in fast scintillating materials and fast photomultiplier tubes (PMTs) have stimulated renewed interest in time-of-flight (TOF) positron emission tomography (PET). It is well known that the improvement in the timing resolution in PET can significantly reduce the noise variance in the reconstructed image resulting in improved image quality. In order to evaluate the timing performance of scintillation detectors used in TOF PET, we use Monte Carlo analysis to model the physical processes (crystal geometry, crystal surface finish, scintillator rise time, scintillator decay time, photoelectron yield, PMT transit time spread, PMT single-electron response, amplifier response and time pick-off method) that can contribute to the timing resolution of scintillation-detector systems. In the Monte Carlo analysis, the photoelectron emissions are modeled by a rate function, which is used to generate the photoelectron time points. The rate function, which is simulated using Geant4, represents the combined intrinsic light emissions of the scintillator and the subsequent light transport through the crystal. The PMT output signal is determined by the superposition of the PMT single-electron response resulting from the photoelectron emissions. The transit time spread and the single-electron gain variation of the PMT are modeled in the analysis. Three practical time pick-off methods are considered in the analysis. Statistically, the best timing resolution is achieved with the first photoelectron timing. The calculated timing resolution suggests that a leading edge discriminator gives better timing performance than a constant fraction discriminator and produces comparable results when a two-threshold or three-threshold discriminator is used. For a typical PMT, the effect of detector noise on the timing resolution is negligible. The calculated timing resolution is found to improve with increasing mean photoelectron yield, decreasing scintillator decay time and decreasing transit time spread. However, only substantial improvement in the timing resolution is obtained with improved transit time spread if the first photoelectron timing is less than the transit time spread. While the calculated timing performance does not seem to be affected by the pixel size of the crystal, it improves for an etched crystal compared to a polished crystal. In addition, the calculated timing resolution degrades with increasing crystal length. These observations can be explained by studying the initial photoelectron rate. Experimental measurements provide reasonably good agreement with the calculated timing resolution. The Monte Carlo analysis developed in this work will allow us to optimize the scintillation detectors for timing and to understand the physical factors limiting their performance.
The timing resolution of scintillation-detector systems: Monte Carlo analysis.
Choong, Woon-Seng
2009-11-07
Recent advancements in fast scintillating materials and fast photomultiplier tubes (PMTs) have stimulated renewed interest in time-of-flight (TOF) positron emission tomography (PET). It is well known that the improvement in the timing resolution in PET can significantly reduce the noise variance in the reconstructed image resulting in improved image quality. In order to evaluate the timing performance of scintillation detectors used in TOF PET, we use Monte Carlo analysis to model the physical processes (crystal geometry, crystal surface finish, scintillator rise time, scintillator decay time, photoelectron yield, PMT transit time spread, PMT single-electron response, amplifier response and time pick-off method) that can contribute to the timing resolution of scintillation-detector systems. In the Monte Carlo analysis, the photoelectron emissions are modeled by a rate function, which is used to generate the photoelectron time points. The rate function, which is simulated using Geant4, represents the combined intrinsic light emissions of the scintillator and the subsequent light transport through the crystal. The PMT output signal is determined by the superposition of the PMT single-electron response resulting from the photoelectron emissions. The transit time spread and the single-electron gain variation of the PMT are modeled in the analysis. Three practical time pick-off methods are considered in the analysis. Statistically, the best timing resolution is achieved with the first photoelectron timing. The calculated timing resolution suggests that a leading edge discriminator gives better timing performance than a constant fraction discriminator and produces comparable results when a two-threshold or three-threshold discriminator is used. For a typical PMT, the effect of detector noise on the timing resolution is negligible. The calculated timing resolution is found to improve with increasing mean photoelectron yield, decreasing scintillator decay time and decreasing transit time spread. However, only substantial improvement in the timing resolution is obtained with improved transit time spread if the first photoelectron timing is less than the transit time spread. While the calculated timing performance does not seem to be affected by the pixel size of the crystal, it improves for an etched crystal compared to a polished crystal. In addition, the calculated timing resolution degrades with increasing crystal length. These observations can be explained by studying the initial photoelectron rate. Experimental measurements provide reasonably good agreement with the calculated timing resolution. The Monte Carlo analysis developed in this work will allow us to optimize the scintillation detectors for timing and to understand the physical factors limiting their performance.
Target electron ionization in Li2+-Li collisions: A multi-electron perspective
NASA Astrophysics Data System (ADS)
Śpiewanowski, M. D.; Gulyás, L.; Horbatsch, M.; Kirchner, T.
2015-05-01
The recent development of the magneto-optical trap reaction-microscope has opened a new chapter for detailed investigations of charged-particle collisions from alkali atoms. It was shown that energy-differential cross sections for ionization from the outer-shell in O8+-Li collisions at 1500 keV/amu can be readily explained with the single-active-electron approximation. Understanding of K-shell ionization, however, requires incorporating many-electron effects. An ionization-excitation process was found to play an important role. We present a theoretical study of target electron removal in Li2+-Li collisions at 2290 keV/amu. The results indicate that in outer-shell ionization a single-electron process plays the dominant part. However, the K-shell ionization results are more difficult to interpret. On one hand, we find only weak contributions from multi-electron processes. On the other hand, a large discrepancy between experimental and single-particle theoretical results indicate that multi-electron processes involving ionization from the outer shell may be important for a complete understanding of the process. Work supported by NSERC, Canada and the Hungarian Scientific Research Fund.
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Dateo, Christopher E.
2001-01-01
Vertical electronic excitation energies for single states have been computed for the high energy density material (HEDM) Td N4 in order to assess possible synthetic routes that originate from excited electronic states of N2 molecules. Several ab initio theoretical approaches have been used, including complete active space self-consistent field (CASSCF), state averaged CASSCF (SA-CASSCF), singles configuration interaction (CIS), CIS with second-order and third-order correlation corrections [CIS(D)) and CIS(3)], and linear response singles and doubles coupled-cluster (LRCCSD), which is the highest level of theory employed. Standard double zeta polarized (DZP) and triple zeta double polarized (TZ2P) one-particle basis sets were used. The CASSCF calculations are found to overestimate the excitation energies, while the SA-CASSCF approach rectifies this error to some extent, but not completely. The accuracy of the CIS calculations varied depending on the particular state, while the CIS(D), CIS(3), and LRCCSD results are in generally good agreement. Based on the LRCCSD calculations, the lowest six excited singlet states are 9.35(l(sup)T1), 10.01(l(sup)T2), 10.04(1(sup)A2), 10.07(1(sup)E), 10.12(2(sup)T1), and 10.42(2(sup)T2) eV above the ground state, respectively. Comparison of these excited state energies with the energies of possible excited states of N2+N2 fragments, leads us to propose that the most likely synthetic route for Td N4 involving this mechanism arises from combination of two bound quintet states of N2.
NASA Astrophysics Data System (ADS)
Xu, Wei; Li, Jing-Yi; Huang, Sen-Lin; Z. Wu, W.; Hao, H.; P., Wang; K. Wu, Y.
2014-10-01
The Duke storage ring is a dedicated driver for the storage ring based oscillator free-electron lasers (FELs), and the High Intensity Gamma-ray Source (HIGS). It is operated with a beam current ranging from about 1 mA to 100 mA per bunch for various operations and accelerator physics studies. High performance operations of the FEL and γ-ray source require a stable electron beam orbit, which has been realized by the global orbit feedback system. As a critical part of the orbit feedback system, the electron beam position monitors (BPMs) are required to be able to precisely measure the electron beam orbit in a wide range of the single-bunch current. However, the high peak voltage of the BPM pickups associated with high single-bunch current degrades the performance of the BPM electronics, and can potentially damage the BPM electronics. A signal conditioning method using low pass filters is developed to reduce the peak voltage to protect the BPM electronics, and to make the BPMs capable of working with a wide range of single-bunch current. Simulations and electron beam based tests are performed. The results show that the Duke storage ring BPM system is capable of providing precise orbit measurements to ensure highly stable FEL and HIGS operations.
Photon-triggered nanowire transistors
NASA Astrophysics Data System (ADS)
Kim, Jungkil; Lee, Hoo-Cheol; Kim, Kyoung-Ho; Hwang, Min-Soo; Park, Jin-Sung; Lee, Jung Min; So, Jae-Pil; Choi, Jae-Hyuck; Kwon, Soon-Hong; Barrelet, Carl J.; Park, Hong-Gyu
2017-10-01
Photon-triggered electronic circuits have been a long-standing goal of photonics. Recent demonstrations include either all-optical transistors in which photons control other photons or phototransistors with the gate response tuned or enhanced by photons. However, only a few studies report on devices in which electronic currents are optically switched and amplified without an electrical gate. Here we show photon-triggered nanowire (NW) transistors, photon-triggered NW logic gates and a single NW photodetection system. NWs are synthesized with long crystalline silicon (CSi) segments connected by short porous silicon (PSi) segments. In a fabricated device, the electrical contacts on both ends of the NW are connected to a single PSi segment in the middle. Exposing the PSi segment to light triggers a current in the NW with a high on/off ratio of >8 × 106. A device that contains two PSi segments along the NW can be triggered using two independent optical input signals. Using localized pump lasers, we demonstrate photon-triggered logic gates including AND, OR and NAND gates. A photon-triggered NW transistor of diameter 25 nm with a single 100 nm PSi segment requires less than 300 pW of power. Furthermore, we take advantage of the high photosensitivity and fabricate a submicrometre-resolution photodetection system. Photon-triggered transistors offer a new venue towards multifunctional device applications such as programmable logic elements and ultrasensitive photodetectors.
