Hwang, Young Sun; Seo, Minseok; Choi, Hee Jung; Kim, Sang Kyung; Kim, Heebal; Han, Jae Yong
2018-04-01
The chicken is a valuable model organism, especially in evolutionary and embryology research because its embryonic development occurs in the egg. However, despite its scientific importance, no transcriptome data have been generated for deciphering the early developmental stages of the chicken because of practical and technical constraints in accessing pre-oviposited embryos. Here, we determine the entire transcriptome of pre-oviposited avian embryos, including oocyte, zygote, and intrauterine embryos from Eyal-giladi and Kochav stage I (EGK.I) to EGK.X collected using a noninvasive approach for the first time. We also compare RNA-sequencing data obtained using a bulked embryo sequencing and single embryo/cell sequencing technique. The raw sequencing data were preprocessed with two genome builds, Galgal4 and Galgal5, and the expression of 17,108 and 26,102 genes was quantified in the respective builds. There were some differences between the two techniques, as well as between the two genome builds, and these were affected by the emergence of long intergenic noncoding RNA annotations. The first transcriptome datasets of pre-oviposited early chicken embryos based on bulked and single embryo sequencing techniques will serve as a valuable resource for investigating early avian embryogenesis, for comparative studies among vertebrates, and for novel gene annotation in the chicken genome.
Single-cell transcriptome of early embryos and cultured embryonic stem cells of cynomolgus monkeys
Nakamura, Tomonori; Yabuta, Yukihiro; Okamoto, Ikuhiro; Sasaki, Kotaro; Iwatani, Chizuru; Tsuchiya, Hideaki; Saitou, Mitinori
2017-01-01
In mammals, the development of pluripotency and specification of primordial germ cells (PGCs) have been studied predominantly using mice as a model organism. However, divergences among mammalian species for such processes have begun to be recognized. Between humans and mice, pre-implantation development appears relatively similar, but the manner and morphology of post-implantation development are significantly different. Nevertheless, the embryogenesis just after implantation in primates, including the specification of PGCs, has been unexplored due to the difficulties in analyzing the embryos at relevant developmental stages. Here, we present a comprehensive single-cell transcriptome dataset of pre- and early post-implantation embryo cells, PGCs and embryonic stem cells (ESCs) of cynomolgus monkeys as a model of higher primates. The identities of each transcriptome were also validated rigorously by other way such as immunofluorescent analysis. The information reported here will serve as a foundation for our understanding of a wide range of processes in the developmental biology of primates, including humans. PMID:28649393
Transcriptome analysis of PCOS arrested 2-cell embryos.
Lu, Cuiling; Chi, Hongbin; Wang, Yapeng; Feng, Xue; Wang, Lina; Huang, Shuo; Yan, Liying; Lin, Shengli; Liu, Ping; Qiao, Jie
2018-06-18
In an attempt to explore the early developmental arrest in embryos from polycystic ovarian syndrome (PCOS) patients, we sequenced the transcriptome profiles of PCOS arrested 2-cell embryos, non-PCOS arrested 2-cell embryos and non-arrested 2-cell embryos using single-cell RNA-Seq technique. Differential expression analysis was performed using the DEGSeq R package. Gene Ontology (GO) enrichment was analyzed using the GOseq R package. Data revealed 62 differentially expressed genes between non-PCOS arrested and PCOS arrested embryos and 2217 differentially expressed genes between PCOS arrested and non-arrested 2-cell embryos. A total of 49 differently expressed genes (DEGs) were annotated with GO terms in the up-regulated genes between PCOS arrested and non-PCOS arrested embryos after GO enrichment. A total of 29 DEGs were annotated with GO terms in the down-regulated genes between PCOS arrested and non-arrested 2-cell embryos after GO enrichment. These data can provide a reference for screening specific genes involved in the arrest of PCOS embryos.
A reduced transcriptome approach to assess environmental toxicants using zebrafish embryo tests
This paper reports on the pilot testing of a new bioassay platform that monitors expression of 1600 genes in zebrafish embryos exposed to either single chemicals or complex water samples. The method provides a more cost effective, high throughput means to broadly evaluate the pot...
Isern, Joan; He, Zhiyong; Fraser, Stuart T.; Nowotschin, Sonja; Ferrer-Vaquer, Anna; Moore, Rebecca; Hadjantonakis, Anna-Katerina; Schulz, Vincent; Tuck, David; Gallagher, Patrick G.
2011-01-01
Primitive erythroid (EryP) progenitors are the first cell type specified from the mesoderm late in gastrulation. We used a transgenic reporter to image and purify the earliest blood progenitors and their descendants from developing mouse embryos. EryP progenitors exhibited remarkable proliferative capacity in the yolk sac immediately before the onset of circulation, when these cells comprise nearly half of all cells of the embryo. Global expression profiles generated at 24-hour intervals from embryonic day 7.5 through 2.5 revealed 2 abrupt changes in transcript diversity that coincided with the entry of EryPs into the circulation and with their late maturation and enucleation, respectively. These changes were paralleled by the expression of critical regulatory factors. Experiments designed to test predictions from these data demonstrated that the Wnt-signaling pathway is active in EryP progenitors, which display an aerobic glycolytic profile and the numbers of which are regulated by transforming growth factor-β1 and hypoxia. This is the first transcriptome assembled for a single hematopoietic lineage of the embryo over the course of its differentiation. PMID:21263157
Wang, Xinyi; Liu, Denghui; He, Dajian; Suo, Shengbao; Xia, Xian; He, Xiechao; Han, Jing-Dong J.; Zheng, Ping
2017-01-01
Preimplantation embryogenesis encompasses several critical events including genome reprogramming, zygotic genome activation (ZGA), and cell-fate commitment. The molecular basis of these processes remains obscure in primates in which there is a high rate of embryo wastage. Thus, understanding the factors involved in genome reprogramming and ZGA might help reproductive success during this susceptible period of early development and generate induced pluripotent stem cells with greater efficiency. Moreover, explaining the molecular basis responsible for embryo wastage in primates will greatly expand our knowledge of species evolution. By using RNA-seq in single and pooled oocytes and embryos, we defined the transcriptome throughout preimplantation development in rhesus monkey. In comparison to archival human and mouse data, we found that the transcriptome dynamics of monkey oocytes and embryos were very similar to those of human but very different from those of mouse. We identified several classes of maternal and zygotic genes, whose expression peaks were highly correlated with the time frames of genome reprogramming, ZGA, and cell-fate commitment, respectively. Importantly, comparison of the ZGA-related network modules among the three species revealed less robust surveillance of genomic instability in primate oocytes and embryos than in rodents, particularly in the pathways of DNA damage signaling and homology-directed DNA double-strand break repair. This study highlights the utility of monkey models to better understand the molecular basis for genome reprogramming, ZGA, and genomic stability surveillance in human early embryogenesis and may provide insights for improved homologous recombination-mediated gene editing in monkey. PMID:28223401
Liu, Na; Liu, Lin; Pan, Xinghua
2014-07-01
Cellular heterogeneity within a cell population is a common phenomenon in multicellular organisms, tissues, cultured cells, and even FACS-sorted subpopulations. Important information may be masked if the cells are studied as a mass. Transcriptome profiling is a parameter that has been intensively studied, and relatively easier to address than protein composition. To understand the basis and importance of heterogeneity and stochastic aspects of the cell function and its mechanisms, it is essential to examine transcriptomes of a panel of single cells. High-throughput technologies, starting from microarrays and now RNA-seq, provide a full view of the expression of transcriptomes but are limited by the amount of RNA for analysis. Recently, several new approaches for amplification and sequencing the transcriptome of single cells or a limited low number of cells have been developed and applied. In this review, we summarize these major strategies, such as PCR-based methods, IVT-based methods, phi29-DNA polymerase-based methods, and several other methods, including their principles, characteristics, advantages, and limitations, with representative applications in cancer stem cells, early development, and embryonic stem cells. The prospects for development of future technology and application of transcriptome analysis in a single cell are also discussed.
Spatial reconstruction of single-cell gene expression data.
Satija, Rahul; Farrell, Jeffrey A; Gennert, David; Schier, Alexander F; Regev, Aviv
2015-05-01
Spatial localization is a key determinant of cellular fate and behavior, but methods for spatially resolved, transcriptome-wide gene expression profiling across complex tissues are lacking. RNA staining methods assay only a small number of transcripts, whereas single-cell RNA-seq, which measures global gene expression, separates cells from their native spatial context. Here we present Seurat, a computational strategy to infer cellular localization by integrating single-cell RNA-seq data with in situ RNA patterns. We applied Seurat to spatially map 851 single cells from dissociated zebrafish (Danio rerio) embryos and generated a transcriptome-wide map of spatial patterning. We confirmed Seurat's accuracy using several experimental approaches, then used the strategy to identify a set of archetypal expression patterns and spatial markers. Seurat correctly localizes rare subpopulations, accurately mapping both spatially restricted and scattered groups. Seurat will be applicable to mapping cellular localization within complex patterned tissues in diverse systems.
Schiller, Viktoria; Wichmann, Arne; Kriehuber, Ralf; Schäfers, Christoph; Fischer, Rainer; Fenske, Martina
2013-12-01
Exposure to environmental chemicals known as endocrine disruptors (EDs) is in many cases associated with an unpredictable hazard for wildlife and human health. The identification of endocrine disruptive properties of chemicals certain to enter the aquatic environment relies on toxicity tests with fish, assessing adverse effects on reproduction and sexual development. The demand for quick, reliable ED assays favored the use of fish embryos as alternative test organisms. We investigated the application of a transcriptomics-based assay for estrogenic and anti-androgenic chemicals with zebrafish embryos. Two reference compounds, 17α-ethinylestradiol and flutamide, were tested to evaluate the effects on development and the transcriptome after 48h-exposures. Comparison of the transcriptome response with other estrogenic and anti-androgenic compounds (genistein, bisphenol A, methylparaben, linuron, prochloraz, propanil) showed commonalities and differences in regulated pathways, enabling us to classify the estrogenic and anti-androgenic potencies. This demonstrates that different mechanism of ED can be assessed already in fish embryos. Copyright © 2013 Elsevier Inc. All rights reserved.
Sonnack, Laura; Klawonn, Thorsten; Kriehuber, Ralf; Hollert, Henner; Schäfers, Christoph; Fenske, Martina
2018-03-01
Metal toxicity is a global environmental challenge. Fish are particularly prone to metal exposure, which can be lethal or cause sublethal physiological impairments. The objective of this study was to investigate how adverse effects of chronic exposure to non-toxic levels of essential and non-essential metals in early life stage zebrafish may be explained by changes in the transcriptome. We therefore studied the effects of three different metals at low concentrations in zebrafish embryos by transcriptomics analysis. The study design compared exposure effects caused by different metals at different developmental stages (pre-hatch and post-hatch). Wild-type embryos were exposed to solutions of low concentrations of copper (CuSO 4 ), cadmium (CdCl 2 ) and cobalt (CoSO 4 ) until 96h post-fertilization (hpf) and microarray experiments were carried out to determine transcriptome profiles at 48 and 96hpf. We found that the toxic metal cadmium affected the expression of more genes at 96hpf than 48hpf. The opposite effect was observed for the essential metals cobalt and copper, which also showed enrichment of different GO terms. Genes involved in neuromast and motor neuron development were significantly enriched, agreeing with our previous results showing motor neuron and neuromast damage in the embryos. Our data provide evidence that the response of the transcriptome of fish embryos to metal exposure differs for essential and non-essential metals. Copyright © 2017 Elsevier Inc. All rights reserved.
Shi, Junchao; Chen, Qi; Li, Xin; Zheng, Xiudeng; Zhang, Ying; Qiao, Jie; Tang, Fuchou; Tao, Yi; Zhou, Qi; Duan, Enkui
2015-10-15
During mammalian pre-implantation embryo development, when the first asymmetry emerges and how it develops to direct distinct cell fates remain longstanding questions. Here, by analyzing single-blastomere transcriptome data from mouse and human pre-implantation embryos, we revealed that the initial blastomere-to-blastomere biases emerge as early as the first embryonic cleavage division, following a binomial distribution pattern. The subsequent zygotic transcriptional activation further elevated overall blastomere-to-blastomere biases during the two- to 16-cell embryo stages. The trends of transcriptional asymmetry fell into two distinct patterns: for some genes, the extent of asymmetry was minimized between blastomeres (monostable pattern), whereas other genes, including those known to be lineage specifiers, showed ever-increasing asymmetry between blastomeres (bistable pattern), supposedly controlled by negative or positive feedbacks. Moreover, our analysis supports a scenario in which opposing lineage specifiers within an early blastomere constantly compete with each other based on their relative ratio, forming an inclined 'lineage strength' that pushes the blastomere onto a predisposed, yet flexible, lineage track before morphological distinction. © 2015. Published by The Company of Biologists Ltd.
Plouhinec, Jean-Louis; Medina-Ruiz, Sofía; Borday, Caroline; Bernard, Elsa; Vert, Jean-Philippe; Eisen, Michael B; Harland, Richard M; Monsoro-Burq, Anne H
2017-10-01
During vertebrate neurulation, the embryonic ectoderm is patterned into lineage progenitors for neural plate, neural crest, placodes and epidermis. Here, we use Xenopus laevis embryos to analyze the spatial and temporal transcriptome of distinct ectodermal domains in the course of neurulation, during the establishment of cell lineages. In order to define the transcriptome of small groups of cells from a single germ layer and to retain spatial information, dorsal and ventral ectoderm was subdivided along the anterior-posterior and medial-lateral axes by microdissections. Principal component analysis on the transcriptomes of these ectoderm fragments primarily identifies embryonic axes and temporal dynamics. This provides a genetic code to define positional information of any ectoderm sample along the anterior-posterior and dorsal-ventral axes directly from its transcriptome. In parallel, we use nonnegative matrix factorization to predict enhanced gene expression maps onto early and mid-neurula embryos, and specific signatures for each ectoderm area. The clustering of spatial and temporal datasets allowed detection of multiple biologically relevant groups (e.g., Wnt signaling, neural crest development, sensory placode specification, ciliogenesis, germ layer specification). We provide an interactive network interface, EctoMap, for exploring synexpression relationships among genes expressed in the neurula, and suggest several strategies to use this comprehensive dataset to address questions in developmental biology as well as stem cell or cancer research.
Borday, Caroline; Bernard, Elsa; Vert, Jean-Philippe; Eisen, Michael B.; Harland, Richard M.
2017-01-01
During vertebrate neurulation, the embryonic ectoderm is patterned into lineage progenitors for neural plate, neural crest, placodes and epidermis. Here, we use Xenopus laevis embryos to analyze the spatial and temporal transcriptome of distinct ectodermal domains in the course of neurulation, during the establishment of cell lineages. In order to define the transcriptome of small groups of cells from a single germ layer and to retain spatial information, dorsal and ventral ectoderm was subdivided along the anterior-posterior and medial-lateral axes by microdissections. Principal component analysis on the transcriptomes of these ectoderm fragments primarily identifies embryonic axes and temporal dynamics. This provides a genetic code to define positional information of any ectoderm sample along the anterior-posterior and dorsal-ventral axes directly from its transcriptome. In parallel, we use nonnegative matrix factorization to predict enhanced gene expression maps onto early and mid-neurula embryos, and specific signatures for each ectoderm area. The clustering of spatial and temporal datasets allowed detection of multiple biologically relevant groups (e.g., Wnt signaling, neural crest development, sensory placode specification, ciliogenesis, germ layer specification). We provide an interactive network interface, EctoMap, for exploring synexpression relationships among genes expressed in the neurula, and suggest several strategies to use this comprehensive dataset to address questions in developmental biology as well as stem cell or cancer research. PMID:29049289
Gao, Shuai; Yan, Liying; Wang, Rui; Li, Jingyun; Yong, Jun; Zhou, Xin; Wei, Yuan; Wu, Xinglong; Wang, Xiaoye; Fan, Xiaoying; Yan, Jie; Zhi, Xu; Gao, Yun; Guo, Hongshan; Jin, Xiao; Wang, Wendong; Mao, Yunuo; Wang, Fengchao; Wen, Lu; Fu, Wei; Ge, Hao; Qiao, Jie; Tang, Fuchou
2018-06-01
The development of the digestive tract is critical for proper food digestion and nutrient absorption. Here, we analyse the main organs of the digestive tract, including the oesophagus, stomach, small intestine and large intestine, from human embryos between 6 and 25 weeks of gestation as well as the large intestine from adults using single-cell RNA-seq analyses. In total, 5,227 individual cells are analysed and 40 cell types clearly identified. Their crucial biological features, including developmental processes, signalling pathways, cell cycle, nutrient digestion and absorption metabolism, and transcription factor networks, are systematically revealed. Moreover, the differentiation and maturation processes of the large intestine are thoroughly investigated by comparing the corresponding transcriptome profiles between embryonic and adult stages. Our work offers a rich resource for investigating the gene regulation networks of the human fetal digestive tract and adult large intestine at single-cell resolution.
RNA-Seq analysis to capture the transcriptome landscape of a single cell
Tang, Fuchou; Barbacioru, Catalin; Nordman, Ellen; Xu, Nanlan; Bashkirov, Vladimir I; Lao, Kaiqin; Surani, M. Azim
2013-01-01
We describe here a protocol for digital transcriptome analysis in a single mouse blastomere using a deep sequencing approach. An individual blastomere was first isolated and put into lysate buffer by mouth pipette. Reverse transcription was then performed directly on the whole cell lysate. After this, the free primers were removed by Exonuclease I and a poly(A) tail was added to the 3′ end of the first-strand cDNA by Terminal Deoxynucleotidyl Transferase. Then the single cell cDNAs were amplified by 20 plus 9 cycles of PCR. Then 100-200 ng of these amplified cDNAs were used to construct a sequencing library. The sequencing library can be used for deep sequencing using the SOLiD system. Compared with the cDNA microarray technique, our assay can capture up to 75% more genes expressed in early embryos. The protocol can generate deep sequencing libraries within 6 days for 16 single cell samples. PMID:20203668
Salilew-Wondim, Dessie; Tesfaye, Dawit; Hoelker, Michael; Schellander, Karl
2014-09-01
After its formation, the mammalian zygote undergoes a series of morphological, physiological and biochemical alterations prior to undergoing cell differentiation. The zygote is then transformed into a complex multicellular organism in a defined time window which may differ between species. These orderly embryonic developmental events are tightly regulated by temporal and spatial activation and/or deactivation of genes and gene products. This phenomenon may in turn be dependent on the intrinsic characteristics of the embryo itself, the physiological and biochemical composition of the maternal environment or by in vitro culture condition. In fact, when embryos are subjected to suboptimal culture condition, some of the embryos may escape the environmental stress by activating certain transcripts and some others which are unable to activate anti-stress agents may die or exhibit abnormal development. This phenomenon may partly depend on transcripts and proteins stored during oogenesis. Indeed after embryonic genome activation, the embryo destiny is governed by its own transcripts and protein synthesized over time. Therefore, this review begins by highlighting the type and quality of transcripts accumulated or degraded during oogenesis and its impact on the embryo survival. Thereafter, emphasis is given to the transcriptome response of preimplantation embryos to suboptimal culture conditions. In addition, the long term effect of preimplantation culture environment on the transcriptome response embryos/fetus during peri and post implantation has been addressed. Finally, a brief summary of the epigenetic control of culture induced genetic variation of the embryos has been highlighted. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhang, Fengjiao; Wang, Zhiquan; Dong, Wen; Sun, Chunqing; Wang, Haibin; Song, Aiping; He, Lizhong; Fang, Weimin; Chen, Fadi; Teng, Nianjun
2014-10-07
Embryo abortion is the main cause of failure in chrysanthemum cross breeding, and the genes and proteins associated with embryo abortion are poorly understood. Here, we applied RNA sequencing and isobaric tags for relative and absolute quantitation (iTRAQ) to analyse transcriptomic and proteomic profiles of normal and abortive embryos. More than 68,000 annotated unigenes and 700 proteins were obtained from normal and abortive embryos. Functional analysis showed that 140 differentially expressed genes (DEGs) and 41 differentially expressed proteins (DEPs) were involved in embryo abortion. Most DEGs and DEPs associated with cell death, protein degradation, reactive oxygen species scavenging, and stress-response transcriptional factors were significantly up-regulated in abortive embryos relative to normal embryos. In contrast, most genes and proteins related to cell division and expansion, the cytoskeleton, protein synthesis and energy metabolism were significantly down-regulated in abortive embryos. Furthermore, abortive embryos had the highest activity of three executioner caspase-like enzymes. These results indicate that embryo abortion may be related to programmed cell death and the senescence- or death-associated genes or proteins contribute to embryo abortion. This adds to our understanding of embryo abortion and will aid in the cross breeding of chrysanthemum and other crops in the future.
Melicher, Dacotah; Torson, Alex S; Dworkin, Ian; Bowsher, Julia H
2014-03-12
The Sepsidae family of flies is a model for investigating how sexual selection shapes courtship and sexual dimorphism in a comparative framework. However, like many non-model systems, there are few molecular resources available. Large-scale sequencing and assembly have not been performed in any sepsid, and the lack of a closely related genome makes investigation of gene expression challenging. Our goal was to develop an automated pipeline for de novo transcriptome assembly, and to use that pipeline to assemble and analyze the transcriptome of the sepsid Themira biloba. Our bioinformatics pipeline uses cloud computing services to assemble and analyze the transcriptome with off-site data management, processing, and backup. It uses a multiple k-mer length approach combined with a second meta-assembly to extend transcripts and recover more bases of transcript sequences than standard single k-mer assembly. We used 454 sequencing to generate 1.48 million reads from cDNA generated from embryo, larva, and pupae of T. biloba and assembled a transcriptome consisting of 24,495 contigs. Annotation identified 16,705 transcripts, including those involved in embryogenesis and limb patterning. We assembled transcriptomes from an additional three non-model organisms to demonstrate that our pipeline assembled a higher-quality transcriptome than single k-mer approaches across multiple species. The pipeline we have developed for assembly and analysis increases contig length, recovers unique transcripts, and assembles more base pairs than other methods through the use of a meta-assembly. The T. biloba transcriptome is a critical resource for performing large-scale RNA-Seq investigations of gene expression patterns, and is the first transcriptome sequenced in this Dipteran family.
Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq.
Chen, Jun; Suo, Shengbao; Tam, Patrick Pl; Han, Jing-Dong J; Peng, Guangdun; Jing, Naihe
2017-03-01
Conventional gene expression studies analyze multiple cells simultaneously or single cells, for which the exact in vivo or in situ position is unknown. Although cellular heterogeneity can be discerned when analyzing single cells, any spatially defined attributes that underpin the heterogeneous nature of the cells cannot be identified. Here, we describe how to use Geo-seq, a method that combines laser capture microdissection (LCM) and single-cell RNA-seq technology. The combination of these two methods enables the elucidation of cellular heterogeneity and spatial variance simultaneously. The Geo-seq protocol allows the profiling of transcriptome information from only a small number cells and retains their native spatial information. This protocol has wide potential applications to address biological and pathological questions of cellular properties such as prospective cell fates, biological function and the gene regulatory network. Geo-seq has been applied to investigate the spatial transcriptome of mouse early embryo, mouse brain, and pathological liver and sperm tissues. The entire protocol from tissue collection and microdissection to sequencing requires ∼5 d, Data analysis takes another 1 or 2 weeks, depending on the amount of data and the speed of the processor.
Chapman, Robert W; Reading, Benjamin J; Sullivan, Craig V
2014-01-01
Inherited gene transcripts deposited in oocytes direct early embryonic development in all vertebrates, but transcript profiles indicative of embryo developmental competence have not previously been identified. We employed artificial intelligence to model profiles of maternal ovary gene expression and their relationship to egg quality, evaluated as production of viable mid-blastula stage embryos, in the striped bass (Morone saxatilis), a farmed species with serious egg quality problems. In models developed using artificial neural networks (ANNs) and supervised machine learning, collective changes in the expression of a limited suite of genes (233) representing <2% of the queried ovary transcriptome explained >90% of the eventual variance in embryo survival. Egg quality related to minor changes in gene expression (<0.2-fold), with most individual transcripts making a small contribution (<1%) to the overall prediction of egg quality. These findings indicate that the predictive power of the transcriptome as regards egg quality resides not in levels of individual genes, but rather in the collective, coordinated expression of a suite of transcripts constituting a transcriptomic "fingerprint". Correlation analyses of the corresponding candidate genes indicated that dysfunction of the ubiquitin-26S proteasome, COP9 signalosome, and subsequent control of the cell cycle engenders embryonic developmental incompetence. The affected gene networks are centrally involved in regulation of early development in all vertebrates, including humans. By assessing collective levels of the relevant ovarian transcripts via ANNs we were able, for the first time in any vertebrate, to accurately predict the subsequent embryo developmental potential of eggs from individual females. Our results show that the transcriptomic fingerprint evidencing developmental dysfunction is highly predictive of, and therefore likely to regulate, egg quality, a biologically complex trait crucial to reproductive fitness.
2014-01-01
Inherited gene transcripts deposited in oocytes direct early embryonic development in all vertebrates, but transcript profiles indicative of embryo developmental competence have not previously been identified. We employed artificial intelligence to model profiles of maternal ovary gene expression and their relationship to egg quality, evaluated as production of viable mid-blastula stage embryos, in the striped bass (Morone saxatilis), a farmed species with serious egg quality problems. In models developed using artificial neural networks (ANNs) and supervised machine learning, collective changes in the expression of a limited suite of genes (233) representing <2% of the queried ovary transcriptome explained >90% of the eventual variance in embryo survival. Egg quality related to minor changes in gene expression (<0.2-fold), with most individual transcripts making a small contribution (<1%) to the overall prediction of egg quality. These findings indicate that the predictive power of the transcriptome as regards egg quality resides not in levels of individual genes, but rather in the collective, coordinated expression of a suite of transcripts constituting a transcriptomic “fingerprint”. Correlation analyses of the corresponding candidate genes indicated that dysfunction of the ubiquitin-26S proteasome, COP9 signalosome, and subsequent control of the cell cycle engenders embryonic developmental incompetence. The affected gene networks are centrally involved in regulation of early development in all vertebrates, including humans. By assessing collective levels of the relevant ovarian transcripts via ANNs we were able, for the first time in any vertebrate, to accurately predict the subsequent embryo developmental potential of eggs from individual females. Our results show that the transcriptomic fingerprint evidencing developmental dysfunction is highly predictive of, and therefore likely to regulate, egg quality, a biologically complex trait crucial to reproductive fitness. PMID:24820964
Resolving early mesoderm diversification through single-cell expression profiling.
Scialdone, Antonio; Tanaka, Yosuke; Jawaid, Wajid; Moignard, Victoria; Wilson, Nicola K; Macaulay, Iain C; Marioni, John C; Göttgens, Berthold
2016-07-14
In mammals, specification of the three major germ layers occurs during gastrulation, when cells ingressing through the primitive streak differentiate into the precursor cells of major organ systems. However, the molecular mechanisms underlying this process remain unclear, as numbers of gastrulating cells are very limited. In the mouse embryo at embryonic day 6.5, cells located at the junction between the extra-embryonic region and the epiblast on the posterior side of the embryo undergo an epithelial-to-mesenchymal transition and ingress through the primitive streak. Subsequently, cells migrate, either surrounding the prospective ectoderm contributing to the embryo proper, or into the extra-embryonic region to form the yolk sac, umbilical cord and placenta. Fate mapping has shown that mature tissues such as blood and heart originate from specific regions of the pre-gastrula epiblast, but the plasticity of cells within the embryo and the function of key cell-type-specific transcription factors remain unclear. Here we analyse 1,205 cells from the epiblast and nascent Flk1(+) mesoderm of gastrulating mouse embryos using single-cell RNA sequencing, representing the first transcriptome-wide in vivo view of early mesoderm formation during mammalian gastrulation. Additionally, using knockout mice, we study the function of Tal1, a key haematopoietic transcription factor, and demonstrate, contrary to previous studies performed using retrospective assays, that Tal1 knockout does not immediately bias precursor cells towards a cardiac fate.
Transcriptional profiles of bovine in vivo pre-implantation development.
Jiang, Zongliang; Sun, Jiangwen; Dong, Hong; Luo, Oscar; Zheng, Xinbao; Obergfell, Craig; Tang, Yong; Bi, Jinbo; O'Neill, Rachel; Ruan, Yijun; Chen, Jingbo; Tian, Xiuchun Cindy
2014-09-04
During mammalian pre-implantation embryonic development dramatic and orchestrated changes occur in gene transcription. The identification of the complete changes has not been possible until the development of the Next Generation Sequencing Technology. Here we report comprehensive transcriptome dynamics of single matured bovine oocytes and pre-implantation embryos developed in vivo. Surprisingly, more than half of the estimated 22,000 bovine genes, 11,488 to 12,729 involved in more than 100 pathways, is expressed in oocytes and early embryos. Despite the similarity in the total numbers of genes expressed across stages, the nature of the expressed genes is dramatically different. A total of 2,845 genes were differentially expressed among different stages, of which the largest change was observed between the 4- and 8-cell stages, demonstrating that the bovine embryonic genome is activated at this transition. Additionally, 774 genes were identified as only expressed/highly enriched in particular stages of development, suggesting their stage-specific roles in embryogenesis. Using weighted gene co-expression network analysis, we found 12 stage-specific modules of co-expressed genes that can be used to represent the corresponding stage of development. Furthermore, we identified conserved key members (or hub genes) of the bovine expressed gene networks. Their vast association with other embryonic genes suggests that they may have important regulatory roles in embryo development; yet, the majority of the hub genes are relatively unknown/under-studied in embryos. We also conducted the first comparison of embryonic expression profiles across three mammalian species, human, mouse and bovine, for which RNA-seq data are available. We found that the three species share more maternally deposited genes than embryonic genome activated genes. More importantly, there are more similarities in embryonic transcriptomes between bovine and humans than between humans and mice, demonstrating that bovine embryos are better models for human embryonic development. This study provides a comprehensive examination of gene activities in bovine embryos and identified little-known potential master regulators of pre-implantation development.
Scheider, Jessica; Afonso-Grunz, Fabian; Jessl, Luzie; Hoffmeier, Klaus; Winter, Peter; Oehlmann, Jörg
2018-03-01
Morphological malformations induced by tributyltin (TBT) exposure during embryonic development have already been characterized in various taxonomic groups, but, nonetheless, the molecular processes underlying these changes remain obscure. The present study provides the first genome-wide screening for differentially expressed genes that are linked to morphological alterations of gonadal tissue from chicken embryos after exposure to TBT. We applied a single injection of TBT (between 0.5 and 30 pg as Sn/g egg) into incubated fertile eggs to simulate maternal transfer of the endocrine disruptive compound. Methyltestosterone (MT) served as a positive control (30 pg/g egg). After 19 days of incubation, structural features of the gonads as well as genome-wide gene expression profiles were assessed simultaneously. TBT induced significant morphological and histological malformations of gonadal tissue from female embryos that show a virilization of the ovaries. This phenotypical virilization was mirrored by altered expression profiles of sex-dependent genes. Among these are several transcription and growth factors (e.g. FGF12, CTCF, NFIB), whose altered expression might serve as a set of markers for early identification of endocrine active chemicals that affect embryonic development by transcriptome profiling without the need of elaborate histological analyses. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Qiu, Jia-jun; Ren, Zhao-rui; Yan, Jing-bin
2016-01-01
Epigenetics regulations have an important role in fertilization and proper embryonic development, and several human diseases are associated with epigenetic modification disorders, such as Rett syndrome, Beckwith-Wiedemann syndrome and Angelman syndrome. However, the dynamics and functions of long non-coding RNAs (lncRNAs), one type of epigenetic regulators, in human pre-implantation development have not yet been demonstrated. In this study, a comprehensive analysis of human and mouse early-stage embryonic lncRNAs was performed based on public single-cell RNA sequencing data. Expression profile analysis revealed that lncRNAs are expressed in a developmental stage–specific manner during human early-stage embryonic development, whereas a more temporal-specific expression pattern was identified in mouse embryos. Weighted gene co-expression network analysis suggested that lncRNAs involved in human early-stage embryonic development are associated with several important functions and processes, such as oocyte maturation, zygotic genome activation and mitochondrial functions. We also found that the network of lncRNAs involved in zygotic genome activation was highly preservative between human and mouse embryos, whereas in other stages no strong correlation between human and mouse embryo was observed. This study provides insight into the molecular mechanism underlying lncRNA involvement in human pre-implantation embryonic development. PMID:27542205
Schiller, Viktoria; Wichmann, Arne; Kriehuber, Ralf; Muth-Köhne, Elke; Giesy, John P; Hecker, Markus; Fenske, Martina
2013-01-01
Assessment of endocrine disruption currently relies on testing strategies involving adult vertebrates. In order to minimize the use of animal tests according to the 3Rs principle of replacement, reduction and refinement, we propose a transcriptomics and fish embryo based approach as an alternative to identify and analyze an estrogenic activity of environmental chemicals. For this purpose, the suitability of 48 h and 7 days post-fertilization zebrafish and medaka embryos to test for estrogenic disruption was evaluated. The embryos were exposed to the phytoestrogen genistein and subsequently analyzed by microarrays and quantitative real-time PCR. The functional analysis showed that the genes affected related to multiple metabolic and signaling pathways in the early fish embryo, which reflect the known components of genistein's mode of actions, like apoptosis, estrogenic response, hox gene expression and steroid hormone synthesis. Moreover, the transcriptomic data also suggested a thyroidal mode of action and disruption of the nervous system development. The parallel testing of two fish species provided complementary data on the effects of genistein at gene expression level and facilitated the separation of common from species-dependent effects. Overall, the study demonstrated that combining fish embryo testing with transcriptomics can deliver abundant information about the mechanistic effects of endocrine disrupting chemicals, rendering this strategy a promising alternative approach to test for endocrine disruption in a whole organism in-vitro scale system. Copyright © 2012 Elsevier Inc. All rights reserved.
Debowski, Katharina; Drummer, Charis; Lentes, Jana; Cors, Maren; Dressel, Ralf; Lingner, Thomas; Salinas-Riester, Gabriela; Fuchs, Sigrid; Sasaki, Erika; Behr, Rüdiger
2016-01-01
Embryonic stem cells (ESCs) are useful for the study of embryonic development. However, since research on naturally conceived human embryos is limited, non-human primate (NHP) embryos and NHP ESCs represent an excellent alternative to the corresponding human entities. Though, ESC lines derived from naturally conceived NHP embryos are still very rare. Here, we report the generation and characterization of four novel ESC lines derived from natural preimplantation embryos of the common marmoset monkey (Callithrix jacchus). For the first time we document derivation of NHP ESCs derived from morula stages. We show that quantitative chromosome-wise transcriptome analyses precisely reflect trisomies present in both morula-derived ESC lines. We also demonstrate that the female ESC lines exhibit different states of X-inactivation which is impressively reflected by the abundance of the lncRNA X inactive-specific transcript (XIST). The novel marmoset ESC lines will promote basic primate embryo and ESC studies as well as preclinical testing of ESC-based regenerative approaches in NHP. PMID:27385131
Debowski, Katharina; Drummer, Charis; Lentes, Jana; Cors, Maren; Dressel, Ralf; Lingner, Thomas; Salinas-Riester, Gabriela; Fuchs, Sigrid; Sasaki, Erika; Behr, Rüdiger
2016-07-07
Embryonic stem cells (ESCs) are useful for the study of embryonic development. However, since research on naturally conceived human embryos is limited, non-human primate (NHP) embryos and NHP ESCs represent an excellent alternative to the corresponding human entities. Though, ESC lines derived from naturally conceived NHP embryos are still very rare. Here, we report the generation and characterization of four novel ESC lines derived from natural preimplantation embryos of the common marmoset monkey (Callithrix jacchus). For the first time we document derivation of NHP ESCs derived from morula stages. We show that quantitative chromosome-wise transcriptome analyses precisely reflect trisomies present in both morula-derived ESC lines. We also demonstrate that the female ESC lines exhibit different states of X-inactivation which is impressively reflected by the abundance of the lncRNA X inactive-specific transcript (XIST). The novel marmoset ESC lines will promote basic primate embryo and ESC studies as well as preclinical testing of ESC-based regenerative approaches in NHP.
Early Activation of MAPK and Apoptosis in Nutritive Embryos of Calyptraeid Gastropods.
Lesoway, Maryna P; Collin, Rachel; Abouheif, Ehab
2017-07-01
Investigation of alternative phenotypes, different morphologies produced by a single genome, has contributed novel insights into development and evolution. Yet, the mechanisms underlying developmental switch points between alternative phenotypes remain poorly understood. The calyptraeid snails Crepidula navicella and Calyptraea lichen produce two phenotypes: viable and nutritive embryos, where nutritive embryos arrest their development after gastrulation and are ingested by their viable siblings as a form of intracapsular nutrition. Here, we investigate the activity of mitogen-activated protein kinase (MAPK, ERK1/2) and apoptosis during early cleavage. MAPK and apoptosis, found in a previous transcriptomic study, are known to be involved in organization of other spiralian embryos and nutritive embryo development, respectively. In the model Crepidula fornicata, MAPK activation begins at the 16-cell stage. In contrast, we discovered in C. navicella and C. lichen that many embryos begin MAPK activation at the one-cell stage. A subset of embryos shows a similar pattern of MAPK activation to C. fornicata at later stages. In all stages where MAPK is detected, the activation pattern is highly variable, frequently occurring in all quadrants or in multiple tiers of cells. We also detected apoptosis in cleaving embryos, while C. fornicata and Crepidula lessoni, which do not produce nutritive embryos, show no signs of apoptosis during cleavage. Our results show that MAPK and apoptosis are expressed during early development in species with nutritive embryos, and raises the possibility that these processes may play a role and even interact with one another in producing the nutritive embryo phenotype. © 2017 Wiley Periodicals, Inc.
Resolving Early Mesoderm Diversification through Single Cell Expression Profiling
Wilson, Nicola K.; Macaulay, Iain C.; Marioni, John C.; Göttgens, Berthold
2016-01-01
Summary In mammals, specification of the three major germ layers occurs during gastrulation, when cells ingressing through the primitive streak differentiate into the precursor cells of major organ systems. However, the molecular mechanisms underlying this process remain unclear, as numbers of gastrulating cells are very limited. In the E6.5 mouse embryo, cells located at the junction between the extra-embryonic region and the epiblast on the posterior side of the embryo undergo an epithelial-to-mesenchymal transition (EMT) and ingress through the primitive streak (PS). Subsequently, cells migrate, either surrounding the prospective ectoderm contributing to the embryo proper, or into the extra-embryonic region to form the yolk sac (YS), umbilical cord and placenta. Fate mapping has shown that mature tissues such as blood and heart originate from specific regions of the pre-gastrula epiblast1 but the plasticity of cells within the embryo and the function of key cell type-specific transcription factors remain unclear. Here we analyse 1,205 cells from the epiblast and nascent Flk1+ mesoderm of gastrulating mouse embryos using single cell RNA-sequencing, representing the first transcriptome-wide in vivo view of early mesoderm formation during mammalian gastrulation. Additionally, using knock-out mice, we study the function of Tal1, a key hematopoietic transcription factor (TF), and demonstrate, contrary to previous studies performed using retrospective assays2,3, that Tal1 knock out does not immediately bias precursor cells towards a cardiac fate. PMID:27383781
Stahl, Bethany A.; Gross, Joshua B.; Speiser, Daniel I.; Oakley, Todd H.; Patel, Nipam H.; Gould, Douglas B.; Protas, Meredith E.
2015-01-01
Cave animals, compared to surface-dwelling relatives, tend to have reduced eyes and pigment, longer appendages, and enhanced mechanosensory structures. Pressing questions include how certain cave-related traits are gained and lost, and if they originate through the same or different genetic programs in independent lineages. An excellent system for exploring these questions is the isopod, Asellus aquaticus. This species includes multiple cave and surface populations that have numerous morphological differences between them. A key feature is that hybrids between cave and surface individuals are viable, which enables genetic crosses and linkage analyses. Here, we advance this system by analyzing single animal transcriptomes of Asellus aquaticus. We use high throughput sequencing of non-normalized cDNA derived from the head of a surface-dwelling male, the head of a cave-dwelling male, the head of a hybrid male (produced by crossing a surface individual with a cave individual), and a pooled sample of surface embryos and hatchlings. Assembling reads from surface and cave head RNA pools yielded an integrated transcriptome comprised of 23,984 contigs. Using this integrated assembly as a reference transcriptome, we aligned reads from surface-, cave- and hybrid- head tissue and pooled surface embryos and hatchlings. Our approach identified 742 SNPs and placed four new candidate genes to an existing linkage map for A. aquaticus. In addition, we examined SNPs for allele-specific expression differences in the hybrid individual. All of these resources will facilitate identification of genes and associated changes responsible for cave adaptation in A. aquaticus and, in concert with analyses of other species, will inform our understanding of the evolutionary processes accompanying adaptation to the subterranean environment. PMID:26462237
Transcriptome analysis of zebrafish embryos exposed to deltamethrin.
Chueh, Tsung-Cheng; Hsu, Li-Sung; Kao, Chin-Ming; Hsu, Tung-Wei; Liao, Hung-Yu; Wang, Kuan-Yi; Chen, Ssu Ching
2017-05-01
Deltamethrin (DTM), a type II pyrethroid, is one of the most commonly used insecticides. The increased use of pyrethroid leads to potential adverse effects, particularly in sensitive populations such as children and pregnant women. None of the related studies was focused on the transcriptome responses in zebrafish embryos after treatment with DTM; therefore, RNA-seq, a high-throughput method, was performed to analyze the global expression of differential expressed genes (DEGs) in zebrafish embryos treated with DTM (40 and 80 μg/L) from fertilization to 48 h postfertilization (hpf) as compared with that in the control group (without DTM treatment). Two cDNA libraries were generated from treated embryos and one cDNA library from nontreated embryos, respectively. Over 92% of reads mapped to the reference in these three libraries. It was observed that many differential genes were expressed in comparison with embryos before and after DTM. The 20 most differentially expressed upregulated or downregulated genes were majorly involved in the signaling transduction. Validation of selected nine genes expression using qRT-PCR confirmed RNA-seq results. The transcriptome sequences were further subjected to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, showing G-protein-coupled receptor signaling pathway and neuroactive ligand-receptor interaction, respectively, were most enriched. The data from this study contributed to a better understanding of the potential consequences of fish exposed to DTM, to an evaluation of the potential threat of DTM to fish populations in aquatic environments. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1548-1557, 2017. © 2016 Wiley Periodicals, Inc.
Ontogeny of the Maize Shoot Apical Meristem[W][OA
Takacs, Elizabeth M.; Li, Jie; Du, Chuanlong; Ponnala, Lalit; Janick-Buckner, Diane; Yu, Jianming; Muehlbauer, Gary J.; Schnable, Patrick S.; Timmermans, Marja C.P.; Sun, Qi; Nettleton, Dan; Scanlon, Michael J.
2012-01-01
The maize (Zea mays) shoot apical meristem (SAM) arises early in embryogenesis and functions during stem cell maintenance and organogenesis to generate all the aboveground organs of the plant. Despite its integral role in maize shoot development, little is known about the molecular mechanisms of SAM initiation. Laser microdissection of apical domains from developing maize embryos and seedlings was combined with RNA sequencing for transcriptomic analyses of SAM ontogeny. Molecular markers of key events during maize embryogenesis are described, and comprehensive transcriptional data from six stages in maize shoot development are generated. Transcriptomic profiling before and after SAM initiation indicates that organogenesis precedes stem cell maintenance in maize; analyses of the first three lateral organs elaborated from maize embryos provides insight into their homology and to the identity of the single maize cotyledon. Compared with the newly initiated SAM, the mature SAM is enriched for transcripts that function in transcriptional regulation, hormonal signaling, and transport. Comparisons of shoot meristems initiating juvenile leaves, adult leaves, and husk leaves illustrate differences in phase-specific (juvenile versus adult) and meristem-specific (SAM versus lateral meristem) transcript accumulation during maize shoot development. This study provides insight into the molecular genetics of SAM initiation and function in maize. PMID:22911570
The Embryonic Transcriptome of the Red-Eared Slider Turtle (Trachemys scripta)
Kaplinsky, Nicholas J.; Gilbert, Scott F.; Cebra-Thomas, Judith; Lilleväli, Kersti; Saare, Merly; Chang, Eric Y.; Edelman, Hannah E.; Frick, Melissa A.; Guan, Yin; Hammond, Rebecca M.; Hampilos, Nicholas H.; Opoku, David S. B.; Sariahmed, Karim; Sherman, Eric A.; Watson, Ray
2013-01-01
The bony shell of the turtle is an evolutionary novelty not found in any other group of animals, however, research into its formation has suggested that it has evolved through modification of conserved developmental mechanisms. Although these mechanisms have been extensively characterized in model organisms, the tools for characterizing them in non-model organisms such as turtles have been limited by a lack of genomic resources. We have used a next generation sequencing approach to generate and assemble a transcriptome from stage 14 and 17 Trachemys scripta embryos, stages during which important events in shell development are known to take place. The transcriptome consists of 231,876 sequences with an N50 of 1,166 bp. GO terms and EC codes were assigned to the 61,643 unique predicted proteins identified in the transcriptome sequences. All major GO categories and metabolic pathways are represented in the transcriptome. Transcriptome sequences were used to amplify several cDNA fragments designed for use as RNA in situ probes. One of these, BMP5, was hybridized to a T. scripta embryo and exhibits both conserved and novel expression patterns. The transcriptome sequences should be of broad use for understanding the evolution and development of the turtle shell and for annotating any future T. scripta genome sequences. PMID:23840449
BLIND ordering of large-scale transcriptomic developmental timecourses.
Anavy, Leon; Levin, Michal; Khair, Sally; Nakanishi, Nagayasu; Fernandez-Valverde, Selene L; Degnan, Bernard M; Yanai, Itai
2014-03-01
RNA-Seq enables the efficient transcriptome sequencing of many samples from small amounts of material, but the analysis of these data remains challenging. In particular, in developmental studies, RNA-Seq is challenged by the morphological staging of samples, such as embryos, since these often lack clear markers at any particular stage. In such cases, the automatic identification of the stage of a sample would enable previously infeasible experimental designs. Here we present the 'basic linear index determination of transcriptomes' (BLIND) method for ordering samples comprising different developmental stages. The method is an implementation of a traveling salesman algorithm to order the transcriptomes according to their inter-relationships as defined by principal components analysis. To establish the direction of the ordered samples, we show that an appropriate indicator is the entropy of transcriptomic gene expression levels, which increases over developmental time. Using BLIND, we correctly recover the annotated order of previously published embryonic transcriptomic timecourses for frog, mosquito, fly and zebrafish. We further demonstrate the efficacy of BLIND by collecting 59 embryos of the sponge Amphimedon queenslandica and ordering their transcriptomes according to developmental stage. BLIND is thus useful in establishing the temporal order of samples within large datasets and is of particular relevance to the study of organisms with asynchronous development and when morphological staging is difficult.
Spatial transcriptomic survey of human embryonic cerebral cortex by single-cell RNA-seq analysis.
Fan, Xiaoying; Dong, Ji; Zhong, Suijuan; Wei, Yuan; Wu, Qian; Yan, Liying; Yong, Jun; Sun, Le; Wang, Xiaoye; Zhao, Yangyu; Wang, Wei; Yan, Jie; Wang, Xiaoqun; Qiao, Jie; Tang, Fuchou
2018-06-04
The cellular complexity of human brain development has been intensively investigated, although a regional characterization of the entire human cerebral cortex based on single-cell transcriptome analysis has not been reported. Here, we performed RNA-seq on over 4,000 individual cells from 22 brain regions of human mid-gestation embryos. We identified 29 cell sub-clusters, which showed different proportions in each region and the pons showed especially high percentage of astrocytes. Embryonic neurons were not as diverse as adult neurons, although they possessed important features of their destinies in adults. Neuron development was unsynchronized in the cerebral cortex, as dorsal regions appeared to be more mature than ventral regions at this stage. Region-specific genes were comprehensively identified in each neuronal sub-cluster, and a large proportion of these genes were neural disease related. Our results present a systematic landscape of the regionalized gene expression and neuron maturation of the human cerebral cortex.
Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis
Irie, Naoki; Kuratani, Shigeru
2011-01-01
One of the central issues in evolutionary developmental biology is how we can formulate the relationships between evolutionary and developmental processes. Two major models have been proposed: the 'funnel-like' model, in which the earliest embryo shows the most conserved morphological pattern, followed by diversifying later stages, and the 'hourglass' model, in which constraints are imposed to conserve organogenesis stages, which is called the phylotypic period. Here we perform a quantitative comparative transcriptome analysis of several model vertebrate embryos and show that the pharyngula stage is most conserved, whereas earlier and later stages are rather divergent. These results allow us to predict approximate developmental timetables between different species, and indicate that pharyngula embryos have the most conserved gene expression profiles, which may be the source of the basic body plan of vertebrates. PMID:21427719
Joosen, Ronny; Cordewener, Jan; Supena, Ence Darmo Jaya; Vorst, Oscar; Lammers, Michiel; Maliepaard, Chris; Zeilmaker, Tieme; Miki, Brian; America, Twan; Custers, Jan; Boutilier, Kim
2007-01-01
Microspore-derived embryo (MDE) cultures are used as a model system to study plant cell totipotency and as an in vitro system to study embryo development. We characterized and compared the transcriptome and proteome of rapeseed (Brassica napus) MDEs from the few-celled stage to the globular/heart stage using two MDE culture systems: conventional cultures in which MDEs initially develop as unorganized clusters that usually lack a suspensor, and a novel suspensor-bearing embryo culture system in which the embryo proper originates from the distal cell of a suspensor-like structure and undergoes the same ordered cell divisions as the zygotic embryo. Improved histodifferentiation of suspensor-bearing MDEs suggests a new role for the suspensor in driving embryo cell identity and patterning. An MDE culture cDNA array and two-dimensional gel electrophoresis and protein sequencing were used to compile global and specific expression profiles for the two types of MDE cultures. Analysis of the identities of 220 candidate embryo markers, as well as the identities of 32 sequenced embryo up-regulated protein spots, indicate general roles for protein synthesis, glycolysis, and ascorbate metabolism in the establishment of MDE development. A collection of 135 robust markers for the transition to MDE development was identified, a number of which may be coregulated at the gene and protein expression level. Comparison of the expression profiles of preglobular-stage conventional MDEs and suspensor-bearing MDEs identified genes whose differential expression may reflect improved histodifferentiation of suspensor-bearing embryos. This collection of early embryo-expressed genes and proteins serves as a starting point for future marker development and gene function studies aimed at understanding the molecular regulation of cell totipotency and early embryo development in plants. PMID:17384159
Defining the Genomic Signature of Totipotency and Pluripotency during Early Human Development
Galan, Amparo; Diaz-Gimeno, Patricia; Poo, Maria Eugenia; Valbuena, Diana; Sanchez, Eva; Ruiz, Veronica; Dopazo, Joaquin; Montaner, David; Conesa, Ana; Simon, Carlos
2013-01-01
The genetic mechanisms governing human pre-implantation embryo development and the in vitro counterparts, human embryonic stem cells (hESCs), still remain incomplete. Previous global genome studies demonstrated that totipotent blastomeres from day-3 human embryos and pluripotent inner cell masses (ICMs) from blastocysts, display unique and differing transcriptomes. Nevertheless, comparative gene expression analysis has revealed that no significant differences exist between hESCs derived from blastomeres versus those obtained from ICMs, suggesting that pluripotent hESCs involve a new developmental progression. To understand early human stages evolution, we developed an undifferentiation network signature (UNS) and applied it to a differential gene expression profile between single blastomeres from day-3 embryos, ICMs and hESCs. This allowed us to establish a unique signature composed of highly interconnected genes characteristic of totipotency (61 genes), in vivo pluripotency (20 genes), and in vitro pluripotency (107 genes), and which are also proprietary according to functional analysis. This systems biology approach has led to an improved understanding of the molecular and signaling processes governing human pre-implantation embryo development, as well as enabling us to comprehend how hESCs might adapt to in vitro culture conditions. PMID:23614026
Sakai, Kaori; Taconnat, Ludivine; Borrega, Nero; Yansouni, Jennifer; Brunaud, Véronique; Paysant-Le Roux, Christine; Delannoy, Etienne; Martin Magniette, Marie-Laure; Lepiniec, Loïc; Faure, Jean Denis; Balzergue, Sandrine; Dubreucq, Bertrand
2018-01-01
Genome-wide characterization of tissue- or cell-specific gene expression is a recurrent bottleneck in biology. We have developed a sensitive approach based on ultra-low RNA sequencing coupled to laser assisted microdissection for analyzing different tissues of the small Arabidopsis embryo. We first characterized the number of genes detected according to the quantity of tissue yield and total RNA extracted. Our results revealed that as low as 0.02 mm 2 of tissue and 50 pg of total RNA can be used without compromising the number of genes detected. The optimised protocol was used to compare the epidermal versus mesophyll cell transcriptomes of cotyledons at the torpedo-shaped stage of embryo development. The approach was validated by the recovery of well-known epidermal genes such AtML1 or AtPDF2 and genes involved in flavonoid and cuticular waxes pathways. Moreover, the interest and sensitivity of this approach were highlighted by the characterization of several transcription factors preferentially expressed in epidermal cells. This technical advance unlocks some current limitations of transcriptomic analyses and allows to investigate further and efficiently new biological questions for which only a very small amounts of cells need to be isolated. For instance, it paves the way to increasing the spatial accuracy of regulatory networks in developing small embryo of Arabidopsis or other plant tissues.
Single-cell sequencing technologies: current and future.
Liang, Jialong; Cai, Wanshi; Sun, Zhongsheng
2014-10-20
Intensively developed in the last few years, single-cell sequencing technologies now present numerous advantages over traditional sequencing methods for solving the problems of biological heterogeneity and low quantities of available biological materials. The application of single-cell sequencing technologies has profoundly changed our understanding of a series of biological phenomena, including gene transcription, embryo development, and carcinogenesis. However, before single-cell sequencing technologies can be used extensively, researchers face the serious challenge of overcoming inherent issues of high amplification bias, low accuracy and reproducibility. Here, we simply summarize the techniques used for single-cell isolation, and review the current technologies used in single-cell genomic, transcriptomic, and epigenomic sequencing. We discuss the merits, defects, and scope of application of single-cell sequencing technologies and then speculate on the direction of future developments. Copyright © 2014 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.
de Vega-Bartol, José J; Simões, Marta; Lorenz, W Walter; Rodrigues, Andreia S; Alba, Rob; Dean, Jeffrey F D; Miguel, Célia M
2013-08-30
It is during embryogenesis that the plant body plan is established and the meristems responsible for all post-embryonic growth are specified. The molecular mechanisms governing conifer embryogenesis are still largely unknown. Their elucidation may contribute valuable information to clarify if the distinct features of embryo development in angiosperms and gymnosperms result from differential gene regulation. To address this issue, we have performed the first transcriptomic analysis of zygotic embryo development in a conifer species (Pinus pinaster) focusing our study in particular on regulatory genes playing important roles during plant embryo development, namely epigenetic regulators and transcription factors. Microarray analysis of P. pinaster zygotic embryogenesis was performed at five periods of embryo development from early developing to mature embryos. Our results show that most changes in transcript levels occurred in the first and the last embryo stage-to-stage transitions, namely early to pre-cotyledonary embryo and cotyledonary to mature embryo. An analysis of functional categories for genes that were differentially expressed through embryogenesis highlighted several epigenetic regulation mechanisms. While putative orthologs of transcripts associated with mechanisms that target transposable elements and repetitive sequences were strongly expressed in early embryogenesis, PRC2-mediated repression of genes seemed more relevant during late embryogenesis. On the other hand, functions related to sRNA pathways appeared differentially regulated across all stages of embryo development with a prevalence of miRNA functions in mid to late embryogenesis. Identification of putative transcription factor genes differentially regulated between consecutive embryo stages was strongly suggestive of the relevance of auxin responses and regulation of auxin carriers during early embryogenesis. Such responses could be involved in establishing embryo patterning. Later in development, transcripts with homology to genes acting on modulation of auxin flow and determination of adaxial-abaxial polarity were up-regulated, as were putative orthologs of genes required for meristem formation and function as well as establishment of organ boundaries. Comparative analysis with A. thaliana embryogenesis also highlighted genes involved in auxin-mediated responses, as well as epigenetic regulation, indicating highly correlated transcript profiles between the two species. This is the first report of a time-course transcriptomic analysis of zygotic embryogenesis in a conifer. Taken together our results show that epigenetic regulation and transcriptional control related to auxin transport and response are critical during early to mid stages of pine embryogenesis and that important events during embryogenesis seem to be coordinated by putative orthologs of major developmental regulators in angiosperms.
2013-01-01
Background It is during embryogenesis that the plant body plan is established and the meristems responsible for all post-embryonic growth are specified. The molecular mechanisms governing conifer embryogenesis are still largely unknown. Their elucidation may contribute valuable information to clarify if the distinct features of embryo development in angiosperms and gymnosperms result from differential gene regulation. To address this issue, we have performed the first transcriptomic analysis of zygotic embryo development in a conifer species (Pinus pinaster) focusing our study in particular on regulatory genes playing important roles during plant embryo development, namely epigenetic regulators and transcription factors. Results Microarray analysis of P. pinaster zygotic embryogenesis was performed at five periods of embryo development from early developing to mature embryos. Our results show that most changes in transcript levels occurred in the first and the last embryo stage-to-stage transitions, namely early to pre-cotyledonary embryo and cotyledonary to mature embryo. An analysis of functional categories for genes that were differentially expressed through embryogenesis highlighted several epigenetic regulation mechanisms. While putative orthologs of transcripts associated with mechanisms that target transposable elements and repetitive sequences were strongly expressed in early embryogenesis, PRC2-mediated repression of genes seemed more relevant during late embryogenesis. On the other hand, functions related to sRNA pathways appeared differentially regulated across all stages of embryo development with a prevalence of miRNA functions in mid to late embryogenesis. Identification of putative transcription factor genes differentially regulated between consecutive embryo stages was strongly suggestive of the relevance of auxin responses and regulation of auxin carriers during early embryogenesis. Such responses could be involved in establishing embryo patterning. Later in development, transcripts with homology to genes acting on modulation of auxin flow and determination of adaxial-abaxial polarity were up-regulated, as were putative orthologs of genes required for meristem formation and function as well as establishment of organ boundaries. Comparative analysis with A. thaliana embryogenesis also highlighted genes involved in auxin-mediated responses, as well as epigenetic regulation, indicating highly correlated transcript profiles between the two species. Conclusions This is the first report of a time-course transcriptomic analysis of zygotic embryogenesis in a conifer. Taken together our results show that epigenetic regulation and transcriptional control related to auxin transport and response are critical during early to mid stages of pine embryogenesis and that important events during embryogenesis seem to be coordinated by putative orthologs of major developmental regulators in angiosperms. PMID:23987738
Huang, Ya-Yi; Lee, Chueh-Pai; Fu, Jason L.; Chang, Bill Chia-Han; Matzke, Antonius J. M.; Matzke, Marjori
2014-01-01
Coconut palm (Cocos nucifera) is a symbol of the tropics and a source of numerous edible and nonedible products of economic value. Despite its nutritional and industrial significance, coconut remains under-represented in public repositories for genomic and transcriptomic data. We report de novo transcript assembly from RNA-seq data and analysis of gene expression in seed tissues (embryo and endosperm) and leaves of a dwarf coconut variety. Assembly of 10 GB sequencing data for each tissue resulted in 58,211 total unigenes in embryo, 61,152 in endosperm, and 33,446 in leaf. Within each unigene pool, 24,857 could be annotated in embryo, 29,731 could be annotated in endosperm, and 26,064 could be annotated in leaf. A KEGG analysis identified 138, 138, and 139 pathways, respectively, in transcriptomes of embryo, endosperm, and leaf tissues. Given the extraordinarily large size of coconut seeds and the importance of small RNA-mediated epigenetic regulation during seed development in model plants, we used homology searches to identify putative homologs of factors required for RNA-directed DNA methylation in coconut. The findings suggest that RNA-directed DNA methylation is important during coconut seed development, particularly in maturing endosperm. This dataset will expand the genomics resources available for coconut and provide a foundation for more detailed analyses that may assist molecular breeding strategies aimed at improving this major tropical crop. PMID:25193496
Huang, Ya-Yi; Lee, Chueh-Pai; Fu, Jason L; Chang, Bill Chia-Han; Matzke, Antonius J M; Matzke, Marjori
2014-09-04
Coconut palm (Cocos nucifera) is a symbol of the tropics and a source of numerous edible and nonedible products of economic value. Despite its nutritional and industrial significance, coconut remains under-represented in public repositories for genomic and transcriptomic data. We report de novo transcript assembly from RNA-seq data and analysis of gene expression in seed tissues (embryo and endosperm) and leaves of a dwarf coconut variety. Assembly of 10 GB sequencing data for each tissue resulted in 58,211 total unigenes in embryo, 61,152 in endosperm, and 33,446 in leaf. Within each unigene pool, 24,857 could be annotated in embryo, 29,731 could be annotated in endosperm, and 26,064 could be annotated in leaf. A KEGG analysis identified 138, 138, and 139 pathways, respectively, in transcriptomes of embryo, endosperm, and leaf tissues. Given the extraordinarily large size of coconut seeds and the importance of small RNA-mediated epigenetic regulation during seed development in model plants, we used homology searches to identify putative homologs of factors required for RNA-directed DNA methylation in coconut. The findings suggest that RNA-directed DNA methylation is important during coconut seed development, particularly in maturing endosperm. This dataset will expand the genomics resources available for coconut and provide a foundation for more detailed analyses that may assist molecular breeding strategies aimed at improving this major tropical crop. Copyright © 2014 Huang et al.
Early bovine embryos regulate oviduct epithelial cell gene expression during in vitro co-culture.
Schmaltz-Panneau, Barbara; Cordova, Amanda; Dhorne-Pollet, Sophie; Hennequet-Antier, Christelle; Uzbekova, Sveltlana; Martinot, Emmanuelle; Doret, Sarah; Martin, Patrice; Mermillod, Pascal; Locatelli, Yann
2014-10-01
In mammals, the oviduct may participate to the regulation of early embryo development. In vitro co-culture of early bovine embryos with bovine oviduct epithelial cells (BOEC) has been largely used to mimic the maternal environment. However, the mechanisms of BOEC action have not been clearly elucidated yet. The aim of this study was to determine the response of BOEC cultures to the presence of developing bovine embryos. A 21,581-element bovine oligonucleotide array was used compare the gene expression profiles of confluent BOEC cultured for 8 days with or without embryos. This study revealed 34 differentially expressed genes (DEG). Of these 34 genes, IFI6, ISG15, MX1, IFI27, IFI44, RSAD2, IFITM1, EPSTI1, USP18, IFIT5, and STAT1 expression increased to the greatest extent due to the presence of embryos with a major impact on antiviral and immune response. Among the mRNAs at least 25 are already described as induced by interferons. In addition, transcript levels of new candidate genes involved in the regulation of transcription, modulation of the maternal immune system and endometrial remodeling were found to be increased. We selected 7 genes and confirmed their differential expression by quantitative RT-PCR. The immunofluorescence imaging of cellular localization of STAT1 protein in BOEC showed a nuclear translocation in the presence of embryos, suggesting the activation of interferon signaling pathway. This first systematic study of BOEC transcriptome changes in response to the presence of embryos in cattle provides some evidences that these cells are able to adapt their transcriptomic profile in response to embryo signaling. Copyright © 2014 Elsevier B.V. All rights reserved.
Ghiselli, Fabrizio; Milani, Liliana; Chang, Peter L.; Hedgecock, Dennis; Davis, Jonathan P.; Nuzhdin, Sergey V.; Passamonti, Marco
2012-01-01
Males and females share the same genome, thus, phenotypic divergence requires differential gene expression and sex-specific regulation. Accordingly, the analysis of expression patterns is pivotal to the understanding of sex determination mechanisms. Many bivalves are stable gonochoric species, but the mechanism of gonad sexualization and the genes involved are still unknown. Moreover, during the period of sexual rest, a gonad is not present and sex cannot be determined. A mechanism associated with germ line differentiation in some bivalves, including the Manila clam Ruditapes philippinarum, is the doubly uniparental inheritance (DUI) of mitochondria, a variation of strict maternal inheritance. Two mitochondrial lineages are present, one transmitted through eggs and the other through sperm, as well as a mother-dependent sex bias of the progeny. We produced a de novo annotation of 17,186 transcripts from R. philippinarum and compared the transcriptomes of males and females and identified 1,575 genes with strong sex-specific expression and 166 sex-specific single nucleotide polymorphisms, obtaining preliminary information about genes that could be involved in sex determination. Then we compared the transcriptomes between a family producing predominantly females and a family producing predominantly males to identify candidate genes involved in regulation of sex-specific aspects of DUI system, finding a relationship between sex bias and differential expression of several ubiquitination genes. In mammalian embryos, sperm mitochondria are degraded by ubiquitination. A modification of this mechanism is hypothesized to be responsible for the retention of sperm mitochondria in male embryos of DUI species. Ubiquitination can additionally regulate gene expression, playing a role in sex determination of several animals. These data enable us to develop a model that incorporates both the DUI literature and our new findings. PMID:21976711
Murray, John Isaac
2018-05-01
The convergence of developmental biology and modern genomics tools brings the potential for a comprehensive understanding of developmental systems. This is especially true for the Caenorhabditis elegans embryo because its small size, invariant developmental lineage, and powerful genetic and genomic tools provide the prospect of a cellular resolution understanding of messenger RNA (mRNA) expression and regulation across the organism. We describe here how a systems biology framework might allow large-scale determination of the embryonic regulatory relationships encoded in the C. elegans genome. This framework consists of two broad steps: (a) defining the "parts list"-all genes expressed in all cells at each time during development and (b) iterative steps of computational modeling and refinement of these models by experimental perturbation. Substantial progress has been made towards defining the parts list through imaging methods such as large-scale green fluorescent protein (GFP) reporter analysis. Imaging results are now being augmented by high-resolution transcriptome methods such as single-cell RNA sequencing, and it is likely the complete expression patterns of all genes across the embryo will be known within the next few years. In contrast, the modeling and perturbation experiments performed so far have focused largely on individual cell types or genes, and improved methods will be needed to expand them to the full genome and organism. This emerging comprehensive map of embryonic expression and regulatory function will provide a powerful resource for developmental biologists, and would also allow scientists to ask questions not accessible without a comprehensive picture. This article is categorized under: Invertebrate Organogenesis > Worms Technologies > Analysis of the Transcriptome Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics. © 2018 Wiley Periodicals, Inc.
Evaluation and rational design of guide RNAs for efficient CRISPR/Cas9-mediated mutagenesis in Ciona
Gandhi, Shashank; Haeussler, Maximilian; Razy-Krajka, Florian; Christiaen, Lionel; Stolfi, Alberto
2017-01-01
The CRISPR/Cas9 system has emerged as an important tool for various genome engineering applications. A current obstacle to high throughput applications of CRISPR/Cas9 is the imprecise prediction of highly active single guide RNAs (sgRNAs). We previously implemented the CRISPR/Cas9 system to induce tissue-specific mutations in the tunicate Ciona. In the present study, we designed and tested 83 single guide RNA (sgRNA) vectors targeting 23 genes expressed in the cardiopharyngeal progenitors and surrounding tissues of Ciona embryo. Using high-throughput sequencing of mutagenized alleles, we identified guide sequences that correlate with sgRNA mutagenesis activity and used this information for the rational design of all possible sgRNAs targeting the Ciona transcriptome. We also describe a one-step cloning-free protocol for the assembly of sgRNA expression cassettes. These cassettes can be directly electroporated as unpurified PCR products into Ciona embryos for sgRNA expression in vivo, resulting in high frequency of CRISPR/Cas9-mediated mutagenesis in somatic cells of electroporated embryos. We found a strong correlation between the frequency of an Ebf loss-of-function phenotype and the mutagenesis efficacies of individual Ebf-targeting sgRNAs tested using this method. We anticipate that our approach can be scaled up to systematically design and deliver highly efficient sgRNAs for the tissue-specific investigation of gene functions in Ciona. PMID:28341547
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimopoulou, Myrto, E-mail: myrto.dimopoulou@wur.nl
Differential gene expression analysis in the rat whole embryo culture (WEC) assay provides mechanistic insight into the embryotoxicity of test compounds. In our study, we hypothesized that comparative analysis of the transcriptomes of rat embryos exposed to six azoles (flusilazole, triadimefon, ketoconazole, miconazole, difenoconazole and prothioconazole) could lead to a better mechanism-based understanding of their embryotoxicity and pharmacological action. For evaluating embryotoxicity, we applied the total morphological scoring system (TMS) in embryos exposed for 48 h. The compounds tested showed embryotoxicity in a dose-response fashion. Functional analysis of differential gene expression after 4 h exposure at the ID{sub 10} (effectivemore » dose for 10% decreased TMS), revealed the sterol biosynthesis pathway and embryonic development genes, dominated by genes in the retinoic acid (RA) pathway, albeit in a differential way. Flusilazole, ketoconazole and triadimefon were the most potent compounds affecting the RA pathway, while in terms of regulation of sterol function, difenoconazole and ketoconazole showed the most pronounced effects. Dose-dependent analysis of the effects of flusilazole revealed that the RA pathway related genes were already differentially expressed at low dose levels while the sterol pathway showed strong regulation at higher embryotoxic doses, suggesting that this pathway is less predictive for the observed embryotoxicity. A similar analysis at the 24-hour time point indicated an additional time-dependent difference in the aforementioned pathways regulated by flusilazole. In summary, the rat WEC assay in combination with transcriptomics could add a mechanistic insight into the embryotoxic potency ranking and pharmacological mode of action of the tested compounds. - Highlights: • Embryonic exposure to azoles revealed concentration-dependent malformations. • Transcriptomics could enhance the mechanistic knowledge of embryotoxicants. • Retinoic acid gene set identifies early embryotoxic responses to azoles. • Toxic versus pharmacologic potency determines functional efficacy.« less
Spatial reconstruction of single-cell gene expression
Satija, Rahul; Farrell, Jeffrey A.; Gennert, David; Schier, Alexander F.; Regev, Aviv
2015-01-01
Spatial localization is a key determinant of cellular fate and behavior, but spatial RNA assays traditionally rely on staining for a limited number of RNA species. In contrast, single-cell RNA-seq allows for deep profiling of cellular gene expression, but established methods separate cells from their native spatial context. Here we present Seurat, a computational strategy to infer cellular localization by integrating single-cell RNA-seq data with in situ RNA patterns. We applied Seurat to spatially map 851 single cells from dissociated zebrafish (Danio rerio) embryos, inferring a transcriptome-wide map of spatial patterning. We confirmed Seurat’s accuracy using several experimental approaches, and used it to identify a set of archetypal expression patterns and spatial markers. Additionally, Seurat correctly localizes rare subpopulations, accurately mapping both spatially restricted and scattered groups. Seurat will be applicable to mapping cellular localization within complex patterned tissues in diverse systems. PMID:25867923
Pre-hatching embryo-dependent and -independent programming of endometrial function in cattle
Sponchiado, Mariana; Gomes, Nathália Souza; Fontes, Patrícia Kubo; Martins, Thiago; del Collado, Maite; Pastore, Athos de Assumpção; Pugliesi, Guilherme; Nogueira, Marcelo Fábio Gouveia
2017-01-01
The bovine pre-implantation embryo secretes bioactive molecules from early development stages, but effects on endometrial function are reported to start only after elongation. Here, we interrogated spatially defined regions of the endometrium transcriptome for responses to a day 7 embryo in vivo. We hypothesize that exposure to an embryo changes the abundance of specific transcripts in the cranial region of the pregnant uterine horn. Endometrium was collected from the uterotubal junction (UTJ), anterior (IA), medial (IM) and posterior (IP) regions of the uterine horn ipsilateral to the CL 7 days after estrus from sham-inseminated (Con) or artificially inseminated, confirmed pregnant (Preg) cows. Abundance of 86 transcripts was evaluated by qPCR using a microfluidic platform. Abundance of 12 transcripts was modulated in the Preg endometrium, including classical interferon-stimulated genes (ISG15, MX1, MX2 and OAS1Y), prostaglandin biosynthesis genes (PTGES, HPGD and AKR1C4), water channel (AQP4) and a solute transporter (SLC1A4) and this was in the UTJ and IA mainly. Additionally, for 71 transcripts, abundance varied according to region of the reproductive tract. Regulation included downregulation of genes associated with proliferation (IGF1, IGF2, IGF1R and IGF2R) and extracellular matrix remodeling (MMP14, MMP19 and MMP2) and upregulation of anti-adhesive genes (MUC1) in the cranial regions of uterine horn. Physical proximity to the embryo provides paracrine regulation of endometrial function. Embryo-independent regulation of the endometrial transcriptome may support subsequent stages of embryo development, such as elongation and implantation. We speculate that successful early embryo-dependent and -independent programming fine-tune endometrial functions that are important for maintenance of pregnancy in cattle. PMID:28423001
El Husseini, Nazem; Schlisser, Ava E.; Hales, Barbara F.
2016-01-01
Hydroxyurea, an anticancer agent and potent teratogen, induces oxidative stress and activates a DNA damage response pathway in the gestation day (GD) 9 mouse embryo. To delineate the stress response pathways activated by this drug, we investigated the effect of hydroxyurea exposure on the transcriptome of GD 9 embryos. Timed pregnant CD-1 mice were treated with saline or hydroxyurea (400 mg/kg or 600 mg/kg) on GD 9; embryonic gene and protein expression were examined 3 h later. Microarray analysis revealed that the expression of 1346 probe sets changed significantly in embryos exposed to hydroxyurea compared with controls; the P53 signaling pathway was highly affected. In addition, P53 related family members, P63 and P73, were predicted to be activated and had common and unique downstream targets. Western blot analysis revealed that active phospho-P53 was significantly increased in drug-exposed embryos; confocal microscopy showed that the translocation of phospho-P53 to the nucleus was widespread in the embryo. Furthermore, qRT-PCR showed that the expression of P53-regulated genes (Cdkn1A, Fas, and Trp53inp1) was significantly upregulated in hydroxyurea-exposed embryos; the concentration of the redox sensitive P53INP1 protein was also increased in a hydroxyurea dose-dependent fashion. Thus, hydroxyurea elicits a significant effect on the transcriptome of the organogenesis stage murine embryo, activating several key developmental signaling pathways related to DNA damage and oxidative stress. We propose that the P53 pathway plays a central role in the embryonic stress response and the developmental outcome after teratogen exposure. PMID:27208086
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Ting; Zhao, Jing; Hu, Ping
Pentachlorophenol (PCP) is a prevalent pollutant in the environment and has been demonstrated to be a serious toxicant to humans and animals. However, little is known regarding the molecular mechanism underlying its toxic effects on vertebrate early development. To explore the impacts and underlying mechanisms of PCP on early development, zebrafish (Danio rerio) embryos were exposed to PCP at concentrations of 0, 20 and 50 μg/L, and microscopic observation and cDNA microarray analysis were subsequently conducted at gastrulation stage. The morphological observations revealed that PCP caused a developmental delay of zebrafish embryos in a concentration-dependent manner. Transcriptomic data showed thatmore » 50 μg/L PCP treatment resulted in significant changes in gene expression level, and the genes involved in energy metabolism and cell behavior were identified based on gene functional enrichment analysis. The energy production of embryos was influenced by PCP via the activation of glycolysis along with the inhibition of oxidative phosphorylation (OXPHOS). The results suggested that PCP acts as an inhibitor of OXPHOS at 8 hpf (hours postfertilization). Consistent with the activated glycolysis, the cell cycle activity of PCP-treated embryos was higher than the controls. These characteristics are similar to the Warburg effect, which occurs in human tumors. The microinjection of exogenous ATP confirmed that an additional energy supply could rescue PCP-treated embryos from the developmental delay due to the energy deficit. Taken together, our results demonstrated that PCP causes a Warburg-like effect on zebrafish embryos during gastrulation, and the affected embryos had the phenotype of developmental delay. - Highlights: • We treat zebrafish embryos with PCP at gastrula stage. • PCP acts as an oxidative phosphorylation inhibitor, not an uncoupler, in gastrulation. • Exogenous ATP injection will rescue the development of effected embryos. • The transcriptome of PCP-treated embryo exhibits a Warburg-like effect in tumor cell.« less
Do, Dang Vinh; Strauss, Bernhard; Cukuroglu, Engin; Macaulay, Iain; Wee, Keng Boon; Hu, Tim Xiaoming; Igor, Ruiz De Los Mozos; Lee, Caroline; Harrison, Andrew; Butler, Richard; Dietmann, Sabine; Jernej, Ule; Marioni, John; Smith, Christopher W J; Göke, Jonathan; Surani, M Azim
2018-01-01
The RNA-binding protein SRSF3 (also known as SRp20) has critical roles in the regulation of pre-mRNA splicing. Zygotic knockout of Srsf3 results in embryo arrest at the blastocyst stage. However, SRSF3 is also present in oocytes, suggesting that it might be critical as a maternally inherited factor. Here we identify SRSF3 as an essential regulator of alternative splicing and of transposable elements to maintain transcriptome integrity in mouse oocyte. Using 3D time-lapse confocal live imaging, we show that conditional deletion of Srsf3 in fully grown germinal vesicle oocytes substantially compromises the capacity of germinal vesicle breakdown (GVBD), and consequently entry into meiosis. By combining single cell RNA-seq, and oocyte micromanipulation with steric blocking antisense oligonucleotides and RNAse-H inducing gapmers, we found that the GVBD defect in mutant oocytes is due to both aberrant alternative splicing and derepression of B2 SINE transposable elements. Together, our study highlights how control of transcriptional identity of the maternal transcriptome by the RNA-binding protein SRSF3 is essential to the development of fertilized-competent oocytes.
Cell fixation and preservation for droplet-based single-cell transcriptomics.
Alles, Jonathan; Karaiskos, Nikos; Praktiknjo, Samantha D; Grosswendt, Stefanie; Wahle, Philipp; Ruffault, Pierre-Louis; Ayoub, Salah; Schreyer, Luisa; Boltengagen, Anastasiya; Birchmeier, Carmen; Zinzen, Robert; Kocks, Christine; Rajewsky, Nikolaus
2017-05-19
Recent developments in droplet-based microfluidics allow the transcriptional profiling of thousands of individual cells in a quantitative, highly parallel and cost-effective way. A critical, often limiting step is the preparation of cells in an unperturbed state, not altered by stress or ageing. Other challenges are rare cells that need to be collected over several days or samples prepared at different times or locations. Here, we used chemical fixation to address these problems. Methanol fixation allowed us to stabilise and preserve dissociated cells for weeks without compromising single-cell RNA sequencing data. By using mixtures of fixed, cultured human and mouse cells, we first showed that individual transcriptomes could be confidently assigned to one of the two species. Single-cell gene expression from live and fixed samples correlated well with bulk mRNA-seq data. We then applied methanol fixation to transcriptionally profile primary cells from dissociated, complex tissues. Low RNA content cells from Drosophila embryos, as well as mouse hindbrain and cerebellum cells prepared by fluorescence-activated cell sorting, were successfully analysed after fixation, storage and single-cell droplet RNA-seq. We were able to identify diverse cell populations, including neuronal subtypes. As an additional resource, we provide 'dropbead', an R package for exploratory data analysis, visualization and filtering of Drop-seq data. We expect that the availability of a simple cell fixation method will open up many new opportunities in diverse biological contexts to analyse transcriptional dynamics at single-cell resolution.
Morel, Alexandre; Teyssier, Caroline; Trontin, Jean-François; Eliášová, Kateřina; Pešek, Bedřich; Beaufour, Martine; Morabito, Domenico; Boizot, Nathalie; Le Metté, Claire; Belal-Bessai, Leila; Reymond, Isabelle; Harvengt, Luc; Cadene, Martine; Corbineau, Françoise; Vágner, Martin; Label, Philippe; Lelu-Walter, Marie-Anne
2014-09-01
Maritime pine somatic embryos (SEs) require a reduction in water availability (high gellan gum concentration in the maturation medium) to reach the cotyledonary stage. This key switch, reported specifically for pine species, is not yet well understood. To facilitate the use of somatic embryogenesis for mass propagation of conifers, we need a better understanding of embryo development. Comparison of both transcriptome (Illumina RNA sequencing) and proteome [two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis with mass spectrometry (MS) identification] of immature SEs, cultured on either high (9G) or low (4G) gellan gum concentration, was performed, together with analysis of water content, fresh and dry mass, endogenous abscisic acid (ABA; gas chromatography-MS), soluble sugars (high-pressure liquid chromatography), starch and confocal laser microscope observations. This multiscale, integrated analysis was used to unravel early molecular and physiological events involved in SE development. Under unfavorable conditions (4G), the glycolytic pathway was enhanced, possibly in relation to cell proliferation that may be antagonistic to SE development. Under favorable conditions (9G), SEs adapted to culture constraint by activating specific protective pathways, and ABA-mediated molecular and physiological responses promoting embryo development. Our results suggest that on 9G, germin-like protein and ubiquitin-protein ligase could be used as predictive markers of SE development, whereas protein phosphatase 2C could be a biomarker for culture adaptive responses. This is the first characterization of early molecular mechanisms involved in the development of pine SEs following an increase in gellan gum concentration in the maturation medium, and it is also the first report on somatic embryogenesis in conifers combining transcriptomic and proteomic datasets. © 2014 Scandinavian Plant Physiology Society.
Gandhi, Shashank; Haeussler, Maximilian; Razy-Krajka, Florian; Christiaen, Lionel; Stolfi, Alberto
2017-05-01
The CRISPR/Cas9 system has emerged as an important tool for various genome engineering applications. A current obstacle to high throughput applications of CRISPR/Cas9 is the imprecise prediction of highly active single guide RNAs (sgRNAs). We previously implemented the CRISPR/Cas9 system to induce tissue-specific mutations in the tunicate Ciona. In the present study, we designed and tested 83 single guide RNA (sgRNA) vectors targeting 23 genes expressed in the cardiopharyngeal progenitors and surrounding tissues of Ciona embryo. Using high-throughput sequencing of mutagenized alleles, we identified guide sequences that correlate with sgRNA mutagenesis activity and used this information for the rational design of all possible sgRNAs targeting the Ciona transcriptome. We also describe a one-step cloning-free protocol for the assembly of sgRNA expression cassettes. These cassettes can be directly electroporated as unpurified PCR products into Ciona embryos for sgRNA expression in vivo, resulting in high frequency of CRISPR/Cas9-mediated mutagenesis in somatic cells of electroporated embryos. We found a strong correlation between the frequency of an Ebf loss-of-function phenotype and the mutagenesis efficacies of individual Ebf-targeting sgRNAs tested using this method. We anticipate that our approach can be scaled up to systematically design and deliver highly efficient sgRNAs for the tissue-specific investigation of gene functions in Ciona. Copyright © 2017 Elsevier Inc. All rights reserved.
Quantitative developmental transcriptomes of the Mediterranean sea urchin Paracentrotus lividus.
Gildor, Tsvia; Malik, Assaf; Sher, Noa; Avraham, Linor; Ben-Tabou de-Leon, Smadar
2016-02-01
Embryonic development progresses through the timely activation of thousands of differentially activated genes. Quantitative developmental transcriptomes provide the means to relate global patterns of differentially expressed genes to the emerging body plans they generate. The sea urchin is one of the classic model systems for embryogenesis and the models of its developmental gene regulatory networks are of the most comprehensive of their kind. Thus, the sea urchin embryo is an excellent system for studies of its global developmental transcriptional profiles. Here we produced quantitative developmental transcriptomes of the sea urchin Paracentrotus lividus (P. lividus) at seven developmental stages from the fertilized egg to prism stage. We generated de-novo reference transcriptome and identified 29,817 genes that are expressed at this time period. We annotated and quantified gene expression at the different developmental stages and confirmed the reliability of the expression profiles by QPCR measurement of a subset of genes. The progression of embryo development is reflected in the observed global expression patterns and in our principle component analysis. Our study illuminates the rich patterns of gene expression that participate in sea urchin embryogenesis and provide an essential resource for further studies of the dynamic expression of P. lividus genes. Copyright © 2015 Elsevier B.V. All rights reserved.
El Husseini, Nazem; Schlisser, Ava E; Hales, Barbara F
2016-08-01
Hydroxyurea, an anticancer agent and potent teratogen, induces oxidative stress and activates a DNA damage response pathway in the gestation day (GD) 9 mouse embryo. To delineate the stress response pathways activated by this drug, we investigated the effect of hydroxyurea exposure on the transcriptome of GD 9 embryos. Timed pregnant CD-1 mice were treated with saline or hydroxyurea (400 mg/kg or 600 mg/kg) on GD 9; embryonic gene and protein expression were examined 3 h later. Microarray analysis revealed that the expression of 1346 probe sets changed significantly in embryos exposed to hydroxyurea compared with controls; the P53 signaling pathway was highly affected. In addition, P53 related family members, P63 and P73, were predicted to be activated and had common and unique downstream targets. Western blot analysis revealed that active phospho-P53 was significantly increased in drug-exposed embryos; confocal microscopy showed that the translocation of phospho-P53 to the nucleus was widespread in the embryo. Furthermore, qRT-PCR showed that the expression of P53-regulated genes (Cdkn1A, Fas, and Trp53inp1) was significantly upregulated in hydroxyurea-exposed embryos; the concentration of the redox sensitive P53INP1 protein was also increased in a hydroxyurea dose-dependent fashion. Thus, hydroxyurea elicits a significant effect on the transcriptome of the organogenesis stage murine embryo, activating several key developmental signaling pathways related to DNA damage and oxidative stress. We propose that the P53 pathway plays a central role in the embryonic stress response and the developmental outcome after teratogen exposure. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Casser, E; Israel, S; Schlatt, S; Nordhoff, V; Boiani, M
2018-05-09
What is the prevalence, reproducibility and biological significance of transcriptomic differences between sister blastomeres of the mouse 2-cell embryo? Sister 2-cell stage blastomeres are distinguishable from each other by mRNA analysis, attesting to the fact that differentiation starts mostly early in the mouse embryo; however, the interblastomere differences are poorly reproducible and invoke the combinatorial effects of known and new mechanisms of blastomere diversification. Transcriptomic datasets for single blastomeres in mice have been available for years but have never been systematically analysed together, although such an analysis may shed light onto some unclarified topics of early mammalian development. Two unknowns that remain are at which stage embryonic blastomeres start to diversify from each other and what is the molecular origin of that difference. At the earliest postzygotic stage, the 2-cell stage, opinions differ regarding the answer to these questions; one group claims that the first zygotic division yields two equal blastomeres capable of forming a full organism (totipotency) and another group claims evidence for interblastomere differences reminiscent of the prepatterning found in embryos of lower taxa. Regarding the molecular origin of interblastomere differences, there are four prevalent models which invoke 1) oocyte anisotropy, 2) sperm entry point, 3) partition errors of the transcript pool, and 4) asynchronous embryonic genome activation in the two blastomeres. Seven transcriptomic studies published between 2011 and 2017 were eligible for retrospective analysis, since both blastomeres of the mouse 2-cell embryo had been analysed individually regarding the original pair associations and since the datasets were made available in public repositories. Five of these studies, encompassing a total of 43 pairs of sister blastomeres, were selected for further analyses based on high interblastomere correlations of mRNA levels. A double cut-off was used to select mRNAs that had robust interblastomere differences both within and between embryos (hits). The hits of each study were compared and contrasted with the hits of the other studies using Venn diagrams. The hits shared by at least four of five studies were analysed further by bioinformatics. PubMed was systematically examined for mRNA expression profiles of single 2-cell stage blastomeres in addition to publicly available microarray datasets (GEO, ArrayExpress). Based on the original normalisations, data from seven studies were screened for pairwise sample correlation at the gene level (Spearman), and the top five datasets with the highest correlation were subjected to hierarchical cluster analysis. Interblastomere differences of gene expression were expressed as a ratio of the higher to the lower mRNA level for each pair of blastomeres. A double cut-off was used to make the call of interblastomere difference, accepting genes with mRNA ratios above 2 when observed in at least 50% of the pairs, and discarding the other genes. The proportion of interblastomere differences common to at least four of the five datasets was calculated. Finally, the corresponding gene, pathway and enrichment analyses were performed utilising PANTHER and GORILLA platforms. An average of 17% of genes within the datasets are differently expressed between sister blastomeres, a proportion which falls to 1% when considering the differences that are common to at least four of the five studies. Housekeeping mRNAs were not included in the 17% and 1% gene lists, suggesting that the interblastomere differences do not occur simply by chance. The 1% of shared interblastomere differences comprise 100 genes, of which 35 are consistent with at least one of the four prevalent models of sister blastomere diversification. Bioinformatics analysis of the remaining 65 genes that are not consistent with the four models suggests that at least one more mechanism is at play, potentially related to the endomembrane system. Although there are many dimensions to the issue of reproducibility (biological, experimental, analytical), we consider that the sister blastomeres are poised to escape high interblastomere correlations of mRNA levels, because at least five sources of diversity superimpose on each other, accounting for at least 25 = 32 different states. As a result, interblastomere mRNA differences of a given 2-cell embryo are necessarily difficult to reproduce in another 2-cell embryo. Data were as provided by the original studies (GSE21688, GSE22182, GSE27396, GSE45719, GSE57249, E-MTAB-3321, GSE94050). The original studies present similarities (e.g. fertilization in vivo after ovarian stimulation) as well as differences (e.g. mouse strains, method and timing of blastomere separation). We identified robust mRNA differences between the sister blastomeres, but these differences are underestimated because our double cut-off method works with thresholds and affords more protection against false positives than false negatives. Regarding the false negatives, transcriptome analysis may have captured only part of the interblastomere differences due to: 1) the twofold cut-off not being sensitive enough to detect the remaining part of the interblastomere differences, 2) the detection limit of the transcriptomic methods not being sufficient, or 3) interblastomere differences being oblivious to transcriptomic identification because transcriptional changes are oscillatory or because differences are mediated non-transcriptionally or post-transcriptionally. Regarding the false positives, it seems unlikely that a difference was found just by chance for the same group of transcripts due to the same technical error, given that different laboratories produced the data. It is clear that the sister blastomeres are distinguishable from each other by mRNA analysis even at the 2-cell stage; however, efforts to identify large stable patterns may be in vain. This elicits thoughts about the wisdom of adding new transcriptomic datasets to the ones that already exist; if all transcriptomic datasets produced so far show a reproducibility of 1%, then any future study would probably face the same issue again. Possibly, a solid identification of the 'large stable pattern that should be there but was not found' requires an even larger dataset than the sum of the seven datasets considered here. Conversely, small stable patterns may be easier to identify, but their biological relevance is less obvious. Alternatively, interblastomere differences may not be mediated by nucleic acids but by other cellular components. This study was supported by the Deutsche Forschungsgemeinschaft (grant DFG BO 2540-4-3 to M.B. and grant NO 413/3-3 to V.N.). The authors declare that they have no competing financial interests.
Cheng, Yunqing; Liu, Jianfeng; Zhang, Huidi; Wang, Ju; Zhao, Yixin; Geng, Wanting
2015-01-01
A high ratio of blank fruit in hazelnut (Corylus heterophylla Fisch) is a very common phenomenon that causes serious yield losses in northeast China. The development of blank fruit in the Corylus genus is known to be associated with embryo abortion. However, little is known about the molecular mechanisms responsible for embryo abortion during the nut development stage. Genomic information for C. heterophylla Fisch is not available; therefore, data related to transcriptome and gene expression profiling of developing and abortive ovules are needed. In this study, de novo transcriptome sequencing and RNA-seq analysis were conducted using short-read sequencing technology (Illumina HiSeq 2000). The results of the transcriptome assembly analysis revealed genetic information that was associated with the fruit development stage. Two digital gene expression libraries were constructed, one for a full (normally developing) ovule and one for an empty (abortive) ovule. Transcriptome sequencing and assembly results revealed 55,353 unigenes, including 18,751 clusters and 36,602 singletons. These results were annotated using the public databases NR, NT, Swiss-Prot, KEGG, COG, and GO. Using digital gene expression profiling, gene expression differences in developing and abortive ovules were identified. A total of 1,637 and 715 unigenes were significantly upregulated and downregulated, respectively, in abortive ovules, compared with developing ovules. Quantitative real-time polymerase chain reaction analysis was used in order to verify the differential expression of some genes. The transcriptome and digital gene expression profiling data of normally developing and abortive ovules in hazelnut provide exhaustive information that will improve our understanding of the molecular mechanisms of abortive ovule formation in hazelnut.
Global survey of genomic imprinting by transcriptome sequencing.
Babak, Tomas; Deveale, Brian; Armour, Christopher; Raymond, Christopher; Cleary, Michele A; van der Kooy, Derek; Johnson, Jason M; Lim, Lee P
2008-11-25
Genomic imprinting restricts gene expression to a paternal or maternal allele. To date, approximately 90 imprinted transcripts have been identified in mouse, of which the majority were detected after intense interrogation of clusters of imprinted genes identified by phenotype-driven assays in mice with uniparental disomies [1]. Here we use selective priming and parallel sequencing to measure allelic bias in whole transcriptomes. By distinguishing parent-of-origin bias from strain-specific bias in embryos derived from a reciprocal cross of mice, we constructed a genome-wide map of imprinted transcription. This map was able to objectively locate over 80% of known imprinted loci and allowed the detection and confirmation of six novel imprinted genes. Even in the intensely studied embryonic day 9.5 developmental stage that we analyzed, more than half of all imprinted single-nucleotide polymorphisms did not overlap previously discovered imprinted transcripts; a large fraction of these represent novel noncoding RNAs within known imprinted loci. For example, a previously unnoticed, maternally expressed antisense transcript was mapped within the Grb10 locus. This study demonstrates the feasibility of using transcriptome sequencing for mapping of imprinted gene expression in physiologically normal animals. Such an approach will allow researchers to study imprinting without restricting themselves to individual loci or specific transcripts.
Huang, Ruimin; Huang, Youjun; Sun, Zhichao; Huang, Jianqin; Wang, Zhengjia
2017-05-24
Pecan (Carya illinoinensis) is an important woody tree species because of the high content of healthy oil in its nut. Thus far, the pathways and key genes related to oil biosynthesis in developing pecan seeds remain largely unclear. Our analyses revealed that mature pecan embryo accumulated more than 80% oil, in which 90% was unsaturated fatty acids with abundant oleic acid. RNA sequencing generated 84,643 unigenes in three cDNA libraries prepared from pecan embryos collected at 105, 120, and 165 days after flowering (DAF). We identified 153 unigenes associated with lipid biosynthesis, including 107 unigenes for fatty acid biosynthesis, 34 for triacylglycerol biosynthesis, 7 for oil bodies, and 5 for transcription factors involved in oil synthesis. The genes associated with fatty acid synthesis were the most abundantly expressed genes at 120 DAF. Additionally, the biosynthesis of oil began to increase while crude fat contents increased from 16.61 to 74.45% (165 DAF). We identified four SAD, two FAD2, one FAD6, two FAD7, and two FAD8 unigenes responsible for unsaturated fatty acid biosynthesis. However, FAD3 homologues were not detected. Consequently, we inferred that the linolenic acid in developing pecan embryos is generated by FAD7 and FAD8 in plastids rather than FAD3 in endoplasmic reticula. During pecan embryo development, different unigenes are expressed for plastidial and cytosolic glycolysis. Plastidial glycolysis is more relevant to lipid synthesis than cytosolic glycolysis. The 18 most important genes associated with lipid biosynthesis were evaluated in five stages of developing embryos using quantitative PCR (qPCR). The qPCR data were well consistent with their expression in transcriptomic analyses. Our data would be important for the metabolic engineering of pecans to increase oil contents and modify fatty acid composition.
Blastocyst-like structures generated solely from stem cells.
Rivron, Nicolas C; Frias-Aldeguer, Javier; Vrij, Erik J; Boisset, Jean-Charles; Korving, Jeroen; Vivié, Judith; Truckenmüller, Roman K; van Oudenaarden, Alexander; van Blitterswijk, Clemens A; Geijsen, Niels
2018-05-01
The blastocyst (the early mammalian embryo) forms all embryonic and extra-embryonic tissues, including the placenta. It consists of a spherical thin-walled layer, known as the trophectoderm, that surrounds a fluid-filled cavity sheltering the embryonic cells 1 . From mouse blastocysts, it is possible to derive both trophoblast 2 and embryonic stem-cell lines 3 , which are in vitro analogues of the trophectoderm and embryonic compartments, respectively. Here we report that trophoblast and embryonic stem cells cooperate in vitro to form structures that morphologically and transcriptionally resemble embryonic day 3.5 blastocysts, termed blastoids. Like blastocysts, blastoids form from inductive signals that originate from the inner embryonic cells and drive the development of the outer trophectoderm. The nature and function of these signals have been largely unexplored. Genetically and physically uncoupling the embryonic and trophectoderm compartments, along with single-cell transcriptomics, reveals the extensive inventory of embryonic inductions. We specifically show that the embryonic cells maintain trophoblast proliferation and self-renewal, while fine-tuning trophoblast epithelial morphogenesis in part via a BMP4/Nodal-KLF6 axis. Although blastoids do not support the development of bona fide embryos, we demonstrate that embryonic inductions are crucial to form a trophectoderm state that robustly implants and triggers decidualization in utero. Thus, at this stage, the nascent embryo fuels trophectoderm development and implantation.
NASA Astrophysics Data System (ADS)
Xu, Elvis Genbo; Mager, Edward M.; Grosell, Martin; Hazard, E. Starr; Hardiman, Gary; Schlenk, Daniel
2017-03-01
The impacts of Deepwater Horizon (DWH) oil on morphology and function during embryonic development have been documented for a number of fish species, including the economically and ecologically important pelagic species, mahi-mahi (Coryphaena hippurus). However, further investigations on molecular events and pathways responsible for developmental toxicity have been largely restricted due to the limited molecular data available for this species. We sought to establish the de novo transcriptomic database from the embryos and larvae of mahi-mahi exposed to water accommodated fractions (HEWAFs) of two DWH oil types (weathered and source oil), in an effort to advance our understanding of the molecular aspects involved during specific toxicity responses. By high throughput sequencing (HTS), we obtained the first de novo transcriptome of mahi-mahi, with 60,842 assembled transcripts and 30,518 BLAST hits. Among them, 2,345 genes were significantly regulated in 96hpf larvae after exposure to weathered oil. With comparative analysis to a reference-transcriptome-guided approach on gene ontology and tox-pathways, we confirmed the novel approach effective for exploring tox-pathways in non-model species, and also identified a list of co-expressed genes as potential biomarkers which will provide information for the construction of an Adverse Outcome Pathway which could be useful in Ecological Risk Assessments.
A transcriptional blueprint for a spiral-cleaving embryo.
Chou, Hsien-Chao; Pruitt, Margaret M; Bastin, Benjamin R; Schneider, Stephan Q
2016-08-05
The spiral cleavage mode of early development is utilized in over one-third of all animal phyla and generates embryonic cells of different size, position, and fate through a conserved set of stereotypic and invariant asymmetric cell divisions. Despite the widespread use of spiral cleavage, regulatory and molecular features for any spiral-cleaving embryo are largely uncharted. To address this gap we use RNA-sequencing on the spiralian model Platynereis dumerilii to capture and quantify the first complete genome-wide transcriptional landscape of early spiral cleavage. RNA-sequencing datasets from seven stages in early Platynereis development, from the zygote to the protrochophore, are described here including the de novo assembly and annotation of ~17,200 Platynereis genes. Depth and quality of the RNA-sequencing datasets allow the identification of the temporal onset and level of transcription for each annotated gene, even if the expression is restricted to a single cell. Over 4000 transcripts are maternally contributed and cleared by the end of the early spiral cleavage phase. Small early waves of zygotic expression are followed by major waves of thousands of genes, demarcating the maternal to zygotic transition shortly after the completion of spiral cleavages in this annelid species. Our comprehensive stage-specific transcriptional analysis of early embryonic stages in Platynereis elucidates the regulatory genome during early spiral embryogenesis and defines the maternal to zygotic transition in Platynereis embryos. This transcriptome assembly provides the first systems-level view of the transcriptional and regulatory landscape for a spiral-cleaving embryo.
Developmental Transcriptome for a Facultatively Eusocial Bee, Megalopta genalis
Jones, Beryl M.; Wcislo, William T.; Robinson, Gene E.
2015-01-01
Transcriptomes provide excellent foundational resources for mechanistic and evolutionary analyses of complex traits. We present a developmental transcriptome for the facultatively eusocial bee Megalopta genalis, which represents a potential transition point in the evolution of eusociality. A de novo transcriptome assembly of Megalopta genalis was generated using paired-end Illumina sequencing and the Trinity assembler. Males and females of all life stages were aligned to this transcriptome for analysis of gene expression profiles throughout development. Gene Ontology analysis indicates that stage-specific genes are involved in ion transport, cell–cell signaling, and metabolism. A number of distinct biological processes are upregulated in each life stage, and transitions between life stages involve shifts in dominant functional processes, including shifts from transcriptional regulation in embryos to metabolism in larvae, and increased lipid metabolism in adults. We expect that this transcriptome will provide a useful resource for future analyses to better understand the molecular basis of the evolution of eusociality and, more generally, phenotypic plasticity. PMID:26276382
Developmental Transcriptome for a Facultatively Eusocial Bee, Megalopta genalis.
Jones, Beryl M; Wcislo, William T; Robinson, Gene E
2015-08-14
Transcriptomes provide excellent foundational resources for mechanistic and evolutionary analyses of complex traits. We present a developmental transcriptome for the facultatively eusocial bee Megalopta genalis, which represents a potential transition point in the evolution of eusociality. A de novo transcriptome assembly of Megalopta genalis was generated using paired-end Illumina sequencing and the Trinity assembler. Males and females of all life stages were aligned to this transcriptome for analysis of gene expression profiles throughout development. Gene Ontology analysis indicates that stage-specific genes are involved in ion transport, cell-cell signaling, and metabolism. A number of distinct biological processes are upregulated in each life stage, and transitions between life stages involve shifts in dominant functional processes, including shifts from transcriptional regulation in embryos to metabolism in larvae, and increased lipid metabolism in adults. We expect that this transcriptome will provide a useful resource for future analyses to better understand the molecular basis of the evolution of eusociality and, more generally, phenotypic plasticity. Copyright © 2015 Jones et al.
NASA Astrophysics Data System (ADS)
Hui, Min; Cui, Zhaoxia; Liu, Yuan; Song, Chengwen
2017-07-01
In crab, embryogenesis is a complicated developmental program marked by a series of critical events. RNA-Sequencing technology offers developmental biologists a way to identify many more developmental genes than ever before. Here, we present a comprehensive analysis of the transcriptomes of Eriocheir sinensis oosperms (Os) and embryos at the 2-4 cell stage (Cs), which are separated by a cleavage event. A total of 18 923 unigenes were identified, and 403 genes matched with gene ontology (GO) terms related to developmental processes. In total, 432 differentially expressed genes (DEGs) were detected between the two stages. Nine DEGs were specifically expressed at only one stage. These DEGs may be relevant to stage-specific molecular events during development. A number of DEGs related to `hedgehog signaling pathway', `Wnt signaling pathway' `germplasm', `nervous system', `sensory perception' and `segment polarity' were identified as being up-regulated at the Cs stage. The results suggest that these embryonic developmental events begin before the early cleavage event in crabs, and that many of the genes expressed in the two transcriptomes might be maternal genes. Our study provides ample information for further research on the molecular mechanisms underlying crab development.
Cost-effectiveness of single versus double embryo transfer in IVF in relation to female age.
van Loendersloot, Laura L; Moolenaar, Lobke M; van Wely, Madelon; Repping, Sjoerd; Bossuyt, Patrick M; Hompes, Peter G A; van der Veen, Fulco; Mol, Ben Willem J
2017-07-01
To evaluate the cost-effectiveness of single embryo transfer followed by an additional frozen-thawed single embryo transfer, if more embryos are available, as compared to double embryo transfer in relation to female age. We used a decision tree model to evaluate the costs from a healthcare provider perspective and the pregnancy rates of two embryo transfer policies: one fresh single embryo transfer followed by an additional frozen-thawed single embryo transfer, if more embryos are available (strategy I), and double embryo transfer (strategy II). The analysis was performed on an intention-to-treat basis. Sensitivity analyses were carried out to evaluate the robustness of our model and to identify which model parameters had the strongest impact on the results. SET followed by an additional frozen-thawed single embryo transfer if available was dominant, less costly and more effective, over DET in women under 32 years. In women aged 32 or older DET was more effective than SET followed by an additional frozen-thawed single embryo transfer if available but also more costly. SET followed by an additional frozen-thawed single embryo transfer should be the preferred strategy in women under 32 undergoing IVF. The choice for SET followed by an additional frozen-thawed single embryo transfer or DET in women aged 32 or older depends on individual patient preferences and on how much society is willing to pay for an extra child. There is a strong need for a randomized clinical trial comparing the cost and effects of SET followed by an additional frozen-thawed single embryo transfer and DET in the latter category of women. Copyright © 2017 Elsevier B.V. All rights reserved.
Sonnack, Laura; Klawonn, Thorsten; Kriehuber, Ralf; Hollert, Henner; Schäfers, Christoph; Fenske, Martina
2017-12-01
Environmental metals are known to cause harmful effects to fish of which many molecular mechanisms still require elucidation. Particularly concentration dependence of gene expression effects is unclear. Focusing on this matter, zebrafish embryo toxicity tests were used in combination with transcriptomics. Embryos were exposed to three concentrations of copper (CuSO 4 ), cadmium (CdCl 2 ) and cobalt (CoSO 4 ) from just after fertilization until the end of the 48hpf pre- and 96hpf post-hatch stage. The RNA was then analyzed on Agilent's Zebrafish (V3, 4×44K) arrays. Enrichment for GO terms of biological processes illustrated for cadmium that most affected GO terms were represented in all three concentrations, while for cobalt and copper most GO terms were represented in the lowest test concentration only. This suggested a different response to the non-essential cadmium than cobalt and copper. In cobalt and copper treated embryos, many developmental and cellular processes as well as the Wnt and Notch signaling pathways, were found significantly enriched. Also, different exposure concentrations affected varied functional networks. In contrast, the largest clusters of enriched GO terms for all three concentrations of cadmium included responses to cadmium ion, metal ion, xenobiotic stimulus, stress and chemicals. However, concentration dependence of mRNA levels was evident for several genes in all metal exposures. Some of these genes may be indicative of the mechanisms of action of the individual metals in zebrafish embryos. Real-time quantitative RT-PCR (qRT-PCR) verified the microarray data for mmp9, mt2, cldnb and nkx2.2a. Copyright © 2017 Elsevier Inc. All rights reserved.
Xing, Lijuan; Zhu, Ming; Zhang, Min; Li, Wenzong; Jiang, Haiyang; Zou, Junjie; Wang, Lei; Xu, Miaoyun
2017-12-14
Maize kernel development is a complex biological process that involves the temporal and spatial expression of many genes and fine gene regulation at a transcriptional and post-transcriptional level, and microRNAs (miRNAs) play vital roles during this process. To gain insight into miRNA-mediated regulation of maize kernel development, a deep-sequencing technique was used to investigate the dynamic expression of miRNAs in the embryo and endosperm at three developmental stages in B73. By miRNA transcriptomic analysis, we characterized 132 known miRNAs and six novel miRNAs in developing maize kernel, among which, 15 and 14 miRNAs were commonly differentially expressed between the embryo and endosperm at 9 days after pollination (DAP), 15 DAP and 20 DAP respectively. Conserved miRNA families such as miR159, miR160, miR166, miR390, miR319, miR528 and miR529 were highly expressed in developing embryos; miR164, miR171, miR393 and miR2118 were highly expressed in developing endosperm. Genes targeted by those highly expressed miRNAs were found to be largely related to a regulation category, including the transcription, macromolecule biosynthetic and metabolic process in the embryo as well as the vitamin biosynthetic and metabolic process in the endosperm. Quantitative reverse transcription-PCR (qRT-PCR) analysis showed that these miRNAs displayed a negative correlation with the levels of their corresponding target genes. Importantly, our findings revealed that members of the miR169 family were highly and dynamically expressed in the developing kernel, which will help to exploit new players functioning in maize kernel development.
Hodar, Christian; Zuñiga, Alejandro; Pulgar, Rodrigo; Travisany, Dante; Chacon, Carlos; Pino, Michael; Maass, Alejandro; Cambiazo, Verónica
2014-02-10
In the early Drosophila melanogaster embryo, Dpp, a secreted molecule that belongs to the TGF-β superfamily of growth factors, activates a set of downstream genes to subdivide the dorsal region into amnioserosa and dorsal epidermis. Here, we examined the expression pattern and transcriptional regulation of Dtg, a new target gene of Dpp signaling pathway that is required for proper amnioserosa differentiation. We showed that the expression of Dtg was controlled by Dpp and characterized a 524-bp enhancer that mediated expression in the dorsal midline, as well as, in the differentiated amnioserosa in transgenic reporter embryos. This enhancer contained a highly conserved region of 48-bp in which bioinformatic predictions and in vitro assays identified three Mad binding motifs. Mutational analysis revealed that these three motifs were necessary for proper expression of a reporter gene in transgenic embryos, suggesting that short and highly conserved genomic sequences may be indicative of functional regulatory regions in D. melanogaster genes. Dtg orthologs were not detected in basal lineages of Dipterans, which unlike D. melanogaster develop two extra-embryonic membranes, amnion and serosa, nevertheless Dtg orthologs were identified in the transcriptome of Musca domestica, in which dorsal ectoderm patterning leads to the formation of a single extra-embryonic membrane. These results suggest that Dtg was recruited as a new component of the network that controls dorsal ectoderm patterning in the lineage leading to higher Cyclorrhaphan flies, such as D. melanogaster and M. domestica. Copyright © 2013 Elsevier B.V. All rights reserved.
Dong, Ji; Hu, Yuqiong; Fan, Xiaoying; Wu, Xinglong; Mao, Yunuo; Hu, Boqiang; Guo, Hongshan; Wen, Lu; Tang, Fuchou
2018-03-14
Organogenesis is crucial for proper organ formation during mammalian embryonic development. However, the similarities and shared features between different organs and the cellular heterogeneity during this process at single-cell resolution remain elusive. We perform single-cell RNA sequencing analysis of 1916 individual cells from eight organs and tissues of E9.5 to E11.5 mouse embryos, namely, the forebrain, hindbrain, skin, heart, somite, lung, liver, and intestine. Based on the regulatory activities rather than the expression patterns, all cells analyzed can be well classified into four major groups with epithelial, mesodermal, hematopoietic, and neuronal identities. For different organs within the same group, the similarities and differences of their features and developmental paths are revealed and reconstructed. We identify mutual interactions between epithelial and mesenchymal cells and detect epithelial cells with prevalent mesenchymal features during organogenesis, which are similar to the features of intermediate epithelial/mesenchymal cells during tumorigenesis. The comprehensive transcriptome at single-cell resolution profiled in our study paves the way for future mechanistic studies of the gene-regulatory networks governing mammalian organogenesis.
2013-01-01
Background While initially sensitive to heat shock, the bovine embryo gains thermal resistance as it progresses through development so that physiological heat shock has little effect on development to the blastocyst stage by Day 5 after insemination. Here, experiments using 3’ tag digital gene expression (3’DGE) and real-time PCR were conducted to determine changes in the transcriptome of morula-stage bovine embryos in response to heat shock (40 degrees C for 8 h) that could be associated with thermotolerance. Results Using 3’DGE, expression of 173 genes were modified by heat shock, with 94 genes upregulated by heat shock and 79 genes downregulated by heat shock. A total of 38 differentially-regulated genes were associated with the ubiquitin protein, UBC. Heat shock increased expression of one heat shock protein gene, HSPB11, and one heat shock protein binding protein, HSPBP1, tended to increase expression of HSPA1A and HSPB1, but did not affect expression of 64 other genes encoding heat shock proteins, heat shock transcription factors or proteins interacting with heat shock proteins. Moreover, heat shock increased expression of five genes associated with oxidative stress (AKR7A2, CBR1, GGH, GSTA4, and MAP2K5), decreased expression of HIF3A, but did not affect expression of 42 other genes related to free radical metabolism. Heat shock also had little effect on genes involved in embryonic development. Effects of heat shock for 2, 4 and 8 h on selected heat shock protein and antioxidant genes were also evaluated by real-time PCR. Heat shock increased steady-state amounts of mRNA for HSPA1A (P<0.05) and tended to increase expression of HSP90AA1 (P<0.07) but had no effect on expression of SOD1 or CAT. Conclusions Changes in the transcriptome of the heat-shocked bovine morula indicate that the embryo is largely resistant to effects of heat shock. As a result, transcription of genes involved in thermal protection is muted and there is little disruption of gene networks involved in embryonic development. It is likely that the increased resistance of morula-stage embryos to heat shock as compared to embryos at earlier stages of development is due in part to developmental acquisition of mechanisms to prevent accumulation of denatured proteins and free radical damage. PMID:23320502
Kelley, Rebecca L; Gardner, David K
2017-05-01
Single embryo culture is suboptimal compared with group culture, but necessary for embryo monitoring, and culture systems should be improved for single embryos. Pronucleate mouse embryos were used to assess the effect of culture conditions on single embryo development. Single culture either before or after compaction reduced cell numbers (112.2 ± 3.1; 110.2 ± 3.5) compared with group culture throughout (127.0 ± 3.4; P < 0.05). Reduction of media volume from 20 µl to 2 µl increased blastocyst cell numbers in single embryos cultured in 5% oxygen (84.4 ± 3.2 versus 97.8 ± 2.8; P < 0.05), but not in 20% oxygen (55.2 ± 2.9 versus 57.1 ± 2.8). Culture in microwell plates for the EmbryoScope and Primo Vision time-lapse systems changed cleavage timings and increased inner cell mass cell number (24.1 ± 1.0; 23.4 ± 1.2) compared with a 2 µl microdrop (18.4 ± 1.0; P < 0.05). Addition of embryo-conditioned media to single embryos increased hatching rate and blastocyst cell number (91.5 ± 4.7 versus 113.1 ± 4.4; P < 0.01). Single culture before or after compaction is therefore detrimental; oxygen, media volume and microwells influence single embryo development; and embryo-conditioned media may substitute for group culture. Copyright © 2017 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Liu, Qiwei; Li, Yumei; Feng, Yun; Liu, Chaojie; Ma, Jieliang; Li, Yifei; Xiang, Huifen; Ji, Yazhong; Cao, Yunxia; Tong, Xiaowen; Xue, Zhigang
2016-01-01
Polycystic ovary syndrome (PCOS) is a common frequent endocrine disorder among women of reproductive age. Although assisted reproductive techniques (ARTs) are used to address subfertility in PCOS women, their effectiveness is not clear. Our aim was to compare transcriptomic profiles of oocytes and cumulus cells (CCs) between women with and without PCOS, and assess the effectiveness of ARTs in treating PCOS patients. We collected oocytes and CCs from 16 patients with and without PCOS patients to categorize them into 6 groups according to oocyte nuclear maturation. Transcriptional gene expression of oocyte and CCs was determined via single-cell RNA sequencing. The ratio of fertilization and cleavage was higher in PCOS patients than in non-PCOS patients undergoing ARTs, and there was no difference in the number of high-quality embryos between the groups. Differentially expressed genes including PPP2R1A, PDGFRA, EGFR, GJA1, PTGS2, TNFAIP6, TGF-β1, CAV1, INHBB et al. were investigated as potential causes of PCOS oocytes and CCs disorder at early stages, but their expression returned to the normal level at the metaphase II (MII) stage via ARTs. In conclusion, ARTs can improve the quality of cumulus-oocyte complex (COC) and increase the ratio of fertilization and cleavage in PCOS women. PMID:28004769
Liu, Qiwei; Li, Yumei; Feng, Yun; Liu, Chaojie; Ma, Jieliang; Li, Yifei; Xiang, Huifen; Ji, Yazhong; Cao, Yunxia; Tong, Xiaowen; Xue, Zhigang
2016-12-22
Polycystic ovary syndrome (PCOS) is a common frequent endocrine disorder among women of reproductive age. Although assisted reproductive techniques (ARTs) are used to address subfertility in PCOS women, their effectiveness is not clear. Our aim was to compare transcriptomic profiles of oocytes and cumulus cells (CCs) between women with and without PCOS, and assess the effectiveness of ARTs in treating PCOS patients. We collected oocytes and CCs from 16 patients with and without PCOS patients to categorize them into 6 groups according to oocyte nuclear maturation. Transcriptional gene expression of oocyte and CCs was determined via single-cell RNA sequencing. The ratio of fertilization and cleavage was higher in PCOS patients than in non-PCOS patients undergoing ARTs, and there was no difference in the number of high-quality embryos between the groups. Differentially expressed genes including PPP2R1A, PDGFRA, EGFR, GJA1, PTGS2, TNFAIP6, TGF-β1, CAV1, INHBB et al. were investigated as potential causes of PCOS oocytes and CCs disorder at early stages, but their expression returned to the normal level at the metaphase II (MII) stage via ARTs. In conclusion, ARTs can improve the quality of cumulus-oocyte complex (COC) and increase the ratio of fertilization and cleavage in PCOS women.
Improved evidence-based genome-scale metabolic models for maize leaf, embryo, and endosperm
Seaver, Samuel M. D.; Bradbury, Louis M. T.; Frelin, Océane; Zarecki, Raphy; Ruppin, Eytan; Hanson, Andrew D.; Henry, Christopher S.
2015-01-01
There is a growing demand for genome-scale metabolic reconstructions for plants, fueled by the need to understand the metabolic basis of crop yield and by progress in genome and transcriptome sequencing. Methods are also required to enable the interpretation of plant transcriptome data to study how cellular metabolic activity varies under different growth conditions or even within different organs, tissues, and developmental stages. Such methods depend extensively on the accuracy with which genes have been mapped to the biochemical reactions in the plant metabolic pathways. Errors in these mappings lead to metabolic reconstructions with an inflated number of reactions and possible generation of unreliable metabolic phenotype predictions. Here we introduce a new evidence-based genome-scale metabolic reconstruction of maize, with significant improvements in the quality of the gene-reaction associations included within our model. We also present a new approach for applying our model to predict active metabolic genes based on transcriptome data. This method includes a minimal set of reactions associated with low expression genes to enable activity of a maximum number of reactions associated with high expression genes. We apply this method to construct an organ-specific model for the maize leaf, and tissue specific models for maize embryo and endosperm cells. We validate our models using fluxomics data for the endosperm and embryo, demonstrating an improved capacity of our models to fit the available fluxomics data. All models are publicly available via the DOE Systems Biology Knowledgebase and PlantSEED, and our new method is generally applicable for analysis transcript profiles from any plant, paving the way for further in silico studies with a wide variety of plant genomes. PMID:25806041
Improved evidence-based genome-scale metabolic models for maize leaf, embryo, and endosperm
Seaver, Samuel M.D.; Bradbury, Louis M.T.; Frelin, Océane; ...
2015-03-10
There is a growing demand for genome-scale metabolic reconstructions for plants, fueled by the need to understand the metabolic basis of crop yield and by progress in genome and transcriptome sequencing. Methods are also required to enable the interpretation of plant transcriptome data to study how cellular metabolic activity varies under different growth conditions or even within different organs, tissues, and developmental stages. Such methods depend extensively on the accuracy with which genes have been mapped to the biochemical reactions in the plant metabolic pathways. Errors in these mappings lead to metabolic reconstructions with an inflated number of reactions andmore » possible generation of unreliable metabolic phenotype predictions. Here we introduce a new evidence-based genome-scale metabolic reconstruction of maize, with significant improvements in the quality of the gene-reaction associations included within our model. We also present a new approach for applying our model to predict active metabolic genes based on transcriptome data. This method includes a minimal set of reactions associated with low expression genes to enable activity of a maximum number of reactions associated with high expression genes. We apply this method to construct an organ-specific model for the maize leaf, and tissue specific models for maize embryo and endosperm cells. We validate our models using fluxomics data for the endosperm and embryo, demonstrating an improved capacity of our models to fit the available fluxomics data. All models are publicly available via the DOE Systems Biology Knowledgebase and PlantSEED, and our new method is generally applicable for analysis transcript profiles from any plant, paving the way for further in silico studies with a wide variety of plant genomes.« less
Lv, Zengpeng; Fan, Hao; Zhang, Beibei; Ning, Chao; Xing, Kun; Guo, Yuming
2018-03-08
Genistein (GEN) is a type of isoflavone mainly derived from soy products. In this experiment, we added 40 and 400 mg/kg GEN to the diet of laying broiler breeder hens to clarify the maternal effects of GEN on the development and metabolism of chick embryos. GEN treatment at 40 mg/kg increased embryonic length, weight, and liver index, as well as the width of the proliferative zone in the tibial growth plate of chick embryos. Gene ontology (GO) cluster analysis of the hepatic transcriptome showed that GEN treatment promoted embryonic development and cell proliferation. Low-dose GEN treatment increased insulin growth factor-binding protein (IGFBP)3 mRNA expression in the embryonic liver, whereas high-dose GEN treatment increased IGFBP5 expression and activated the apoptosis and protein tyrosine kinase signaling pathways. Furthermore, adding supplemental GEN to the diet of hens promoted the glycolysis process in the embryonic liver through the insulin-signaling pathway, upregulated target genes (phosphoglucomutase-2, hexokinase 1, dihydroxyacetone phosphate by aldolase, phosphofructokinase, platelet, and enolase 2), and enhanced the transport of carboxylic acids and cholesterol and the synthesis of unsaturated fatty acid (arachidonic acid) in the embryonic liver through upregulation of liver X receptor, sterol regulatory element-binding protein 1, and patatin-like phospholipase A. Additionally, GEN treatment increased fatty acid β-oxidation and Na + /K + -ATPase activity in the embryonic liver through activation of peroxisome proliferator-activated receptors (PPARs; PPARα and PPARδ) and the AMPK signaling pathway, which could provide energy for embryonic development. In addition, GEN treatment in hens increased superoxide dismutase activity and metallothionein expression in the chick embryonic liver and promoted lymphocyte proliferation through upregulation of mRNA expression of CDKN1A, IL12RB1, Sox11, PRKAR1A, PRKCQ, and TCF3. The improved immunity and antioxidant capacity, as a result of maternal GEN effects, was conducive to embryonic development. In conclusion, the addition of GEN to the diet of laying broiler breeder hens significantly promoted the development and metabolism of chick embryos.-Lv, Z., Fan, H., Zhang, B., Ning, C., Xing, K., Guo, Y. Dietary genistein supplementation in laying broiler breeder hens alters the development and metabolism of offspring embryos as revealed by hepatic transcriptome analysis.
The transcriptional landscape of hematopoietic stem cell ontogeny
McKinney-Freeman, Shannon; Cahan, Patrick; Li, Hu; Lacadie, Scott A.; Huang, Hsuan-Ting; Curran, Matthew; Loewer, Sabine; Naveiras, Olaia; Kathrein, Katie L.; Konantz, Martina; Langdon, Erin M.; Lengerke, Claudia; Zon, Leonard I.; Collins, James J.; Daley, George Q.
2012-01-01
Transcriptome analysis of adult hematopoietic stem cells (HSC) and their progeny has revealed mechanisms of blood differentiation and leukemogenesis, but a similar analysis of HSC development is lacking. Here, we acquired the transcriptomes of developing HSC purified from >2500 murine embryos and adult mice. We found that embryonic hematopoietic elements clustered into three distinct transcriptional states characteristic of the definitive yolk sac, HSCs undergoing specification, and definitive HSCs. We applied a network biology-based analysis to reconstruct the gene regulatory networks of sequential stages of HSC development and functionally validated candidate transcriptional regulators of HSC ontogeny by morpholino-mediated knock-down in zebrafish embryos. Moreover, we found that HSCs from in vitro differentiated embryonic stem cells closely resemble definitive HSC, yet lack a Notch-signaling signature, likely accounting for their defective lymphopoiesis. Our analysis and web resource (http://hsc.hms.harvard.edu) will enhance efforts to identify regulators of HSC ontogeny and facilitate the engineering of hematopoietic specification. PMID:23122293
Whittington, Camilla M; O'Meally, Denis; Laird, Melanie K; Belov, Katherine; Thompson, Michael B; McAllan, Bronwyn M
2018-02-05
Early pregnancy is a critical time for successful reproduction; up to half of human pregnancies fail before the development of the definitive chorioallantoic placenta. Unlike the situation in eutherian mammals, marsupial pregnancy is characterised by a long pre-implantation period prior to the development of the short-lived placenta, making them ideal models for study of the uterine environment promoting embryonic survival pre-implantation. Here we present a transcriptomic study of pre-implantation marsupial pregnancy, and identify differentially expressed genes in the Sminthopsis crassicaudata uterus involved in metabolism and biosynthesis, transport, immunity, tissue remodelling, and uterine receptivity. Interestingly, almost one quarter of the top 50 genes that are differentially upregulated in early pregnancy are putatively involved in histotrophy, highlighting the importance of nutrient transport to the conceptus prior to the development of the placenta. This work furthers our understanding of the mechanisms underlying survival of pre-implantation embryos in the earliest live bearing ancestors of mammals.
Pandian, Z; Bhattacharya, S; Ozturk, O; Serour, G I; Templeton, A
2004-10-18
The traditional reliance on the transfer of multiple embryos during in vitro fertilisation (IVF) in order to maximise the chance of pregnancy, has resulted in increasing rates of multiple pregnancies. Women undergoing IVF had a 20 - fold increased risk of twins and 400 - fold increased risk of higher order pregnancies (Martin 1998). The maternal and perinatal morbidity and mortality as well as national health service costs associated with multiple pregnancies is significantly high in comparison with singleton births (Luke 1992; Callahan 1994; Goldfarb 1996). Single embryo transfer is now being considered as an effective means of reducing this iatrogenic complication. This systematic review evaluates the effectiveness of elective two embryo transfer in comparison with single and more than two embryo transfer following IVF and ICSI (intra cytoplasmic sperm injection) treatment. The aim of this review is to determine, whether in couples who undergo IVF/ICSI: (1) the elective transfer of two embryos improves the probability of livebirth compared with: (a) Single embryo transfer, (b) Three embryo transfer or (c) Four embryo transfer.(2) the elective transfer of three embryos improves the probability of livebirth compared with: (a) Single embryo transfer, or (b) Four embryo transfer, We searched the Cochrane Menstrual Disorders and Subfertility Group's trials register (searched June 2003), the Cochrane Central Register of Controlled Trials (The Cochrane Library, Issue 4, 2003), MEDLINE (1970 to 2003), EMBASE (1985 to 2003) and reference lists of articles. We also handsearched relevant conference proceedings and contacted researchers in the field. Only randomised controlled trials were included. Two reviewers independently assessed eligibility and quality of trials. We found no studies that compared a policy of transferring multiple embryos on one cycle versus a policy of cryo- preservation and transfer of a single embryo over multiple cycles. We also found no trials comparing transfer of two versus three embryos. Three small, poorly reported trials compared transfer of two versus one embryo in a single cycle, and one small, poorly reported trial compared transfer of two versus four embryos in a single cycle. The clinical pregnancy rate per woman/couple associated with two embryo transfer was significantly higher compared to single embryo transfer (OR 2.08, 95% CI 1.24 to 3.50; test for overall effect p = 0.006). The live birth rate per woman/couple associated with two embryo transfer was also significantly higher than that associated with single embryo transfer (OR 1.90, 95% CI 1.12 to 3.22, test for overall effect p=0.02). The multiple pregnancy rate was significantly lower in women who had single embryo transfer (OR 9.97, 95% CI 2.61 to 38.19; p = 0.0008). The effectiveness of double embryo transfer versus four embryo transfer was tested in a single trial. There was no statistically significant differences in the clinical pregnancy rate (OR 0.75, 95% CI 0.26 to 2.16; p=0.6), and multiple pregnancy rates (OR 0.44. 95% CI 0.10 to 1.97; p = 0.28) between the two groups. The livebirth rate in the four embryo transfer group was higher compared to the two embryo transfer group, but the results were not statistically significant (OR 0.35, 95% CI 0.11 to 1.05; p = 0.06). The results of this systematic review suggest that live birth and pregnancy rates following single embryo transfer are lower than those following double embryo transfer as are the chances of multiple pregnancy including twins. As such, it is unlikely that the conclusions are robust enough to catalyse a change in clinical practice. The studies included are limited by their small sample size, so that even large differences might be hidden. Cumulative livebirth rates are seldom reported. The data were inadequate to draw conclusions about single embryo transfer and first frozen single embryo transfer (1FZET) or subsequent single frozen embryo transfers. Until more evidence is available single embryo transfer may not be the preferred choice for all patients undergoing IVF/ICSI. Clinicians may need to individualise protocols for couples based on their risks of multiple pregnancy. A definitive pragmatic, large multi centre randomised controlled trial comparing single embryo versus double embryo transfer in terms of clinical and cost effectiveness as well as acceptability is required. The primary outcome measured should be cumulative livebirth per woman/couple.
Comparative Transcriptomics of Arabidopsis thaliana Sperm Cells
USDA-ARS?s Scientific Manuscript database
In flowering plants the two sperm cells are embedded within the cytoplasm of the growing pollen tube and as such are passively transported to the embryo sac, wherein double fertilization occurs upon their release. Understanding the mechanisms and conditions by which male gametes mature and take part...
Krendl, Christian; Shaposhnikov, Dmitry; Rishko, Valentyna; Ori, Chaido; Ziegenhain, Christoph; Sass, Steffen; Simon, Lukas; Müller, Nikola S.; Straub, Tobias; Brooks, Kelsey E.; Chavez, Shawn L.; Enard, Wolfgang; Theis, Fabian J.; Drukker, Micha
2017-01-01
To elucidate the molecular basis of BMP4-induced differentiation of human pluripotent stem cells (PSCs) toward progeny with trophectoderm characteristics, we produced transcriptome, epigenome H3K4me3, H3K27me3, and CpG methylation maps of trophoblast progenitors, purified using the surface marker APA. We combined them with the temporally resolved transcriptome of the preprogenitor phase and of single APA+ cells. This revealed a circuit of bivalent TFAP2A, TFAP2C, GATA2, and GATA3 transcription factors, coined collectively the “trophectoderm four” (TEtra), which are also present in human trophectoderm in vivo. At the onset of differentiation, the TEtra factors occupy multiple sites in epigenetically inactive placental genes and in OCT4. Functional manipulation of GATA3 and TFAP2A indicated that they directly couple trophoblast-specific gene induction with suppression of pluripotency. In accordance, knocking down GATA3 in primate embryos resulted in a failure to form trophectoderm. The discovery of the TEtra circuit indicates how trophectoderm commitment is regulated in human embryogenesis. PMID:29078328
Nuclear Reprogramming: Kinetics of Cell Cycle and Metabolic Progression as Determinants of Success
Balbach, Sebastian Thomas; Esteves, Telma Cristina; Houghton, Franchesca Dawn; Siatkowski, Marcin; Pfeiffer, Martin Johannes; Tsurumi, Chizuko; Kanzler, Benoit; Fuellen, Georg; Boiani, Michele
2012-01-01
Establishment of totipotency after somatic cell nuclear transfer (NT) requires not only reprogramming of gene expression, but also conversion of the cell cycle from quiescence to the precisely timed sequence of embryonic cleavage. Inadequate adaptation of the somatic nucleus to the embryonic cell cycle regime may lay the foundation for NT embryo failure and their reported lower cell counts. We combined bright field and fluorescence imaging of histone H2b-GFP expressing mouse embryos, to record cell divisions up to the blastocyst stage. This allowed us to quantitatively analyze cleavage kinetics of cloned embryos and revealed an extended and inconstant duration of the second and third cell cycles compared to fertilized controls generated by intracytoplasmic sperm injection (ICSI). Compared to fertilized embryos, slow and fast cleaving NT embryos presented similar rates of errors in M phase, but were considerably less tolerant to mitotic errors and underwent cleavage arrest. Although NT embryos vary substantially in their speed of cell cycle progression, transcriptome analysis did not detect systematic differences between fast and slow NT embryos. Profiling of amino acid turnover during pre-implantation development revealed that NT embryos consume lower amounts of amino acids, in particular arginine, than fertilized embryos until morula stage. An increased arginine supplementation enhanced development to blastocyst and increased embryo cell numbers. We conclude that a cell cycle delay, which is independent of pluripotency marker reactivation, and metabolic restraints reduce cell counts of NT embryos and impede their development. PMID:22530006
Estrogen signaling is important for vertebrate embryonic development. Here we have used zebrafish (Danio rerio) as a vertebrate model to analyze estrogen signaling during development. Zebrafish embryos were exposed to 1 μM 17β-estradiol (E2) or vehicle from 3 hours to 4 days post...
Transcriptomic changes in zebrafish embryos and larvae following benzo[a]pyrene exposure
USDA-ARS?s Scientific Manuscript database
Benzo[a]pyrene (BaP) is an environmentally relevant carcinogenic and endocrine disrupting compound that causes immediate, long-term, and multigenerational health deficits in mammals and fish. Previously, we found that BaP alters DNA methylation patterns in developing zebrafish, which may affect gene...
Establishment of mouse expanded potential stem cells
Gao, Xuefei; Antunes, Liliana; Yu, Yong; Zhu, Zhexin; Wang, Juexuan; Kolodziejczyk, Aleksandra A.; Campos, Lia S.; Wang, Cui; Yang, Fengtang; Zhong, Zhen; Fu, Beiyuan; Eckersley-Maslin, Melanie A.; Woods, Michael; Tanaka, Yosuke; Chen, Xi; Wilkinson, Adam C.; Bussell, James; White, Jacqui; Ramirez-Solis, Ramiro; Reik, Wolf; Göttgens, Berthold; Teichmann, Sarah A.; Tam, Patrick P. L.; Nakauchi, Hiromitsu; Zou, Xiangang; Lu, Liming; Liu, Pentao
2018-01-01
Mouse embryonic stem cells derived from the epiblast1 contribute to the somatic lineages and the germline but are excluded from the extra-embryonic tissues that are derived from the trophectoderm and the primitive endoderm2 upon reintroduction to the blastocyst. Here we report that cultures of expanded potential stem cells can be established from individual eight-cell blastomeres, and by direct conversion of mouse embryonic stem cells and induced pluripotent stem cells. Remarkably, a single expanded potential stem cell can contribute both to the embryo proper and to the trophectoderm lineages in a chimaera assay. Bona fide trophoblast stem cell lines and extra-embryonic endoderm stem cells can be directly derived from expanded potential stem cells in vitro. Molecular analyses of the epigenome and single-cell transcriptome reveal enrichment for blastomere-specific signature and a dynamic DNA methylome in expanded potential stem cells. The generation of mouse expanded potential stem cells highlights the feasibility of establishing expanded potential stem cells for other mammalian species. PMID:29019987
A Protocol for Epigenetic Imprinting Analysis with RNA-Seq Data.
Zou, Jinfeng; Xiang, Daoquan; Datla, Raju; Wang, Edwin
2018-01-01
Genomic imprinting is an epigenetic regulatory mechanism that operates through expression of certain genes from maternal or paternal in a parent-of-origin-specific manner. Imprinted genes have been identified in diverse biological systems that are implicated in some human diseases and in embryonic and seed developmental programs in plants. The molecular underpinning programs and mechanisms involved in imprinting are yet to be explored in depth in plants. The recent advances in RNA-Seq-based methods and technologies offer an opportunity to systematically analyze epigenetic imprinting that operates at the whole genome level in the model and crop plants. We are interested using Arabidopsis model system, to investigate gene expression patterns associated with parent of origin and their implications to imprinting during embryo and seed development. Toward this, we have generated early embryo development RNA-Seq-based transcriptome datasets in F1s from a genetic cross between two diverse Arabidopsis thaliana ecotypes Col-0 and Tsu-1. With the data, we developed a protocol for evaluating the maternal and paternal contributions of genes during the early stages of embryo development after fertilization. This protocol is also designed to consider the contamination from other potential seed tissues, sequencing quality, proper processing of sequenced reads and variant calling, and appropriate inference of the parental contributions based on the parent-of-origin-specific single-nucleotide polymorphisms within the expressed genes. The approach, methods and the protocol developed in this study can be used for evaluating the effects of epigenetic imprinting in plants.
Liu, Yali; Han, Suying; Ding, Xiangming; Li, Xinmin; Zhang, Lifeng; Li, Wanfeng; Xu, Haiyan; Li, Zhexin; Qi, Liwang
2016-11-22
Hydrogen is a therapeutic antioxidant that has been used extensively in clinical trials. It also acts as a bioactive molecule that can alleviate abiotic stress in plants. However, the biological effects of hydrogen in somatic embryos and the underlying molecular basis remain largely unknown. In this study, the morphological and physiological influence of exogenous H₂ treatment during somatic embryogenesis was characterized in Larix leptolepis Gordon. The results showed that exposure to hydrogen increased the proportions of active pro-embryogenic cells and normal somatic embryos. We sequenced mRNA and microRNA (miRNA) libraries to identify global transcriptome changes at different time points during H₂ treatment of larch pro-embryogenic masses (PEMs). A total of 45,393 mRNAs and 315 miRNAs were obtained. Among them, 4253 genes and 96 miRNAs were differentially expressed in the hydrogen-treated libraries compared with the control. Further, a large number of the differentially expressed mRNAs and miRNAs were related to reactive oxygen species (ROS) homeostasis and cell cycle regulation. We also identified 4399 potential target genes for 285 of the miRNAs. The differential expression data and the mRNA-miRNA interaction network described here provide new insights into the molecular mechanisms that determine the performance of PEMs exposed to H₂ during somatic embryogenesis.
Liu, Yali; Han, Suying; Ding, Xiangming; Li, Xinmin; Zhang, Lifeng; Li, Wanfeng; Xu, Haiyan; Li, Zhexin; Qi, Liwang
2016-01-01
Hydrogen is a therapeutic antioxidant that has been used extensively in clinical trials. It also acts as a bioactive molecule that can alleviate abiotic stress in plants. However, the biological effects of hydrogen in somatic embryos and the underlying molecular basis remain largely unknown. In this study, the morphological and physiological influence of exogenous H2 treatment during somatic embryogenesis was characterized in Larix leptolepis Gordon. The results showed that exposure to hydrogen increased the proportions of active pro-embryogenic cells and normal somatic embryos. We sequenced mRNA and microRNA (miRNA) libraries to identify global transcriptome changes at different time points during H2 treatment of larch pro-embryogenic masses (PEMs). A total of 45,393 mRNAs and 315 miRNAs were obtained. Among them, 4253 genes and 96 miRNAs were differentially expressed in the hydrogen-treated libraries compared with the control. Further, a large number of the differentially expressed mRNAs and miRNAs were related to reactive oxygen species (ROS) homeostasis and cell cycle regulation. We also identified 4399 potential target genes for 285 of the miRNAs. The differential expression data and the mRNA-miRNA interaction network described here provide new insights into the molecular mechanisms that determine the performance of PEMs exposed to H2 during somatic embryogenesis. PMID:27879674
Parks, Jason C; Patton, Alyssa L; McCallie, Blair R; Griffin, Darren K; Schoolcraft, William B; Katz-Jaffe, Mandy G
2016-05-01
Corona cells surround the oocyte and maintain a close relationship through transzonal processes and gap junctions, and may be used to assess oocyte competence. In this study, the corona cell transcriptome of individual cumulus oocyte complexes (COCs) was investigated. Isolated corona cells were collected from COCs that developed into euploid blastocysts and were transferred in a subsequent frozen embryo transfer. Ten corona cell samples underwent RNA-sequencing to generate unique gene expression profiles. Live birth was compared with negative implantation after the transfer of a euploid blastocyst using bioinformatics and statistical analysis. Individual corona cell samples produced a mean of 21.2 million sequence reads, and 307 differentially expressed transcrpits (P < 0.05; fold change ≥ 2). Enriched pathway analysis showed Wnt signalling, mitogen-activated protein kinases signalling, focal adhesion and tricarboxylic acid cycle to be affected by implantation outcome. The Wnt/beta-catenin signalling pathway, including genes APC, AXIN and GSK3B, were independently validated by real-time quantitative reverse transcription. Individual, corona cell transcriptome was successfully generated using RNA-sequencing. Key genes and signalling pathways were identified in association with implantation outcome after the transfer of a euploid blastocyst in a frozen embryo transfer. These data could provide novel biomarkers for the non-invasive assessment of embryo viability. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Ulbrich, Susanne E; Groebner, Anna E; Bauersachs, Stefan
2013-01-01
The development of a fertilized oocyte into a differentiated multi-cellular organism is a major challenge with regard to the orchestration of the expression of the mammalian genome. Highly complex networks of genes are temporally and spatially regulated during cellular differentiation to generate specific cell types. Embryonic development is critically influenced by external impacts in the female reproductive tract. A most critical phase of pregnancy in mammals is the pre- and peri-implantation period, during which the uterine environment plays a crucial role in supporting the development of the conceptus. The analytical description of the transcriptome, proteome and metabolome of the embryo-maternal interface is a prerequisite for the understanding of the complex regulatory processes taking place during this time. This review lines out potentials and limitations of different approaches to unravel the determinants of endometrial receptivity in cattle, the pig and the horse. Suitable in vivo and in vitro models, which have been used to elucidate factors participating in the embryo-maternal dialog are discussed. Taken together, transcriptome analyses and specified selective candidate gene driven approaches contribute to the understanding of endometrial function. The endometrium as sensor and driver of fertility may indicate the qualitative and quantitative nature of signaling molecules sent by the early embryo and in turn, accordingly impact on embryonic development. Copyright © 2012 Elsevier Inc. All rights reserved.
Lovatt, Ditte; Ruble, Brittani K.; Lee, Jaehee; Dueck, Hannah; Kim, Tae Kyung; Fisher, Stephen; Francis, Chantal; Spaethling, Jennifer M.; Wolf, John A.; Grady, M. Sean; Ulyanova, Alexandra V.; Yeldell, Sean B.; Griepenburg, Julianne C.; Buckley, Peter T.; Kim, Junhyong; Sul, Jai-Yoon; Dmochowski, Ivan J.; Eberwine, James
2014-01-01
Transcriptome profiling is an indispensable tool in advancing the understanding of single cell biology, but depends upon methods capable of isolating mRNA at the spatial resolution of a single cell. Current capture methods lack sufficient spatial resolution to isolate mRNA from individual in vivo resident cells without damaging adjacent tissue. Because of this limitation, it has been difficult to assess the influence of the microenvironment on the transcriptome of individual neurons. Here, we engineered a Transcriptome In Vivo Analysis (TIVA)-tag, which upon photoactivation enables mRNA capture from single cells in live tissue. Using the TIVA-tag in combination with RNA-seq to analyze transcriptome variance among single dispersed cells and in vivo resident mouse and human neurons, we show that the tissue microenvironment shapes the transcriptomic landscape of individual cells. The TIVA methodology provides the first noninvasive approach for capturing mRNA from single cells in their natural microenvironment. PMID:24412976
Saeed, Asma; Hashmi, Imran; Zare, Ava; Mehrabani-Zeinabad, Mitra; Achari, Gopal; Habibi, Hamid R
2016-09-18
The purpose of this study was to investigate the efficacy of UV-C direct photolysis of bisphenol A (BPA) as a remediation method of BPA contamination. We used zebrafish embryos as a model organism to test the toxicity and residual biological activity by measuring cytochrome P4501A1 (CYP1A), aromatase B (Aro B) and heat shock proteins (HSP-70) transcript levels. The mRNA levels of CYP1A gene increased about two fold while exposure of zebrafish embryos at 72 hpf resulted in significant induction (P = 0.048) of Aro B at 100 µg/L of BPA. Exposure of zebrafish embryos at 72 hpf to increasing concentrations of BPA resulted in significant induction (P = 0.0031) of HSP-70 transcript level. UV treatment of BPA resulted in a significant reduction in toxicity by reducing mortality of zebrafish embryos. The results suggest that UV-C direct photolysis may be an effective method for remediation of BPA contamination. Further studies will be necessary for better understanding of the identity and relative activity of the UV degradation by-products.
Analysis of Litopenaeus vannamei Transcriptome Using the Next-Generation DNA Sequencing Technique
Li, Chaozheng; Weng, Shaoping; Chen, Yonggui; Yu, Xiaoqiang; Lü, Ling; Zhang, Haiqing; He, Jianguo; Xu, Xiaopeng
2012-01-01
Background Pacific white shrimp (Litopenaeus vannamei), the major species of farmed shrimps in the world, has been attracting extensive studies, which require more and more genome background knowledge. The now available transcriptome data of L. vannamei are insufficient for research requirements, and have not been adequately assembled and annotated. Methodology/Principal Findings This is the first study that used a next-generation high-throughput DNA sequencing technique, the Solexa/Illumina GA II method, to analyze the transcriptome from whole bodies of L. vannamei larvae. More than 2.4 Gb of raw data were generated, and 109,169 unigenes with a mean length of 396 bp were assembled using the SOAP denovo software. 73,505 unigenes (>200 bp) with good quality sequences were selected and subjected to annotation analysis, among which 37.80% can be matched in NCBI Nr database, 37.3% matched in Swissprot, and 44.1% matched in TrEMBL. Using BLAST and BLAST2Go softwares, 11,153 unigenes were classified into 25 Clusters of Orthologous Groups of proteins (COG) categories, 8171 unigenes were assigned into 51 Gene ontology (GO) functional groups, and 18,154 unigenes were divided into 220 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. To primarily verify part of the results of assembly and annotations, 12 assembled unigenes that are homologous to many embryo development-related genes were chosen and subjected to RT-PCR for electrophoresis and Sanger sequencing analyses, and to real-time PCR for expression profile analyses during embryo development. Conclusions/Significance The L. vannamei transcriptome analyzed using the next-generation sequencing technique enriches the information of L. vannamei genes, which will facilitate our understanding of the genome background of crustaceans, and promote the studies on L. vannamei. PMID:23071809
Zhang, Yu; Peng, Lifang; Wu, Ya; Shen, Yanyue; Wu, Xiaoming; Wang, Jianbo
2014-11-01
Embryo development represents a crucial developmental period in the life cycle of flowering plants. To gain insights into the genetic programs that control embryo development in Brassica rapa L., RNA sequencing technology was used to perform transcriptome profiling analysis of B. rapa developing embryos. The results generated 42,906,229 sequence reads aligned with 32,941 genes. In total, 27,760, 28,871, 28,384, and 25,653 genes were identified from embryos at globular, heart, early cotyledon, and mature developmental stages, respectively, and analysis between stages revealed a subset of stage-specific genes. We next investigated 9,884 differentially expressed genes with more than fivefold changes in expression and false discovery rate ≤ 0.001 from three adjacent-stage comparisons; 1,514, 3,831, and 6,633 genes were detected between globular and heart stage embryo libraries, heart stage and early cotyledon stage, and early cotyledon and mature stage, respectively. Large numbers of genes related to cellular process, metabolism process, response to stimulus, and biological process were expressed during the early and middle stages of embryo development. Fatty acid biosynthesis, biosynthesis of secondary metabolites, and photosynthesis-related genes were expressed predominantly in embryos at the middle stage. Genes for lipid metabolism and storage proteins were highly expressed in the middle and late stages of embryo development. We also identified 911 transcription factor genes that show differential expression across embryo developmental stages. These results increase our understanding of the complex molecular and cellular events during embryo development in B. rapa and provide a foundation for future studies on other oilseed crops.
Christie, Andrew E.; Fontanilla, Tiana M.; Roncalli, Vittoria; Cieslak, Matthew C.; Lenz, Petra H.
2014-01-01
Neurochemical signaling is a major component of physiological/behavioral control throughout the animal kingdom. Gas transmitters are perhaps the most ancient class of molecules used by nervous systems for chemical communication. Three gases are generally recognized as being produced by neurons: nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S). As part of an ongoing effort to identify and characterize the neurochemical signaling systems of the copepod Calanus finmarchicus, the biomass dominant zooplankton in much of the North Atlantic Ocean, we have mined a de novo assembled transcriptome for sequences encoding the neuronal biosynthetic enzymes of these gases, i.e. nitric oxide synthase (NOS), heme oxygenase (HO) and cystathionine β-synthase (CBS), respectively. Using Drosophila proteins as queries, two NOS-, one HO-, and one CBS-encoding transcripts were identified. Reverse BLAST and structural analyses of the deduced proteins suggest that each is a true member of its respective enzyme family. RNA-Seq data collected from embryos, early nauplii, late nauplii, early copepodites, late copepodites and adults revealed the expression of each transcript to be stage specific: one NOS restricted primarily to the embryo and the other was absent in the embryo but expressed in all other stages, no CBS expression in the embryo, but present in all other stages, and HO expressed across all developmental stages. Given the importance of gas transmitters in the regulatory control of a number of physiological processes, these data open opportunities for investigating the roles these proteins play under different life-stage and environmental conditions in this ecologically important species. PMID:24747481
Wissing, Marie Louise; Sonne, Si Brask; Westergaard, David; Nguyen, Kho do; Belling, Kirstine; Høst, Thomas; Mikkelsen, Anne Lis
2014-11-29
Corona radiata cells (CRCs) refer to the fraction of cumulus cells just adjacent to the oocyte. The CRCs are closely connected to the oocyte throughout maturation and their gene expression profiles might reflect oocyte quality. Polycystic ovary syndrome (PCOS) is a common cause of infertility. It is controversial whether PCOS associate with diminished oocyte quality. The purpose of this study was to compare individual human CRC samples between PCOS patients and controls. All patients were stimulated by the long gonadotropin-releasing hormone (GnRH) agonist protocol. The CRC samples originated from individual oocytes developing into embryos selected for transfer. CRCs were isolated in a two-step denudation procedure, separating outer cumulus cells from the inner CRCs. Extracted RNA was amplified and transcriptome profiling was performed with Human Agilent® arrays. The transcriptomes of CRCs showed no individual genes with significant differential expression between PCOS and controls, but gene set enrichment analysis identified several cell cycle- and DNA replication pathways overexpressed in PCOS CRCs (FDR < 0.05). Five of the genes contributing to the up-regulated cell cycle pathways in the PCOS CRCs were selected for qRT-PCR validation in ten PCOS and ten control CRC samples. qRT-PCR confirmed significant up-regulation in PCOS CRCs of cell cycle progression genes HIST1H4C (FC = 2.7), UBE2C (FC = 2.6) and cell cycle related transcription factor E2F4 (FC = 2.5). The overexpression of cell cycle-related genes and cell cycle pathways in PCOS CRCs could indicate a disturbed or delayed final maturation and differentiation of the CRCs in response to the human chorionic gonadotropin (hCG) surge. However, this had no effect on the in vitro development of the corresponding embryos. Future studies are needed to clarify whether the up-regulated cell cycle pathways in PCOS CRCs have any clinical implications.
Effects on the hepatic transcriptome of chicken embryos in ovo exposed to phenobarbital.
Guo, Jiahua; Ito, Shohei; Nguyen, Hoa Thanh; Yamamoto, Kimika; Iwata, Hisato
2018-05-21
This work aimed at evaluating the toxic effects of in ovo exposure to phenobarbital (PB) and unveiling the mode of action by transcriptome analysis in the embryonic liver of a model avian species, chicken (Gallus gallus). Embryos were initially treated with saline or 1 μg PB /g egg at Hamburger Hamilton Stage (HHS) 1 (1st day), followed by 20 days of incubation to HHS 46. At 21st day, chicks that pipped successfully were euthanized and dissected for assessing the PB caused effects on phenotypes and the liver transcriptome in both genders. In the PB treatment group, a 7% attenuation in tarsus length was found in females. While no adverse phenotypic effect on the liver somatic index (LSI) was observed, PB caused significant changes in the expressions of 52 genes in males and 516 genes in females (False Discovery Rate < 0.2, p value < 0.05, and absolute fold change > 2). PB exposure modulated the genes primarily enriched in the biological pathways of the cancer, cardiac development, immune response, lipid metabolism, and skeletal development in both genders, and altered expressions of genes related to the cellular process and neural development in females. However, mRNA expressions of chicken xenobiotic receptor (CXR)-mediated CYP genes were not induced in the PB treatment groups, regardless of males and females. On the contrary, PB exposure repressed the mRNA expressions of CYP2AC2 in males and CYP2R1, CYP3A37, and CYP8B1 in females. Although transcription factors (TFs) including SREBF1 and COUP-TFII were predicted to be commonly activated in both genders, some TFs were activated in a gender-dependent manner, such as PPARa in males and BRCA1 and IRF9 in females. Taken together, our results provided an insight into the mode of action of PB on the chicken embryos. Copyright © 2018 Elsevier Inc. All rights reserved.
Embryo density and medium volume effects on early murine embryo development.
Canseco, R S; Sparks, A E; Pearson, R E; Gwazdauskas, F C
1992-10-01
One-cell mouse embryos were used to determine the effects of drop size and number of embryos per drop for optimum development in vitro. Embryos were collected from immature C57BL6 female mice superovulated with pregnant mare serum gonadotropin and human chorionic gonadotropin and mated by CD1 males. Groups of 1, 5, 10, or 20 embryos were cultured in 5-, 10-, 20-, or 40-microliters drops of CZB under silicon oil at 37.5 degrees C in a humidified atmosphere of 5% CO2 and 95% air. Development score for embryos cultured in 10 microliters was higher than that of embryos cultured in 20 or 40 microliters. Embryos cultured in groups of 5, 10, or 20 had higher development scores than embryos cultured singly. The highest development score was obtained by the combination of 5 embryos per 10-microliters drop. The percentage of live embryos in 20 or 40 microliters was lower than that of embryos cultured in 10 microliters. Additionally, the percentage of live embryos cultured singly was lower than that of embryos cultured in groups. Our results suggest that a stimulatory interaction occurs among embryos possibly exerted through the secretion of growth factors. This effect can be diluted if the embryos are cultured in large drops or singly.
Hosseini, Sayyed Morteza; Dufort, Isabelle; Nieminen, Julie; Moulavi, Fariba; Ghanaei, Hamid Reza; Hajian, Mahdi; Jafarpour, Farnoosh; Forouzanfar, Mohsen; Gourbai, Hamid; Shahverdi, Abdol Hossein; Nasr-Esfahani, Mohammad Hossein; Sirard, Marc-André
2016-01-04
The limited duration and compromised efficiency of oocyte-mediated reprogramming, which occurs during the early hours following somatic cell nuclear transfer (SCNT), may significantly interfere with epigenetic reprogramming, contributing to the high incidence of ill/fatal transcriptional phenotypes and physiological anomalies occurring later during pre- and post-implantation events. A potent histone deacetylase inhibitor, trichostatin A (TSA), was used to understand the effects of assisted epigenetic modifications on transcriptional profiles of SCNT blastocysts and to identify specific or categories of genes affected. TSA improved the yield and quality of in vitro embryo development compared to control (CTR-NT). Significance analysis of microarray results revealed that of 37,238 targeted gene transcripts represented on the microarray slide, a relatively small number of genes were differentially expressed in CTR-NT (1592 = 4.3 %) and TSA-NT (1907 = 5.1 %) compared to IVF embryos. For both SCNT groups, the majority of downregulated and more than half of upregulated genes were common and as much as 15 % of all deregulated transcripts were located on chromosome X. Correspondence analysis clustered CTR-NT and IVF transcriptomes close together regardless of the embryo production method, whereas TSA changed SCNT transcriptome to a very clearly separated cluster. Ontological classification of deregulated genes using IPA uncovered a variety of functional categories similarly affected in both SCNT groups with a preponderance of genes required for biological processes. Examination of genes involved in different canonical pathways revealed that the WNT and FGF pathways were similarly affected in both SCNT groups. Although TSA markedly changed epigenetic reprogramming of donor cells (DNA-methylation, H3K9 acetylation), reconstituted oocytes (5mC, 5hmC), and blastocysts (DNA-methylation, H3K9 acetylation), these changes did not recapitulate parallel marked changes in chromatin remodeling, and nascent mRNA and OCT4-EGFP expression of TSA-NT vs. CRT-NT embryos. The results obtained suggest that despite the extensive reprogramming of donor cells that occurred by the blastocyst stage, SCNT-specific errors are of a non-random nature in bovine and are not responsive to epigenetic modifications by TSA.
USDA-ARS?s Scientific Manuscript database
The seed coat is a vital tissue for directing the flow of photosynthate from source leaves to the embryo and cotyledons during seed development. By forming a sucrose gradient, the seed coat promotes transport of sugars from source leaves to seeds, thereby establishing sink strength. Understanding th...
Hennings, Justin M.; Zimmer, Randall L.; Nabli, Henda; Davis, J. Wade; Sutovsky, Peter; Sutovsky, Miriam; Sharpe-Timms, Kathy L.
2015-01-01
Objective: Validate single versus sequential culture media for murine embryo development. Design: Prospective laboratory experiment. Setting: Assisted Reproduction Laboratory. Animals: Murine embryos. Interventions: Thawed murine zygotes cultured for 3 or 5 days (d3 or d5) in single or sequential embryo culture media developed for human in vitro fertilization. Main Outcome Measures: On d3, zygotes developing to the 8 cell (8C) stage or greater were quantified using 4’,6-diamidino-2-phenylindole (DAPI), and quality was assessed by morphological analysis. On d5, the number of embryos reaching the blastocyst stage was counted. DAPI was used to quantify total nuclei and inner cell mass nuclei. Localization of ubiquitin C-terminal hydrolase L1 (UCHL1) and ubiquitin C-terminal hydrolase L3 (UCHL3) was reference points for evaluating cell quality. Results: Comparing outcomes in single versus to sequential media, the odds of embryos developing to the 8C stage on d3 were 2.34 time greater (P = .06). On d5, more embryos reached the blastocyst stage (P = <.0001), hatched, and had significantly more trophoblast cells (P = .005) contributing to the increased total cell number. Also at d5, localization of distinct cytoplasmic UCHL1 and nuclear UCHL3 was found in high-quality hatching blastocysts. Localization of UCHL1 and UCHL3 was diffuse and inappropriately dispersed throughout the cytoplasm in low-quality nonhatching blastocysts. Conclusions: Single medium yields greater cell numbers, an increased growth rate, and more hatching of murine embryos. Cytoplasmic UCHL1 and nuclear UHCL3 localization patterns were indicative of embryo quality. Our conclusions are limited to murine embryos but one might speculate that single medium may also be more beneficial for human embryo culture. Human embryo studies are needed. PMID:26668049
Hennings, Justin M; Zimmer, Randall L; Nabli, Henda; Davis, J Wade; Sutovsky, Peter; Sutovsky, Miriam; Sharpe-Timms, Kathy L
2016-03-01
Validate single versus sequential culture media for murine embryo development. Prospective laboratory experiment. Assisted Reproduction Laboratory. Murine embryos. Thawed murine zygotes cultured for 3 or 5 days (d3 or d5) in single or sequential embryo culture media developed for human in vitro fertilization. On d3, zygotes developing to the 8 cell (8C) stage or greater were quantified using 4',6-diamidino-2-phenylindole (DAPI), and quality was assessed by morphological analysis. On d5, the number of embryos reaching the blastocyst stage was counted. DAPI was used to quantify total nuclei and inner cell mass nuclei. Localization of ubiquitin C-terminal hydrolase L1 (UCHL1) and ubiquitin C-terminal hydrolase L3 (UCHL3) was reference points for evaluating cell quality. Comparing outcomes in single versus to sequential media, the odds of embryos developing to the 8C stage on d3 were 2.34 time greater (P = .06). On d5, more embryos reached the blastocyst stage (P = <.0001), hatched, and had significantly more trophoblast cells (P = .005) contributing to the increased total cell number. Also at d5, localization of distinct cytoplasmic UCHL1 and nuclear UCHL3 was found in high-quality hatching blastocysts. Localization of UCHL1 and UCHL3 was diffuse and inappropriately dispersed throughout the cytoplasm in low-quality nonhatching blastocysts. Single medium yields greater cell numbers, an increased growth rate, and more hatching of murine embryos. Cytoplasmic UCHL1 and nuclear UHCL3 localization patterns were indicative of embryo quality. Our conclusions are limited to murine embryos but one might speculate that single medium may also be more beneficial for human embryo culture. Human embryo studies are needed. © The Author(s) 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haggard, Derik E.; Noyes, Pamela D.; Waters, Katrina M.
There is a need to develop novel, high-throughput screening and prioritization methods to identify chemicals with adverse estrogen, androgen, and thyroid activity to protect human health and the environment and is of interest to the Endocrine Disruptor Screening Program. The current aim is to explore the utility of zebrafish as a testing paradigm to classify endocrine activity using phenotypically anchored transcriptome profiling. Transcriptome analysis was conducted on embryos exposed to 25 estrogen-, androgen-, or thyroid-active chemicals at a concentration that elicited adverse malformations or mortality at 120 hours post-fertilization in 80% of the animals exposed. Analysis of the top 1000more » significant differentially expressed transcripts across all treatments identified a unique transcriptional and phenotypic profile for thyroid hormone receptor agonists, which can be used as a biomarker screen for potential thyroid hormone agonists.« less
Ciray, Haydar Nadir; Aksoy, Turan; Goktas, Cihan; Ozturk, Bilgen; Bahceci, Mustafa
2012-09-01
To compare the dynamics of early development between embryos cultured in single and sequential media. Randomized, comparative study. Private IVF centre. A total of 446 metaphase II oocytes from 51 couples who underwent oocyte retrieval procedure for intracytoplasmic sperm injection. Forty-nine resulted in embryo transfer. Oocytes were split between single and sequential media produced by the same manufacturer and cultured in a time-lapse incubator. Morphokinetic parameters until the embryos reached the 5-cell stage (t5), utilization, clinical pregnancy and implantation rates. Embryos cultured in single media were advanced from the first mitosis cycle and reached 2- to 5-cell stages earlier. There was not any difference between the durations for cell cycle two (cc2 = t3-t2) and s2 (t4-t3). The utilization, clinical pregnancy and implantation rates did not differ between groups. The proportion of cryopreserved day 6 embryos to two pronuclei oocytes was significantly higher in sequential than in single media. Morphokinetics of embryo development vary between single and sequential culture media at least until the 5-cell stage. The overall clinical and embryological parameters remain similar regardless of the culture system.
Hou, Yu; Guo, Huahu; Cao, Chen; Li, Xianlong; Hu, Boqiang; Zhu, Ping; Wu, Xinglong; Wen, Lu; Tang, Fuchou; Huang, Yanyi; Peng, Jirun
2016-01-01
Single-cell genome, DNA methylome, and transcriptome sequencing methods have been separately developed. However, to accurately analyze the mechanism by which transcriptome, genome and DNA methylome regulate each other, these omic methods need to be performed in the same single cell. Here we demonstrate a single-cell triple omics sequencing technique, scTrio-seq, that can be used to simultaneously analyze the genomic copy-number variations (CNVs), DNA methylome, and transcriptome of an individual mammalian cell. We show that large-scale CNVs cause proportional changes in RNA expression of genes within the gained or lost genomic regions, whereas these CNVs generally do not affect DNA methylation in these regions. Furthermore, we applied scTrio-seq to 25 single cancer cells derived from a human hepatocellular carcinoma tissue sample. We identified two subpopulations within these cells based on CNVs, DNA methylome, or transcriptome of individual cells. Our work offers a new avenue of dissecting the complex contribution of genomic and epigenomic heterogeneities to the transcriptomic heterogeneity within a population of cells. PMID:26902283
Single-cell transcriptomics for microbial eukaryotes.
Kolisko, Martin; Boscaro, Vittorio; Burki, Fabien; Lynn, Denis H; Keeling, Patrick J
2014-11-17
One of the greatest hindrances to a comprehensive understanding of microbial genomics, cell biology, ecology, and evolution is that most microbial life is not in culture. Solutions to this problem have mainly focused on whole-community surveys like metagenomics, but these analyses inevitably loose information and present particular challenges for eukaryotes, which are relatively rare and possess large, gene-sparse genomes. Single-cell analyses present an alternative solution that allows for specific species to be targeted, while retaining information on cellular identity, morphology, and partitioning of activities within microbial communities. Single-cell transcriptomics, pioneered in medical research, offers particular potential advantages for uncultivated eukaryotes, but the efficiency and biases have not been tested. Here we describe a simple and reproducible method for single-cell transcriptomics using manually isolated cells from five model ciliate species; we examine impacts of amplification bias and contamination, and compare the efficacy of gene discovery to traditional culture-based transcriptomics. Gene discovery using single-cell transcriptomes was found to be comparable to mass-culture methods, suggesting single-cell transcriptomics is an efficient entry point into genomic data from the vast majority of eukaryotic biodiversity. Copyright © 2014 Elsevier Ltd. All rights reserved.
Adult Mouse Cortical Cell Taxonomy by Single Cell Transcriptomics
Tasic, Bosiljka; Menon, Vilas; Nguyen, Thuc Nghi; Kim, Tae Kyung; Jarsky, Tim; Yao, Zizhen; Levi, Boaz; Gray, Lucas T.; Sorensen, Staci A.; Dolbeare, Tim; Bertagnolli, Darren; Goldy, Jeff; Shapovalova, Nadiya; Parry, Sheana; Lee, Changkyu; Smith, Kimberly; Bernard, Amy; Madisen, Linda; Sunkin, Susan M.; Hawrylycz, Michael; Koch, Christof; Zeng, Hongkui
2016-01-01
Nervous systems are composed of various cell types, but the extent of cell type diversity is poorly understood. Here, we construct a cellular taxonomy of one cortical region, primary visual cortex, in adult mice based on single cell RNA-sequencing. We identify 49 transcriptomic cell types including 23 GABAergic, 19 glutamatergic and seven non-neuronal types. We also analyze cell-type specific mRNA processing and characterize genetic access to these transcriptomic types by many transgenic Cre lines. Finally, we show that some of our transcriptomic cell types display specific and differential electrophysiological and axon projection properties, thereby confirming that the single cell transcriptomic signatures can be associated with specific cellular properties. PMID:26727548
Mommer, Brett C; Bell, Alison M
2014-01-01
There is growing evidence for nongenetic effects of maternal experience on offspring. For example, previous studies have shown that female threespined stickleback fish (Gasterosteus aculeatus) exposed to predation risk produce offspring with altered behavior, metabolism and stress physiology. Here, we investigate the effect of maternal exposure to predation risk on the embryonic transcriptome in sticklebacks. Using RNA-sequencing we compared genome-wide transcription in three day post-fertilization embryos of predator-exposed and control mothers. There were hundreds of differentially expressed transcripts between embryos of predator-exposed mothers and embryos of control mothers including several non-coding RNAs. Gene Ontology analysis revealed biological pathways involved in metabolism, epigenetic inheritance, and neural proliferation and differentiation that differed between treatments. Interestingly, predation risk is associated with an accelerated life history in many vertebrates, and several of the genes and biological pathways that were identified in this study suggest that maternal exposure to predation risk accelerates the timing of embryonic development. Consistent with this hypothesis, embryos of predator-exposed mothers were larger than embryos of control mothers. These findings point to some of the molecular mechanisms that might underlie maternal effects.
Sills, Eric Scott; Yang, Zhihong; Walsh, David J; Salem, Shala A
2012-09-01
The unacceptable multiple gestation rate currently associated with in vitro fertilization (IVF) would be substantially alleviated if the routine practice of transferring more than one embryo were reconsidered. While transferring a single embryo is an effective method to reduce the clinical problem of multiple gestation, rigid adherence to this approach has been criticized for negatively impacting clinical pregnancy success in IVF. In general, single embryo transfer is viewed cautiously by IVF patients although greater acceptance would result from a more effective embryo selection method. Selection of one embryo for fresh transfer on the basis of chromosomal normalcy should achieve the dual objective of maintaining satisfactory clinical pregnancy rates and minimizing the multiple gestation problem, because embryo aneuploidy is a major contributing factor in implantation failure and miscarriage in IVF. The initial techniques for preimplantation genetic screening unfortunately lacked sufficient sensitivity and did not yield the expected results in IVF. However, newer molecular genetic methods could be incorporated with standard IVF to bring the goal of single embryo transfer within reach. Aiming to make multiple embryo transfers obsolete and unnecessary, and recognizing that array comparative genomic hybridization (aCGH) will typically require an additional 12 h of laboratory time to complete, we propose adopting aCGH for mainstream use in clinical IVF practice. As aCGH technology continues to develop and becomes increasingly available at lower cost, it may soon be considered unusual for IVF laboratories to select a single embryo for fresh transfer without regard to its chromosomal competency. In this report, we provide a rationale supporting aCGH as the preferred methodology to provide a comprehensive genetic assessment of the single embryo before fresh transfer in IVF. The logistics and cost of integrating aCGH with IVF to enable fresh embryo transfer are also discussed.
Comparative Transcriptomes and EVO-DEVO Studies Depending on Next Generation Sequencing.
Liu, Tiancheng; Yu, Lin; Liu, Lei; Li, Hong; Li, Yixue
2015-01-01
High throughput technology has prompted the progressive omics studies, including genomics and transcriptomics. We have reviewed the improvement of comparative omic studies, which are attributed to the high throughput measurement of next generation sequencing technology. Comparative genomics have been successfully applied to evolution analysis while comparative transcriptomics are adopted in comparison of expression profile from two subjects by differential expression or differential coexpression, which enables their application in evolutionary developmental biology (EVO-DEVO) studies. EVO-DEVO studies focus on the evolutionary pressure affecting the morphogenesis of development and previous works have been conducted to illustrate the most conserved stages during embryonic development. Old measurements of these studies are based on the morphological similarity from macro view and new technology enables the micro detection of similarity in molecular mechanism. Evolutionary model of embryo development, which includes the "funnel-like" model and the "hourglass" model, has been evaluated by combination of these new comparative transcriptomic methods with prior comparative genomic information. Although the technology has promoted the EVO-DEVO studies into a new era, technological and material limitation still exist and further investigations require more subtle study design and procedure.
SIDR: simultaneous isolation and parallel sequencing of genomic DNA and total RNA from single cells.
Han, Kyung Yeon; Kim, Kyu-Tae; Joung, Je-Gun; Son, Dae-Soon; Kim, Yeon Jeong; Jo, Areum; Jeon, Hyo-Jeong; Moon, Hui-Sung; Yoo, Chang Eun; Chung, Woosung; Eum, Hye Hyeon; Kim, Sangmin; Kim, Hong Kwan; Lee, Jeong Eon; Ahn, Myung-Ju; Lee, Hae-Ock; Park, Donghyun; Park, Woong-Yang
2018-01-01
Simultaneous sequencing of the genome and transcriptome at the single-cell level is a powerful tool for characterizing genomic and transcriptomic variation and revealing correlative relationships. However, it remains technically challenging to analyze both the genome and transcriptome in the same cell. Here, we report a novel method for simultaneous isolation of genomic DNA and total RNA (SIDR) from single cells, achieving high recovery rates with minimal cross-contamination, as is crucial for accurate description and integration of the single-cell genome and transcriptome. For reliable and efficient separation of genomic DNA and total RNA from single cells, the method uses hypotonic lysis to preserve nuclear lamina integrity and subsequently captures the cell lysate using antibody-conjugated magnetic microbeads. Evaluating the performance of this method using real-time PCR demonstrated that it efficiently recovered genomic DNA and total RNA. Thorough data quality assessments showed that DNA and RNA simultaneously fractionated by the SIDR method were suitable for genome and transcriptome sequencing analysis at the single-cell level. The integration of single-cell genome and transcriptome sequencing by SIDR (SIDR-seq) showed that genetic alterations, such as copy-number and single-nucleotide variations, were more accurately captured by single-cell SIDR-seq compared with conventional single-cell RNA-seq, although copy-number variations positively correlated with the corresponding gene expression levels. These results suggest that SIDR-seq is potentially a powerful tool to reveal genetic heterogeneity and phenotypic information inferred from gene expression patterns at the single-cell level. © 2018 Han et al.; Published by Cold Spring Harbor Laboratory Press.
SIDR: simultaneous isolation and parallel sequencing of genomic DNA and total RNA from single cells
Han, Kyung Yeon; Kim, Kyu-Tae; Joung, Je-Gun; Son, Dae-Soon; Kim, Yeon Jeong; Jo, Areum; Jeon, Hyo-Jeong; Moon, Hui-Sung; Yoo, Chang Eun; Chung, Woosung; Eum, Hye Hyeon; Kim, Sangmin; Kim, Hong Kwan; Lee, Jeong Eon; Ahn, Myung-Ju; Lee, Hae-Ock; Park, Donghyun; Park, Woong-Yang
2018-01-01
Simultaneous sequencing of the genome and transcriptome at the single-cell level is a powerful tool for characterizing genomic and transcriptomic variation and revealing correlative relationships. However, it remains technically challenging to analyze both the genome and transcriptome in the same cell. Here, we report a novel method for simultaneous isolation of genomic DNA and total RNA (SIDR) from single cells, achieving high recovery rates with minimal cross-contamination, as is crucial for accurate description and integration of the single-cell genome and transcriptome. For reliable and efficient separation of genomic DNA and total RNA from single cells, the method uses hypotonic lysis to preserve nuclear lamina integrity and subsequently captures the cell lysate using antibody-conjugated magnetic microbeads. Evaluating the performance of this method using real-time PCR demonstrated that it efficiently recovered genomic DNA and total RNA. Thorough data quality assessments showed that DNA and RNA simultaneously fractionated by the SIDR method were suitable for genome and transcriptome sequencing analysis at the single-cell level. The integration of single-cell genome and transcriptome sequencing by SIDR (SIDR-seq) showed that genetic alterations, such as copy-number and single-nucleotide variations, were more accurately captured by single-cell SIDR-seq compared with conventional single-cell RNA-seq, although copy-number variations positively correlated with the corresponding gene expression levels. These results suggest that SIDR-seq is potentially a powerful tool to reveal genetic heterogeneity and phenotypic information inferred from gene expression patterns at the single-cell level. PMID:29208629
Deep sequencing reveals cell-type-specific patterns of single-cell transcriptome variation.
Dueck, Hannah; Khaladkar, Mugdha; Kim, Tae Kyung; Spaethling, Jennifer M; Francis, Chantal; Suresh, Sangita; Fisher, Stephen A; Seale, Patrick; Beck, Sheryl G; Bartfai, Tamas; Kuhn, Bernhard; Eberwine, James; Kim, Junhyong
2015-06-09
Differentiation of metazoan cells requires execution of different gene expression programs but recent single-cell transcriptome profiling has revealed considerable variation within cells of seeming identical phenotype. This brings into question the relationship between transcriptome states and cell phenotypes. Additionally, single-cell transcriptomics presents unique analysis challenges that need to be addressed to answer this question. We present high quality deep read-depth single-cell RNA sequencing for 91 cells from five mouse tissues and 18 cells from two rat tissues, along with 30 control samples of bulk RNA diluted to single-cell levels. We find that transcriptomes differ globally across tissues with regard to the number of genes expressed, the average expression patterns, and within-cell-type variation patterns. We develop methods to filter genes for reliable quantification and to calibrate biological variation. All cell types include genes with high variability in expression, in a tissue-specific manner. We also find evidence that single-cell variability of neuronal genes in mice is correlated with that in rats consistent with the hypothesis that levels of variation may be conserved. Single-cell RNA-sequencing data provide a unique view of transcriptome function; however, careful analysis is required in order to use single-cell RNA-sequencing measurements for this purpose. Technical variation must be considered in single-cell RNA-sequencing studies of expression variation. For a subset of genes, biological variability within each cell type appears to be regulated in order to perform dynamic functions, rather than solely molecular noise.
USDA-ARS?s Scientific Manuscript database
Pecan nuts and other tree nuts can be a nutrient rich part of a healthy diet full of beneficial fatty acids and antioxidants, but can also cause allergic reactions in people suffering from food allergy to the nuts. We characterized the transcriptome of a developing pecan nut to identify the gene ex...
Fujino, Ko; Igarashi, Hitomi; Imaimatsu, Kenya; Tsunekawa, Naoki; Hirate, Yoshikazu; Kurohmaru, Masamichi; Saijoh, Yukio; Kanai-Azuma, Masami
2017-01-01
The gallbladder excretes cytotoxic bile acids into the duodenum through the cystic duct and common bile duct system. Sox17 haploinsufficiency causes biliary atresia-like phenotypes and hepatitis in late organogenesis mouse embryos, but the molecular and cellular mechanisms underlying this remain unclear. In this study, transcriptomic analyses revealed the early onset of cholecystitis in Sox17+/− embryos, together with the appearance of ectopic cystic duct-like epithelia in their gallbladders. The embryonic hepatitis showed positive correlations with the severity of cholecystitis in individual Sox17+/− embryos. Embryonic hepatitis could be induced by conditional deletion of Sox17 in the primordial gallbladder epithelia but not in fetal liver hepatoblasts. The Sox17+/− gallbladder also showed a drastic reduction in sonic hedgehog expression, leading to aberrant smooth muscle formation and defective contraction of the fetal gallbladder. The defective gallbladder contraction positively correlated with the severity of embryonic hepatitis in Sox17+/− embryos, suggesting a potential contribution of embryonic cholecystitis and fetal gallbladder contraction in the early pathogenesis of congenital biliary atresia. PMID:28432216
Morphological embryo selection: an elective single embryo transfer proposal.
Déniz, Francisco Parera; Encinas, Carlos; Fuente, Jorge La
2018-03-01
To describe a patient selection method for elective single embryo transfer (eSET), emphasizing inclusion criteria and results. This retrospective study included all cases seen in a private clinic between June 2011 and December 2016, in La Paz, Bolivia (3600 meters above sea level). Elective single embryo transfer was the method of choice in 34 IVF/ICSI cycles, all in the blastocyst stage. Gardner's blastocyst classification criteria were used. Between the two stages of the study (July 2015), each embryo grade implantation rate was recalculated, which led to the expansion of the inclusion criteria. The clinical pregnancy rate of the 34 cases in the first transfer group was 55.9% (19/34). Twin or multiple pregnancies did not occur. The cumulative pregnancy rate to date is 64% [(19+3)/34]. The first stage comprised 2.56% (12/468) of the patients offered elective single embryo transfers; the implantation rate was 58.3% (7/12). In the second stage, 14.29% (22/154) of the patients were eligible, and the implantation rate was 54.55% (12/22). The implementation of an eSET program based on in-depth morphological embryo assessment combined with the calculation of the implantation potential of each embryo grade led to acceptable clinical outcomes and fewer multiple pregnancies in patients transferred two embryos. Each clinic should be aware of the implantation rates of each embryo grade in its own setting.
Ideta, Atsushi; Urakawa, Manami; Aoyagi, Yoshito; Saeki, Kazuhiro
2005-04-01
We examined morphological nuclear events during the first cell cycle of bovine embryos reconstructed with somatic cells at the M and G1 phases (M-embryos and G1-embryos, respectively) by intracytoplasmic nuclear injection, and the subsequent development of these embryos in vitro and in vivo. Bovine fetal fibroblasts (BFFs) at the M or G1 phase were directly injected into enucleated oocytes, and activated immediately. Only half (48%) of the M-embryos extruded polar body-like cells (PBCs) at 6 h post injection (hpi). At 15 to 19 hpi, 54% of the M-embryos formed a single pronucleus-like nucleus. Nuclear envelope-breakdown, premature chromosome condensation and single nuclear clusters were observed in most of the G1-embryos (88%) within 30 min following the nuclear injection. At 15 to 19 hpi, single pronucleus-like nuclei were formed in most G1-embryos (83%). The potential of G1-embryos to develop to blastocysts was significantly higher than that of M-embryos (31% vs 16%). Three of five recipients following transfer of blastocysts derived from the G1-embryos became pregnant on Day 30, and one recipient delivered a calf. Our results indicate that almost a half of the M-embryos failed to extrude PBCs and that the G1-embryos developed to blastocysts at a higher rate than the M-embryos.
Influences of sire conception rate on pregnancy establishment in dairy cattle.
Ortega, M Sofia; Moraes, João G N; Patterson, David J; Smith, Michael F; Behura, Susanta K; Poock, Scott; Spencer, Thomas E
2018-06-19
Establishment of pregnancy in cattle is complex and encompasses ovulation, fertilization, blastocyst formation and growth into an elongated conceptus, pregnancy recognition signaling, and development of the embryo and placenta. The objective here was to investigate sire influences on pregnancy establishment in cattle. First, 10 Holstein bulls were classified as high or low fertility based on their sire conception rate (SCR) value. In a field trial, pregnancy at first timed insemination was not different between high and low SCR bulls. Next, 5 of the 10 sires were phenotyped using In Vitro and In Vivo embryo production. There was no effect of SCR classification on in vitro embryo cleavage rate, but low SCR sires produced fewer day 8 blastocysts. In superovulated heifers, high SCR bulls produced a lower percentage of unfertilized oocytes and fewer degenerated embryos compared to low SCR bulls. Recipient heifers the received 3-5 In Vivo produced embryos from either high or low SCR sires on day 7 post-estrus. Day 16 conceptus recovery and length were not different between SCR groups, and the conceptus transcriptome was not appreciably different between high and low SCR sires. The reduced ability of embryos from low SCR bulls to establish pregnancy is multifactorial and encompasses sperm fertilizing ability, pre-implantation embryonic development, and development of the embryo and placenta after conceptus elongation and pregnancy recognition. These studies highlight the importance of understanding genetic contributions of the sire to pregnancy establishment that is crucial to increase reproductive efficiency in dairy cattle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hermsen, Sanne A.B., E-mail: Sanne.Hermsen@rivm.nl; Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht; Institute for Risk Assessment Sciences
2013-10-01
The zebrafish embryotoxicity test is a promising alternative assay for developmental toxicity. Classically, morphological assessment of the embryos is applied to evaluate the effects of compound exposure. However, by applying differential gene expression analysis the sensitivity and predictability of the test may be increased. For defining gene expression signatures of developmental toxicity, we explored the possibility of using gene expression signatures of compound exposures based on commonly expressed individual genes as well as based on regulated gene pathways. Four developmental toxic compounds were tested in concentration-response design, caffeine, carbamazepine, retinoic acid and valproic acid, and two non-embryotoxic compounds, D-mannitol andmore » saccharin, were included. With transcriptomic analyses we were able to identify commonly expressed genes, which were mostly development related, after exposure to the embryotoxicants. We also identified gene pathways regulated by the embryotoxicants, suggestive of their modes of action. Furthermore, whereas pathways may be regulated by all compounds, individual gene expression within these pathways can differ for each compound. Overall, the present study suggests that the use of individual gene expression signatures as well as pathway regulation may be useful starting points for defining gene biomarkers for predicting embryotoxicity. - Highlights: • The zebrafish embryotoxicity test in combination with transcriptomics was used. • We explored two approaches of defining gene biomarkers for developmental toxicity. • Four compounds in concentration-response design were tested. • We identified commonly expressed individual genes as well as regulated gene pathways. • Both approaches seem suitable starting points for defining gene biomarkers.« less
Rajesh, M K; Fayas, T P; Naganeeswaran, S; Rachana, K E; Bhavyashree, U; Sajini, K K; Karun, Anitha
2016-05-01
Production and supply of quality planting material is significant to coconut cultivation but is one of the major constraints in coconut productivity. Rapid multiplication of coconut through in vitro techniques, therefore, is of paramount importance. Although somatic embryogenesis in coconut is a promising technique that will allow for the mass production of high quality palms, coconut is highly recalcitrant to in vitro culture. In order to overcome the bottlenecks in coconut somatic embryogenesis and to develop a repeatable protocol, it is imperative to understand, identify, and characterize molecular events involved in coconut somatic embryogenesis pathway. Transcriptome analysis (RNA-Seq) of coconut embryogenic calli, derived from plumular explants of West Coast Tall cultivar, was undertaken on an Illumina HiSeq 2000 platform. After de novo transcriptome assembly and functional annotation, we have obtained 40,367 transcripts which showed significant BLASTx matches with similarity greater than 40 % and E value of ≤10(-5). Fourteen genes known to be involved in somatic embryogenesis were identified. Quantitative real-time PCR (qRT-PCR) analyses of these 14 genes were carried in six developmental stages. The result showed that CLV was upregulated in the initial stage of callogenesis. Transcripts GLP, GST, PKL, WUS, and WRKY were expressed more in somatic embryo stage. The expression of SERK, MAPK, AP2, SAUR, ECP, AGP, LEA, and ANT were higher in the embryogenic callus stage compared to initial culture and somatic embryo stages. This study provides the first insights into the gene expression patterns during somatic embryogenesis in coconut.