Chang, Meng-Ya; Shiau, Ai-Li; Chen, Yu-Hung; Chang, Chih-Jui; Chen, Helen H-W; Wu, Chao-Liang
2008-07-01
High atomic number material, such as gold, may be used in conjunction with radiation to provide dose enhancement in tumors. In the current study, we investigated the dose-enhancing effect and apoptotic potential of gold nanoparticles in combination with single-dose clinical electron beams on B16F10 melanoma tumor-bearing mice. We revealed that the accumulation of gold nanoparticles was detected inside B16F10 culture cells after 18 h of incubation, and moreover, the gold nanoparticles were shown to be colocalized with endoplasmic reticulum and Golgi apparatus in cells. Furthermore, gold nanoparticles radiosensitized melanoma cells in the colony formation assay (P = 0.02). Using a B16F10 tumor-bearing mouse model, we further demonstrated that gold nanoparticles in conjunction with ionizing radiation significantly retarded tumor growth and prolonged survival compared to the radiation alone controls (P < 0.05). Importantly, an increase of apoptotic signals was detected inside tumors in the combined treatment group (P < 0.05). Knowing that radiation-induced apoptosis has been considered a determinant of tumor responses to radiation therapy, and the length of tumor regrowth delay correlated with the extent of apoptosis after single-dose radiotherapy, these results may suggest the clinical potential of gold nanoparticles in improving the outcome of melanoma radiotherapy.
Photon-triggered nanowire transistors.
Kim, Jungkil; Lee, Hoo-Cheol; Kim, Kyoung-Ho; Hwang, Min-Soo; Park, Jin-Sung; Lee, Jung Min; So, Jae-Pil; Choi, Jae-Hyuck; Kwon, Soon-Hong; Barrelet, Carl J; Park, Hong-Gyu
2017-10-01
Photon-triggered electronic circuits have been a long-standing goal of photonics. Recent demonstrations include either all-optical transistors in which photons control other photons or phototransistors with the gate response tuned or enhanced by photons. However, only a few studies report on devices in which electronic currents are optically switched and amplified without an electrical gate. Here we show photon-triggered nanowire (NW) transistors, photon-triggered NW logic gates and a single NW photodetection system. NWs are synthesized with long crystalline silicon (CSi) segments connected by short porous silicon (PSi) segments. In a fabricated device, the electrical contacts on both ends of the NW are connected to a single PSi segment in the middle. Exposing the PSi segment to light triggers a current in the NW with a high on/off ratio of >8 × 10 6 . A device that contains two PSi segments along the NW can be triggered using two independent optical input signals. Using localized pump lasers, we demonstrate photon-triggered logic gates including AND, OR and NAND gates. A photon-triggered NW transistor of diameter 25 nm with a single 100 nm PSi segment requires less than 300 pW of power. Furthermore, we take advantage of the high photosensitivity and fabricate a submicrometre-resolution photodetection system. Photon-triggered transistors offer a new venue towards multifunctional device applications such as programmable logic elements and ultrasensitive photodetectors.
Conical Fourier shell correlation applied to electron tomograms.
Diebolder, C A; Faas, F G A; Koster, A J; Koning, R I
2015-05-01
The resolution of electron tomograms is anisotropic due to geometrical constraints during data collection, such as the limited tilt range and single axis tilt series acquisition. Acquisition of dual axis tilt series can decrease these effects. However, in cryo-electron tomography, to limit the electron radiation damage that occurs during imaging, the total dose should not increase and must be fractionated over the two tilt series. Here we set out to determine whether it is beneficial fractionate electron dose for recording dual axis cryo electron tilt series or whether it is better to perform single axis acquisition. To assess the quality of tomographic reconstructions in different directions here we introduce conical Fourier shell correlation (cFSCe/o). Employing cFSCe/o, we compared the resolution isotropy of single-axis and dual-axis (cryo-)electron tomograms using even/odd split data sets. We show that the resolution of dual-axis simulated and cryo-electron tomograms in the plane orthogonal to the electron beam becomes more isotropic compared to single-axis tomograms and high resolution peaks along the tilt axis disappear. cFSCe/o also allowed us to compare different methods for the alignment of dual-axis tomograms. We show that different tomographic reconstruction programs produce different anisotropic resolution in dual axis tomograms. We anticipate that cFSCe/o can also be useful for comparisons of acquisition and reconstruction parameters, and different hardware implementations. Copyright © 2015 Elsevier Inc. All rights reserved.
Current Single Event Effects Results for Candidate Spacecraft Electronics for NASA
NASA Technical Reports Server (NTRS)
OBryan, Martha V.; Seidleck, Christina M.; Carts, Martin A.; LaBel, Kenneth A.; Marshall, Cheryl J.; Reed, Robert A.; Sanders, Anthony B.; Hawkins, Donald K.; Cox, Stephen R.; Kniffin, Scott D.
2004-01-01
We present data on the vulnerability of a variety of candidate spacecraft electronics to proton and heavy ion induced single event effects. Devices tested include digital, analog, linear bipolar, and hybrid devices, among others.
Single Event Effects Results for Candidate Spacecraft Electronics for NASA
NASA Technical Reports Server (NTRS)
O'Bryan, Martha; LaBel, Kenneth A.; Kniffin, Scott D.; Howard, James W., Jr.; Poivey, Christian; Ladbury, Ray L.; Buchner, Stephen P.; Xapsos, Michael; Reed, Robert A.; Sanders, Anthony B.
2003-01-01
We present data on the vulnerability of a variety of candidate spacecraft electronics to proton and heavy ion induced single event effects. Devices tested include digital, analog, linear bipolar, and hybrid devices, among others.
Heterogeneous Monolithic Integration of Single-Crystal Organic Materials.
Park, Kyung Sun; Baek, Jangmi; Park, Yoonkyung; Lee, Lynn; Hyon, Jinho; Koo Lee, Yong-Eun; Shrestha, Nabeen K; Kang, Youngjong; Sung, Myung Mo
2017-02-01
Manufacturing high-performance organic electronic circuits requires the effective heterogeneous integration of different nanoscale organic materials with uniform morphology and high crystallinity in a desired arrangement. In particular, the development of high-performance organic electronic and optoelectronic devices relies on high-quality single crystals that show optimal intrinsic charge-transport properties and electrical performance. Moreover, the heterogeneous integration of organic materials on a single substrate in a monolithic way is highly demanded for the production of fundamental organic electronic components as well as complex integrated circuits. Many of the various methods that have been designed to pattern multiple heterogeneous organic materials on a substrate and the heterogeneous integration of organic single crystals with their crystal growth are described here. Critical issues that have been encountered in the development of high-performance organic integrated electronics are also addressed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Uddin, Wasi; Georgiev, Yordan M.; Maity, Sarmistha; Das, Samaresh
2017-09-01
We report 1D electron transport of silicon junctionless tri-gate n-type transistor at 4.2 K. The step like curve observed in the current voltage characteristic suggests 1D transport. Besides the current steps for 1D transport, we found multiple spikes within individual steps, which we relate to inter-band single electron tunneling, mediated by the charged dopants available in the channel region. Clear Coulomb diamonds were observed in the stability diagram of the device. It is shown that a uniformly doped silicon nanowire can provide us the window for the single electron tunnelling. Back-gate versus front-gate color plot, where current is in a color scale, shows a crossover of the increased conduction region. This is a clear indication of the dopant-dopant interaction. It has been shown that back-gate biasing can be used to tune the coupling strength between the dopants.
Electron Information in Single- and Dual-Frequency Capacitive Discharges at Atmospheric Pressure.
Park, Sanghoo; Choe, Wonho; Moon, Se Youn; Shi, Jian Jun
2018-05-14
Determining the electron properties of weakly ionized gases, particularly in a high electron-neutral collisional condition, is a nontrivial task; thus, the mechanisms underlying the electron characteristics and electron heating structure in radio-frequency (rf) collisional discharges remain unclear. Here, we report the electrical characteristics and electron information in single-frequency (4.52 MHz and 13.56 MHz) and dual-frequency (a combination of 4.52 MHz and 13.56 MHz) capacitive discharges within the abnormal α-mode regime at atmospheric pressure. A continuum radiation-based electron diagnostic method is employed to estimate the electron density (n e ) and temperature (T e ). Our experimental observations reveal that time-averaged n e (7.7-14 × 10 11 cm -3 ) and T e (1.75-2.5 eV) can be independently controlled in dual-frequency discharge, whereas such control is nontrivial in single-frequency discharge, which shows a linear increase in n e and little to no change in T e with increases in the rf input power. Furthermore, the two-dimensional spatiotemporal evolution of neutral bremsstrahlung and associated electron heating structures is demonstrated. These results reveal that a symmetric structure in electron heating becomes asymmetric (via a local suppression of electron temperature) as two-frequency power is simultaneously introduced.
NASA Astrophysics Data System (ADS)
Clark, D. C.; Spencer, E. A.; Gollapalli, R.; Kerrigan, B.