Single-cell transcriptome conservation in cryopreserved cells and tissues.
Guillaumet-Adkins, Amy; Rodríguez-Esteban, Gustavo; Mereu, Elisabetta; Mendez-Lago, Maria; Jaitin, Diego A; Villanueva, Alberto; Vidal, August; Martinez-Marti, Alex; Felip, Enriqueta; Vivancos, Ana; Keren-Shaul, Hadas; Heath, Simon; Gut, Marta; Amit, Ido; Gut, Ivo; Heyn, Holger
2017-03-01
A variety of single-cell RNA preparation procedures have been described. So far, protocols require fresh material, which hinders complex study designs. We describe a sample preservation method that maintains transcripts in viable single cells, allowing one to disconnect time and place of sampling from subsequent processing steps. We sequence single-cell transcriptomes from >1000 fresh and cryopreserved cells using 3'-end and full-length RNA preparation methods. Our results confirm that the conservation process did not alter transcriptional profiles. This substantially broadens the scope of applications in single-cell transcriptomics and could lead to a paradigm shift in future study designs.
D'Angeli, S; Falasca, G; Matteucci, M; Altamura, M M
2013-01-01
FAD2 and FAD7 desaturases are involved in cold acclimation of olive (Olea europaea) mesocarp. There is no research information available on cold acclimation of seeds during mesocarp cold acclimation or on differences in the cold response of the seed coat and embryo. How FAD2 and FAD7 affect seed coat and embryo cold responses is unknown. Osmotin positively affects cold acclimation in olive tree vegetative organs, but its role in the seeds requires investigation. OeFAD2.1, OeFAD2.2, OeFAD7 and Oeosmotin were investigated before and after mesocarp acclimation by transcriptomic, lipidomic and immunolabelling analyses, and cytosolic calcium concentration ([Ca(2+)](cyt)) signalling, F-actin changes and seed development were investigated by epifluorescence/histological analyses. Transient [Ca(2+)](cyt) rises and F-actin disassembly were found in cold-shocked protoplasts from the seed coat, but not from the embryo. The thickness of the outer endosperm cuticle increased during drupe exposure to lowering of temperature, whereas the embryo protoderm always lacked cuticle. OeFAD2 transcription increased in both the embryo and seed coat in the cold-acclimated drupe, but linoleic acid (i.e. the product of FAD2 activity) increased solely in the seed coat. Osmotin was immunodetected in the seed coat and endosperm of the cold-acclimated drupe, and not in the embryo. The results show cold responsiveness in the seed coat and cold tolerance in the embryo. We propose a role for the seed coat in maintaining embryo cold tolerance by increasing endosperm cutinization through FAD2 and osmotin activities. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
Rajendran, Saranya; Sundaresan, Lakshmikirupa; Rajendran, Krithika; Selvaraj, Monica; Gupta, Ravi; Chatterjee, Suvro
2016-02-11
Fluid flow plays an important role in vascular development. However, the detailed mechanisms, particularly the link between flow and modulation of gene expression during vascular development, remain unexplored. In chick embryo, the key events of vascular development from initiation of heart beat to establishment of effective blood flow occur between the stages HH10 and HH13. Therefore, we propose a novel in vivo model to study the flow experienced by developing endothelium. Using this model, we aimed to capture the transcriptome dynamics of the pre- and post-flow conditions. RNA was isolated from extra embryonic area vasculosa (EE-AV) pooled from three chick embryos between HH10-HH13 and RNA sequencing was performed. The whole transcriptome sequencing of chick identified up-regulation of some of the previously well-known mechanosensitive genes including NFR2, HAND1, CTGF and KDR. GO analyses of the up-regulated genes revealed enrichment of several biological processes including heart development, extracellular matrix organization, cell-matrix adhesion, cell migration, blood vessel development, patterning of blood vessels, collagen fibril organization. Genes encoding for gap junctions proteins which are involved in vascular remodeling and arterial-venous differentiation, and genes involved in cell-cell adhesion, and ECM interactions were significantly up-regulated. Validation of selected genes through semi quantitative PCR was performed. The study indicates that shear stress plays a major role in development. Through appropriate validation, this platform can serve as an in vivo model to study conditions of disturbed flow in pathology as well as normal flow during development.
O'Shields, Britton; McArthur, Andrew G; Holowiecki, Andrew; Kamper, Martin; Tapley, Jeffrey; Jenny, Matthew J
2014-09-01
The metal responsive element-binding transcription factor-1 (MTF-1) responds to changes in cellular zinc levels caused by zinc exposure or disruption of endogenous zinc homeostasis by heavy metals or oxygen-related stress. Here we report the functional characterization of a complete zebrafish MTF-1 in comparison with the previously identified isoform lacking the highly conserved cysteine-rich motif (Cys-X-Cys-Cys-X-Cys) found in all other vertebrate MTF-1 orthologs. In an effort to develop novel molecular tools, a constitutively nuclear dominant-negative MTF-1 (dnMTF-1) was generated as tool for inhibiting endogenous MTF-1 signaling. The in vivo efficacy of the dnMTF-1 was determined by microinjecting in vitro transcribed dnMTF-1 mRNA into zebrafish embryos (1-2 cell stage) followed by transcriptomic profiling using an Agilent 4x44K array on 28- and 36-hpf embryos. A total of 594 and 560 probes were identified as differentially expressed at 28hpf and 36hpf, respectively, with interesting overlaps between timepoints. The main categories of genes affected by the inhibition of MTF-1 signaling were: nuclear receptors and genes involved in stress signaling, neurogenesis, muscle development and contraction, eye development, and metal homeostasis, including novel observations in iron and heme homeostasis. Finally, we investigate both the transcriptional activator and transcriptional repressor role of MTF-1 in potential novel target genes identified by transcriptomic profiling during early zebrafish development. Copyright © 2014 Elsevier B.V. All rights reserved.
Paria, B C; Dey, S K
1990-01-01
We have established a model that shows cooperative interaction among preimplantation embryos and the role of growth factors on their development and growth. Two-cell mouse embryos cultured singly in 25-microliters microdrops had inferior development to blastocysts and lower cell numbers per blastocyst compared with those cultured in groups of 5 or 10. The inferior development of singly cultured embryos was markedly improved by addition of epidermal growth factor (EGF) or transforming growth factor alpha or beta 1 (TGF-alpha or TGF-beta 1) to the culture medium. The stage of embryonic development, primarily affected by these treatments, was between eight-cell/morula and blastocyst. Furthermore, blastocysts developed from eight-cell embryos cultured in groups or singly in the presence of EGF showed a higher incidence of zona hatching compared with those cultured singly in the absence of EGF. Detection of EGF receptors on the embryonic cell surface at eight-cell/morula and blastocyst stages suggests beneficial effects of EGF or TGF-alpha on preimplantation embryo development and blastocyst functions. Insulin-like growth factor I (IGF-I) had no influence on embryo development. To further document the cooperative interactions among embryos, the volume of the culture medium was doubled to 50 microliters. This increase in culture volume was even more detrimental to the development of singly cultured embryos. However, this detrimental effect was significantly reversed by EGF and reversed even more markedly by a combination of EGF and TGF-beta 1 but not by TGF-beta 1 alone. Although TGF-beta 1 plus IGF-I caused a modest improvement of embryo development, the response was not as great as shown by EGF alone. Furthermore, IGF-I had no additive effect on EGF-induced embryonic development. The study presents clear evidence that specific growth factors of embryonic and/or reproductive tract origin participate in preimplantation embryo development and blastocyst functions in an autocrine/paracrine manner. Images PMID:2352946
Microfluidic single-cell whole-transcriptome sequencing.
Streets, Aaron M; Zhang, Xiannian; Cao, Chen; Pang, Yuhong; Wu, Xinglong; Xiong, Liang; Yang, Lu; Fu, Yusi; Zhao, Liang; Tang, Fuchou; Huang, Yanyi
2014-05-13
Single-cell whole-transcriptome analysis is a powerful tool for quantifying gene expression heterogeneity in populations of cells. Many techniques have, thus, been recently developed to perform transcriptome sequencing (RNA-Seq) on individual cells. To probe subtle biological variation between samples with limiting amounts of RNA, more precise and sensitive methods are still required. We adapted a previously developed strategy for single-cell RNA-Seq that has shown promise for superior sensitivity and implemented the chemistry in a microfluidic platform for single-cell whole-transcriptome analysis. In this approach, single cells are captured and lysed in a microfluidic device, where mRNAs with poly(A) tails are reverse-transcribed into cDNA. Double-stranded cDNA is then collected and sequenced using a next generation sequencing platform. We prepared 94 libraries consisting of single mouse embryonic cells and technical replicates of extracted RNA and thoroughly characterized the performance of this technology. Microfluidic implementation increased mRNA detection sensitivity as well as improved measurement precision compared with tube-based protocols. With 0.2 M reads per cell, we were able to reconstruct a majority of the bulk transcriptome with 10 single cells. We also quantified variation between and within different types of mouse embryonic cells and found that enhanced measurement precision, detection sensitivity, and experimental throughput aided the distinction between biological variability and technical noise. With this work, we validated the advantages of an early approach to single-cell RNA-Seq and showed that the benefits of combining microfluidic technology with high-throughput sequencing will be valuable for large-scale efforts in single-cell transcriptome analysis.
Liddelow, Shane A; Dziegielewska, Katarzyna M; Ek, C Joakim; Habgood, Mark D; Bauer, Hannelore; Bauer, Hans-Christian; Lindsay, Helen; Wakefield, Matthew J; Strazielle, Nathalie; Kratzer, Ingrid; Møllgård, Kjeld; Ghersi-Egea, Jean-François; Saunders, Norman R
2013-01-01
We provide comprehensive identification of embryonic (E15) and adult rat lateral ventricular choroid plexus transcriptome, with focus on junction-associated proteins, ionic influx transporters and channels. Additionally, these data are related to new structural and previously published permeability studies. Results reveal that most genes associated with intercellular junctions are expressed at similar levels at both ages. In total, 32 molecules known to be associated with brain barrier interfaces were identified. Nine claudins showed unaltered expression, while two claudins (6 and 8) were expressed at higher levels in the embryo. Expression levels for most cytoplasmic/regulatory adaptors (10 of 12) were similar at the two ages. A few junctional genes displayed lower expression in embryos, including 5 claudins, occludin and one junctional adhesion molecule. Three gap junction genes were enriched in the embryo. The functional effectiveness of these junctions was assessed using blood-delivered water-soluble tracers at both the light and electron microscopic level: embryo and adult junctions halted movement of both 286Da and 3kDa molecules into the cerebrospinal fluid (CSF). The molecular identities of many ion channel and transporter genes previously reported as important for CSF formation and secretion in the adult were demonstrated in the embryonic choroid plexus (and validated with immunohistochemistry of protein products), but with some major age-related differences in expression. In addition, a large number of previously unidentified ion channel and transporter genes were identified for the first time in plexus epithelium. These results, in addition to data obtained from electron microscopical and physiological permeability experiments in immature brains, indicate that exchange between blood and CSF is mainly transcellular, as well-formed tight junctions restrict movement of small water-soluble molecules from early in development. These data strongly indicate the brain develops within a well-protected internal environment and the exchange between the blood, brain and CSF is transcellular and not through incomplete barriers.
Morphological embryo selection: an elective single embryo transfer proposal
Déniz, Francisco Parera; Encinas, Carlos; Fuente, Jorge La
2018-01-01
Objective To describe a patient selection method for elective single embryo transfer (eSET), emphasizing inclusion criteria and results. Methods This retrospective study included all cases seen in a private clinic between June 2011 and December 2016, in La Paz, Bolivia (3600 meters above sea level). Elective single embryo transfer was the method of choice in 34 IVF/ICSI cycles, all in the blastocyst stage. Gardner's blastocyst classification criteria were used. Between the two stages of the study (July 2015), each embryo grade implantation rate was recalculated, which led to the expansion of the inclusion criteria. Results The clinical pregnancy rate of the 34 cases in the first transfer group was 55.9% (19/34). Twin or multiple pregnancies did not occur. The cumulative pregnancy rate to date is 64% [(19+3)/34]. The first stage comprised 2.56% (12/468) of the patients offered elective single embryo transfers; the implantation rate was 58.3% (7/12). In the second stage, 14.29% (22/154) of the patients were eligible, and the implantation rate was 54.55% (12/22). Conclusion The implementation of an eSET program based on in-depth morphological embryo assessment combined with the calculation of the implantation potential of each embryo grade led to acceptable clinical outcomes and fewer multiple pregnancies in patients transferred two embryos. Each clinic should be aware of the implantation rates of each embryo grade in its own setting. PMID:29338137
Monochorionic triplets after single embryo transfer.
Rísquez, Francisco; Gil, Mónica; D'Ommar, Gustavo; Poo, María; Sosa, Anna; Piras, Marta
2004-10-01
A 40-year-old patient underwent intracytoplasmic sperm injection and assisted hatching, and a single embryo was transferred. Ultrasonography demonstrated a single gestational sac containing monochorionic tri-amniotic pregnancy. Several factors that have been implicated in the aetiology of monozygotic triple pregnancies after IVF appear to be present in this case. To avoid multiple pregnancies after IVF, it is time to have definite predictive factors for the occurrence of monozygotic multiple pregnancies as well as transferring only a single embryo.
Transcriptome Analysis of Flower Sex Differentiation in Jatropha curcas L. Using RNA Sequencing.
Xu, Gang; Huang, Jian; Yang, Yong; Yao, Yin-an
2016-01-01
Jatropha curcas is thought to be a promising biofuel material, but its yield is restricted by a low ratio of instaminate/staminate flowers (1/10-1/30). Furthermore, valuable information about flower sex differentiation in this plant is scarce. To explore the mechanism of this process in J. curcas, transcriptome profiling of flower development was carried out, and certain genes related with sex differentiation were obtained through digital gene expression analysis of flower buds from different phases of floral development. After Illumina sequencing and clustering, 57,962 unigenes were identified. A total of 47,423 unigenes were annotated, with 85 being related to carpel and stamen differentiation, 126 involved in carpel and stamen development, and 592 functioning in the later development stage for the maturation of staminate or instaminate flowers. Annotation of these genes provided comprehensive information regarding the sex differentiation of flowers, including the signaling system, hormone biosynthesis and regulation, transcription regulation and ubiquitin-mediated proteolysis. A further expression pattern analysis of 15 sex-related genes using quantitative real-time PCR revealed that gibberellin-regulated protein 4-like protein and AMP-activated protein kinase are associated with stamen differentiation, whereas auxin response factor 6-like protein, AGAMOUS-like 20 protein, CLAVATA1, RING-H2 finger protein ATL3J, auxin-induced protein 22D, and r2r3-myb transcription factor contribute to embryo sac development in the instaminate flower. Cytokinin oxidase, Unigene28, auxin repressed-like protein ARP1, gibberellin receptor protein GID1 and auxin-induced protein X10A are involved in both stages mentioned above. In addition to its function in the differentiation and development of the stamens, the gibberellin signaling pathway also functions in embryo sac development for the instaminate flower. The auxin signaling pathway also participates in both stamen development and embryo sac development. Our transcriptome data provide a comprehensive gene expression profile for flower sex differentiation in Jatropha curcas, as well as new clues and information for further study in this field.
Transcriptome Analysis of Flower Sex Differentiation in Jatropha curcas L. Using RNA Sequencing
Xu, Gang; Huang, Jian; Yang, Yong; Yao, Yin-an
2016-01-01
Background Jatropha curcas is thought to be a promising biofuel material, but its yield is restricted by a low ratio of instaminate / staminate flowers (1/10-1/30). Furthermore, valuable information about flower sex differentiation in this plant is scarce. To explore the mechanism of this process in J. curcas, transcriptome profiling of flower development was carried out, and certain genes related with sex differentiation were obtained through digital gene expression analysis of flower buds from different phases of floral development. Results After Illumina sequencing and clustering, 57,962 unigenes were identified. A total of 47,423 unigenes were annotated, with 85 being related to carpel and stamen differentiation, 126 involved in carpel and stamen development, and 592 functioning in the later development stage for the maturation of staminate or instaminate flowers. Annotation of these genes provided comprehensive information regarding the sex differentiation of flowers, including the signaling system, hormone biosynthesis and regulation, transcription regulation and ubiquitin-mediated proteolysis. A further expression pattern analysis of 15 sex-related genes using quantitative real-time PCR revealed that gibberellin-regulated protein 4-like protein and AMP-activated protein kinase are associated with stamen differentiation, whereas auxin response factor 6-like protein, AGAMOUS-like 20 protein, CLAVATA1, RING-H2 finger protein ATL3J, auxin-induced protein 22D, and r2r3-myb transcription factor contribute to embryo sac development in the instaminate flower. Cytokinin oxidase, Unigene28, auxin repressed-like protein ARP1, gibberellin receptor protein GID1 and auxin-induced protein X10A are involved in both stages mentioned above. In addition to its function in the differentiation and development of the stamens, the gibberellin signaling pathway also functions in embryo sac development for the instaminate flower. The auxin signaling pathway also participates in both stamen development and embryo sac development. Conclusions Our transcriptome data provide a comprehensive gene expression profile for flower sex differentiation in Jatropha curcas, as well as new clues and information for further study in this field. PMID:26848843
Shah, Sheel; Lubeck, Eric; Schwarzkopf, Maayan; He, Ting-Fang; Greenbaum, Alon; Sohn, Chang Ho; Lignell, Antti; Choi, Harry M T; Gradinaru, Viviana; Pierce, Niles A; Cai, Long
2016-08-01
Accurate and robust detection of mRNA molecules in thick tissue samples can reveal gene expression patterns in single cells within their native environment. Preserving spatial relationships while accessing the transcriptome of selected cells is a crucial feature for advancing many biological areas - from developmental biology to neuroscience. However, because of the high autofluorescence background of many tissue samples, it is difficult to detect single-molecule fluorescence in situ hybridization (smFISH) signals robustly in opaque thick samples. Here, we draw on principles from the emerging discipline of dynamic nucleic acid nanotechnology to develop a robust method for multi-color, multi-RNA imaging in deep tissues using single-molecule hybridization chain reaction (smHCR). Using this approach, single transcripts can be imaged using epifluorescence, confocal or selective plane illumination microscopy (SPIM) depending on the imaging depth required. We show that smHCR has high sensitivity in detecting mRNAs in cell culture and whole-mount zebrafish embryos, and that combined with SPIM and PACT (passive CLARITY technique) tissue hydrogel embedding and clearing, smHCR can detect single mRNAs deep within thick (0.5 mm) brain slices. By simultaneously achieving ∼20-fold signal amplification and diffraction-limited spatial resolution, smHCR offers a robust and versatile approach for detecting single mRNAs in situ, including in thick tissues where high background undermines the performance of unamplified smFISH. © 2016. Published by The Company of Biologists Ltd.
Cooper, Laurel D.; Kishore, Venkata K.; Knapp, Steven J.; Kling, Jennifer G.
2015-01-01
The seed oil of meadowfoam, a new crop in the Limnanthaceae family, is highly enriched in very long chain fatty acids that are desaturated at the Δ5 position. The unusual oil is desirable for cosmetics and innovative industrial applications and the seed meal remaining after oil extraction contains glucolimnanthin, a methoxylated benzylglucosinolate whose degradation products are herbicidal and anti-microbial. Here we describe EST analysis of the developing seed transcriptome that identified major genes involved in biosynthesis and assembly of the seed oil and in glucosinolate metabolic pathways. mRNAs encoding acyl-CoA Δ5 desaturase were notably abundant. The library was searched for simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs). Fifty-four new SSR markers and eight candidate gene markers were developed and combined with previously developed SSRs to construct a new genetic map for Limnanthes alba. Mapped genes in the lipid biosynthetic pathway encode 3-ketoacyl-CoA synthase (KCS), Δ5 desaturase (Δ5DS), lysophosphatidylacyl-acyl transferase (LPAT), and acyl-CoA diacylglycerol acyl transferase (DGAT). Mapped genes in glucosinolate biosynthetic and degradation pathways encode CYP79A, myrosinase (TGG), and epithiospecifier modifier protein (ESM). The resources developed in this study will further the domestication and improvement of meadowfoam as an oilseed crop. PMID:26038713
[Single embryo transfer: is Scandinavian model valuable in France?].
Belaisch-Allart, J; Mayenga, J-M; Grefenstette, I; Chouraqui, A; Serkine, A-M; Abirached, F; Kulski, O
2008-11-01
The aim of infertility treatment is clearly to obtain one healthy baby. If the transfer of a top quality single embryo could provide a baby to all the patients, there would be no more discussion. The problem is that, nowadays, French pregnancy rates after fresh embryo or frozen embryo transfer are not the same as in Nordic countries. All studies show that in unselected patients, single embryo transfer decreases twin pregnancy rate but decreases pregnancy rate too. Pregnancy rate is dependent on embryo quality, women's age, rank of IVF attempt (clear data) but also on body mass index, ovarian reserve, smoking habits. All these data cannot be taken into account in a law. That is the reason why a flexible policy of transfer adapted to each couple is preferable. Each couple and each IVF team are unique and must keep the freedom to choose how many embryos must be transferred to obtain healthy babies, and to avoid twin pregnancies but without demonizing them.
Economic evaluations of single- versus double-embryo transfer in IVF.
Fiddelers, A A A; Severens, J L; Dirksen, C D; Dumoulin, J C M; Land, J A; Evers, J L H
2007-01-01
Multiple pregnancies lead to complications and induce high costs. The most successful way to decrease multiple pregnancies in IVF is to transfer only one embryo, which might reduce the efficacy of treatment. The objective of this review is to determine which embryo-transfer policy is most cost-effective: elective single-embryo transfer (eSET) or double-embryo transfer (DET). Several databases were searched for (cost* or econ*) and (single embryo* or double embryo* or one embryo* or two embryo* or elect* embryo or multip* embryo*). On the basis of five exclusion criteria, titles and abstracts were screened by two individual reviewers. The remaining papers were read for further selection, and data were extracted from the selected studies. A total of 496 titles were identified through the searches and resulted in the selection of one observational study and three randomized studies. Study characteristics, total costs and probability of live births were extracted. Besides this, cost-effectiveness and incremental cost-effectiveness were derived. It can be concluded that DET is the most expensive strategy. DET is also most effective if performed in one fresh cycle. eSET is only preferred from a cost-effectiveness point of view when performed in good prognosis patients and when frozen/thawed cycles are included. If frozen/thawed cycles are excluded, the choice between eSET and DET depends on how much society is willing to pay for one extra successful pregnancy.
Code of Federal Regulations, 2013 CFR
2013-01-01
... EMBRYOS AND ANIMAL SEMEN Ruminant and Swine Embryos From Regions Where Rinderpest or Foot-and-Mouth... Health Inspection Service of the United States Department of Agriculture. Collection of embryos. Embryos removed from a single donor dam in one operation. Embryo. The initial stages of development of an animal...
Code of Federal Regulations, 2012 CFR
2012-01-01
... EMBRYOS AND ANIMAL SEMEN Ruminant and Swine Embryos From Regions Where Rinderpest or Foot-and-Mouth... Health Inspection Service of the United States Department of Agriculture. Collection of embryos. Embryos removed from a single donor dam in one operation. Embryo. The initial stages of development of an animal...
Code of Federal Regulations, 2014 CFR
2014-01-01
... EMBRYOS AND ANIMAL SEMEN Ruminant and Swine Embryos From Regions Where Rinderpest or Foot-and-Mouth... Health Inspection Service of the United States Department of Agriculture. Collection of embryos. Embryos removed from a single donor dam in one operation. Embryo. The initial stages of development of an animal...
Fraser, Stuart T.
2013-01-01
One of the most critical stages in mammalian embryogenesis is the independent production of the embryo's own circulating, functional red blood cells. Correspondingly, erythrocytes are the first cell type to become functionally mature during embryogenesis. Failure to achieve this invariably leads to in utero lethality. The recent application of technologies such as transcriptome analysis, flow cytometry, mutant embryo analysis, and transgenic fluorescent gene expression reporter systems has shed new light on the distinct erythroid lineages that arise early in development. Here, I will describe the similarities and differences between the distinct erythroid populations that must form for the embryo to survive. While much of the focus of this review will be the poorly understood primitive erythroid lineage, a discussion of other erythroid and hematopoietic lineages, as well as the cell types making up the different niches that give rise to these lineages, is essential for presenting an appropriate developmental context of these cells. PMID:24222861
Zhou, Chi; Dobrinsky, John; Tsoi, Stephen; Foxcroft, George R; Dixon, Walter T; Stothard, Paul; Verstegen, John; Dyck, Michael K
2014-01-01
The in vitro production of early porcine embryos is of particular scientific and economic interest. In general, embryos produced from in vitro Assisted Reproductive Technologies (ART) manipulations, such as somatic cell chromatin transfer (CT) and parthenogenetic activation (PA), are less developmentally competent than in vivo-derived embryos. The mechanisms underlying the deficiencies of embryos generated from PA and CT have not been completely understood. To characterize the altered genes and gene networks in embryos generated from CT and PA, comparative transcriptomic analyses of in vivo (IVV) expanded blastocysts (XB), IVV hatched blastocyst (HB), PA XB, PA HB, and CT HB were performed using a custom microarray platform enriched for genes expressed during early embryonic development. Differential expressions of 1492 and 103 genes were identified in PA and CT HB, respectively, in comparison with IVV HB. The "eIF2 signalling", "mitochondrial dysfunction", "regulation of eIF4 and p70S6K signalling", "protein ubiquitination", and "mTOR signalling" pathways were down-regulated in PA HB. Dysregulation of notch signalling-associated genes were observed in both PA and CT HB. TP53 was predicted to be activated in both PA and CT HB, as 136 and 23 regulation targets of TP53 showed significant differential expression in PA and CT HB, respectively, in comparison with IVV HB. In addition, dysregulations of several critical pluripotency, trophoblast development, and implantation-associated genes (NANOG, GATA2, KRT8, LGMN, and DPP4) were observed in PA HB during the blastocyst hatching process. The critical genes that were observed to be dysregulated in CT and PA embryos could be indicative of underlying developmental deficiencies of embryos produced from these technologies.
Niinimäki, Maarit; Veleva, Zdravka; Martikainen, Hannu
2015-11-01
The study was aimed to evaluate which factors affect the cumulative live birth rate after elective single embryo transfer in women younger than 36 years. Additionally, number of children in women with more than one delivery per ovum pick-up after fresh elective single embryo transfer and subsequent frozen embryo transfers was assessed. Retrospective cohort study analysing data of a university hospital's infertility clinic in 2001-2010. A total of 739 IVF/ICSI cycles with elective single embryo transfer were included. Analyses were made per ovum pick-up including fresh and subsequent frozen embryo transfers. Factors affecting cumulative live birth rates were examined in uni- and multivariate analyses. A secondary endpoint was the number of children born after all treatments. In the fresh cycles, the live birth rate was 29.2% and the cumulative live birth rate was 51.3%, with a twin rate of 3.4%. In the multivariate analysis, having two (odds ratio (OR) 1.73; 95% confidence interval (CI) 1.12-2.67) or ≥3 top embryos (OR 2.66; 95% CI 1.79-3.95) was associated with higher odds for live birth after fresh and frozen embryo cycles. Age, body mass index, duration of infertility, diagnosis or total gonadotropin dose were not associated with the cumulative live birth rate. In cycles with one top embryo, the cumulative live birth rate was 40.2%, whereas it was 64.1% in those with at least three top embryos. Of women who had a live birth in the fresh cycle, 20.4% had more than one child after all frozen embryo transfers. Among women with three or more top embryos after ovum pick-up, 16.1% gave birth to more than one child. The cumulative live birth rate in this age group varies from 40% to 64% and is dependent on the quality of embryos. Women with three or more top embryos have good chance of having more than one child per ovum pick-up without elevated risk of multiple pregnancies. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Elective single-embryo transfer.
2012-04-01
As in vitro fertilization implantation rates have improved, the practice of transfering multiple embryos must be evaluated. The purpose of this document is to reassess the literature on elective single-embryo transfer, to provide guidance for patient selection, and to discuss barriers to utilization. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Full Transcriptome Analysis of Early Dorsoventral Patterning in Zebrafish
Horváth, Balázs; Molnár, János; Nagy, István; Tóth, Gábor; Wilson, Stephen W.; Varga, Máté
2013-01-01
Understanding the molecular interactions that lead to the establishment of the major body axes during embryogenesis is one of the main goals of developmental biology. Although the past two decades have revolutionized our knowledge about the genetic basis of these patterning processes, the list of genes involved in axis formation is unlikely to be complete. In order to identify new genes involved in the establishment of the dorsoventral (DV) axis during early stages of zebrafish embryonic development, we employed next generation sequencing for full transcriptome analysis of normal embryos and embryos lacking overt DV pattern. A combination of different statistical approaches yielded 41 differentially expressed candidate genes and we confirmed by in situ hybridization the early dorsal expression of 32 genes that are transcribed shortly after the onset of zygotic transcription. Although promoter analysis of the validated genes suggests no general enrichment for the binding sites of early acting transcription factors, most of these genes carry “bivalent” epigenetic histone modifications at the time when zygotic transcription is initiated, suggesting a “poised” transcriptional status. Our results reveal some new candidates of the dorsal gene regulatory network and suggest that a plurality of the earliest upregulated genes on the dorsal side have a role in the modulation of the canonical Wnt pathway. PMID:23922899
López-Pelayo, Iratxe; Gutiérrez-Romero, Javier María; Armada, Ana Isabel Mangano; Calero-Ruiz, María Mercedes; Acevedo-Yagüe, Pablo Javier Moreno de
2018-04-26
To compare embryo quality, fertilization, implantation, miscarriage and clinical pregnancy rates for embryos cultured in two different commercial culture media until D-2 or D-3. In this retrospective study, we analyzed 189 cycles performed in 2016. Metaphase II oocytes were microinjected and allocated into single medium (SAGE 1-STEP, Origio) until transferred, frozen or discarded; or, if sequential media were used, the oocytes were cultured in G1-PLUSTM (Vitrolife) up to D-2 or D-3 and in G2-PLUSTM (Vitrolife) to transfer. On the following day, the oocytes were checked for normal fertilization and on D-2 and D-3 for morphological classification. Statistical analysis was performed using the chi-square and Mann-Whitney tests in PASW Statistics 18.0. The fertilization rates were 70.07% for single and 69.11% for sequential media (p=0.736). The mean number of embryos with high morphological quality (class A/B) was higher in the single medium than in the sequential media: D-2 [class A (190 vs. 107, p<0.001), B (133 vs. 118, p=0.018)]; D-3 [class A (40 vs. 19, p=0.048) but without differences in class B (40 vs. 49)]. Consequently, a higher number of embryos cultured in single medium were frozen: 197 (21.00%) vs. sequential: 102 (11.00%), p<0.001. No differences were found in implantation rates (30.16% vs. 25.57%, p=0.520), clinical pregnancy rates (55.88% vs. 41.05%, p=0.213), or miscarriage rates (14.29% vs. 9.52%, p=0.472). Embryo culture in single medium yields greater efficiency per cycle than in sequential media. Higher embryo quality and quantity were achieved, resulting in more frozen embryos. There were no differences in clinical pregnancy rates.
Li, Qike; Schissler, A Grant; Gardeux, Vincent; Achour, Ikbel; Kenost, Colleen; Berghout, Joanne; Li, Haiquan; Zhang, Hao Helen; Lussier, Yves A
2017-05-24
Transcriptome analytic tools are commonly used across patient cohorts to develop drugs and predict clinical outcomes. However, as precision medicine pursues more accurate and individualized treatment decisions, these methods are not designed to address single-patient transcriptome analyses. We previously developed and validated the N-of-1-pathways framework using two methods, Wilcoxon and Mahalanobis Distance (MD), for personal transcriptome analysis derived from a pair of samples of a single patient. Although, both methods uncover concordantly dysregulated pathways, they are not designed to detect dysregulated pathways with up- and down-regulated genes (bidirectional dysregulation) that are ubiquitous in biological systems. We developed N-of-1-pathways MixEnrich, a mixture model followed by a gene set enrichment test, to uncover bidirectional and concordantly dysregulated pathways one patient at a time. We assess its accuracy in a comprehensive simulation study and in a RNA-Seq data analysis of head and neck squamous cell carcinomas (HNSCCs). In presence of bidirectionally dysregulated genes in the pathway or in presence of high background noise, MixEnrich substantially outperforms previous single-subject transcriptome analysis methods, both in the simulation study and the HNSCCs data analysis (ROC Curves; higher true positive rates; lower false positive rates). Bidirectional and concordant dysregulated pathways uncovered by MixEnrich in each patient largely overlapped with the quasi-gold standard compared to other single-subject and cohort-based transcriptome analyses. The greater performance of MixEnrich presents an advantage over previous methods to meet the promise of providing accurate personal transcriptome analysis to support precision medicine at point of care.
Dussert, Stéphane; Guerin, Chloé; Andersson, Mariette; Joët, Thierry; Tranbarger, Timothy J.; Pizot, Maxime; Sarah, Gautier; Omore, Alphonse; Durand-Gasselin, Tristan; Morcillo, Fabienne
2013-01-01
Oil palm (Elaeis guineensis) produces two oils of major economic importance, commonly referred to as palm oil and palm kernel oil, extracted from the mesocarp and the endosperm, respectively. While lauric acid predominates in endosperm oil, the major fatty acids (FAs) of mesocarp oil are palmitic and oleic acids. The oil palm embryo also stores oil, which contains a significant proportion of linoleic acid. In addition, the three tissues display high variation for oil content at maturity. To gain insight into the mechanisms that govern such differences in oil content and FA composition, tissue transcriptome and lipid composition were compared during development. The contribution of the cytosolic and plastidial glycolytic routes differed markedly between the mesocarp and seed tissues, but transcriptional patterns of genes involved in the conversion of sucrose to pyruvate were not related to variations for oil content. Accumulation of lauric acid relied on the dramatic up-regulation of a specialized acyl-acyl carrier protein thioesterase paralog and the concerted recruitment of specific isoforms of triacylglycerol assembly enzymes. Three paralogs of the WRINKLED1 (WRI1) transcription factor were identified, of which EgWRI1-1 and EgWRI1-2 were massively transcribed during oil deposition in the mesocarp and the endosperm, respectively. None of the three WRI1 paralogs were detected in the embryo. The transcription level of FA synthesis genes correlated with the amount of WRI1 transcripts and oil content. Changes in triacylglycerol content and FA composition of Nicotiana benthamiana leaves infiltrated with various combinations of WRI1 and FatB paralogs from oil palm validated functions inferred from transcriptome analysis. PMID:23735505
Transcriptomic profiling of genes in matured dimorphic seeds of euhalophyte Suaeda salsa.
Xu, Yange; Zhao, Yuanqin; Duan, Huimin; Sui, Na; Yuan, Fang; Song, Jie
2017-09-13
Suaeda salsa (S. salsa) is a euhalophyte with high economic value. S. salsa can produce dimorphic seeds. Brown seeds are more salt tolerant, can germinate quickly and maintain the fitness of the species under high saline conditions. Black seeds are less salt tolerant, may become part of the seed bank and germinate when soil salinity is reduced. Previous reports have mainly focused on the ecophysiological traits of seed germination and production under saline conditions in this species. However, there is no information available on the molecular characteristics of S. salsa dimorphic seeds. In the present study, a total of 5825 differentially expressed genes were obtained; and 4648 differentially expressed genes were annotated based on a sequence similarity search, utilizing five public databases by transcriptome analysis. The different expression of these genes may be associated with embryo development, fatty acid, osmotic regulation substances and plant hormones in brown and black seeds. Compared to black seeds, most genes may relate to embryo development, and various genes that encode fatty acid desaturase and are involved in osmotic regulation substance synthesis or transport are upregulated in brown seeds. A large number of differentially expressed genes related to plant hormones were found in brown and black seeds, and their possible roles in regulating seed dormancy/germination were discussed. Upregulated genes involved in seed development and osmotic regulation substance accumulation may relate to bigger seed size and rapid seed germination in brown seeds, compared to black seeds. Differentially expressed genes of hormones may relate to seed dormancy/germination and the development of brown and black seeds. The transcriptome dataset will serve as a valuable resource to further understand gene expression and functional genomics in S. salsa dimorphic seeds.
Browning, Lauren M.; Lee, Kerry J.; Huang, Tao; Nallathamby, Prakash D.; Lowman, Jill E.; Xu, Xiao-Hong Nancy
2010-01-01
We have synthesized and characterized stable (non-aggregation, non-photobleaching and non-blinking), nearly monodisperse and highly-purified Au nanoparticles, and used them to probe transport of cleavage-stage zebrafish embryos and to study their effects on embryonic development in real time. We found that single Au nanoparticles (11.6 ± 0.9 nm in diameter) passively diffused into chorionic space of the embryos via their chorionic-pore-canals and continued their random-walk through chorionic space and into inner mass of embryos. Diffusion coefficients of single nanoparticles vary dramatically (2.8×10-11 to 1.3×10-8 cm2/s) as nanoparticles diffuse through various parts of embryos, suggesting highly diverse transport barriers and viscosity gradients of embryos. The amount of Au nanoparticles accumulated in embryos increase with its concentration. Interestingly, their effects on embryonic development are not proportionally related to the concentration. Majority of embryos (74% on average) incubated chronically with 0.025-1.2 nM Au nanoparticles for 120 h developed to normal zebrafish, with some (24%) being dead and few (2%) deformed. We developed a new approach to image and characterize individual Au nanoparticles embedded in tissues using histology sample preparation methods and LSRP spectra of single nanoparticles. We found that Au nanoparticles in various parts of normally developed and deformed zebrafish, suggesting that random-walk of nanoparticles in embryos during their development might have led to stochastic effects on embryonic development. These results show that Au nanoparticles are much more biocompatible (less toxic) to the embryos than Ag nanoparticles that we reported previously, suggesting that they are better suited as biocompatible probes for imaging embryos in vivo. The results provide powerful evidences that biocompatibility and toxicity of nanoparticles highly depend on their chemical properties, and the embryos can serve as effective in-vivo assays to screen their biocompatibility. PMID:20644873
Bentley, Blair P; Haas, Brian J; Tedeschi, Jamie N; Berry, Oliver
2017-06-01
Oviparous reptile embryos are expected to breach their critical thermal maxima if temperatures reach those predicted under current climate change models due to the lack of the maternal buffering processes and parental care. Heat-shock proteins (HSPs) are integral in the molecular response to thermal stress, and their expression is heritable, but the roles of other candidate families such as the heat-shock factors (HSFs) have not been determined in reptiles. Here, we subject embryonic sea turtles (Caretta caretta) to a biologically realistic thermal stress and employ de novo transcriptomic profiling of brain tissue to investigate the underlying molecular response. From a reference transcriptome of 302 293 transcripts, 179 were identified as differentially expressed between treatments. As anticipated, genes enriched in the heat-shock treatment were primarily associated with the Hsp families, or were genes whose products play similar protein editing and chaperone functions (e.g. bag3, MYOC and serpinh1). Unexpectedly, genes encoding the HSFs were not significantly upregulated under thermal stress, indicating their presence in unstressed cells in an inactive state. Genes that were downregulated under thermal stress were less well functionally defined but were associated with stress response, development and cellular organization, suggesting that developmental processes may be compromised at realistically high temperatures. These results confirm that genes from the Hsp families play vital roles in the thermal tolerance of developing reptile embryos and, in addition with a number of other genes, should be targets for evaluating the capacity of oviparous reptiles to respond adaptively to the effects of climate change. © 2017 John Wiley & Sons Ltd.
The Transcriptome of the Zebrafish Embryo After Chemical Exposure: A Meta-Analysis.
Schüttler, Andreas; Reiche, Kristin; Altenburger, Rolf; Busch, Wibke
2017-06-01
Numerous studies have been published in the past years investigating the transcriptome of the zebrafish embryo (ZFE) upon being subjected to chemical stress. Aiming at a more mechanistic understanding of the results of such studies, knowledge about commonalities of transcript regulation in response to chemical stress is needed. Thus, our goal in this study was to identify and interpret genes and gene sets constituting a general response to chemical exposure. Therefore, we aggregated and reanalyzed published toxicogenomics data obtained with the ZFE. We found that overlap of differentially transcribed genes in response to chemical stress across independent studies is generally low and the most commonly differentially transcribed genes appear in less than 50% of all treatments across studies. However, effect size analysis revealed several genes showing a common trend of differential expression, among which genes related to calcium homeostasis emerged as key, especially in exposure settings up to 24 h post-fertilization. Additionally, we found that these and other downregulated genes are often linked to anatomical regions developing during the respective exposure period. Genes showing a trend of increased expression were, among others, linked to signaling pathways (e.g., Wnt, Fgf) as well as lysosomal structures and apoptosis. The findings of this study help to increase the understanding of chemical stress responses in the developing zebrafish embryo and provide a starting point to improve experimental designs for this model system. In future, improved time- and concentration-resolved experiments should offer better understanding of stress response patterns and access to mechanistic information. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology.
Gomulski, Ludvik M; Dimopoulos, George; Xi, Zhiyong; Soares, Marcelo B; Bonaldo, Maria F; Malacrida, Anna R; Gasperi, Giuliano
2008-01-01
Background The medfly, Ceratitis capitata, is a highly invasive agricultural pest that has become a model insect for the development of biological control programs. Despite research into the behavior and classical and population genetics of this organism, the quantity of sequence data available is limited. We have utilized an expressed sequence tag (EST) approach to obtain detailed information on transcriptome signatures that relate to a variety of physiological systems in the medfly; this information emphasizes on reproduction, sex determination, and chemosensory perception, since the study was based on normalized cDNA libraries from embryos and adult heads. Results A total of 21,253 high-quality ESTs were obtained from the embryo and head libraries. Clustering analyses performed separately for each library resulted in 5201 embryo and 6684 head transcripts. Considering an estimated 19% overlap in the transcriptomes of the two libraries, they represent about 9614 unique transcripts involved in a wide range of biological processes and molecular functions. Of particular interest are the sequences that share homology with Drosophila genes involved in sex determination, olfaction, and reproductive behavior. The medfly transformer2 (tra2) homolog was identified among the embryonic sequences, and its genomic organization and expression were characterized. Conclusion The sequences obtained in this study represent the first major dataset of expressed genes in a tephritid species of agricultural importance. This resource provides essential information to support the investigation of numerous questions regarding the biology of the medfly and other related species and also constitutes an invaluable tool for the annotation of complete genome sequences. Our study has revealed intriguing findings regarding the transcript regulation of tra2 and other sex determination genes, as well as insights into the comparative genomics of genes implicated in chemosensory reception and reproduction. PMID:18500975
Chu, Zongli; Chen, Junying; Sun, Junyan; Dong, Zhongdong; Yang, Xia; Wang, Ying; Xu, Haixia; Zhang, Xiaoke; Chen, Feng; Cui, Dangqun
2017-12-19
During asexual reproduction the embryogenic callus can differentiate into a new plantlet, offering great potential for fostering in vitro culture efficiency in plants. The immature embryos (IMEs) of wheat (Triticum aestivum L.) are more easily able to generate embryogenic callus than mature embryos (MEs). To understand the molecular process of embryogenic callus formation in wheat, de novo transcriptome sequencing was used to generate transcriptome sequences from calli derived from IMEs and MEs after 3d, 6d, or 15d of culture (DC). In total, 155 million high quality paired-end reads were obtained from the 6 cDNA libraries. Our de novo assembly generated 142,221 unigenes, of which 59,976 (42.17%) were annotated with a significant Blastx against nr, Pfam, Swissprot, KOG, KEGG, GO and COG/KOG databases. Comparative transcriptome analysis indicated that a total of 5194 differentially expressed genes (DEGs) were identified in the comparisons of IME vs. ME at the three stages, including 3181, 2085 and 1468 DEGs at 3, 6 and 15 DC, respectively. Of them, 283 overlapped in all the three comparisons. Furthermore, 4731 DEGs were identified in the comparisons between stages in IMEs and MEs. Functional analysis revealed that 271transcription factor (TF) genes (10 overlapped in all 3 comparisons of IME vs. ME) and 346 somatic embryogenesis related genes (SSEGs; 35 overlapped in all 3 comparisons of IME vs. ME) were differentially expressed in at least one comparison of IME vs. ME. In addition, of the 283 overlapped DEGs in the 3 comparisons of IME vs. ME, excluding the SSEGs and TFs, 39 possessed a higher rate of involvement in biological processes relating to response to stimuli, in multi-organism processes, reproductive processes and reproduction. Furthermore, 7 were simultaneously differentially expressed in the 2 comparisons between the stages in IMEs, but not MEs, suggesting that they may be related to embryogenic callus formation. The expression levels of genes, which were validated by qRT-PCR, showed a high correlation with the RNA-seq value. This study provides new insights into the role of the transcriptome in embryogenic callus formation in wheat, and will serve as a valuable resource for further studies addressing embryogenic callus formation in plants.
Trinity | Informatics Technology for Cancer Research (ITCR)
Trinity Cancer Transcriptome Analysis Toolkit (CTAT) including de novo transcriptome assembly with downstream support for expression analysis and focused analyses on cancer transcriptomes, incorporating mutation and fusion transcript discovery, and single cell analysis.
Single-Cell Sequencing for Drug Discovery and Drug Development.
Wu, Hongjin; Wang, Charles; Wu, Shixiu
2017-01-01
Next-generation sequencing (NGS), particularly single-cell sequencing, has revolutionized the scale and scope of genomic and biomedical research. Recent technological advances in NGS and singlecell studies have made the deep whole-genome (DNA-seq), whole epigenome and whole-transcriptome sequencing (RNA-seq) at single-cell level feasible. NGS at the single-cell level expands our view of genome, epigenome and transcriptome and allows the genome, epigenome and transcriptome of any organism to be explored without a priori assumptions and with unprecedented throughput. And it does so with single-nucleotide resolution. NGS is also a very powerful tool for drug discovery and drug development. In this review, we describe the current state of single-cell sequencing techniques, which can provide a new, more powerful and precise approach for analyzing effects of drugs on treated cells and tissues. Our review discusses single-cell whole genome/exome sequencing (scWGS/scWES), single-cell transcriptome sequencing (scRNA-seq), single-cell bisulfite sequencing (scBS), and multiple omics of single-cell sequencing. We also highlight the advantages and challenges of each of these approaches. Finally, we describe, elaborate and speculate the potential applications of single-cell sequencing for drug discovery and drug development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Zeng, Victor; Ewen-Campen, Ben; Horch, Hadley W.; Roth, Siegfried; Mito, Taro; Extavour, Cassandra G.
2013-01-01
Most genomic resources available for insects represent the Holometabola, which are insects that undergo complete metamorphosis like beetles and flies. In contrast, the Hemimetabola (direct developing insects), representing the basal branches of the insect tree, have very few genomic resources. We have therefore created a large and publicly available transcriptome for the hemimetabolous insect Gryllus bimaculatus (cricket), a well-developed laboratory model organism whose potential for functional genetic experiments is currently limited by the absence of genomic resources. cDNA was prepared using mRNA obtained from adult ovaries containing all stages of oogenesis, and from embryo samples on each day of embryogenesis. Using 454 Titanium pyrosequencing, we sequenced over four million raw reads, and assembled them into 21,512 isotigs (predicted transcripts) and 120,805 singletons with an average coverage per base pair of 51.3. We annotated the transcriptome manually for over 400 conserved genes involved in embryonic patterning, gametogenesis, and signaling pathways. BLAST comparison of the transcriptome against the NCBI non-redundant protein database (nr) identified significant similarity to nr sequences for 55.5% of transcriptome sequences, and suggested that the transcriptome may contain 19,874 unique transcripts. For predicted transcripts without significant similarity to known sequences, we assessed their similarity to other orthopteran sequences, and determined that these transcripts contain recognizable protein domains, largely of unknown function. We created a searchable, web-based database to allow public access to all raw, assembled and annotated data. This database is to our knowledge the largest de novo assembled and annotated transcriptome resource available for any hemimetabolous insect. We therefore anticipate that these data will contribute significantly to more effective and higher-throughput deployment of molecular analysis tools in Gryllus. PMID:23671567
Riviere, Guillaume; Klopp, Christophe; Ibouniyamine, Nabihoudine; Huvet, Arnaud; Boudry, Pierre; Favrel, Pascal
2015-12-02
The Pacific oyster, Crassostrea gigas, is one of the most important aquaculture shellfish resources worldwide. Important efforts have been undertaken towards a better knowledge of its genome and transcriptome, which makes now C. gigas becoming a model organism among lophotrochozoans, the under-described sister clade of ecdysozoans within protostomes. These massive sequencing efforts offer the opportunity to assemble gene expression data and make such resource accessible and exploitable for the scientific community. Therefore, we undertook this assembly into an up-to-date publicly available transcriptome database: the GigaTON (Gigas TranscriptOme pipeliNe) database. We assembled 2204 million sequences obtained from 114 publicly available RNA-seq libraries that were realized using all embryo-larval development stages, adult organs, different environmental stressors including heavy metals, temperature, salinity and exposure to air, which were mostly performed as part of the Crassostrea gigas genome project. This data was analyzed in silico and resulted into 56621 newly assembled contigs that were deposited into a publicly available database, the GigaTON database. This database also provides powerful and user-friendly request tools to browse and retrieve information about annotation, expression level, UTRs, splice and polymorphism, and gene ontology associated to all the contigs into each, and between all libraries. The GigaTON database provides a convenient, potent and versatile interface to browse, retrieve, confront and compare massive transcriptomic information in an extensive range of conditions, tissues and developmental stages in Crassostrea gigas. To our knowledge, the GigaTON database constitutes the most extensive transcriptomic database to date in marine invertebrates, thereby a new reference transcriptome in the oyster, a highly valuable resource to physiologists and evolutionary biologists.
Liu, Jiaen; Yang, Zhihong; Salem, Shala A; Rahil, Tayyab; Collins, Gary S; Liu, Xiaohong; Salem, Rifaat D
2012-01-01
Objective During IVF, non-transferred embryos are usually selected for cryopreservation on the basis of morphological criteria. This investigation evaluated an application for array comparative genomic hybridization (aCGH) in assessment of surplus embryos prior to cryopreservation. Methods First-time IVF patients undergoing elective single embryo transfer and having at least one extra non-transferred embryo suitable for cryopreservation were offered enrollment in the study. Patients were randomized into two groups: Patients in group A (n=55) had embryos assessed first by morphology and then by aCGH, performed on cells obtained from trophectoderm biopsy on post-fertilization day 5. Only euploid embryos were designated for cryopreservation. Patients in group B (n=48) had embryos assessed by morphology alone, with only good morphology embryos considered suitable for cryopreservation. Results Among biopsied embryos in group A (n=425), euploidy was confirmed in 226 (53.1%). After fresh single embryo transfer, 64 (28.3%) surplus euploid embryos were cryopreserved for 51 patients (92.7%). In group B, 389 good morphology blastocysts were identified and a single top quality blastocyst was selected for fresh transfer. All group B patients (48/48) had at least one blastocyst remaining for cryopreservation. A total of 157 (40.4%) blastocysts were frozen in this group, a significantly larger proportion than was cryopreserved in group A (p=0.017, by chi-squared analysis). Conclusion While aCGH and subsequent frozen embryo transfer are currently used to screen embryos, this is the first investigation to quantify the impact of aCGH specifically on embryo cryopreservation. Incorporation of aCGH screening significantly reduced the total number of cryopreserved blastocysts compared to when suitability for freezing was determined by morphology only. IVF patients should be counseled that the benefits of aCGH screening will likely come at the cost of sharply limiting the number of surplus embryos available for cryopreservation. PMID:22816070
Transcriptome Analysis at the Single-Cell Level Using SMART Technology.
Fish, Rachel N; Bostick, Magnolia; Lehman, Alisa; Farmer, Andrew
2016-10-10
RNA sequencing (RNA-seq) is a powerful method for analyzing cell state, with minimal bias, and has broad applications within the biological sciences. However, transcriptome analysis of seemingly homogenous cell populations may in fact overlook significant heterogeneity that can be uncovered at the single-cell level. The ultra-low amount of RNA contained in a single cell requires extraordinarily sensitive and reproducible transcriptome analysis methods. As next-generation sequencing (NGS) technologies mature, transcriptome profiling by RNA-seq is increasingly being used to decipher the molecular signature of individual cells. This unit describes an ultra-sensitive and reproducible protocol to generate cDNA and sequencing libraries directly from single cells or RNA inputs ranging from 10 pg to 10 ng. Important considerations for working with minute RNA inputs are given. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.
Yang, Yuchen; Yang, Shuhuan; Li, Jianfang; Deng, Yunfei; Zhang, Zhang; Xu, Shaohua; Guo, Wuxia; Zhong, Cairong; Zhou, Renchao; Shi, Suhua
2015-08-14
Acanthus is a unique genus consisting of both true mangrove and terrestrial species; thus, it represents an ideal system for studying the origin and adaptive evolution of mangrove plants to intertidal environments. However, little is known regarding the two respects of mangrove species in Acanthus. In this study, we sequenced the transcriptomes of the pooled roots and leaves tissues for a mangrove species, Acanthus ilicifolius, and its terrestrial congener, A. leucostachyus, to illustrate the origin of the mangrove species in this genus and their adaptive evolution to harsh habitats. We obtained 73,039 and 69,580 contigs with N50 values of 741 and 1557 bp for A. ilicifolius and A. leucostachyus, respectively. Phylogenetic analyses based on four nuclear segments and three chloroplast fragments revealed that mangroves and terrestrial species in Acanthus fell into different clades, indicating a single origin of the mangrove species in Acanthus. Based on 6634 orthologs, A. ilicifolius and A. leucostachyus were found to be highly divergent, with a peak of synonymous substitution rate (Ks) distribution of 0.145 and an estimated divergence time of approximately 16.8 million years ago (MYA). The transgression in the Early to Middle Miocene may be the major reason for the entry of the mangrove lineage of Acanthus into intertidal environments. Gene ontology (GO) classifications of the full transcriptomes did not show any apparent differences between A. ilicifolius and A. leucostachyus, suggesting the absence of gene components specific to the mangrove transcriptomes. A total of 99 genes in A. ilicifolius were identified with signals of positive selection. Twenty-three of the 99 positively selected genes (PSGs) were found to be involved in salt, heat and ultraviolet stress tolerance, seed germination and embryo development under periodic inundation. These stress-tolerance related PSGs may be crucial for the adaptation of the mangrove species in this genus to stressful marine environments and may contribute to speciation in Acanthus. We characterized the transcriptomes of one mangrove species of Acanthus, A. ilicifolius, and its terrestrial relative, A. leucostachyus, and provided insights into the origin of the mangrove Acanthus species and their adaptive evolution to abiotic stresses in intertidal environments.
Comparative de novo transcriptome analysis of male and female Sea buckthorn.
Bansal, Ankush; Salaria, Mehul; Sharma, Tashil; Stobdan, Tsering; Kant, Anil
2018-02-01
Sea buckthorn is a dioecious medicinal plant found at high altitude. The plant has both male and female reproductive organs in separate individuals. In this article, whole transcriptome de novo assemblies of male and female flower bud samples were carried out using Illumina NextSeq 500 platform to determine the role of the genes involved in sex determination. Moreover, genes with differential expression in male and female transcriptomes were identified to understand the underlying sex determination mechanism. The current study showed 63,904 and 62,272 coding sequences (CDS) in female and male transcriptome data sets, respectively. 16,831 common CDS were screened out from both transcriptomes, out of which 625 were upregulated and 491 were found to be downregulated. To understand the potential regulatory roles of differentially expressed genes in metabolic networks and biosynthetic pathways: KEGG mapping, gene ontology, and co-expression network analysis were performed. Comparison with Flowering Interactive Database (FLOR-ID) resulted in eight differentially expressed genes viz. CHD3-type chromatin-remodeling factor PICKLE ( PKL ), phytochrome-associated serine/threonine-protein phosphatase ( FYPP ), protein TOPLESS ( TPL ), sensitive to freezing 6 ( SFR6 ), lysine-specific histone demethylase 1 homolog 1 ( LDL1 ), pre-mRNA-processing-splicing factor 8A ( PRP8A ), sucrose synthase 4 ( SUS4 ), ubiquitin carboxyl-terminal hydrolase 12 ( UBP12 ), known to be broadly involved in flowering, photoperiodism, embryo development, and cold response pathways. Male and female flower bud transcriptome data of Sea buckthorn may provide comprehensive information at genomic level for the identification of genetic regulation involved in sex determination.
Lipka, A; Paukszto, L; Majewska, M; Jastrzebski, J P; Myszczynski, K; Panasiewicz, G; Szafranska, B
2017-09-01
The Eurasian beaver is one of the largest rodents that, despite its high impact on the environment, is a non-model species that lacks a reference genome. Characterising genes critical for pregnancy outcome can serve as a basis for identifying mechanisms underlying effective reproduction, which is required for the success of endangered species conservation programs. In the present study, high-throughput RNA sequencing (RNA-seq) was used to analyse global changes in the Castor fiber subplacenta transcriptome during multiple pregnancy. De novo reconstruction of the C. fiber subplacenta transcriptome was used to identify genes that were differentially expressed in placentas (n=5) from two females (in advanced twin and triple pregnancy). Analyses of the expression values revealed 124 contigs with significantly different expression; of these, 55 genes were identified using MegaBLAST. Within this group of differentially expressed genes (DEGs), 18 were upregulated and 37 were downregulated in twins. Most DEGs were associated with the following gene ontology terms: cellular process, single organism process, response to stimulus, metabolic process and biological regulation. Some genes were also assigned to the developmental process, the reproductive process or reproduction. Among this group, four genes (namely keratin 19 (Krt19) and wingless-type MMTV integration site family - member 2 (Wnt2), which were downregulated in twins, and Nik-related kinase (Nrk) and gap junction protein β2 (Gjb2), which were upregulated in twins) were assigned to placental development and nine (Krt19, Wnt2 and integrin α 7 (Itga7), downregulated in twins, and Nrk, gap junction protein β6 (Gjb6), GATA binding protein 6 (Gata6), apolipoprotein A-I (ApoA1), apolipoprotein B (ApoB) and haemoglobin subunit α 1 (HbA1), upregulated in twins) were assigned to embryo development. The results of the present study indicate that the number of fetuses affects the expression profile in the C. fiber subplacental transcriptome. Enhancement of transcriptomic resources for C. fiber will improve understanding of the pathways relevant to proper placental development and successful reproduction.
van Peperstraten, Arno; Nelen, Willianne; Grol, Richard; Zielhuis, Gerhard; Adang, Eddy; Stalmeier, Peep; Hermens, Rosella; Kremer, Jan
2010-09-30
To evaluate the effects of a multifaceted empowerment strategy on the actual use of single embryo transfer after in vitro fertilisation. Randomised controlled trial. Five in vitro fertilisation clinics in the Netherlands. 308 couples (women aged <40) on the waiting list for a first in vitro fertilisation cycle. The multifaceted strategy aimed to empower couples in deciding how many embryos should be transferred. The strategy consisted of a decision aid, support of a nurse specialising in in vitro fertilisation, and the offer of reimbursement by way of an extra treatment cycle. The control group received standard care for in vitro fertilisation. Use of single embryo transfer in the first and second treatment cycles as well as decision making variables and costs of the empowerment strategy. After the first treatment cycle, single embryo transfer was used by 43% (65/152) of couples in the intervention group and 32% (50/156) in the control group (difference 11%, 95% confidence interval 0% to 22%; P=0.05). After the second treatment cycle, single embryo transfer was used by 26% (14/154) of couples in the intervention group compared with 16% (8/51) in the control group (difference 10%, -6% to 26%; P=0.20). Compared with couples receiving standard care, those receiving the empowerment strategy had significantly higher empowerment and knowledge levels but no differences in anxiety levels. Mean total savings per couple in the intervention group were calculated to be €169.75 (£146.77; $219.12). A multifaceted empowerment strategy encouraged use of single embryo transfer, increased patients' knowledge, reduced costs, and had no effect on levels of anxiety or depression. This strategy could therefore be an important tool to reduce the twin pregnancy rate after in vitro fertilisation. This trial did not, however, demonstrate the anticipated 25% difference in use of single embryo transfer of the power calculation. ClinicalTrials.gov NCT00315029.
Fugel, Hans-Joerg; Connolly, Mark; Nuijten, Mark
2014-10-09
New techniques in assessing oocytes and embryo quality are currently explored to improve pregnancy and delivery rates per embryo transfer. While a better understanding of embryo quality could help optimize the existing "in vitro fertilization" (IVF) therapy schemes, it is essential to address the economic viability of such technologies in the healthcare setting. An Embryo-Dx economic model was constructed to assess the cost-effectiveness of 3 different IVF strategies from a payer's perspective; it compares Embryo-Dx with single embryo transfer (SET) to elective single embryo transfer (eSET) and to double embryo transfer (DET) treatment practices. The introduction of a new non-invasive embryo technology (Embryo-Dx) associated with a cost up to €460 is cost-effective compared to eSET and DET based on the cost per live birth. The model assumed that Embryo-Dx will improve ongoing pregnancy rate/realize an absolute improvement in live births of 9% in this case. This study shows that improved embryo diagnosis combined with SET may have the potential to reduce the cost per live birth per couple treated in IVF treatment practices. The results of this study are likely more sensitive to changes in the ongoing pregnancy rate and consequently the live birth rate than the diagnosis costs. The introduction of a validated Embryo-Dx technology will further support a move towards increased eSET procedures in IVF clinical practice and vice versa.
Shah, Faheem Afzal; Wang, Qiaojian; Wang, Zhaocheng; Wu, Lifang
2018-01-01
Pecan is an economically important nut crop tree due to its unique texture and flavor properties. The pecan seed is rich of unsaturated fatty acid and protein. However, little is known about the molecular mechanisms of the biosynthesis of fatty acids in the developing seeds. In this study, transcriptome sequencing of the developing seeds was performed using Illumina sequencing technology. Pecan seed embryos at different developmental stages were collected and sequenced. The transcriptomes of pecan seeds at two key developing stages (PA, the initial stage and PS, the fast oil accumulation stage) were also compared. A total of 82,155 unigenes, with an average length of 1,198 bp from seven independent libraries were generated. After functional annotations, we detected approximately 55,854 CDS, among which, 2,807 were Transcription Factor (TF) coding unigenes. Further, there were 13,325 unigenes that showed a 2-fold or greater expression difference between the two groups of libraries (two developmental stages). After transcriptome analysis, we identified abundant unigenes that could be involved in fatty acid biosynthesis, degradation and some other aspects of seed development in pecan. This study presents a comprehensive dataset of transcriptomic changes during the seed development of pecan. It provides insights in understanding the molecular mechanisms responsible for fatty acid biosynthesis in the seed development. The identification of functional genes will also be useful for the molecular breeding work of pecan. PMID:29694395
Xu, Zheng; Ni, Jun; Shah, Faheem Afzal; Wang, Qiaojian; Wang, Zhaocheng; Wu, Lifang; Fu, Songling
2018-01-01
Pecan is an economically important nut crop tree due to its unique texture and flavor properties. The pecan seed is rich of unsaturated fatty acid and protein. However, little is known about the molecular mechanisms of the biosynthesis of fatty acids in the developing seeds. In this study, transcriptome sequencing of the developing seeds was performed using Illumina sequencing technology. Pecan seed embryos at different developmental stages were collected and sequenced. The transcriptomes of pecan seeds at two key developing stages (PA, the initial stage and PS, the fast oil accumulation stage) were also compared. A total of 82,155 unigenes, with an average length of 1,198 bp from seven independent libraries were generated. After functional annotations, we detected approximately 55,854 CDS, among which, 2,807 were Transcription Factor (TF) coding unigenes. Further, there were 13,325 unigenes that showed a 2-fold or greater expression difference between the two groups of libraries (two developmental stages). After transcriptome analysis, we identified abundant unigenes that could be involved in fatty acid biosynthesis, degradation and some other aspects of seed development in pecan. This study presents a comprehensive dataset of transcriptomic changes during the seed development of pecan. It provides insights in understanding the molecular mechanisms responsible for fatty acid biosynthesis in the seed development. The identification of functional genes will also be useful for the molecular breeding work of pecan.
Seahorse Brood Pouch Transcriptome Reveals Common Genes Associated with Vertebrate Pregnancy.
Whittington, Camilla M; Griffith, Oliver W; Qi, Weihong; Thompson, Michael B; Wilson, Anthony B
2015-12-01
Viviparity (live birth) has evolved more than 150 times in vertebrates, and represents an excellent model system for studying the evolution of complex traits. There are at least 23 independent origins of viviparity in fishes, with syngnathid fishes (seahorses and pipefish) unique in exhibiting male pregnancy. Male seahorses and pipefish have evolved specialized brooding pouches that provide protection, gas exchange, osmoregulation, and limited nutrient provisioning to developing embryos. Pouch structures differ widely across the Syngnathidae, offering an ideal opportunity to study the evolution of reproductive complexity. However, the physiological and genetic changes facilitating male pregnancy are largely unknown. We used transcriptome profiling to examine pouch gene expression at successive gestational stages in a syngnathid with the most complex brood pouch morphology, the seahorse Hippocampus abdominalis. Using a unique time-calibrated RNA-seq data set including brood pouch at key stages of embryonic development, we identified transcriptional changes associated with brood pouch remodeling, nutrient and waste transport, gas exchange, osmoregulation, and immunological protection of developing embryos at conception, development and parturition. Key seahorse transcripts share homology with genes of reproductive function in pregnant mammals, reptiles, and other live-bearing fish, suggesting a common toolkit of genes regulating pregnancy in divergent evolutionary lineages. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Giotis, Efstathios S; Robey, Rebecca C; Skinner, Natalie G; Tomlinson, Christopher D; Goodbourn, Stephen; Skinner, Michael A
2016-08-05
Viruses that infect birds pose major threats-to the global supply of chicken, the major, universally-acceptable meat, and as zoonotic agents (e.g. avian influenza viruses H5N1 and H7N9). Controlling these viruses in birds as well as understanding their emergence into, and transmission amongst, humans will require considerable ingenuity and understanding of how different species defend themselves. The type I interferon-coordinated response constitutes the major antiviral innate defence. Although interferon was discovered in chicken cells, details of the response, particularly the identity of hundreds of stimulated genes, are far better described in mammals. Viruses induce interferon-stimulated genes but they also regulate the expression of many hundreds of cellular metabolic and structural genes to facilitate their replication. This study focusses on the potentially anti-viral genes by identifying those induced just by interferon in primary chick embryo fibroblasts. Three transcriptomic technologies were exploited: RNA-seq, a classical 3'-biased chicken microarray and a high density, "sense target", whole transcriptome chicken microarray, with each recognising 120-150 regulated genes (curated for duplication and incorrect assignment of some microarray probesets). Overall, the results are considered robust because 128 of the compiled, curated list of 193 regulated genes were detected by two, or more, of the technologies.
Yang, Sha; Li, Lin; Zhang, Jialei; Geng, Yun; Guo, Feng; Wang, Jianguo; Meng, Jingjing; Sui, Na; Wan, Shubo; Li, Xinguo
2017-01-01
Calcium not only serves as a necessary nutrient for plant growth but also acts as a ubiquitous central hub in a large number of signaling pathways. Free Ca2+ deficiency in the soil may cause early embryo abortion, which eventually led to abnormal development of peanut pod during the harvest season. To understand the mechanisms of Ca2+ regulation in pod development, transcriptome analysis of peanut gynophores and pods was performed by comparing the treatments between free Ca2+ sufficiency and free Ca2+ deficiency using Illumina HiSeq™ 2000. 9,903,082,800 nt bases are generated totally. After assembly, the average length of 102,819 unigenes is 999 nt, N50 is 1,782 nt. RNA-seq based gene expression profilings showed a large number of genes at the transcriptional level changed significantly between the aerial pegs and underground swelling pods under free Ca2+ sufficienct or deficiency treatments, respectively. Genes encoding key members of Ca2+ signaling transduction pathway, enzymes for hormone metabolism, cell division and growth, transcriptional factor as well as embryo development were highlighted. This information provides useful information for our further study. The results of digital gene expression (DGE) indicated that exogenous calcium might contribute to the development of peanut pod through its signal transduction pathway, meanwhile, promote the normal transition of the gynophores to the reproductive development. PMID:29033956
Developmental Arrest and Mouse Antral Not-Surrounded Nucleolus Oocytes1
Monti, Manuela; Zanoni, Mario; Calligaro, Alberto; Ko, Minoru S.H.; Mauri, Pierluigi; Redi, Carlo Alberto
2013-01-01
ABSTRACT The antral compartment in the ovary consists of two populations of oocytes that differ by their ability to resume meiosis and to develop to the blastocyst stage. For reasons still not entirely clear, antral oocytes termed surrounded nucleolus (SN; 70% of the population of antral oocytes) develop to the blastocyst stage, whereas those called not-surrounded nucleolus (NSN) arrest at two cells. We profiled transcriptomic, proteomic, and morphological characteristics of antral oocytes and observed that NSN oocyte arrest is associated with lack of cytoplasmic lattices coincident with reduced expression of MATER and ribosomal proteins. Cytoplasmic lattices have been shown to store maternally derived mRNA and ribosomes in mammalian oocytes and embryos, and MATER has been shown to be required for cytoplasmic lattice formation. Thus, we isolated antral oocytes from a Matertm/tm mouse and we observed that 84% of oocytes are of the NSN type. Our results provide the first molecular evidence to account for inability of NSN-derived embryos to progress beyond the two-cell stage; these results may be relevant to naturally occurring preimplantation embryo demise in mammals. PMID:23136301
Camp, J Gray; Treutlein, Barbara
2017-05-01
Innovative methods designed to recapitulate human organogenesis from pluripotent stem cells provide a means to explore human developmental biology. New technologies to sequence and analyze single-cell transcriptomes can deconstruct these 'organoids' into constituent parts, and reconstruct lineage trajectories during cell differentiation. In this Spotlight article we summarize the different approaches to performing single-cell transcriptomics on organoids, and discuss the opportunities and challenges of applying these techniques to generate organ-level, mechanistic models of human development and disease. Together, these technologies will move past characterization to the prediction of human developmental and disease-related phenomena. © 2017. Published by The Company of Biologists Ltd.
Air bubble location inside the uterus after transfer: is the embryo really there?
Soares, Sérgio Reis; Godinho, Catarina; Nunes, Sofia; Pellicer, António
2008-08-01
To demonstrate that the location of the air bubble after embryo transfer (ET) does not necessarily indicate the final embryo location. Case report. Private clinic. A couple with primary infertility for whom a diagnosis of bicornuate uterus with a very open angle between horns was confirmed. Laparoscopy and hysteroscopy were performed before an IVF cycle in which a single embryo was replaced. Air bubble image immediately after ET and gestational sac location 3 weeks later. Immediately after a single ET, the air bubble was seen in the left uterine horn. Three weeks later, a gestational sac was seen in the right uterine horn. The location of the air bubble immediately after ET does not necessarily indicate the final embryo location.
Huang, Hong-Yuan; Shen, Hsien-Hua; Tien, Chang-Hung; Li, Chin-Jung; Fan, Shih-Kang; Liu, Cheng-Hsien; Hsu, Wen-Syang; Yao, Da-Jeng
2015-01-01
Current human fertilization in vitro (IVF) bypasses the female oviduct and manually inseminates, fertilizes and cultivates embryos in a static microdrop containing appropriate chemical compounds. A microfluidic microchannel system for IVF is considered to provide an improved in-vivo-mimicking environment to enhance the development in a culture system for an embryo before implantation. We demonstrate a novel digitalized microfluidic device powered with electrowetting on a dielectric (EWOD) to culture an embryo in vitro in a single droplet in a microfluidic environment to mimic the environment in vivo for development of the embryo and to culture the embryos with good development and live births. Our results show that the dynamic culture powered with EWOD can manipulate a single droplet containing one mouse embryo and culture to the blastocyst stage. The rate of embryo cleavage to a hatching blastocyst with a dynamic culture is significantly greater than that with a traditional static culture (p<0.05). The EWOD chip enhances the culture of mouse embryos in a dynamic environment. To test the reproductive outcome of the embryos collected from an EWOD chip as a culture system, we transferred embryos to pseudo-pregnant female mice and produced live births. These results demonstrate that an EWOD-based microfluidic device is capable of culturing mammalian embryos in a microfluidic biological manner, presaging future clinical application. PMID:25933003
Huang, Hong-Yuan; Shen, Hsien-Hua; Tien, Chang-Hung; Li, Chin-Jung; Fan, Shih-Kang; Liu, Cheng-Hsien; Hsu, Wen-Syang; Yao, Da-Jeng
2015-01-01
Current human fertilization in vitro (IVF) bypasses the female oviduct and manually inseminates, fertilizes and cultivates embryos in a static microdrop containing appropriate chemical compounds. A microfluidic microchannel system for IVF is considered to provide an improved in-vivo-mimicking environment to enhance the development in a culture system for an embryo before implantation. We demonstrate a novel digitalized microfluidic device powered with electrowetting on a dielectric (EWOD) to culture an embryo in vitro in a single droplet in a microfluidic environment to mimic the environment in vivo for development of the embryo and to culture the embryos with good development and live births. Our results show that the dynamic culture powered with EWOD can manipulate a single droplet containing one mouse embryo and culture to the blastocyst stage. The rate of embryo cleavage to a hatching blastocyst with a dynamic culture is significantly greater than that with a traditional static culture (p<0.05). The EWOD chip enhances the culture of mouse embryos in a dynamic environment. To test the reproductive outcome of the embryos collected from an EWOD chip as a culture system, we transferred embryos to pseudo-pregnant female mice and produced live births. These results demonstrate that an EWOD-based microfluidic device is capable of culturing mammalian embryos in a microfluidic biological manner, presaging future clinical application.
Zhang, Fengjiao; Dong, Wen; Huang, Lulu; Song, Aiping; Wang, Haibin; Fang, Weimin; Chen, Fadi; Teng, Nianjun
2015-01-01
MicroRNAs (miRNAs) are important regulators in plant development. They post-transcriptionally regulate gene expression during various biological and metabolic processes by binding to the 3'-untranslated region of target mRNAs to facilitate mRNA degradation or inhibit translation. Chrysanthemum (Chrysanthemum morifolium) is one of the most important ornamental flowers with increasing demand each year. However, embryo abortion is the main reason for chrysanthemum cross breeding failure. To date, there have been no experiments examining the expression of miRNAs associated with chrysanthemum embryo development. Therefore, we sequenced three small RNA libraries to identify miRNAs and their functions. Our results will provide molecular insights into chrysanthemum embryo abortion. Three small RNA libraries were built from normal chrysanthemum ovules at 12 days after pollination (DAP), and normal and abnormal chrysanthemum ovules at 18 DAP. We validated 228 miRNAs with significant changes in expression frequency during embryonic development. Comparative profiling revealed that 69 miRNAs exhibited significant differential expression between normal and abnormal embryos at 18 DAP. In addition, a total of 1037 miRNA target genes were predicted, and their annotations were defined by transcriptome data. Target genes associated with metabolic pathways were most highly represented according to the annotation. Moreover, 52 predicted target genes were identified to be associated with embryonic development, including 31 transcription factors and 21 additional genes. Gene ontology (GO) annotation also revealed that high-ranking miRNA target genes related to cellular processes and metabolic processes were involved in transcription regulation and the embryo developmental process. The present study generated three miRNA libraries and gained information on miRNAs and their targets in the chrysanthemum embryo. These results enrich the growing database of new miRNAs and lay the foundation for the further understanding of miRNA biological function in the regulation of chrysanthemum embryo abortion.
Storr, Ashleigh; Venetis, Christos A; Cooke, Simon; Kilani, Suha; Ledger, William
2017-02-01
What is the inter-observer and intra-observer agreement between embryologists when selecting a single Day 5 embryo for transfer? The inter-observer and intra-observer agreement between embryologists when selecting a single Day 5 embryo for transfer was generally good, although not optimal, even among experienced embryologists. Previous research on the morphological assessment of early stage (two pronuclei to Day 3) embryos has shown varying levels of inter-observer and intra-observer agreement. However, single blastocyst transfer is now becoming increasingly popular and there are no published data that assess inter-observer and intra-observer agreement when selecting a single embryo for Day 5 transfer. This was a prospective study involving 10 embryologists working at five different IVF clinics within a single organization between July 2013 and November 2015. The top 10 embryologists were selected based on their yearly Quality Assurance Program scores for blastocyst grading and were asked to morphologically grade all Day 5 embryos and choose a single embryo for transfer in a survey of 100 cases using 2D images. A total of 1000 decisions were therefore assessed. For each case, Day 5 images were shown, followed by a Day 3 and Day 5 image of the same embryo. Subgroup analyses were also performed based on the following characteristics of embryologists: the level of clinical embryology experience in the laboratory; amount of research experience; number of days per week spent grading embryos. The agreement between these embryologists and the one that scored the embryos on the actual day of transfer was also evaluated. Inter-observer and intra-observer variability was assessed using the kappa coefficient to evaluate the extent of agreement. This study showed that all 10 embryologists agreed on the embryo chosen for transfer in 50 out of 100 cases. In 93 out of 100 cases, at least 6 out of the 10 embryologists agreed. The inter-observer and intra-observer agreement among embryologists when selecting a single Day 5 embryo for transfer was generally good as assessed by the kappa scores (kappa = 0.734, 95% CI: 0.665-0.791 and 0.759, 95% CI: 0.622-0.833, respectively). The subgroup analyses did not substantially alter the inter-observer and intra-observer agreement among embryologists. The agreement when Day 3 images were included alongside Day 5 images of the same embryos resulted in a change of mind at least three times by each embryologist (on average for <10% of cases) and resulted in a small decrease in inter-observer and intra-observer agreement between embryologists (kappa = 0.676, 95% CI: 0.617-0.724 and 0.752, 95% CI: 0.656-808, respectively).The assessment of the inter-observer agreement with regard to morphological grading of Day 5 embryos showed only a fair-to-moderate agreement, which was observed across all subgroup analyses. The highest overall kappa coefficient was seen for the grading of the developmental stage of an embryo (0.513; 95% CI: 0.492-0.538). The findings were similar when the individual embryologists were compared with the embryologist who made the morphological assessments of the available embryos on the actual day of transfer. All embryologists had already completed their training and were working under one organization with similar policies between the five clinics. Therefore, the inter-observer agreement might not be as high between embryologists working in clinics with different policies or with different levels of training. The generally good, although not optimal uniformity between participating embryologists when selecting a Day 5 embryo for transfer, as well as, the surprisingly low agreement when morphologically grading Day 5 embryos could be improved, potentially resulting in increased pregnancy rates. Future studies need to be directed toward technologies that can help achieve this. None declared. Not applicable. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Kang, Yun; McMillan, Ian; Norris, Michael H; Hoang, Tung T
2015-07-01
Until recently, transcriptome analyses of single cells have been confined to eukaryotes. The information obtained from single-cell transcripts can provide detailed insight into spatiotemporal gene expression, and it could be even more valuable if expanded to prokaryotic cells. Transcriptome analysis of single prokaryotic cells is a recently developed and powerful tool. Here we describe a procedure that allows amplification of the total transcript of a single prokaryotic cell for in-depth analysis. This is performed by using a laser-capture microdissection instrument for single-cell isolation, followed by reverse transcription via Moloney murine leukemia virus, degradation of chromosomal DNA with McrBC and DpnI restriction enzymes, single-stranded cDNA (ss-cDNA) ligation using T4 polynucleotide kinase and CircLigase, and polymerization of ss-cDNA to double-stranded cDNA (ds-cDNA) by Φ29 polymerase. This procedure takes ∼5 d, and sufficient amounts of ds-cDNA can be obtained from single-cell RNA template for further microarray analysis.
Hoelker, M; Rings, F; Lund, Q; Phatsara, C; Schellander, K; Tesfaye, D
2010-10-01
To overcome developmental problems as a consequence of single embryo culture, the Well of the Well (WOW) culture system has been developed. In this study, we aimed to examine the effect of embryo densities with respect to both microenvironment and macroenvironment on developmental rates and embryo quality to get a deeper insight into developmentally important mechanisms. WOW diameter and depth significantly affected developmental rates (p < 0.05). WOWs with diameter of 500 μm reached significantly higher blastocyst rates (32.5 vs 21.1% vs 20.3%) compared to embryos cultured in WOWs of 300 μm diameter or plain cultured controls. Embryos cultured in WOWs with 700 μm depth reached significant higher developmental rates compared with embryos cultured in WOWs of 300 μm depth and control embryos (30.6 vs 22.6% vs 20.3%). Correlation of the embryo per WOW volume with developmental rates was higher (r(2) = 0.92, p = 0.0004) than correlation of WOW diameter or WOW depth with developmental rates. However, the embryo per WOW volume did not affect differential cell counts. An embryo per culture dish volume of 1 : 30 μl was identified to be optimal when the embryo per WOW volume was 1 : 0.27 μl increasing developmental rates up to the level of mass embryo production. Giving the opportunity to track each embryo over the complete culture period while keeping high developmental rates with normal mitotic dynamics, the results of this work will provide benefit for the single culture of embryos in human assisted reproduction, mammalian embryos with high economic interest as well as for scientific purpose. © 2009 Blackwell Verlag GmbH.
A survey of the sorghum transcriptome using single-molecule long reads
Abdel-Ghany, Salah E.; Hamilton, Michael; Jacobi, Jennifer L.; ...
2016-06-24
Alternative splicing and alternative polyadenylation (APA) of pre-mRNAs greatly contribute to transcriptome diversity, coding capacity of a genome and gene regulatory mechanisms in eukaryotes. Second-generation sequencing technologies have been extensively used to analyse transcriptomes. However, a major limitation of short-read data is that it is difficult to accurately predict full-length splice isoforms. Here we sequenced the sorghum transcriptome using Pacific Biosciences single-molecule real-time long-read isoform sequencing and developed a pipeline called TAPIS (Transcriptome Analysis Pipeline for Isoform Sequencing) to identify full-length splice isoforms and APA sites. Our analysis reveals transcriptome-wide full-length isoforms at an unprecedented scale with over 11,000 novelmore » splice isoforms. Additionally, we uncover APA ofB11,000 expressed genes and more than 2,100 novel genes. Lastly, these results greatly enhance sorghum gene annotations and aid in studying gene regulation in this important bioenergy crop. The TAPIS pipeline will serve as a useful tool to analyse Iso-Seq data from any organism.« less
A survey of the sorghum transcriptome using single-molecule long reads
Abdel-Ghany, Salah E.; Hamilton, Michael; Jacobi, Jennifer L.; Ngam, Peter; Devitt, Nicholas; Schilkey, Faye; Ben-Hur, Asa; Reddy, Anireddy S. N.
2016-01-01
Alternative splicing and alternative polyadenylation (APA) of pre-mRNAs greatly contribute to transcriptome diversity, coding capacity of a genome and gene regulatory mechanisms in eukaryotes. Second-generation sequencing technologies have been extensively used to analyse transcriptomes. However, a major limitation of short-read data is that it is difficult to accurately predict full-length splice isoforms. Here we sequenced the sorghum transcriptome using Pacific Biosciences single-molecule real-time long-read isoform sequencing and developed a pipeline called TAPIS (Transcriptome Analysis Pipeline for Isoform Sequencing) to identify full-length splice isoforms and APA sites. Our analysis reveals transcriptome-wide full-length isoforms at an unprecedented scale with over 11,000 novel splice isoforms. Additionally, we uncover APA of ∼11,000 expressed genes and more than 2,100 novel genes. These results greatly enhance sorghum gene annotations and aid in studying gene regulation in this important bioenergy crop. The TAPIS pipeline will serve as a useful tool to analyse Iso-Seq data from any organism. PMID:27339290
USDA-ARS?s Scientific Manuscript database
Longan (Dimocarpus longan Lour.) is an important tropical fruit tree crop. Accurate varietal identification is essential for germplasm management and breeding. Using longan transcriptome sequences from public databases, we developed single nucleotide polymorphism (SNP) markers; validated 60 SNPs in...
USDA-ARS?s Scientific Manuscript database
This study aimed to compare oocyte gene expression profiles and follicular fluid (FF) content from overweight/obese (OW) women and normal weight (NW) women who were undergoing fertility treatments. Using single cell transcriptomic analyses, we investigated oocyte gene expression using RNA-seq. Serum...
Costa-Borges, Nuno; Bellés, Marta; Meseguer, Marcos; Galliano, Daniela; Ballesteros, Agustin; Calderón, Gloria
2016-03-01
To evaluate the efficiency of using a continuous (one-step) protocol with a single medium for the culture of human embryos in a time-lapse incubator (TLI). Prospective cohort study on sibling donor oocytes. University-affiliated in vitro fertilization (IVF) center. Embryos from 59 patients. Culture in a TLI in a single medium with or without renewal of the medium on day-3. Embryo morphology and morphokinetic parameters, clinical pregnancy, take-home baby rate, and perinatal outcomes. The blastocyst rates (68.3 vs. 66.8%) and the proportion of good-quality blastocysts (transferred plus frozen) obtained with the two-step (80.0%) protocol were statistically significantly similar to those obtained in the one-step protocol (72.2%). Similarly, morphokinetic events from early cleavage until late blastocyst stages were statistically significantly equivalent between both groups. No differences were found either in clinical pregnancy rates when comparing pure transfers performed with embryos selected from the two-step (75.0%), one-step (70.0%, respectively), and mixed (57.1%) groups. A total of 55 out of 91 embryos transferred implanted successfully (60.4%), resulting in a total of 37 newborns with a comparable birth weight mean among groups. Our findings support the idea that in a TLI with a controlled air purification system, human embryos can be successfully cultured continuously from day 0 onward in single medium with no need to renew it on day-3. This strategy does not affect embryo morphokinetics or development to term and offers more stable culture conditions for embryos as well as practical advantages and reduced costs for the IVF laboratory. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zarnescu, Livia; Leung, Michael C.; Abeyta, Michael; Sudkamp, Helge; Baer, Thomas; Behr, Barry; Ellerbee, Audrey K.
2015-09-01
Vitrification is an increasingly popular method of embryo cryopreservation that is used in assisted reproductive technology. Although vitrification has high post-thaw survival rates compared to other freezing techniques, its long-term effects on embryo development are still poorly understood. We demonstrate an application of full-field optical coherence tomography (FF-OCT) to visualize the effects of vitrification on live single-cell (2 pronuclear) mouse embryos without harmful labels. Using FF-OCT, we observed that vitrification causes a significant increase in the aggregation of structures within the embryo cytoplasm, consistent with reports in literature based on fluorescence techniques. We quantify the degree of aggregation with an objective metric, the cytoplasmic aggregation (CA) score, and observe a high degree of correlation between the CA scores of FF-OCT images of embryos and of fluorescence images of their mitochondria. Our results indicate that FF-OCT shows promise as a label-free assessment of the effects of vitrification on embryo mitochondria distribution. The CA score provides a quantitative metric to describe the degree to which embryos have been affected by vitrification and could aid clinicians in selecting embryos for transfer.
2011-01-01
Background In animals, signaling of Bone Morphogenetic Proteins (BMPs) is essential for dorsoventral (DV) patterning of the embryo, but how BMP signaling evolved with changes in embryonic DV differentiation is largely unclear. Based on the extensive knowledge of BMP signaling in Drosophila melanogaster, the morphological diversity of extraembryonic tissues in different fly species provides a comparative system to address this question. The closest relatives of D. melanogaster with clearly distinct DV differentiation are hover flies (Diptera: Syrphidae). The syrphid Episyrphus balteatus is a commercial bio-agent against aphids and has been established as a model organism for developmental studies and chemical ecology. The dorsal blastoderm of E. balteatus gives rise to two extraembryonic tissues (serosa and amnion), whereas in D. melanogaster, the dorsal blastoderm differentiates into a single extraembryonic epithelium (amnioserosa). Recent studies indicate that several BMP signaling components of D. melanogaster, including the BMP ligand Screw (Scw) and other extracellular regulators, evolved in the dipteran lineage through gene duplication and functional divergence. These findings raise the question of whether the complement of BMP signaling components changed with the origin of the amnioserosa. Results To search for BMP signaling components in E. balteatus, we generated and analyzed transcriptomes of freshly laid eggs (0-30 minutes) and late blastoderm to early germband extension stages (3-6 hours) using Roche/454 sequencing. We identified putative E. balteatus orthologues of 43% of all annotated D. melanogaster genes, including the genes of all BMP ligands and other BMP signaling components. Conclusion The diversification of several BMP signaling components in the dipteran linage of D. melanogaster preceded the origin of the amnioserosa. [Transcriptome sequence data from this study have been deposited at the NCBI Sequence Read Archive (SRP005289); individually assembled sequences have been deposited at GenBank (JN006969-JN006986).] PMID:21627820
NASA Technical Reports Server (NTRS)
Vasilenko, A.; McDaniel, J. K.; Conger, B. V.
2000-01-01
Somatic embryos initiate and develop directly from single mesophyll cells in in vitro-cultured leaf segments of orchardgrass (Dactylis glomerata L.). Embryogenic cells establish themselves in the predivision stage by formation of thicker cell walls and dense cytoplasm. Electron microscopy observations for embryos ranging from the pre-cell-division stage to 20-cell proembryos confirm previous light microscopy studies showing a single cell origin. They also confirm that the first division is predominantly periclinal and that this division plane is important in establishing embryo polarity and in determining the embryo axis. If the first division is anticlinal or if divisions are in random planes after the first division, divisions may not continue to produce an embryo. This result may produce an embryogenic cell mass, callus formation, or no structure at all. Grant numbers: NAGW-3141, NAG10-0221.
Acharya, Kelly S; Keyhan, Sanaz; Acharya, Chaitanya R; Yeh, Jason S; Provost, Meredith P; Goldfarb, James M; Muasher, Suheil J
2016-09-01
To analyze donor oocyte cycles in the Society for Assisted Reproductive Technology (SART) registry to determine: 1) how many cycles complied with the 2009 American Society for Reproductive Medicine/SART embryo transfer guidelines; and 2) cycle outcomes according to the number of embryos transferred. For donor oocyte IVF with donor age <35 years, the consideration of single-embryo transfer was strongly recommended. Retrospective cohort study of United States national registry information. Not applicable. A total of 13,393 donor-recipient cycles from 2011 to 2012. Embryos transferred in donor IVF cycles. Percentage of compliant cycles, multiple pregnancy rate. There were 3,157 donor cleavage-stage transfers and 10,236 donor blastocyst transfers. In the cleavage-stage cycles, 88% met compliance criteria. The multiple pregnancy rate (MPR) was significantly higher in the noncompliant cycles. In a subanalysis of compliant cleavage-stage cycles, 91% transferred two embryos and only 9% single embryos. In those patients transferring two embryos, the MPR was significantly higher (33% vs. 1%). In blastocyst transfers, only 28% of the cycles met compliance criteria. The MPR was significantly higher in the noncompliant blastocyst cohort at 53% (compared with 2% in compliant cycles). The majority of donor cleavage-stage transfers are compliant with current guidelines, but the transfer of two embryos results in a significantly higher MPR compared with single-embryo transfer. The majority of donor blastocyst cycles are noncompliant, which appears to be driving an unacceptably high MPR in these cycles. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Jungheim, Emily S; Ryan, Ginny L; Levens, Eric D; Cunningham, Alexandra F; Macones, George A; Carson, Kenneth R; Beltsos, Angeline N; Odem, Randall R
2010-09-01
To gain a better understanding of factors influencing clinicians' embryo transfer practices. Cross-sectional survey. Web-based survey conducted in December 2008 of individuals practicing IVF in centers registered with the Society for Assisted Reproductive Technology (SART). None. None. Prevalence of clinicians reporting following embryo transfer guidelines recommended by the American Society for Reproductive Medicine (ASRM), prevalence among these clinicians to deviate from ASRM guidelines in commonly encountered clinical scenarios, and practice patterns related to single embryo transfer. Six percent of respondents reported following their own, independent guidelines for the number of embryos to transfer after IVF. Of the 94% of respondents who reported routinely following ASRM embryo transfer guidelines, 52% would deviate from these guidelines for patient request, 51% for cycles involving the transfer of frozen embryos, and 70% for patients with previously failed IVF cycles. All respondents reported routinely discussing the risks of multiple gestations associated with standard embryo transfer practices, whereas only 34% reported routinely discussing single embryo transfer with all patients. Although the majority of clinicians responding to our survey reported following ASRM embryo transfer guidelines, at least half would deviate from these guidelines in a number of different situations. Copyright (c) 2010 American Society for Reproductive Medicine. All rights reserved.
Effects of Fertility on Gene Expression and Function of the Bovine Endometrium
Minten, Megan A.; Bilby, Todd R.; Bruno, Ralph G. S.; Allen, Carolyn C.; Madsen, Crystal A.; Wang, Zeping; Sawyer, Jason E.; Tibary, Ahmed; Neibergs, Holly L.; Geary, Thomas W.; Bauersachs, Stefan; Spencer, Thomas E.
2013-01-01
Infertility and subfertility are important and pervasive reproductive problems in both domestic animals and humans. The majority of embryonic loss occurs during the first three weeks of pregnancy in cattle and women due, in part, to inadequate endometrial receptivity for support of embryo implantation. To identify heifers of contrasting fertility, serial rounds of artificial insemination (AI) were conducted in 201 synchronized crossbred beef heifers. The heifers were then fertility classified based on number of pregnancies detected on day 35 in four AI opportunities. Heifers, classified as having high fertility, subfertility or infertility, were selected for further study. The fertility-classified heifers were superovulated and flushed, and the recovered embryos were graded and then transferred to synchronized recipients. Quantity of embryos recovered per flush, embryo quality, and subsequent recipient pregnancy rates did not differ by fertility classification. Two in vivo-produced bovine embryos (stage 4 or 5, grade 1 or 2) were then transferred into each heifer on day 7 post-estrus. Pregnancy rates were greater in high fertility than lower fertility heifers when heifers were used as embryo recipients. The reproductive tracts of the classified heifers were obtained on day 14 of the estrous cycle. No obvious morphological differences in reproductive tract structures and histology of the uterus were observed in the heifers. Microarray analysis revealed differences in the endometrial transcriptome based on fertility classification. A genome-wide association study, based on SNP genotyping, detected 7 moderate associations with fertility across 6 different chromosomes. Collectively, these studies support the idea that innate differences in uterine function underlie fertility and early pregnancy loss in ruminants. Cattle with defined early pregnancy success or loss is useful to elucidate the complex biological and genetic mechanisms governing endometrial receptivity and uterine competency for pregnancy. PMID:23940519
Characterization of somatic embryogenesis initiated from the Arabidopsis shoot apex.
Kadokura, Satoshi; Sugimoto, Kaoru; Tarr, Paul; Suzuki, Takamasa; Matsunaga, Sachihiro
2018-04-28
Somatic embryogenesis is one of the best examples of the remarkable developmental plasticity of plants, in which committed somatic cells can dedifferentiate and acquire the ability to form an embryo and regenerate an entire plant. In Arabidopsis thaliana, the shoot apices of young seedlings have been reported as an alternative tissue source for somatic embryos (SEs) besides the widely studied zygotic embryos taken from siliques. Although SE induction from shoots demonstrates the plasticity of plants more clearly than the embryo-to-embryo induction system, the underlying developmental and molecular mechanisms involved are unknown. Here we characterized SE formation from shoot apex explants by establishing a system for time-lapse observation of explants during SE induction. We also established a method to distinguish SE-forming and non-SE-forming explants prior to anatomical SE formation, enabling us to identify distinct transcriptome profiles of these two explants at SE initiation. We show that embryonic fate commitment takes place at day 3 of SE induction and the SE arises directly, not through callus formation, from the base of leaf primordia just beside the shoot apical meristem (SAM), where auxin accumulates and shoot-root polarity is formed. The expression domain of a couple of key developmental genes for the SAM transiently expands at this stage. Our data demonstrate that SE-forming and non-SE-forming explants share mostly the same transcripts except for a limited number of embryonic genes and root genes that might trigger the SE-initiation program. Thus, SE-forming explants possess a mixed identity (SAM, root and embryo) at the time of SE specification. Copyright © 2018. Published by Elsevier Inc.
Chery, Joyce G; Sass, Chodon; Specht, Chelsea D
2017-09-01
We developed a bioinformatic pipeline that leverages a publicly available genome and published transcriptomes to design primers in conserved coding sequences flanking targeted introns of single-copy nuclear loci. Paullinieae (Sapindaceae) is used to demonstrate the pipeline. Transcriptome reads phylogenetically closer to the lineage of interest are aligned to the closest genome. Single-nucleotide polymorphisms are called, generating a "pseudoreference" closer to the lineage of interest. Several filters are applied to meet the criteria of single-copy nuclear loci with introns of a desired size. Primers are designed in conserved coding sequences flanking introns. Using this pipeline, we developed nine single-copy nuclear intron markers for Paullinieae. This pipeline is highly flexible and can be used for any group with available genomic and transcriptomic resources. This pipeline led to the development of nine variable markers for phylogenetic study without generating sequence data de novo.
Shrestha, Anita; Champagne, Donald E; Culbreath, Albert K; Rotenberg, Dorith; Whitfield, Anna E; Srinivasan, Rajagopalbabu
2017-08-01
Persistent propagative viruses maintain intricate interactions with their arthropod vectors. In this study, we investigated the transcriptome-level responses associated with a persistent propagative phytovirus infection in various life stages of its vector using an Illumina HiSeq sequencing platform. The pathosystem components included a Tospovirus, Tomato spotted wilt virus (TSWV), its insect vector, Frankliniella fusca (Hinds), and a plant host, Arachis hypogaea (L.). We assembled (de novo) reads from three developmental stage groups of virus-exposed and non-virus-exposed F. fusca into one transcriptome consisting of 72 366 contigs and identified 1161 differentially expressed (DE) contigs. The number of DE contigs was greatest in adults (female) (562) when compared with larvae (first and second instars) (395) and pupae (pre- and pupae) (204). Upregulated contigs in virus-exposed thrips had blastx annotations associated with intracellular transport and virus replication. Upregulated contigs were also assigned blastx annotations associated with immune responses, including apoptosis and phagocytosis. In virus-exposed larvae, Blast2GO analysis identified functional groups, such as multicellular development with downregulated contigs, while reproduction, embryo development and growth were identified with upregulated contigs in virus-exposed adults. This study provides insights into differences in transcriptome-level responses modulated by TSWV in various life stages of an important vector, F. fusca.
The oviductal transcriptome is influenced by a local ovarian effect in the sow.
López-Úbeda, Rebeca; Muñoz, Marta; Vieira, Luis; Hunter, Ronald H F; Coy, Pilar; Canovas, Sebastian
2016-07-22
Oviducts participate in fertilization and early embryo development, and they are influenced by systemic and local circulation. Local functional interplay between ovary, oviduct and uterus is important, as deduced from the previously observed differences in hormone concentrations, presence of sperm, or patterns of motility in the oviduct after unilateral ovariectomy (UO). However, the consequences of unilateral ovariectomy on the oviductal transcriptome remain unexplored. In this study, we have investigated the consequences of UO in a higher animal model as the pig. The influence of UO was analyzed on the number of ovulations on the contra ovary, which was increased, and on the ipsilateral oviductal transcriptome. Microarray analysis was performed and the results were validated by PCR. Differentially expressed genes (DEGs) with a fold change ≥ 2 and a false discovery rate of 10 % were analyzed by Ingenuity Pathway Analysis (IPA) to identify the main biofunctions affected by UO. Data revealed two principal effects in the ipsilateral oviduct after UO: i) down-regulation of genes involved in the survival of sperm in the oviduct and early embryonic development, and ii) up-regulation of genes involved in others functions as protection against external agents and tumors. Results showed that unilateral ovariectomy results in an increased number of ovulation points on the contra ovary and changes in the transcriptome of the ipsilateral oviduct with consequences on key biological process that could affect fertility output.
Gomez, E; Martin, D; Carrocera, S; Muñoz, M
2015-08-01
In cattle, the detection of very early endometrial responses is considered to be hampered by the presence of only a single embryo. Therefore, we have previously developed a model of multiple embryo transfer to circumvent this hindrance. In this work, we analysed embryo-maternal interactions in the bovine uterus on day 8 of development while comparing the presence of multiple v. single embryos using embryo transfer and artificial insemination, respectively. Concentration of proteins (β-actin, NFkB, clusterin and immunoproteosome 20S β5i subunit-i20S), by western blot, and hexoses (glucose and fructose) were measured in paired samples of uterine fluid (UF) from the same animal with and without embryos in the uterus and were compared with UF obtained after artificial insemination. Prostaglandin (PG) F2 α and PGE2 concentrations were also analysed in blood plasma. The four proteins analysed and hexoses were unaffected by the presence of one or more embryos in the uterus. However, blood PGF2 α showed similar, significant increases with one or more embryos over cyclic animals; such changes were not observed in blood PGE2. Although multiple embryo transfer may appear to be non-physiological, we showed that the uterus, at the very early embryonic stages, does exhibit physiological reactions. Multiple embryo transfer can, therefore, be used for studies of very early embryo-maternal interactions in vivo in monotocous species.
Chen, Xiaoping; Zhu, Wei; Azam, Sarwar; Li, Heying; Zhu, Fanghe; Li, Haifen; Hong, Yanbin; Liu, Haiyan; Zhang, Erhua; Wu, Hong; Yu, Shanlin; Zhou, Guiyuan; Li, Shaoxiong; Zhong, Ni; Wen, Shijie; Li, Xingyu; Knapp, Steve J; Ozias-Akins, Peggy; Varshney, Rajeev K; Liang, Xuanqiang
2013-01-01
The failure of peg penetration into the soil leads to seed abortion in peanut. Knowledge of genes involved in these processes is comparatively deficient. Here, we used RNA-seq to gain insights into transcriptomes of aerial and subterranean pods. More than 2 million transcript reads with an average length of 396 bp were generated from one aerial (AP) and two subterranean (SP1 and SP2) pod libraries using pyrosequencing technology. After assembly, sets of 49 632, 49 952 and 50 494 from a total of 74 974 transcript assembly contigs (TACs) were identified in AP, SP1 and SP2, respectively. A clear linear relationship in the gene expression level was observed between these data sets. In brief, 2194 differentially expressed TACs with a 99.0% true-positive rate were identified, among which 859 and 1068 TACs were up-regulated in aerial and subterranean pods, respectively. Functional analysis showed that putative function based on similarity with proteins catalogued in UniProt and gene ontology term classification could be determined for 59 342 (79.2%) and 42 955 (57.3%) TACs, respectively. A total of 2968 TACs were mapped to 174 KEGG pathways, of which 168 were shared by aerial and subterranean transcriptomes. TACs involved in photosynthesis were significantly up-regulated and enriched in the aerial pod. In addition, two senescence-associated genes were identified as significantly up-regulated in the aerial pod, which potentially contribute to embryo abortion in aerial pods, and in turn, to cessation of swelling. The data set generated in this study provides evidence for some functional genes as robust candidates underlying aerial and subterranean pod development and contributes to an elucidation of the evolutionary implications resulting from fruit development under light and dark conditions. © 2012 The Authors Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.
OMICS: Current and future perspectives in reproductive medicine and technology
Egea, Rocío Rivera; Puchalt, Nicolás Garrido; Escrivá, Marcos Meseguer; Varghese, Alex C.
2014-01-01
Many couples present fertility problems at their reproductive age, and although in the last years, the efficiency of assisted reproduction techniques has increased, these are still far from being 100% effective. A key issue in this field is the proper assessment of germ cells, embryos and endometrium quality, in order to determine the actual likelihood to succeed. Currently available analysis is mainly based on morphological features of oocytes, sperm and embryos and although these strategies have improved the results, there is an urgent need of new diagnostic and therapeutic tools. The emergence of the - OMICS technologies (epigenomics, genomics, transcriptomics, proteomics and metabolomics) permitted the improvement on the knowledge in this field, by providing with a huge amount of information regarding the biological processes involved in reproductive success, thereby getting a broader view of complex biological systems with a relatively low cost and effort. PMID:25191020
Yanez, Livia Z.; Han, Jinnuo; Behr, Barry B.; Pera, Renee A. Reijo; Camarillo, David B.
2016-01-01
The causes of embryonic arrest during pre-implantation development are poorly understood. Attempts to correlate patterns of oocyte gene expression with successful embryo development have been hampered by the lack of reliable and nondestructive predictors of viability at such an early stage. Here we report that zygote viscoelastic properties can predict blastocyst formation in humans and mice within hours after fertilization, with >90% precision, 95% specificity and 75% sensitivity. We demonstrate that there are significant differences between the transcriptomes of viable and non-viable zygotes, especially in expression of genes important for oocyte maturation. In addition, we show that low-quality oocytes may undergo insufficient cortical granule release and zona-hardening, causing altered mechanics after fertilization. Our results suggest that embryo potential is largely determined by the quality and maturation of the oocyte before fertilization, and can be predicted through a minimally invasive mechanical measurement at the zygote stage. PMID:26904963
Single-cell entropy for accurate estimation of differentiation potency from a cell's transcriptome
NASA Astrophysics Data System (ADS)
Teschendorff, Andrew E.; Enver, Tariq
2017-06-01
The ability to quantify differentiation potential of single cells is a task of critical importance. Here we demonstrate, using over 7,000 single-cell RNA-Seq profiles, that differentiation potency of a single cell can be approximated by computing the signalling promiscuity, or entropy, of a cell's transcriptome in the context of an interaction network, without the need for feature selection. We show that signalling entropy provides a more accurate and robust potency estimate than other entropy-based measures, driven in part by a subtle positive correlation between the transcriptome and connectome. Signalling entropy identifies known cell subpopulations of varying potency and drug resistant cancer stem-cell phenotypes, including those derived from circulating tumour cells. It further reveals that expression heterogeneity within single-cell populations is regulated. In summary, signalling entropy allows in silico estimation of the differentiation potency and plasticity of single cells and bulk samples, providing a means to identify normal and cancer stem-cell phenotypes.
Single-cell entropy for accurate estimation of differentiation potency from a cell's transcriptome
Teschendorff, Andrew E.; Enver, Tariq
2017-01-01
The ability to quantify differentiation potential of single cells is a task of critical importance. Here we demonstrate, using over 7,000 single-cell RNA-Seq profiles, that differentiation potency of a single cell can be approximated by computing the signalling promiscuity, or entropy, of a cell's transcriptome in the context of an interaction network, without the need for feature selection. We show that signalling entropy provides a more accurate and robust potency estimate than other entropy-based measures, driven in part by a subtle positive correlation between the transcriptome and connectome. Signalling entropy identifies known cell subpopulations of varying potency and drug resistant cancer stem-cell phenotypes, including those derived from circulating tumour cells. It further reveals that expression heterogeneity within single-cell populations is regulated. In summary, signalling entropy allows in silico estimation of the differentiation potency and plasticity of single cells and bulk samples, providing a means to identify normal and cancer stem-cell phenotypes. PMID:28569836
Cost-effectiveness analysis of different embryo transfer strategies in England.
Dixon, S; Faghih Nasiri, F; Ledger, W L; Lenton, E A; Duenas, A; Sutcliffe, P; Chilcott, J B
2008-05-01
The objective of this study was to assess the cost-effectiveness of different embryo transfer strategies for a single cycle when two embryos are available, and taking the NHS cost perspective. Cost-effectiveness model. Five in vitro fertilisation (IVF) centres in England between 2003/04 and 2004/05. Women with two embryos available for transfer in three age groups (<30, 30-35 and 36-39 years). A decision analytic model was constructed using observational data collected from a sample of fertility centres in England. Costs and adverse outcomes are estimated up to 5 years after the birth. Incremental cost per live birth was calculated for different embryo transfer strategies and for three separate age groups: less than 30, 30-35 and 36-39 years. Premature birth, neonatal intensive care unit admissions and days, cerebral palsy and incremental cost-effectiveness ratios. Single fresh embryo transfer (SET) plus frozen single embryo transfer (fzSET) is the more costly in terms of IVF costs, but the lower rates of multiple births mean that in terms of total costs, it is less costly than double embryo transfer (DET). Adverse events increase when moving from SET to SET+fzSET to DET. The probability of SET+fzSET being cost-effective decreases with age. When SET is included in the analysis, SET+fzSET no longer becomes a cost-effective option at any threshold value for all age groups studied. The analyses show that the choice of embryo transfer strategy is a function of four factors: the age of the mother, the relevance of the SET option, the value placed on a live birth and the relative importance placed on adverse outcomes. For each patient group, the choice of strategy is a trade-off between the value placed on a live birth and cost.
Mahood, Thomas H; Johar, Dina R; Iwasiow, Barbara M; Xu, Wayne; Keijzer, Richard
2016-05-01
We currently do not know how the herbicide nitrofen induces lung hypoplasia and congenital diaphragmatic hernia in rats. Our aim was to compare the differentially expressed transcriptome of nitrofen-induced hypoplastic lungs to control lungs in embryonic day 13 rat embryos before the development of embryonic diaphragmatic defects. Using next-generation sequencing technology, we identified the expression profile of microRNA (miRNA) and mRNA genes. Once the dataset was validated by both RT-qPCR and digital-PCR, we conducted gene ontology, miRNA target analysis, and orthologous miRNA sequence matching for the deregulated miRNAs in silico. Our study identified 186 known mRNA and 100 miRNAs which were differentially expressed in nitrofen-induced hypoplastic lungs. Sixty-four rat miRNAs homologous to known human miRNAs were identified. A subset of these genes may promote lung hypoplasia in rat and/or human, and we discuss their associations. Potential miRNA pathways relevant to nitrofen-induced lung hypoplasia include PI3K, TGF-β, and cell cycle kinases. Nitrofen-induced hypoplastic lungs have an abnormal transcriptome that may lead to impaired development.
The toxicological application of transcriptomics and epigenomics in zebrafish and other teleosts.
Williams, Tim D; Mirbahai, Leda; Chipman, J Kevin
2014-03-01
Zebrafish (Danio rerio) is one of a number of teleost fish species frequently employed in toxicology. Toxico-genomics determines global transcriptomic responses to chemical exposures and can predict their effects. It has been applied successfully within aquatic toxicology to assist in chemical testing, determination of mechanisms and environmental monitoring. Moreover, the related field of toxico-epigenomics, that determines chemical-induced changes in DNA methylation, histone modifications and micro-RNA expression, is emerging as a valuable contribution to understanding mechanisms of both adaptive and adverse responses. Zebrafish has proven a useful and convenient model species for both transcriptomic and epigenetic toxicological studies. Despite zebrafish's dominance in other areas of fish biology, alternative fish species are used extensively in toxico-genomics. The main reason for this is that environmental monitoring generally focuses on species native to the region of interest. We are starting to see advances in the integration of high-throughput screening, omics techniques and bioinformatics together with more traditional indicator endpoints that are relevant to regulators. Integration of such approaches with high-throughput testing of zebrafish embryos, leading to the discovery of adverse outcome pathways, promises to make a major contribution to ensuring the safety of chemicals in the environment.
SC3 - consensus clustering of single-cell RNA-Seq data
Kiselev, Vladimir Yu.; Kirschner, Kristina; Schaub, Michael T.; Andrews, Tallulah; Yiu, Andrew; Chandra, Tamir; Natarajan, Kedar N; Reik, Wolf; Barahona, Mauricio; Green, Anthony R; Hemberg, Martin
2017-01-01
Single-cell RNA-seq (scRNA-seq) enables a quantitative cell-type characterisation based on global transcriptome profiles. We present Single-Cell Consensus Clustering (SC3), a user-friendly tool for unsupervised clustering which achieves high accuracy and robustness by combining multiple clustering solutions through a consensus approach. We demonstrate that SC3 is capable of identifying subclones based on the transcriptomes from neoplastic cells collected from patients. PMID:28346451
Effects of specific organs on seed oil accumulation in Brassica napus L.
Liu, Jing; Hua, Wei; Yang, Hongli; Guo, Tingting; Sun, Xingchao; Wang, Xinfa; Liu, Guihua; Wang, Hanzhong
2014-10-01
Seed oil content is an important agricultural characteristic in rapeseed breeding. Genetic analysis shows that the mother plant and the embryo play critical roles in regulating seed oil accumulation. However, the overwhelming majority of previous studies have focused on oil synthesis in the developing seed of rapeseed. In this study, to elucidate the roles of reproductive organs on oil accumulation, silique, ovule, and embryo from three rapeseed lines with high oil content (zy036, 6F313, and 61616) were cultured in vitro. The results suggest that zy036 silique wall, 6F313 seed coat, and 61616 embryo have positive impacts on the seed oil accumulation. In zy036, our previous studies show that high photosynthetic activity of the silique wall contributes to seed oil accumulation (Hua et al., 2012). Herein, by transcriptome sequencing and sucrose detection, we found that sugar transport in 6F313 seed coat might regulate the efficiency of oil synthesis by controlling sugar concentration in ovules. In 61616 embryos, high oil accumulation efficiency was partly induced by the elevated expression of fatty-acid biosynthesis-related genes. Our investigations show three organ-specific mechanisms regulating oil synthesis in rapeseed. This study provides new insights into the factors affecting seed oil accumulation in rapeseed and other oil crops. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Bensdorp, A J; Tjon-Kon-Fat, R I; Bossuyt, P M M; Koks, C A M; Oosterhuis, G J E; Hoek, A; Hompes, P G A; Broekmans, F J M; Verhoeve, H R; de Bruin, J P; van Golde, R; Repping, S; Cohlen, B J; Lambers, M D A; van Bommel, P F; Slappendel, E; Perquin, D; Smeenk, J M; Pelinck, M J; Gianotten, J; Hoozemans, D A; Maas, J W M; Eijkemans, M J C; van der Veen, F; Mol, B W J; van Wely, M
2015-01-09
To compare the effectiveness of in vitro fertilisation with single embryo transfer or in vitro fertilisation in a modified natural cycle with that of intrauterine insemination with controlled ovarian hyperstimulation in terms of a healthy child. Multicentre, open label, three arm, parallel group, randomised controlled non-inferiority trial. 17 centres in the Netherlands. Couples seeking fertility treatment after at least 12 months of unprotected intercourse, with the female partner aged between 18 and 38 years, an unfavourable prognosis for natural conception, and a diagnosis of unexplained or mild male subfertility. Three cycles of in vitro fertilisation with single embryo transfer (plus subsequent cryocycles), six cycles of in vitro fertilisation in a modified natural cycle, or six cycles of intrauterine insemination with ovarian hyperstimulation within 12 months after randomisation. The primary outcome was birth of a healthy child resulting from a singleton pregnancy conceived within 12 months after randomisation. Secondary outcomes were live birth, clinical pregnancy, ongoing pregnancy, multiple pregnancy, time to pregnancy, complications of pregnancy, and neonatal morbidity and mortality 602 couples were randomly assigned between January 2009 and February 2012; 201 were allocated to in vitro fertilisation with single embryo transfer, 194 to in vitro fertilisation in a modified natural cycle, and 207 to intrauterine insemination with controlled ovarian hyperstimulation. Birth of a healthy child occurred in 104 (52%) couples in the in vitro fertilisation with single embryo transfer group, 83 (43%) in the in vitro fertilisation in a modified natural cycle group, and 97 (47%) in the intrauterine insemination with controlled ovarian hyperstimulation group. This corresponds to a risk, relative to intrauterine insemination with ovarian hyperstimulation, of 1.10 (95% confidence interval 0.91 to 1.34) for in vitro fertilisation with single embryo transfer and 0.91 (0.73 to 1.14) for in vitro fertilisation in a modified natural cycle. These 95% confidence intervals do not extend below the predefined threshold of 0.69 for inferiority. Multiple pregnancy rates per ongoing pregnancy were 6% (7/121) after in vitro fertilisation with single embryo transfer, 5% (5/102) after in vitro fertilisation in a modified natural cycle, and 7% (8/119) after intrauterine insemination with ovarian hyperstimulation (one sided P=0.52 for in vitro fertilisation with single embryo transfer compared with intrauterine insemination with ovarian hyperstimulation; one sided P=0.33 for in vitro fertilisation in a modified natural cycle compared with intrauterine insemination with controlled ovarian hyperstimulation). In vitro fertilisation with single embryo transfer and in vitro fertilisation in a modified natural cycle were non-inferior to intrauterine insemination with controlled ovarian hyperstimulation in terms of the birth of a healthy child and showed comparable, low multiple pregnancy rates.Trial registration Current Controlled Trials ISRCTN52843371; Nederlands Trial Register NTR939. © Bensdorp et al 2015.
Noda, Takeshi
2011-12-01
I isolated a Ciona intestinalis homolog of p53, Ci-p53/p73-a, in a microarray screen of rapidly degraded maternal mRNA by comparing the transcriptomes of unfertilized eggs and 32-cell stage embryos. Higher expression of the gene in eggs and lower expression in later embryonic stages were confirmed by whole-mount in situ hybridization (WISH) and quantitative reverse transcription-PCR (qRT-PCR); expression was ubiquitous in eggs and early embryos. Knockdown of Ci-p53/p73-a by injection of antisense morpholino oligonucleotides (MOs) severely perturbed gastrulation cell movements and expression of notochord marker genes. A key regulator of notochord differentiation in Ciona embryos is Brachyury (Ci-Bra), which is directly activated by a zic-like gene (Ci-ZicL). The expression of Ci-ZicL and Ci-Bra in A-line notochord precursors was downregulated in Ci-p53/p73-a knockdown embryos. Maternal expression of Ci-p53/p73-b, a homolog of Ci-p53/p73-a, was also detected. In Ci-p53/p73-b knockdown embryos, gastrulation cell movements, expression of Ci-ZicL and Ci-Bra in A-line notochord precursors, and expression of notochord marker gene at later stages were perturbed. The upstream region of Ci-ZicL contains putative p53-binding sites. Cis-regulatory analysis of Ci-ZicL showed that these sites are involved in expression of Ci-ZicL in A-line notochord precursors at the 32-cell and early gastrula stages. These results suggest that p53 genes are maternal factors that play a crucial role in A-line notochord differentiation in C. intestinalis embryos by regulating Ci-ZicL expression. Copyright © 2011 Elsevier Inc. All rights reserved.
Video Views and Reviews: Gastrulation and the Fashioning of Animal Embryos
ERIC Educational Resources Information Center
Watters, Christopher
2005-01-01
Most science students readily understand that following fertilization, a single-celled egg must undergo multiple rounds of cell division to become a multicellular organism. This transformation is so universal among animal embryos that developmental biologists refer to the process with a single term: ''gastrulation.'' During gastrulation, many if…
Human embryonic stem cell lines derived from single blastomeres of two 4-cell stage embryos
Geens, Mieke; Mateizel, Ileana; Sermon, Karen; De Rycke, Martine; Spits, Claudia; Cauffman, Greet; Devroey, Paul; Tournaye, Herman; Liebaers, Inge; Van de Velde, Hilde
2009-01-01
BACKGROUND Recently, we demonstrated that single blastomeres of a 4-cell stage human embryo are able to develop into blastocysts with inner cell mass and trophectoderm. To further investigate potency at the 4-cell stage, we aimed to derive pluripotent human embryonic stem cells (hESC) from single blastomeres. METHODS Four 4-cell stage embryos were split on Day 2 of preimplantation development and the 16 blastomeres were individually cultured in sequential medium. On Day 3 or 4, the blastomere-derived embryos were plated on inactivated mouse embryonic fibroblasts (MEFs). RESULTS Ten out of sixteen blastomere-derived morulae attached to the MEFs, and two produced an outgrowth. They were mechanically passaged onto fresh MEFs as described for blastocyst ICM-derived hESC, and shown to express the typical stemness markers by immunocytochemistry and/or RT–PCR. In vivo pluripotency was confirmed by the presence of all three germ layers in the teratoma obtained after injection in immunodeficient mice. The first hESC line displays a mosaic normal/abnormal 46, XX, dup(7)(q33qter), del(18)(q23qter) karyotype. The second hESC line displays a normal 46, XY karyotype. CONCLUSION We report the successful derivation and characterization of two hESC lines from single blastomeres of four split 4-cell stage human embryos. These two hESC lines were derived from distinct embryos, proving that at least one of the 4-cell stage blastomeres is pluripotent. PMID:19633307
Transcriptional reprogramming of gene expression in bovine somatic cell chromatin transfer embryos
Rodriguez-Osorio, Nelida; Wang, Zhongde; Kasinathan, Poothappillai; Page, Grier P; Robl, James M; Memili, Erdogan
2009-01-01
Background Successful reprogramming of a somatic genome to produce a healthy clone by somatic cells nuclear transfer (SCNT) is a rare event and the mechanisms involved in this process are poorly defined. When serial or successive rounds of cloning are performed, blastocyst and full term development rates decline even further with the increasing rounds of cloning. Identifying the "cumulative errors" could reveal the epigenetic reprogramming blocks in animal cloning. Results Bovine clones from up to four generations of successive cloning were produced by chromatin transfer (CT). Using Affymetrix bovine microarrays we determined that the transcriptomes of blastocysts derived from the first and the fourth rounds of cloning (CT1 and CT4 respectively) have undergone an extensive reprogramming and were more similar to blastocysts derived from in vitro fertilization (IVF) than to the donor cells used for the first and the fourth rounds of chromatin transfer (DC1 and DC4 respectively). However a set of transcripts in the cloned embryos showed a misregulated pattern when compared to IVF embryos. Among the genes consistently upregulated in both CT groups compared to the IVF embryos were genes involved in regulation of cytoskeleton and cell shape. Among the genes consistently upregulated in IVF embryos compared to both CT groups were genes involved in chromatin remodelling and stress coping. Conclusion The present study provides a data set that could contribute in our understanding of epigenetic errors in somatic cell chromatin transfer. Identifying "cumulative errors" after serial cloning could reveal some of the epigenetic reprogramming blocks shedding light on the reprogramming process, important for both basic and applied research. PMID:19393066
Kieslinger, Dorit C; Hao, Zhenxia; Vergouw, Carlijn G; Kostelijk, Elisabeth H; Lambalk, Cornelis B; Le Gac, Séverine
2015-03-01
To compare the development of human embryos in microfluidic devices with culture in standard microdrop dishes, both under static conditions. Prospective randomized controlled trial. In vitro fertilization laboratory. One hundred eighteen donated frozen-thawed human day-4 embryos. Random allocation of embryos that fulfilled the inclusion criteria to single-embryo culture in a microfluidics device (n = 58) or standard microdrop dish (n = 60). Blastocyst formation rate and quality after 24, 28, 48, and 72 hours of culture. The percentage of frozen-thawed day-4 embryos that developed to the blastocyst stage did not differ significantly in the standard microdrop dishes and microfluidic devices after 28 hours of culture (53.3% vs. 58.6%) or at any of the other time points. The proportion of embryos that would have been suitable for embryo transfer was comparable after 28 hours of culture in the control dishes and microfluidic devices (90.0% vs. 93.1%). Furthermore, blastocyst quality was similar in the two study groups. This study shows that a microfluidic device can successfully support human blastocyst development in vitro under static culture conditions. Future studies need to clarify whether earlier stage embryos will benefit from the culture in microfluidic devices more than the tested day-4 embryos because many important steps in the development of human embryos already take place before day 4. Further improvements of the microfluidic device will include parallel culture of single embryos, application of medium refreshment, and built-in sensors. NTR3867. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Risk of ectopic pregnancy lowest with transfer of single frozen blastocyst.
Li, Z; Sullivan, E A; Chapman, M; Farquhar, C; Wang, Y A
2015-09-01
What type of transferred embryo is associated with a lower rate of ectopic pregnancy? The lowest risk of ectopic pregnancy was associated with the transfer of blastocyst, frozen and single embryo compared with cleavage stage, fresh and multiple embryos. Ectopic pregnancy is a recognized complication following assisted reproductive technology (ART) treatment. It has been estimated that the rate of ectopic pregnancy is doubled in pregnancies following ART treatment compared with spontaneous pregnancies. However, it was not clear whether the excess rate of ectopic pregnancy following ART treatment is related to the underlying demographic factors of women undergoing ART treatment, the number of embryos transferred or the developmental stage of the embryo. A population-based cohort study of pregnancies following autologous treatment cycles between January 2009 and December 2011 were obtained from the Australian and New Zealand Assisted Reproduction Technology Database (ANZARD). The ANZARD collects ART treatment information and clinical outcomes annually from all fertility centres in Australia and New Zealand. Between 2009 and 2011, a total of 44 102 pregnancies were included in the analysis. The rate of ectopic pregnancy was compared by demographic and ART treatment factors. Generalized linear regression of Poisson distribution was used to estimate the likelihood of ectopic pregnancy. Odds ratios, adjusted odds ratios (AOR) and 95% confidence intervals (CI) were calculated. The overall rate of ectopic pregnancy was 1.4% for women following ART treatment in Australia and New Zealand. Pregnancies following single embryo transfers had 1.2% ectopic pregnancies, significantly lower than double embryo transfers (1.8%) (P < 0.01). The highest ectopic pregnancy rate was 1.9% for pregnancies from transfers of fresh cleavage embryo, followed by transfers of frozen cleavage embryo (1.7%), transfers of fresh blastocyst (1.3%), and transfers of frozen blastocyst (0.8%). Compared with fresh blastocyst transfer, the likelihood of ectopic pregnancy was 30% higher for fresh cleavage stage embryo transfers (AOR 1.30, 95% CI 1.07-1.59) and was consistent across subfertility groups. Transfer of frozen blastocyst was associated with a significantly decreased risk of ectopic pregnancy (AOR 0.70, 95% CI 0.54-0.91) compared with transfer of fresh blastocyst. A limitation of this population-based study is the lack of information available on clinical- specific protocols and processes for embryo transfer (i.e. embryo quality, cryopreservation protocol, transfer techniques, etc.) and the potential impact on outcomes. The lowest risk of ectopic pregnancy was associated with the transfer of a single frozen blastocyst. This finding adds to the increasing evidence of better perinatal outcomes following frozen embryo transfers. The approach of freezing all embryos in the initiated fresh cycle and transfer of a single frozen blastocyst in the subsequent thaw cycle may improve the overall pregnancy and birth outcomes following ART treatment, in part by reducing the ectopic pregnancy rate. There is no funding for this study. Authors declared no competing interest related to this study. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Separation and parallel sequencing of the genomes and transcriptomes of single cells using G&T-seq.
Macaulay, Iain C; Teng, Mabel J; Haerty, Wilfried; Kumar, Parveen; Ponting, Chris P; Voet, Thierry
2016-11-01
Parallel sequencing of a single cell's genome and transcriptome provides a powerful tool for dissecting genetic variation and its relationship with gene expression. Here we present a detailed protocol for G&T-seq, a method for separation and parallel sequencing of genomic DNA and full-length polyA(+) mRNA from single cells. We provide step-by-step instructions for the isolation and lysis of single cells; the physical separation of polyA(+) mRNA from genomic DNA using a modified oligo-dT bead capture and the respective whole-transcriptome and whole-genome amplifications; and library preparation and sequence analyses of these amplification products. The method allows the detection of thousands of transcripts in parallel with the genetic variants captured by the DNA-seq data from the same single cell. G&T-seq differs from other currently available methods for parallel DNA and RNA sequencing from single cells, as it involves physical separation of the DNA and RNA and does not require bespoke microfluidics platforms. The process can be implemented manually or through automation. When performed manually, paired genome and transcriptome sequencing libraries from eight single cells can be produced in ∼3 d by researchers experienced in molecular laboratory work. For users with experience in the programming and operation of liquid-handling robots, paired DNA and RNA libraries from 96 single cells can be produced in the same time frame. Sequence analysis and integration of single-cell G&T-seq DNA and RNA data requires a high level of bioinformatics expertise and familiarity with a wide range of informatics tools.
Single-cell Transcriptome Study as Big Data
Yu, Pingjian; Lin, Wei
2016-01-01
The rapid growth of single-cell RNA-seq studies (scRNA-seq) demands efficient data storage, processing, and analysis. Big-data technology provides a framework that facilitates the comprehensive discovery of biological signals from inter-institutional scRNA-seq datasets. The strategies to solve the stochastic and heterogeneous single-cell transcriptome signal are discussed in this article. After extensively reviewing the available big-data applications of next-generation sequencing (NGS)-based studies, we propose a workflow that accounts for the unique characteristics of scRNA-seq data and primary objectives of single-cell studies. PMID:26876720
Massively parallel digital transcriptional profiling of single cells
Zheng, Grace X. Y.; Terry, Jessica M.; Belgrader, Phillip; Ryvkin, Paul; Bent, Zachary W.; Wilson, Ryan; Ziraldo, Solongo B.; Wheeler, Tobias D.; McDermott, Geoff P.; Zhu, Junjie; Gregory, Mark T.; Shuga, Joe; Montesclaros, Luz; Underwood, Jason G.; Masquelier, Donald A.; Nishimura, Stefanie Y.; Schnall-Levin, Michael; Wyatt, Paul W.; Hindson, Christopher M.; Bharadwaj, Rajiv; Wong, Alexander; Ness, Kevin D.; Beppu, Lan W.; Deeg, H. Joachim; McFarland, Christopher; Loeb, Keith R.; Valente, William J.; Ericson, Nolan G.; Stevens, Emily A.; Radich, Jerald P.; Mikkelsen, Tarjei S.; Hindson, Benjamin J.; Bielas, Jason H.
2017-01-01
Characterizing the transcriptome of individual cells is fundamental to understanding complex biological systems. We describe a droplet-based system that enables 3′ mRNA counting of tens of thousands of single cells per sample. Cell encapsulation, of up to 8 samples at a time, takes place in ∼6 min, with ∼50% cell capture efficiency. To demonstrate the system's technical performance, we collected transcriptome data from ∼250k single cells across 29 samples. We validated the sensitivity of the system and its ability to detect rare populations using cell lines and synthetic RNAs. We profiled 68k peripheral blood mononuclear cells to demonstrate the system's ability to characterize large immune populations. Finally, we used sequence variation in the transcriptome data to determine host and donor chimerism at single-cell resolution from bone marrow mononuclear cells isolated from transplant patients. PMID:28091601
USDA-ARS?s Scientific Manuscript database
Fertilization and development of the preimplantation embryo is under genetic control. The goal of the current study was to test 434 single nucleotide polymorphisms (SNPs) for association with genetic variation in fertilization and early embryonic development. The approach was to produce embryos from...
Rapid evaluation of soluble HLA-G levels in supernatants of in vitro fertilized embryos.
Rebmann, Vera; Switala, Magdalena; Eue, Ines; Schwahn, Eva; Merzenich, Markus; Grosse-Wilde, Hans
2007-04-01
Human leukocyte antigen G (HLA-G) molecules are crucial for the maternal tolerance against the fetus during pregnancy. Thus, the presence of soluble HLA-G (sHLA-G) in embryo cultures is thought to be correlated to a successful pregnancy after assisted reproductive techniques (ART). Here, we established a rapid detection assay based on Luminex technology, which can be integrated into ART proceedings, allowing sHLA-G quantification in sample volumes of only 10 microl within 1.5 hours. Using this method, sHLA-G levels of 526 single-embryo cultures, 47 two-embryo cultures, and 15 three-embryo cultures were analyzed corresponding to 313 ART cycles. In 117 embryo cultures, sHLA-G was detectable. In single-embryo cultures, the sHLA-G levels were positively correlated to embryo quality (p = 0.048, r = 0.20, n = 100). The presence of sHLA-G in embryo cultures was significantly (p < 0.0001) associated with clinical pregnancy after intracytoplasmatic sperm injections (ICSI), especially in couples with male factor infertility, but not after in vitro fertilization (IVF) or in couples with female infertility. Importantly, in sHLA-G negative embryos, the abortion rate was increased threefold (p = 0.04). In conclusion, the results obtained by our novel method support strongly the diagnostic relevance of sHLA-G for predicting pregnancy outcome after ART. The ultimate conditions for this prediction have to be further investigated in a multicenter study.
Appendix C: Automated Vitrification of Mammalian Embryos on a Digital Microfluidic Device.
Liu, Jun; Pyne, Derek G; Abdelgawad, Mohamed; Sun, Yu
2017-01-01
This chapter introduces a digital microfluidic device that automates sample preparation for mammalian embryo vitrification. Individual microdroplets manipulated on the microfluidic device were used as microvessels to transport a single mouse embryo through a complete vitrification procedure. Advantages of this approach, compared to manual operation and channel-based microfluidic vitrification, include automated operation, cryoprotectant concentration gradient generation, and feasibility of loading and retrieval of embryos.
Saito, Taiju; Goto-Kazeto, Rie; Arai, Katsutoshi; Yamaha, Etsuro
2008-01-01
Primordial germ cells (PGCs) are the only cells in developing embryos with the potential to transmit genetic information to the next generation. PGCs therefore have the potential to be of value for gene banking and cryopreservation, particularly via the production of donor gametes with germ-line chimeras. Currently, it is not clear how many PGCs are required for germ-line differentiation and formation of gonadal structures. In the present study, we achieved complete germ-line replacement between two related teleost species, the pearl danio (Danio albolineatus) and the zebrafish (Danio rerio), with transplantation of a single PGC into each host embryo. We isolated and transplanted a single PGC into each blastula-stage, zebrafish embryo. Development of host germ-line cells was prevented by an antisense dead end morpholino oligonucleotide. In many host embryos, the transplanted donor PGC successfully migrated toward the gonadal anlage without undergoing cell division. At the gonadal anlage, the PGC differentiated to form one normally sized gonad rather than the pair of gonads usually present. Offspring were obtained from natural spawning of these chimeras. Analyses of morphology and DNA showed that the offspring were of donor origin. We extended our study to confirm that transplanted single PGCs of goldfish (Carassius auratus) and loach (Misgurnus anguillicaudatus) can similarly differentiate into sperm in zebrafish host embryos. Our results show that xenogenesis is realistic and practical across species, genus, and family barriers and can be achieved by the transplantation of a single PGC from a donor species.
2011-01-01
Background PreImplantation Factor (PIF), a novel peptide secreted by viable embryos is essential for pregnancy: PIF modulates local immunity, promotes decidual pro-adhesion molecules and enhances trophoblast invasion. To determine the role of PIF in post-fertilization embryo development, we measured the peptide's concentration in the culture medium and tested endogenous PIF's potential trophic effects and direct interaction with the embryo. Methods Determine PIF levels in culture medium of multiple mouse and single bovine embryos cultured up to the blastocyst stage using PIF-ELISA. Examine the inhibitory effects of anti-PIF-monoclonal antibody (mAb) added to medium on cultured mouse embryos development. Test FITC-PIF uptake by cultured bovine blastocysts using fluorescent microscopy. Results PIF levels in mouse embryo culture medium significantly increased from the morula to the blastocyst stage (ANOVA, P = 0.01). In contrast, atretic embryos medium was similar to the medium only control. Detectable - though low - PIF levels were secreted already by 2-cell stage mouse embryos. In single bovine IVF-derived embryos, PIF levels in medium at day 3 of culture were higher than non-cleaving embryos (control) (P = 0.01) and at day 7 were higher than day 3 (P = 0.03). In non-cleaving embryos culture medium was similar to medium alone (control). Anti-PIF-mAb added to mouse embryo cultures lowered blastocyst formation rate 3-fold in a dose-dependent manner (2-way contingency table, multiple groups, X2; P = 0.01) as compared with non-specific mouse mAb, and medium alone, control. FITC-PIF was taken-up by cultured bovine blastocysts, but not by scrambled FITC-PIF (control). Conclusions PIF is an early embryo viability marker that has a direct supportive role on embryo development in culture. PIF-ELISA use to assess IVF embryo quality prior to transfer is warranted. Overall, our data supports PIF's endogenous self sustaining role in embryo development and the utility of PIF- ELISA to detect viable embryos in a non-invasive manner. PMID:21569635
Jo, Yeonhwa; Choi, Hoseong; Kim, Sang-Min; Kim, Sun-Lim; Lee, Bong Choon; Cho, Won Kyong
2016-08-09
Next-generation sequencing (NGS) provides many possibilities for plant virology research. In this study, we performed integrated analyses using plant transcriptome data for plant virus identification using Apple stem grooving virus (ASGV) as an exemplar virus. We used 15 publicly available transcriptome libraries from three different studies, two mRNA-Seq studies and a small RNA-Seq study. We de novo assembled nearly complete genomes of ASGV isolates Fuji and Cuiguan from apple and pear transcriptomes, respectively, and identified single nucleotide variations (SNVs) of ASGV within the transcriptomes. We demonstrated the application of NGS raw data to confirm viral infections in the plant transcriptomes. In addition, we compared the usability of two de novo assemblers, Trinity and Velvet, for virus identification and genome assembly. A phylogenetic tree revealed that ASGV and Citrus tatter leaf virus (CTLV) are the same virus, which was divided into two clades. Recombination analyses identified six recombination events from 21 viral genomes. Taken together, our in silico analyses using NGS data provide a successful application of plant transcriptomes to reveal extensive information associated with viral genome assembly, SNVs, phylogenetic relationships, and genetic recombination.
Bensdorp, A J; Tjon-Kon-Fat, R I; Bossuyt, P M M; Koks, C A M; Oosterhuis, G J E; Hoek, A; Hompes, P G A; Broekmans, F J M; Verhoeve, H R; de Bruin, J P; van Golde, R; Repping, S; Cohlen, B J; Lambers, M D A; van Bommel, P F; Slappendel, E; Perquin, D; Smeenk, J M; Pelinck, M J; Gianotten, J; Hoozemans, D A; Maas, J W M; Eijkemans, M J C; van der Veen, F; Mol, B W J
2015-01-01
Objectives To compare the effectiveness of in vitro fertilisation with single embryo transfer or in vitro fertilisation in a modified natural cycle with that of intrauterine insemination with controlled ovarian hyperstimulation in terms of a healthy child. Design Multicentre, open label, three arm, parallel group, randomised controlled non-inferiority trial. Setting 17 centres in the Netherlands. Participants Couples seeking fertility treatment after at least 12 months of unprotected intercourse, with the female partner aged between 18 and 38 years, an unfavourable prognosis for natural conception, and a diagnosis of unexplained or mild male subfertility. Interventions Three cycles of in vitro fertilisation with single embryo transfer (plus subsequent cryocycles), six cycles of in vitro fertilisation in a modified natural cycle, or six cycles of intrauterine insemination with ovarian hyperstimulation within 12 months after randomisation. Main outcome measures The primary outcome was birth of a healthy child resulting from a singleton pregnancy conceived within 12 months after randomisation. Secondary outcomes were live birth, clinical pregnancy, ongoing pregnancy, multiple pregnancy, time to pregnancy, complications of pregnancy, and neonatal morbidity and mortality Results 602 couples were randomly assigned between January 2009 and February 2012; 201 were allocated to in vitro fertilisation with single embryo transfer, 194 to in vitro fertilisation in a modified natural cycle, and 207 to intrauterine insemination with controlled ovarian hyperstimulation. Birth of a healthy child occurred in 104 (52%) couples in the in vitro fertilisation with single embryo transfer group, 83 (43%) in the in vitro fertilisation in a modified natural cycle group, and 97 (47%) in the intrauterine insemination with controlled ovarian hyperstimulation group. This corresponds to a risk, relative to intrauterine insemination with ovarian hyperstimulation, of 1.10 (95% confidence interval 0.91 to 1.34) for in vitro fertilisation with single embryo transfer and 0.91 (0.73 to 1.14) for in vitro fertilisation in a modified natural cycle. These 95% confidence intervals do not extend below the predefined threshold of 0.69 for inferiority. Multiple pregnancy rates per ongoing pregnancy were 6% (7/121) after in vitro fertilisation with single embryo transfer, 5% (5/102) after in vitro fertilisation in a modified natural cycle, and 7% (8/119) after intrauterine insemination with ovarian hyperstimulation (one sided P=0.52 for in vitro fertilisation with single embryo transfer compared with intrauterine insemination with ovarian hyperstimulation; one sided P=0.33 for in vitro fertilisation in a modified natural cycle compared with intrauterine insemination with controlled ovarian hyperstimulation). Conclusions In vitro fertilisation with single embryo transfer and in vitro fertilisation in a modified natural cycle were non-inferior to intrauterine insemination with controlled ovarian hyperstimulation in terms of the birth of a healthy child and showed comparable, low multiple pregnancy rates. Trial registration Current Controlled Trials ISRCTN52843371; Nederlands Trial Register NTR939. PMID:25576320
Reptilian Transcriptomes v2.0: An Extensive Resource for Sauropsida Genomics and Transcriptomics
Tzika, Athanasia C.; Ullate-Agote, Asier; Grbic, Djordje; Milinkovitch, Michel C.
2015-01-01
Despite the availability of deep-sequencing techniques, genomic and transcriptomic data remain unevenly distributed across phylogenetic groups. For example, reptiles are poorly represented in sequence databases, hindering functional evolutionary and developmental studies in these lineages substantially more diverse than mammals. In addition, different studies use different assembly and annotation protocols, inhibiting meaningful comparisons. Here, we present the “Reptilian Transcriptomes Database 2.0,” which provides extensive annotation of transcriptomes and genomes from species covering the major reptilian lineages. To this end, we sequenced normalized complementary DNA libraries of multiple adult tissues and various embryonic stages of the leopard gecko and the corn snake and gathered published reptilian sequence data sets from representatives of the four extant orders of reptiles: Squamata (snakes and lizards), the tuatara, crocodiles, and turtles. The LANE runner 2.0 software was implemented to annotate all assemblies within a single integrated pipeline. We show that this approach increases the annotation completeness of the assembled transcriptomes/genomes. We then built large concatenated protein alignments of single-copy genes and inferred phylogenetic trees that support the positions of turtles and the tuatara as sister groups of Archosauria and Squamata, respectively. The Reptilian Transcriptomes Database 2.0 resource will be updated to include selected new data sets as they become available, thus making it a reference for differential expression studies, comparative genomics and transcriptomics, linkage mapping, molecular ecology, and phylogenomic analyses involving reptiles. The database is available at www.reptilian-transcriptomes.org and can be enquired using a wwwblast server installed at the University of Geneva. PMID:26133641
Rare Cell Detection by Single-Cell RNA Sequencing as Guided by Single-Molecule RNA FISH.
Torre, Eduardo; Dueck, Hannah; Shaffer, Sydney; Gospocic, Janko; Gupte, Rohit; Bonasio, Roberto; Kim, Junhyong; Murray, John; Raj, Arjun
2018-02-28
Although single-cell RNA sequencing can reliably detect large-scale transcriptional programs, it is unclear whether it accurately captures the behavior of individual genes, especially those that express only in rare cells. Here, we use single-molecule RNA fluorescence in situ hybridization as a gold standard to assess trade-offs in single-cell RNA-sequencing data for detecting rare cell expression variability. We quantified the gene expression distribution for 26 genes that range from ubiquitous to rarely expressed and found that the correspondence between estimates across platforms improved with both transcriptome coverage and increased number of cells analyzed. Further, by characterizing the trade-off between transcriptome coverage and number of cells analyzed, we show that when the number of genes required to answer a given biological question is small, then greater transcriptome coverage is more important than analyzing large numbers of cells. More generally, our report provides guidelines for selecting quality thresholds for single-cell RNA-sequencing experiments aimed at rare cell analyses. Copyright © 2018 Elsevier Inc. All rights reserved.
Single molecule transcription factor dynamics in the syncytial Drosophila embryo
NASA Astrophysics Data System (ADS)
Darzacq, Xavier
During early development in the Drosophila embryo, cell fates are determined over the course of just 2 hours with exquisite spatio-temoral precision. One of the key regulators of this process is the transcription factor Bicoid which forms a concentration gradient across the long axis of the embryo. Although Bicoids' primary role is activation at the anterior, where concentrations are highest, it is also known to play a role in the posterior where there are only 100s of molecules per nucleus. Understanding how Bicoid can find its target at such low concentrations has remained intractable, largely due to the inability to perform single molecule imaging in the context of the developing embryo. Here we use lattice light sheet microscopy to overcome the technical barriers of sample thickness and auto-fluorescence to characterize the single molecule dynamics of Bicoid. We find that off-rates do not vary across the embryo and that instead the on-rates are modulated through the formation of clusters that enrich local concentration. This data is contrary to the current concentration dependent model of Bicoid function since local concentration within the nucleus is now a regulated parameter and suggests a previously unknown mechanism for regulation at extremely low concentrations.
Assessing embryo development using swept source optical coherence tomography
NASA Astrophysics Data System (ADS)
Caujolle, S.; Cernat, R.; Silvestri, G.; Marques, M. J.; Bradu, A.; Feuchter, T.; Robinson, G.; Griffin, D.; Podoleanu, A.
2018-03-01
A detailed assessment of embryo development would assist biologists with selecting the most suitable embryos for transfer leading to higher pregnancy rates. Currently, only low resolution microscopy is employed to perform this assessment. Although this method delivers some information on the embryo surface morphology, no specific details are shown related to its inner structure. Using a Master-Slave Swept-Source Optical Coherence Tomography (SS-OCT), images of bovine embryos from day 7 after fertilization were collected from different depths. The dynamic changes inside the embryos were examined, in detail and in real-time from several depths. To prove our ability to characterize the morphology, a single embryo was imaged over 26 hours. The embryo was deprived of its life support environment, leading to its death. Over this period, clear morphological changes were observed.
Transcriptome sequences resolve deep relationships of the grape family.
Wen, Jun; Xiong, Zhiqiang; Nie, Ze-Long; Mao, Likai; Zhu, Yabing; Kan, Xian-Zhao; Ickert-Bond, Stefanie M; Gerrath, Jean; Zimmer, Elizabeth A; Fang, Xiao-Dong
2013-01-01
Previous phylogenetic studies of the grape family (Vitaceae) yielded poorly resolved deep relationships, thus impeding our understanding of the evolution of the family. Next-generation sequencing now offers access to protein coding sequences very easily, quickly and cost-effectively. To improve upon earlier work, we extracted 417 orthologous single-copy nuclear genes from the transcriptomes of 15 species of the Vitaceae, covering its phylogenetic diversity. The resulting transcriptome phylogeny provides robust support for the deep relationships, showing the phylogenetic utility of transcriptome data for plants over a time scale at least since the mid-Cretaceous. The pros and cons of transcriptome data for phylogenetic inference in plants are also evaluated.
Developing Xenopus Embryos Recover by Compacting and Expelling Single-Wall Carbon Nanotubes
Holt, Brian D.; Shawky, Joseph H.; Dahl, Kris Noel; Davidson, Lance A.; Islam, Mohammad F.
2015-01-01
Single-wall carbon nanotubes are high aspect ratio nanomaterials that are being developed for use in materials, technological and biological applications due to their high mechanical stiffness, optical properties, and chemical inertness. Because of their prevalence, it is inevitable that biological systems will be exposed to nanotubes, yet studies of the effects of nanotubes on developing embryos have been inconclusive and are lacking for single-wall carbon nanotubes exposed to the widely studied model organism Xenopus laevis (African clawed frog). Microinjection of experimental substances into the Xenopus embryo is a standard technique for toxicology studies and cellular lineage tracing. Here we report the surprising finding that superficial (12.5 ± 7.5 μm below the membrane) microinjection of nanotubes dispersed with Pluronic F127 into one-to-two cell Xenopus embryos resulted in the formation and expulsion of compacted, nanotube-filled, punctate masses, at the blastula to mid-gastrula developmental stages, which we call “boluses”. Such expulsion of microinjected materials by Xenopus embryos has not been reported before and is dramatically different from the typical distribution of the materials throughout the progeny of the microinjected cells. Previous studies of microinjections of nanomaterials such as nanodiamonds, quantum dots or spherical nanoparticles report that nanomaterials often induce toxicity and remain localized within the embryos. In contrast, our results demonstrate an active recovery pathway for embryos after exposure to Pluronic F127-coated nanotubes, which we speculate is due to a combined effect of the membrane activity of the dispersing agent, Pluronic F127, and the large aspect ratio of nanotubes. PMID:26153061
Developing Xenopus embryos recover by compacting and expelling single wall carbon nanotubes.
Holt, Brian D; Shawky, Joseph H; Dahl, Kris Noel; Davidson, Lance A; Islam, Mohammad F
2016-04-01
Single wall carbon nanotubes are high aspect ratio nanomaterials being developed for use in materials, technological and biological applications due to their high mechanical stiffness, optical properties and chemical inertness. Because of their prevalence, it is inevitable that biological systems will be exposed to nanotubes, yet studies of the effects of nanotubes on developing embryos have been inconclusive and are lacking for single wall carbon nanotubes exposed to the widely studied model organism Xenopus laevis (African clawed frog). Microinjection of experimental substances into the Xenopus embryo is a standard technique for toxicology studies and cellular lineage tracing. Here we report the surprising finding that superficial (12.5 ± 7.5 µm below the membrane) microinjection of nanotubes dispersed with Pluronic F127 into one- to two-cell Xenopus embryos resulted in the formation and expulsion of compacted, nanotube-filled, punctate masses, at the blastula to mid-gastrula developmental stages, which we call "boluses." Such expulsion of microinjected materials by Xenopus embryos has not been reported before and is dramatically different from the typical distribution of the materials throughout the progeny of the microinjected cells. Previous studies of microinjections of nanomaterials such as nanodiamonds, quantum dots or spherical nanoparticles report that nanomaterials often induce toxicity and remain localized within the embryos. In contrast, our results demonstrate an active recovery pathway for embryos after exposure to Pluronic F127-coated nanotubes, which we speculate is due to a combined effect of the membrane activity of the dispersing agent, Pluronic F127, and the large aspect ratio of nanotubes. Copyright © 2015 John Wiley & Sons, Ltd.
Cryopreservation of day 2-3 embryos by vitrification yields better outcome than slow freezing.
Levron, Jacob; Leibovitz, Oshrit; Brengauz, Masha; Gitman, Hila; Yerushalmi, Gil M; Katorza, Eldad; Gat, Itai; Elizur, Shai E
2014-03-01
To compare the outcome of vitrification versus slow freezing cryopreservation for cleavage stage day 2-3 embryos. A retrospective observational study. All thawed embryos assisted reproduction cycles between January 2010 and December 2012 at a single IVF laboratory of a Tertiary Medical Center. Five hundred and thirty-nine cycles of day 2-3 thawed embryos. In 327 of the thawed cycles, the embryos were vitrified and in 212 of the cycles the embryos were derived from slow freezing embryos. Embryo survival rate, blastomere surviving rate and pregnancy rate. Embryo survival rate was significantly higher after vitrification compared with slow freezing (81.6%, 647/793 versus 70.0%, 393/562 embryos, p < 0.0001). The clinical pregnancy rate per ET was significantly higher following vitrification compared to slow freezing, 20.0%, 63/314 versus 11.9%, 23/193, respectively (p = 0.02). Vitrification of day 2-3 cleavage stage embryos yields better cycle outcome in all the parameters compared to slow freezing.
Ihara, Motomasa; Meyer-Ficca, Mirella L; Leu, N Adrian; Rao, Shilpa; Li, Fan; Gregory, Brian D; Zalenskaya, Irina A; Schultz, Richard M; Meyer, Ralph G
2014-05-01
To achieve the extreme nuclear condensation necessary for sperm function, most histones are replaced with protamines during spermiogenesis in mammals. Mature sperm retain only a small fraction of nucleosomes, which are, in part, enriched on gene regulatory sequences, and recent findings suggest that these retained histones provide epigenetic information that regulates expression of a subset of genes involved in embryo development after fertilization. We addressed this tantalizing hypothesis by analyzing two mouse models exhibiting abnormal histone positioning in mature sperm due to impaired poly(ADP-ribose) (PAR) metabolism during spermiogenesis and identified altered sperm histone retention in specific gene loci genome-wide using MNase digestion-based enrichment of mononucleosomal DNA. We then set out to determine the extent to which expression of these genes was altered in embryos generated with these sperm. For control sperm, most genes showed some degree of histone association, unexpectedly suggesting that histone retention in sperm genes is not an all-or-none phenomenon and that a small number of histones may remain associated with genes throughout the genome. The amount of retained histones, however, was altered in many loci when PAR metabolism was impaired. To ascertain whether sperm histone association and embryonic gene expression are linked, the transcriptome of individual 2-cell embryos derived from such sperm was determined using microarrays and RNA sequencing. Strikingly, a moderate but statistically significant portion of the genes that were differentially expressed in these embryos also showed different histone retention in the corresponding gene loci in sperm of their fathers. These findings provide new evidence for the existence of a linkage between sperm histone retention and gene expression in the embryo.
Leu, N. Adrian; Rao, Shilpa; Li, Fan; Gregory, Brian D.; Zalenskaya, Irina A.; Schultz, Richard M.; Meyer, Ralph G.
2014-01-01
To achieve the extreme nuclear condensation necessary for sperm function, most histones are replaced with protamines during spermiogenesis in mammals. Mature sperm retain only a small fraction of nucleosomes, which are, in part, enriched on gene regulatory sequences, and recent findings suggest that these retained histones provide epigenetic information that regulates expression of a subset of genes involved in embryo development after fertilization. We addressed this tantalizing hypothesis by analyzing two mouse models exhibiting abnormal histone positioning in mature sperm due to impaired poly(ADP-ribose) (PAR) metabolism during spermiogenesis and identified altered sperm histone retention in specific gene loci genome-wide using MNase digestion-based enrichment of mononucleosomal DNA. We then set out to determine the extent to which expression of these genes was altered in embryos generated with these sperm. For control sperm, most genes showed some degree of histone association, unexpectedly suggesting that histone retention in sperm genes is not an all-or-none phenomenon and that a small number of histones may remain associated with genes throughout the genome. The amount of retained histones, however, was altered in many loci when PAR metabolism was impaired. To ascertain whether sperm histone association and embryonic gene expression are linked, the transcriptome of individual 2-cell embryos derived from such sperm was determined using microarrays and RNA sequencing. Strikingly, a moderate but statistically significant portion of the genes that were differentially expressed in these embryos also showed different histone retention in the corresponding gene loci in sperm of their fathers. These findings provide new evidence for the existence of a linkage between sperm histone retention and gene expression in the embryo. PMID:24810616
Laskowski, Denise; Båge, Renée; Humblot, Patrice; Andersson, Göran; Sirard, Marc-André; Sjunnesson, Ylva
2017-10-01
Insulin is a key metabolic hormone that controls energy homeostasis in the body, including playing a specific role in regulating reproductive functions. Conditions associated with hyperinsulinemia can lower developmental rates in bovine in vitro embryo production and are linked to decreased fertility in humans, as in cases of obesity or type 2 diabetes. Embryo quality is important for fertility outcome and it can be assessed by choosing scoring standards for various characteristics, such as developmental stage, quality grade, cell number, mitochondrial pattern or actin cytoskeleton structure. Changes in the embryo's gene expression can reflect environmental impacts during maturation and may explain morphological differences. Together with morphological evaluation, this could enable better assessment and possibly prediction of the developmental potential of the embryo. The aim of this study was to use a bovine model to identify potential gene signatures of insulin-induced changes in the embryo by combining gene expression data and confocal microscopy evaluation. Bovine embryos were derived from oocytes matured in two different insulin concentrations (10 µg mL - 1 and 0.1 µg mL - 1 ), then stained to distinguish f-Actin, DNA and active mitochondria. The total cell number of the embryo, quality of the actin cytoskeleton and mitochondrial distribution were assessed and compared to an insulin-free control group. A microarray-based transcriptome analysis was used to investigate key genes involved in cell structure, mitochondrial function and cell division. Our results indicate that insulin supplementation during oocyte maturation leads to lower blastocyst rates and a different phenotype, characterised by an increased cell number and different actin and mitochondrial distribution patterns. These changes were reflected by an up-regulation of genes involved in cell division (MAP2K2; DHCR7), cell structure (LMNA; VIM; TUBB2B; TUBB3; TUBB4B) and mitochondrial activation (ATP5D; CYP11A1; NDUFB7; NDUFB10; NDUFS8). Taken together, we hypothesise that the increased proliferation in the insulin-treated groups might impair the developmental potential of the embryos by inducing metabolic stress on the molecular level, which could be detrimental for the survival of the embryo. Copyright © 2017 Elsevier Inc. All rights reserved.
Wang, Yi-Zi; Ding, Chen-Hui; Wang, Jing; Zeng, Yan-Hong; Zhou, Wen; Li, Rong; Zhou, Can-Quan; Deng, Ming-Fen; Xu, Yan-Wen
2017-01-01
The aim of this study is to investigate the minimum number of blastocysts for biopsy to increase the likelihood of obtaining at least one normal/balanced embryo in preimplantation genetic diagnosis (PGD) for translocation carriers. This blinded retrospective study included 55 PGD cycles for Robertsonian translocation (RT) and 181 cycles for reciprocal translocation (rcp) to indicate when only one of the couples carried a translocation. Single-nucleotide polymorphism microarray after trophectoderm biopsy was performed. Reliable results were obtained for 355/379 (93.7 %) biopsied blastocysts in RT group and 986/1053 (93.6 %) in rcp group. Mean numbers of biopsied embryos per patient, normal/balanced embryos per patient, and mean normal/balanced embryo rate per patient were 7.4, 3.1, and 40.7 % in RT group and 8.0, 2.1, and 27.3 %, respectively, in rcp group. In a regression model, three factors significantly affected the number of genetically transferrable embryos: number of biopsied embryos (P = 0.001), basal FSH level (P = 0.040), and maternal age (P = 0.027). ROC analysis with a cutoff of 1.5 was calculated for the number of biopsied embryos required to obtain at least one normal/balanced embryo for RT carriers. For rcp carriers, the cutoff was 3.5. The clinical pregnancy rate per embryo transfer was 44.2 and 42.6 % in RT and rcp groups (P = 0.836). The minimum numbers of blastocysts to obtain at least one normal/balanced embryo for RT and rcp were 2 and 4 under the conditions of female age < 37 years with a basal FSH level < 11.4 IU/L.
Rim, Chol Ho; Fu, Zhixin; Bao, Lei; Chen, Haide; Zhang, Dan; Luo, Qiong; Ri, Hak Chol; Huang, Hefeng; Luan, Zhidong; Zhang, Yan; Cui, Chun; Xiao, Lei; Jong, Ui Myong
2013-12-01
To improve the efficiency of producing cloned pigs, we investigated the influence of the number of transferred embryos, the culturing interval between nuclear transfer (NT) and embryo transfer, and the transfer pattern (single oviduct or double oviduct) on cloning efficiency. The results demonstrated that transfer of either 150-200 or more than 200NT embryos compared to transfer of 100-150 embryos resulted in a significantly higher pregnancy rate (48 ± 16, 50 ± 16 vs. 29 ± 5%, p<0.05) and average litter size (4.1 ± 2.3, 7 ± 3.6 vs. 2.5 ± 0.5). In vitro culture of reconstructed embryos for a longer time (40 h vs. 20 h) resulted in higher (p<0.05) pregnancy rate (44 ± 9 vs. 31 ± 3%) and delivery rate (44 ± 9 vs. 25 ± 9%). Furthermore, double oviductal transfer dramatically increased pregnancy rate (83 ± 6 vs. 27+8%, p<0.05), delivery rate (75 ± 2 vs. 27+8%, p<0.05) and average litter size (6.5 ± 2.8 vs. 2.6 ± 1.2) compared to single oviductal transfer. Our study demonstrated that an improvement in pig cloning efficiency is achieved by adjusting the number and in vitro culture time of reconstructed embryos as well as the embryo transfer pattern. Copyright © 2013 Elsevier B.V. All rights reserved.
The developmental transcriptome of Drosophila melanogaster
DOE Office of Scientific and Technical Information (OSTI.GOV)
University of Connecticut; Graveley, Brenton R.; Brooks, Angela N.
Drosophila melanogaster is one of the most well studied genetic model organisms; nonetheless, its genome still contains unannotated coding and non-coding genes, transcripts, exons and RNA editing sites. Full discovery and annotation are pre-requisites for understanding how the regulation of transcription, splicing and RNA editing directs the development of this complex organism. Here we used RNA-Seq, tiling microarrays and cDNA sequencing to explore the transcriptome in 30 distinct developmental stages. We identified 111,195 new elements, including thousands of genes, coding and non-coding transcripts, exons, splicing and editing events, and inferred protein isoforms that previously eluded discovery using established experimental, predictionmore » and conservation-based approaches. These data substantially expand the number of known transcribed elements in the Drosophila genome and provide a high-resolution view of transcriptome dynamics throughout development. Drosophila melanogaster is an important non-mammalian model system that has had a critical role in basic biological discoveries, such as identifying chromosomes as the carriers of genetic information and uncovering the role of genes in development. Because it shares a substantial genic content with humans, Drosophila is increasingly used as a translational model for human development, homeostasis and disease. High-quality maps are needed for all functional genomic elements. Previous studies demonstrated that a rich collection of genes is deployed during the life cycle of the fly. Although expression profiling using microarrays has revealed the expression of, 13,000 annotated genes, it is difficult to map splice junctions and individual base modifications generated by RNA editing using such approaches. Single-base resolution is essential to define precisely the elements that comprise the Drosophila transcriptome. Estimates of the number of transcript isoforms are less accurate than estimates of the number of genes. Whereas, 20% of Drosophila genes are annotated as encoding alternatively spliced premRNAs, splice-junction microarray experiments indicate that this number is at least 40% (ref. 7). Determining the diversity of mRNAs generated by alternative promoters, alternative splicing and RNA editing will substantially increase the inferred protein repertoire. Non-coding RNA genes (ncRNAs) including short interfering RNAs (siRNAs) and microRNAS (miRNAs) (reviewed in ref. 10), and longer ncRNAs such as bxd (ref. 11) and rox (ref. 12), have important roles in gene regulation, whereas others such as small nucleolar RNAs (snoRNAs)and small nuclear RNAs (snRNAs) are important components of macromolecular machines such as the ribosome and spliceosome. The transcription and processing of these ncRNAs must also be fully documented and mapped. As part of the modENCODE project to annotate the functional elements of the D. melanogaster and Caenorhabditis elegans genomes, we used RNA-Seq and tiling microarrays to sample the Drosophila transcriptome at unprecedented depth throughout development from early embryo to ageing male and female adults. We report on a high-resolution view of the discovery, structure and dynamic expression of the D. melanogaster transcriptome.« less
Jiang, Peng; Nelson, Jeffrey D.; Leng, Ning; Collins, Michael; Swanson, Scott; Dewey, Colin N.; Thomson, James A.; Stewart, Ron
2016-01-01
The axolotl (Ambystoma mexicanum) has long been the subject of biological research, primarily owing to its outstanding regenerative capabilities. However, the gene expression programs governing its embryonic development are particularly underexplored, especially when compared to other amphibian model species. Therefore, we performed whole transcriptome polyA+ RNA sequencing experiments on 17 stages of embryonic development. As the axolotl genome is unsequenced and its gene annotation is incomplete, we built de novo transcriptome assemblies for each stage and garnered functional annotation by comparing expressed contigs with known genes in other organisms. In evaluating the number of differentially expressed genes over time, we identify three waves of substantial transcriptome upheaval each followed by a period of relative transcriptome stability. The first wave of upheaval is between the one and two cell stage. We show that the number of differentially expressed genes per unit time is higher between the one and two cell stage than it is across the mid-blastula transition (MBT), the period of zygotic genome activation. We use total RNA sequencing to demonstrate that the vast majority of genes with increasing polyA+ signal between the one and two cell stage result from polyadenylation rather than de novo transcription. The first stable phase begins after the two cell stage and continues until the mid-blastula transition, corresponding with the pre-MBT phase of transcriptional quiescence in amphibian development. Following this is a peak of differential gene expression corresponding with the activation of the zygotic genome and a phase of transcriptomic stability from stages 9 to 11. We observe a third wave of transcriptomic change between stages 11 and 14, followed by a final stable period. The last two stable phases have not been documented in amphibians previously and correspond to times of major morphogenic change in the axolotl embryo: gastrulation and neurulation. These results yield new insights into global gene expression during early stages of amphibian embryogenesis and will help to further develop the axolotl as a model species for developmental and regenerative biology. PMID:27475628
2011-01-01
Background Apomixis, asexual seed production in plants, holds great potential for agriculture as a means to fix hybrid vigor. Apospory is a form of apomixis where the embryo develops from an unreduced egg that is derived from a somatic nucellar cell, the aposporous initial, via mitosis. Understanding the molecular mechanism regulating aposporous initial specification will be a critical step toward elucidation of apomixis and also provide insight into developmental regulation and downstream signaling that results in apomixis. To discover candidate transcripts for regulating aposporous initial specification in P. squamulatum, we compared two transcriptomes derived from microdissected ovules at the stage of aposporous initial formation between the apomictic donor parent, P. squamulatum (accession PS26), and an apomictic derived backcross 8 (BC8) line containing only the Apospory-Specific Genomic Region (ASGR)-carrier chromosome from P. squamulatum. Toward this end, two transcriptomes derived from ovules of an apomictic donor parent and its apomictic backcross derivative at the stage of apospory initiation, were sequenced using 454-FLX technology. Results Using 454-FLX technology, we generated 332,567 reads with an average read length of 147 base pairs (bp) for the PS26 ovule transcriptome library and 363,637 reads with an average read length of 142 bp for the BC8 ovule transcriptome library. A total of 33,977 contigs from the PS26 ovule transcriptome library and 26,576 contigs from the BC8 ovule transcriptome library were assembled using the Multifunctional Inertial Reference Assembly program. Using stringent in silico parameters, 61 transcripts were predicted to map to the ASGR-carrier chromosome, of which 49 transcripts were verified as ASGR-carrier chromosome specific. One of the alien expressed genes could be assigned as tightly linked to the ASGR by screening of apomictic and sexual F1s. Only one transcript, which did not map to the ASGR, showed expression primarily in reproductive tissue. Conclusions Our results suggest that a strategy of comparative sequencing of transcriptomes between donor parent and backcross lines containing an alien chromosome of interest can be an efficient method of identifying transcripts derived from an alien chromosome in a chromosome addition line. PMID:21521529
Silver nanoparticles induce developmental stage-specific embryonic phenotypes in zebrafish
NASA Astrophysics Data System (ADS)
Lee, Kerry J.; Browning, Lauren M.; Nallathamby, Prakash D.; Osgood, Christopher J.; Xu, Xiao-Hong Nancy
2013-11-01
Much is anticipated from the development and deployment of nanomaterials in biological organisms, but concerns remain regarding their biocompatibility and target specificity. Here we report our study of the transport, biocompatibility and toxicity of purified and stable silver nanoparticles (Ag NPs, 13.1 +/- 2.5 nm in diameter) upon the specific developmental stages of zebrafish embryos using single NP plasmonic spectroscopy. We find that single Ag NPs passively diffuse into five different developmental stages of embryos (cleavage, early-gastrula, early-segmentation, late-segmentation, and hatching stages), showing stage-independent diffusion modes and diffusion coefficients. Notably, the Ag NPs induce distinctive stage and dose-dependent phenotypes and nanotoxicity, upon their acute exposure to the Ag NPs (0-0.7 nM) for only 2 h. The late-segmentation embryos are most sensitive to the NPs with the lowest critical concentration (CNP,c << 0.02 nM) and highest percentages of cardiac abnormalities, followed by early-segmentation embryos (CNP,c < 0.02 nM), suggesting that disruption of cell differentiation by the NPs causes the most toxic effects on embryonic development. The cleavage-stage embryos treated with the NPs develop into a wide variety of phenotypes (abnormal finfold, tail/spinal cord flexure, cardiac malformation/edema, yolk sac edema, and acephaly). These organ structures are not yet developed in cleavage-stage embryos, suggesting that the earliest determinative events to create these structures are ongoing, and disrupted by NPs, which leads to the downstream effects. In contrast, the hatching embryos are most resistant to the Ag NPs, and majority of embryos (94%) develop normally, and none of them develop abnormally. Interestingly, early-gastrula embryos are less sensitive to the NPs than cleavage and segmentation stage embryos, and do not develop abnormally. These important findings suggest that the Ag NPs are not simple poisons, and they can target specific pathways in development, and potentially enable target specific study and therapy for early embryonic development.Much is anticipated from the development and deployment of nanomaterials in biological organisms, but concerns remain regarding their biocompatibility and target specificity. Here we report our study of the transport, biocompatibility and toxicity of purified and stable silver nanoparticles (Ag NPs, 13.1 +/- 2.5 nm in diameter) upon the specific developmental stages of zebrafish embryos using single NP plasmonic spectroscopy. We find that single Ag NPs passively diffuse into five different developmental stages of embryos (cleavage, early-gastrula, early-segmentation, late-segmentation, and hatching stages), showing stage-independent diffusion modes and diffusion coefficients. Notably, the Ag NPs induce distinctive stage and dose-dependent phenotypes and nanotoxicity, upon their acute exposure to the Ag NPs (0-0.7 nM) for only 2 h. The late-segmentation embryos are most sensitive to the NPs with the lowest critical concentration (CNP,c << 0.02 nM) and highest percentages of cardiac abnormalities, followed by early-segmentation embryos (CNP,c < 0.02 nM), suggesting that disruption of cell differentiation by the NPs causes the most toxic effects on embryonic development. The cleavage-stage embryos treated with the NPs develop into a wide variety of phenotypes (abnormal finfold, tail/spinal cord flexure, cardiac malformation/edema, yolk sac edema, and acephaly). These organ structures are not yet developed in cleavage-stage embryos, suggesting that the earliest determinative events to create these structures are ongoing, and disrupted by NPs, which leads to the downstream effects. In contrast, the hatching embryos are most resistant to the Ag NPs, and majority of embryos (94%) develop normally, and none of them develop abnormally. Interestingly, early-gastrula embryos are less sensitive to the NPs than cleavage and segmentation stage embryos, and do not develop abnormally. These important findings suggest that the Ag NPs are not simple poisons, and they can target specific pathways in development, and potentially enable target specific study and therapy for early embryonic development. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03210h
Genome-wide proteomics analysis on longissimus muscles in Qinchuan beef cattle.
He, Hua; Chen, Si; Liang, Wei; Liu, Xiaolin
2017-04-01
To gain further insight into the molecular mechanism of bovine muscle development, we combined mass spectrometry characterization of proteins with Illumina deep sequencing of RNAs obtained from bovine longissimus muscle (LD) at prenatal and postnatal stages. For the proteomic study, each group of LD proteins was extracted and labeled using isobaric tags for relative and absolute quantitation (iTRAQ) method. Among the 1321 proteins identified from six samples, 390 proteins were differentially expressed in embryos at day 135 post-fertilization (Emb135d) vs. 30-month-old adult cattle (Emb135d vs. 30M) samples. Gene Ontology, Cluster of Orthologous Groups and Kyoto Encyclopedia of Genes and Genomes analyses were further conducted to better understand the different functions. Furthermore, we analyzed the relationship between transcript and protein regulation between samples by direct comparison of expression levels from transcriptomic and iTRAQ-based proteomics. Association results indicated that 1295 of 1321 proteins could be mapped to transcriptome sequencing data. This study provides the most comprehensive, targeted survey of bovine LD proteins to date and has shown the power of combining transcriptomic and proteomic approaches to provide molecular insights for understanding the developmental characteristics in bovine muscle, and even in other mammals. © 2016 Stichting International Foundation for Animal Genetics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwender, Jorg; Konig, Christina; Klapperstuck, Matthias
An attempt has been made to define the extent to which metabolic flux in central plant metabolism is reflected by changes in the transcriptome and metabolome, based on an analysis of in vitro cultured immature embryos of two oilseed rape (Brassica napus) accessions which contrast for seed lipid accumulation. Metabolic flux analysis (MFA) was used to constrain a flux balance metabolic model which included 671 biochemical and transport reactions within the central metabolism. This highly confident flux information was eventually used for comparative analysis of flux vs. transcript (metabolite). Metabolite profiling succeeded in identifying 79 intermediates within the central metabolism,more » some of which differed quantitatively between the two accessions and displayed a significant shift corresponding to flux. An RNA-Seq based transcriptome analysis revealed a large number of genes which were differentially transcribed in the two accessions, including some enzymes/proteins active in major metabolic pathways. With a few exceptions, differential activity in the major pathways (glycolysis, TCA cycle, amino acid, and fatty acid synthesis) was not reflected in contrasting abundances of the relevant transcripts. The conclusion was that transcript abundance on its own cannot be used to infer metabolic activity/fluxes in central plant metabolism. Lastly, this limitation needs to be borne in mind in evaluating transcriptome data and designing metabolic engineering experiments.« less
Zi, X-D; Luo, B; Xia, W; Zheng, Y-C; Xiong, X-R; Li, J; Zhong, J-C; Zhu, J-J; Zhang, Z-F
2018-06-01
The objective of this study was to investigate the mechanism that regulates pre-implantation development of the yak (Bos grunniens). We determined the transcriptomes of in vitro-produced yak embryos at two-cell, four-cell, eight-cell stages, and morula and blastocyst using the Illumina RNA-seq for the first time. We obtained 47.36-50.86 million clean reads for each stage, of which, 85.65%-90.02% reads were covered in the reference genome. A total of 17,368 genes were expressed during the two-cell stage to blastocyst of the yak, of which 7,236 genes were co-expressed at all stages, whereas 10,132 genes were stage-specific expression. Transcripts from 9,827 to 14,893 different genes were detected in various developmental stages. When |log 2 ratio| ≥ 1 and q-value <0.05 were set as thresholds for identifying differentially expressed genes (DEGs), we detected a total of 6,922-10,555 DEGs between any two consecutive stages. The GO distributions of these DEGs were classified into three categories: biological processes (23 terms), cellular components (22 terms) and molecular functions (22 terms). Pathway analysis revealed 310 pathways of the DEGs that were operative in early pre-implantation yak development, of which 32 were the significantly enriched pathways. In conclusion, this is the first report to investigate the mechanism that regulates yak embryonic development using high-throughput sequencing, which provides a comprehensive framework of transcriptome landscapes of yak pre-implantation embryos. © 2018 Blackwell Verlag GmbH.
Li, Yan; Meng, Jingjing; Yang, Sha; Guo, Feng; Zhang, Jialei; Geng, Yun; Cui, Li; Wan, Shubo; Li, Xinguo
2017-01-01
Peanut is one of the calciphilous plants. Calcium serves as a ubiquitous central hub in a large number of signaling pathways. In the field, free calcium ion (Ca2+)-deficient soil can result in unfilled pods. Four pod stages were analyzed to determine the relationship between Ca2+ excretion and pod development. Peanut shells showed Ca2+ excretion at all four stages; however, both the embryo of Stage 4 (S4) and the red skin of Stage 3 (S3) showed Ca2+ absorbance. These results showed that embryo and red skin of peanut need Ca2+ during development. In order to survey the relationship among calcium, hormone and seed development from gene perspective, we further analyzed the seed transcriptome at Stage 2 (S2), S3, and S4. About 70 million high quality clean reads were generated, which were assembled into 58,147 unigenes. By comparing these three stages, total 4,457 differentially expressed genes were identified. In these genes, 53 Ca2+ related genes, 40 auxin related genes, 15 gibberellin genes, 20 ethylene related genes, 2 abscisic acid related genes, and 7 cytokinin related genes were identified. Additionally, a part of them were validated by qRT-PCR. Most of their expressions changed during the pod development. Since some reports showed that Ca2+ signal transduction pathway is involved in hormone regulation pathway, these results implied that peanut seed development might be regulated by the collaboration of Ca2+ signal transduction pathway and hormone regulation pathway. PMID:28769950
Khosravi, Sharifeh; Salehi, Mansour; Ramezanzadeh, Mahboobeh; Mirzaei, Hamed; Salehi, Rasoul
2016-05-01
Thalassemia is curable by bone marrow transplantation; however, finding suitable donors with defined HLA combination remains a major challenge. Cord blood stem cells with preselected HLA system through preimplantation genetic diagnosis (PGD) proved very useful for resolving scarce HLA-matched bone marrow donors. A thalassemia trait couple with an affected child was included in this study. We used informative STR markers at the HLA and beta globin loci to develop a single cell multiplex fluorescent PCR protocol. The protocol was extensively optimized on single lymphocytes isolated from the couple's peripheral blood. The optimized protocol was applied on single blastomeres biopsied from day 3 cleavage stage IVF embryos of the couple. Four IVF embryos biopsied on day 3 and a single blastomere of each were provided for genetic diagnosis of combined β-thalassemia mutations and HLA typing. Of these, one embryo was diagnosed as homozygous normal for the thalassemia mutation and HLA matched with the existing affected sibling. The optimized protocol worked well in PGD clinical cycle for selection of thalassemia-unaffected embryos with the desired HLA system. Copyright © 2016 IMSS. Published by Elsevier Inc. All rights reserved.
Pommerrenig, Benjamin; Popko, Jennifer; Heilmann, Mareike; Schulmeister, Sylwia; Dietel, Katharina; Schmitt, Bianca; Stadler, Ruth; Feussner, Ivo; Sauer, Norbert
2013-01-01
The Arabidopsis SUC5 protein represents a classical sucrose/H+ symporter. Functional analyses previously revealed that SUC5 also transports biotin, an essential co-factor for fatty acid synthesis. However, evidence for a dual role in transport of the structurally unrelated compounds sucrose and biotin in plants was lacking. Here we show that SUC5 localizes to the plasma membrane, and that the SUC5 gene is expressed in developing embryos, confirming the role of the SUC5 protein as substrate carrier across apoplastic barriers in seeds. We show that transport of biotin but not of sucrose across these barriers is impaired in suc5 mutant embryos. In addition, we show that SUC5 is essential for the delivery of biotin into the embryo of biotin biosynthesis-defective mutants (bio1 and bio2). We compared embryo and seedling development as well as triacylglycerol accumulation and fatty acid composition in seeds of single mutants (suc5, bio1 or bio2), double mutants (suc5 bio1 and suc5 bio2) and wild-type plants. Although suc5 mutants were like the wild-type, bio1 and bio2 mutants showed developmental defects and reduced triacylglycerol contents. In suc5 bio1 and suc5 bio2 double mutants, developmental defects were severely increased and the triacylglycerol content was reduced to a greater extent in comparison to the single mutants. Supplementation with externally applied biotin helped to reduce symptoms in both single and double mutants, but the efficacy of supplementation was significantly lower in double than in single mutants, showing that transport of biotin into the embryo is lower in the absence of SUC5. PMID:23031218
Spaethling, Jennifer M; Na, Young-Ji; Lee, Jaehee; Ulyanova, Alexandra V; Baltuch, Gordon H; Bell, Thomas J; Brem, Steven; Chen, H Isaac; Dueck, Hannah; Fisher, Stephen A; Garcia, Marcela P; Khaladkar, Mugdha; Kung, David K; Lucas, Timothy H; O'Rourke, Donald M; Stefanik, Derek; Wang, Jinhui; Wolf, John A; Bartfai, Tamas; Grady, M Sean; Sul, Jai-Yoon; Kim, Junhyong; Eberwine, James H
2017-01-17
Investigation of human CNS disease and drug effects has been hampered by the lack of a system that enables single-cell analysis of live adult patient brain cells. We developed a culturing system, based on a papain-aided procedure, for resected adult human brain tissue removed during neurosurgery. We performed single-cell transcriptomics on over 300 cells, permitting identification of oligodendrocytes, microglia, neurons, endothelial cells, and astrocytes after 3 weeks in culture. Using deep sequencing, we detected over 12,000 expressed genes, including hundreds of cell-type-enriched mRNAs, lncRNAs and pri-miRNAs. We describe cell-type- and patient-specific transcriptional hierarchies. Single-cell transcriptomics on cultured live adult patient derived cells is a prime example of the promise of personalized precision medicine. Because these cells derive from subjects ranging in age into their sixties, this system permits human aging studies previously possible only in rodent systems. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Single-cell sequencing and tumorigenesis: improved understanding of tumor evolution and metastasis.
Ellsworth, Darrell L; Blackburn, Heather L; Shriver, Craig D; Rabizadeh, Shahrooz; Soon-Shiong, Patrick; Ellsworth, Rachel E
2017-12-01
Extensive genomic and transcriptomic heterogeneity in human cancer often negatively impacts treatment efficacy and survival, thus posing a significant ongoing challenge for modern treatment regimens. State-of-the-art DNA- and RNA-sequencing methods now provide high-resolution genomic and gene expression portraits of individual cells, facilitating the study of complex molecular heterogeneity in cancer. Important developments in single-cell sequencing (SCS) technologies over the past 5 years provide numerous advantages over traditional sequencing methods for understanding the complexity of carcinogenesis, but significant hurdles must be overcome before SCS can be clinically useful. In this review, we: (1) highlight current methodologies and recent technological advances for isolating single cells, single-cell whole-genome and whole-transcriptome amplification using minute amounts of nucleic acids, and SCS, (2) summarize research investigating molecular heterogeneity at the genomic and transcriptomic levels and how this heterogeneity affects clonal evolution and metastasis, and (3) discuss the promise for integrating SCS in the clinical care arena for improved patient care.