2016-12-01
A plasma impedance probe is used to obtain plasma parameters in the ionosphere by measuring the magnitude, shape and location of resonances in the frequency spectrum when a probe structure is driven with RF excitation. We have designed and developed a new Time Domain Impedance Probe (TDIP) capable of making measurements of absolute electron density and electron neutral collision frequency at temporal and spatial resolutions not previously attained. A single measurement can be made in a time as short as 100 microseconds, which yields much higher spatial resolution than a frequency sweep method. This method essentially consists of applying a small amplitude time limited voltage signal into a probe and measuring the resulting current response. The frequency bandwidth of the voltage signal is selected in order that the electron plasma resonances are observable. A prototype of the new instrument was flown at 08:45 EST on March 1 2016 on a NASA Undergraduate Student Instrument Progam (USIP) sounding rocket launched out of Wallops Flight Facility (Flight time was around 20 minutes). Here we analyze the data from the sounding rocket experiment, using an adaptive system identification technique to compare the measured data with analytical formulas obtained from a theoretical consideration of the time domain response. The analytical formula is calibrated to a plasma fluid finite difference time domain (PFFDTD) numerical computation before using it to analyze the rocket data from 85 km to 170 km on both upleg and downleg. Our results show that the technique works as advertised, but several issues including payload charging and signal rectification remains to be resolved. A plasma impedance probe is used to obtain plasma parameters in the ionosphere by measuring the magnitude, shape and location of resonances in the frequency spectrum when a probe structure is driven with RF excitation. We have designed and developed a new Time Domain Impedance Probe (TDIP) capable of making measurements of absolute electron density and electron neutral collision frequency at temporal and spatial resolutions not previously attained. A single measurement can be made in a time as short as 100 microseconds, which yields much higher spatial resolution than a frequency sweep method. This method essentially consists of applying a small amplitude time limited voltage signal into a probe and measuring the resulting current response. The frequency bandwidth of the voltage signal is selected in order that the electron plasma resonances are observable. A prototype of the new instrument was flown at 08:45 EST on March 1 2016 on a NASA Undergraduate Student Instrument Progam (USIP) sounding rocket launched out of Wallops Flight Facility (Flight time was around 20 minutes). Here we analyze the data from the sounding rocket experiment, using an adaptive system identification technique to compare the measured data with analytical formulas obtained from a theoretical consideration of the time domain response. The analytical formula is calibrated to a plasma fluid finite difference time domain (PFFDTD) numerical computation before using it to analyze the rocket data from 85 km to 170 km on both upleg and downleg. Our results show that the technique works as advertised, but several issues including payload charging and signal rectification remains to be resolved.
Use of single scatter electron monte carlo transport for medical radiation sciences
Svatos, Michelle M.
2001-01-01
The single scatter Monte Carlo code CREEP models precise microscopic interactions of electrons with matter to enhance physical understanding of radiation sciences. It is designed to simulate electrons in any medium, including materials important for biological studies. It simulates each interaction individually by sampling from a library which contains accurate information over a broad range of energies.
Spin Measurements of an Electron Bound to a Single Phosphorous Donor in Silicon
NASA Astrophysics Data System (ADS)
Luhman, D. R.; Nguyen, K.; Tracy, L. A.; Carr, S. M.; Borchardt, J.; Bishop, N. C.; Ten Eyck, G. A.; Pluym, T.; Wendt, J.; Carroll, M. S.; Lilly, M. P.
2014-03-01
The spin of an electron bound to a single donor implanted in silicon is potentially useful for quantum information processing. We report on our efforts to measure and manipulate the spin of an electron bound to a single P donor in silicon. A low number of P donors are implanted using a self-aligned process into a silicon substrate in close proximity to a single-electron-transistor (SET) defined by lithographically patterned polysilicon gates. The SET is used to sense the occupancy of the electron on the donor and for spin read-out. An adjacent transmission line allows the application of microwave pulses to rotate the spin of the electron. We will present data from various experiments designed to exploit these capabilities. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. The work was supported by Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.
Watson, T F; Weber, B; House, M G; Büch, H; Simmons, M Y
2015-10-16
We demonstrate high-fidelity electron spin read-out of a precision placed single donor in silicon via spin selective tunneling to either the D(+) or D(-) charge state of the donor. By performing read-out at the stable two electron D(0)↔D(-) charge transition we can increase the tunnel rates to a nearby single electron transistor charge sensor by nearly 2 orders of magnitude, allowing faster qubit read-out (1 ms) with minimum loss in read-out fidelity (98.4%) compared to read-out at the D(+)↔D(0) transition (99.6%). Furthermore, we show that read-out via the D(-) charge state can be used to rapidly initialize the electron spin qubit in its ground state with a fidelity of F(I)=99.8%.
Relaxation of ferroelectric states in 2D distributions of quantum dots: EELS simulation
NASA Astrophysics Data System (ADS)
Cortés, C. M.; Meza-Montes, L.; Moctezuma, R. E.; Carrillo, J. L.
2016-06-01
The relaxation time of collective electronic states in a 2D distribution of quantum dots is investigated theoretically by simulating EELS experiments. From the numerical calculation of the probability of energy loss of an electron beam, traveling parallel to the distribution, it is possible to estimate the damping time of ferroelectric-like states. We generate this collective response of the distribution by introducing a mean field interaction among the quantum dots, and then, the model is extended incorporating effects of long-range correlations through a Bragg-Williams approximation. The behavior of the dielectric function, the energy loss function, and the relaxation time of ferroelectric-like states is then investigated as a function of the temperature of the distribution and the damping constant of the electronic states in the single quantum dots. The robustness of the trends and tendencies of our results indicate that this scheme of analysis can guide experimentalists to develop tailored quantum dots distributions for specific applications.
Huang, Y H; Chen, R S; Zhang, J R; Huang, Y S
2015-12-07
The electronic transport properties of two-dimensional (2D) niobium diselenide (NbSe2) layer materials with two-hexagonal single-crystalline structures grown by chemical vapor transport were investigated. Those NbSe2 nanostructures isolated simply using mechanical exfoliation were found to exhibit lower conductivity and semiconducting properties, compared with their bulk metallic counterparts. Benefiting from lower dark conductivity, NbSe2 nanoflakes exhibit a remarkable photoresponse under different wavelengths and intensity excitations. The photocurrent responsivity and photoconductive gain can reach 3.8 A W(-1) and 300, respectively; these values are higher than those of graphene and MoS2 monolayers and are comparable with those of GaS and GaSe nanosheets. The presence of electron trap states at the surface was proposed as an explanation for the reduced dark conductivity and enhanced photoconductivity in the 2D NbSe2 nanostructures. This work identifies another possibility for the application of a metallic layer material as an optoelectronic component in addition to an ultrathin transparent conducting material.
Protecting a Diamond Quantum Memory by Charge State Control.
Pfender, Matthias; Aslam, Nabeel; Simon, Patrick; Antonov, Denis; Thiering, Gergő; Burk, Sina; Fávaro de Oliveira, Felipe; Denisenko, Andrej; Fedder, Helmut; Meijer, Jan; Garrido, Jose A; Gali, Adam; Teraji, Tokuyuki; Isoya, Junichi; Doherty, Marcus William; Alkauskas, Audrius; Gallo, Alejandro; Grüneis, Andreas; Neumann, Philipp; Wrachtrup, Jörg
2017-10-11
In recent years, solid-state spin systems have emerged as promising candidates for quantum information processing. Prominent examples are the nitrogen-vacancy (NV) center in diamond, phosphorus dopants in silicon (Si:P), rare-earth ions in solids, and V Si -centers in silicon-carbide. The Si:P system has demonstrated that its nuclear spins can yield exceedingly long spin coherence times by eliminating the electron spin of the dopant. For NV centers, however, a proper charge state for storage of nuclear spin qubit coherence has not been identified yet. Here, we identify and characterize the positively charged NV center as an electron-spin-less and optically inactive state by utilizing the nuclear spin qubit as a probe. We control the electronic charge and spin utilizing nanometer scale gate electrodes. We achieve a lengthening of the nuclear spin coherence times by a factor of 4. Surprisingly, the new charge state allows switching of the optical response of single nodes facilitating full individual addressability.
Theory of terahertz emission from femtosecond-laser-induced microplasmas
NASA Astrophysics Data System (ADS)
Thiele, I.; Nuter, R.; Bousquet, B.; Tikhonchuk, V.; Skupin, S.; Davoine, X.; Gremillet, L.; Bergé, L.
2016-12-01
We present a theoretical investigation of terahertz (THz) generation in laser-induced gas plasmas. The work is strongly motivated by recent experimental results on microplasmas, but our general findings are not limited to such a configuration. The electrons and ions are created by tunnel ionization of neutral atoms, and the resulting plasma is heated by collisions. Electrons are driven by electromagnetic, convective, and diffusive sources and produce a macroscopic current which is responsible for THz emission. The model naturally includes both ionization current and transition-Cherenkov mechanisms for THz emission, which are usually investigated separately in the literature. The latter mechanism is shown to dominate for single-color multicycle laser pulses, where the observed THz radiation originates from longitudinal electron currents. However, we find that the often discussed oscillations at the plasma frequency do not contribute to the THz emission spectrum. In order to predict the scaling of the conversion efficiency with pulse energy and focusing conditions, we propose a simplified description that is in excellent agreement with rigorous particle-in-cell simulations.