Global Survey of Protein Expression during Gonadal Sex Determination in Mice*
Ewen, Katherine; Baker, Mark; Wilhelm, Dagmar; Aitken, R. John; Koopman, Peter
2009-01-01
The development of an embryo as male or female depends on differentiation of the gonads as either testes or ovaries. A number of genes are known to be important for gonadal differentiation, but our understanding of the regulatory networks underpinning sex determination remains fragmentary. To advance our understanding of sexual development beyond the transcriptome level, we performed the first global survey of the mouse gonad proteome at the time of sex determination by using two-dimensional nanoflow LC-MS/MS. The resulting data set contains a total of 1037 gene products (154 non-redundant and 883 redundant proteins) identified from 620 peptides. Functional classification and biological network construction suggested that the identified proteins primarily serve in RNA post-transcriptional modification and trafficking, protein synthesis and folding, and post-translational modification. The data set contains potential novel regulators of gonad development and sex determination not revealed previously by transcriptomics and proteomics studies and more than 60 proteins with potential links to human disorders of sexual development. PMID:19617587
Boudjenah, Radia; Molina-Gomes, Denise; Torre, Antoine; Boitrelle, Florence; Taieb, Stéphane; Dos Santos, Esther; Wainer, Robert; de Mazancourt, Philippe; Selva, Jacqueline; Vialard, François
2014-01-01
Background A multiple pregnancy is now considered to be the most common adverse outcome associated with in vitro fertilization (IVF). As a consequence, the identification of women with the best chances of embryo implantation is a challenge in IVF program, in which the objective is to offer elective single-embryo transfer (eSET) without decreasing the pregnancy rate. To date, a range of hormonal and clinical parameters have been used to optimize eSET but none have significant predictive value. This variability could be due to genetic predispositions related to single-nucleotide polymorphisms (SNPs). Here, we assessed the individual and combined impacts of thirteen SNPs that reportedly influence the outcome of in vitro fertilisation (IVF) on the embryo implantation rate for patients undergoing intracytoplasmic sperm injection program (ICSI). Materials and Methods A 13 gene polymorphisms: FSHR(Asn680Ser), p53(Arg72Pro), AMH(Ile49Ser), ESR2(+1730G>A), ESR1(−397T>C), BMP15(−9C>G), MTHFR1(677C>T), MTHFR2(1298A>C), HLA-G(−725C>G), VEGF(+405G>C), TNFα(−308A>G), AMHR(−482A>G), PAI-1(4G/5G), multiplex PCR assay was designed to genotype women undergoing ICSI program. We analyzed the total patients population (n = 428) and a subgroup with homogeneous characteristics (n = 112). Results Only the VEGF(+405G>C) and TNFα(−308A>G) polymorphisms impacted fertilization, embryo implantation and pregnancy rates. Moreover, the combined VEGF+405.GG and TNFα-308.AG or AA genotype occurred significantly more frequently in women with high implantation potential. In contrast, the VEGF+405.CC and TNFα-308.GG combination was associated with a low implantation rate. Conclusion We identified associations between VEGF(+405G>C) and TNFα(−308A>G) polymorphisms (when considered singly or as combinations) and the embryo implantation rate. These associations may be predictive of embryo implantation and could help to define populations in which elective single-embryo transfer should be recommended (or, conversely, ruled out). However, the mechanism underlying the function of these polymorphisms in embryo implantation remains to be determined and the associations observed here must be confirmed in a larger, more heterogeneous cohort. PMID:25247819
Transcriptome Sequences Resolve Deep Relationships of the Grape Family
Wen, Jun; Xiong, Zhiqiang; Nie, Ze-Long; Mao, Likai; Zhu, Yabing; Kan, Xian-Zhao; Ickert-Bond, Stefanie M.; Gerrath, Jean; Zimmer, Elizabeth A.; Fang, Xiao-Dong
2013-01-01
Previous phylogenetic studies of the grape family (Vitaceae) yielded poorly resolved deep relationships, thus impeding our understanding of the evolution of the family. Next-generation sequencing now offers access to protein coding sequences very easily, quickly and cost-effectively. To improve upon earlier work, we extracted 417 orthologous single-copy nuclear genes from the transcriptomes of 15 species of the Vitaceae, covering its phylogenetic diversity. The resulting transcriptome phylogeny provides robust support for the deep relationships, showing the phylogenetic utility of transcriptome data for plants over a time scale at least since the mid-Cretaceous. The pros and cons of transcriptome data for phylogenetic inference in plants are also evaluated. PMID:24069307
Havird, Justin C; Santos, Scott R
2016-12-01
Many crustacean species progress through a series of metamorphoses during the developmental transition from embryo to adult. The molecular genetic basis of this transition, however, is not well characterized for a large number of crustaceans. Here, we employ multiple RNA-Seq methodologies to identify differentially expressed genes (DEGs) between "early" (i.e., Z 1 - Z 2 ) as well as "late" (i.e., Z 3 - Z 4 ) larval and adult developmental stages of Halocaridina rubra Holthuis (1963), an atyid shrimp endemic to the environmentally variable anchialine ecosystem of the Hawaiian Islands. Given the differences in salinity tolerance (narrow vs. wide range), energy acquisition (maternal yolk-bearing vs. microphagous grazing), and behavior (positively phototactic vs. not) between larvae and adults, respectively, of this species, we hypothesized the recovery of numerous DEGs belonging to functional categories relating to these characteristics. Consistent with this and regardless of methodology, hundreds of DEGs were identified, including upregulation of opsins and other light/stimulus detection genes and downregulation of genes related to ion transport, digestion, and reproduction in larvae relative to adults. Furthermore, isoform-switching, which has been largely unexplored in crustacean development, appears to be pervasive between H. rubra larvae and adults, especially among structural and oxygen-transport genes. Finally, by comparing RNA-Seq methodologies, we provide recommendations for future crustacean transcriptomic studies, including a demonstration of the pitfalls associated with identifying DEGs from single replicate samples as well as the utility of leveraging "prepackaged" bioinformatics pipelines. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Biase, Fernando H; Kimble, Katelyn M
2018-05-10
The maturation and successful acquisition of developmental competence by an oocyte, the female gamete, during folliculogenesis is highly dependent on molecular interactions with somatic cells. Most of the cellular interactions identified, thus far, are modulated by growth factors, ions or metabolites. We hypothesized that this interaction is also modulated at the transcriptional level, which leads to the formation of gene regulatory networks between the oocyte and cumulus cells. We tested this hypothesis by analyzing transcriptome data from single oocytes and the surrounding cumulus cells collected from antral follicles employing an analytical framework to determine interdependencies at the transcript level. We overlapped our transcriptome data with putative protein-protein interactions and identified hundreds of ligand-receptor pairs that can transduce paracrine signaling between an oocyte and cumulus cells. We determined that 499 ligand-encoding genes expressed in oocytes and cumulus cells are functionally associated with transcription regulation (FDR < 0.05). Ligand-encoding genes with specific expression in oocytes or cumulus cells were enriched for biological functions that are likely associated with the coordinated formation of transzonal projections from cumulus cells that reach the oocyte's membrane. Thousands of gene pairs exhibit significant linear co-expression (absolute correlation > 0.85, FDR < 1.8 × 10 - 5 ) patterns between oocytes and cumulus cells. Hundreds of co-expressing genes showed clustering patterns associated with biological functions (FDR < 0.5) necessary for a coordinated function between the oocyte and cumulus cells during folliculogenesis (i.e. regulation of transcription, translation, apoptosis, cell differentiation and transport). Our analyses revealed a complex and functional gene regulatory circuit between the oocyte and surrounding cumulus cells. The regulatory profile of each cumulus-oocyte complex is likely associated with the oocytes' developmental potential to derive an embryo.
Liddelow, Shane A.; Temple, Sally; Møllgård, Kjeld; Gehwolf, Renate; Wagner, Andrea; Bauer, Hannelore; Bauer, Hans-Christian; Phoenix, Timothy N.; Dziegielewska, Katarzyna M.; Saunders, Norman R.
2012-01-01
Exchange mechanisms across the blood–cerebrospinal fluid (CSF) barrier in the choroid plexuses within the cerebral ventricles control access of molecules to the central nervous system, especially in early development when the brain is poorly vascularised. However, little is known about their molecular or developmental characteristics. We examined the transcriptome of lateral ventricular choroid plexus in embryonic day 15 (E15) and adult mice. Numerous genes identified in the adult were expressed at similar levels at E15, indicating substantial plexus maturity early in development. Some genes coding for key functions (intercellular/tight junctions, influx/efflux transporters) changed expression during development and their expression patterns are discussed in the context of available physiological/permeability results in the developing brain. Three genes: Secreted protein acidic and rich in cysteine (Sparc), Glycophorin A (Gypa) and C (Gypc), were identified as those whose gene products are candidates to target plasma proteins to choroid plexus cells. These were investigated using quantitative- and single-cell-PCR on plexus epithelial cells that were albumin- or total plasma protein-immunopositive. Results showed a significant degree of concordance between plasma protein/albumin immunoreactivity and expression of the putative transporters. Immunohistochemistry identified SPARC and GYPA in choroid plexus epithelial cells in the embryo with a subcellular distribution that was consistent with transport of albumin from blood to cerebrospinal fluid. In adult plexus this pattern of immunostaining was absent. We propose a model of the cellular mechanism in which SPARC and GYPA, together with identified vesicle-associated membrane proteins (VAMPs) may act as receptors/transporters in developmentally regulated transfer of plasma proteins at the blood–CSF interface. PMID:22457777
Guo, Wuxia; Wu, Haidan; Zhang, Zhang; Yang, Chao; Hu, Ling; Shi, Xianggang; Jian, Shuguang; Shi, Suhua; Huang, Yelin
2017-01-01
Mangroves are woody plants that grow at the interface between land and sea in tropical and subtropical latitudes, where they exist in conditions of high salinity, extreme tides, strong winds, high temperatures, and muddy, anaerobic soils. Rhizophoraceae is a key mangrove family, with highly developed morphological and physiological adaptations to extreme conditions. It is an ideal system for the study of the origin and adaptive evolution of mangrove plants. In this study, we characterized and comprehensively compared the transcriptomes of four mangrove species, from all four mangrove genera, as well as their closest terrestrial relative in Rhizophoraceae, using RNA-Seq. We obtained 41,936-48,845 unigenes with N50 values of 982-1,185 bp and 61.42-69.48% annotated for the five species in Rhizophoraceae. Orthology annotations of Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Clusters of Orthologous Groups revealed overall similarities in the transcriptome profiles among the five species, whereas enrichment analysis identified remarkable genomic characteristics that are conserved across the four mangrove species but differ from their terrestrial relative. Based on 1,816 identified orthologs, phylogeny analysis and divergence time estimation revealed a single origin for mangrove species in Rhizophoraceae, which diverged from the terrestrial lineage ~56.4 million years ago (Mya), suggesting that the transgression during the Paleocene-Eocene Thermal Maximum may have been responsible for the entry of the mangrove lineage of Rhizophoraceae into intertidal environments. Evidence showed that the ancestor of Rhizophoraceae may have experienced a whole genome duplication event ~74.6 Mya, which may have increased the adaptability and survival chances of Rhizophoraceae during and following the Cretaceous-Tertiary extinction. The analysis of positive selection identified 10 positively selected genes from the ancestor branch of Rhizophoraceae mangroves, which were mainly associated with stress response, embryo development, and regulation of gene expression. Positive selection of these genes may be crucial for increasing the capability of stress tolerance (i.e., defense against salt and oxidative stress) and development of adaptive traits (i.e., vivipary) of Rhizophoraceae mangroves, and thus plays an important role in their adaptation to the stressful intertidal environments.
Guo, Wuxia; Wu, Haidan; Zhang, Zhang; Yang, Chao; Hu, Ling; Shi, Xianggang; Jian, Shuguang; Shi, Suhua; Huang, Yelin
2017-01-01
Mangroves are woody plants that grow at the interface between land and sea in tropical and subtropical latitudes, where they exist in conditions of high salinity, extreme tides, strong winds, high temperatures, and muddy, anaerobic soils. Rhizophoraceae is a key mangrove family, with highly developed morphological and physiological adaptations to extreme conditions. It is an ideal system for the study of the origin and adaptive evolution of mangrove plants. In this study, we characterized and comprehensively compared the transcriptomes of four mangrove species, from all four mangrove genera, as well as their closest terrestrial relative in Rhizophoraceae, using RNA-Seq. We obtained 41,936–48,845 unigenes with N50 values of 982–1,185 bp and 61.42–69.48% annotated for the five species in Rhizophoraceae. Orthology annotations of Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Clusters of Orthologous Groups revealed overall similarities in the transcriptome profiles among the five species, whereas enrichment analysis identified remarkable genomic characteristics that are conserved across the four mangrove species but differ from their terrestrial relative. Based on 1,816 identified orthologs, phylogeny analysis and divergence time estimation revealed a single origin for mangrove species in Rhizophoraceae, which diverged from the terrestrial lineage ~56.4 million years ago (Mya), suggesting that the transgression during the Paleocene–Eocene Thermal Maximum may have been responsible for the entry of the mangrove lineage of Rhizophoraceae into intertidal environments. Evidence showed that the ancestor of Rhizophoraceae may have experienced a whole genome duplication event ~74.6 Mya, which may have increased the adaptability and survival chances of Rhizophoraceae during and following the Cretaceous–Tertiary extinction. The analysis of positive selection identified 10 positively selected genes from the ancestor branch of Rhizophoraceae mangroves, which were mainly associated with stress response, embryo development, and regulation of gene expression. Positive selection of these genes may be crucial for increasing the capability of stress tolerance (i.e., defense against salt and oxidative stress) and development of adaptive traits (i.e., vivipary) of Rhizophoraceae mangroves, and thus plays an important role in their adaptation to the stressful intertidal environments. PMID:28559911
Fontanet, Pilar; Vicient, Carlos M
2008-01-01
Plant embryo development is a complex process that includes several coordinated events. Maize mature embryos consist of a well-differentiated embryonic axis surrounded by a single massive cotyledon called scutellum. Mature embryo axis also includes lateral roots and several developed leaves. In contrast to Arabidopsis, in which the orientation of cell divisions are perfectly established, only the first planes of cell division are predictable in maize embryos. These distinctive characteristics joined to the availability of a large collection of embryo mutants, well-developed molecular biology and tissue culture tools, an established genetics and its economical importance make maize a good model plant for grass embryogenesis. Here, we describe basic concepts and techniques necessary for studying maize embryo development: how to grow maize in greenhouses and basic techniques for in vitro embryo culture, somatic embryogenesis and in situ hybridization.
Kjellberg, Ann Thurin; Carlsson, Per; Bergh, Christina
2006-01-01
Transfer of several embryos after IVF results in a high multiple birth rate associated with increased morbidity and high costs for the neonatal care. In a previous randomized trial we demonstrated that a single embryo transfer (SET) strategy, including one fresh single embryo transfer and, if no live birth, one additional frozen-thawed SET, resulted in a live-birth rate that was not substantially lower than after double embryo transfer (DET) but markedly reduced the multiple birth rate. We compared costs for maternal health care and productivity losses and paediatric costs for the SET and DET strategies. In addition, maternal and paediatric outcomes between the two groups were compared. The SET strategy resulted in lower average total costs from treatment until 6 months after delivery. There were a few more deliveries with at least one live-born child in the DET group. The incremental cost per extra delivery in the DET alternative was high, 71 940. The rates of prematurely born and low birthweight children were significantly lower with the SET strategy. There were also markedly fewer maternal and paediatric complications in the SET group. The SET strategy is superior to the DET strategy, when number of deliveries with at least one live-born child, incremental cost-effectiveness ratio and maternal and paediatric complications are taken into consideration. The findings do not support continuing transfers of two embryos in this group of patients.
Individual blastomeres of 16- and 32-cell mouse embryos are able to develop into foetuses and mice.
Tarkowski, Andrzej K; Suwińska, Aneta; Czołowska, Renata; Ożdżeński, Wacław
2010-12-15
Cell and developmental studies have clarified how, by the time of implantation, the mouse embryo forms three primary cell lineages: epiblast (EPI), primitive endoderm (PE), and trophectoderm (TE). However, it still remains unknown when cells allocated to these three lineages become determined in their developmental fate. To address this question, we studied the developmental potential of single blastomeres derived from 16- and 32-cell stage embryos and supported by carrier, tetraploid blastomeres. We were able to generate singletons, identical twins, triplets, and quadruplets from individual inner and outer cells of 16-cell embryos and, sporadically, foetuses from single cells of 32-cell embryos. The use of embryos constitutively expressing GFP as the donors of single diploid blastomeres enabled us to identify their cell progeny in the constructed 2n↔4n blastocysts. We showed that the descendants of donor blastomeres were able to locate themselves in all three first cell lineages, i.e., epiblast, primitive endoderm, and trophectoderm. In addition, the application of Cdx2 and Gata4 markers for trophectoderm and primitive endoderm, respectively, showed that the expression of these two genes in the descendants of donor blastomeres was either down- or up-regulated, depending on the cell lineage they happened to occupy. Thus, our results demonstrate that up to the early blastocysts stage, the destiny of at least some blastomeres, although they have begun to express markers of different lineage, is still labile. Copyright © 2010 Elsevier Inc. All rights reserved.
Salehi, Reza; Tsoi, Stephen C M; Colazo, Marcos G; Ambrose, Divakar J; Robert, Claude; Dyck, Michael K
2017-01-30
Early embryonic loss is a large contributor to infertility in cattle. Moreover, bovine becomes an interesting model to study human preimplantation embryo development due to their similar developmental process. Although genetic factors are known to affect early embryonic development, the discovery of such factors has been a serious challenge. Microarray technology allows quantitative measurement and gene expression profiling of transcript levels on a genome-wide basis. One of the main decisions that have to be made when planning a microarray experiment is whether to use a one- or two-color approach. Two-color design increases technical replication, minimizes variability, improves sensitivity and accuracy as well as allows having loop designs, defining the common reference samples. Although microarray is a powerful biological tool, there are potential pitfalls that can attenuate its power. Hence, in this technical paper we demonstrate an optimized protocol for RNA extraction, amplification, labeling, hybridization of the labeled amplified RNA to the array, array scanning and data analysis using the two-color analysis strategy.
Practical Guide for Ascidian Microinjection: Phallusia mammillata.
Yasuo, Hitoyoshi; McDougall, Alex
2018-01-01
Phallusia mammillata has recently emerged as a new ascidian model. Its unique characteristics, including the optical transparency of eggs and embryos and efficient translation of exogenously introduced mRNA in eggs, make the Phallusia system suitable for fluorescent protein (FP)-based imaging approaches. In addition, genomic and transcriptomic resources are readily available for this ascidian species, facilitating functional gene studies. Microinjection is probably the most versatile technique for introducing exogenous molecules such as plasmids, mRNAs, and proteins into ascidian eggs/embryos. However, it is not practiced widely within the community; presumably, because the system is rather laborious to set up and it requires practice. Here, we describe in as much detail as possible two microinjection methods that we use daily in the laboratory: one based on an inverted microscope and the other on a stereomicroscope. Along the stepwise description of system setup and injection procedure, we provide practical tips in the hope that this chapter might be a useful guide for introducing or improving a microinjection setup.
Giustacchini, Alice; Thongjuea, Supat; Barkas, Nikolaos; Woll, Petter S; Povinelli, Benjamin J; Booth, Christopher A G; Sopp, Paul; Norfo, Ruggiero; Rodriguez-Meira, Alba; Ashley, Neil; Jamieson, Lauren; Vyas, Paresh; Anderson, Kristina; Segerstolpe, Åsa; Qian, Hong; Olsson-Strömberg, Ulla; Mustjoki, Satu; Sandberg, Rickard; Jacobsen, Sten Eirik W; Mead, Adam J
2017-06-01
Recent advances in single-cell transcriptomics are ideally placed to unravel intratumoral heterogeneity and selective resistance of cancer stem cell (SC) subpopulations to molecularly targeted cancer therapies. However, current single-cell RNA-sequencing approaches lack the sensitivity required to reliably detect somatic mutations. We developed a method that combines high-sensitivity mutation detection with whole-transcriptome analysis of the same single cell. We applied this technique to analyze more than 2,000 SCs from patients with chronic myeloid leukemia (CML) throughout the disease course, revealing heterogeneity of CML-SCs, including the identification of a subgroup of CML-SCs with a distinct molecular signature that selectively persisted during prolonged therapy. Analysis of nonleukemic SCs from patients with CML also provided new insights into cell-extrinsic disruption of hematopoiesis in CML associated with clinical outcome. Furthermore, we used this single-cell approach to identify a blast-crisis-specific SC population, which was also present in a subclone of CML-SCs during the chronic phase in a patient who subsequently developed blast crisis. This approach, which might be broadly applied to any malignancy, illustrates how single-cell analysis can identify subpopulations of therapy-resistant SCs that are not apparent through cell-population analysis.
Lombard-Banek, Camille; Reddy, Sushma; Moody, Sally A; Nemes, Peter
2016-08-01
Quantification of protein expression in single cells promises to advance a systems-level understanding of normal development. Using a bottom-up proteomic workflow and multiplexing quantification by tandem mass tags, we recently demonstrated relative quantification between single embryonic cells (blastomeres) in the frog (Xenopus laevis) embryo. In this study, we minimize derivatization steps to enhance analytical sensitivity and use label-free quantification (LFQ) for single Xenopus cells. The technology builds on a custom-designed capillary electrophoresis microflow-electrospray ionization high-resolution mass spectrometry platform and LFQ by MaxLFQ (MaxQuant). By judiciously tailoring performance to peptide separation, ionization, and data-dependent acquisition, we demonstrate an ∼75-amol (∼11 nm) lower limit of detection and quantification for proteins in complex cell digests. The platform enabled the identification of 438 nonredundant protein groups by measuring 16 ng of protein digest, or <0.2% of the total protein contained in a blastomere in the 16-cell embryo. LFQ intensity was validated as a quantitative proxy for protein abundance. Correlation analysis was performed to compare protein quantities between the embryo and n = 3 different single D11 blastomeres, which are fated to develop into the nervous system. A total of 335 nonredundant protein groups were quantified in union between the single D11 cells spanning a 4 log-order concentration range. LFQ and correlation analysis detected expected proteomic differences between the whole embryo and blastomeres, and also found translational differences between individual D11 cells. LFQ on single cells raises exciting possibilities to study gene expression in other cells and models to help better understand cell processes on a systems biology level. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Poli, Maurizio; Ori, Alessandro; Child, Tim; Jaroudi, Souraya; Spath, Katharina; Beck, Martin; Wells, Dagan
2015-11-01
The use of in vitro fertilization (IVF) has revolutionized the treatment of infertility and is now responsible for 1-5% of all births in industrialized countries. During IVF, it is typical for patients to generate multiple embryos. However, only a small proportion of them possess the genetic and metabolic requirements needed in order to produce a healthy pregnancy. The identification of the embryo with the greatest developmental capacity represents a major challenge for fertility clinics. Current methods for the assessment of embryo competence are proven inefficient, and the inadvertent transfer of non-viable embryos is the principal reason why most IVF treatments (approximately two-thirds) end in failure. In this study, we investigate how the application of proteomic measurements could improve success rates in clinical embryology. We describe a procedure that allows the identification and quantification of proteins of embryonic origin, present in attomole concentrations in the blastocoel, the enclosed fluid-filled cavity that forms within 5-day-old human embryos. By using targeted proteomics, we demonstrate the feasibility of quantifying multiple proteins in samples derived from single blastocoels and that such measurements correlate with aspects of embryo viability, such as chromosomal (ploidy) status. This study illustrates the potential of high-sensitivity proteomics to measure clinically relevant biomarkers in minute samples and, more specifically, suggests that key aspects of embryo competence could be measured using a proteomic-based strategy, with negligible risk of harm to the living embryo. Our work paves the way for the development of "next-generation" embryo competence assessment strategies, based on functional proteomics. © 2015 The Authors. Published under the terms of the CC BY 4.0 license.
Massively parallel nanowell-based single-cell gene expression profiling.
Goldstein, Leonard D; Chen, Ying-Jiun Jasmine; Dunne, Jude; Mir, Alain; Hubschle, Hermann; Guillory, Joseph; Yuan, Wenlin; Zhang, Jingli; Stinson, Jeremy; Jaiswal, Bijay; Pahuja, Kanika Bajaj; Mann, Ishminder; Schaal, Thomas; Chan, Leo; Anandakrishnan, Sangeetha; Lin, Chun-Wah; Espinoza, Patricio; Husain, Syed; Shapiro, Harris; Swaminathan, Karthikeyan; Wei, Sherry; Srinivasan, Maithreyan; Seshagiri, Somasekar; Modrusan, Zora
2017-07-07
Technological advances have enabled transcriptome characterization of cell types at the single-cell level providing new biological insights. New methods that enable simple yet high-throughput single-cell expression profiling are highly desirable. Here we report a novel nanowell-based single-cell RNA sequencing system, ICELL8, which enables processing of thousands of cells per sample. The system employs a 5,184-nanowell-containing microchip to capture ~1,300 single cells and process them. Each nanowell contains preprinted oligonucleotides encoding poly-d(T), a unique well barcode, and a unique molecular identifier. The ICELL8 system uses imaging software to identify nanowells containing viable single cells and only wells with single cells are processed into sequencing libraries. Here, we report the performance and utility of ICELL8 using samples of increasing complexity from cultured cells to mouse solid tissue samples. Our assessment of the system to discriminate between mixed human and mouse cells showed that ICELL8 has a low cell multiplet rate (< 3%) and low cross-cell contamination. We characterized single-cell transcriptomes of more than a thousand cultured human and mouse cells as well as 468 mouse pancreatic islets cells. We were able to identify distinct cell types in pancreatic islets, including alpha, beta, delta and gamma cells. Overall, ICELL8 provides efficient and cost-effective single-cell expression profiling of thousands of cells, allowing researchers to decipher single-cell transcriptomes within complex biological samples.
Single-embryo transfer versus multiple-embryo transfer.
Gerris, Jan
2009-01-01
Despite the progress made in assisted reproductive technology, live birth rates remain disappointingly low. Multiple-embryo transfer has been an accepted practice with which to increase the success rate. This has led to a higher incidence of multiple-order births compared with natural conception, which not only increase the risk of mortality and morbidity to both mother and children but are also associated with social and economic consequences. Elective single-embryo transfer (eSET) was developed in an effort to increase singleton pregnancies in assisted reproduction. Studies comparing eSET with multiple-embryo transfer highlight the benefit of this approach and suggest that, with careful patient selection and the transfer of good-quality embryos, the risk of a multiple-order pregnancy can be reduced without significantly decreasing live birth rates. Although the use of eSET has gradually increased in clinical practice, its acceptance has been limited by factors such as availability of funding and awareness of the procedure. An open discussion of eSET is warranted in an effort to enable a broader understanding by physicians and patients of the merits of this approach. Ultimately, eSET may provide a more cost-effective, potentially safer approach to patients undergoing assisted reproduction technology.
IVF twins: buy one get one free?
Ismail, Laura; Mittal, Monica; Kalu, Emmanuel
2012-10-01
There has been an overall increase in the incidence of multiple pregnancies and assisted reproduction technology is largely responsible for this rise. Although twins may appeal to couples undergoing in vitro fertilisation (IVF), they have been associated with serious health consequences to the babies, their mothers and the family unit, as well as having massive financial implications for the National Health Service. Transfer of more than one embryo during IVF is mainly responsible for IVF twins, and elective transfer of a single embryo at a time with cryopreservation of surplus embryos for later transfer has been shown to be an effective strategy to minimise the risk of twins without compromising IVF success rates. Factors that will impact on the success of the policy of elective single embryo transfer (eSET) include improvement in embryo selection for transfer, better cryopreservation techniques and adequate state funding for IVF. However, in implementing the policy of eSET it is important that each case is assessed on an individual basis since in some situations (e.g. in older women) the transfer of two embryos may be more cost effective. Adequate and continuous education of all stakeholders is essential if the policy of eSET is to be successful in the UK.
Anway, Matthew D; Skinner, Michael K
2008-04-01
The ability of an endocrine disruptor exposure during gonadal sex determination to promote a transgenerational prostate disease phenotype was investigated in the current study. Exposure of an F0 gestating female rat to the endocrine disruptor vinclozolin during F1 embryo gonadal sex determination promoted a transgenerational adult onset prostate disease phenotype. The prostate disease phenotype and physiological parameters were determined for males from F1 to F4 generations and the prostate transcriptome was assessed in the F3 generation. Although the prostate in prepubertal animals develops normally, abnormalities involving epithelial cell atrophy, glandular dysgenesis, prostatitis, and hyperplasia of the ventral prostate develop in older animals. The ventral prostate phenotype was transmitted for four generations (F1-F4). Analysis of the ventral prostate transcriptome demonstrated 954 genes had significantly altered expression between control and vinclozolin F3 generation animals. Analysis of isolated ventral prostate epithelial cells identified 259 genes with significantly altered expression between control and vinclozolin F3 generation animals. Characterization of regulated genes demonstrated several cellular pathways were influenced, including calcium and WNT. A number of genes identified have been shown to be associated with prostate disease and cancer, including beta-microseminoprotein (Msp) and tumor necrosis factor receptor superfamily 6 (Fadd). The ability of an endocrine disruptor to promote transgenerational prostate abnormalities appears to involve an epigenetic transgenerational alteration in the prostate transcriptome and male germ-line. Potential epigenetic transgenerational alteration of prostate gene expression by environmental compounds may be important to consider in the etiology of adult onset prostate disease.
Anway, Matthew D.; Skinner, Michael K.
2018-01-01
PURPOSE The ability of an endocrine disruptor exposure during gonadal sex determination to promote a transgenerational prostate disease phenotype was investigated in the current study. METHODS Exposure of an F0 gestating female rat to the endocrine disruptor vinclozolin during F1 embryo gonadal sex determination promoted a transgenerational adult onset prostate disease phenotype. The prostate disease phenotype and physiological parameters were determined for males from F1 to F4 generations and the prostate transcriptome was assessed in the F3 generation. RESULTS Although the prostate in prepubertal animals develops normally, abnormalities involving epithelial cell atrophy, glandular dysgenesis, prostatitis, and hyperplasia of the ventral prostate develop in older animals. The ventral prostate phenotype was transmitted for four generations (F1–F4). Analysis of the ventral prostate transcriptome demonstrated 954 genes had significantly altered expression between control and vinclozolin F3 generation animals. Analysis of isolated ventral prostate epithelial cells identified 259 genes with significantly altered expression between control and vinclozolin F3 generation animals. Characterization of regulated genes demonstrated several cellular pathways were influenced, including calcium and WNT. A number of genes identified have been shown to be associated with prostate disease and cancer, including beta-microseminoprotein (Msp) and tumor necrosis factor receptor superfamily 6 (Fadd). CONCLUSIONS The ability of an endocrine disruptor to promote transgenerational prostate abnormalities appears to involve an epigenetic transgenerational alteration in the prostate transcriptome and male germ-line. Potential epigenetic transgenerational alteration of prostate gene expression by environmental compounds may be important to consider in the etiology of adult onset prostate disease. PMID:18220299
Boyama, Burcu Aydin; Cepni, Ismail; Imamoglu, Metehan; Oncul, Mahmut; Tuten, Abdullah; Yuksel, Mehmet Aytac; Kervancioglu, Mehmet Ertan; Kaleli, Semih; Ocal, Pelin
2016-01-01
The aim of this study was to determine whether homocysteine (hcy) concentrations in embryo culture media correlate with pregnancy outcome in assisted reproductive technology (ART) cycles. Forty patients who underwent single embryo transfer at the infertility clinic of a tertiary care center were recruited for this case-control study. Spent embryo culture media from all patients were collected after single embryo transfer on day 3 (n = 40). Hcy concentrations in embryo culture media were analyzed by enzyme cycling method. Patients were grouped according to the diagnosis of a clinical pregnancy. Sixteen patients were pregnant while 24 patients failed to achieve conception. Mean Hcy levels in the culture media were significantly different between the groups (p < 0.003), as 4.58 ± 1.31 μmol/l in the non-pregnant group and 3.37 ± 0.92 μmol/l in the pregnant group. Receiver operator curve analysis for determining the diagnostic potential of Hcy for pregnancy revealed an area under the curve of 0.792 (confidence interval: 0.65-0.94; p < 0.05). A cut-off value of 3.53 μmol/l was determined with a sensitivity of 83.3%, and a specificity of 68.8%. Lower hcy levels were associated with a better chance of pregnancy and better embryo grades. Hcy may be introduced as an individual metabolomic profiling marker for embryos.
Single-cell isolation by a modular single-cell pipette for RNA-sequencing.
Zhang, Kai; Gao, Min; Chong, Zechen; Li, Ying; Han, Xin; Chen, Rui; Qin, Lidong
2016-11-29
Single-cell transcriptome sequencing highly requires a convenient and reliable method to rapidly isolate a live cell into a specific container such as a PCR tube. Here, we report a modular single-cell pipette (mSCP) consisting of three modular components, a SCP-Tip, an air-displacement pipette (ADP), and ADP-Tips, that can be easily assembled, disassembled, and reassembled. By assembling the SCP-Tip containing a hydrodynamic trap, the mSCP can isolate single cells from 5-10 cells per μL of cell suspension. The mSCP is compatible with microscopic identification of captured single cells to finally achieve 100% single-cell isolation efficiency. The isolated live single cells are in submicroliter volumes and well suitable for single-cell PCR analysis and RNA-sequencing. The mSCP possesses merits of convenience, rapidness, and high efficiency, making it a powerful tool to isolate single cells for transcriptome analysis.
Dahlen, C R; DiCostanzo, A; Spell, A R; Lamb, G C
2012-12-01
Our objectives were to determine pregnancy rate, fetal loss, and number of calves born in beef cattle after a fixed-time transfer of an embryo 7 d after a fixed-time artificial insemination (TAI) of cows (Exp. 1) and after transfer of 2 demi-embryos into a single heifer recipient (Exp. 2). In Exp. 1 after synchronization of ovulation, during 2 yr, 297 suckled beef cows were assigned randomly to 1 of 3 treatments: 1) on d 2 cows received a single TAI (TAI-2; n = 99), 2) a fixed-time direct transfer, frozen and thawed embryo placed in the uterine horn ipsilateral to the ovary containing a corpus luteum (CL) on d 9 embryo transfer (ET-9; n = 99), or 3) cows received TAI on d 2 and a frozen and thawed direct transfer embryo placed in the uterine horn ipsilateral to the ovary containing a CL on d 9 (TWIN) treatments (n = 99). Fetal number and viability were determined with ultrasonography at 33 to 35 d and 90 to 100 d after insemination. In Exp. 2, 74 crossbred recipient heifers were assigned randomly to receive either 1) a single whole fresh embryo (WHOLE; n = 37) or 2) 2 identical fresh demi-embryos (SPLIT; n = 37) in the uterine horn ipsilateral to the CL 7 d after an observed estrus. Ultrasonography was used on d 33, 69, and 108 to determine presence and number of embryos or fetuses. Palpation per rectum was used to determine pregnancy status on d 180 of gestation and number of live calves was recorded at birth. In Exp. 1 pregnancy rates on d 30 to 35 were greater (P < 0.05) for TWIN- (48.5%) and TAI-2- (47.5%) than for ET-9- (33.3%) treated cows. Of the 48 pregnant cows in the TWIN treatment, 21 were twin pregnancies whereas there was 1 twin pregnancy in the TAI-2 treatment. As a result, TWIN cows had more fetuses (P < 0.05) as a proportion of all treated cows (69.7%) than TAI-2- (48.5%) or ET-9-(33.3%) treated cows, and cows in the TWIN treatment gave birth to more (P < 0.01) calves (n = 55) compared with cows in the ET treatment (n = 23) whereas cows in the TAI-2 treatment (n = 40) were intermediate. In Exp. 2 heifers receiving SPLIT (81.1%) had greater (P < 0.05) pregnancy rates on d 33 than heifers receiving WHOLE (40.5%). Of the SPLIT heifers that were confirmed pregnant at d 33 after transfer, 57% were gestating twin fetuses. Embryonic or fetal loss from d 33 to birth was greater (P < 0.01) in heifers in the SPLIT treatment (40.0%) compared with the WHOLE treatment (0.0%), but number of calves per female treated was greater (P < 0.05) in heifers in the SPLIT treatment (75.0%) compared with heifers in the WHOLE treatment (40.5%). We conclude that transferring an embryo into a cow 7 d after TAI did not increase the pregnancy rate in Exp.1. However, transferring 2 demi-embryos into a single heifer recipient increased pregnancy rate at 33 d of gestation whereas both methods of inducing twinning resulted in a greater number of calves per female treated. In addition, embryonic or fetal loss associated with unilateral twin pregnancies in heifers occurred at rates greater than those associated with single-fetus pregnancies.
Gerchen, Jörn F.; Reichert, Samuel J.; Röhr, Johannes T.; Dieterich, Christoph; Kloas, Werner
2016-01-01
Large genome size, including immense repetitive and non-coding fractions, still present challenges for capacity, bioinformatics and thus affordability of whole genome sequencing in most amphibians. Here, we test the performance of a single transcriptome to understand whether it can provide a cost-efficient resource for species with large unknown genomes. Using RNA from six different tissues from a single Palearctic green toad (Bufo viridis) specimen and Hiseq2000, we obtained 22,5 Mio reads and publish >100,000 unigene sequences. To evaluate efficacy and quality, we first use this data to identify green toad specific candidate genes, known from other vertebrates for their role in sex determination and differentiation. Of a list of 37 genes, the transcriptome yielded 32 (87%), many of which providing the first such data for this non-model anuran species. However, for many of these genes, only fragments could be retrieved. In order to allow also applications to population genetics, we further used the transcriptome for the targeted development of 21 non-anonymous microsatellites and tested them in genetic families and backcrosses. Eleven markers were specifically developed to be located on the B. viridis sex chromosomes; for eight markers we can indeed demonstrate sex-specific transmission in genetic families. Depending on phylogenetic distance, several markers, which are sex-linked in green toads, show high cross-amplification success across the anuran phylogeny, involving nine systematic anuran families. Our data support the view that single transcriptome sequencing (based on multiple tissues) provides a reliable genomic resource and cost-efficient method for non-model amphibian species with large genome size and, despite limitations, should be considered as long as genome sequencing remains unaffordable for most species. PMID:27232626
Lessons from single-cell transcriptome analysis of oxygen-sensing cells.
Zhou, Ting; Matsunami, Hiroaki
2018-05-01
The advent of single-cell RNA-sequencing (RNA-Seq) technology has enabled transcriptome profiling of individual cells. Comprehensive gene expression analysis at the single-cell level has proven to be effective in characterizing the most fundamental aspects of cellular function and identity. This unbiased approach is revolutionary for small and/or heterogeneous tissues like oxygen-sensing cells in identifying key molecules. Here, we review the major methods of current single-cell RNA-Seq technology. We discuss how this technology has advanced the understanding of oxygen-sensing glomus cells in the carotid body and helped uncover novel oxygen-sensing cells and mechanisms in the mice olfactory system. We conclude by providing our perspective on future single-cell RNA-Seq research directed at oxygen-sensing cells.
Using single nuclei for RNA-seq to capture the transcriptome of postmortem neurons
Krishnaswami, Suguna Rani; Grindberg, Rashel V; Novotny, Mark; Venepally, Pratap; Lacar, Benjamin; Bhutani, Kunal; Linker, Sara B; Pham, Son; Erwin, Jennifer A; Miller, Jeremy A; Hodge, Rebecca; McCarthy, James K; Kelder, Martin; McCorrison, Jamison; Aevermann, Brian D; Fuertes, Francisco Diez; Scheuermann, Richard H; Lee, Jun; Lein, Ed S; Schork, Nicholas; McConnell, Michael J; Gage, Fred H; Lasken, Roger S
2016-01-01
A protocol is described for sequencing the transcriptome of a cell nucleus. Nuclei are isolated from specimens and sorted by FACS, cDNA libraries are constructed and RNA-seq is performed, followed by data analysis. Some steps follow published methods (Smart-seq2 for cDNA synthesis and Nextera XT barcoded library preparation) and are not described in detail here. Previous single-cell approaches for RNA-seq from tissues include cell dissociation using protease treatment at 30 °C, which is known to alter the transcriptome. We isolate nuclei at 4 °C from tissue homogenates, which cause minimal damage. Nuclear transcriptomes can be obtained from postmortem human brain tissue stored at −80 °C, making brain archives accessible for RNA-seq from individual neurons. The method also allows investigation of biological features unique to nuclei, such as enrichment of certain transcripts and precursors of some noncoding RNAs. By following this procedure, it takes about 4 d to construct cDNA libraries that are ready for sequencing. PMID:26890679
Destouni, A; Poulou, M; Kakourou, G; Vrettou, C; Tzetis, M; Traeger-Synodinos, J; Kitsiou-Tzeli, S
2016-03-01
Institutions offering CF-PGD face the challenge of developing and optimizing single cell genotyping protocols that should cover for the extremely heterogeneous CF mutation spectrum. Here we report the development and successful clinical application of a generic CF-PGD protocol to facilitate direct detection of any CFTR nucleotide variation(s) by HRMA and simultaneous confirmation of diagnosis through haplotype analysis. A multiplex PCR was optimized supporting co-amplification of any CFTR exon-region, along with 6 closely linked STRs. Single cell genotypes were established through HRM analysis following melting of the 2nd round PCR products and were confirmed by STR haplotype analysis of the 1st PCR products. The protocol was validated pre-clinically, by testing 208 single lymphocytes, isolated from whole blood samples from 4 validation family trios. Fifteen PGD cycles were performed and 103 embryos were biopsied. In 15 clinical PGD cycles, genotypes were achieved in 88/93 (94.6%) embryo biopsy samples, of which 57/88 (64.8%) were deemed genetically suitable for embryo transfer. Amplification failed at all loci for 10/103 blastomeres biopsied from poor quality embryos. Six clinical pregnancies were achieved (2 twin, 4 singletons). PGD genotypes were confirmed following conventional amniocentesis or chorionic villus sampling in all achieved pregnancies. The single cell HRMA CF-PGD protocol described herein is a flexible, generic, low cost and robust genotyping method, which facilitates the analysis of any CFTR genotype combination. Single-cell HRMA can be beneficial to other clinical settings, for example the detection of single nucleotide variants in single cells derived from clinical tumor samples. Copyright © 2015 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
Redundant roles of Sox17 and Sox18 in early cardiovascular development of mouse embryos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakamoto, Youhei; Hara, Kenshiro; Kanai-Azuma, Masami
Sox7, -17 and -18 constitute the Sox subgroup F (SoxF) of HMG box transcription factor genes, which all are co-expressed in developing vascular endothelial cells in mice. Here we characterized cardiovascular phenotypes of Sox17/Sox18-double and Sox17-single null embryos during early-somite stages. Whole-mount PECAM staining demonstrated the aberrant heart looping, enlarged cardinal vein and mild defects in anterior dorsal aorta formation in Sox17 single-null embryos. The Sox17/Sox18 double-null embryos showed more severe defects in formation of anterior dorsal aorta and head/cervical microvasculature, and in some cases, aberrant differentiation of endocardial cells and defective fusion of the endocardial tube. However, the posteriormore » dorsal aorta and allantoic microvasculature was properly formed in all of the Sox17/Sox18 double-null embryos. The anomalies in both anterior dorsal aorta and head/cervical vasculature corresponded with the weak Sox7 expression sites. This suggests the region-specific redundant activities of three SoxF members along the anteroposterior axis of embryonic vascular network.« less
Jin, Suoqin; MacLean, Adam L; Peng, Tao; Nie, Qing
2018-02-05
Single-cell RNA-sequencing (scRNA-seq) offers unprecedented resolution for studying cellular decision-making processes. Robust inference of cell state transition paths and probabilities is an important yet challenging step in the analysis of these data. Here we present scEpath, an algorithm that calculates energy landscapes and probabilistic directed graphs in order to reconstruct developmental trajectories. We quantify the energy landscape using "single-cell energy" and distance-based measures, and find that the combination of these enables robust inference of the transition probabilities and lineage relationships between cell states. We also identify marker genes and gene expression patterns associated with cell state transitions. Our approach produces pseudotemporal orderings that are - in combination - more robust and accurate than current methods, and offers higher resolution dynamics of the cell state transitions, leading to new insight into key transition events during differentiation and development. Moreover, scEpath is robust to variation in the size of the input gene set, and is broadly unsupervised, requiring few parameters to be set by the user. Applications of scEpath led to the identification of a cell-cell communication network implicated in early human embryo development, and novel transcription factors important for myoblast differentiation. scEpath allows us to identify common and specific temporal dynamics and transcriptional factor programs along branched lineages, as well as the transition probabilities that control cell fates. A MATLAB package of scEpath is available at https://github.com/sqjin/scEpath. qnie@uci.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2018. Published by Oxford University Press.
TCW: Transcriptome Computational Workbench
Soderlund, Carol; Nelson, William; Willer, Mark; Gang, David R.
2013-01-01
Background The analysis of transcriptome data involves many steps and various programs, along with organization of large amounts of data and results. Without a methodical approach for storage, analysis and query, the resulting ad hoc analysis can lead to human error, loss of data and results, inefficient use of time, and lack of verifiability, repeatability, and extensibility. Methodology The Transcriptome Computational Workbench (TCW) provides Java graphical interfaces for methodical analysis for both single and comparative transcriptome data without the use of a reference genome (e.g. for non-model organisms). The singleTCW interface steps the user through importing transcript sequences (e.g. Illumina) or assembling long sequences (e.g. Sanger, 454, transcripts), annotating the sequences, and performing differential expression analysis using published statistical programs in R. The data, metadata, and results are stored in a MySQL database. The multiTCW interface builds a comparison database by importing sequence and annotation from one or more single TCW databases, executes the ESTscan program to translate the sequences into proteins, and then incorporates one or more clusterings, where the clustering options are to execute the orthoMCL program, compute transitive closure, or import clusters. Both singleTCW and multiTCW allow extensive query and display of the results, where singleTCW displays the alignment of annotation hits to transcript sequences, and multiTCW displays multiple transcript alignments with MUSCLE or pairwise alignments. The query programs can be executed on the desktop for fastest analysis, or from the web for sharing the results. Conclusion It is now affordable to buy a multi-processor machine, and easy to install Java and MySQL. By simply downloading the TCW, the user can interactively analyze, query and view their data. The TCW allows in-depth data mining of the results, which can lead to a better understanding of the transcriptome. TCW is freely available from www.agcol.arizona.edu/software/tcw. PMID:23874959
TCW: transcriptome computational workbench.
Soderlund, Carol; Nelson, William; Willer, Mark; Gang, David R
2013-01-01
The analysis of transcriptome data involves many steps and various programs, along with organization of large amounts of data and results. Without a methodical approach for storage, analysis and query, the resulting ad hoc analysis can lead to human error, loss of data and results, inefficient use of time, and lack of verifiability, repeatability, and extensibility. The Transcriptome Computational Workbench (TCW) provides Java graphical interfaces for methodical analysis for both single and comparative transcriptome data without the use of a reference genome (e.g. for non-model organisms). The singleTCW interface steps the user through importing transcript sequences (e.g. Illumina) or assembling long sequences (e.g. Sanger, 454, transcripts), annotating the sequences, and performing differential expression analysis using published statistical programs in R. The data, metadata, and results are stored in a MySQL database. The multiTCW interface builds a comparison database by importing sequence and annotation from one or more single TCW databases, executes the ESTscan program to translate the sequences into proteins, and then incorporates one or more clusterings, where the clustering options are to execute the orthoMCL program, compute transitive closure, or import clusters. Both singleTCW and multiTCW allow extensive query and display of the results, where singleTCW displays the alignment of annotation hits to transcript sequences, and multiTCW displays multiple transcript alignments with MUSCLE or pairwise alignments. The query programs can be executed on the desktop for fastest analysis, or from the web for sharing the results. It is now affordable to buy a multi-processor machine, and easy to install Java and MySQL. By simply downloading the TCW, the user can interactively analyze, query and view their data. The TCW allows in-depth data mining of the results, which can lead to a better understanding of the transcriptome. TCW is freely available from www.agcol.arizona.edu/software/tcw.
Macagno, Eduardo R; Gaasterland, Terry; Edsall, Lee; Bafna, Vineet; Soares, Marcelo B; Scheetz, Todd; Casavant, Thomas; Da Silva, Corinne; Wincker, Patrick; Tasiemski, Aurélie; Salzet, Michel
2010-06-25
The medicinal leech, Hirudo medicinalis, is an important model system for the study of nervous system structure, function, development, regeneration and repair. It is also a unique species in being presently approved for use in medical procedures, such as clearing of pooled blood following certain surgical procedures. It is a current, and potentially also future, source of medically useful molecular factors, such as anticoagulants and antibacterial peptides, which may have evolved as a result of its parasitizing large mammals, including humans. Despite the broad focus of research on this system, little has been done at the genomic or transcriptomic levels and there is a paucity of openly available sequence data. To begin to address this problem, we constructed whole embryo and adult central nervous system (CNS) EST libraries and created a clustered sequence database of the Hirudo transcriptome that is available to the scientific community. A total of approximately 133,000 EST clones from two directionally-cloned cDNA libraries, one constructed from mRNA derived from whole embryos at several developmental stages and the other from adult CNS cords, were sequenced in one or both directions by three different groups: Genoscope (French National Sequencing Center), the University of Iowa Sequencing Facility and the DOE Joint Genome Institute. These were assembled using the phrap software package into 31,232 unique contigs and singletons, with an average length of 827 nt. The assembled transcripts were then translated in all six frames and compared to proteins in NCBI's non-redundant (NR) and to the Gene Ontology (GO) protein sequence databases, resulting in 15,565 matches to 11,236 proteins in NR and 13,935 matches to 8,073 proteins in GO. Searching the database for transcripts of genes homologous to those thought to be involved in the innate immune responses of vertebrates and other invertebrates yielded a set of nearly one hundred evolutionarily conserved sequences, representing all known pathways involved in these important functions. The sequences obtained for Hirudo transcripts represent the first major database of genes expressed in this important model system. Comparison of translated open reading frames (ORFs) with the other openly available leech datasets, the genome and transcriptome of Helobdella robusta, shows an average identity at the amino acid level of 58% in matched sequences. Interestingly, comparison with other available Lophotrochozoans shows similar high levels of amino acid identity, where sequences match, for example, 64% with Capitella capitata (a polychaete) and 56% with Aplysia californica (a mollusk), as well as 58% with Schistosoma mansoni (a platyhelminth). Phylogenetic comparisons of putative Hirudo innate immune response genes present within the Hirudo transcriptome database herein described show a strong resemblance to the corresponding mammalian genes, indicating that this important physiological response may have older origins than what has been previously proposed.
Single-site neural tube closure in human embryos revisited.
de Bakker, Bernadette S; Driessen, Stan; Boukens, Bastiaan J D; van den Hoff, Maurice J B; Oostra, Roelof-Jan
2017-10-01
Since the multi-site closure theory was first proposed in 1991 as explanation for the preferential localizations of neural tube defects, the closure of the neural tube has been debated. Although the multi-site closure theory is much cited in clinical literature, single-site closure is most apparent in literature concerning embryology. Inspired by Victor Hamburgers (1900-2001) statement that "our real teacher has been and still is the embryo, who is, incidentally, the only teacher who is always right", we decided to critically review both theories of neural tube closure. To verify the theories of closure, we studied serial histological sections of 10 mouse embryos between 8.5 and 9.5 days of gestation and 18 human embryos of the Carnegie collection between Carnegie stage 9 (19-21 days) and 13 (28-32 days). Neural tube closure was histologically defined by the neuroepithelial remodeling of the two adjoining neural fold tips in the midline. We did not observe multiple fusion sites in neither mouse nor human embryos. A meta-analysis of case reports on neural tube defects showed that defects can occur at any level of the neural axis. Our data indicate that the human neural tube fuses at a single site and, therefore, we propose to reinstate the single-site closure theory for neural tube closure. We showed that neural tube defects are not restricted to a specific location, thereby refuting the reasoning underlying the multi-site closure theory. Clin. Anat. 30:988-999, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Sfontouris, Ioannis A; Kolibianakis, Efstratios M; Lainas, George T; Petsas, George K; Tarlatzis, Basil C; Lainas, Trifon G
2017-09-01
The aim of the present study was to compare blastocyst formation rates after embryo culture in a single medium (Global) as compared to sequential media (ISM1/BlastAssist). In this prospective trial with sibling oocytes, 542 metaphase II (ΜΙΙ) oocytes from 31 women were randomly and equally divided to be fertilized and cultured to the blastocyst stage in either sequential media (ISM1/BlastAssist; n = 271 MII oocytes) or a single medium (Global; n = 271 MII oocytes). In both groups, embryos were cultured in an interrupted fashion with media changes on day 3. Embryo transfer was performed on day 5. Blastocyst formation rates on day 5 (61.7% ± 19.9% vs 37.0% ± 25.5%, P < .001) were significantly higher following culture in Global as compared to ISM1/BlastAssist, respectively. Fertilization rates, cleavage rates, and percentage of good quality embryos on day 3 were similar between Global and ISM1/BlastAssist, respectively. The percentages of good quality blastocysts (63.0% ± 24.8% vs 32.1% ± 37.2%, P < .001), blastocysts selected for transfer (27.8% ± 19.2% vs 11.1% ± 14.4%, P = .005), and utilization rates (62.5% ± 24.8% vs 39.0% ± 25.2%, P < .001) were significantly higher in Global as compared to ISM1/BlastAssist, respectively. In conclusion, culture in Global was associated with higher blastocyst formation rates compared to ISM1/BlastAssist, suggesting that the single medium may provide better support to the developing embryo.
NASA Astrophysics Data System (ADS)
Fuad, Nurul M.; Wlodkowic, Donald
2013-12-01
The demand to reduce the numbers of laboratory animals has facilitated the emergence of surrogate models such as tests performed on zebrafish (Danio rerio) or African clawed frog's (Xenopus levis) eggs, embryos and larvae. Those two model organisms are becoming increasingly popular replacements to current adult animal testing in toxicology, ecotoxicology and also in drug discovery. Zebrafish eggs and embryos are particularly attractive for toxicological analysis due their size (diameter 1.6 mm), optical transparency, large numbers generated per fish and very straightforward husbandry. The current bottleneck in using zebrafish embryos for screening purposes is, however, a tedious manual evaluation to confirm the fertilization status and subsequent dispensing of single developing embryos to multitier plates to perform toxicity analysis. Manual procedures associated with sorting hundreds of embryos are very monotonous and as such prone to significant analytical errors due to operator's fatigue. In this work, we present a proofof- concept design of a continuous flow embryo sorter capable of analyzing, sorting and dispensing objects ranging in size from 1.5 - 2.5 mm. The prototypes were fabricated in polymethyl methacrylate (PMMA) transparent thermoplastic using infrared laser micromachining. The application of additive manufacturing processes to prototype Lab-on-a-Chip sorters using both fused deposition manufacturing (FDM) and stereolithography (SLA) were also explored. The operation of the device was based on a revolving receptacle capable of receiving, holding and positioning single fish embryos for both interrogation and subsequent sorting. The actuation of the revolving receptacle was performed using a DC motor and/or microservo motor. The system was designed to separate between fertilized (LIVE) and non-fertilized (DEAD) eggs, based on optical transparency using infrared (IR) emitters and receivers.
2010-01-01
Background Pregnancies induced by in vitro fertilisation (IVF) often result in twin gestations, which are associated with both maternal and perinatal complications. An effective way to reduce the number of IVF twin pregnancies is to decrease the number of embryos transferred from two to one. The interpretation of current studies is limited because they used live birth as outcome measure and because they applied limited time horizons. So far, research on long-term outcomes of IVF twins and singletons is scarce and inconclusive. The objective of this study is to investigate the short (1-year) and long-term (5 and 18-year) costs and health outcomes of IVF singleton and twin children and to consider these in estimating the cost-effectiveness of single embryo transfer compared with double embryo transfer, from a societal and a healthcare perspective. Methods/Design A multi-centre cohort study will be performed, in which IVF singletons and IVF twin children born between 2003 and 2005 of whom parents received IVF treatment in one of the five participating Dutch IVF centres, will be compared. Data collection will focus on children at risk of health problems and children in whom health problems actually occurred. First year of life data will be collected in approximately 1,278 children (619 singletons and 659 twin children). Data up to the fifth year of life will be collected in approximately 488 children (200 singletons and 288 twin children). Outcome measures are health status, health-related quality of life and costs. Data will be obtained from hospital information systems, a parent questionnaire and existing registries. Furthermore, a prognostic model will be developed that reflects the short and long-term costs and health outcomes of IVF singleton and twin children. This model will be linked to a Markov model of the short-term cost-effectiveness of single embryo transfer strategies versus double embryo transfer strategies to enable the calculation of the long-term cost-effectiveness. Discussion This is, to our knowledge, the first study that investigates the long-term costs and health outcomes of IVF singleton and twin children and the long-term cost-effectiveness of single embryo transfer strategies versus double embryo transfer strategies. PMID:20961411
van Heesch, Mirjam M J; Bonsel, Gouke J; Dumoulin, John C M; Evers, Johannes L H; van der Hoeven, Mark Ahbm; Severens, Johan L; Dykgraaf, Ramon H M; van der Veen, Fulco; Tonch, Nino; Nelen, Willianne L D M; van Zonneveld, Piet; van Goudoever, Johannes B; Tamminga, Pieter; Steiner, Katerina; Koopman-Esseboom, Corine; van Beijsterveldt, Catharina E M; Boomsma, Dorret I; Snellen, Diana; Dirksen, Carmen D
2010-10-20
Pregnancies induced by in vitro fertilisation (IVF) often result in twin gestations, which are associated with both maternal and perinatal complications. An effective way to reduce the number of IVF twin pregnancies is to decrease the number of embryos transferred from two to one. The interpretation of current studies is limited because they used live birth as outcome measure and because they applied limited time horizons. So far, research on long-term outcomes of IVF twins and singletons is scarce and inconclusive. The objective of this study is to investigate the short (1-year) and long-term (5 and 18-year) costs and health outcomes of IVF singleton and twin children and to consider these in estimating the cost-effectiveness of single embryo transfer compared with double embryo transfer, from a societal and a healthcare perspective. A multi-centre cohort study will be performed, in which IVF singletons and IVF twin children born between 2003 and 2005 of whom parents received IVF treatment in one of the five participating Dutch IVF centres, will be compared. Data collection will focus on children at risk of health problems and children in whom health problems actually occurred. First year of life data will be collected in approximately 1,278 children (619 singletons and 659 twin children). Data up to the fifth year of life will be collected in approximately 488 children (200 singletons and 288 twin children). Outcome measures are health status, health-related quality of life and costs. Data will be obtained from hospital information systems, a parent questionnaire and existing registries. Furthermore, a prognostic model will be developed that reflects the short and long-term costs and health outcomes of IVF singleton and twin children. This model will be linked to a Markov model of the short-term cost-effectiveness of single embryo transfer strategies versus double embryo transfer strategies to enable the calculation of the long-term cost-effectiveness. This is, to our knowledge, the first study that investigates the long-term costs and health outcomes of IVF singleton and twin children and the long-term cost-effectiveness of single embryo transfer strategies versus double embryo transfer strategies.
Is it time for a paradigm shift in understanding embryo selection?
Gleicher, Norbert; Kushnir, Vitaly A; Barad, David H
2015-01-11
Embryo selection has been an integral feature of in vitro fertilization (IVF) almost since its inception. Since the advent of extended blastocyst stage embryo culture, and especially with increasing popularity of elective single embryo transfer (eSET), the concept of embryo selection has increasingly become a mainstay of routine IVF. We here, however, argue that embryo selection via blastocyst stage embryo transfer (BSET), as currently practiced, at best improves IVF outcomes only for a small minority of patients undergoing IVF cycles. For a large majority BSET is either ineffective or, indeed, may actually be harmful by decreasing IVF pregnancy chances. Overall, only a small minority of patients, thus, benefit from prolonged embryo culture, while BSET, as a tool to enhance IVF outcomes, is increasingly utilized as routine care in IVF for all patients. Since newer methods of embryo selection, like preimplantation genetic screening (PGS) and closed system embryo incubation with time-lapse photography are practically dependent on BSET, these concepts of embryo selection, currently increasingly adopted in mainstream IVF, require reconsideration. They, automatically, transfer the downsides of BSET, including decreases in IVF pregnancy chances in some patients, to these new procedures, and in addition raise serious questions about cost-effectiveness.
Should extended blastocyst culture include Day 7?
Hammond, Elizabeth R; Cree, Lynsey M; Morbeck, Dean E
2018-06-01
Extended culture to the blastocyst stage is widely practised, improving embryo selection and promoting single embryo transfer. Selection of useable blastocysts typically occurs on Days 5 and 6 of embryo culture. Embryos not suitable for transfer, biopsy or cryopreservation after Day 6 are routinely discarded. Some embryos develop at a slower rate, however, forming blastocysts on Day 7 of culture. Day 7 blastocysts can be viable, they can be of top morphological grade, euploid and result in a healthy live birth. Since ending culture on Day 6 is current practice in most clinics, viable Day 7 blastocysts may be prematurely discarded. Although Day 7 blastocysts make up only 5% of useable blastocysts, those which are suitable for cryopreservation or biopsy are clinically significant. Overall, culturing embryos an additional day increases the number of useable embryos per IVF cycle and provides further opportunity for pregnancy for patients, especially those who have only a few or low-quality blastocysts.
The developmental transcriptome atlas of the spoon worm Urechis unicinctus (Echiurida: Annelida).
Park, Chungoo; Han, Yong-Hee; Lee, Sung-Gwon; Ry, Kyoung-Bin; Oh, Jooseong; Kern, Elizabeth M A; Park, Joong-Ki; Cho, Sung-Jin
2018-03-01
Echiurida is one of the most intriguing major subgroups of annelida because, unlike most other annelids, echiurids lack metameric body segmentation as adults. For this reason, transcriptome analyses from various developmental stages of echiurid species can be of substantial value for understanding precise expression levels and the complex regulatory networks during early and larval development. A total of 914 million raw RNA-Seq reads were produced from 14 developmental stages of Urechis unicinctus and were de novo assembled into contigs spanning 63,928,225 bp with an N50 length of 2700 bp. The resulting comprehensive transcriptome database of the early developmental stages of U. unicinctus consists of 20,305 representative functional protein-coding transcripts. Approximately 66% of unigenes were assigned to superphylum-level taxa, including Lophotrochozoa (40%). The completeness of the transcriptome assembly was assessed using benchmarking universal single-copy orthologs; 75.7% of the single-copy orthologs were presented in our transcriptome database. We observed 3 distinct patterns of global transcriptome profiles from 14 developmental stages and identified 12,705 genes that showed dynamic regulation patterns during the differentiation and maturation of U. unicinctus cells. We present the first large-scale developmental transcriptome dataset of U. unicinctus and provide a general overview of the dynamics of global gene expression changes during its early developmental stages. The analysis of time-course gene expression data is a first step toward understanding the complex developmental gene regulatory networks in U. unicinctus and will furnish a valuable resource for analyzing the functions of gene repertoires in various developmental phases.
Czerwinski, Michael; Natarajan, Anirudh; Barske, Lindsey; Looger, Loren L; Capel, Blanche
2016-12-01
Temperature dependent sex determination (TSD) is the process by which the environmental temperature experienced during embryogenesis influences the sex of an organism, as in the red-eared slider turtle Trachemys scripta elegans. In accord with current paradigms of vertebrate sex determination, temperature is believed to exert its effects on sexual development in T. scripta entirely within the middle third of development, when the gonad is forming. However, whether temperature regulates the transcriptome in T. scripta early embryos in a manner that could influence secondary sex characteristics or establish a pro-male or pro-female environment has not been investigated. In addition, apart from a handful of candidate genes, very little is known about potential similarities between the expression cascade during TSD and the genetic cascade that drives mammalian sex determination. Here, we conducted an unbiased transcriptome-wide analysis of the effects of male- and female-promoting temperatures on the turtle embryo prior to gonad formation, and on the gonad during the temperature sensitive period. We found sexually dimorphic expression reflecting differences in steroidogenic enzymes and brain development prior to gonad formation. Within the gonad, we mapped a cascade of differential expression similar to the genetic cascade established in mammals. Using a Hidden Markov Model based clustering approach, we identified groups of genes that show heterochronic shifts between M. musculus and T. scripta. We propose a model in which multiple factors influenced by temperature accumulate during early gonadogenesis, and converge on the antagonistic regulation of aromatase to canalize sex determination near the end of the temperature sensitive window of development. Copyright © 2016 Elsevier Inc. All rights reserved.
Brandley, Matthew C.; Young, Rebecca L.; Warren, Dan L.; Thompson, Michael B.; Wagner, Günter P.
2012-01-01
Although the morphological and physiological changes involved in pregnancy in live-bearing reptiles are well studied, the genetic mechanisms that underlie these changes are not known. We used the viviparous African Ocellated Skink, Chalcides ocellatus, as a model to identify a near complete gene expression profile associated with pregnancy using RNA-Seq analyses of uterine transcriptomes. Pregnancy in C. ocellatus is associated with upregulation of uterine genes involved with metabolism, cell proliferation and death, and cellular transport. Moreover, there are clear parallels between the genetic processes associated with pregnancy in mammals and Chalcides in expression of genes related to tissue remodeling, angiogenesis, immune system regulation, and nutrient provisioning to the embryo. In particular, the pregnant uterine transcriptome is dominated by expression of proteolytic enzymes that we speculate are involved both with remodeling the chorioallantoic placenta and histotrophy in the omphaloplacenta. Elements of the maternal innate immune system are downregulated in the pregnant uterus, indicating a potential mechanism to avoid rejection of the embryo. We found a downregulation of major histocompatability complex loci and estrogen and progesterone receptors in the pregnant uterus. This pattern is similar to mammals but cannot be explained by the mammalian model. The latter finding provides evidence that pregnancy is controlled by different endocrinological mechanisms in mammals and reptiles. Finally, 88% of the identified genes are expressed in both the pregnant and the nonpregnant uterus, and thus, morphological and physiological changes associated with C. ocellatus pregnancy are likely a result of regulation of genes continually expressed in the uterus rather than the initiation of expression of unique genes. PMID:22333490
Lenz, Petra H.; Roncalli, Vittoria; Hassett, R. Patrick; Wu, Le-Shin; Cieslak, Matthew C.; Hartline, Daniel K.; Christie, Andrew E.
2014-01-01
Assessing the impact of global warming on the food web of the North Atlantic will require difficult-to-obtain physiological data on a key copepod crustacean, Calanus finmarchicus. The de novo transcriptome presented here represents a new resource for acquiring such data. It was produced from multiplexed gene libraries using RNA collected from six developmental stages: embryo, early nauplius (NI-II), late nauplius (NV-VI), early copepodite (CI-II), late copepodite (CV) and adult (CVI) female. Over 400,000,000 paired-end reads (100 base-pairs long) were sequenced on an Illumina instrument, and assembled into 206,041 contigs using Trinity software. Coverage was estimated to be at least 65%. A reference transcriptome comprising 96,090 unique components (“comps”) was annotated using Blast2GO. 40% of the comps had significant blast hits. 11% of the comps were successfully annotated with gene ontology (GO) terms. Expression of many comps was found to be near zero in one or more developmental stages suggesting that 35 to 48% of the transcriptome is “silent” at any given life stage. Transcripts involved in lipid biosynthesis pathways, critical for the C. finmarchicus life cycle, were identified and their expression pattern during development was examined. Relative expression of three transcripts suggests wax ester biosynthesis in late copepodites, but triacylglyceride biosynthesis in adult females. Two of these transcripts may be involved in the preparatory phase of diapause. A key environmental challenge for C. finmarchicus is the seasonal exposure to the dinoflagellate Alexandrium fundyense with high concentrations of saxitoxins, neurotoxins that block voltage-gated sodium channels. Multiple contigs encoding putative voltage-gated sodium channels were identified. They appeared to be the result of both alternate splicing and gene duplication. This is the first report of multiple NaV1 genes in a protostome. These data provide new insights into the transcriptome and physiology of this environmentally important zooplankter. PMID:24586345
Bolton, Helen; Graham, Sarah J L; Van der Aa, Niels; Kumar, Parveen; Theunis, Koen; Fernandez Gallardo, Elia; Voet, Thierry; Zernicka-Goetz, Magdalena
2016-03-29
Most human pre-implantation embryos are mosaics of euploid and aneuploid cells. To determine the fate of aneuploid cells and the developmental potential of mosaic embryos, here we generate a mouse model of chromosome mosaicism. By treating embryos with a spindle assembly checkpoint inhibitor during the four- to eight-cell division, we efficiently generate aneuploid cells, resulting in embryo death during peri-implantation development. Live-embryo imaging and single-cell tracking in chimeric embryos, containing aneuploid and euploid cells, reveal that the fate of aneuploid cells depends on lineage: aneuploid cells in the fetal lineage are eliminated by apoptosis, whereas those in the placental lineage show severe proliferative defects. Overall, the proportion of aneuploid cells is progressively depleted from the blastocyst stage onwards. Finally, we show that mosaic embryos have full developmental potential, provided they contain sufficient euploid cells, a finding of significance for the assessment of embryo vitality in the clinic.
Transcript abundance on its own cannot be used to infer fluxes in central metabolism
Schwender, Jorg; Konig, Christina; Klapperstuck, Matthias; ...
2014-11-28
An attempt has been made to define the extent to which metabolic flux in central plant metabolism is reflected by changes in the transcriptome and metabolome, based on an analysis of in vitro cultured immature embryos of two oilseed rape (Brassica napus) accessions which contrast for seed lipid accumulation. Metabolic flux analysis (MFA) was used to constrain a flux balance metabolic model which included 671 biochemical and transport reactions within the central metabolism. This highly confident flux information was eventually used for comparative analysis of flux vs. transcript (metabolite). Metabolite profiling succeeded in identifying 79 intermediates within the central metabolism,more » some of which differed quantitatively between the two accessions and displayed a significant shift corresponding to flux. An RNA-Seq based transcriptome analysis revealed a large number of genes which were differentially transcribed in the two accessions, including some enzymes/proteins active in major metabolic pathways. With a few exceptions, differential activity in the major pathways (glycolysis, TCA cycle, amino acid, and fatty acid synthesis) was not reflected in contrasting abundances of the relevant transcripts. The conclusion was that transcript abundance on its own cannot be used to infer metabolic activity/fluxes in central plant metabolism. Lastly, this limitation needs to be borne in mind in evaluating transcriptome data and designing metabolic engineering experiments.« less
USDA-ARS?s Scientific Manuscript database
Alternative splicing is a well-known phenomenon that dramatically increases eukaryotic transcriptome diversity. The extent of mRNA isoform diversity among porcine tissues was assessed using Pacific Biosciences single-molecule long-read isoform sequencing (Iso-Seq) and Illumina short read sequencing ...
Kataoka, Chisato; Nakahara, Kousuke; Shimizu, Kaori; Kowase, Shinsuke; Nagasaka, Seiji; Ifuku, Shinsuke; Kashiwada, Shosaku
2017-04-01
To investigate the effects of salinity on the behavior and toxicity of functionalized single-walled carbon nanotubes (SWCNTs), which are chemical modified nanotube to increase dispersibility, medaka embryos were exposed to non-functionalized single-walled carbon nanotubes (N-SWCNTs), water-dispersible, cationic, plastic-polymer-coated, single-walled carbon nanotubes (W-SWCNTs), or hydrophobic polyethylene glycol-functionalized, single-walled carbon nanotubes (PEG-SWCNTs) at different salinities, from freshwater to seawater. As reference nanomaterials, we tested dispersible chitin nanofiber (CNF), chitosan-chitin nanofiber (CCNF) and chitin nanocrystal (CNC, i.e. shortened CNF). Under freshwater conditions, with exposure to 10 mg l -1 W-SWCNTs, the yolk sacks of 57.8% of embryos shrank, and the remaining embryos had a reduced heart rate, eye diameter and hatching rate. Larvae had severe defects of the spinal cord, membranous fin and tail formation. These toxic effects increased with increasing salinity. Survival rates declined with increasing salinity and reached 0.0% in seawater. In scanning electron microscope images, W-SWCNTs, CNF, CCNF and CNC were adsorbed densely over the egg chorion surface; however, because of chitin's biologically harmless properties, only W-SWCNTs had toxic effects on the medaka eggs. No toxicity was observed from N-SWCNT and PEG-SWCNT exposure. We demonstrated that water dispersibility, surface chemistry, biomedical properties and salinity were important factors in assessing the aquatic toxicity of nanomaterials. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Metabolomic Assessment of Embryo Viability
Uyar, Asli; Seli, Emre
2014-01-01
Preimplantation embryo metabolism demonstrates distinctive characteristics associated with the developmental potential of embryos. On this basis, metabolite content of culture media was hypothesized to reflect the implantation potential of individual embryos. This hypothesis was tested in consecutive studies reporting a significant association between culture media metabolites and embryo development or clinical pregnancy. The need for a noninvasive, reliable, and rapid embryo assessment strategy promoted metabolomics studies in vitro fertilization (IVF) in an effort to increase success rates of single embryo transfers. With the advance of analytical techniques and bioinformatics, commercial instruments were developed to predict embryo viability using spectroscopic analysis of surplus culture media. However, despite the initial promising results from proof-of-principal studies, recent randomized controlled trials using commercial instruments failed to show a consistent benefit in improving pregnancy rates when metabolomics is used as an adjunct to morphology. At present, the application of metabolomics technology in clinical IVF laboratory requires the elimination of factors underlying inconsistent findings, when possible, and development of reliable predictive models accounting for all possible sources of bias throughout the embryo selection process. PMID:24515909
Van Landuyt, L; Van de Velde, H; De Vos, A; Haentjens, P; Blockeel, C; Tournaye, H; Verheyen, G
2013-11-01
Is the effect of cell loss on further cleavage and implantation different for vitrified than for slowly frozen Day 3 embryos? Vitrified embryos develop better overnight than slowly frozen embryos, regardless of the number of cells lost, but have similar implantation potential if further cleavage occurs overnight. After slow-freezing, similar implantation rates have been obtained for intact 4-cell embryos or 4-cell embryos with 1 cell damaged. For slowly frozen Day 3 embryos, lower implantation rates have been observed when at least 25% of cells were lost. Other studies reported similar implantation potential for 7- to 8-cell embryos with 0, 1 or 2 cells damaged. No data are available on further development of vitrified embryos in relation to cell damage. Survival and overnight cleavage were retrospectively assessed for 7664 slowly frozen Day 3 embryos (study period: January 2004-December 2008) and 1827 vitrified embryos (study period: April 2010-September 2011). Overnight cleavage was assessed according to cell stage at cryopreservation and post-thaw cell loss for both protocols. The relationship between cell loss and implantation rate was analysed in a subgroup of single-embryo transfers (SETs) with 780 slowly frozen and 294 vitrified embryos. Embryos with ≥6 blastomeres and ≤20% fragmentation were cryopreserved using slow controlled freezing [with dimethyl sulphoxide (DMSO) as cryoprotectant] or closed vitrification [with DMSO-ethylene glycol (EG)-sucrose (S) as cryoprotectants]. Only embryos with ≥50% of cells intact after thawing were cultured overnight and were only transferred if further cleaved. For each outcome, logistic regression analysis was performed. Survival was 94 and 64% after vitrification and slow-freezing respectively. Logistic regression analysis showed that overnight cleavage of surviving embryos was higher after vitrification than after slow-freezing (P < 0.001) and decreased according to the degree of cell damage (P < 0.001). If the embryo continued to cleave after thawing, there was no effect of the number of cells lost or the cryopreservation method on its implantation potential. The implantation rates of embryos with 0, 1 or 2 cells damaged were, respectively, 21% (n = 114), 21% (n = 28) and 20% (n = 12) after slow-freezing and 20% (n = 50), 21% (n = 5) and 27% (n = 4) after vitrification. This analysis is retrospective and study periods for vitrification and slow-freezing are different. The number of SETs with vitrified embryos is limited. However, a large number of vitrified embryos were available to analyse the further cleavage of surviving embryos. Although it is not proved that vitrified embryos are more viable than slowly frozen embryos in terms of pregnancy outcome, vitrification yields higher survival rates, better overnight development and higher transfer rates per embryo warmed. This increases the number of frozen transfer cycles originating from a single treatment and might result in a better cumulative clinical outcome. Based on the present data, the policy to warm an extra embryo before overnight culture depends on the cell stage at cryopreservation and the cell damage after warming. For 8-cell embryos, up to two cells may be damaged compared with only one cell for 6- to 7-cell embryos, before an additional embryo is warmed. none.
Silver nanoparticles induce developmental stage-specific embryonic phenotypes in zebrafish.
Lee, Kerry J; Browning, Lauren M; Nallathamby, Prakash D; Osgood, Christopher J; Xu, Xiao-Hong Nancy
2013-12-07
Much is anticipated from the development and deployment of nanomaterials in biological organisms, but concerns remain regarding their biocompatibility and target specificity. Here we report our study of the transport, biocompatibility and toxicity of purified and stable silver nanoparticles (Ag NPs, 13.1 ± 2.5 nm in diameter) upon the specific developmental stages of zebrafish embryos using single NP plasmonic spectroscopy. We find that single Ag NPs passively diffuse into five different developmental stages of embryos (cleavage, early-gastrula, early-segmentation, late-segmentation, and hatching stages), showing stage-independent diffusion modes and diffusion coefficients. Notably, the Ag NPs induce distinctive stage and dose-dependent phenotypes and nanotoxicity, upon their acute exposure to the Ag NPs (0-0.7 nM) for only 2 h. The late-segmentation embryos are most sensitive to the NPs with the lowest critical concentration (CNP,c < 0.02 nM) and highest percentages of cardiac abnormalities, followed by early-segmentation embryos (CNP,c < 0.02 nM), suggesting that disruption of cell differentiation by the NPs causes the most toxic effects on embryonic development. The cleavage-stage embryos treated with the NPs develop into a wide variety of phenotypes (abnormal finfold, tail/spinal cord flexure, cardiac malformation/edema, yolk sac edema, and acephaly). These organ structures are not yet developed in cleavage-stage embryos, suggesting that the earliest determinative events to create these structures are ongoing, and disrupted by NPs, which leads to the downstream effects. In contrast, the hatching embryos are most resistant to the Ag NPs, and majority of embryos (94%) develop normally, and none of them develop abnormally. Interestingly, early-gastrula embryos are less sensitive to the NPs than cleavage and segmentation stage embryos, and do not develop abnormally. These important findings suggest that the Ag NPs are not simple poisons, and they can target specific pathways in development, and potentially enable target specific study and therapy for early embryonic development.
Bolisetty, Mohan; Kursawe, Romy; Sun, Lili; Sivakamasundari, V.; Kycia, Ina
2017-01-01
Blood glucose levels are tightly controlled by the coordinated action of at least four cell types constituting pancreatic islets. Changes in the proportion and/or function of these cells are associated with genetic and molecular pathophysiology of monogenic, type 1, and type 2 (T2D) diabetes. Cellular heterogeneity impedes precise understanding of the molecular components of each islet cell type that govern islet (dys)function, particularly the less abundant delta and gamma/pancreatic polypeptide (PP) cells. Here, we report single-cell transcriptomes for 638 cells from nondiabetic (ND) and T2D human islet samples. Analyses of ND single-cell transcriptomes identified distinct alpha, beta, delta, and PP/gamma cell-type signatures. Genes linked to rare and common forms of islet dysfunction and diabetes were expressed in the delta and PP/gamma cell types. Moreover, this study revealed that delta cells specifically express receptors that receive and coordinate systemic cues from the leptin, ghrelin, and dopamine signaling pathways implicating them as integrators of central and peripheral metabolic signals into the pancreatic islet. Finally, single-cell transcriptome profiling revealed genes differentially regulated between T2D and ND alpha, beta, and delta cells that were undetectable in paired whole islet analyses. This study thus identifies fundamental cell-type–specific features of pancreatic islet (dys)function and provides a critical resource for comprehensive understanding of islet biology and diabetes pathogenesis. PMID:27864352
Isobe, Tomohiro; Ikebata, Yoshihisa; Do, Lanh Thi Kim; Tanihara, Fuminori; Taniguchi, Masayasu; Otoi, Takeshige
2015-07-01
The optimization of single-embryo culture conditions is very important, particularly in the in vitro production of bovine embryos using the ovum pick-up (OPU) procedure. The purpose of this study was to examine the development of embryos derived from oocytes obtained by OPU that were cultured either individually or in groups in medium supplemented with or without sericin and to investigate the viability of the frozen-thawed embryos after a direct transfer. When two-cell-stage embryos were cultured either individually or in groups for 7 days in CR1aa medium supplemented with or without 0.5% sericin, the rates of development to blastocysts and freezable blastocysts were significantly lower for the embryos cultured individually without sericin than for the embryos cultured in groups with or without sericin. Moreover, the rate of development to freezable blastocysts of the embryos cultured individually with sericin was significantly higher than that of the embryos cultured without sericin. When the frozen-thawed embryos were transferred directly to recipients, the rates of pregnancy, abortion, stillbirth and normal calving in the recipients were similar among the groups, irrespective of the culture conditions and sericin supplementation. Our findings indicate that supplementation with sericin during embryo culture improves the quality of the embryos cultured individually but not the viability of the frozen-thawed embryos after transfer to recipients. © 2014 Japanese Society of Animal Science.
Zhao, H; Teng, X M; Li, Y F
2017-11-25
Objective: To explore the relationship between the embryo with the different morphological types in the third day and its mitochondrial copy number, the membrane potential. Methods: Totally 117 embryos with poor development after normal fertilization and were not suitable transferred in the fresh cycle and 106 frozen embryos that were discarded voluntarily by infertility patients with in vitro fertilization-embryo transfer after successful pregnancy were selected. According to evaluation of international standard in embryos, all cleavage stage embryos were divided into class Ⅰ frozen embryo group ( n= 64), class Ⅱ frozen embryo group ( n= 42) and class Ⅲ fresh embryonic group (not transplanted embryos; n= 117). Real-time PCR and confocal microscopy methods were used to detect mitochondrial DNA (mtDNA) copy number and the mitochondrial membrane potential of a single embryo. The differences between embryo quality and mtDNA copy number and membrane potential of each group were compared. Results: The copy number of mtDNA and the mitochondrial membrane potential in class Ⅲ fresh embryonic group [(1.7±1.0)×10(5) copy/μl, 1.56±0.32] were significantly lower than those in class Ⅰ frozen embryo group [(3.4±1.7)×10(5) copy/μl, 2.66±0.21] and class Ⅱ frozen embryo group [(2.6±1.2)×10(5) copy/μl, 1.80±0.32; all P< 0.05]. The copy number of mtDNA and the mitochondrial membrane potential in classⅠ frozen embryo group were significantly higher than those in classⅡ frozen embryo group (both P< 0.05). Conclusion: The mtDNA copy number and the mitochondrial membrane potential of embryos of the better quality embryo are higher.
Pudakalakatti, Shivanand M; Uppangala, Shubhashree; D'Souza, Fiona; Kalthur, Guruprasad; Kumar, Pratap; Adiga, Satish Kumar; Atreya, Hanudatta S
2013-01-01
There has been growing interest in understanding energy metabolism in human embryos generated using assisted reproductive techniques (ART) for improving the overall success rate of the method. Using NMR spectroscopy as a noninvasive tool, we studied human embryo metabolism to identify specific biomarkers to assess the quality of embryos for their implantation potential. The study was based on estimation of pyruvate, lactate and alanine levels in the growth medium, ISM1, used in the culture of embryos. An NMR study involving 127 embryos from 48 couples revealed that embryos transferred on Day 3 (after 72 h in vitro culture) with successful implantation (pregnancy) exhibited significantly (p < 10(-5) ) lower pyruvate/alanine ratios compared to those that failed to implant. Lactate levels in media were similar for all embryos. This implies that in addition to lactate production, successfully implanted embryos use pyruvate to produce alanine and other cellular functions. While pyruvate and alanine individually have been used as biomarkers, the present study highlights the potential of combining them to provide a single parameter that correlates strongly with implantation potential. Copyright © 2012 John Wiley & Sons, Ltd.
Ebner, Thomas; Shebl, Omar; Mayer, Richard Bernhard; Moser, Marianne; Costamoling, Walter; Oppelt, Peter
2014-02-01
To analyze whether the use of ready-to-use theophylline is a feasible option in a case of retrograde ejaculation and absolute asthenozoospermia. Case report. In vitro fertilization unit of a public hospital. Thirty-one-year-old nulliparous woman, and 39-year-old male with retrograde ejaculation and absolute asthenozoospermia. Retrieval of postejaculatory urine, restoration of motility using a methylxanthine, intracytoplasmic sperm injection, single-embryo transfer. Sperm motility, fertilization, embryo quality, live birth. Successful fertilization and a single-embryo transfer resulted in a healthy live birth. Theophylline turned out to be a safe, efficient agent for stimulating immotile spermatozoa in patients with retrograde ejaculation. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
A cost-effectiveness comparison of embryo donation with oocyte donation.
Finger, Reginald; Sommerfelt, Carol; Freeman, Melanie; Wilson, Carrie K; Wade, Amy; Daly, Douglas
2010-02-01
To compare the cost-effectiveness of embryo donation (ED) to that of oocyte donation (OD). Calculation of cost-effectiveness ratios (costs per outcome achieved) using data derived from clinical practices. In vitro fertilization centers and embryo donation programs. Infertile couples undergoing oocyte donation or embryo donation. Oocyte donation or embryo donation cycles. Cost-effectiveness ratios. For a single cycle, ED is approximately twice as cost-effective as OD, with a cost-effectiveness ratio of $21,990 per live delivery compared to 40,600 dollars. When strategies of up to three cycles (to achieve one live delivery) are used, ED costs 13,505 dollars per live delivery compared to 31,349 dollars for OD. Cost-effectiveness is a compelling reason for infertile couples to consider embryo donation. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Sundvall, Linda; Kirkegaard, Kirstine; Ingerslev, Hans Jakob; Knudsen, Ulla Breth
2015-07-01
Polycystic ovarian syndrome (PCOS) is a common cause of female infertility. Factors other than anovulation, such as low embryo quality have been suggested to contribute to the infertility in these women. This 2-year retrospective study used timelapse technology to investigate the PCOS-influence on timing of development in the pre-implantation embryo (primary endpoint). The secondary outcome measure was live birth rates after elective single-embryo transfer. In total, 313 embryos from 43 PCOS women, and 1075 embryos from 174 non-PCOS women undergoing assisted reproduction were included. All embryos were monitored until day 6. Differences in embryo kinetics were tested in a covariance regression model to account for potential confounding variables: female age, BMI, fertilization method and male infertility. Time to initiate compaction and reach the morula stage as well as the duration of the 4th cleavage division was significantly shorter in PCOS embryos compared with non-PCOS embryos. No other kinetic differences were found at any time-points annotated. The proportion of multi-nucleated cells at the 2-cell stage was significantly higher in PCOS embryos compared with non-PCOS embryos. The live birth rates were comparable between the two groups. The findings suggest that the causative factor for subfertility in PCOS is not related to timing of development in the pre-implantation embryo.
Exploring viral infection using single-cell sequencing.
Rato, Sylvie; Golumbeanu, Monica; Telenti, Amalio; Ciuffi, Angela
2017-07-15
Single-cell sequencing (SCS) has emerged as a valuable tool to study cellular heterogeneity in diverse fields, including virology. By studying the viral and cellular genome and/or transcriptome, the dynamics of viral infection can be investigated at single cell level. Most studies have explored the impact of cell-to-cell variation on the viral life cycle from the point of view of the virus, by analyzing viral sequences, and from the point of view of the cell, mainly by analyzing the cellular host transcriptome. In this review, we will focus on recent studies that use single-cell sequencing to explore viral diversity and cell variability in response to viral replication. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Hardarson, Thorir; Bungum, Mona; Conaghan, Joe; Meintjes, Marius; Chantilis, Samuel J; Molnar, Laszlo; Gunnarsson, Kristina; Wikland, Matts
2015-12-01
To study whether a culture medium that allows undisturbed culture supports human embryo development to the blastocyst stage equivalently to a well-established sequential media. Randomized, double-blinded sibling trial. Independent in vitro fertilization (IVF) clinics. One hundred twenty-eight patients, with 1,356 zygotes randomized into two study arms. Embryos randomly allocated into two study arms to compare embryo development on a time-lapse system using a single-step medium or sequential media. Percentage of good-quality blastocysts on day 5. Percentage of day 5 good-quality blastocysts was 21.1% (standard deviation [SD] ± 21.6%) and 22.2% (SD ± 22.1%) in the single-step time-lapse medium (G-TL) and the sequential media (G-1/G-2) groups, respectively. The mean difference (-1.2; 95% CI, -6.0; 3.6) between the two media systems for the primary end point was less than the noninferiority margin of -8%. There was a statistically significantly lower number of good-quality embryos on day 3 in the G-TL group [50.7% (SD ± 30.6%) vs. 60.8% (SD ± 30.7%)]. Four out of the 11 measured morphokinetic parameters were statistically significantly different for the two media used. The mean levels of ammonium concentration in the media at the end of the culture period was statistically significantly lower in the G-TL group as compared with the G-2 group. We have shown that a single-step culture medium supports blastocyst development equivalently to established sequential media. The ammonium concentrations were lower in the single-step media, and the measured morphokinetic parameters were modified somewhat. NCT01939626. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Embryonic lethality is not sufficient to explain hourglass-like conservation of vertebrate embryos.
Uchida, Yui; Uesaka, Masahiro; Yamamoto, Takayoshi; Takeda, Hiroyuki; Irie, Naoki
2018-01-01
Understanding the general trends in developmental changes during animal evolution, which are often associated with morphological diversification, has long been a central issue in evolutionary developmental biology. Recent comparative transcriptomic studies revealed that gene expression profiles of mid-embryonic period tend to be more evolutionarily conserved than those in earlier or later periods. While the hourglass-like divergence of developmental processes has been demonstrated in a variety of animal groups such as vertebrates, arthropods, and nematodes, the exact mechanism leading to this mid-embryonic conservation remains to be clarified. One possibility is that the mid-embryonic period (pharyngula period in vertebrates) is highly prone to embryonic lethality, and the resulting negative selections lead to evolutionary conservation of this phase. Here, we tested this "mid-embryonic lethality hypothesis" by measuring the rate of lethal phenotypes of three different species of vertebrate embryos subjected to two kinds of perturbations: transient perturbations and genetic mutations. By subjecting zebrafish ( Danio rerio ), African clawed frog ( Xenopus laevis ), and chicken ( Gallus gallus ) embryos to transient perturbations, namely heat shock and inhibitor treatments during three developmental periods [early (represented by blastula and gastrula), pharyngula, and late], we found that the early stages showed the highest rate of lethal phenotypes in all three species. This result was corroborated by perturbation with genetic mutations. By tracking the survival rate of wild-type embryos and embryos with genetic mutations induced by UV irradiation in zebrafish and African clawed frogs, we found that the highest decrease in survival rate was at the early stages particularly around gastrulation in both these species. In opposition to the "mid-embryonic lethality hypothesis," our results consistently showed that the stage with the highest lethality was not around the conserved pharyngula period, but rather around the early period in all the vertebrate species tested. These results suggest that negative selection by embryonic lethality could not explain hourglass-like conservation of animal embryos. This highlights the potential contribution of alternative mechanisms such as the diversifying effect of positive selections against earlier and later stages, and developmental constraints which lead to conservation of mid-embryonic stages.