Fullerene derivatives as electron donor for organic photovoltaic cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuang, Taojun; Wang, Xiao-Feng, E-mail: xf-wang@yz.yamagata-u.ac.jp, E-mail: ziruo@yz.yamagata-u.ac.jp; Sano, Takeshi
2013-11-11
We demonstrated the performance of unconventional, all-fullerene-based, planar heterojunction (PHJ) organic photovoltaic (OPV) cells using fullerene derivatives indene-C{sub 60} bisadduct (ICBA) and phenyl C{sub 61}-butyric acid methyl ester as the electron donors with fullerene C{sub 70} as the electron acceptor. Two different charge generation processes, including charge generation in the fullerene bulk and exciton dissociation at the donor-acceptor interface, have been found to exist in such all-fullerene-based PHJ cells and the contribution to the total photocurrent from each process is strongly dependent on the thickness of fullerene donor. The optimized 5 nm ICBA/40 nm C{sub 70} PHJ cell gives clear external quantummore » efficiency responses for the long-wavelength photons corresponding to the dissociation of strongly bound Frenkel excitons, which is hardly observed in fullerene-based single layer reference devices. This approach using fullerene as a donor material provides further possibilities for developing high performance OPV cells.« less
Enhancement of high-order harmonic generation by a two-color field: Influence of propagation effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiessl, K.; Persson, E.; Burgdoerfer, J.
2006-11-15
Recent calculations of the response of a single atom subjected to a two-color laser pulse with the higher frequency being resonant with an excitation of the target atom revealed a significant enhancement of photoionization as well as high-order harmonic generation [K. Ishikawa, Phy. Rev. Lett. 91, 043002 (2003)]. We investigate the problem in the framework a fully quantum-mechanical pulse propagation algorithm and perform calculations for rare gases in the single-active-electron approximation. The enhancement of harmonic output compared to the corresponding one-color pulse remains intact for short propagation lengths, promising the feasibility of experimental realization. We also study weak second colorsmore » resonant via a two-photon transition where significant enhancements in harmonic yields can be observed as well.« less
Liu, Sophie F; Petty, Alexander R; Sazama, Graham T; Swager, Timothy M
2015-05-26
Chemiresistive detectors for amine vapors were made from single-walled carbon nanotubes by noncovalent modification with cobalt meso-arylporphyrin complexes. We show that through changes in the oxidation state of the metal, the electron-withdrawing character of the porphyrinato ligand, and the counteranion, the magnitude of the chemiresistive response to ammonia could be improved. The devices exhibited sub-ppm sensitivity and high selectivity toward amines as well as good stability to air, moisture, and time. The application of these chemiresistors in the detection of various biogenic amines (i.e. putrescine, cadaverine) and in the monitoring of spoilage in raw meat and fish samples (chicken, pork, salmon, cod) over several days was also demonstrated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Coulomb Mediated Hybridization of Excitons in Coupled Quantum Dots.
Ardelt, P-L; Gawarecki, K; Müller, K; Waeber, A M; Bechtold, A; Oberhofer, K; Daniels, J M; Klotz, F; Bichler, M; Kuhn, T; Krenner, H J; Machnikowski, P; Finley, J J
2016-02-19
We report Coulomb mediated hybridization of excitonic states in optically active InGaAs quantum dot molecules. By probing the optical response of an individual quantum dot molecule as a function of the static electric field applied along the molecular axis, we observe unexpected avoided level crossings that do not arise from the dominant single-particle tunnel coupling. We identify a new few-particle coupling mechanism stemming from Coulomb interactions between different neutral exciton states. Such Coulomb resonances hybridize the exciton wave function over four different electron and hole single-particle orbitals. Comparisons of experimental observations with microscopic eight-band k·p calculations taking into account a realistic quantum dot geometry show good agreement and reveal that the Coulomb resonances arise from broken symmetry in the artificial semiconductor molecule.
NASA Technical Reports Server (NTRS)
Stevenson, T. R.; Balvin, M. A.; Bandler, S. R.; Denis, K. L.; Lee, S.-J.; Nagler, P. C.; Smith, S. J.
2015-01-01
We report on measurements of the detected signal pulses in a molybdenum-gold Magnetic Penetration Thermometer (MPT) in response to absorption of one or more 3 eV photons. We designed and used this MPT sensor for x-ray microcalorimetry. In this device, the diamagnetic response of a superconducting MoAu bilayer is used to sense temperature changes in response to absorbed photons, and responsivity is enhanced by a Meissner transition in which the magnetic flux penetrating the sensor changes rapidly to minimize free energy in a mixed superconducting normal state. We have previously reported on use of our MPT to study a thermal phonon energy loss to the substrate when absorbing x-rays. We now describe results of extracting heat capacity C and thermal conductance G values from pulse height and decay time of MPT pulses generated by 3 eV photons. The variation in C and G at temperatures near the Meissner transition temperature (set by an internal magnetic bias field) allow us to probe the behavior in superconducting normal mixed state of the condensation energy and the electron cooling power resulting from quasi-particle recombination and phonon emission. The information gained on electron cooling power is also relevant to the operation of other superconducting detectors, such as Microwave Kinetic Inductance Detectors.
NASA Astrophysics Data System (ADS)
Detrich, Kahlil T.; Goulbourne, Nakhiah C.
2009-03-01
The purpose of this research is to evaluate three polymer electroding techniques in developing a novel in situ sensor for an RO system using the electrical response of a thin film composite sensor. Electrical impedance spectroscopy (EIS) was used to measure the sensor response when exposed to sodium chloride solutions with concentrations from 0.1 M to 0.8 M in both single and double bath configurations. An insulated carbon grease sensor was mechanically stable while a composite Direct Assembly Process (DAP) sensor was fragile upon hydration. Scanning electron microscopy results from an impregnation-reduction technique showed gold nanoparticles were deposited most effectively when presoaked in a potassium hydroxide solution and on an uncoated membrane; surface resistances remained too high for sensor implementation. Through thickness carbon grease sensors showed a transient response to changes in concentration, and no meaningful concentration sensitivity was noted for the time scales over which EIS measurements were taken. Surface carbon grease electrodes attached to the polyamide thin film were not sensitive to concentration. The impedance spectra indicated the carbon grease sensor was unable to detect changes in concentration in double bath experiments when implemented with the polyamide surface exposed to salt solutions. DAP sensors lacked a consistent response to changes in concentration too. A reverse double bath experiment with the polysulfone layer exposed to a constant concentration exhibited a transient impedance response similar to through thickness carbon grease sensors in a single bath at constant concentration. These results suggest that the microporous polysulfone layer is responsible for sensor response to concentration.
Dual-transduction-mode sensing approach for chemical detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Liang; Swensen, James S.
2012-11-01
Smart devices such as electronic nose have been developed for application in many fields like national security, defense, environmental regulation, health care, pipeline monitoring and food analysis. Despite a large array of individual sensors, these devices still lack the ability to identify a target at a very low concentration out of a mixture of odors, limited by a single type of transduction as the sensing response to distinguish one odor from another. Here, we propose a new sensor architecture empowering each individual sensor with multi-dimensional transduction signals. The resolving power of our proposed electronic nose is thereby multiplied by amore » set of different and independent variables which synergistically will provide a unique combined fingerprint for each analyte. We demonstrate this concept using a Light Emitting Organic Field-Effect Transistor (LEOFET). Sensing response has been observed on both electrical and optical output signals from a green LEOFET upon exposure to an explosive taggant, with optical signal exhibiting much higher sensitivity. This new sensor architecture opens a field of devices for smart detection of chemical and biological targets.« less
NASA Technical Reports Server (NTRS)
Lapson, L. B.; Timothy, J. G.
1976-01-01
Detection efficiencies of channel electron multipliers (CEM) with opaque MgF2 photocathodes obtained in the extreme ultraviolet (XUV), 44 A to 990 A, are reported. A stable highly efficient response is reported for that interval, with no adverse effects on CEM performance. Efficiencies twice those of uncoated CEMs are obtained for 50 A to 350 A. The Mullard B419BL and Galileo 4510WL single-stage cone-cathode CEMs were used in the experiments. A rare-gas double ionization chamber was employed as absolute standard detector for 406 A to 990 A, and a flow Geiger counter filled with 96% argon and 4% isobutane for 44 A to 256 A. Absolute detection efficiencies are 10% higher from 67 A to 990 A when photocathodes are illuminated at an angle of incidence 45 deg. The photocathodes suffered no loss of response in storage (in vacuum or air) after an initial aging period. Effects of scattered UV radiation are greatly reduced when MgF2-coated CEMs are used in the XUV.
NASA Astrophysics Data System (ADS)
Patel, Kinjal D.; Patel, Urmila H.
2017-01-01
Sulfamonomethoxine, 4-Amino-N-(6-methoxy-4-pyrimidinyl) benzenesulfonamide (C11H12N4O3S), is investigated by single crystal X-ray diffraction technique. Pair of N-H⋯N and C-H⋯O intermolecular interactions along with π···π interaction are responsible for the stability of the molecular packing of the structure. In order to understand the nature of the interactions and their quantitative contributions towards the crystal packing, the 3D Hirshfeld surface and 2D fingerprint plot analysis are carried out. PIXEL calculations are performed to determine the lattice energies correspond to intermolecular interactions in the crystal structure. Ab initio quantum chemical calculations of sulfamonomethoxine (SMM) have been performed by B3LYP method, using 6-31G** basis set with the help of Schrodinger software. The computed geometrical parameters are in good agreement with the experimental data. The Mulliken charge distribution, calculated using B3LYP method to confirm the presence of electron acceptor and electron donor atoms, responsible for intermolecular hydrogen bond interactions hence the molecular stability.