Live Imaging of Centriole Dynamics by Fluorescently Tagged Proteins in Starfish Oocyte Meiosis.
Borrego-Pinto, Joana; Somogyi, Kálmán; Lénárt, Péter
2016-01-01
High throughput DNA sequencing, the decreasing costs of DNA synthesis, and universal techniques for genetic manipulation have made it much easier and quicker to establish molecular tools for any organism than it has been 5 years ago. This opens a great opportunity for reviving "nonconventional" model organisms, which are particularly suited to study a specific biological process and many of which have already been established before the era of molecular biology. By taking advantage of transcriptomics, in particular, these systems can now be easily turned into full fetched models for molecular cell biology.As an example, here we describe how we established molecular tools in the starfish Patiria miniata, which has been a popular model for cell and developmental biology due to the synchronous and rapid development, transparency, and easy handling of oocytes, eggs, and embryos. Here, we detail how we used a de novo assembled transcriptome to produce molecular markers and established conditions for live imaging to investigate the molecular mechanisms underlying centriole elimination-a poorly understood process essential for sexual reproduction of animal species.
Plaza Reyes, Alvaro; Lanner, Fredrik
2017-01-01
Developmental biologists have become increasingly aware that the wealth of knowledge generated through genetic studies of pre-implantation mouse development might not easily be translated to the human embryo. Comparative studies have been fueled by recent technological advances in single-cell analysis, allowing in-depth analysis of the human embryo. This field could shortly gain more momentum as novel genome editing technologies might, for the first time, also allow functional genetic studies in the human embryo. In this Spotlight article, we summarize the CRISPR-Cas9 genome editing system and discuss its potential applications and limitations in human pre-implantation embryos, and the ethical considerations thereof. © 2017. Published by The Company of Biologists Ltd.
Fiddelers, Audrey A A; van Montfoort, Aafke P A; Dirksen, Carmen D; Dumoulin, John C M; Land, Jolande A; Dunselman, Gerard A J; Janssen, J Marij; Severens, Johan L; Evers, Johannes L H
2006-08-01
Twin pregnancies after IVF are still frequent and are considered high-risk pregnancies leading to high costs. Transferring one embryo can reduce the twin pregnancy rate. We compared cost-effectiveness of one fresh cycle elective single embryo transfer (eSET) versus one fresh cycle double embryo transfer (DET) in an unselected patient population. Patients starting their first IVF cycle were randomized between eSET and DET. Societal costs per couple were determined empirically, from hormonal stimulation up to 42 weeks after embryo transfer. An incremental cost-effectiveness ratio (ICER) was calculated, representing additional costs per successful pregnancy. Successful pregnancy rates were 20.8% for eSET and 39.6% for DET. Societal costs per couple were significantly lower after eSET (7334 euro) compared with DET (10,924 euro). The ICER of DET compared with eSET was 19,096 euro, meaning that each additional successful pregnancy in the DET group will cost 19,096 euro extra. One cycle eSET was less expensive, but also less effective compared to one cycle DET. It depends on the society's willingness to pay for one extra successful pregnancy, whether one cycle DET is preferred from a cost-effectiveness point of view.
Bizama, Carolina; Benavente, Felipe; Salvatierra, Edgardo; Gutiérrez-Moraga, Ana; Espinoza, Jaime A; Fernández, Elmer A; Roa, Iván; Mazzolini, Guillermo; Sagredo, Eduardo A; Gidekel, Manuel; Podhajcer, Osvaldo L
2014-02-15
Studies on the low-abundance transcriptome are of paramount importance for identifying the intimate mechanisms of tumor progression that can lead to novel therapies. The aim of the present study was to identify novel markers and targetable genes and pathways in advanced human gastric cancer through analyses of the low-abundance transcriptome. The procedure involved an initial subtractive hybridization step, followed by global gene expression analysis using microarrays. We observed profound differences, both at the single gene and gene ontology levels, between the low-abundance transcriptome and the whole transcriptome. Analysis of the low-abundance transcriptome led to the identification and validation by tissue microarrays of novel biomarkers, such as LAMA3 and TTN; moreover, we identified cancer type-specific intracellular pathways and targetable genes, such as IRS2, IL17, IFNγ, VEGF-C, WISP1, FZD5 and CTBP1 that were not detectable by whole transcriptome analyses. We also demonstrated that knocking down the expression of CTBP1 sensitized gastric cancer cells to mainstay chemotherapeutic drugs. We conclude that the analysis of the low-abundance transcriptome provides useful insights into the molecular basis and treatment of cancer. © 2013 UICC.
Impact of single-walled carbon nanotubes on the embryo: a brief review
Al Moustafa, Ala-Eddin; Mfoumou, Etienne; Roman, Dacian E; Nerguizian, Vahe; Alazzam, Anas; Stiharu, Ion; Yasmeen, Amber
2016-01-01
Carbon nanotubes (CNTs) are considered one of the most interesting materials in the 21st century due to their unique physiochemical characteristics and applicability to various industrial products and medical applications. However, in the last few years, questions have been raised regarding the potential toxicity of CNTs to humans and the environment; it is believed that the physiochemical characteristics of these materials are key determinants of CNT interaction with living cells and hence determine their toxicity in humans and other organisms as well as their embryos. Thus, several recent studies, including ours, pointed out that CNTs have cytotoxic effects on human and animal cells, which occur via the alteration of key regulator genes of cell proliferation, apoptosis, survival, cell–cell adhesion, and angiogenesis. Meanwhile, few investigations revealed that CNTs could also be harmful to the normal development of the embryo. In this review, we will discuss the toxic role of single-walled CNTs in the embryo, which was recently explored by several groups including ours. PMID:26855573
USDA-ARS?s Scientific Manuscript database
As an initial step to explore the transcriptome genetic diversity and to discover single nucleotide polymorphic (SNP)-biomarkers for marker assisted breeding within Pima (Gossypium barbadense L.) cotton, leaves from 25 day plants of three diverse genotypes were used to develop cDNA libraries. Using ...
DIMM-SC: a Dirichlet mixture model for clustering droplet-based single cell transcriptomic data.
Sun, Zhe; Wang, Ting; Deng, Ke; Wang, Xiao-Feng; Lafyatis, Robert; Ding, Ying; Hu, Ming; Chen, Wei
2018-01-01
Single cell transcriptome sequencing (scRNA-Seq) has become a revolutionary tool to study cellular and molecular processes at single cell resolution. Among existing technologies, the recently developed droplet-based platform enables efficient parallel processing of thousands of single cells with direct counting of transcript copies using Unique Molecular Identifier (UMI). Despite the technology advances, statistical methods and computational tools are still lacking for analyzing droplet-based scRNA-Seq data. Particularly, model-based approaches for clustering large-scale single cell transcriptomic data are still under-explored. We developed DIMM-SC, a Dirichlet Mixture Model for clustering droplet-based Single Cell transcriptomic data. This approach explicitly models UMI count data from scRNA-Seq experiments and characterizes variations across different cell clusters via a Dirichlet mixture prior. We performed comprehensive simulations to evaluate DIMM-SC and compared it with existing clustering methods such as K-means, CellTree and Seurat. In addition, we analyzed public scRNA-Seq datasets with known cluster labels and in-house scRNA-Seq datasets from a study of systemic sclerosis with prior biological knowledge to benchmark and validate DIMM-SC. Both simulation studies and real data applications demonstrated that overall, DIMM-SC achieves substantially improved clustering accuracy and much lower clustering variability compared to other existing clustering methods. More importantly, as a model-based approach, DIMM-SC is able to quantify the clustering uncertainty for each single cell, facilitating rigorous statistical inference and biological interpretations, which are typically unavailable from existing clustering methods. DIMM-SC has been implemented in a user-friendly R package with a detailed tutorial available on www.pitt.edu/∼wec47/singlecell.html. wei.chen@chp.edu or hum@ccf.org. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Brady, Paula C; Farland, Leslie V; Missmer, Stacey A; Racowsky, Catherine; Fox, Janis H
2018-03-01
The purpose of this study is to investigate whether abnormal hCG trends occur at a higher incidence among women conceiving singleton pregnancies following transfer of multiple (two or more) embryos (MET), as compared to those having a single embryo transfer (SET). Retrospective cohort study was performed of women who conceived singleton pregnancies following fresh or frozen autologous IVF/ICSI cycles with day 3 or day 5 embryo transfers between 2007 and 2014 at a single academic medical center. Cycles resulting in one gestational sac on ultrasound followed by singleton live birth beyond 24 weeks of gestation were included. Logistic regression models adjusted a priori for patient age at oocyte retrieval and day of embryo transfer were used to estimate the Odds Ratio of having an abnormal hCG rise (defined as a rise or < 66% in 2 days) following SET as compared to MET. Among patients receiving two or more embryos, 6.1% (n = 84) had abnormal hCG rises between the first and second measurements, compared to 2.7% (n = 17) of patients undergoing SET (OR 2.16, 95% CI 1.26-3.71). Among patients with initially abnormal hCG rises who had a third level checked (89%), three-quarters had normal hCG rises between the second and third measurements. Patients who deliver singletons following MET were more likely to have suboptimal initial hCG rises, potentially due to transient implantation of other non-viable embryo(s). While useful for counseling, these findings should not change standard management of abnormal hCG rises following IVF. The third hCG measurements may clarify pregnancy prognosis.
A transcriptome atlas of rabbit revealed by PacBio single-molecule long-read sequencing.
Chen, Shi-Yi; Deng, Feilong; Jia, Xianbo; Li, Cao; Lai, Song-Jia
2017-08-09
It is widely acknowledged that transcriptional diversity largely contributes to biological regulation in eukaryotes. Since the advent of second-generation sequencing technologies, a large number of RNA sequencing studies have considerably improved our understanding of transcriptome complexity. However, it still remains a huge challenge for obtaining full-length transcripts because of difficulties in the short read-based assembly. In the present study we employ PacBio single-molecule long-read sequencing technology for whole-transcriptome profiling in rabbit (Oryctolagus cuniculus). We totally obtain 36,186 high-confidence transcripts from 14,474 genic loci, among which more than 23% of genic loci and 66% of isoforms have not been annotated yet within the current reference genome. Furthermore, about 17% of transcripts are computationally revealed to be non-coding RNAs. Up to 24,797 alternative splicing (AS) and 11,184 alternative polyadenylation (APA) events are detected within this de novo constructed transcriptome, respectively. The results provide a comprehensive set of reference transcripts and hence contribute to the improved annotation of rabbit genome.
Sfontouris, Ioannis A; Kolibianakis, Efstratios M; Lainas, George T; Venetis, Christos A; Petsas, George K; Tarlatzis, Basil C; Lainas, Tryfon G
2017-10-01
The aim of this study is to determine whether blastocyst utilization rates are different after continuous culture in two different commercial single-step media. This is a paired randomized controlled trial with sibling oocytes conducted in infertility patients, aged ≤40 years with ≥10 oocytes retrieved assigned to blastocyst culture and transfer. Retrieved oocytes were randomly allocated to continuous culture in either Sage one-step medium (Origio) or Continuous Single Culture (CSC) medium (Irvine Scientific) without medium renewal up to day 5 post oocyte retrieval. Main outcome measure was the proportion of embryos suitable for clinical use (utilization rate). A total of 502 oocytes from 33 women were randomly allocated to continuous culture in either Sage one-step medium (n = 250) or CSC medium (n = 252). Fertilization was performed by either in vitro fertilization or intracytoplasmic sperm injection, and embryo transfers were performed on day 5. Two patients had all blastocysts frozen due to the occurrence of severe ovarian hyperstimulation syndrome. Fertilization and cleavage rates, as well as embryo quality on day 3, were similar in the two media. Blastocyst utilization rates (%, 95% CI) [55.4% (46.4-64.1) vs 54.7% (44.9-64.6), p = 0.717], blastocyst formation rates [53.6% (44.6-62.5) vs 51.9 (42.2-61.6), p = 0.755], and proportion of good quality blastocysts [36.8% (28.1-45.4) vs 36.1% (27.2-45.0), p = 0.850] were similar in Sage one-step and CSC media, respectively. Continuous culture of embryos in Sage one-step and CSC media is associated with similar blastocyst development and utilization rates. Both single-step media appear to provide adequate support during in vitro preimplantation embryo development. Whether these observations are also valid for other continuous single medium protocols remains to be determined. NCT02302638.
Matoba, Shogo; Liu, Yuting; Lu, Falong; Iwabuchi, Kumiko A.; Shen, Li; Inoue, Azusa; Zhang, Yi
2014-01-01
SUMMARY Mammalian oocytes can reprogram somatic cells into a totipotent state enabling animal cloning through somatic cell nuclear transfer (SCNT). However, the majority of SCNT embryos fail to develop to term due to undefined reprogramming defects. Here we identify histone H3 lysine 9 trimethylation (H3K9me3) of donor cell genome as a major epigenetic barrier for efficient reprogramming by SCNT. Comparative transcriptome analysis identified reprogramming resistant regions (RRRs) that are expressed normally at 2-cell mouse embryos generated by IVF but not SCNT. RRRs are enriched for H3K9me3 in donor somatic cells, and its removal by ectopic expression of the H3K9me3 demethylase Kdm4d not only reactivates the majority of RRRs, but also greatly improves SCNT efficiency. Furthermore, use of donor somatic nuclei depleted of H3K9 methyltransferases markedly improves SCNT efficiency. Our study thus identifies H3K9me3 as a critical epigenetic barrier in SCNT-mediated reprogramming and provides a promising approach for improving mammalian cloning efficiency. PMID:25417163
Genome editing reveals a role for OCT4 in human embryogenesis.
Fogarty, Norah M E; McCarthy, Afshan; Snijders, Kirsten E; Powell, Benjamin E; Kubikova, Nada; Blakeley, Paul; Lea, Rebecca; Elder, Kay; Wamaitha, Sissy E; Kim, Daesik; Maciulyte, Valdone; Kleinjung, Jens; Kim, Jin-Soo; Wells, Dagan; Vallier, Ludovic; Bertero, Alessandro; Turner, James M A; Niakan, Kathy K
2017-10-05
Despite their fundamental biological and clinical importance, the molecular mechanisms that regulate the first cell fate decisions in the human embryo are not well understood. Here we use CRISPR-Cas9-mediated genome editing to investigate the function of the pluripotency transcription factor OCT4 during human embryogenesis. We identified an efficient OCT4-targeting guide RNA using an inducible human embryonic stem cell-based system and microinjection of mouse zygotes. Using these refined methods, we efficiently and specifically targeted the gene encoding OCT4 (POU5F1) in diploid human zygotes and found that blastocyst development was compromised. Transcriptomics analysis revealed that, in POU5F1-null cells, gene expression was downregulated not only for extra-embryonic trophectoderm genes, such as CDX2, but also for regulators of the pluripotent epiblast, including NANOG. By contrast, Pou5f1-null mouse embryos maintained the expression of orthologous genes, and blastocyst development was established, but maintenance was compromised. We conclude that CRISPR-Cas9-mediated genome editing is a powerful method for investigating gene function in the context of human development.
In vitro fertilisation treatment and factors affecting success.
Huang, Jack Yu Jen; Rosenwaks, Zev
2012-12-01
The efficacy of assisted reproductive technologies has improved significantly over the past decades. The main indications for in vitro fertilisation include tubal obstruction, severe male-factor infertility, severe endometriosis, ovulatory dysfunction, diminished ovarian reserve, and infertility of unexplained cause. In vitro fertilisation has also become an effective treatment option for couples wishing to undergo pre-implantation genetic diagnosis or screening, and for those wishing to cryopreserve their oocytes or embryos for preservation of fertility. The management of women in late reproductive age poses a major challenge; the optimum in vitro fertilisation treatment for poor responders remains elusive. The success of in vitro fertilisation treatment can be optimised by taking an individualised, patient-centered approach to controlled ovarian hyperstimulation. Key components involve selection of an appropriate controlled ovarian protocol, close-cycle monitoring, adjustment of gonadotropin dosage to avoid hyper-response, and individualised timing of human chorionic gonadotropin injection. Future directions of assisted reproductive technologies include development of non-invasive embryo selection methods, use of transcriptomics, proteomics, metabolomics, and time-lapse imaging technologies. Copyright © 2012 Elsevier Ltd. All rights reserved.
Is the hypothesis of preimplantation genetic screening (PGS) still supportable? A review.
Gleicher, Norbert; Orvieto, Raoul
2017-03-27
The hypothesis of preimplantation genetic diagnosis (PGS) was first proposed 20 years ago, suggesting that elimination of aneuploid embryos prior to transfer will improve implantation rates of remaining embryos during in vitro fertilization (IVF), increase pregnancy and live birth rates and reduce miscarriages. The aforementioned improved outcome was based on 5 essential assumptions: (i) Most IVF cycles fail because of aneuploid embryos. (ii) Their elimination prior to embryo transfer will improve IVF outcomes. (iii) A single trophectoderm biopsy (TEB) at blastocyst stage is representative of the whole TE. (iv) TE ploidy reliably represents the inner cell mass (ICM). (v) Ploidy does not change (i.e., self-correct) downstream from blastocyst stage. We aim to offer a review of the aforementioned assumptions and challenge the general hypothesis of PGS. We reviewed 455 publications, which as of January 20, 2017 were listed in PubMed under the search phrase < preimplantation genetic screening (PGS) for aneuploidy>. The literature review was performed by both authors who agreed on the final 55 references. Various reports over the last 18 months have raised significant questions not only about the basic clinical utility of PGS but the biological underpinnings of the hypothesis, the technical ability of a single trophectoderm (TE) biopsy to accurately assess an embryo's ploidy, and suggested that PGS actually negatively affects IVF outcomes while not affecting miscarriage rates. Moreover, due to high rates of false positive diagnoses as a consequence of high mosaicism rates in TE, PGS leads to the discarding of large numbers of normal embryos with potential for normal euploid pregnancies if transferred rather than disposed of. We found all 5 basic assumptions underlying the hypothesis of PGS to be unsupported: (i) The association of embryo aneuploidy with IVF failure has to be reevaluated in view how much more common TE mosaicism is than has until recently been appreciated. (ii) Reliable elimination of presumed aneuploid embryos prior to embryo transfer appears unrealistic. (iii) Mathematical models demonstrate that a single TEB cannot provide reliable information about the whole TE. (iv) TE does not reliably reflect the ICM. (v) Embryos, likely, still have strong innate ability to self-correct downstream from blastocyst stage, with ICM doing so better than TE. The hypothesis of PGS, therefore, no longer appears supportable. With all 5 basic assumptions underlying the hypothesis of PGS demonstrated to have been mistaken, the hypothesis of PGS, itself, appears to be discredited. Clinical use of PGS for the purpose of IVF outcome improvements should, therefore, going forward be restricted to research studies.
Zhang, Fengjiao; Hua, Lichun; Fei, Jiangsong; Wang, Fan; Liao, Yuan; Fang, Weimin; Chen, Fadi; Teng, Nianjun
2016-08-09
Cross breeding is the most commonly used method in chrysanthemum (Chrysanthemum morifolium) breeding; however, cross barriers always exist in these combinations. Many studies have shown that paternal chromosome doubling can often overcome hybridization barriers during cross breeding, although the underlying mechanism has seldom been investigated. In this study, we performed two crosses: C. morifolium (pollen receptor) × diploid C. nankingense (pollen donor) and C. morifolium × tetraploid C. nankingense. Seeds were obtained only from the latter cross. RNA-Seq and isobaric tags for relative and absolute quantitation (iTRAQ) were used to investigate differentially expressed genes and proteins during key embryo development stages in the latter cross. A previously performed cross, C. morifolium × diploid C. nankingense, was compared to our results and revealed that transcription factors (i.e., the agamous-like MADS-box protein AGL80 and the leucine-rich repeat receptor protein kinase EXS), hormone-responsive genes (auxin-binding protein 1), genes and proteins related to metabolism (ATP-citrate synthase, citrate synthase and malate dehydrogenase) and other genes reported to contribute to embryo development (i.e., LEA, elongation factor and tubulin) had higher expression levels in the C. morifolium × tetraploid C. nankingense cross. In contrast, genes related to senescence and cell death were down-regulated in the C. morifolium × tetraploid C. nankingense cross. The data resources helped elucidate the gene and protein expression profiles and identify functional genes during different development stages. When the chromosomes from the male parent are doubled, the genes contributing to normal embryo developmentare more abundant. However, genes with negative functions were suppressed, suggesting that chromosome doubling may epigenetically inhibit the expression of these genes and allow the embryo to develop normally.
Physiology and culture of the human blastocyst.
Gardner, David K; Lane, Michelle; Schoolcraft, William B
2002-01-01
The human embryo undergoes many changes in physiology during the first 4 days of life as it develops and differentiates from a fertilized oocyte to the blastocyst stage. Concomitantly, the embryo is exposed to gradients of nutrients within the female reproductive tract and exhibits changes in its own nutrient requirements and utilization. Determining the nature of such nutrient gradients in the female tract and the changing requirements of the embryo has facilitated the formulation of stage-specific culture media designed to support embryo development throughout the preimplantation period. Resultant implantation rates attained with the culture and transfer of human blastocysts are higher than those associated with the transfer of cleavage stage embryos to the uterus. Such increases in implantation rates have facilitated the establishment of high pregnancy rates while reducing the number of embryos transferred. With the introduction of new scoring systems for the blastocyst and the non-invasive assessment of metabolic activity of individual embryos, it should be possible to move to single blastocyst transfer for the majority of patients.
TRACING CO-REGULATORY NETWORK DYNAMICS IN NOISY, SINGLE-CELL TRANSCRIPTOME TRAJECTORIES.
Cordero, Pablo; Stuart, Joshua M
2017-01-01
The availability of gene expression data at the single cell level makes it possible to probe the molecular underpinnings of complex biological processes such as differentiation and oncogenesis. Promising new methods have emerged for reconstructing a progression 'trajectory' from static single-cell transcriptome measurements. However, it remains unclear how to adequately model the appreciable level of noise in these data to elucidate gene regulatory network rewiring. Here, we present a framework called Single Cell Inference of MorphIng Trajectories and their Associated Regulation (SCIMITAR) that infers progressions from static single-cell transcriptomes by employing a continuous parametrization of Gaussian mixtures in high-dimensional curves. SCIMITAR yields rich models from the data that highlight genes with expression and co-expression patterns that are associated with the inferred progression. Further, SCIMITAR extracts regulatory states from the implicated trajectory-evolvingco-expression networks. We benchmark the method on simulated data to show that it yields accurate cell ordering and gene network inferences. Applied to the interpretation of a single-cell human fetal neuron dataset, SCIMITAR finds progression-associated genes in cornerstone neural differentiation pathways missed by standard differential expression tests. Finally, by leveraging the rewiring of gene-gene co-expression relations across the progression, the method reveals the rise and fall of co-regulatory states and trajectory-dependent gene modules. These analyses implicate new transcription factors in neural differentiation including putative co-factors for the multi-functional NFAT pathway.
Single-nucleus RNA-seq of differentiating human myoblasts reveals the extent of fate heterogeneity
Zeng, Weihua; Jiang, Shan; Kong, Xiangduo; El-Ali, Nicole; Ball, Alexander R.; Ma, Christopher I-Hsing; Hashimoto, Naohiro; Yokomori, Kyoko; Mortazavi, Ali
2016-01-01
Myoblasts are precursor skeletal muscle cells that differentiate into fused, multinucleated myotubes. Current single-cell microfluidic methods are not optimized for capturing very large, multinucleated cells such as myotubes. To circumvent the problem, we performed single-nucleus transcriptome analysis. Using immortalized human myoblasts, we performed RNA-seq analysis of single cells (scRNA-seq) and single nuclei (snRNA-seq) and found them comparable, with a distinct enrichment for long non-coding RNAs (lncRNAs) in snRNA-seq. We then compared snRNA-seq of myoblasts before and after differentiation. We observed the presence of mononucleated cells (MNCs) that remained unfused and analyzed separately from multi-nucleated myotubes. We found that while the transcriptome profiles of myoblast and myotube nuclei are relatively homogeneous, MNC nuclei exhibited significant heterogeneity, with the majority of them adopting a distinct mesenchymal state. Primary transcripts for microRNAs (miRNAs) that participate in skeletal muscle differentiation were among the most differentially expressed lncRNAs, which we validated using NanoString. Our study demonstrates that snRNA-seq provides reliable transcriptome quantification for cells that are otherwise not amenable to current single-cell platforms. Our results further indicate that snRNA-seq has unique advantage in capturing nucleus-enriched lncRNAs and miRNA precursors that are useful in mapping and monitoring differential miRNA expression during cellular differentiation. PMID:27566152
Atomic force microscopy as a tool to study Xenopus laevis embryo
NASA Astrophysics Data System (ADS)
Pukhlyakova, E. A.; Efremov, Yu M.; Bagrov, D. V.; Luchinskaya, N. N.; Kiryukhin, D. O.; Belousov, L. V.; Shaitan, K. V.
2012-02-01
Atomic force microscopy (AFM) has become a powerful tool for imaging biological structures (from single molecules to living cells) and carrying out measurements of their mechanical properties. AFM provides three-dimensional high-resolution images of the studied biological objects in physiological environment. However there are only few AFM investigations of fresh tissue explants and virtually no such research on a whole organism, since most researchers work with cell cultures. In the current work AFM was used to observe the surface of living and fixed embryos and to measure mechanical properties of naive embryos and embryos with overexpression of guanine nucleotide-binding protein G-alpha-13.
Viability of bovine demi- and quarter-embryos after transfer.
Bredbacka, P; Huhtinen, M; Aalto, J; Rainio, V
1992-07-01
The viability of bovine demi- and quarter-embryos was investigated. Early compacting morulae were nonsurgically flushed from superovulated donor cows and were bisected by two microneedles. One of the halves was then split further into two quarters. Each demi- and quarter-embryo was placed in an evacuated zona pellucida. One demi- or two quarter-embryos were transferred non-surgically into cow or heifer recipients. Viability was measured by ultrasound scanning of the fetuses on Days 35, 48 and 60 of pregnancy. The pregnancy rates at Day 60 were 46.2% (6/13) for heifers and 33.3% (4/12) for cows after the transfer of a single demi-embryo. The transfer of two quarter-embryos resulted in a pregnancy rate of 61.5% (8/13) for heifers and 8.3% (1/12) for cows. Seven (53.8%) and four (33.3%) live fetuses were found on Day 60 following the transfer of demi-embryos into heifers and cows, respectively. The transfer of quarter-embryos resulted in 10 fetuses (38.5%) in the heifer recipients and only one fetus (4.2%) in the cow recipients. The results of this study suggest that heifers are more suitable than cows as recipients for quarter-embryos.
The technology and biology of single-cell RNA sequencing.
Kolodziejczyk, Aleksandra A; Kim, Jong Kyoung; Svensson, Valentine; Marioni, John C; Teichmann, Sarah A
2015-05-21
The differences between individual cells can have profound functional consequences, in both unicellular and multicellular organisms. Recently developed single-cell mRNA-sequencing methods enable unbiased, high-throughput, and high-resolution transcriptomic analysis of individual cells. This provides an additional dimension to transcriptomic information relative to traditional methods that profile bulk populations of cells. Already, single-cell RNA-sequencing methods have revealed new biology in terms of the composition of tissues, the dynamics of transcription, and the regulatory relationships between genes. Rapid technological developments at the level of cell capture, phenotyping, molecular biology, and bioinformatics promise an exciting future with numerous biological and medical applications. Copyright © 2015 Elsevier Inc. All rights reserved.
2012-01-01
Background Single embryo transfer (SET) remains underutilized as a strategy to reduce multiple gestation risk in IVF, and its overall lower pregnancy rate underscores the need for improved techniques to select one embryo for fresh transfer. This study explored use of comprehensive chromosomal screening by array CGH (aCGH) to provide this advantage and improve pregnancy rate from SET. Methods First-time IVF patients with a good prognosis (age <35, no prior miscarriage) and normal karyotype seeking elective SET were prospectively randomized into two groups: In Group A, embryos were selected on the basis of morphology and comprehensive chromosomal screening via aCGH (from d5 trophectoderm biopsy) while Group B embryos were assessed by morphology only. All patients had a single fresh blastocyst transferred on d6. Laboratory parameters and clinical pregnancy rates were compared between the two groups. Results For patients in Group A (n = 55), 425 blastocysts were biopsied and analyzed via aCGH (7.7 blastocysts/patient). Aneuploidy was detected in 191/425 (44.9%) of blastocysts in this group. For patients in Group B (n = 48), 389 blastocysts were microscopically examined (8.1 blastocysts/patient). Clinical pregnancy rate was significantly higher in the morphology + aCGH group compared to the morphology-only group (70.9 and 45.8%, respectively; p = 0.017); ongoing pregnancy rate for Groups A and B were 69.1 vs. 41.7%, respectively (p = 0.009). There were no twin pregnancies. Conclusion Although aCGH followed by frozen embryo transfer has been used to screen at risk embryos (e.g., known parental chromosomal translocation or history of recurrent pregnancy loss), this is the first description of aCGH fully integrated with a clinical IVF program to select single blastocysts for fresh SET in good prognosis patients. The observed aneuploidy rate (44.9%) among biopsied blastocysts highlights the inherent imprecision of SET when conventional morphology is used alone. Embryos randomized to the aCGH group implanted with greater efficiency, resulted in clinical pregnancy more often, and yielded a lower miscarriage rate than those selected without aCGH. Additional studies are needed to verify our pilot data and confirm a role for on-site, rapid aCGH for IVF patients contemplating fresh SET. PMID:22551456
Single cell transcriptomic analysis of prostate cancer cells.
Welty, Christopher J; Coleman, Ilsa; Coleman, Roger; Lakely, Bryce; Xia, Jing; Chen, Shu; Gulati, Roman; Larson, Sandy R; Lange, Paul H; Montgomery, Bruce; Nelson, Peter S; Vessella, Robert L; Morrissey, Colm
2013-02-16
The ability to interrogate circulating tumor cells (CTC) and disseminated tumor cells (DTC) is restricted by the small number detected and isolated (typically <10). To determine if a commercially available technology could provide a transcriptomic profile of a single prostate cancer (PCa) cell, we clonally selected and cultured a single passage of cell cycle synchronized C4-2B PCa cells. Ten sets of single, 5-, or 10-cells were isolated using a micromanipulator under direct visualization with an inverted microscope. Additionally, two groups of 10 individual DTC, each isolated from bone marrow of 2 patients with metastatic PCa were obtained. RNA was amplified using the WT-Ovation™ One-Direct Amplification System. The amplified material was hybridized on a 44K Whole Human Gene Expression Microarray. A high stringency threshold, a mean Alexa Fluor® 3 signal intensity above 300, was used for gene detection. Relative expression levels were validated for select genes using real-time PCR (RT-qPCR). Using this approach, 22,410, 20,423, and 17,009 probes were positive on the arrays from 10-cell pools, 5-cell pools, and single-cells, respectively. The sensitivity and specificity of gene detection on the single-cell analyses were 0.739 and 0.972 respectively when compared to 10-cell pools, and 0.814 and 0.979 respectively when compared to 5-cell pools, demonstrating a low false positive rate. Among 10,000 randomly selected pairs of genes, the Pearson correlation coefficient was 0.875 between the single-cell and 5-cell pools and 0.783 between the single-cell and 10-cell pools. As expected, abundant transcripts in the 5- and 10-cell samples were detected by RT-qPCR in the single-cell isolates, while lower abundance messages were not. Using the same stringency, 16,039 probes were positive on the patient single-cell arrays. Cluster analysis showed that all 10 DTC grouped together within each patient. A transcriptomic profile can be reliably obtained from a single cell using commercially available technology. As expected, fewer amplified genes are detected from a single-cell sample than from pooled-cell samples, however this method can be used to reliably obtain a transcriptomic profile from DTC isolated from the bone marrow of patients with PCa.
Nair, R Ramakrishnan; Dutta Gupta, S
2006-01-01
A high-frequency plantlet regeneration protocol was developed for black pepper (Piper nigrum L.) through cyclic secondary somatic embryogenesis. Secondary embryos formed from the radicular end of the primary somatic embryos which were originally derived from micropylar tissues of germinating seeds on growth regulator-free SH medium in the absence of light. The process of secondary embryogenesis continued in a cyclic manner from the root pole of newly formed embryos resulting in clumps of somatic embryos. Strength of the medium and sucrose concentration influenced the process of secondary embryogenesis and fresh weight of somatic embryo clumps. Full-strength SH medium supplemented with 1.5% sucrose produced significantly higher fresh weight and numbers of secondary somatic embryos while 3.0 and 4.5% sucrose in the medium favored further development of proliferated embryos into plantlets. Ontogeny of secondary embryos was established by histological analysis. Secondary embryogenic potential was influenced by the developmental stage of the explanted somatic embryo and stages up to "torpedo" were more suitable. A single-flask system was standardized for proliferation, maturation, germination and conversion of secondary somatic embryos in suspension cultures. The system of cyclic secondary somatic embryogenesis in black pepper described here represents a permanent source of embryogenic material that can be used for genetic manipulations of this crop species.
Tagawa, M; Matoba, S; Narita, M; Saito, N; Nagai, T; Imai, K
2008-03-15
The present study was conducted to establish a simple and efficient method of producing monozygotic twin calves using the blastomere separation technique. To produce monozygotic twin embryos from zona-free two- and eight-cell embryos, blastomeres were separated mechanically by pipetting to form two demi-embryos; each single blastomere from the two-cell embryo and tetra-blastomeres from the eight-cell embryo were cultured in vitro using the Well of the Well culture system (WOW). This culture system supported the successful arrangement of blastomeres, resulting in their subsequent aggregation to form a demi-embryo developing to the blastocyst stage without a zona pellucida. There was no significant difference in the development to the blastocyst stage between blastomeres separated from eight-cell (72.0%) and two-cell (62.0%) embryos. The production rates of the monozygotic pair blastocysts and transferable paired blastocysts for demi-embryos obtained from eight-cell embryos (64.0 and 45.0%, respectively) were higher than those for demi-embryos obtained from two-cell embryos (49.0 and 31.0%, P<0.05). The separated demi-embryos obtained from eight-cell embryos produced by IVM/IVF of oocytes collected by ovum pick-up (OPU) from elite cows and cultured in wells tended to have a higher pregnancy rate (78.9% vs. 57.1%) and similar monozygotic twinning rate (40.0% vs. 33.3%) compared with monozygotic twin blastocysts obtained by the conventional bisection of in vivo derived blastocysts. In conclusion, producing twins by separation of blastomeres in OPU-IVF embryos, followed by the WOW culture system, yielded viable monozygotic demi-embryos, resulting in high rates of pregnancy and twinning rates after embryo transfer.
In vivo marking of single cells in chick embryos using photoactivation of GFP.
Stark, D A; Kulesa, P M
2005-10-01
Selective marking of a single cell within a living embryo is often difficult due to the inaccuracy and invasiveness of standard techniques. This unit describes a minimally invasive optical protocol that uses 405-nm laser light to photoactivate a variant of green fluorescent protein (PAGFP). This method takes advantage of the accessibility of the chick embryo to inject PAGFP into a region of interest and uses electroporation to deliver the construct into cells. This unit describes in detail how single and small groups of cells (n<10) that express PAGFP can be made visually distinguishable from the host population using the photoactivation process. Included is a means to maximize the fluorescence increase due to photoactivated GFP signal and to reduce photobleaching. Briefly outlined are previously developed chick culture and time-lapse imaging techniques to allow for the subsequent monitoring of photoactivated cell migratory behaviors. The technique has the potential to be a less-invasive, accurate tool for in vivo studies that involve following cell lineage and cell migration.
Knoll-Gellida, Anja; André, Michèle; Gattegno, Tamar; Forgue, Jean; Admon, Arie; Babin, Patrick J
2006-01-01
Background The ability of an oocyte to develop into a viable embryo depends on the accumulation of specific maternal information and molecules, such as RNAs and proteins. A serial analysis of gene expression (SAGE) was carried out in parallel with proteomic analysis on fully-grown ovarian follicles from zebrafish (Danio rerio). The data obtained were compared with ovary/follicle/egg molecular phenotypes of other animals, published or available in public sequence databases. Results Sequencing of 27,486 SAGE tags identified 11,399 different ones, including 3,329 tags with an occurrence superior to one. Fifty-eight genes were expressed at over 0.15% of the total population and represented 17.34% of the mRNA population identified. The three most expressed transcripts were a rhamnose-binding lectin, beta-actin 2, and a transcribed locus similar to the H2B histone family. Comparison with the large-scale expressed sequence tags sequencing approach revealed highly expressed transcripts that were not previously known to be expressed at high levels in fish ovaries, like the short-sized polarized metallothionein 2 transcript. A higher sensitivity for the detection of transcripts with a characterized maternal genetic contribution was also demonstrated compared to large-scale sequencing of cDNA libraries. Ferritin heavy polypeptide 1, heat shock protein 90-beta, lactate dehydrogenase B4, beta-actin isoforms, tubulin beta 2, ATP synthase subunit 9, together with 40 S ribosomal protein S27a, were common highly-expressed transcripts of vertebrate ovary/unfertilized egg. Comparison of transcriptome and proteome data revealed that transcript levels provide little predictive value with respect to the extent of protein abundance. All the proteins identified by proteomic analysis of fully-grown zebrafish follicles had at least one transcript counterpart, with two exceptions: eosinophil chemotactic cytokine and nothepsin. Conclusion This study provides a complete sequence data set of maternal mRNA stored in zebrafish germ cells at the end of oogenesis. This catalogue contains highly-expressed transcripts that are part of a vertebrate ovarian expressed gene signature. Comparison of transcriptome and proteome data identified downregulated transcripts or proteins potentially incorporated in the oocyte by endocytosis. The molecular phenotype described provides groundwork for future experimental approaches aimed at identifying functionally important stored maternal transcripts and proteins involved in oogenesis and early stages of embryo development. PMID:16526958
Cell type transcriptome atlas for the planarian Schmidtea mediterranea.
Fincher, Christopher T; Wurtzel, Omri; de Hoog, Thom; Kravarik, Kellie M; Reddien, Peter W
2018-05-25
The transcriptome of a cell dictates its unique cell type biology. We used single-cell RNA sequencing to determine the transcriptomes for essentially every cell type of a complete animal: the regenerative planarian Schmidtea mediterranea. Planarians contain a diverse array of cell types, possess lineage progenitors for differentiated cells (including pluripotent stem cells), and constitutively express positional information, making them ideal for this undertaking. We generated data for 66,783 cells, defining transcriptomes for known and many previously unknown planarian cell types and for putative transition states between stem and differentiated cells. We also uncovered regionally expressed genes in muscle, which harbors positional information. Identifying the transcriptomes for potentially all cell types for many organisms should be readily attainable and represents a powerful approach to metazoan biology. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Jang, Sumin; Choubey, Sandeep; Furchtgott, Leon; Zou, Ling-Nan; Doyle, Adele; Menon, Vilas; Loew, Ethan B; Krostag, Anne-Rachel; Martinez, Refugio A; Madisen, Linda; Levi, Boaz P; Ramanathan, Sharad
2017-01-01
The complexity of gene regulatory networks that lead multipotent cells to acquire different cell fates makes a quantitative understanding of differentiation challenging. Using a statistical framework to analyze single-cell transcriptomics data, we infer the gene expression dynamics of early mouse embryonic stem (mES) cell differentiation, uncovering discrete transitions across nine cell states. We validate the predicted transitions across discrete states using flow cytometry. Moreover, using live-cell microscopy, we show that individual cells undergo abrupt transitions from a naïve to primed pluripotent state. Using the inferred discrete cell states to build a probabilistic model for the underlying gene regulatory network, we further predict and experimentally verify that these states have unique response to perturbations, thus defining them functionally. Our study provides a framework to infer the dynamics of differentiation from single cell transcriptomics data and to build predictive models of the gene regulatory networks that drive the sequence of cell fate decisions during development. DOI: http://dx.doi.org/10.7554/eLife.20487.001 PMID:28296635
Plessy, Charles; Desbois, Linda; Fujii, Teruo; Carninci, Piero
2013-02-01
Tissues contain complex populations of cells. Like countries, which are comprised of mixed populations of people, tissues are not homogeneous. Gene expression studies that analyze entire populations of cells from tissues as a mixture are blind to this diversity. Thus, critical information is lost when studying samples rich in specialized but diverse cells such as tumors, iPS colonies, or brain tissue. High throughput methods are needed to address, model and understand the constitutive and stochastic differences between individual cells. Here, we describe microfluidics technologies that utilize a combination of molecular biology and miniaturized labs on chips to study gene expression at the single cell level. We discuss how the characterization of the transcriptome of each cell in a sample will open a new field in gene expression analysis, population transcriptomics, that will change the academic and biomedical analysis of complex samples by defining them as quantified populations of single cells. Copyright © 2013 WILEY Periodicals, Inc.
Rho, G J; Johnson, W H; Betteridge, K J
1998-10-15
The cellular composition and viability of intact, IVP embryos were compared with those of demi- and quarter-embryos produced by bisection of IVP morulae and blastocysts. Embryos were produced by established techniques from oocytes harvested from slaughterhouse ovaries. In Experiment 1, morulae at Day 6 or blastocysts at Day 7 were bisected on an inverted microscope using a microsurgical steel blade. Demi-embryos were then cultured without a zona pellucida until Day 8, when they were morphologically assessed for quality (viability). A higher proportion of demi-embryos made from blastocysts than from morulae were classified as viable (381/420, 91% vs 164/267, 61%; P < 0.001). In Experiment 2, only Day 7 blastocysts were bisected, and some of the resulting demi-embryos were bisected a second time 24 h later to produce quarter-embryos. The remaining demi-embryos, the quarter-embryos, and control intact embryos were cultured until Day 9, at which time they were assessed for quality and subjected to immunosurgery and differential staining to count inner cell mass (ICM) and trophectoderm cells. A higher proportion of demi-embryos than quarter-embryos was classified as viable (408/459, 89% vs 223/319, 70%, respectively; P < 0.001). Total cell numbers decreased with successive bisections, but the proportion of surviving cells found in the ICM was significantly (P < 0.05) higher in the best quality demi- and quarter-embryos (35 and 32%, respectively) than in the controls (22%). Transfer of all 12 quarter-embryos derived from 3 blastocysts, in pairs, into 6 recipient heifers resulted in 2 pregnancies, each with a single viable fetus at 90 d of gestation. The fetuses originated from 2 different blastocysts. The results suggest that bisection of intact IVP embryos into demi-embryos and bisection of those into quarter-embryos can increase the number of transferable embryos by as much as 178 and 235%, respectively.
Sagaya, F M; Hacin, B; Tompa, G; Ihan, A; Špela, Š; Černe, M; Hurrell, R F; Matijašić, B B; Rogelj, I; Vergères, G
2014-05-01
As the immune cells underlying the intestinal barrier sense luminal microbial signals, blood cell transcriptomics may identify subclinical changes triggered by gut bacteria that may otherwise not be detected. We have therefore investigated how Lactobacillus gasseri K7 and enterohemorrhagic Escherichia coli O157:H7 modulate the blood cell transcriptome of mice possessing an intact microbiota. We have analysed the transcriptome of five groups of C57BL/6J mice: (i) control, (ii) inoculated with a single dose of E. coli, (iii) inoculated during 2 weeks with Lact. gasseri, (iv) co-inoculated with E. coli and Lact. gasseri, (v) inoculated with Lact. gasseri prior to E. coli infection. The transcriptome could distinguish between the five treatment groups. Gene characteristics of bacterial infection, in particular inflammation, were upregulated in the mice inoculated with E. coli. Lact. gasseri had only mild effects on the transcriptome but modified the gene expression induced by E. coli. The transcriptome differentiates mice inoculated orally with E. coli, Lact. gasseri and combinations of these two strains. These results suggest that the blood cell transcriptome can be used as a source of biomarkers to monitor the impact of probiotics in subclinical models of infectious disease. © 2014 The Society for Applied Microbiology.
Transcriptomic and proteomic analyses of seasonal photoperiodism in the pea aphid
Le Trionnaire, G; Francis, F; Jaubert-Possamai, S; Bonhomme, J; De Pauw, E; Gauthier, J-P; Haubruge, E; Legeai, F; Prunier-Leterme, N; Simon, J-C; Tanguy, S; Tagu, D
2009-01-01
Background Aphid adaptation to harsh winter conditions is illustrated by an alternation of their reproductive mode. Aphids detect photoperiod shortening by sensing the length of the night and switch from viviparous parthenogenesis in spring and summer, to oviparous sexual reproduction in autumn. The photoperiodic signal is transduced from the head to the reproductive tract to change the fate of the future oocytes from mitotic diploid embryogenesis to haploid formation of gametes. This process takes place in three consecutive generations due to viviparous parthenogenesis. To understand the molecular basis of the switch in the reproductive mode, transcriptomic and proteomic approaches were used to detect significantly regulated transcripts and polypeptides in the heads of the pea aphid Acyrthosiphon pisum. Results The transcriptomic profiles of the heads of the first generation were slightly affected by photoperiod shortening. This suggests that trans-generation signalling between the grand-mothers and the viviparous embryos they contain is not essential. By analogy, many of the genes and some of the proteins regulated in the heads of the second generation are implicated in visual functions, photoreception and cuticle structure. The modification of the cuticle could be accompanied by a down-regulation of the N-β-alanyldopamine pathway and desclerotization. In Drosophila, modification of the insulin pathway could cause a decrease of juvenile hormones in short-day reared aphids. Conclusion This work led to the construction of hypotheses for photoperiodic regulation of the switch of the reproductive mode in aphids. PMID:19788735
Single-Copy Genes as Molecular Markers for Phylogenomic Studies in Seed Plants
De La Torre, Amanda R.; Sterck, Lieven; Cánovas, Francisco M.; Avila, Concepción; Merino, Irene; Cabezas, José Antonio; Cervera, María Teresa; Ingvarsson, Pär K.
2017-01-01
Phylogenetic relationships among seed plant taxa, especially within the gymnosperms, remain contested. In contrast to angiosperms, for which several genomic, transcriptomic and phylogenetic resources are available, there are few, if any, molecular markers that allow broad comparisons among gymnosperm species. With few gymnosperm genomes available, recently obtained transcriptomes in gymnosperms are a great addition to identifying single-copy gene families as molecular markers for phylogenomic analysis in seed plants. Taking advantage of an increasing number of available genomes and transcriptomes, we identified single-copy genes in a broad collection of seed plants and used these to infer phylogenetic relationships between major seed plant taxa. This study aims at extending the current phylogenetic toolkit for seed plants, assessing its ability for resolving seed plant phylogeny, and discussing potential factors affecting phylogenetic reconstruction. In total, we identified 3,072 single-copy genes in 31 gymnosperms and 2,156 single-copy genes in 34 angiosperms. All studied seed plants shared 1,469 single-copy genes, which are generally involved in functions like DNA metabolism, cell cycle, and photosynthesis. A selected set of 106 single-copy genes provided good resolution for the seed plant phylogeny except for gnetophytes. Although some of our analyses support a sister relationship between gnetophytes and other gymnosperms, phylogenetic trees from concatenated alignments without 3rd codon positions and amino acid alignments under the CAT + GTR model, support gnetophytes as a sister group to Pinaceae. Our phylogenomic analyses demonstrate that, in general, single-copy genes can uncover both recent and deep divergences of seed plant phylogeny. PMID:28460034
Sánchez-Argüello, Paloma; Aparicio, Natalia; Fernández, Carlos
2012-06-01
Genotoxic effects on fauna after waterborne pollutant exposure have been demonstrated by numerous research programmes. Less effort has been focused on establishing relationship between genotoxicity and long-term responses at higher levels of biological organization. Taking into account that embryos may be more sensitive indicators of reproductive impairment than alterations in fertility, we have developed two assays in multiwell plates to address correlations between embryo toxicity and genotoxicity. The potential teratogenicity was assessed by analyzing abnormal development and mortality of Physa acuta at embryonic stage. Genotoxicity was measured by the micronucleus (MN) test using embryonic cells. Our results showed that linkage between genotoxicity and embryo toxicity depends on mechanisms of action of compounds under study. Embryo toxic responses showed a clear dose-related tendency whereas no clear dose-dependent effect was observed in micronucleus induction. The higher embryo toxicity was produced by benzo(a)pyrene exposure followed by fluoxetine and bisphenol A. Vinclozolin was the lower embryo toxic compound. Binary mixtures with BaP always resulted in higher embryo toxicity than single exposures but antagonistic effects were observed for MN induction. Benzo(a)pyrene produced the higher MN induction at 0.04 mg/L, which also produced clear embryo toxic effects. Fluoxetine did not induce cytogenetic effects but 0.25mg/L altered embryonic development. Bisphenol A significantly reduced hatchability at 0.5mg/L while MN induction appeared with higher treatments than those that start causing teratogenicity. Much higher concentration of vinclozolin (5mg/L) reduced hatchability and induced maximum MN formation. In conclusion, while validating one biomarker of genotoxicity and employing one ecologically relevant effect, we have evaluated the relative sensitivity of a freshwater mollusc for a range of chemicals. The embryo toxicity test is a starting point for the development of a life cycle test with freshwater snails even for undertaking multigeneration studies focused on transgenerational effects. Copyright © 2012 Elsevier Inc. All rights reserved.
Torres, A; Chagas e Silva, J; Deloche, M C; Humblot, P; Horta, A E M; Lopes-da-Costa, L
2013-08-01
Using a novel in vivo model considering a low developmental competence embryo (demi-embryo) and a subnormal fertility recipient (lactating high-yielding dairy cow), this experiment evaluated the effect of human chorionic gonadotrophin (hCG) treatment at embryo transfer (ET) on embryonic size at implantation, embryonic survival and recipient plasma progesterone (P4 ) and bovine pregnancy-specific protein B (PSPB) concentrations until day 63 of pregnancy. Embryos were bisected and each pair of demi-embryos was bilaterally transferred to recipients (n = 61) on day 7 of the oestrous cycle. At ET recipients were randomly assigned to treatment with 1500 IU hCG or to untreated controls. Higher (p < 0.01) pregnancy rates on days 25, 42 and 63, and embryo survival rate on day 63 were observed in hCG-treated cows with secondary CL than in hCG-treated cows without secondary CL and in untreated cows. Pregnancy rates and embryo survival rate were similar in hCG-treated cows without secondary CL and untreated cows. Embryonic size on day 42 was not affected by treatment with hCG, presence of secondary CL and type of pregnancy (single vs twin). Presence of secondary CL increased (p < 0.05) plasma P4 concentrations of pregnant cows on days 14, 19 and 25 but not thereafter and of non-pregnant cows on days 14-21. Treatment with hCG and presence of secondary CL had no effect on plasma PSPB concentrations, which were higher (p < 0.05) in twin than in single pregnancies. In conclusion, secondary CL induced by hCG treatment at ET significantly increased plasma P4 concentrations, the survival rate of demi-embryos and the pregnancy rate of high-yielding lactating dairy cows. Embryos were rescued beyond maternal recognition of pregnancy, but later embryonic survival, growth until implantation and placental PSPB secretion until day 63 of pregnancy were not affected by treatment or presence of secondary CL. © 2013 Blackwell Verlag GmbH.
Sato, Brittany L.M.; Sugawara, Atsushi; Ward, Monika A.; Collier, Abby C.
2014-01-01
Single blastomere removal from cleavage-stage embryos, a common procedure used in conjunction with preimplantation genetic diagnosis (PGD), may affect reproductive outcomes. We hypothesized that negative pregnancy outcomes associated with PGD may be due to impairment of placental signaling pathways. The goal of this study was to determine the molecular mechanisms through which placental signaling is deregulated by blastomere removal. Four-cell stage murine embryos produced by in vitro fertilization were subjected to removal of a single blastomere (biopsied) or to the same manipulations without the blastomere removal (controls). Placental tissues from term (18.5 day) pregnancies obtained after embryo transfer were tested for levels of nitrosative species, interleukin 6, signal transducers and activators of transcription (STAT) 1 and 3, suppressors of cytokine signaling (SOCS) 1, 2 and 3 and matrix metalloproteinases (MMP) 1, 2, 3 and 9. Significant increases in nitrosative stress (P < 0.05), phosphorylative activation of STAT1 (P < 0.05) but not STAT3, lower levels of the inhibitors SOCS2 (P < 0.01) and SOCS3 (P < 0.001) and activation of MMP9 (P < 0.001) were observed in placentas derived from biopsied embryos, compared with controls. Such effects could contribute to greater levels of premature membrane rupture, incorrect parturition, preterm birth and intrauterine growth restriction associated with PGD. This work has determined signaling mechanisms that may be responsible for blastomere removal effects on placental function, with the potential to become targets for improving obstetric and neonatal outcomes in assisted reproduction. PMID:25180268
Single Cell Analysis: From Technology to Biology and Medicine.
Pan, Xinghua
2014-01-01
Single-cell analysis heralds a new era that allows "omics" analysis, notably genomics, transcriptomics, epigenomics and proteomics at the single-cell level. It enables the identification of the minor subpopulations that may play a critical role in a biological process of a population of cells, which conventionally are regarded as homogeneous. It provides an ultra-sensitive tool to clarify specific molecular mechanisms and pathways and reveal the nature of cell heterogeneity. It also facilitates the clinical investigation of patients when a very low quantity or a single cell is available for analysis, such as noninvasive prenatal diagnosis and cancer screening, and genetic evaluation for in vitro fertilization. Within a few short years, single-cell analysis, especially whole genomic sequencing and transcriptomic sequencing, is becoming robust and broadly accessible, although not yet a routine practice. Here, with single cell RNA-seq emphasized, an overview of the discipline, progresses, and prospects of single-cell analysis and its applications in biology and medicine are given with a series of logic and theoretical considerations.
Kojima, T; Soma, T; Oguri, N
1987-06-01
The aim of the present study was to examine the effects of various conditions of addition and dilution of dimethyl sulfoxide (Me2SO) and 37 degrees C equilibration, and also the effects of freezing in the solution which was prepared in advance and stored in plastic straws at -20 degrees C on the viability of rabbit morulae thawed rapidly. The embryos were cooled from room temperature to -30 degrees C at 1 degree C/min in the presence of 1.5 M Me2SO using a programmable liquid nitrogen vapor freezing machine with an automatic seeding device, then cooled rapidly, and stored in liquid nitrogen. The frozen straws were thawed rapidly (greater than 1000 degrees C/min). When Me2SO was added in a single step, equilibrated with embryos at 37 degrees C for 15 min and diluted out in a single step, a very high survival was obtained: transferable/recovered, 90%: developed/recovered, 96%. When embryos were pipetted into 1.5 M Me2SO that was prepared in advance, stocked in straws at -20 degrees C, and cooled, the proportions of transferable and developed embryos were equivalent to those of embryos frozen in the solution that was prepared immediately before use.
Kido, Tatsuo; Sun, Zhaoyu; Lau, Yun-Fai Chris
2017-06-23
Sexual dimorphisms are prevalent in development, physiology and diseases in humans. Currently, the contributions of the genes on the male-specific region of the Y chromosome (MSY) in these processes are uncertain. Using a transgene activation system, the human sex-determining gene hSRY is activated in the single-cell embryos of the mouse. Pups with hSRY activated (hSRY ON ) are born of similar sizes as those of non-activated controls. However, they retard significantly in postnatal growth and development and all die of multi-organ failure before two weeks of age. Pathological and molecular analyses indicate that hSRY ON pups lack innate suckling activities, and develop fatty liver disease, arrested alveologenesis in the lung, impaired neurogenesis in the brain and occasional myocardial fibrosis and minimized thymus development. Transcriptome analysis shows that, in addition to those unique to the respective organs, various cell growth and survival pathways and functions are differentially affected in the transgenic mice. These observations suggest that ectopic activation of a Y-located SRY gene could exert male-specific effects in development and physiology of multiple organs, thereby contributing to sexual dimorphisms in normal biological functions and disease processes in affected individuals.
Douétts-Peres, Jackellinne C; Cruz, Marco Antônio L; Reis, Ricardo S; Heringer, Angelo S; de Oliveira, Eduardo A G; Elbl, Paula M; Floh, Eny I S; Silveira, Vanildo; Santa-Catarina, Claudete
2016-01-01
Somatic embryogenesis has been shown to be an efficient tool for studying processes based on cell growth and development. The fine regulation of the cell cycle is essential for proper embryo formation during the process of somatic embryogenesis. The aims of the present work were to identify and perform a structural and functional characterization of Mps1 and to analyze the effects of the inhibition of this protein on cellular growth and pro-embryogenic mass (PEM) morphology in embryogenic cultures of A. angustifolia. A single-copy Mps1 gene named AaMps1 was retrieved from the A. angustifolia transcriptome database, and through a mass spectrometry approach, AaMps1 was identified and quantified in embryogenic cultures. The Mps1 inhibitor SP600125 (10 μM) inhibited cellular growth and changed PEMs, and these effects were accompanied by a reduction in AaMps1 protein levels in embryogenic cultures. Our work has identified the Mps1 protein in a gymnosperm species for the first time, and we have shown that inhibiting Mps1 affects cellular growth and PEM differentiation during A. angustifolia somatic embryogenesis. These data will be useful for better understanding cell cycle control during somatic embryogenesis in plants.
Douétts-Peres, Jackellinne C.; Cruz, Marco Antônio L.; Reis, Ricardo S.; Heringer, Angelo S.; de Oliveira, Eduardo A. G.; Elbl, Paula M.; Floh, Eny I. S.; Silveira, Vanildo
2016-01-01
Somatic embryogenesis has been shown to be an efficient tool for studying processes based on cell growth and development. The fine regulation of the cell cycle is essential for proper embryo formation during the process of somatic embryogenesis. The aims of the present work were to identify and perform a structural and functional characterization of Mps1 and to analyze the effects of the inhibition of this protein on cellular growth and pro-embryogenic mass (PEM) morphology in embryogenic cultures of A. angustifolia. A single-copy Mps1 gene named AaMps1 was retrieved from the A. angustifolia transcriptome database, and through a mass spectrometry approach, AaMps1 was identified and quantified in embryogenic cultures. The Mps1 inhibitor SP600125 (10 μM) inhibited cellular growth and changed PEMs, and these effects were accompanied by a reduction in AaMps1 protein levels in embryogenic cultures. Our work has identified the Mps1 protein in a gymnosperm species for the first time, and we have shown that inhibiting Mps1 affects cellular growth and PEM differentiation during A. angustifolia somatic embryogenesis. These data will be useful for better understanding cell cycle control during somatic embryogenesis in plants. PMID:27064899
Single embryo transfer - state of the art.
De Neubourg, Diane; Gerris, Jan
2003-12-01
Every practitioner active in the field of assisted reproduction treatment is aware of the risks and complications related to twin and higher-order multiple pregnancies. Introduction of single embryo transfer (SET) into IVF/intracytoplasmic sperm injection (ICSI) is one of the possible ways of reducing the rate of twin pregnancy. Careful selection of patients, in combination with elective SET, has been shown to decrease the twin pregnancy rate while maintaining a stable ongoing pregnancy rate. The combination of a woman younger than 38 years of age, in her first or second IVF/ICSI cycle and with an embryo with a high implantation potential is the key to successful SET. This article will discuss embryo selection and patient selection and review the data published on SET. In the Centre for Reproductive Medicine at Middelheim Hospital, 39% of all transfers in 2002 were SET; the ongoing pregnancy rate remained stable at 30.6%. The twin (multiple) pregnancy rate declined to 11.7%. Particular attention should be drawn to the augmenting effect of the pregnancy rate of frozen-thawed cycles. Health economic data available so far subscribe the plea for SET.
Luke, Barbara; Brown, Morton B; Wantman, Ethan; Stern, Judy E; Baker, Valerie L; Widra, Eric; Coddington, Charles C; Gibbons, William E; Van Voorhis, Bradley J; Ball, G David
2015-05-01
The purpose of this study was to use a validated prediction model to examine whether single embryo transfer (SET) over 2 cycles results in live birth rates (LBR) comparable with 2 embryos transferred (DET) in 1 cycle and reduces the probability of a multiple birth (ie, multiple birth rate [MBR]). Prediction models of LBR and MBR for a woman considering assisted reproductive technology developed from linked cycles from the Society for Assisted Reproductive Technology Clinic Outcome Reporting System for 2006-2012 were used to compare SET over 2 cycles with DET in 1 cycle. The prediction model was based on a woman's age, body mass index (BMI), gravidity, previous full-term births, infertility diagnoses, embryo state, number of embryos transferred, and number of cycles. To demonstrate the effect of the number of embryos transferred (1 or 2), the LBRs and MBRs were estimated for women with a single infertility diagnosis (male factor, ovulation disorders, diminished ovarian reserve, and unexplained); nulligravid; BMI of 20, 25, 30, and 35 kg/m2; and ages 25, 35, and 40 years old by cycle (first or second). The cumulative LBR over 2 cycles with SET was similar to or better than the LBR with DET in a single cycle (for example, for women with the diagnosis of ovulation disorders: 35 years old; BMI, 30 kg/m2; 54.4% vs 46.5%; and for women who are 40 years old: BMI, 30 kg/m(2); 31.3% vs 28.9%). The MBR with DET in 1 cycle was 32.8% for women 35 years old and 20.9% for women 40 years old; with SET, the cumulative MBR was 2.7% and 1.6%, respectively. The application of this validated predictive model demonstrated that the cumulative LBR is as good as or better with SET over 2 cycles than with DET in 1 cycle, while greatly reducing the probability of a multiple birth. Copyright © 2015 Elsevier Inc. All rights reserved.
Tn5Prime, a Tn5 based 5' capture method for single cell RNA-seq.
Cole, Charles; Byrne, Ashley; Beaudin, Anna E; Forsberg, E Camilla; Vollmers, Christopher
2018-06-01
RNA-sequencing (RNA-seq) is a powerful technique to investigate and quantify entire transcriptomes. Recent advances in the field have made it possible to explore the transcriptomes of single cells. However, most widely used RNA-seq protocols fail to provide crucial information regarding transcription start sites. Here we present a protocol, Tn5Prime, that takes advantage of the Tn5 transposase-based Smart-seq2 protocol to create RNA-seq libraries that capture the 5' end of transcripts. The Tn5Prime method dramatically streamlines the 5' capture process and is both cost effective and reliable. By applying Tn5Prime to bulk RNA and single cell samples, we were able to define transcription start sites as well as quantify transcriptomes at high accuracy and reproducibility. Additionally, similar to 3' end-based high-throughput methods like Drop-seq and 10× Genomics Chromium, the 5' capture Tn5Prime method allows the introduction of cellular identifiers during reverse transcription, simplifying the analysis of large numbers of single cells. In contrast to 3' end-based methods, Tn5Prime also enables the assembly of the variable 5' ends of the antibody sequences present in single B-cell data. Therefore, Tn5Prime presents a robust tool for both basic and applied research into the adaptive immune system and beyond.
Vega, Mario; Breborowicz, Andrzej; Moshier, Erin L; McGovern, Peter G; Keltz, Martin D
2014-08-01
To test the hypothesis that the blastulation rate is higher in euploid embryos than in aneuploid embryos as assessed by cleavage-stage biopsy with array-comprehensive genomic hybridization (aCGH). Retrospective cohort study. University-affiliated institution. Forty-one patients with 48 in vitro fertilization (IVF) cycles and 385 embryos that underwent cleavage-stage preimplantation genetic screening (PGS) with aCGH at the Continuum Reproductive Center between January 2010 and September 2013. None. Probability of blastocyst and/or fully expanded or hatching blastocyst (FEHB) progression depending on number of chromosomal abnormalities. Euploid embryos are twice as likely to progress to blastocyst and three times as likely to progress to FEHB than aneuploid embryos: 76% versus 37% and 56% versus 18%, respectively. For every additional chromosomal abnormality, the likelihood of progressing to the blastocyst stage decreases by 22% and the likelihood of progressing to FEHB decreases by 33%. Euploid embryos are far more likely than aneuploid embryos to progress to the blastocyst and FEHB stages. There is a linear decrease in probability of blastulation with the increasing number of chromosomal abnormalities. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Single embryo transfer and IVF/ICSI outcome: a balanced appraisal.
Gerris, Jan M R
2005-01-01
This review considers the value of single embryo transfer (SET) to prevent multiple pregnancies (MP) after IVF/ICSI. The incidence of MP (twins and higher order pregnancies) after IVF/ICSI is much higher (approximately 30%) than after natural conception (approximately 1%). Approximately half of all the neonates are multiples. The obstetric, neonatal and long-term consequences for the health of these children are enormous and costs incurred extremely high. Judicious SET is the only method to decrease this epidemic of iatrogenic multiple gestations. Clinical trials have shown that programmes with >50% of SET maintain high overall ongoing pregnancy rates ( approximately 30% per started cycle) while reducing the MP rate to <10%. Experience with SET remains largely European although the need to reduce MP is accepted worldwide. An important issue is how to select patients suitable for SET and embryos with a high putative implantation potential. The typical patient suitable for SET is young (aged <36 years) and in her first or second IVF/ICSI trial. Embryo selection is performed using one or a combination of embryo characteristics. Available evidence suggests that, for the overall population, day 3 and day 5 selection yield similar results but better than zygote selection results. Prospective studies correlating embryo characteristics with documented implantation potential, utilizing databases of individual embryos, are needed. The application of SET should be supported by other measures: reimbursement of IVF/ICSI (earned back by reducing costs), optimized cryopreservation to augment cumulative pregnancy rates per oocyte harvest and a standardized format for reporting results. To make SET the standard of care in the appropriate target group, there is a need for more clinical studies, for intensive counselling of patients, and for an increased sense of responsibility in patients, health care providers and health insurers.
Lu, Zhi Hong; Books, Jason T.; Ley, Timothy J.
2005-01-01
Proteins containing “cold shock” domains belong to the most evolutionarily conserved family of nucleic acid-binding proteins known among bacteria, plants, and animals. One of these proteins, YB-1, is widely expressed throughout development and has been implicated as a cell survival factor that regulates the transcription and/or translation of many cellular growth and death-related genes. For these reasons, YB-1 deficiency has been predicted to be incompatible with cell survival. However, the majority of YB-1−/− embryos develop normally up to embryonic day 13.5 (E13.5). After E13.5, YB-1−/− embryos exhibit severe growth retardation and progressive mortality, revealing a nonredundant role of YB-1 in late embryonic development. Fibroblasts derived from YB-1−/− embryos displayed a normal rate of protein synthesis and minimal alterations in the transcriptome and proteome but demonstrated reduced abilities to respond to oxidative, genotoxic, and oncogene-induced stresses. YB-1−/− cells under oxidative stress expressed high levels of the G1-specific CDK inhibitors p16Ink4a and p21Cip1 and senesced prematurely; this defect was corrected by knocking down CDK inhibitor levels with specific small interfering RNAs. These data suggest that YB-1 normally represses the transcription of CDK inhibitors, making it an important component of the cellular stress response signaling pathway. PMID:15899865
Arsenic Exposure to Killifish During Embryogenesis Alters Muscle Development
Gaworecki, Kristen M.; Chapman, Robert W.; Neely, Marion G.; D’Amico, Angela R.; Bain, Lisa J.
2012-01-01
Epidemiological studies have correlated arsenic exposure in drinking water with adverse developmental outcomes such as stillbirths, spontaneous abortions, neonatal mortality, low birth weight, delays in the use of musculature, and altered locomotor activity. Killifish (Fundulus heteroclitus) were used as a model to help to determine the mechanisms by which arsenic could impact development. Killifish embryos were exposed to three different sodium arsenite concentrations and were collected at 32 h post-fertilization (hpf), 42 hpf, 168 hpf, or < 24 h post-hatch. A killifish oligo microarray was developed and used to examine gene expression changes between control and 25-ppm arsenic-exposed hatchlings. With artificial neural network analysis of the transcriptomic data, accurate prediction of each group (control vs. arsenic-exposed embryos) was obtained using a small subset of only 332 genes. The genes differentially expressed include those involved in cell cycle, development, ubiquitination, and the musculature. Several of the genes involved in cell cycle regulation and muscle formation, such as fetuin B, cyclin D–binding protein 1, and CapZ, were differentially expressed in the embryos in a time- and dose-dependent manner. Examining muscle structure in the hatchlings showed that arsenic exposure during embryogenesis significantly reduces the average muscle fiber size, which is coupled with a significant 2.1- and 1.6-fold upregulation of skeletal myosin light and heavy chains, respectively. These findings collectively indicate that arsenic exposure during embryogenesis can initiate molecular changes that appear to lead to aberrant muscle formation. PMID:22058191
Cinemicrographic study of the cell movement in the primitive-streak-stage mouse embryo.
Nakatsuji, N; Snow, M H; Wylie, C C
1986-07-01
Migration of the mesoderm cells in the primitive-streak-stage mouse embryo was directly studied by cinemicrography using whole embryo culture and Nomarski differential interference contrast optics. Relative transparency and small size of the early mouse embryos enabled direct observation of the individual cells and their cell processes. Seven-day-old mouse embryos were isolated and cultured in a small chamber in a medium consisting of 50% rat serum and 50% Dulbecco's modified minimum essential medium. The mesoderm cells move away from the primitive streak in both anterior and antimesometrial (distal) directions at a mean velocity of 46 micron h-1. They extend cell processes and constantly change cell shape. They do not translocate extensively as isolated single cells, but usually maintain attachment to other mesoderm cells. They show frequent cell division preceded by rounding up of the cell bodies, and accompanied by vigorous blebbing before and after cytokinesis. This study shows that it is possible to examine the motility of embryonic cells inside the mammalian embryo by direct observation if the embryo is small and transparent enough for the use of the Nomarski optics.
Chen, Yu-Chih; Zhang, Zhixiong; Fouladdel, Shamileh; Deol, Yadwinder; Ingram, Patrick N; McDermott, Sean P; Azizi, Ebrahim; Wicha, Max S; Yoon, Euisik
2016-08-07
Considerable evidence suggests that cancer stem-like cells (CSCs) are critical in tumor pathogenesis, but their rarity and transience has led to much controversy about their exact nature. Although CSCs can be functionally identified using dish-based tumorsphere assays, it is difficult to handle and monitor single cells in dish-based approaches; single cell-based microfluidic approaches offer better control and reliable single cell derived sphere formation. However, like normal stem cells, CSCs are heavily regulated by their microenvironment, requiring tumor-stromal interactions for tumorigenic and proliferative behaviors. To enable single cell derived tumorsphere formation within a stromal microenvironment, we present a dual adherent/suspension co-culture device, which combines a suspension environment for single-cell tumorsphere assays and an adherent environment for co-culturing stromal cells in close proximity by selectively patterning polyHEMA in indented microwells. By minimizing dead volume and improving cell capture efficiency, the presented platform allows for the use of small numbers of cells (<100 cells). As a proof of concept, we co-cultured single T47D (breast cancer) cells and primary cancer associated fibroblasts (CAF) on-chip for 14 days to monitor sphere formation and growth. Compared to mono-culture, co-cultured T47D have higher tumorigenic potential (sphere formation rate) and proliferation rates (larger sphere size). Furthermore, 96-multiplexed single-cell transcriptome analyses were performed to compare the gene expression of co-cultured and mono-cultured T47D cells. Phenotypic changes observed in co-culture correlated with expression changes in genes associated with proliferation, apoptotic suppression, tumorigenicity and even epithelial-to-mesechymal transition. Combining the presented platform with single cell transcriptome analysis, we successfully identified functional CSCs and investigated the phenotypic and transcriptome effects induced by tumor-stromal interactions.
Fauque, Patricia; Jouannet, Pierre; Lesaffre, Corinne; Ripoche, Marie-Anne; Dandolo, Luisa; Vaiman, Daniel; Jammes, Hélène
2007-01-01
Background In the last few years, an increase in imprinting anomalies has been reported in children born from Assisted Reproductive Technology (ART). Various clinical and experimental studies also suggest alterations of embryo development after ART. Therefore, there is a need for studying early epigenetic anomalies which could result from ART manipulations, especially on single embryos. In this study, we evaluated the impact of superovulation, in vitro fertilization (IVF) and embryo culture conditions on proper genomic imprinting and blastocyst development in single mouse embryos. In this study, different experimental groups were established to obtain embryos from superovulated and non-superovulated females, either from in vivo or in vitro fertilized oocytes, themselves grown in vitro or not. The embryos were cultured either in M16 medium or in G1.2/G2.2 sequential medium. The methylation status of H19 Imprinting Control Region (ICR) and H19 promoter was assessed, as well as the gene expression level of H19, in individual blastocysts. In parallel, we have evaluated embryo cleavage kinetics and recorded morphological data. Results We show that: 1. The culture medium influences early embryo development with faster cleavage kinetics for culture in G1.2/G2.2 medium compared to M16 medium. 2. Epigenetic alterations of the H19 ICR and H19 PP are influenced by the fertilization method since methylation anomalies were observed only in the in vitro fertilized subgroup, however to different degrees according to the culture medium. 3. Superovulation clearly disrupted H19 gene expression in individual blastocysts. Moreover, when embryos were cultured in vitro after either in vivo or in vitro fertilization, the percentage of blastocysts which expressed H19 was higher in G1.2/G2.2 medium compared to M16. Conclusion Compared to previous reports utilizing pools of embryos, our study enables us to emphasize a high individual variability of blastocysts in the H19 ICR and H19 promoter methylation and H19 gene expression, with a striking effect of each manipulation associated to ART practices. Our results suggest that H19 could be used as a sensor of the epigenetic disturbance of the utilized techniques. PMID:17949482
Fauque, Patricia; Jouannet, Pierre; Lesaffre, Corinne; Ripoche, Marie-Anne; Dandolo, Luisa; Vaiman, Daniel; Jammes, Hélène
2007-10-18
In the last few years, an increase in imprinting anomalies has been reported in children born from Assisted Reproductive Technology (ART). Various clinical and experimental studies also suggest alterations of embryo development after ART. Therefore, there is a need for studying early epigenetic anomalies which could result from ART manipulations, especially on single embryos. In this study, we evaluated the impact of superovulation, in vitro fertilization (IVF) and embryo culture conditions on proper genomic imprinting and blastocyst development in single mouse embryos. In this study, different experimental groups were established to obtain embryos from superovulated and non-superovulated females, either from in vivo or in vitro fertilized oocytes, themselves grown in vitro or not. The embryos were cultured either in M16 medium or in G1.2/G2.2 sequential medium. The methylation status of H19 Imprinting Control Region (ICR) and H19 promoter was assessed, as well as the gene expression level of H19, in individual blastocysts. In parallel, we have evaluated embryo cleavage kinetics and recorded morphological data. We show that: 1. The culture medium influences early embryo development with faster cleavage kinetics for culture in G1.2/G2.2 medium compared to M16 medium. 2. Epigenetic alterations of the H19 ICR and H19 PP are influenced by the fertilization method since methylation anomalies were observed only in the in vitro fertilized subgroup, however to different degrees according to the culture medium. 3. Superovulation clearly disrupted H19 gene expression in individual blastocysts. Moreover, when embryos were cultured in vitro after either in vivo or in vitro fertilization, the percentage of blastocysts which expressed H19 was higher in G1.2/G2.2 medium compared to M16. Compared to previous reports utilizing pools of embryos, our study enables us to emphasize a high individual variability of blastocysts in the H19 ICR and H19 promoter methylation and H19 gene expression, with a striking effect of each manipulation associated to ART practices. Our results suggest that H19 could be used as a sensor of the epigenetic disturbance of the utilized techniques.
Air bubble migration is a random event post embryo transfer.
Confino, E; Zhang, J; Risquez, F
2007-06-01
Air bubble location following embryo transfer (ET) is the presumable placement spot of embryos. The purpose of this study was to document endometrial air bubble position and migration following embryo transfer. Multicenter prospective case study. Eighty-eight embryo transfers were performed under abdominal ultrasound guidance in two countries by two authors. A single or double air bubble was loaded with the embryos using a soft, coaxial, end opened catheters. The embryos were slowly injected 10-20 mm from the fundus. Air bubble position was recorded immediately, 30 minutes later and when the patient stood up. Bubble marker location analysis revealed a random distribution without visible gravity effect when the patients stood up. The bubble markers demonstrated splitting, moving in all directions and dispersion. Air bubbles move and split frequently post ET with the patient in the horizontal position, suggestive of active uterine contractions. Bubble migration analysis supports a rather random movement of the bubbles and possibly the embryos. Standing up changed somewhat bubble configuration and distribution in the uterine cavity. Gravity related bubble motion was uncommon, suggesting that horizontal rest post ET may not be necessary. This report challenges the common belief that a very accurate ultrasound guided embryo placement is mandatory. The very random bubble movement observed in this two-center study suggests that a large "window" of embryo placement maybe present.
Bettio, Daniela; Capalbo, Antonio; Albani, Elena; Rienzi, Laura; Achille, Valentina; Venci, Anna; Ubaldi, Filippo Maria; Levi Setti, Paolo Emanuele
2016-09-06
Preimplantation genetic screening (PGS) provides an opportunity to eliminate a potential implantation failure due to aneuploidy in infertile couples. Some studies clearly show that twins following single embryo transfer (SET) can be the result of a concurrent natural conception and an incidence as high as 1 in 5 twins has been reported. In our case PGS was performed on trophectoderm (TE) biopsies by quantitative polymerase chain reaction (qPCR). The product of conception (POC) was cytogenetically investigated after selection of the placental villi by means of the direct method. Molecular cytogenetic characterization of the POC was performed by fluorescence in situ hybridization (FISH) and array-comparative genomic hybridization (a-CGH) analyses. To investigate the possibility of a spontaneous conception, a panel of 40 single nucleotide polymorphisms (SNPs) was used to compare genetic similarity between the DNA of the POC and the DNA leftover of the TE biopsy. We describe a 36-year old infertile woman undergoing PGS who had a spontaneous abortion after a single euploid embryo transfer on a spontaneous cycle. The POC showed a 45,X karyotype confirmed by FISH and a-CGH. DNA fingerprinting demonstrated a genetic similarity of 75 % between the DNA of the POC and TE biopsy, consistent with a sibling status. All supernumerary euploid embryos were also tested showing a non-self relationship with the POC, excluding a mix-up event at the time of fetal embryo transfer. DNA fingerprinting of the transferred blastocyst and POC, confirmed the occurrence of a spontaneous conception. This case challenges the assumption that a pregnancy after assisted reproductive technology (ART) is always a result of ART, and strengthens the importance to avoid intercourses during PGS and natural transfer cycles. Moreover, cytogenetic analysis of the POCs is strongly recommended along with fingerprinting children born after PGS to see what the concordance is between the embryo transferred and the resultant child.
Pre-implantation diagnosis of aneuploidy by polar body and blastomere FISH analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munne, S.; Cohen, J.; Grifo, J.
1994-09-01
For preimplantation genetic diagnosis (PGD) of aneuploidy in human in-vitro fertilization (IVF), two blastomeres per embryo should be analyzed to minimize errors caused by FISH and mosaicism. But the biopsy of two cells from an 8-cell embryo can be detrimental. This can be substituted by initial FISH analysis of the first polar body (PB) and subsequent single blastomere analysis. Simultaneous FISH analysis of chromosomes X, Y, 18, 13/21 was used for first polar body aneuploidy analysis. Normal divalents appeared as single-dotted signals corresponding to their two chromatids. We found that pre-division of chromatids increased dramatically with time in culture. Allmore » but three pre-division events involved separation of chromatids within the PB or the egg, with a total of two chromatids in each. We concluded that PB aneuploidy analysis is safe when performed within 6 hours after egg retrieval. For our first clinical case we chose a 39 year-old female carrier of an X-linked disease already selected for FISH pre-implantation diagnosis. Eight polar bodies from 12 eggs were analyzed: six showed a normal X181321 complement of divalents; one had an extra chromatid for 13/21 (egg {number_sign}8); and one had a missing chromatid for 13/21 (egg {number_sign}10). After insemination, six fertilized eggs developed into embryos, including egg {number_sign}10 but not egg {number_sign}8. At day 3 of development, a single blastomere per embryo was analyzed by FISH. According to the blastomere analysis, one embryo was haploid, one tetraploid. The two normal female embryos were replaced and pregnancy and CFS results are pending. These results suggest that this technique can be successfully applied for PGD of major aneuploidies in IVF patients over 35. In addition, it indicates that studies on pre-division should be performed on eggs within six hours of retrieval.« less
EuroPineDB: a high-coverage web database for maritime pine transcriptome
2011-01-01
Background Pinus pinaster is an economically and ecologically important species that is becoming a woody gymnosperm model. Its enormous genome size makes whole-genome sequencing approaches are hard to apply. Therefore, the expressed portion of the genome has to be characterised and the results and annotations have to be stored in dedicated databases. Description EuroPineDB is the largest sequence collection available for a single pine species, Pinus pinaster (maritime pine), since it comprises 951 641 raw sequence reads obtained from non-normalised cDNA libraries and high-throughput sequencing from adult (xylem, phloem, roots, stem, needles, cones, strobili) and embryonic (germinated embryos, buds, callus) maritime pine tissues. Using open-source tools, sequences were optimally pre-processed, assembled, and extensively annotated (GO, EC and KEGG terms, descriptions, SNPs, SSRs, ORFs and InterPro codes). As a result, a 10.5× P. pinaster genome was covered and assembled in 55 322 UniGenes. A total of 32 919 (59.5%) of P. pinaster UniGenes were annotated with at least one description, revealing at least 18 466 different genes. The complete database, which is designed to be scalable, maintainable, and expandable, is freely available at: http://www.scbi.uma.es/pindb/. It can be retrieved by gene libraries, pine species, annotations, UniGenes and microarrays (i.e., the sequences are distributed in two-colour microarrays; this is the only conifer database that provides this information) and will be periodically updated. Small assemblies can be viewed using a dedicated visualisation tool that connects them with SNPs. Any sequence or annotation set shown on-screen can be downloaded. Retrieval mechanisms for sequences and gene annotations are provided. Conclusions The EuroPineDB with its integrated information can be used to reveal new knowledge, offers an easy-to-use collection of information to directly support experimental work (including microarray hybridisation), and provides deeper knowledge on the maritime pine transcriptome. PMID:21762488
Grazul-Bilska, Anna T; Pant, Disha; Luther, Justin S; Borowicz, Pawel P; Navanukraw, Chainarong; Caton, Joel S; Ward, Marcy A; Redmer, Dale A; Reynolds, Lawrence P
2006-05-01
The objectives of this study were to: (1) evaluate the pregnancy rates after transfer of embryos produced in the presence or absence of epidermal growth factor (EGF) during in vitro maturation, and (2) compare several variables of the gravid uterus on day 140 after fertilization in single, twin and triplet pregnancies in ewes (n = 12) bred naturally and in ewes (n = 18) after transfer of embryos produced in vitro. Oocytes collected from FSH-treated ewes (n = 18) were collected from all visible follicles and cultured in maturation medium with or without EGF. Oocytes were then fertilized in vitro by frozen-thawed semen. On day 5 after fertilization, embryos with > or = 16 cells were transferred to recipient ewes (n = 39). In addition 12 ewes were bred naturally. Pregnancy was verified by real-time ultrasonography on day 45 or later after embryo transfer (ET) or breeding. On day 140 of pregnancy, the reproductive tract was collected from all ewes and the following parameters were determined: the number, sex, weight and crown to rump length (CRL) of fetuses, weights of gravid uterus and fetal membranes, and weight and number of placentomes. Presence of EGF in maturation medium increased (P < 0.04) cleavage rates (78% versus 59%) and percentage of > or = 16 cell embryos on day 5 after fertilization (62% versus 40%). Pregnancy rates tended to be greater (P < 0.1) after transfer of embryos matured in the presence of EGF (52%) than in the absence of EGF (39%). EGF presence in maturation medium did not affect any variables of gravid uterus or fetal weight. For single pregnancies in naturally bred ewes and ewes after ET all uterine variables were similar. For twin pregnancies, weight of gravid uterus, weight of uterus plus fetal membranes, total weight of placentomes/ewe, mean weight of individual placentome, mean weight of fetus, total fetal weight/ewe and CRL were greater (P < 0.0001-0.04) for ewes after ET than for ewes bred naturally. The weights of gravid uterus, fluid, uterus plus fetal membranes, fetal membranes, total placentomes/ewe, mean weight of individual placentome and total fetal weight/ewe were greater (P < 0.0001-0.08) for triplet pregnancies in ewes after ET than single and twin pregnancies in ewes naturally bred or after ET. The number of placentomes/fetus was greatest (P < 0.0001-0.06) in single pregnancies in ewes bred naturally and after ET fewer in twin pregnancies in ewes bred naturally and after ET and fewest in triplet pregnancies in ewes after ET. The total number of placentomes/ewe was greatest (P < 0.0001-0.06) for twin pregnancies in ewes naturally bred, fewer in single pregnancies in ewes naturally bred and twin and triplet pregnancies after ET, and fewest in single pregnancies in ewes after ET. The mean weight of fetus was greater (P < 0.0001-0.07) in single pregnancies in ewes naturally bred or after ET than in twin or triplet pregnancies in ewes naturally bred or after ET. The CRL was the lowest (P < 0.01) in twin pregnancies in ewes bred naturally. For pregnancies after natural breeding and after ET, the number of fetuses/ewe was negatively correlated (P < 0.03-0.0001) with the weight of placentomes/fetus, the number of placentomes/fetus, the mean weight of the fetus and CRL, and was positively correlated (P < 0.0001-0.05) with weight of gravid uterus, the total number of placentomes/ewe and total fetal weight/ewe. These data demonstrate that the presence of EGF in maturation medium increases the rates of cleavage and early embryonic development, and has a tendency to enhance rates of pregnancy but does not affect variables of the gravid uteri in ewes after transfer of in vitro produced embryos. Transfer of embryos produced in vitro affected some uterine variables in twin but not single pregnancies to compare with pregnancies after natural breeding. In addition, culture conditions in the present experiment did not create large offspring syndrome. The low number of placentomes/fetus seen in triple pregnancies appears to be compensated for by the increase in the weight of each individual placentome.
Ye, F; Jin, Y; Kong, Y; Shi, J Z; Qiu, H T; Zhang, X; Zhang, S L; Lin, S M
2013-05-01
This study aimed to confirm that vertical transmission of hepatitis B virus (HBV) can occur via the infected ovum. Specimens studied were obtained from discarded test-tube embryos from mothers with chronic HBV infection who had received in vitro fertilization treatment. Single-cell reverse transcriptase-polymerase chain reaction was used to detect HBV mRNA in the embryos. HBV mRNA was detected in the cleavage embryos of patients with chronic HBV infection, with a detection rate of 13.2% (5/38). The level of serum HBV DNA was not related to the HBV mRNA positivity rates in embryos. In this study, HBV mRNA was detected in test-tube embryos from HBV-infected mothers who had received in vitro fertilization treatment. This confirms the theory of vertical transmission of HBV via the ovum, thereby providing an important theoretical basis for further study on the mechanism of HBV vertical transmission, influencing factors and blocking measures.
Sample Preparation and Mounting of Drosophila Embryos for Multiview Light Sheet Microscopy.
Schmied, Christopher; Tomancak, Pavel
2016-01-01
Light sheet fluorescent microscopy (LSFM), and in particular its most widespread flavor Selective Plane Illumination Microscopy (SPIM), promises to provide unprecedented insights into developmental dynamics of entire living systems. By combining minimal photo-damage with high imaging speed and sample mounting tailored toward the needs of the specimen, it enables in toto imaging of embryogenesis with high spatial and temporal resolution. Drosophila embryos are particularly well suited for SPIM imaging because the volume of the embryo does not change from the single cell embryo to the hatching larva. SPIM microscopes can therefore image Drosophila embryos embedded in rigid media, such as agarose, from multiple angles every few minutes from the blastoderm stage until hatching. Here, we describe sample mounting strategies to achieve such a recording. We also provide detailed protocols to realize multiview, long-term, time-lapse recording of Drosophila embryos expressing fluorescent markers on the commercially available Zeiss Lightsheet Z.1 microscope and the OpenSPIM.
Wang, Ruhung; N Meredith, Alicea; Lee, Michael; Deutsch, Dakota; Miadzvedskaya, Lizaveta; Braun, Elizabeth; Pantano, Paul; Harper, Stacey; Draper, Rockford
2016-08-01
Carbon nanotubes (CNTs) are often suspended in Pluronic® surfactants by sonication, which may confound toxicity studies because sonication of surfactants can create degradation products that are toxic to mammalian cells. Here, we present a toxicity assessment of Pluronic® F-108 with and without suspended CNTs using embryonic zebrafish as an in vivo model. Pluronic® sonolytic degradation products were toxic to zebrafish embryos just as they were to mammalian cells. When the toxic Pluronic® fragments were removed, there was little effect of pristine multi-walled CNTs (pMWNTs), carboxylated MWNTs (cMWNTs) or pristine single-walled carbon nanotubes (pSWNTs) on embryo viability and development, even at high concentrations. A gel electrophoretic method coupled with Raman imaging was developed to measure the bioaccumulation of CNTs by zebrafish embryos, and dose-dependent uptake of CNTs was observed. These data indicate that embryos accumulate pMWNTs, cMWNTs and pSWNTs yet there is very little embryo toxicity.