Electron residual energy due to stochastic heating in field-ionized plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalilzadeh, Elnaz; The Plasma Physics and Fusion Research School, Tehran; Yazdanpanah, Jam, E-mail: jamal.yazdan@gmail.com
2015-11-15
The electron residual energy originated from the stochastic heating in under-dense field-ionized plasma is investigated here. Initially, the optical response of plasma is modeled by using two counter-propagating electromagnetic waves. In this case, the solution of motion equation of a single electron indicates that by including the ionization, the electron with higher residual energy compared with that without ionization could be obtained. In agreement with chaotic nature of the motion, it is found that the electron residual energy will be significantly changed by applying a minor change in the initial conditions. Extensive kinetic 1D-3V particle-in-cell simulations have been performed inmore » order to resolve full plasma reactions. In this way, two different regimes of plasma behavior are observed by varying the pulse length. The results indicate that the amplitude of scattered fields in a proper long pulse length is high enough to act as a second counter-propagating wave and trigger the stochastic electron motion. On the contrary, the analyses of intensity spectrum reveal the fact that the dominant scattering mechanism tends to Thomson rather than Raman scattering by increasing the pulse length. A covariant formalism is used to describe the plasma heating so that it enables us to measure electron temperature inside and outside of the pulse region.« less
Blastic plasmacytoid dendritic cell neoplasm (BPDCN): the cutaneous sanctuary.
Pileri, A; Delfino, C; Grandi, V; Agostinelli, C; Pileri, S A; Pimpinelli, N
2012-12-01
Blastic plasmacytoid dendritic cell neoplasm (BPDNC) is a rare tumour, which stems from plasmacytoid dendritic cells. Although the aetiology is still unclear, in the last few years various reports suggested a potential role of chromosomal aberrations in the oncogenesis. The disease is currently enclosed among "acute myeloid leukemia (AML) and related precursor neoplasms" in the last WHO classification. BPDCN has an aggressive course, however, it has been suggested that an exclusive cutaneous involvement at presentation is related to a better clinical outcome. We review the literature about BPDCN, and we present a series of 11 cases, all characterised by disease limited to the skin at presentation. Furthermore, we examined all cases of the last 10 years stored in the database of the multidisciplinary study group on cutaneous lymphomas of the University of Florence. Basing on the clinical features, patient were classified into two groups: with a single-lesion or multiple eruptive-lesions presentation. The former were treated with radiotherapy (limited field, electron beam therapy). The latter were treated with different therapeutic options, depending on age and co-morbidities. All patients with a single lesion achieved complete response. Five of 6 patients with eruptive lesions achieved a clinical response (2 complete and 3 partial response). Notably, the progression free survival was higher in the single-lesion than in the eruptive-lesion group (23 vs. 9 months). However all patients relapsed and 8 of 11 died. Although the small number of selected patients, we could speculate that the concept of "cutaneous sanctuary" is particularly true in patients with a single lesion-presentation. In these patients, especially if >70 year-old aged, radiotherapy should be encouraged as the treatment of choice.
Automated data collection in single particle electron microscopy
Tan, Yong Zi; Cheng, Anchi; Potter, Clinton S.; Carragher, Bridget
2016-01-01
Automated data collection is an integral part of modern workflows in single particle electron microscopy (EM) research. This review surveys the software packages available for automated single particle EM data collection. The degree of automation at each stage of data collection is evaluated, and the capabilities of the software packages are described. Finally, future trends in automation are discussed. PMID:26671944
Temperature dependent evolution of wrinkled single-crystal silicon ribbons on shape memory polymers.
Wang, Yu; Yu, Kai; Qi, H Jerry; Xiao, Jianliang
2017-10-25
Shape memory polymers (SMPs) can remember two or more distinct shapes, and thus can have a lot of potential applications. This paper presents combined experimental and theoretical studies on the wrinkling of single-crystal Si ribbons on SMPs and the temperature dependent evolution. Using the shape memory effect of heat responsive SMPs, this study provides a method to build wavy forms of single-crystal silicon thin films on top of SMP substrates. Silicon ribbons obtained from a Si-on-insulator (SOI) wafer are released and transferred onto the surface of programmed SMPs. Then such bilayer systems are recovered at different temperatures, yielding well-defined, wavy profiles of Si ribbons. The wavy profiles are shown to evolve with time, and the evolution behavior strongly depends on the recovery temperature. At relatively low recovery temperatures, both wrinkle wavelength and amplitude increase with time as evolution progresses. Finite element analysis (FEA) accounting for the thermomechanical behavior of SMPs is conducted to study the wrinkling of Si ribbons on SMPs, which shows good agreement with experiment. Merging of wrinkles is observed in FEA, which could explain the increase of wrinkle wavelength observed in the experiment. This study can have important implications for smart stretchable electronics, wrinkling mechanics, stimuli-responsive surface engineering, and advanced manufacturing.
Experimental demonstration of a single-spike hard-X-ray free-electron laser starting from noise
Marinelli, A.; MacArthur, J.; Emma, P.; ...
2017-10-09
In this letter, we report the experimental demonstration of single-spike hard-X-ray free-electron laser pulses starting from noise with multi-eV bandwidth. Here, this is accomplished by shaping a low-charge electron beam with a slotted emittance spoiler and by adjusting the transport optics to optimize the beam-shaping accuracy. Based on elementary free-electron laser scaling laws, we estimate the pulse duration to be less than 1 fs full-width at half-maximum.
Experimental demonstration of a single-spike hard-X-ray free-electron laser starting from noise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marinelli, A.; MacArthur, J.; Emma, P.
In this letter, we report the experimental demonstration of single-spike hard-X-ray free-electron laser pulses starting from noise with multi-eV bandwidth. Here, this is accomplished by shaping a low-charge electron beam with a slotted emittance spoiler and by adjusting the transport optics to optimize the beam-shaping accuracy. Based on elementary free-electron laser scaling laws, we estimate the pulse duration to be less than 1 fs full-width at half-maximum.
Performance optimization of detector electronics for millimeter laser ranging
NASA Technical Reports Server (NTRS)
Cova, Sergio; Lacaita, A.; Ripamonti, Giancarlo
1993-01-01
The front-end electronic circuitry plays a fundamental role in determining the performance actually obtained from ultrafast and highly sensitive photodetectors. We deal here with electronic problems met working with microchannel plate photomultipliers (MCP-PMTs) and single photon avalanche diodes (SPADs) for detecting single optical photons and measuring their arrival time with picosecond resolution. The performance of available fast circuits is critically analyzed. Criteria for selecting the most suitable electronics are derived and solutions for exploiting the detector performance are presented and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fayolle, M.; Yamaguchi, M.; Ohto, T.
Organic magnetoresistance (OMAR) can be caused by either single carrier (bipolaron) or double carriers (electron-hole)-based mechanisms. In order to consider applications for OMAR, it is important to control the mechanism present in the device. In this paper, we report the effect of traps on OMAR resulting of disorder at the interface between the organic active layer with the hole injection layer [poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate): PEDOT:PSS]. It has been found that while the single carriers OMAR is enhanced by the presence of traps, the double carriers OMAR is totally removed in a sample with a high interface trap density. The reasons formore » these results are discussed based on the impedance spectroscopy measurements. First, the mechanism (single or double carriers) responsible of the OMAR was determined with the support of the capacitance measurement. Then, the influence of traps was discussed with the Nyquist diagrams and phase angle-frequency plots of the samples. The results suggested that with a rough interface and thus high disorder, the presence of traps enhanced the bipolaron formation. Traps also acted as recombination centers for electron-hole pairs, which prevented the double carriers OMAR in devices with a rough interface. On the other hand, with a low trap density, i.e., with a smooth surface, the single carrier OMAR decreased, and double carriers OMAR appeared. The sign of the OMAR could then be controlled by simply sweeping the bias voltage. This work demonstrated that the roughness at the interface is important for controlling OMAR and its reproducibility, and that the combination of OMAR measurement and impedance spectroscopy is helpful for clarifying the processes at the interface.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinenghi, E., E-mail: edoardo.martinenghi@polimi.it; Di Sieno, L.; Contini, D.
2016-07-15
We present the design and preliminary characterization of the first detection module based on Silicon Photomultiplier (SiPM) tailored for single-photon timing applications. The aim of this work is to demonstrate, thanks to the design of a suitable module, the possibility to easily exploit SiPM in many applications as an interesting detector featuring large active area, similarly to photomultipliers tubes, but keeping the advantages of solid state detectors (high quantum efficiency, low cost, compactness, robustness, low bias voltage, and insensitiveness to magnetic field). The module integrates a cooled SiPM with a total photosensitive area of 1 mm{sup 2} together with themore » suitable avalanche signal read-out circuit, the signal conditioning, the biasing electronics, and a Peltier cooler driver for thermal stabilization. It is able to extract the single-photon timing information with resolution better than 100 ps full-width at half maximum. We verified the effective stabilization in response to external thermal perturbations, thus proving the complete insensitivity of the module to environment temperature variations, which represents a fundamental parameter to profitably use the instrument for real-field applications. We also characterized the single-photon timing resolution, the background noise due to both primary dark count generation and afterpulsing, the single-photon detection efficiency, and the instrument response function shape. The proposed module can become a reliable and cost-effective building block for time-correlated single-photon counting instruments in applications requiring high collection capability of isotropic light and detection efficiency (e.g., fluorescence decay measurements or time-domain diffuse optics systems).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pathak, S.; Li, N.; Maeder, X.
We investigated the mechanical response of physical vapor deposited Cu–TiN nanolayered composites of varying layer thicknesses from 5 nm to 200 nm. Both the Cu and TiN layers were found to consist of single phase nanometer sized grains. The grain sizes in the Cu and TiN layers, measured using transmission electron microscopy and X-ray diffraction, were found to be comparable to or smaller than their respective layer thicknesses. Indentation hardness testing revealed that the hardness of such nanolayered composites exhibits a weak dependence on the layer thickness but is more correlated to their grain size.