Wang, Ruhung; Meredith, Alicea N.; Lee, Michael; Deutsch, Dakota; Miadzvedskaya, Lizaveta; Braun, Elizabeth; Pantano, Paul; Harper, Stacey; Draper, Rockford
2015-01-01
Carbon nanotubes (CNTs) are often suspended in Pluronic® surfactants by sonication, which may confound toxicity studies because sonication of surfactants can create degradation products that are toxic to mammalian cells. Here, we present a toxicity assessment of Pluronic® F-108 with and without suspended CNTs using embryonic zebrafish as an in vivo model. Pluronic® sonolytic degradation products were toxic to zebrafish embryos just as they were to mammalian cells. When the toxic Pluronic® fragments were removed, there was little effect of pristine multi-walled CNTs (pMWNTs), carboxylated MWNTs (cMWNTs) or pristine single-walled carbon nanotubes (pSWNTs) on embryo viability and development, even at high concentrations. A gel electrophoretic method coupled with Raman imaging was developed to measure the bioaccumulation of CNTs by zebrafish embryos, and dose-dependent uptake of CNTs was observed. These data indicate that embryos accumulate pMWNTs, cMWNTs and pSWNTs yet there is very little embryo toxicity. PMID:26559437
Goodale, Lindsay F; Hayrabedran, Soren; Todorova, Krassimira; Roussev, Roumen; Ramu, Sivakumar; Stamatkin, Christopher; Coulam, Carolyn B; Barnea, Eytan R; Gilbert, Robert O
2017-05-16
Recurrent pregnancy loss (RPL) affects 2-3% of couples. Despite a detailed work-up, the etiology is frequently undefined, leading to non-targeted therapy. Viable embryos and placentae express PreImplantation Factor (PIF). Maternal circulating PIF regulates systemic immunity and reduces circulating natural killer cells cytotoxicity in RPL patients. PIF promotes singly cultured embryos' development while anti-PIF antibody abrogates it. RPL serum induced embryo toxicity is negated by PIF. We report that PIF rescues delayed embryo development caused by <3 kDa RPL serum fraction likely by reducing reactive oxygen species (ROS). We reveal that protein disulfide isomerase/thioredoxin (PDI/TRX) is a prime PIF target in the embryo, rendering it an important ROS scavenger. The 16F16-PDI/TRX inhibitor drastically reduced blastocyst development while exogenous PIF increased >2 fold the number of embryos reaching the blastocyst stage. Mechanistically, PDI-inhibitor preferentially binds covalently to oxidized PDI over its reduced form where PIF avidly binds. PIF by targeting PDI/TRX at a distinct site limits the inhibitor's pro-oxidative effects. The >3kDa RPL serum increased embryo demise by three-fold, an effect negated by PIF. However, embryo toxicity was not associated with the presence of putative anti-PIF antibodies. Collectively, PIF protects cultured embryos both against ROS, and higher molecular weight toxins. Using PIF for optimizing in vitro fertilization embryos development and reducing RPL is warranted.
Single gene and gene interaction effects on fertilization and embryonic survival rates in cattle.
Khatib, H; Huang, W; Wang, X; Tran, A H; Bindrim, A B; Schutzkus, V; Monson, R L; Yandell, B S
2009-05-01
Decrease in fertility and conception rates is a major cause of economic loss and cow culling in dairy herds. Conception rate is the product of fertilization rate and embryonic survival rate. Identification of genetic factors that cause the death of embryos is the first step in eliminating this problem from the population and thereby increasing reproductive efficiency. A candidate pathway approach was used to identify candidate genes affecting fertilization and embryo survival rates using an in vitro fertilization experimental system. A total of 7,413 in vitro fertilizations were performed using oocytes from 504 ovaries and semen samples from 10 different bulls. Fertilization rate was calculated as the number of cleaved embryos 48 h postfertilization out of the total number of oocytes exposed to sperm. Survival rate of embryos was calculated as the number of blastocysts on d 7 of development out of the number of total embryos cultured. All ovaries were genotyped for 8 genes in the POU1F1 signaling pathway. Single-gene analysis revealed significant associations of GHR, PRLR, STAT5A, and UTMP with survival rate and of POU1F1, GHR, STAT5A, and OPN with fertilization rate. To further characterize the contribution of the entire integrated POU1F1 pathway to fertilization and early embryonic survival, a model selection procedure was applied. Comparisons among the different models showed that interactions between adjacent genes in the pathway revealed a significant contribution to the variation in fertility traits compared with other models that analyzed only bull information or only genes without interactions. Moreover, some genes that were not significant in the single-gene analysis showed significant effects in the interaction analysis. Thus, we propose that single genes as well as an entire pathway can be used in selection programs to improve reproduction performance in dairy cattle.
Noninvasive metabolic profiling using microfluidics for analysis of single preimplantation embryos.
Urbanski, John Paul; Johnson, Mark T; Craig, David D; Potter, David L; Gardner, David K; Thorsen, Todd
2008-09-01
Noninvasive analysis of metabolism at the single cell level will have many applications in evaluating cellular physiology. One clinically relevant application would be to determine the metabolic activities of embryos produced through assisted reproduction. There is increasing evidence that embryos with greater developmental capacity have distinct metabolic profiles. One of the standard techniques for evaluating embryonic metabolism has been to evaluate consumption and production of several key energetic substrates (glucose, pyruvate, and lactate) using microfluorometric enzymatic assays. These assays are performed manually using constriction pipets, which greatly limits the utility of this system. Through multilayer soft-lithography, we have designed a microfluidic device that can perform these assays in an automated fashion. Following manual loading of samples and enzyme cocktail reagents, this system performs sample and enzyme cocktail aliquotting, mixing of reagents, data acquisition, and data analysis without operator intervention. Optimization of design and operating regimens has resulted in the ability to perform serial measurements of glucose, pyruvate, and lactate in triplicate with submicroliter sample volumes within 5 min. The current architecture allows for automated analysis of 10 samples and intermittent calibration over a 3 h period. Standard curves generated for each metabolite have correlation coefficients that routinely exceed 0.99. With the use of a standard epifluorescent microscope and CCD camera, linearity is obtained with metabolite concentrations in the low micromolar range (low femtomoles of total analyte). This system is inherently flexible, being easily adapted for any NAD(P)H-based assay and scaled up in terms of sample ports. Open source JAVA-based software allows for simple alterations in routine algorithms. Furthermore, this device can be used as a standalone device in which media samples are loaded or be integrated into microfluidic culture systems for in line, real time metabolic evaluation. With the improved throughput and flexibility of this system, many barriers to evaluating metabolism of embryos and single cells are eliminated. As a proof of principle, metabolic activities of single murine embryos were evaluated using this device.
Wheat (Triticum aestivum L.) transformation using immature embryos.
Ishida, Yuji; Tsunashima, Masako; Hiei, Yukoh; Komari, Toshihiko
2015-01-01
Wheat may now be transformed very efficiently by Agrobacterium tumefaciens. Under the protocol hereby described, immature embryos of healthy plants of wheat cultivar Fielder grown in a well-conditioned greenhouse were pretreated with centrifuging and cocultivated with A. tumefaciens. Transgenic wheat plants were obtained routinely from between 40 and 90 % of the immature embryos, thus infected in our tests. All regenerants were normal in morphology and fully fertile. About half of the transformed plants carried single copy of the transgene, which are inherited by the progeny in a Mendelian fashion.
Production of Fatty Acid Components of Meadowfoam Oil in Somatic Soybean Embryos
Cahoon, Edgar B.; Marillia, Elizabeth-France; Stecca, Kevin L.; Hall, Sarah E.; Taylor, David C.; Kinney, Anthony J.
2000-01-01
The seed oil of meadowfoam (Limnanthes alba) and other Limnanthes spp. is enriched in the unusual fatty acid Δ5-eicosenoic acid (20:1Δ5). This fatty acid has physical and chemical properties that make the seed oil of these plants useful for a number of industrial applications. An expressed sequence tag approach was used to identify cDNAs for enzymes involved in the biosynthesis of 20:1Δ5). By random sequencing of a library prepared from developing Limnanthes douglasii seeds, a class of cDNAs was identified that encode a homolog of acyl-coenzyme A (CoA) desaturases found in animals, fungi, and cyanobacteria. Expression of a cDNA for the L. douglasii acyl-CoA desaturase homolog in somatic soybean (Glycine max) embryos behind a strong seed-specific promoter resulted in the accumulation of Δ5-hexadecenoic acid to amounts of 2% to 3% (w/w) of the total fatty acids of single embryos. Δ5-Octadecenoic acid and 20:1Δ5 also composed <1% (w/w) each of the total fatty acids of these embryos. In addition, cDNAs were identified from the L. douglasii expressed sequence tags that encode a homolog of fatty acid elongase 1 (FAE1), a β-ketoacyl-CoA synthase that catalyzes the initial step of very long-chain fatty acid synthesis. Expression of the L. douglassi FAE1 homolog in somatic soybean embryos was accompanied by the accumulation of C20 and C22 fatty acids, principally as eicosanoic acid, to amounts of 18% (w/w) of the total fatty acids of single embryos. To partially reconstruct the biosynthetic pathway of 20:1Δ5 in transgenic plant tissues, cDNAs for the L. douglasii acyl-CoA desaturase and FAE1 were co-expressed in somatic soybean embryos. In the resulting transgenic embryos, 20:1Δ5 and Δ5-docosenoic acid composed up to 12% of the total fatty acids. PMID:10982439
Production of fatty acid components of meadowfoam oil in somatic soybean embryos.
Cahoon, E B; Marillia, E F; Stecca, K L; Hall, S E; Taylor, D C; Kinney, A J
2000-09-01
The seed oil of meadowfoam (Limnanthes alba) and other Limnanthes spp. is enriched in the unusual fatty acid Delta(5)-eicosenoic acid (20:1Delta(5)). This fatty acid has physical and chemical properties that make the seed oil of these plants useful for a number of industrial applications. An expressed sequence tag approach was used to identify cDNAs for enzymes involved in the biosynthesis of 20:1Delta(5)). By random sequencing of a library prepared from developing Limnanthes douglasii seeds, a class of cDNAs was identified that encode a homolog of acyl-coenzyme A (CoA) desaturases found in animals, fungi, and cyanobacteria. Expression of a cDNA for the L. douglasii acyl-CoA desaturase homolog in somatic soybean (Glycine max) embryos behind a strong seed-specific promoter resulted in the accumulation of Delta(5)-hexadecenoic acid to amounts of 2% to 3% (w/w) of the total fatty acids of single embryos. Delta(5)-Octadecenoic acid and 20:1Delta(5) also composed <1% (w/w) each of the total fatty acids of these embryos. In addition, cDNAs were identified from the L. douglasii expressed sequence tags that encode a homolog of fatty acid elongase 1 (FAE1), a beta-ketoacyl-CoA synthase that catalyzes the initial step of very long-chain fatty acid synthesis. Expression of the L. douglassi FAE1 homolog in somatic soybean embryos was accompanied by the accumulation of C(20) and C(22) fatty acids, principally as eicosanoic acid, to amounts of 18% (w/w) of the total fatty acids of single embryos. To partially reconstruct the biosynthetic pathway of 20:1Delta(5) in transgenic plant tissues, cDNAs for the L. douglasii acyl-CoA desaturase and FAE1 were co-expressed in somatic soybean embryos. In the resulting transgenic embryos, 20:1Delta(5) and Delta(5)-docosenoic acid composed up to 12% of the total fatty acids.
Teasdale, Luisa C; Köhler, Frank; Murray, Kevin D; O'Hara, Tim; Moussalli, Adnan
2016-09-01
The qualification of orthology is a significant challenge when developing large, multiloci phylogenetic data sets from assembled transcripts. Transcriptome assemblies have various attributes, such as fragmentation, frameshifts and mis-indexing, which pose problems to automated methods of orthology assessment. Here, we identify a set of orthologous single-copy genes from transcriptome assemblies for the land snails and slugs (Eupulmonata) using a thorough approach to orthology determination involving manual alignment curation, gene tree assessment and sequencing from genomic DNA. We qualified the orthology of 500 nuclear, protein-coding genes from the transcriptome assemblies of 21 eupulmonate species to produce the most complete phylogenetic data matrix for a major molluscan lineage to date, both in terms of taxon and character completeness. Exon capture targeting 490 of the 500 genes (those with at least one exon >120 bp) from 22 species of Australian Camaenidae successfully captured sequences of 2825 exons (representing all targeted genes), with only a 3.7% reduction in the data matrix due to the presence of putative paralogs or pseudogenes. The automated pipeline Agalma retrieved the majority of the manually qualified 500 single-copy gene set and identified a further 375 putative single-copy genes, although it failed to account for fragmented transcripts resulting in lower data matrix completeness when considering the original 500 genes. This could potentially explain the minor inconsistencies we observed in the supported topologies for the 21 eupulmonate species between the manually curated and 'Agalma-equivalent' data set (sharing 458 genes). Overall, our study confirms the utility of the 500 gene set to resolve phylogenetic relationships at a range of evolutionary depths and highlights the importance of addressing fragmentation at the homolog alignment stage for probe design. © 2016 John Wiley & Sons Ltd.
Goel, Shailendra; Chen, Zhenbang; Conner, Joann A; Akiyama, Yukio; Hanna, Wayne W; Ozias-Akins, Peggy
2003-01-01
Apomixis is a means of asexual reproduction by which plants produce embryos without meiosis and fertilization; thus the embryo is of clonal, maternal origin. We previously reported molecular markers showing no recombination with the trait for aposporous embryo sac development in Pennisetum squamulatum and Cenchrus ciliaris, and the collective single-dose alleles defined an apospory-specific genomic region (ASGR). Fluorescence in situ hybridization (FISH) was used to confirm that the ASGR is a hemizygous genomic region and to determine its chromosomal position with respect to rDNA loci and centromere repeats. We also documented chromosome transmission from P. squamulatum in several backcrosses (BCs) with P. glaucum using genomic in situ hybridization (GISH). One to three complete P. squamulatum chromosomes were detected in BC(6), but only one of the three hybridized with the ASGR-linked markers. In P. squamulatum and in all BCs examined, the apospory-linked markers were located in the distal region of the short arm of a single chromosome. All alien chromosomes behaved as univalents during meiosis and segregated randomly in BC(3) and later BC generations, but presence of the ASGR-carrier chromosome alone was sufficient to confer apospory. FISH results support our hypotheses that hemizygosity, proximity to centromeric sequences, and chromosome structure may all play a role in low recombination in the ASGR. PMID:12663545
Schlapp, Geraldine; Goyeneche, Lucía; Fernández, Gabriel; Menchaca, Alejo; Crispo, Martina
2015-02-01
To evaluate the effect of the nonsteroidal anti-inflammatory drugs tolfenamic acid and flunixin meglumine in pregnancy rate and embryo survival of recipient mice subjected to embryo transfer. A total of 142 recipient females were transferred with 2,931 embryos and treated with a single injection of tolfenamic acid (1 mg/kg; n = 54 females with 1,129 embryos), flunixin meglumine (2.5 mg/kg; n = 46 females with 942 embryos), or bi-distilled water (10 mL/kg) as control group (n = 42 females with 860 embryos). Pregnancy was checked 2 weeks after embryo transfer, delivery was registered on the due date, and litter size was recorded on Day 7 after birth. Pregnancy rate of tolfenamic acid treated females was significantly higher than flunixin group (P < 0.05) and showed a tendency to be higher when compared to the control group (P = 0.06). The number of pups born from transferred embryos in pregnant females was significantly higher for both treatment groups compared to controls (P < 0.05). Number of pups from total transferred embryos was higher for both treatment groups (P < 0.05) when compared to controls. The use of tolfenamic acid at the time of embryo transfer improves both pregnancy rate and number of live pups in recipient mice, with optimal effects observed with flunixin meglumine. We suggest that the use of tolfenamic acid has beneficial effects on the maintenance of pregnancy and embryo survival in recipient mice, which should be taken into account for further studies in other mammalian females.
Methanol as a cryoprotectant for equine embryos.
Bass, L D; Denniston, D J; Maclellan, L J; McCue, P M; Seidel, G E; Squires, E L
2004-09-15
Equine embryos (n=43) were recovered nonsurgically 7-8 days after ovulation and randomly assigned to be cryopreserved in one of two cryoprotectants: 48% (15M) methanol (n=22) or 10% (136 M) glycerol (n=21). Embryos (300-1000 microm) were measured at five intervals after exposure to glycerol (0, 2, 5, 10 and 15 min) or methanol (0, 15, 35, 75 and 10 min) to determine changes (%) in diameter over time (+/-S.D.). Embryos were loaded into 0.25-ml plastic straws, sealed, placed in a programmable cell freezer and cooled from room temperature (22 degrees C) to -6 degrees C. Straws were then seeded, held at -6 degrees C for 10 min and then cooled to -33 degrees C before being plunged into liquid nitrogen. Two or three embryos within a treatment group were thawed and assigned to be either cultured for 12 h prior to transfer or immediately nonsurgically transferred to a single mare. Embryo diameter decreased in all embryos upon initial exposure to cryoprotectant. Embryos in methanol shrank and recovered slightly to 76+/-8 % of their original diameter; however, embryos in glycerol continued to shrink, reaching 57+/-6 % of their original diameter prior to cryopreservation. Survival rates of embryos through Day 16 of pregnancy were 38 and 23%, respectively (P>0.05) for embryos cryopreserved in the presence of glycerol or methanol. There was no difference in pregnancy rates of mares receiving embryos that were cultured prior to transfer or not cultured (P>0.05). Preliminary experiments indicated that 48% methanol was not toxic to fresh equine embryos but methanol provided no advantage over glycerol as a cryoprotectant for equine blastocysts.
Akagi, Jin; Khoshmanesh, Khashayar; Evans, Barbara; Hall, Chris J.; Crosier, Kathryn E.; Cooper, Jonathan M.; Crosier, Philip S.; Wlodkowic, Donald
2012-01-01
Zebrafish (Danio rerio) has recently emerged as a powerful experimental model in drug discovery and environmental toxicology. Drug discovery screens performed on zebrafish embryos mirror with a high level of accuracy the tests usually performed on mammalian animal models, and fish embryo toxicity assay (FET) is one of the most promising alternative approaches to acute ecotoxicity testing with adult fish. Notwithstanding this, automated in-situ analysis of zebrafish embryos is still deeply in its infancy. This is mostly due to the inherent limitations of conventional techniques and the fact that metazoan organisms are not easily susceptible to laboratory automation. In this work, we describe the development of an innovative miniaturized chip-based device for the in-situ analysis of zebrafish embryos. We present evidence that automatic, hydrodynamic positioning, trapping and long-term immobilization of single embryos inside the microfluidic chips can be combined with time-lapse imaging to provide real-time developmental analysis. Our platform, fabricated using biocompatible polymer molding technology, enables rapid trapping of embryos in low shear stress zones, uniform drug microperfusion and high-resolution imaging without the need of manual embryo handling at various developmental stages. The device provides a highly controllable fluidic microenvironment and post-analysis eleuthero-embryo stage recovery. Throughout the incubation, the position of individual embryos is registered. Importantly, we also for first time show that microfluidic embryo array technology can be effectively used for the analysis of anti-angiogenic compounds using transgenic zebrafish line (fli1a:EGFP). The work provides a new rationale for rapid and automated manipulation and analysis of developing zebrafish embryos at a large scale. PMID:22606275
Estrada, Beatriz; Maeland, Anne D; Gisselbrecht, Stephen S; Bloor, James W; Brown, Nicholas H; Michelson, Alan M
2007-07-15
Multinucleated myotubes develop by the sequential fusion of individual myoblasts. Using a convergence of genomic and classical genetic approaches, we have discovered a novel gene, singles bar (sing), that is essential for myoblast fusion. sing encodes a small multipass transmembrane protein containing a MARVEL domain, which is found in vertebrate proteins involved in processes such as tight junction formation and vesicle trafficking where--as in myoblast fusion--membrane apposition occurs. sing is expressed in both founder cells and fusion competent myoblasts preceding and during myoblast fusion. Examination of embryos injected with double-stranded sing RNA or embryos homozygous for ethane methyl sulfonate-induced sing alleles revealed an identical phenotype: replacement of multinucleated myofibers by groups of single, myosin-expressing myoblasts at a stage when formation of the mature muscle pattern is complete in wild-type embryos. Unfused sing mutant myoblasts form clusters, suggesting that early recognition and adhesion of these cells are unimpaired. To further investigate this phenotype, we undertook electron microscopic ultrastructural studies of fusing myoblasts in both sing and wild-type embryos. These experiments revealed that more sing mutant myoblasts than wild-type contain pre-fusion complexes, which are characterized by electron-dense vesicles paired on either side of the fusing plasma membranes. In contrast, embryos mutant for another muscle fusion gene, blown fuse (blow), have a normal number of such complexes. Together, these results lead to the hypothesis that sing acts at a step distinct from that of blow, and that sing is required on both founder cell and fusion-competent myoblast membranes to allow progression past the pre-fusion complex stage of myoblast fusion, possibly by mediating fusion of the electron-dense vesicles to the plasma membrane.
Functional and evolutionary insights from the Ciona notochord transcriptome.
Reeves, Wendy M; Wu, Yuye; Harder, Matthew J; Veeman, Michael T
2017-09-15
The notochord of the ascidian Ciona consists of only 40 cells, and is a longstanding model for studying organogenesis in a small, simple embryo. Here, we perform RNAseq on flow-sorted notochord cells from multiple stages to define a comprehensive Ciona notochord transcriptome. We identify 1364 genes with enriched expression and extensively validate the results by in situ hybridization. These genes are highly enriched for Gene Ontology terms related to the extracellular matrix, cell adhesion and cytoskeleton. Orthologs of 112 of the Ciona notochord genes have known notochord expression in vertebrates, more than twice as many as predicted by chance alone. This set of putative effector genes with notochord expression conserved from tunicates to vertebrates will be invaluable for testing hypotheses about notochord evolution. The full set of Ciona notochord genes provides a foundation for systems-level studies of notochord gene regulation and morphogenesis. We find only modest overlap between this set of notochord-enriched transcripts and the genes upregulated by ectopic expression of the key notochord transcription factor Brachyury, indicating that Brachyury is not a notochord master regulator gene as strictly defined. © 2017. Published by The Company of Biologists Ltd.
Integrated proteomic and transcriptomic analysis of the Aedes aegypti eggshell
2014-01-01
Background Mosquito eggshells show remarkable diversity in physical properties and structure consistent with adaptations to the wide variety of environments exploited by these insects. We applied proteomic, transcriptomic, and hybridization in situ techniques to identify gene products and pathways that participate in the assembly of the Aedes aegypti eggshell. Aedes aegypti population density is low during cold and dry seasons and increases immediately after rainfall. The survival of embryos through unfavorable periods is a key factor in the persistence of their populations. The work described here supports integrated vector control approaches that target eggshell formation and result in Ae. aegypti drought-intolerant phenotypes for public health initiatives directed to reduce mosquito-borne diseases. Results A total of 130 proteins were identified from the combined mass spectrometric analyses of eggshell preparations. Conclusions Classification of proteins according to their known and putative functions revealed the complexity of the eggshell structure. Three novel Ae. aegypti vitelline membrane proteins were discovered. Odorant-binding and cysteine-rich proteins that may be structural components of the eggshell were identified. Enzymes with peroxidase, laccase and phenoloxidase activities also were identified, and their likely involvements in cross-linking reactions that stabilize the eggshell structure are discussed. PMID:24707823
Transcriptome-wide investigation of genomic imprinting in chicken.
Frésard, Laure; Leroux, Sophie; Servin, Bertrand; Gourichon, David; Dehais, Patrice; Cristobal, Magali San; Marsaud, Nathalie; Vignoles, Florence; Bed'hom, Bertrand; Coville, Jean-Luc; Hormozdiari, Farhad; Beaumont, Catherine; Zerjal, Tatiana; Vignal, Alain; Morisson, Mireille; Lagarrigue, Sandrine; Pitel, Frédérique
2014-04-01
Genomic imprinting is an epigenetic mechanism by which alleles of some specific genes are expressed in a parent-of-origin manner. It has been observed in mammals and marsupials, but not in birds. Until now, only a few genes orthologous to mammalian imprinted ones have been analyzed in chicken and did not demonstrate any evidence of imprinting in this species. However, several published observations such as imprinted-like QTL in poultry or reciprocal effects keep the question open. Our main objective was thus to screen the entire chicken genome for parental-allele-specific differential expression on whole embryonic transcriptomes, using high-throughput sequencing. To identify the parental origin of each observed haplotype, two chicken experimental populations were used, as inbred and as genetically distant as possible. Two families were produced from two reciprocal crosses. Transcripts from 20 embryos were sequenced using NGS technology, producing ∼200 Gb of sequences. This allowed the detection of 79 potentially imprinted SNPs, through an analysis method that we validated by detecting imprinting from mouse data already published. However, out of 23 candidates tested by pyrosequencing, none could be confirmed. These results come together, without a priori, with previous statements and phylogenetic considerations assessing the absence of genomic imprinting in chicken.
Kennedy, Laura; Vass, J. Keith; Haggart, D. Ross; Moore, Steve; Burczynski, Michael E.; Crowther, Dan; Miele, Gino
2008-01-01
Peripheral blood as a surrogate tissue for transcriptome profiling holds great promise for the discovery of diagnostic and prognostic disease biomarkers, particularly when target tissues of disease are not readily available. To maximize the reliability of gene expression data generated from clinical blood samples, both the sample collection and the microarray probe generation methods should be optimized to provide stabilized, reproducible and representative gene expression profiles faithfully representing the transcriptional profiles of the constituent blood cell types present in the circulation. Given the increasing innovation in this field in recent years, we investigated a combination of methodological advances in both RNA stabilisation and microarray probe generation with the goal of achieving robust, reliable and representative transcriptional profiles from whole blood. To assess the whole blood profiles, the transcriptomes of purified blood cell types were measured and compared with the global transcriptomes measured in whole blood. The results demonstrate that a combination of PAXgene™ RNA stabilising technology and single-stranded cDNA probe generation afforded by the NuGEN Ovation RNA amplification system V2™ enables an approach that yields faithful representation of specific hematopoietic cell lineage transcriptomes in whole blood without the necessity for prior sample fractionation, cell enrichment or globin reduction. Storage stability assessments of the PAXgene™ blood samples also advocate a short, fixed room temperature storage time for all PAXgene™ blood samples collected for the purposes of global transcriptional profiling in clinical studies. PMID:19578521
Noninvasive imaging systems for gametes and embryo selection in IVF programs: a review.
Omidi, Marjan; Faramarzi, Azita; Agharahimi, Azam; Khalili, Mohammad Ali
2017-09-01
Optimizing the efficiency of the in vitro fertilization procedure by improving pregnancy rates and reducing the risks of multiple pregnancies simultaneously are the primary goals of the current assisted reproductive technology program. With the move to single embryo transfers, the need for more cost-effective and noninvasive methods for embryo selection prior to transfer is paramount. These aims require advancement in a more acquire gametes/embryo testing and selection procedures using high-tech devices. Therefore, the aim of the present review is to evaluate the efficacy of noninvasive imaging systems in the current literatures, focusing on the potential clinical application in infertile patients undergoing assisted reproductive technology treatments. In this regards, three advanced imaging systems of motile sperm organelle morphology examination, polarization microscopy and time-lapse monitoring for the best selection of the gametes and preimplantation embryos are introduced in full. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Morphogenesis and gravity in a whole amphibian embryo and in isolated blastomeres of sea urchins.
Izumi-Kurotani, Akemi; Kiyomoto, Masato
2003-01-01
Fertilization and subsequent embryogenesis of newts occurred normally under microgravity in two Astronewt flight experiments. By accumulation of the results from the amphibian flight experiments including 'Astronewt', it is considered that gravity has rather small effects on the early development of amphibian eggs. However, some temporary abnormalities, which recover in the course of the further developmental process, have been observed. Some regulations may occur in whole embryos. For a thorough knowledge about the role of gravity in morphogenesis, we need to investigate the gravitational effects on a single cell in a whole embryo. We propose a new experimental system with sea urchin embryos and micromeres for further studies at a cellular level of the effects of gravity on morphogenesis.
Wilkins, Laetitia G E; Fumagalli, Luca; Wedekind, Claus
2016-10-01
Recent studies found fish egg-specific bacterial communities that changed over the course of embryogenesis, suggesting an interaction between the developing host and its microbiota. Indeed, single-strain infections demonstrated that the virulence of opportunistic bacteria is influenced by environmental factors and host immune genes. However, the interplay between a fish embryo host and its microbiota has not been studied yet at the community level. To test whether host genetics affects the assemblage of egg-associated bacteria, adult brown trout (Salmo trutta) were sampled from a natural population. Their gametes were used for full-factorial in vitro fertilizations to separate sire from dam effects. In total, 2520 embryos were singly raised under experimental conditions that differently support microbial growth. High-throughput 16S rRNA amplicon sequencing was applied to characterize bacterial communities on milt and fertilized eggs across treatments. Dam and sire identity influenced embryo mortality, time until hatching and composition of egg-associated microbiotas, but no link between bacterial communities on milt and on fertilized eggs could be found. Elevated resources increased embryo mortality and modified bacterial communities with a shift in their putative functional potential. Resource availability did not significantly affect any parental effects on embryo performance. Sire identity affected bacterial diversity that turned out to be a significant predictor of hatching time: embryos associated with high bacterial diversity hatched later. We conclude that both host genetics and the availability of resources define diversity and composition of egg-associated bacterial communities that then affect the life history of their hosts. © 2016 John Wiley & Sons Ltd.
Petukhov, Viktor; Guo, Jimin; Baryawno, Ninib; Severe, Nicolas; Scadden, David T; Samsonova, Maria G; Kharchenko, Peter V
2018-06-19
Recent single-cell RNA-seq protocols based on droplet microfluidics use massively multiplexed barcoding to enable simultaneous measurements of transcriptomes for thousands of individual cells. The increasing complexity of such data creates challenges for subsequent computational processing and troubleshooting of these experiments, with few software options currently available. Here, we describe a flexible pipeline for processing droplet-based transcriptome data that implements barcode corrections, classification of cell quality, and diagnostic information about the droplet libraries. We introduce advanced methods for correcting composition bias and sequencing errors affecting cellular and molecular barcodes to provide more accurate estimates of molecular counts in individual cells.
2012-01-01
Background Adaptive divergence driven by environmental heterogeneity has long been a fascinating topic in ecology and evolutionary biology. The study of the genetic basis of adaptive divergence has, however, been greatly hampered by a lack of genomic information. The recent development of transcriptome sequencing provides an unprecedented opportunity to generate large amounts of genomic data for detailed investigations of the genetics of adaptive divergence in non-model organisms. Herein, we used the Illumina sequencing platform to sequence the transcriptome of brain and liver tissues from a single individual of the Vinous-throated Parrotbill, Paradoxornis webbianus bulomachus, an ecologically important avian species in Taiwan with a wide elevational range of sea level to 3100 m. Results Our 10.1 Gbp of sequences were first assembled based on Zebra Finch (Taeniopygia guttata) and chicken (Gallus gallus) RNA references. The remaining reads were then de novo assembled. After filtering out contigs with low coverage (<10X), we retained 67,791 of 487,336 contigs, which covered approximately 5.3% of the P. w. bulomachus genome. Of 7,779 contigs retained for a top-hit species distribution analysis, the majority (about 86%) were matched to known Zebra Finch and chicken transcripts. We also annotated 6,365 contigs to gene ontology (GO) terms: in total, 122 GO-slim terms were assigned, including biological process (41%), molecular function (32%), and cellular component (27%). Many potential genetic markers for future adaptive genomic studies were also identified: 8,589 single nucleotide polymorphisms, 1,344 simple sequence repeats and 109 candidate genes that might be involved in elevational or climate adaptation. Conclusions Our study shows that transcriptome data can serve as a rich genetic resource, even for a single run of short-read sequencing from a single individual of a non-model species. This is the first study providing transcriptomic information for species in the avian superfamily Sylvioidea, which comprises more than 1,000 species. Our data can be used to study adaptive divergence in heterogeneous environments and investigate other important ecological and evolutionary questions in parrotbills from different populations and even in other species in the Sylvioidea. PMID:22530590
Semrau, Stefan; Goldmann, Johanna E; Soumillon, Magali; Mikkelsen, Tarjei S; Jaenisch, Rudolf; van Oudenaarden, Alexander
2017-10-23
Gene expression heterogeneity in the pluripotent state of mouse embryonic stem cells (mESCs) has been increasingly well-characterized. In contrast, exit from pluripotency and lineage commitment have not been studied systematically at the single-cell level. Here we measure the gene expression dynamics of retinoic acid driven mESC differentiation from pluripotency to lineage commitment, using an unbiased single-cell transcriptomics approach. We find that the exit from pluripotency marks the start of a lineage transition as well as a transient phase of increased susceptibility to lineage specifying signals. Our study reveals several transcriptional signatures of this phase, including a sharp increase of gene expression variability and sequential expression of two classes of transcriptional regulators. In summary, we provide a comprehensive analysis of the exit from pluripotency and lineage commitment at the single cell level, a potential stepping stone to improved lineage manipulation through timing of differentiation cues.
Stephenson, William; Donlin, Laura T; Butler, Andrew; Rozo, Cristina; Bracken, Bernadette; Rashidfarrokhi, Ali; Goodman, Susan M; Ivashkiv, Lionel B; Bykerk, Vivian P; Orange, Dana E; Darnell, Robert B; Swerdlow, Harold P; Satija, Rahul
2018-02-23
Droplet-based single-cell RNA-seq has emerged as a powerful technique for massively parallel cellular profiling. While this approach offers the exciting promise to deconvolute cellular heterogeneity in diseased tissues, the lack of cost-effective and user-friendly instrumentation has hindered widespread adoption of droplet microfluidic techniques. To address this, we developed a 3D-printed, low-cost droplet microfluidic control instrument and deploy it in a clinical environment to perform single-cell transcriptome profiling of disaggregated synovial tissue from five rheumatoid arthritis patients. We sequence 20,387 single cells revealing 13 transcriptomically distinct clusters. These encompass an unsupervised draft atlas of the autoimmune infiltrate that contribute to disease biology. Additionally, we identify previously uncharacterized fibroblast subpopulations and discern their spatial location within the synovium. We envision that this instrument will have broad utility in both research and clinical settings, enabling low-cost and routine application of microfluidic techniques.
Evolution of egg coats: linking molecular biology and ecology.
Shu, Longfei; Suter, Marc J-F; Räsänen, Katja
2015-08-01
One central goal of evolutionary biology is to explain how biological diversity emerges and is maintained in nature. Given the complexity of the phenotype and the multifaceted nature of inheritance, modern evolutionary ecological studies rely heavily on the use of molecular tools. Here, we show how molecular tools help to gain insight into the role of egg coats (i.e. the extracellular structures surrounding eggs and embryos) in evolutionary diversification. Egg coats are maternally derived structures that have many biological functions from mediating fertilization to protecting the embryo from environmental hazards. They show great molecular, structural and functional diversity across species, but intraspecific variability and the role of ecology in egg coat evolution have largely been overlooked. Given that much of the variation that influences egg coat function is ultimately determined by their molecular phenotype, cutting-edge molecular tools (e.g. proteomics, glycomics and transcriptomics), combined with functional assays, are needed for rigorous inferences on their evolutionary ecology. Here, we identify key research areas and highlight emerging molecular techniques that can increase our understanding of the role of egg coats in the evolution of biological diversity, from adaptation to speciation. © 2015 John Wiley & Sons Ltd.
Heterogeneity in Oct4 and Sox2 Targets Biases Cell Fate in 4-Cell Mouse Embryos.
Goolam, Mubeen; Scialdone, Antonio; Graham, Sarah J L; Macaulay, Iain C; Jedrusik, Agnieszka; Hupalowska, Anna; Voet, Thierry; Marioni, John C; Zernicka-Goetz, Magdalena
2016-03-24
The major and essential objective of pre-implantation development is to establish embryonic and extra-embryonic cell fates. To address when and how this fundamental process is initiated in mammals, we characterize transcriptomes of all individual cells throughout mouse pre-implantation development. This identifies targets of master pluripotency regulators Oct4 and Sox2 as being highly heterogeneously expressed between blastomeres of the 4-cell embryo, with Sox21 showing one of the most heterogeneous expression profiles. Live-cell tracking demonstrates that cells with decreased Sox21 yield more extra-embryonic than pluripotent progeny. Consistently, decreasing Sox21 results in premature upregulation of the differentiation regulator Cdx2, suggesting that Sox21 helps safeguard pluripotency. Furthermore, Sox21 is elevated following increased expression of the histone H3R26-methylase CARM1 and is lowered following CARM1 inhibition, indicating the importance of epigenetic regulation. Therefore, our results indicate that heterogeneous gene expression, as early as the 4-cell stage, initiates cell-fate decisions by modulating the balance of pluripotency and differentiation. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Effect of women’s age on embryo morphology, cleavage rate and competence—A multicenter cohort study
Grøndahl, Marie Louise; Christiansen, Sofie Lindgren; Kesmodel, Ulrik Schiøler; Agerholm, Inge Errebo; Lemmen, Josephine Gabriela; Lundstrøm, Peter; Bogstad, Jeanette; Raaschou-Jensen, Morten; Ladelund, Steen
2017-01-01
This multicenter cohort study on embryo assessment and outcome data from 11,744 IVF/ICSI cycles with 104,830 oocytes and 42,074 embryos, presents the effect of women’s age on oocyte, zygote, embryo morphology and cleavage parameters, as well as cycle outcome measures corrected for confounding factors as center, partner’s age and referral diagnosis. Cycle outcome data confirmed the well-known effect of women’s age. Oocyte nuclear maturation and proportion of 2 pro-nuclear (2PN) zygotes were not affected by age, while a significant increase in 3PN zygotes was observed in both IVF and ICSI (p<0.0001) with increasing age. Maternal age had no effect on cleavage parameters or on the morphology of the embryo day 2 post insemination. Interestingly, initial hCG value after single embryo transfer followed by ongoing pregnancy was increased with age in both IVF (p = 0.007) and ICSI (p = 0.001) cycles. For the first time, we show that a woman’s age does impose a significant footprint on early embryo morphological development (3PN). In addition, the developmentally competent embryos were associated with increased initial hCG values as the age of the women increased. Further studies are needed to elucidate, if this increase in initial hCG value with advancing maternal age is connected to the embryo or the uterus. PMID:28422964
Early embryo development in Fucus distichus is auxin sensitive
NASA Technical Reports Server (NTRS)
Basu, Swati; Sun, Haiguo; Brian, Leigh; Quatrano, Ralph L.; Muday, Gloria K.
2002-01-01
Auxin and polar auxin transport have been implicated in controlling embryo development in land plants. The goal of these studies was to determine if auxin and auxin transport are also important during the earliest stages of development in embryos of the brown alga Fucus distichus. Indole-3-acetic acid (IAA) was identified in F. distichus embryos and mature tissues by gas chromatography-mass spectroscopy. F. distichus embryos accumulate [(3)H]IAA and an inhibitor of IAA efflux, naphthylphthalamic acid (NPA), elevates IAA accumulation, suggesting the presence of an auxin efflux protein complex similar to that found in land plants. F. distichus embryos normally develop with a single unbranched rhizoid, but growth on IAA leads to formation of multiple rhizoids and growth on NPA leads to formation of embryos with branched rhizoids, at concentrations that are active in auxin accumulation assays. The effects of IAA and NPA are complete before 6 h after fertilization (AF), which is before rhizoid germination and cell division. The maximal effects of IAA and NPA are between 3.5 and 5 h AF and 4 and 5.5 h AF, respectively. Although, the location of the planes of cell division was significantly altered in NPA- and IAA-treated embryos, these abnormal divisions occurred after abnormal rhizoid initiation and branching was observed. The results of this study suggest that auxin acts in the formation of apical basal patterns in F. distichus embryo development.
Urbarova, Ilona; Karlsen, Bård Ove; Okkenhaug, Siri; Seternes, Ole Morten; Johansen, Steinar D.; Emblem, Åse
2012-01-01
Marine bioprospecting is the search for new marine bioactive compounds and large-scale screening in extracts represents the traditional approach. Here, we report an alternative complementary protocol, called digital marine bioprospecting, based on deep sequencing of transcriptomes. We sequenced the transcriptomes from the adult polyp stage of two cold-water sea anemones, Bolocera tuediae and Hormathia digitata. We generated approximately 1.1 million quality-filtered sequencing reads by 454 pyrosequencing, which were assembled into approximately 120,000 contigs and 220,000 single reads. Based on annotation and gene ontology analysis we profiled the expressed mRNA transcripts according to known biological processes. As a proof-of-concept we identified polypeptide toxins with a potential blocking activity on sodium and potassium voltage-gated channels from digital transcriptome libraries. PMID:23170083
Scholz, Stefan; Ortmann, Julia; Klüver, Nils; Léonard, Marc
2014-08-01
Distribution and marketing of chemicals require appropriate labelling of health, physical and environmental hazards according to the United Nations global harmonisation system (GHS). Labelling for (human) acute toxicity categories is based on experimental findings usually obtained by oral, dermal or inhalative exposure of rodents. There is a strong societal demand for replacing animal experiments conducted for safety assessment of chemicals. Fish embryos are considered as alternative to animal testing and are proposed as predictive model both for environmental and human health effects. Therefore, we tested whether LC50s of the fish embryo acute toxicity test would allow effectively predicting of acute mammalian toxicity categories. A database of published fish embryo LC50 containing 641 compounds was established. For these compounds corresponding rat oral LD50 were identified resulting in 364 compounds for which both fish embryo LC50 and rat LD50 was available. Only a weak correlation of fish embryo LC50 and rat oral LD50 was obtained. Fish embryos were also not able to effectively predict GHS oral acute toxicity categories. We concluded that due to fundamental exposure protocol differences (single oral dose versus water-borne exposure) a reverse dosimetry approach is needed to explore the predictive capacity of fish embryos. Copyright © 2014 Elsevier Inc. All rights reserved.
Li, Yunfeng; Zhou, Zunchun; Tian, Meilin; Tian, Yi; Dong, Ying; Li, Shilei; Liu, Weidong; He, Chongbo
2017-08-01
In this study, single nucleotide polymorphism (SNP), microsatellite (SSR) and differentially expressed genes (DEGs) in the oral parts, gonads, and umbrella parts of the jellyfish Rhopilema esculentum were analyzed by RNA-Seq technology. A total of 76.4 million raw reads and 72.1 million clean reads were generated from deep sequencing. Approximately 119,874 tentative unigenes and 149,239 transcripts were obtained. A total of 1,034,708 SNP markers were detected in the three tissues. For microsatellite mining, 5088 SSRs were identified from the unigene sequences. The most frequent repeat motifs were mononucleotide repeats, which accounted for 61.93%. Transcriptome comparison of the three tissues yielded a total of 8841 DEGs, of which 3560 were up-regulated and 5281 were down-regulated. This study represents the greatest sequencing effort carried out for a jellyfish and provides the first high-throughput transcriptomic resource for jellyfish. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Blasi, Thomas; Buettner, Florian; Strasser, Michael K.; Marr, Carsten; Theis, Fabian J.
2017-06-01
Accessing gene expression at a single-cell level has unraveled often large heterogeneity among seemingly homogeneous cells, which remains obscured when using traditional population-based approaches. The computational analysis of single-cell transcriptomics data, however, still imposes unresolved challenges with respect to normalization, visualization and modeling the data. One such issue is differences in cell size, which introduce additional variability into the data and for which appropriate normalization techniques are needed. Otherwise, these differences in cell size may obscure genuine heterogeneities among cell populations and lead to overdispersed steady-state distributions of mRNA transcript numbers. We present cgCorrect, a statistical framework to correct for differences in cell size that are due to cell growth in single-cell transcriptomics data. We derive the probability for the cell-growth-corrected mRNA transcript number given the measured, cell size-dependent mRNA transcript number, based on the assumption that the average number of transcripts in a cell increases proportionally to the cell’s volume during the cell cycle. cgCorrect can be used for both data normalization and to analyze the steady-state distributions used to infer the gene expression mechanism. We demonstrate its applicability on both simulated data and single-cell quantitative real-time polymerase chain reaction (PCR) data from mouse blood stem and progenitor cells (and to quantitative single-cell RNA-sequencing data obtained from mouse embryonic stem cells). We show that correcting for differences in cell size affects the interpretation of the data obtained by typically performed computational analysis.
Quantitative imaging of mammalian transcriptional dynamics: from single cells to whole embryos.
Zhao, Ziqing W; White, Melanie D; Bissiere, Stephanie; Levi, Valeria; Plachta, Nicolas
2016-12-23
Probing dynamic processes occurring within the cell nucleus at the quantitative level has long been a challenge in mammalian biology. Advances in bio-imaging techniques over the past decade have enabled us to directly visualize nuclear processes in situ with unprecedented spatial and temporal resolution and single-molecule sensitivity. Here, using transcription as our primary focus, we survey recent imaging studies that specifically emphasize the quantitative understanding of nuclear dynamics in both time and space. These analyses not only inform on previously hidden physical parameters and mechanistic details, but also reveal a hierarchical organizational landscape for coordinating a wide range of transcriptional processes shared by mammalian systems of varying complexity, from single cells to whole embryos.
Zhang, L; Wei, Z; Liu, P
1998-12-01
To analyze the various factors in an in vitro fertilization and embryo transfer (IVF-ET) program which may affect the clinical pregnacy rate. A retrospective study was done on 559 IVF-ET cycles from 1992-Nov. 1995. The indication for treatment was bilateral tubal blockage. The chi 2 analysis of single factor variants with SPSS-PC + V3.0 was used for statistics. The overall clinical pregnancy rate in 559 cycles was 21.6%. The cause of tubal blockage due to tuberculoses consisted of 28.4%, and 34.9% of secondary sterility had the history of artificial abortion. The changes of environment, the different causes of tubal blockage, the history of previous intrauterine pregnancy did not affect the clinical pregnancy rate. When the number of embryos transferred increased to 5, the clinical pregnancy rate was highest 32.5%. The cumulative embryo score or embryo quality was related significantly with clinical pregnancy rate. The number and quality of embryos transferred are important factors affecting the clinical pregnancy rate. However, measures to prevent high-order multiple pregnancy and studies on the survival potential of embryos besides their morphology should be emphasized.
Teklenburg, Gijs; Salker, Madhuri; Molokhia, Mariam; Lavery, Stuart; Trew, Geoffrey; Aojanepong, Tepchongchit; Mardon, Helen J.; Lokugamage, Amali U.; Rai, Raj; Landles, Christian; Roelen, Bernard A. J.; Quenby, Siobhan; Kuijk, Ewart W.; Kavelaars, Annemieke; Heijnen, Cobi J.; Regan, Lesley; Brosens, Jan J.; Macklon, Nick S.
2010-01-01
Background Pregnancy is widely viewed as dependent upon an intimate dialogue, mediated by locally secreted factors between a developmentally competent embryo and a receptive endometrium. Reproductive success in humans is however limited, largely because of the high prevalence of chromosomally abnormal preimplantation embryos. Moreover, the transient period of endometrial receptivity in humans uniquely coincides with differentiation of endometrial stromal cells (ESCs) into highly specialized decidual cells, which in the absence of pregnancy invariably triggers menstruation. The role of cyclic decidualization of the endometrium in the implantation process and the nature of the decidual cytokines and growth factors that mediate the crosstalk with the embryo are unknown. Methodology/Principal Findings We employed a human co-culture model, consisting of decidualizing ESCs and single hatched blastocysts, to identify the soluble factors involved in implantation. Over the 3-day co-culture period, approximately 75% of embryos arrested whereas the remainder showed normal development. The levels of 14 implantation factors secreted by the stromal cells were determined by multiplex immunoassay. Surprisingly, the presence of a developing embryo had no significant effect on decidual secretions, apart from a modest reduction in IL-5 levels. In contrast, arresting embryos triggered a strong response, characterized by selective inhibition of IL-1β, -6, -10, -17, -18, eotaxin, and HB-EGF secretion. Co-cultures were repeated with undifferentiated ESCs but none of the secreted cytokines were affected by the presence of a developing or arresting embryo. Conclusions Human ESCs become biosensors of embryo quality upon differentiation into decidual cells. In view of the high incidence of gross chromosomal errors in human preimplantation embryos, cyclic decidualization followed by menstrual shedding may represent a mechanism of natural embryo selection that limits maternal investment in developmentally impaired pregnancies. PMID:20422011
Peippo, Jaana; Viitala, Sirja; Virta, Jouni; Räty, Mervi; Tammiranta, Niina; Lamminen, Terttu; Aro, Johanna; Myllymäki, Hannu; Vilkki, Johanna
2007-11-01
We report a method for multiplex genotyping of bovine embryo microblade biopsies. We have tested the reliability of the method and the viability of the embryos in vitro and in vivo. Two polymorphic gene markers (GHR F279Y and PRLR S18N) associated with milk production traits and one marker for sex diagnosis (ZFX/ZFY) were genotyped simultaneously with a method that combines nested PCR and allelic discrimination. To test the accuracy of genotyping, in the first experiment the genotypes of 134 biopsies from in vitro produced embryos were compared to genotypes determined from the corresponding embryos after biopsy. The method proved to be highly accurate as only in three cases (two for PRLR S18N and one for GHR F279Y) out of 395 genotypes the genotype was in disagreement between the two samples. The viability of similarly biopsied embryos was tested in parallel: after 24-hr culture 94.6% of embryos recovered in vitro. In the second experiment, a total of 150 in vivo-produced embryos were biopsied on Day 7 and genotyped. After the genotyping results were obtained on Day 8, female embryos were selected for transfer. From a total of 57 selected embryos 43 were transferred individually and 14 as pairs. After single embryo transfers, 19 recipients became pregnant and after embryo transfers in pairs one became pregnant. The success of genotyping was tested with the genotypes of donors and bulls and also from the hair samples of born calves. All calves were females and of the same genotypes determined from the biopsy. (c) 2007 Wiley-Liss, Inc.
Crawford, Sara; Boulet, Sheree L; Mneimneh, Allison S; Perkins, Kiran M; Jamieson, Denise J; Zhang, Yujia; Kissin, Dmitry M
2016-02-01
To assess treatment and pregnancy/infant-associated medical costs and birth outcomes for assisted reproductive technology (ART) cycles in a subset of patients using elective double embryo (ET) and to project the difference in costs and outcomes had the cycles instead been sequential single ETs (fresh followed by frozen if the fresh ET did not result in live birth). Retrospective cohort study using 2012 and 2013 data from the National ART Surveillance System. Infertility treatment centers. Fresh, autologous double ETs performed in 2012 among ART patients younger than 35 years of age with no prior ART use who cryopreserved at least one embryo. Sequential single and double ETs. Actual live birth rates and estimated ART treatment and pregnancy/infant-associated medical costs for double ET cycles started in 2012 and projected ART treatment and pregnancy/infant-associated medical costs if the double ET cycles had been performed as sequential single ETs. The estimated total ART treatment and pregnancy/infant-associated medical costs were $580.9 million for 10,001 double ETs started in 2012. If performed as sequential single ETs, estimated costs would have decreased by $195.0 million to $386.0 million, and live birth rates would have increased from 57.7%-68.0%. Sequential single ETs, when clinically appropriate, can reduce total ART treatment and pregnancy/infant-associated medical costs by reducing multiple births without lowering live birth rates. Published by Elsevier Inc.
Orecchioni, Marco; Bedognetti, Davide; Newman, Leon; Fuoco, Claudia; Spada, Filomena; Hendrickx, Wouter; Marincola, Francesco M; Sgarrella, Francesco; Rodrigues, Artur Filipe; Ménard-Moyon, Cécilia; Cesareni, Gianni; Kostarelos, Kostas; Bianco, Alberto; Delogu, Lucia G
2017-10-24
Understanding the biomolecular interactions between graphene and human immune cells is a prerequisite for its utilization as a diagnostic or therapeutic tool. To characterize the complex interactions between graphene and immune cells, we propose an integrative analytical pipeline encompassing the evaluation of molecular and cellular parameters. Herein, we use single-cell mass cytometry to dissect the effects of graphene oxide (GO) and GO functionalized with amino groups (GONH 2 ) on 15 immune cell populations, interrogating 30 markers at the single-cell level. Next, the integration of single-cell mass cytometry with genome-wide transcriptome analysis shows that the amine groups reduce the perturbations caused by GO on cell metabolism and increase biocompatibility. Moreover, GONH 2 polarizes T-cell and monocyte activation toward a T helper-1/M1 immune response. This study describes an innovative approach for the analysis of the effects of nanomaterials on distinct immune cells, laying the foundation for the incorporation of single-cell mass cytometry on the experimental pipeline.
Hybrid error correction and de novo assembly of single-molecule sequencing reads
Koren, Sergey; Schatz, Michael C.; Walenz, Brian P.; Martin, Jeffrey; Howard, Jason; Ganapathy, Ganeshkumar; Wang, Zhong; Rasko, David A.; McCombie, W. Richard; Jarvis, Erich D.; Phillippy, Adam M.
2012-01-01
Emerging single-molecule sequencing instruments can generate multi-kilobase sequences with the potential to dramatically improve genome and transcriptome assembly. However, the high error rate of single-molecule reads is challenging, and has limited their use to resequencing bacteria. To address this limitation, we introduce a novel correction algorithm and assembly strategy that utilizes shorter, high-identity sequences to correct the error in single-molecule sequences. We demonstrate the utility of this approach on Pacbio RS reads of phage, prokaryotic, and eukaryotic whole genomes, including the novel genome of the parrot Melopsittacus undulatus, as well as for RNA-seq reads of the corn (Zea mays) transcriptome. Our approach achieves over 99.9% read correction accuracy and produces substantially better assemblies than current sequencing strategies: in the best example, quintupling the median contig size relative to high-coverage, second-generation assemblies. Greater gains are predicted if read lengths continue to increase, including the prospect of single-contig bacterial chromosome assembly. PMID:22750884
Ibaraki, Harumi; Wu, Xiaoming; Uji, Susumu; Yokoi, Hayato; Sakai, Yoshifumi; Suzuki, Tohru
2015-12-01
The processes underlying vertebral development in teleosts and tetrapods differ markedly in a variety of ways. At present, the molecular basis of teleost vertebral development and growth is poorly understood. Understanding vertebral development at the molecular level is important for aquaculture to prevent vertebral anomalies that can arise from a variety of factors, including excess vitamin A (all-trans retinol, VA) in the diet. To facilitate studies on teloest vertebral development, we performed transcriptome analysis of four month old flounder, Paralichthys olivaceus, vertebrae using next-generation sequencing. Expression profile obtained demonstrates that some members of the hh, bmp, fgf, wnt gene families, and their receptors, hox, pax, sox, dlx and tbx gene families and ntl, which are known to function in notochord and somite development in embryos, are expressed in the vertebrae. It was also showed that in addition to the retinoic acid receptor (Rar), the vertebrae express alcohol dehydrogenase 1 and retinal dehydrogenase 2 which convert VA to all-trans-retinoic acid (RA). The assembled contigs also included cytochrome p450 family members, which inactivate RA, as well as phosphatidylcholine-retinol O-acetyltransferase, which converts VA to all-trans-retinyl ester, a stock form of VA. These data suggest that in teleost vertebrae, expression of various signals and transcription factors which function in the notochord and somite development is maintained until adult stage, and RA metabolism and signaling are active to regulate transcription of RA-responsible genes, such as hedgehog and hox genes. This is the first transcriptome analysis of teleost fish vertebrae. Copyright © 2015 Elsevier B.V. All rights reserved.
Medeiros, Marcelo N.; Logullo, Raquel; Ramos, Isabela B.; Sorgine, Marcos H. F.; Paiva-Silva, Gabriela O.; Mesquita, Rafael D.; Machado, Ednildo Alcantara; Coutinho, Maria Alice; Masuda, Hatisaburo; Capurro, Margareth L.; Ribeiro, José M.C.; Cardoso Braz, Glória Regina; Oliveira, Pedro L
2013-01-01
Insect oocytes grow in close association with the ovarian follicular epithelium (OFE), which escorts the oocyte during oogenesis and is responsible for synthesis and secretion of the eggshell. We describe a transcriptome of OFE of the triatomine bug Rhodnius prolixus, a vector of Chagas disease, to increase our knowledge of the role of FE in egg development. Random clones were sequenced from a cDNA library of different stages of follicle development. The transcriptome showed high commitment to transcription, protein synthesis, and secretion. The most abundant cDNA was a secreted (S) small, proline-rich protein with maximal expression in the vitellogenic follicle, suggesting a role in oocyte maturation. We also found Rp45, a chorion protein already described, and a putative chitin-associated cuticle protein that was an eggshell component candidate. Six transcripts coding for proteins related to the unfolded protein response (UPR) by were chosen and their expression analyzed. Surprisingly, transcripts related to UPR showed higher expression during early stages of development and downregulation during late stages, when transcripts coding for S proteins participating in chorion formation were highly expressed. Several transcripts with potential roles in oogenesis and embryo development are also discussed. We propose that intense protein synthesis at the FE results in reticulum stress (RS) and that lowering expression of a set of genes related to cell survival should lead to degeneration of follicular cells at oocyte maturation. This paradoxical suppression of UPR suggests that ovarian follicles may represent an interesting model for studying control of RS and cell survival in professional S cell types. PMID:21736942
Composition of single-step media used for human embryo culture.
Morbeck, Dean E; Baumann, Nikola A; Oglesbee, Devin
2017-04-01
To determine compositions of commercial single-step culture media and test with a murine model whether differences in composition are biologically relevant. Experimental laboratory study. University-based laboratory. Inbred female mice were superovulated and mated with outbred male mice. Amino acid, organic acid, and ions content were determined for single-step culture media: CSC, Global, G-TL, and 1-Step. To determine whether differences in composition of these media are biologically relevant, mouse one-cell embryos were cultured for 96 hours in each culture media at 5% and 20% oxygen in a time-lapse incubator. Compositions of four culture media were analyzed for concentrations of 30 amino acids, organic acids, and ions. Blastocysts at 96 hours of culture and cell cycle timings were calculated, and experiments were repeated in triplicate. Of the more than 30 analytes, concentrations of glucose, lactate, pyruvate, amino acids, phosphate, calcium, and magnesium varied in concentrations. Mouse embryos were differentially affected by oxygen in G-TL and 1-Step. Four single-step culture media have compositions that vary notably in pyruvate, lactate, and amino acids. Blastocyst development was affected by culture media and its interaction with oxygen concentration. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
PGS-FISH in reproductive medicine and perspective directions for improvement: a systematic review.
Zamora, Sandra; Clavero, Ana; Gonzalvo, M Carmen; de Dios Luna Del Castillo, Juan; Roldán-Nofuentes, Jose Antonio; Mozas, Juan; Castilla, Jose Antonio
2011-08-01
Embryo selection can be carried out via morphological criteria or by using genetic studies based on Preimplantation Genetic Screening. In the present study, we evaluate the clinical validity of Preimplantation Genetic Screening with fluorescence in situ hybridization (PGS-FISH) compared with morphological embryo criteria. A systematic review was made of the bibliography, with the following goals: firstly, to determine the prevalence of embryo chromosome alteration in clinical situations in which the PGS-FISH technique has been used; secondly, to calculate the statistics of diagnostic efficiency (negative Likelihood Ratio), using 2 × 2 tables, derived from PGS-FISH. The results obtained were compared with those obtained from embryo morphology. We calculated the probability of transferring at least one chromosome-normal embryo when it was selected using either morphological criteria or PGS-FISH, and considered what diagnostic performance should be expected of an embryo selection test with respect to achieving greater clinical validity than that obtained from embryo morphology. After an embryo morphology selection that produced a negative result (normal morphology), the likelihood of embryo aneuploidies was found to range from a pre-test value of 65% (prevalence of embryo chromosome alteration registered in all the study groups) to a post-test value of 55% (Confidence interval: 50-61), while after PGS-FISH with a negative result (euploid), the post-test probability was 42% (Confidence interval: 35-49) (p < 0.05). The probability of transferring at least one euploid embryo was the same whether 3 embryos were selected according to morphological criteria or whether 2, selected by PGS-FISH, were transferred. Any embryo selection test, if it is to provide greater clinical validity than embryo morphology, must present a LR-value of 0.40 (Confidence interval: 0.32-0.51) in single embryo transfer, and 0.06 (CI: 0.05-0.07) in double embryo transfer. With currently available technology, and taking into account the number of embryos to be transferred, the clinical validity of PGS-FISH, although superior to that of morphological criteria, does not appear to be clinically relevant.
Siddall, Mark E; Brugler, Mercer R; Kvist, Sebastian
2016-02-01
One of the recalcitrant questions regarding the evolutionary history of clitellate annelids involves the feeding preference of the common ancestor of extant rhynchobdellid (proboscis bearing) and arhynchobdellid (jaw bearing) leeches. Whereas early evidence, based on morphological data, pointed towards independent acquisitions of blood feeding in the 2 orders, molecular-based phylogenetic data suggest that the ancestor of modern leeches was a sanguivore. Here, we use a comparative transcriptomic approach in order to increase our understanding of the diversity of anticoagulation factors for 3 species of the genus Placobdella, for which comparative data have been lacking, and inspect these in light of archetypal anticoagulant data for both arhynchobdellid and other rhynchobdellid species. Notwithstanding the varying levels of host specificity displayed by the 3 different species of Placobdella, transcriptomic profiles with respect to anticoagulation factors were largely similar -this despite the fact that Placobdella kwetlumye only retains a single pair of salivary glands, as opposed to the 2 pairs more common in the genus. Results show that 9 different anticoagulant proteins and an additional 5 putative antihemostasis proteins are expressed in salivary secretions of the 3 species. In particular, an ortholog of the archetypal, single-copy, anticoagulant hirudin (not previously available as comparative data for rhynchobdellids) is present in at least 2 of 3 species examined, corroborating the notion of a single origin of blood feeding in the ancestral leech.
Eberwine, James; Bartfai, Tamas
2011-01-01
We report on an ‘unbiased’ molecular characterization of individual, adult neurons, active in a central, anterior hypothalamic neuronal circuit, by establishing cDNA libraries from each individual, electrophysiologically identified warm sensitive neuron (WSN). The cDNA libraries were analyzed by Affymetrix microarray. The presence and frequency of cDNAs was confirmed and enhanced with Illumina sequencing of each single cell cDNA library. cDNAs encoding the GABA biosynthetic enzyme. GAD1 and of adrenomedullin, galanin, prodynorphin, somatostatin, and tachykinin were found in the WSNs. The functional cellular and in vivo studies on dozens of the more than 500 neurotransmitter -, hormone- receptors and ion channels, whose cDNA was identified and sequence confirmed, suggest little or no discrepancy between the transcriptional and functional data in WSNs; whenever agonists were available for a receptor whose cDNA was identified, a functional response was found.. Sequencing single neuron libraries permitted identification of rarely expressed receptors like the insulin receptor, adiponectin receptor2 and of receptor heterodimers; information that is lost when pooling cells leads to dilution of signals and mixing signals. Despite the common electrophysiological phenotype and uniform GAD1 expression, WSN- transcriptomes show heterogenity, suggesting strong epigenetic influence on the transcriptome. Our study suggests that it is well-worth interrogating the cDNA libraries of single neurons by sequencing and chipping. PMID:20970451
Do, Ltk; Wittayarat, M; Terazono, T; Sato, Y; Taniguchi, M; Tanihara, F; Takemoto, T; Kazuki, Y; Kazuki, K; Oshimura, M; Otoi, T
2016-12-01
The current applications for cat cloning include production of models for the study of human and animal diseases. This study was conducted to investigate the optimal fusion protocol on in vitro development of transgenic cloned cat embryos by comparing duration of electric pulse. Cat fibroblast cells containing a human artificial chromosome (HAC) vector were used as genetically modified nuclear donor cells. Couplets were fused and activated simultaneously with a single DC pulse of 3.0 kV/cm for either 30 or 60 μs. Low rates of fusion and embryo development to the blastocyst stage were observed in the reconstructed HAC-transchromosomic embryos, when the duration of fusion was prolonged to 60 μs. In contrast, the prolongation of electric pulse duration improved the embryo development and quality in the reconstructed control embryos without HAC vector. Our results suggested that the optimal parameters of electric pulses for fusion in cat somatic cell nuclear transfer vary among the types used for donor cells. © 2016 Blackwell Verlag GmbH.
NASA Astrophysics Data System (ADS)
Cornaglia, Matteo; Mouchiroud, Laurent; Marette, Alexis; Narasimhan, Shreya; Lehnert, Thomas; Jovaisaite, Virginija; Auwerx, Johan; Gijs, Martin A. M.
2015-05-01
Studies of the real-time dynamics of embryonic development require a gentle embryo handling method, the possibility of long-term live imaging during the complete embryogenesis, as well as of parallelization providing a population’s statistics, while keeping single embryo resolution. We describe an automated approach that fully accomplishes these requirements for embryos of Caenorhabditis elegans, one of the most employed model organisms in biomedical research. We developed a microfluidic platform which makes use of pure passive hydrodynamics to run on-chip worm cultures, from which we obtain synchronized embryo populations, and to immobilize these embryos in incubator microarrays for long-term high-resolution optical imaging. We successfully employ our platform to investigate morphogenesis and mitochondrial biogenesis during the full embryonic development and elucidate the role of the mitochondrial unfolded protein response (UPRmt) within C. elegans embryogenesis. Our method can be generally used for protein expression and developmental studies at the embryonic level, but can also provide clues to understand the aging process and age-related diseases in particular.
Patterning in time and space: HoxB cluster gene expression in the developing chick embryo.
Gouveia, Analuce; Marcelino, Hugo M; Gonçalves, Lisa; Palmeirim, Isabel; Andrade, Raquel P
2015-01-01
The developing embryo is a paradigmatic model to study molecular mechanisms of time control in Biology. Hox genes are key players in the specification of tissue identity during embryo development and their expression is under strict temporal regulation. However, the molecular mechanisms underlying timely Hox activation in the early embryo remain unknown. This is hindered by the lack of a rigorous temporal framework of sequential Hox expression within a single cluster. Herein, a thorough characterization of HoxB cluster gene expression was performed over time and space in the early chick embryo. Clear temporal collinearity of HoxB cluster gene expression activation was observed. Spatial collinearity of HoxB expression was evidenced in different stages of development and in multiple tissues. Using embryo explant cultures we showed that HoxB2 is cyclically expressed in the rostral presomitic mesoderm with the same periodicity as somite formation, suggesting a link between timely tissue specification and somite formation. We foresee that the molecular framework herein provided will facilitate experimental approaches aimed at identifying the regulatory mechanisms underlying Hox expression in Time and Space.
Patterning in time and space: HoxB cluster gene expression in the developing chick embryo
Gouveia, Analuce; Marcelino, Hugo M; Gonçalves, Lisa; Palmeirim, Isabel; Andrade, Raquel P
2015-01-01
The developing embryo is a paradigmatic model to study molecular mechanisms of time control in Biology. Hox genes are key players in the specification of tissue identity during embryo development and their expression is under strict temporal regulation. However, the molecular mechanisms underlying timely Hox activation in the early embryo remain unknown. This is hindered by the lack of a rigorous temporal framework of sequential Hox expression within a single cluster. Herein, a thorough characterization of HoxB cluster gene expression was performed over time and space in the early chick embryo. Clear temporal collinearity of HoxB cluster gene expression activation was observed. Spatial collinearity of HoxB expression was evidenced in different stages of development and in multiple tissues. Using embryo explant cultures we showed that HoxB2 is cyclically expressed in the rostral presomitic mesoderm with the same periodicity as somite formation, suggesting a link between timely tissue specification and somite formation. We foresee that the molecular framework herein provided will facilitate experimental approaches aimed at identifying the regulatory mechanisms underlying Hox expression in Time and Space. PMID:25602523
Revealing the secret life of pre-implantation embryos by time-lapse monitoring: A review
Faramarzi, Azita; Khalili, Mohammad Ali; Micara, Giulietta; Agha-Rahimi, Azam
2017-01-01
High implantation success following in vitro fertilization cycles are achieved via the transfer of embryos with the highest developmental competence. Multiple pregnancies as a result of the transfer of several embryos per cycle accompany with various complication. Thus, single-embryo transfer (SET) is the preferred practice in assisted reproductive technique (ART) treatment. In order to improve the pregnancy rate for SET, embryologists need reliable biomarkers to aid their selection of embryos with the highest developmental potential. Time-lapse technology is a noninvasive alternative conventional microscopic assessment. It provides uninterrupted and continues the survey of embryo development to transfer day. Today, there are four time-lapse systems that are commercially available for ART centers. In world and Iran, the first time lapse babies were born in 2010 and 2015, respectively, conceived by SET. Here, we review the use of time-lapse monitoring in the observation of embryogenesis as well as its role in SET. Although, the findings from our review support common use of time-lapse monitoring in ART centers; but, future large studies assessing this system in well-designed trials are necessary. PMID:28744520
Biedler, James K; Tu, Zhijian
2010-07-08
The maternal zygotic transition marks the time at which transcription from the zygotic genome is initiated and a subset of maternal RNAs are progressively degraded in the developing embryo. A number of early zygotic genes have been identified in Drosophila melanogaster and comparisons to sequenced mosquito genomes suggest that some of these early zygotic genes such as bottleneck are fast-evolving or subject to turnover in dipteran insects. One objective of this study is to identify early zygotic genes from the yellow fever mosquito Aedes aegypti to study their evolution. We are also interested in obtaining early zygotic promoters that will direct transgene expression in the early embryo as part of a Medea gene drive system. Two novel early zygotic kinesin light chain genes we call AaKLC2.1 and AaKLC2.2 were identified by transcriptome sequencing of Aedes aegypti embryos at various time points. These two genes have 98% nucleotide and amino acid identity in their coding regions and show transcription confined to the early zygotic stage according to gene-specific RT-PCR analysis. These AaKLC2 genes have a paralogous gene (AaKLC1) in Ae. aegypti. Phylogenetic inference shows that an ortholog to the AaKLC2 genes is only found in the sequenced genome of Culex quinquefasciatus. In contrast, AaKLC1 gene orthologs are found in all three sequenced mosquito species including Anopheles gambiae. There is only one KLC gene in D. melanogaster and other sequenced holometabolous insects that appears to be similar to AaKLC1. Unlike AaKLC2, AaKLC1 is expressed in all life stages and tissues tested, which is consistent with the expression pattern of the An. gambiae and D. melanogaster KLC genes. Phylogenetic inference also suggests that AaKLC2 genes and their likely C. quinquefasciatus ortholog are fast-evolving genes relative to the highly conserved AaKLC1-like paralogs. Embryonic injection of a luciferase reporter under the control of a 1 kb fragment upstream of the AaKLC2.1 start codon shows promoter activity at least as early as 3 hours in the developing Ae. aegypti embryo. The AaKLC2.1 promoter activity reached ~1600 fold over the negative control at 5 hr after egg deposition. Transcriptome profiling by use of high throughput sequencing technologies has proven to be a valuable method for the identification and discovery of early and transient zygotic genes. The evolutionary investigation of the KLC gene family reveals that duplication is a source for the evolution of new genes that play a role in the dynamic process of early embryonic development. AaKLC2.1 may provide a promoter for early zygotic-specific transgene expression, which is a key component of the Medea gene drive system.
Pfeifer, N; Baston-Büst, D M; Hirchenhain, J; Friebe-Hoffmann, U; Rein, D T; Krüssel, J S; Hess, A P
2012-01-01
The aim of this paper was to determine the influence of different in vitro culture media on mRNA expression of Hedgehog genes, il-6, and important genes regarding reactive oxygen species in single mouse embryos. Reverse transcription of single embryos either cultured in vitro from day 0.5 until 3.5 (COOK's Cleavage medium or Vitrolife's G-1 PLUS medium) or in vivo until day 3.5 post coitum. PCR was carried out for β-actin followed by nested-PCR for shh, ihh, il-6, nox, gpx4, gpx1, and prdx2. The number of murine blastocysts cultured in COOK medium which expressed il-6, gpx4, gpx1, and prdx2 mRNA differed significantly compared to the in vivo group. Except for nox, the mRNA profile of the Vitrolife media group embryos varied significantly from the in vivo ones regarding the number of blastocysts expressing the mRNA of shh, ihh, il-6, gpx4, gpx1 and prdx2. The present study shows that different in vitro culture media lead to different mRNA expression profiles during early development. Even the newly developed in vitro culture media are not able to mimic the female reproductive tract. The question of long-term consequences for children due to assisted reproduction techniques needs to be addressed in larger studies.
Pfeifer, N.; Baston-Büst, D. M.; Hirchenhain, J.; Friebe-Hoffmann, U.; Rein, D. T.; Krüssel, J. S.; Hess, A. P.
2012-01-01
Background. The aim of this paper was to determine the influence of different in vitro culture media on mRNA expression of Hedgehog genes, il-6, and important genes regarding reactive oxygen species in single mouse embryos. Methods. Reverse transcription of single embryos either cultured in vitro from day 0.5 until 3.5 (COOK's Cleavage medium or Vitrolife's G-1 PLUS medium) or in vivo until day 3.5 post coitum. PCR was carried out for β-actin followed by nested-PCR for shh, ihh, il-6, nox, gpx4, gpx1, and prdx2. Results. The number of murine blastocysts cultured in COOK medium which expressed il-6, gpx4, gpx1, and prdx2 mRNA differed significantly compared to the in vivo group. Except for nox, the mRNA profile of the Vitrolife media group embryos varied significantly from the in vivo ones regarding the number of blastocysts expressing the mRNA of shh, ihh, il-6, gpx4, gpx1 and prdx2. Conclusions. The present study shows that different in vitro culture media lead to different mRNA expression profiles during early development. Even the newly developed in vitro culture media are not able to mimic the female reproductive tract. The question of long-term consequences for children due to assisted reproduction techniques needs to be addressed in larger studies. PMID:22919324
Fong, Keith S K; Hufnagel, Robert B; Khadka, Vedbar S; Corley, Michael J; Maunakea, Alika K; Fogelgren, Ben; Ahmed, Zubair M; Lozanoff, Scott
2016-05-01
Genetic variations affecting neural tube closure along the head result in malformations of the face and brain. Neural tube defects (NTDs) are among the most common birth defects in humans. We previously reported a mouse mutant called tuft that arose spontaneously in our wild-type 3H1 colony. Adult tuft mice present midline craniofacial malformations with or without an anterior cephalocele. In addition, affected embryos presented neural tube closure defects resulting in insufficient closure of the anterior neuropore or exencephaly. Here, through whole-genome sequencing, we identified a nonsense mutation in the Tet1 gene, which encodes a methylcytosine dioxygenase (TET1), co-segregating with the tuft phenotype. This mutation resulted in premature termination that disrupts the catalytic domain that is involved in the demethylation of cytosine. We detected a significant loss of TET enzyme activity in the heads of tuft embryos that were homozygous for the mutation and had NTDs. RNA-Seq transcriptome analysis indicated that multiple gene pathways associated with neural tube closure were dysregulated in tuft embryo heads. Among them, the expressions of Cecr2, Epha7 and Grhl2 were significantly reduced in some embryos presenting neural tube closure defects, whereas one or more components of the non-canonical WNT signaling pathway mediating planar cell polarity and convergent extension were affected in others. We further show that the recombinant mutant TET1 protein was capable of entering the nucleus and affected the expression of endogenous Grhl2 in IMCD-3 (inner medullary collecting duct) cells. These results indicate that TET1 is an epigenetic determinant for regulating genes that are crucial to closure of the anterior neural tube and its mutation has implications to craniofacial development, as presented by the tuft mouse. © 2016. Published by The Company of Biologists Ltd.
Das, Aayudh; Kim, Dea-Wook; Khadka, Pramod; Rakwal, Randeep; Rohila, Jai S.
2017-01-01
Untimely rains in wheat fields during harvest season can cause pre-harvest sprouting (PHS), which deteriorates the yield and quality of wheat crop. Metabolic homeostasis of the embryo plays a role in seed dormancy, determining the status of the maturing grains either as dormant (PHS-tolerant) or non-dormant (PHS-susceptible). Very little is known for direct measurements of global metabolites in embryonic tissues of dormant and non-dormant wheat seeds. In this study, physiologically matured and freshly harvested wheat seeds of PHS-tolerant (cv. Sukang, dormant) and PHS-susceptible (cv. Baegjoong, non-dormant) cultivars were water-imbibed, and the isolated embryos were subjected to high-throughput, global non-targeted metabolomic profiling. A careful comparison of identified metabolites between Sukang and Baegjoong embryos at 0 and 48 h after imbibition revealed that several key metabolic pathways [such as: lipids, fatty acids, oxalate, hormones, the raffinose family of oligosaccharides (RFOs), and amino acids] and phytochemicals were differentially regulated between dormant and non-dormant varieties. Most of the membrane lipids were highly reduced in Baegjoong compared to Sukang, which indicates that the cell membrane instability in response to imbibition could also be a key factor in non-dormant wheat varieties for their untimely germination. This study revealed that several key marker metabolites (e.g., RFOs: glucose, fructose, maltose, and verbascose), were highly expressed in Baegjoong after imbibition. Furthermore, the data showed that the key secondary metabolites and phytochemicals (vitexin, chrysoeriol, ferulate, salidroside and gentisic acid), with known antioxidant properties, were comparatively low at basal levels in PHS-susceptible, non-dormant cultivar, Baegjoong. In conclusion, the results of this investigation revealed that after imbibition the metabolic homeostasis of dormant wheat is significantly less affected compared to non-dormant wheat. The inferences from this study combined with proteomic and transcriptomic studies will advance the molecular understanding of the pathways and enzyme regulations during PHS. PMID:28747920
The Gpr1/Zdbf2 locus provides new paradigms for transient and dynamic genomic imprinting in mammals
Duffié, Rachel; Ajjan, Sophie; Greenberg, Maxim V.; Zamudio, Natasha; Escamilla del Arenal, Martin; Iranzo, Julian; Okamoto, Ikuhiro; Barbaux, Sandrine; Fauque, Patricia; Bourc'his, Déborah
2014-01-01
Many loci maintain parent-of-origin DNA methylation only briefly after fertilization during mammalian development: Whether this form of transient genomic imprinting can impact the early embryonic transcriptome or even have life-long consequences on genome regulation and possibly phenotypes is currently unknown. Here, we report a maternal germline differentially methylated region (DMR) at the mouse Gpr1/Zdbf2 (DBF-type zinc finger-containing protein 2) locus, which controls the paternal-specific expression of long isoforms of Zdbf2 (Liz) in the early embryo. This DMR loses parental specificity by gain of DNA methylation at implantation in the embryo but is maintained in extraembryonic tissues. As a consequence of this transient, tissue-specific maternal imprinting, Liz expression is restricted to the pluripotent embryo, extraembryonic tissues, and pluripotent male germ cells. We found that Liz potentially functions as both Zdbf2-coding RNA and cis-regulatory RNA. Importantly, Liz-mediated events allow a switch from maternal to paternal imprinted DNA methylation and from Liz to canonical Zdbf2 promoter use during embryonic differentiation, which are stably maintained through somatic life and conserved in humans. The Gpr1/Zdbf2 locus lacks classical imprinting histone modifications, but analysis of mutant embryonic stem cells reveals fine-tuned regulation of Zdbf2 dosage through DNA and H3K27 methylation interplay. Together, our work underlines the developmental and evolutionary need to ensure proper Liz/Zdbf2 dosage as a driving force for dynamic genomic imprinting at the Gpr1/Zdbf2 locus. PMID:24589776
Pires, Camilla Valente; Freitas, Flávia Cristina de Paula; Cristino, Alexandre S.; Dearden, Peter K.; Simões, Zilá Luz Paulino
2016-01-01
In honeybees, the haplodiploid sex determination system promotes a unique embryogenesis process wherein females develop from fertilized eggs and males develop from unfertilized eggs. However, the developmental strategies of honeybees during early embryogenesis are virtually unknown. Similar to most animals, the honeybee oocytes are supplied with proteins and regulatory elements that support early embryogenesis. As the embryo develops, the zygotic genome is activated and zygotic products gradually replace the preloaded maternal material. The analysis of small RNA and mRNA libraries of mature oocytes and embryos originated from fertilized and unfertilized eggs has allowed us to explore the gene expression dynamics in the first steps of development and during the maternal-to-zygotic transition (MZT). We localized a short sequence motif identified as TAGteam motif and hypothesized to play a similar role in honeybees as in fruit flies, which includes the timing of early zygotic expression (MZT), a function sustained by the presence of the zelda ortholog, which is the main regulator of genome activation. Predicted microRNA (miRNA)-target interactions indicated that there were specific regulators of haploid and diploid embryonic development and an overlap of maternal and zygotic gene expression during the early steps of embryogenesis. Although a number of functions are highly conserved during the early steps of honeybee embryogenesis, the results showed that zygotic genome activation occurs earlier in honeybees than in Drosophila based on the presence of three primary miRNAs (pri-miRNAs) (ame-mir-375, ame-mir-34 and ame-mir-263b) during the cleavage stage in haploid and diploid embryonic development. PMID:26751956
Non-equivalent contributions of maternal and paternal genomes to early plant embryogenesis.
Del Toro-De León, Gerardo; García-Aguilar, Marcelina; Gillmor, C Stewart
2014-10-30
Zygotic genome activation in metazoans typically occurs several hours to a day after fertilization, and thus maternal RNAs and proteins drive early animal embryo development. In plants, despite several molecular studies of post-fertilization transcriptional activation, the timing of zygotic genome activation remains a matter of debate. For example, two recent reports that used different hybrid ecotype combinations for RNA sequence profiling of early Arabidopsis embryo transcriptomes came to divergent conclusions. One identified paternal contributions that varied by gene, but with overall maternal dominance, while the other found that the maternal and paternal genomes are transcriptionally equivalent. Here we assess paternal gene activation functionally in an isogenic background, by performing a large-scale genetic analysis of 49 EMBRYO DEFECTIVE genes and testing the ability of wild-type paternal alleles to complement phenotypes conditioned by mutant maternal alleles. Our results demonstrate that wild-type paternal alleles for nine of these genes are completely functional 2 days after pollination, with the remaining 40 genes showing partial activity beginning at 2, 3 or 5 days after pollination. Using our functional assay, we also demonstrate that different hybrid combinations exhibit significant variation in paternal allele activation, reconciling the apparently contradictory results of previous transcriptional studies. The variation in timing of gene function that we observe confirms that paternal genome activation does not occur in one early discrete step, provides large-scale functional evidence that maternal and paternal genomes make non-equivalent contributions to early plant embryogenesis, and uncovers an unexpectedly profound effect of hybrid genetic backgrounds on paternal gene activity.
Wessels, Cara; Penrose, Lindsay; Ahmad, Khaliq; Prien, Samuel
2017-11-01
Embryo cryopreservation offers many benefits by allowing genetic preservation, genetic screening, cost reduction, global embryo transport and single embryo transfer. However, freezing of embryos decreases embryo viability, as intracellular ice crystal formation often damages embryos. Success rates of frozen embryo transfer are expected to be 15-20% less than fresh embryo transfer. We have developed a noninvasive embryo assessment technique (NEAT) which enables us to predict embryo viability based on buoyancy. The purpose of this research was twofold. First was to determine if a NEAT, through a specific gravity device can detect embryo survival of cryopreservation. Second, it was to relate embryo buoyancy to embryo viability for establishing pregnancies in sheep. Blastocysts descent times were measured on one-hundred sixty-nine mice blastocysts before cryopreservation, according to standard protocol and post-thawing blastocysts descent times were measured again. There was a significant difference in blastocyst post-thaw descent times with NEAT in those blastocysts which demonstrated viability from those that did not (P < 0.05). This suggests NEAT is successful in determining blastocysts viability in cryopreserved mice blastocysts. At a commercial ovine facility, NEAT was performed on fourteen frozen and thawed ovine blastocysts. Blastocysts of similar descent times were paired and transferred into recipient ewes as twins. Pregnancy was later confirmed by blood test and multiple gestation outcomes were determined at lambing. Six of seven recipient ewes were pregnant and all pregnant ewes delivered lambs without complication. Four ewes delivered twin lambs and two ewes delivered singletons, which totals ten of the fourteen (71%) blastocysts surviving to term. This pregnancy rate is comparable to expected to pregnancy rates in a commercial setting. The blastocysts which did not establish pregnancy demonstrated less buoyancy versus those blastocysts which established pregnancies which survived to term (P < 0.05). These results suggest NEAT can identify which blastocysts survive cryopreservation, thus significantly reduce the transfer of non-viable embryos. Further studies on a larger scale commercial setting will evaluate the efficacy of NEAT. Copyright © 2017 Elsevier Inc. All rights reserved.
Separating homeologs by phasing in the tetraploid wheat transcriptome.
Krasileva, Ksenia V; Buffalo, Vince; Bailey, Paul; Pearce, Stephen; Ayling, Sarah; Tabbita, Facundo; Soria, Marcelo; Wang, Shichen; Akhunov, Eduard; Uauy, Cristobal; Dubcovsky, Jorge
2013-06-25
The high level of identity among duplicated homoeologous genomes in tetraploid pasta wheat presents substantial challenges for de novo transcriptome assembly. To solve this problem, we develop a specialized bioinformatics workflow that optimizes transcriptome assembly and separation of merged homoeologs. To evaluate our strategy, we sequence and assemble the transcriptome of one of the diploid ancestors of pasta wheat, and compare both assemblies with a benchmark set of 13,472 full-length, non-redundant bread wheat cDNAs. A total of 489 million 100 bp paired-end reads from tetraploid wheat assemble in 140,118 contigs, including 96% of the benchmark cDNAs. We used a comparative genomics approach to annotate 66,633 open reading frames. The multiple k-mer assembly strategy increases the proportion of cDNAs assembled full-length in a single contig by 22% relative to the best single k-mer size. Homoeologs are separated using a post-assembly pipeline that includes polymorphism identification, phasing of SNPs, read sorting, and re-assembly of phased reads. Using a reference set of genes, we determine that 98.7% of SNPs analyzed are correctly separated by phasing. Our study shows that de novo transcriptome assembly of tetraploid wheat benefit from multiple k-mer assembly strategies more than diploid wheat. Our results also demonstrate that phasing approaches originally designed for heterozygous diploid organisms can be used to separate the close homoeologous genomes of tetraploid wheat. The predicted tetraploid wheat proteome and gene models provide a valuable tool for the wheat research community and for those interested in comparative genomic studies.
Separating homeologs by phasing in the tetraploid wheat transcriptome
2013-01-01
Background The high level of identity among duplicated homoeologous genomes in tetraploid pasta wheat presents substantial challenges for de novo transcriptome assembly. To solve this problem, we develop a specialized bioinformatics workflow that optimizes transcriptome assembly and separation of merged homoeologs. To evaluate our strategy, we sequence and assemble the transcriptome of one of the diploid ancestors of pasta wheat, and compare both assemblies with a benchmark set of 13,472 full-length, non-redundant bread wheat cDNAs. Results A total of 489 million 100 bp paired-end reads from tetraploid wheat assemble in 140,118 contigs, including 96% of the benchmark cDNAs. We used a comparative genomics approach to annotate 66,633 open reading frames. The multiple k-mer assembly strategy increases the proportion of cDNAs assembled full-length in a single contig by 22% relative to the best single k-mer size. Homoeologs are separated using a post-assembly pipeline that includes polymorphism identification, phasing of SNPs, read sorting, and re-assembly of phased reads. Using a reference set of genes, we determine that 98.7% of SNPs analyzed are correctly separated by phasing. Conclusions Our study shows that de novo transcriptome assembly of tetraploid wheat benefit from multiple k-mer assembly strategies more than diploid wheat. Our results also demonstrate that phasing approaches originally designed for heterozygous diploid organisms can be used to separate the close homoeologous genomes of tetraploid wheat. The predicted tetraploid wheat proteome and gene models provide a valuable tool for the wheat research community and for those interested in comparative genomic studies. PMID:23800085
Integrated sequencing of exome and mRNA of large-sized single cells.
Wang, Lily Yan; Guo, Jiajie; Cao, Wei; Zhang, Meng; He, Jiankui; Li, Zhoufang
2018-01-10
Current approaches of single cell DNA-RNA integrated sequencing are difficult to call SNPs, because a large amount of DNA and RNA is lost during DNA-RNA separation. Here, we performed simultaneous single-cell exome and transcriptome sequencing on individual mouse oocytes. Using microinjection, we kept the nuclei intact to avoid DNA loss, while retaining the cytoplasm inside the cell membrane, to maximize the amount of DNA and RNA captured from the single cell. We then conducted exome-sequencing on the isolated nuclei and mRNA-sequencing on the enucleated cytoplasm. For single oocytes, exome-seq can cover up to 92% of exome region with an average sequencing depth of 10+, while mRNA-sequencing reveals more than 10,000 expressed genes in enucleated cytoplasm, with similar performance for intact oocytes. This approach provides unprecedented opportunities to study DNA-RNA regulation, such as RNA editing at single nucleotide level in oocytes. In future, this method can also be applied to other large cells, including neurons, large dendritic cells and large tumour cells for integrated exome and transcriptome sequencing.
Zhang, Yinfeng; Luo, Haining; Zhang, Yunshan
2015-12-01
To establish a novel HLA genotyping method for preimplantation genetic diagnonis (PGD) using multiple displacement amplification-polymerase chain reaction-sequencing based technique (MDA-PCR-SBT). Peripheral blood samples and 76 1PN, 2PN, 3PN discarded embryos from 9 couples were collected. The alleles of HLA-A, B, DR loci were detected from the MDA product with the PCR-SBT method. The HLA genotypes of the parental peripheral blood samples were analyzed with the same protocol. The genotypes of specific HLA region were evaluated for distinguishing the segregation of haplotypes among the family members, and primary HLA matching was performed between the embryos. The 76 embryos were subjected to MDA and 74 (97.4%) were successfully amplified. For the 34 embryos from the single blastomere group, the amplification rate was 94.1%, and for the 40 embryos in the two blastomeres group, the rate was 100%. The dropout rates for DQ allele and DR allele were 1.3% and 0, respectively. The positive rate for MDA in the single blastomere group was 100%, with the dropout rates for DQ allele and DR allele being 1.5% and 0, respectively. The positive rate of MDA for the two blastomere group was 100%, with the dropout rates for both DQ and DR alleles being 0. The recombination rate of fetal HLA was 20.2% (30/148). Due to the improper classification and abnormal fertilized embryos, the proportion of matched embryos HLA was 20.3% (15/74),which was lower than the theoretical value of 25%. PGD with HLA matching can facilitate creation of a HLA-identical donor (saviour child) for umbilical cord blood or bone marrow stem cells for its affected sibling with a genetic disease. Therefore, preimplantation HLA matching may provide a tool for couples desiring to conceive a potential donor progeny for transplantation for its sibling with a life-threatening disorder.
Esh-Broder, Efrat; Oron, Galia; Son, Weon-Young; Holzer, Hananel; Tulandi, Togas
2015-10-01
Maternal serum ß-human chorionic gonadotropin (ß-hCG) represents the trophoblastic cell mass and is an indirect measurement of embryo development at early implantation stage. Studies in animals and human embryos detected sex-related growth differences (SRGD) in favour of male embryos during the pre-implantation period. The purpose of our study was to correlate SRGD and maternal serum ß-hCG at 16 days after embryo transfer. We retrospectively analysed all (fresh and frozen) non-donor, single embryo transfers (SET), elective and not elective, that were performed between December 2008 and December 2013. We included ß-hCG values from day 16 after oocyte collection of pregnancies resulting in live birth. Neonatal gender was retrieved from patient files. Male and female embryos were further grouped to cleavage and blastocyst stage transfers. Regression analysis for confounding variables included maternal age, maternal body mass index (BMI), use of micromanipulation (ICSI), embryo quality (grade), assisted hatching, day of transfer and fresh or frozen embryo transfer. Seven hundred eighty-six non-donor SETs resulted in live birth. After including only day 16 serum ß-hCG results, 525 SETs were analysed. Neonatal gender was available for 522 cases. Mean maternal serum ß-hCG levels were similar, 347 ± 191 IU/L in the male newborn group and 371 ± 200 IU/L in the female group. The difference between ß-hCG levels remained insignificant after adjusting for confounding variables. Early maternal ß-hCG levels after embryo transfers did not represent SRGD in our study.
Wells, Dagan; Kaur, Kulvinder; Grifo, Jamie; Glassner, Michael; Taylor, Jenny C; Fragouli, Elpida; Munne, Santiago
2014-08-01
The majority of human embryos created using in vitro fertilisation (IVF) techniques are aneuploid. Comprehensive chromosome screening methods, applicable to single cells biopsied from preimplantation embryos, allow reliable identification and transfer of euploid embryos. Recently, randomised trials using such methods have indicated that aneuploidy screening improves IVF success rates. However, the high cost of testing has restricted the availability of this potentially beneficial strategy. This study aimed to harness next-generation sequencing (NGS) technology, with the intention of lowering the costs of preimplantation aneuploidy screening. Embryo biopsy, whole genome amplification and semiconductor sequencing. A rapid (<15 h) NGS protocol was developed, with consumable cost only two-thirds that of the most widely used method for embryo aneuploidy detection. Validation involved blinded analysis of 54 cells from cell lines or biopsies from human embryos. Sensitivity and specificity were 100%. The method was applied clinically, assisting in the selection of euploid embryos in two IVF cycles, producing healthy children in both cases. The NGS approach was also able to reveal specified mutations in the nuclear or mitochondrial genomes in parallel with chromosome assessment. Interestingly, elevated mitochondrial DNA content was associated with aneuploidy (p<0.05), a finding suggestive of a link between mitochondria and chromosomal malsegregation. This study demonstrates that NGS provides highly accurate, low-cost diagnosis of aneuploidy in cells from human preimplantation embryos and is rapid enough to allow testing without embryo cryopreservation. The method described also has the potential to shed light on other aspects of embryo genetics of relevance to health and viability. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Wells, Dagan; Kaur, Kulvinder; Grifo, Jamie; Glassner, Michael; Taylor, Jenny C; Fragouli, Elpida; Munne, Santiago
2014-01-01
Background The majority of human embryos created using in vitro fertilisation (IVF) techniques are aneuploid. Comprehensive chromosome screening methods, applicable to single cells biopsied from preimplantation embryos, allow reliable identification and transfer of euploid embryos. Recently, randomised trials using such methods have indicated that aneuploidy screening improves IVF success rates. However, the high cost of testing has restricted the availability of this potentially beneficial strategy. This study aimed to harness next-generation sequencing (NGS) technology, with the intention of lowering the costs of preimplantation aneuploidy screening. Methods Embryo biopsy, whole genome amplification and semiconductor sequencing. Results A rapid (<15 h) NGS protocol was developed, with consumable cost only two-thirds that of the most widely used method for embryo aneuploidy detection. Validation involved blinded analysis of 54 cells from cell lines or biopsies from human embryos. Sensitivity and specificity were 100%. The method was applied clinically, assisting in the selection of euploid embryos in two IVF cycles, producing healthy children in both cases. The NGS approach was also able to reveal specified mutations in the nuclear or mitochondrial genomes in parallel with chromosome assessment. Interestingly, elevated mitochondrial DNA content was associated with aneuploidy (p<0.05), a finding suggestive of a link between mitochondria and chromosomal malsegregation. Conclusions This study demonstrates that NGS provides highly accurate, low-cost diagnosis of aneuploidy in cells from human preimplantation embryos and is rapid enough to allow testing without embryo cryopreservation. The method described also has the potential to shed light on other aspects of embryo genetics of relevance to health and viability. PMID:25031024
Boiso, Irene; Veiga, Anna; Edwards, Robert G
2002-01-01
Knowledge of the nature of embryo growth, and the handling and scoring of quality in human embryos are significant aspects for embryologists in IVF clinics. This review describes the formation, growth and maturation of human oocytes, many aspects of fertilization in vitro, embryonic transcription during preimplantation stages, and the formation of polarities, timing controls, role of mitochondria and functions of endocrine and paracrine systems. Modern concepts are fully discussed, together with their significance in the practice of IVF. This knowledge is essential for the correct clinical care of human embryos growing in vitro, especially in view of their uncharacteristic tendency to vary widely in implantation potential. Underlying causes of such variation have not been identified. Stringent tests must be enforced to ensure human embryos develop under optimal conditions, and are scored for quality using the most advanced techniques. Optimal methods of culture are described, including methods such as co-culture introduced to improve embryo quality but less important today. Detailed attention is given to quality as assessed from embryonic characteristics determined by timers, polarities, disturbed embryo growth and anomalous cell cycles. Methods for classification are described. Approaches to single embryo transfers are described, including the use of sequential media to produce high-quality blastocysts. These approaches, and others involved in surgical methods to remove fragments, transfer ooplasm or utilize newer approaches such as preimplantation diagnosis of chromosomal complements in embryos are covered. New outlooks in this field are summarized.
Early Embryo Development in Fucus distichus Is Auxin Sensitive1
Basu, Swati; Sun, Haiguo; Brian, Leigh; Quatrano, Ralph L.; Muday, Gloria K.
2002-01-01
Auxin and polar auxin transport have been implicated in controlling embryo development in land plants. The goal of these studies was to determine if auxin and auxin transport are also important during the earliest stages of development in embryos of the brown alga Fucus distichus. Indole-3-acetic acid (IAA) was identified in F. distichus embryos and mature tissues by gas chromatography-mass spectroscopy. F. distichus embryos accumulate [3H]IAA and an inhibitor of IAA efflux, naphthylphthalamic acid (NPA), elevates IAA accumulation, suggesting the presence of an auxin efflux protein complex similar to that found in land plants. F. distichus embryos normally develop with a single unbranched rhizoid, but growth on IAA leads to formation of multiple rhizoids and growth on NPA leads to formation of embryos with branched rhizoids, at concentrations that are active in auxin accumulation assays. The effects of IAA and NPA are complete before 6 h after fertilization (AF), which is before rhizoid germination and cell division. The maximal effects of IAA and NPA are between 3.5 and 5 h AF and 4 and 5.5 h AF, respectively. Although, the location of the planes of cell division was significantly altered in NPA- and IAA-treated embryos, these abnormal divisions occurred after abnormal rhizoid initiation and branching was observed. The results of this study suggest that auxin acts in the formation of apical basal patterns in F. distichus embryo development. PMID:12226509
Vergouw, Carlijn G; Kostelijk, E Hanna; Doejaaren, Els; Hompes, Peter G A; Lambalk, Cornelis B; Schats, Roel
2012-09-01
Does the type of medium used to culture fresh and frozen-thawed embryos influence neonatal birthweight after single embryo transfer (SET) in IVF? A comparison of two commercially available culture media showed no significant influence on mean birthweight and mean birthweight adjusted for gestational age, gender and parity (z-scores) of singletons born after a fresh or frozen-thawed SET. Furthermore, we show that embryo freezing and thawing cycles may lead to a significantly higher mean birthweight. Animal studies have shown that culture media constituents are responsible for changes in birthweight of offspring. In human IVF, there is still little knowledge of the effect of medium type on birthweight. Until now, only a small number of commercially available culture media have been investigated (Vitrolife, Cook(®) Medical and IVF online medium). Our study adds new information: it has a larger population of singleton births compared with the previously published studies, it includes outcomes of other media types (HTF and Sage(®)), not previously analysed, and it includes data on frozen-thawed SETs. This study was a retrospective analysis of birthweights of singleton newborns after fresh (Day 3) or frozen-thawed (Day 5) SET cycles, using embryos cultured in either of two different types of commercially available culture media, between 2008 and 2011. Before January 2009, a single-step culture medium was used: human tubal fluid (HTF) with 4 mg/ml human serum albumin. From January 2009 onwards, a commercially available sequential medium was introduced: Sage(®), Quinn's advantage protein plus medium. Singletons born after a fresh SET (99 embryos cultured in HTF and 259 in Sage(®)) and singletons born after a frozen-thawed SET (32 embryos cultured in HTF only, 41 in HTF and Sage(®) and 86 in Sage(®) only) were analysed. Only patients using autologous gametes without the use of a gestational carrier were considered. Also excluded were (vanishing) twins, triplets, babies with congenital or chromosomal abnormalities and babies born before 22 weeks of gestation. Analysis of 358 singletons born after a fresh SET and 159 singletons born after a frozen-thawed SET showed no significant difference between the HTF and Sage(®) groups in terms of birthweight. Gestational age, parity and gender of the baby were significantly related to birthweight in multiple linear regression analyses, and other possible confounding factors included maternal age, BMI and smoking, the number of blastomeres in the transferred embryo and the type of culture medium. Maternal age, BMI and smoking, gestational age at birth, gender of the baby and the percentage of firstborns did not differ significantly between the HTF and Sage(®) groups; however, among the fresh embryos, those cultured in Sage(®) had significantly more blastomeres at the time of embryo transfer compared with the embryos cultured in HTF. Birthweights adjusted for gestational age and gender or gestational age and parity (z-scores) were not significantly different between the HTF and Sage(®) groups for fresh or frozen-thawed SETs. Mean birthweight, as well as the mean birthweight among firstborns and the mean birthweights adjusted for gestational age and gender or parity (z-scores) were significantly higher in the cryopreservation group compared with the fresh embryo transfer group. Our study is limited by its retrospective design and only two commercially available types of culture media were tested. More research is necessary to investigate the potential influence of culture media on gene expression. Although our data do not indicate the major influences of the HTF and Sage(®) culture media on birthweight, our results cannot be extrapolated to other culture media types. Furthermore, there remains a potential influence of embryo culture environment on epigenetic variation not represented by birthweight differences but by more subtle features.
USDA-ARS?s Scientific Manuscript database
Semigamy in cotton is a type of facultative apomixis controlled by a single incompletely dominant gene (Se) in which the sperm and egg nuclei fail to fuse after the sperm nucleus has entered the embryo sac, giving rise to diploid, haploid or even chimeral embryos comprised of paternal and maternal o...
Gómez, E; Carrocera, S; Martin, D; Herrero, P; Canela, N; Muñoz, M
2018-07-01
Male and female early bovine embryos show dimorphic transcription that impacts metabolism. Individual release of metabolites was examined in a 24h single culture medium from Day-6 male and female morulae that developed to Day-7 expanded blastocysts. Embryos were produced in vitro, fertilized with a single bull and cultured in SOFaaci+6 g/L BSA. The embryonic sex was identified (amelogenin gene amplification). Embryos (N = 10 males and N = 10 females) and N = 6 blank samples (i.e. SOFaaci+6 g/L BSA incubated with no embryos) were collected from 3 replicates. Metabolome was analyzed by UHPLC-TOF-MS in spent culture medium. After tentative identification, N = 13 metabolites significantly (P < 0.05; ANOVA) differed in their concentrations between male and female embryos, although N = 10 of these metabolites showed heterogeneity (Levene's test; P > 0.05). LysoPC(15:0) was the only metabolite found at higher concentration in females (fold change [FC] male to female = 0.766). FC of metabolites more abundant in male culture medium (N = 12) varied from 1.069 to 1.604. Chemical taxonomy grouped metabolites as amino-acids and related compounds (DL-2 aminooctanoic acid, arginine, 5-hydroxy-l-tryptophan, and palmitoylglycine); lipids (2-hexenoylcarnitine; Lauroyl diethanolamide; 5,6 dihydroxyprostaglandin F1a; LysoPC(15:0); DG(14:0/14:1(9Z)/0:0) and triterpenoid); endogenous amine ((S)-N-Methylsalsolinol/(R)-N-Methylsalsolinol); n-acyl-alpha-hexosamine (N-acetyl-alpha-d-galactosamine 1-phosphate); and dUMP, a product of pyrimidine metabolism. Among the compounds originally contained in CM, female embryos significantly depleted more arginine than males and blank controls (P < 0.001). Male and female embryos induce different concentrations of metabolites with potential signaling effects. The increased abundance of metabolites released from males is consistent with the higher metabolic activity attributed to such blastocysts. Copyright © 2018 Elsevier Inc. All rights reserved.
Kyogoku, Hirohisa; Ogushi, Sugako; Miyano, Takashi
2012-11-01
Recent research has shown that nucleoli of oocytes at the germinal vesicle (GV) stage (GV nucleoli) are not necessary for oocyte maturation but are essential for early embryonic development. Nucleoli of 2-cell embryos (2-cell nucleoli) have morphology similar to that of nucleoli in oocytes at the GV stage. In this study, we examined the ability of 2-cell nucleoli to substitute for GV nucleoli in terms of supporting early embryonic development by nucleolus aspiration (enucleolation) and transfer into metaphase II (MII) oocytes or 2-cell embryos that were derived from enucleolated oocytes at the GV stage in the pig. When 2-cell embryos were centrifuged to move the lipid droplets to one side of the blastomere, multiple nucleoli in the nucleus fused into a single nucleolus. The nucleoli were then aspirated from the 2-cell embryos by micromanipulation. The injection of 2-cell nucleoli to GV enucleolated oocytes at the MII stage rescued the embryos from the early embryonic arrest, and the resulting oocytes developed to blastocysts. However, the injection of 2-cell and GV nucleoli to 2-cell embryos derived from GV enucleolated oocytes rarely restored the development to blastocysts. These results indicate that 2-cell nucleoli support early embryonic development as GV nucleoli and that the presence of nucleoli is essential for pig embryos before the 2-cell stage.
Interfacing Lab-on-a-Chip Embryo Technology with High-Definition Imaging Cytometry.
Zhu, Feng; Hall, Christopher J; Crosier, Philip S; Wlodkowic, Donald
2015-08-01
To spearhead deployment of zebrafish embryo biotests in large-scale drug discovery studies, automated platforms are needed to integrate embryo in-test positioning and immobilization (suitable for high-content imaging) with fluidic modules for continuous drug and medium delivery under microperfusion to developing embryos. In this work, we present an innovative design of a high-throughput three-dimensional (3D) microfluidic chip-based device for automated immobilization and culture and time-lapse imaging of developing zebrafish embryos under continuous microperfusion. The 3D Lab-on-a-Chip array was fabricated in poly(methyl methacrylate) (PMMA) transparent thermoplastic using infrared laser micromachining, while the off-chip interfaces were fabricated using additive manufacturing processes (fused deposition modelling and stereolithography). The system's design facilitated rapid loading and immobilization of a large number of embryos in predefined clusters of traps during continuous microperfusion of drugs/toxins. It was conceptually designed to seamlessly interface with both upright and inverted fluorescent imaging systems and also to directly interface with conventional microtiter plate readers that accept 96-well plates. Compared with the conventional Petri dish assays, the chip-based bioassay was much more convenient and efficient as only small amounts of drug solutions were required for the whole perfusion system running continuously over 72 h. Embryos were spatially separated in the traps that assisted tracing single embryos, preventing interembryo contamination and improving imaging accessibility.
Evaluating the Zebrafish Embryo Toxicity Test for Pesticide ...
Given the numerous chemicals used in society, it is critical to develop tools for accurate and efficient evaluation of potential risks to human and ecological receptors. Fish embryo acute toxicity tests are 1 tool that has been shown to be highly predictive of standard, more resource-intensive, juvenile fish acute toxicity tests. However, there is also evidence that fish embryos are less sensitive than juvenile fish for certain types of chemicals, including neurotoxicants. The utility of fish embryos for pesticide hazard assessment was investigated by comparing published zebrafish embryo toxicity data from pesticides with median lethal concentration 50% (LC50) data for juveniles of 3 commonly tested fish species: rainbow trout, bluegill sunfish, and sheepshead minnow. A poor, albeit significant, relationship (r2 = 0.28; p < 0.05) was found between zebrafish embryo and juvenile fish toxicity when pesticides were considered as a single group, but a much better relationship (r2 = 0.64; p < 0.05) when pesticide mode of action was factored into an analysis of covariance. This discrepancy is partly explained by the large number of neurotoxic pesticides in the dataset, supporting previous findings that commonly used fish embryo toxicity test endpoints are particularly insensitive to neurotoxicants. These results indicate that it is still premature to replace juvenile fish toxicity tests with embryo-based tests such as the Organisation for Economic Co-op
Live-cell imaging of nuclear-chromosomal dynamics in bovine in vitro fertilised embryos.
Yao, Tatsuma; Suzuki, Rie; Furuta, Natsuki; Suzuki, Yuka; Kabe, Kyoko; Tokoro, Mikiko; Sugawara, Atsushi; Yajima, Akira; Nagasawa, Tomohiro; Matoba, Satoko; Yamagata, Kazuo; Sugimura, Satoshi
2018-05-10
Nuclear/chromosomal integrity is an important prerequisite for the assessment of embryo quality in artificial reproductive technology. However, lipid-rich dark cytoplasm in bovine embryos prevents its observation by visible light microscopy. We performed live-cell imaging using confocal laser microscopy that allowed long-term imaging of nuclear/chromosomal dynamics in bovine in vitro fertilised (IVF) embryos. We analysed the relationship between nuclear/chromosomal aberrations and in vitro embryonic development and morphological blastocyst quality. Three-dimensional live-cell imaging of 369 embryos injected with mRNA encoding histone H2B-mCherry and enhanced green fluorescent protein (EGFP)-α-tubulin was performed from single-cell to blastocyst stage for eight days; 17.9% reached the blastocyst stage. Abnormalities in the number of pronuclei (PN), chromosomal segregation, cytokinesis, and blastomere number at first cleavage were observed at frequencies of 48.0%, 30.6%, 8.1%, and 22.2%, respectively, and 13.0%, 6.2%, 3.3%, and 13.4%, respectively, for abnormal embryos developed into blastocysts. A multivariate analysis showed that abnormal chromosome segregation (ACS) and multiple PN correlated with delayed timing and abnormal blastomere number at first cleavage, respectively. In morphologically transferrable blastocysts, 30-40% of embryos underwent ACS and had abnormal PN. Live-cell imaging may be useful for analysing the association between nuclear/chromosomal dynamics and embryonic development in bovine embryos.
Schaeffer, Elizabeth; López-Bayghen, Bruno; Neumann, Adina; Porchia, Leonardo M; Camacho, Rafael; Garrido, Efraín; Gómez, Rocío; Camargo, Felipe; López-Bayghen, Esther
2017-01-01
Our objective was to determine if whole genome amplification (WGA) provides suitable DNA for qPCR-based genotyping for human embryos. Single blastomeres (Day 3) or trophoblastic cells (Day 5) were isolated from 342 embryos for WGA. Comparative Genomic Hybridization determined embryo sex as well as Trisomy 18 or Trisomy 21. To determine the embryo's sex, qPCR melting curve analysis for SRY and DYS14 was used. Logistic regression indicated a 4.4%, 57.1%, or 98.8% probability of a male embryo when neither gene, SRY only, or both genes were detected, respectively (accuracy = 94.1%, kappa = 0.882, and p < 0.001). Fluorescent Capillary Electrophoresis for the amelogenin genes (AMEL) was also used to determine sex. AMELY peak's height was higher and this peak's presence was highly predictive of male embryos (AUC = 0.93, accuracy = 81.7%, kappa = 0.974, and p < 0.001). Trisomy 18 and Trisomy 21 were determined using the threshold cycle difference for RPL17 and TTC3, respectively, which were significantly lower in the corresponding embryos. The Ct difference for TTC3 specifically determined Trisomy 21 (AUC = 0.89) and RPL17 for Trisomy 18 (AUC = 0.94). Here, WGA provides adequate DNA for PCR-based techniques for preimplantation genotyping.
Nagano, Yatsuhisa; Ode, Koji L
2014-08-01
The thermal dissipation of activated eggs and embryos undergoing development from cleavage to the tailbud stage of the African clawed frog Xenopus laevis was measured as a function of incubation time at temperatures ranging from T = 288.2 K to 295.2 K, using a high-precision isothermal calorimeter. A23187-mediated activation of mature eggs induced stable periodic thermal oscillations lasting for 8-34 h. The frequency agreed well with the cell cycle frequency of initial cleavages at the identical temperature. In the developing embryo, energy metabolism switches from embryonic to adult features during gastrulation. The thermal dissipation after gastrulation fit well with a single modified Avrami equation, which has been used for modeling crystal-growth. Both the oscillation frequency of the activated egg and the growth rate of the embryo strongly depend on temperature with the same apparent activation energy of approximately 87 kJ mole(-1). This result suggests that early development proceeds as a single biological time, attributable to a single metabolic rate. A temperature-independent growth curve was derived by scaling the thermogram to the biological time, indicating that the amount of energy expenditure during each developmental stage is constant over the optimal temperature range.
Twinning of amphibian embryos by centrifugation
NASA Technical Reports Server (NTRS)
Black, S. D.
1984-01-01
In the frog Xenopus laevis, the dorsal structures of the embryonic body axis normally derive from the side of the egg opposite the side of sperm entry. However, if the uncleaved egg is inclined at lg or centrifuged in an inclined position, this topographic relationship is overridden: the egg makes its dorsal axial structures according to its orientation in the gravitational/centrifugal field, irrespective of the position of sperm entry. Certain conditions of centrifugation cause eggs to develop into conjoined twins with two sets of axial structures. A detailed analysis of twinning provided some insight into experimental axis orientation. First, as with single-axis embryos, both axes in twins are oriented according to the direction of centrifugation. One axis forms at the centripetal side of the egg and the other forms at the centrifugal side, even when the side of sperm entry is normal to the centrifugal force vector. Second, if eggs are centrifuged to give twins, but are inclined at lg to prevent post-centrifugation endoplasmic redistributions, only single-axis embryos develop. Thus, a second redistribution is required for high-frequency secondary axis formation. This can be accomplished by lg (as in the single centrifugations) or by a second centrifugation directed along the egg's animal-vegetal axis.
Potential of human twin embryos generated by embryo splitting in assisted reproduction and research.
Noli, Laila; Ogilvie, Caroline; Khalaf, Yacoub; Ilic, Dusko
2017-03-01
Embryo splitting or twinning has been widely used in veterinary medicine over 20 years to generate monozygotic twins with desirable genetic characteristics. The first human embryo splitting, reported in 1993, triggered fierce ethical debate on human embryo cloning. Since Dolly the sheep was born in 1997, the international community has acknowledged the complexity of the moral arguments related to this research and has expressed concerns about the potential for reproductive cloning in humans. A number of countries have formulated bans either through laws, decrees or official statements. However, in general, these laws specifically define cloning as an embryo that is generated via nuclear transfer (NT) and do not mention embryo splitting. Only the UK includes under cloning both embryo splitting and NT in the same legislation. On the contrary, the Ethics Committee of the American Society for Reproductive Medicine does not have a major ethical objection to transferring two or more artificially created embryos with the same genome with the aim of producing a single pregnancy, stating that 'since embryo splitting has the potential to improve the efficacy of IVF treatments for infertility, research to investigate the technique is ethically acceptable'. Embryo splitting has been introduced successfully to the veterinary medicine several decades ago and today is a part of standard practice. We present here an overview of embryo splitting experiments in humans and non-human primates and discuss the potential of this technology in assisted reproduction and research. A comprehensive literature search was carried out using PUBMED and Google Scholar databases to identify studies on embryo splitting in humans and non-human primates. 'Embryo splitting' and 'embryo twinning' were used as the keywords, alone or in combination with other search phrases relevant to the topics of biology of preimplantation embryos. A very limited number of studies have been conducted in humans and non-human primates. The published material, especially the studies with human embryos, is controversial. Some reports suggest that twinning technology will find clinical use in reproductive medicine in the future, whereas others conclude the opposite that human twin embryos created in vitro are unsuitable not only for clinical, but also for research, purposes. The blastomere biopsy technique of embryo splitting seems to be unsuitable for either clinical or research purposes; however, embryo bisection, a preferable method of cloning in veterinary medicine, has not yet been tested on human embryos. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Sills, E Scott; Anderson, Robert E; McCaffrey, Mary; Li, Xiang; Arrach, Nabil; Wood, Samuel H
2016-03-01
Preimplantation genetic screening (PGS) is a component of IVF entailing selection of an embryo for transfer on the basis of chromosomal normalcy. If PGS were integrated with single embryo transfer (SET) in a surrogacy setting, this approach could improve pregnancy rates, minimize miscarriage risk, and limit multiple gestations. Even without PGS, pregnancy rates for IVF surrogacy cases are generally satisfactory, especially when treatment utilizes embryos derived from young oocytes and transferred to a healthy surrogate. However, there could be a more general role for PGS in surrogacy, since background aneuploidy in embryos remains a major factor driving implantation failure and miscarriage for all infertility patients. At present, the proportion of IVF cases involving GS is limited, while the number of IVF patients requesting PGS appears to be increasing. In this report, the relevance of PGS for surrogacy in the rapidly changing field of assisted fertility medicine is discussed. © 2015 Wiley Periodicals, Inc.
Gavelis, Gregory S; White, Richard A; Suttle, Curtis A; Keeling, Patrick J; Leander, Brian S
2015-07-17
Most microbial eukaryotes are uncultivated and thus poorly suited to standard genomic techniques. This is the case for Polykrikos lebouriae, a dinoflagellate with ultrastructurally aberrant plastids. It has been suggested that these plastids stem from a novel symbiosis with either a diatom or haptophyte, but this hypothesis has been difficult to test as P. lebouriae dwells in marine sand rife with potential genetic contaminants. We applied spliced-leader targeted PCR (SLPCR) to obtain dinoflagellate-specific transcriptomes on single-cell isolates of P. lebouriae from marine sediments. Polykrikos lebouriae expressed nuclear-encoded photosynthetic genes that were characteristic of the peridinin-plastids of dinoflagellates, rather than those from a diatom of haptophyte. We confirmed these findings at the genomic level using multiple displacement amplification (MDA) to obtain a partial plastome of P. lebouriae. From these data, we infer that P. lebouriae has retained the peridinin plastids ancestral for dinoflagellates as a whole, while its closest relatives have lost photosynthesis multiple times independently. We discuss these losses with reference to mixotrophy in polykrikoid dinoflagellates. Our findings demonstrate new levels of variation associated with the peridinin plastids of dinoflagellates and the usefulness of SLPCR approaches on single cell isolates. Unlike other transcriptomic methods, SLPCR has taxonomic specificity, and can in principle be adapted to different splice-leader bearing groups.
Lamm, Ayelet T; Stadler, Michael R; Zhang, Huibin; Gent, Jonathan I; Fire, Andrew Z
2011-02-01
We have used a combination of three high-throughput RNA capture and sequencing methods to refine and augment the transcriptome map of a well-studied genetic model, Caenorhabditis elegans. The three methods include a standard (non-directional) library preparation protocol relying on cDNA priming and foldback that has been used in several previous studies for transcriptome characterization in this species, and two directional protocols, one involving direct capture of single-stranded RNA fragments and one involving circular-template PCR (CircLigase). We find that each RNA-seq approach shows specific limitations and biases, with the application of multiple methods providing a more complete map than was obtained from any single method. Of particular note in the analysis were substantial advantages of CircLigase-based and ssRNA-based capture for defining sequences and structures of the precise 5' ends (which were lost using the double-strand cDNA capture method). Of the three methods, ssRNA capture was most effective in defining sequences to the poly(A) junction. Using data sets from a spectrum of C. elegans strains and stages and the UCSC Genome Browser, we provide a series of tools, which facilitate rapid visualization and assignment of gene structures.
SCPortalen: human and mouse single-cell centric database
Noguchi, Shuhei; Böttcher, Michael; Hasegawa, Akira; Kouno, Tsukasa; Kato, Sachi; Tada, Yuhki; Ura, Hiroki; Abe, Kuniya; Shin, Jay W; Plessy, Charles; Carninci, Piero
2018-01-01
Abstract Published single-cell datasets are rich resources for investigators who want to address questions not originally asked by the creators of the datasets. The single-cell datasets might be obtained by different protocols and diverse analysis strategies. The main challenge in utilizing such single-cell data is how we can make the various large-scale datasets to be comparable and reusable in a different context. To challenge this issue, we developed the single-cell centric database ‘SCPortalen’ (http://single-cell.clst.riken.jp/). The current version of the database covers human and mouse single-cell transcriptomics datasets that are publicly available from the INSDC sites. The original metadata was manually curated and single-cell samples were annotated with standard ontology terms. Following that, common quality assessment procedures were conducted to check the quality of the raw sequence. Furthermore, primary data processing of the raw data followed by advanced analyses and interpretation have been performed from scratch using our pipeline. In addition to the transcriptomics data, SCPortalen provides access to single-cell image files whenever available. The target users of SCPortalen are all researchers interested in specific cell types or population heterogeneity. Through the web interface of SCPortalen users are easily able to search, explore and download the single-cell datasets of their interests. PMID:29045713
Nagy, P; Skidmore, J A; Juhasz, J
2013-01-10
Despite their production potential and ability to survive on marginal resources in extreme conditions, dromedaries have not been exploited as an important food source. Camels have not been specifically selected for milk production, and genetic improvement has been negligible. High individual variation in milk production both within the population and within breeds provides a good base for selection and genetic progress. In this paper, we discuss the possibilities and constraints of selective breeding for milk production in camels, and include a summary of the use of embryo transfer at the world's first camel dairy farm. Embryo transfer is an integral part of the breeding strategy at the camel dairy farm because it increases selection intensity and decreases the generation interval. Using high milk-producing camels as donors and low producing camels as recipients, 146 embryos were recovered (6.1±1.0embryos/donor; range: 0-18). Embryos were transferred non-surgically into 111 recipients (83 single and 28 twin embryo transfers). Pregnancy rate at 21 days and 5 months was 55% (61/111) and 45% (50/111), respectively. Finally, a total of 46 recipients delivered a live calf. These results document the utility of embryo transfer using high milk producing dromedaries as donors. Copyright © 2012 Elsevier B.V. All rights reserved.
Role of nucleation-promoting factors in mouse early embryo development.
Wang, Qiao-Chu; Liu, Jun; Wang, Fei; Duan, Xing; Dai, Xiao-Xin; Wang, Teng; Liu, Hong-Lin; Cui, Xiang-Shun; Sun, Shao-Chen; Kim, Nam-Hyung
2013-06-01
During mitosis nucleation-promoting factors (NPFs) bind to the Arp2/3 complex and activate actin assembly. JMY and WAVE2 are two critical members of the NPFs. Previous studies have demonstrated that NPFs promote multiple processes such as cell migration and cytokinesis. However, the role of NPFs in development of mammalian embryos is still unknown. Results of the present study show that the NPFs JMY and WAVE2 are critical for cytokinesis during development of mouse embryos. Both JMY and WAVE2 are expressed in mouse embryos. After injection of JMY or WAVE2 siRNA, all embryos failed to develop to the morula or blastocyst stages. Moreover, using fluorescence intensity analysis, we found that the expression of actin decreased, and multiple nuclei were observed within a single cell indicating that NPFs-induced actin reduction caused the failure of cell division. In addition, injection of JMY and WAVE2 siRNA also caused ARP2 degradation, indicating that involvement of NPFs in development of mouse embryos is mainly through regulation of ARP2/3-induced actin assembly. Taken together, these data suggested that WAVE2 and JMY are involved in development of mouse embryos, and their regulation may be through a NPFs-Arp2/3-actin pathway.
Molinaro, Alyssa M; Pearson, Bret J
2016-04-27
The planarian Schmidtea mediterranea is a master regenerator with a large adult stem cell compartment. The lack of transgenic labeling techniques in this animal has hindered the study of lineage progression and has made understanding the mechanisms of tissue regeneration a challenge. However, recent advances in single-cell transcriptomics and analysis methods allow for the discovery of novel cell lineages as differentiation progresses from stem cell to terminally differentiated cell. Here we apply pseudotime analysis and single-cell transcriptomics to identify adult stem cells belonging to specific cellular lineages and identify novel candidate genes for future in vivo lineage studies. We purify 168 single stem and progeny cells from the planarian head, which were subjected to single-cell RNA sequencing (scRNAseq). Pseudotime analysis with Waterfall and gene set enrichment analysis predicts a molecularly distinct neoblast sub-population with neural character (νNeoblasts) as well as a novel alternative lineage. Using the predicted νNeoblast markers, we demonstrate that a novel proliferative stem cell population exists adjacent to the brain. scRNAseq coupled with in silico lineage analysis offers a new approach for studying lineage progression in planarians. The lineages identified here are extracted from a highly heterogeneous dataset with minimal prior knowledge of planarian lineages, demonstrating that lineage purification by transgenic labeling is not a prerequisite for this approach. The identification of the νNeoblast lineage demonstrates the usefulness of the planarian system for computationally predicting cellular lineages in an adult context coupled with in vivo verification.
van den Akker, O B A; Purewal, S
2011-12-01
This study tested the effectiveness of the framing effect and fear appeals to inform young people about the risks of multiple births and the option of selecting elective single-embryo transfer (eSET). A non-patient student sample (age (mean±SD) 23±5.5 years; n=321) were randomly allocated to one of seven groups: (1) framing effect: (1a) gain and (1b) loss frame; (2) fear appeal: (2a) high, (2b) medium and (2c) low fear; or (3) a control group: (3a) education and (3b) non-education. The primary outcome measure was the Attitudes towards Single Embryo Transfer questionnaire, before exposure to the messages (time 1) and immediately afterwards (time 2). Results revealed participants in the high fear, medium fear and gain condition demonstrated the most positive and significant differences (P<0.001 to P<0.05) in their knowledge, hypothetical intentions and modest changes in attitudes towards eSET than the low fear, loss frame and education and non-education messages. The results demonstrate that the use of complex persuasive communication techniques on a student population to promote immediate and hypothetical eSET preferences is more successful at promoting eSET than merely reporting educational content. Future research should investigate its application in a clinical population. A multiple pregnancy is a health risk to both infant and mother following IVF treatment. The aims of this study were to test the effectiveness of two persuasive communication techniques (the framing effect and fear appeals) to inform young people about the risks of multiple births and the hypothetical option of selecting elective single-embryo transfer (eSET) (i.e., only one embryo is transferred to the uterus using IVF treatment). A total of 321 non-patient student sample (mean age 23) were randomly allocated to read a message from one of seven groups: (1) framing effect: (1a) gain and (1b) loss frame; (2) fear appeal: (2a) high, (2b) medium and (2c) low fear; or (3) a control group: education (3a) and (3b) non-education. Participants completed the Attitudes towards Single Embryo Transfer questionnaire, before exposure to the messages (time 1) and immediately afterwards (time 2). Results revealed that participants in the high fear, medium fear and gain condition demonstrated the most positive and significant differences in their knowledge, hypothetical intentions and modest changes in attitudes towards eSET than the low fear, loss frame and education and non-education messages. This study recommends that health promotion based on the framing effect and fear appeals should be tested in clinical (patient) samples in the future. Copyright © 2011 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
CellAtlasSearch: a scalable search engine for single cells.
Srivastava, Divyanshu; Iyer, Arvind; Kumar, Vibhor; Sengupta, Debarka
2018-05-21
Owing to the advent of high throughput single cell transcriptomics, past few years have seen exponential growth in production of gene expression data. Recently efforts have been made by various research groups to homogenize and store single cell expression from a large number of studies. The true value of this ever increasing data deluge can be unlocked by making it searchable. To this end, we propose CellAtlasSearch, a novel search architecture for high dimensional expression data, which is massively parallel as well as light-weight, thus infinitely scalable. In CellAtlasSearch, we use a Graphical Processing Unit (GPU) friendly version of Locality Sensitive Hashing (LSH) for unmatched speedup in data processing and query. Currently, CellAtlasSearch features over 300 000 reference expression profiles including both bulk and single-cell data. It enables the user query individual single cell transcriptomes and finds matching samples from the database along with necessary meta information. CellAtlasSearch aims to assist researchers and clinicians in characterizing unannotated single cells. It also facilitates noise free, low dimensional representation of single-cell expression profiles by projecting them on a wide variety of reference samples. The web-server is accessible at: http://www.cellatlassearch.com.
Barash, Oleksii O; Hinckley, Mary D; Rosenbluth, Evan M; Ivani, Kristen A; Weckstein, Louis N
2017-11-01
Does high gonadotropin dosage affect euploidy and pregnancy rates in PGS cycles with single embryo transfer? High gonadotropin dosage does NOT affect euploidy and pregnancy rates in PGS cycles with single embryo transfer. PGS has been proven to be the most effective and reliable method for embryo selection in IVF cycles. Euploidy and blastulation rates decrease significantly with advancing maternal age. In order to recruit an adequate number of follicles, the average dosage of gonadotropins administered during controlled ovarian stimulation in IVF cycles often increases significantly with advancing maternal age. A retrospective study of SNP (Single Nucleotide Polymorphism) PGS outcome data from blastocysts biopsied on day 5 or day 6 was conducted to identify differences in euploidy and clinical pregnancy rates. Seven hundred and ninety four cycles of IVF treatment with PGS between January 2013 and January 2017 followed by 651 frozen embryo transfers were included in the study (506 patients, maternal age (y.o.) - 37.2 ± 4.31). A total of 4034 embryos were analyzed (5.1 ± 3.76 per case) for euploidy status. All embryos were vitrified after biopsy, and selected embryos were subsequently thawed for a hormone replacement frozen embryo transfer cycle. All cycles were analyzed by total gonadotropin dosage (<3000 IU, 3000-5000 IU and >5000 IU), by number of eggs retrieved (1-5, 5-10, 10-15 and >15 eggs) and patient's age (<35, 35-37, 38-40 and ≥41 y.o.). Clinical pregnancy rate was defined by the presence of a fetal heartbeat at 6-7 weeks of gestation. Euploidy rates within the same age group were not statistically different regardless of the total dosage of gonadotropins used or the number of eggs retrieved. In the youngest group of patients (<35 y.o. - 187 IVF cycles) euploidy rates ranged from 62.3% (<3000 IU were used in the IVF cycle) to 67.5% (>5000 IU were used in the IVF cycle) (OR = 0.862, 95% CI 0.687-1.082, P = 0.2) and from 69.5% (1-5 eggs retrieved) to 60.0% (>15 eggs retrieved) (OR = 0.658, 95% CI 0.405-1.071, P = 0.09). Similar data were obtained in the oldest group of patients (≥41 y.o. - 189 IVF cycles): euploidy rates ranged from 30.7 to 26.4% (OR = 0.811, 95% CI 0.452-1.454, P = 0.481) when analyzed by total dosage of gonadotropins used in the IVF cycle and from 40.0 to 30.7% (OR = 0.531, 95% CI 0.204-1.384, P = 0.19), when assessed by the total number of eggs retrieved. Ongoing pregnancy rates were similar, not only within particular age groups, but also between different age groups regardless of the total dosage of gonadotropins used: ranging from to 63.6% (<3000 IU, < 35 y.o.) to 54.8% (>5000 IU, ≥41 y.o) (OR = 0.696, 95% CI 0.310-1.565, P = 0.38). Retrospective study and heterogeneity of patients included. These data are reassuring for the common practice of increasing gonadotropin dosages in PGS cycles, particularly in older woman. No formal funding has been received for this study. N/A. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Cell lineage patterns in the shoot meristem of the sunflower embryo in the dry seed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jegla, D.E.; Sussex, I.M.
1989-01-01
We mapped the fate of cells in the shoot meristem of the dry-seed embryo of sunflower, Helianthus annuus L. cv. Peredovic, using irradiation-induced somatic sectors. We analyzed 249 chlorophyll-deficient or glabrous (hairless) sectors generated in 236 plants. Most sectors observed in the inflorescence extended into vegetative nodes. Thus cell lineages that ultimately gave rise to reproductive structures also contributed to vegetative structures. No single sector extended the entire length of the shoot. Thus the shoot is not derived from one or a few apical initials. Rather, the position, vertical extent, and width of the sectors at different levels of themore » shoot suggest that the shoot is derived from three to four circumferential populations of cells in each of three cell layers of the embryo meristem. Sectors had no common boundaries even in plants with two or three independent sectors, but varied in extent and overlapped along the length of the shoot. Thus individual cells in a single circumferential population behaved independently to contribute lineages of different vertical extents to the growing shoot. The predicted number of circumferential populations of cells as well as the apparent cell number in each population was consistent with the actual number of cells in the embryo meristem observed in histological sections.« less
Simple Perfusion Apparatus (SPA) for Manipulation, Tracking and Study of Oocytes and Embryos
Angione, Stephanie L.; Oulhen, Nathalie; Brayboy, Lynae M.; Tripathi, Anubhav; Wessel, Gary M.
2016-01-01
Objective To develop and implement a device and protocol for oocyte analysis at a single cell level. The device must be capable of high resolution imaging, temperature control, perfusion of media, drugs, sperm, and immunolabeling reagents all at defined flow-rates. Each oocyte and resultant embryo must remain spatially separated and defined. Design Experimental laboratory study Setting University and Academic Center for reproductive medicine. Patients/Animals Women with eggs retrieved for ICSI cycles, adult female FVBN and B6C3F1 mouse strains, sea stars. Intervention Real-time, longitudinal imaging of oocytes following fluorescent labeling, insemination, and viability tests. Main outcome measure(s) Cell and embryo viability, immunolabeling efficiency, live cell endocytosis quantitation, precise metrics of fertilization and embryonic development. Results Single oocytes were longitudinally imaged following significant changes in media, markers, endocytosis quantitation, and development, all with supreme control by microfluidics. Cells remained viable, enclosed, and separate for precision measurements, repeatability, and imaging. Conclusions We engineered a simple device to load, visualize, experiment, and effectively record individual oocytes and embryos, without loss of cells. Prolonged incubation capabilities provide longitudinal studies without need for transfer and potential loss of cells. This simple perfusion apparatus (SPA) provides for careful, precise, and flexible handling of precious samples facilitating clinical in vitro fertilization approaches. PMID:25450296
The Secret Life of RNA: Lessons from Emerging Methodologies.
Medioni, Caroline; Besse, Florence
2018-01-01
The last past decade has witnessed a revolution in our appreciation of transcriptome complexity and regulation. This remarkable expansion in our knowledge largely originates from the advent of high-throughput methodologies, and the consecutive discovery that up to 90% of eukaryotic genomes are transcribed, thus generating an unanticipated large range of noncoding RNAs (Hangauer et al., 15(4):112, 2014). Besides leading to the identification of new noncoding RNA species, transcriptome-wide studies have uncovered novel layers of posttranscriptional regulatory mechanisms controlling RNA processing, maturation or translation, and each contributing to the precise and dynamic regulation of gene expression. Remarkably, the development of systems-level studies has been accompanied by tremendous progress in the visualization of individual RNA molecules in single cells, such that it is now possible to image RNA species with a single-molecule resolution from birth to translation or decay. Monitoring quantitatively, with unprecedented spatiotemporal resolution, the fate of individual molecules has been key to understanding the molecular mechanisms underlying the different steps of RNA regulation. This has also revealed biologically relevant, intracellular and intercellular heterogeneities in RNA distribution or regulation. More recently, the convergence of imaging and high-throughput technologies has led to the emergence of spatially resolved transcriptomic techniques that provide a means to perform large-scale analyses while preserving spatial information. By generating transcriptome-wide data on single-cell RNA content, or even subcellular RNA distribution, these methodologies are opening avenues to a wide range of network-level studies at the cell and organ-level, and promise to strongly improve disease diagnostic and treatment.In this introductory chapter, we highlight how recently developed technologies aiming at detecting and visualizing RNA molecules have contributed to the emergence of entirely new research fields, and to dramatic progress in our understanding of gene expression regulation.
Unravel lipid accumulation mechanism in oleaginous yeast through single cell systems biology study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Xiaoliang; Ding, Shiyou
Searching for alternative and clean energy is one of the most important tasks today. Our research aimed at finding the best living condition for certain types of oleaginous yeasts for efficient lipid production. We found that R. glutinis yeast cells has great variability in lipid production among cells while Y. lipolytica cells has similar oil production ability. We found some individual cells shows much higher level of oil production. In order to further study these cases, we employed a label-free chemical sensitive microscopy method call stimulated Raman scattering (SRS). With SRS, we could measure the lipid content in each cell.more » We combined SRS microscopy with microfluidic device so that we can isolate cells with high fat content. We also developed SRS imaging technique that has higher imaging speed, which is highly desirable for high throughput cell screening and sorting. Since these cells has similar genome, it must be the transcriptome caused their difference in oil production. We developed a single cell transcriptome sequencing method to study which genes are responsible for elevated oil production. These methods that are developed for this project can easily be applied for many other areas of research. For example, the single transcriptome can be used to study the transcriptomes of other cell types. The high-speed SRS microscopy techniques can be used to speed up chemical imaging for lablefree histology or imaging distribution of chemicals in tissues of live mice or in humans. The developed microfluidic platform can be used to sort other type of cells, e.g., white blood cells for diagnosis of cancer or other blood diseases.« less
Martin, Angela S; Chang, Jeani; Zhang, Yujia; Kawwass, Jennifer F; Boulet, Sheree L; McKane, Patricia; Bernson, Dana; Kissin, Dmitry M; Jamieson, Denise J
2017-04-01
To examine outcomes of singleton pregnancies conceived without assisted reproductive technology (non-ART) compared with singletons conceived with ART by elective single-embryo transfer (eSET), nonelective single-embryo transfer (non-eSET), and double-embryo transfer with the establishment of 1 (DET -1) or ≥2 (DET ≥2) early fetal heartbeats. Retrospective cohort using linked ART surveillance data and vital records from Florida, Massachusetts, Michigan, and Connecticut. Not applicable. Singleton live-born infants. None. Preterm birth (PTB <37 weeks), very preterm birth (VPTB <32 weeks), small for gestational age birth weight (<10th percentile), low birth weight (LBW <2,500 g), very low birth weight (VLBW <1,500 g), 5-minute Apgar score <7, and neonatal intensive care unit (NICU) admission. After controlling for maternal characteristics and employing a weighted propensity score approach, we found that singletons conceived after eSET were less likely to have a 5-minute Apgar <7 (adjusted odds ratio [aOR] 0.33; 95% CI, 0.15-0.69) compared with non-ART singletons. There were no differences among outcomes between non-ART and non-eSET infants. We found that PTB, VPTB, LBW, and VLBW were more likely among DET -1 and DET ≥2 compared with non-ART infants, with the odds being higher for DET ≥2 (PTB aOR 1.58; 95% CI, 1.09-2.29; VPTB aOR 2.46; 95% CI, 1.20-5.04; LBW aOR 2.17; 95% CI, 1.24-3.79; VLBW aOR 3.67; 95% CI, 1.38-9.77). Compared with non-ART singletons, singletons born after eSET and non-eSET did not have increased risks whereas DET -1 and DET ≥2 singletons were more likely to have adverse perinatal outcomes. Copyright © 2017 American Society for Reproductive Medicine. All rights reserved.
Shiroguchi, Katsuyuki; Jia, Tony Z.; Sims, Peter A.; Xie, X. Sunney
2012-01-01
RNA sequencing (RNA-Seq) is a powerful tool for transcriptome profiling, but is hampered by sequence-dependent bias and inaccuracy at low copy numbers intrinsic to exponential PCR amplification. We developed a simple strategy for mitigating these complications, allowing truly digital RNA-Seq. Following reverse transcription, a large set of barcode sequences is added in excess, and nearly every cDNA molecule is uniquely labeled by random attachment of barcode sequences to both ends. After PCR, we applied paired-end deep sequencing to read the two barcodes and cDNA sequences. Rather than counting the number of reads, RNA abundance is measured based on the number of unique barcode sequences observed for a given cDNA sequence. We optimized the barcodes to be unambiguously identifiable, even in the presence of multiple sequencing errors. This method allows counting with single-copy resolution despite sequence-dependent bias and PCR-amplification noise, and is analogous to digital PCR but amendable to quantifying a whole transcriptome. We demonstrated transcriptome profiling of Escherichia coli with more accurate and reproducible quantification than conventional RNA-Seq. PMID:22232676
A Single-Cell Approach to the Elusive Latent Human Cytomegalovirus Transcriptome.
Goodrum, Felicia; McWeeney, Shannon
2018-06-12
Herpesvirus latency has been difficult to understand molecularly due to low levels of viral genomes and gene expression. In the case of the betaherpesvirus human cytomegalovirus (HCMV), this is further complicated by the heterogeneity inherent to hematopoietic subpopulations harboring genomes and, as a consequence, the various patterns of infection that simultaneously exist in a host, ranging from latent to lytic. Single-cell RNA sequencing (scRNA-seq) provides tremendous potential in measuring the gene expression profiles of heterogeneous cell populations for a wide range of applications, including in studies of cancer, immunology, and infectious disease. A recent study by Shnayder et al. (mBio 9:e00013-18, 2018, https://doi.org/10.1128/mBio.00013-18) utilized scRNA-seq to define transcriptomal characteristics of HCMV latency. They conclude that latency-associated gene expression is similar to the late lytic viral program but at lower levels of expression. The study highlights the numerous challenges, from the definition of latency to the analysis of scRNA-seq, that exist in defining a latent transcriptome. Copyright © 2018 Goodrum and McWeeney.
[Progress in porky genes and transcriptome and discussion of relative issues].
Zhu, Meng-Jin; Liu, Bang; Li, Kui
2005-01-01
To date, research on molecular base of porky molecular development was mainly involved in muscle growth and meat quality. Some functional genes including Hal gene and RN gene and some QTLs controlling or associated with porky growth and quality were detected through candidate gene approach and genome-wide scanning. Genic transcriptome pertinent to porcine muscle and adipose also came into study. At the same time, these researches have befallen some shortcomings to some extent. Research from molecular quantitative genetics showed shortcomings that single gene was devilishly emphasized and co-expression pattern of multi-genes was ignored. Research applying transcriptome analysis tool also met two of limitations, one was the singleness of type of molecular experimental techniques, and another was that genes of muscle and adipose were artificially divided into unattached two parts. Thus, porky genes were explored by parallel genetics based on systemic views and techniques to specially reveal the interactional mechanism of porky genes respectively controlling muscle and adipose, which would be important issues of genes and genome researches on porky development in the near future.
Eberwine, James; Bartfai, Tamas
2011-03-01
We report on an 'unbiased' molecular characterization of individual, adult neurons, active in a central, anterior hypothalamic neuronal circuit, by establishing cDNA libraries from each individual, electrophysiologically identified warm sensitive neuron (WSN). The cDNA libraries were analyzed by Affymetrix microarray. The presence and frequency of cDNAs were confirmed and enhanced with Illumina sequencing of each single cell cDNA library. cDNAs encoding the GABA biosynthetic enzyme Gad1 and of adrenomedullin, galanin, prodynorphin, somatostatin, and tachykinin were found in the WSNs. The functional cellular and in vivo studies on dozens of the more than 500 neurotransmitters, hormone receptors and ion channels, whose cDNA was identified and sequence confirmed, suggest little or no discrepancy between the transcriptional and functional data in WSNs; whenever agonists were available for a receptor whose cDNA was identified, a functional response was found. Sequencing single neuron libraries permitted identification of rarely expressed receptors like the insulin receptor, adiponectin receptor 2 and of receptor heterodimers; information that is lost when pooling cells leads to dilution of signals and mixing signals. Despite the common electrophysiological phenotype and uniform Gad1 expression, WSN transcriptomes show heterogeneity, suggesting strong epigenetic influence on the transcriptome. Our study suggests that it is well-worth interrogating the cDNA libraries of single neurons by sequencing and chipping. Copyright © 2010 Elsevier Inc. All rights reserved.
Vitali, Francesca; Li, Qike; Schissler, A Grant; Berghout, Joanne; Kenost, Colleen; Lussier, Yves A
2017-12-18
The development of computational methods capable of analyzing -omics data at the individual level is critical for the success of precision medicine. Although unprecedented opportunities now exist to gather data on an individual's -omics profile ('personalome'), interpreting and extracting meaningful information from single-subject -omics remain underdeveloped, particularly for quantitative non-sequence measurements, including complete transcriptome or proteome expression and metabolite abundance. Conventional bioinformatics approaches have largely been designed for making population-level inferences about 'average' disease processes; thus, they may not adequately capture and describe individual variability. Novel approaches intended to exploit a variety of -omics data are required for identifying individualized signals for meaningful interpretation. In this review-intended for biomedical researchers, computational biologists and bioinformaticians-we survey emerging computational and translational informatics methods capable of constructing a single subject's 'personalome' for predicting clinical outcomes or therapeutic responses, with an emphasis on methods that provide interpretable readouts. (i) the single-subject analytics of the transcriptome shows the greatest development to date and, (ii) the methods were all validated in simulations, cross-validations or independent retrospective data sets. This survey uncovers a growing field that offers numerous opportunities for the development of novel validation methods and opens the door for future studies focusing on the interpretation of comprehensive 'personalomes' through the integration of multiple -omics, providing valuable insights into individual patient outcomes and treatments. © The Author 2017. Published by Oxford University Press.
Carpinello, Olivia J; Casson, Peter R; Kuo, Chia-Ling; Raj, Renju S; Sills, E Scott; Jones, Christopher A
2016-06-01
In states in the USA without in vitro fertilzation coverage (IVF) insurance coverage, more embryos are transferred per cycle leading to higher risks of multi-fetal pregnancies and adverse pregnancy outcomes. To determine frequency and cost of selected adverse perinatal complications based on number of embryos transferred during IVF, and calculate incremental cost per IVF live birth. Medical records of patients who conceived with IVF (n = 116) and delivered at >20 weeks gestational age between 2007 and 2011 were evaluated. Gestational age at delivery, low birth weight (LBW) term births, and delivery mode were tabulated. Healthcare costs per cohort, extrapolated costs assuming 100 patients per cohort, and incremental costs per infant delivered were calculated. The highest prematurity and cesarean section rates were recorded after double embryo transfers (DET), while the lowest rates were found in single embryo transfers (SET). Premature singleton deliveries increased directly with number of transferred embryos [6.3 % (SET), 9.1 % (DET) and 10.0 % for ≥3 embryos transferred]. This trend was also noted for rate of cesarean delivery [26.7 % (SET), 36.6 % (DET), and 47.1 % for ≥3 embryos transferred]. The proportion of LBW infants among deliveries after DET and for ≥3 embryos transferred was 3.9 and 9.1 %, respectively. Extrapolated costs per cohort were US$718,616, US$1,713,470 and US$1,227,396 for SET, DET, and ≥3 embryos transferred, respectively. Attempting to improve IVF pregnancy rates by permitting multiple embryo transfers results in sharply increased rates of multiple gestation and preterm delivery. This practice yields a greater frequency of adverse perinatal outcomes and substantially increased healthcare spending. Better efforts to encourage SET are necessary to normalize healthcare expenditures considering the frequency of very high cost sequela associated with IVF where multiple embryo transfers occur.
Single-Cell RNA-Sequencing: Assessment of Differential Expression Analysis Methods.
Dal Molin, Alessandra; Baruzzo, Giacomo; Di Camillo, Barbara
2017-01-01
The sequencing of the transcriptomes of single-cells, or single-cell RNA-sequencing, has now become the dominant technology for the identification of novel cell types and for the study of stochastic gene expression. In recent years, various tools for analyzing single-cell RNA-sequencing data have been proposed, many of them with the purpose of performing differentially expression analysis. In this work, we compare four different tools for single-cell RNA-sequencing differential expression, together with two popular methods originally developed for the analysis of bulk RNA-sequencing data, but largely applied to single-cell data. We discuss results obtained on two real and one synthetic dataset, along with considerations about the perspectives of single-cell differential expression analysis. In particular, we explore the methods performance in four different scenarios, mimicking different unimodal or bimodal distributions of the data, as characteristic of single-cell transcriptomics. We observed marked differences between the selected methods in terms of precision and recall, the number of detected differentially expressed genes and the overall performance. Globally, the results obtained in our study suggest that is difficult to identify a best performing tool and that efforts are needed to improve the methodologies for single-cell RNA-sequencing data analysis and gain better accuracy of results.
Evaluating the zebrafish embryo toxicity test for pesticide hazard screening.
Glaberman, Scott; Padilla, Stephanie; Barron, Mace G
2017-05-01
Given the numerous chemicals used in society, it is critical to develop tools for accurate and efficient evaluation of potential risks to human and ecological receptors. Fish embryo acute toxicity tests are 1 tool that has been shown to be highly predictive of standard, more resource-intensive, juvenile fish acute toxicity tests. However, there is also evidence that fish embryos are less sensitive than juvenile fish for certain types of chemicals, including neurotoxicants. The utility of fish embryos for pesticide hazard assessment was investigated by comparing published zebrafish embryo toxicity data from pesticides with median lethal concentration 50% (LC50) data for juveniles of 3 commonly tested fish species: rainbow trout, bluegill sunfish, and sheepshead minnow. A poor, albeit significant, relationship (r 2 = 0.28; p < 0.05) was found between zebrafish embryo and juvenile fish toxicity when pesticides were considered as a single group, but a much better relationship (r 2 = 0.64; p < 0.05) when pesticide mode of action was factored into an analysis of covariance. This discrepancy is partly explained by the large number of neurotoxic pesticides in the dataset, supporting previous findings that commonly used fish embryo toxicity test endpoints are particularly insensitive to neurotoxicants. These results indicate that it is still premature to replace juvenile fish toxicity tests with embryo-based tests such as the Organisation for Economic Co-operation and Development Fish Embryo Acute Toxicity Test for routine pesticide hazard assessment, although embryo testing could be used with other screening tools for testing prioritization. Environ Toxicol Chem 2017;36:1221-1226. © 2016 SETAC. © 2016 SETAC.
Live imaging of rat embryos with Doppler swept-source optical coherence tomography
NASA Astrophysics Data System (ADS)
Larina, Irina V.; Furushima, Kenryo; Dickinson, Mary E.; Behringer, Richard R.; Larin, Kirill V.
2009-09-01
The rat has long been considered an excellent system to study mammalian embryonic cardiovascular physiology, but has lacked the extensive genetic tools available in the mouse to be able to create single gene mutations. However, the recent establishment of rat embryonic stem cell lines facilitates the generation of new models in the rat embryo to link changes in physiology with altered gene function to define the underlying mechanisms behind congenital cardiovascular birth defects. Along with the ability to create new rat genotypes there is a strong need for tools to analyze phenotypes with high spatial and temporal resolution. Doppler OCT has been previously used for 3-D structural analysis and blood flow imaging in other model species. We use Doppler swept-source OCT for live imaging of early postimplantation rat embryos. Structural imaging is used for 3-D reconstruction of embryo morphology and dynamic imaging of the beating heart and vessels, while Doppler-mode imaging is used to visualize blood flow. We demonstrate that Doppler swept-source OCT can provide essential information about the dynamics of early rat embryos and serve as a basis for a wide range of studies on functional evaluation of rat embryo physiology.
Live imaging of rat embryos with Doppler swept-source optical coherence tomography
Larina, Irina V.; Furushima, Kenryo; Dickinson, Mary E.; Behringer, Richard R.; Larin, Kirill V.
2009-01-01
The rat has long been considered an excellent system to study mammalian embryonic cardiovascular physiology, but has lacked the extensive genetic tools available in the mouse to be able to create single gene mutations. However, the recent establishment of rat embryonic stem cell lines facilitates the generation of new models in the rat embryo to link changes in physiology with altered gene function to define the underlying mechanisms behind congenital cardiovascular birth defects. Along with the ability to create new rat genotypes there is a strong need for tools to analyze phenotypes with high spatial and temporal resolution. Doppler OCT has been previously used for 3-D structural analysis and blood flow imaging in other model species. We use Doppler swept-source OCT for live imaging of early postimplantation rat embryos. Structural imaging is used for 3-D reconstruction of embryo morphology and dynamic imaging of the beating heart and vessels, while Doppler-mode imaging is used to visualize blood flow. We demonstrate that Doppler swept-source OCT can provide essential information about the dynamics of early rat embryos and serve as a basis for a wide range of studies on functional evaluation of rat embryo physiology. PMID:19895102
Time lapse imaging: is it time to incorporate this technology into routine clinical practice?
Bhide, Priya; Maheshwari, Abha; Cutting, Rachel; Seenan, Susan; Patel, Anita; Khan, Khalid; Homburg, Roy
2017-06-01
Time-lapse imaging (TLI) systems for embryo incubation, assessment and selection are a novel technology available to in vitro fertilization (IVF) clinics. However, there is uncertainty about their clinical and cost-effectiveness and insufficient good quality evidence to warrant their routine use. Despite this, enthusiastic commercial marketing and slipping clinical equipoise have led to the widespread hasty introduction of this technology into practice, often at a considerable expense to the patient. We have reviewed the published literature and aim to summarize the strengths, weaknesses, opportunities and threats of these systems. These specialized incubators provide undisturbed embryo culture conditions and, by almost continuous monitoring of embryo development, generate morphokinetic parameters to aid embryo selection. They are thus hypothesized to improve outcomes following IVF. Although literature reports improved reproductive outcomes, these outcomes are largely surrogate and there is a paucity of studies reporting live births. The use of time lapse systems may reduce early pregnancy loss, increase elective single embryo transfers and limit multiple pregnancies through better embryo selection. However, the quality of the studies and hence the evidence so far, is low to moderate quality. We recommend further research producing robust high-quality evidence for and against the use of these systems.
Buettner, Florian; Natarajan, Kedar N; Casale, F Paolo; Proserpio, Valentina; Scialdone, Antonio; Theis, Fabian J; Teichmann, Sarah A; Marioni, John C; Stegle, Oliver
2015-02-01
Recent technical developments have enabled the transcriptomes of hundreds of cells to be assayed in an unbiased manner, opening up the possibility that new subpopulations of cells can be found. However, the effects of potential confounding factors, such as the cell cycle, on the heterogeneity of gene expression and therefore on the ability to robustly identify subpopulations remain unclear. We present and validate a computational approach that uses latent variable models to account for such hidden factors. We show that our single-cell latent variable model (scLVM) allows the identification of otherwise undetectable subpopulations of cells that correspond to different stages during the differentiation of naive T cells into T helper 2 cells. Our approach can be used not only to identify cellular subpopulations but also to tease apart different sources of gene expression heterogeneity in single-cell transcriptomes.
NASA Astrophysics Data System (ADS)
Warger, William C., II; Newmark, Judith A.; Zhao, Bing; Warner, Carol M.; DiMarzio, Charles A.
2006-02-01
Present imaging techniques used in in vitro fertilization (IVF) clinics are unable to produce accurate cell counts in developing embryos past the eight-cell stage. We have developed a method that has produced accurate cell counts in live mouse embryos ranging from 13-25 cells by combining Differential Interference Contrast (DIC) and Optical Quadrature Microscopy. Optical Quadrature Microscopy is an interferometric imaging modality that measures the amplitude and phase of the signal beam that travels through the embryo. The phase is transformed into an image of optical path length difference, which is used to determine the maximum optical path length deviation of a single cell. DIC microscopy gives distinct cell boundaries for cells within the focal plane when other cells do not lie in the path to the objective. Fitting an ellipse to the boundary of a single cell in the DIC image and combining it with the maximum optical path length deviation of a single cell creates an ellipsoidal model cell of optical path length deviation. Subtracting the model cell from the Optical Quadrature image will either show the optical path length deviation of the culture medium or reveal another cell underneath. Once all the boundaries are used in the DIC image, the subtracted Optical Quadrature image is analyzed to determine the cell boundaries of the remaining cells. The final cell count is produced when no more cells can be subtracted. We have produced exact cell counts on 5 samples, which have been validated by Epi-Fluorescence images of Hoechst stained nuclei.
Hepatic Transcriptome Responses of Domesticated and Wild Turkey Embryos to Aflatoxin B₁.
Monson, Melissa S; Cardona, Carol J; Coulombe, Roger A; Reed, Kent M
2016-01-06
The mycotoxin, aflatoxin B₁ (AFB₁) is a hepatotoxic, immunotoxic, and mutagenic contaminant of food and animal feeds. In poultry, AFB₁ can be maternally transferred to embryonated eggs, affecting development, viability and performance after hatch. Domesticated turkeys (Meleagris gallopavo) are especially sensitive to aflatoxicosis, while Eastern wild turkeys (M. g. silvestris) are likely more resistant. In ovo exposure provided a controlled AFB₁ challenge and comparison of domesticated and wild turkeys. Gene expression responses to AFB₁ in the embryonic hepatic transcriptome were examined using RNA-sequencing (RNA-seq). Eggs were injected with AFB₁ (1 μg) or sham control and dissected for liver tissue after 1 day or 5 days of exposure. Libraries from domesticated turkey (n = 24) and wild turkey (n = 15) produced 89.2 Gb of sequence. Approximately 670 M reads were mapped to a turkey gene set. Differential expression analysis identified 1535 significant genes with |log₂ fold change| ≥ 1.0 in at least one pair-wise comparison. AFB₁ effects were dependent on exposure time and turkey type, occurred more rapidly in domesticated turkeys, and led to notable up-regulation in cell cycle regulators, NRF2-mediated response genes and coagulation factors. Further investigation of NRF2-response genes may identify targets to improve poultry resistance.
Transcriptome and Degradome Sequencing Reveals Dormancy Mechanisms of Cunninghamia lanceolata Seeds.
Cao, Dechang; Xu, Huimin; Zhao, Yuanyuan; Deng, Xin; Liu, Yongxiu; Soppe, Wim J J; Lin, Jinxing
2016-12-01
Seeds with physiological dormancy usually experience primary and secondary dormancy in the nature; however, little is known about the differential regulation of primary and secondary dormancy. We combined multiple approaches to investigate cytological changes, hormonal levels, and gene expression dynamics in Cunninghamia lanceolata seeds during primary dormancy release and secondary dormancy induction. Light microscopy and transmission electron microscopy revealed that protein bodies in the embryo cells coalesced during primary dormancy release and then separated during secondary dormancy induction. Transcriptomic profiling demonstrated that expression of genes negatively regulating gibberellic acid (GA) sensitivity reduced specifically during primary dormancy release, whereas the expression of genes positively regulating abscisic acid (ABA) biosynthesis increased during secondary dormancy induction. Parallel analysis of RNA ends revealed uncapped transcripts for ∼55% of all unigenes. A negative correlation between fold changes in expression levels of uncapped versus capped mRNAs was observed during primary dormancy release. However, this correlation was loose during secondary dormancy induction. Our analyses suggest that the reversible changes in cytology and gene expression during dormancy release and induction are related to ABA/GA balance. Moreover, mRNA degradation functions as a critical posttranscriptional regulator during primary dormancy release. These findings provide a mechanistic framework for understanding physiological dormancy in seeds. © 2016 American Society of Plant Biologists. All Rights Reserved.
Transcriptome and Degradome Sequencing Reveals Dormancy Mechanisms of Cunninghamia lanceolata Seeds1
Xu, Huimin; Liu, Yongxiu; Soppe, Wim J.J.; Lin, Jinxing
2016-01-01
Seeds with physiological dormancy usually experience primary and secondary dormancy in the nature; however, little is known about the differential regulation of primary and secondary dormancy. We combined multiple approaches to investigate cytological changes, hormonal levels, and gene expression dynamics in Cunninghamia lanceolata seeds during primary dormancy release and secondary dormancy induction. Light microscopy and transmission electron microscopy revealed that protein bodies in the embryo cells coalesced during primary dormancy release and then separated during secondary dormancy induction. Transcriptomic profiling demonstrated that expression of genes negatively regulating gibberellic acid (GA) sensitivity reduced specifically during primary dormancy release, whereas the expression of genes positively regulating abscisic acid (ABA) biosynthesis increased during secondary dormancy induction. Parallel analysis of RNA ends revealed uncapped transcripts for ∼55% of all unigenes. A negative correlation between fold changes in expression levels of uncapped versus capped mRNAs was observed during primary dormancy release. However, this correlation was loose during secondary dormancy induction. Our analyses suggest that the reversible changes in cytology and gene expression during dormancy release and induction are related to ABA/GA balance. Moreover, mRNA degradation functions as a critical posttranscriptional regulator during primary dormancy release. These findings provide a mechanistic framework for understanding physiological dormancy in seeds. PMID:27760880
Kang, Chunying; Darwish, Omar; Geretz, Aviva; Shahan, Rachel; Alkharouf, Nadim; Liu, Zhongchi
2013-01-01
Fragaria vesca, a diploid woodland strawberry with a small and sequenced genome, is an excellent model for studying fruit development. The strawberry fruit is unique in that the edible flesh is actually enlarged receptacle tissue. The true fruit are the numerous dry achenes dotting the receptacle’s surface. Auxin produced from the achene is essential for the receptacle fruit set, a paradigm for studying crosstalk between hormone signaling and development. To investigate the molecular mechanism underlying strawberry fruit set, next-generation sequencing was employed to profile early-stage fruit development with five fruit tissue types and five developmental stages from floral anthesis to enlarged fruits. This two-dimensional data set provides a systems-level view of molecular events with precise spatial and temporal resolution. The data suggest that the endosperm and seed coat may play a more prominent role than the embryo in auxin and gibberellin biosynthesis for fruit set. A model is proposed to illustrate how hormonal signals produced in the endosperm and seed coat coordinate seed, ovary wall, and receptacle fruit development. The comprehensive fruit transcriptome data set provides a wealth of genomic resources for the strawberry and Rosaceae communities as well as unprecedented molecular insight into fruit set and early stage fruit development. PMID:23898027
New Markers for Predicting Fertility of the Male Gametes in the Post Genomic Age.
Dipresa, Savina; De Toni, Luca; Foresta, Carlo; Garolla, Andrea
2018-04-18
A number of test have been proposed to assess male fertility potential, ranging from routine testing by light microscopic method for evaluating semen samples, to screening test for DNA integrity aimed to look at sperm chromatin abnormalities. Spermatozoa are an extremely differentiated cell, they have critical functions for embryo development and heredity, in addiction to delivering a haploid paternal genome to the oocyte. Towards this goal certain requirements must always be met. The ability of spermatozoa to perform its reproductive function taking place in the spermatogenesis, a highly specialized process depending on multiple factors with effect on male fertility. In the past 30 years, large-scale analyses of transcriptomic and genome expression in mammals have generated a large amount of informations on numberless biomolecules involved in spermatogenesis and male germ cell reproductive function. Sperm proteome represents the protein content that spermatozoa needs to survive and work correctly and modifications of sperm proteome play a role in determining functional changes leading to a decrease of reproductive competence into affected spermatozoa. The post-genomic approach consists of different methodologies for concurrently testicular transcriptome studies, protein compositional analysis and metabolomics findings of the spermatozoa in humans. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Guedj, Faycal; Pennings, Jeroen LA; Massingham, Lauren J; Wick, Heather C; Siegel, Ashley E; Tantravahi, Umadevi; Bianchi, Diana W
2016-09-02
Anatomical and functional brain abnormalities begin during fetal life in Down syndrome (DS). We hypothesize that novel prenatal treatments can be identified by targeting signaling pathways that are consistently perturbed in cell types/tissues obtained from human fetuses with DS and mouse embryos. We analyzed transcriptome data from fetuses with trisomy 21, age and sex-matched euploid controls, and embryonic day 15.5 forebrains from Ts1Cje, Ts65Dn, and Dp16 mice. The new datasets were compared to other publicly available datasets from humans with DS. We used the human Connectivity Map (CMap) database and created a murine adaptation to identify FDA-approved drugs that can rescue affected pathways. USP16 and TTC3 were dysregulated in all affected human cells and two mouse models. DS-associated pathway abnormalities were either the result of gene dosage specific effects or the consequence of a global cell stress response with activation of compensatory mechanisms. CMap analyses identified 56 molecules with high predictive scores to rescue abnormal gene expression in both species. Our novel integrated human/murine systems biology approach identified commonly dysregulated genes and pathways. This can help to prioritize therapeutic molecules on which to further test safety and efficacy. Additional studies in human cells are ongoing prior to pre-clinical prenatal treatment in mice.
Transcriptome-wide investigation of genomic imprinting in chicken
Frésard, Laure; Leroux, Sophie; Servin, Bertrand; Gourichon, David; Dehais, Patrice; Cristobal, Magali San; Marsaud, Nathalie; Vignoles, Florence; Bed'hom, Bertrand; Coville, Jean-Luc; Hormozdiari, Farhad; Beaumont, Catherine; Zerjal, Tatiana; Vignal, Alain; Morisson, Mireille; Lagarrigue, Sandrine; Pitel, Frédérique
2014-01-01
Genomic imprinting is an epigenetic mechanism by which alleles of some specific genes are expressed in a parent-of-origin manner. It has been observed in mammals and marsupials, but not in birds. Until now, only a few genes orthologous to mammalian imprinted ones have been analyzed in chicken and did not demonstrate any evidence of imprinting in this species. However, several published observations such as imprinted-like QTL in poultry or reciprocal effects keep the question open. Our main objective was thus to screen the entire chicken genome for parental-allele-specific differential expression on whole embryonic transcriptomes, using high-throughput sequencing. To identify the parental origin of each observed haplotype, two chicken experimental populations were used, as inbred and as genetically distant as possible. Two families were produced from two reciprocal crosses. Transcripts from 20 embryos were sequenced using NGS technology, producing ∼200 Gb of sequences. This allowed the detection of 79 potentially imprinted SNPs, through an analysis method that we validated by detecting imprinting from mouse data already published. However, out of 23 candidates tested by pyrosequencing, none could be confirmed. These results come together, without a priori, with previous statements and phylogenetic considerations assessing the absence of genomic imprinting in chicken. PMID:24452801
Fiber optic light-scattering measurement system for evaluation of embryo viability: model experiment
NASA Astrophysics Data System (ADS)
Itoh, Harumi; Arai, Tsunenori; Kikuchi, Makoto
1996-05-01
We evaluated the particle density detectability and particle size detectivity of our fiber-optic light-scattering measurement system. In order to prevent the multiple pregnancy on current in vitro fertilization-embryo transfer, we have aimed to develop a new quantitative and non- invasive method to select a single viable human embryo. We employed the measurement of mitochondria localization in an embryo, which may have the correlation with development ability. We applied the angular distribution measurement of the light-scattering intensity from the embryo to obtain the information originated from the mitochondria. The latex spheres with a diameter of 1.0 micrometers were used to simulate the scattering intensity of the mitochondria. The measurement probes of our system consisted of two fibers for illumination and sensing. They were arranged at a right angle to a microscope optical axis to measure the angular distribution of the light-scattering intensity. We observed that the light-scattering intensity increased monotonically in the range from 106 to 1010 particles per ml. Since the mitochondria density in a human embryo corresponded to 2.5 X 107 per ml in the measurement chamber, we may measure the mitochondria density in the human embryo. The angular dependence of light-scattering intensity changed with the sphere diameters. This result showed the possibility of the selective measurement of the mitochondria density in the embryo in spite of the presence of the other cell organelle. We think that our light-scattering measurement system might be applicable to the evaluation method for the embryo viability.
Racowsky, Catherine; Stern, Judy E; Gibbons, William E; Behr, Barry; Pomeroy, Kimball O; Biggers, John D
2011-05-01
To evaluate the validity of collecting day 3 embryo morphology variables into the Society for Assisted Reproductive Technology Clinic Outcomes Reporting System (SART CORS). Retrospective. National database-SART CORS. Fresh autologous assisted reproductive technology (ART) cycles from 2006-2007 in which embryos were transferred singly (n=1,020) or in pairs (n=6,508) and embryo morphology was collected. None. Relationship between live birth, maternal age, and morphology of transferred day 3 embryos as defined by cell number, fragmentation, and blastomere symmetry. Logistic multiple regressions and receiver operating characteristic curve analyses were applied to determine specificity and sensitivity for correctly classifying embryos as either failures or successes. Live birth rate was positively associated with increasing cell number up to eight cells (<6 cells: 2.9%; 6 cells: 9.6%; 7 cells: 15.5%; 8 cells: 24.3%; and >8 cells: 16.2%), but was negatively associated with maternal age, increasing fragmentation, and asymmetry scores. An area under the receiver operating curve of 0.753 (95% confidence interval 0.740-0.766) was derived, with a sensitivity of 45.0%, a specificity of 83.2%, and 76.4% of embryos being correctly classified with a cutoff probability of 0.3. This analysis provides support for the validity of collecting morphology fields for day 3 embryos into SART CORS. Standardization of morphology collections will assist in controlling for embryo quality in future database analyses. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Omics in Reproductive Medicine: Application of Novel Technologies to Improve the IVF Success Rate.
Nerenz, R D
Treatment for many infertile couples often consists of in vitro fertilization (IVF) but an estimated 70% of IVF cycles fail to produce a live birth. In an attempt to improve the live birth rate, the vast majority of IVF cycles performed in the United States involve the transfer of multiple embryos, a practice that increases the risk of multiple gestation pregnancy. This is a concern because multiple gestation pregnancies are associated with an increased incidence of maternal and fetal complications and significant cost associated with the care of preterm infants. As the ideal outcome of each IVF cycle is the birth of a single healthy baby, significant effort has focused on identifying embryos with the greatest developmental potential. To date, selection of euploid embryos using comprehensive chromosome screening (CCS) is the most promising approach while metabolomic and proteomic assessment of spent culture medium have the potential to noninvasively assess embryo viability. Endometrial gene expression profiling may help determine the optimal time to perform embryo transfer. While CCS has been implemented in some clinics, further development and optimization will be required before analysis of spent culture medium and endometrial gene expression profiling make the transition to clinical use. This review will describe efforts to identify embryos with the greatest potential to result in a healthy, live birth, with a particular emphasis on detection of embryo aneuploidy and metabolic profiling of spent embryo culture medium. Assessment of endometrial receptivity to identify the optimal time to perform embryo transfer will also be discussed. © 2016 Elsevier Inc. All rights reserved.
The threshold number of protons to induce an adaptive response in zebrafish embryos.
Choi, V W Y; Konishi, Teruaki; Oikawa, Masakazu; Cheng, S H; Yu, K N
2013-03-01
In this study, microbeam protons were used to provide the priming dose to induce an in vivo radioadaptive response (RAR) in the embryos of zebrafish, Danio rerio, against subsequent challenging doses provided by x-ray photons. The microbeam irradiation system (Single-Particle Irradiation System to Cell, acronym SPICE) at the National Institute of Radiological Sciences (NIRS), Japan, was employed. The embryos were dechorionated at 4 h post fertilisation (hpf) and irradiated at 5 hpf by microbeam protons. For each embryo, one irradiation point was chosen, to which 5, 10, 20, 30, 40, 50, 100, 200, 300 and 500 protons each with an energy of 3.4 MeV were delivered. The embryos were returned to the incubator until 10 hpf to further receive the challenging exposure, which was achieved using 2 Gy of x-ray irradiation, and then again returned to the incubator until 24 hpf for analyses. The levels of apoptosis in zebrafish embryos at 25 hpf were quantified through terminal dUTP transferase-mediated nick end-labelling (TUNEL) assay. The results revealed that at least 200 protons (with average radiation doses of about 300 and 650 mGy absorbed by an irradiated epithelial and deep cell, respectively) would be required to induce RAR in the zebrafish embryos in vivo. Our previous investigation showed that 5 protons delivered at 10 points on an embryo would already be sufficient to induce RAR in the zebrafish embryos. The difference was explained in terms of the radiation-induced bystander effect as well as the rescue effect.
Wirbisky, Sara E; Damayanti, Nur P; Mahapatra, Cecon T; Sepúlveda, Maria S; Irudayaraj, Joseph; Freeman, Jennifer L
2016-02-15
Trichloroethylene (TCE) is primarily used as an industrial degreasing agent and has been in use since the 1940s. TCE is released into the soil, surface, and groundwater. From an environmental and regulatory standpoint, more than half of Superfund hazardous waste sites on the National Priority List are contaminated with TCE. Occupational exposure to TCE occurs primarily via inhalation, while environmental TCE exposure also occurs through ingestion of contaminated drinking water. Current literature links TCE exposure to various adverse health effects including cardiovascular toxicity. Current studies aiming to address developmental cardiovascular toxicity utilized rodent and avian models, with the majority of studies using relatively higher parts per million (mg/L) doses. In this study, to further investigate developmental cardiotoxicity of TCE, zebrafish embryos were treated with 0, 10, 100, or 500 parts per billion (ppb; μg/L) TCE during embryogenesis and/or through early larval stages. After the appropriate exposure period, angiogenesis, F-actin, and mitochondrial function were assessed. A significant dose-response decrease in angiogenesis, F-actin, and mitochondrial function was observed. To further complement this data, a transcriptomic profile of zebrafish larvae was completed to identify gene alterations associated with the 10 ppb TCE exposure. Results from the transcriptomic data revealed that embryonic TCE exposure caused significant changes in genes associated with cardiovascular disease, cancer, and organismal injury and abnormalities with a number of targets in the FAK signaling pathway. Overall, results from our study support TCE as a developmental cardiovascular toxicant, provide molecular targets and pathways for investigation in future studies, and indicate a need for continued priority for environmental regulation.
Mu, Huawei; Sun, Jin; Heras, Horacio; Chu, Ka Hou; Qiu, Jian-Wen
2017-02-23
Proteins of the egg perivitelline fluid (PVF) that surrounds the embryo are critical for embryonic development in many animals, but little is known about their identities. Using an integrated proteomic and transcriptomic approach, we identified 64 proteins from the PVF of Pomacea maculata, a freshwater snail adopting aerial oviposition. Proteins were classified into eight functional groups: major multifunctional perivitellin subunits, immune response, energy metabolism, protein degradation, oxidation-reduction, signaling and binding, transcription and translation, and others. Comparison of gene expression levels between tissues showed that 22 PVF genes were exclusively expressed in albumen gland, the female organ that secretes PVF. Base substitution analysis of PVF and housekeeping genes between P. maculata and its closely related species Pomacea canaliculata showed that the reproductive proteins had a higher mean evolutionary rate. Predicted 3D structures of selected PVF proteins showed that some nonsynonymous substitutions are located at or near the binding regions that may affect protein function. The proteome and sequence divergence analysis revealed a substantial amount of maternal investment in embryonic nutrition and defense, and higher adaptive selective pressure on PVF protein-coding genes when compared with housekeeping genes, providing insight into the adaptations associated with the unusual reproductive strategy in these mollusks. There has been great interest in studying reproduction-related proteins as such studies may not only answer fundamental questions about speciation and evolution, but also solve practical problems of animal infertility and pest outbreak. Our study has demonstrated the effectiveness of an integrated proteomic and transcriptomic approach in understanding the heavy maternal investment of proteins in the eggs of a non-model snail, and how the reproductive proteins may have evolved during the transition from laying underwater eggs to aerial eggs. Copyright © 2017 Elsevier B.V. All rights reserved.
Characterization and fine mapping of qkc7.03: a major locus for kernel cracking in maize.
Yang, Mingtao; Chen, Lin; Wu, Xun; Gao, Xing; Li, Chunhui; Song, Yanchun; Zhang, Dengfeng; Shi, Yunsu; Li, Yu; Li, Yong-Xiang; Wang, Tianyu
2018-02-01
A major locus conferring kernel cracking in maize was characterized and fine mapped to an interval of 416.27 kb. Meanwhile, combining the results of transcriptomic analysis, the candidate gene was inferred. Seed development requires a proper structural and physiological balance between the maternal tissues and the internal structures of the seeds. In maize, kernel cracking is a disorder in this balance that seriously limits quality and yield and is characterized by a cracked pericarp at the kernel top and endosperm everting. This study elucidated the genetic basis and characterization of kernel cracking. Primarily, a near isogenic line (NIL) with a B73 background exhibited steady kernel cracking across environments. Therefore, deprived mapping populations were developed from this NIL and its recurrent parent B73. A major locus on chromosome 7, qkc7.03, was identified to be associated with the cracking performance. According to a progeny test of recombination events, qkc7.03 was fine mapped to a physical interval of 416.27 kb. In addition, obvious differences were observed in embryo development and starch granule arrangement within the endosperm between the NIL and its recurrent parent upon the occurrence of kernel cracking. Moreover, compared to its recurrent parent, the transcriptome of the NIL showed a significantly down-regulated expression of genes related to zeins, carbohydrate synthesis and MADS-domain transcription factors. The transcriptomic analysis revealed ten annotated genes within the target region of qkc7.03, and only GRMZM5G899476 was differently expressed between the NIL and its recurrent parent, indicating that this gene might be a candidate gene for kernel cracking. The results of this study facilitate the understanding of the potential mechanism underlying kernel cracking in maize.
Eme, John; Rhen, Turk; Crossley, Dane A
2014-10-01
Adenosine is an endogenous nucleoside that acts via G-protein coupled receptors. In vertebrates, arterial or venous adenosine injection causes a rapid and large bradycardia through atrioventricular node block, a response mediated by adenosine receptors that inhibit adenylate cyclase and decrease cyclic AMP concentration. Chronic developmental hypoxia has been shown to alter cardioregulatory mechanisms in reptile embryos, but adenosine's role in mediating these responses is not known. We incubated snapping turtle embryos under chronic normoxic (N21; 21 % O2) or chronic hypoxic conditions (H10; 10 % O2) beginning at 20 % of embryonic incubation. H10 embryos at 90 % of incubation were hypotensive relative to N21 embryos in both normoxic and hypoxic conditions. Hypoxia caused a hypotensive bradycardia in both N21 and H10 embryos during the initial 30 min of exposure; however, f H and P m both trended towards increasing during the subsequent 30 min, and H10 embryos were tachycardic relative to N21 embryos in hypoxia. Following serial ≥1 h exposure to normoxic and hypoxic conditions, a single injection of adenosine (1 mg kg(-1)) was given. N21 and H10 embryos responded to adenosine injection with a rapid and large hypotensive bradycardia in both normoxia and hypoxia. Gene expression for adenosine receptors were quantified in cardiac tissue, and Adora1 mRNA was the predominant receptor subtype with transcript levels 30-82-fold higher than Adora2A or Adora2B. At 70 % of incubation, H10 embryos had lower Adora1 and Adora2B expression compared to N21 embryos. Expression of Adora1 and Adora2B decreased in N21 embryos during development and did not differ from H10 embryos at 90 % of incubation. Similar to previous results in normoxia, H10 embryos in hypoxia were chronically tachycardic compared to N21 embryos before and after complete cholinergic and adrenergic blockade. Chronic hypoxia altered the development of normal cholinergic and adrenergic tone, as well as adenosine receptor mRNA levels. This study demonstrates that adenosine may be a major regulator of heart rate in developing snapping turtle embryos, and that chronic hypoxic incubation alters the response to hypoxic exposure.
Habenular commissure formation in zebrafish is regulated by the pineal gland-specific gene unc119c.
Toyama, Reiko; Kim, Mi Ha; Rebbert, Martha L; Gonzales, John; Burgess, Harold; Dawid, Igor B
2013-09-01
The zebrafish pineal gland (epiphysis) is a site of melatonin production, contains photoreceptor cells, and functions as a circadian clock pacemaker. Since it is located on the surface of the forebrain, it is accessible for manipulation and, therefore, is a useful model system to analyze pineal gland function and development. We previously analyzed the pineal transcriptome during development and showed that many genes exhibit a highly dynamic expression pattern in the pineal gland. Among genes preferentially expressed in the zebrafish pineal gland, we identified a tissue-specific form of the unc119 gene family, unc119c, which is highly preferentially expressed in the pineal gland during day and night at all stages examined from embryo to adult. When expression of unc119c was inhibited, the formation of the habenular commissure (HC) was specifically compromised. The Unc119c interacting factors Arl3l1 and Arl3l2 as well as Wnt4a also proved indispensible for HC formation. We suggest that Unc119c, together with Arl3l1/2, plays an important role in modulating Wnt4a production and secretion during HC formation in the forebrain of the zebrafish embryo. Copyright © 2013 Wiley Periodicals, Inc.
Habenular commissure formation in zebrafish is regulated by the pineal gland specific gene unc119c
Toyama, Reiko; Kim, Mi Ha; Rebbert, Martha L.; Gonzales, John; Burgess, Harold; Dawid, Igor B.
2013-01-01
Background The zebrafish pineal gland (epiphysis) is a site of melatonin production, contains photoreceptor cells, and functions as a circadian clock pacemaker. Since it is located on the surface of the forebrain, it is accessible for manipulation and therefore is a useful model system to analyze pineal gland function and development. We previously analyzed the pineal transcriptome during development and showed that many genes exhibit a highly dynamic expression pattern in the pineal gland. Results Among genes preferentially expressed in the zebrafish pineal gland, we identified a tissue-specific form of the unc119 gene family, unc119c, which is highly preferentially expressed in the pineal gland during day and night at all stages examined from embryo to adult. When expression of unc119c was inhibited, the formation of the habenular commissure (HC) was specifically compromised. The Unc119c interacting factors Arl3l1 and Arl3l2 as well as Wnt4a also proved indispensible for HC formation. Conclusions We suggest that Unc119c, together with Arl3l1/2, plays an important role in modulating Wnt4a production and secretion during HC formation in the forebrain of the zebrafish embryo. PMID:23749482
Factors associated with disposition of cryopreserved reproductive tissue.
Styer, Aaron K; Cekleniak, Natalie A; Legedza, Anna; Mutter, George L; Hornstein, Mark D
2003-09-01
To study patient characteristics associated with the preferences for the disposition of cryopreserved semen and embryos in the event of death or divorce. Retrospective exploratory study. Tertiary care academic medical center. One hundred twelve men banking sperm, 54 female patients (partners of men banking sperm) undergoing in vitro fertilization (IVF), and 112 women undergoing IVF who were not partners of men banking sperm. Male patients banking sperm and couples undergoing IVF completed a standard consent form detailing their desired dispositions (disposal or release to a surviving party) of cryopreserved sperm and embryos in the event of death or divorce. Effect of marital status, age, reason for sperm banking, infertility diagnosis, partner status (single or significant-other partner) on sperm, and embryo disposition choice. In the event of death, married men were 5.5 times more likely to release banked sperm to a surviving party than were single men. The estimated odds of giving sperm to a survivor were 1.07 times greater with every 1-year increase in age. The choice of sperm disposal was significantly related to the banking reason for the case of banking prior to chemotherapy and/or radiation for malignancy. In the case of male death, the decisions of couples undergoing IVF for embryo disposition agreed with choices of male patients for sperm disposition approximately 33% of the time more often than by chance alone. Decisions surrounding disposition of cryopreserved sperm are significantly associated with marital status, age, and reason for banking sperm. Respective choices of sperm and embryo disposition in couples undergoing IVF were similar in the situation of male death.
3D confocal reconstruction of gene expression in mouse.
Hecksher-Sørensen, J; Sharpe, J
2001-01-01
Three-dimensional computer reconstructions of gene expression data will become a valuable tool in biomedical research in the near future. However, at present the process of converting in situ expression data into 3D models is a highly specialized and time-consuming procedure. Here we present a method which allows rapid reconstruction of whole-mount in situ data from mouse embryos. Mid-gestation embryos were stained with the alkaline phosphotase substrate Fast Red, which can be detected using confocal laser scanning microscopy (CLSM), and cut into 70 microm sections. Each section was then scanned and digitally reconstructed. Using this method it took two days to section, digitize and reconstruct the full expression pattern of Shh in an E9.5 embryo (a 3D model of this embryo can be seen at genex.hgu.mrc.ac.uk). Additionally we demonstrate that this technique allows gene expression to be studied at the single cell level in intact tissue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikenishi, K.; Okuda, T.; Nakazato, S.
1984-05-01
A single blastomere containing the ''germ plasm'' of 32-cell stage Xenopus embryos was cultured with (/sup 3/H)thymidine until the control embryos developed to the neurula stage. The explants, showing a spherical mass in which the nuclei of all cells were labeled, were implanted into the prospective place of presumptive primordial germ cells (pPGCs) in the endodermal cell mass of unlabeled host embryos of the neurula stage. Labeled PGCs as well as unlabeled, host PGCs were found in the genital ridges of experimental tadpoles. This indicates that the precursor of germ cells, corresponding to pPGCs in normal embryos of the neurulamore » stage, in the explants migrated to genital ridges just at the right moment to become PGCs, and suggests that the developmental process progressed normally, even in the explants, as far as the differentiation of pPGCs is concerned.« less