Quantum Control of a Spin Qubit Coupled to a Photonic Crystal Cavity
2013-01-01
response for V polarization is 70 times greater than for H. The DR for X0 shows anisotropic exchange splitting23, but the polarization anisotropy in the...rotation pulse power and is indicative of damped Rabi oscillations of the electron spin. The peaks at 3 mW and 11 mW correspond to rotation pulses with...system in a p-i-n junction. Opt. Express 17, 18651–18658 (2009). 9. Yoshie, T. et al. Vacuum Rabi splitting with a single quantum dot in a photonic
Hierarchical microstructures in CZT
NASA Astrophysics Data System (ADS)
Sundaram, S. K.; Henager, C. H.; Edwards, D. J.; Schemer-Kohrn, A. L.; Bliss, M.; Riley, B. R.; Toloczko, M. B.; Lynn, K. G.
2011-10-01
Advanced characterization tools, such as electron backscatter diffraction and transmitted IR microscopy, are being applied to study critical microstructural features and orientation relations in as-grown CZT crystals to aid in understanding the relation between structure and properties in radiation detectors. Even carefully prepared single crystals of CZT contain regions of slight misorientation, Te-particles, and dislocation networks that must be understood for more accurate models of detector response. This paper describes initial research at PNNL into the hierarchy of microstructures observed in CZT grown via the vertical gradient freeze or vertical Bridgman method at PNNL and WSU.
Field-induced reentrant superconductivity driven by quantum tricritical fluctuations in URhGe
NASA Astrophysics Data System (ADS)
Tokunaga, Y.; Aoki, D.; Mayaffre, H.; Krämer, S.; Julien, M.-H.; Berthier, C.; Horvatić, M.; Sakai, H.; Hattori, T.; Kambe, S.; Araki, S.
2018-05-01
We review our 59Co NMR study in a URhGe single crystal doped with 10% cobalt. The spin-spin relaxation time (T2) measurements have revealed a divergence of electronic spin fluctuations in the vicinity of a field-induced tricritical point (TCP) locating around 13 T. The fluctuations is developed in the same limited field region around the TCP as that where a reentrant superconductivity (RSC) is observed in URhGe. The finding strongly suggests these quantum fluctuations as the pairing glue responsible for the RSC.
Effects of Molecular Adsorption on the Electronic Structure of Single-Layer Graphene
2011-08-03
HgxCd1xTe ( MCT -A) detector at a resolution of 4 cm1. 1000 scans were averaged in about 8 min, and 2-fold zero-filling and triangle apodization were...range was∼10007500 cm1, limited on the low end by the Si transmission and on the high end by the detector response. Note that the spectrometer low-pass...reflections) and without any arbitrary vertical displacement. The dashed line shows the position of δR/R = 0. The increased noise at the high-energy end is
NASA Astrophysics Data System (ADS)
Ackerstaff, K.; Bisplinghoff, J.; Bollmann, R.; Cloth, P.; Dohrmann, F.; Diehl, O.; Dorner, G.; Drüke, V.; Engelhardt, H. J.; Eisenhardt, S.; Ernst, J.; Eversheim, P. D.; Filges, D.; Fritz, S.; Gasthuber, M.; Gebel, R.; Gross, A.; Gross-Hardt, R.; Hinterberger, F.; Jahn, R.; Lahr, U.; Langkau, R.; Lippert, G.; Mayer-Kuckuk, T.; Maschuw, R.; Mertler, G.; Metsch, B.; Mosel, F.; Paetz gen. Schieck, H.; Petry, H. R.; Prasuhn, D.; v. Przewoski, B.; Radtke, M.; Rohdjess, H.; Rosendaal, D.; von Rossen, P.; Scheid, H.; Schirm, N.; Schwandt, F.; Scobel, W.; Theis, D.; Weber, J.; Wiedmann, W.; Woller, K.; Ziegler, R.; EDDA Collaboration
1993-10-01
For the EDDA experiment at COSY, the response of the small, linear focused photomultipliers Hamamatsu R 1450 and R 1355 has been studied with fast light pulses generating yields up to 2 × 10 3 photoelectrons/cm 2 or peak currents of 24 mA. Linearity was obtained with a tapered bleeder chain at a tolerable loss of gain. The serial test of altogether 140 photomultipliers revealed the close correlation between single electron and amplitude resolution. The influence of the photoelectron statistics on this correlation is discussed.
Scanning ultrafast electron microscopy.
Yang, Ding-Shyue; Mohammed, Omar F; Zewail, Ahmed H
2010-08-24
Progress has been made in the development of four-dimensional ultrafast electron microscopy, which enables space-time imaging of structural dynamics in the condensed phase. In ultrafast electron microscopy, the electrons are accelerated, typically to 200 keV, and the microscope operates in the transmission mode. Here, we report the development of scanning ultrafast electron microscopy using a field-emission-source configuration. Scanning of pulses is made in the single-electron mode, for which the pulse contains at most one or a few electrons, thus achieving imaging without the space-charge effect between electrons, and still in ten(s) of seconds. For imaging, the secondary electrons from surface structures are detected, as demonstrated here for material surfaces and biological specimens. By recording backscattered electrons, diffraction patterns from single crystals were also obtained. Scanning pulsed-electron microscopy with the acquired spatiotemporal resolutions, and its efficient heat-dissipation feature, is now poised to provide in situ 4D imaging and with environmental capability.
Compressive sensing for single-shot two-dimensional coherent spectroscopy
NASA Astrophysics Data System (ADS)
Harel, E.; Spencer, A.; Spokoyny, B.
2017-02-01
In this work, we explore the use of compressive sensing for the rapid acquisition of two-dimensional optical spectra that encodes the electronic structure and ultrafast dynamics of condensed-phase molecular species. Specifically, we have developed a means to combine multiplexed single-element detection and single-shot and phase-resolved two-dimensional coherent spectroscopy. The method described, which we call Single Point Array Reconstruction by Spatial Encoding (SPARSE) eliminates the need for costly array detectors while speeding up acquisition by several orders of magnitude compared to scanning methods. Physical implementation of SPARSE is facilitated by combining spatiotemporal encoding of the nonlinear optical response and signal modulation by a high-speed digital micromirror device. We demonstrate the approach by investigating a well-characterized cyanine molecule and a photosynthetic pigment-protein complex. Hadamard and compressive sensing algorithms are demonstrated, with the latter achieving compression factors as high as ten. Both show good agreement with directly detected spectra. We envision a myriad of applications in nonlinear spectroscopy using SPARSE with broadband femtosecond light sources in so-far unexplored regions of the electromagnetic spectrum.
NASA Astrophysics Data System (ADS)
Florido, E. A.; Dagaas, N. A. C.
2017-05-01
This study was aimed to determine the carbon monoxide (CO) gas sensing capability of zinc oxide (ZnO) film fabricated by successive ionic layer adsorption and reaction (SILAR) on glass substrate. Films consisting of a mixture of flower-like clusters of ZnO nanorods and nanowires were observed using scanning electron microscopy (SEM). Current-voltage characterization of the samples showed an average resistivity of 13.0 Ω-m. Carbon monoxide gas was synthesized by mixing the required amount of formic acid and excess sulfuric acid to produce CO gas concentrations of 100, 200, 300, 400, and 500 parts per million (ppm) v/v with five trials for each concentration. Two sets of data were obtained. One set consisted of the voltage response of the single film sensor while the other set were obtained from the double film sensor. The voltage response for the single film sensor and the double film sensor showed an average sensitivity of 0.0038 volts per ppm and 0.0024 volts per ppm, respectively. The concentration the single film can detect with a 2V output is 526 ppm while the double film sensor can detect up to 833 ppm with a 2V output. This shows that using the double film sensor is advantageous compared to single film sensor, because of its higher concentration range due to the larger surface area for the gas to interact. Moreover, the measured average resistance for the single film sensor was 10 MΩ while for the double film sensor the average resistance was 5 MΩ.
Toward single-chirality carbon nanotube device arrays.
Vijayaraghavan, Aravind; Hennrich, Frank; Stürzl, Ninette; Engel, Michael; Ganzhorn, Marc; Oron-Carl, Matti; Marquardt, Christoph W; Dehm, Simone; Lebedkin, Sergei; Kappes, Manfred M; Krupke, Ralph
2010-05-25
The large-scale integration of devices consisting of individual single-walled carbon nanotubes (SWCNT), all of the same chirality, is a critical step toward their electronic, optoelectronic, and electromechanical application. Here, the authors realize two related goals, the first of which is the fabrication of high-density, single-chirality SWCNT device arrays by dielectrophoretic assembly from monodisperse SWCNT solution obtained by polymer-mediated sorting. Such arrays are ideal for correlating measurements using various techniques across multiple identical devices, which is the second goal. The arrays are characterized by voltage-contrast scanning electron microscopy, electron transport, photoluminescence (PL), and Raman spectroscopy and show identical signatures as expected for single-chirality SWCNTs. In the assembled nanotubes, a large D peak in Raman spectra, a large dark-exciton peak in PL spectra as well as lowered conductance and slow switching in electron transport are all shown to be correlated to each other. By comparison to control samples, we conclude that these are the result of scattering from electronic and not structural defects resulting from the polymer wrapping, similar to what has been predicted for DNA wrapping.
Measuring Conformational Dynamics of Single Biomolecules Using Nanoscale Electronic Devices
NASA Astrophysics Data System (ADS)
Akhterov, Maxim V.; Choi, Yongki; Sims, Patrick C.; Olsen, Tivoli J.; Gul, O. Tolga; Corso, Brad L.; Weiss, Gregory A.; Collins, Philip G.
2014-03-01
Molecular motion can be a rate-limiting step of enzyme catalysis, but motions are typically too quick to resolve with fluorescent single molecule techniques. Recently, we demonstrated a label-free technique that replaced fluorophores with nano-electronic circuits to monitor protein motions. The solid-state electronic technique used single-walled carbon nanotube (SWNT) transistors to monitor conformational motions of a single molecule of T4 lysozyme while processing its substrate, peptidoglycan. As lysozyme catalyzes the hydrolysis of glycosidic bonds, two protein domains undergo 8 Å hinge bending motion that generates an electronic signal in the SWNT transistor. We describe improvements to the system that have extended our temporal resolution to 2 μs . Electronic recordings at this level of detail directly resolve not just transitions between open and closed conformations but also the durations for those transition events. Statistical analysis of many events determines transition timescales characteristic of enzyme activity and shows a high degree of variability within nominally identical chemical events. The high resolution technique can be readily applied to other complex biomolecules to gain insights into their kinetic parameters and catalytic function.
Single-Photon, Double Photodetachment of Nickel Phthalocyanine Tetrasulfonic Acid 4- Anions.
Daly, Steven; Girod, Marion; Vojkovic, Marin; Giuliani, Alexandre; Antoine, Rodolphe; Nahon, Laurent; O'Hair, Richard A J; Dugourd, Philippe
2016-07-07
Single-photon, two-electron photodetachment from nickel phthalocyanine tetrasulfonic acid tetra anions, [NiPc](4-), was examined in the gas-phase using a linear ion trap coupled to the DESIRS VUV beamline of the SOLEIL Synchrotron. This system was chosen since it has a low detachment energy, known charge localization, and well-defined geometrical and electronic structures. A threshold for two-electron loss is observed at 10.2 eV, around 1 eV lower than previously observed double detachment thresholds on multiple charged protein anions. The photodetachment energy of [NiPc](4-) has been previously determined to be 3.5 eV and the photodetachment energy of [NiPc](3-•) is determined in this work to be 4.3 eV. The observed single photon double electron detachment threshold is hence 5.9 eV higher than the energy required for sequential single electron loss. Possible mechanisms are for double photodetachment are discussed. These observations pave the way toward new, exciting experiments for probing double photodetachment at relatively low energies, including correlation measurements on emitted photoelectrons.
NASA Astrophysics Data System (ADS)
Bonilla, L. L.; Carretero, M.; Segura, A.
2017-12-01
When quantized, traces of classically chaotic single-particle systems include eigenvalue statistics and scars in eigenfuntions. Since 2001, many theoretical and experimental works have argued that classically chaotic single-electron dynamics influences and controls collective electron transport. For transport in semiconductor superlattices under tilted magnetic and electric fields, these theories rely on a reduction to a one-dimensional self-consistent drift model. A two-dimensional theory based on self-consistent Boltzmann transport does not support that single-electron chaos influences collective transport. This theory agrees with existing experimental evidence of current self-oscillations, predicts spontaneous collective chaos via a period doubling scenario, and could be tested unambiguously by measuring the electric potential inside the superlattice under a tilted magnetic field.
Inequivalence of single-particle and population lifetimes in a cuprate superconductor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Shuolong; Sobota, J. A.; Leuenberger, D.
2015-06-15
We study optimally doped Bi-2212 (T c=96 K) using femtosecond time- and angle-resolved photoelectron spectroscopy. Energy-resolved population lifetimes are extracted and compared with single-particle lifetimes measured by equilibrium photoemission. The population lifetimes deviate from the single-particle lifetimes in the low excitation limit by 1–2 orders of magnitude. Fundamental considerations of electron scattering unveil that these two lifetimes are in general distinct, yet for systems with only electron-phonon scattering they should converge in the low-temperature, low-fluence limit. As a result, the qualitative disparity in our data, even in this limit, suggests that scattering channels beyond electron-phonon interactions play a significant rolemore » in the electron dynamics of cuprate superconductors.« less
NASA Astrophysics Data System (ADS)
Sun, Shanshan; Wang, Shaohua; Yu, Rong; Lei, Hechang
2017-08-01
We report the growth of heavily electron doped Li-NH3 intercalated FeSe single crystals that are free of material complexities and allow access to the intrinsic superconducting properties. Lix(NH3)yFe2Se2 single crystals show extremely large electronic anisotropy in both normal and superconducting states. They also exhibit anomalous transport properties in the normal state, which are believed to possibly be related to the anisotropy of relaxation time and/or temperature-dependent electron carrier concentration. Taking into account the great chemical flexibility of intercalants in the system, our findings provide a platform to understanding the origin of superconductivity in FeSe-related superconductors.
Bonilla, L L; Carretero, M; Segura, A
2017-12-01
When quantized, traces of classically chaotic single-particle systems include eigenvalue statistics and scars in eigenfuntions. Since 2001, many theoretical and experimental works have argued that classically chaotic single-electron dynamics influences and controls collective electron transport. For transport in semiconductor superlattices under tilted magnetic and electric fields, these theories rely on a reduction to a one-dimensional self-consistent drift model. A two-dimensional theory based on self-consistent Boltzmann transport does not support that single-electron chaos influences collective transport. This theory agrees with existing experimental evidence of current self-oscillations, predicts spontaneous collective chaos via a period doubling scenario, and could be tested unambiguously by measuring the electric potential inside the superlattice under a tilted magnetic field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Surdoval, Wayne A.; Berry, David A.; Shultz, Travis R.
A set of equations are presented for calculating atomic principal spectral lines and fine-structure energy splits for single and multi-electron atoms. Calculated results are presented and compared to the National Institute of Science and Technology database demonstrating very good accuracy. The equations do not require fitted parameters. The only experimental parameter required is the Ionization energy for the electron of interest. The equations have comparable accuracy and broader applicability than the single electron Dirac equation. Three Appendices discuss the origin of the new equations and present calculated results. New insights into the special relativistic nature of the Dirac equation andmore » its relationship to the new equations are presented.« less
Electron-helium S-wave model benchmark calculations. I. Single ionization and single excitation
NASA Astrophysics Data System (ADS)
Bartlett, Philip L.; Stelbovics, Andris T.
2010-02-01
A full four-body implementation of the propagating exterior complex scaling (PECS) method [J. Phys. B 37, L69 (2004)] is developed and applied to the electron-impact of helium in an S-wave model. Time-independent solutions to the Schrödinger equation are found numerically in coordinate space over a wide range of energies and used to evaluate total and differential cross sections for a complete set of three- and four-body processes with benchmark precision. With this model we demonstrate the suitability of the PECS method for the complete solution of the full electron-helium system. Here we detail the theoretical and computational development of the four-body PECS method and present results for three-body channels: single excitation and single ionization. Four-body cross sections are presented in the sequel to this article [Phys. Rev. A 81, 022716 (2010)]. The calculations reveal structure in the total and energy-differential single-ionization cross sections for excited-state targets that is due to interference from autoionization channels and is evident over a wide range of incident electron energies.
Reduction of nitrogen oxides (NOx) by superalkalis
NASA Astrophysics Data System (ADS)
Srivastava, Ambrish Kumar
2018-03-01
NOx are major air pollutants, having negative impact on environment and consequently, human health. We propose here the single-electron reduction of NOx (x = 1, 2) using superalkalis. We study the interaction of NOx with FLi2, OLi3 and NLi4 superalkalis using density functional and single-point CCSD(T) calculations, which lead to stable superalkali-NOx ionic complexes with negatively charged NOx. This clearly reveals that the NOx can successfully be reduced to NOx- anion due to electron transfer from superalkalis. It has been also noticed that the size of superalkalis plays a crucial in the single-electron reduction of NOx.
NASA Astrophysics Data System (ADS)
Wang, He
The few-cycle femtosecond laser pulse has proved itself to be a powerful tool for controlling the electron dynamics inside atoms and molecules. By applying such few-cycle pulses as a driving field, single isolated attosecond pulses can be produced through the high-order harmonic generation process, which provide a novel tool for capturing the real time electron motion. The first part of the thesis is devoted to the state of the art few-cycle near infrared (NIR) laser pulse development, which includes absolute phase control (carrier-envelope phase stabilization), amplitude control (power stabilization), and relative phase control (pulse compression and shaping). Then the double optical gating (DOG) method for generating single attosecond pulses and the attosecond streaking experiment for characterizing such pulses are presented. Various experimental limitations in the attosecond streaking measurement are illustrated through simulation. Finally by using the single attosecond pulses generated by DOG, an attosecond transient absorption experiment is performed to study the autoionization process of argon. When the delay between a few-cycle NIR pulse and a single attosecond XUV pulse is scanned, the Fano resonance shapes of the argon autoionizing states are modified by the NIR pulse, which shows the direct observation and control of electron-electron correlation in the temporal domain.
Fung, E-Dean; Adak, Olgun; Lovat, Giacomo; Scarabelli, Diego; Venkataraman, Latha
2017-02-08
We investigate light-induced conductance enhancement in single-molecule junctions via photon-assisted transport and hot-electron transport. Using 4,4'-bipyridine bound to Au electrodes as a prototypical single-molecule junction, we report a 20-40% enhancement in conductance under illumination with 980 nm wavelength radiation. We probe the effects of subtle changes in the transmission function on light-enhanced current and show that discrete variations in the binding geometry result in a 10% change in enhancement. Importantly, we prove theoretically that the steady-state behavior of photon-assisted transport and hot-electron transport is identical but that hot-electron transport is the dominant mechanism for optically induced conductance enhancement in single-molecule junctions when the wavelength used is absorbed by the electrodes and the hot-electron relaxation time is long. We confirm this experimentally by performing polarization-dependent conductance measurements of illuminated 4,4'-bipyridine junctions. Finally, we perform lock-in type measurements of optical current and conclude that currents due to laser-induced thermal expansion mask optical currents. This work provides a robust experimental framework for studying mechanisms of light-enhanced transport in single-molecule junctions and offers tools for tuning the performance of organic optoelectronic devices by analyzing detailed transport properties of the molecules involved.
A diagnostic for determining the quality of single-reference electron correlation methods
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Taylor, Peter R.
1989-01-01
It was recently proposed that the Euclidian norm of the t(sub 1) vector of the coupled cluster wave function (normalized by the number of electrons included in the correlation procedure) could be used to determine whether a single-reference-based electron correlation procedure is appopriate. This diagnostic, T(sub 1) is defined for use with self-consistent-field molecular orbitals and is invariant to the same orbital rotations as the coupled cluster energy. T(sub 1) is investigated for several different chemical systems which exhibit a range of multireference behavior, and is shown to be an excellent measure of the importance of non-dynamical electron correlation and is far superior to C(sub 0) from a singles and doubles configuration interaction wave function. It is further suggested that when the aim is to recover a large fraction of the dynamical electron correlation energy, a large T(sub 1) (i.e., greater than 0.02) probably indicates the need for a multireference electron correlation procedure.
A diagnostic for determining the quality of single-reference electron correlation methods
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Taylor, Peter R.
1989-01-01
It was recently proposed that the Euclidian norm of the t sub 1 vector of the coupled cluster wave function (normalized by the number of electrons included in the correlation procedure) could be used to determine whether a single-reference-based electron correlation procedure is appropriate. This diagnostic, T sub 1, is defined for use with self consistent field molecular orbitals and is invariant to the same orbital rotations as the coupled cluster energy. T sub 1 is investigated for several different chemical systems which exhibit a range of multireference behavior, and is shown to be an excellent measure of the importance of nondynamical electron correlation and is far superior to C sub 0 from a singles and doubles configuration interaction wave function. It is further suggested that when the aim is to recover a large fraction of the dynamical electron correlation energy, a large T sub 1 (i.e., greater than 0.02) probably indicates the need for a multireference electron correlation procedure.
ADMET biosensors: up-to-date issues and strategies.
Fang, Yan; Offenhaeusser, Andrease
2004-12-01
This insight review introduces the new concepts, theories, technology, instruments, frontier issues, and key strategies of ADMET (absorption, distribution, metabolism, elimination, and toxicity) biosensors, from the fermi to the quantum levels. Information about ADMET, originating from one author's invention, a patented pharmacotherapy for rescuing cardio-cerebral vascular stunning and regulating vascular endothelial growth-factor signaling at the post-genomic level, can be detected by a new generation of ADMET biosensor. This is a single-cell/single-molecule field-effect transistor (FET) hybrid system, where single molecules or single cells are assembled at the FET surface in a high density array manner via complementary metal-oxide-semiconductor (CMOS)-compatible technologies. Within a given nanometer distance, ADMET-mediated oxidation-reduction (redox) potentials, electrochemistry responses, and electron transfer processes can be simultaneously and directly probed by the gates of field-effect transistor arrays. The nanometer details of the functional coupling principles and characterization technologies of DNA single-molecule/single-cell FETs, as well as the design of lab-on-a-chip instruments, are indicated. Four frontier issues and key strategies are elucidated in detail. This can lead to innovative technology for high-throughout screening of labs-on-chips to resolve the pharmaceutical industry's current bottleneck via novel, FET-based drug discovery and single-molecule/single-cell screening methods, which can bring about a pharmaceutical industry revolution in the 21st century.
Adaptive Optics System with Deformable Composite Mirror and High Speed, Ultra-Compact Electronics
NASA Astrophysics Data System (ADS)
Chen, Peter C.; Knowles, G. J.; Shea, B. G.
2006-06-01
We report development of a novel adaptive optics system for optical astronomy. Key components are very thin Deformable Mirrors (DM) made of fiber reinforced polymer resins, subminiature PMN-PT actuators, and low power, high bandwidth electronics drive system with compact packaging and minimal wiring. By using specific formulations of fibers, resins, and laminate construction, we are able to fabricate mirror face sheets that are thin (< 2mm), have smooth surfaces and excellent optical shape. The mirrors are not astigmatic and do not develop surface irregularities when cooled. The actuators are small footprint multilayer PMN-PT ceramic devices with large stroke (2- 20 microns), high linearity, low hysteresis, low power, and flat frequency response to >2 KHz. By utilizing QorTek’s proprietary synthetic impendence power supply technology, all the power, control, and signal extraction for many hundreds to 1000s of actuators and sensors can be implemented on a single matrix controller printed circuit board co-mounted with the DM. The matrix controller, in turn requires only a single serial bus interface, thereby obviating the need for massive wiring harnesses. The technology can be scaled up to multi-meter aperture DMs with >100K actuators.
Single event effects in high-energy accelerators
NASA Astrophysics Data System (ADS)
García Alía, Rubén; Brugger, Markus; Danzeca, Salvatore; Cerutti, Francesco; de Carvalho Saraiva, Joao Pedro; Denz, Reiner; Ferrari, Alfredo; Foro, Lionel L.; Peronnard, Paul; Røed, Ketil; Secondo, Raffaello; Steckert, Jens; Thurel, Yves; Toccafondo, Iacocpo; Uznanski, Slawosz
2017-03-01
The radiation environment encountered at high-energy hadron accelerators strongly differs from the environment relevant for space applications. The mixed-field expected at modern accelerators is composed of charged and neutral hadrons (protons, pions, kaons and neutrons), photons, electrons, positrons and muons, ranging from very low (thermal) energies up to the TeV range. This complex field, which is extensively simulated by Monte Carlo codes (e.g. FLUKA) is due to beam losses in the experimental areas, distributed along the machine (e.g. collimation points) and deriving from the interaction with the residual gas inside the beam pipe. The resulting intensity, energy distribution and proportion of the different particles largely depends on the distance and angle with respect to the interaction point as well as the amount of installed shielding material. Electronics operating in the vicinity of the accelerator will therefore be subject to both cumulative damage from radiation (total ionizing dose, displacement damage) as well as single event effects which can seriously compromise the operation of the machine. This, combined with the extensive use of commercial-off-the-shelf components due to budget, performance and availability reasons, results in the need to carefully characterize the response of the devices and systems to representative radiation conditions.
Single-molecule electronics: Cooling individual vibrational modes by the tunneling current.
Lykkebo, Jacob; Romano, Giuseppe; Gagliardi, Alessio; Pecchia, Alessandro; Solomon, Gemma C
2016-03-21
Electronic devices composed of single molecules constitute the ultimate limit in the continued downscaling of electronic components. A key challenge for single-molecule electronics is to control the temperature of these junctions. Controlling heating and cooling effects in individual vibrational modes can, in principle, be utilized to increase stability of single-molecule junctions under bias, to pump energy into particular vibrational modes to perform current-induced reactions, or to increase the resolution in inelastic electron tunneling spectroscopy by controlling the life-times of phonons in a molecule by suppressing absorption and external dissipation processes. Under bias the current and the molecule exchange energy, which typically results in heating of the molecule. However, the opposite process is also possible, where energy is extracted from the molecule by the tunneling current. Designing a molecular "heat sink" where a particular vibrational mode funnels heat out of the molecule and into the leads would be very desirable. It is even possible to imagine how the vibrational energy of the other vibrational modes could be funneled into the "cooling mode," given the right molecular design. Previous efforts to understand heating and cooling mechanisms in single molecule junctions have primarily been concerned with small models, where it is unclear which molecular systems they correspond to. In this paper, our focus is on suppressing heating and obtaining current-induced cooling in certain vibrational modes. Strategies for cooling vibrational modes in single-molecule junctions are presented, together with atomistic calculations based on those strategies. Cooling and reduced heating are observed for two different cooling schemes in calculations of atomistic single-molecule junctions.
NASA Astrophysics Data System (ADS)
Kellerman, Adam; Makarevich, Roman; Spanswick, Emma; Donovan, Eric; Shprits, Yuri
2016-07-01
Energetic electrons in the 10's of keV range precipitate to the upper D- and lower E-region ionosphere, and are responsible for enhanced ionization. The same particles are important in the inner magnetosphere, as they provide a source of energy for waves, and thus relate to relativistic electron enhancements in Earth's radiation belts.In situ observations of plasma populations and waves are usually limited to a single point, which complicates temporal and spatial analysis. Also, the lifespan of satellite missions is often limited to several years which does not allow one to infer long-term climatology of particle precipitation, important for affecting ionospheric conditions at high latitudes. Multi-point remote sensing of the ionospheric plasma conditions can provide a global view of both ionospheric and magnetospheric conditions, and the coupling between magnetospheric and ionospheric phenomena can be examined on time-scales that allow comprehensive statistical analysis. In this study we utilize multi-point riometer measurements in conjunction with in situ satellite data, and physics-based modeling to investigate the spatio-temporal and energy-dependent response of riometer absorption. Quantifying this relationship may be a key to future advancements in our understanding of the complex D-region ionosphere, and may lead to enhanced specification of auroral precipitation both during individual events and over climatological time-scales.